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Preface

These are the proceedings of WAIFI 2016, the 6th International Workshop on the
Arithmetic of Finite Fields, held in Ghent, Belgium, during July 13–15, 2016. The five
previous editions of this workshop were held in Madrid, Spain (WAIFI 2007), Siena,
Italy (WAIFI 2008), Istanbul, Turkey (WAIFI 2010), Bochum, Germany (WAIFI
2012), and Gebze, Turkey (WAIFI 2014). Springer has published all previous volumes
of the WAIFI proceedings in the LNCS series.

Since 2008, WAIFI has been held every even year, bringing together mathemati-
cians, computer scientists, engineers, and physicists who conduct research in different
areas of finite field arithmetic.

The program consisted of three invited talks and 17 contributed papers. The invited
speakers were Swastik Kopparty (Rutgers University, USA), Simeon Ball (Universitat
Politècnica de Catalunya, Spain) and Razvan Barbulescu (CNRS, Paris 6 and 7,
France). The papers supporting the two last invited talks were also included in the
proceedings. The contributed talks were selected from 38 submissions, each of which
was assigned to at least three committee members or external reviewers chosen by the
members. Additionally, the Program Committee had a significant online discussion
phase for several days. Three additional presentations were made during the workshop
but are not part of these proceedings.

We are very grateful to the members of the Program Committee for their dedication,
professionalism, and careful work with the review and selection process. We also
sincerely thank the external reviewers who contributed with their special expertise to
review papers for this workshop.

We deeply thank the general co-chairs, Vincent Rijmen and Leo Storme, for their
support of the Program Committee and their hard work in leading the overall organization
of the workshop helped by the Organizing Committee. We would also like to sincerely
thank members of the Steering Committee of the workshop series for their constant
support and encouragement in our efforts to create a stimulating scientific program leading
to this volume. Furthermore, we thank Jean-Jacques Quisquater for his valuable help in
publicity and we are also very grateful to José Luis Imaña and Jan de Beule for diligently
maintaining the workshop website. As with the previous volumes, Springer agreed to
publish the revised and expanded versions of theWAIFI 2016 papers as an LNCS volume.
We thank Alfred Hoffman and Anna Kramer from Springer for making this possible.

The submission and selection of papers were done using the EasyChair conference
management system. Hence, thank you EasyChair! We would also like to acknowledge
the Foundation Compositio Mathematica and FWO for being sponsors of the workshop.

Finally, but most importantly, we deeply thank all the authors who submitted their
papers to the workshop and the participants all over the world who chose to honor us
with their attendance.

February 2017 Sylvain Duquesne
Svetla Petkova-Nikova
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A Brief History of Pairings

Razvan Barbulescu(B)

CNRS, Univ. Paris 6, Univ. Paris 7, Paris, France
razvan.barbulescu@imj-prg.fr

Abstract. Pairings are a relatively new tool in cryptography. Recent
progress on the attack algorithms have changed the security estimations.
We make a list of pairing families and explain their advantages but also
their weaknesses.

1 Introduction

Pairings are a mathematical tool which has been known to cryptographers for a
long time and which switched sides during its history. If in the early 90’s it was
on the attacker’s side, it is now used to create secure cryptologic protocols.

Let E be an elliptic curve defined over a finite field Fq, r an integer number,
P a point of order r and μ an rth root of unity in the algebraic closure Fq. The
Weil pairing (restricted to the subgroup generated by P ) is the map

e : Z/rZP × Z/rZP → μZ/rZ

∀(a, b) ∈ (Z/rZ)2 ([a]P, [b]P ) �→ μab.
(1)

Two properties of the Weil pairing are direct:

– bilinearity: for all a, a′, b, b′ we have

e([a + a′]P, [b]P ) = e([a]P, [b]P ) · e([a′]P, [b]P )
e([a]P, [b + b′]P ) = e([a]P, [b]P ) · e([a]P, [b′]P )

– non-degeneracy: for all a �= 0 there exists b so that

e([a]P, [b]P ) �= 1,

and similarly with the roles of a and b exchanged.

The Weil pairing owes its name to André Weil who gave an equivalent defi-
nition in 1940 [Wei40]. More precisely, Weil defined the map

eW (S, T ) =
g(X + S)

g(X)
, (2)

where g is a function so that div(g) = rT − rOE and X ∈ E\E[r2]. This map is
bilinear and non-degenerate (see Proposition III.8.1 in [Sil07]) and, since there
is a unique map with these two properties (up to a multiplicative constant),
c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-55227-9 1



4 R. Barbulescu

we conclude that Eqs. (2) and (1) are alternative definitions of the same object.
In 1985 Miller [Mil04] invented an algorithm based on this equivalent definition
to compute e in polynomial time with respect to the bit sizes of q and r. Frey
and Rück [FR94] created an alternative manner to compute Weil pairings using
results of Tate and Lichtenbaum.

From attacker’s point of view, pairings are a tool to reduce hard problems
to easier ones. Given a cyclic group G of known order, a generator P of G and
an other point [a]P for a ∈ {0, 1, . . . ,#G − 1}, the discrete logarithm problem
(DLP) consists in finding a. In 1992 Menezes, Okamoto and Vanstone [MOV93]
showed that the Weil pairing associated to an elliptic curve over Fq, an integer
r, a point P of order r and an rth root of unity in Fq allows to reduce the DLP
on E to the DLP in the multiplicative group of Fq(μ), the smallest subfield of
Fq which contains μ. The embedding degree of E with respect to r is the degree
of Fq(μ).

From a constructive point of view, pairings are a tool to combine two
encrypted secrets into a common encrypted secret, without decrypting them
at any time. In 2001 Joux [Jou00] proposed a three-party Diffie-Hellman key
exchange which requires only one round of communications. If Alice, Bob and
Carol want to agree on a common key they need to agree on an elliptic curve
and on a point P of order r. Then they proceed in two steps

1. each participant generates a random integer, raises P to that power and
broadcasts the result:

– Alice generates a and computes [a]P and broadcasts it,
– Bob generates b and computes [b]P and broadcasts it,
– Carol generates c and computes [c]P and broadcasts it;

2 each participant computes the Weil pairing of the received points and raises
it to its own secret number:

– Alice computes e([b]P, [c]P )a,
– Bob computes e([c]P, [a]P )b,
– Carol computes e([a]P, [b]P )c.

Due to Eq. (1) all participants have computed μabc.
This protocol has inspired alternative solutions which are based on lattices

and therefore belong to the exponential cryptography [GGH13].
The three party Diffie-Hellman protocol can be broken by solving the DLP

in the subgroup of E generated by P or by solving the DLP in the multiplicative
group of Fqk . This is true for other applications of pairings but we stick to this
example for simplicity.

2 Known Attacks Against Pairings

2.1 Attacks on the Curve Side

Pollard Rho. In the three-party Diffie-Hellman protocol an attacker can compute
the discrete logarithm of [a]P and obtain the secret information a. The state-
of-the-art algorithm to solve DLP in elliptic curves over prime fields is Pollard’s



A Brief History of Pairings 5

rho [Pol78] which has a cost of O(
√

r) operations. Hence, for a given security
level one has to set log2 r = 2s and therefore log2 #E(Fq) ≥ 2s. Due to Hasse’s
theorem, q and #E(Fq) have the same bit size up to an error of 3 bits, so we
have log2 q ≥ log2 r = 2s.

Faults on the Twist Curve. Biehl, Meyer and Müller [BMM00] explained that,
since some implementations of the scalar multiplication use only the x coordinate
of the points on the elliptic curve E : y2 = x3 +ax+b, by error injection one can
transfer the DLP from E to its twisted curve E′ : εy2 = x3 +ax+ b, where ε is a
non-square of Fq. As a counter-measure we require that the elliptic curves used
in cryptography are twist-safe, i.e. that both #E(Fq) and 2(q + 1) − #E(Fq)
have large prime factors.

Faults in Miller’s Algorithm. Page and Vercauteren [PV06] studied the fault
attacks which concern precisely the evaluation of the pairings and are indepen-
dent on the protocol in which this primitive is used.

2.2 Attacks on the Finite Field Side

In the three-party Diffie-Hellman protocol an attacker, who has access to the
public information [a]P , can compute μa = e([a]P, P ) using solely public infor-
mation. By solving the DLP in the group generated by μ one can obtain the
secret information a. Hence a safe pairing requires that the DLP in the multi-
plicative group of Fqk is hard.

The best algorithms to solve DLP in finite fields inherited the main traits
from Index Calculus [Adl79] and have a complexity inferior to any exponential
function. A suitable notation to express their complexity is

LQ(α, c) = exp((c + o(1))(log Q)α(log log Q)1−α),

where Q is the cardinality of the target finite field and α and c are two constants
such that 0 < α < 1. When the constant c is not important we simply write
LQ(α). By extension we use a similar notation when α is a function.

The state-of-the-art algorithms depend on the size of the characteristic p
with respect to Q = pn (we switch notations from qk to pn to show that p is not
necessarily prime). When p = LQ(lp, cp) we have the following complexities:

– LQ( 13 , 3

√
64
9 ) when the field has large characteristic, i.e. if lp > 2

3 , [JLSV06];

– LQ( 13 , c) with c ∈ [ 3

√
48
9 , 3

√
96
9 ] in the boundary case, i.e. if lp = 2

3 ; the constant

c = 3

√
48
9 is obtained when cp = 12

1
3 , [SS16];

– LQ( 13 , 3

√
48
9 ) when the field has medium characteristic, i.e. if 1

3 < lp < 2
3 , and

n has a factor of size 12− 1
3 ( log Q

log log Q )
1
3 ; and LQ( 13 , 3

√
96
9 ) if n has no factor of

the suitable size (e.g. if n is prime) [BGGM15b];
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– LQ( 13 , c) with c ∈ [ 3

√
8
9 , 3

√
96
9 ] when the field has a characteristic at the bound-

ary between medium and small, i.e. if lp = 1
3 ; the complexity c = 3

√
8
9 is

obtained when cp = 3− 1
3 [Jou13]; one has a better complexity in the case of

Kummer extensions;
– LQ(lp +o(1)) when the field has small characteristic, i.e. lp < 1

3 ; the best com-
plexity corresponds to exp(O(1)(log log Q)2) = LQ(o(1)) when p = (log Q)O(1)

[BGJT14].

When the characteristic is non-small, i.e. lp ≥ 1/3, the best complexities are
all obtained with the same algorithm, presented below.

Number Field Sieve (NFS). The main steps of NFS [JL03] are similar to
those of Index calculus and the key ingredient is smoothness: an integer is B-
smooth if all its prime factors are less than B.

Polynomial Selection. One selects two polynomials f and g with integer coeffi-
cients which, when seen as elements of Fp[x], have a common factor ϕ which has
degree n and is irreducible. The performance of the algorithm depends strongly
on the degrees of the two polynomials as well as on their norms, i.e. larges
coefficient in absolute value.

Relation Collection. Given two polynomials f =
∑deg f

i=0 fix
i and g =

∑deg g
i=0 gix

i

we collect all the pairs (a, b) of integers (or equivalently linear polynomials a −
bx ∈ Z[x]) such that max(|a|, |b|) ≤ E for a parameter E, gcd(a, b) = 1 and the
two norms Nf (a, b) =

∑deg f
i=0 fia

ibdeg f−i and Ng(a, b) =
∑deg g

i=0 gia
ibdeg g−i are

B-smooth. This stage is usually done using a technique called sieve.

Linear Algebra. For each pair (a, b) yielded by the sieve one can write a linear
equation whose unknowns are in bijection with set of prime ideals of degree one
in the number fields of f and g of norm less than B. The square matrix has less
than B unknowns and less than log2 pn non-zero entry per row so that one can
use sparse-matrix algorithms like Wiedemann [Wie86].

Individual Logarithm. The unknowns obtained after the linear algebra stage,
called virtual logarithms, allow to compute any discrete logarithm. This stage
takes a negligible amount of time compared to the other stages.

When p has a special form, e.g. a low Hamming weight, a variant of NFS has
a better asymptotic complexity.

The Special Number Field Sieve (SNFS). Given an integer d, an integer p
is d-SNFS if there exists a polynomial P ∈ Z[x] and an integer u so that ‖P‖ ≤ 50
(or other absolute constant) and p = P (u). Semaev [Sem02] proved that the DLP
is easier in prime finite fields Fp when p is d-SNFS with d = (92 )

1
3 ( log p

log log p )
1
3 . One

doesn’t have to change anything in the NFS algorithm except for the choice of
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polynomials: f = P (x) and g = x − u. In practice d is the value of deg f in
the record computations using NFS and goes from 5 for fields of about 500 bits
to 8 for fields of about 1200 bits. Experiments conducted with SNFS in the
case of discrete logarithm [HT11] as well as of factorization [KBL14] confirm the
efficiency of the algorithm for d-SNFS numbers with d ≥ 3.

2.3 The LogJam Attack

A simple remark about the algorithms of the Index Calculus family is that they
have two types of input data: a group G and a generator g of G which are used
in the costly stages of the algorithm, relation collection and linear algebra, and
an element h of G which isn’t used before the individual logarithm stage. An
attacker can therefore perform the expensive computations which depend on G
and g once for all and use then to compute many secrete keys by solving many
instances of individual logarithm with respect to that group.

Adrian et al. [ABD+15] conducted real life attacks in this manner. They
estimated that 82% of the scanned servers use the same group and therefore
can be attacked with one stone. One can easily imagine a situation where this
is unacceptable: 80 bits of security are enough to protect bits of one minute for
a pay-TV channel whereas it might be unacceptable for the whole program.

Consequences. Whenever the security of a cryptosystem is measured using Index
Calculus attacks, as NFS, one is vulnerable to the LogJam attack. In this case
one might either use a stronger level of security or generate on-the-fly the group
used in the cryptosystem. For example in the case of pairings one should be able
to generate on-the-fly pairing-friendly curves. However in the case of hardware
implementation of cryptosystems, where parameters have to be hard-coded, the
only option is to use larger key sizes.

3 Recent Progress of the NFS Attack

The first estimations of security of pairings have been done at a time when NFS
could only be used for prime fields, and one had to make the hypothesis that
the DLP in the general case is as hard as in prime fields [Len01]. Since then the
NFS was adapted to the case Fpn of non-small characteristic and in some cases
the complexity is smaller than in the prime case, as we present below.

3.1 New Methods of Polynomial Selection

The first manner to go from Fp to Fpn is to create new methods of polynomial
selection whose result is a pair (f, g) ∈ Z[x] not necessarily irreducible which
have a common irreducible factor ϕ in Fp[x].

For any pair (p, ϕ) formed of a prime p and a monic polynomial with integer
coefficients ϕ which is irreducible in Fp[x] and any parameter D ≥ deg ϕ one
defines the lattice
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L(p, ϕ,D) = {(a0, . . . , aD) ∈ Z
D+1 |

D∑
i=0

aix
i ∈ pZ[x] + ϕZ[x])}.

A naive method of polynomial selection would be to pick a random monic irre-
ducible ϕ ∈ Fp[x] of degree n and to make f and g from the shortest two vectors
b1 and b2 in an LLL-reduced basis of L(p, ϕ,D). By the Lenstra-Lenstra-Lovasz
theorem [LLL82] we know that ‖b1‖2 ≤ c1Vol(L)

1
dimL where c1 = 2

dimL
4 . Heuris-

tically we expect b1 and b2 to have no non-zero coordinates (random vectors) so
that deg f = deg g = D and ‖b1‖ ≈ ‖b2‖ ≈ Vol(L)

1
dimL .

JLSV2. In [JLSV06] Joux, Lercier, Smart and Vercauteren take ϕ of degree
n < D such that ‖ϕ‖2 = 1 + c1Vol(L)

1
dimL . Then one can make f from the

coordinates of the shortest vector of L(p, ϕ,D) and set g = ϕ. By the Lenstra-
Lenstra-Lovasz theorem ‖f‖ ≤ c1Vol(L)

1
dimL < ‖g‖ so the two polynomials are

distinct. The advantage is that deg g = n which is smaller than D whereas deg f ,
‖f‖ and ‖g‖ are the same as in the naive method.

GJL. In [JL03] Joux and Lercier proposed a method of polynomial for Fp

which was generalized [Mat06,BGGM15b] to Fpn with n > 1 (generalized Joux
Lercier). One takes f to be a polynomial of degree D + 1 with ‖f‖ = 1 which
has an irreducible factor ϕ ∈ Fp[x] of degree n, and then one makes g from the
shortest vector of L(p, ϕ,D). The advantage in this case is that f has coefficients
of size O(1) instead of c1(pn)

1
D+1 for the small cost of increasing the degree of f

from D to D + 1.

JLSV1. Also in [JLSV06] Joux, Lercier, Smart and Vercauteren proposed to take
f equal to a polynomial of degree n which is irreducible in Fp[x] with ‖f‖ ≤ 1
and to set g = f + p. An additional improvement, which doesn’t change the
asymptotic complexity, consists in selecting polynomials such that deg f = deg g
and ‖f‖ = ‖g‖. We can obtain this if we apply the JLSV2 method with D = 2n,
when ‖f‖ ≈ ‖g‖ ≈ c1(pn)

1
2n = c1

√
p. However, one can obtain polynomials

of the same characteristics by reducing a lattice of dimension 2 instead of 2n.
Indeed one takes two polynomials f0, f1 ∈ Z[x] of degree n respectively ≤ n−1 so
that, for all integers a, f0 + af1 has degree n. Next one LLL-reduces the lattice

generated by M(a, p) =
(

0 p
1 a

)
and obtains a vector (u, v) of norm ≤ 2

1
4
√

p.

Finally one sets f = f0 + af1 and set g = vf0 + uf1, which is a multiple of f in
Fp[x].

Conjugation Method. This method, presented in [BGGM15b], is similar to
JLSV1. First we select f0 and f1 so that, for all integer a, f0 +af1 has degree n.
Next we select m as small as possible so that x2 − m has a root a ∈ Z modulo p
and f0 + af1 is irreducible in Fp[x]. We finish as in JLSV1 by reducing M(a, p)
and setting g = vf0 + uf1.

At this point one would like to set f = f0 +
√

mf1 but this polynomial
belongs to Z[

√
m][x] instead of Z[x]. We overcome this difficulty by setting f =
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(f0 +
√

mf1)(f0 − √
mf1) = f2

0 − mf2
1 which has integer coefficients and is a

multiple of g in Fp[x].

Methods for Composite n. Sarkar and Singh [SS16] proposed a method which
improves the asymptotic complexity of NFS when p = LQ(2/3, cp) with cp ∈
[1.12, 1.45]

⋃
[3.15, 20.91]. The authors made a precise estimation of efficiency in

the case of finite fields of cryptographic sizes n = 4 and n = 6.

Practical Efficiency of the New Methods. The new methods have been
tested in practice and one concluded that the DLP in non-prime finite fields
can be easier than in the prime case. In Table 1 we compare the cases n = 2
and n = 3 using the Conjugation method (Conj) to the prime case (n = 1).
For this we converted the computation time into GIPS years (1GIPS year = the
number of instructions done in one year by a CPU core of 1GHz) and made the
convention that 1 GPU hour = 10 CPU hours.

Table 1. Time of discrete logarithms computations in Fpn measured in GIPS years.

Bit size of pn 160 dd (≈532 bits) 180 dd (≈600 bits)

n = 1 55.5 [Kle07] 260 [BGI+14]

n = 2 (Conj) 0.5 [BGGM14] 1 [BGGM15b]

n = 3 (Conj) 34 [BGGM15a] 46 [GGM16]

3.2 The Tower Number Field Sieve

A second method to go from Fp to Fpn with n > 1 has been proposed by
Schirokauer [Sch00] and revised in [BGK15]. One selects h ∈ Z[x] of degree n
which is irreducible in Fp[x] and call ι a root of h in its number field. Then one
selects f and g in Z[x] which have a common root in Fp using one of the methods
for Fp and calls αf (resp. αg) a root of f (resp. g) in its number field and set
Kf = Q(ι, αf ) (resp. Kg = Q(ι, αg)) and compute θf (resp. θg) a primitive
element of Kf (resp. Kg).

One sets the parameters E, B and d at the same value as when computing
discrete logarithms in a prime field of same bit size as Fpn . The factor base is
formed of the prime ideals of Kf and Kg whose norm is less than B and whose
inertia degree over Q(ι) is one, together with all the prime ideals dividing the
leading coefficients of f and g. The algorithm continues as follows.

1. Enumerate all pairs a, b ∈ Z[t] of degree n−1 with ‖a‖, ‖b‖ ≤ E
1
n and collect

those such that Rest(F (a, b), h(t)) and Rest(G(a, b), h(t)) are B-smooth.
2. Consider each element a(ι) + αfb(ι) (resp. a(ι) + αgb(ι)) and compute the

corresponding linear equations, as in the case of the classical version of NFS.
Then solve the linear system to obtain the virtual logarithms of the factor
base.
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3. Compute the desired discrete logarithm in a similar manner to the classical
case.

The practical efficiency of the TNFS has not been tested. Indeed, the relation
collection consists of sieving on pairs (a, b) ∈ Z[t] of degree less than n which
is equivalent to sieving on pairs of 2n-tuples of integers. Several teams [Zaj10,
HAKT15,GGV16] made experiments in the case of 3-tuples and concluded that
this does not represent a major practical obstacle. This might be a starting point
for future experiments in the case of 4-tuples so that TNFS in Fp2 can be tested.

3.3 The Extended Tower Number Field Sieve

The extended number field sieve (exTNFS), presented in [KB16], consists in
combining the two ideas of the previous sections: new methods of polynomial
selection and tower number fields. One writes n = ηκ with η, κ ∈ Z but not
necessarily different from 1 and n and selects polynomials:

1. f and g as in Sect. 3.1 with κ instead of n;
2. h as in Sect. 3.2 with η instead of n.

When η = 1 we obtain the variant of NFS in Sect. 3.1, when η = n we obtain
TNFS (Sect. 3.2), but when n is composite and η is a proper factor of n we
obtain a new algorithm. When gcd(η, κ) �= 1 one has to use a special method of
polynomial selection which is due to Jeong and Kim [JK16]. The advantage of
exTNFS is that, in a similar manner in which in TNFS one has the same size of
norms as in classical NFS, in exTNFS one has the same size of the norms when
attacking Fpηκ as when attacking FP κ for a prime P of the same bit size as pη.

The Case of General Primes. In order to analyze the efficiency of exTNFS
we estimate the bit size of the norms product. Using Lemma 1 in [KB16] we find
that, when the Conjugation method is used to select f and g, the two upper
bound on the norms bit size is:

norms bit size(exTNFS-Conj) ≤ 3κ log2 E +
1
2κ

log2 Q + o(1). (3)

where o(1) is a negligible term when log2 Q goes to infinity. The o(1) term is
indeed negligible in cryptographic examples, e.g. Example 1 in [KB16]. Hence
exTNFS has the same efficiency as NFS with the difference that now we can
tune the parameter κ and make it equal to any factor of n.

The right hand member of Eq. (3) has its minimum when κ ≈
√

log2 Q
6 log2 E .

Although the bit size of the parameter E depends on the size of the norms it
doesn’t vary of more than a factor 2 among variants of NFS when one attacks
the same size of finite fields. In [KDL+16] one has log2 Q = 768 and log2 E ≈ 43
so that the optimal value of κ ≈ 1.72. We conclude that if one selects f and
g using the Conjugation method then for target fields of approximatively 1000
bits with n ≤ 24 composite the best options are κ = 2 if n is even and κ = 3 if
n is odd. This would allow to obtain similar practical results as in Table 1.
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The Case of Primes of Special Form. The exTNFS variant for SNFS num-
bers, abbreviated SexTNFS, consists in writing n = ηκ for two integers κ and
η not necessarily different from 1 and n, in selecting h as in Sect. 3.2 with η
instead of n and in selecting f and g using the Joux-Pierrot method [JP13], that
we describe below, with κ instead of n.

One selects a monic polynomial S ∈ Z[x] of degree n such that f = P (S(x))
is irreducible in Fp[x] and then sets g = S(x) − u. The method is correct due to
the following equation:

f(x) − p = P (S(x)) − P (u) ≡ 0 mod (S(x) − u) in Fp[x].

Once again we evaluate the practical efficiency using the estimation of the
bit size of the norms product, which from [KB16, Sect. 5.2] is:

norms bit size(SexTNFS) ≤ (d + 1)κ log2 E +
1
κd

log2 Q + o(1),

where o(1) is negligible when Q goes to infinity. The advantage of SexTNFS is
that we have the possibility to set κ equal to any divisors of n.

4 Pairings Families and Their Security

In the light of the recent progress, a perfect pairing family needs to contain a
large number of curves for each security level that can be rapidly generated. Each
curve of a perfect family has an embedding degree k which can be set as desired
to any prime of desired size. The characteristic p is large and is not d-SNFS with
d ≥ 3. Finally for efficiency reasons the parameter r has the same bit size as q.

Freeman, Scott and Teske [FST10] made a taxonomy of known pairing-
friendly families of elliptic curves. Given a bit size and an embedding degree
k, most of them are constructed in two steps:

(i) one selects a prime power q of prescribed bit size and an integer t so that any
elliptic curve over Fq of trace t has embedding degree k and its cardinality
has a large prime factor r;

(ii) one uses the CM method [Mor91,AM93], which, given a prime power q and
an integer t, allows to construct elliptic curves over Fq of trace t.

The CM method has complexity O(D1+ε) where D is the unique integer so that
(4q − t2)/D is a perfect square. This imposes that we fix D in advance: it will be
either small or will have common factors with q. By definition #E(Fq) = q+1−t
so we ask the existence of a prime r so that q + 1 − t ≡ 0 mod r. Finally, the
property that k is the embedding degree of the curve is equivalent to Φk(q) ≡ 0
(mod r). We summarize the conditions on the output of the first step as follows:

CM-1. Φk(t − 1) ≡ 0 (mod r)
CM-2. q + 1 − t ≡ 0 (mod r)
CM-3. ∃y, 4q = Dy2 + t2
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4.1 Supersingular Curves

When k = 2 there is a value of D for which the system is easy to solve. Indeed
we set t = 0 so that we have Φ2(t − 1) = 0 and therefore the first equation is
satisfied independently on r. In Equation CM-3, we take D = q and y = 2 so
that there is no condition on q. Finally Equation CM-2, states that q + 1 has a
prime factor r which is easy to fulfill by enumerating primes q. Bröker [Brö06]
presented the CM method in the case D = q, which is fast although D is large.

A natural question is whether this method can be extended to other values
of k. The answer is given by the following classical result.

Proposition 1. If p ≥ 5 is a prime then any supersingular elliptic curve over
Fp has embedding degree k = 2.

Proof. By the definition of supersingular curves we have gcd(t, p) �= 1 so p divides
t and therefore t = 0 or |t| ≥ p. By Hasse’s theorem |t| ≤ 2

√
p which is less than

p and therefore t = 0. Then q ≡ t − 1 ≡ −1 (mod r) and q2 ≡ 1 (mod r) which
shows that k = ordr(q) = 2.

Drawback. Due to the quasi-polynomial algorithm the cases p = 2 and p = 3 are
forbidden. When p ≥ 5 the embedding degree k = 2 is fixed to a value which
is far from the optimal value and has made the object of recent computation
records which were faster than the prime case.

4.2 Pinch-Cocks [CP01]

One starts by replacing Equation CM-2, with

CM-2′. Dy2 + (t − 2)2 ≡ 0 (mod r)

so that we obtain an equivalent system. Then we select r so that r ≡ 1 mod k
and (−D

r ) = 1. Then Equation CM-2’, is factorized into

(
√−Dy + (t − 2))(

√−Dy − (t − 2)) ≡ 0 (mod r).

The choice of r allows to set t equal to a root of the polynomial Φk(X − 1) ∈
Fr[X]. The same choice allows to solve this Equation CM-2′, for y: y = (t −
2)/

√−D (mod r). Finally q is set to (Dy2 + t2)/4. Heuristically this is integer
in a constant proportion of the cases and has the same probability to be prime
as a random integer of the same size, i.e. one succeeds on average after O(log q)
trials.

Drawback. With high probability the integer y has the same bit size as r so that
log2 q ≈ 2 log2 r which affects the efficiency of pairings.
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4.3 Dupont-Enge-Morain [DEM05]

Once again we start by replacing Equation CM-2, by Equation CM-2′. Then
we see Equations CM-1 and CM-2′ as a system which has to be solved with
y, t ∈ Fr: {

Φk(t − 1) = 0
Dy2 + (t − 2)2 = 0.

We solve the system (for a given D and bit size b of q) as follows:
1: R(y) ← Rest(Φk(t − 2),Dy2 + (t − 2)2);
2: for y ≤ 2

b
2ϕ(k) do

3: r ← the largest prime factor of R(y)
4: t = 2 +

√
−Dy2 (if it exists)

5: q ← q = (Dy2 + t2)/4
6: q′ ← q + 1 + t (cardinality of the twisted curve to be tested)
7: if q and q′ are integer primes and log2 r ≥ b/2 then return y
8: end if
9: end for

For example we ran the algorithm for the bit size b = 256, embedding degree
k = 16 and the parameter D = 3. The output list was: y ∈ {39193, 61815}.

Drawback. The total number of curves which can be constructed for crypto-
graphic sizes is very small if we restrict to twist-safe curves so that this family
is vulnerable to the LogJam attack.

4.4 Sparse Families (e.g. MNT [MNT01])

The following construction is possible for all integers k so that ϕ(k) = 2, i.e.
k = 3, 4 and 6, but for simplicity we present only the case k = 3. We set
r = Φk(t − 1) so that Equation CM-1 is satisfied. Next we set q = r + t − 1,
which satisfies CM-2. The method was generalized by Freeman when ϕ(k) but
cannot be generalized further.

Proposition 2. If ϕ(k) > 4 then the system CM-1, 2, 3 has a finite set of solu-
tions.

Proof. When we set r = Φk(t − 1) Equation CM-3 becomes

y2 = f(t) where f(t) =
1
D

(4q − t2) =
1
D

(4(Φk(t − 1) + t − 1) − t2).

By the Riemann-Hurwitz formula the genus of the curve is �deg f−1
2 �=

�ϕ(k)−1
2 � ≥ 2. By Faltings’ theorem the equation has a finitely many solutions

in Q.

The integer solutions obtained when setting t equal to a linear polynomial in
an additional variable are a subset of the rational solutions, so we have a finite
number in total.



14 R. Barbulescu

Drawback. The embedding degree k has a very small set of possibilities all of
which are divisible by 2 or 3.

4.5 Complete Families (e.g. BN [BN05])

Once again we replace Equation CM-2 by CM-2′. Then we set r equal to a
polynomial r(x) whose number field contains Q(

√−D, ζk) for a kth root of unity
ζk. This translates into

1. Φk is totally split modulo r(x);
2. x2 + D is totally split modulo r(x).

Next we take t to be a polynomial t(x) so that Φk(t(x)) ≡ 0 mod r(x). Since
Equation CM-2′ factors we can set y(x) = t(x)· t(x)√−D

where 1√−D
is a polynomial

z(x) in Q(x] so that Dz2+1 ≡ 0 mod r(x). Finally set q(x) = 1
4 (Dy(x)2+t(x)2).

The advantage of this method is that pairing-friendly curves can be generated
on the fly by evaluating r and q at integer values x.

Drawback. The primes constructed by this method are 2ϕ(k)-SNFS and therefore
the NFS attacks have a smaller asymptotic complexity.

4.6 Menezes-Köblitz [KM05]

Not all the pairing constructions are obtained using the CM method. Menezes
and Köblitz proposed a family which is not affected by the recent progress: p is
not d-SNFS with d ≥ 3 so that the SNFS attack has no consequences and k = 1
so that the security on the finite field side is the same as that of DSA.

Drawback. The embedding degree k cannot be tuned as desired.

5 Conclusion

We have identified a list of properties that a perfect pairing family should have
and, by a thorough examination, concluded that in the present state of the art
there is no perfect pairing family. In particular there is no clear champion because
the Barreto-Naehrig family, long believed to be perfect for 128 bits of security,
has a characteristic of a special form and is target to the SNFS attack.

Pairings are subject to two contradictory trends. On the one hand they
require more time before being standardized because no perfect family has been
proposed. On the other hand, time is running against pairings as they are sub-
ject to the NFS attack and therefore belong to the sub-exponential cryptography
as RSA and DSA whereas there exist alternative primitives which are based on
lattices and belong to the exponential cryptography.



A Brief History of Pairings 15

References

[ABD+15] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halder-
man, J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., Vander-
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Abstract. This paper presents extremely fast differential addition (i.e.,
the addition of two points with the known difference) and doubling for-
mulas, as the core step in Montgomery scalar multiplication, for various
forms of elliptic curves over binary fields. The formulas are provided for
binary Edwards, binary Hessian and binary Huff elliptic curves with cost
of 5M+ 4S+ 1D when the given difference point is in affine form. Here,
M, S, D denote the costs of a field multiplication, a field squaring and a
field multiplication by a constant, respectively. This paper also presents,
new complete differential addition formulas for binary Edwards curves
with cost of 5M + 4S + 2D.
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1 Introduction

An elliptic curve E over a field F can be given by the Weiersrasß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where coefficients a1, a2, a3, a4 and a6 are in F. There are many other ways
to represent elliptic curves such as Legendre equation, cubic equations, quartic
equations and intersection of two quadratic surfaces [18]. The use of elliptic
curves over finite fields based on their finite groups in cryptography (ECC)
was independently proposed in the mid 1980s by Koblitz [11] and Miler [14].
Since the introduction of elliptic curve cryptography many proposals have been
made to speed up the group arithmetic. Efficient arithmetic (addition, doubling,
tripling and scalar multiplication) on elliptic curves over finite fields is the core
requirement of elliptic curve cryptography. Several forms of elliptic curves over
finite fields with several coordinate systems have been studied to improve the
efficiency and the speed of the arithmetic on the group law.
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Elliptic curves over binary finite fields are interesting particularly for hard-
ware implementations. Every ordinary elliptic curve over the binary finite filed
F2m can be represented in the Weierstraß form

y2 + xy = x3 + ax2 + b,

where a, b ∈ F2m and b �= 0. There are alternative ways to represent binary
elliptic curves such as binary Hessian [1,5,6,17], binary Edwards [3], binary
Huff curves [9] and binary μ4-normal forms [12].

The scalar multiplication is the most important operation of elliptic curve
cryptography. That is to compute kP for a given point P on elliptic curve E
defined over a finite field Fq and a given integer k. The scalar multiplication can
be performed by a sequence of point additions and point doublings. Speed and
efficiency are the main factors to be considered in the correct implementing of
scalar multiplication. Moreover, the implementations should be performed in a
way to be resistant against passive and active side channel attacks. There are
several mathematical countermeasures proposed for preventing these attacks.
Simple side-channel attacks get information from a single scalar multiplication
when the power trace reveal distinctive key dependent patterns. The main idea
of the countermeasure against simple side-channel attacks is to make the com-
putation uniform. And the main solutions are making indistinguishable point
addition and point doubling, using double and add always method, using win-
dow method or applying the Montgomery technique.

The Montgomery method [15,16] is introduced for scalar multiplication of
points for a special type of curve in large characteristic. This method has been
extended to other form of elliptic curves and to binary elliptic curves [8]. The
Montgomery scalar multiplication is known also as Montgomery ladder. In the
Montgomery ladder, for each bit of the scalar both doubling and addition are
performed, so this prevents the computation secure against simple power analy-
sis. Also this method is not subject to fault attacks.

The countermeasures for some other passive or active attacks are to insert
suitable randomness to the key and also to the base point of the scalar multipli-
cation. Therefore, here the scalar key may be larger than the order of the base
point, which makes some exceptional cases like the point at infinity in the com-
putation of the Montgomery ladder. Thus, obtaining complete or almost complete
formulas for addition and doubling makes the ladder performs completely.

In this paper we present fast explicit formulas for differential additions and
doublings on well known binary elliptic curves such as binary Edwards, binary
Hessian and binary Huff curves.

2 Differential Addition

A Montgomery curve over a field F of characteristic different from 2 is given by
the equation

bY 2Z = X3 + aX2Z + XZ2,
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where a, b are elements of F with b(a2 − 4) �= 0. The Montgomery ladder for
scalar multiplication is performed by a sequence of simultaneous point addition
and doubling, which makes this method interesting against side-channel attacks.
In Montgomery curves, the basic computation in a each step is done without
the Y coordinate, i.e., the technique involves special formulas for addition and
doubling that relies on only the X and Z coordinates of a point in projective
form. Also, the Y coordinate of the output point can be derived from the X and
Z coordinates.

In general, the basic computation in a each step of the Montgomery ladder
is differential addition and doubling. That is for given points P1, P2 and P1 −P2

on elliptic curve E over Fq to compute P1 + P2 and 2P1. The idea is extended
by a suitable rational function on the elliptic curve. Suppose w is a rational
function defined over an elliptic curve E over a finite field Fq. The function w is
given by fraction of polynomials in the coordinate ring of E over Fq. Let w(P ) =
w(−P ) for any point P on E(Fq). Then the w-coordinate differential addition
and doubling means to compute w(2P1) and w(P1+P2) from given values w(P1),
w(P2) and w(P1−P2), where P1, P2 are points on E(Fq). For Montgomery curves
the function w is x, where w(P ) equals the x-coordinate of the point P . Since
field inversion is costly, practically computations are performed where points are
represented in projective coordinates. Therefore, when w is regular at the point
P then w(P ) is represented by (w(P ) : 1) in the projective line P(Fq). Otherwise,
it is represented by (1 : 0). The projective w-coordinate differential addition and
doubling (dADD) algorithm is given in Algorithm1. Notice, in Algorithm 1, the
given input values w(P1), w(P2) and w(P0) = w(P1 − P2) are represented by
Wi/Zi where i = 1, 2, 0 respectively. Then w(P1 + P2), i.e. the w-coordinate
differential addition, is given by fa

ga
with some homogenous polynomials fa and

ga in variables Wi, Zi, where i = 0, 1, 2. Also, w(2P1) is given by fd
gd

, where fd
and gd are homogenous polynomials with variables W1, Z1.

Algorithm 1. Projective w-coordinate dADD
Input : E/Fq, w : E(Fq) → P(Fq), � The elliptic curve E over Fq

(Wi : Zi) = w(Pi), i = 0, 1, 2. � w(P0) = w(P1 − P2)
Output : (Wi : Zi) = w(Pi), i = 3, 4. � w(P3) = w(P1 + P2), w(P4) = w(2P1)

1: function dADD((W0 : Z0), (W1 : Z1), (W2 : Z2))
2: W3 = fa(W0, Z0, W1, Z1, W2, Z2) � Differential addition computation
3: Z3 = ga(W0, Z0, W1, Z1, W2, Z2)
4: W4 = fd(W1, Z1) � Doubling computation
5: Z4 = gd(W1, Z1)
6: return ((W4 : Z4), (W3 : Z3)) � The differential addition and doubling
7: end function

The Montgomery scalar multiplication based on a projective w-coordinate
dADD is given in Algorithm2. Notice, the base point P can be considered such
that one of the coordinates of w(P ) equals 1, which makes less field operation
computation in each step of the ladder.
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Algorithm 2. The Montgomery scalar multiplication
Input : E/Fq, w : E(Fq) → P(Fq), � The elliptic curve E over Fq

Projective w-coordinate dADD funtion,
P ∈ E(Fq), k = (km−1, · · · , k1, k0) � k is a positive

integer, km−1 = 1
(W0 : Z0) := w(P ), (W1 : Z1) := w(P ), (W2 : Z2) := w(2P ).

Output : w(kP )

1: for i := m − 2 down to 0 do
2: if ki = 0 then
3: ((W1 : Z1), (W2 : Z2)) := dADD((W0 : Z0), (W1 : Z1), (W2 : Z2))
4: else
5: ((W2 : Z2), (W1 : Z1)) := dADD((W0 : Z0), (W2 : Z2), (W1 : Z1))
6: end if
7: end for
8: return (W1 : Z1), (W2 : Z2) � The differential addition and doubling

Note that if there are some exceptional points where the function dADD is
not computed correctly, then the Montgomery ladder does not work properly.
We say that the differential w-coordinate is complete if the Algorithm 1 works
for any input without any exception. We also say that the function dADD is
almost complete if the Algorithm 1 works for all inputs except for the case where
w(P0) equals w(O), where O is the neutral element of the group of points E(Fq).
Therefore, for the complete function dADD the Montgomery ladder is performed
without any problem for any input. Moreover, for the almost complete function
dADD the Montgomery ladder works for any base point P except for the points
where w(P ) equals w(O). Notice, the almost complete function is also suitable
for cryptographic application.

In this paper, we concentrate on differential addition on binary elliptic curves.
Let E be a binary elliptic curve over F2m in Weiersrasß form

y2 + xy = x3 + ax2 + b,

where a, b are in F2m . Lopez and Dahab [13] presented the projective formu-
las for the addition and doubling of points on E. And, they generalized the
Montgomery’s idea to binary curves. Algorithm3 provides the Lopez and Dahab
differential x-coordinate on elliptic curve E over F2m .

If we assume Z0 = 1, then the Lopez and Dahab formulas are computed
using 5M + 4S + 1D. Here, a multiplication in Fq costs one M and a squaring
costs one S. Also the cost of field multiplication by a parameter (as a constant)
is denoted by D.

We note, that the point at infinity on the binary elliptic curve E over F2m

is O = (0 : 1 : 0) and x(O) is represented by (1 : 0). One can easily check that
the projective x-coordinate formulas work for all inputs if Z0 �= 0, that is where
P0 �= O. In other words the formulas are almost complete and the Montgomery
ladder works for all inputs if the base point is not the point at infinity. So, the
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Algorithm 3. Lopez and Dahab projective x-coordinate dADD
Input : E/Fq : y2 + xy = x3 + ax2 + b � The elliptic curve E over F2m

(Xi : Zi) = x(Pi), i = 0, 1, 2. � x(P0) = x(P1 − P2)
Output : (Xi : Zi) = x(Pi), i = 3, 4. � x(P3) = x(P1 + P2), x(P4) = x(2P1)

1: function dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
2: X3 = X0 (X1Z2 + X2Z1)

2 + Z0 (X1Z1X2Z2)
3: Z3 = Z0 (X1Z2 + X2Z1)

2

4: X4 = (X4
1 + bZ4

1 )
5: Z4 = X2

1 Z2
1

6: return ((X4 : Z4), (X3 : Z3)) � The differential addition and doubling
7: end function

Montgomery ladder can be modified as Algorithm4. Here there is no need to
assume that the bit km−1 of the integer k is equal to ‘1’. Also, there is no need to
precompute 2P from the base point P . Moreover, the ladder works properly even
if the integer k is bigger than the order of the base point P . So, for Lopez and
Dahab formulas, one can use random scalar k as a countermeasure to protect
against differential power analysis attack.

Algorithm 4. The modified Montgomery scalar multiplication
Input : E/Fq : y2 + xy = x3 + ax2 + b � The elliptic curve E over Fq

P = (x : y : z) ∈ E(Fq) � P �= O = (0 : 1 : 0)
k = (km−1, · · · , k1, k0) � 0 ≤ k ∈ Z

(X0 : Z0) := (x : z), (X1 : Z1) := (1 : 0), (X2 : Z2) := (x : z).
Output : w(kP )

1: for i := m − 1 down to 0 do
2: if ki = 0 then
3: ((X1 : Z1), (X2 : Z2)) := dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
4: else
5: ((X2 : Z2), (X1 : Z1)) := dADD((X0 : Z0), (X2 : Z2), (X1 : Z1))
6: end if
7: end for
8: return (X1 : Z1), (X2 : Z2) � The differential addition and doubling

3 Binary Edwards Curves

In this section we review the Binary Edwards curve [3] and propose new differ-
ential addition and doubling formulas.

Let d1, d2 be elements of F2m such that d1 �= 0 and d2 �= d1(d1 + 1). The
binary Edwards curve with parameters d1 and d2 is given by the equation

EB,d1,d2 : d1(x + y) + d2(x + y)2 = xy(x + 1)(y + 1). (1)
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The curve is symmetric in x, y and the negation of (x, y) is (y, x). This curve
has two points (0, 0) and (1, 1) which are invariant under the negation law. The
point (0, 0) is the neutral element of the addition law and the point (1, 1) has
order 2. We denote the point (0, 0) by O.

The binary Edwards curve EB,d1,d2 is birationally equivalent to the ordinary
elliptic curve in Weierstraß form

v2 + uv = u3 + au2 + b,

where a, b are in F2m with b �= 0. The map (x, y) �−→ (u, v) defined by

u = ((d31 + d21 + d1d2)(x + y))/(xy + d1(x + y))

v = (d31 + d21 + d1d2)(d1 + 1 + x/(xy + d1(x + y))

is a birational equivalence form EB,d1,d2 to the elliptic curve

v2 + uv = u3 + (d21 + d2)u2 + d41(d
4
1 + d12 + d2).

Affine Addition. The sum of two points (x1, y1) and (x2, y2) on EB,d1,d2 is the
point (x3, y3) defined as follows:

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)
d1 + (x1 + x2

1)(x2 + y2)
,

(2)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)
d1 + (y1 + y2

1)(x2 + y2)
.

Affine Doubling. The doubling of point (x1, y1) is the point (x4, y4) defined
as follows:

x4 = 1 +
d1 + d2(x2

1 + y2
1) + y2

1 + y4
1

d1 + (x2
1 + y2

1) + d2/d1(x4
1 + y4

1)
, (3)

y4 = 1 +
d1 + d2(x2

1 + y2
1) + x2

1 + x4
1

d1 + (x2
1 + y2

1) + d2/d1(x4
1 + y4

1)
.

Differential Addition. Bernstein, Lange and Farashahi in [3] proposed the
differential addition and doubling formulas for binary Edwards curve. Assume
that P = (x1, y1), Q = (x2, y2) are points on EB,d1,d2 and Q−P = (x0, y0), Q+
P = (x3, y3) and 2P = (x4, y4). They considered w-function as w(xi, yi) = xi+yi
and obtained the following complete formulas for differential addition:

w4 =
w2

1 + w4
1

d1 + w2
1 + (d2/d1)w4

1

,

w3 + w0 =
d1w1w2(1 + w1)(1 + w2)

d21 + w1w2(d1(1 + w1 + w2) + d2(w1w2))
,

w3w0 =
d21(w

2
1 + w2

2)
d21 + w1w2(d1(1 + w1 + w2) + d2(w1w2))

.
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Assume that w0 is given as a field element, and w1, w2 are given as fractions
W1/Z1, W2/Z2 and w4, w3 are outputs as fractions W4/Z4 and W3/Z3. Then,
the mixed projective w-coordinate differential addition and doubling formulas
are given as follows.

A = W1(W1 + Z1), B = W2(W2 + Z2), C = Z1Z2, D=W1W2, E =AB,

F = E + (
√

d1C +
√

d2/d1 + 1D)2,

W4 = A2, Z4 = W4 + (( 4
√

d1Z1 + 4
√

d2/d1 + 1W1)2)2,
Z3 = F, W3 = E + w0F.

From above formulas, for the general case d1 �= d2, the cost of differential
addition is 6M+1S+2D and the cost of doubling is 1M+3S+2D. And the total
cost is 6M+4S+4D. If d1 = d2 the total cost is 5M+4S+2D. Recently Kim,
Lee and Negre [10] for the case d1 = d2, by using the co-Z trick improved the
differential addition formulas by 1D and obtained almost complete differential
addition formulas with cost of 5M + 4S + 1D.

New Differential Addition. In this section, we consider binary Edwards curves
in general form and present two new w-coordinates differential formulas where
one of this formulas is complete and the other is almost complete.

Let define the rational function w by w(x, y) = (x + y)/(d1(x + y + 1)).
The function is well computed for all affine points on a binary Edwards curve
except for the points (x, y) where x + y = 1. Since −(x, y) = (y, x), for all
points P on the curve, we have w(P ) = w(−P ). Also, we have w(O) = 0.
As before, for i = 0, 1, 2, 3, 4, let wi = w(Pi), where Pi ∈ EB,d1,d2(F2m) with
w(P0) = w(P1 − P2), w(P3) = w(P1 + P2) and w(P4) = w(2P1). From the
addition formula (2), with a straightforward calculation, we obtain the following
differential addition formulas.

w3 + w0 =
w1w2

d21(d
2
1 + d1 + d2)w2

1w
2
2 + 1

, (4)

w3w0 =
w2

1 + w2
2

d21(d
2
1 + d1 + d2)w2

1w
2
2 + 1

. (5)

Also, from the doubling formula (3) and some calculations we obtain

w4 =
w2

1

d21(d
2
1 + d1 + d2)w4

1 + 1
. (6)

We recall [3] that the binary Edwards curve EB,d1,d2 over F2m is complete if
Tr(d2) = 1. Here Tr is the trace function from F2m to F2. Moreover, if Tr(d1) = 0
then there is no point (x, y) on the curve with x + y + 1 = 0. Since, if there is
a point (x, y) with x + y + 1 = 0 on the curve EB,d1,d2 with Tr(d2) = 1 and
Tr(d1) = 0, then by the curve Eq. (1), we have x4 + x2 + d1 + d2 = 0. Then,

Tr(0) = Tr(x4 + x2 + d1 + d2)

= Tr(x4) + Tr(x2) + Tr(d1) + Tr(d2)

= Tr(x2) + Tr(x2) + 0 + 1 = 1,
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which is a contradiction. Therefore, the function w is well defined for all affine
points on the complete binary Edwards curve EB,d1,d2 with Tr(d1) = 0.

Notice, the set of affine F2m -rational points of the complete binary Edwards
curve EB,d1,d2 is an abelian group. And, with the condition Tr(d1) = 0, for any
point P = (x, y) on the curve, the value w(P ) is well computed and belongs to
F2m . By the Eqs. (4) and (6) we have

(w3 + w0)(d21(d
2
1 + d1 + d2)w2

1w
2
2 + 1) = w1w2 ,

w4(d21(d
2
1 + d1 + d2)w4

1 + 1) = w2
1.

So, we see that if Tr(d1) = 0 then the denominators of Eqs. (4) and (6)
never equal zero. In other words, above w-coordinates differential addition
and doubling formulas for complete binary Edwards curve are complete where
Tr(d1) = 0.

For further speedup, we can divide the Eq. (4) by Eq. (5) and obtain the
following faster formula.

1
w3

+
1
w0

=
w1w2

(w1 + w2)2
. (7)

Cost of Projective w-Coordinates. Using Eqs. (4) and (6), we obtained new
and complete differential addition formulas for general binary Edwards curves
with the total cost of 5M + 4S + 2D where the difference of input points is
affine. Then, by using the Eqs. (6) and (7) we obtain, new and fast, but almost
complete, differential addition formulas in mixed projective coordinates with
the total cost of 5M+ 4S+ 1D. Thus, the total cost of differential addition and
doubling in general binary Edwards curves is reduced from 6M + 4S + 4D to
5M + 4S + 1D.

As before assume that w0 is given as a field element, and w1, w2 are given
as fractions W1/Z1, W2/Z2 and w4, w3 are to be output as fraction W4/Z4 and
W3/Z3. From Eq. (6) the explicit doubling formula is given by

W4

Z4
=

W 2
1 Z2

1

(d41 + d31 + d21d2)W
4
1 + Z4

1

(8)

and from Eq. (4) the explicit addition formula is given by

W3

Z3
=

W0((d41 + d31 + d21d2) W 2
1 W 2

2 + Z2
1Z2

2 ) + Z0(W1W2Z1Z2)
Z0((d41 + d31 + d21d2) W 2

1 W 2
2 + Z2

1Z2
2 ))

. (9)

So, from the Eqs. (8) and (9), the cost of projective w-coordinates is 7M +
4S + 2D. If we set Z0 = 1, then the mixed projective w-coordinates differential
addition and doubling formulas have the total cost 5M + 4S + 2D as follows.

A = W1Z1, B = W1W2, C = Z1Z2,

W4 = A2, Z4 = ( 4

√
(d41 + d31 + d21d2)W1 + Z1)4, (10)

Z3 = (
√

(d41 + d31 + d21d2)B + C)2, W3 = BC + w0Z3.
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From Eq. (7), we also obtain the following explicit projective differential addi-
tion formulas.

Z3

W3
=

Z0(W1Z2 + W2Z1)2 + W0(W1Z2W2Z1)
W0(W1Z2 + W2Z1)2

. (11)

Thus, by Eqs. (8) and (11), the cost of projective w-coordinates is 7M+4S+
2D. If we set W0 = 1 and using the mixed projective coordinates we have the
following formulas for computing differential addition.

A = W1Z1, B = W1Z2, C = W2Z1,

W4 = A2, Z4 = ( 4

√
(d41 + d31 + d21d2)W1 + Z1)4, (12)

W3 = (B + C)2, Z3 = BC + z0W3.

From differential addition and doubling formulas (12), the costs of differential
addition and doubling are 4M + 1S, 1M + 3S + 1D respectively. And, the total
cost is 5M + 4S + 1D.

The binary Edwards curve EB,d1,d2 , has the neutral element O represented
by w-coordinate as (0 : 1). For the complete binary Edwards curve EB,d1,d2 with
Tr(d1) = 0, any point P on the curve can be represented by (w(P ) : 1). In other
words, for any w-coordinate representation of the point P by (W : Z) we have
Z �= 0. So, from the completeness of the affine w-coordinates differential addition
and doubling formulas for complete binary Edwards curve with Tr(d1) = 0,
we deduce that the projective w-coordinates differential addition and doubling
formulas (8) and (9) are also complete. The mixed projective formulas (10) have
the cost of 5M+4S+2D. Furthermore, the projective w-coordinates differential
addition and doubling formulas (8) and (11) are almost complete; the exceptional
cases are points P0 where w(P0) = w(O). The mixed projective formulas (12)
have the cost of 5M + 4S + 1D.

4 Binary Hessian Curve

A Hessian curve over a field F2m is given by the cubic equation

Hd : x3 + y3 + 1 + dxy = 0 ,

for some d ∈ F2m with d3 �= 27 [5]. The family is extended to the family of
generalized Hessian [5] or twisted Hessian curves [1]. A generalized Hessian curve
Hc,d over F2m is defined by the equation

Hc,d : x3 + y3 + c + dxy = 0,

where c, d are elements of F2m such that c �= 0 and d3 �= 27c. The projective
closure of the curve Hc,d is

Hc,d : X3 + Y 3 + cZ3 = dXY Z.
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It has the points (1 : ω : 0) with ω3 = 1 at infinity. The neutral element of
the group of F2m -rational points of Hc,d is the point at infinity (1 : 1 : 0) that is
denoted by O. And, the negation of point (X : Y : Z) is (Y : X : Z).

Affine Addition. The sum of two different points (x1, y1), (x2, y2) on Hc,d is
the point (x3, y3) given by

x3 =
y1

2x2 + y2
2x1

x2y2 + x1y1
and y3 =

x1
2y2 + x2

2y1
x2y2 + x1y1

.

Affine Doubling. The doubling of the point (x1, y1) on Hc,d is the point (x4, y4)
given by

x4 =
y1(c + x1

3)
x1

3 + y13
and y4 =

x1(c + y1
3)

x1
3 + y13

.

Differential Addition. Farashahi and Joye in [5] adapted differential addition
formulas for the binary curve Hc,d. They defined the rational function w(x, y) =
x3 + y3. As before, for i = 0, 1, 2, 3, 4, let wi = w(Pi), where Pi are points of
Hc,d(F2m) with w(P0) = w(P1 − P2), w(P3) = w(P1 + P2) and w(P4) = w(2P1).
From [5], we have

w4 =
w1

4 + c3(d3 + c)
d3w1

2
, (13)

w0 + w3 =
d3w1w2

(w1 + w2)2
and w0w3 =

w1
2w2

2 + c3(d3 + c)
(w1 + w2)2

. (14)

To have mixed projective formulas, wi are given by the fractions Wi/Zi for
i = 0, 1, 2, 3 where Z0 = 1. The following explicit formulas give the output w3

defined by W3/Z3:

A = W1Z2, B = W2Z1, C = AB, U = d3C, V = (A + B)2,
Z3 = V, W3 = U + w0V.

Moreover, we write w4 by the fraction W4/Z4. Then, the explicit doubling
formulas is

A = W1
2, B = Z1

2, C = A +
√

c3(d3 + c)B, D = d3B,
W4 = C2, Z4 = AD.

The cost of these mixed w-coordinates is 4M + 1S + 1D for addition and
1M + 3S + 2D for doubling and the total cost is 5M + 4S + 2D.

New Differential Addition. In this section we present two new differential
addition formulas for generalized Hessian curve over binary field F2m with total
cost of 5M + 4S + 1D for both doubling and addition.

We modify the definition of the above rational function w, [5], and consider
w(x, y) = x3+y3

d3 . Using the differential addition formulas (14), by a straightfor-
ward calculations, we obtain the following formulas in affine coordinates.

w3 + w0 =
w1w2

w2
1 + w2

2

, (15)
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w3w0 =
w2

1w
2
2 + (c4 + c3d3)/(d12)

w2
1 + w2

2

. (16)

Also, from the doubling formula (13), the following doubling formula is
obtained.

w4 =
w4

1 + (c4 + c3d3)/(d12)
w2

1

. (17)

Cost of Projective w-Coordinates. To obtain the projective formulas, assume
that wi are given by the fractions Wi/Zi for i = 0, 1, 2, 3, 4. From Eq. (15) the
following explicit formulas give W3/Z3 by

W3

Z3
=

W0(W1Z2 + W2Z1)2 + Z0(W1Z2W2Z1)
Z0(W1Z2 + W2Z1)2

. (18)

Also, from Eq. (17), the doubling is given by

W4

Z4
=

W 4
1 + (c4 + c3d3)/(d12) Z4

1

W 2
1 Z2

1

. (19)

The cost of projective w-coordinates differential addition and doubling is
7M+4S+1D; see Eqs. (18) and (19). If we set Z0 = 1 then we have the following
mixed projective coordinates formulas with the total cost 5M + 4S + 1D.

A = W1Z1, B = W1Z2, C = W2Z1

W4 = (W1 + 4
√

(c4 + c3d3)/d12 Z1)4, Z4 = A2,

Z3 = (B + C)2, W3 = BC + w0Z3.

Here, the differential addition formulas use 4M + 1S and doubling formulas
use 1M+3S+1D and the total cost is 5M+4S+1D. So the computation of 1D
is saved. Notice, the projective w-coordinate differential addition and doubling
formulas (18) and (19) are almost complete; the exceptional points are 3 torsion
points P0 where w(P0) = w(O) = (1 : 0).

5 Binary Huff Curves

Huff model at first introduced by Huff [7] in 1948 to study a diophantine prob-
lem. Huff model are extended over fields of odd characteristic. Joye et al. [9],
extended the Huff model and also introduced the binary partner for Huff curve.
In 2011 Devigen and Joye [4] described the addition law for Binary Huff curve
and compute formulas for addition, doubling and differential addition which the
cost of their differential addition and doubling is 5M+5S+1D. Here, we improve
their results to the cost of 5M + 4S + 1D.

The binary Huff curve is given by the equation

HFa,b : ax(y2 + y + 1) = by(x2 + x + 1), (20)
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where a, b are in F2m such that a, b �= 0 and a �= b. This curve have three points
at infinity, namely (a : b : 0), (1 : 0 : 0) and (0 : 1 : 0). Binary Huff curve is
birationally equivalent to the Weierstrasß elliptic curve

v2 + uv = u3 + (a2 + b2)u2 + a2b2u

via the map (x, y) �−→ (u, v) defined by

u =
ab

xy
, v =

ab(axy + b)
x2y

with the inverse map

x =
b(u + a2)

v
, y =

a(u + b2)
v + (a + b)u

.

The neutral element of binary Huff curve is the point (0, 0). The negation of the
point (x, y) is (x̃, ỹ) where

x̃ =
y(b + axy)
a + bxy

, ỹ =
x(a + bxy)

b + axy
.

Affine Addition. The sum of two points (x1, y1) and (x2, y2) on HFa,b is the
point (x3, y3) defined as follows:

x3 =
(x1y1 + x2y2)(1 + y1y2)
(y1 + y2)(1 + x1x2y1y2)

, y3 =
(x1y1 + x2y2)(1 + x1x2)
(x1 + x2)(1 + x1x2y1y2)

. (21)

Affine Doubling. The doubling of point (x1, y1) is the point (x4, y4) defined
as follows:

x4 =
(a + b)x2

1(1 + y2
1)

b(1 + x2
1)(1 + x2

1y
2
1)

, y4 =
(a + b)y2

1(1 + x2
1)

a(1 + y2
1)(1 + x2

1y
2
1)

. (22)

As b �= 0 we can divide the Eq. (20) by b and for simplicity we can assume
b = 1. So, we consider the binary Huff curve with the equation

ax(y2 + y + 1) = y(x2 + x + 1)

where a �= 0, 1.

Differential Addition. Devigen and Joye, [4], proposed the rational function
w(x, y) = xy for the binary Huff curves. They obtained the following affine
w-coordinates formulas

w4 =
(a2 + 1)/aw2

1

1 + w4
1

, w3 =
(w1 + w2)2

w0(1 + w1w2)2
.

The projective coordinates of the formulas are

W4 = (a2 + 1)/a(W1Z1)2, Z4 = (W1 + Z1)4,

W3 = w0(W1Z2 + W2Z1)2, Z3 = (W1W2 + Z1Z2)2.
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The cost of this w-coordinates in one step of the Montgomery ladder is 5M+
5S + 1D.

New Differential Addition. Here, we modify the rational function w(x, y) =
xy on binary Huff curve by scaling to w(x, y) = (a2+1)

a xy. This new rational
function reduces the cost of differential addition by 1S. As before, we use the
same notation for differential addition and doubling. From addition formulas
(21), we obtain the following formulas in affine coordinates.

w3 + w0 =
w1w2

(a/(a2 + 1))4w2
1w

2
2 + 1

, (23)

w3w0 =
w2

1 + w2
2

(a/(a2 + 1))4w2
1w

2
2 + 1

. (24)

The doubling formula (22) provides the following affine doubling formula.

w4 =
w2

1

(a/(a2 + 1))4w4
1 + 1

. (25)

Then, by Eqs. (23) and (24) we have

1
w3

+
1
w0

=
w1w2

(w1 + w2)2
. (26)

Cost of Projective w-Coordinates. Assume that wi are given by the fractions
Wi/Zi for i = 0, 1, 2, 3, 4. By Eq. (26) the following explicit formulas give the
output W3/Z3 by

Z3

W3
=

Z0(W1Z2 + W2Z1)2 + W0(W1Z2W2Z1)
W0(W1Z2 + W2Z1)2

. (27)

Also, from Eq. (25) the explicit doubling formulas is obtained.

W4

Z4
=

W 2
1 Z2

1

W 4
1 + (a/(a2 + 1))4 Z4

1

. (28)

So, the cost of projective w-coordinates differential addition and doubling is
7M+4S+1D; see Eqs. (27) and (28). Let assume W0 = 1. Then using the mixed
projective coordinates, we have the following formulas for differential addition:

A = W1Z1, B = W1Z2, C = W2Z1,

Z4 = (W1 + (a/(a2 + 1))Z1)4, W4 = A2,

W3 = (B + C)2, Z3 = BC + z0Z3.

Here, the addition formulas use 4M + 1S and doubling formulas use 1M +
3S + 1D. The total cost is 5M + 4S + 1D and one S is saved. Moreover the
projective w-coordinates differential addition and doubling formulas (27) and
(28) are almost complete.
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6 Comparison with Previous Works

In Table 1, we compare our new differential addition formulas with other models
of binary elliptic curves. The addition formulas for all binary elliptic are complete
or almost complete which makes the Montgomery ladder work perfectly in cryp-
tographic applications. The cost of almost complete formulas is 5M + 4S + 1D
that is the best known record. We believe this record may be obtained for any
form of binary elliptic curve by a suitable rational function. The proposed for-
mulas for general binary Edwards are improved in terms of efficiency and speed.
The complete formulas for binary Edwards curves are the only known complete
formulas for binary elliptic curves with the cost of 5M + 4S + 2D.

Table 1. Cost of differential addition and doubling for families of binary elliptic curves

Model Projective differential Mixed differential Completeness

Short Weierstraß [2] 7M + 4S + 1D 5M + 4S + 1D Almost

Binary Edwards

(general) [3] 8M + 4S + 4D 6M + 4S + 4D Yes

(d1 = d2) [3] 7M + 4S + 2D 5M + 4S + 2D Yes

(d1 = d2) [10] 7M + 4S + 2D 5M + 4S + 1D Almost

(general) this work 7M + 4S + 2D 5M + 4S + 2D Yes

(general) this work 7M + 4S + 1D 5M + 4S + 1D Almost

Binary Hessian [5] 7M + 4S + 2D 5M + 4S + 2D Almost

This work 7M + 4S + 1D 5M + 4S + 1D Almost

Binary Huff [4] 6M + 4S + 2D 5M + 5S + 1D Almost

This work 7M + 4S + 1D 5M + 4S + 1D Almost
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Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–
410. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1 33

9. Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In: Han-
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Abstract. Many pairing-based protocols require the computation of the
product and/or of a quotient of n pairings where n > 1 is a natural inte-
ger. Zhang et al. [1] recently showed that the Kachisa-Schafer and Scott
family of elliptic curves with embedding degree 16 denoted KSS16 at the
192-bit security level is suitable for such protocols comparatively to the
Baretto-Lynn and Scott family of elliptic curves of embedding degree 12
(BLS12). In this work, we provide important corrections and improve-
ments to their work based on the computation of the optimal Ate pairing.
We focus on the computation of the final exponentiation which represent
an important part of the overall computation of this pairing. Our results
improve by 864 multiplications in Fp the computations of Zhang et al.
[1]. We prove that for computing the product or the quotient of 2 pair-
ings, BLS12 curves are the best solution. In other cases, especially when
n > 2 as mentioned in [1], KSS16 curves are recommended for computing
product of n pairings. Furthermore, we prove that the curve presented
by Zhang et al. [1] is not resistant against small subgroup attacks. We
provide an example of KSS16 curve protected against such attacks.

Keywords: BN curves · KSS16 curves · BLS curves · Optimal Ate
pairing · Product of n pairings · Subgroup attacks

1 Introduction

Pairing-based cryptography is another way of building cryptographic protocols.
Thanks to the various and steady improvements for the computation of pairings
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on elliptic curves together with their implementation, several protocols have been
published [2–6]. The BN [7] family of elliptic curves are the most suitable for
implementing pairing-based cryptography at the 128-bit security level. At the
high security level, the BLS12 [8] curves are recommended for computing the
optimal Ate pairing according to the results presented in [9,10].

Many pairing-based protocols require the computation of products or quo-
tients of pairings. Some of them require the computation of two pairings [11],
others require three pairings [12] and even more than three pairings as in [13,14].
The few works that studied an efficient computation of products of pairings are
those of Granger and Smart [1,15]. In particular, Zhang et al. [1] have recently
shown that the KSS16 [16] elliptic curves are more suitable when computing
products or quotients of optimal Ate pairings at the 192-bit security level. In
their work they gave explicit formulas and cost evaluation for the Miller loop
and developed interesting ways of computing the hard part of the final exponen-
tiation. Unfortunately their results contain several forgotten operations costing
1332 multiplications in the base field Fp. In this work we study the computation
of the optimal Ate pairing on KSS16 curves. We present also a new multiple
of the hard part of the final exponentiation of the optimal Ate pairing. This
new multiple enabled us to improve the cost of the computation of the hard
part of the final exponentiation with respect to the work of Zhang et al. [1]. We
also compare the efficiency of KSS16 curves when computing product of pairings
with respect to other common curves at the same security level. We also ana-
lyzed the resistance of the KSS16 curves to the small subgroup attack following
the approach described in [17]. More precisely, the contribution of this work is
as follows:

1. We first pointed out ignored operations in the computation of the optimal
Ate pairing (final exponentiation) on KSS16 curves by Zhang et al. [1] and
give detailed cost of operations with a magma code to verify the formulas
[18]. Despite the improvement we obtained for the computation of the final
exponentiation in this case and based on the fastest known result to date to
our knowledge, we show that BLS12 curves are suitable for the computation
of products of two pairings at the high security level and not KSS16 curves
as recommended in [1]. We also proved that for computing n pairings where
n > 2 then KSS16 curves are the best solution.

2. In [17], Barreto et al. recently studied the resistance of BN, BLS and KSS18
curves to small subgroup attacks. We extend the same analysis to KSS16
curves. In particular we show that the parameters used in [1] do not ensure
protection of these curves to such attacks and we provide an example of
KSS16 curve resistant to this attack.

The rest of this work is organized as follows: Sect. 2 recalls results from [1] on
optimal Ate pairing on KSS16 curves. We point out the forgotten operations
and bring corrections and improvements in the computation of the final expo-
nentiation. In Sect. 3, we present our new multiple of the hard part of the final
exponentiation d′. We prove that by using the new vector we saved 864M with
respect to the corrected work of Zhang et al. in the computation of the optimal
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Ate pairing over KSS16 curves. Section 4 defines products of pairings and their
efficient computation. Detailed costs of the calculation and comparison are then
done with commonly pairing-friendly curves at the high security level. The Sect. 5
concerns the resistance of the KSS16 curves against small subgroup attacks. We
show that the curve used in [1] is not protected against small subgroup attack
and provide an adequate example. We conclude our work in Sect. 6.

Notations: In this paper we denote by:

– Mk a multiplication in Fpk .
– Sk a squaring in Fpk .
– Fk a Frobenius map in Fpk .
– Ik an inversion in Fpk .
– Sc a cyclotomic squaring in Fp16 .
– Cc a cyclotomic cube in Fp16 .

A multiplication, a square and an inversion in Fp are denoted respectively by M,
S and I.

2 Pairings at High Security Level

The 192-bit security level is one of the highest security level recommended when
implementing cryptographic protocols based on pairings. Aranha et al. [9] rec-
ommended the implementation of optimal Ate pairing at this security level over
BLS12 curves. Their results on BLS12 curves have been improved by Ghammam
and Fouotsa in [10] and still confirm that BLS12 curves are a better solution for
implementation at the 192-bit security level. Recently, Zhang et al. [1] consid-
ered the computation of the optimal Ate pairing over KSS16 curves at the same
security level. They proved in particular that this family of curves is suitable for
computing products or quotients of pairings generally involved in many pairing-
based protocols. In this section we review their computation of the optimal Ate
pairing and in particular we bring corrections to shortcomings in their work and
give improvements in the computation of the hard part of the final exponenti-
ation. The previous data on costs of computing optimal Ate pairing from the
literature at the 192-security level are given in Table 1.

Table 1. Latest best costs of optimal Ate pairing at the 192-bit security level.

Elliptic curves Size of p
(bit)

Complexity of
Miller loop

Complexity of the
final exponentiation

BLS12 Curves [10] 640 10785M 8116M+6I

BLS24 Curves [10] 480 14574M 23864M+10I

BN Curves [9] 640 16553M 7218M+4I

KSS18 Curves [9] 480 13168M 23821M+8I
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Remark 1. Recently, Kim presented in [19] improvements in discrete logarithm
computation in finite fields of the form Fp12 . Then Jeong and Kim generalized
it in [20]. They proved the same result for any composite extension degree n
when the prime p is of a special form which is the case of BN, BLS and KSS
curves which we studied in this paper. Therefore, these curves no longer provide
a 192-bit security level. However, they still present a high security level since it
is more than the 128-bit security level.

2.1 The KSS16 Family of Elliptic Curves and Optimal Ate Pairing

Kachisa et al. proposed in [16] a family of pairing-friendly elliptic curves of
embedding degree k ∈ {16, 18, 32, 36, 40}. The main idea of their construction
of these families of curves is to use the minimal polynomial of the elements of
the cyclotomic field rather than the cyclotomic polynomial φk(x) to define the
cyclotomic field.

The family of curve with k = 16 which is called KSS16 curves is parameterised
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t =1/35
(
2u5 + 41u + 35

)

r =u8 + 48u4 + 625

p =
1

980
(u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2+

2398u + 3125)

(1)

and the equation of the elliptic curve defined over Fp is of the form

y2 = x3 + ax

where t is the trace of the Frobenius endomorphism on E, p is the field size and
r presents the order the pairing-friendly subgroup. Let G1 = E(Fp)[r] be the
r-torsion subgroup of E(Fp) and G2 = E′(Fp4)[r]∩ Ker(πp − [p]) where E′ is
the quartic twist of E. The subgroup of F

�
p16 consisting of r-th roots of unity

is denoted by G3 = μr. Consider the function fu,Q with divisor Div(fu,Q) =
u(Q)− ([u]Q)− (u− 1)(O) and �R,S the straight line passing through the points
R and S of the elliptic curve.

Proposition 2. [1] The optimal Ate pairing on the KSS16 curves is the bilinear
and non degenerated map:

eopt : G1 × G2 → G3

(P,Q) �−→
(
(fu,Q(P )l[u]Q,[p]Q(P ))p3

lQ,Q(P )
) p16−1

r

The parameter u proposed by Zhang et al. [1] is

u = 249 + 226 + 215 − 27 − 1

which is a 49-bit integer of Hamming weight equal to 5 so that r has a prime
factor of 377 bits and p is a prime integer of 481 bits. The computation of pairing
involves two main steps: the Miller loop and the final exponentiation.
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2.2 The Miller Loop

In our case, to compute the optimal Ate pairing in Proposition 2, the Miller loop
consists of the computation of (fu,Q(P )·l[u]Q,[p]Q(P ))p3 ·lQ,Q(P ). Let u = un2n+
· · · + u12 + u0 with ui ∈ {−1, 0, 1}. The computation of the function fu,Q(P ) is
done thanks to the algorithm in Table 2 known as the Miller algorithm [21]. The
Miller loop consists of computing fu,Q(P ), l[u]Q,[p]Q(P ), lQ,Q(P ) and two sparse
multiplications in Fp16 to multiply terms together and one p3-Frobenius.

Table 2. Miller algorithm.

Miller algorithm: Input: u = (un, un−1, . . . , u0),P ,Q,

Output:(fu,Q(P ) · l[u]Q,[p]Q(P ))p
3 · lQ,Q(P )

1: Set f1 ← 1 and R ← Q
2: For i = n − 1 down to 0 do
3: f1 ← f2

1 · �R,R(P ), R ← 2R Doubling step
5: if ui = 1 then
6: f1 ← f1 · �R,Q(P ) R ← R + Q, end if Addition step
7: if ui = −1 then
8: f1 ← f1 · �R,−Q(P ) R ← R − Q, end if Addition step
9: end For
10: return f1 = fu,Q(P )

The computation of fu,Q(P ) costs 49 doubling steps with associated line eval-
uation, 4 addition steps with line evaluations, 48 squarings in Fp16 and 52 sparse
multiplications in Fp16 . We then need an extra 2p-Frobenius maps for comput-
ing [p]Q and [u]Q is obtained through the computation of fu,Q(P ). Thus we have
to perform 8 multiplications in Fp, a multiplication in Fp4 and one squaring in
Fp4 plus 2p-Frobenius to compute l[u]Q,[p]Q(P ). We need also 8 multiplications
in Fp, 4 multiplications in Fp4 , and one squaring in Fp4 to compute lQ,Q(P ) (see
[1] for formulas and complete details on the costs).

Therefore, the overall cost of the computation of the Miller loop, as mentioned
in [1], is 49 doubling steps with associated line evaluations, 4 addition steps with
line evaluations, 48 squarings in Fp16 , 54 sparse multiplications in Fp16 , 2p, p3

Frobenius maps in Fp16 , 16 multiplications in Fp, 5 multiplications in Fp4 and
one squaring in Fp4 . From Table 4 of [1], the Miller loop of the optimal Ate
pairing on KSS16 curve costs about 10208 multiplications in Fp.

2.3 The Final Exponentiation

The second step in computing the optimal Ate pairing is the final exponentiation
which consists of raising the result f1 of the Miller loop to the power p16−1

r .
Thanks to the cyclotomic polynomial, this expression is simplified and presented
as follows:

f
p16−1

r
1 = (fp8−1

1 )
p8+1

r .
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First we have to compute f = fp8−1
1 which is called the simple part of the final

exponentiation. This costs one p8–Frobenius, an inversion and a multiplication
in Fp16 . Raising f to the power p8+1

r is called the hard part of the final expo-
nentiation. In [1], Zhang et al. considered a multiple of the second part of the
final exponentiation. So instead of computing fd they computed f857500d where
d = p8+1

r . This choice enables them to only have integer coefficients in the rep-
resentation of d1 = 857500d in base p which is a simple way for computing this
hard part of the final exponentiation.

p8 + 1
r

=
φ(16)−1∑

i=0

cip
i = c0 + c1p + c2p

2 + · · · + c7p
7

Where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = −11u9 − 22u8 − 55u7 − 278u5 − 1172u4 − 1390u3 + 1372

c1 = 15u8 + 30u7 + 75u6 + 220u4 + 1280u3 + 1100u2

c2 = 25u7 + 50u6 + 125u5 + 950u3 + 3300u2 + 4750u

c3 = −125u6 − 250u5 − 625u4 − 3000u2 − 13000u − 15000

c4 = −2u9 − 4u8 − 10u7 + 29u5 − 54u4 + 154u3 + 4704

c5 = −20u8 − 40u7 − 100u6 − 585u4 − 2290u3 − 2925u2

c6 = 50u7 + 100u6 + 250u5 + 1025u3 + 4850u2 + 5125u

c7 = 875u2 + 1750u + 4375

(2)

Then Zhang et al. presented a very nice decomposition of ci where i ∈
{0, 1, 2, 3, 4, 5, 6, 7}. This representation enabled them to quickly compute the
hard part of the final exponentiation. Let

A = u3.B + 56 and B = (u + 1)2 + 4, then
⎧
⎪⎪⎨

⎪⎪⎩

c0 = −11(u4A + 27u3B + 28) + 19A; c4 = −(2u4A + 55u3B) + 84A
c1 = 5(3u3A + 44u2B) = 5c′

1; c5 = −5(4u3A + 117u2B) = −5c′
5

c2 = 25(u2A + 38uB) = 25c′
2; c6 = 25(2u2A + 41uB) = 25c′

6

c3 = −125(uA + 24B) = −125c′
3; c7 = 125.7B = 125c′

7

The problem with this representation is that when we recomputed these expres-
sions we discovered that there is a missing term in the expression of c0. In fact

{
c0 = −11u9 − 22u8 − 55u7 − 278u5 − 1172u4 − 1390u3 + 1372

= −11(u4A + 27u3B + 28) + 19A + 616
(3)

We verified also the algorithm presented in AppendixA of [1] where the term
f616 is missing in the computation of the final exponentiation. Fortunately, the
expression of c0 do not influence the rest of the expressions ci with 0 < i < 8.
Therefore, we have to add this term to the final result of the hard part of the
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final exponentiation of the optimal Ate pairing. Using the square-and-multiply
algorithm, the additional step f616 costs 8 squarings and 3 multiplications in
Fp16 but we will not add this cost because they are terms precomputed in the
algorithm of Zhang et al. We will add to their algorithm these operations after
the first term of the original algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A0 ← T38

A1 ← A0 · T3
A2 ← A1 · T2

A3 ← T12

A2 ← A3 · A2

(4)

By adding these operations we got in A2 the missing term f616. At the end of
the algorithm presented by Zhang et al. we have to add this term to the final
result costing an extra multiplication. So the additional cost is 4 multiplications
and 4 squarings in Fp16 .

Other shortcomings with their algorithm that computed the hard part of the
final exponentiation concern the computation of c′

5, c′
0 and c′

4. In fact, in the
expression of c′

0, the output of their algorithm is −11(u4A+55u3B +28)+35A
instead of the result −11(u4A + 55u3B + 28) + 19A. Also, the expression of c′

4

computed in their algorithm is −(2u4A + 55u3B) + 148A not as mentioned in
the development which is −(2u4A + 55u3B) + 84A.

The expression of c′
5 is deduced by multiplying the term stocked in the tem-

porary variable T11 by the term stocked in F14 and not by the one recorded in
F25. Also in the computation of c′

7 we must perform the operation F5.T4 instead
of F5.T6.

Therefore we must perform some modifications in the original algorithm to
have the coherent result at the end. We presented the corrected algorithm in
AppendixA, Table 9, and a magma code for the verification of formulas is avail-
able in [18]. The additional corrections cost 4 multiplications and 3 squarings in
Fp16 instead of 3 multiplications and 4 squarings which is the cost of the oper-
ations before our modifications. Furthermore Zhang et al. claimed that in the
final algorithm they used only 16 squarings, but it is not the case because by a
simple count we found that one is forced to perform 38 squarings in Fp16 .

As a consequence to compute the final exponentiation we have to perform 7
exponentiations by u, 2 exponentiations by (u+1), one inversion, 44 cyclotomic
squarings in Gφ2(p8), 38 multiplications in Fp16 , 2 cyclotomic cubings in Fp16 and
p, p2, p3, p4, p5, p6, p6, p7, p8-Frobenius maps.

In Table 3 we present the new cost of the final exponentiation of the optimal
Ate pairing after our correction of the result of the work in [1]. Hence, by adding
some modifications to the original result the overall cost of the optimal Ate
pairing on KSS16 curve is 33870M+I. So we have extra 1332 multiplications in
Fp than the cost presented in [1].
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Table 3. Complexity of the optimal Ate pairing.

The method Complexity of
Miller loop

Complexity of the
final exponentiation

Method of [1] 10208 M 22330M+I

Our correction 10208 M 23662M+I

3 A New Multiple of the Hard Part of the Final
Exponentiation

An efficient method to compute the hard part is described by Scott et al. [22].
They suggested to write d = φk(p)

r in base p as d = d0+d1p+ · · ·+dφ(k)−1p
φ(k)−1

and find a short vector addition chain to compute fd much more efficiently than
the naive method. In [23], based on the fact that a fixed power of a pairing is
still a pairing, Fuentes et al. [23] suggested to apply Scott et al.’s method with
a power of any multiple d′ of d with r not dividing d′. This could lead to a more
efficient exponentiation than a direct computation of fd. Their idea of finding
the polynomial d′(x) is to apply the LLL-algorithm to the matrix formed by Q-
linear combinations of the elements d(x), xd(x), . . . , xdegr−1d(x). In this paper
we tried to find a new multiple of d1 = 857500 · d (with r not dividing d). We
use a lattice-based method to find d′ such that fd′

can be computed in a more
efficient way than computing f857500·d.

Thanks to the LLL algorithm [24], the best vector that we found is given by:

d′(u) = m0 + m1p + m2p
2 + m3p

3 + m4p
4 + m5p

5 + m6p
6 + m7p

7 = s(u)d1

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(u) = u3/125

m0 = 2u8 + 4u7 + 10u6 + 55u4 + 222u3 + 275u2

m1 = −4u7 − 8u6 − 20u5 − 75u3 − 374u2 − 375u

m2 = −2u6 − 4u5 − 10u4 − 125u2 − 362u − 625

m3 = −u9 − 2u8 − 5u7 − 24u5 − 104u4 − 120u3 + 196

m4 = u8 + 2u7 + 5u6 + 10u4 + 76u3 + 50u2

m5 = 3u7 + 6u6 + 15u5 + 100u3 + 368u2 + 500u

m6 = −11u6 − 22u5 − 55u4 − 250u2 − 1116u − 1250

m7 = 7u5 + 14u4 + 35u3 + 392

(5)

Our aim in this section by presenting the new vector d′ is to reduce the com-
plexity of computing the hard part of the final exponentiation for the optimal
Ate pairing in KSS16 curves and then the complexity of computing the product
of n pairings. Let {

A = u3B + 56
B = (u + 1)2 + 4
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then we can write the expressions of mi where 0 < i < 8 more simply as follows:
⎧
⎪⎪⎨

⎪⎪⎩

m0 = 2u3A + 55u2B; m4 = u3A + 10u2B
m1 = −4u2A − 75uB; m5 = 3u2A + 100uB
m2 = −2uA − 125B; m6 = −11uA − 250B
m3 = −u4A − 24u3B + 196; m7 = 7A

These new expressions enabled us to be faster than Zhang et al. in the computa-
tion of the hard part of the final exponentiation. We detailed the computation of
the final exponentiation in the algorithm presented in AppendixA, Table 8, and
a magma code for the verification of formulas is available in [18]. The overall cost
of this algorithm is then 7 exponentiations by u, 2 exponentiations by (u+1), 34
cyclotomic squarings in Gφ2(p8), 32 multiplications in Fp16 , 3 cyclotomic cubings
in Fp16 and p, p2, p3, p4, p5, p6, p6, p7, p8-Frobenius maps.

Table 4. Comparison between Zhang et al. and our new development.

Method Algorithm Complexity

Sc M16 F16 Cc

Zhang et al. 1 44 37 8 1

Our development 2 34 32 8 3

Our result of computing the hard par of the final exponentiation is compared
with the corrected result presented in Sect. 2.3 in Table 4. For a full comparison,
we consider the example presented in [1]. The extension tower is built as follows:
– Fp4 = Fp[v]/

(
v4 + 3)

)

– Fp8 = Fp4 [w]/
(
w2 − v

)

– Fp16 = Fp8 [z]/
(
z2 − w

)

The cost of operations for computing the optimal Ate pairing on KSS16 curve
are presented in Table 4 of [1].

Table 5. Comparison between the two vectors d and d′.

The result Complexity of
algorithm

Complexity of the hard part
the final exponentiation

Corrected result of [1] See cost in Table 8 23537M

Our new algorithm See cost in Table 9 22673M

In Table 5 we compared the complexity in Fp of our result using a new mul-
tiple of the hard part of the final exponentiation and the corrected one of Zhang
et al. In this table we remark that our computations are faster than those pre-
sented in [1] for computing the hard part of the final exponentiation. We saved
about 864 multiplications in Fp which is an interesting result if one is inter-
ested in hardware or software implementations of the optimal Ate pairing at the
192-security level.
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4 On Computing Products of n Pairings

In some protocols, for example in the BBG HIBE scheme [25], the BLS short
group signature scheme [5], ABE scheme due to Waters [14], the non interactive
proof systems proposed by Groth and Sahai [26] and others [11,13], it is necessary
to compute the product or the quotient of two or more pairings. Scott in [27] and
Granger et al. in [15] investigated the computation of the product of n pairings.

Let
e : G1 × G2 → G3

a bilinear non-degenerated map from two additive groups G1 and G2 to G3 a
multiplicative group. The evaluation of a product of n pairings is of the form

en =
n∏

i=1

e(Pi, Qi)

In this section we are interested by the computation of n pairings. We give a
comparison of this computation for different category of curves at the 192-bit
security level. For this security level it is recommended by Aranha et al. in [9]
to use the BLS12 curves to compute the optimal Ate pairing. In this section and
in the case where one computes the product of n optimal Ate pairings, we will
prove that this category of curves are not a solution for all n specially where
n > 2. We prove also that the KSS16 curves, proposed as the best solution for
computing the product of n pairings by Zhang et al. in [1] are not the best
for n = 2. We First recall in Table 6 the different formulas for the optimal Ate
pairing over common families of pairing-friendly curves such as KSS16, KSS18,
BN, BLS12 and BLS24 curves. For computing the optimal Ate pairing we have
two steps: The Miller loop and the final exponentiation. The computation of the
product of n pairings consists only of the computation of the product of n Miller
loops followed by the evaluation of the result of the final exponentiation. Recall
that in the Miller loop (see the algorithm in Table 2) we have to compute the
following step:

f ← f2l(Q) (6)

Table 6. Optimal Ate pairing on elliptic curves.

Curve Optimal Ate pairing: (P,Q) →

KSS16 [1]
(
(fu,Q(P )l[u]Q,[p]Q(P ))p

3
lQ,Q(P )

) p16−1
r

KSS18 [9]
(
fu,Q(P )fp

3,Ql[u]Q,[3p]Q(P )
) p18−1

r

BN [9]
(
(f6u+2,Q(P )l[6u+2]Q,[p]Q(P )l[6u+2]Q,[−p2]Q(P ))

) p12−1
r

BLS12 [9] (fu,Q(P ))
p12−1

r

BLS24 [9] (fu,Q(P ))
p24−1

r
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where l is the tangent to the curve at a point depending on Q and depending
on the loop iteration in Miller’s algorithm. To compute the product of Eq. (6),
each doubling function-evaluation step becomes

f ← f2
∏n

i=1 li(Qi) (7)

Therefore one needs only to calculate a single squaring in the extension field per
doubling rather than n squarings using the naive method of the computation of
the product of n pairings.

So to evaluate the cost of the computation of the product of n optimal Ate
pairings we have to compute at first:

– Cost1: Full squarings in the Miller loop (squarings in Eq. 7).
– Cost2: Other operations in the Miller loop (point operations and line evalu-

ation).
– Cost3: Final exponentiation.

Then we have to sum Cost1, nCost2 and Cost3 to find the overall cost of the
product of n pairings.

Table 7. Costs comparison of product of n pairings at the 192-bit security levels.

Costs KSS16 Zhang KSS16 BLS12 [10] BN [9] KSS18 [9]

Full squarings
for DBL

2592M 2592M 5892M 8837M 4158M

Others in
Miller loop

7616M 7616M 10760M 16720M 9544M

Final
exponentiation

23662M+I 22888M +I 12574M+6I 11145M+6I 23821M+8I

Total cost for
n = 1

33870M+I 33096M+I 29226M+6I 36702M+6I 37523M+8I

Total cost for
n = 2

41486M+I 40712M+I 39986M+6I 53422M+6I 47067M+8I

Total cost for
n = 3

49102M+I 48328M+I 50746M+6I 64567M+6I 56611M+8I

Total cost for
n = 7

79656M+I 78792M+I 93786M+6I 109147M+6I 94784M +8I

In Table 7, we present the costs for computing the product of n pairings
considering common curves in Table 6. From Table 7, we can deduce that for
n = 2, meaning when we would like to compute the product of two parings, it
is better to use BLS12 curves. In the case of n > 2 as mentioned in [1] KSS16
curves can give the fastest computations of products or quotients of n pairings.

Security of Cryptographic protocols is important in practice. That’s why,
when we compute optimal Ate pairing on KSS16 curves we have to verify the
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security of the parameters of the elliptic curve. In the next section we will present
a detailed study of the security of the computation of the optimal Ate pairing
and more precisely the resistance against the subgroup attacks.

5 Subgroup Security for KSS16 Pairing-Friendly Curves

A detailed study on subgroup security for pairing-friendly curves was recently
studied by Baretto et al. [17]. They focus on common families of elliptic curves
having twists of order six such as BN, BL12, BLS24 and KSS18 curves. In par-
ticular they provided parameters that enable the aforementioned curves to be
resistant against subgroups attacks. In this section, we extend the same analysis
to the KSS family of elliptic curves having quartic twists and of embedding degree
16. We first recall the definition of subgroup secure curves concept from [17] The
subgroup security concept explicitly described on pairing-friendly curves by Bar-
reto et al. [17], is a property that strengthens the resistance of pairing-friendly
curves against subgroup attacks. Let E be an elliptic curve of embedding degree
k and parameterised by p(u), t(u), r(u) ∈ Q[u]. Let d be the degree of the twist

of the elliptic curve E and let E′(Fpk/d) its twists. Let h1(u) =
| E(Fp)(u) |

r(u)
,

h2(u) =
| E′(Fpk/d)(u) |

r(u)
and hT =

| Gφk
(p(u)) |

r(u)
be the indices of the three

groups on which a pairing is defined.

Definition 3. [17] The curve E is subgroup secure if all Q[u]-irreducible factors
of h1(u), h2(u), hT (u) that represent primes and that have degree at least the
degree of r(u), contain no prime factor smaller than r(u0) ∈ Z when evaluated
at u = u0.

In the case of KSS16, the indices are given in the following proposition:

Proposition 4. Let p(u), t(u), r(u) ∈ Q[u] be the parameters of the KSS16

pairing-friendly elliptic curve. The indice hT =
p(u)8 + 1

r(u)
is a polynomial in

u of degree 72. Also h1(u) = (125/2)(u2 + 2u + 5) and the order of the quar-
tic twist E′(Fp4) is | E′(Fp4) |= h2(u) · r(u) where h2(u) = (1/15059072)(u32 +

8u31 + 44u30 + 152u29 + 550u28 + 2136u27 + 8780u26 + 28936u25 + 83108u24 +

236072u23 + 754020u22 + 2287480u21 + 5986066u20 + 14139064u19 + 35932740u18 +

97017000u17 + 237924870u16 + 498534968u15 + 1023955620u14 + 2353482920u13 +

5383092978u12+10357467880u11+17391227652u10+31819075896u9+65442538660u8+

117077934360u7 + 162104974700u6 + 208762740168u5 + 338870825094u4 +

552745197960u3 + 632358687500u2 + 414961135000u + 126854087873).

Proof. The order of the group E(Fp4) is | E(Fp4) |= p4 + 1 − t4 where t4 =
t4 − 4pt2 + 2p2 (see [28, Theorem 4.12]). The order of the correct quartic twist
E′(Fp4) is given by | E′(Fp4) |= p4 + 1 + v4 where v2

4 = 4p4 − t24 (see [29,
Proposition 2]). A direct calculation gives the cofactor as h2(u) = p4+1+v4

r(u) .
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Remark 5. The value used in [1] for the computation of optimal pairing on
KSS16 curves is u0 = 249+226+215−27−1. With this value we see that h2(u0)
has the factorisation 2 ·1249 ·366593 ·c1515 where c1515 is still a composite integer
of 1515 bits. This means that the corresponding curve fails to satisfy the small
subgroup attack property. In the following section we search for a parameter u
to avoid subgroup attack on this curve.

For the 192-bit security level, the u0 which gives corresponding sizes of r and p
must be an integer of bit size at least 49. Also, the good u0 must be such that
p(u0), r(u0), h2(u0) and hT (u0) are simultaneously prime. Since u ≡ ±25 mod 70
(for p to represent integers) one can easily see that h2(u) ≡ 0 mod 2 and hT (u) ≡
0 mod 2. We will therefore search for u0 such that p(u0), r(u0), h2(u0)/2 and
hT (u0)/2 are simultaneously prime. One can have a chance to obtain such a
u0 if and only if those polynomials satisfy the Bunyakovsky’s property. A quick
verification enables to see that the prime number 17 divides these polynomials
when evaluated at n ∈ N. Therefore it is enough to search for prime numbers with
2 and/or 17 as factors. The Batemann-Horn conjecture then ensures that they
are approximately 24500 values of u0 ∈ [249, 253] with p(u0), r′(u0), h′

2(u0) and
h′

T (u0) simultaneously prime, where r(u) = 17n1 · r′(u), h2(u) = 2 · 17n2 · h′
2(u)

and hT = 2 · 17n3 · h′
T (u) for some positive or zero integers n1, n2 and n3.

A careful search enabled us, after several long tries starting with x0 of Hamming
weight 5, to obtain the following value

u0 = 250 + 247 − 238 + 232 + 225 − 215 − 25 − 1

which gives a prime p of 492 bits, r(u0) = r′(u0) prime of 386 bits, h2(u0) =
2 ·17 ·h′

2(u0) and hT = 2 ·17 ·h′
T (u0) where h′

2(u0) and h′
T (u0) are prime numbers

of 3544 bits and 1577 bits respectively. For the value of p obtained the extension
field Fp16 is built using the following tower of extensions:

– Fp2 = Fp[α]/(α2 − 11)
– Fp4 = Fp2 [β]/

(
β2 − α)

)

– Fp8 = Fp4 [γ]/
(
γ2 − β

)

– Fp16 = Fp8 [θ]/
(
θ2 − γ

)

An example of elliptic curve E over Fp that satisfies |E(Fp)| = p + 1 − t has the
equation E : y2 = x3 + 17x. The corresponding quartic twist E′ over Fp4 with
order |E′(Fp4)| = 2 · 17 · h′

2(u0) · r(u0) is the curve E′ : y2 = x3 + 17/βx.

6 Conclusion

In many pairing-based protocols the evaluation of the product or the quotient of
many pairings is required. In this paper we were interested in the computation
of the product of n optimal Ate pairings at the high security level.

This problem was first considered by Zhang et al. [1]. They suggested the
KSS16 curves as a best choice for computing n pairings. We checked their results
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on the computation of the hard part of the final exponentiation of the optimal
Ate pairing. We found that they missed 1332 multiplications in Fp in their com-
plexity calculation. We corrected their algorithm and we presented a new algo-
rithm for the computation of the final exponentiation based on a new multiple of
the hard part of the final exponentiation. With this new vector we saved about
864 multiplications in the basic field which is an important result if one thinks
about hardware or software implementations. We implemented our new algo-
rithms in Magma to verify their correctness [18]. We computed also the product
of n pairings. We proved that for n = 2 it is better to use BLS12 curves and for
n > 2 KSS16 curves are the best solution. Finally we proposed a new parame-
ter u for the KSS16 curves to ensure the resistance against the small subgroup
attacks.

A Algorithms

In these tables and to have the same expressions as Zhang et al. we denote by
f the result of Miller loop and by M the result of the first part of the final
exponentiation.

Table 8. Final exponentiation with a new exponent. See [18] for the magma code for
the verification.

Operations Terms computed Cost

E1 = fp8E2 = E1 · f−1 M = fp8−1

T0 = M2;T1 = T02 M2;M4 2S16

T2 = Mu+1;T3 = T2u+1 Mu+1;M (u+1)2 2Eu

T4 = T3 · T1 M (u+1)2+4 = MB 1M16

T5 = T4u;T6 = T45 MuB ;M5B 1Eu + 1M16 + 2S16

T7 = T18;T8 = T72 M32;M64 4S16

T9 = T7 · T1−1;T10 = T92 M28;M56 1M16 + 1S16

T11 = T5u;T12 = T11u Mu2B ;Mu3B 2Eu

T01 = T12 · T10 Mu3B+56 = MA 1M16

T14 = T01u;T13 = T14−2 MuA;M−2uA 1Eu + 1S16

T00 = T65;T15 = T005 M25B ;M125B 2M16 + 4S16

T0 = T13 · T15−1 M−2uA−125B = Mc2 1M16

T16 = T02;T17 = T134 M2c2 ;M−8uA 3S16

T18 = T17 · T14 M−7uA 1M16

T2 = T16 · T18 M2c2−7uA = Mc6 1M16

T19 = T14u;T20 = T19u Mu2A;Mu3A 2Eu

T21 = T20u;T22 = T192 Mu4
;M2u2A 1Eu + 1S16

T23 = T55;T24 = T235 M5uB ;M25uB 2M16 + 4S16
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Table 8. (continued)

Operations Terms computed Cost

T25 = T243;T26 = T24 · T25 M75uB ;M100uB 1C16 + 1M16

T27 = T222 M4u2A 1S16

T37 = (T27 · T25)−1 M−4u2A−75uB = Mc1 1M16

T28 = T27 · T19−1 M3u2A 1M16

T3 = T28 · T26 M3u2A+100xB = Mc5 1M16

T29 = T115;T30 = T292 M5u2B ;M10u2B 1M16 + 3S16

T4 = T20 · T30 Mu3A+10u2B = Mc4 1M16

S0 = T202;S1 = T305 M2u3A;M50u2B 1M16 + 3S16

S2 = S1 · T29;S3 = S0 · S2 M55u2B ;M2u3A−55u2B = Mc0 2M16

T31 = T1224 M24u3B 1C16 + 3S16

T5 = T21−1 · T31−1 M−u4A−24u3B 1M16

T6 = T83 · T1 M196 1M16 + 1C16

T7 = T5 · T6 M−u4A−24u3B+196 = Mc3 1M16

T8 = T17 M7A = Mc7 2M16 + 2S16

T32 = T37p · T7p3 · T3p5 · T8p7 Mc1p+c3p
3+c5p

5+c7p
7

3M16 + 4(15M)

T33 = T0p2 · T2p6 Mc2p
2+c6p

6
1M16 + 2(12M)

T = S3 · T32 · T33 · T4p4 M
p8+1

r 3M16 + 1(8M)

Table 9. Corrected version of the final exponentiation in [1]. See [18] for the magma
code for the verification.

Operations Terms computed Cost

E1 = fp8E2 = E1 · f−1 M = fp8−1

T1 = E24;T2 = T18;T3 = T22 6S16

A0 = T38;A1 = A0 · T3 1M16 + 3S16

A2 = A1 · T2;A3 = T12 1M16 + 1S16

A2 = A3 · A2 1M16

F1 = T2 · T1−1;F2 = F12 1M16 + 1S16

F3 = E2u+1;F4 = F3u+1 2Eu+1

F5 = F4 · T1;T4 = F58 F5 = MB 1M16 + 3S16

F6 = F5u;F7 = F5−1 · T4 F7 = Mc
′
7 1Eu + 1M16

F8 = T43;T5 = F68 1C16 + 3S16

F9 = F6u;F10 = T5 · F6−1 1Eu + 1M16

F11 = F102;T6 = F98 4S16

F12 = F9u;F13 = T6 · F9−1 1Eu + 1M16

F14 = F132;F15 = F12 · F2 F15 = MA 1S16 + 1M16
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Table 9. (continued)

Operations Terms computed Cost

T7 = F152;T8 = T74 3S16

S1 = T82;S2 = T72 2S16

S3 = S2 · S1;S4 = S3 · F15−1 2M16

T9 = S14;S5 = S3 · T9 1M16 + 2S16

S6 = F142;F16 = F15u 1Eu + 1S16

F22 = F16 · F8 F22 = Mc′
3 1M16

F23 = F22u;F24 = F23 · F11 F24 = Mc′
2 1Eu + 1M16

T10 = F232;F25 = F23u 1Eu + 1S16

F26 = T10 · F10−1;T11 = F254 F26 = Mc′
6 1M16 + 2S16

F27 = F25u;F28 = T11 · F25−1 1Eu + 1M16

F29 = F13 · F14;F30 = T11 · F29 F30 = Mc′
5 2M16

F31 = F28 · S6−1;F32 = F122 1M16 + 1S16

F33 = F32 · F12;F34 = F27 · F33 2M16

F35 = F342;F36 = F35 · F12 1M16 + 1S16

F37 = F36−1 · S5;F38 = F34 · F1 F37 = Mc′
4 2M16

F39 = F382;F40 = F392 2S16

F41 = F402;F42 = F39 · F38 1M16 + 1S16

F43 = F41 · F42;F44 = F43−1 · S4 2M16

H1 = F7p7 ;H2 = F22p3 2(14M)

H3 = F24p2 ;H4 = F26p6 2(12M)

H5 = F30p5 ;H6 = F31p 2(14M)

H7 = F37p4 ;H8 = H1 · H2−1 1M16 + 1(8M)

H9 = H82;H10 = H92 2S16

H11 = H10 · H8;H12 = H11 · H3 2M16

H13 = H12 · H4;H14 = H132 1M16 + 1S16

H15 = H142;H16 = H15 · H13 1M16 + 1S16

H17 = H16 · H6;H18 = H17 · H5−1 2M16

H19 = H182;H20 = H192 2S16

H21 = H20 · H18;H22 = H21 · H7 2M16

H23 = H22 · F44 H23 = Md′
1M16
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Abstract. In this paper we study the pseudorandom properties of
sequences of points on elliptic curves. These sequences are constructed
by taking linear combinations with small coefficients (e.g. −1, 0,+1) of
the orbit elements of a point with respect to a given endomorphism of
the curve. We investigate the linear complexity and the distribution of
these sequences. The result on the linear complexity answers a question
of Igor Shparlinski.

1 Introduction

For a prime power q = pn we denote by Fq the field of q elements. Let E be a
non-singular elliptic curve over Fq defined by

E : Y 2 + (a1X + a3)Y = X3 + a2X
2 + a4X + a6,

with some a1, . . . , a6 ∈ Fq (see [12]). We recall that the Fq-rational points E(Fq)
of the curve E with the usual addition ⊕ form an Abelian group with the point
at infinity O as a neutral element. We write every point P �= O on E as P =
(x(P ), y(P )).

Every integer m �= 0 has a unique non-adjacent binary expansion, also called
binary NAF, for some length k:

m =
k−1∑

j=0

μj2j , with (μ0, . . . , μk−1) ∈ Mk, (1)

where Mk is the set of k-tuples with components 0,±1 such that there are no
two consecutive non-zero components:

Mk = {(μ0, . . . , μk−1) ∈ {0,±1}k | μjμj+1 = 0}.

This expansion provides a faster scalar multiplication compared to the double
and add algorithm as the number of additions is reduced and the number of
doublings is kept constant, as additions and subtractions of points cost about
the same. We remark that the Hamming weight of this representation of m is

c© Springer International Publishing AG 2016
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minimal among all signed-digit representations of m. It is not hard to show (see
[2]) that for k ≥ 2

#Mk =
4
3
2k + O(1).

We also remark that given an integer m (in binary form) one can efficiently
computes its NAF representation.

This concept is generalized from the endomorphism doubling δ to arbitrary
endomorphisms by Lange and Shparlinski [8]. Given an Fq-rational point P ∈
E(Fq) and an endomorphism σ on E we consider the set of points

Pσ,m =
k−1∑

j=0

μjσ
j(P ), m = (μ0, . . . , μk−1) ∈ Mk.

The endomorphism doubling δ(P ) = 2P is defined for any elliptic curve over
any finite field. In this case we have

Pδ,m = mP,

where m is the NAF representation (1) of m.
Two further examples of endomorphisms were also considered in [8]. For

a ∈ F2 we define the Koblitz curve Ea over F2 by the Weierstrass equation

Ea : Y 2 + XY = X3 + aX2 + 1

introduced in [5]. We define the Frobenius endomorphism ϕ which acts on an
F2n -rational point P = (x, y) as

ϕ(P ) = (x2, y2).

Finally, we also consider one of the GLV curves introduced by Gallant, Lam-
bert and Vanstone [4]. Let p > 3 be a prime number such that −7 is a quadratic
residue modulo p (that is, p ≡ 1, 2, 4 (mod 7)). Define the elliptic curve EGLV

over Fp as

EGLV : Y 2 = X3 − 3
4
X2 − 2X − 1.

If b = (1 +
√−7)/2 and c = (b − 3)/4, then the map ψ defined as

ψ(P ) =
(

x2 − b

b2(x − c)
,
y(x2 − 2cx + b)

b3(x − c)2

)

for P = (x, y) ∈ EGLV is an endomorphism of EGLV.
The behavior of the point set Pσ,m (m ∈ Mk) was studied by Lange and

Shaprlinski [7,8]. First they gave an upper bound on the number of collisions of
these points.

Proposition 1. Let P ∈ E(Fq) be of prime order � and let Nk(Q) be the number
of representations

Pσ,m = Q, m ∈ Mk.

If σ is one of the following endomorphisms:
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– δ for an arbitrary curve E,
– ϕ for a Koblitz curve E = Ea, a = 0, 1,
– ψ for the GLV curve E = EGLV,

then for any integer r with 1 ≤ r ≤ k and 2r ≤ �/8 we have Nk(Q) ≤ #Mk−r.

In particular, the bound of Proposition 1 implies that if 2k < �/8, then the
points Pσ,m are all distinct. For larger k choosing r = 	log2 �
 − 3 we obtain
Nk(Q) = O(2k�−1).

Next, Lange and Shaprlinski [8] also studied the distribution of the points
Pσ,m (m ∈ Mk). For a non-trivial additive character χ, they proved that

∑

m∈Mk

χ(x(Pσ,m)) � #Mk

(
q1/4ν�−1/2ν + 2−k/2νq(ν+1)/4ν2

)
(2)

holds with any fixed integer ν ≥ log q/2k where σ is one of the endomorphisms
in Proposition 1. From the bound (2) they proved that the set of points Pσ,m

(m ∈ Mk) has good uniformity of distribution properties.
In this paper we study the sequence of points Pσ,m arranged in a sequence by

ordering the vectors m ∈ Mk lexicographically. First, we give a lower bound to
the linear complexity of the coordinate-sequence x (Pσ,m) in Sect. 2. This result
gives an answer to a question of Igor Shparlinki (Question 31 in [11]).

Next, in Sect. 3 we extend the result (2). For a vector m ∈ Mk, let τ(m) ∈
Mk be the successor of m with respect to the lexicographic ordering. Then we
study the distribution of vectors

(
x (Pσ,m) , x

(
Pσ,τ(m)

)
, . . . , x

(
Pσ,τs−1(m)

))
, m ∈ Mk : τs−1(m) ∈ Mk. (3)

First we give an upper bound to the character sum

Sσ,k,s(χ) = max
(a0,...,as−1) �=(0,...,0)

∑

n∈M∗
k

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(n)

)
)

,

where in the sum we exclude the last s − 2-many elements of Mk and χ is a
non-trivial additive character. We apply this result to show that the vectors (3)
have good uniformity of distribution properties.

2 Linear Complexity

The linear complexity of a sequence (sn) of length M over a ring R is the length
L of a shortest linear recurrence relation

sn+L = cL−1sn+L−1 + · · · + c1sn+1 + c0sn, n = 0, . . . ,M − L − 1

for some c0, . . . , cL−1 ∈ R, that (sn) satisfies.
The linear complexity measures the unpredictability of a sequence and thus

its suitability in cryptography. For more details see [9,10,13].
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Theorem 1. Let P ∈ E(Fq) be of prime order �. Then for any k ≥ 1 the linear
complexity of (x (Pσ,m))m∈Mk

satisfies

L(x (Pσ,m)) � min
{
#M�k/2�, �

}
.

The following lemma is a crucial step in the proof.

Lemma 1. If P has prime order � and � does not divide the constant term of
the characteristic polynomial of σ, then σ(P ) �= O. It happens if � > 2 and σ is
one of the selected endomorphism.

Proof. Let χσ = aT 2 + bT + c ∈ Fq[T ] be the characteristic polynomial of σ. If
σ(P ) = O, then O = −aσ2(P ) − bσ(P ) = cP , thus the order � of P divides c.
Finally, we remark, that if σ is one of the endomorphism in Proposition 1, then
the constant term of χσ is 2 (see [8]). �
Proof (Theorem 1). For k = 1, 2 the result is trivial, so we may assume that
k ≥ 3. Put r = 	k/2
 and consider the set of vectors

n = (ν0, . . . , νk−r−2, 0, νk−r, . . . , νk−1) ∈ Mk.

Clearly, n can be written as n = (u, 0,v) with u ∈ Mk−r−1, v ∈ Mr.
Let L be the linear complexity of the sequence x (Pσ,m) and N be the

number of distinct points Pσ,v, v ∈ Mr. By Proposition 1, we have N ≥
#Mr/maxQ Nr(Q) ≥ #Mr/max{1,#Mr−�log2 ��+3} � min{#Mr, �}. If N ≤
L, then the theorem holds, otherwise there are vectors d0, . . . ,dL ∈ Mr, such
that the points Pσ,d0 , . . . , Pσ,dL

are all distinct. Fix these vectors and for each
j = 0, . . . , L define the sequence

xj(s) = x
(
Pσ,(s,0,dj)

)
, s ∈ Mk−r−1,

where again the elements xj(s) arranged in a sequence by ordering the vectors
s lexicographically. The sequences xj(s) are subsequences of x (Pσ,m), thus they
satisfy the same linear recurrence relation of order L. Then these sequences are
in a vector space of dimension at most L so they are linearly dependent, i.e.
there are constants c0, . . . , cL ∈ Fq, not all of them are zero, such that

c0x
(
Pσ,(s,0,d0)

)
+ · · · + cLx

(
Pσ,(s,0,dL)

)
= 0, s ∈ Mk−r−1,

i.e.,

c0x
(
Pσ,s + σk−r (Pσ,d0)

)
+ · · · + cLx

(
Pσ,s + σk−r (Pσ,dL

)
)

= 0, s ∈ Mk−r−1.

By Lemma 1 the points σk−r (Pσ,d0) , . . . , σk−r (Pσ,dL
) are pairwise distinct so

the function

F (Q) = c0x
(
Q + σk−r (Pσ,d0)

)
+ · · · + cLx

(
Q + σk−r (Pσ,dL

)
)

has L + 1 poles and the points Pσ,s, s ∈ Mk−r−1 are all zeros of it.
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Since there are at least

#Mk−r−1/max
Q

Nk−r−1(Q) ≥ #Mk−r−1/max{1,#Mk−r−1−�log2 ��+3}
� min{#Mr, �}

distinct points among them, we get the result comparing the number of poles
and zeros of F . �

3 Distribution

In this section we first prove a bound on a character sum. This bound immedi-
ately implies results about pseudorandomness of the points Pσ,m.

Theorem 2. Let P ∈ E(Fq) be of prime order � and χ be a non-trivial additive
character of Fq. Then for any k ≥ 1 and s ≥ 2 we have that

Sσ,k,s(χ) � #Mk s
(
q1/4ν�−1/2ν + 2−k/2νq(ν+1)/4ν2

)

holds with any fixed integer

ν >
log q

min{2k, 2(log � − 3)}
if σ is one of the endomorphisms in Proposition 1.

The proof of the theorem is based on the following character sum estimate
[1]. Let Fq(E) be the function field of the curve E. If f ∈ Fq(E) and χ is an
additive character, write χ(f(Q)) = 0 whenever Q is a pole of f .

Lemma 2. Let E be an elliptic curve defined over Fq. Let f ∈ Fq(E) and sup-
pose that f �= zp − z for all z ∈ Fq(E). Let χ be a non-trivial additive character
of Fq. Then the bound

∣∣∣∣∣∣

∑

Q∈E(Fq)

χ (f(Q))

∣∣∣∣∣∣
≤ 2 deg fq1/2

holds.

Proof (Theorem 2). Let us fix some positive integer r < min{k, log � − 3}.
For j = 0, 1 we define Uj to be the subset of vectors u = (u0, . . . , ur−1) ∈ Mr

with ur−1 = ±j. To form a vector in Mk, a vector from U0 can be appended by
any vector from V0 = Mk−r, while a vector from U1 requires the following digit
to be zero. Hence, we put

V1 = {(0,w) : w ∈ Mk−r−1}.
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We have

∑

m∈M∗
k

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(m)

)
)

= Rσ,0 + Rσ,1,

where

Rσ,j =
∑

u∈Uj

∑

v∈Vj

(u,v)∈M∗
k

χ

(
s−1∑

i=0

aix
(
Pσ,τ i((u,v))

)
)

=
∑

u∈U∗
j

∑

v∈Vj

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(u) + σr (Pσ,v)

)
)

+ O (s · #Vj) ,

where the asterisks indicates that we exclude the last s − 1 elements on Uj .
For j = 0 we have by the Hölder inequality that

⎛

⎝
∑

v∈V0

∣∣∣∣∣∣

∑

u∈U∗
0

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(u) + σr (Pσ,v)

)
)∣∣∣∣∣∣

⎞

⎠
2ν

≤ #V2ν−1
0

∑

v∈V0

∣∣∣∣∣∣

∑

u∈U∗
0

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(u) + σr (Pσ,v)

)
)∣∣∣∣∣∣

2ν

. (4)

Now #V0 = #Mk−r = O(2k−r). Then by Proposition 1 and Lemma 1 we have
that every point Q is represented by σr(Pσ,v) (v ∈ V0) in at most O(2k−r�−1+1)
times. So (4) is

� 2(k−r)(2ν−1)(2k−r�−1 + 1)
∑

Q∈E(Fp)

∣∣∣∣∣∣

∑

u∈U∗
0

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(u) + Q

)
)∣∣∣∣∣∣

2ν

.

As for every complex number z we have |z|2 = zz and for any u ∈ Fq we
have χ(u) = χ(−u), we get

∑

Q∈E(Fp)

∣∣∣∣∣∣

∑

u∈U∗
0

χ

(
s−1∑

i=0

aix
(
Pσ,τ i(u) + Q

)
)∣∣∣∣∣∣

2ν

=
∑

u1,...,u2ν∈U∗
0

∑

Q∈E(Fp)

χ

(
ν∑

h=1

s−1∑

i=0

ai

(
x

(
Pσ,τ i(uh) + Q

) − x
(
Pσ,τ i(uh+ν) + Q

))
)

.

(5)

If all the values of u1, . . . ,u2ν occur more than once in (u1, . . . ,u2ν), we
estimate the sum trivially by #E(Fq) � q. It happens at most (ν ·#U∗

0 )ν times.
If there is at least one unique value in (u1, . . . ,u2ν), we show that the function
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F (Q) =
ν∑

h=1

s−1∑

i=0

ai

(
x

(
Pσ,τ i(uh) + Q

) − x
(
Pσ,τ i(uh+ν) + Q

))

cannot have the form zp − z with z ∈ Fq(E).
Let u be the least value in (u1, . . . ,u2ν) with respect to the lexicographic

ordering, such that
∑

1≤h≤ν
uh=u

x (Pσ,uh
+ Q) �=

∑

ν+1≤h≤2ν
uh=u

x (Pσ,uh
+ Q) . (6)

Since there is at least one unique value in (u1, . . . ,u2ν), there exists such a u.
Since 2r < �/8, we get from Proposition 1, that Pσ,u′ �= Pσ,u′′ for any u′ �= u′′,

u′,u′′ ∈ U∗
0 ⊂ Mr. Let <l denote the lexicographic ordering in Mr. As τ i(u) <l

τ j(u′) if i < j or u′ �= u is a vector satisfying (6), we have Pσ,τ i(u) �= Pσ,τj(u′)
with the same conditions on i, j and u,u′. Thus if i is the least index such that
ai �= 0, then the term x

(
Pσ,τ i(u) + Q

)
does not vanish in F by the choice of u,

and −Pσ,τ i(u) is not a pole of any other term of F , thus F cannot have the form
zp − z. Then from Lemma 2 we get that (5) is

∑

u1,...,u2ν∈U∗
0

∑

Q∈E(Fq)

χ (F (Q)) � #U2ν
0 sq1/2 + #Uν

0 q.

Since #U0 ≤ #Mr = O(2r), we have that

R2ν
σ,0 � 2(k−r)(2ν−1)(2k−r�−1 + 1)(22rνsq1/2 + 2rνq) + s2ν2(k−r)2ν .

Using the same argument one can also obtain

R2ν
σ,1 � 2(k−r−1)(2ν−1)(2k−r−1�−1 + 1)(22rνsq1/2 + 2rνq) + s2ν2(k−r−1)2ν .

Thus

|Sσ,k,s(χ)|2ν � 2(k−r)(2ν−1)(2k−r�−1 + 1)(22rνsq1/2 + 2rνq) + s2ν2(k−r)2ν .

Choosing

r =
⌊

log q

2ν

⌋
< k

we get that the terms 22rνq1/2 and 2rνq are O(q3/2). Hence

|Sσ,k,s(χ)|2ν � s2(k−r)2ν�−1q3/2 + 2(k−r)(2ν−1)q3/2 + s2ν2(k−r)2ν

� s22νk+log q/2�−1 + 22νk−k+(ν+1) log q/2ν + s2ν22νk−log q

which proves the result. �
The most interesting case is when the E(Fq) has a cyclic group structure

with prime order �. Then by the Hasse-Weil theorem, we have that � = q1+o(1).
If k = (1 + o(1)) log q, then choosing ν = 2, Theorem 2 implies

Sσ,k,s(χ) � #Mk sq−1/16.
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As an application of Theorem 2, we get results about pseudorandomness of
the vectors (3).

Let β1, . . . , βn be a fixed basis of Fpn over Fp. For a fixed subset J ⊂
{1, . . . , n}, and fixed elements ci,j ∈ Fq, i ∈ {0, 1, . . . , s − 1}, j ∈ I, put

N
(
J, (ci,j)

)
= #

{
m ∈ Mk : x

(
Pσ,τ i(m)

)
j

= ci,j , i ∈ {0, 1 . . . , s − 1}, j ∈ J
}

.

Using the standard techniques (see e.g. [8]) to express the deviation of
N

(
J, (ci,j)

)
from its expected value Mk/p#J·s by character sums we get from

Theorem 2.

Corollary 1. Let p be a prime number and let P ∈ E(Fpn) be of prime order �.
Then for any integers k, s ≥ 1 the bound

max
J,(ci,j)

∣∣∣∣N
(
J, (ci,j)

) − #Mk

p#J·s

∣∣∣∣ � #Mk s
(
q1/4ν�−1/2ν + 2−k/2νq(ν+1)/4ν2

)

holds with any fixed integer

ν >
log q

min{2k, 2(log � − 3)} ,

where σ is one of the following endomorphisms:

– δ for an arbitrary curve E,
– ϕ for a Koblitz curve E = Ea, a = 0, 1.

If again � = q1+o(1) and k = 	log q
, then choosing ν = 2, Corollary 1 implies
that for any α < 1/16 the components of (3) on any #J ≤ αn positions are
uniformity distributed.

If the point P is Fp-rational, then the sequence x(Pσ,m) is a sequence in a
prime field Fp. In this case we can study the discrepancy of this sequence. More
precisely, let Dψ,k,s be the discrepancy of the vectors

(
x (Pψ,m)

p
,
x

(
Pψ,τ(m)

)

p
, . . . ,

x
(
Pψ,τs−1(m)

)

p

)
, m ∈ Mk, (7)

in the s-dimensional unite cube. That is

Dψ,k,s = sup
I⊂[0,1)s

∣∣∣∣
T (I)
#Mk

− |I|
∣∣∣∣ ,

where T (I) is the number of points (7) which hit the s-dimensional interval
I = [α1, β1) × · · · × [αs, βs) of size |I| = (β1α1) · · · (βs − αs).

Using the Erdős-Turán inequality, see [3,6], relating the discrepancy and
exponential sums we immediately derive:



62 L. Mérai

Corollary 2. Let p be a prime number and let P ∈ E(Fp) be of prime order �.
Then for any integers k, s ≥ 1 the bound

Dψ,k,s � #Mk s
(
q1/4ν�−1/2ν + 2−k/2νq(ν+1)/4ν2

)

holds with any fixed integer

ν >
log q

min{2k, 2(log � − 3)} .

where σ is one of the following endomorphisms:

– δ for an arbitrary curve E,
– ψ for the GLV curve E = EGLV.
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Linear Complexity and Expansion Complexity
of Some Number Theoretic Sequences

Richard Hofer(B) and Arne Winterhof

Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria
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Abstract. We study the predictability of some number theoretic
sequences over finite fields and thus their suitability in cryptography.
First we analyze the non-periodic binary sequence T = (tn)n≥0 with
tn = 1 whenever n is the sum of three integer squares. We show that it
has a large Nth linear complexity, which is necessary but not sufficient
for unpredictability. However, it also has a very small expansion com-
plexity and thus is rather predictable.

Next we prove that some linear combinations of p-periodic sequences
of binomial coefficients modulo a prime p have a very small expansion
complexity and are predictable despite of a high linear complexity.

Finally, we consider the Legendre sequence and verify that it does not
belong to this class of predictable sequences.

Keywords: Expansion complexity · Linear complexity · Generating
function · Three-square theorem · Automatic sequence · Linear recur-
rence sequence · Binomial coefficients · Legendre sequence

1 Introduction

The expansion complexity for sequences over finite fields Fq was introduced by
Diem in [7]. For a sequence S = (sn)n≥0 over Fq the generating function G(x)
of S is

G(x) =
∞∑

n=0

snxn.

For a positive integer N , the N th expansion complexity EN (S) of S is defined
by EN (S) = 0 if sn = 0 for 0 ≤ n ≤ N − 1 and otherwise as the least total
degree of a nonzero polynomial h(x, y) ∈ Fq[x, y] with

h(x,G(x)) ≡ 0 mod xN .

By a famous result of Christol [5,6] the expansion complexity

E(S) = sup
N≥1

EN (S)

c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 67–74, 2016.
DOI: 10.1007/978-3-319-55227-9 5
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is finite, that is G(x) is algebraic, if and only if S can be generated by a finite
automaton and S is called automatic. For more details on automatic sequences
we refer to the monograph of Allouche and Shallit [1].

The N th linear complexity LN (S) of S over Fq is defined by LN (S) = 0 if
sn = 0 for 0 ≤ n ≤ N − 1, LN (S) = N if sn = 0 �= sN−1 for 0 ≤ n ≤ N − 2 and
otherwise as the length of a shortest linear recurrence

sn+LN (S) +
LN (S)−1∑

�=0

c�sn+� = 0, 0 ≤ n ≤ N − LN (S) − 1,

for some c� ∈ Fq, which is satisfied by the first N terms of the sequence.
The linear complexity L(S) is

L(S) = sup
N≥1

LN (S).

It is well-known, see for example [9, Chap. 8], that L(S) is finite if and only
if S is ultimately periodic, that is, S is a linear recurring sequence. See also the
surveys about linear complexity and related measures [10,13–15].

Expansion complexity and linear complexity are both measures for the unpre-
dictability of a sequence.

First we study the non-periodic automatic sequence T = (tn)n≥0 over F2

defined by

tn =
{
1 if n = u2 + v2 + w2 for some integers u, v, w,
0 otherwise.

By the Three-Square Theorem this is equivalent to

tn =

⎧
⎨

⎩

0 if there exist non-negative integers a, k
such that n = 4a(8k + 7),

1 otherwise.
(1)

We show in Sect. 2 that
E(T ) ≤ 12 (2)

and
LN (T ) ≥ (N − 7)/4 for N ≥ 1. (3)

Note that lower bounds on the Nth linear complexity of many other
automatic sequences including the Thue-Morse sequence, the Rudin-Shapiro
sequence, and the regular paper-folding sequence were obtained in [11]. Roughly
speaking, for the class of non-periodic automatic sequences the linear complex-
ity is a much weaker measure for the unpredictability of a sequence than the
expansion complexity.

Next we study periodic sequences. Mérai, Niederreiter and the second author
[12] recently proved that

EN (S) ≤ E(S) = L(S) + 1, N ≥ 1,
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for any purely periodic sequence S over Fq. We will provide examples of p-
periodic sequences over Fp with large linear complexity but small Ep(S). More
precisely, for the sequences Au,v = (an)n≥0 of the form

an =
v∑

k=u

λk

(
n + k

k

)
mod p, n ≥ 0, (4)

with λuλv �= 0, λk ∈ Fp and 0 ≤ u < v ≤ p − 1 we prove in Sect. 3

Ep(Au,v) ≤ min
{
(u + 1)

{
p

v + 1

}
+ (v − u)

p

v + 1
, v + 2

}
=: B(Au,v), (5)

where {x} = x − �x� is the fractional part of x. On the one hand the bound can
be very small if v is large with respect to p and v −u is small. For the case u = v
see [12]. On the other hand we have L(Au,v) = v + 1 by [3, Theorem 8]. Hence,
there are many p-periodic sequences over Fp of large linear complexity but small
pth expansion complexity and we have the following hierarchy of complexity
measures for p-periodic sequences

Ep(Au,v) ≤ B(Au,v) ≤ L(Au,v) + 1 = v + 2,

where B is defined in (5).
Note that any p-periodic sequence can be written in the form (4). More

precisely, any p-periodic sequence S = (sn)n≥0 over Fp can be defined by sn =
f(n), n ≥ 0, with a unique polynomial f(x) over Fp of degree at most p − 1.
Now the polynomials

fk(x) = (k!)−1(x + k)(x + k − 1) · · · (x + 1) =
(

x + k

k

)
, k = 0, . . . , p − 1,

of degree k are a basis of the linear space of polynomials over Fp of degree at

most p − 1. Hence, the sequences
((

n+k
k

))

n≥0
, k = 0, . . . , p − 1, are a basis of

the linear space of p-periodic sequences over Fp and any p-periodic sequence is
a linear combination of these basis sequences.

Further, we consider the Legendre sequence L = (�n)n≥0 over Fp of period p
defined by

�n =
{
1 if n is a quadratic residue mod p,
0 otherwise,

or equivalently

�n =
np−1 + n

p−1
2

2
mod p.

The Legendre sequence has many desirable features of pseudorandomness,
see for example [8,14]. Unfortunately, a lower bound on Ep(L) seems to be out
of reach. However, we prove

B(L) = p + O
(
p

1
4

√
e
+ε

)
for any ε > 0 (6)

in Sect. 4.
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2 The Characteristic Sequence of the Set of Sums
of Three Squares

In this section we prove (2) and (3) for the sequence T over F2 defined by (1).
The generating function G(x) of T is given by

G(x) =
∞∑

n=0

tnxn =
∞∑

n=0

xn +
∞∑

a=0

∞∑

k=0

x4a(8k+7)

=
1

x + 1
+

∞∑

a=0

(
x7

∞∑

k=0

x8k

)4a

=
1

x + 1
+

∞∑

a=0

(
x7

(x + 1)8

)4a

.

It holds

G(x) + G(x)4 =
1

x + 1
+

1
(x + 1)4

+
x7

(x + 1)8

and therefore we get the equation

(x + 1)8(G(x) + G(x)4) + x6 + x5 + x3 + x2 + x = 0. (7)

Thus we have found a nonzero polynomial h(x, y) ∈ F2[x, y], namely h(x, y) =
(x + 1)8(y + y4) + x6 + x5 + x3 + x2 + x such that h(x,G(x)) = 0. Hence,
E(T ) ≤ deg(h) = 12.

Assume G(x) is a rational function, that is

G(x) =
f(x)
g(x)

, f, g ∈ F2[x], g �= 0,

with gcd(f, g) = 1. Then from (7) we get

(x + 1)8(fg3 + f4) + (x6 + x5 + x3 + x2 + x)g4 = 0.

Hence (x + 1)8 | g4, that is (x + 1)2 | g. Also g3 | (x + 1)8 since gcd(f, g) = 1.
This is only possible if g(x) = x2+1. Now (x2+1)G(x) = f(x) implies tn+2 = tn
for n ≥ deg(f). However, if n ≡ 7 mod 8 and thus n + 2 ≡ 1 mod 8, we have
1 = tn+2 �= tn = 0. Consequently, G(x) is not rational. Moreover, the four zeros
of h(x, y) are obviously y = G(x) + α with α ∈ F4 and none of them is rational.

Put LN = LN (T ) and let

LN∑

�=0

c�tn+� = 0, 0 ≤ n ≤ N − LN − 1, cLN
= 1,

be a shortest linear recurrence satisfied by the first N elements of T . Then
with

g(x) =
LN∑

�=0

cLN−�x
�
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we get

g(x)G(x) ≡ f(x) mod xN

for some polynomial f(x) of degree at most LN − 1. Then

(x + 1)8(fg3 + f4) + (x6 + x5 + x3 + x2 + x)g4 = K(x)xN

with K(x) �= 0 since h(x, y) has no rational zero. Comparing the degrees of both
sides gives 4LN + 7 ≥ N , that is LN ≥ (N − 7)/4.

3 Expansion Complexity of p-periodic Sequences over Fp

In this section we prove the bound (5) on Ep(Au,v). Note that any p-periodic
sequence can be uniquely written as some Au,v.

Lemma 1. The generating function of the sequence Au,v = (an)n≥0 defined by
(4) is

G(x) =
v∑

k=u

λk

(1 − x)k+1
.

Proof. For u = v = k and λk = 1 we have (cf. proof of [12, Lemma 2])

(1 − x)pG(x) = (1 − xp)G(x) =
p−1∑

n=0

anxn =
p−1−k∑

n=0

(
n + k

k

)
xn

=
p−1−k∑

n=0

(
p − 1 − k

n

)
(−x)n = (1 − x)p−1−k

since
(

p − 1 − k

n

)
(−1)n ≡

n∏

j=1

k + j

j
≡

(
n + k

n

)
≡

(
n + k

k

)
mod p.

The generating function of Au,v is the linear combination of the generating
functions of Ak,k with k = u, . . . , v. 	


Theorem 1. The p-th expansion complexity of Au,v = (an)n≥0, u < v, of the
form (4) can be bounded by

min
{⌈

p

v + 2

⌉
, v + 2

}
≤ Ep(Au,v)

≤ min
{
(u + 1)

{
p

v + 1

}
+ (v − u)

p

v + 1
, v + 2

}
.
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Proof. The bound

min
{⌈

p

v + 2

⌉
, v + 2

}
≤ Ep(Au,v) ≤ v + 2

follows from [12, Theorem 1] and [3, Theorem 8].
By Lemma 1 we have

G(x) =
v∑

k=u

λk

(1 − x)k+1
=

1
(1 − x)v+1

v∑

k=u

λk(1 − x)v−k.

Put

d =
⌊

p

v + 1

⌋

and take

h(x, y) = yd −
(

v∑

k=u

λk(1 − x)v−k

)d

(1 − x)p−d(v+1).

Then

h(x,G(x)) =

(
v∑

k=u

λk(1 − x)v−k

)d

−
(

v∑
k=u

λk(1 − x)v−k

)d

(1 − x)p

(1 − x)d(v+1)

=

(
v∑

k=u

λk(1 − x)v−k

)d

xp

(1 − x)d(v+1)
≡ 0 mod xp

since gcd(x, (1 − x)) = 1. Hence

Ep(Au,v) ≤ deg(h) = max{d, d(v − u) + p − d(v + 1)}
= max{d, p − d(u + 1)} = p − d(u + 1)

and the result follows.

4 The Legendre Sequence

In this section we prove (6).
Assume L = Au,v. Then we need v = p − 1.
If p ≡ 1 mod 4, then p − 1 is a quadratic residue mod p, thus �p−1 = 1, and

hence we must have u = 0 since otherwise �p−1 = ap−1 = 0.
If p ≡ 3 mod 4, then p − 1 is not a quadratic residue mod p and also p −

u, . . . , p − 1 must be quadratic non-residues mod p since �n = an = 0 for n =
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p − u, . . . , p − 1. This simply means that 1, . . . , u are quadratic residues mod p
since the product of two quadratic non-residues is a quadratic residue. Thus

u = O
(
p

1
4

√
e
+ε

)
for any ε > 0,

by the Burgess bound [4, Theorem 2]. Assuming the Extended Riemann Hypoth-
esis we get the better result u = O((log p)2) by Ankeny’s theorem [2].

Hence, the Legendre sequence does not belong to the class of sequences for
which the bound (5) is small.

5 Final Remarks and Open Problems

– Find lower bounds on EN (L) for the Legendre sequence both considered over
Fp and over F2.

– Find lower bounds on EN for other interesting sequences of high linear com-
plexity profile such as inversive pseudorandom number generators or Sidel-
nikov sequences, see [10,14,15].

– Find classes of t-periodic sequences S over Fpr with gcd(t, p) = 1 and Et(S)
of smaller order of magnitude than L(S).

– A relation between Nth expansion complexity and Nth linear complexity is
stated in [12, Theorem 3].

Acknowledgements. The authors are partially supported by the Austrian Science
Fund FWF Project 5511-N26 which is part of the Special Research Program “Quasi-
Monte Carlo Methods: Theory and Applications”.
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Abstract. Let S be a set of monic degree 2 polynomials over a finite field
and let C be the compositional semigroup generated by S. In this paper
we establish a necessary and sufficient condition for C to be consisting
entirely of irreducible polynomials. The condition we deduce depends on
the finite data encoded in a certain graph uniquely determined by the
generating set S. Using this machinery we are able both to show exam-
ples of semigroups of irreducible polynomials generated by two degree 2
polynomials and to give some non-existence results for some of these sets
in infinitely many prime fields satisfying certain arithmetic conditions.

Keywords: Finite fields · Irreducible polynomials · Semigroups ·
Graphs

1 Introduction

Since irreducible polynomials play a fundamental role in applications and in the
whole theory of finite fields (see for example [2,4,13–16]), related questions have a
long history (see for example [3,8,9,11,12,17,18]). In this paper we specialize on
irreducibility questions regarding compositional semigroups of polynomials. This
kind of question has been addressed in the specific case of semigroups generated
by a single quadratic polynomial, see for example in [1,2,10–12,15], for analogous
results related to additive polynomials, see [5,6]. It is worth mentioning that one
of these results [12, Lemma 2.5] has been recently used in [7] by the first and the
second author of the present paper to prove [3, Conjecture 1.2].

Throughout the paper, q will be an odd prime power, Fq[x] the univariate
polynomial ring over the finite field Fq and Irr(Fq[x]) the set of irreducible poly-
nomials in Fq[x]. Let us give an example which motivates this paper. For a
prime q congruent to 1 modulo 4, we can fix in Fq[x] two quadratic polynomials

c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 77–83, 2016.
DOI: 10.1007/978-3-319-55227-9 6
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f = (x − a)2 + a and g = (x − a − 1)2 + a such that both a and a + 1 are
non-squares in Fq. One can experimentally check that any possible composition
of a sequence of f ’s and g’s is irreducible (for a concrete example, take q = 13,
(x − 5)2 + 5 and g = (x − 6)2 + 5). Let us denote the set of such compositions
by C. A couple of observations are now necessary:

– In principle, it is unclear whether a finite number of irreducibility checks will
ensure that C is a subset of Irr(Fq[x]).

– The fact that C ⊆ Irr(Fq[x]) is indeed pretty unlikely to happen by chance,
as the density of degree 2n monic irreducible polynomials over Fq is roughly
1/2n. Thus, if C satisfies this property, one reasonably expects that there must
be an algebraic reason for that.

We address these issues by giving a necessary and sufficient condition for the
semigroup C ⊂ Fq[x] to be contained in Irr(Fq[x]). In addition, this condition is
algebraic and can be checked by performing only a finite amount of computation
over Fq, answering both points above.

In Sect. 2 we describe the criterion (Theorem 2.4 and Corollary 2.5) and pro-
vide a non-trivial example (Example 2.7) of a compositional semigroup in Fq[x]
contained in Irr(Fq[x]) and generated by two polynomials.

In Sect. 3 we show the non-existence of such C whenever q is a prime con-
gruent to 3 modulo 4 and the generating polynomials are of a certain form
(Proposition 3.2). Example 3.3 shows that these conditions are indeed sharp.

2 A General Criterion

In order to state our main result, we first need the following definition, which
describes how to build a finite graph encoding only the useful (to our purposes)
information contained in the generating set of the semigroup.

Definition 2.1. Let q be an odd prime power, Fq the finite field of order q and
S a subset of Fq[x]. We denote by GS the directed multigraph defined as follows:

– the set of nodes of GS is Fq;
– for any node a ∈ Fq and any polynomial f ∈ S, there is a directed edge

a → f(a). We label that edge with f .

Before stating the next definition, we recall that for any monic polynomial f
of degree 2 there exists a unique pair (af , bf ) ∈ F

2
q such that f = (x− af )2 − bf .

Definition 2.2. Let S be a subset of Fq[x] consisting of monic polynomials of
degree 2. We call the set DS = {−bf | f ∈ S} ⊆ Fq, the S-distinguished set
of Fq.

The following result is just an inductive extension of the classical Capelli’s
Lemma.
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Lemma 2.3 (Recursive Capelli’s Lemma). Let K be a field and f1, . . . , f�

be a set of irreducible polynomials in K[X]. The polynomial f1(f2(· · · (f�) · · · ))
is irreducible if and only if the following conditions are satisfied:

• f1 is irreducible over K[X],
• f2 − α1 is irreducible over K(α1)[X] for a root α1 of f1,
• f3 − α2 is irreducible over K(α1, α2)[X] for a root α2 of f2 − α1,

· · ·
• f�−α�−1 is irreducible over K(α1, . . . , α�−1)[X] for a root α�−1 of f�−1−α�−2.

Proof. Given Capelli’s Lemma [12, Lemma 2.4], the proof is straightforward by
induction. ��
We are now ready to state and prove the main theorem.

Theorem 2.4. Let S be a set of generators for a compositional semigroup C ⊆
Fq[x]. Suppose that S consists of polynomials of degree 2. Then we have that
C ⊆ Irr(Fq[x]) if and only if no element of −DS = {bf | f ∈ S} ⊆ Fq is a square
and in GS there is no path of positive length from a node of DS to a square
of Fq.

Proof. It is clear that C contains a reducible polynomial of degree 2 if and only
if one element of −DS is a square. Thus we can assume that S consists only of
irreducible polynomials.

We now show that in GS there is a path of positive length from a node of DS
to a square if and only if C contains a reducible polynomial of degree greater or
equal than 4.

First, suppose that the composition f1f2 · · · f�+1 is a reducible polynomial
of minimal degree, with fi ∈ S and fi = (x − ai)2 − bi, for i ∈ {1, . . . , � + 1}
and � ≥ 1. Whenever β is not a square in Fq, we denote by

√
β a root of the

polynomial T 2 −β in the algebraic closure of Fq. By Capelli’s Lemma applied to
the composition of f1 · · · f� and by the minimality of the degree of f1f2 · · · f�+1,
we have that the following elements are not squares in their field of definition:

β0 = b1 ∈ Fq

β1 = b2 + a1 +
√

β0 ∈ Fq2

β2 = b3 + a2 +
√

β1 ∈ Fq22

. . .

β�−1 = b� + a�−1 +
√

β�−2 ∈ F
q2�−1 .

(1)

To see this, note that f1 has the root α1 = a1 +
√

β0, so f2 −α1 = (x−a2)2 −β1

is irreducible if and only if β1 is nonsquare; and so on. On the other hand,
β� = b�+1 +a� +

√
β�−1 ∈ Fq2� is necessarily a square. For j < i, let us denote by

N j
i : Fq2i → Fq2j the usual norm map. We claim that the Fq-norm N0

� : Fq2� → Fq

maps β� to f1(· · · f�(−b�+1) · · · ), and this defines a path in GS from −b� to a
square. This can be easily seen by first decomposing N1

� :

N1
� = N1

2 ◦ N2
3 ◦ . . . N �−1

� (2)
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and then by directly computing N1
2 ◦ N2

3 ◦ . . . N �−1
� (β�). It is important indeed

that β0, β1, . . . , β�−1 are not squares, as the computation above only gives the

desired result when (
√

βi)q2i

= −√
βi.

Conversely, suppose that in GS there is a path to a square s. Choose such a
path of minimal length, starting at some −bf in the distinguished set, for some
f ∈ S. Consider now the composition associated to this path: if

s = f1f2 · · · f�(−bf ), (3)

set f�+1 = f and let g = f1f2 · · · f�+1 ∈ Fq[x]. One can construct the βi’s as
before, i.e. β0 = b1 and for i ∈ {1, . . . , �}, βi = bi+1+ai+

√
βi−1. We can suppose

that the βi’s for i < � are all non-squares as otherwise, by taking the smallest d
such that βd is square, we find a composition f1f2 · · · fd+1 that is reducible by
Recursive Capelli’s Lemma, and then we are done.

As all the βi’s, for i < �, can be supposed to be non-squares, we have as
above that N0

� (β�) = f1f2 · · · f�(−b�+1) = s, which we have assumed to be a
square. Now, recall that an element of a finite field is a square if and only if its
norm is a square: this shows that g is reducible by Recursive Capelli’s Lemma.

��
The reader should observe that this theorem generalizes [12, Proposition 2.3],

as the condition given by our graph is the same as the stability condition in
[12, Proposition 2.3] whenever the semigroup we are considering has only one
generator. It is useful to mention the following corollary, which is immediate.

Corollary 2.5. Let S be a set of irreducible degree two polynomials and C
defined as in Theorem2.4. Then C ⊆ Irr(Fq[x]) if and only if there is no path of
positive length from a node of DS to a square of Fq.

Proof. It is enough to observe that whenever S ⊆ Irr(Fq[x]) then −DS consists
of non-squares. ��
Remark 2.6. Given that C is generated by degree 2 polynomials, it is easy to
observe that the datum of S is equivalent to the datum of C.

The following example shows a way to find examples of semigroups contained in
Irr(Fq[x]) when q ≡ 1 mod 4.

Example 2.7. Let q ≡ 1 mod 4 be a prime power, and let a ∈ Fq such that both
a and b = a + 1 are non-squares. Define f = (x − a)2 + a and g = (x − b)2 + a.
In this situation, we have DS = {a}, and by assumption, −a, a and b are all
non-squares. Since f(a) = g(b) = a and f(b) = g(a) = b, all paths in GS starting
from a end in a non-square, and the conditions of Theorem2.4 are satisfied.
Figure 1 shows the relevant part of the graph GS . The reader should observe
that this is indeed the example mentioned in the introduction.

a b
g

g
f f

Fig. 1. The nodes of GS reachable from DS .
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3 The Case p ≡ 3 mod 4

Whenever q = p is a prime congruent to 3 modulo 4, we have the following
non-existence results for polynomials without a linear term.

Proposition 3.1. Let p ≡ −1 mod 8 be a prime, and let f = x2 − b be a
polynomial in Fp[x]. Let C be the semigroup generated by f . Then C contains a
reducible polynomial.

Proof. Assume for contradiction that C ⊂ Irr(Fp[x]). First note that if b is a
square, then f is reducible, so we can assume that b is not a square, and thus
−b is a square. Consider the set of iterates T = {f(−b), f2(−b), . . .} ⊆ Fp. By
Corollary 2.5, C contains only irreducible polynomials if and only if T contains
only nonsquares. So assume that this condition holds. Since T is finite, there
exist k < m ∈ N>0 such that fm(−b) = fk(−b). Choose k to be minimal. Now
there are two cases: if k > 1, then there exist two distinct elements u, v ∈ T
such that u2 − b = v2 − b. Thus, u = −v, which implies that one between u
and v is a square, a contradiction. If on the other hand k = 1, then we have
fm(−b) = f(−b) = b2−b, and so fm−1(−b) is either −b or b. It can’t be −b, since
that is a square, so we must have fm−1(−b) = b ∈ T . Setting u = fm−2(−b),
we get that u2 − b = b and so u2 = 2b, which is a contradiction because 2 is a
square in Fp and consequently 2b is not. ��
Proposition 3.2. Let p ≡ 3 mod 4 be a prime. Let f = x2 − bf and g = x2 − bg

be polynomials in Fp[x] with bf , bg distinct non-squares. Let S = {f, g} and let
C be the semigroup generated by S. Then C contains a reducible polynomial.

Proof. Let GS be the graph attached to S as in Definition 2.1. Let G′
S be the

induced subgraph consisting of all nodes of GS that are reachable by some path
of positive length starting from −bf or −bg. That is, the edges of G′

S are just
the edges of GS starting and ending at a node in G′

S . From now on, when we
speak of nodes and edges, we will always be referring to nodes and edges in G′

S .
We call an edge from u to v an f-edge if it comes from the relation f(u) = v,
while we call it a g-edge if it comes from g(u) = v. Since bf and bg are assumed
nonsquare, we have by Corollary 2.5 that C contains a reducible polynomial if
and only if at least one of the nodes of G′

S is a square. In the following, we
assume for contradiction that G′

S consists only of non-squares.
Let us observe the following: suppose that there exists a node v of G′

S which is
the target of two f -edges. By definition, this means that there exist two distinct
nodes u, u′ ∈ G′

S such that u2 − bf = u′2 − bf = v. This implies that u′ = −u,
and thus one between u and u′ is a square, since −1 is not a square in Fp. This
contradicts our assumption. By symmetry, the same applies to g-edges.

By the argument above, we see that every node is the target of at most
one f -edge and one g-edge, and by counting edges that it is indeed exactly one
of each.
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Now, consider the sum
∑

v∈G′
S

(f(v) − g(v)). (4)

On one hand, each node u ∈ G′
S appears exactly once as f(v) and once as g(v′)

for some v, v′ ∈ G′
S , so the sum is zero. On the other hand, it clearly holds that

f(v) − g(v) = bg − bf for all v. Letting n be the number of nodes in G′
S , we get

the equation
0 = n(bg − bf ) in Fp. (5)

Since bf �= bg by hypothesis, we must have p | n. This is impossible however,
since G′

S is not empty and consists only of nonsquares, so 1 ≤ n ≤ p−1
2 . ��

The fact that the polynomials of Proposition 3.2 don’t have a linear term is of
crucial importance. Let us see why by giving an explicit example of a semigroup
of irreducible polynomials in Fp[x] for which Proposition 3.2 does not apply (but
p ≡ 3 mod 4).

Example 3.3. Let us fix p = 7 and

f = (x − 1)2 − 5 = x2 + 5x + 3 ∈ F7[x]

g = (x − 4)2 − 5 = x2 + 6x + 4 ∈ F7[x].
(6)

The set S = {f, g} has distinguished set DS = {−5} and graph as in Fig. 2.
Since 5 is not a square, and we only look at paths of positive length, the final

claim follows by checking that 3 and −1 are not squares modulo 7.

−53

−1

f

g

f

g

f

g

Fig. 2. The nodes of GS reachable from −5.
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Abstract. We give a new proof of the Brawley-Carlitz theorem on irre-
ducibility of the composed products of irreducible polynomials. Our proof
shows that associativity of the binary operation for the composed prod-
uct is not necessary. We then investigate binary operations defined by
polynomial functions, and give a sufficient condition in terms of degrees
for the requirement in the Brawley-Carlitz theorem.

Keywords: Finite field · Composed product · Irreducible polynomial

1 Introduction

For a prime power q, we denote by Fq a finite field with q elements. If m and n
are relatively prime positive integers, then the composite field of Fqm and Fqn is
Fqmn . In fact, if Fqm = Fq(α) and Fqn = Fq(β), then Fqmn = Fq(α+β) = Fq(αβ).
In other words, both α + β and αβ have minimal polynomial of degree mn
over Fq. Brawley and Carlitz generalized this fact by introducing the method of
composed products in order to construct irreducible polynomials of large degree
from polynomials of lower degree. A basic material of their construction is a
binary operation on a subset of Fq having certain properties, where Fq is the
algebraic closure of Fq. Let G be a non-empty subset of Fq, which is invariant
under the Frobenius map α �→ αq. A binary operation � : G × G → G is called
a diamond product on G if

σ(α � β) = σ(α) � σ(β) (1)

holds for all α, β ∈ G. Let MG[q, x] denote the set of all monic polynomials f
in Fq[x] such that deg f ≥ 1, and all of the roots of f lie in G. Let f(x) =∏m

i=1(x − αi) and g(x) =
∏n

i=1(x − βi) be in polynomials in MG[q, x], where
α1, . . . , αm, β1, . . . , βn ∈ G. We define the composed product f � g as

(f � g)(x) =
m∏

i=1

n∏

j=1

(x − αi � βj).
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Theorem 1 ([1, Theorem 2]). Let � be a diamond product on a non-empty sub-
set G of Fq. Suppose that (G, �) is a group and let f, g be polynomials in MG[q, x]
with deg f = m and deg g = n. Then the composed product f � g is irreducible if
and only if f and g are both irreducible with gcd(m,n) = 1.

The purpose of this paper is to give a new proof of Theorem1 with weaker
hypotheses. In order to explain the weakened hypothesis, we need a definition.
For a positive integer m, let

Fm(q) = {α ∈ Fqm | Fq(α) = Fqm}.

Clearly,
Fkl(q) ⊂ Fl(qk) (2)

for positive integers k, l.

Definition 2. Let � be a diamond product on a subset G ⊂ Fq containing
Fm(q) ∪ Fn(q). We say that � satisfies weak cancellation on Fm(q) × Fn(q), if

α � β = α � β′ =⇒ β = β′, (3)
α � β = α′ � β =⇒ α = α′ (4)

for all α, α′ ∈ Fm(q) and β, β′ ∈ Fn(q).

We will show in Sect. 2 that the conclusion of Theorem 1 holds if � satisfies
weak cancellation on Fm(q)×Fn(q). In other words, associativity of the product �
is unnecessary. In Sect. 3, we consider a diamond product defined by a polynomial
function, and show that such a diamond product satisfies weak cancellation if
the degree is small (see Theorem 9 for details). In Sect. 4, the optimality of the
degree bound for weak cancellation is investigated. This leads us to a conjecture
on the existence of irreducible polynomials all of whose coefficients except the
constant term belong to the prime field.

2 The Brawley-Carlitz Theorem

Throughout this paper, we let q be a prime power, and σ : Fq → Fq denote the
Frobenius map α �→ αq. For positive integers k and r, we denote by ordk(r) the
multiplicative order of r modulo k. For a nonzero α ∈ Fq, we denote by |α| the
multiplicative order of α. Then (see, for example, [3, Corollary 2.15]), we have,
for m > 1,

Fm(q) = {α ∈ Fqm | α, σ(α), . . . , σm−1(α) : pairwise distinct}
= {α ∈ Fqm | {l ∈ Z | σl(α) = α} = mZ}
= {α ∈ Fqm | α 
= 0, ord|α|(q) = m}.

Our proof of the Brawley-Carlitz theorem relies on the following lemma in group
theory.
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Lemma 3. Let Γ be a finite group of order mn having subgroups M and N of
order m and n, respectively. Assume Γ = M × N and (m,n) = 1. If K is a
subgroup of Γ , then K = (K ∩ M)(K ∩ N).

Proof. Since (m,n) = 1, there exist integers r, s such that rm + sn = 1. Let
z ∈ K. Since Γ = M × N , there exist x ∈ M and y ∈ N such that z = xy. Then
z = zsnzrm with zsn = xsn ∈ K ∩ M , zrm = yrm ∈ K ∩ N . Since z ∈ K was
arbitrary, we conclude K ⊂ (K ∩ M)(K ∩ N). Since the reverse containment is
obvious, we obtain the desired result.

Theorem 4. Suppose G is a non-empty subset of Fq. Let � be a diamond prod-
uct on G satisfying (3) and (4). Let f, g ∈ MG[q, x], deg f = m and deg g = n.
Then the following are equivalent:

(i) f � g is irreducible in Fq[x],
(ii) f and g are irreducible in Fq[x], and gcd(m,n) = 1.

Proof. (i) =⇒ (ii). Since (f � g)(x) is irreducible, clearly f(x) and g(x) are
irreducible. Let α and β be roots of f(x) and g(x), respectively. Then α � β
is a root of (f � g)(x) which is an irreducible polynomial of degree mn. This
implies ord|α�β|(q) = mn. Let � be the least common multiple of m and n. Then
σ�(α�β) = σ�(α)�σ�(β) = α�β. Thus ord|α�β|(q) divides �, and hence, � = mn.
This implies gcd(m,n) = 1.

(ii) =⇒ (i) Let α ∈ Fm(q) and β ∈ Fn(q) be roots of f and g, respectively.
The Frobenius automorphism σ generates the group F = 〈σ〉 of order mn acting
on Fqmn . Moreover, setting

M = 〈σn〉 = {h ∈ F | h(β) = β}, (5)
N = 〈σm〉 = {h ∈ F | h(α) = α}, (6)

we have |M | = m and |N | = n, so F = M × N . Let

K = {h ∈ F | h(α � β) = α � β}.

Then
|F · (α � β)| = |F : K|. (7)

We claim K ∩ M = K ∩ N = 1. Indeed, if h ∈ K ∩ M , then

α � β = h(α � β)
= h(α) � h(β) (by (1))
= h(α) � β,

so α = h(α) by (4). This implies h ∈ N . Since h ∈ M and M ∩ N = 1, we
conclude h = 1. This proves K ∩ M = 1. Similarly, we can prove K ∩ N = 1
using (3).

Now, by Lemma 3, we obtain K = 1. This implies |F · (α � β)| = |F | by (7).
Therefore, the degree of the minimal polynomial of α � β over Fq is |F | = mn.
Since deg(f � g) = mn and (f � g)(α � β) = 0, we conclude that f � g is the
minimal polynomial of α � β over Fq, and hence irreducible in Fq[x].
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3 Diamond Products Defined by Polynomial Functions

Stichtenoth [5] classified associative diamond products defined by a polynomial
function, under a certain condition. As we have seen in the previous section,
associativity is irrelevant for the Brawley-Carlitz theorem. This prompts us to
classify diamond products satisfying weak cancellation instead. In this section,
we consider diamond products defined by a polynomial function, and give a
sufficient condition in terms of degrees in order that the associated diamond
product satisfies weak cancellation. It turns out that, in general, a wider class
of polynomials than those classified in [5] can be used as a diamond product.

Let m be a positive integer, and let ψ : Fm(q) → Fm(q) be a function. We
say that ψ satisfies the restricted injectivity on Fm(q) if, for all α ∈ Fm(q) and
k ∈ Z,

ψ(α) = ψ(σk(α)) =⇒ α = σk(α). (8)

If ψ : Fm(q) → Fq is a function taking values in Fqm such that ψ commutes with
σ, then ψ(σk(α)) = σk(ψ(α)). Thus, (8) is equivalent to

ψ(α) ∈ Fm(q). (9)

In particular, this equivalence holds when ψ is a polynomial function with coef-
ficients in Fq.

Lemma 5. Let ψ(x) ∈ Fq[x] be a polynomial with deg ψ ≥ 1. Then for α ∈ Fq,

deg ψ ≥ [Fq(α) : Fq(ψ(α))].

Proof. Let ψ0(x) = ψ(x)−ψ(α) ∈ Fq(ψ(α))[x]. Then ψ0(α) = 0, so ψ0 is divisible
by the minimal polynomial of α over Fq(ψ(α)). This implies

[Fq(α) : Fq(ψ(α))] ≤ deg ψ0

= deg ψ.

Lemma 6. Let m > 1 be an integer, and let m1 be the smallest prime divisor
of m. If ψ(x) ∈ Fq[x] is a monic polynomial with 0 < deg ψ < m1, then the
function defined by ψ satisfies the restricted injectivity on Fm(q).

Proof. For α ∈ Fm(q), we have

m1 > deg ψ

≥ [Fq(α) : Fq(ψ(α))] (by Lemma 5)
= [Fqm : Fq(ψ(α))].

Since [Fqm : Fq(ψ(α))] is a divisor of m and m1 is the smallest prime divisor
of m, we conclude that [Fqm : Fq(ψ(α))] = 1, that is, Fq(ψ(α)) = Fqm . This
implies (9).



88 A. Munemasa and H. Nakamura

Lemma 7. Let m1 be the smallest prime divisor of a positive integer m > 1,
and let k be an integer not divisible by m. Then for α ∈ Fm(q), α − σk(α), α2 −
σk(α2), . . . , αm1−1 − σk(αm1−1) are linearly independent over Fq.

Proof. Suppose α − σk(α), α2 − σk(α2), . . . , αm1−1 − σk(αm1−1) are linearly
dependent. Then there exist a1, . . . , am1−1 ∈ Fq, (a1, . . . , am1−1) 
= (0, . . . , 0),
and

m1−1∑

i=1

ai(αi − σk(αi)) = 0.

Let

a0 =
m1−1∑

i=1

aiα
i ∈ Fqm ,

f(x) =
m1−1∑

i=1

aix
i − a0 ∈ Fq(a0)[x].

Then σk(a0) = a0, so f ∈ Fqgcd(k,m) [x]. Since f(α) = 0, f is divisible by the
minimal polynomial of α over Fqgcd(k,m) . This implies

m1 > deg f

≥ [Fqgcd(k,m)(α) : Fqgcd(k,m) ]

= [Fqm : Fqgcd(k,m) ]

=
m

gcd(k,m)
.

Since m1 is the smallest prime divisor of m, we obtain gcd(k,m) = m, that is,
m | k. This is a contradiction.

Lemma 8. If m and n are relatively prime positive integers, then Fn(q) ⊂
Fn(qm). In particular, if α ∈ Fm(q), β ∈ Fn(q), k ∈ Z and

ϕ(x, y) =
n−1∑

i=0

ψi(x)yi ∈ Fq[x, y]

satisfy ϕ(σk(α), β) = ϕ(α, β), then ψi(σk(α)) = ψi(α) for 0 ≤ i ≤ n − 1.

Proof. The first part is immediate from [3, Corollary 3.47]. Since ϕ(σk(α), β) =
ϕ(α, β), we have

n−1∑

i=0

(ψi(σk(α)) − ψi(α))βi = 0.

Since β ∈ Fn(q) ⊂ Fn(qm) and ψi(σk(α)) − ψi(α) ∈ Fqm , linear independence
of 1, β, . . . , βn−1 over Fqm shows ψi(σk(α)) = ψi(α) for 0 ≤ i ≤ n − 1.
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Theorem 9. Let q be a prime power, and let m,n > 1 be relatively prime posi-
tive integers. Suppose m1 is the smallest prime divisor of m, n1 is the smallest
prime divisor of n. Let ϕ(x, y) ∈ Fq[x, y] be a polynomial with 0 < degx ϕ < m1

and 0 < degy ϕ < n1. Then the diamond product on Fq defined by ϕ satisfies
weak cancellation on Fm(q) × Fn(q).

Proof. We need to show

ϕ(α, β) = ϕ(σk(α), β) =⇒ α = σk(α), (10)

ϕ(α, β) = ϕ(α, σk(β)) =⇒ β = σk(β). (11)

It suffices to show only (10), as the proof of (11) is similar. Suppose α ∈ Fm(q),
β ∈ Fn(q), k ∈ Z. Let

ϕ(x, y) =
n1−1∑

i=0

ψi(x)yi, (12)

ψi(x) =
m1−1∑

j=0

aijx
j (0 ≤ i ≤ n1 − 1). (13)

If ϕ(α, β) = ϕ(σk(α), β), then, by Lemma 8, ψi(α) − ψi(σk(α)) = 0 for 0 ≤ i ≤
n1 − 1. This implies

m1−1∑

j=1

aij(αj − σk(αj)) = 0 (0 ≤ i ≤ n1 − 1).

If α 
= σk(α), then k is not divisible by m. Then by Lemma 7, we obtain aij = 0
for 0 ≤ i ≤ n1−1 and 1 ≤ j ≤ m1−1. This implies degx ϕ = 0, which contradicts
the assumption. Therefore, α = σk(α).

4 Irreducible Polynomials All of Whose Coefficients
Except the Constant Term Belong to the Prime Field

In this section, we show that the hypotheses degx ϕ < m1 and degy ϕ < n1 in
Theorem 9 are necessary. We believe that these upper bounds cannot be relaxed
for any prime power q and relatively prime positive integers m and n. This
leads to a conjecture on the existence of irreducible polynomials all of whose
coefficients except the constant term belong to the prime field.

Proposition 10. Let m and n be relatively prime integers with m,n > 1. Let
m1 and n1 be the smallest prime divisor of m and n, respectively. Then the
following are equivalent:

(i) there exists a polynomial ϕ(x, y) ∈ Fq[x, y] with degx ϕ = m1, 0 < degy ϕ <

n1, such that σk(α) 
= α and ϕ(σk(α), β) = ϕ(α, β) for some α ∈ Fm(q)
and β ∈ Fn(q),
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(ii) there exists a polynomial ψ(x) ∈ Fq[x] with deg ψ = m1 which fails to satisfy
the restricted injectivity on Fm(q),

(iii) Fm/m1(q) ∩ {αm1 +
∑m1−1

i=1 ciα
i | α ∈ Fm(q), c1, . . . , cm1−1 ∈ Fq} 
= ∅,

(iv) there exists a monic irreducible polynomial f(x) ∈ Fqm/m1 [x] of degree m1

such that f(x) − f(0) ∈ Fq[x] and f(0) ∈ Fm/m1(q).

Proof. (i) =⇒ (ii). Let ϕ(x, y) be as in (12), where ψi(x) ∈ Fq[x] for 0 ≤ i ≤
n1 − 1. Then by Lemma 8, ψi(σk(α)) = ψi(α) for 0 ≤ i ≤ n1 − 1. By the
assumption, there exists i ∈ {0, 1, . . . , n1 − 1} such that deg ψi = m1, and this
ψi fails to satisfy the restricted injectivity on Fm(q).

(ii) =⇒ (iii). We may assume without loss of generality that ψ is monic.
Replacing ψ(x) by ψ(x) − ψ(0), we may further assume that ψ(0) = 0. By
the assumption, there exists α ∈ Fm(q) and k ∈ Z such that σk(α) 
= α and
ψ(σk(α)) = ψ(α). Since ψ(x) ∈ Fq[x], the latter implies σk(ψ(α)) = ψ(α). Thus
ψ(α) ∈ Fqgcd(k,m) . Since σk(α) 
= α, k is not a multiple of m. This implies that
Fqgcd(k,m) is a proper subfield of Fqm . Therefore, there exists a divisor d > 1 of
m such that ψ(α) ∈ Fqm/d . By Lemma 5, we have

m1 ≥ [Fq(α) : Fq(ψ(α))]
≥ [Fqm : Fqm/d ]

= d.

Since m1 is the smallest prime divisor of m, we obtain m1 = d. This forces
Fq(ψ(α)) = Fqm/m1 , and hence ψ(α) ∈ Fm/m1(q).

(iii) =⇒ (iv). Suppose α ∈ Fm(q), c1, . . . , cm1−1 ∈ Fq, and

c0 = αm1 +
m1−1∑

i=1

ciα
i ∈ Fm/m1(q).

Define

f(x) = xm1 +
m1−1∑

i=1

cix
i − c0 ∈ Fqm/m1 [x].

Then f(x) − f(0) ∈ Fq[x] and f(0) = −c0 ∈ Fm/m1(q). We claim f(x) is irre-
ducible in Fqm/m1 [x]. Indeed, since f(α) = 0, f(x) is divisible by the min-
imal polynomial of α over Fqm/m1 . On the other hand, since Fqm/m1 (α) ⊃
Fq(α) = Fqm , the minimal polynomial of α over Fqm/m1 has degree at least
[Fqm : Fqm/m1 ] = m1 = deg f . Therefore, f(x) is the minimal polynomial of α
over Fqm/m1 , and hence is irreducible Fqm/m1 [x].

(iv) =⇒ (i). Define

k =
m

m1
,

ϕ(x, y) = (f(x) − f(0))y ∈ Fq[x, y].
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Then, degx ϕ = m1, degy ϕ = 1. Let α be a root of f(x). Since f(0) = −(f(α) −
f(0)) ∈ Fq(α), we have Fq(α) = Fq(f(0), α) = Fqm/m1 (α) = Fqm . Thus α ∈
Fm(q). Moreover, for an arbitrary β ∈ Fn(q), we have

ϕ(σk(α), β) = σk(f(α) − f(0))β

= −σk(f(0))β
= −f(0)β
= (f(α) − f(0))β
= ϕ(α, β).

Proposition 10 shows that hypotheses 0 < degx ϕ < m1 and 0 < degy ϕ <
n1 in Theorem 9 are best possible, provided that any of the four equivalent
conditions are satisfied. We conjecture that this is always the case.

Conjecture 1. Let q be a prime power, and let k, l be positive integers. Then
there exists a monic irreducible polynomial f(x) ∈ Fqk [x] of degree l such that
f(x) − f(0) ∈ Fq[x] and f(0) ∈ Fk(q).

Note that Conjecture 1 is slightly stronger than Proposition 10(iv) in the sense
that l is not necessarily the smallest prime divisor of kl.

Conjecture 2. Let p be a prime, and let k, l be positive integers. Then there
exists a monic irreducible polynomial f(x) ∈ Fpk [x] of degree l such that f(x) −
f(0) ∈ Fp[x] and f(0) ∈ Fk(p).

Clearly, validity of Conjecture 1 for all prime power q implies that of Con-
jecture 2. Conversely, suppose that Conjecture 2 is true. Let q = pr, where p is a
prime. Then there exists a monic irreducible polynomial f(x) ∈ Fprk [x] of degree
l such that f(x)−f(0) ∈ Fp[x] and f(0) ∈ Frk(p). In particular, f(x) is a monic
irreducible polynomial in Fqk [x] of degree l such that f(x) − f(0) ∈ Fq[x] and
f(0) ∈ Fk(q) by (2). Therefore, the two conjectures are equivalent.

The existence problem of a monic irreducible polynomial of two prescribed
coefficients dates back to Carlitz [2]. See [4, Part II, Sect. 3.5] for more recent
work. Conjecture 2 is a similar but different problem, in the sense that all coef-
ficients except the constant term are required to be in the prime field.

Conjecture 2 is trivially true for l = 1 or k = 1. Moreover, it is true for the
following special cases:

Proposition 11. Conjecture 2 is true if l = p.

Proof. It is known (see for example [2]) that there exists a ∈ Fk(p) such that
TrF

pk
(a) = 1. Then, by [3, Corollary 3.79], xl − x − a is irreducible in Fpk [x].

Proposition 12. Let l be a positive integer each of whose prime factor divides
pk−1. Assume further that, pk ≡ 1 (mod 4) if l ≡ 0 (mod 4). Then Conjecture 2
is true.
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Proof. Let a be a primitive element of Fpk . Then xl − a is irreducible in Fpk [x]
by [3, Theorem 3.75].

By Propositions 11 and 12, Conjecture 2 is true for l = 2, or l = 3 and k even.
We have verified Conjecture 2 for pkl ≤ 1020 by computer.
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Abstract. An arc is a set of points of the (k−1)-dimensional projective
space over the finite field with q elements Fq, in which every k-subset
spans the space. In this article, we firstly review Glynn’s construction of
large arcs which are contained in the intersection of quadrics. Then, for
q odd, we construct a series of matrices Fn, where n is a non-negative
integer and n � |G| − k − 1, which depend on a small arc G. We prove
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is a quadric ψv containing S \ G. This theorem is then used to deduce
conditions for the existence of quadrics containing all the vectors of S.
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1 Introduction

Let PGk−1(Fq) denote the (k − 1)-dimensional projective space over Fq, the
finite field with q elements. For any homogeneous polynomials f1, . . . , fr in k
variables, let V (f1, . . . , fr) denote the points of PGk−1(Fq) which are zeros of
all the polynomials f1, . . . , fr.

An arc of PGk−1(Fq) is a set S of points of PGk−1(Fq) with the property that
every k-subset spans PGk−1(Fq). The set of columns of a generator matrix of
a k-dimensional linear maximum distance separable (MDS) code over Fq (when
viewed as points in the corresponding projective space) is an arc of PGk−1(Fq)
and vice-versa, so arcs and linear MDS codes are equivalent objects.

In [3], the author recently detailed a possible method to construct large arcs
from small arcs. An alternative method to construct large arcs from small arcs as
the intersection of the quadrics containing the small arc, was proposed by Glynn
in [7]. In this note we firstly review Glynn’s construction, then try and prove
some kind of converse of Glynn’s construction. We will construct a matrix from a
small arc and show that for each vector of weight three in the column space of the
matrix, there is a quadric containing the large arc to which the small arc extends.
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The largest known arcs are of size q + 1, unless k � q + 1, in which case the
largest arcs have size k + 1, or k = 3 or q − 1 and q is even, in which case they
have size q + 2. Moreover, if k � 3 or k � q − 1 then it is a simple matter to
prove that there are no arcs larger than these largest known arcs.

The MDS conjecture, proposed as a question by Segre [9], is the following.

Conjecture 1.1. If 4 � k � q − 2 then an arc of PGk−1(Fq) has size at most
q + 1.

The MDS conjecture was proven for q prime in [1]. For q non-prime and k �
2p − 2, where p is the prime for which q is a p-th power, the MDS conjecture
was proven in [2]. As a consequence of these results and Tables 3.1, 3.2, 3.3, 3.4
and 3.7 from [8], we have that the MDS conjecture is true for all q � 27 and for
all k � 7, with the possible exceptions of (k, q) = (6, 81) and (k, q) = (7, 81).

For q odd and k � q, the largest known arcs have size q + 1.
The normal rational curve,

S = {(1, t, . . . , tk−1) | t ∈ Fq} ∪ {(0, . . . , 0, 1)}
is an arc of size q + 1 in PGk−1(Fq), for all k � q.

Observe that S is contained the intersection of quadrics V (φij), where

φij(x) = xixj − xi+1xj−1,

and 1 � i � j−2 and 3 � j � k. These quadratic forms span a
(
k−1
2

)
-dimensional

subspace of the vector space P2, whose non-zero elements are the homogeneous
polynomials of degree two.

The Glynn arc [6],

S = {(1, t, t2 + ηt6, t3, t4) | t ∈ Fq} ∪ {(0, . . . , 0, 1)}
is an arc of size 10 in PG4(F9), where η is fixed and satisfies η4 = −1.

As observed in [7], S is contained the intersection of quadrics,

ηx2
2 + x2

4 − x3x5,
x3x4 − ηx1x2 − x2x5,
x2x4 − x1x5,
x2x3 − x1x4 − ηx4x5,
x2
2 + ηx2

4 − x1x3.

These quadrics span a 5-dimensional subspace of the vector space P2.

2 Glynn’s Construction of Arcs as Intersection
of Quadrics

Recall that P2 denotes the vector space whose non-zero elements are the homoge-
neous polynomials in k variables of degree 2. The space P2 is a

(
k+1
2

)
-dimensional

vector space over Fq and a typical element of P2 is

ψ(x) = a1x
2
1 + · · · + akx2

k +
∑

i,j

bijxixj ,

where the sum runs over i and j such that 1 � i < j � k.
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For any subspace U of P2, we denote by V (U) the set of points of PGk−1(Fq)
which are zeros of ψ, for all ψ ∈ U .

As we have seen in the introduction, the normal rational curve is contained
(in fact equal to) V (U) for some

(
k−1
2

)
-dimensional subspace U in which every

polynomial is irreducible. The following theorem is Theorem 3.1 from [6] and is
a partial converse of this. Glynn goes on to conjecture that not only is V (U) an
arc, under the hypothesis, but is in fact a normal rational curve.

Theorem 2.1. Let U be a
(
k−1
2

)
-dimensional subspace of P2. If every polyno-

mial in U is irreducible and V (U) spans PGk−1(Fq) then V (U) is an arc of
PGk−1(Fq).

Proof. Suppose that V (U) is not an arc. Then there is a point u of V (U) which
is dependent on r � k − 1 points of V (U), say e1, . . . , er. Since V (U) spans the
space, there are points er+1, . . . , ek of V (U) such that e1, . . . , ek span PGk−1(Fq).
With respect to a suitable basis we can assume that ei are the unit vectors, for
i = 1, . . . , k and u = (u1, . . . , uk−1, 0), where uiuj �= 0 for some i �= j.

Let π be the hyperplane of PGk−1(Fq) spanned by e1, . . . , ek−1. The vector
space of quadrics restricted to the hyperplane π has dimension

(
k
2

)
and the

subspace of this vector space of the quadrics which contains e1, . . . , ek−1 and
u has dimension

(
k
2

) − k = 1
2k(k − 3). Since U has dimension 1

2k(k − 3) + 1
there must be two quadrics ψ1 and ψ2 in U whose restriction to π is the same.
Therefore, ψ1 − ψ2 factorises into two linear forms, one of whose kernels is π, a
contradiction. ��
Given an arc G of PGk−1(Fq), we define

QS(G) = {ψ ∈ P2 | ψ(x) = 0, for all x ∈ G},

a subspace of P2.
The following theorem is Theorem 3.2(i) from [7].

Theorem 2.2. If G is an arc of PGk−1(Fq) of size 2k − 1 then V (QS(G)) is
arc of PGk−1(Fq) containing G.

Proof. With respect to a suitable basis we can assume that G contains the unit
vectors e1, . . . , ek and the points (1, y�2, . . . , y�k) for � = 1, . . . , k − 1. Quadrics
in the subspace QS(G) are of the form

ψ(x) =
∑

i,j

bijxixj ,

where

(y�2, . . . , y�k, y�2y�3, . . . , y�,k−2y�,k−1) · (b12, . . . , b1k, b23, . . . , bk−1,k) = 0.

for all � = 1, . . . , k − 2. Here, · denotes the standard inner product of vectors.
Since G is an arc, this system of equations has rank k−2 and so the dimension of
QS(G) is

(
k+1
2

) − (2k − 1) =
(
k−1
2

)
. Since G ⊆ V (QS(G)), the points V (QS(G))

span PGk−1(Fq), so Theorem 2.1 applies. ��
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The following theorem is Theorem 3.2(ii) from [7].

Theorem 2.3. If G is an arc of PGk−1(Fq) of size at most 2k − 2 then G does
not extend to a larger arc within V (QS(G)).

Proof. As in the proof of Theorem 2.2, each point of G imposes a condition
on the quadrics in QS(G). Hence, the dimension of QS(G) is

(
k+1
2

) − |G|. Any
point of V (QS(G)) \ G which extends G to a larger arc would impose a further
condition on QS(G), thus implying that its dimension is smaller than it is. ��
Observe that if we take a larger arc G, of size 2k or 2k + 1 say, then QS(G)
will, in general, get smaller and then V (QS(G)) larger. We will not then have
that V (QS(G)) is necessarily an arc. However, we should be able to find a larger
arc extending G within V (QS(G)). Alternatively, we can take a subspace U of
QS(G). Although Theorem 2.1 will not apply, so we cannot conclude that V (U)
is an arc, it may be that there is a large arc containing G contained in V (U). This
is precisely what happens if we take 9 points G of Glynn arc, as described in the
previous section. The subspace of quadrics QS(G) is a 6-dimensional subspace
and it contains a five dimensional subspace U such that the Glynn arc of size 10
is contained in V (U). Observe that for the subspace U spanned the five quadrics
detailed in the previous section, V (U) also contains the point (0, 0, 1, 0, 0), so is
not an arc itself.

3 Small Arcs Which Extend to Large Arcs

Although Theorem 3.4, Theorem 3.5 and Theorem 3.6 have not explicitly
appeared before, the results in this section are based on the articles [3–5].

Let Vk(Fq) denote the k-dimensional vector space over Fq.
Let det(v1, . . . , vk) denote the determinant of the matrix whose i-th row is

vi, a vector of Vk(Fq). If C = {p1, . . . , pk−1} is an ordered set of k − 1 vectors
then we write

det(u,C) = det(u, p1, . . . , pk−1),

where we evaluate the determinant with respect to a fixed canonical basis.
Throughout this section S will be an arbitrarily ordered arc of size q+k−1−t

of Vk(Fq). In other words, we will consider S as a set of vectors of Vk(Fq), as
opposed to a set of points of PGk−1(Fq).

For each (k − 1)-subset C of S, there is a non-zero element αC ∈ Fq, such
that the following lemma holds, see [4, Lemma 2.2].

Lemma 3.1. Suppose that q is odd. Let E be a subset of S of size k + t−1. For
any subset D of E of size k − 3,

∑
αC

∏

z∈(E∪{x})\C

det(z, C)−1 = 0,

where the sum runs over the subsets C of E of size k − 1 containing D, for all
x ∈ S \ E.
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Let G be an arc of Vk(Fq) and let n � |G| + 1 − k be a non-negative integer.
We define a matrix Fn whose rows are indexed by the (k − 1)-subsets of G. The
columns of Fn are indexed by pairs (D,E), where D is a subset of E of size k−3
and E is a subset of G of size |G| − n. The (C, (D,E)) entry of Fn is

∏

u∈G\E

det(u,C),

if D ⊂ C ⊂ E and zero otherwise.
Let v(x) be the row vector whose coordinates are indexed by the (k − 1)-

subsets C of G and whose C entry is

αC det(x,C)−1
∏

z∈G\C

det(z, C)−1.

Note that all the coordinates in v(x) are non-zero.

Lemma 3.2. If G extends to an arc S of size q+2k+n−|G|−2 then v(x)Fn = 0
for all x ∈ S \ G.

Proof. The (D,E) coordinate in the vector v(x)Fn is
∑

αC det(x,C)−1
∏

z∈G\C

det(z, C)−1
∏

u∈G\E

det(u,C),

where the sum runs over the (k−1)-subsets C with the property that D ⊂ C ⊂ E.
By Lemma 3.1, this sum is zero. ��
Lemma 3.2 allows us to prove various theorems depending on vectors appearing
in the column space of Fn.

Theorem 3.3. If there is a vector w of weight one in the column space of Fn

then G cannot be extended to an arc of size q + 2k + n − |G| − 2.

Proof. Suppose G extends to an arc of size q + 2k + n − |G| − 2. By Lemma 3.2,
v(x) · w = 0, where · denotes the standard inner product of vectors. Since w
has weight one, this equation implies that one of the coordinates of v(x) is zero,
which it is not. ��
Theorem 3.4. If there is a vector w of weight two in the column space of Fn and
|G| < 1

2 (q+k+n−1) then G cannot be extended to an arc of size q+2k+n−|G|−2.

Proof. Suppose G extends to an arc S of size q+2k+n−|G|−2. By Lemma 3.2,
v(x) · w = 0, where · denotes the standard inner product of vectors. Since w has
weight two, there are two (k − 1)-subsets C1 and C2 of G such that

β1 det(x,C1)−1 + β2 det(x,C2)−1 = 0,
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for some β1, β2 ∈ Fq, for all x ∈ S \ G. This implies that all the vectors of S \ G
are in the kernel of the linear form

α(x) = β1 det(x,C2) + β2 det(x,C1).

Note that α is not zero since C1 and C2 do not span the same hyperplane
of Vk(Fq). Since the kernel of a linear form is a hyperplane and a hyperplane
of Vk(Fq) contains at most k − 1 vectors of an arc of Vk(Fq), we have that
|S \ G| � k − 1. Therefore,

q + 2k + n − |G| − 2 − |G| � k − 1,

contradicting the hypothesis on the size of G. ��
Theorem 3.5. Suppose G can be extended to an arc S of size q+2k+n−|G|−2.
For each vector w of weight three in the column space of Fn there is a quadratic
form ψw such that S \ G ⊆ V (ψw).

Proof. By Lemma 3.2, v(x) · w = 0, where · denotes the standard inner product
of vectors. Since w has weight three, there are three (k − 1)-subsets C1, C2 and
C3 of G such that

β1 det(x,C1)−1 + β2 det(x,C2)−1 + β3 det(x,C3)−1 = 0,

for some β1, β2, β3 ∈ Fq, for all x ∈ S \ G.
This implies that

S \ G ⊆ V (ψw),

where

ψw(x) = β1 det(x, C2) det(x, C3) + β2 det(x, C1) det(x, C3) + β3 det(x, C1) det(x, C2).

��
Theorem 3.6. Let S be an arc of Vk(Fq) of size q + k − t − 1 and suppose
that C1, C2, C3 are (k − 1)-subsets of S with the property that no element of
C1 ∪ C2 ∪ C3 is in exactly one of the Ci, for some i = 1, 2, 3. Suppose that there
is a 2-subset T of S such that for each x ∈ S \ (T ∪ C1 ∪ C2 ∪ C3), there is a
subset G of S \ (T ∪ {x}) with the property that there is a vector with support
{C1, C2, C3} in the column space of Fn(G), where n = |G| − k − t + 1. Then

S ⊆ V (ψ),

for some quadratic form

ψ(x)=β1 det(x,C2) det(x,C3)+β2 det(x,C1) det(x,C3)+β3 det(x,C1) det(x,C2),

where β1, β2, β3 are non-zero elements of Fq.
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Proof. For each x ∈ S \ (T ∪C1 ∪C2 ∪C3), there is, by hypothesis, a subset G of
S \ (T ∪ {x}) such that Theorem 3.5 implies the existence of non-zero elements
β1, β2, β3 of Fq (possibly dependent on G which is dependent on x) such that

T ∪ {x} ⊆ V (ψ),

where

ψ(X) = β1 det(X, C2) det(X, C3)+β2 det(X, C1) det(X, C3)+β3 det(X, C1) det(X, C2).

Since ψ(a) = 0 and ψ(b) = 0 where T = {a, b}, the elements β1, β2, β3 are
determined (up to scalar factor) by T . Therefore, they do not depend on x and
we have that S \ (C1 ∪ C2 ∪ C3) ⊆ V (ψ).

By hypothesis, C1, C2, C3 are (k − 1)-subsets of S with the property that no
element of C1 ∪ C2 ∪ C3 is in exactly one of the Ci, for some i = 1, 2, 3. Hence,
C1 ∪ C2 ∪ C3 ⊆ V (ψ). ��
The following example is essentially what is used to classify arcs of Vk(Fq) of
size q + 1, for k � p and k � 1

2 (q − 1) in [1]. Recall, p is the prime for which q is
a p-th power.

Example 3.7. Let S be an arc of Vk(Fq) of size q + 1, where k � p and k �
1
2 (q − 1). Let K be a subset of S of size k and suppose Ci = K \ {ei}, for
i = 1, 2, 3, for any e1, e2, e3 ∈ K. Then F1(G) contains a vector with support
{C1, C2, C3}, for all (2k−2)-subsets G of S containing K. Since 2k−2 � |S|−3,
we can fix a 2-subset T of S and choose G to be a subset of S \ (T ∪ {x}). Then
Theorem 3.6 implies that

S ⊆ V (ψ),

where, with respect to the basis K of Vk(Fq),

ψ(x) = β1x2x3 + β2x1x3 + β3x1x2,

for some β1, β2, β3, non-zero elements of Fq. As proven in [1], this is sufficient to
prove that S (when viewed as points in the corresponding projective space) is a
normal rational curve.
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Abstract. The Successive Resultants Algorithm (SRA) is a root-finding
algorithm for polynomials over Fpn and was introduced at ANTS in
2014 [19]. The algorithm is efficient when the characteristic p is small and
n > 1. In this paper, we abstract the core SRA algorithm to arbitrary
finite fields and present three instantiations of our general algorithm,
one of which is novel and makes use of a series of isogenies derived from
elliptic curves with sufficiently smooth order.

Keywords: Root finding · Finite fields · Algorithms · Elliptic curves

1 Introduction

The factorization of polynomials over finite fields is an important problem in
computer algebra, both from theoretical and practical points of view [11]. An
important subcase of this problem is the root-finding problem, which given a
polynomial over a finite field, asks for one, several or all roots of this polynomial
over the field. It is well-known that factoring polynomials is deterministically
reducible to root-finding [3], so in this paper we will mostly focus on the root-
finding problem.

1.1 Finding Roots of Polynomials over Finite Fields

From now on in this paper, let Fpn be a finite field of size pn and f a polynomial
of degree d with coefficients in Fpn . As it is often the case in the literature, we
will assume that f is entirely split over Fpn and that it has no repeated roots.
One can reduce the general case to this one by computing gcd(f(x),xqn − x),
for example using a variant of the square and multiply algorithm [10]. We allow
the notation x and f(x) to denote the variable and polynomial in Fpn [x] with
x̂ ∈ Fpn and f(x̂) to represent the evaluation of the polynomial f at x̂.

Since the seminal work of Berlekamp in the seventies [3], the root-finding
problem can be solved in probabilistic polynomial time (in the degree of f and in
n log p). Significant practical and theoretical improvements have been made since
then, with the current best probabilistic algorithm for the general factorization
of a polynomial being due to Kedlaya and Umans [16]. In practice, one will often
c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 105–124, 2016.
DOI: 10.1007/978-3-319-55227-9 9
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use either Berlekamp’s trace algorithm [3] or Cantor-Zassenhaus algorithm [5],
depending on the parameters.

Berlekamp’s trace algorithm in fact provides a polynomial time reduction
from the root-finding problem over Fpn to the root-finding problem over Fp. The
reduction can be made deterministic, leading to a polynomial time deterministic
algorithm for fields of small characteristic.

In contrast, Shoup’s algorithm [23] is still the best unconditional determinis-
tic algorithm over Fp today, with a complexity in Õ(d2

√
p). Designing a deter-

ministic polynomial time algorithm in that setting is an important open prob-
lem, even in the case of degree 2 polynomials. Evdokimov has provided a quasi-
polynomial time algorithm when a quadratic non-residue is provided together
with the field as an input to the algorithm [8]. Under the Generalised Riemann
Hypothesis (GRH), this element can be computed in polynomial time, removing
the need for an extra input. Polynomial time algorithms have also been suggested
under additional assumptions on the polynomial [21], other conjectures [1,9] or
for specific families of primes [2,21,24], still under GRH.

In 2014, Petit introduced a new algorithm in the small characteristic case,
called the Successive Resultants Algorithm [19].

1.2 Our Contributions

In this paper, we introduce a generalisation of the Successive Resultants Algo-
rithm to arbitrary finite fields. Our generalisation covers both the original SRA
algorithm for finite fields Fpn with small characteristic and the generalised Gra-
effe transform approach of Grenet et al. [12] when pn − 1 is smooth. We also
present a third instance using an elliptic curve with smooth order over Fpn ,
leading to a new algorithm of independent interest.

Our initial observation is that the linearized polynomials used in SRA can
be replaced by any set of polynomials, and in fact even rational maps Ki, such
that the image of the composed map Kt ◦Kt−1 ◦ . . . ◦K2 ◦K1 under a restricted
domain is sufficiently small. Similar generalisations were made in different con-
texts in [20].

Like the original SRA, our generalisation reduces the root-finding problem for
large degree polynomials to the same problem for “small” degree polynomials.
The original SRA has two stages, a resultant stage and a gcd stage. We show
how to adapt both stages to the case of arbitrary rational maps, and how to
overcome the technical difficulties introduced by the denominators of the maps.

Recently, De Feo, Petit and Quisquater showed that the Successive Resul-
tants Algorithm and Berlekamp’s celebrated Trace Algorithm (BTA) [3] are in
a certain sense dual of each other [18]. We remark that the generalised Graeffe
transform algorithm mentioned above can similarly be seen as a dual of Shoup’s
algorithm when p−1 is smooth [24], and our new algorithm as a dual of a slight
variant of an algorithm due to Ronyai [21, Sect. 7] (See Table 1).

In the algorithm of Sect. 3.3, we have used Icart’s embeddings [15] to map
Fp elements to the x-coordinates of Fp-rational points of a smooth order elliptic
curve over Fp, where Ronyai’s algorithm would map them to a smooth curve
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Table 1. Special instances of SRA and corresponding “dual” algorithms

p small pn − 1 smooth Elliptic curves

Resultant-based [19] [12] Section 3

GCD-based [3] [24] [21, Sect. 4]

over Fp2 . Our approach has some efficiency advantages and more importantly it
leads to a larger set of suitable parameters in the algorithm.

We remark that all our algorithms can be made deterministic for certain
parameters after some precomputation dependent upon the field and assuming
the Generalised Riemann Hypothesis. These deterministic versions can be seen in
the continuity of [2,21,24], providing polynomial time deterministic algorithms
under GRH for special fields.

Proof of concept code in SageMath [7] for all three instantiations may be
found at https://www.github.com/bip20/SRA.

2 A Generalised Form of the Successive Resultants
Algorithm

The Successive Resultants Algorithm (SRA) is a root finding algorithm which
exploits the properties of an ordered set of rational mappings in order to extract
roots by computing the roots of polynomials of small degree. As explained in
the introduction, we will be considering the problem of finding the roots of a
polynomial f ∈ Fpn [x] whose splitting field is Fpn .

The generation of the rational maps is a key factor in the efficiency and
utility of the SRA algorithm. These maps may be considered as input to the
algorithm and the existence of a useful set of maps currently depends upon the
structure of Fpn . We note that the rational maps are independent of f and may
be performed as precomputation.

Given a polynomial f of degree d and a sequence of rational maps K1, . . . ,Kt

the SRA algorithm involves computing finite sequences of length j ≤ t + 1
obtained by successively transforming the roots of f by application of the rational
maps. In other words, the sequences (x1, . . . ,xj) of length 1 to t + 1 fulfilling{

f(x1) = 0
Ki(xi) = ai(xi)

bi(xi)
= xi+1 for i = 1, . . . , j

(1)

where Ki : Fpn \ Ni → Fpn , Ni := {xi ∈ Fpn : bi(xi) = 0} and ai, bi ∈ Fpn [X]
such that gcd(ai(xi), bi(xi)) is trivial.
We define the composed map

K [j](x1) : Fpn \ N [j] → Fpn (2)

K [j](x1) = Kj ◦ . . . ◦ K0(x1)

https://www.github.com/bip20/SRA
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where N [j] := {x1 ∈ Fpn : ∀ i ∈ {1, . . . , j} Ki ◦ . . .◦K1(x1) /∈ Ni}. For notation
purposes, we take K [0] to be the identity map IdFpn

: Fpn → Fpn and N [0] = ∅.
Ideally, we will want a minimal number of rational maps of small degree with

the property that Image(K [t]) is small. These points will improve the efficiency
of the algorithm, as will become clear later in the paper.

The SRA algorithm consists of two separate stages, the Resultant Stage
and the GCD stage. In the Resultant stage, a series of polynomials
f (1)(x1), . . . , f (t)(xt) are computed with f (i+1)(xi+1) relying on f (i)(xi) and
Ki(xi). The roots of f (i)(xi) lying in Fpn correspond to the existence of a
sequence (x1, . . . ,xj) with the root as the ith value in the sequence. In the GCD
stage, roots of f (i+1)(xi+1) are used to find the roots of f (i)(xi) by computing
roots of polynomials whose degree is constrained by the Ki maps.

Theorem 1. Given the maps Ki : Fpn \ Ni → Fpn for i = 1, . . . , t we have
that each distinct root of f (1)(x1) produces a unique sequence (x1, . . . ,xj) where
j ≤ t + 1, obtained by computing Ki(xi) := xi+1 while xi /∈ Ni.

Proof. This may be seen by successively applying the maps Ki to each root. If
for some j ∈ {1, . . . , t} we have that Kj−1 ◦ . . .◦K0(x1) ∈ Nj , then the sequence
is of length j. Otherwise the sequence is of length t + 1. The sequence is unique
for any distinct root of f (1)(x1) by the fact that the root is the first value in any
sequence. 	


2.1 The Resultant Stage

We will use the basic result that the resultant possesses the property that for
f , g ∈ Fpn [x] we have that Resx(f(x), g(x)) = 0 if and only if the polynomials
f(x) and g(x) share a common factor in Fpn [x]. The resultant of two polyno-
mials f , g ∈ Fpn [x] may be calculated via naively taking the determinant of the
Sylvester matrix of f and g or a more specialised method depending upon the
structure of the Kj maps. We will use the standard result [17, Definition 1.93]
that

Resx(f , g) = lc(f)deg(g)
∏

x:f(x)=0

g(x) (3)

where the roots are taken over the splitting field of f and lc(f) is the leading
coefficient of f .

We will use the resultant on polynomials in two variables xi,xi+1, with
respect to the xi variable to create a series of univariate polynomials,
f (i+1)(xi+1), whose roots correspond to a non-empty subset of roots of f (i)(xi).

In the Resultant stage we clear the denominator of the Ki rational function
representation of the map and successively compute resultants of the result-
ing equation and the previously computed polynomial with respect to the vari-
able xi, defining f (1)(x1) := f(x1) as the first such polynomial. This results
in the generation of an ordered list of polynomials f (1)(x1), . . . , f (t)(xt) via the
procedure



A Generalised Successive Resultants Algorithm 109

{
f (1)(x1) := f(x1)
f (i+1)(xi+1) := Resxi

(f (j)(xi), ai(xi) − bi(xi) · xi+1) for i = 1, . . . , t − 1
(4)

The roots of the resulting sequence of polynomials f (1), . . . , f (t) encode the
potential values any xi may take for the sequences described in Theorem 1.

Theorem 2. The polynomials f (1), . . . , f (t) have the following properties:

(i) If f (1) splits over Fpn then all f (i) split over Fpn .
(ii) The degree of any f (i+1) is less than or equal to the degree of f (i).
(iii) The degree of f (i+1) is strictly less than the degree of f (i) if and only if the

gcd of f (i) and bi is non-trivial.

Proof. We have that by formula (3), that

f (i+1)(xi+1) = Resxi
(f (i)(xi), ai(xi) − bi(xi) · xi+1) (5)

= lc(f (i))deg(ai(xi)−bi(xi)·xi+1)
∏

xi:f(i)(xi)=0

(ai(xi) − bi(xi) · xi+1)

For (i) we note that for any polynomials ai, bi ∈ Fpn [x] and x̂i ∈ Fpn we have
that ai(x̂i), bi(x̂i) ∈ Fpn . For (ii) & (iii) as f (i) splits over Fpn it is clear that
the degree of f (i+1)(xi+1) ≤ d with equality holding if and only if bi(xi) and
f (i)(xi) share no roots in Fpn . 	


We note that in the case of polynomial maps, we have that deg(f (i)) = d as
bi(xi) = 1 and therefore possesses no roots.

Theorem 3. If f (1)(x1) splits over Fpn then the union of all ith values for valid
sequences (x1, . . . ,xj) as produced in Theorem1 is equal to the set of roots of
each f (i)(xi).

Proof. We use induction to prove the result. As f (1) splits over Fpn , we have
that the roots of f (1)(x1) comprise exactly the first values of the sequences as
we have defined f (1)(x1) := f(x1). Assuming that the set of roots of f (i) is equal
to the set of possible xi sequence values, we have that, by the computation of
the resultant and Eq. (5), the roots of f (i+1)(xi+1) are those values such that
f (i)(xi) = 0 and ai(xi) − bi(xi) · xi+1 = 0. If xi ∈ Ni then by the product
equation of the resultant as in (5) we have that if bi(xi) = 0, there is no root of
f (i+1)(xi+1) corresponding to a solution of ai(xi) − bi(xi) · xi+1 = 0. If xi /∈ Ni,
we have that bi(xi) �= 0 and so the root xi+1 satisfies both f (i)(xi) = 0 and
ai(xi)
bi(xi)

= xi+1 and is therefore the corresponding point in a sequence. 	


We note that if some f (i) does not split over Fpn then if xi is a root of an
irreducible factor of f (i) in the splitting field of f (i) we have the potential for
f (i)(xi) = 0 and ai(xi) − bi(xi) · xi+1 = 0 with xi+1 ∈ Fpn . This would lead to
sequences of the form (xi+1, . . . ,xj), but as we assume that f (i) splits over Fpn

we have that all f (i) split over Fpn by Theorem 1.
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Theorem 4. The roots of f (i) lie in the image of K [i−1].

Proof. By the property of the resultant, the roots of f (i)(xi) possess the property
that ai−1(xi−1)

bi−1(xi−1)
= xi. This successively constrains the potential values that the

roots of each f (i)(xi) may take. 	

By Theorem 4, we have that by sensible choice of the Ki maps, we may obtain

a small set which contains our potential xt+1 values. This will be useful in the
GCD stage.

It is clear that as the roots are successively constrained by Theorem 4, the
sequences may be considered as a series of trees of depth j ≤ t + 1 with the x̂j

forming the root nodes and the distinct subsets of the roots of f corresponding to
sequences of length j forming the leaves. The SRA algorithm may be considered
as a means of generating this tree with relation to the Ki rational maps by first
encoding the information concerning the nodes at each level with the Resultant
stage and then computing the root and children nodes with the GCD stage.

2.2 The GCD Stage

In the GCD stage, the f (1), . . . , f (t) polynomials computed by the Resultant
stage to are used to locate the final values of all sequences (x1, . . . ,xj) as created
by the procedure in Theorem1. Once we have the final value, we recursively
determine the sequence by application of the gcd algorithm and by iteratively
computing roots of polynomials, whose degree is bounded by the degree of the
Ki maps. Once we have obtained the first value in all sequences, we naturally
have found the roots of f (1)(x1) = f(x1).

Theorem 5. Given any x̂i+1 ∈ Fpn which forms part of a sequence as computed
by successive application of the Ki maps on the roots of f , we may compute all
ith values of sequences which possess x̂i+1 as the i + 1th value.

Proof. If x̂i+1 ∈ Fpn is such that there exists a sequence (x1, . . . ,xi, x̂i+1, . . . , x̂j)
we have that all values of xi such that Ki(xi) = ai(xi)

bi(xi)
= x̂i+1 are contained in

the roots of f (i)(xi) by Theorem 3. As Resxi
(f (i)(xi), ai(xi) − bi(xi) · x̂i+1) = 0,

we have that

g
(i)
x̂i+1

(xi) := gcd(f (i)(xi), ai(xi) − bi(xi) · x̂i+1) (6)

is non-trivial and as f (i)(xi) is split over Fpn , we have that (6) is a product of
linear factors whose roots are exactly those such that f (i)(xi) = 0 and Ki(xi) =
ai(xi)
bi(xi)

= x̂i+1. We may therefore extract all xi values whose next value in the
sequence is x̂i+1 by finding the roots of a split polynomial of degree bounded by
deg g

(i)
x̂i+1

≤ max{deg ai, deg bi}. 	
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Theorem 6. (i) We may detect that there exists a sequence (x̂1, . . . , x̂j) of
length j < t + 1 and may compute x̂j ∈ Fpn by computing the roots of a
polynomial of degree no larger than deg bj.

(ii) Given Image(K [t]) we may detect that there exists a sequence (x̂1, . . . , x̂t+1)
of length t + 1 and its final value x̂t+1 ∈ Fpn by computing the roots of
|Image(K [t])| polynomials of degree no larger than max{deg at, deg bt}.

Proof. (i) If a sequence is of length j < t + 1, then xj ∈ Nj . If this is the case,
then it is detected by observing that deg f (j+1) < deg f (j) as in Theorem 2. As
xj ∈ Nj , we have that bj(xj) = 0 and f (j)(xj) = 0, so we may compute

g(j)(xj) := gcd(f (j)(xj), bj(xj)) (7)

whose degree is ≤deg bj and whose roots are the final values of all sequences of
length j. For sequences of length t there will be no indication of degree drop and
so we must compute g(t)(xt). For (ii), in the case where a sequence of length
t+1 exists, we have by Theorem 4 that the potential values of xt lie in the roots
of f (t)(xt) and that bt(xt) �= 0. The xt for which Kt(xt) = at(xt)

bt(xt)
= x̂t+1 may

therefore be extracted by computing the roots of

g
(t)
x̂t+1

(xt) := gcd(f (t)(xt), at(xt) − bt(xt) · x̂t+1) (8)

for each x̂t+1 ∈ Image(K [t]). In the case where no such sequence exists for a
chosen x̂i+1 then by Theorem 4 we have that (8) is trivial. 	


Taken together with a sensible choice of mappings to constrain each
|Image(K [i])| for i = 1, . . . , t, Theorems 4, 5 and 6 allow us to find the length
and final value of all sequences. For sequences of length j < t + 1, we may use
Theorem 4, whilst for sequences of length t+1 Theorem 5 constrains the possible
values which xt+1 may take. Ideally, we will wish Image(K [t]) to contain only
one element.

We note that SRA may also be used to explicity extract roots possessing
certain properties. The algorithm may specifically pick out only roots corre-
sponding to sequences of specific length or roots which intersect with K [j]−1

(B)
for B ⊆ Image(K [j]).

Together the Resultant stage and the GCD stage give us the generalised
SRA.

2.3 Generic Complexity Analysis

We allow the notation that h(n) is O(g(n)) if there exists some C ∈ R and N ∈ N

such that for all n ≥ N we have that |h(n)| ≤ C|g(n)|. We also make use of the
notation that h(n) is Õ(g(n)) if h(n) is O(g(n) logc g(n)). Complexity is given
in terms of basic operations in Fp. The cost of these operations is O(log p) for
addition, O((log p)2) for multiplication and inversion with classical arithmetic
or Õ(log p) for addition, multiplication and Õ((log p)2) for exponentiation with
fast FFT-style arithmetic, such as via the Schönhage-Strassen algorithm [10].
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Algorithm 1. The generalised Successive Resultants Algorithm
Data: f ∈ Fpn [x] – the polynomial whose roots we wish to find

a1
b1

, . . . , at
bt

– a set of rational maps
B ⊆ Fpn – a set of points contained in Image(K [t])
ParSeq ∈ {T, F} – whether to extract roots not in K [t]−1

(Fpn)
Result:
The roots of f in K [t]−1

(B) and optionally all roots not in K [t]−1
(Fpn).

begin

f (1)(x1) ←− f(x1)
for i = 1, . . . , t − 1 do

f (i+1)(xi+1) ←− Resultantxi(f
(i)(xi), ai(xi) − bi(xi) · xi+1)

CandidateRoots ←− B
for i = t, . . . , 1 do

TempRoots ←− {}
for y ∈ CandidateRoots do

gy(xi) ←− gcd(f (t)(xi), ai(xi) − bi(xi) · y)
TempRoots ←− TempRoots ∪ Roots(gy(xi))

if PartialSeq and (i < t and deg(f (i+1)) < deg(f (i)) or i == t) then

gb(xi) ←− gcd(f (i)(xi), bi(xi))
TempRoots ←− TempRoots ∪ Roots(gb(xi))

CandidateRoots ←− TempRoots

return CandidateRoots

We write a(n) and m(n) to represent the cost of addition and multiplica-
tion over Fpn . We let A(d), M(d) and G(d) respectively represent the cost of
performing the addition, multiplication and taking the gcd of two polynomials
of degree d in Fpn [x]. We allow R(d) to be the cost of computing the resultant
of two polynomials in Fpn [y][x] with respect to x where the maximum degree of
either polynomials in x is d and the maximum degree of y is 1. We represent the
cost of finding the roots in Fpn of a degree d polynomial to be P(d).

The following table summarises the cost of performing these with regard
to Fpn in terms of basic operations over Fp [10]. We provide a cost for P(d)
in terms of the Berlekamp Trace Algorithm, though other methods including
standard formulae for quadratics, cubics and quartics may be used (Table 2).

Table 2. Cost of operations over Fpn in terms of basic operations over Fp.

a(n) m(n) A(d) M(d) G(d) R(d) P(d)

Classical O(n) O(n2) O(dn) O(d2n2) O(d2n2 log d) O(d3n2 log d) O(d2n3)

Fast O(n) Õ(n) O(dn) Õ(dn) Õ(dn) Õ(d2n)) Õ(dn2)

We assume that we are attempting to find the roots of the polynomial
f ∈ Fpn [x] of degree d such that f possesses d distinct roots, all defined over
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Fpn . Whilst the complexity of the SRA algorithm depends upon the choice of
Ki rational maps, we may assume there are t maps and that these have been
provided by a precomputation. We assume that the maximum degree of any
ai, bi ∈ Fpn [x] is B, that |Image(K [t])| = L and that d ≥ max{B,L}. Comput-
ing purely the linear factors of a polynomial of degree d may be done at a cost
of O(m(n)M(d) log d log(pnd)) operations in Fp [10]. We also assume that the
maps Ki have been precomputed and exclude this cost.

We have that the resultant stage will consist of taking t resultants of bivariate
polynomials where the maximum degree of x is d and the degree of y is always 1.
After noting if deg f (i) < deg f (i+1), we may compute the square-free part by a
cost bounded by O(M(n) log d) - this cost is overwhelmed by the computation
of the first resultant. We therefore have that the resultant stage generically costs
O(td3n2 log d) with classical arithmetic or Õ(td2n) with fast arithmetic.

Each of the t steps in the GCD consists of taking a maximum of d gcds
of maximum degree d resulting in polynomials of degree bounded by B which
require solving. At any stage, at most d

2 of these will be of degree ≥ 2 and
will require solving. This results in a total cost of O(td3n2 log d + tdP(B)) for
classical arithmetic and Õ(td2n + tdP(B)) for fast arithmetic.

We therefore have the generic cost of SRA is O(td3n2 log d + tdP(B)) with
classical arithmetic or Õ(td2n + tdP(B)) with fast arithmetic. As the f (i) are
square-free, we may obtain the linear factors by using equal-degree splitting
for a cost of O(m(n)M(B) log d log(pnB)). This gives us a total complexity
cost of Õ(td3n2 + tBd3n5) for classical arithmetic or Õ(td2n + tBd2n3) with
fast arithmetic. We note that optimized versions of the separate stages may be
constructed by exploiting the structure of the Ki maps for specific instantiations
of SRA [13,19].

3 Instantiations of SRA

In this section we present three instantiations of our generalised SRA algorithm.
We first show how the original SRA algorithm fits into our generalised version.
We then present an algorithm for efficiently determining the roots of a polyno-
mial f ∈ Fp[x] when p − 1 is smooth; this algorithm is equivalent to the one
in [12]. We conclude with a description of a method to transform polynomials
with roots in F

∗
p into a polynomial whose roots correspond to x-coordinates of an

elliptic curve defined over Fp when p = 2 mod 3. This method demonstrates a
procedure with which we can exploit the structure of Fp to generate the required
rational maps. Proof of concept code written in SageMath [7] for all three cases
may be found at https://github.com/bip20/SRA.

3.1 SRA over Fpn with p Small

In this section we show how the original SRA algorithm fits into the framework
of our generalised algorithm. The original SRA algorithm was designed for exten-
sion fields Fpn . It uses n polynomial maps Ki of degree p, hence the algorithm

https://github.com/bip20/SRA
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is only efficient for small characteristic fields. The polynomials Ki are chosen
as follows. For any {v1, . . . , vn} a basis of Fpn over Fp, we define the system of
linearized polynomials{

L0(z) = z

Li(z) =
∏

i∈Fp
Li−1(z − ivi) for i = 1, . . . ,n

(9)

The system

Ki(xi) = xp
i − cixi = xi+1 for i = 1, . . . ,n (10)

may be derived from system (9) by means of the setting xi = Li(z) and the ci

may be precomputed for a cost of O(n4) with classical arithmetic or Õ(n3) with
fast arithmetic.

From system (9) it may be deduced that Image(K [n]) = {0} ⊂ Fpn and we
may call the SRA algorithm as described in Algorithm2 with the precomputed
Ki polynomials and B = {0}. As the maps are polynomials, all sequences will
be of full length, so there is no need to check for partial sequences.

A straight forward application of the SRA algorithm as described in Sect. 2
would lead to a cost of Õ(d3n3 + pd3n6) with classical arithmetic and Õ(d2n2 +
pd2n4) for fast arithmetic. The algorithm possesses several optimizations for
both the Resultant stage and the GCD stage which utilise the structure of the
polynomial maps (10), fast arithmetic, multipoint evaluation and reuse calcula-
tions. This leads to a cost of O(d2n3) with classical arithmetic or Õ(dn2) with
fast arithmetic excluding the precomputation of the ci values [19]. These opti-
mizations have allowed it outperform traditional algorithms such as Berlekamp’s
Trace Algorithm for certain parameters [19].

3.2 SRA Maps for F
∗
p of Smooth Order

In this section we explore the use of SRA in the field Fp where |F∗
p| is smooth. This

algorithm is equivalent to one based on Generalised Graeffe transforms [12,13].

Definition 1. For any integer n we will denote the smoothness function
S : N −→ N by S(n) = max{p : p is a prime factor of n}.
We say that an integer n ∈ N is B-smooth if S(n) ≤ B.

We will assume that f ∈ Fp[x] is of degree d and that f splits over Fp and is
square-free. From Fermat’s little theorem we have that xp−1 − 1 = 0 for x ∈ F

∗
p.

As we have that p−1 = n1 · · · nt we exploit this structure to create the following
system of maps

Ki(xi) = xni
i = xi+1 for i = 1, . . . , t (11)

with K [t](x1) = Kt ◦ · · · ◦ K1(x1) = xn1···nt
1 = xp−1

1 and Image(K [t]) = {0, 1}.
We may therefore use the Ki maps and {0, 1} as input to the SRA algorithm.
As with the original SRA, the maps are polynomials and so all sequences will
be of length t + 1.
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An Optimized Resultant Stage. We may assume that t ≤ log p and that
B = S(p−1). A straightforward adaptation of the algorithm would cost O(Bd3)
with classical arithmetic or Õ(Bd2) with fast arithmetic.

After checking whether 0 is a root of f , we may use an improved method of
computing the resultant which requires the precomputation of a root of unity.
Full details of procedure is described in [13, Sect. 2.5]. This method replaces
taking each resultant and is based upon the result that

f (i+1)(xi+1) : = Resxi
(f (i)(xi),xni

i − xi+1) (12)

f (i+1)(xni
i+1) =

∏
k∈{1,...,ni}

f (i)(ζk
ni

xi+1)

where ζni
is an ni

th root of unity. After computing f (i+1)(xni
i+1) this way and

shifting the coefficients to obtain f (i+1)(xi+1) the total cost of taking each resul-
tant costs O(d log p log B) with fast arithmetic. The optimisation proposed in
[13, Sect. 2.5] results in a total cost for the Resultant stage of Õ(d log2 p log B)
with fast arithmetic.

Complexity Analysis. We assume that we wish to find the roots of a polyno-
mial f ∈ Fp[x] of degree d lying in Fp and that S(p−1) = B. Using the standard
GCD stage and the optimized resultant gives us a complexity of Õ(d2B2 +Bd3)
with classical arithmetic and Õ(d log2 p + d log2 pB) with fast arithmetic and
the improvements from [13]. We note that the algorithm of [13] also utilises an
improved equivalent to the GCD stage and their algorithm is more efficient, with
a total complexity Õ(B

1
2 d log2 p) for certain parameters.

3.3 SRA Map in Conjunction with Hashing to an Elliptic Curve

We now generalise the previous instance by working with the group of ratio-
nal points of an elliptic curve over Fp instead of the multiplicative group F

∗
p.

This generalisation is analogous to Lenstra’s generalisation of Pollard’s p − 1
factorization method as the elliptic curve factorization method.

We assume that the field Fp is provided with an elliptic curve Ea,b (in reduced
Weierstass coordinates Y 2 = X2 + aX + b) of smooth order N =

∏t
i=1 ni over

Fp and a sequence of isogenies ϕi : Ei → Ei+1, where E1 = Ea,b and ϕi has

degree ni. It is well-known that ϕi can be defined as ϕi(x, y) =
(

ξi(x)
ψ2

i (x)
, y ωi(x)

ψ3
i (x)

)
where ξi,ωi,ψi are polynomials [28]. From this data we define the rational maps
Ki : Fp → Fp : x → ξi(x)

ψ2
i (x)

. The composition map K [t](x) = Kt ◦ . . . ◦ K1 clearly
maps to infinity all Fp elements that are the x-coordinate of some P ∈ Ea,b(Fp).
By Hasse’s theorem, this set covers roughly half of the elements in Fp [25].

Applying the SRA algorithm with those maps on f , we would not be able to
separate roots that are not the x-coordinates of a point in E. At this point, one
could try to split the remaining factor g by applying SRA again on g(x−α), for
α randomly chosen in Fp. This algorithm, somehow reminiscent of Berlekamp’s
trace algorithm, would probably work well in practice but it is not clear how it
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could be rigorously analyzed. An alternative approach would be to assume that
E has a smooth order over Fp2 instead of a smooth order over Fp. This approach
would be more satisfactory from a theoretical point of view but it would also
put more severe restrictions on the set of parameters, requiring that the curve
order is smooth over Fp2 instead of Fp. This is essentially the approach taken by
Ronyai [21] for a different algorithm.

In this paper, we use recent progress on hashing into elliptic curves [15]
to solve this problem in a different way, which moreover fits nicely within our
generalised SRA framework. We first recall the following results from Icart [15].

Lemma 1 [15]. Let p = 2 mod 3 be an odd prime. For any z ∈ Fp, there is a
unique cube root of z defined over Fp, which we write z1/3. For any a, b ∈ Fp

let Ea,b be the elliptic curve defined by the equation y2 = x3 + ax + b. The map
fa,b : Fp → Ea,b sending 0 to the point at infinity and u ∈ F

∗
p to (x, y) ∈ Ea,b(Fp)

where

x =
(
v2 − b − u6

27

) 1
3

+
u6

3
, y = ux + v, v =

3a − u4

6u
, (13)

is a well-defined surjective map. Reciprocally, if P = (x, y) is a point on the curve
Ea,b, then the solutions us of fa,b(us) = P are the solutions of the polynomial
equation u4 − 6u2x + 6uy − 3a = 0.

The map fa,b defined in Lemma 1 is in fact an algebraic map as z1/3 = z(2p−1)/3.
Let Ka,b : Fp → Fp, where

u →
(
v2 − b − u6

27

) 1
3

+
u6

3
(14)

be the composition of fa,b with a projection on the x-coordinate of the curve.
Lemma 1 implies that the modified composition map K ′(x) = Kt ◦ . . .◦K1 ◦Ka,b

maps all Fp elements to infinity. However, the degree of Ka,b is prohibitively
large to run SRA efficiently. We therefore modify our algorithm as follows.

In the first resultant step instead of computing Resu(f(u),x − Ka,b(u)), we
compute

f (1)(x) = Resu(f(u), K̃a,b(u,x))

where
K̃a,b(u,x) := (u4 − 6u2x − 3a)2 − 36u2(x3 + ax + b).

Note that deg f (1) = 3deg f as K̃a,b has degree 3 with respect to variable x. In
fact, for every root u of f the three values

ξi
(
v2 − b − u6

27

) 1
3

+
u6

3
, i = 1, 2, 3,

where ξ is a primitive cube root of unity, are roots of the polynomial f (1).
Since only one value in each triple is defined over Fp, one can eliminate the
other “parasitic” roots by replacing f (1)(x) by gcd(f (1)(x),xp −x) at this stage.
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Alternatively, one can just ignore this issue and work with bigger polynomials,
and eventually the SRA algorithm will only produce Fp roots anyway. The choice
of computing a gcd or not may depend on the parameters; we will not explore
this further here.

After this conversion is completed we may call the original SRA algorithm
to find the roots of f (1)(x) via the rational maps derived from the isogenies.
As we know that the composed map of isogenies maps all elements in Ea,b(Fp)
to the point at infinity, we know that all roots of f (1)(x) will result in partial
sequences. Therefore we do not have to calculate or supply SRA with the set of
points in the image of K [t]. Once the roots are returned from the SRA algorithm,
we compute the potential corresponding y coordinates on Ea,b(Fp) for each root
x and use the final equation from Lemma 1 to recover the roots by taking gcds
with our original polynomial.

We conclude the section with a comment on the existence and computation
of suitable parameters for this variant of SRA. The existence of a curve of order
N over Fp is equivalent to the existence of an integer solution to the equation

(N + 1 − p)2 − Df2 = 4N

with D < 0 (see [4, Eq. 4.3]). Once this solution is known, the curve can be
constructed using the complex multiplication algorithm [4, p. 30] provided that
the reduced discriminant D is small enough. Finally, computing small degree
isogenies can be done efficiently with Vélu’s formulae [27]. In order to find suit-
able parameters for the algorithm of this section, one can therefore for example
first fix D small, then choose N randomly among a set of numbers of the desired
smoothness, and finally solve the above equation for p and f using Cornacchia’s
algorithm [6].

Algorithm 2. SRA in conjunction with Icart’s map
Data: f ∈ Fp[u] – the polynomial whose roots we wish to find

M := {a1
b1

, . . . , at
bt

} – rational map representation of the isogenies
a, b ∈ Fp – description the smooth order curve Ea,b

Result: The roots of f
begin

f (1)(x1) ←− Resu(f(u), (u4 − 6u2x1 − 3a)2 − 36u2(x3
1 + ax1 + b))

f (1)(x1) ←− gcd(f (1)(x1),x
p
1 − x1)

UnconvertedRoots ←− SRA(f (1)(x1),M , {},True)
Roots ←− {}
for x1 ∈ UnconvertedRoots do

y1 ←− Sqrt(x3
1 + ax + b)

y2 ←− −y1
Roots ←− Roots ∪ gcd(f(u),u4 − 6u2x1 + 6uy1 − 3a)
Roots ←− Roots ∪ gcd(f(u),u4 − 6u2x1 + 6uy2 − 3a)

return Roots
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Complexity Analysis. The first step requires that we take one resultant of
two bivariate polynomials, where the degree of u is d and the degree of x1 is
3. We must then normalise the resulting polynomial f (1)(x1) by removing the
irreducible factors. This step costs O(dM(d) log d + M(d) log p) to compute the
resultant and take the gcd using a square-and-multiply algorithm. SRA is called
with f (1) and the rational maps derived from the isogenies. There will be a max-
imum of �log p� rational maps with their degree bounded by the smoothness of
|Ea,b| and denoted B. Finally the roots must be converted back, costing O(G(d)).
We therefore have the total complexity of the algorithm is Õ(d2 log p+Bd3) with
classical arithmetic and Õ(d log p + Bd2) with fast arithmetic.

4 Conclusions and Open Problems

In this paper, we provided a framework to extend the Successive Resultants
Algorithm of [19] to arbitrary finite fields. As it stands we have three sets of
maps for which the SRA algorithm works in an efficient manner. The maps for
SRA in the p = 2 mod 3 case exploit the structure of the rational map frame-
work introduced in Sect. 2 and additionally require Icart’s map to transform the
polynomial before converting our solutions back into roots of our original poly-
nomial. We believe that the creation of suitable maps for specific finite fields
exploiting the structure of the rational map framework remains an interesting
open problem.

We remark that the SRA algorithm may be used to solve the problem
of deterministic root finding for polynomials in Fp[x] under the Generalised
Riemann Hypothesis (GRH), which gives us the result that finding a genera-
tor of may be done in time O(ln6 p). Provided with such a generator, we may
use deterministic algorithms to find square roots [22,26] and cubic roots [14]
allowing us to exploit the standard formula for finding roots of quadratic, cubic
and quartic equations. As long as max{deg ai, deg bi} ≤ 4, we may therefore use
SRA in a deterministic manner.

Given the various ways that the algorithm may operate, in terms of choosing
either to include elements which produce partial sequences or not and restriction
of the input B ⊆ Image(K [t]) to contain specific elements, there also exists the
possibility of using SRA to extract only roots with specific properties as defined
by the Ki maps.
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A Example of SRA with |F∗
p| Smooth

We demonstrate the p − 1 instantiation of SRA with a toy example. We use the
finite field F37, where 36 = 2 · 2 · 3 · 3 is 3-smooth. Precomputation for F37 gives
us the series of rational maps (in fact polynomials)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K1(x1) = x2
1 = x2

K2(x2) = x2
2 = x3

K3(x3) = x3
3 = x4

K4(x4) = x3
4 = x5

(15)

The composed map is K [4](x1) = x36
1 , which gives us B = Image(K [t]) = {0, 1}.

We wish to find the roots of

f(x) = x10 + 21x9 + 22x8 + 7x7 + 12x6 + 25x5 + 35x4 + 4x3 + 25x (16)

We first compute f (i+1)(xi+1) = Resxi
(f (xi),xni

i − xi+1) with f (1)(x1) = f(x1).

f (1)(x1) = x10
1 + 19x9

1 + 25x8
1 + 6x7

1 + 22x6
1 + 32x5

1 + 13x4
1 + 32x3

1 + 6x2
1 + 24x1

f (2)(x2) = x10
2 + 22x9

2 + 34x8
2 + 22x7

2 + 27x6
2 + 32x5

2 + 21x4
2 + x3

2 + 17x2
2 + 16x2

f (3)(x3) = x10
3 + 28x9

3 + 20x8
3 + 23x7

3 + 36x6
3 + 36x4

3 + 22x3
3 + 35x2

3 + 3x3

f (4)(x4) = x10
4 + 28x9

4 + 28x8
4 + 25x7

4 + 18x6
4 + 18x5

4 + 21x4
4 + 28x3

4 + 28x2
4 + 27x4

We then compute g(i)(xi) = gcd(f (i)(xi),xni
i − x̂i+1) for i = 4, 3, 2, 1, where

x̂5 ∈ B for i = 4 and x̂i+1 is a root of g(i+1)(xi) for i = 3, 2, 1.
We will note the solutions of these polynomials to the right of each equation.

g(4)(x4) = gcd(f (4)(x4),x3
4 − 0) = x4 {0}

g(4)(x4) = gcd(f (4)(x4),x3
4 − 1) = x3

4 + 36 {1, 10, 26}

giving us the values for x̂4 : {0, 1, 10, 26}. We use these roots to calculate

g(3)(x3) = gcd(f (3)(x3),x3
3 − 0) = x3, {0}

g(3)(x3) = gcd(f (3)(x3),x3
3 − 1) = x3

3 − 1, {10}
g(3)(x3) = gcd(f (3)(x3),x3

3 − 10) = x2
3 + 9x3 + 7, {7, 33, 34}

g(3)(x3) = gcd(f (3)(x3),x3
3 − 26) = x2

3 + 16x3 + 34, {9, 12}

giving us the values for x̂3 : {0, 7, 9, 10, 12, 33, 34}. We use these roots to calculate

g(2)(x2) = gcd(f (2)(x2),x2
2 − 0) = x2, {0}

g(2)(x2) = gcd(f (2)(x2),x2
2 − 7) = x2 + 28, {9}

g(2)(x2) = gcd(f (2)(x2),x2
2 − 9) = x2 + 34, {3}

g(2)(x2) = gcd(f (2)(x2),x2
2 − 10) = x2 + 26, {11}
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g(2)(x2) = gcd(f (2)(x2),x2
2 − 12) = x2 + 30, {7}

g(2)(x2) = gcd(f (2)(x2),x2
2 − 33) = x2 + 25, {12}

g(2)(x2) = gcd(f (2)(x2),x2
2 − 34) = x2 + 16, {21}

giving us the values for x̂2 : {0, 3, 7, 9, 11, 12, 21}. We use these roots to calculate

g(1)(x1) = gcd(f (1),x2
1 − 0) = x1, {0}

g(1)(x1) = gcd(f (1),x2
1 − 3) = x2

1 + 34, {15, 22}
g(1)(x1) = gcd(f (1),x2

1 − 7) = x1 + 9, {28}
g(1)(x1) = gcd(f (1),x2

1 − 9) = x1 + 34, {3}
g(1)(x1) = gcd(f (1),x2

1 − 11) = x2
1 + 26, {14, 23}

g(1)(x1) = gcd(f (1),x2
1 − 12) = x2

1 + 25, {7, 30}
g(1)(x1) = gcd(f (1),x2

1 − 21) = x1 + 13, {24}

whose union is the set of roots x̂1 : {0, 3, 7, 14, 15, 22, 23, 24, 28, 30} which are the
roots of of our original polynomial f(x).

B Example of SRA with p = 2 mod 3

We provide the toy example for the case of finding solutions for h(u) ∈ F41[x],
which fulfils our initial condition that p = 41 = 2 mod 3.

We first perform the precomputation stage for the given p. A value of N is
computed so that a large enough proportion of N is smooth and allows a suitable
curve to be constructed. We find that N = 32 is a such a value and compute the
auxiliary curve

E1,0(F41) := {(x, y) ∈ F41 × F41 : y2 = x3 + x} (17)

whose rational points we will convert our points in F41 to via Icart’s map [15]
as in Eq. 18,

K0 : F41[u,x] → E1,0(F41)

(u,x) �→ −8u8 + 14u6x − u4x2 + u2x3 + 7u4 + 10 (18)

The final step of the precomputation is to compute suitable elliptic curves and
successive isogenies between them such that their degree is bounded by our
smoothness bound. We will only use the rational map representations of the x-
coordinate for these maps. The following series of isogenies with their rational-
map representations of the mappings from x-coordinate to x-coordinates give
rise to the following system of equations
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K1(x) : E1,0(Fp) → E37,0(Fp),
x2
1 + 1
x1

= x2

K2(x) : E37,0(Fp) → E38,11(Fp)
x2
2 − 2x2 + 8

x2 − 2
= x3

K3(x) : E38,11(Fp) → E25,8(Fp)
x2
3 + 12x3 + 19

x3 + 12
= x4 (19)

K4(x) : E25,8(Fp) → E34,7(Fp)
x2
4 + 17x4 − 10

x4 + 17
= x5

K5(x) : E34,7(Fp) → E1,0(Fp)
x2
5 + 16x5 − 18

x5 + 16
= x6

After this precomputation is completed, we may begin the process of calculating
the roots of h(u). We seek to find the roots of the polynomial

h(u) = u5 + 19u4 + 6u3 + 37u2 + 38u + 30 (20)

We first use the Icart map K0 to create our polynomial f (1)(x1), whose roots
represent solutions of both h(u) and K0(u,x) by means of taking the resultant
with regards to u.

f(x) = Resu(h(u),−8u8 + 14u6x − u4x2 + u2x3 + 7u4 + 10)

= 39x15 + x14 + 22x13 + 30x12 + 4x11 + 33x10 + 33x9

+ 32x8 + 9x7 + 4x6 + 33x5 + 40x4 + 12x3 + x + 2 (21)

we note that we now have a polynomial three times the degree of our original
one, but we are only interested in linear factors hence we may obtain

f(x) = gcd(xp − x, f (1)(x))

f(x) = x4 − 15x3 − 5x2 + 14x + 14 (22)

which is of degree bounded by deg(h). We then compute the roots of f using
the SRA algorithm with the maps M = {Ki}5i=1, the set B = ∅ and the flag
ParSeq = True.

As described in the generic case of SRA, we now apply the resultant stage to
obtain our f (2)(x2), f (3)(x3), f (4)(x4), f (5)(x5) polynomials using the map struc-
ture we have derived from the rational maps of the isogenies as described in
system 19. To do this we successively compute

f (i+1)(x) = Resu(f (i)(xi), ai(xi) − x4 + 17 · xi+1) for i = 1, . . . , t − 1. (23)

This results in the series of polynomials

f (1)(x1) = x4
1 − 15x3

1 − 5x2
1 + 14x1 + 14

f (2)(x2) = 14x4
2 + 9x3

2 − 13x2
2 − 5x2 + 11

f (3)(x3) = −14x4
3 − 4x3

3 − 16x2
3 − 13x3 − 16 (24)

f (4)(x4) = −3x4
4 + 7x3

4 − x2
4 − 11x4 + 11

f (5)(x5) = −2x4
5 − 5x3

5 + 3x2
5 − 9x5 + 5
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We may then begin the gcd stage of the algorithm. We note that at each stage we
must repeatedly extract those values in the kernel as these values are not picked
up by the root merging process. Our first set of roots is therefore calculated via

g(5)(x5) = gcd(−2x4
5 − 5x3

5 + 3x2
5 − 9x5 + 5,x5 + 16)

giving us the candidate roots x̂5: {25}. We use this to compute the polynomial

g(4)(x4) = gcd(−3x4
4 + 7x3

4 − x2
4 − 11x4 + 11,x2

4 + 17x4 − 10 − (x4 + 17) · 25)

= x2
4 + 33x4 + 16

These give us x̂4 : {4}. We perform the same procedure to compute

g(3)(x3) = gcd(−14x4
3 − 4x3

3 − 16x2
3 − 13x3 − 16,x2

3 + 12x3 + 19 − (x3 + 12) · 4)

= x2
3 + 8x3 + 12

Giving us the candidate solutions x̂3 : {35, 39}. We perform the same procedure
to compute

g(2)(x2) = gcd(14x4
2 + 9x3

2 − 13x2
2 − 5x2 + 11,x2

2 − 2x2 + 8 − (x2 − 2) · 35)
= x2 + 9

g(2)(x2) = gcd(14x4
2 + 9x3

2 − 13x2
2 − 5x2 + 11,x2

2 − 2x2 + 8 − (x2 − 2) · 39)

= x2
2 + 4

Giving us the candidate solutions {32} and {18, 23} respectively. Finally we
compute

g(1)(x1) = gcd(x4
1 − 15x3

1 − 5x2
1 + 14x1 + 14,x2

1 + 1 − (x1) · 18))
= x1 + 21

g(1)(x1) = gcd(x4
1 − 15x3

1 − 5x2
1 + 14x1 + 14,x2

1 + 1 − (x1) · 23))

= x2
1 + 18x1 + 1

g(1)(x1) = gcd(x4
1 − 15x3

1 − 5x2
1 + 14x1 + 14,x2

1 + 1 − (x1) · 32))
= x1 + 28

Solving these provides us with solutions {20}, {2, 21}, {13} for f(x).
We then must convert these back into solutions for h(u). We now possess x-

coordinate solutions and may retrieve the corresponding y-coordinates via sub-
stitution of x into the auxiliary curve and taking square roots. These lead to the
solutions

(13, 18), (13, 23), (21, 4), (21, 37), (2, 16), (2, 25), (20, 5), (20, 36)

each of which we substitute into the precomputed map L(x, y) = u4 − 6xu2 +
6uy − 3 and take the gcd with h(u) to obtain the list of equations whose roots
are precisely those of h(u) (excluding 0, which may be specially checked for).
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(13, 18) 1 {}
(13, 23) u + 17 {24}
(21, 4) 1 {}
(21, 37) u2 + 22u + 23 {34, 26}
(2, 16) 1 {}
(2, 25) u + 1 {40}
(20, 5) u + 20 {21}
(20, 36) 1 {}

The roots of h(u) are therefore {21, 24, 26, 34, 40}.
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Abstract. We give some theoretical support to the security of the cryp-
tographic pseudo-random function proposed by Dodis and Yampolskiy
in 2005. We study the distribution of the function values over general
finite fields and over elliptic curves defined over prime finite fields. We
also prove lower bounds on the degree of polynomials interpolating the
values of these functions in these two settings.
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1 Introduction

A cryptographic pseudo-random function family is a collection of functions
that can be evaluated in polynomial-time using a secret key but for which no
polynomial-time algorithm can distinguish (with significant advantage) between
a function chosen randomly from the family and a truly random function (i.e.
whose outputs are sampled uniformly and independently at random). In 2005,
Dodis and Yampolskiy [DY05] proposed an efficient pseudo-random function
family which takes inputs in {1, . . . , d} (for some parameter d ∈ N) and outputs
an element in a group G (multiplicatively written) of prime order t with gen-
erator g. The secret key is a scalar x ∈ Z

∗
t and the pseudo-random function is

defined by:

Vx : {1, . . . , d} −→ G

m �−→ Vx(m) = g
1

x+m if x + m �= 0 mod t and 1G otherwise.

The Dodis-Yampolskiy pseudo-random function family has found numerous
applications in cryptography (e.g., for compact e-cash [CHL05] or anonymous
authentication [CHK+06]). Dodis and Yampolskiy showed that their construc-
tion has some very attractive security properties, provided that some assumption
about the hardness of breaking the so-called Decision Diffie-Hellman Inversion
problem holds in G [DY05]. This assumption is non-standard and Cheon [Che10]
proved that it is stronger than the classical discrete logarithm assumption in G.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-55227-9 10
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In practice, two interesting choices for the group G are a subgroup of the
multiplicative group of any finite field (in particular, for the so-called verifiable
Dodis-Yampolskiy pseudo-random function in groups equipped with a bilin-
ear map [DY05]) or a subgroup of points of an elliptic curve defined over a
prime finite field. Very few results supporting the Decision Diffie-Hellman Inver-
sion assumption hardness were proven in these settings (contrary to the Naor-
Reingold pseudo-random function family [NR04] for which numerous results
are known, e.g. distribution [LSW14], linear complexity [GGI11] and non-linear
complexity [BGLS00]). This paper deals with the distribution of the Dodis-
Yampolskiy pseudo-random function over finite fields and over elliptic curves
and proves lower bounds on the degree of polynomials which interpolate these
functions.

Contributions of the Paper. As a first contribution, we prove that for almost
all values of parameters, the Dodis-Yampolskiy pseudo-random function pro-
duces a uniformly distributed sequence. This simple result is based on some
recent bounds on character sums with exponential functions. Shparlinski [Shp11]
has obtained in 2011 an explicit bound for exponential sums with consecutive
modular roots over a prime finite field. Ostafe and Shparlinski [OS11] obtained
an analoguous result for exponential sums over multiples of a point on an elliptic
curve defined over a prime finite field. Following the method from [Shp11], we
obtain readily a bound for such sums over any extension of a prime finite field
(Proposition 1). This new bound allows us to give results on the distribution of
the Dodis-Yampolskiy pseudo-random functions over finite fields (Theorem 1).
We use the bounds from [OS11] to give results on the distribution of the Dodis-
Yampolskiy pseudo-random functions over elliptic curves (Theorem 2).

In order to break the security of the Dodis-Yampolskiy pseudo-random func-
tion, it would be sufficient to have a polynomial over a finite field of low degree
which reveals information on the function values. From the known lower bounds
on the polynomial interpolation on the discrete logarithm in finite fields and
elliptic curves (e.g. [CS00,LW02,KW06]), one can prove that a low-degree uni-
variate polynomial cannot reveal the secret key x when evaluated at Vx(m) (for
some integer m ∈ {1, . . . , d}) for all x. However, the security of the Dodis-
Yampolskiy pseudo-random function would also be broken if such low-degree
polynomial revealing a value Vx(m′) were proved to exist (for some integer
m′ ∈ {1, . . . , d} \ {m} and many different keys x). Our main contribution is
to prove lower bounds on the degree of polynomials interpolating the values of
these functions over finite fields (Theorem 3) and elliptic curves (Theorem 4 and
Theorem 5). These results can be regarded as first complexity lower bounds on
the pseudo-randomness of the Dodis-Yampolskiy function families.

Both contributions are motivated by earlier results of the same flavour on
the Naor-Reingold pseudo-random function family.

2 Auxiliary Results

In this section, we collect some statements about finite fields, exponential
sums over finite fields and elliptic curves. We provide explicit upper-bounds
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for exponential sums with consecutive modular roots over a finite field and for
analogous exponential sums over elliptic curves [Shp11,OS11]. The bound for
exponential sums with consecutive modular roots over a general finite field is
easily derived from [Shp11] and may be of independent interest.

2.1 Finite Fields and Exponential Sums

Let p be an odd prime number. We denote Fq = Fpr the finite field with q = pr

elements (r ≥ 1). For an integer t, denote by Zt the residue ring modulo t and by
Z

∗
t the group of units of Zt. For an integer m > 0, we put em(z) = exp(2πiz/m).

Let g ∈ F
∗
pr of order t (with t | pr − 1), and ψ be a non-trivial character of Fpr .

For a ∈ F
∗
pr and b ∈ Zt, we define the sum:

Sa,b =
∑

n∈Z
∗
t

ψ(ag1/n)et(bn).

Throughout the paper, the notation U � V is equivalent to the inequality
|U | ≤ cV with some constant c>0. In the following lemmas, the implied constants
in the symbols “�” may occasionally depend on the integer parameters k, � and
are absolute otherwise.

In [BS08] Bourgain and Shparlinski proved, when r = 1, that for any ε >
0, there exists δ > 0 such that for t ≥ pε, we have the bound Sa,b � t1−δ.
Shparlinski [Shp11] (Theorem 3.1) gave an explicit form of this result (again
when r = 1) for relatively large values of t; in the case t = p1+o(1), it takes the
form Sa,b � t127/128+o(1). Using Shparlinski’s methods, we generalize this bound
on Sa,b for any r ≥ 1 (see Appendix A for a proof which follows [Shp11]):
Proposition 1. For any integers k ≥ 2, � ≥ 1 we have for t ≥ q1/2(log q)2:

Sa,b ≤ t1−αk,�qβk,�+o(1),

where αk,� = 1
2(2k+�) − 1

4k� and βk,� = 1
4(2k+�) .

2.2 Elliptic Curves and Exponential Sums

We will also consider the setting of an elliptic curve E defined over Fp (where p
is a prime number), that is a rational curve given by the following Weierstrass
equation y2 = x3+Ax+B with A,B ∈ Fp and 4A3+27B2 �= 0. The set E(Fp) of
the points of the curve defined over Fp (including the special point O at infinity)
has a group structure (denoted additively) with an appropriate composition rule
where O is the neutral element. Given P a point of the curve E with prime
order � (with � | |E(Fp)|), we denote [n]P the scalar multiplication, i.e. in fact
the adding of the point P to itself n times (for n ≥ 0).

Let E be an elliptic curve and G ∈ E(Fp) be a point of order t ≥ 1. For
a ∈ F

∗
p and b ∈ Zt, we define the sum:

Ŝa,b =
∑

n∈Z
∗
t

ep

(
aX

([
1
n

]
G

))
et(bn),

where X(P ) denotes the abscissa of a point P ∈ E(Fp).
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In [OS11, Theorem 6], Ostafe and Shparlinski obtained an upper-bound on
Ŝa,b (with H(X) = X−1 following the notation from [OS11]):

Proposition 2 [OS11]. For any integers k ≥ 2, � ≥ 1 we have for t ≥
q1/2(log q)2:

Ŝa,b ≤ t1−αk,�pβk,�+o(1),

where αk,� = 1
2(4k+�) − 1

4k� and βk,� = 1
4(4k+�) .

2.3 Division Polynomials Over Elliptic Curves

In this section, we recall some basic facts on division polynomials of elliptic curves
(see [Was08,BSS99]). The division polynomials ψm(X,Y ) ∈ Fp[X,Y ]/(Y 2−X3−
AX − B), m ≥ 0, are recursively defined by:

ψ0 = 0
ψ1 = 1
ψ2 = 2Y

ψ3 = 3X4 + 6AX2 + 12BX − A2

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX − 8B2 − A3)
ψ2m+1 = ψm + 2ψ3

m − ψm−1ψ
3
m+1, m ≥ 2

ψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)/ψ2, m ≥ 3,

where ψm is an abbreviation for ψm(X,Y ). If m is odd, then ψm(X,Y ) ∈ Fp[X]
is univariate and if m is even then ψm(X,Y ) ∈ 2Y Fp[X]. Therefore, we have
ψ2

m(X,Y ) ∈ Fp[X] and ψm−1(X,Y )ψm+1(X,Y ) ∈ Fp[X]. In particular, we may
write ψ2m+1(X) and ψ2

m(X).
The division polynomials can be used to calculate multiples of a point on

the elliptic curve E. Let P = (x, y) ∈ E with P �= O, then the abscissa of [m]P
is given by θm(x)/ψ2

m(x) where θm(X) = Xψ2
m − ψm−1ψm+1. The zeros of the

denominator ψ2
m(X) are exactly the first coordinates of the non-trivial m-torsion

points, i.e., the points Q = (x, y) ∈ Fp
2 \ {O} on E with [m]Q = O. Note, that

these points occur in pairs Q = (x, y) and −Q = (x,−y), which coincide only if
2Q = O, i.e., if x is a zero of ψ2

2(X).
We recall that the group of m-torsion points E[m], for an elliptic curve E

defined over a field of characteristic p, is isomorphic to (Z/mZ)2 if p � m and
to a proper subgroup of (Z/mZ)2 if p | m. If m is a power of p then E[m] is
either isomorphic to (Z/mZ) or to {O}. Accordingly, the degree of ψ2

m(X) is
m2 − 1 if p � m and strictly less than m2 − 1 otherwise. In particular, for p = 2
and m a power of 2 we have deg(ψ2

m) = m − 1 if E is not supersingular and
deg(ψ2

m) = 0 otherwise. By induction one can show that θm(X) ∈ Fp[X] is monic
of degree m2.
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3 Distribution of the Dodis-Yampolskiy Pseudo-Random
Functions

For a real z, we use the notation e(z) = exp(2πiz). For a sequence of N points
Γ = (γ0,n, . . . , γs−1,n)n∈{1,...,N} in the s-dimensional unit cube, we denote its
discrepancy by DΓ :

DΓ = sup
B⊆[0,1)s

∣∣∣∣
TΓ (B)

N
− |B|

∣∣∣∣ ,

where TΓ (B) denotes the number of points of the sequence Γ in a box B (i.e. a
polyhedron [α0, β0)×· · ·×[αs−1, βs−1) ⊆ [0, 1)s) of volume |B| and the supremum
is taken over all such boxes. For an integer vector a = (a0, . . . , as−1) ∈ Z

s, we
define |a| = maxν∈{0,...,s−1}|aν | and r(a) =

∏s−1
ν=0 max{|aν |, 1}.

In order to show that a sequence Γ is uniformly distributed, we need to show
that its discrepancy DΓ is very small (i.e. tends to 0). The following lemma
is our main tool for finding non-trivial upper bound for the discrepancy. It is a
slightly weaker form of the Koksma-Szüsz inequality [DT97, Theorem 1.21]. The
implied constant in the symbol “�” depends on the integer s.

Lemma 1. For any integer L > 1 and any sequence Γ of N points, we have

DΓ � 1
L

+
1
N

∑

0<|a|<L

1
r(a)

∣∣∣∣∣

N∑

n=1

e

(
s−1∑

ν=0

aνγν,n

)∣∣∣∣∣ ,

where the sum is taken over all integer vectors a ∈ Z
s with 0 < |a| < L.

We also need the well-known orthogonality relation:

m−1∑

η=0

em(ηλ) =
{

0 if λ �= 0 mod m
m otherwise (1)

and the inequality [[IK04], Bound (8.6)] (which holds for any integers m and M
with 1 ≤ M ≤ m):

m−1∑

η=0

∣∣∣∣∣

M∑

λ=1

em(ηλ)

∣∣∣∣∣ � m log m. (2)

3.1 Distribution of the Dodis-Yampolskiy Pseudo-Random Function
Over Finite Fields

Let q = pr be a prime power for some integer r > 1, let g ∈ F
∗
q be an element

of prime order t. For x ∈ Zt and d ≤ t, we denote by Dx(d) the discrepancy of
the points (Vx,1(n)/p, . . . , Vx,r(n)/p) for1 ≤ n ≤ d, where Vx(n) = g

1
x+n ∈ Fpr

and Vx(n) = Vx,1(n)β1 + · · · + Vx,r(n)βr, where {β1, . . . , βr} is an ordered basis
of Fpr over Fp. We identify Fp with the set of integers {0, 1, . . . , p − 1}.
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Theorem 1. For any x ∈ Zt, any integers k ≥ 2, � ≥ 1 and 1 ≤ d ≤ t, we have:

Dx(d) ≤ t1−αk,lqβk,l+o(1)

d
,

where αk,l = 1
2(2k+l) − 1

4kl and βk,l = 1
4(2k+l) .

Proof. From Lemma 1, we derive

Dx(d) � 1
p

+
1
d

∑

0<|a|<p

1
r(a)

∣∣∣∣∣∣

d∑

n=1

ep

⎛

⎝
r∑

j=1

ajVx,j(n)

⎞

⎠

∣∣∣∣∣∣
,

where a = (a1, . . . , ar). Set

Sd(a) =
d∑

n=1

ep(
r∑

j=1

ajVx,j(n)).

Let {δ1, . . . , δr} be the dual basis of the given ordered basis {β1, . . . , βr}.
For j ∈ {1, . . . , r} and n ∈ {1, . . . , d}, we have Vx,j(n) = Tr(δjVx(n)), where Tr
denotes the trace of Fpr over Fp (namely Tr(x) = x+xp+· · ·+xpr−1

). Therefore,

Sd(a) =
d∑

n=1

ep

⎛

⎝Tr

⎛

⎝
r∑

j=1

ajδjVx(n)

⎞

⎠

⎞

⎠ =
d∑

n=1

ep(Tr(αaVx(n)))

where αa =
∑r

j=1 ajδj ∈ Fpr .
Let χ be defined by χ(z) = ep(Tr(z)). Then χ is a non trivial additive

character on Fpr . Since there exists j ∈ {1, . . . , r} such that aj �= 0, then αa �= 0.
We have:

Sd(a) =
d∑

n=1

χ(αaVx(n))with αa �= 0.

We have

Sd(a) =
x+d∑

n=x+1
n∈Z

∗
t

χ(αag1/n) =
1
t

∑

n∈Z
∗
t

χ(αag1/n) ×
t−1∑

c=0

x+d∑

v=x+1
v∈Z

∗
t

et(c(n − v))

=
1
t

t−1∑

c=0

⎛

⎝
∑

n∈Z
∗
t

χ
(
αag1/n

)
et(cn)

⎞

⎠ ×
x+d∑

v=x+1
v∈Z

∗
t

et(−cv).

By applying Proposition 1 and (2), we obtain

Sd(a) ≤ 1
t

t−1∑

c=0

∣∣∣∣∣∣∣∣

x+d∑

v=x+1
v∈Z

∗
t

et(−cv)

∣∣∣∣∣∣∣∣
× t1−αk,�qβk,�+o(1) ≤ t1−αk,�qβk,�+o(1).
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By applying this bound to Dx(d), we have

Dx(d) � 1
p

+
t1−αk,lqβk,�+o(1)

d

∑

0<|a|<p

1
r(a)

� 1
p

+
t1−αk,�qβk,�+o(1)

d
logr p

≤ t1−αk,�qβk,�+o(1)

d


�
With the choice k = 4, l = 8, t = q1+o(1) and d = t

127
128+ε, we obtain

Dx(d) ≤ pr(−ε+o(1)) = q−ε+o(1).

3.2 Distribution of the Dodis-Yampolskiy Pseudo-Random Function
Over Elliptic Curves

Let E : y2 = x3 + Ax + B, be an elliptic curve over Fp. For P ∈ E(Fp) of prime
order t, for x ∈ Zt, and for 1 ≤ d ≤ t we denote by Dx(d) the discrepancy of the
points (X(Vx(n))/p) for n ∈ {1, . . . , d} where Vx(n) =

[
1

x+n

]
P ∈ E(Fp). We

obtain the following theorem.

Theorem 2. For any x ∈ Zt, any integers k ≥ 2, l ≥ 1 and 1 ≤ d ≤ t, we have:

Dx(d) ≤ t1−αk,�pβk,�+o(1)

d
,

where αk,� = 1
2(4k+�) − 1

4k� and βk,� = 1
4(4k+�) .

Proof. From Lemma 1, we derive

Dx(d) � 1
p

+
1
d

∑

0<|a|<p

1
|a|

∣∣∣∣∣

d∑

n=1

ep (aX(Wx(n)))

∣∣∣∣∣ ,

where a is an integer. Set Sd(a) =
∑d

n=1 ep(aX(Wx(n))), we have

Sd(a) =
x+d∑

n=x+1
n∈Z

∗
t

ep

(
aX

([
1
n

]
P

))

=
1
t

∑

n∈Z
∗
t

ep

(
aX

([
1
n

]
P

))
×

t−1∑

c=0

x+d∑

v=x+1
v∈Z

∗
t

et (c(n − v))

=
1
t

t−1∑

c=0

⎛

⎝
∑

n∈Z
∗
t

ep

(
aX

([
1
n

]
P

))
et(cn)

⎞

⎠ ×
x+d∑

v=x+1
v∈Z

∗
t

et(−cv)
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By applying Lemma 6 and (3), we obtain

Sd(a) ≤ 1
t

t−1∑

c=0

∣∣∣∣∣∣∣∣

x+d∑

v=x+1
v∈Z

∗
t

et(−cv)

∣∣∣∣∣∣∣∣
× t1−αk,�pβk,�+o(1)

≤ t1−αk,�pβk,�+o(1)

By applying this bound to Dx(d), we have

Dx(d) � 1
p

+ t1−αk,�pβk,�+o(1) × 1
d

∑

0<|a|<p

1
|a|

� 1
p

+ t1−αk,�pβk,l+o(1) × 1
d

log p

≤ t1−αk,�pβk,�+o(1) × 1
d


�
With the choice k = 4, � = 16, t = p1+o(1) and d = t

255
256+ε, we obtain Dx(d) �

p−ε+o(1).

4 Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function Over Finite Fields

Let g ∈ F
∗
pr for some integer r > 1, be an element of prime order t | pr − 1.

In this section, we prove a lower bound on the degree of univariate polyno-
mial interpolation of the Dodis-Yampolskiy pseudo-random function over finite
fields. We consider polynomials that interpolates values of the Dodis-Yampolskiy
pseudo-random function for a fixed secret key x ∈ F

∗
t . The values considered are

evaluation of the function at integers n ∈ {1, . . . , d} for some integer 1 ≤ d ≤ t
and translates of these values by some fixed constants λ ∈ N. This setting is
interesting for applications in cryptography [CHL05,CHK+06]. Note that if one
value n is larger than d then, the Dodis-Yampolskiy function is not necessarily
defined at n + λ. In the following, we consider simple sets where all translates
belong to the function domain but our method can be adapted to other settings.

Theorem 3. Let λ be a fixed integer and let A ⊆ {1, . . . , d}. For some x ∈ F
∗
t ,

let F (X) ∈ Fp[X] be such that F (g
1

x+n ) = g
1

x+n+λ for all n ∈ A. We have

deg(F ) ≥ t − 2s

4
and w(F ) ≥

(
t

4s

)1/2

where �A = t − s.

In the proof of Theorem 3, we use the following lemma [LW02] where the
weight w(F ) (or sparsity) of a polynomial F (X) ∈ Fp[X] is the number of its
non-zero coefficients.



Distribution and Polynomial Interpolation 133

Lemma 2 [LW02]. Let γ ∈ Fp be an element of order � and F (X) ∈ Fp[X] be
a non-zero polynomial of degree at most � − 1 with at least b zeros of the form
γx with 0 ≤ x ≤ � − 1. The weight of F (X) satisfies w(F ) ≥ �/(� − b).

Proof (Theorem 3). Let R = {(n + x)mod t : n ∈ A}. Then R ⊆ Ft and �R =
t − s. We have F (g

1
n ) = g

1
n+λ for all n ∈ R. Noticing that 1

n+λ = 1
λ (1 − 1

λ
n+1

),

we obtain F (g
u
λ ) = g

1
λ (1− 1

u+1 ) for all u = λ
n , n ∈ R.

Let R0 = {u = λ
n : n ∈ R \ {0}} and T = {u ∈ R0 : 2u + 1 ∈ R0}. Since

�R0 = t − s, we have �T ≥ t − 2s. Then

F
(
g

2u+1
λ

)
= g

1
λ (1− 1

2u+2 ) = g
1
λ ( 1

2+
1
2 (1− 1

u+1 )) = g
1
2λ × g

1
2λ (1− 1

u+1 )

for all u ∈ T . We thus have

F 2
(
g

2u+1
λ

)
= g

1
λ × g

1
λ (1− 1

u+1 ) = g
1
λ × F (g

u
λ ), for all u ∈ T.

Let H(X) = F 2(g
1
λ X2) − g

1
λ F (X). The polynomial H(X) is a non-zero poly-

nomial and deg(H) ≤ 4 deg(F ). Since H(X) has at least �T = t − 2s zeros, we
have 4 deg(F ) ≥ t − 2s and then deg(F ) ≥ t−2s

4 . Moreover, if deg(H) ≤ t − 1,
since the zeros of H are the powers of g

1
λ , then we have by Lemma 2, w(H) ≥

t/(t − (t − 2s)), and since w(H) ≤ 2(w(F ))2, it follows that w(F ) ≥ (t/4s)1/2.

�

Remark 1. Theorem 3 is non-trivial only when �A > t/2. It remains an open
question to obtain non-trivial lowers bounds for smaller sets A.

5 Polynomial Interpolation of the Dodis-Yampolskiy
Pseudo-Random Function Over Elliptic Curves

In this section, p is an odd prime number, E is an elliptic curve defined over Fp

and P is a point of the curve E(Fp) with prime order t. We prove lower bounds on
the degree of polynomial interpolation of the Dodis-Yampolskiy pseudo-random
function over elliptic curves defined by Vx(n) = X

([
1

x+n

]
P

)
for a secret key

x ∈ F
∗
t and an integer n ∈ {1, . . . , d}, with 1 ≤ d ≤ t.

Theorem 4. Let S ⊆ {1, . . . , d}, �S = t − s. We suppose X(P ) �= 0. For some
x ∈ F

∗
t , let F (X) ∈ Fp[X] be such that ψ2

2(F (X(P ))) �= 0 and F (Vx(n)) =
Vx(n + 1) for all n ∈ S. We have

deg(F ) ≥ t − 2s

176
.

Proof. Let R = {(n + x) mod t : n ∈ S} ⊆ Ft. We have �R = t − s. Let us
denote xk = X([k]P ) and R0 = { 1

n : n ∈ R}, then we have F (xu) = x1− 1
1+u

for
all u ∈ R0. We consider the set T = {u ∈ R0 : 2u + 1 ∈ R0}, then �T ≥ t − 2s.
For all u ∈ T , we have:
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F (x2u+1) = x1− 1
2(u+1)

= x1/2+1/2(1−1/(u+1)) and F (xu) = x1−1/(u+1) (3)

Using division polynomials (see Sect. 2.3), we can write:

x1+1− 1
(u+1)

=
θ2(F (x2u+1))
ψ2
2(F (x2u+1))

(4)

Using the elliptic curve addition law, we have

x1+α =
a(xα) − 2y1yα

(xα − x1)2
where a(X) = x1X

2 + (x2
1 + A)X + Ax1 + 2B,

and for any polynomial G of degree m ≥ 1, we have

G(x1+α) =
u(xα) − yαv(xα)

(xα − x1)2m
and lc(u) = G(x1)

withuniquelydeterminedpolynomialsu(X) and v(X)withdeg(u)≤2m (deg(u) =
2m if G(x1) �= 0) and deg(v) ≤ 2m − 2 and where lc(u) is the leading coefficient
of the polynomial u(X). Since F (xu) = x1− 1

u+1
, we can rewrite (4) as:

a(F (xu)) − y1y1− 1
u+1

(F (xu) − x1)2
=

θ2(F (x2u+1))
ψ2
2(F (x2u+1))

.

Since the point (x1− 1
u+1

, y1− 1
u+1

) ∈ E(Fp) and F (xu) = x1− 1
u+1

, the poly-
nomial y2

1(F (xu)3 + A · F (xu) + B)ψ4
2(F (x2u+1)) is equal to the polynomial

[(F (xu) − x1)2θ2(F (x2u+1)) − a(F (xu))ψ2
2(F (x2u+1))]2. We thus obtain

y2
1(F (xu)3 + A · F (xu) + B) × p1(x2u) − y2up2(x2u)

(x2u − x1)12d0
= Q(xu, x2u, y2u),

where d0 = deg(F ) and Q(xu, x2u, y2u) denotes a polynomial of the form
[
(F (xu) − x1)2

p3(x2u) − y2up4(x2u)
(x2u − x1)8d0

− a(F (xu))
p5(x2u) − y2up6(x2u)

(x2u − x1)6d0

]2

such that deg(p1) ≤ 6d0, deg(p2) ≤ 6d0 − 2, deg(p3) ≤ 4d0, deg(p4) ≤ 4d0 − 2,
deg(p5) ≤ 3d0 and deg(p6) ≤ 3d0 − 2. We obtain:

y2
1(F (xu)3 + AF (xu) + B)(x2u − x1)4d0(p1(x2u) − y2up2(x2u))=P (xu, x2u, y2u),

where P (xu, x2u, y2u) = [(F (xu) − x1)2p3(x2u) − a(F (xu))(x2u − x1)2d0p5(x2u)
− y2u((F (xu) − x1)2p4(x2u) − a(F (xu))(x2u − x1)2d0p6(x2u))]2.

We then proceed as previously by trying to eliminate y2u. We obtain an
expression in function of xu and x2u and we replace x2u by θ2(xu)

ψ2
2(xu)

. We finally
obtain a rational function in xu of the form:

Q(xu)
ψ40d0
2 (xu)

= 0, where Q(X) ∈ Fp[X] and deg(Q) ≤ 88d0.

Claim. Q(X) �= 0 if ψ2
2(F (x1)) �= 0 and x1 �= 0.

Proof (Claim). We have deg(P5) = 3d0 iff ψ2
2(F (x1)) �= 0. If deg(P5) = 3d0,

One can then verify that the leading coefficient of Q is the leading coefficient of
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the numerator of the rational function obtained from [(F (xu) − x1)2p3(x2u) −
a(F (xu))(x2u − x1)2d0p5(x2u)]4 after replacing x2u by θ2(xu)

ψ2
2(xu)

.
Therefore, if deg(P5) = 3d0, then the leading coefficient of Q is (f2 × x1 ×

ψ2
2(F (x1)))4 which is non zero if x1 �= 0 since deg(P5) = 3d0 iff ψ2

2(F (x1)) �= 0,
where f is the leading coefficient of F . Then if ψ2

2(F (x1)) �= 0 and x1 �= 0, Q(X)
is a non-zero polynomial. 
�

If ψ2
2(F (x1)) �= 0 and x1 �= 0, Q(X) is a non-zero polynomial with at least

�T/2 different zeros. We thus have 88d0 ≥ (t − 2s)/2 and the claimed result. 
�
The condition X(P ) �= 0 in the statement of Theorem 4 holds obviously for
almost all point P . The lower bound then holds if the group order �E(Fp) is odd
since in this case, the technical condition ψ2

2(F (X(P ))) �= 0 is always satisfied.
However, we obtain a weaker lower bound for the polynomial degree which holds
for every curve E.

Theorem 5. Let 1 ≤ d ≤ t be a fixed integer and let A ⊆ {1, . . . , d}, �A = t−s.
For some x ∈ F

∗
t , let F (X) ∈ Fp[X] such that F (Vx(n)) = Vx(n + 1) for all

x ∈ A. We have deg(F ) ≥ (t − 3s)1/2/6.

In the proof of Theorem 5, we use the following simple lemma:

Lemma 3. Let E : y2 = x3 + Ax + B be an elliptic curve over Fp with A �= 0
and B �= 0. Let F (X) ∈ Fp[X] be a non-constant polynomial with F (X) �= X.
Then there exists α ∈ Fp such that ψ2

2(F (α)) = 0 and ψ2
2(α) �= 0.

Proof. There are exactly three distinct zeros α1, α2, α3 ∈ Fp of ψ2
2(X). For all

index i ∈ {1, 2, 3}, there exists at least one βi ∈ Fp such that F (βi) = αi,
because F is not a constant polynomial. Since for all i, j ∈ {1, 2, 3}, i �= j, we
have αi �= αj , then the system F (X) = αi and F (X) = αj has no solution. It
follows that the polynomial ψ2

2(F (X)) has at least three different zeros.
Let d denote the degree of F and let us suppose that there does not exist

α ∈ Fp such that ψ2
2(F (α)) = 0 and ψ2

2(α) �= 0. Then we have that ψ2
2(F (X))

has exactly three zeros which are the zeros of ψ2
2(X). If d = 1, then it will

imply that F (X) = X which is impossible. If d ≥ 2, for all i ∈ {1, 2, 3}, the
equation F (X) = αi has exactly one solution γi of multiplicity d which is one
of {α1, α2, α3}. Then γ1 and γ2 are the zeros of the (d − 1)-derivative of F (X)
which is of degree 1 and this is impossible because γ1 �= γ2. Hence in all cases,
we obtain a contradiction. So there exists α ∈ Fp such that: ψ2

2(F (α)) = 0 and
ψ2
2(α) �= 0.

Proof (Theorem). Let R = {(n+x) mod t : n ∈ A}. Then R ⊆ Ft and �R = t−s.
The equation F (Vx(n)) = Vx(n + 1) then becomes:

F

(
X

([
1
n

]
P

))
= X

([
1

n + 1

]
P

)
,

for all n ∈ R. Denoting xk = X([k]P ) = X([k mod t]P ) and considering the set
T = {n ∈ R/n/2, n + 1 ∈ R}, we have
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F
(
x 2

n

)
= F

(
x 1

n/2

)
= x 1

n/2+1
= x 2

n+2
=

θ2(x 1
n+2

)

ψ2
2(x 1

n+2
)

=
θ2(F (x 1

n+1
))

ψ2
2(F (x 1

n+1
))

=
θ2(F (F (x 1

n
)))

ψ2
2(F (F (x 1

n
)))

,

hence we have

F

(
θ2(x 1

n
)

ψ2
2(x 1

n
)

)
=

θ2(F (F (x 1
n
)))

ψ2
2(F (F (x 1

n
)))

, for alln ∈ T.

Finally, we consider the polynomial

H(X) = ψ2d0
2 (X)ψ2

2(F (F (X)))
(

F

(
θ2(X)
ψ2
2(X)

)
− θ2(F (F (X)))

ψ2
2(F (F (X)))

)
.

The polynomial H(X) has at least �T/2 zeros. We have F (F (X)) �= X and
by Lemma 3, it will imply that there exists α ∈ Fp such that ψ2

2(F (F (α))) = 0
and ψ2

2(α) �= 0. Hence, we have H(α) = −θ2(F (F (α)))ψ2d0
2 (α) �= 0, since θ2(X)

and ψ2
2(X) have no common zeros. Therefore, H(X) is a non-zero polynomial

and deg(H) ≤ 9d20. Then we get that 9d20 ≥ �R/2 and the result follows. 
�

6 Conclusion

We studied the distribution of the Dodis-Yampolskiy pseudo-random function
values over finite fields and over elliptic curves. We also proved lower bounds
on the degree of polynomials interpolating the values of these functions in this
two settings of practical interest. As future works, it would be interesting to
study the distribution of k-tuples (Vx(m), . . . , Vx(m + k))m and to study the
linear complexity and minimal polynomials of the sequence generated by the
Dodis-Yampolskiy functions over finite fields and over elliptic curves.

Acknowledgments. The authors would like to thank the reviewers for their detailed
comments and suggestions for the manuscript. The authors were supported in part by
the French ANR JCJC ROMAnTIC project (ANR-12-JS02-0004) and by the Simons
foundation Pole PRMAIS.

A Proof of Proposition 1

The classical Weil bound for exponential sums can be found in [Wei48,NW00].

Lemma 4. Let F (x) be a non constant polynomial in Fq[x] such that F (x) �=
h(x)p − h(x) for any h(x) ∈ Fq(x). We have

∣∣∣∣∣∣

∑

x∈Fq

ψ(F (x))

∣∣∣∣∣∣
≤ (deg(F ) − 1)q1/2
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We deduce the following simple lemma:

Lemma 5. For any pairwise distinct positive integers 1 ≤ r1, . . . , rυ ≤ R, we
have

max
(a1,...,aυ)∈F

υ
pr

(a1,...,aυ) �=(0,...,0)

∣∣∣∣∣

t∑

n=1

ψ

(
υ∑

i=1

aig
rin

)∣∣∣∣∣ ≤ Rq1/2.

Proof. Let s = (q − 1)/t. We have g = θs, where θ is a primitive root in Fq and

t∑

n=1

ψ

(
υ∑

i=1

aig
rin

)
=

t∑

n=1

ψ

(
υ∑

i=1

aiθ
srin

)
=

1
s

q−1∑

n=1

ψ

(
υ∑

i=1

aiθ
srin

)

=
1
s

⎛

⎝
∑

x∈Fq

ψ

(
υ∑

i=1

aix
sri

)
− 1

⎞

⎠

Applying Lemma 4, we obtain:

max
(a1,...,aυ)∈F

υ
pr

(a1,...,aυ) �=(0,...,0)

∣∣∣∣∣

t∑

n=1

ψ

(
υ∑

i=1

aig
rin

)∣∣∣∣∣ ≤ 1
s
((Rs − 1)q1/2 + 1) ≤ Rq1/2.


�
Proof (Proposition 1). For any integer k ≥ 2, we have

Sa,b
k =

∑

n1,...,nk∈Z
∗
t

ψ

⎛

⎝a

k∑

j=1

g1/nj

⎞

⎠ et

⎛

⎝b

k∑

j=1

nj

⎞

⎠ .

For m ∈ Zt, we collect together the terms with n1 + · · ·+nk ≡ m mod t, getting:

|Sa,b|k ≤
∑

m∈Zt

∣∣∣∣∣∣∣∣

∑

n1,...,nk∈Z
∗
t

n1+···+nk≡m mod t

ψ

⎛

⎝a

k∑

j=1

g1/nj

⎞

⎠

∣∣∣∣∣∣∣∣
.

By the Cauchy inequality, we can upper-bound |Sa,b|2k by

t
∑

m∈Zt

∣∣∣∣∣∣∣∣

∑

n1,...,nk∈Z
∗
t

n1+···+nk≡m mod t

ψ

(
a

k∑

j=1

g1/nj

)
∣∣∣∣∣∣∣∣

2

= t
∑

(n1,...,n2k)∈Nk

ψ

(
a

2k∑

j=1

(−1)jg1/nj

)

where the outside summation is taken over the set of vectors

Nk = {(n1, . . . , n2k) ∈ (Z∗
t )

2k : n1 + · · · + n2k−1 ≡ n2 + n4 + · · · + n2k mod t)}.
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One can see that for any m ∈ N with gcd(m, t) = 1, we have

∑

(n1,...,n2k)∈Nk

ψ

⎛

⎝a

2k∑

j=1

(−1)jg1/nj

⎞

⎠ =
∑

(n1,...,n2k)∈Nk

ψ

⎛

⎝a

2k∑

j=1

(−1)jgm/nj

⎞

⎠ .

Let us fix some parameter Q with Q ≥ 2 log t. Let Q be the set of primes m ≤ Q
with gcd(m, t) = 1. Averaging over all m ∈ Q, we obtain

|Sa,b|2k ≤ t

�Q
∑

m∈Q

∑

(n1,...,n2k)∈Nk

ψ

⎛

⎝a
2k∑

j=1

(−1)jgm/nj

⎞

⎠ .

The number w(t) of prime divisors of t satisfies w(t) ≤ (1+o(1))(log t)/(log log t)
(which can be seen from the trivial inequality w(t)! ≤ t and the Stirling formula).
By the prime number theorem, we have (since Q ≥ 2 log t):

�Q ≥ (1 + o(1))
Q

log Q
− (1 + o(1))

log t

log(log t)
≥ 0.5

Q

log Q
,

provided that t is large enough. We have �Nk ≤ t2k−1. Using the Hölder inequal-
ity and then extending the region of summation, we obtain that for any integer
� ≥ 1, we have:

|Sa,b|4k� ≤ t2�

�Q2�
(�Nk)2�−1

∑

n1,...,n2k∈Z
∗
t

∣∣∣∣∣∣

∑

m∈Q
ψ

⎛

⎝a

2k∑

j=1

(−1)jgm/nj

⎞

⎠

∣∣∣∣∣∣

2�

� t4k�−2k+1 log2� Q

Q2�

t∑

n1,...,n2k=1

∣∣∣∣∣∣

∑

m∈Q
ψ

⎛

⎝a
2k∑

j=1

(−1)jgmnj

⎞

⎠

∣∣∣∣∣∣

2�

=
t4k�−2k+1 log2� Q

Q2l

t∑

n1,...,n2k=1

∑

m1,...,m2�∈Q
ψ

⎛

⎝a
2k∑

j=1

2�∑

h=1

(−1)j+hgmhnj

⎞

⎠

=
t4k�−2k+1 log2� Q

Q2�

∑

m1,...,m2�∈Q

∣∣∣∣∣

t∑

n=1

ψ

(
a

2�∑

h=1

(−1)hgmhn

)∣∣∣∣∣

2k

.

For O(�Q�)=O(Q� log−� Q) tuples (m1, . . . , m2�) ∈ Q2� such that the tuple of the
elements on the odd positions (m1, . . . , m2�−1) is a permutation of the elements
on the even positions (m2, . . . , m2�), we estimate the inner sum trivially as t.

For the remaining O((�Q)2�) = O(Q2�(log Q)−2�) tuples, we use the bound
of Lemma 5. Therefore,

|Sa,b|4k� � t4k�−2k+1 log2� Q

Q2l
(Q� log−� Qt2k + Q2� log−2� Q(Qq1/2)2k)

= t4k�−2k+1(Q−� log� Qt2k + Q2kqk).
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Taking Q = 2t2k/(2k+�)q−k/(2k+�)(log q)�/(2k+�) and if t ≥ q1/2(log q)2, one can
see that Q ≥ 2 log t and we obtain

|Sa,b|4k� � t4k�−(2k�−2k−�)/(2k+�)qk�/(2k+�)(log q)�/(2k+�)

and the result follows. 
�
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A Conjecture About Gauss Sums and Bentness
of Binomial Boolean Functions
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Abstract. In this note, the polar decomposition of binary fields of even
extension degree is used to reduce the evaluation of the Walsh trans-
form of binomial Boolean functions to that of Gauss sums. In the case
of extensions of degree four times an odd number, an explicit formula
involving a Kloosterman sum is conjectured, proved with further restric-
tions, and supported by extensive experimental data in the general case.
In particular, the validity of this formula is shown to be equivalent to a
simple and efficient characterization for bentness previously conjectured
by Mesnager.

Keywords: Boolean functions · Bent functions · Walsh spectrum ·
Exponential sums · Gauss sums · Kloosterman sums

1 Introduction

Bent functions are Boolean functions defined over an extension of even degree
and achieving optimal non-linearity. They are of both combinatorial and crypto-
graphic interest. Unfortunately, characterizing bentness of an arbitrary Boolean
function is a difficult problem, and even the less general question of provid-
ing simple and efficient criteria within infinite families of functions in a specific
polynomial form is still challenging.

For a Boolean function f defined over F2n with n = 2m and given in polyno-
mial form, a classical characterization for bentness is that its Walsh transform χ̂f

values are only 2±m. Nevertheless, such a characterization is neither concise nor
efficient: the best algorithm to compute the full Walsh spectrum has complexity
O(n2n), which is asymptotically optimal. Whence the need to restrict to func-
tions in a given form and to look for more efficient criteria. Unfortunately, only
a few infinite families of Boolean functions with a simple and efficient criterion
for bentness are known.

The most classical family is due to Dillon [7] and is made of monomial
functions:

fa(x) = Tr n
1

(

axr(2m−1)
)

,

where n = 2m, a ∈ F
∗
2n and r is co-prime with 2m + 1. Such functions are

bent (and even hyper-bent: for any r coprime with (2n − 1) the function fa(xr)
c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 143–159, 2016.
DOI: 10.1007/978-3-319-55227-9 11
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is also bent) if and only if the Kloosterman sum Km(a) associated with a is
equal to zero [3,7,15]. Not only does such a criterion gives a concise and elegant
characterization for bentness, but using the connection between Kloosterman
sums and elliptic curves [13,14] it also allows to check for bentness in polynomial
time [1,16]. Further results on Kloosterman sums involving p-adic arithmetic
[10,11,20] lead to even faster generation of zeros of Kloosterman sums and so of
(hyper-)bent functions.

Mesnager [18,19] proved a similar criterion for a family Boolean functions in
binomial form:

fa,b(x) = Tr n
1

(

axr(2m−1)
)

+ Tr 2
1

(

bx
2n−1

3

)

,

where n = 2m, a ∈ F
∗
2n , b ∈ F

∗
4 and r is co-prime with 2m + 1 (but also r = 3

which divides 2m +1 [17]). When the extension degree n is twice an odd number,
that is when m is odd, fa,b is (hyper-)bent if and only if Km(a) = 4. Moreover,
(hyper-)bent functions in this family can be quickly generated as techniques used
to generate zeros of Kloosterman sums can be transposed to the value 4 [9].

Unfortunately, the proof of the aforementioned characterization does not
extend to the case where m is even. Nevertheless, it is easy to show that Km(a) =
4 is still a necessary condition for fa,b to be bent in this latter case (but note
that fa,b can no longer be hyper-bent). Further experimental evidence gathered
by Flori et al. [9] supported the conjecture that it should also be a sufficient
condition: for m up to 16, fa,b is bent if and only if Km(a) = 4.

In this note, the polar decomposition of fields of even extension degree n =
2νm with m odd is used to reduce the evaluation of the Walsh transform of fa,b

at ω ∈ F
∗
2n to that of a Gauss sum of the form

∑

u∈U

ψn (bTr n
m (ωu)) χ

(

Tr n
1

(

au22
ν−1m−1

))

, (1)

where F
∗
2n is decomposed as F

∗
2n � U×F

∗
2m , ψn is a cubic multiplicative character

and χ a quadratic additive character.
In the case of extensions of degree four times an odd number, that is when n

is four times an odd number m, an explicit formula involving the Kloosterman
sum Kn/2(a) is proved for ω lying in the subfield F2n/2 , and conjectured and
supported by extensive experimental evidence when ω ∈ F2n . In particular, the
validity of this formula would prove the following conjecture for extensions of
degree four times an odd number (and give hope to prove the conjecture for n
of any 2-adic valuation):

Conjecture 1. Let n = 4m with m odd, a ∈ F
∗
2n/2 and b ∈ F

∗
4 . The function fa,b

is bent if and only if Kn/2(a) = 4.

2 Notation

2.1 Field Trace

Definition 1 (Field trace). For extension degrees m and n such that m divides
n, the field trace from F2n down to F2m is denoted by Tr n

m (x).
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2.2 Polar Decomposition

Definition 2 (Extension degrees). Let n ≥ 2 be an even integer and ν ≥ 1
denote its 2-adic valuation. We denote by mi for 0 ≤ i ≤ ν the integer n/2i, e.g.
m0 = n and mν = m in the introduction.

For 0 ≤ i < ν, the multiplicative group F
∗
2mi can be split using the so-called

polar decomposition

F
∗
2mi � Ui+1 × F

∗
2mi+1 ,

where Ui+1 ⊂ F
∗
2mi is the subgroup of (2mi+1 + 1)-th roots of unity and F

∗
2mi+1

the subgroup of (2mi+1 − 1)-th roots of unity. Repeating this construction yields
the following decomposition.

Lemma 1 (Polar decomposition). Let ν ≥ 1 and denote by U denote the
image of U1 × · · · × Uν within F

∗
2m0 . Then F

∗
2m0 decomposes as

F
∗
2m0 � U1 × · · · × Uν × F

∗
2mν

� U × F
∗
2mν .

2.3 Hilbert’s Theorem 90

Definition 3. For 1 ≤ i ≤ ν and j ∈ F2 , let T j
mi

be the set

T j
mi

=
{

x ∈ F2mi ,Tr mi
1

(

x−1
)

= j
}

of elements of F2mi whose inverses have trace j (defining 0−1 to be 0).

Hilbert’s Theorem 90 [8] implies that the function x �→ x + x−1 is 2-to-1
from Ui\ {1} to T 1

mi
and from F

∗
2mi \ {1} to T 0

mi
\ {0} (and both 0 and 1 are sent

onto 0).

2.4 Dickson Polynomials

Definition 4. We denote by D3 the third Dickson polynomial of the first kind
D3(x) = x3 + x.

A notable property of D3 is that D3(x + x−1) = x3 + x−3. It implies in
particular that D3 induces a permutation of T 0

m1
when m1 is odd and of T 1

m1

when m1 is even [8, Propositions 5, 6 and Theorem 7].

2.5 Characters

Definition 5 (Additive character). Denote by χ the non-principal quadratic
additive character of F2 .

Together with the field trace, χ can be used to construct all quadratic additive
characters of F2mi for any 0 ≤ i ≤ ν.
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Definition 6 (Multiplicative character). The non-principal cubic multi-
plicative character ψmi

of F2mi for any 0≤ i < ν is defined for x∈F2mi as

ψmi
(x) = x

2mi −1
3 .

Note that if x lies in a subextension, that is x ∈ F2mi+j with 0 ≤ i + j < ν,
then

ψmi
(x) = ψmi+j

(x)2
j

.

Remark that 3 divides 2mν + 1 and is coprime with 2mν − 1 and 2mi + 1 for
0 ≤ i < ν. Therefore the function x �→ x3 is a permutation of F

∗
2mν and Ui for

1 ≤ i < ν, and 3-to-1 on Uν . In particular, the multiplicative character ψm0 is
trivial everywhere on F

∗
2m0 but on Uν .

2.6 Walsh Transform

Definition 7. The Walsh transform of a Boolean function f at ω ∈ F2m0 is

χ̂f (ω) =
∑

x∈F2m0

χ (f(x) + Tr m0
1 (ωx)) .

It is well-known that a Boolean function f is bent if and only if its Walsh
transform only takes the values 2±m1 .

2.7 Kloosterman Sums

Definition 8. For a ∈ F2m1 , the Kloosterman sum Km1(a) is

Km1(a) =
∑

x∈F2m1

χ
(

Tr m1
1

(

ax + x−1
))

.

The following identities (proved using the map from Sect. 2.3) are well-known:
∑

u1∈U1

χ (Tr m0
1 (au1)) = 1 + 2

∑

t∈T 1
m1

χ (Tr m1
1 (at))

= 1 − 2
∑

t∈T 0
m1

χ (Tr m1
1 (at))

= 1 − Km1(a).

2.8 Cubic Sums

Definition 9. For a, b ∈ F2m1 , the cubic sum Cm1(a, b) is

Cm1(a, b) =
∑

x∈F2m1

χ
(

Tr m1
1

(

ax3 + bx
))

.
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The possible values of Cm1(a, b) were determined by Carlitz [2] together with
simple criteria involving a and b.

The most important consequence of Carlitz’s results in our context is that
Cm1(a, a) =

∑

x∈F2m1
χ (Tr m1

1 (aD3(x))) = 0 if and only if

– Tr m1
1 (α) = 0 for α ∈ F

∗
2m1 such that a = α3 when m1 is odd (in that case a

is always a cube),
– and when there exists α ∈ F

∗
2m1 such that a = α3 (that is a is a cube or

equivalently ψm1 (a) = 1) and Tr m1
2 (α) 	= 0 (that is the cube root’s half-trace

is non zero) when m1 is even.

Charpin et al. later deduced that both in the odd case [4] and in the even
case [5,6] these conditions are equivalent to Km1(a) ≡ 1 (mod 3).

For completeness, the other possible values for Cm1(a, a) when m1 is even
follow:

– When a is a cube and Tr m1
2 (α) = 0, then Cm1(a, a) = 2m2+1χ

(

Tr m1
1

(

u3
0

))

,
where u0 is any solution to u4 + u = α4, that is u0 =

∑(m2−3)/2
i=0 α42∗i+2

+ γ
for any γ ∈ F4 .

– When a is not a cube, then Cm1(a, a) = −2m2χ
(

Tr m1
1

(

au3
0

))

, where u0 is the
unique solution to u4 + u/a = 1, that is u0 = ψm1 (a)

∑m2−1
i=0 a4i

a(4i−1)/3.

Finally, Carlitz also proved the following result on Cm1(a, 0) when m1 = 2m2

is even:

Cm1(a, 0) =
{

(−1)m2+12m2+1 if ψm1 (a) = 1,
(−1)m22m2 if ψm1 (a) 	= 1.

2.9 Binomial Functions

The binomial Boolean functions fa,b studied in this note are defined over F2m0 .

Definition 10. For ν ≥ 1, a ∈ F
∗
2m0 and b ∈ F

∗
4 , we denote by fa,b the binomial

function

fa,b(x) = Tr m0
1

(

ax2m1−1
)

+ Tr 2
1 (bψm0 (x)) . (2)

We also define fa = fa,0 (corresponding to Dillon’s monomial) and gb(x) =
Tr 2

1 (bψm0 (x)).

3 Preliminaries

3.1 Field of Definition of the Coefficients

First notice that it is enough to know how to evaluate the Walsh transform of
functions fa,b for a ∈ F

∗
2m1 .

Lemma 2. Let a ∈ F
∗
2m0 be written as a = αã with α ∈ U1 and ã ∈ F

∗
2m1 using

the polar decomposition of F
∗
2m0 . Let α̃ ∈ U1 be a square root of α and β ∈ F

∗
4

be β = ψm0 (α)−1. Then

χ̂fa,b
(ω) = χ̂fã,βb

(α̃ω).
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Proof. Indeed, x �→ α̃x induces a permutation of F2m0 , α̃2m1−1 = α̃−2 = α−1,
and ψm0 (α̃) = ψm0 (α)−1, so that

χ̂fa,b
(ω) =

∑

x∈F2m0

χ (fa,b(x) + Tr m0
1 (ωx))

=
∑

x∈F2m0

χ (fa,b(α̃x) + Tr m0
1 (ωα̃x))

=
∑

x∈F2m0

χ (fã,βb(x) + Tr m0
1 (ωα̃x))

= χ̂fã,βb
(α̃ω).

From now on we can suppose that a ∈ F
∗
2m1 without loss of generality.

3.2 Polar Decomposition

The polar decomposition yields the following expression for fa,b.

Lemma 3. For ν ≥ 1, a ∈ F
∗
2m0 and b ∈ F

∗
4 , and x ∈ F

∗
2m0 , fa,b(x) is

fa,b(x) = fa,b(u) = fa(u1) + gb(uν). (3)

Proof. Notice that fa,b(x) = fa(x) + gb(x). Moreover fa is trivial on F
∗
2m1 and

gb is trivial everywhere but on Uν as noted in Sect. 2.5.

We now split the sum expressing the Walsh transform of fa,b at ω ∈ F2m0

using the polar decomposition of F
∗
2m0 as F

∗
2m0 � U × F

∗
2mν . We write x ∈ F

∗
2m0

as x = uy for u ∈ U , and y ∈ F
∗
2mν .

Lemma 4. For ν ≥ 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 , the Walsh transform of fa,b at

ω ∈ F2m0 is, for ω = 0:

χ̂fa,b
(0) = 1 + (2mν − 1)

∑

u∈U

χ (fa,b(u)) , (4)

and for ω 	= 0:

χ̂fa,b
(ω) = 1 −

∑

u∈U

χ (fa,b(u)) + 2mν

∑

u∈U,Tr
m0
mν (ωu)=0

χ (fa,b(u)) . (5)

Proof. Using the polar decomposition, the Walsh transform of fa,b at ω ∈ F2m0

can indeed be written

χ̂fa,b
(ω) =

∑

x∈F2m0

χ (fa,b(x) + Tr m0
1 (ωx))

= 1 +
∑

x∈F
∗
2m0

χ (fa,b(x) + Tr m0
1 (ωx))

= 1 +
∑

(u,y)∈U×F
∗
2mν

χ (fa,b(uy)) χ (Tr m0
1 (ωuy)) .
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Note that 3 divides 2mν +1 so that 2m0−1
3 = (2mν −1) 2

mν +1
3

∏ν−1
i=1 (2mi +1) and

fa,b(uy) = fa,b(u). Therefore

χ̂fa,b
(ω) = 1 +

∑

u∈U

χ (fa,b(u))
∑

y∈F
∗
2mν

χ
(

Tr mν
1

(

Tr m0
mν

(ωu) y
))

.

The sum ranging over F
∗
2mν is equal to −1 when Tr m0

mν
(ωu) 	= 0 and 2m1 − 1

when Tr m0
mν

(ωu) = 0. In particular, when ω = 0, the trace is 0 for all u ∈ U .

To go further, the cases ν = 1 and ν > 1 have to be dealt with separately.

4 Odd Case

In this section, it is supposed that ν = 1, i.e. m1 is odd and U = U1, which is
the case that Mesnager settled [18,19] with the following proposition. We recall
the main ingredients and results of her work as similar ideas will be used for the
even case.

Proposition 1 [18,19]. For ν = 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 , the Walsh transform

of fa,b at ω ∈ F2m0 is, for ω = 0:

χ̂fa,b
(0) =

{

1 + 2m1−1
3 (1 − Km1(a) − 4Cm1(a, a)) if b = 1,

1 + 2m1−1
3 (1 − Km1(a) + 2Cm1(a, a)) if b 	= 1,

(6)

and for ω 	= 0:

χ̂fa,b(ω) =

{
1 + 2m1χ

(
fa,b(w

−1
1 )
)

+ 1
3

(1 − Km1(a) − 4Cm1(a, a)) if b = 1,
1 + 2m1χ

(
fa,b(w

−1
1 )
)

+ 1
3

(1 − Km1(a) + 2Cm1(a, a)) if b �= 1.
(7)

Proof. For ω 	= 0, Tr m0
m1

(ωu1) = 0 if and only if u1 = w−1
1 , so that

∑

u1∈U1,Tr
m0
m1 (ωu1)=0

χ (fa,b(u1)) = χ
(

fa,b(w−1
1 )

)

.

The only difficulty lies in the computation of
∑

u1∈U1
χ (fa,b(u1)) which can

be done by splitting the sum on U1 according to the value of ψm1 (u1):
∑

u1∈U1

χ (fa,b(u1)) =
∑

u1∈U1

χ (fa(u1)) χ (gb(u1))

=
∑

u1∈U1,bψm0 (u1)=1

χ (fa(u1)) −
∑

u1∈U1,bψm0 (u1) �=1

χ (fa(u1))

= 2
∑

u1∈U1,bψm0 (u1)=1

χ (fa(u1)) −
∑

u1∈U1

χ (fa(u1)) .

As noted in Sect. 2.7 the second sum is
∑

u1∈U1

χ (fa(u1)) = 1 − Km1(a).
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As far as the first one is concerned, let us denote it S1(a, b, ω). As m1 is odd,
using properties of the Dickson polynomial D3 given in Sect. 2.4, one can show
that for b = 1:

S1(a, b, ω) =
1
3

(1 − Km1(a) + 2Cm1(a, a)) .

As S1(a, b, ω) takes the same value for both b 	= 1, one deduces that for b 	= 1:

S1(a, b, ω) =
1
3

(1 − Km1(a) − Cm1(a, a)) .

Results of Carlitz [2] on Cm1(a, a) when m1 is odd yield a concise and easy
to compute the Walsh transform of fa,b at any ω ∈ F2m0 .

Together with Charpin et al. results [5,6] and the Hasse–Weil bound on
Km1(a), these formulae prove that fa,b is (hyper-)bent if and only if Km1(a) = 4
as was noted by Mesnager [18,19].

Theorem 1 [18,19]. For ν = 1, a ∈ F
∗
2m and b ∈ F

∗
4 , the function fa,b is bent

if and only if Km1(a) = 4.

5 Even Case

5.1 General Extension Degree

In this section, it is supposed that ν > 1, i.e. both m0 and m1 are even. The
main difference with the case ν = 1 is that 3 does now divide 2m1 − 1 (in fact
2mν + 1) rather than 2m1 + 1, and ψm0 (u) does not depend on the value of u1

(but only on that of uν).
In particular, the computation of

∑

u∈U fa,b(u) becomes straightforward.

Lemma 5. For ν > 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 ,

∑

u∈U

χ (fa,b(u)) = −22
ν−1mν − 1

3 (2mν − 1)
(1 − Km1(a)) . (8)

Proof. Splitting U as U � U1 × · · · × Uν , the sum can be rewritten:

∑

u∈U

χ (fa,b(u)) =
ν−1
∏

j=2

(2mj + 1)
∑

u1∈U1

χ (fa(u1))
∑

uν∈Uν

χ (gb(uν))

=
ν−1
∏

j=2

(2mj + 1)
2mν + 1

3
(1 − Km1(a))

∑

c∈F
∗
4

χ
(

Tr 2
1 (bc)

)

= −
ν−1
∏

j=2

(2mj + 1)
2mν + 1

3
(1 − Km1(a)) .
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Finally, using the identity
(

22
jmν + 1

) (

22
jmν − 1

)

=
(

22
j+1mν − 1

)

, the prod-
uct of the (2mj + 1)’s is

ν
∏

j=2

(2mj + 1) =
ν

∏

j=2

(

22
ν−jmν + 1

)

=
22

ν−1mν − 1
2mν − 1

.

The value of the Walsh transform at ω = 0 given by Eq. (4) can now be
simplified.

Lemma 6. For ν > 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 , the Walsh transform of fa,b at

ω = 0 is

χ̂fa,b
(0) = 1 − 2m1 − 1

3
(1 − Km1(a)) . (9)

As noted by Mesnager [18,19], the Hasse–Weil bound on Km1(a) implies
that, if fa,b is bent, then χ̂fa,b

(0) = 2m1 and Km1(a) = 4.

Proposition 2 [18,19]. For ν > 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 , if the function fa,b is

bent, then Km1(a) = 4.

Finally, the value of the Walsh transform at ω 	= 0 given by Eq. (5) is simpli-
fied as follows.

Lemma 7. For ν > 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 , the Walsh transform of fa,b at

ω ∈ F
∗
2m0 is

χ̂fa,b
(ω) = 1 +

22
ν−1mν − 1

3 (2mν − 1)
(1 − Km1(a)) + 2mν

∑

u∈U,Tr
m0
mν (ωu)=0

χ (fa,b(u)) .

(10)

5.2 Descending to an Odd Degree Extension

To simplify further Eq. (10), the sum over u ∈ U can be split into smaller sums
according to the extension F2mi (with 1 ≤ i ≤ ν) where Tr m0

mi
(uω) becomes 0,

giving the following expression.

Proposition 3. For ν > 1, a ∈ F
∗
2m1 and b ∈ F

∗
4 , and ω ∈ F

∗
2m0 , denote by

Sν(a, b, ω) the sum

Sν(a, b, ω) =
∑

Tr
m0
mν−1 (uω) �=0,Tr

m0
mν (uω)=0,bψm0 (uν)=1

χ (fa(u1)) . (11)

The Walsh transform of fa,b at ω 	= 0 is

χ̂fa,b
(ω) = 1 − 2 · 2(2ν−1−1)mν − 1

3
(1 − Km1(a))

−
2 · 2(2ν−1−1)mν

(

2mν−1 − 1
)

3
χ (fa(w1))

+ 2mν+1Sν(a, b, ω). (12)
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Proof. The sum over U can be divided into subsums σi over Ui:
∑

u∈U,Tr
m0
mν (ωu)=0 χ (fa,b(u)) =

∑ν
i=1 σi with

σi =
∑

Tr m0
mi−1

(u1···ui−1w1···wi−1) �=0,

Tr m0
mi

(u1···uiw1···wi)=0,

ui+1∈Ui+1,...,uν∈Uν

χ (fa(u1)) χ (gb(uν)) .

The first sum σ1 can be simplified as Eq. (8):

σ1 =
ν−1
∏

j=2

(2mj + 1) χ
(

fa(w−1
1 )

)
∑

uν∈Uν

χ (gb(uν))

= −
ν−1
∏

j=2

(2mj + 1)
2mν + 1

3
χ

(

fa(w−1
1 )

)

= −22
ν−1mν − 1

3 (2mν − 1)
χ

(

fa(w−1
1 )

)

. (13)

The last sum σν can be split according to the value of ψm0 (uν) as in Sect. 4:

σν = 2
∑

Tr m0
mν−1

(uω) �=0,

Tr m0
mν

(uω)=0,

bψm0 (uν)=1

χ (fa(u1)) −
∑

Tr m0
mν−1

(uω) �=0,

Tr m0
mν

(uω)=0

χ (fa(u1)) , (14)

where the first term is 2Sν(a, b, ω) and the second term is

−
∑

Tr
m0
mν−1 (uω)�=0,

Tr
m0
mν (uω)=0

χ (fa(u1)) = −
ν−1∏
j=2

2mj
∑

u1 �=w−1
1

χ (fa(u1))

= −
ν−1∏
j=2

2mj
(
1 − χ

(
fa(w−1

1 )
)− Km1(a)

)

= −22(2ν−2−1)mν
(
1 − χ

(
fa(w−1

1 )
)− Km1(a)

)
, (15)

as the product of the 2mj ’s is

ν−1
∏

j=2

2mj =
ν−1
∏

j=2

22
ν−jmν = 22

ν−2∑ν−3
j=0 2−jmν = 22

ν−22(1−2−ν+2)mν . (16)

For ν > 2, the intermediate sums σi for 2 < i < ν are:

σi =
i−1
∏

j=2

2mj

ν−1
∏

j=i+1

(2mj + 1)
∑

u1 �=w−1
1

χ (fa(u1))
∑

uν∈Uν

χ (gb(uν))

= −
i−1
∏

j=2

2mj

ν−1
∏

j=i+1

(2mj + 1)
2mν + 1

3
(

1 − χ
(

fa(w−1
1 )

)

− Km1(a)
)

.
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Fortunately, a simpler expression for the sum of the products of 2mj ’s and
(2mj + 1)’s for 1 < j < ν can be devised. Indeed, for k ≥ 3 and any rational
number m, the sum that we denote by Σ(m, k) is

Σ(m, k) =
k−1
∑

i=2

⎛

⎝

i−1
∏

j=2

22
k−jm

k
∏

j=i+1

(

22
k−jm + 1

)

⎞

⎠ =
22(2

k−2−1)m − 1
2m − 1

. (17)

The proof goes by induction on k. For k = 3, the identity states 2m +1 = 22m−1
2m−1 .

Let us now suppose that Eq. (17) is verified up to some k ≥ 3 for all rational
numbers m’s. The sum for k + 1 is

Σ(m, k + 1) = (2m + 1) Σ(2m, k) + (2m + 1)
k−1
∏

j=2

22
k−j(2m)

By induction and a variation of Eq. (16), the identity is proved for k + 1:

Σ(m, k + 1) = (2m + 1)
22(2

k−2−1)(2m) − 1
22m − 1

+ (2m + 1) 24(2
k−2−1)m

=
24(2

k−2−1)m − 1
2m − 1

+

(

22m − 1
)

24(2
k−2−1)m

2m − 1

=
22(2

k−1−1)m − 1
2m − 1

.

Setting k = ν and m = mν in Eq. (17) yields

ν−1
∑

i=2

σi = −22(2
ν−2−1)mν − 1

3 (2mν − 1)
(

1 − χ
(

fa(w−1
1 )

)

− Km1(a)
)

. (18)

Note that for ν = 2, both sides of the above equality are zero. Therefore, for
any ν > 1, Eqs. (13), (14), (15) and (18), lead to the following expression for the
Walsh transform at ω 	= 0:

χ̂fa,b
(ω) = 1 +

22
ν−1mν − 1

3 (2mν − 1)
(1 − Km1(a))

− 2mν
22

ν−1mν − 1
3 (2mν − 1)

χ
(

fa(w−1
1 )

)

− 2mν
22(2

ν−2−1)mν − 1
3 (2mν − 1)

(

1 − χ
(

fa(w−1
1 )

)

− Km1(a)
)

− 2mν 22(2
ν−2−1)mν

(

1 − χ
(

fa(w−1
1 )

)

− Km1(a)
)

+ 2mν+1Sν(a, b, ω),

which gives the announced expression by gathering independently the terms in
χ

(

fa(w−1
1 )

)

and (1 − Km1(a)).
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Unfortunately, making the remaining sum Sν(a, b, ω) explicit is a hard prob-
lem. Doing so is equivalent to evaluating a Gauss sum as in Eq. (1): an expo-
nential sum involving a multiplicative character and an additive character. In
the next section, we manage to tackle the case ν = 2 when ω ∈ F

∗
2m1 (that is

w1 = 1) and conjecture a partial formula when ω 	∈ F
∗
2m1 .

5.3 Four Times an Odd Number

From now on, it is supposed that ν = 2, i.e. m0 is four times the odd number m2.
For Tr m0

m2
(uω) to be zero with u1 	= w−1

1 , u2 must be the polar part of
(

ω2Tr m0
m1

(u1ω1)
)−1 so that the sum of Eq. (11) becomes

S2(a, b, ω) =
∑

u1 �=w−1
1 ,ψm0(w2Tr

m0
m1 (u1w1))=b

χ
(

Tr m0
1

(

au−2
1

))

. (19)

The Subfield Case. We now restrict to the case w1 = 1, that is ω ∈ F
∗
2m1

rather than ω ∈ F
∗
2m0 .

Lemma 8. For a ∈ F
∗
2m1 and b ∈ F

∗
4 , and ω ∈ F

∗
2m1 , define γ ∈ F

∗
4 by γ =

bψm1 (w2). Then

S2(a, b, ω) = 2
∑

t∈T 1
m1

,ψm1 (t)=γ

χ (Tr m1
1 (at)) . (20)

Proof. As w1 = 1, both the multiplicative and additive characters act on the
same inputs so that we can use the function u1 �→ u1 + u−1

1 to transform the
sum over U1 of Eq. (19) into a sum over T 1

m1
:

S2(a, b, ω) =
∑

u1 �=1,ψm1(u2
1+u−2

1 )=bψm1 (w2)

χ
(

Tr m1
1

(

a
(

u−2
1 + u2

1

)))

=
∑

u1 �=1,ψm1(u1+u−1
1 )=bψm1 (w2)

χ
(

Tr m1
1

(

a
(

u1 + u−1
1

)))

= 2
∑

t∈T 1
m1

,ψm1 (t)=bψm1 (w2)

χ (Tr m1
1 (at)) .

Remark that the sum in Eq. (20) can be seen as a first step toward gener-
alizing the sum computed in Sect. 4 in the odd case: rather than involving u1

directly, it involves its trace t = Tr m0
m1

(u1).
As is customary, the sum over T 1

m1
can be evaluated using sums over all

of F2m1 :

S2(a, b, ω) =
∑

x∈F
∗
2m1 ,ψm1 (x)=γ

χ (Tr m1
1 (ax)) −

∑
x∈F

∗
2m1 ,ψm1 (x)=γ

χ
(
Tr m1

1

(
ax + x−1)) .

(21)
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The first sum is easily seen to be a cubic sum whereas the computation of the
second sum is more involved.

Proposition 4. For ν = 2, a ∈ F
∗
2m1 and γ ∈ F

∗
4 . Define α ∈ F

∗
4 by α =

ψm1 (a). The following equality holds:

∑

x∈F
∗
2m1 ,ψm1 (x)=γ

χ (Tr m1
1 (ax)) =

{

2m2+1−1
3 if γ = α−1,

−2m2−1
3 if γ 	= α−1.

(22)

Proof. Let c ∈ F
∗
2m1 be such that ψm1 (c) = γ. We make the change of variables

x = cx to transform the sum into a cubic sum:
∑

x∈F
∗
2m1 ,ψm1 (x)=γ

χ (Tr m1
1 (ax)) =

∑

x∈F
∗
2m1 ,ψm1 (x)=ψm1 (c)

χ (Tr m1
1 (ax))

=
∑

x∈F
∗
2m1 ,ψm1 (x)=1

χ (Tr m1
1 (acx))

=
1
3

∑

x∈F
∗
2m1

χ
(

Tr m1
1

(

acx3
))

=
1
3

(Cm1(ac, 0) − 1) .

Carlitz’s results [2] give explicit values for this cubic sum when m1 is even and
m2 is odd.

Proposition 5. For ν = 2, a ∈ F
∗
2m1 and γ ∈ F

∗
4 . Define α ∈ F

∗
4 by α =

ψm1 (a). The following equality holds:

∑
x∈F

∗
2m1 ,ψm1 (x)=γ

χ
(
Tr m1

1

(
ax + x−1)) =

{
1
3

(2Cm1(a, a) + Km1(a) − 1) if γ = α,
1
3

(−Cm1(a, a) + Km1(a) − 1) if γ �= α.

(23)

Proof. First remark that summing over the three possible values of γ yields
∑

x∈F
∗
2m1

χ
(

Tr m1
1

(

ax + x−1
))

= Km1(a) − 1.

Moreover, making the change of variable x = (ax)−1 shows that the sum takes
the same value for γ and α−1γ−1. In particular, it takes the same value for αβ
and αβ2, where β ∈ F

∗
4 is a primitive third root of unity, that is for the elements

of F
∗
4 different from α, and this value can be deduced from the value for γ = α

which we now compute.
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Denote by r a square root of a. The change of variable x = rx and properties
of the Dickson polynomial D3 when m1 is even show that for γ = α = ψm1

(

r−1
)

:∑
x∈F

∗
2m1 ,ψm1 (x)=α

χ
(
Tr m1

1

(
ax + x−1)) =

∑
x∈F

∗
2m1 ,ψm1 (x)=1

χ
(
Tr m1

1

(
r
(
x + x−1)))

=
1

3

∑
x∈F

∗
2m1

χ
(
Tr m1

1

(
r
(
x3 + x−3)))

=
1

3

∑
x∈F

∗
2m1

χ
(
Tr m1

1

(
rD3(x + x−1)

))

=
1

3

⎛
⎜⎝2

∑
t∈T 0

m1

χ (Tr m1
1 (rD3(t))) − 1

⎞
⎟⎠

=
1

3

⎛
⎜⎝2Cm1(r, r) − 2

∑
t∈T 1

m1

χ (Tr m1
1 (rt)) − 1

⎞
⎟⎠

=
1

3
(2Cm1(r, r) + Km1(r) − 1)

=
1

3
(2Cm1(a, a) + Km1(a) − 1) .

Equations (22) and (23) give the following expression for S2(a, b, ω).

Theorem 2. For ν = 2, a ∈ F
∗
2m1 and b ∈ F

∗
4 , and ω ∈ F

∗
2m1 , let γ = bψm1 (w2).

Then the sum S2(a, b, ω) is

S2(a, b, ω) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
3

(

2m2+1 − 2Cm1(a, a) − Km1(a)
)

if γ = α and γ = α−1,
1
3 (−2m2 − 2Cm1(a, a) − Km1(a)) if γ = α and γ 	= α−1,
1
3

(

2m2+1 + Cm1(a, a) − Km1(a)
)

if γ 	= α and γ = α−1,
1
3 (−2m2 + Cm1(a, a) − Km1(a)) if γ 	= α and γ 	= α−1.

(24)

Carlitz’s results [2] recalled in Sect. 2.8 can be used to make the cubic sum
Cm1(a, a) explicit. In the particular case where Km1(a) ≡ 1 (mod 3), which is
equivalent to Cm1(a, a) = 0 and implies that a is a cube, the expression for
S2(a, b, ω) gets very concise, as does Eq. (12) for the Walsh transform.

Corollary 1. For ν = 2, a ∈ F
∗
2m1 with Km1(a) ≡ 1 (mod 3) and b ∈ F

∗
4 , and

ω ∈ F
∗
2m1 , let γ = bψm1 (w2). Then the sum S2(a, b, ω) is

S2(a, b, ω) =
2m2+1 − Km1(a)

3
− Tr 2

1 (γ) 2m2 . (25)

and the Walsh transform at ω 	= 0 is

χ̂fa,b
(ω) = χ

(

Tr 2
1 (γ)

)

2m1 +
4 − Km1(a)

3
. (26)
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Note that Corollary 1 shows that for ω ∈ F
∗
2m1 the Walsh transform of fa,b at ω

is that of a bent function if and only if Km1(a) = 4.

5.4 A Conjectural General Formula

The techniques used in the previous section do not apply to the general case
where w1 	= 1, i.e. ω ∈ F

∗
2m0 . The main reason being that the multiplicative

and additive characters of F2m1 act on different values, e.g. r = Tr m0
m1

(w1u1),
or s = Tr m0

m1

(

w−1
1 u1

)

, for one of them, and t = Tr m0
m1

(u1) for the other one.
Considering v = Tr m0

m1
(w1), these values are related by r + s = vt. Moreover,

the sum S2(a, b, ω) takes the same value for w1 and w−1
1 , so there is hope to

introduce enough symmetry to reduce the case w1 	= 1 to the case w1 = 1.
Unfortunately, we could not devise a way to do so.

Yet, experimental evidence presented in more details in Sect. 5.5 suggests
that the following conjecture, which relates the value of S2(a, b, ω) for w1 = 1
and w1 	= 1, is true.

Conjecture 2. For ν = 2, a ∈ F
∗
2m1 with Km1(a) ≡ 1 (mod 3) and b ∈ F

∗
4 , and

ω ∈ F
∗
2m0 , let γ = bψm1 (w2). There exists a Boolean function ha,b(ω) such that

the sum S2(a, b, ω) is

S2(a, b, ω) =
2m2+1 − Km1(a)

3
− 2fa(w−1

1 )
2m2+1 − 1

3
− ha,b(ω)χ

(
fa(w−1

1 )
)
2m2 .

(27)

The Walsh transform at ω 	= 0 is then

χ̂fa,b
(ω) = χ

(

ha,b(ω)fa(w−1
1 )

)

2m1 +
4 − Km1(a)

3
. (28)

In particular, this conjecture implies Conjecture 1: if Km1(a) = 4, then fa,b is
bent. (And Corollary 1 already does so when ω ∈ F

∗
2m1 .)

5.5 Experimental Data

The computation of S2(a, b, ω) was implemented in C and assembly1, using AVX
extensions for the arithmetic of F

∗
2m0 , PARI/GP [21] to compute the Klooster-

man sums Km1(a), and Pthreads [12] for parallelization.
The computational cost of verifying Conjecture 2 can be somewhat leveraged

using elementary properties of S2(a, b, ω):

– it only depends on the cyclotomic class of a ∈ F
∗
2m1 ,

– it is the same for w1 and w−1
1 ,

– the inner value can be computed at the same time for u1 and u−1
1 .

1 The source code is available at https://github.com/jpflori/expsums.

https://github.com/jpflori/expsums
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Whatsoever, there are:

– 3 values of γ ∈ F
∗
4 ,

– Õ(2m1) values of a ∈ F
∗
2m1 ,

– 2m1−1 values of w1 ∈ U1\ {1},
– Õ(2m1) operations in F2m0 for each triple (γ, a, w1).

Therefore, checking the conjectured formula for S2(a, b, ω) over F2m0 has time
complexity Õ(23m1) which quickly becomes overcostly (and is comparable to
that of computing the Walsh spectrum for every cyclotomic class of a ∈ F

∗
2m1

which has time complexity Õ(23m1) as well but space complexity Õ(2m1)).
Still, we checked Conjecture 2:

– completely for m2 = 3, 5, 7, 9,
– for i up to 3405 where a = zi and z is a primitive element of F2m1 for m2 = 11.

Finally, assuming Km1(a) ≡ 1 (mod 3) and Conjecture 2 is correct, Parse-
val’s equality yields the following relation:

∑

x∈F
∗
2m0

χ
(

ha,b(ω)fa(w−1
1 )

)

=
2m1 − 1

3
(Km1(a) − 1)

= χ̂fa,b
(0) − 1.

This is supported by experimental evidence that there are exactly 2m1−1 +
(5/6) (Km1(a) − 4)+3 (respectively 2m1−1 − (1/6) (Km1(a) − 4)) values of w1 ∈
U1 such that ha,b(ω)fa(w−1

1 ) is zero when γ = 1 (respectively γ 	= 1).

6 Further Research and Open Problems

Hopefully, Conjecture 2 can be proved using similar techniques as the ones used
by Mesnager [18,19] and in this note. Otherwise, more involved techniques could
be tried, e.g. considering a whole family of sums as a whole and their geometric
structure. Another possibility would be to directly treat the general Gauss sums
of Eqs. (1) and (11) without focussing on the case ν = 2.
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Abstract. In this paper we prove that generalized bent (gbent) func-
tions defined on F

n
2 with values in Z2k are regular, and show connections

between the (generalized) Walsh spectrum of these functions and their
components. Moreover we analyze generalized bent and semibent func-
tions with values in Z16 in detail, extending earlier results on gbent
functions with values in Z4 and Z8.

1 Introduction

Let Vn be an n-dimensional vector space over F2 and for an integer q, let Zq be
the ring of integers modulo q. For a generalized Boolean function f from Vn to
Zq the generalized Walsh-Hadamard transform is the complex valued function

H(q)
f (u) =

∑

x∈Vn

ζf(x)
q (−1)〈u,x〉, ζq = e

2πi
q ,

where 〈u,x〉 denotes a (nondegenerate) inner product on Vn (we shall use ζ,
Hf , instead of ζq, respectively, H(q)

f , when q is fixed). Throughout, we identify
Vn with the vector space F

n
2 of n-tuples over F2, and we use the regular scalar

(inner) product 〈u,x〉 = u · x. We denote the set of all generalized Boolean
functions by GBq

n and when q = 2, by Bn.
We recall that for q = 2, where the generalized Walsh-Hadamard transform

of f reduces to the conventional Walsh-Hadamard transform

Wf (u) =
∑

x∈Vn

(−1)f(x)(−1)u·x,

a function f for which |Wf (u)| = 2n/2 for all u ∈ Vn is called a bent function.
Similarly, we say that function f : Vn → Zq is a generalized bent (gbent) if

The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

c© Springer International Publishing AG 2016 (outside the US)
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 160–173, 2016.
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|Hf (u)| = 2n/2 for all u ∈ Vn. Further recall that f ∈ Bn is called plateaued if
|Wf (u)| ∈ {0, 2(n+s)/2} for all u ∈ Vn for a fixed integer s depending on f (we
also call f then s-plateaued). If s = 1 (n must then be odd), or s = 2 (n must
then be even), we call f semibent. With this notation, a semibent function is an
s-plateaued Boolean function with smallest possible s > 0. Accordingly we call
a function f ∈ GBq

n, with q = 2k, k > 1, generalized semibent (gsemibent, for
short) if |Hf (u)| ∈ {0, 2(n+1)/2} for all u ∈ Vn, and more general, generalized
s-plateaued if |Hf (u)| ∈ {0, 2(n+s)/2} for all u ∈ Vn.

Let f : Vm → Zq. If 2k−1 < q ≤ 2k, we associate a unique sequence of
Boolean functions ai : Vm → F2, 1 ≤ i ≤ k, such that (the addition below is
in Zq)

f(x) = a1(x) + · · · + 2k−1ak(x), for all x ∈ Vm.

If q = 2k, following Carlet [1], we further define the generalized Gray map ψ(f) :
GBq

n → Bn+k−1 by ψ(f)(x, y1, . . . , yk−1) =
⊕k−1

i=1 ai(x)yi ⊕ ak(x).
Generalized bent functions were introduced in [7] in connection with appli-

cations in CDMA systems, and lately have attracted increasing attention, see
e.g. [2,3,8,9].

In [8,9] gbent functions f(x) = a1(x) + 2a2(x) in GB4
n and f = a1(x) +

2a2(x) + 22a3(x) in GB8
n were completely characterized in terms of properties

of the Boolean functions ai(x). In particular, relations between gbentness of f
and bentness of associated Boolean functions have been investigated. In [9] it
was moreover shown that f ∈ GB4

n, with f(x) = a1 + 2a2(x), a1, a2 ∈ Bn, is
gbent if and only if the Gray image ψ(f) is bent if n is odd, or semibent and
the associated a2 and a1 ⊕ a2 have complementary autocorrelation if n is even
(see [9] for the details). Currently one observes a lot of research activities on
gbent functions for general k, and we expect that many more general results
will be discovered in the near future. Our generalizations in Sect. 2, where we
analyze gbent functions in terms of their components, are some first results.
In particular we show that a gbent function in even dimension is an affine
space of bent functions and we decompose a gbent function in GB2k

n into two
gbent functions in GB2k−1

n . In Sect. 3 we analyze gbent functions in GB16
n in

detail.

2 Gbent Functions and Their Components

In accordance with the terminology for bent functions, we call a gbent function
f ∈ GBq

n regular, if Hf (u) = 2n/2ζ
f∗(u)
q for some function f∗ ∈ GBq

n. We start
with a theorem about the regularity of gbent functions, which is also of indepen-
dent interest. We prove the result by modifying a method of Kumar et al. [6].

Theorem 1. All gbent functions f ∈ GB2k

n are regular, except for n odd and
k = 2, in which case we have H4

f (u) = 2
n−1
2 (±1 ± i).

Proof. If k = 1, the result is known, as we are dealing with classical bent func-
tions. Let k ≥ 2. Let ζ = e

2πi

2k be a 2k-primitive root of unity. It is known that
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Z[ζ] is the ring of algebraic integers in the cyclotomic field Q(ζ). We recall some
facts from [6] (we change the notations slightly). The decomposition for the ideal
generated by 2 in Z[ζ] has the form 〈2〉 = P 2k−1

, where P = 〈1 − ζ〉 is a prime
ideal in Z[ζ]. The decomposition group

G2 = {σ in the Galois group of Q(ζ)/Q | σ(P ) = P}

contains also the conjugation isomorphism σ∗(z) = z−1 (Proposition 2 in [6]).

Observe that H(2k)
f (u)H(2k)

f (u) = 2n. Now, as in Property 7 of [6], observing
that our generalized Walsh transform is simply S(f, 2k−1u) (in the notations of

Kumar et al. [6]; u is a binary vector in our case), then H(2k)
f (u) and H(2k)

f (u)

will generate the same ideal in Z[ζ] and so, 2−n(H(2k)
f (u))2 is a unit, and conse-

quently, 2−n/2H(2k)
f (u) is an algebraic integer. Therefore, by Proposition 1 of [6]

(which, in fact, is an old result of Kronecker from 1857), 2−n/2H(2k)
f (u) must be

a root of unity. That alone would still not be enough to show regularity since
this root of unity may be in a cyclotomic field outside Q(ζ), however, that is

not the case here, since the Gauss quadratic sum G(2k) =
2k−1∑

i=0

ζi2 = 2k/2(1 + i)

and so,
√

2 ∈ Q(ζ), unless k = 2 (since then 1 + i 
∈ Q(ζ)). The first assertion is
shown for n even, as well as for n odd with k ≥ 3.

When n is odd and k = 2, then H(4)
f (u) =

∑
u∈Vn

if(u)(−1)u·x = a + bi, for

some integers a, b. Since f is gbent, with |H(4)
f (u)|2 = 2n we get the diophantine

equation a2 + b2 = 2n. If n is even, the only solutions are (a, b) = (±2n/2, 0), or
(0,±2n/2). If n is odd, the solutions are (a, b) = (±2�n/2�,±2�n/2�) (independent
choices of signs). The theorem is shown.

From the definition of a Boolean bent function via the Walsh-Hadamard
transform we immediately obtain the following equivalent definition, where we
denote the support of a Boolean function f by supp(f) := {x ∈ Vn : f(x) = 1}:
A Boolean function f : Vn → F2 is bent if and only if for every u ∈ Vn the
function fu(x) := f(x)⊕u ·x satisfies |supp(fu)| = 2n−1 ±2n/2. Our next target
is to show an analog description for gbent functions. We use the following lemma.

Lemma 1. Let q = 2k, k > 1, ζ = e2πi/q. If ρl ∈ Q, 0 ≤ l ≤ q − 1 and∑q−1
l=0 ρlζ

l = r is rational, then ρj = ρ2k−1+j, for 1 ≤ j ≤ 2k−1 − 1.

Proof. Since ζ2
k−1+l = −ζl for 0 ≤ l ≤ 2k−1 − 1, we can write every element z

of the cyclotomic field Q(ζ) as

z =
2k−1−1∑

l=0

λlζ
l, λl ∈ Q, 0 ≤ l ≤ 2k−1 − 1.
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As [Q(ζ) : Q] = ϕ(q) = 2k−1 (ϕ is Euler’s totient function), the set {1, ζ, . . . ,

ζ2
k−1−1} is a basis of Q(ζ). Since

0 =
q−1∑

l=0

ρlζ
l − r = (ρ0 − ρ2k−1 − r) +

2k−1−1∑

l=1

(ρj − ρ2k−1+j)ζ
l,

the assertion of the lemma follows.

Proposition 1. Let n = 2m be even, and for a function f : Vn → Z2k and
u ∈ Vn, let fu(x) = f(x) + 2k−1(u · x), and let b

(u)
j = |x ∈ Vn : fu(x) = j}|,

0 ≤ j ≤ 2k − 1. Then f is gbent if and only if for all u ∈ Vn there exists an
integer ρu, 0 ≤ ρu ≤ 2k−1 − 1, such that

b
(u)

2k−1+ρu
= b(u)ρu

± 2m and b
(u)

2k−1+j
= b

(u)
j , for 0 ≤ j ≤ 2k−1 − 1, j 
= ρu.

Proof. First suppose that f is gbent. Then by Theorem 1, f is a regular gbent
function. Hence

Hf (u) =
∑

x∈Vn

ζf(x)(−1)u·x =
∑

x∈Vn

ζf(x)+2k−1(u·x) = Hfu(0) =

2k−1∑

j=0

b
(u)
j ζj = 2mζr

for some 0 ≤ r ≤ 2k − 1. With ρu = r if 0 ≤ r ≤ 2k−1 − 1, and ρu = r − 2k−1

otherwise, the claim follows from Lemma 1.
The converse statement is verified in a straightforward manner.

We now can present connections between gbent functions and their compo-
nents for the general case of gbent functions in GB2k

n , k > 1. This generalizes
the corresponding results for k = 2 and k = 3 in [8] and in [9].

Theorem 2. Let n be even, and let f(x) be a gbent function in GB2k

n , k > 1,
(uniquely) given as

f(x) = a1(x) + 2a2(x) + · · · + 2k−2ak−1(x) + 2k−1ak(x),

ai ∈ Bn, 1 ≤ i ≤ k. Then all Boolean functions of the form

gc(x) = c1a1(x) ⊕ c2a2(x) ⊕ · · · ⊕ ck−1ak−1(x) ⊕ ak(x),

c = (c1, c2, . . . , ck−1) ∈ F
k−1
2 , are bent functions.

Proof. As in Proposition 1, for the gbent function f we denote by fu the function
fu(x) = a1(x) + · · · + 2k−2ak−1(x) + 2k−1(ak(x) + u · x) in GB2k

n . Again, the
integer b

(u)
r , 0 ≤ r ≤ 2k − 1, is defined as b

(u)
r = |{x ∈ Vn : fu(x) = r}|. By

Proposition 1, b
(u)

r+2k−1 = b
(u)
r for all 0 ≤ r ≤ 2k−1 − 1, except for one element

ρu ∈ {0, . . . , 2k−1 − 1} depending on u, for which b
(u)

ρu+2k−1 = b
(u)
ρu ± 2n/2.

Since it is somewhat easier to follow, we first show the bentness of ak(x) =
g0(x). In the second step we show the general case.
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For r 
= ρu, 0 ≤ r ≤ 2k−1 − 1, consider all x ∈ Vn for which a1(x) + · · · +
2k−2ak−1(x) = r. Since b

(u)

r+2k−1 = b
(u)
r , for exactly half of these x we have

ak(x) + u · x = 0 (note that the number of these x must be even). Among
all x ∈ Vn for which a1(x) + · · · + 2k−2ak−1(x) = ρu, there are b

(u)
ρu for which

ak(x)+u ·x = 0, and there are b
(u)

ρu+2k−1 = b
(u)
ρu ±2n/2 for which ak(x)+u ·x = 1.

Hence for the Walsh-Hadamard transform of ak we get

Wak
(u) =

∑

x∈Vn

(−1)ak(x)⊕u·x = ±2n/2,

which shows that ak is bent.
To show that gc is bent for every c ∈ F

k−1
2 , we write fu(x), u ∈ Vn, as

fu(x) = c1a1(x) + · · · + ck−12k−2ak−1(x) + c̄1a1(x) + · · · + c̄k−12k−2ak−1(x)

+ 2k−1(ak(x) + u · x) := h(x) + h̄(x) + 2k−1(ak(x) + u · x),

where c̄ = c ⊕ 1. Note that every 0 ≤ r ≤ 2k−1 − 1 in the value set of a1(x) +
· · · + 2k−2ak−2(x) has then a unique representation as h(x) + h̄(x). Consider x
for which h(x) + h̄(x) = r + s 
= ρu. Again from b

(u)

r+2k−1 = b
(u)
r we infer that for

half of those x we have ak(x) ⊕ u · x = 0. Hence also

gc(x) ⊕ u · x = c1a1(x) ⊕ · · · ⊕ ck−1ak−1(x) ⊕ ak(x) ⊕ u · x = 0

for exactly half of those x. (Observe that h(x1) = h(x2) = r implies c1a1(x1) ⊕
· · · ⊕ ck−1ak−1(x1) = c1a1(x2)⊕ · · · ⊕ ck−1ak−1(x2).) Similarly as above, among
all x ∈ Vn for which h(x)+ h̄(x) = ρu, there are b

(u)
ρu for which ak(x)⊕u ·x = 0,

and there are b
(u)

ρu+2k−1 = b
(u)
ρu ± 2n/2 for which ak(x) ⊕ u · x = 1. From this we

conclude that |{x ∈ Vn : h(x) + h̄(x) = ρu and fu(x) = 1}| − |{x ∈ Vn :
h(x) + h̄(x) = ρu and fu(x) = 0}| = ±2n/2. Therefore

Wgc(u) =
∑

x∈Vn

(−1)gc(x)+u·x = ±2n/2,

and gc is bent.

We remark that the necessary conditions in Theorem2 are not sufficient when
k > 2. The additional conditions on the Walsh spectra for k = 3 given in [9,
Theorem 19] and for k = 4 given in our Theorem7 are required, as one can easily
confirm with examples employing vectorial Maiorana-McFarland bent functions.

The next result on the decomposition of a gbent function in GB2k

n into two
gbent functions in GB2k−1

n reveals an inductive approach to the study of gbent
functions in GB2k

n . Note that for k = 2 we recover the result in [9] on the
decomposition of a gbent function in GB4

n into two bent functions.
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Theorem 3. Let f ∈ GB2k

n with f(x) = g(x) + 2h(x), g ∈ Bn, h ∈ GB2k−1

n . If n
is even, then the following statements are equivalent.

(i) f is gbent in GB2k

n ;
(ii) h and h + 2k−2g are both gbent in GB2k−1

n with Hh+2k−2g(u) = ±Hh(u), for
all u ∈ Vn.

If n is odd, then (ii) implies (i).

Proof. We first show that for n even, h and h+2k−2g are gbent in GB2k−1

n if f is
gbent in GB2k

n . In a second step, we show that if h and h+2k−2g are both gbent
in GB2k−1

n , then f is gbent in GB2k

n if and only if H(2k−1)
h (u) = ±H(2k−1)

h+2k−2g
(u),

for all u ∈ Vn. This will conclude the proof for both, n even and n odd.
Let u ∈ Vn, and for e ∈ {0, 1} and r ∈ {0, . . . , 2k−1 − 1}, let

S(u)(e, r) = {x ∈ Vn : g(x) = e and h(x) + 2k−2(u · x) = r}.

With the notations of Proposition 1, we have fu(x) = f(x)+2k−1(u·x) = g(x)+
2(h(x) + 2k−2(u · x)), and |S(u)(e, r)| = b

(u)
e+2r. If f is gbent, by Proposition 1,

there exist ε ∈ {0, 1} and 0 ≤ ρu ≤ 2k−2 − 1, for which |S(u)(ε, ρu + 2k−2)| =
|S(u)(ε, ρu)|± 2n/2. For (e, r) 
= (ε, ρu), we have |S(u)(e, r +2k−2)| = |S(u)(e, r)|.
Observing that {x ∈ Vn : h(x) + 2k−2(u · x) = r} = S(u)(0, r) ∪ S(u)(1, r), we
obtain

H(2k−1)
h (u) =

∑

x∈Vn

ζ
h(x)

2k−1(−1)u·x =
∑

x∈Vn

ζ
h(x)+2k−2(u·x)
2k−1 = ±ζρu

2k−12n/2.

Consequently, h is gbent in GB2k−1

n . For h + 2k−2g ∈ GB2k−1

n we have

H(2k−1)

h+2k−2g
(u) =

∑

x∈Vn

ζ
h(x)+2k−2(u·x)+2k−2gx

2k−1 =
∑

e∈F2
r∈Z

2k−1

∑

x∈S(u)(e,r)

ζr+2k−2e
2k−1

=
∑

e∈F2
r∈Z

2k−1

|S(u)(e, r)|ζr+2k−2e
2k−1 = ±ζρu+2k−2ε

2k−1 2n/2,

which implies that also h + 2k−2g is gbent in GB2k−1

n .
To show the condition H(2k−1)

h (u) = ±H(2k−1)

h+2k−2g
(u), we first observe that

2H(2k)
f (u) = 2

∑

x∈F
n
2

ζ
g(x)

2k ζ
h(x)

2k−1(−1)u·x

=
∑

x∈F
n
2

(
1 + (−1)g(x) + (1 − (−1)g(x))ζ2k

)
ζ

h(x)

2k−1(−1)u·x

= (1 + ζ2k)H(2k−1)
h (u) + (1 − ζ2k)H(2k−1)

h+2k−2g
(u). (1)
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Writing ζ2k = x + yi, H(2k−1)
h (u) = a + bi and H(2k−1)

h+2k−2g
(u) = c + di, from

Eq. (1), taking the complex norm, squaring and rearranging terms (recall that
|ζ2k |2 = x2 + y2 = 1), we get

2|H(2k)
f (u)|2 =

1
2
(a2 + b2)(1 + 2x + x2 + y2) +

1
2
(c2 + d2)(1 − 2x + x2 + y2)

− (ac + bd)(x2 + y2 − 1) + 2(ad − bc)y

= |H(2k−1)
h (u)|2(1 + x) + |H(2k−1)

h+2k−2g
(u)|2(1 − x)

+ 2y �
(

H(2k−1)
h (u)H(2k−1)

h+2k−2g
(u)

)
. (2)

If h, h+2k−2g are gbent, i.e. |H(2k−1)
h (u)|2 = |H(2k−1)

h+2k−2g
(u)|2 = 2n for all u ∈ Vn,

then we immediately see that |H(2k)
f (u)|2 = 2n for all u ∈ Vn, and hence f is

gbent if and only if �
(

H(2k−1)
h (u)H(2k−1)

h+2k−2g
(u)

)
= 0, for all u ∈ Vn.

We now argue that the condition �
(

H(2k−1)
h (u)H(2k−1)

h+2k−2g
(u)

)
= 0 is equiv-

alent to Hh+2k−2g(u) = ±Hh(u). For easy writing, let f0, f1 be the gbent
functions in the indices above. By the regularity of gbent functions (when n
is even or k ≥ 3), Hf0(u) = 2n/2ζi

2k−1 , Hf1(u) = 2n/2ζj
2k−1 for some integers

0 ≤ i, j ≤ 2k − 1. Hence Hf0(u) Hf1(u) is real if and only if ζj−i
2k = ±1, i.e. i = j

or i = j + 2k−1 (modulo 2k). Equivalently, Hf1(u) = ±Hf0(u). If n is odd and
k = 2, then Hf (u) = 2n/2ζi

8, i ∈ {1, 3, 5, 7}, and the same argument works.

We close this section with some remarks on relations between gbent functions
in GB2k

n , n even, and relative difference sets. First note that the characters of Vn×
Z2k are χu,a(x, z) = ζaz

2k (−1)〈u,x〉, u ∈ Vn, a ∈ Z2k . Recall that if |χu,a(D)| =
2n/2 for all nonzero a ∈ Z2k and all u ∈ Vn, then the graph D = {(x, f(x)) : x ∈
Vn} of f forms a relative difference set in Vn ×Z2k (see for instance Sect. 2.4. in
[10]). Equivalently, if af is gbent for all nonzero a, then D is a relative difference
set. As easily seen, it is sufficient that 2tf is gbent for all 0 ≤ t ≤ k − 1. Using
Theorem 2, it is not hard to show that F (x) = (a0(x), . . . , ak−1(x)) is then
a vectorial bent function, hence also a relative difference set in an elementary
abelian group. Such gbent functions, which seem quite rare, may be of particular
interest for future research. For an example of a class of such gbent functions
obtained from partial spreads we refer to [5].

3 Complete Characterization of Generalized Bent
and Semibent Functions in GB16

n

We write f ∈ GB16
n as

f(x) = a1(x) + 2a2(x) + 22a3(x) + 23a4(x)

= b1(x) + 22b2(x) = a1(x) + 2d(x),
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where ai(x) ∈ Bn, i = 1, 2, 3, 4, b1(x) = a1(x) + 2a2(x), b2(x) = a3(x) + 2a4(x)
are in GB4

n, and d(x) = a2(x) + 2a3(x) + 22a4(x) ∈ GB8
n.

Our objective is to show necessary and sufficient conditions on the compo-
nents a1, a2, a3, a4, b1, b2, d for the gbentness of f . For the conditions on a1 and
d for the gbentness of a1(x) + 2d(x) when n is even, we can apply Theorem 3:
f(x) = a1(x) + 2d(x) is gbent if and only if d and d + 4a1 are gbent in GB8

n and
H(8)

d (u) = ±H(8)
d+4a1

(u) for all u ∈ Vn.
We start with a complete characterization of gbent functions in GB16

n in terms
of a1, a2, a3, a4. By this we extend results in [8,9] on gbent functions in GB4

n and
GB8

n. We then also will characterize gsemibent functions f ∈ GB16
n in terms of

a1, a2, a3, a4.

Theorem 4. Suppose that f(x) = a1(x)+2a2(x)+22a3(x)+23a4(x), ai ∈ Bn,
1 ≤ i ≤ 4. Then f is gbent in GB16

n if and only if the conditions (i) (if n is
even), or (ii) (if n is odd) hold:

(i) For all ci ∈ F2, i = 1, 2, 3, the Boolean function c1a1 ⊕ c2a2 ⊕ c3a3 ⊕ a4 is
bent, and for all u ∈ Vn we have

Wa4(u)Wa2⊕a4(u) = Wa3⊕a4(u)Wa2⊕a3⊕a4(u)
= Wa1⊕a4(u)Wa1⊕a2⊕a4(u) = Wa1⊕a3⊕a4(u)Wa1⊕a2⊕a3⊕a4(u), and
Wa4(u)Wa3⊕a4(u) = Wa1⊕a4(u)Wa1⊕a3⊕a4(u).

(ii) For all ci ∈ F2, i = 1, 2, 3, the Boolean function c1a1 ⊕ c2a2 ⊕ c3a3 ⊕ a4 is
semibent, and for all u ∈ Vn we either have

Wa4(u)Wa2⊕a4(u) = Wa1⊕a4(u)Wa1⊕a2⊕a4(u) = ±2n+1 and
Wa3⊕a4(u) = Wa2⊕a3⊕a4(u) = Wa1⊕a3⊕a4(u) = Wa1⊕a2⊕a3⊕a4(u) = 0,

or

Wa2⊕a4(u) = Wa4(u) = Wa1⊕a4(u) = Wa1⊕a2⊕a4(u) = 0 and

Wa3⊕a4(u)Wa2⊕a3⊕a4(u) = Wa1⊕a3⊕a4(u)Wa1⊕a2⊕a3⊕a4(u) = ±2n+1.

Our proof for Theorem4 is quite technical and in parts computer-assisted. Hence
we omit is here and present it in the appendix.

The result on the semibentness of functions in GB16
n is obtained with the

same approach. For the proof we again refer to the appendix.

Theorem 5. Let f ∈ GB16
n be given as f(x) = a1(x) + 2a2(x) + 22a3(x) +

23a4(x), ai ∈ Bn, 1 ≤ i ≤ 4. Then f is gsemibent when n is odd, and generalized
2-plateaued when n is even, if and only if the Boolean function c1a1 ⊕ c2a2 ⊕
c3a3 ⊕ a4 is semibent for all ci ∈ F2, i = 1, 2, 3, such that for all u ∈ Vn their
Walsh-Hadamard transforms are either all zero, or they satisfy

Wa4(u)Wa2+a4(u) = Wa3+a4(u)Wa2+a3+a4(u)
= Wa1+a4(u)Wa1+a2+a4(u) = Wa1+a3+a4(u)Wa1+a2+a3+a4(u), and
Wa4(u)Wa3+a4(u) = Wa1+a4(u)Wa1+a3+a4(u).
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In the light of Theorem4, one may expect that with a similar approach one
can also show relations between gbentness in GB16

n and in GB4
n. We here only

state the theorem. For the proof we refer to our eprint [4].

Theorem 6. Let f ∈ GB16
n with f(x) = a1(x) + 2a2(x) + 22a3(x) + 23a4(x) =

b1(x) + 22b2(x), where b1 = a1 + 2a2, b2 = a3 + 2a4 ∈ GB4
n. The function f is

gbent in GB16
n if and only if b2, b1+b2, 2b1+b2, 3b1+b2 are gbent in GB4

n with their
generalized Walsh-Hadamard transforms satisfying the following conditions, (i)
for n even, respectively, (ii) for n odd, for all u ∈ Vn:

(i) 2−n/2(H3b1+b2(u),Hb1+b2(u),H2b1+b2(u),Hb2(u)) belongs to one of (ε, ε, ε, ε),
(ε, ε,−ε,−ε), (ε,−ε, εi,−εi), (ε − ε,−εi, εi), (εi, εi, εi, εi), (εi, εi,−εi,−εi),
(εi,−εi, ε,−ε), (−εi, εi,−ε, ε), where ε ∈ {±1}.

(ii) 2−(n−1)/2(H3b1+b2(u),Hb1+b2(u),H2b1+b2(u),Hb2(u)) belongs to one of (ε+
μi, ε + μi, ε + μi, ε + μi), (ε + μi, ε + μi,−ε − μi,−ε − μi), (ε + μi,−ε − μi, ε −
μi,−ε + μi), (ε + μi,−ε − μi,−ε + μi, ε − μi), for ε, μ ∈ {±1}.
We close this section with some results on the Gray image ψ(f) of gbent

functions f in GB8
n and GB16

n , extending the corresponding results in [9].

Lemma 2. Let n, k ≥ 2 be positive integers and ψ : Vn+k−1 → F2 be defined
by ψ(x, y1, y2, . . . , yk−1) = ak(x) ⊕ ⊕k−1

i=1 yiai(x), where ai ∈ Bn, 1 ≤ i ≤ k.
Denote by a(x) the vectorial Boolean function a(x) = (a1(x), . . . , ak−1(x)) and
let u ∈ Vn and v = (v1, . . . , vk−1) ∈ Vk−1. The Walsh-Hadamard transform of
ψ at (u,v) is then

Wψ(u, v1, . . . , vk−1) =
∑

α∈Vk−1

(−1)α·vWak⊕α·a(u).

Proof. We will show our claim by induction on k. For k = 2 we have

Wψ(u, v1) =
∑

x∈Vn
y1∈F2

(−1)y1a1(x)⊕a2(x)(−1)v1y1⊕u·x

=
∑

x∈Vn

(−1)a2(x)(−1)u·x +
∑

x∈Vn

(−1)a1(x)⊕a2(x)(−1)v1⊕u·x

= Wa2(u) + (−1)v1Wa1⊕a2(u).

Now let

ψ(x, y1, . . . , yk) = ψ1(x, y1, . . . , yk−1) ⊕ ykak(x), where

ψ1(x, y1, . . . , yk−1) = ak+1(x) ⊕
k−1⊕

i=1

yiai(x).

Then Wψ(u,v, vk) = Wψ1(u,v) + (−1)vkWψ1⊕ak+1(u,v), which implies our
claim by the induction assumption.
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Theorem 7. We have:

(i) Let f(x) = a1(x) + 2a2(x) + 22a3(x) ∈ GB8
n be gbent. Then its Gray image

ψ(f) is semibent in Bn+2.
(ii) Let f = a1(x) + 2a2(x) + 22a3(x) + 23a4(x) ∈ GB16

n be gbent. Then ψ(f) is
semibent in Bn+3 if n is odd, and 3-plateaued in Bn+3 if n is even.

Proof. (i) By Lemma 2, for ψ(f)(x, y1, y2) = a1(x)y1 + a2(x)y2 + a3(x),

Wψ(f)(u, v1, v2) =Wa3(u) + (−1)v1Wa3⊕a1(u)

+ (−1)v2Wa3⊕a2(u) + (−1)v1+v2Wa3⊕a2⊕a1(u).
(3)

Assume first that n is even. Since f is gbent, by [9, Theorem 19], for the
bent components we have Wa3(u)Wa1⊕a2⊕a3(u) = Wa1⊕a3(u)Wa2⊕a3(u), for
all u ∈ Vn. Take Wa3(u) = μ1(u)2n/2,Wa3⊕a1(u) = μ2(u)2n/2,Wa3⊕a2(u) =
μ3(u)2n/2,Wa3⊕a2⊕a1(u) = μ4(u)2n/2, for some μi ∈ {−1, 1}, 1 ≤ i ≤ 4. Thus,
μ1(u)μ4(u) = μ2(u)μ3(u). Using these in Eq. (3), we obtain

2−n/2Wψ(f)(u, v1, v2) = μ1(u) + (−1)v1μ2(u) + (−1)v2μ3(u) + (−1)v1⊕v2μ4(u).

For (μ1(u), μ2(u), μ3(u), μ4(u)) with values in the set

(−1,−1,−1,−1), (1, 1,−1,−1), (−1,−1, 1, 1), (−1, 1,−1, 1),
(1,−1,−1, 1), (−1, 1, 1,−1), (1,−1, 1,−1), (1, 1, 1, 1),

2−n/2Wψ(f)(u, v1, v2) takes one of the following values

(−1)v1⊕v2⊕1 + (−1)v1⊕1 + (−1)v2⊕1 − 1, (−1)v1⊕v2 + (−1)v1⊕1 + (−1)v2 − 1,

(−1)v1⊕v2 + (−1)v1 + (−1)v2⊕1 − 1, (−1)v1⊕v2⊕1 + (−1)v1 + (−1)v2 − 1,

(−1)v1⊕v2 + (−1)v1⊕1 + (−1)v2⊕1 + 1, (−1)v1⊕v2⊕1 + (−1)v1⊕1 + (−1)v2 + 1,

(−1)v1⊕v2⊕1 + (−1)v1 + (−1)v2⊕1 + 1, (−1)v1⊕v2 + (−1)v1 + (−1)v2 + 1.

Therefore, Wψ(f) attains the values 0,±2(n+4)/2, thus ψ(f) is semibent.
We now consider the case of odd n. Then, by [9, Theorem 19], a3, a1 ⊕

a3, a2 ⊕ a3, a1 ⊕ a2 ⊕ a3 are all semibent and, Wa3(u) = Wa1⊕a3(u) = 0
and |Wa1⊕a2⊕a3(u)| = |Wa2⊕a3(u)| = 2(n+1)/2, or |Wa3(u)| = |Wa1⊕a3(u)| =
2(n+1)/2 and Wa1⊕a2⊕a3(u) = Wa2⊕a3(u) = 0.

Case 1. Let Wa3(u) = Wa1⊕a3(u) = 0, Wa1⊕a2⊕a3(u) = ε1(u)2(n+1)/2, Wa2⊕a3

(u) = ε2(u)2(n+1)/2, with ε1, ε2 ∈ {−1, 1}. With (3),

Wψ(f)(u, v1, v2) = (−1)v22(n+1)/2 (ε1(u) + (−1)v1ε2(u)) ,

from which we infer that Wψ(f)(u, v1, v2) ∈ {0,±2(n+3)/2}, for all combina-
tions of εi(u) and vi, i = 1, 2. Therefore ψ(f) is semibent.
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Case 2. Let Wa3(u) = ε1(u)2(n+1)/2, Wa1⊕a3(u) = ε2(u)2(n+1)/2, Wa1⊕a2⊕a3

(u) = Wa2⊕a3(u) = 0, with ε1, ε2 ∈ {−1, 1}. As before, from (3) we obtain

Wψ(f)(u, v1, v2) = 2(n+1)/2 (ε1(u) + (−1)v1ε2(u)) ,

from which we infer that Wψ(f)(u, v1, v2) ∈ {0,±2(n+3)/2} and therefore ψ(f)
is semibent.

(ii) By Lemma 2, for ψ(f)(x, y1, y2, y3) = a4(x)
⊕3

i=1 yiai(x),

Wψ(f)(u, v1, v2, v3) = Wa4(u) + (−1)v1Wa4⊕a1(u)
+ (−1)v2Wa4⊕a2(u) + (−1)v3Wa4⊕a3(u)

+ (−1)v1⊕v2Wa4⊕a2⊕a1(u) + (−1)v1⊕v3Wa4⊕a3⊕a1(u)

+ (−1)v2⊕v3Wa4⊕a3⊕a2(u) + (−1)v1⊕v2⊕v3Wa4⊕a3⊕a2⊕a1(u).

By going through the 32 cases of Theorem 4 for the Walsh-Hadamard transforms
in the expression above (16 for n even and 16 for n odd), we obtain that the
Walsh-Hadamard spectrum is {0,±23+n/2} (for n even) and {0,±22+(n+1)/2}
(for n odd), hence the claim.
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Both the second and third named author thank the institution for the excellent working
conditions. The second author is supported by the Austrian Science Fund (FWF)
Project no. M 1767-N26.

A Appendix

Proof of Theorem 4: Let u ∈ Vn. Eq. (2) for k = 4 implies

16
√

2|H(16)
f (u)|2 = (2 +

√
2 +

√
2)4

√
2|H(8)

d (u)|2 + (2 −
√

2 +
√

2)4
√

2|H(8)
d+4a1

(u)|2

+ 8

√
4 − 2

√
2 �
(
H(8)

d (u)H(8)
d+4a1

(u)
)

. (4)

We denote by A,C,D,W the Walsh-Hadamard transforms Wa4(u), Wa2⊕a4(u),
Wa3⊕a4(u), Wa2⊕a3⊕a4(u) (in that order). We denote by B,X, Y, Z the Walsh-
Hadamard transforms Wa1⊕a4(u), Wa1⊕a2⊕a4(u), Wa1⊕a3⊕a4(u), Wa1⊕a2⊕a3⊕a4

(u) (in that order). By [9, Lemma 17], we know that the generalized Walsh-
Hadamard transform of any function in GB8

n, say d and d + 4a1 with d = a2 +
2a3 + 22a4, is of the form

4H(8)
d (u) = α0A+α1C +α2D+α3W, 4H(8)

d+4a1
(u) = α0B +α1X +α2Y +α3Z,

where α0 = 1+ (1+
√

2)i, α1 = 1+ (1−√
2)i, α2 = 1+

√
2− i, α3 = 1−√

2− i,
and moreover that (see also [9, Corollary 18]),

4
√

2|H(8)
d (u)|2 = A2 − C2 + 2CD + D2 − 2AW − W 2 +

√
2(A2 + C2 + D2 + W 2)

(5)

4
√

2|H(8)
d+4a1

(u)|2 = B2 − X2 + 2XY + Y 2 − 2BZ − Z2 +
√

2(B2 + X2 + Y 2 + Z2).
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Furthermore, with straightforward computations we get

8

√
4 − 2

√
2 �
(
H(8)

b (u)H(8)
b+4a1

(u)
)

= 2

√
2 −

√
2 (BC + BD − AX − WX − AY + WY + CZ − DZ)

+ 2

√
4 − 2

√
2 (BD + WX − AY − CZ).

(6)

Using (5) and (6) in Eq. (4) we obtain

16
√

2|H(16)
f (u)|2

= 2(A2 + B2 − C2 + 2CD + D2 − 2AW − W 2 − X2 + 2XY + Y 2 − 2BZ − Z2)

+ 2
√

2(A2 + B2 + C2 + D2 + W 2 + X2 + Y 2 + Z2)

+

√
2 −

√
2 (A2 − B2 + 2BC + C2 + D2 + W 2 − 2AX − 4WX − X2 (7)

+ 2WY − Y 2 + 4CZ − 2DZ − Z2)

+ 2

√
2 +

√
2 (A2 − B2 + BD + CD + D2 − AW + WX − AY − XY

− Y 2 + BZ − CZ).

If f is gbent in GB16
n , i.e., |H(16)

f (u)|2 = 2n, by the linear independence of

{1,
√

2,
√

2 − √
2,

√
2 +

√
2} (as easily shown, the set forms a basis of Q(

√
2,√

2 − √
2)), we arrive at the following system of equations with solutions in Z,

A2 + B2 + C2 + D2 + W 2 + X2 + Y 2 + Z2 = 2n+3

A2 + B2 − C2 + 2CD + D2 − 2AW − W 2 − X2 + 2XY + Y 2 − 2BZ − Z2 = 0

A2 − B2 + 2BC + C2 + D2 + W 2 − 2AX − 4WX − X2

+ 2WY − Y 2 + 4CZ − 2DZ − Z2 = 0

A2 − B2 + BD + CD + D2 − AW + WX − AY − XY − Y 2 + BZ − CZ = 0.

(8)

Let 2t be the largest power of 2 which divides all, A,B,C,D,X, Y, Z and
W , i.e., A = 2tA1, etc., with at least one of the A1, B1, . . . being odd. First, if
n is even and t > n

2 , then t = n
2 + 1 only. Dividing by 22t, the first equation

of (8) becomes A2
1 + B2

1 + C2
1 + D2

1 + W 2
1 + X2

1 + Y 2
1 + Z2

1 = 2, which gives the
solution (±1,±1, 0, 0, 0, 0, 0, 0) (and permutations of these values). However, a
simple computation reveals that none of these possibilities also satisfies the last
three equations of (8). If n is odd and t > n+1

2 , then t = n+3
2 , but this implies

that only one value out of A,B, . . . is nonzero. Again, that is impossible to sat-
isfy the last three equations of (8). Assume now that t < n

2 . The first equation
of (8) becomes A2

1 + B2
1 + C2

1 + D2
1 + W 2

1 + X2
1 + Y 2

1 + Z2
1 = 2n+3−2t, which is

divisible by 25 (when n is even, since t ≤ n−2
2 ), respectively 24 (when n is odd,

since t ≤ n−1
2 ). If n is even, this can only happen if A1, B1, . . . , are all even, that

is, ≡ 0, 2, 4, 6 (mod 8), but that contradicts our assumption that t is the largest
power of 2 dividing A,B, . . .. If n is odd and t ≤ n−3

2 , the previous argument
would work, and if t = n−1

2 , then A2
1+B2

1+C2
1+D2

1+W 2
1 +X2

1+Y 2
1 +Z2

1 = 16. By
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considering every residues for A1, B1, . . . , modulo 4 and imposing the condition
that the 2nd, 3rd, 4th equations of our system also must be 0 modulo 16, we
only get possibilities (0, 0, 2, 2, 0, 0, 2, 2), (0, 2, 0, 2, 0, 2, 0, 2), (0, 2, 2, 0, 0, 2, 2, 0),
(2, 0, 0, 2, 2, 0, 0, 2), (2, 0, 2, 0, 2, 0, 2, 0), (2, 2, 0, 0, 2, 2, 0, 0) for (A1, B1, . . .) mod-
ulo 4, but that implies that all A1, B1, . . . are even, contradicting our assump-
tion on t. This shows that the only possibility is 2t = 2n/2 if n is even, and
2t = 2(n+1)/2 if n is odd.

Thus, one needs to find integer solutions for the equation A2
1+B2

1+C2
1 +D2

1+
W2

1 +X2
1 +Y 2

1 +Z2
1 = 8, for n even, or A2

1+B2
1+C2

1 +D2
1+W2

1 +X2
1 +Y 2

1 +Z2
1 = 4

for n odd, which also satisfy the last three equations in (8). Mathematica renders
the following: if n is even, then 2− n

2 (A,C,D,W,B,X, Y, Z) (note the order) is
one of

± (−1,−1,−1,−1,−1,−1,−1,−1), ±(−1, 1,−1, 1,−1, 1,−1, 1),
± (−1,−1,−1,−1, 1, 1, 1, 1), ±(−1, 1,−1, 1, 1,−1, 1,−1),
± (1,−1,−1, 1,−1, 1, 1,−1), ±(1, 1,−1,−1,−1,−1, 1, 1), (9)
± (1,−1,−1, 1, 1,−1,−1, 1), ±(1, 1,−1,−1, 1, 1,−1,−1),

and, if n is odd, then 2− n+1
2 (A,C,D,W,B,X, Y, Z) is one of

± (−1, 1, 0, 0,−1, 1, 0, 0), ±(−1, 1, 0, 0, 1,−1, 0, 0),
± (0, 0,−1, 1, 0, 0,−1, 1), ±(0, 0,−1, 1, 0, 0, 1,−1),
± (0, 0, 1, 1, 0, 0,−1,−1), ±(0, 0, 1, 1, 0, 0, 1, 1),
± (1, 1, 0, 0,−1,−1, 0, 0), ±(1, 1, 0, 0, 1, 1, 0, 0).

We see that in both cases, if f is gbent, then the conditions of the theorem
are satisfied. The converse follows with straightforward calculations. �

Proof of Theorem 5: Assume that f is gsemibent in GB16
n when n is odd, respec-

tively generalized 2-plateaued when n is even. Then |H(16)
f (u)| ∈ {0,±2(n+1)/2}

for n odd, respectively, |H(16)
f (u)| ∈ {0,±2(n+2)/2} for n even. Using the nota-

tions of Theorem 4, from Eq. (7), we immediately get A = B = C = D = X =
Y = W = Z = 0 if H(16)

f (u) = 0. If |H(16)
f (u)| = 2(n+1)/2 (for n odd), respec-

tively, |H(16)
f (u)| = 2(n+2)/2 (for n even), then (7) again yields the system of

Eq. (8) with the one difference that in the first equation the power of 2 on the
right side is 2n+4, respectively, 2n+5. With the same argument as in the proof
of Theorem 4 we see that for such u, 2− n+1

2 (A,C,D,W,B,X, Y, Z) (for n odd),
respectively, 2− n+2

2 (A,C,D,W,B,X, Y, Z) (for n even) can only take the values
from Eq. (9).

Straightforwardly, one confirms that the converse is also true, and the theo-
rem is shown. �
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Abstract. Digital Signature Algorithm (DSA) involves modular expo-
nentiation, of a public and known base by a random one-time exponent.
In order to speed-up this operation, well-known methods take advantage
of the memorization of base powers. However, due to the cost of the mem-
ory, to its small size and to the latency of access, previous research sought
for minimization of the storage. In this paper, taking into account the
modern processor features and the growing size of the cache memory, we
improve the storage/efficiency trade-off, by using a RNS Digit exponent
representation. We then propose algorithms for modular exponentiation.
The storage is lower for equivalent complexities for modular exponenti-
ation computation. The implementation performances show significant
memory saving, up to 3 times for the largest NIST standardized key sizes
compared to state of the art approaches.

Keywords: RNS · Digital signature · Modular exponentiation · Mem-
ory storage · Efficient software implementation

1 Introduction

In the DSS (Digital Signature Standard), DSA (Digital Signature Algorithm)
is a popular authentication protocol. According to the NIST standard (see [3]),
the public parameters are p, q and g. The parameter g is a generator of the
multiplicative group Z/pZ of order q, which is a prime of size corresponding to
the required security level. Therefore, p is a prime chosen such that q divides p−1.
The recommended security levels in the standard are 80–256 bits, corresponding
to 160–512 bit sizes for the prime q. When a server needs to sign a batch of
documents or authentications, the main operations are modular exponentiations
gk mod p (one per signature), where k is a one time random parameter. Taking
advantage of the fixed public parameter g is a natural way to speed-up the
signature protocol, by storing well chosen powers of g. The main known methods
of the state of the art are the one presented by Gordon in [6], which stores the
gRi

mod p values, and also the Fixed-base Comb, which is presented by Lim
and Lee in [10]. While improving the complexity, and therefore, lowering the
c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 177–192, 2016.
DOI: 10.1007/978-3-319-55227-9 13
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computation time, these methods require some storage. The trade-off between
the efficiency and the storage amount is the comparison criteria between these
different approaches.

All the protocols derived from the DSA can use these different approaches,
since they all need an exponentiation of a known base by a random exponent.
Blind signature and E-voting are examples of protocols using fixed-base modular
exponentiation [11]. Moreover, El-Gamal encryption and signature also use a
public generator g to the power of a randomly chosen exponent (see [4]). However,
the decryption uses the result of this operation, and the idea does not apply in
this case.

On the arithmetic side, the Residue Number System (RNS), based on the
Chinese Remainder Theorem, is a classical way to speed-up and/or parallelize
arithmetic computations and was first presented by Svoboda in [14] and by
Garner in [5]. One can find a complete classical presentation of the RNS in
Knuth [9].

Contributions: In this paper, we propose to use the memorization of base pow-
ers with numeration scales in radix R = m0 · m1 and the RNS representation
of each digit using the base B = {m0,m1}. We study the recoding algorithm
and apply it to the exponent in modular exponentiation. We propose a modular
exponentiation algorithm using this recoding of the exponent and memoriza-
tion. We called this algorithm the m0m1 exponentiation method. We studied
the corresponding complexities and storage amounts, and compared the results
with the Fixed-base Comb and Radix-R methods. We showed that our m0m1

exponentiation method has better storage/complexity trade-off that the afore-
mentioned methods, for the NIST recommended field sizes and a large range of
storage amount. We then made software implementations of our algorithms and
performed tests in order to validate the storage/timing trade-off. The speed-up
comparison shows the benefits. This approach provides also a fair flexibility in
terms of required storage amount: one can choose the storage amount according
to the device resources available and compatible to the global computation load
of the system.

This paper is organized as follows: Sect. 2, we review the main classical fixed-
base exponentiation algorithms, taking advantage of storage and give their com-
plexities and storage requirements; Sect. 3, we present our approach for the
m0m1 recoding; Sect. 4, we then show the application on modular exponenti-
ation; Sect. 5 shows the implementation strategies and results in terms of per-
formances we got in this work; finally Sect. 6, we give some concluding remarks
and perspectives.

2 State of the Art Review

In this section, we review the state of the art classical approaches for fixed-base
modular exponentiation.
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When a server needs to sign a document or a message, the computation
consists of several operations, the main one being a modular exponentiation
gk mod p, with k being a one-time random exponent. This computation can
use the classical Square-and-Multiply algorithm (see Algorithm1). In terms of
complexity, given the exponent length t (that is, the size of the prime q), the
number of modular squaring is t − 1 and the number of modular multiplications
to be computed is t/2 on average, half of this length, for a randomly chosen
exponent. There is no storage in this case.

The method presented by Gordon in [6] first suggests to store the t successive
squarings of g (that is the sequence of g2

i

). In terms of complexity, given the
exponent length t (again, the size of the prime q), one has now no squarings and
the number of modular multiplications to be computed is half of this length on
average as in the previous case, for a randomly chosen exponent. The storage
amount is t values in Z/pZ as mentioned above. Gordon in [6] mentions the
generalization of this idea into a radix R method, which consists of the memo-
rization of the values gi·Rj

, with i ∈ [1, ..., R − 1] and 0 ≤ j < � where � is the
radix R length of the exponent, which we denote by w = log2(R) (� = �t/w�). In
this case, the complexity is � − 1 modular multiplications, for a storage amount
of � ·(R−1) values in Z/pZ. In the sequel, we will call this approach the Radix-R
Exponentiation Method (see Algorithm2).

Algorithm 1. Left-to-Right Square-and-Multiply Modular Exponentiation
Require: k = (kt−1, . . . , k0), the DSA modulus p, g a generator of Z/pZ of order q.
Ensure: X = gk mod p
1: X ← 1
2: for i from t − 1 downto 0 do
3: X ← X2 mod p
4: if ki = 1 then
5: X ← X · g mod p
6: end if
7: end for
8: return (X)

Algorithm 2. Radix-R Exponentiation Method
Require: k = (k�−1, . . . , k0)R, the DSA modulus p, g a generator of Z/pZ of order q.
Ensure: X = gk mod p

1: Precomputation. Store Gi,j ← gi·Rj

, with i ∈ [1, ..., R − 1] and 0 ≤ j < �.
2: X ← 1
3: for i from � − 1 downto 0 do
4: X ← X · Gki,i mod p
5: end for
6: return (X)
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Algorithm 3. Fixed-base Comb Exponentiation Method
Require: k = (kt−1, . . . , k1, k0)2, the DSA modulus p, g a generator of Z/pZ of order

q, window width w, d = �t/w�.
Ensure: X = gk mod p
1: Precomputation. Compute and store g[aw−1,...,a0] mod p, ∀(aw−1, . . . , a0) ∈ Z

w
2 .

2: By padding k on the left by 0’s if necessary, write k = Kw−1‖ . . . ‖K1‖K0, where
each Kj is a bit string of length d. Let Kj

i denote the ith bit of Kj .
3: X ← 1
4: for i from d − 1 downto 0 do
5: X ← X2 mod p

6: X ← X · g[Kw−1
i ,...,K1

i ,K0
i ] mod p

7: end for
8: return (X)

Another classical method is the so called Fixed-base Comb method. In [8],
Hankerson et al. present this method proposed by Lim and Lee in [10]. The
window width w is the number of comb-teeth, and d = �t/w� is the distance
in bits between two teeth. This method is shown in Algorithm3, in which we
denote [aw−1, . . . , a1, a0] = aw−12(w−1)d+. . .+a222d+a12d+a0. The complexity
of this approach is d − 1 modular squarings and d multiplications, for a storage
amount of 2w − 1 values in Z/pZ. One drawback of this method is the lack of
flexibility for the storage amount, which increases exponentially with respect to
the window width w.

Table 1, we give the complexities and the storage amounts of all these
approaches.

Table 1. Complexities and storage amounts of state of the art methods, average case,
binary exponent length t. #MM denotes the number of modular multiplications, #MS
the number of modular squarings.

#MM #MS Storage (# values ∈ Z/pZ)

Square-and-multiply, Algorithm 1 t/2 t − 1 -

Radix-R method, Algorithm 2 �t/w� - �t/w� · (R − 1)

Fixed-base Comb, Algorithm 3 d = �t/w� d − 1 2w − 1

3 m0m1 Recoding

In this section, we present our approach for the m0m1 recoding. Our goal is
to use this representation in a modular exponentiation computation. The RNS
digit representation with two moduli splits the digits in two parts. The first
part will be used to select the precomputed values and the second part for final
computation of the modular exponentiation, with the best possible trade-off.
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3.1 Algorithm

We first remind the RNS representation with RNS base B = {m0,m1} of two
moduli. Let R = m0 · m1 and x ∈ Z such that 0 ≤ x < R. Let us also assume
m0 is prime, since this allows us to invert all integers <m0 modulo m0, and we
choose m1 < m0. In the sequel, we denote |x|m = x mod m.

One represents x with the residues{
x(0) = |x|m0

x(1) = |x|m1

and x can be retrieved using the Chinese Remainder Theorem as follows:

x =
∣∣∣x(0) · m1 · |m−1

1 |m0 + x(1) · m0 · |m−1
0 |m1

∣∣∣
R

.

We now present our recoding approach. Our idea here is to use an exponent
k recoding in radix R = m0 ·m1. We represent every radix-R digits in RNS with
RNS base B = {m0,m1}. Let ki be the digits of k in radix-R, and let us denote
(k(0)

i , k
(1)
i ) their RNS representations in base B. Thus, one has:

k =
∑�−1

i=0 kiR
i, with � = �t/ log2(R)�,

and

{
k
(0)
i = |ki|m0 ,

k
(1)
i = |ki|m1 .

Let us denote (when k
(1)
i �= 0)

m′
0 = m1 · |m−1

1 |m0 ,
m′

1 = m0 · |m−1
0 |m1 ,

k′
i = |k(0)

i · (k(1)
i )−1|m0 .

One keeps κi ← (k′
i, k

(1)
i ) as a representation of ki and this leads to ki =∣∣∣k(1)

i |k′
i · m′

0 + m′
1|R

∣∣∣
R

. We handle the modular reduction mod R as follows:

ki = k
(1)
i |k′

i · m′
0 + m′

1|R − �k(1)
i · |k′

i · m′
0 + m′

1|R/R	 · R.

Let us denote C = �k(1)
i · (k′

i · m′
0 + m′

1)/R	. By noticing that 0 ≤ C < m1, we
now consider C as a carry that one can subtract to ki+1. We then compute

if ki+1 ≥ C then ki+1 ← ki+1 − C,C ← 0, else ki+1 ← ki+1 + R − C,C ← 1,

and one gets ki+1 ≥ 0.
When k

(1)
i = 0, we handle this by slightly rewriting κi as follows: κi =

(|k(0)
i + 1|m0 · m′

0 − m′
0), thus keeping κi ← (|k(0)

i + 1|m0 , 0) as a representation
of ki in this case. In addition, one notices that the carry C is not modified here
(it is either 0 or 1 and has been previously settled).

The sequence of the κi ← (k′
i, k

(1)
i ) is the m0m1 recoding of k we can use to

compute a modular exponentiation.
One notices it might be necessary to process a last carry C, with a final

correction. The recoding algorithm is shown in Algorithm4.
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Algorithm 4. m0m1 Recoding
Require: {m0, m1} RNS base with R = m0 · m1, k =

∑�−1
i=0 kiR

i.
Ensure: {κi, 0 ≤ i < �, (C)}, m0m1 recoding of scalar k.
1: C ← 0
2: for i from 0 to � − 1 do
3: ki ← ki − C, C ← 0
4: if ki < 0 then
5: ki ← ki + R, C ← 1
6: end if
7: k

(0)
i = |ki|m0 , k

(1)
i = |ki|m1 .

8: if k
(1)
i = 0 then

9: κi ← (|k(0)
i + 1|m0 , 0)

10: else
11: k′

i ← |k(0)
i · (k

(1)
i )−1|m0

12: C ← C + 	k(1)
i · |k′

i · m′
0 + m′

1|R/R

13: κi ← (k′

i, k
(1)
i )

14: end if
15: end for
16: return {κi, 0 ≤ i < �, (−C)}

3.2 Example

We present here an example of m0m1 recoding with an exponent size t of 20 bits
(0 < k < 220), and B = {11, 8} (i.e. m0 = 11,m1 = 8). Thus, in this case, one
has the radix R = m0 · m1 = 88, � = �20/ log2(88)� = 4, and therefore

m′
0 = 8 · |8−1|11 = 56,

m′
1 = 11 · |11−1|8 = 33.

Let us take k = 93619210, the random exponent. By rewriting k in radix-R, one
has

k = 48 + 78 · 88 + 32 · 882 + 1 · 883.

We now use Algorithm 4, which consists of a for loop, steps 2 to 15.

– In the first iteration (i = 0), one has k0 = 48.
• One has C ← 0 and one skips the if-test steps 4 to 6 since k0 ≥ 0.
• Step 7, one computes the RNS representation in base B of k0 = 48:

k
(0)
0 = |k0|11 = 4, k

(1)
0 = |k0|8 = 0.

• Steps 6 and 7, since k
(1)
0 = 0, one sets

κ0 ← (|k(0)
0 + 1|11, 0) = (5, 0)

– In the second iteration (i = 1), one has k1 = 78.
• One has C ← 0 and one skips the if-test steps 4 to 6 since k1 ≥ 0.
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• Step 7, one computes the RNS representation in base B of k1 = 78:

k
(0)
1 = |k1|11 = 1, k

(1)
1 = |k1|8 = 6.

• Steps 11 and 12, since k
(1)
1 �= 0, one has

|(k(1)
1 )−1|11 ← 2

k′
1 = |k(0)

1 · (k(1)
1 )−1|11 ← 2

C ← �(k(1)
1 · |k′

1 · 56 + 33|88)/88	 ← 3

and finally
κ1 ← (2, 6)

– In the third iteration (i = 2), one has now k2 ← k2 − C = 29.
• The RNS representation in base B of k2 is k

(0)
2 = 7, k

(1)
2 = 5.

• The computation steps 11–12 gives C ← 2, and

κ2 ← (8, 5).

Without providing all the details, one finally gives the values returned by the
algorithm:

κ = ((5, 0), (2, 6), (8, 5), (3, 7)), and C = −2.

4 m0m1 Modular Exponentiation

4.1 Algorithm

We now present the use of our recoding in the modular exponentiation. One
wants to compute

gk mod p = g
∑�−1

i=0 ki·Ri

mod p

= g
∑�−1

i=0 κi·Ri · gC·R�

mod p

= gC·R� · ∏�−1
i=0 gκi·Ri

mod p

with
gκi·Ri

mod p = gκ
(1)
1 ·Ri·|κ′

i·m′
0+m′

1|R mod p, when κ
(1)
1 �= 0

and

gκi·Ri

mod p = gRi·|κ′
i·m′

0+m′
1|R · g−Ri·|m′

0+m′
1|R mod p, when κ

(1)
1 = 0.

In order to compute the fixed-base modular exponentiation gk mod p, with
p prime, one stores the following values:

Gi,j = gRi·|j·m′
0+m′

1|R mod p, with 0 ≤ i ≤ � − 1, 0 ≤ j < m0

and G�,1 = gR�·|m′
0+m′

1|R mod p.
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The field inversion is very costly over Z/pZ, therefore, one also stores the fol-
lowing inverses:

Gi,−1 = g−|m′
0+m′

1|R·Ri

mod p avec 0 ≤ i ≤ �

One uses one value Kj per possible values of 1 ≤ κ
(1)
i < m1, that is m1

points. Thus, one now has

Kj =

⎛
⎜⎝ ∏

for all κ
(1)
i =j

G
i,κ

(0)
i

⎞
⎟⎠ × (

G�,sign(C)1

)
|C|=j

mod p

and
K0 =

∏
for all κ

(1)
i =0

G
i,κ

(0)
i

× Gi,−1 mod p.

This leads to

gk mod p = K0 ×
m1∏
j=1

Kj
j .

Every single individual modular exponentiation Kj
j is performed with a

square-and-multiply approach, which is more efficient than performing j − 1
modular multiplications, even for small m1.

One may notice that the amount of storage is now (m0 + 1) × � + 1 points.
This approach is depicted in Algorithm5.

4.2 Example

We now go back to our previous example in Sect. 3.2 page 6. One considers again
the same values and parameters:

– an exponent size t of 20 bits (0 < k < 220), and B = {11, 8}
(i.e. m0 = 11,m1 = 8);

– radix R = m0 · m1 = 88 (� = 4);
– one has k = 93619210;
– and we use the m0m1 recoding previously computed:

κ = ((5, 0), (2, 6), (8, 5), (3, 7)), and C = −2.

We present the computation of gk mod p using Algorithm 5. In terms of storage,
one computes the values

Gi,j = gRi·|j·m′
0+m′

1|R mod p with 0 ≤ i ≤ � − 1.

One has the following values of |j · m′
0 + m′

1|R for 0 ≤ j < 11:

{33, 1, 57, 25, 81, 49, 17, 73, 41, 9, 65}
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Algorithm 5. Fixed-base m0m1 method modular exponentiation
Require: {m0, m1} RNS base with R = m0m1, k =

∑�−1
i=0 kiR

i and κ = {κi, 0 ≤ i <
�, (C)} the m0m1 recoding of k, p, the DSA modulus, g ∈ Z/pZ, public generator
of order q.

Ensure: X = gk mod p

1: Precomputation. Store Gi,j ← gRi·|j·m′
0+m′

1|R with 0 ≤ i < � − 1, 0 ≤ j <

m0, G�,1 ← gR�·|m′
0+m′

1|R , Gi,−1 ← g−Ri·|m′
0+m′

1|R , 0 ≤ i ≤ �
2: A ← 1, Kj ← 1 for 0 ≤ j < m1

3: for i from 0 to � − 1 do
4: if κ

(1)
i = 0 then

5: K0 ← K0 × G
i,κ

(0)
i

× Gi,−1

6: else
7: K

κ
(1)
i

← K
κ
(1)
i

× G
i,κ

(0)
i

8: end if
9: end for

10: K|C| ← K|C| × G�,sign(C)1

11: W ← size of m1 in bits
12: for i from W downto 0 do
13: A ← A2

14: for j from m1 − 1 downto 1 do
15: if bit i of j is non zero then
16: A ← A × Kj

17: end if
18: end for
19: end for
20: return (A × K0)

In our case, with the chosen parameters, this brings us to store the following
values in Z/pZ:

Gi = {g88i·33, g88i

, g88i·57, g88i·25, g88i·81, g88i·49, g88i·17, g88i·73, g88i·41, g88i·9, g88i·65}.

We now use κ in Algorithm 5.

– the first steps are a for loop (steps 3 to 9):
• in the first iteration, one has κ

(1)
0 = 0 (and κ

(0)
0 = 5), and this gives

K0 ← G
0,κ

(0)
0

× G0,−1 = g49 × g−1 = g48.

• in the second iteration, one has κ
(1)
1 = 6 (and κ

(0)
1 = 2), and this gives

K6 ← G
1,κ

(0)
1

= g88·57 = g5016.

• in the third iteration, one has κ
(1)
2 = 5 (and κ

(0)
2 = 8), and this gives

K5 ← G
1,κ

(0)
2

= g88
2·41 = g317504.
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• in the fourth and last iteration, one has κ
(1)
2 = 7 (and κ

(0)
2 = 3), and this

gives
K7 ← G

1,κ
(0)
2

= g88
3·25 = g17036800.

– the last carry C = −2 is now processed (step 10):

K2 ← G4,−1 = g88
4·(−1) = g−59969536.

– the reconstruction in the second for loop (steps 12 to 16) provides the final
result by computing

gk mod p = K0 × ∏m1
j=1 Kj

j mod p

= g48+2·(−59969536)+5·317504+6·5016+7·17036800 mod p
= g936192 mod p,

which is the desired result.

4.3 Complexity

The complexity of Algorithm 5 is evaluated step by step in Table 2 for the average
case. The number of field multiplications (MM) is evaluated as follows:

– the MMs in step 5 are performed only in case of K0 �= 1, instead, it is only an
instantiation of K0;

– the MMs in step 7 are performed only in case of K
κ
(1)
i

�= 1, instead, it is only
an instantiation of K

κ
(1)
i

;
– the same applies for step 10;

This saves on average m1 MMs, and this is taken into account in the Total line
in Table 2 (it explains the −m1 term). The number of operations in the final
reconstruction is evaluated as follows:

Table 2. m0m1 modular exponentiation complexity and storage, average case.

Complexity

Step Operation Complexity

�/m1 × step 5 K0 ← K0 × G
i,|κ(0)

i +1|m0
× Gi,−1 2 MM

�m1−1
m1

× step 7 K
κ
(1)
i

← K
κ
(1)
i

× G
i,κ

(0)
i

1 MM

1 × step 10 K|C| ← K|C| × G
sign(C)
�,1 1 MM

(W − 1) × step 13 A ← A2 1 MS

(H − 1) × steps 15 A ← A × Kj 1 MM

1 × step 18 (A × K0) 1 MM

Total (�m1+1
m1

− m1 + H) MM + (W − 1) MS

Total storage (m0 + 1) × � + m1 + 2 elements of Z/pZ
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– the modular squaring in step 13 is performed only in case of A �= 1;
– the MMs in step 15 and 18 are performed only in case of Kj �= 1;

For the sake of simplicity, we denote by H the sum of the j Hamming weights
for each j from m1 − 1 downto 1 (foreach loop step 14). The value of H is as
follows for the different values of m1:

m1 2 3 4 5 6 7 8 9

H 1 2 4 5 7 9 12 13

We now discuss the complexity comparison of the considered methods (Fixed-
base Comb Algorithm 3, Radix-R Algorithm 2 and m0m1 Algorithm 3). Since the
parameters are very different between these three methods, a formal comparison
is difficult. Therefore, we present a comparison based on numerical application,
for NIST recommended sizes. In the sequel of this section, we then provide com-
plexity evaluations in terms of field multiplications MM, under the assumption
of squaring MS = 0.86 MM, which is the average value of our implementations
for the NIST DSA recommended field sizes.

Figure 1 gives the general behavior of the three algorithms in terms of storage
with respect to the complexity. One can see that the Fixed-base Comb method
is the best for small storage amount. Our m0m1 approach is better for larger
amount of storage, however, the Radix-R method is the best when the storage is
increasing. In the figure, the field size is the largest of the ones recommended in
the NIST standards (see [13]). Thus, the storage amount for such size is very big.
Nevertheless, the behavior is roughly the same for smaller sizes, although the

Fig. 1. Complexity comparison, Fixed base modular exponentiation NIST DSA, key
size 512 bits (field size 15360 bits).
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benefit of our approach is lower. The NIST provides recommended key sizes and
corresponding field size (respectively the size of the primes q and p, see NIST
SP800-57 [13]). This standardized sizes are as follows:

Key size (bits) 160 224 256 384 512

Field size (bits) 1024 2048 3072 7680 15360

For these sizes, Table 3 shows the complexity comparison between the Fixed-
base Comb Algorithm 3, the Radix-R Method Algorithm 2 and our m0m1-
Recoding approach Algorithm5. For an equivalent number of MMs, we provide
the minimum amount of storage.

We now provide a few comments about this table.

– For all sizes, we do not provide the results for small amount of storage (values
of w < 8). For such storage, the Fixed-base Comb method is the best. One may
notice that the Radix-R approach needs the greatest storage at this complexity
level.

– For intermediate values of complexity, our proposed m0m1 approach shows
the best storage/complexity trade-off. However, the benefits are greater for
the larger key sizes.

Table 3. Storage amount comparison, Fixed-base Comb method and m0m1 modular
exponentiation fixed-base, average case, NIST recommended exponent sizes.

Key size t = 224 bits Key size t = 256 bits

#MM Fixed-base C. Radix-R m0m1 #MM Fixed-base C. Radix-R m0m1

45 127.5 kB 345 kB 108 kB 46 383 kB 845 kB 241 kB

w = 9 R = 31 m0 = 11; m1 = 9 w = 10 R = 47 m0 = 17; m1 = 11

37 511.5 kB 594 kB 242 kB 39 1535 kB 1454 kB 579 kB

w = 11 R = 61 31; 7 w = 12 R = 97 47; 7

30 4095.5 kB 1386 kB 770 kB 32 12287 kB 3179 kB 2070 kB

w = 14 R = 179 127; 7 w = 15 R = 257 211; 6

24 32767.5 kB 4230 kB 4173 kB 26 98303 kB 9486 kB 9642 kB

w = 17 R = 677 877; 7 w = 18 R = 937 1223; 6

19 524287.5 kB 27084 kB 50409 kB 20 1572863 kB 66676 kB 225482 kB

w = 21 R = 5417 13441; 5 w = 22 R = 8467 37579; 5

Key size t = 384 bits Key size t = 512 bits

#MM Fixed-base C. Radix-R m0m1 #MM Fixed-base C. Radix-R m0m1

63 1918 kB 4081 kB 969 kB 86 3836 kB 9841 kB 1940 kB

w = 11 R = 67 m0 = 19; m1 = 11 w = 11 R = 59 m0 = 13; m1 = 11

50 15358 kB 10087 kB 3742 kB 73 15356 kB 17855 kB 4747 kB

w = 14 R = 191 101; 11 w = 13 R = 127 41; 10

41 122878 kB 26655 kB 17284 kB 60 122876 kB 46775 kB 16224 kB

w = 17 R = 677 541; 6 w = 16 R = 409 179; 11

35 983038 kB 80357 kB 64768 kB 52 491516 kB 93110 kB 54680 kB

w = 20 R = 2381 2381; 6 w = 18 R = 937 677; 7

30 7864318 kB 246070 kB 315053 kB 48 983036 kB 156091 kB 106185 kB

w = 23 R = 8467 13441; 5 w = 19 R = 1699 1489; 10

26 62914558 kB 951217 kB 3256278 kB 41 7864316 kB 489112 kB 355573 kB

w = 26 R = 37579 165397; 5 w = 22 R = 6211 5417; 7

24 503316478 kB 1750756 kB - kB 35 62914556 kB 2048419 kB 2113890 kB

w = 29 R = 74699 − w = 25 R = 30347 37579; 7
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• t = 224, the best gain of our m0m1 approach is for #MM ≈ 24, with a
storage 5 to 8 times smaller than the storage required for the Fixed-base
Comb method, respectively for #MM = 30 and #MM = 24, and 35%
less than the one of the Radix-R method. However, below #MM ≈ 24,
the Radix-R approach is better.

• t = 256, the best gain of our m0m1 approach is for #MM ≈ 32, with a
storage about 6 times smaller than the storage required for the Fixed-base
Comb method, and 44% less than the one of the Radix-R method. Again,
with decreasing values of #MM (below 26), the Radix-R approach is
better.

• t = 384, the best gain of our m0m1 approach is for #MM ≈ 35, with a
storage about 15 times smaller than the storage required for the Fixed-
base Comb method, and 19% less than the one of the Radix-R method.
Again, with decreasing values of #MM (below 33), the Radix-R approach
is better.

• t = 512, the best gain of our m0m1 approach is for #MM ≈ 41, with a
storage about 22 times smaller than the storage required for the Fixed-
base Comb method, and 27% less than the one of the Radix-R method.
Again, with decreasing values of #MM (below 38), the Radix-R approach
is better.

However, one may notice that the bigger memory storage sizes exceed the
common values of Random Access Memory, and also the maximum allowed for
the malloc function of the standard C library for memory allocation. Neverthe-
less, the storage savings proposed by our method and the Radix-R ones allow to
keep the level under the limit for lower complexities.

As a conclusion, our m0m1 approach shows lower storage amount for inter-
mediate values of storage, whatever the standardized key size.

5 Implementation Results

5.1 Implementation Strategies

We review hereafter the main implementation strategies and test process. This
applies for the three considered exponentiation algorithms. The algorithms were
coded in C, compiled with gcc 4.8.3 and run on the same platform.

Multiprecision Multiplication and Squaring: We used the low level functions per-
forming multi-precision multiplication and squaring of the GMP library as building
blocks of our codes (GMP 6.0.0, see GMP library [1]). According to the GMP
documentation, the classical schoolbook algorithm is used for small sizes, and
Karatsuba and Toom-Cook sub quadratic methods for size ≥2048 bits.

Modular Reduction: This operation implements the Montgomery representation
and modular reduction method, which avoid multi-precision division in the com-
putation of the modular reduction. This approach has been presented by Mont-
gomery in [12]. More specifically, we used the block Montgomery algorithm sug-
gested by Bosselaers et al. in [2]. In this algorithm, the multi-precision operations
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combine full size operand with one word operand and are also available in the
GMP library [1]. Although the complexity is the same, the implementation is
more computer friendly.

m0m1 Recoding: The conversion in radix-R needs multi-precision divisions.
These operations are implemented using the GMP library [1]. The size of these
operations is decreasing along the algorithm, and this is managed through GMP.
The other operations are classical long integer operations. Steps 9 and 21 in
Algorithm 4, an inversion modulo m0 is required (|(k(1)

i )−1|m0). This operation
is performed using the Extended Euclidean Algorithm, over long integer data.
For the considered exponent sizes, the cost of the recoding is negligible. This is
explained by the small size of the exponent in comparison with the size of the
data processed during the modular exponentiation (see the key sizes given page
11). The timings given in the next Section include this recoding.

Test Processing: The tests involve a few hundred dataset, which consists of ran-
dom exponent inputs and an exponentiation base with the precomputed val-

Table 4. Synthesis of implementation results, clock cycles and storage (kB). Test
performed on an Intel XEON E5-2650 (Ivy bridge), gcc 4.8.3, CENTOS 7.0.1406.

Modular exponentiation

State of the art methods

Fixed-base Comb Radix R m0, m1 rec Ratio

#CC storage #CC storage #CC storage m0, m1/

Best S.o.A.

Key size 224 bits, field size 2048 bits (level of security: 112 bits)

221108

1023.5 kB (w = 12)

227838

829 kB (R = 91)

219864

580 kB (m0 = 89, m1 = 6)

×0.994

×0.700

210074

2047.5 kB (w = 13)

206888

1324 kB (R = 163)

207072

766 kB (m0 = 127, m1 = 7)

×0.985

×0.579

149690

65535 kB (w = 18)

147877

7289kB (R = 1223)

146156

21599 kB (m0 = 5417, m1 = 6)

×0.988

×2.96

Key size 256 bits, field size 3072 bits (level of security: 128 bits)

524539

1535 kB (w = 12)

502981

1411 kB (R = 91)

501466

897 kB (m0 = 79, m1 = 6)

×0.997

×0.636

449397

6143 kB (w = 14)

445871

2251 kB (R = 163)

446444

2056 kB (m0 = 211, m1 = 6)

×1.001

×0.913

356892

98303 kB (w = 18)

354640

6414 kB (R = 571)

354071

12843 kB (m0 = 1721, m1 = 7)

×0.998

×2.002

Key size 384 bits, field size 7680 bits (level of security: 192 bits)

4442590

1918 kB (w = 11)

4492191

3430 kB (R = 53)

4409584

1134 kB (m0 = 23, m1 = 10)

×0.993

×0.467

3554339

15358 kB (w = 14)

3524896

8290 kB (R = 163)

3551437

4164 kB (m0 = 113, m1 = 10)

×1.008

×0.502

2736341

245758 kB (w = 18)

2543480

45221 kB (R = 1223)

2743399

29961 kB (m0 = 1031, m1 = 7)

×1.079

×0.662

Key size 512 bits, field size 15360 bits (level of security: 256 bits)

18632429

15536 kB (w = 13)

19260731

13765 kB (R = 91)

18550238

4745 kB (m0 = 41, m1 = 10)

×0.996

×0.345

14848261

122876 kB (w = 16)

15401002

34418 kB (R = 163)

14813453

22109 kB (m0 = 257, m1 = 11)

×0.998

×0.642

12477816

983036 kB (w = 19)

12193232

119061 kB (R = 1223)

12499600

102820 kB (m0 = 1381, m1 = 7)

×1.025

×0.863
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ues stored. We compute 2000 times the corresponding exponentiation for each
dataset and keep the minimum number of clock cycles. This avoids the cold-cache
effect and system issues. The timings are obtained by averaging the timings of
all dataset.

5.2 Tests Results and Comparison

The three considered exponentiation algorithms were coded in C, compiled with
gcc 4.8.3 and run on the following platform: the CPU is an Intel XEON�

E5-2650 (Ivy bridge), and the operating system is CENTOS 7.0.1406. On this
platform, the Random Access Memory is 12.6 GBytes. One notices that the
performance results include the recoding in the radix-R and m0,m1 cases. The
implementation results confirm the complexity evaluation, for key sizes of 224,
256, 384, and 512 bits. However, the better results are for 384 and 512 bits.

In Table 4, we provide the most significant results. The gains shown are
roughly in the same order of magnitude as the one of the complexity evalua-
tion. In particular, for the largest key size (512 bits), the storage of our m0,m1

approach is nearly ten times less than the one required with the Fixed-base Comb
method, and nearly 14% less than the one required for the Radix-R method, for
the same computation timing, about 12.5 × 106#CC.

6 Conclusion and Future Work

In this paper, we have presented a new method for fixed-base exponentiation
using a radix-R conversion with RNS representation of every radix-R digits,
using an RNS base with two moduli B = {m0,m1}. We have designed a recod-
ing algorithm, which computes our m0m1 representation of the exponent, and
we have used it in a modular exponentiation algorithm which provides memory
storage savings or improve the performance in terms of clock cycles per modular
exponentiation, while offering a total flexibility in terms of storage amount. We
have provided a complexity evaluation, which shows that our approach improves
significantly the complexity/storage trade-off. We have then implemented this
approach in order to check the performance benefits. We have compared our
approach with two other classical approaches, the Fixed-base Comb and the
Radix-R, and have confirmed the complexity results, showing the better stor-
age/performance trade-off of our approach.

Two issues remain opened:

– Side-channel analysis is also a major threat, even in case of software implemen-
tation. For example, Gueron in [7] mentions the cache attack. In the present
paper, we did not take this threat into account in the memorization process.
However, by using a storage pattern spreading the data in memory, we could
ensure the resistance against cache-attacks in the same way as the one used
by Gueron without penalty. This needs to be implemented in all algorithms
for fair comparison.
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– Our approach can be applied to Elliptic Curve Cryptography, particularly to
the ECDSA signature protocol. In this case, one needs to compute Elliptic
Curve Scalar Multiplication. However, the relatively cheap doubling of point
operation in comparison with point addition for the NIST recommended curves
makes the benefits of our approach not as good as the one in the modular
exponentiation case. Therefore, this approach needs to be implemented in
relevant curves. For example, the twisted Edwards curve is an example of
curve with relatively equivalent doubling and addition in terms of complexity.
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Abstract. Isogeny based post-quantum cryptography is one of the most
recent addition to the family of quantum resistant cryptosystems. In
this paper we propose an efficient modular multiplication algorithm for
primes of the form p = 2 · 2a3b − 1 with b even, typically used in such
cryptosystem. Our modular multiplication algorithm exploits the spe-
cial structure present in such primes. We compare the efficiency of our
technique with Barrett reduction and Montgomery multiplication. Our
C implementation shows that our algorithm is approximately 3 times
faster than the normal Barrett reduction.

Keywords: Modular multiplication · Isogeny · Post-quantum
cryptography

1 Introduction

The rapid development in the field of quantum computing has increased the pos-
sibility of practical quantum computer arriving within a few decades [17]. Using
a powerful quantum computer, Shor’s [2] algorithm can factor integers and can
compute discrete logarithm in polynomial time. This has rendered cryptosystems
such as RSA and those using elliptic curve cryptography highly vulnerable.

Due to these developments, research in post-quantum cryptography has seen
a flurry of activity that resulted in many novel post-quantum cryptosystems.
Though the cryptosystems based on learning with errors or LWE has gained
the most interest, there exist other cryptosystems such as the McEliece cryp-
tosystem [18], cryptosystems based on isogeny between elliptic curves [1,13], the
multivariate cryptosystem [19] etc. Many cryptographic schemes based on these
primitives have been proposed which are analogous to their classical counterparts
and hopefully will replace them in the near future.

A cryptosystem based on the computation of isogenies between elliptic curves
was first proposed by Anton Stolbunov [13]. The security of this cryptosys-
tem was based on the hardness of computing isogenies between ordinary elliptic
c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 193–207, 2016.
DOI: 10.1007/978-3-319-55227-9 14
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curves. The best known classical algorithm to solve this problem has exponen-
tial [11] complexity. But the work of Childs et al. [8] has shown that this problem
has sub-exponential complexity on a quantum computer. Also their system was
slow for practical purposes.

The isogeny based post quantum cryptosystem proposed by De Feo et al. [1]
uses supersingular elliptic curves instead of ordinary elliptic curves. The authors
in [1] have argued that the problem of computing isogenies between supersingular
elliptic curves is quantum secure. They have also shown that their cryptosystem
is many times faster than the previous system and offers post-quantum security
for practical parameter sizes.

2 Motivation

The isogeny based post-quantum cryptosystem proposed by De Feo et al. [1]
is based on the difficulty of computing isogenies between supersingular elliptic
curves. Computing isogenies and applying them to the points of elliptic curves
ultimately boils down to arithmetic operations in a finite field over which the
supersingular curve is defined. In isogeny based cryptography the prime p is of
the form p = f · 2a3b − 1 where f is a small number. Such a special structure
of the prime is essential for the scheme. Like many other cryptosystems, isogeny
based cryptosystem rely heavily on modular multiplication.

Montgomery multiplication [3] and Barrett reduction [7] are two ingenious
methods to replace computationally costly divisions used in modular reduction
with additional multiplications, additions, bit shifts etc. These methods tackle
the costly modular multiplication quite efficiently and they can be applied for
any general prime. So they are unable to exploit any special structure of the
prime for even faster reduction.

Mersenne primes [5] and Pseudo-Mersenne primes [6] offer very fast reduction
due to their special structure. Also the NIST-curves [20] which are used in elliptic
curve cryptography frequently use fields over generalized Mersenne primes [4] for
the advantage of extremely fast modular reduction. Even though the primes we
discuss cannot be categorized as a Mersenne prime, generalized Mersenne prime
or Pseudo-Mersenne prime, the possibility of exploiting the special structure of
the prime for an efficient modular multiplication calculation is highly intriguing.
The parameters a and b for the prime p = 2 · 2a · 3b − 1 in the isogeny based
post-quantum protocol are chosen in such a way that log2(2a) ≈ log2(3b). For
example, the 771-bit prime p = 2 · 23863242 − 1 is used in [1] for 128-bit security.

Our Contribution. In this work we describe a fast modular multiplication
algorithm for the primes used in isogeny based post-quantum cryptosystems. Our
algorithm is inspired by the Barrett reduction [7] and leverages special structures
of the primes used in such cryptosystems. While there are several techniques for
performing efficient arithmetic in fields whose characteristic is a Mersenne prime
or a Pseudo-Mersenne prime [4], we are not aware of any techniques that could
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accelerate modular arithmetic in finite fields of characteristic p = f · 2a3b − 1
where f is a small number. In this paper we propose an efficient algorithm to
perform fast modular arithmetic with primes of the form p = 2 · 2a3b − 1 with
b even. Besides the new algorithm, we list a number of such primes for different
security levels. These primes are listed in AppendixC.

3 Mathematical Background

In this section we will briefly describe the isogeny based key exchange protocol
and then focus on efficient modular multiplication techniques. For a detailed
description of isogeny based key exchange interested readers may follow [1].

3.1 Isogenies of Elliptic Curves

An isogeny φ : E1 → E2 is a basepoint preserving, i.e. φ(O) → O, morphism
between two elliptic curves E1 and E2 defined over Fq (Sect. III.4 in [12]). Two
elliptic curves are said to be isogenous if there exists an isogeny between them.
This is an equivalence relation and symmetry is given by the existence of a dual
isogeny. As mentioned in [1], an isogeny class is an equivalence class under the
above equivalence relation. Inside the same isogeny class the curves are either
all supersingular or all ordinary curves. The post-quantum key exchange scheme
by De Feo et al. in [1] uses supersingular curves.

In this key-exchange scheme the public parameters are a supersingular curve
E0 defined over a field Fp2 with p = f · 2a3b ± 1, and bases {Pa, Qa} and
{Pb, Qb} which generate the torsion groups E0[2a] and E0[3b] respectively. Alice
chooses ma, na ∈R Z/2aZ and computes the isogeny φa : E0 → Ea, Ea =
E0/〈[ma]Pa+[na]Qa〉. Alice also computes φa(Pb) and φa(Qb) under this isogeny
and sends Ea, φa(Pb), and φa(Qb) to Bob. Similarly Bob chooses mb, nb ∈R

Z/3bZ computes the isogeny φb : E0 → Eb, Eb = E0/〈[mb]Pb + [nb]Qb〉 and
sends Eb, φa(Pb), and φa(Qb) to Alice. After this Alice calculates the isogeny φ′

a :
Ea → Eab, Eab = Ea/〈[ma]φb(Pa) + [na]φb(Qa)〉 and similarly Bob calculates
φ′
b : Eb → Eba. Bob and Alice then use their common j-invariant j(Eab)=j(Eba)

as their shared key.
The difficulty of the key-exchange scheme is based on the hardness of com-

puting isogenies between supersingular elliptic curves. The authors in [1] have
argued that the complexity of the best known algorithm [16] for solving this
problem is 4√p using classical computers and 6√p using a quantum computer,
where p is the characteristic of the field over which the curves are defined (more
details in Sect. 5 and 6 of [1]). The authors have described post quantum pro-
tocols for zero knowledge proof, key-exchange and public key cryptosystem in
their paper [1]. Hash functions [15] and digital signature schemes [14] based on
the isogenies have also been proposed.
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Alice Bob

ma, na ∈R Z/2aZ
φa : E0 →

E0/ [ma]Pa + [na]Qa

mb, nb ∈R Z/3bZ
φb : E0 →

E0/ [mb]Pb + [nb]Qb

Send φa(Pb), φa(Qb)Ea

Send φb(Pa), φb(Qa)Eb

φa : Ea →
Ea/ [ma]φb(Pa) +

[na]φb(Qa)
Output : j(Eab)

φb : Eb →
Eb/ [mb]φa(Pb) +

[nb]φa(Qb)
Output : j(Eba)

Isogeny based key-exchange protocol

3.2 Efficient Modular Arithmetic

In this section we describe two famous algorithms for efficient modular reduc-
tions: the Barrett reduction, and the Montgomery reduction.

Barrett Reduction: Euclid’s division lemma tells us that for any two positive
integers a and b there exist q and r such that a = q · b + r, r ∈ [0, b − 1]. Here
of course, a = r (mod b), but finding such q and r requires division of a by b.
There exist fast methods for division by small constants [9], but in general for
practical cryptographic settings, division is a computationally costly operation.

For constant divisors, Barrett’s reduction is a clever trick. It estimates 1/b
to substitute division by a few multiplications and bit shifts. The 1/b in Barrett
reduction is approximated as,

1/b =
(2k)/b

b · 2k/b
=

(2k)/b

2k
≈ x

2k

Usually the value of x is taken as x = �2k/b	 where the parameter k depends
on a. The error e of the approximation of 1/b is e = 1/b−x/2k. Hence, the error
in approximating the quotient q is ae. As q ∈ Z

+, for a correct result we require
that the error in approximating q is smaller than 1. This condition is satisfied
when k = log2(a). The Barrett reduction algorithm is shown in Algorithm 1.
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Input: Two numbers a and b, parameter k, x =
⌊2k

b

⌋

Output: a (mod b)
1 q ← (a × x) >> k;
2 r ← a − q × b;
3 if r ≥ b then
4 r ← r − b
5 end
6 return r

Algorithm 1. Barrett’s Reduction Algorithm

Montgomery Multiplication: Montgomery multiplication [3] is another tech-
nique used to remove the necessity of performing modular reduction after each
multiplication of the field elements. To use Montgomery’s technique we need a
number r co-prime to the modulus p or equivalently r ·r′+p·p′ = 1. The values r′

and p′ can be calculated by the extended Euclidean algorithm [10]. Montgomery
multiplication first converts the operands a and b to the Montgomery domain as
aM = a · r (mod p), bM = b · r (mod p), the multiplication algorithm described
in Algorithm 2 ensures that the product also stays in the Montgomery domain
as aM × bM = cM (mod p) = a · b · r (mod p). Also the result of addition and
subtraction between operands in the Montgomery domain stays in the Mont-
gomery domain. As the conversion to and from the Montgomery domain is a
costly procedure, this technique is useful where we need many multiplications,
additions or subtractions in close succession.

Input: Two numbers aM = a · r (mod p) and bM = b · r (mod p)
Output: cM = a · b · r (mod p)

1 t ← aM · bM ;
2 cM ← (

t + (t · p′ (mod r)) · p)/r;
3 if cM ≥ p then
4 cM ← cM − p
5 end
6 return cM

Algorithm 2. Montogomery Multiplication

As mentioned before, the above two methods do not utilize the special struc-
ture of the primes for faster modular multiplication. In the next section we are
going to describe our modular multiplication algorithm which exploits the special
structure of the prime for efficient modular multiplication.

4 New Modular Multiplication Algorithm

In our method, the representation of field elements plays an important role in
the efficiency of the method. We represent a field element, let’s say A ∈ Fp,
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where p = 2 · 2a3b − 1, as

A = a1 · 2a3b + a2 · 2a/23b/2 + a3, a1 ∈ [0, 1], a2, a3 ∈ [0, 2a/23b/2) (1)

In the above representation we have assumed that a is even. However it is not
mandatory. If a is odd we can write p = 4 · 2a−13b − 1. This change in the value
of the cofactor (from 2 to 4) does not affect the performance of the algorithm.
During the course of our modular multiplication algorithm the only significance
of the value of the cofactor is to determine the value of the coefficient a1, where
we need to divide some numbers by the cofactor. As division by 4 is almost
as easy as division by 2 in binary representation, the change of value of the
cofactor from 2 to 4 has little impact on the performance. In case a is odd the
range of a1 will change to [0, 3]. Here we want to note that we could have written
p = 2a+13b − 1 instead of p = 4 · 2a−13b − 1 with the cofactor equal to one, both
of these representations of p have no major impact on the performance and can be
switched between one another trivially by simple mathematical manipulations.
Using the same argument as above we need b to be even else it will impact the
performance significantly, as division by 6 or 12 is not as easy as division by
2 or 4.

We note that this conversion from normal integer representation to this spe-
cial representation and vice versa is a costly procedure. But we explain at the
end of this section that this conversion and reconversion are one-time proce-
dures that we need to perform at the beginning and the end of the key-exchange
algorithm.

4.1 Multiplication Algorithm

Let’s suppose we have two numbers A,B ∈ Fp as represented in Eq. (1). After
multiplying them we get the result C as per the equation shown below:

C = a1b1 · 22a32b + (a1b2 + a2b1)23a/233b/2 + (a1b3 + a2b2 + a3b1)2a3b

+(a2b3 + a3b2)2a/23b/2 + a3b3. (2)

Since the prime p is of the form 2 · 2a3b − 1, we can replace 2a3b in Eq. (2) by
2−1(mod p). Hence a1b1 · 22a32b gets replaced by 0 or 2−2 (mod p) as a1, b1 ∈
{0, 1} and a1b1 ∈ {0, 1}. Note that for a fixed prime we can precompute the
value of 2−2 (mod p) and use that for the above replacement in Eq. (2).

We can replace (a1b3 + a2b2 + a3b1)2a3b as follows. If (a1b3 + a2b2 + a3b1) is
even, we can write (a1b3 + a2b2 + a3b1)2a3b = (a1b3 + a2b2 + a3b1)/2 (mod p).
Otherwise we can write (a1b3 + a2b2 + a3b1)2a3b = ((a1b3 + a2b2 + a3b1−1)/2)
(mod p)+ (a1b3 + a2b2 + a3b1) (mod 2) · 2a3b. Considering both the even and
odd cases we can write the following equation:

(a1b3 + a2b2 + a3b1)2a3b

=⇒
(
�(a1b3 + a2b2 + a3b1)/2	

)
+

(
(a1b3 + a2b2 + a3b1) mod 2

)
2a3b.
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Similarly,
(
a1b2 + a2b1

)
· 23a/233b/2

=⇒
(
�(a1b2 + a2b1)/2	

)
· 2a/23b/2 +

(
(a1b2 + a2b1) mod 2

)
· 2a/2−13b/2.

Rewriting Eq. (2) by replacing the coefficients we get the following equation:

A × B =
(
2−2 (mod p)︸ ︷︷ ︸
replacing22a32b

a1b1 + a3b3 + ((a1b2 + a2b1) (mod 2))2a/2−13b/2+

�(a1b3 + a2b2 + a3b1)/2)�︸ ︷︷ ︸
replacing(a1b3+a2b2+a3b1)2a3b

)
+
(

�(a1b2 + a2b1)/2�︸ ︷︷ ︸
replacing

(a1b2+a2b1)2
3a/233b/2

+(a2b3 + a3b2)
)
2a/23b/2

+
(
(a1b3 + a2b2 + a3b1) (mod 2)

)
2a3b.

The algorithm is described in Algorithm 4. To compute the above expression
we have to perform four smaller multiplications: a2b2, a2b3, a3b2 a3b3, as the
other terms which are multiplied with a1, b1 ∈ {0, 1}.

Now we have the product as A×B = C = C1 ·2a3b + C2 ·2a/23b/2 + C3, but
in this expression the coefficients C2 and C3 lie in the range [0, 2a3b), which is
not consistent with our representation where C2 and C3 should lie in the range
[0, 2a/23b/2). Hence we need to split them further so that they fit according to
our representation scheme. This splitting involves divisions of the coefficients Ci

for i = 2 and 3 by 2a/23b/2. In the next section we are going to explain how we
can do this division efficiently.

4.2 Efficient Division

Our purpose is to divide a number Ci ∈ [0, 2a3b) by 2a/23b/2 and calculate the
quotient q and remainder r in an efficient way. We note that division by two is
a simple right shift operation. Hence we perform the division by 2a/23b/2 using
the steps shown below.

1. Extract the a/2 least significant bits of Ci and store them in a variable r1.
2. Right shift Ci by a/2 bits to obtain C ′

i.
3. Divide C ′

i by 3b/2 to get the quotient q and the remainder r2.

Hence we have Ci = q · 2a/23b/2 + (r2 · 2a/2 + r1) = q · 2a/23b/2 + r.
The division operation by 3b/2 in Step 3 is not as easy as the division by

2a/2. However since b is a fixed integer, the division can be performed using
multiplications similar to the Barrett reduction technique [7] as described in
Algorithm1 in Sect. 3.

Obtaining the quotients and remainders after dividing C2 and C3 by 2a/23b/2,
it is trivial to write C in the desired representation of a finite field element.
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Input: 2 numbers Q ∈ [0, 2a3b) and P = 2a/23b/2 and log2 Q ≈ 2 · log2 P .
P ′ = P/2a/2 precomputed x = 2k/P ′, k is as described in Sect. 3.2

Output: q and r such that Q = q · P + r
1 t ← �Q/2a/2	, s = Q (mod 2a/2);
2 q ← t × x >> k;
3 r ← t − P ′ × q;
4 r ← r × 2a/2 + s;
5 if r > P then
6 r ← r − P ;
7 q ← q + 1
8 end
9 return q, r

Algorithm 3. Our Division Algorithm

In the next part of this section we will compare the cost of our modular
reduction technique with the original Barrett reduction technique. Note that
the parameters a and b in the prime p = 2 · 2a · 3b − 1 are chosen in such a way
that log2(2a) ≈ log2(3b). For convenience let us take log2(2a) ≈ log2(3b) ≈ N .
So the prime is of size 2N bits.

Comparison with Barrett Reduction: In the Barrett reduction technique
in Algorithm 1 the result of an integer multiplication that is of size ≤ 4N bits is
reduced by a prime of size 2N bits. For correct computation k is of size 4N bits.
In this scenario we have to perform one 4N × 2N bit multiplication to compute
the quotient (line 1 in Algorithm 1) and one 2N × 2N bit multiplication to com-
pute the remainder (line 2 in Algorithm1). Thus using a quadratic complexity
multiplier, the Barrett reduction technique has a cost of 12N2. In our modu-
lar reduction technique we perform divisions of two numbers C2 and C3 of size
≤ 2N by an N bit number 2a/23b/2. Since division by a power of two is almost
free, the cost of each division reduces to the cost of dividing a number of size
≤ 3N/2 bits by a N/2 bit number. To perform the divisions correctly we need
to fix the value of k to 3N/2. Hence each of the two division operations perform
a 3N/2 × N bit multiplication and an N × N/2 bit multiplication (lines 2 and
3 in Algorithm 3). Thus using a quadratic complexity multiplier, our reduction
technique has a cost of 4N2.

Comparison with Montogomery Multiplication: In this section we pro-
vide a comparison of the computational cost of Montgomery multiplication with
our technique. As defined in Sect. 4.2 our prime is of size 2 ·N bits. For executing
a single round of Montgomery multiplication we need two 2N × 2N bit multi-
plications. And a relatively easier multiplication of t · p′ (mod r) where only the
last 2 · N bits of the result are required. In our case we need only four N × N
bit multiplications for the first part of our algorithm and two 3N/2 × N bit and
N × N/2 bit multiplications for the final reduction.
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Input: A,B ∈ Fp , A = a1 · 2a3b + a2 · 2(a/2)3(b/2) + a3 and
B = b1 · 2a3b + b2 · 2(a/2)3(b/2) + b3; 2−2 (mod p) precalculated

Output: C = A × B (mod p) ,C = C1 · 2a3b + C2 · 2(a/2)3(b/2) + C3

1 C1 = 0;C2 = 0;C3 = 0;

2 Multiply a2 × b2, a2 × b3, a3 × b2, a3 × b3; // ∈ [0, 2a3b)

3 Multiply a1 × b1, a1 × b2, a1 × b3, b1 × a2 b1 × a3; // ∈ [0, 2a/23b/2)
4 C3 ← a1b1 · 2−2 (mod p) + a3b3;
5 C2 ← a2b3 + a3b2;

6 t ← (a1b2 + a2b1) ; // replacing (a1b2 + a2b1)2
3a/233b/2

7 if isEven(t) then
8 C2 ← C2 + t/2
9 else

10 t ← t − 1;
11 C2 ← C2 + t/2;

12 C3 ← C3 + 2a/2−13b/2

13 end

14 t ← (a1b3 + a2b2 + a3b1) ; // replacing (a1b3 + a2b2 + a3b1)2
a3b

15 if isEven(t) then
16 C3 ← C3 + t/2;
17 C1 ← 0

18 else
19 t ← t − 1;
20 C3 ← C3 + t/2;
21 C1 ← 1

22 end

/* End of first part C = C12
a3b + C22

a/23b/2 + C3, reduce

C2, C3 = O(2a3b) further by Barrett division */

23 q, r ← BarrettDivision(C3);
24 C3 ← r;
25 C2 ← C2 + q;
26 q, r ← BarrettDivision(C2);
27 C2 ← r;
28 C1 ← C1 + q;
29 if isEven(C1) then
30 C3 ← C3 + C1/2;
31 C1 ← 0

32 else
33 C3 ← C3 + (C1 − 1)/2;
34 C1 ← 1

35 end

36 if C3 overflows i.e. C3 > 2a/23b/2, then C3 ← C3 − 2a/23b/2, C2 ← C2 + 1 if C2

also overflows C1 ← C1 + 1 and repeat steps 29 to 35, this situation occurs
rarely and also then we have to perform this step at most once;

37 return (C1 · 2a3b + C2 · 2a/23b/2 + C3)

Algorithm 4. Multiplication Algorithm
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Here we want to mention that the two Barrett Divisions performed in the
reduction stage (23 and 26) of Algorithm4 can be run in parallel, effectively
reducing the computing time by half (Fig. 1).

C3

Barrett Division

Barrett Division

r C3

+C2
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q’
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(a) Serial Execution

3

Barrett Division Barrett Division
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q’,r’ q’,r’

r’=r’−mod
q’=q’+1 yes

no

C2 2C

(b) Parallel Execution

Fig. 1. Serial and Parallel execution for the reduction part of Algorithm 4

5 Software Implementation

For a comparison of the effective speedup of our algorithm we implemented
our algorithm using C in a 32 bit multi-precision format for a security level
of 128 bits. We also implemented a normal Barrett reduction using the same
multi-precision format. The cost of multiplication when multiplying two input
numbers in both of the algorithms is expected to remain the same. Therefore we
used normal schoolbook multiplication. Upon running multiple instances of both
the algorithms on a computer with CentOS on a core i5 CPU and averaging the
running times we obtain the results as given in Table 1. As we can see from the
table, we achieve an approximate 62% speed-up in reduction and 43% speed-up
for modular multiplication (multiplication + reduction) with our method against
the normal Barrett reduction. This result is consistent with our prediction in
Sect. 4.2.

Table 1. Comparison of our algorithm with normal Barrett reduction algorithm

Operation Running time (µ s)

Barrett reduction 50.547

Normal multiplication 67.097

Our reduction 19.565

Our multiplication 38.490
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6 Hardware Implementation

To check the performance of the new modular multiplication scheme, we have
designed a hardware architecture that performs modular multiplications follow-
ing Algorithm 4. The arithmetic unit of the architecture consists of a combina-
tional multiplier of input size N/2 and an addition/subtraction circuit of input
size N. The operands are stored as arrays of N/2 bit words in a register file
that contains 52 registers in total and of which 16 registers were used to store
the pre-computed values as required by the Algorithm4. Since the proposed
algorithm performs arithmetic operations on two operands, we kept two out-
put ports and one input port in the register file. During a multiplication, the
multiplier performs multiplications of words and the adder helps to accumu-
late the result in the accumulator register ACC. For performing multi-precision
additions and subtractions, only the lower half (i.e. the N/2 bits) of the addi-
tion/subtraction circuit is used. The control signals are generated by a hierarchy
of finite state machines for multi-precision addition, subtraction, shifting and
multiplication. On the top of the hierarchy, a finite state machine executes the
operations required for the modular multiplication operation (Fig. 2).

We have compiled the hardware architecture using the Xilinx ISE 14.4 tool
targetting the Virtex 6 FPGA (xc6vcx240t-2ff784). For this evaluation, we chose
the field generated by the prime 2 · 23863242 − 1 (hence N is 385 bits). After
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place and route operation, the architecture consumes 11, 924 registers and 12, 790
look-up-tables, accounting to 3% and 8% of the resources available in the FPGA.
The operating frequency of the architecture is 31 MHz. One modular multipli-
cation (integer multiplication + modular reduction) takes 236 cycles and hence
7.61 μs.

7 Conclusion

We presented a fast modular multiplication algorithm that exploits the spe-
cial structure of primes of the form p = 2 · 2a3b − 1, used in isogeny based
post-quantum cryptography. To our knowledge there is no other algorithm that
exploits the structure of such primes for fast reduction. We have shown that
our algorithm is more efficient than Montgomery multiplication and Barrett
reduction. We believe that with our algorithm will significantly decrease the
time required to calculate isogenies between supersingular elliptic curves, which
will strengthen the potential of isogeny based post-quantum cryptography as a
practical post-quantum cryptosystem.

Acknowlegments. A. Karmakar and S. Sinha Roy were supported by Erasmus
Mundus PhD Scholarship. This work was supported in part by the Research Coun-
cil KU Leuven: C16/15/058. In addition, this work was supported in part by iMinds,
the Flemish Government, FWO G.0550.12N, G.00130.13N and FWO G.0876.14N, by
the Hercules Foundation AKUL/11/19, and by the European Commission through the
Horizon 2020 research and innovation programme under contract No. H2020-ICT-2014-
644371 WITDOM, and H2020-ICT-2014-644209 HEAT, and H2020-ICT-2014-645622
PQCRYPTO.

We would also like to thank Carl Bootland for his help in proof checking the
manuscript.

A An Example

In this section we provide a small example of the method described in the paper.
Let a = 22,and b = 16 so that the prime is p = 2·2a·3b−1 = 361102068154367,

n = 2a · 3b = 180551034077184,
√

n = 13436928
A = 128965951662196 = 0 ∗ n + 9597874 ∗ √

n + 971124, and
B = 230338429880123 = 1 ∗ n + 3705266 ∗ √

n + 334009
After executing the first stage of the multiplication algorithm, we reached

A × B = C = C1n + C2
√

n + C3 with C1 = 0, C2 = 68262390904455, C3 =
50417786320088. We have to reduce C2 and C3 further by dividing them using√

n. Using our Barrett division algorithm we found C3 = 3752181∗√
n+380120,

we set the remainder 380120 to C3 and add the quotient with C2. We again
divide C2 with

√
n

C2 = 68262390904455 + 3752181 = 68262394656636
C2 = 5080208 ∗ √

n + 5535612, we set the remainder to C2 and add the quotient
with C1 to get C1 = 5080208.
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As C1 (mod 2) = 0, we add C1/2 = 2540104 to C3 to get C3 = 380120 +
2540104 = 2920224.
Here C3 is smaller than

√
n and there is no overflow. So we stop our algorithm

here. Finally, we get the result as C = 0 ∗ n + 5535612 ∗ √
n + 2920224 =

74381622800160, which is indeed A × B (mod p).

B Application in Isogeny Based Post-quantum Key
Exchange Protocol

The isogeny based post-quantum protocol, described in Sect. 3 works by comput-
ing and applying isogenies over supersingular elliptic curve groups. These opera-
tions are fundamentally field arithmetic operations over the field Fp2 , where the
curve is defined.

Here we want to mention that modular addition and subtraction is also easy
in our representation. Let’s say we want to add two numbers A,B ∈ Fp to get
the sum C = (a1 + b1) · n + (a2 + b2) · √

n + (a3 + b3) = C1 · n + C2 · √
n + c3

for convenience we have assumed n = 2a3b. Here again, similar to multiplication
algorithm, C1, C2 and C3 may not be consistent with our representation as given
in Eq. (1). To make C consistent with our representation we follow steps 23 to
36 of Algorithm 4. But here we do not have to use the division Algorithm 3, only
a subtraction by 2a/23b/2 will suffice. For subtraction we first negate a number
B ∈ Fp as −B = p−b = (1−b1) ·n+(

√
n−1−b1) ·√n + (

√
n − 1 − b3) followed

by an addition.
To apply our method to the isogeny based key exchange algorithm as men-

tioned in Sect. 3.1, we changed the representation of the public parameters in
the beginning of the algorithm and executed the algorithm. In the last step we
changed the representation back to the original form and matched both Alice
and Bob’s j-invariant.

To further test the correctness of the algorithm we ran an instance of the
unmodified algorithm with same parameter set and numbers m and n. We veri-
fied that both executions produce identical results.

C List of Primes

In this section we list values for a and b for security level of around 256 bit
and 512 bit. We found these values by a simple brute-force search using a C
implementation. As mentioned before the prime is p = 2 · 2a3b + k, with the
value of log2(3b) close to a. The primality has been tested using GMP [21]
and PARI/GP [22]. Also we should mention that this list is not exhaustive
(Tables 2 and 3).
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Table 2. Table for primes with around 256 bit PQ security

# a b k # a b k # a b k

1 738 514 +1 10 760 490 −1 19 814 538 −1

2 741 510 +1 11 764 484 −1 20 819 552 +1

3 747 468 +1 12 768 518 +1 21 826 528 +1

4 748 468 −1 13 772 478 −1 22 826 538 −1

5 750 482 −1 14 774 476 −1 23 829 458 +1

6 750 490 +1 15 778 484 +1 24 830 512 +1

7 752 542 −1 16 784 496 +1 25 832 470 +1

8 756 468 −1 17 792 480 +1 26 834 488 −1

9 758 514 −1 18 798 526 +1

Table 3. Table for primes with around 512 bit PQ security

# a b k # a b k

1 1538 946 +1 5 1556 958 +1

2 1541 982 +1 6 1569 966 +1

3 1550 1018 −1 7 1570 942 −1

4 1551 964 +1 8 1598 1034 +1
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Abstract. Affine transformations are an often used tool in symmetric
key cryptography. They are mostly known as a way of removing fixed
points in S-boxes, as for instance in the AES S-box. In general, affine
transformations do not have an influence on most cryptographic prop-
erties, since those properties are affine invariant; affine transformations
only change the representation of the S-box. Because of that, there is not
much research on what would be the best affine transformation in terms
of usability in practical scenarios. With this research, we try to close
that gap; we concentrate on several cryptographic properties and one
implementation property that are variable under various affine transfor-
mations. To provide experimental validations, we concentrate on affine
transformations in S-boxes of three sizes, namely, 4× 4, 5× 5, and 8× 8.
Our results indicate that it is possible to optimize one or more of the con-
sidered properties. Finally, although we experiment with only a handful
of properties, our methodology is of a general nature and could be used
for other cryptographic properties that are affine variant.

1 Introduction

In the process of designing a symmetric key cipher, one often uses some form
of affine transformation. The easiest example is to consider the AES S-box,
where an exclusive OR (XOR) operation with a constant was added after the
matrix multiplication to remove a fixed point at the first position [1]. In fact,
this can be regarded as a representative example of the use of affine transforma-
tions in cipher design. When Leander and Poschmann defined optimal 4-bit S-
boxes, they presented them through canonical representatives, i.e. those that are
first in the lexicographical order, where all other optimal S-boxes are obtained
via affine transformations of those canonical representatives [2]. Furthermore,
the authors of the PRINCE cipher gave eight class representatives of suitable
S-boxes where one can choose any S-box that is affine equivalent to one of those
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eight S-boxes [3]. One more example is the Ascon cipher [4], for which the S-box
is an affine transformation of the Keccak S-box [5].

The biggest advantage of using affine transformations lies in the fact that
most of the cryptographic properties will not change, but only the representa-
tion of the S-box changes. Therefore, it may seem that affine transformations
do not deserve a more thorough analysis. However, today we know of a number
of properties that can change under various affine transformations (i.e. prop-
erties that are affine variant) such as the transparency order [6], the modified
transparency order [7], the branch number [8], and the confusion coefficient [9].
Besides those cryptographic properties, it is straightforward to investigate that
implementation properties such as power and area also change under affine trans-
formations.

In this paper, we consider the selection of affine transformations in order to
optimize certain properties of S-boxes while retaining other properties. Naturally,
not all properties considered in this work are relevant for all designs. Therefore,
we want to stress that our focus is on the methodology for finding a suitable
affine transformation. One can say that, since we are experimenting with the
4× 4 size, it is possible to conduct an exhaustive search to find the best possible
affine transformation. Indeed, that would be possible, at least when the consid-
ered cryptographic properties allow a fast evaluation. Nevertheless, we extend
our experiments and show that our approach is also working for the sizes 5 × 5
and 8 × 8. Therefore, we conduct affine transformations on the S-boxes used in
PRESENT [10], Keccak [5], and AES [1].

Our Contributions. In this paper, we present two main contributions. The
first one is a general methodology for generating affine transformations that
improve several affine variant properties. Naturally, this technique has merits
for all S-box sizes, but it is particularly useful for S-box sizes that are too large
for exhaustive search (i.e. bigger than 4 × 4). The second contribution is a novel
way of reducing the search space size. As presented here, some properties change
only under certain transformations and our methodology can find exactly those
transformations.

Outline. The rest of this paper is organized as follows. In Sect. 2, we discuss a
number of relevant cryptographic properties for S-boxes. In Sect. 3, we enumerate
related work on the definition of the affine equivalence of S-boxes. Section 4
presents our experimental setup, the methods we use and the results. Next, in
Sect. 5, we discuss the obtained results and offer several possible future research
avenues. Finally, in Sect. 6, we give a short conclusion.

2 Cryptographic Properties of S-Boxes

The addition modulo 2 (XOR) is denoted as “⊕”. The inner product of the
vectors ā and b̄ is denoted as ā · b̄ and equals ā · b̄ = ⊕n

i=1aibi. The Hamming
weight HW of a vector v̄, where v̄ ∈ F

n
2 , is the number of non-zero positions in

the vector. An (n,m)-function is any mapping F from F
n
2 to F

m
2 . In this paper,

we are interested only in cases where n = m.
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As already stated, affine transformations cannot change many cryptographic
properties. Three properties that are affine invariant, yet highly significant for
the rest of this paper are the nonlinearity, the bijectivity, and the δ-uniformity
of an S-box.

An S-box is called bijective (balanced) if it takes every value of Fm
2 the same

number of times, namely 2n−m [11].
The nonlinearity NF of an S-box F is equal to the minimum nonlinearity of

all non-zero linear combinations of its coordinate functions [11].

NF = 2n−1 − 1
2

max
ā∈F

n
2 ,v̄∈F

m∗
2

|WF (ā, v̄)|. (1)

WF (ā, v̄) represents the Walsh-Hadamard transform of F :

WF (ā, v̄) =
∑

x̄∈F
n
2

(−1)v̄·F (x̄)⊕ā·x̄. (2)

Let F be a function from F
n
2 into F

n
2 and a, b ∈ F

n
2 . We denote:

D(a, b) = |{x ∈ F
n
2 : F (x + a) + F (x) = b}|. (3)

The entry at the position (a, b) corresponds to the cardinality of D(a, b) and is
denoted as δ(a, b). The δ-uniformity δF is then defined as [12,13]:

δF = max
a�=0,b

δ(a, b). (4)

The results for the aforesaid invariant properties of the PRESENT, Keccak,
and AES S-box are given in Table 1. We note that those S-boxes are bijective.
For the PRESENT and AES case we have S-boxes that are the best possible (or
believed to be in the case of AES and its nonlinearity value) with regards to those
properties. However, when considering the Keccak S-box, both nonlinearity and
δ-uniformity are not optimal (cf. with e.g. the Almost Bent (AB) function in
the PRIMATEs S-box that has nonlinearity 12 and δ-uniformity 2 [14]). Fur-
thermore, the Keccak S-box has two fixed points and a branch number equal to
two, while its affine equivalent S-box as used in Ascon has zero fixed points and
a branch number equal to 3 [4].

Table 1. The values of the considered affine invariant properties.

S-box Size NF δF

PRESENT 4 × 4 4 4

Keccak 5 × 5 8 8

AES 8 × 8 112 4

We use the aforesaid properties to establish informal equivalence classes con-
sidering affine variant properties. When considering the 4×4 S-box size, Leander
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and Poschmann defined optimal S-boxes as those being bijective, with maximal
nonlinearity (equal to 4), and minimal δ-uniformity (again equal to 4). Therefore,
all resulting S-boxes in our experiments (those that were obtained with affine
transformations) are still optimal S-boxes and we do not report those properties.
Naturally, to ensure there are no mistakes, in our design process we still check
them and consider S-boxes valid only if those properties do not change. Simi-
larly, for sizes 5 × 5 and 8 × 8 we do not report the values of the affine invariant
properties, but we check them in our analysis.

We emphasize that we are only interested in the design of S-boxes and not
in the design of a whole cipher, and therefore we do not presume our S-boxes
can replace the ones that are currently used in existing ciphers. Rather, in the
process of the design of new ciphers, we believe our methodology can play a
role. Therefore, since we do not aim to replace the original S-boxes, we do not
conduct any cryptanalysis on complete ciphers. We concentrate only on the
affine equivalence notion. Two S-boxes S1 and S2 of dimension n × n are affine
equivalent if the following equation holds [2]:

S1(x) = B(S2(A(x) ⊕ a)) ⊕ b, (5)

where A and B are invertible n × n matrices in GF (2) and a, b ∈ F
n
2 .

We are also interested in the following cryptographic properties that change
under affine transformations: the number of fixed points, the modified trans-
parency order (MTF ) property, and the branch number (bF ).

An S-box has no fixed points if the following equation holds [1]:

S(a) ⊕ a �= 0,∀a. (6)

Although fixed points are generally considered as not desired [1], there are still
a number of block ciphers that use S-boxes with fixed points, e.g. Noekeon [15],
Midori [16], etc.

After the design of the transparency order property [6], Chakraborty et al.
found some errors in the definition and consequently they suggested the modified
transparency order property that is defined as [7]:

MTF = max
β̄∈F

m
2

(m− 1
22n − 2n

∑

ā∈F
n∗
2

m∑

j=1

|AFj
(a)+

m∑

i=1,i �=j

(−1)βi⊕βjCFi,Fj
(a)|), (7)

where AFj
(a) represents the autocorrelation function of F and CFi,Fj

(a) repre-
sents the crosscorrelation function. The crosscorrelation CFi,Fj

(a) between func-
tions Fi and Fj equals:

CFi,Fj
(a) =

∑

x∈{0,1}n

(−1)Fi(x)⊕Fj(x⊕a). (8)

The modified transparency order property was intended to show the level of
resilience of S-boxes against side-channel attacks (SCA). However, we emphasize
that it has been shown that it cannot serve as a definitive measure for a better
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side-channel resistance [17]. Nevertheless, the property has some merits since S-
boxes with smaller modified transparency order indeed possess somewhat better
SCA resilience. Here, the smaller the value of the modified transparency order,
the better the resilience against SCA.

The branch number bF can be defined as [8]:

bF = min
a,b �=a

(HW (a ⊕ b) + HW (S(a) ⊕ S(b))). (9)

A bijective S-box must have a branch number equal to at least two [18]. Note
that this definition of the branch number differs from the definition given in [1]
and is suitable for evaluating a single S-box. The branch number describes the
diffusion capabilities of an S-box; the higher the value, the better it is.

Search
strategy

Fitness
Function

S-box
specification

LUT based
HDL code
Generation

S-box.v NANGATE
45nm LIB

Logic
Synthesis

Netlist File
(.v)

Area
Estimates

Fig. 1. Simulation setup for the generation/evaluation of S-boxes.

It is straightforward to experimentally verify that properties like area, power,
and latency are affine variant, and here we consider area as a case study for affine
variant implementation properties. The area cost of S-boxes is estimated by
means of simulation before placement and routing. Figure 1 shows our simulation
setup. In the first step, an affine transformation of an S-box is generated by the
search strategy. The 4×4, 5×5, and 8×8 S-boxes are generated in the style of a
lookup table (LUT). A Matlab (R2014b) script is then used to generate the HDL
(Hardware Description Language) description of the S-box (Verilog file S-box.v)
and to control the simulation flow and Synopsys Design Compiler (I-2013.12)
to produce the gate-level netlist. All S-boxes are synthesized to the NANGATE
45 open cell library (PDKv1 3 v2010 12). The area consumption of the S-box is
estimated by the Synopsys tool chain and represented with the unit GE, which
stands for Gate Equivalent, i.e. the number of equivalent NAND gates in the
specified technology.

3 Related Work

When designing the Rijndael cipher, Daemen and Rijmen constructed the S-box
as a sequence of a function g and an invertible affine transformation f [1]. As the
authors stated, the affine transformation has no impact on the nonlinearity prop-
erty of the S-box, but enables the S-box to have a complex algebraic expression
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and no fixed or opposite fixed points [1]. They used an affine transformation
that consists of a matrix multiplication followed by an XOR with a constant
value. Osvik used a search algorithm with heuristics to find efficient instruc-
tion sequences for the Serpent S-boxes. In this work, the S-boxes are fixed and
only the implementation changes [19]. Leander and Poschmann defined optimal
4-bit S-boxes as those having nonlinearity and δ-uniformity equal to 4 and being
bijective [2]. Furthermore, they were able to find that there are only 16 optimal
4 × 4 S-boxes up to the affine equivalence. Saarinen conducted an exhaustive
search of all 16! bijective 4 × 4 S-boxes [18]. The author investigated two types
of equivalence, namely, the linear equivalence (LE) and the permutation-XOR
equivalence (PE). The exhaustive search is conducted over all 4× 4 S-boxes and
they are classified into 142 090 700 different PE classes. Furthermore, the author
defined Golden S-boxes and found that all Golden S-boxes belong to only four
PE classes. Golden S-boxes are all S-boxes that have the following properties:
S-boxes and their inverses satisfy a differential probability p ≤ 1/4, a bias of
linear approximation η ≤ 1/4, and a branch number of 3. Further, all output
bits have algebraic degree 3 and are dependent on all input bits in a nonlinear
fashion. The Ph.D. thesis of de Cannière conducted the exhaustive analysis of
all affine equivalence classes for 4 × 4 S-boxes [20]. In total, he found 302 affine
equivalence classes. Biryukov et al. presented two algorithms for solving linear
and affine equivalence problems for arbitrary S-boxes [21]. With this tool, the
authors are able to find a number of new equivalent representations for a number
of ciphers. Carlet et al. defined a more general version of an equivalence called
the CCZ (Carlet, Charpin, Zinoviev) equivalence [22]. Two S-boxes F,G of size
n × n are CCZ equivalent if there exists a linear permutation on F

n
2 × F

n
2 such

that the graph of F is mapped to the graph of G. Ullrich et al. introduced an
iterative deepening depth first search strategy to find the most efficient bitsliced
implementations of S-boxes. The authors classify 4 × 4 S-boxes on the basis
of some affine invariant properties and then find the most efficient S-box per
class [8]. Berghoff et al. defined eight suitable classes to select an S-box when
using the PRINCE cipher [3]. To be acceptable for PRINCE, the S-box needs
to fulfill the following criteria: the maximal probability of a differential is 1/4
and there are exactly 15 such differentials, the maximal absolute bias of a lin-
ear approximation is 1/4 and there are exactly 30 of such approximations, and
each of the 15 non-zero component functions has an algebraic degree of three.
Picek et al. made a classification of 4 × 4 S-boxes where the best S-boxes are
those that are optimal (i.e. belong to one of the 16 optimal classes), but also
with an increased side-channel resistance (S-boxes with the lowest value of the
transparency order property) [23]. We note that the transparency order prop-
erty was shown to be flawed, which makes this classification relatively useless in
practice. Sarkar et al. discussed how to choose an S-box in the (extended) affine
equivalence class based on differential power analysis using a Hamming weight
model [24]. Zhang et al. made a new classification of 4 × 4 S-boxes in which
all S-boxes are classified under 183 categories out of which three are platinum
categories (which are a subset of optimal S-boxes) [25]. The authors found that
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for the PRESENT, RECTANGLE [26], and SPONGENT [27] ciphers, one can
get potentially better S-boxes by choosing from those three platinum categories.
Canteaut and Roué investigated the effect of the S-box affine transformations
on the maximal expected differential probability MEDP and linear potential
MELP over two rounds of a substitution permutation network [28].

4 Experimental Setting and Results

In this section, we first briefly discuss the difficulty of finding the best possible
affine transformation and then we present our search strategy. Next, we show
the obtained results through two case studies. Finally, we discuss how our search
strategy can be used to reduce the search space size when considering certain
affine variant properties.

4.1 The Number of Affine Transformations

Here, we discuss the number of possible affine transformations. Recall from
Eq. (5) that the matrices A and B need to be invertible in GF (2). The number
of n×n invertible binary matrices is the order of the General Linear Group over
GF (2) [29]:

GL(n) =
n−1∏

i=0

(2n − 2i). (10)

It is easy to calculate that for n = 4 there are in total 20 160 invertible
matrices. However, since there are two matrices and additionally two constants
a, b ∈ F

n
2 , the total number of combinations is ≈ 236. Although this is a huge

number, it is still within reasonable computation time if we consider certain
properties that can be calculated efficiently (e.g. the nonlinearity property).
However, if we consider implementation properties like power or area, then the
time necessary to calculate the respective property for a single 4 × 4 S-box is in
the order of magnitude of 10 s. Therefore, it is impossible to run an exhaustive
search. Furthermore, for the 4×4 size, there are 16 optimal classes, which means
that we need to run such a search 16 times. Already for the 5 × 5 size, there
are 9 999 360 invertible matrices and therefore, the total number of combinations
equals ≈ 256. Based on the aforesaid, we see that an exhaustive search is often
not a realistic option. Therefore, we need a faster way to obtain good results.
To that end, we experiment with a heuristic search technique.

4.2 Heuristic Search Strategy

For heuristics, we use a genetic algorithm (GA); we utilize the simplest version
of the algorithm we could design for this problem. Individuals (solutions) are
encoded as a set of genotypes of bitstring values. Each genotype represents one
matrix or a constant as given in Eq. (5). Each individual consists of four geno-
types where the first two represent the matrices A and B and the third and the
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fourth genotypes represent the constants a and b. The first two genotypes can
be considered as row vectors of size n2, where the transformation to a matrix is
done by splitting the vector in n rows of size n. We use the tournament selection
mechanism in order to avoid the need to tune the crossover rate parameter. We
work with the 3-tournament selection which is the option that offers the fastest
convergence [30]. In that selection mechanism, three solutions are selected ran-
domly and the worst one is discarded. Then, from the remaining two solutions,
one offspring is created by the crossover operator. For variation operators, we use
the Simple mutation and the One-point crossover [30]. In the One-point cross-
over, a random crossover point is selected and all bits before that point are taken
from the first solution and the remaining bits are taken from the second solution.
In the Simple mutation, a randomly selected bit is inverted with a probability
pm per individual (i.e. each individual will mutate with a probability equal to
pm where the mutation operator is executed only once on a given individual).
We set the mutation probability to 0.8. In all experiments, we use a population
size of 100 individuals. The algorithm starts with a random initial population,
where we do not impose any criteria on the starting population (e.g. we do not
require that the matrices A and B are invertible). As a termination criterion,
we use the number of evaluations without improvement, which is in our case 50
generations.

Next, we give a description of one generation of our heuristics for the 4 × 4
S-box size. First, the algorithm creates 100 random individuals where every
individual consists of 4 bitstring vectors. Two bitstring vectors represent the
matrices A and B and have a length of 16, and two bitstring vectors represent the
constants a and b of size 4. Then, then algorithm randomly selects 3 individuals
and calculates their fitness (i.e. when setting the values of the matrices and
the constants to Eq. (5) it calculates for instance the modified transparency
order). Then, the worst individual is discarded and from the two better ones, an
offspring is created with the One-point crossover. This process repeats N times
to ensure that most of the population is evaluated and improved. Afterwards,
the mutation is done on a number of individuals and finally, all individuals are
evaluated again and their fitness value is updated. This procedure runs until the
stopping criterion is met and at that moment, the evolution is finished.

Regarding the speed of the algorithm, on average one generation (100 indi-
viduals) needs around 1 s to evolve. In that estimation we include the cost of the
evaluation of the cryptographic properties, but not the cost of the evaluation of
the implementation properties. To calculate the area estimate of a single S-box,
we require a processing time in the order of magnitude of 10 s, which means one
generation lasts for around 1 000 s in total. We note that although here we work
with GA, our methodology is not exclusive for that algorithm, but it could work
with any other heuristics that supports the bitstring representation. Naturally,
it is to be expected that in such case one could also need to change the fitness
function and the stopping criterion. For further details about genetic algorithms,
we refer readers to [30].
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4.3 The Obtained Results

Next, we give the results for two cryptographic properties as the first case study
and then for the implementation property as the second case study. In all tables
we display in the Original column the value that denotes the initial value of the
S-boxes we investigate and in the New column the value that denotes the value
of the property after the affine transformation.

The Modified Transparency Order. When looking for S-boxes with a mini-
mal modified transparency order value, we aim to minimize the following equa-
tion, since the smaller the value of MTF the better:

objective = MTF + fixed. (11)

However, it has been shown that the minimal necessary affine transformation
(minimal in a sense that it consists of the smallest number of terms) needed to
change the modified transparency order property is of the form [17]:

S2(x) = B(S1(x)). (12)

Therefore, we can simplify our potential solutions (affine transformations) such
that they consist of only a single matrix (B), which is what we do in the next
set of experiments. Note that now the search space is rather small for sizes 4× 4
and 5 × 5. Since we also want to avoid fixed points, we include this goal in
the objective function. The results obtained with the GA approach are given
in Table 2. Column Matrix B presents examples of values one should use for
the matrix B to obtain the reported MTF values. There, one can see that our
approach finds the minimal modified transparency value that is possible for the
PRESENT class (G1). Since there are no previous results for the Keccak S-box
(or any S-box of size 5 × 5) and the modified transparency order, we report
the difference between the original S-box and the transformed one where we see
that the difference is significant. Furthermore, for the 8 × 8 size, our approach
yields a marginally better value than the previously known one that equals
6.89 [17]. Although the difference is negligible, it assures us that our technique is
a viable choice. This is especially apparent since the modified transparency order
is computationally expensive (when compared to other cryptographic properties)
so by following our approach one requires less time compared to random search
or running heuristics with the goal of finding new S-boxes.

Branch Number Results. Here, our objective function equals:

objective = bF + (2n − fixed), (13)

where the goal is to maximize the bF value. Note that here we subtract the
number of fixed points from the theoretical maximal number of fixed points since
we require to increase the branch number, but without adding fixed points. When
considering the branch number property, we do not know what is the smallest
affine transformation we need to use to change that property. Therefore, we work
with Eq. (5) and report our results in Table 3.
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Table 2. Results for MTF , Eq. (12).

S-box MTF Matrix B

Original New

PRESENT 2.467 1.9 [4, 2, 7, 8]

Keccak 3.871 2.645 [4, 25, 1, 16, 6]

AES 6.916 6.88 [35, 242, 8, 80, 64, 184, 138, 52]

Table 3. Results for GA, Eq. (13).

S-box bF

Original New

PRESENT 3 3

Keccak 2 3

AES 2 2

For the PRESENT S-box, we could not improve the original value of the
branch number property (since 3 is also the maximal possible value), but we
notice the property is quite sensitive to changes and it is easy to degrade the
value to 2.

Area Results. In order to find S-boxes that have minimal area, we use the
following simple objective function, with the goal to minimize the value:

objective = area + fixed. (14)

The results for the area are given in Table 4. Note that again here we do not
allow that our transformed S-boxes have fixed points. Here, we omit the AES
S-box case since we believe it is unrealistic to expect that S-box of such a size
would be implemented in a lookup table fashion. The results are given in gate
equivalence (GE) unit.

Table 4. Results for GA, Eq. (14).

S-box Area [GE]

Original New

PRESENT 26 13.3

Keccak 17 20.33

To put those results into a better perspective, we give area results for lookup
table base implementations of several more relevant S-boxes. For the 4 × 4 size,
Piccolo [31] has 17.33 GE, Prince [3] has 17 GE, Rectangle [26] has 24 GE, and
Midori [16] S-boxes Sb0 and Sb1 have 13.67 and 15.33 GE, respectively. For the
5 × 5 size, Ascon [4] has 30.67 GE and PRIMATEs [14] has 36 GE.
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4.4 Reducing the Search Space Size

In the previous section we showed that heuristics can be used to find improved S-
boxes when considering affine variant properties. However, still the search space
is large and a natural question is whether there is a way to reduce it. It turns
out that is possible when considering certain properties as shown next.

Imagine a scenario where one does not know the minimal necessary affine
transformation needed to find the optimal value of a property (here, we consider
the modified transparency order property). Then, one would need to run all
possible combinations of affine transformations in order to find the minimal one.
The question is whether this approach can be simplified and automated. In the
next experiment we change the objective function to the following one:

objective = MTF ∗ 100 + HW (X), (15)

where HW (X) represents the Hamming weight of all matrices and constants in
the affine transformation as in Eq. (5). Therefore, with this objective function,
we aim to minimize not only the value of the modified transparency order prop-
erty, but also the number of ones in the matrices and constants from Eq. (5).
Note that the main gain in the search space reduction is for the cases in which
one or both of the matrices are not necessary (i.e. identity matrix). We add
a weight factor to the objective function, since optimizing the modified trans-
parency order is our primary objective. Therefore, a solution that has a good
MTF value and a relatively large HW (X) value will not be replaced with a
solution that has a worse MTF value, but a better HW (X) value. The tuning
procedure for the weight factor is based on the observation that if we multiply
MTF with a multiplicand that is higher than the worse case value of HW (X),
the results do not change; the only difference is the number of necessary itera-
tions of the algorithm. For S-boxes of size 4 × 4, the HW is equal to 40 when
every matrix and constant consist of all ones. Note that we disregard that the
matrices must be invertible; therefore the worst case is an all-ones matrix.

The results for the new objective are given in Table 5. In column Affine
transformation we give examples of matrix and constant values one needs to use
to obtain an S-box with the reported value of the modified transparency order.
We denote the identity matrix of dimension n with In.

Table 5. Results for GA, Eq. (15).

S-box MTF Affine transformation

PRESENT 1.9 A = I4, B = [1, 4, 13, 2], a = b = 0

Keccak 2.645 A = I5, B = [11, 1, 2, 20, 4], a = b = 0

AES 6.88 A = I8, B = [2, 32, 8, 4, 64, 48, 128, 3], a = b = 0
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5 Discussion

When considering the results for the modified transparency order, we see that
our approach manages to find S-boxes that outperform the original ones. For the
4 × 4 and 5 × 5 sizes that difference is a rather significant one. Furthermore, for
the 4 × 4 size, we can confirm that our method reaches the best possible value
compared to previously reported results [17,32]. When looking at the results for
8 × 8, one can consider them somewhat disappointing since we see only a mar-
ginal improvement over the original AES S-box and an even smaller improvement
over previously known results. However, we emphasize that here we did not con-
centrate on the modified transparency property, but on a method to find affine
transformations that result in improved properties. Furthermore, it is unknown
what is the best possible value of the modified transparency order for the 8 × 8
S-box having the same cryptographic properties as the AES S-box, so this result
could be better than it seems.

When considering the branch number results, for the Keccak case the value
is improved, while for the PRESENT and the AES case our method could not
find any improved S-boxes. However, we note that it easily finds equivalent S-
boxes with the same branch number value, which is quite difficult to do if one
would for instance use affine transformations with random values (that still give
invertible matrices).

Besides those results, we want to emphasize the results obtained in Table 5.
With those experiments we started with an affine transformation of the form
given in Eq. (5). The algorithm itself reduced it to an affine transformation as
given in Eq. (12). Although we experimented here with a property for which
we a priori know the minimal affine transformation, we can easily imagine a
scenario where one does not know the minimal transformation. In such a case,
our approach can be used for faster evaluation. Indeed, if one observes that
the same affine transformation is used in three different S-box sizes, it is a
reasonable assumption that that transformation is also the minimal necessary
transformation to change a certain affine variant property. Even when it is not
the minimal necessary transformation, it will still have a smaller number of terms
and therefore the search space size will be reduced. We note that we are not sure
whether this approach can be used in cases when there exist only a few possible
property values to reach. There, one could improve the objective function to
differentiate between matrices A and B, i.e. to first try to minimize the first one,
and only then the second one.

When considering the area results, our method is again successful. For smaller
sizes it finishes in a short period of time with significantly better area results,
as evident from the 4 × 4 scenario. For the 5 × 5 size, our best obtained S-box
is somewhat worse than the Keccak S-box. Since the size of the Keccak S-box is
already quite small, it would be unrealistic to expect a big difference. However,
we note that our 5 × 5 S-box does not have fixed points. A fixed point in the
Keccak S-box is also the reason why our heuristics could not output the original
S-box (i.e. with constants a and b equal to zero and matrices A and B set as
identity matrices), since it can evolve only affine transformations that result in
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S-boxes without fixed points. Note that for instance the Ascon S-box (which is
an affine transformation of the Keccak S-box, without fixed points and with a
branch number equal to 3) has an area of 30.67 GE, which is 30% worse than our
S-box. Additionally, since there are usually several clock frequencies of interest,
one would need to repeat the experiments for each frequency. With the heuristic
approach, one could even combine the search for several frequencies and aim
to find one S-box that is good for all settings. Besides optimizing only for the
implementation properties, one could at the same time optimize for some affine
variant cryptographic properties like the branch number, for example.

On a more general level, we see two possible drawbacks of our approach.
The first one is the relevance of the properties we investigate here. However,
we believe our approach should be regarded as a more general methodology
that works for other properties as well. The second possible drawback is the
heuristic nature of our approach where there is no guarantee that the optimal
solution is found. However, our results show that the method is quite reliable and
consistently producing good solutions. Finally, because of its heuristic nature,
our algorithm works well on bigger sizes, which is usually not the case with
deterministic algorithms [8,33]. Finally, we believe this approach is substantially
better than for instance using heuristics to find completely new S-boxes. This
is because already for the 5 × 5 size it is not easy to find S-boxes with the
best possible values for the invariant cryptographic properties (e.g., nonlinearity
and δ-uniformity). As already noted, our methodology makes sense only when
designing new ciphers and should not be considered as a source of S-boxes that
can replace existing ones in ciphers. Indeed, to fully utilize the advantages of this
method, one should first find an S-box that is in accordance with his criteria.
Only after that, the linear layer can be designed so the design goals of a cipher
are met.

In all our experiments, we see that we are interested in more than one prop-
erty, i.e. we always minimize the number of fixed points alongside some other
cryptographic or implementation property. However, the question is whether can
we combine even more properties and still obtain good results. To that end, we
evolved S-boxes of size 4 × 4 that are without fixed points, with an as high as
possible branch number, and an as low as possible modified transparency order
(therefore, our objective functions consists of three parts). As could be expected,
our methodology works, but there is no guarantee that it can find S-boxes with
all optimal values. Indeed, on the one hand we found S-boxes without fixed
points, with branch number 3, and a modified transparency order equal to 2.13.
On the other hand, we found S-boxes without fixed points, with branch number
2, and a modified transparency order of 1.9. This shows us a scenario with con-
flicting objectives, which means it is not possible to obtain a single S-box with
all optimal properties.

In future work, we plan to investigate other cryptographic properties as well
as the implementation properties of S-boxes of various sizes. Recently, the energy
efficient cipher Midori was presented for which the S-box is an involution that
is designed with small energy consumption as a goal [16]. However, that S-box
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has four fixed points which, combined with some other factors, lead in the end
to a successful attack on full Midori64 cipher [34]. It would be interesting to see
whether it is possible to use our search method in order to obtain involutions
that have a smaller number of fixed points, and yet are optimal (with regards to
invariant properties). If we consider the 4 × 4 case, not all optimal classes have
involutions, which is only possible when the inverse S-box is a member of the
same class as the S-box. Therefore, this helps us to limit our search to only a
subset of optimal classes. Accordingly, our search strategy seems to lend itself
naturally for that case because it allows us to search only in the relevant classes
and to do that much faster than with an exhaustive search method.

6 Conclusions

In this work, we investigate how to find appropriate affine transformations when
considering S-box properties that are affine variant. We conduct the analysis
for three popular S-box sizes to show our approach scales well even for larger
S-boxes. The results show it is possible to efficiently find affine transformations
that offer better properties. We also discuss one more possible usage of our
methodology, which is the selection of the minimal appropriate affine transfor-
mation form. This way, we do not only find better S-boxes (with regards to
affine variant cryptographic properties), but also transformations that are easier
to enumerate since they consist of a smaller number of terms.
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Abstract. Constructing Boolean functions on odd number of variables
with nonlinearity exceeding the bent concatenation bound is one of the
most difficult combinatorial problems in the domain of Boolean func-
tions and it has deep implications to coding theory and cryptology. After
demonstration of such functions by Patterson and Wiedemann in 1983,
for more than three decades the efforts have been channelized in obtain-
ing the instances only. For the first time, in this paper, we try to explore
non-trivial upper bounds on nonlinearity of such functions which are
invariant under several group actions. In fact, we consider much larger
sets of functions than what have been considered so far and obtain tight
upper bounds on the nonlinearity in several cases. To support our claims,
we present computational results for functions on n variables where n
is an odd composite integer, 9 ≤ n ≤ 39. In particular, our results for
n = 15 and 21 are of immediate interest given recent research results in
this domain. Not only the upper bounds, we also identify what are the
nonlinearities that can actually be achieved above the bent concatenation
bound for such class of functions.

Keywords: Nonlinearity bound · Patterson-Wiedemann type
functions · Covering radius · First order Reed-Muller code

1 Introduction

The maximum achievable nonlinearity of an n-variable Boolean function for
n odd and n > 7 is a long standing open problem. The problem is directly
connected to coding theory, since it corresponds to the covering radius of the
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first order Reed-Muller codes of block length 2n. High nonlinearity is an impor-
tant property for the Boolean functions used in cryptographic primitives for
resisting linear cryptanalysis [10] as well as correlation and fast correlation
attacks [11,15] and hence this issue is related to cryptology also. For n even,
the functions with provably maximum nonlinearity 2n−1 − 2

n
2 −1 exist and such

functions are called bent, though the complete characterization of such func-
tions is not yet known for n ≥ 8. Let us consider an n-variable function f
constructed by concatenating two (n − 1)-variable bent functions g and h,
i.e., f(x0, x1, . . . , xn−1) = x0g(x1, . . . , xn−1) ⊕ (x0 ⊕ 1)h(x1, . . . , xn−1) for all
(x0, x1, . . . , xn−1) ∈ F

n
2 . One can then easily check that the nonlinearity of f

is 2n−1 − 2
n−1
2 . This is called the bent concatenation bound, which had been

conjectured [4] to be the maximum attainable nonlinearity until disproved [13]
in 1983.

Solving the question for small number of variables dates back to 1972 when
it was shown [1] that the nonlinearity of a 5-variable function is at most 12
which is in fact the bent concatenation bound. Almost a decade later, in 1980,
the problem was solved [12] for 7-variable functions noting that the maximum
nonlinearity here is also equal to the bent concatenation bound which is 56. The
existence of functions on odd number of variables having nonlinearity greater
than the bent concatenation bound had remained unknown till Patterson and
Wiedemann demonstrated [13] in 1983 two functions on 15 variables achieving
nonlinearity 215−1 − 2

15−1
2 + 20 = 16276. Both these functions are obtained

in a very small class consisting of merely 211 functions that are idempotent
(a function f is called idempotent if it is invariant under the action of the
group of Frobenius automorphisms, i.e., such a function satisfies the condition
f(α) = f(α2) for all α ∈ F2n) and invariant under the action of F∗

25 · F∗
23 . Over

two decades later, in 2006, the 9-variable functions having nonlinearity 241 were
found [8] in the class of idempotent functions and shortly after that this result
was improved [7] to 242 by defining a generalized class of idempotent functions,
in which a function f satisfies the condition f(α) = f(α2k) for all α ∈ F2n where
k is a fixed divisor of n.

Consider an n-variable function (n odd) f having nonlinearity 2n−1 −2
n−1
2 +

μn (μn > 0, integer, i.e., nonlinearity more than the bent concatenation bound)
and an m-variable bent function (m even) g. If f and g are functions on different
input variables, f ⊕ g (known as direct sum) is an (n + m)-variable Boolean
function having nonlinearity 2n+m−1−2

n+m−1
2 +μn·2m

2 . Thus, if one starts with a
9-variable function with nonlinearity 29−1−2

9−1
2 +2 = 242 [7], then it is possible

to construct functions of 9+m variables having nonlinearity 29+m−1−2
9+m−1

2 +2·
2

m
2 . For example, by this method, we will have functions on 9 + 6 = 15 variables

with nonlinearity 215−1 − 2
15−1

2 + 2 · 2 15−9
2 = 16256 + 16 = 16272. However, one

should note that the functions identified by Patterson and Wiedemann [13] are
of nonlinearity 215−1 − 2

15−1
2 + 20 = 16256 + 16 = 16276 > 16272. Thus for

odd n > 15, one should start the construction from such 15-variable functions
as available from [13] in direct sum construction with bent functions to have the
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highest achievable nonlinearity known so far. Thus, we like to motivate the term
μn

2
n−1
2

= μn · 2−n−1
2 in such case. As long as we obtain some construction with

maximum known nonlinearity beating the bent concatenation bound, we should
look at this term. For n = 9 [7], this term is 2 · 2−4 = 1

8 and for n = 15, this is
20 · 2−7 = 5

32 [13] which is greater than 1
8 . Naturally, till date the best known

μn · 2−n−1
2 is for n = 15 [13].

Now let us get into the details of the Patterson-Wiedemann functions [13],
which we will refer to as PW functions in this document. Let φ2 ∈ GLF2(F2n)
be the Frobenius automorphism of F2n , which is given by φ2(α) = α2 for all
α ∈ F2n . As aforementioned, the class containing only 211 functions considered
in [13] is formed by imposing the constraint of being invariant under the action
of F∗

25 · F∗
23 and the group of Frobenius automorphisms 〈φ2〉. In fact, it is easy

to determine, by performing an exhaustive search, the nonlinearities attained
in this class are 16268, 16269, 16275, and 16276. There are quite a few open
questions here.

– Can we decide what nonlinearities are possible to achieve without performing
the exhaustive search? This question is pertinent as one may like to relax the
constraints and try to search a larger class in the hope of better nonlinearity.

– What are the possible nonlinearities above the bent concatenation bound when
we consider the action of F

∗
25 · F∗

23 only and not of the group of Frobenius
automorphisms 〈φ2〉? For this, the search complexity becomes 2151 for 15-
variable functions.

– Further, we may consider an even larger class when we consider the action of
F

∗
25 only. This makes the search space incredibly huge containing 21057 func-

tions. How can one obtain the possible nonlinearities greater than the bent
concatenation bound in such a large class that cannot be searched exhaus-
tively?

We could answer all these questions for 15-variable PW functions and show
that for all these larger classes, the maximum nonlinearity is 16276, that had
been achieved long back in [13] in a very small class of 211 functions. This is
an important negative result that would save a lot of unsuccessful search in
those larger classes had our result been known. There are further implications
of our results. Until recently, the PW functions beating the bent concatenation
bound were known only for n = 15 = 5 ·3. The next possible candidate had been
n = 21 = 7 ·3 and such functions could be found [6] after a long gap of more than
three decades. Each function obtained in [6] are of nonlinearity 221−1−2

21−1
2 +61

and the authors left the open question whether there can be functions having
higher nonlinearity. Our method shows that the upper bound of nonlinearity
in this case could be as high as 221−1 − 2

21−1
2 + 196 considering the action of

F
∗
27 · F∗

23 and further the upper bound slightly increases to 221−1 − 2
21−1

2 + 199
considering the action of F∗

27 only. Thus, this is a result in the positive direction
that shows one may indeed put further search effort with the expectation of
obtaining instances of 21-variable functions with higher nonlinearity values.
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Thus, in general framework, we consider n-variable functions1, where n = p·q
such that p and q are distinct odd primes with p > q. Then we try to obtain the
possible nonlinearity values greater than the bent concatenation bound for the
functions which are

– invariant under the action of F∗
2p · F∗

2q and also
– invariant under the action of either F

∗
2p or F

∗
2q .

We present techniques that involve basic combinatorics and elementary num-
ber theoretic techniques. Numerical results are presented for the odd composite
integers n where 9 ≤ n ≤ 39. To the best of our knowledge, no such result
on upper bound of nonlinearity in these larger classes could be explored since
the construction of 15-variable PW functions [13] that dates back to 1983. The
generic upper bound on nonlinearity for functions on odd number of variables n
is 2�2n−2 − 2

n
2 −2	 [5]. Our results show nontrivial upper bounds for the class of

functions we consider here and that is indeed less than the generic upper bound
provided in [5]. Next we provide necessary background by reviewing the PW
type functions.

2 Background

Let f :F2n→F2 be a Boolean function. For any ω ∈ F2n , the Walsh-Hadamard
transform Wf (ω) of f is defined as Wf (ω) =

∑
α∈ F2n

(−1)Trn
1 (ωα)+f(α), where

Trn
1 (α) = α + α2 + α22 + . . . + α2n−1

for all α ∈ F2n . From this, the non-
linearity nl(f) can be expressed as nl(f) = 2n−1 − 1

2 maxω∈ F2n |Wf (ω)|. The
distance d(g, h) between g and h is defined as the Hamming distance between
2n length vectors (g(α0), g(α1), . . . , g(α2n−1)) and (h(α0), h(α1), . . . , h(α2n−1)),
where {α0, α1, . . . , α2n−1} are the elements of F2n . Let lω(α) = Trn

1 (ωα) and
hω(α) = lω(α) + 1. Then the nonlinearity nl(f) can be equivalently defined
as the minimum distance of f from all affine functions {lω, hω |ω ∈ F2n} as
nl(f) = minω∈F2n {d(f, lω), d(f, hω)}.

In the following, we briefly revisit the PW construction mostly following [2,
13]. Let n = p · q such that p and q are two distinct odd primes and consider an
n-variable Boolean function f having the support Supp(f) = {α ∈ F2n | f(α) =
1} = ∪�

i=1αiF
∗
2p , where αi’s lie in the different cosets of F∗

2p in F
∗
2n . Then it is

clear that

d(f,0) = �(2p − 1),
d(f,1) = 2n − �(2p − 1), (1)

where 0 and 1 are the all-zero and all-one vectors of length 2n, respectively. Let
us define Hω = Supp(hω) = {α ∈ F2n |Trn

1 (ωα) = 0}, which is a hyperplane
in F

n
2 when considered as a vector space over F2. Further, let Hω�αiF

∗
2p

be the

1 In fact we also consider the cases where n is an odd composite integer such as n = 9,
25, or 27.
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restriction of Hω to the coset αiF
∗
2p . It can be shown [2,13] that

∣
∣Hω�αiF

∗
2p

∣
∣ is

either 2p−1 − 1 or 2p − 1 and the number of those having cardinality 2p−1 − 1
is 2n−p. Suppose t(ω) = |{αiF

∗
2p |αiF

∗
2p ⊆ Supp(f) ∩ Hω}|, or equivalently t(ω)

is the number of αi’s for which Trp
1(ωαi) = 0 ∀ω ∈ F

∗
2p . Then the number of

cosets of F∗
2p for which both

∣
∣Hω�αiF

∗
2p

∣
∣ = 2p−1 −1 and

∣
∣Supp(f)�αiF

∗
2p

∣
∣ = 2p −1

is found to be � − t(ω). Following this argument, one can get

d(f, hω) = (� − t(ω)) · 2p−1 +
(
2n−p − � + t(ω)

) · (2p−1 − 1)

+
(

2n − 1
2p − 1

− 2n−p − t(ω)
)

· (2p − 1) + 1,

= 2n−1 − 2p · t(ω) + �. (2)

Similarly we have

d(f, lω) = 2n−1 + 2p · t(ω) − �. (3)

As a consequence, from (1)–(3) nl(f) can be rewritten as follows:

nl(f) = min
ω∈F

∗
2n

{�(2p − 1), 2n − �(2p − 1), 2n−1 − 2p · t(ω) + �, 2n−1 + 2p · t(ω) − �},

which implies that if nl(f) > 2n−1 − 2
n−1
2 then the following conditions have to

be satisfied:

2n−1 − 2(n−1)/2

2p − 1
< � <

2n−1 + 2(n−1)/2

2p − 1
, (4)

1

2p

(
2n−1 − 2(n−1)/2

2p − 1
− 2(n−1)/2

)
< t(ω) <

1

2p

(
2n−1 + 2(n−1)/2

2p − 1
+ 2(n−1)/2

)
. (5)

The condition given by (4) is called the weight condition, as � is the number of
cosets in the support of f . In [13], it was computationally shown that there is
no function for n = 3 · 3 satisfying these two conditions. On the other hand, for
n = 5 · 3, there are 1057 cosets of F∗

25 in F
∗
215 , which makes an exhaustive search

impossible (in the subsequent section we prove that the maximum nonlinearity
in this case is 16276). Hence, an additional constraint of being invariant under
the action of F∗

23 and the group of Frobenius automorphism is imposed [13] on
f , which provides a very small class of functions leaving only 211 options to
search (in fact using the weight condition the number of options can be reduced
to

(
10
5

)
= 252 as noticed in [13]). Finally, two functions with nonlinearity 16276

are obtained [13] in this class.
At this point, let us recall a more general definition [6] of the aforementioned

PW construction:

Definition 1. Let n = p · q, where p, q > 2 are prime numbers such that p > q.
Let the product R = F2p

∗ ·F2q
∗ be the cyclic group of cardinality r = (2p−1)(2q −

1) in F2n . Let 〈φ2〉 be the group of Frobenius automorphisms where φ2 : F2n →
F2n is defined by α → α2. The function f is called PW type if it is invariant
under the action of R and 〈φ2〉.
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For simplicity, one can view [2] a PW type function as an interleaved sequence [3]
which is defined as follows:

Definition 2. Let m = dr, where d, r > 1 are integers. The (d, r)-interleaved
sequence Ad,r corresponding to the binary sequence A = {a0, a1, a2, . . . , am−1} is
defined as the matrix whose (i, j)th entry is equal to ai.d+j, where i = 0, 1, . . . , r−
1 and j = 0, 1, . . . , d − 1.

Suppose m = 2n − 1. An interleaved sequence Ad,r can be associated with the
ordered sequence {f(1), f(ζ), f(ζ2), . . . , f(ζ2

n−2)} such that ai·d+j = f(ζi·d+j),
where ζ is a primitive element in F2n . We call this interleaved sequence the
(d, r)-interleaved sequence corresponding to f with respect to ζ. Let d = (2p −
1)(2q − 1). Then it follows from Definition 1 that the (d, r)-interleaved sequence
of an n-variable PW type function consists of either all 0 or all 1 columns, since
the corresponding function f is invariant under the action of R. Further, the
invariance under the action of 〈φ2〉 implies that f is an idempotent function and
the ith column has the same value as the jth column if i ≡ j2s mod d for some
non-negative integer s. This equivalence relation, denoted by ρd, is given as:

i ρd j ⇔ there exists an integer s> 0 such that i ≡ j2s mod d. (6)

For n = 15, the PW construction can be represented by the (151, 217)-interleaved
sequence. Using the equivalence relation ρ151, one obtains 11 groups, among
which there are 10 groups of size 15 and 1 group of size 1. Notice that any
element in a group determines 217 positions in the truth table of f . Since the
weight condition gives 524.3871 < � < 532.6452, i.e., 525 ≤ � ≤ 532, we have
to choose 5 groups among the 10 groups of size 15 and we may or may not
choose the remaining 1 group of size 1 (observe that � can be either 5 · 15 · 7 =
525 or 5 · 15 · 7 + 1 = 526). There are 8 functions with nonlinearities 16268,
16269, 16275, and 16276 exceeding the bent concatenation bound 214 − 27 =
16256 in the corresponding search space. One half of these functions are obtained
from the other half by complementing the truth tables except their first bits.
Hence, the nonlinearity 16276 (resp., 16268) is obtained from the function with
nonlinearity 16275 (resp., 16269) in this way, and vice versa (in the following
section, without using an exhaustive search, we show that these nonlinearities
are the only possible ones that can be attained by the PW construction and in
a much broader class).

3 Nonlinearity of the Functions on n = p · q Variables
Invariant Under the Action of F∗

2p · F∗
2q

In this section, we determine all possible nonlinearities of the PW type func-
tions and their variants for which n = p · q where p, q are odd primes and
p > q. The functions we consider are invariant under the action of F∗

2p ·F∗
2q . This

class is much larger than the class considered in [13] where the action of Frobe-
nius automorphism was considered. In most of the cases, we obtain nonlinearity
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bounds strictly less than the generic upper bound in [5] that provides the impor-
tance of our result. We provide detailed examples with n = 15, 21 that answers
several open questions that remained unanswered for the 15-variable [13] and
21-variable [6] functions.

In the following theorem we show what are the possible nonlinearities greater
than the bent concatenation bound when we consider the action of F∗

2p ·F∗
2q . This

is a larger class than what was considered in [13] as we do not consider the action
of Frobenius automorphism here.

Theorem 1. Let f be an n-variable function with nl(f) = 2n−1 − 2
n−1
2 + μn

which is invariant under the action of F∗
2p · F∗

2q , where μn ∈ Z
+ and n = p · q

such that p, q are two distinct odd primes with p > q. Then at least one of the
values in the following two sets is an integer:

(i)
{

2n−1−2
n−1
2 +μn

(2p−1)(2q−1) , 2n−1+2
n−1
2 −μn

(2p−1)(2q−1)

}

,

(ii)
{

�(2q−1)−2
n−1
2 +μn

2p | � ∈ Lμn

}

∪
{

�(2q−1)+2
n−1
2 −μn

2p | � ∈ Lμn

}

,

where 1 ≤ μn ≤ 2
⌊
2n−2 − 2

n
2 −2

⌋ −
(
2n−1 − 2

n−1
2

)
and

Lμn =

{

� ∈ Z
+ | 2n−1 − 2

n−1
2 + μn

(2p − 1)(2q − 1)
≤ � ≤ 2n−1 + 2

n−1
2 − μn

(2p − 1)(2q − 1)

}

.

Proof. In the following, we consider two cases: either the nonlinearity equals
d(f,0) or d(f,1), and then at least one of the values displayed in (i) is an
integer, or (non-exclusively) the nonlinearity equals d(f, hω) or d(f, lω) and at
least one of the values displayed in (ii) is an integer.

(i) Since f is invariant under the action of F∗
2p ·F∗

2q , its support can be written as
Supp(f) = ∪�

i=1αi(F∗
2p ·F∗

2q ), where αi’s lie in the different cosets of F∗
2p ·F∗

2q

in F
∗
2n . Then it is clear that

d(f,0) = �(2p − 1)(2q − 1),
d(f,1) = 2n − �(2p − 1)(2q − 1). (7)

Note that if nl(f) = 2n−1 − 2
n−1
2 + μn, then either d(f,0) or d(f,1) can be

equal to 2n−1 − 2
n−1
2 + μn, which gives the possible values of � in part (i).

Finally, recall that the generic upper bound [5] on nonlinearity for functions
on odd number of variables n is 2�2n−2 − 2

n
2 −2	, from which we get the

values of μn used to compute � (and t(ω)).
(ii) Clearly, (7) is also obtained from (1) by substituting �(2q − 1) for �, due to

the fact that each coset of F∗
2p · F∗

2q consists of 2q − 1 distinct cosets of F∗
2p

in F
∗
2n . Following the same argument, one can get the distances below:

d(f, hω) = 2n−1 − 2p · t(ω) + �(2q − 1),
d(f, lω) = 2n−1 + 2p · t(ω) − �(2q − 1), (8)
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which is obtained from (2) and (3) by using the same substitution, where
lω(α) = Trn

1 (ωα), hω(α) = lω(α) + 1, and t(ω) is the number of cosets
of F

∗
2p totally contained in Supp(hω) ∩ Supp(f). Next, as in the proof of

part (i), it follows from the definition of nonlinearity that t(ω) can be either
�(2q−1)−2

n−1
2 +μn

2p or �(2q−1)+2
n−1
2 −μn

2p . However, note that d(f,0), d(f,1) ≥
nl(f) = 2n−1 − 2

n−1
2 + μn. This gives, 2n−1−2

n−1
2 +μn

(2p−1)(2q−1) ≤ � ≤ 2n−1+2
n−1
2 −μn

(2p−1)(2q−1) .
Thus, we get all the possible values of t(ω) in part (ii).

��
3.1 Case n = 15

The 15-variable PW functions are the most important in the domain of nonlin-
earity of Boolean functions as for the first time the bent concatenation bound has
been defeated in this scenario [13]. There has been efforts to obtain Boolean func-
tions with good cryptographic properties by modifying the PW functions [13]
as evident from [9,14]. The search space for 15-variable PW functions [13], con-
sidering invariance under F

∗
25 · F∗

23 as well as Frobenius automorphism, was as
little as 211 and thus it was very easy to search and obtain the functions with
nonlinearity as high as 16276. However, when we do not consider the Frobenius
automorphism, the class becomes much larger. In this case 215−1

(25−1)(23−1) = 151
and hence the search space is as large as 2151. Exhaustive search here is not
feasible. However, our result below shows that the maximum nonlinearity in this
larger class is again 16276. We present the proof in details and then discuss the
step by step description of Theorem 1 in this direction.

Corollary 1. Consider a 15-variable function f that is invariant under the
action of F∗

25 · F∗
23 . Then nl(f) ≤ 16276 = 215−1 − 2

15−1
2 + 20.

Proof. We have Supp(f) = ∪�
i=1αi(F∗

2p · F∗
2q ). One can write Supp(f) in terms

of the cosets F
∗
2p in F

∗
2n as ∪�′

i=1βiF
∗
2p , where �′ = �(2q − 1). Hence the weight

condition (4) can be rewritten as

2n−1 − 2(n−1)/2

2p − 1
< �(2q − 1) <

2n−1 + 2(n−1)/2

2p − 1
. (9)

Notice that in our case n = 15, p = 5, and q = 3. Substituting these values in (9),
we get 74.9124 < � < 76.0922, and thus, we have 75 ≤ � ≤ 76. Now suppose there
exists a 15-variable function f with nl(f) = 215−1 − 2

15−1
2 + 20 + c = 16276 + c,

where c is a positive integer. Then one can get the corresponding weight condition
for the existence of f as

215−1 − 2
15−1

2 + 20
25 − 1

+
c

25 − 1
≤ �(23 − 1) ≤ 215−1 + 2

15−1
2 − 20

25 − 1
− c

25 − 1
,

from which, to have nonlinearity 16276 + c, we get
75.0046 + c

7(25−1) ≤ � ≤ 76 − c
7(25−1) , and thus, there is no solution for �. ��
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To clarify it further, let us consider the following weight condition to have non-
linearity 215−1 − 2

15−1
2 + 19 = 16275:

215−1 − 2
15−1

2 + 19
7(25 − 1)

= 75 ≤ � ≤ 76.0046 =
215−1 + 2

15−1
2 − 19

7(25 − 1)
.

Note that the lower bound is exactly 75 and it exceeds this value if we replace
19 by 20, which provides nonlinearity 16276. In this case the upper bound is
exactly 76, which leaves 76 as the only option for �. However, observe that if
we instead replace 19 by 21, then the upper bound becomes less than 76 for
which there is no � satisfying the weight condition. Recall from [2,13] that the
PW constructions with nonlinearity 16276 belong to a class of very small size
in which there exist only 211 functions that are idempotent and invariant under
the action of F∗

25 · F∗
23 . On the other hand, the above corollary shows that there

is no function with nonlinearity >16276 in a much larger class of size 2151 which
is formed by lifting the condition of being idempotent.

We finally discuss what are the possible values of μn in the case of n = 15.
From the above arguments, we deduce that the possible values of μ15 are 19
and 20, when we take the integer values of � into account. In other words, if we
consider only part (i) of Theorem1, then the following values of � becomes an
integer for μ15 = 19 and 20:

� ∈
{

215−1 − 2
15−1

2 + μ15

(25 − 1)(23 − 1)
,
215−1 + 2

15−1
2 − μ15

(25 − 1)(23 − 1)

}

,

which yields the nonlinearities 215−1 − 2
15−1

2 + 19 = 16275 and 215−1 − 2
15−1

2 +
20 = 16276 respectively. To obtain the other possible values of μ15 (and the
corresponding nonlinearities), let us consider part (ii) of Theorem1. It is easy to
check that 75 ≤ � ≤ 76 (i.e., Lμ15 = {75, 76}) for all 1 ≤ μ15 ≤ 18. Hence, one
of the following values of t(ω) must be an integer to have nonlinearity nl(f) =
215−1 − 2

15−1
2 + μ15:

t(ω) ∈
{

�(23 − 1) − 2
15−1

2 + μ15

25
,
�(23 − 1) + 2

15−1
2 − μ15

25

}

,

where � ∈ Lμ15 and 1 ≤ μ15 ≤ 18. One can computationally find that t(ω) is
an integer for μ15 = 12 and 13, from which we get the nonlinearities 215−1 −
2

15−1
2 + 12 = 16268 and 215−1 − 2

15−1
2 + 13 = 16269 respectively.

Thus, with these values, we completely solve why such nonlinearities are
obtained for the PW functions [13], which could never be answered before. Note
that the consideration of Frobenius automorphism does not affect the possible
nonlinearity values. As we know, functions invariant under the action of Frobe-
nius automorphism (also called idempotents) are actually rotation symmetric
Boolean functions [8,14]. Considering this restriction reduces the search space,
but at the same time this space provides a good sample of highly nonlinear
functions. It was indeed quite judicious to study this small search space [13],
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however, why such nonlinearity values could be obtained was not known earlier
that we answer here. With our result, now we know that the nonlinearity 16276
is the maximum possible value in a much larger class of size 2151, which was
attained in a much smaller sample space of only 211 in [13].

3.2 Case n = 21

Now we consider the case n = p · q = 7 · 3 = 21. The constraints for 15-
variable functions was such that one had to satisfy 11 inequalities for 11 binary
variables and it could be done easily by exhaustive search. The situation is
not as simple for 21 or more variables. In [13], the choice of orbits for general
case could not be explained and also in [2] it has been commented that such
search might be infeasible. In a very recent result [6], by heuristic search, the
existence of PW functions could be demonstrated for n = 21. The nonlinearity
of such functions are 221−1 − 2

21−1
2 + 61, i.e., μ21 = 61 and one may easily note

that 61 · 2− 21−1
2 < 20 · 2− 15−1

2 . Thus, even after the discovery of 21-variable
PW functions having nonlinearity more than bent concatenation bound, the old
maximum achievable nonlinearity using the 15-variable PW functions could not
be beaten. Thus, the most natural question is: Can there be the existence of
21-variable functions such that μ21 > 20 ·2 21−15

2 = 160? Our analysis shows that
the non-trivial upper bound here corresponds to μ21 = 196 and thus there is a
hope for improved result with further search effort.

Let us first proceed as in the analysis for the 15-variable case. Here we con-
sider the class of 21-variable functions that are invariant under the action of
F

∗
27 · F∗

23 . There are 2359 cosets and hence the search space is of size 22359. We
obtain the following inequality from (9):

221−1 − 2
21−1

2

27 − 1
< �(23 − 1) <

221−1 + 2
21−1

2

27 − 1
,

and thus, we get 1178.3487 < � < 1180.6524, i.e., 1179 ≤ � ≤ 1180. Suppose
there exists a function f with nl(f) = 221−1 − 2

21−1
2 +μ21. Then, to achieve this

nonlinearity, the following condition has to be satisfied:

221−1 − 2
21−1

2

27 − 1
+

μ21

27 − 1
≤ 7� ≤ 221−1 + 2

21−1
2

27 − 1
− μ21

27 − 1
,

and thus, we have 1178.3487 + μ21
7(27−1) ≤ � ≤ 1180.6524 − μ21

7(27−1) . This inequal-
ity has no solution for � only if μ21 > 580. However, the gap between the bent
concatenation nonlinearity (1047552 = 221−1 − 2

21−1
2 ) and the generic upper

bound [5] (1047850 = 2�221−2 − 2
21
2 −2	) on the nonlinearity of 21-variable func-

tions is 298 (<580). Thus, what we have obtained so far does not provide any
non-trivial upper bound for this class. However, with more detailed analysis we
obtain the following non-trivial upper bound.

Corollary 2. Let us consider a 21-variable function f which is invariant under
the action of F∗

27 · F∗
23 . Then nl(f) ≤ 1047748 = 221−1 − 2

21−1
2 + 196.
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Proof. It follows from Theorem 1. Let us consider part (i) of Theorem1. Then
there can be the existence of 21-variable PW functions with nl(f) = 221−1 −
2

21−1
2 + μ21 if one of the following values of � is an integer:

� ∈
{

221−1 − 2
21−1

2 + μ21

(27 − 1)(23 − 1)
,
221−1 + 2

21−1
2 − μ21

(27 − 1)(23 − 1)

}

,

where 1 ≤ μ21 ≤ 298
(
= 2

⌊
221−2 − 2

21
2 −2

⌋
−

(
221−1 − 2

21−1
2

))
. However, it can

be computationally checked that no value of μ21 makes � an integer.
Next, consider part (ii) of Theorem1. From the earlier discussion, it is evident

that Lμ21 = {1179, 1180} (i.e., 1179 ≤ � ≤ 1180) for all 1 ≤ μ21 ≤ 298. Then at
least one of the following values of t(ω) must be an integer to have nonlinearity
nl(f) = 221−1 − 2

21−1
2 + μ21:

t(ω) ∈
{

�(23 − 1) − 2
21−1

2 + μ21

27
,
�(23 − 1) + 2

21−1
2 − μ21

27

}

,

where � ∈ Lμ21 and 1 ≤ μ21 ≤ 298. We find that only the 8 values of μ21 make
t(ω) an integer: μ21 ∈ {60, 61, 67, 68, 188, 189, 195, 196}. Hence, the maximum
possible nonlinearity is 1047748 = 220 − 210 + 196. ��
Note from the above proof that one of the possible values of μ21 is 61, which
corresponds to the nonlinearity 1047613 = 220 −210 +61 achieved in [6] as afore-
mentioned. However, there can be the existence of μ21 ∈ {188, 189, 195, 196},
which provides μ21 · 2− 21−1

2 > 20 · 2− 15−1
2 , yielding the best known nonlinearity

till date.

3.3 The Algorithm and Numerical Results

Considering Theorem 1, we devise Algorithm 1 to find all possible nonlinearities
greater than the bent concatenation bound for the functions on odd number
n = p · q of variables that are invariant under the action of F∗

2p ·F∗
2q , where p and

q are distinct odd primes such that p > q. In this algorithm, for each value of

� ∈
{

� ∈ Z
+ | 2n−1 − 2

n−1
2

(2p − 1)(2q − 1)
= lb < � < ub =

2n−1 + 2
n−1
2

(2p − 1)(2q − 1)

}

, (10)

we store the possible nonlinearities 2n−1 − 2
n−1
2 + μn in the array NL when-

ever the condition given by Theorem1 is satisfied given the value of μn ∈
{1, 2, . . . , μmax

n }, where μmax
n (computed using the generic upper bound in [5])

is the maximum possible value of μn for odd number n of variables.
We have performed Algorithm 1 and give the maximum values μmax

p·q (≤ μmax
n )

of μn achievable by the n-variable functions that are invariant under the action
of F∗

2p · F∗
2q in Table 1 for 15 ≤ n = p · q ≤ 39, where p and q are distinct odd

primes such that p > q. From Table 1, it is seen that μmax
p·q = μmax

n for only
n = 35 and μmax

p·q < μmax
n for all the remaining values of n.
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Algorithm 1: Computation of all possible nonlinearities > 2n−1 − 2
n−1
2 .

input : n, p, where n = p · q such that p and q are odd primes with p > q.
output: Nonlinearities given by the array NL.

k ← 0;1

μmax
n ← 2

⌊
2n−2 − 2

n
2 −2
⌋

−
(
2n−1 − 2

n−1
2

)
;2

lb ← 2n−1−2
n−1
2

(2p−1)(2q−1)
;3

ub ← 2n−1+2
n−1
2

(2p−1)(2q−1)
;4

for � ← lb to ub do5

for μn ← 1 to μmax
n do6

lbn ← 2n−1−2
n−1
2 +μn

(2p−1)(2q−1)
;7

ubn ← 2n−1+2
n−1
2 −μn

(2p−1)(2q−1)
;8

if lbn ≤ � ≤ ubn then9

tl ← �(2q−1)−2
n−1
2 +μn

2p
;10

tu ← �(2q−1)+2
n−1
2 −μn

2p
;11

κ ← {lbn, lbu, tl, tu};12

if any value in κ is an integer then13

nl ← 2n−1 − 2
n−1
2 + μn;14

if nl is not in NL then15

NL[k] ← nl;16

k ← k + 1;17

return NL;18

3.4 Idempotents, i.e., Functions Invariant Under the Action of 〈φ2〉
Next we consider the class of functions that are invariant under the action of
F

∗
2p · F∗

2q and 〈φ2〉 as well. In this case, we need to take only some combinations
of the groups (obtained by the equivalence relation (6)) satisfying the weight
condition in (10) into account, which reduces the number of possible values of
� in Algorithm 1. Thus, modifying Algorithm1 accordingly, we have computed
(see Table 1) the maximum values μmax

p·q,〈φ2〉 of μn which are achievable in this
class. In Table 1, �p·q denotes the values of � given by (10) and �p·q,〈φ2〉 denotes
those of �p·q obtained by considering also the action of 〈φ2〉. Comparing the
values of μmax

p·q,〈φ2〉 with μmax
n in Table 1, we find that μmax

p·q,〈φ2〉 < μmax
n for all

15 ≤ n ≤ 39 whereas μmax
p·q,〈φ2〉 < μmax

p·q for n = 33 and 35 only. Note that the
achievable nonlinearities for n = 15 and 21, given in the previous subsections,
remain the same even after imposing the constraint of being invariant under the
action of 〈φ2〉, since the values of �p·q are the same as those of �p·q,〈φ2〉 in both
cases.
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Table 1. The values of μmax
p·q and μmax

p·q,〈φ2〉 together with those of �p·q and �p·q,〈φ2〉 for
15 ≤ n ≤ 39, where n = p · q such that p and q are two distinct odd primes with p > q.

n �p·q �p·q,〈φ2〉 μmax
p·q μmax

p·q,〈φ2〉 μmax
n

15 [75, 76] {75, 76} 20 20 36

21 [1179, 1180] {1179, 1180} 196 196 298

33 [299735, 299744] {299739, 299740} 17426 17412 19194

35 [4363663, 4363728] {4363695, 4363696} 38390 38352 38390

39 [4794067, 4794084] {4794075, 4794076} 151598 151598 153560

4 Functions Invariant Under the Action of F∗
2p

We start with the following corollary of Theorem1.

Corollary 3. Let f be an n-variable function with nl(f) = 2n−1 − 2
n−1
2 + μn

which is invariant under the action of F∗
2p , where 1 < p|n, n is odd, and μn ∈ Z

+.
Then at least one of the values in the following two sets is an integer:

(i)
{

2n−1−2
n−1
2 +μn

2p−1 , 2n−1+2
n−1
2 −μn

2p−1

}

,

(ii)
{

�−2
n−1
2 +μn

2p | � ∈ Lμn

}

∪
{

�+2
n−1
2 −μn

2p | � ∈ Lμn

}

,

where 1 ≤ μn ≤ 2
⌊
2n−2 − 2

n
2 −2

⌋ −
(
2n−1 − 2

n−1
2

)
and

Lμn =

{

� ∈ Z
+ | 2n−1 − 2

n−1
2 + μn

2p − 1
≤ � ≤ 2n−1 + 2

n−1
2 − μn

2p − 1

}

.

Proof. At least one of the following distances have to be equal to nl(f) = 2n−1−
2

n−1
2 + μn: d(f,0) = �(2p − 1), d(f,1) = 2n − �(2p − 1), d(f, hω) = 2n−1 − 2p ·

t(ω)+�′, d(f, lω) = 2n−1+2p ·t(ω)−�′, where �′ ∈ Lμn . Thus, one or more values
given by (i) and (ii) have to be an integer. Recall that the upper bound [5] gives
nl(f) ≤ 2

⌊
2n−2 − 2

n
2 −2

⌋
. Hence the proof. ��

Using this corollary, we modify Algorithm1 to find all possible nonlinearities
greater than 2n−1 − 2

n−1
2 that can be achieved in the class of functions that

are invariant under the action of F∗
2p , where n is an odd composite integer and

1 < p|n. More specifically, in the modified version of Algorithm1, we replace
�(2q − 1) in the numerators of tl and tu (given by lines 10 and 11 of Algorithm1
respectively) with � and remove the term (2q − 1) from the denominators of
lb, ub, lbn, and ubn (given by lines 3, 4, 7, and 8 of Algorithm1 respectively).

Performing the modified version, we present in Table 2 the maximum values
μmax

n,p (≤ μmax
n ) of μn attainable in the corresponding classes for the composite

integers n, where 9 ≤ n ≤ 39 and 1 < p|n. We have also given the values of
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Table 2. The values of μmax
n,p

(
= μmax

n,p,〈φ2〉
)

together with those of �n,p for 9 ≤ n ≤ 39,
where n is an odd composite integer and 1 < p|n.

(n, p) �n,p μmax
n,p

(
= μmax

n,p,〈φ2〉
)

μmax
n

(9, 3) [35, 38] 4 4

(15, 3) [2323, 2358] 36 36

(15, 5) [525, 532] 20

(21, 3) [149651, 149942] 298 298

(21, 7) [8249, 8264] 199

(25, 5) [541069, 541332] 1198 1198

(27, 3) [9585811, 9588150] 2398 2398

(27, 9) [131313, 131344] 2316

(33, 3) [613557395, 613576118] 19194 19194

(33, 11) [2098145, 2098208] 17432

(35, 5) [554185101, 554193556] 38390 38390

(35, 7) [135273529, 135275592] 38390

(39, 3) [39268197523, 39268347318] 153560 153560

(39, 13) [33558465, 33558592] 151598

� (referred to as �n,p) used in the same algorithm. It is found that the generic
upper bound 2n−1 − 2

n−1
2 + μmax

n remains the same, i.e., μmax
n,p = μmax

n , for all
p ≤ n

p . However, except for n = 35, it provides noticeably lower nonlinearities
than the generic upper bound for all p > n

p . Note that only for n = 35, we
have μmax

n = μmax
n,p = μmax

n,q . We see from Table 2 that μmax
15,5 = 20. This means

nl(f) ≤ 215−1 − 2
15−1

2 + 20 = 16276 in the class of functions that are invariant
under the action of F∗

25 for which the search space becomes 21057 as there are
215−1
25−1 = 1057 cosets of F∗

25 in F
∗
215 . On the other hand, we observe from Table 2

that μmax
21,7 = 199 whereas μmax

7·3 = μmax
7·3,〈φ2〉 = 196 (see Table 1). Keeping in mind

that there are 115 groups under the equivalence relation ρ 221−1
(27−1)(23−1)

= ρ2359

and 221−1
27−1 = 16513 cosets of F

∗
27 in F

∗
221 , this implies that if we increase the

search space from 2115 to 216513, the nonlinearity bound slightly increases from
221−1−2

21−1
2 +196 to 221−1−2

21−1
2 +199. For n = 9, 15, and 21, all the achievable

values μn,p of μn are given in Table 3.
Let us now consider the class of functions that are invariant under the action

of F∗
2p and 〈φ2〉. As in the previous section, we expect that some of the possible

values of � computed in the aforementioned version of Algorithm1 are eliminated.
Hence, by suitably adapting it, we have computed the maximum values μmax

n,p,〈φ2〉
of μn which are attainable in the corresponding classes; however, we find that,
as shown in Table 2, the values of μmax

n,p,〈φ2〉 are the same as those of μmax
n,p .

In Table 3, all the possible values μn,p,〈φ2〉 of μn are also given for n = 9, 15,
and 21. We note that the values of μn,p,〈φ2〉 do not cover all those of μn,p for
(n, p) = (9, 3) and (21, 7), although μmax

n,p,〈φ2〉 = μmax
n,p for all the values of (n, p)

in Table 2.
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Table 3. The values of μn,p and μn,p,〈φ2〉 for n = 9, 15, and 21.

(n, p) μn,p μn,p,〈φ2〉 μmax
n

(9, 3) [2, 4] [3, 4] 4

(15, 3) [1, 36] [1, 36] 36

(15, 5) [12, 20] [12, 20]

(21, 3) [1, 298] [1, 298] 298

(21, 7) [56, 72] ∪ [185, 199] [60, 68] ∪ [71, 72] ∪ [188, 196] ∪ [198, 199]

5 Conclusion

We have presented non-trivial upper bounds on the nonlinearity of PW type
functions and their super-sets. Our method can be applied algorithmically for
any n-variable function, where n is odd and not prime. It also identifies all the
attainable nonlinearities higher than the bent concatenation bounds. Computa-
tional results are presented for functions on n-variables where n is odd composite
and 9 ≤ n ≤ 39. We particularly explain the issues for n = 15 and 21 in detail
as these are the cases that received serious attention recently. We also provide
numerical results for larger variables and more research in this area is necessary
to explore the situation further. The results obtained in this paper related to
upper bound of nonlinearity couldn’t be achieved for more than three decades
even after substantial efforts as evident from literature. Towards further research,
one may study the Walsh spectra of such functions in more details and apply
our strategy for prime n ≥ 11 considering the factors of 2n − 1.
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Abstract. We give explicit evaluations of Walsh transforms of Gold

type functions f(x) = TrK
(
x2a+1 + x2b+1

)
, 0 ≤ a < b when

gcd (b − a, k) = gcd (b + a, k) and Kasami-Welch type functions f(x) =

TrK

(
x

2ta+1
2a+1

)
, when t is odd, gcd

(
2k − 1, 2a + 1

)
= 1, k is even. There-

fore we correct a recent result of Roy’2012, we solve an open prob-
lem stated in Roy’2012 and we improve and generalize some results of
Roy’2012 and Lahtonen-McGuire-Ward’2007.

Keywords: Finite fields · Gold type functions · Kasami-Welch type
functions · Walsh transform

1 Introduction

Let K = F2k denote the finite field of 2k elements. We will denote the absolute
trace map from a finite field F to F2 with TrF .

Let f be a Boolean function f : Vk −→ F2, where Vk is a k-dimensional vector
space over F2. The Walsh transform of f at α is the function fW : Vk −→ Z

defined by

fW (α) =
∑

x∈Vk

(−1)f(x)+〈α,x〉 (1)

where 〈α, x〉 denotes an (non-degenerate) inner product on Vk. When Vk = K,
a natural choice for 〈α, x〉 is TrK(αx). We refer, for example, to [1] for more
details on Walsh transform for Boolean functions. Then Eq. (1) becomes

fW (α) =
∑

x∈K

(−1)f(x)+TrK(αx). (2)

c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 243–257, 2016.
DOI: 10.1007/978-3-319-55227-9 17
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The Walsh spectrum of a Boolean function f : K −→ F2 is defined to be the
set {

fW (α) : α ∈ K
}

.

When the spectrum is precisely
{

±2
k
2

}
, f is called bent function. For an integer

0 ≤ r ≤ k, a function f : K −→ F2 is called r-plateaued (r-partially bent) if its
Walsh spectrum is

{
0,±2

1
2 (k+r)

}
. Bent functions have significance due to their

applications in cryptography and r-plateaued functions gain interest as they can
be used to construct bent functions (see [8,11] for instance).

Among the most famous examples of functions having 3-valued Walsh spec-
trum, we have Gold functions [4] f(x) = TrK

(
x2a+1

)
, with a is relatively prime

to k and k is odd. Gold [4] determined fW (α) in terms of fW (1) and fW (1) is
evaluated first in [2] and then in [8]. Furthermore, more general Gold functions
are studied in the appendix of [2].

The other famous examples are Kasami-Welch functions [7] (see also [3])
f(x) = TrK

(
x4a−2a+1

)
. With the same hypothesis that a is relatively prime

to k and k is odd, both Gold and Kasami-Welch functions have the spectrum{
0,±2

(k+1)
2

}
(i.e. they are 1-plateaued with the given hypothesis).

In this paper we deal with the Walsh transforms of Gold type and Kasami-
Welch type functions. By a Gold type function we mean

f(x) = TrK

(
x2a+1 + x2b+1

)
, 0 ≤ a < b,

and by a Kasami-Welch type function we mean

f(x) = TrK

(
x

2ta+1
2a+1

)
, t odd.

Gold type functions were studied by various authors in literature. For
instance, in [8], Lahtonen, McGuire and Ward give fW (0) for f(x) =
TrK

(
x2a+1 + x2b+1

)
, where 0 ≤ a < b, gcd (b − a, k) = gcd (b + a, k) = 1 and k

odd. Then, using the results of Fitzgerald in [6], Roy [11] evaluated fW (α)

– for any α ∈ K with k odd,
– for α ∈ K with TrK(α) = 0 and k even,

and stated that the case

– TrK(α) = 1 with k even

is open. However, we observed that Roy’s result for the case

– α ∈ K with TrK(α) = 0 and k even

does not hold for some α’s. We give a counterexample for such an α in Example 1
below in Sect. 3. In Corollary 1 in Sect. 3, we will complete the evaluation of
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fW (α) by fixing the problem in the result of Roy and giving fW (α) for the
remaining open case TrK(α) = 1 with k even.

Furthermore, in our main result Theorem1, we consider a more general func-
tion f(x) = TrK

(
x2a+1 + x2b+1

)
, 0 ≤ a < b with the assumption gcd (b − a, k)

= gcd (b + a, k). For any positive integer n, let v2(n) denote the highest non-
negative exponent v such that 2v divides n. Two cases occur for the evaluation
of fW (α):

– when “v2(b − a) = v2(b + a) = v2(k) − 1” does not hold,

we completed the evaluation.

– When v2(b − a) = v2(b + a) = v2(k) − 1

we computed fW (α) up to its sign, and determined its sign exactly under some
extra assumptions (see Theorem 2).

By means of Theorem 1, we will determine the Walsh spectrum of f(x) =
TrK

(
x2a+1 + x2b+1

)
, 0 ≤ a < b and gcd (b − a, k) = gcd (b + a, k) in Corollary 2

in Sect. 3. We observe that the Walsh spectrum is more complicated than the
special case obtained in [11] (see the paragraph before [11, Theorem 7]).

Kasami-Welch type functions, f(x) = TrK (xe) where e = 2ta+1
2a+1 and t is odd,

were studied by Niho in his thesis [10]. In [8], Lahtonen, McGuire and Ward
evaluated fW (1) under certain conditions and then Roy in [11] generalized their
result up to k odd. We also give generalization of Roy’s result for k even with
Theorem 3 in Sect. 3 below.

The rest of the paper is organized as follows. We give some background in
Sect. 2. We present our results in Sect. 3.

2 Preliminaries

In this section we introduce our notation and present some facts about quadratic
forms and linearized polynomials that we use when proving our main results in
Sect. 3.

Let n be an arbitrary positive integer. Throughout the paper v2(n) will denote
the highest non-negative exponent v such that 2v divides n (that is, the 2-adic
valuation) and

(
a
n

)
will denote the Jacobi symbol of a modulo n. For finite fields

F and E, we will write TrE/F for the relative trace from E to F . We also intro-
duce the notation χ

E
(x) for (−1)TrE(x) for any finite field E of characteristic 2.

Let

R(x) =
h∑

i=0

aix
2i

+ α,

where ai, α ∈ K. Let Q : K −→ F2 be the quadratic form given by

Q(x) = TrK (xR(x)) .
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Then we have
∑

x∈K

(−1)Q(x) = Λ (Q) 2
1
2 (k+r(Q)). (3)

Here r (Q) = dim rad (Q) is the dimension of the radical. By rad (Q) we mean
the radical of the corresponding bilinear form

BQ(x, y) = Q(x + y) + Q(x) + Q(y) for x, y ∈ K.

More precisely,

rad (Q) = {y ∈ K|BQ(x, y) = 0 for all x ∈ K} .

Moreover, it is well-known that the invariant Λ (Q) of the quadratic form Q
takes values in the set {−1, 0,+1}. We refer to [9] for further details.

Combining definition (2) and Eq. (3) above, we have that if f(x) =
TrK

(
x

(∑h
i=0 aix

2i
))

, then

fW (α) = Λ (Q) 2
1
2 (k+r(Q)) (4)

where R(x) =
h∑

i=0

aix
2i

+α. Therefore, in order to evaluate fW (α) it is enough to

determine Λ (Q) and r (Q). Furthermore, quadratic functions are r (Q)-plateaued
by Eq. (4).

The following is an another well-known fact and employed in many papers:

rad (Q) = log2
[
deg

(
gcd

(
R∗(x), x2k

+ x
))]

where

R∗(x) =
h∑

i=0

ai

(
x2h+i

+ x2h−i
)

is the radical polynomial of R(x).
It is easy to observe that rad (Q) is independent of the affine part of Q, and

this yields:

Lemma 1. Define Qα(x) = TrK (xRα(x)) and Qβ(x) = TrK (xRβ(x)) where

Rα(x) =
h∑

i=0

aix
2i

+ α ∈ K[x] and Rβ(x) =
h∑

i=0

aix
2i

+ β ∈ K[x]. Then

r (Qα) = r (Qβ) .

Lemma 1 shows that the relation between fW (0) and fW (α) depends only
on the relation between the invariants Λ (Q0) and Λ (Qα).
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A polynomial of the form

L(x) =
h∑

i=0

aix
qi ∈ Fqm [x]

is called a linearized polynomial over Fqm . Its q-associate is defined as l(t) =
h∑

i=0

ait
i ∈ Fqm [t] and L(x) is called the inverse q-associate of l(t).

Let A(x), B(x) ∈ Fqm [x] be linearized polynomials and a(t), b(t) ∈ Fqm [t] be
their q-associates. Then we define the right division “|r” in Fqm [x] by

A(x)|rB(x) if and only if B(x) = C(x) ◦ A(x)

for some linearized polynomial C(x) ∈ Fqm [x]
When, m = 1, in particular, it is a well-known fact that

– q-associate of A(x) ◦ B(x) is a(t)b(t) and
– A(x)|rB(x) if and only if A(x) divides B(x) in ordinary sense.

We will use the following well-known fact about linearized polynomials in
the proof of Lemma 3 below in Sect. 3. We provide a proof for completeness (see
also [9]).

Proposition 1. Suppose L1(x), L2(x) ∈ Fq[x] are two linearized polynomials
over Fq, and their q-associates are l1(t), l2(t) ∈ Fq[t] respectively. Then

gcd (L1(x), L2(x)) = the inverse q-associate of gcd (l1(t), l2(t))

where gcd (L1(x), L2(x)) is the greatest common divisor of two polynomials L1(x)
and L2(x) for Euclidean division.

Proof. Let gcd (L1(x), L2(x)) = A(x), gcd (l1(t), l2(t)) = b(t) and B(x) be the
inverse q-associate of b(t). Then we will show that A(x) = B(x).

– B(x) divides A(x):

Let l1(t) = c1(t)b(t) and l2(t) = c2(t)b(t) for some c1(t) and c2(t) in Fq[t]. Then
their inverse q-associates are L1(x) = C1(x) ◦ B(x) and L2(x) = C2(x) ◦ B(x)
where C1(x), C2(x) are inverse q-associates of c1(t) and c2(t), respectively. So

B(x)| gcd (L1(x), L2(x)) = A(x).

– A(x) divides B(x):

As gcd (L1(x), L2(x)) = A(x), we have L1(x) = D1(x) ◦ A(x) and L2(x) =
D2(x) ◦ A(x) for some linearized polynomials D1(x),D2(x) ∈ Fq[x]. Then their
q-associates are l1(t) = d1(t)a(t) and l2(t) = d2(t)a(t) where d1(t), d2(t) are
q-associates of D1(x) and D2(x), respectively. So a(t)| gcd (l1(t), l2(t)) = b(t).
That is, A(x)|B(x).

�	
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3 Main Results

In this section, we will give a counterexample to the result in [11] and then
present our main result in Theorem 1. Moreover, Theorem 2 and Corollary 1
solves an open problem of [11] and Theorem 3 generalizes a result of [11].

In the example below, we will see that the result in [11, Theorem 11] does
not hold for some α ∈ K.

Example 1. Let k = 2, so K = F4. Also let f(x) = TrK

(
x20+1 + x21+1

)
. So,

a = 0, b = 1 and gcd (b − a, k) = gcd (b + a, k) = 1. Then, by [6, Theorem 2.1]
we have fW (0) = 0. Therefore, we would have fW (α) = 0 for all α ∈ K with
TrK(α) = 0 according to [11, Theorem 11].

Now, let γ ∈ K = F4 be the element such that γ2 = γ+1 (Note that x2+x+1
is irreducible over F2). Then F4 = {0, 1, γ, γ + 1}.

For α = 1 (so TrK(1) = 1 + 12 = 0) we have

fW (1) =
∑

x∈K

(−1)TrK(x2+x3+x)

= (−1)TrK(02+03+0) + (−1)TrK(12+13+1)

+ (−1)TrK(γ2+γ3+γ) + (−1)TrK((γ+1)2+(γ+1)3+(γ+1))

= (−1)TrK(0) + (−1)TrK(1) + (−1)TrK(0) + (−1)TrK(0) = 4

and so fW (1) 
= 0.

The problem in the proof of [11, Theorem 11] is about the image Im(L) of L

where L(x) = x2a

+ x2−a

+ x2b

+ x2−b

. In [11, Theorem 7] it is shown that when
gcd (b − a, k) = gcd (b + a, k) = 1 and k is odd, we have Im(L) = K0 where K0

is the set of elements of K with absolute trace 0. The equality “Im(L) = K0”
is assumed also in the proof of [11, Theorem 11], when k is even. However, the
equality is not true for even k.

For any integer n dividing k, define the set

Sn =
{
x ∈ K : TrK/F2n (x) = 0

}

from now on. In fact, we will see below in Lemma 3 that

Im(L) =
{

Sd, if k/d is odd,
S2d, if k/d is even.

Therefore, [11, Theorem 11] (where d = 1 and k is even) does not necessarily
hold for an α ∈ K such that TrK/F22

(α) = 1 as in the Example 1, although we
have still TrK(α) = 0.

Before proving Lemma 3 we will present the following observation which will
play a central role in its proof.

Lemma 2. Assume gcd (b − a, k) = gcd (b + a, k). Put d = gcd (b − a, k) (= gcd
(b + a, k)) and let δ = gcd(2d, k). Then we have δ ∈ {d, 2d} and
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(i) δ = d ⇐⇒ k/d is odd ⇐⇒ δ|(b − a) and δ|(b + a),
(ii) δ = 2d ⇐⇒ k/d is even ⇐⇒ δ 
 |(b − a), δ 
 |(b + a) and δ|2a, δ|2b.

Proof. We have δ = gcd(2d, k) =
{

d, if k/d is odd,
2d, if k/d is even.

If δ = d, then δ|(b − a) and δ|(b + a) by assumption. So (i) is proved.
Assume δ = 2d. So k/d is even and v2(k) > v2(d). Then we get v2(b − a) =

v2(b + a) = v2(d). Hence, δ 
 |(b − a) and δ 
 |(b + a).
Furthermore, v2(2b) > v2(d) and v2(2a) > v2(d) and this yields v2(2b) −

v2(d) = v2 (2b/d) ≥ 1 and v2(2a) − v2(d) = v2 (2a/d) ≥ 1. Then, both 2b/d and
2a/d are even (note that d divides both 2b and 2a). That is, δ = 2d divides both
2b and 2a. �	

Now we are ready for the next lemma.

Lemma 3. Let L : K −→ K where L(x) = x2a

+ x2−a

+ x2b

+ x2−b

. Under the
notation of Lemma 2 we have

Im(L) = Sδ.

Proof. Clearly L : K −→ K is linear. We claim:

(1) Im(L) ⊆ Sδ.
(2) Ker(L) = F2δ .

Proof of (1): We will show that TrK/F2δ
(L(x)) = 0 for all x ∈ K.

TrK/F2δ
(L(x)) = TrK/F2δ

(
x2a

+ x2−a

+ x2b

+ x2−b
)

= TrK/F2δ

(
x2a

+ x2k−a

+ x2b

+ x2k−b
)

.

Case (i): If δ = d, δ|(b − a) by Lemma 2. Then

[
x2a

](2δ)
k+b−a

δ

= x2a+k+b−a

= x2k+b

= x2b

and

[
x2k−a

](2δ)
k−(b−a)

δ

= x2k−b

similarly. That is, TrK/F2δ

(
x2a)

= TrK/F2δ

(
x2b

)
and TrK/F2δ

(
x2k−a

)
=

TrK/F2δ

(
x2k−b

)
.

Case (ii): If δ = 2d, δ|2b and δ|2a by Lemma 2. Then

[
x2a

](2δ)
k−2a

δ

= x2k−a

and
[
x2b

](2δ)
k−2b

δ

= x2k−b

.
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Thus, TrK/F2δ

(
x2a)

= TrK/F2δ

(
x2k−a

)
and TrK/F2δ

(
x2b

)
= TrK/F2δ

(
x2k−b

)
.

Therefore, in both cases we get TrK/F2δ
(L(x)) = 0 for all x ∈ K.

Proof of (2):

L(x) = x2a

+ x2−a

+ x2b

+ x2−b

= 0 if and only if x2a+b

+ x2b−a

+ x22b

+ x = 0.

It will be sufficient to show that

gcd
(
x2a+b

+ x2b−a

+ x22b

+ x, x2k

+ x
)

= x2δ

+ x.

The linearized polynomial x2a+b

+ x2b−a

+ x22b

+ x ∈ F2[x] has the 2-associate
xa+b + xb−a + x2b + 1 which has the following factorization

xa+b + xb−a + x2b + 1 =
(
xa+b + 1

) (
xb−a + 1

)
.

Since gcd (b − a, k) = gcd (b + a, k) = d, we have

gcd
(
xa+b + 1, xk + 1

)
= xd + 1 and gcd

(
xb−a + 1, xk + 1

)
= xd + 1.

Then

gcd
(
xa+b + xb−a + x2b + 1, xk + 1

)
=

{
xd + 1, if k/d is odd,
x2d + 1, if k/d is even

= xδ + 1

and the result follows by Proposition 1.
Hence, K/Ker(L) ∼= Im(L) implies |Im(L)| = 2k−δ and then Im(L) = Sδ as

|Sδ| = 2k−δ. �	
Now we present the main result of the paper. The evaluation of fW (0) is

already completed in [6]. We find fW (α) in terms of fW (0) in some cases of our
main result, and we give fW (0) in absolute value only.

Theorem 1. Assume that gcd (b − a, k) = gcd (b + a, k) with 0 ≤ a < b and put
d = gcd (b − a, k) (= gcd (b + a, k)). Let K = F2k , E = F2δ where δ = gcd(2d, k),
and f(x) = TrK

(
x2a+1 + x2b+1

)
.

Case 1: “v2(b − a) = v2(b + a) = v2(k) − 1” does not hold:
If TrK/E (α) = 0, then we choose β ∈ K such that β2a

+β2−a

+β2b

+β2−b

= α
(see Lemma 3 for existence of such β). Then,

fW (α) =

⎧
⎪⎨

⎪⎩

(−1)TrK

(
β2a+1+β2b+1+αβ

)
fW (0), if TrK/E(α) = 0,

0, otherwise,

where |fW (0)| = 2
1
2 (k+δ).
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Case 2: If v2(b − a) = v2(b + a) = v2(k) − 1:
In this case [K : E] is odd. Put τ = TrK/E (α). Then TrK/E (α + τ) = 0 and

hence we choose β ∈ K such that β2a

+β2−a

+β2b

+β2−b

= α+ τ (see Lemma 3
for existence of such β). Then,

fW (α) = (−1)TrK

(
β2a+1+β2b+1+αβ

)
fW (τ).

Furthermore,

fW (τ) = Λ (g) 2
1
2 (k+2d)

where g is the quadratic form g(x) = TrE

(
x2a+1 + x2b+1 + xτ

)
and Λ (g)

denotes its invariant.

Remark 1. To avoid a very long and complicated statement in Theorem1, we
will continue the evaluation of Λ (g) separately in Theorem 2.

Proof. Firstly,

fW (0) =
∑

x∈K

(−1)f(x) = Λ (f) 2
1
2 (k+r)

where

r = deg
(
gcd

(
xa+b + xb−a + x2b + 1, xk + 1

))
= deg

(
xδ + 1

)
= δ

by Proposition 1 and proof of Lemma 3. As the dimension of the radical does not
depend on α, we have fW (α) = 0 or |fW (α)| = 2

1
2 (k+δ). So it is left to determine

the sign of fW (α).
By [6, Theorem 2.1],

invariant of f = Λ (f) = 0

if and only if
v2(b − a) = v2(b + a) = v2(k) − 1

Thus,

fW (0) = 0 if and only if v2(b − a) = v2(b + a) = v2(k) − 1

where χ
K

(x) = (−1)f(x).

Case 1: When “v2(b − a) = v2(b + a) = v2(k) − 1” does not hold.
In this case we are sure that fW (0) 
= 0. Then, by [5, Proposition 3.2],

fW (α) =

⎧
⎨

⎩

(−1)f(x0)fW (0), if R∗(x) = α2b

has a solution x0 ∈ K,

0, otherwise,

where R∗(x)=x2b+a

+x2b−a

+x22b

+x is the radical polynomial of R(x) = x2a

+x2b

.
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We have

R∗(x) = α2b

for some x0 ∈ K if and only if L (x0) = α for the same x0 ∈ K

if and only if TrK/E(α) = τ = 0

by Lemma 3.
When τ = 0, let β ∈ K be such that α = β2a

+ β2−a

+ β2b

+ β2−b

and observe that TrK (αβ) = TrK

(
β2a+1 + β2−a+1 + β2b+1 + β2−b+1

)
= 0 as

(
β2−t+1

)2t

= β2t+1 for all integers t. Hence, f(β) = TrK

(
β2a+1 + β2b+1

)
=

TrK

(
β2a+1 + β2b+1 + αβ

)
and

fW (α) =

⎧
⎪⎨

⎪⎩

(−1)TrK

(
β2a+1+β2b+1+αβ

)
fW (0), if τ = 0,

0, otherwise.

Case 2: v2(b − a) = v2(b + a) = v2(k) − 1.
This is the case when v2 (k/d) = 1. So we have δ = 2d.
We will use a similar idea as Roy used in [11]. For any element β of K, we

have

fW (α) = χK

(
β2a+1 + β2b+1 + αβ

) ∑

x∈K

χK

(
x2a+1 + x2b+1 + x (L(β) + α)

)

where L(β) = β2a

+ β2−a

+ β2b

+ β2−b

.
Now, let τ = TrK/E(α) ∈ E. Then we have

TrK/E (α + τ) = TrK/E(α) + τTrK/E(1).

The extension degree k/δ is odd in this case, and then TrK/E(1) = 1. So,

TrK/E (α + τ) = τ + τ = 0

Then, by Lemma 3 there exists β ∈ K such that L(β) = α + τ . That is,

L(β) + α = τ.

Therefore,

fW (α) = χK

(
β2a+1 + β2b+1 + αβ

) ∑

x∈K

χK

(
x2a+1 + x2b+1 + xτ

)

= (−1)TrK

(
β2a+1+β2b+1+αβ

)
fW (τ)

where β ∈ K such that α + τ = β2a

+ β2−a

+ β2b

+ β2−b

.
Let Λ (hτ ) denote the invariant of the quadratic form

hτ (x) = TrK

(
x2a+1 + x2b+1 + xτ

)
.
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So,

fW (τ) = Λ (hτ ) 2
1
2 (k+2d).

It is left to show Λ (hτ ) = Λ (g). The equality can be observed by a result
in [5].

Apply [5, Theorem 4.2] with n = 2d and k = 2dp1p2...ps (Note that v2(k) =
v2(2d)). Then, by means of [6, Theorem 1.5] we have

r
(
QFi

τ

)
= r

(
QFi

0

)
= r

(
Q

Fi−1
0

)
= r

(
QFi−1

τ

)
= 2d

for all 1 ≤ i ≤ s where QFi
τ (x) = TrFi

(
x2a+1 + x2b+1 + xτ

)
and Fi =

F2(p1p2...pin) . This yields

2
1
2

(
r
(

Q
Fi
τ

)
−r
(

Q
Fi−1
τ

))
= 2

1
2 (0) = 20 = 1 ≡ (−1)0( mod pi)

for all 1 ≤ i ≤ s. Also we have
(

2
p1...ps

)n

= 1

as n = 2d is even. Hence,

Λ (hτ ) = (−1)0
(

2
p1...ps

)n

Λ (g) = Λ (g) .

This completes the proof of Theorem 1. �	
For the case v2(b − a) = v2(b + a) = v2(k) − 1, the evaluation of fW (α)

depends on the evaluation of Λ (g) according to Theorem 1.
Next we evaluate Λ (g) when v2(b − a) = v2(b + a) = v2(k) − 1, τ ∈ F22 and

d is odd.

Theorem 2. Under the notation of Theorem1, assume v2(b − a) = v2(b + a) =
v2(k) − 1, τ ∈ F22 and d is odd. Then

Λ (g) =
{

+1, if τ = 1,
0, otherwise.

Proof. By the assumptions we have 0 = v2(d) = v2(b−a) = v2(b+a) = v2(k)−1
and δ = 2d. Also observe that v2(2d) = 1 = v2(2). Applying [6, Theorem 1.5]
and [5, Theorem 4.2] together, as in the proof of Theorem1, we get

Λ (g) = Λ (hτ )

where Λ (hτ ) denotes the invariant of the quadratic form

hτ (x) = TrF4

(
x2a+1 + x2b+1 + xτ

)
.
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Now, we will focus on Λ (hτ ). By Eq. (3),

Λ (hτ ) 2
1
2 (2+r(hτ )) =

∑

x∈F4

(−1)hτ (x).

As F4 = {0, 1, γ, γ + 1} where γ2 = γ + 1, we are left to deal with 4 cases
for τ .

(1) τ = 0:
As v2(b − a) = v2(b + a) = v2(2) − 1, we have Λ (hτ ) = Λ (h0) = 0 by [6,

Theorem 2.1].
(2) τ = 1:

– hτ (0) = TrF4 (0) = 0,
– hτ (1) = TrF4 (1) = 0,
– hτ (γ) = TrF4

(
γ2a+1 + γ2b+1 + γ

)
= TrF4

(
γ2a+1 + γ2b+1

)
+ 1,

– and

hτ (γ + 1) = TrF4

(
(γ + 1)2

a+1 + (γ + 1)2
b+1 + (γ + 1)

)

= TrF4

(
γ2a+1 + γ2b+1 + γ2a

+ γ2b

+ (γ + 1)
)

= TrF4

(
γ2a+1 + γ2b+1

)
+ TrF4 (γ) + TrF4 (γ) + TrF4 (γ + 1)

= TrF4

(
γ2a+1 + γ2b+1

)
+ 1.

Thus,

∑

x∈F4

(−1)hτ (x) = 2 − 2(−1)TrF4
(

γ2a+1+γ2b+1
)
.

As γ2 = γ + 1, we have

γt =

⎧
⎨

⎩

1 if t ≡ 0 mod 3,
γ if t ≡ 1 mod 3,
γ + 1 if t ≡ 2 mod 3.

Thus,

TrF4

(
γ2t+1

)
=

{
0 if t is odd,
1 if t is even.

In our case, we have v2(b + a) = v2(d) = 0 and so b + a is odd. Then, one of
a and b is odd and the other one is even. That is,

TrF4

(
γ2a+1 + γ2b+1

)
= 1 (5)

for all such a and b. Finally we deduce that
∑

x∈F4

(−1)hτ (x) = 4 and Λ (hτ ) = +1

for τ = 1.
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(3) τ = γ:

– hτ (0) = TrF4 (0) = 0,
– hτ (1) = TrF4 (γ) = 1,
– hτ (γ) = TrF4

(
γ2a+1 + γ2b+1 + (γ + 1)

)
= 1 + 1 = 0,

– and

hτ (γ + 1) = TrF4

(
(γ + 1)2

a+1 + (γ + 1)2
b+1 + (γ + 1)γ

)

= TrF4

(
γ2a+1 + γ2b+1 + γ2a

+ γ2b

+ 1
)

= 1,

using Eq. (5). Then,
∑

x∈F4

(−1)hτ (x) = 0 and Λ (hτ ) = 0 for τ = γ.

(4) τ = γ + 1:

– hτ (0) = TrF4 (0) = 0,
– hτ (1) = TrF4 (γ + 1) = 1,
– hτ (γ) = TrF4

(
γ2a+1 + γ2b+1 + γ(γ + 1)

)
= 1 + 0 = 1,

– and

hτ (γ + 1) = TrF4

(
(γ + 1)2

a+1 + (γ + 1)2
b+1 + (γ + 1)2

)

= TrF4

(
γ2a+1 + γ2b+1 + γ2a

+ γ2b

+ γ
)

= 0,

using Eq. (5). Then,
∑

x∈F4

(−1)hτ (x) = 0 and Λ (hτ ) = 0 for τ = γ + 1.

�	
As a consequence, we can complete the evaluation of fW (α) where f is as

given in [11, Theorem 11]. The following corollary completely solves the open
problem stated in [11] (see pages 901–903 of [11]), in particular in the paragraph
before [11, Theorem 9] and in the Remark in page 903.

Corollary 1. Under the notation of Theorem1, with k even and d = 1, we have

Case 1: v2(k) > 1

fW (α) =

⎧
⎪⎨

⎪⎩

(−1)TrK

(
β2a+1+β2b+1+αβ

)
fW (0), if τ = 0,

0, otherwise,

where |fW (0)| = 2
1
2 (k+2).

Case 2: v2(k) = 1

fW (α) =

⎧
⎪⎨

⎪⎩

(−1)TrK

(
β2a+1+β2b+1+αβ

)
2

1
2 (k+2), if τ = 1,

0, otherwise.
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Furthermore, we are able to determine the Walsh spectrum of f which satis-
fies the assumptions of Theorem 1.

Corollary 2. Under the notation of Theorem1 for f , the Walsh spectrum of f
is precisely

⎧
⎪⎪⎨

⎪⎪⎩

{
0,±2

1
2 (k+d)

}
, if k/d is odd,

{
0,±2

1
2 (k+2d)

}
, if k/d is even.

Proof. This corollary follows easily from Theorem 1. �	
We note that in Corollary 2, the Walsh spectrum of f has two different forms

depending on the parity of k/d.
The following is a related but a different result. It gives a generalization of

one of the main results of [11] (see [11, Theorem 7]) for k even.

Theorem 3. Let K = F2k , k even, a be such that gcd
(
2k − 1, 2a + 1

)
= 1. Let

t be odd and e = 2ta+1
2a+1 with a is a positive integer. If f(x) = TrK (xe) on the

field K, then

fW (1) = 2
1
2 (k+r(k))

where r(k) = gcd ((t − 1)a, k) + gcd ((t + 1)a, k) − gcd (2a, k).

Proof. Since gcd
(
2k − 1, 2a + 1

)
= 1, we have

fW (1) =
∑

x∈K

χ
K

(
x

2ta+1
2a+1 + x

)
=

∑

x∈K

χ
K

(
x2ta+1 + x2a+1

)

= Λ (Q) 2
1
2 (k+r(Q))

where Q(x) = TrK

(
x2ta+1 + x2a+1

)
. Denote r (Q) by r(k). Then

gcd
(
2k − 1, 21 + 1

)
= 1 if and only if v2(k) ≤ v2(a)

(see [5, Lemma 5.3]). So

v2(k) ≤ v2(a) ≤ v2(ta + a)

and
v2(k) ≤ v2(a) ≤ v2(ta − a)

as t is odd. Then, by [6, Theorem 1.5] we have

r(k) = gcd (ta − a, k) + gcd (ta + a, k) − gcd (s, k)

where s = gcd (ta + a, ta − a) = 2a.
Now, it is left to determine Λ(Q). Combining [6, Theorem 3.7] and [6, The-

orem 4.9] we obtain Λ(Q) = 1. �	
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Abstract. In this work, we propose the first rank-based group signa-
ture. Our construction enjoys two major advantages compared to con-
current post-quantum schemes since it is both practicably instantiated
with public key and signature sizes logarithmic in the number of group
members, and dynamic in a relaxation of the reference BSZ model. For
such a result, we introduce a new rank-based tool, referred as the Rank
Concatenated Stern’s protocol, enabling to link different users to a com-
mon syndrome. This protocol, which could be of independent interest,
can be seen as a Stern-like protocol with an additional property that
permits a verifier to check the weight of each part of a split secret. Along
with this work, we also define two rank-based adaptations of Hamming-
based problems, referred as the One More Rank Syndrome Decoding and
the Decision Rank Syndrome Decoding problems for which we discuss
the security. Embedded into Fiat-Shamir paradigm, our authentication
protocol leads to a group signature scheme secure in the Random Oracle
Model assuming the security of rank-based systems (namely RankSign
and LRPC codes) and the newly introduced problems. For a 100 bits
security level, we give an example of parameters which lead to a signa-
ture size of 550 kB and 5 kB for the public key.

Keywords: Group signature · Post-quantum cryptography · Rank
metric · Zero-knowledge

1 Introduction

A group signature scheme allows members of a group to anonymously issue
signatures on behalf of the group while an opener may revoke anonymity. It
turned out to be very useful in real-life applications such as, for instance, e-voting
or company access policy. While current practical group signatures schemes are
still based on number theory, it is worth looking for constructions facing the
quantum computer.

Related Work. Since its introduction in [1], group signature has been exten-
sively studied and two main formalization works [2,3] have been proposed (BMW
and BSZ models). In the latter case, Bellare et al. consider the case where new
c© Springer International Publishing AG 2016
S. Duquesne and S. Petkova-Nikova (Eds.): WAIFI 2016, LNCS 10064, pp. 258–275, 2016.
DOI: 10.1007/978-3-319-55227-9 18
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users can be added during the lifetime of the group. Numerous efficient pairing-
based group signatures have tended to fit or extend these aforesaid models among
which the following non-exhaustive works [4–9]. To address the quantum threat,
Gordon et al. designed the first lattice-based group signature scheme [10] and
in spite of recent progress in this area [11–16] or even in code-based cryptog-
raphy [17,18], post quantum schemes still suffer parameters inefficiency and/or
lack of properties compared to number-theoretic based constructions previously
mentioned. In parallel to this strong attention for group signature and its sub-
sequent improvements, the field of rank-based cryptography has also gained a
lot of interest due to, notably, the recent design of efficient and post quantum
cryptosystems [19,20] with strong security reductions [21].

Our Contributions. Our rank-based construction constitutes the first post
quantum group signature scheme to both enable enrollment of new users and
enjoy practical parameters. Indeed, our scheme benefits from public keys sizes
logarithmic in the number of group members, leading to an instantiation with
signatures and public key, respectively of sizes 550 kB and 5 kB for a 100 bits
security level. For such a purpose, we propose a novel approach while designing
a (rank-based) Stern-like authentication protocol, referred as the Rank Concate-
nated Stern’s Protocol. The key idea is to enable a verifier to check the weights
of both parts of a split secret. This protocol is then turned into a group signa-
ture via Fiat-Shamir (FS) paradigm [22] to constitute a new tool in the growth
of rank-based cryptography. We describe a generic scheme that we instantiate
with the LRPC cryptosystem and RankSign scheme so that the practical secu-
rity of our scheme relies on these aforesaid schemes and the two rank-based
problems introduced along with this work, referred as the One More Rank Syn-
drome Decoding (OMSD) and the Decision Rank Syndrome Decoding (D-RSD)
problems.

Road Map. In the following, Sects. 2 and 3 are respectively concerned with
preliminaries, notably about rank based cryptography, and our group signature
model. Section 4 introduces our new ZK authentication protocol while Sect. 5
describes the ensuing group signature scheme. Finally, Sect. 6 provides a security
analysis and Sect. 7 gives parameters for instantiating our scheme.

2 Preliminaries

We first define notation and then give some basic background.

2.1 Notation

All through this work, we use the following notation.
h denote a random oracle. λ denotes a security parameter; Hλ denotes a

random oracle whose output depends on λ. Given a prover-verifier protocol, lλ
denotes the number of rounds to run to achieve security related to λ. Except
stated otherwise, log denotes the binary logarithm. We denote by �n� the set
{0, . . . , n}. A(z;O) denotes that entity A has knowledge of z and access to
oracle O.
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Rank Metric. Let q be a power of a prime p, m an integer and let Vn be
an n dimensional vector space over a finite field GF (qm). Let β denote a basis
(β1, . . . , βm) of GF (qm) over GF (q). Let Fi be the map from GF (qm) to GF (q)
where Fi(x) is the i−th coordinate of x in the basis β. To any v = (v1, . . . , vn) ∈
Vn, we associate v ∈ Mm,n(GF (q)) defined by vi,j = Fi(vj). For a basis β, we
denote ψβ the inverse of the application Vn → Mm,n(GF (q)) : x → x computed
with the basis β.

2.2 Background on Rank Metric and Cryptography

Rank Metric Codes. We first recall some definitions.

Definition 1 (Matrix Code). A linear matrix code C of length m × n over
GF (q) is a subspace of matrices space of size m × n over GF (q). If C is of
dimension K, we say that C is a [m×n,K]q matrix code, or [m×n,K]q if there
is no ambiguity.

The difference between such a [m × n,K]q matrix code and a code of length
mn and of dimension K is that we can define a natural metric through the
matrix rank function.

Definition 2. For any v ∈ Vn, the rank weight of v, denoted ωt(v), is defined as
the rank of the associated matrix v. We can now define the rank metric between
two vectors x and y such as dr(x, y) := ωt(x − y) = rank (x − y). From now,
B(S, ω) := {v ∈ S : ωt(v) = ω}.
Definition 3 (Linear Rank Code). A [n, k]qm rank code C of length n and
dimension k over GF (qm) is a linear subspace of dimension k of GF (qm)n viewed
as a rank metric space. Each word c = (c1, . . . , cn) of C can be associated to a
m × n matrix over GF (q) by representing each coordinate ci by a column vector
with respect to a basis β.

Defined as the rank of its associate matrix x, the weight of a word x does
not depend on the choice of the basis β.

Definition 4. Let x = (x1, . . . , xn) ∈ GF (qm)n be a vector of rank ω. We
denote E the GF (q)-subvector space of GF (qm) generated by x1, x2, . . . , xn. The
vector space E is called the support of x.

Remark 1. The notion of support of a codeword for the Hamming metric and
for the rank metric are different but share a common principle: in both cases,
given a syndrome s for which it exists a low weight vector x such that H.xt = s,
then, if the support of x is known, it is possible to recover all the coordinates
values of x by solving a linear system.

Definition 5. Let e be an error vector of rank r and error support space E.
We denote by generalized erasure of dimension t of an error e, a subspace T of
dimension t of its error support E.

Similarly to the Hamming case where an erasure corresponds to knowing the
position of an error, this rank erasure notion is the knowledge of a subspace T
of the error support E.



A Practical Group Signature Scheme Based on Rank Metric 261

Rank-Based Cryptography. The main interest of rank-based cryptography is
that for hard problems with same size of parameters, the computational complex-
ity is higher than problems based on Hamming metric. It is then possible to gen-
erate instances of problems, with high computational complexity and with small
size of keys (a few thousand bits) when such sizes are only reached with additional
structure (like cyclicity) for Hamming (code-based cryptography) or Euclidean
(lattice-based cryptography) distances. We now recall Syndrome Decoding prob-
lem and Gilbert-Varshamov bound analogues in rank metric. For more details,
we refer the reader to [23,24] and references therein.

Syndrome Decoding Problem (RSD). As in the Hamming case, the problem
consists in finding a weighted constrained antecedent to a random syndrome by
a dual matrix.

Definition 6 (Rank Syndrome Decoding). Let H be a (n − k) × n matrix
over GF (qm) (k < n), s ∈ GF (qm)n−k and ω an integer. The RSD problem
consists in finding a vector x ∈ GF (qm)n verifying H.xT = s and ωt(x) ≤ ω.

The hardness of this problem was proven in [21] while the complexity of the
best known attacks can be found in [25]. The RSD problem can be seen as a rank
adaptation of the well-known Syndrome Decoding (SD) problem which relies on
Hamming metric and was proven to be NP-complete in [26].

Gilbert-Varshamov Bound (GVR). The number of elements S(m, q, ω) of a
sphere of radius ω in GF (qm)n, is equal to the number of m × n q-ary matrices
of rank weight t. For t = 0, S0 = 1 and for ω ≥ 1, we have (see [23]):

S(n,m, q, ω) =
ω−1∏

j=0

(qn − qj)(qm − qj)
qt − qj

From this, we then deduce the volume of a ball B(n,m, q, ω) of radius t in
GF (qm) to be:

B(n,m, q, ω) =
ω∑

i=0

S(n,m, q, i)

In the (frequent) linear case, the rank Gilbert-Varshamov bound GVR(n, k,m, q)
for a linear code [k, n]qm is then defined as the smallest integer ω such as
B(n,m, q, ω) ≥ qm(n−k) where B(n,m, q, ω) denotes a ball of radius ω in in
GF (qm).

For a rank code C with dual matrix H, the GVR bound is the smallest rank
weight ω for which, for any syndrome s, there exists on average one word x
solving the RSD instance (H, s, ω).

Rank Stern-like Protocol. Introduced by Goldwasser, Micali and Rackoff [27],
Zero-Knowledge (ZK) protocols fast aroused interest. Stern then first proposed
such a scheme based on coding theory [28]. Fixing the attempt of Chen [29],



262 Q. Alamélou et al.

Gaborit et al. designed a 3-pass prover-verifier protocol constituting a rank alter-
native to Stern’s protocol [30]. To fulfill such a goal, they had to define, in rank
metric, an equivalent notion of permutation used in the Hamming metric setting.
More precisely, they came up with an operation that, without leaking any infor-
mation about its support, can associate any word of rank ω to any particular
word of same rank ω. We now recall this operation.

Definition 7. Let Q ∈ GLm(q), v ∈ Vn and a basis β. We define the product
Q ∗ v such that Q ∗ v := ψβ(Qv).

For any x, y ∈ Vn such that rk(x) = rk(y), it is possible to find P ∈ GLn(q)
and Q ∈ GLm(q) such that x = Q ∗ yP .

New Rank-Based Problems. We now introduce two rank-based problems
referred as the One-More Rank Syndrome (OMRSD) Decoding problem and the
Decision Rank Syndrome Decoding (D-RSD) problem. We prove that the D-
RSD problem is a hard problem and we justify the very likely difficulty of the
OMRSD problem.

One More Rank Syndrome Decoding Problem. We first discuss the situation
where one is given some solutions of a RSD instance and is asked to find a new
one.

Definition 8 (OMRSD Problem). Given an RSD instance sd = (H, s, ω)
and l solutions to sd, denoted x1, . . . , xl, the OMRSD(sd , x1, . . . , xl) problem
consists in finding xl+1 solution of sd such as : ∀ i = 1 . . . l, xi �= xl+1.

Assumption 1: the OMRSD problem is hard.
Discussion on assumption 1: There is no known reduction to the RSD prob-

lem for the OMRSD problem. This problem is an adaptation in a coding context
of a similar problem which exists for classical cryptography. At the difference of
the classical RSD problem where an attacker knows only a syndrome and wants
to find a small weight vector, in that case the attacker knows l small weight
vectors of weight ω and search for a new one. It is of course possible to consider
linear combinations of small weight vectors to find another small weight vector,
meanwhile because of the properties of the metric, adding two random small
weight vectors of weight ω leads in general to a vector of weight close to 2ω
which is of no use for our problem. In particular in the case of rank metric, if
ω is greater than the rank Gilbert-Varshamov bound (which has to be the case
in general, if more than one preimage of a syndrome does exist), the problem of
finding a pre-image of weight more than twice the GVR bound is always easy.
Hence this means that using linear combinations of known solutions is not likely
to be of any help. This type of result is not true for instance for Hamming met-
ric or for Euclidean norm, for which in some cases finding preimage of weight
twice the Gilbert-Varshamov bound can be difficult. Moreover the number of lin-
ear independent such solutions is upper bounded by the dimension of the code.
Overall, although there is no known reduction for this problem, the problem is
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considered difficult by the communauty and no attack exploiting the l known
vectors are known, so that the best attack for the problem consists in directly
attacking the RSD problem.

Decision Rank Syndrome Decoding Problem. We now define the D-RSD problem
which consists in distinguishing a random syndrome from a syndrome issued from
a small weight vector.

Definition 9 (D-RSD Problem). Given a random H ∈ Mn−k,n(GF (qm)), a
word x ∈ B(GF (qm)n, ω > 0) a random syndrome s ∈ GF (qm)n−k, is it possible
to distinguish H.xT from s?

Once again, this problem can be seen as a rank adaptation of the Decision
Syndrome Decoding problem defined in Hamming-based cryptography.

Proposition 1. The D-RSD problem is hard.

Proof. Decision problems are very important in cryptography; in the case of
Hamming-based cryptography, the Decision Syndrome Decoding problem has
been proven equivalent to the search problem in Theorem 2 [31], based on the
Goldreich-Levin theorem. The result is presented in term of indistinguishability
of a pseudo-random generator based on the SD problem. Recently a transfor-
mation from a binary code to a q-ary code was proposed in [21] which permits
to obtain a randomized reduction from the SD problem to the RSD problem.
This transformation was used in [32] to adapt the result of Fisher-Stern [31]
for rank metric, but with a reduction to the computational SD problem. These
results hence show that there is a randomized reduction from the binary compu-
tational SD problem to the D-RSD problem, and hence that the D-RSD problem
is hard. In practice the best attacks for this problem are attacks towards the RSD
problem.

2.3 LRPC Codes and Related Cryptosystems

We now introduce LRPC codes [19] and ensuing cryptosystems.

Definition 10. A Low Rank Parity Check (LRPC) code of rank d, length n and
dimension k over GF (qm) is a code defined by a (n− k)×n parity check matrix
H = (hi,j), such that all its coordinates hi,j belong to the same GF (q)-subspace
of dimension d of GF (qm). We denote by {F1, F2, . . . , Fd} a basis of F .

An efficient decoding algorithm was provided in a way close to the classical
decoding procedure of BCH. Indeed, the general idea for decoding a word y is
as follows: when the parity matrix H has rank weight small enough, the space
generated by the coordinates of a syndrome s = H.yT enables to recover the
product space P = 〈E.F 〉. Then, knowledge of both P and F enables to deduce
E the support of the error e and finally the error e contained in y by solving a
linear system.
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LRPC Cryptosystem. Contrary to Gabidulin codes [33], LRPC codes enjoy a
poor structure so that they end up to be a well-suited candidate for rank-
based cryptography. When embedded into either McEliece or Niederreiter cryp-
tographic setting, they enable the design of an LRPC-based encryption scheme.
In Sect. 7), we will focus on the Niederreiter setting to instantiate our scheme.

RankSign or Decoding a Random Syndrome Beyond GVR. LRPC codes cannot
decode up to the GVR bound so to circumvent the impossibility of applying
the CFS methodology, Gaborit et al. [20] then proposed to decode random syn-
dromes above GVR. Given a syndrome, the idea is to randomly fix some subspace
of the error support (Definition 4) which leads to increasing the size of decod-
ing balls. The RankSign signature scheme was then deduced from this result
applying a methodology close to CFS where, given a secret key, one is then able
to output a small weight vector solving an RSD instance relatively to a public
matrix. The RankSign public key can then be seen as a trapdoor matrix.

3 Definition and Security Model

3.1 Definition

Under the existence of a PKI for exchanges between users and authorities, we
propose the following definition where two authorities, a group manager (also
called issuer) and an opener, are involved.

Definition 11. A group signature GS scheme is a sequence of protocols
(KeyGen, Join,Sign,Verif ,Open) such as:

– KeyGen(1λ): it generates the group public key gpk and the private keys: the
group manager secret key gmsk and the opener secret key skO containing
some tracing table tr which could be publicly revealed;

– Join(Ui, gmsk, gpk): interactive protocol between a user Ui and the group man-
ager. In the end, the user gets a secret key usk[i] and the issuer contacts the
opener to update tr;

– Sign(usk[i], gpk,m;μ): to sign a message m, the user uses his secret key usk[i]
and some randomness μ to output a signature σ valid under the group public
key;

– V erif(gpk,m, σ): anybody can check the validity of a signature σ on the mes-
sage m with respect to gpk. It outputs 1 if the signature is valid, and 0 other-
wise;

– Open(skO, gpk,m, σ): for a valid signature σ with respect to gpk, the opener
can provide signer’s identity: it thus outputs the user Ui when it succeeds and
0 otherwise.
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3.2 Security Model

Compared to classic BMW related static models, our scheme enjoys the possi-
bility of adding group members (protocol Join) during lifetime of the group but
does not fulfill the non-frameability security property required by the dynamic
BSZ model.

Remark 2. Informally, non-frameability guarantees that, even if both the group
manager and the opener are corrupted, no honest user could be accused of having
generated a signature if he did not. Even if non-frameability appears as a nice
property, many real life applications, such as authentication systems, assume
issuer integrity so that the interest of our model does hold in numerous contexts.

We then require our scheme to fulfill properties of correctness, anonymity
and traceability.

Correctness. This guarantees that honest users should be able to generate
valid signatures, and the opener should then be able to revoke anonymity of the
signers.

In the following experiments, we denote the set of corrupted users by CU ,
made of users for which an adversary A knows their secret keys in opposition to
honest users referred as the set HU . A is granted some oracles:

– Ojoin(Ui), a new user Ui is added to HU ;
– Osign(Ui,m), if Ui ∈ HU , returns Sign(gmsk , sk [i ],m) and adds i to S[m], the

list of users for which a signature on message m exists;
– Ocorrupt(Ui), if Ui ∈ HU , provides user’s secret key usk [i] and moves Ui to

CU ;
– Oopen(m,σ), returns Open(skO , gpk ,m, σ).

Anonymity and Traceability. Informally, the anonymity notion requires that
signatures issued by two users are computationally indistinguishable to an adver-
sary A. Traceability ensures that no group member or coalition of group members
and the opener can produce a valid signature that cannot be opened or for which
the opening process might accuse an honest user.

Anonymity. The anonymity security game (Fig. 1(a)) consists in a challenger
randomly choosing a bit b ∈ {0, 1} while the adversary A is asked to guess this
value. More precisely, A targets two users i0 and i1 and the challenger issues a
signature on behalf of ib. Granted aforesaid oracles, the adversary wins the game
if it outputs b′ = b.

Traceability. Concerning traceability (Fig. 1(b)), the adversary aims at produc-
ing a valid signature for which the opening procedure either fails or accuses an
honest user. More precisely, algorithm Verif must output 1 on inputs a cople
(m,σ) generated by the adversary and gpk while procedure Open should not



266 Q. Alamélou et al.

output the identity of a corrupted user because it would simply mean that A
signed m with a secret key he already knew. On the contrary, if A is able to
produce a valid signature that cannot be opened or that traces back to an honest
user, we consider that he has succeeded in attacking the security of the scheme.

(a) Experiment Expanon−b
GS,A (λ)

1. (gpk , gmsk) ← KeyGen(1λ)
2. (m, i0, i1) ← A(gpk , tr : Ojoin , Ocorrupt , Osign , Oopen)
3. σb ← Sign(usk [ib], gpk , m; μ)
4. b′ ← A(gpk , σb : Ojoin , Ocorrupt , Osign , Oopen)
5. If i0 /∈ HU or i1 /∈ HU , Return 0.
6. Return b′.

Advanon
GS,A(λ) = Pr[Expanon−1

GS,A (λ) = 1] − Pr[Expanon−0
GS,A (λ) = 1]

(b) Experiment Exptr
GS,A(λ)

1. (gpk , gmsk , skO) ← KeyGen(1λ)
2. (m, σ) ← A(gpk , skO : Ojoin , OCorrupt , Osign)
3. If Verif (gpk , m, σ) = 0, Return 0.
4. If Open(skO , gpk , m, σ) = ⊥, Return 1.
5. If ∃j �∈ CU ∪ S[m],

Open(skO , gpk , m, σ) = j, Return 1.
6.Else Return 0.

Advtr
GS,A(λ) = Pr[Exptr

GS,A(λ) = 1]

Fig. 1. Security notions

Definition 12. A group signature scheme fulfilling correctness and for which
advantages related to anonymity and traceability (Fig. 1) are negligible, is said
to be dynamic.

4 Rank Concatenated Stern’s Protocol

For H a public matrix, x a small weight vector of weight wx, and the syndrome
s = H.xT , Stern’s authentication protocol [28] permits a prover to convince a
verifier that he knows a small weight vector of weight wx, such that H.xT = s.

Stern’s authentication protocol and its variations have been widely used to
design group signatures through FS paradigm. A rank-based alternative was first
proposed by [29] that was later broken and repaired by Gaborit et al. in [30].
We rely on this latter, referred as the Rank Stern’s protocol to propose a new
rank-based ZK authentication protocol.

4.1 Problematic and Overview of Our Protocol

The problematic is to design an authentication protocol enabling a verifier to
check the weight of each part of a split secret. More precisely, let us consider
k × n and k × n′ random matrices Q and R over GF (qm), a syndrome s, some
weights ωx and ωy leading to the SD instance depicted in Fig. 2.
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[
Q | R

]
.

(
x
y

)
= s.

Fig. 2. High level overview

While (Rank) Stern’s protocol only allows to prove knowledge of a secret z
of weight ωx +ωy, our goal is to prove knowledge of a split secret z = (x, y) such
as ωt(x) = ωx and ωt(y) = ωy.

4.2 Rank Concatenated Stern’s Protocol

Similarly to [17], Fig. 3 introduces our authentication protocol, from now referred
as Rank Concatenated Stern’s Protocol (RCSP), whose goal is to prove knowl-
edge of a secret (x, y) with weight constraints on both x and y. The idea is some-
what to run, in parallel, 2 instances of Rank Stern’s protocol on x and y while
linking these two values through commitments. We denote here Vn = GF (qm)n

and Vn′ = GF (qm)n′
.

RSD instance ((Q|R), s, ωQ, ωR)

P’s secret: (x, y) ∈ Vn × Vn′ such as (Q|R).(x, y)T = s with ωt(x) = ωx and ωt(y) = ωy

1. [Commitment step] P chooses (v1, v2)
$←∈ Vn × Vn′ , r1, r2, r3

$← 1λ,

(P1, P2)
$← GLn(GF (q)) × GLn′(GF (q)) and Q1, Q2

$← GLm(q) and
He then sends c1, c2, c3 where:
c1 = h(Q1|P1|QvT

1 + RvT
2 |Q2|P2|r1),

c2 = h(Q1 ∗ v1P1|Q2 ∗ v2P2|r2),
c3 = h(Q1 ∗ (v1 + x)P1|(Q2 ∗ (v2 + y)P2|r3)

2. [Challenge step] V sends ch $← {0, 1, 2} to P .
3. [Response step] There are three possibilities:
ch = 0: P responds v1, (Q1|P1), v2, (Q2|P2), r1, r2.
ch = 1: P responds v1 + x, (Q1|P1), v2 + y, (Q2|P2), r1, r3.
ch = 2: P responds Q1 ∗ v1P1, Q1 ∗ xP1, Q2 ∗ v2P2, Q2 ∗ yP2, r2, r3.

4. [Verification step] There are three possibilities:
ch = 0: V checks c1, c2.
ch = 1: V checks c1, c3.
ch = 2: V checks c2, c3 and

ωt(Q1 ∗ xP1) = ωx, ωt(Q2 ∗ yP2) = ωy .
5. [Final step] V outputs Accept if all checks passed,

⊥ otherwise.

Fig. 3. Rank Concatenated Stern’s Protocol (RCSP).
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Remark 3. As pointed out in [17], original version of Stern’s authentication pro-
tocol [28] (in both Hamming and Rank cases) suffers a witness distinguishability.
A simple randomization (roles of seeds r1, r2, r3) addresses this issue to ensure
ZK property.

Theorem 1. RCSP (Fig. 3) is an honest prover verifier ZK protocol with cheat-
ing probability 2/3 thus verifying properties of completeness, soundness and zero-
knowledge.

Proof. Lying on rank version of Stern’s protocol [30], the proof is straightfor-
ward. Completeness property is straightforward and we only stress out that
in the case where ch = 1, the verifier can check validity of c1 by computing
h(Q1|P1|(Q(v1 + x)T + R(v2 + y)T − s|Q2|P2|r1). Soundness and ZK properties
directly come from those (of the randomized) Rank Stern’s protocol.

5 Our Rank-Based Group Signature Scheme

Before going into details, we introduce matrices Hs and Hc, indistinguishable
from random ones, verifying:

– Hs is a public trapdoor matrix i.e. given a (trapdoor) secret key sks, a random
syndrome s and an integer ωs, one can output y solving the RSD instance
(Hs, s, ωs);

– Hc is the public key of a Rank-based Public Key Cryptosystem (R-PKC) with
associated secret key skc.

5.1 High Level Overview of Our Scheme

The main idea is to instantiate RCSP with particular matrices Q and R so that
a user will be given a small weight split secret (x, yi) such as:

– yi is user’s signing key committed into a group public syndrome s relatively
to Hs;

– x is a random vector committed through a R-PKC ciphertext c enabling to
further revoke anonymity.

These secrets are then linked via a syndrome r, leading to the situation depicted
in Fig. 4, where A and B are random matrices, Hs is a trapdoor matrix and Hc,
a R-PKC public matrix.

To sign a message, Ui then makes a proof of knowledge on (x, yi) through
Rank Concatenated Stern’s protocol (Fig. 3). When the opener, given the R-
PKC secret key, wants to revoke anonymity, he first recovers x from c and then
computes r − AxT . This value must appear in its tracing table tr containing all
the B.yT

i s from which he can finally deduce signer’s identity.
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⎡
⎣ A | B

0 | Hs

Hc | 0

⎤
⎦.

(
x
yi

)
=

⎛
⎝r

s
c

⎞
⎠.

Fig. 4. A particular instantiation of RCSP.

5.2 Algorithms KeyGen, Join and Sign

To begin, the algorithm KeyGen, according to λ, generates the following data:

– a RSD instance (Hs, s, ωs) where Hs is a trapdoor matrix with associated
secret key sks given to the group manager;

– a R-PKC key pair (Hc, sk c) with skc given to the opener;
– an integer ω and two random matrices A, B.

When contacted by user Ui, the group manager uses its trapdoor key sks to
compute user’s secret key usk [i] = yi as a solution of the aforesaid RSD instance.
The opener is then given the syndrome B.yT

i to update tr .
Now, to authenticate himself, Ui first chooses a random x of weight ω and

computes the syndromes r = A.xT + B.yT
i and c = Hc.x

T . By instantiating
Q =

[
A
0

Hc

]
and R =

[
B
Hs
0

]
, he makes, through RCSP, a ZK proof on the secret

(x, yi) with ωt(x) = ω and ωt(yi) = ωs, solving the RSD instance depicted in
Fig. 4.

(a)KeyGen(1λ)
1. According to λ, generate:
1.1. a RSD instance rsd = (Hs, s, ωs):

− Hs a trapdoor matrix;
− sks its related secret key.

1.2. a R-PKC instance:
− Hc the public matrix key;
− skc its related secret key.

1.3. two random matrices A and B
and an integer ω.

4. gpk := (Hs, Hc, A, B, s, ωs, ω).
5. gmsk := sks, skO := (skc, tr = [ ]).
6. Return (gpk , gmsk , skO).

(b) Join(Ui, gmsk = sks , gpk)
1. Use the trapdoor sks on Hs to
output yi solving rsd .

2. If ∃ j ≤ i − 1,
yi = usk [j] ∨ B.yT

i = tr [j],
go to 1.

3. Return usk [i] = yi, tr [i] = B.yT
i .

(c) Sign(usk [j] = yi, gpk , m;μ)
1. Choose a random x
such as ωt(x) = ω.
1.1. r := A.xT + B.yT

i .
1.2. c := Hc.x

T .
2. For l = 1 . . . lλ
2.1. Set c1, c2, c3, d1, d2, d3

according to Figure 3, step 1.
2.2. cmt [l] := {c1, c2, . . . , d3}.

3. ch := Hλ(m, cmt , r, c) ∈ 2 lλ .
4. For i = 1 . . . lλ
Generate rsp[l] according to
ch[l] and Figure 3, step 3.

5. Set Π = (cmt , ch, resp).
6. Return σ = (Π, (r, c)).

Fig. 5. KeyGen, Join, Sign algorithms
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Finally, by turning this process non-interactive through FS paradigm, we
get the signing algorithm. Algorithms KeyGen, Join and Sign are described in
Fig. 5.

5.3 Algorithms Verif and Open

The verification algorithm relies on the verification step of RCSP (Fig. 3).
To revoke anonymity, the opener uses skc to recover x from the R-PKC

ciphertext c = Hc.x
T . He can then computes A.xT and subtracts this value to

r transmitted in the signature along with c. The result r − A.xT must be equal
to some tr [i], from which the signer’s identity is learnt. These two algorithms
appear in Fig. 6.

(a)Verif (gpk , m, σ)
1. Parse σ = (Π, (r, c))
2. Parse Π = (cmt , ch, rsp)

3. c̃h := Hλ(m, cmt , r, c) ∈ 2 lλ .
If (c̃h �= ch), Return 0.

4. For l = 1 . . . lλ
3.1. Check rsp[l] according to

cmt [l], ch[l] and Figure 3.
3.2. If a verification fails,

Return 0.
5. Return 1.

(b) Open(skO, gpk , m, σ)
1. If (Verif (gpk , m, σ) = 0)

Return ⊥.
2. Parse σ = (Π, (r, c))
3. Parse skO = (skc, tr).
4. Use skc to recover x from c.
5. Set z = r − AxT

6. For i = 1 . . . N
If (tr [i] = z)
Return Ui.

7. Return ⊥.

Fig. 6. Verif and Open algorithms

6 Security Analysis

Since correctness directly comes from RCSP, we focus on anonymity and trace-
ability requirements defined in Fig. 1. We begin with the anonymity property.

Theorem 2. If there exists an adversary A that can break the anonymity prop-
erty of the scheme, then there exists an adversary B that can either break the
Zero-Knowledge property of RCSP or the Decision Rank Syndrome Decoding
(D-RSD) problem.

Proof. Through a sequence of games, we will exhibit that an adversary against
our anonymity property would be able to either break the ZK property of our
scheme or the D-RSD problem.

G0 B runs KeyGen(1λ) and acts honestly as described in Fig. 1(a).
G1 Now, to answer the opening query, the simulator uses the ROM observability

to extract some y, and then compares the value to the B.yT
i contained in tr .

Under the ZK soundness, this is similar to the previous game.
G2 The simulator now supersedes part of the KeyGen by setting

[
A
Hc

]
= C. This

game is identical to the previous one.
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G3 The simulator now simulates the proof when answering the challenge queries,
by not using the value x, yi. This game is identical to the previous one under
the ZK property.

G4 Now, he sends randoms c = s1, r = s2 +B.yT
i . This game is indistinguishable

from the previous one under the D-RSD problem. (This is seen, by splitting
the challenge s in s1, s2 as it was done for the matrix C)

G5 This last game only displays random values, hence the adversary has no
advantage, which terminates the proof.

Concerning traceability, we have the following theorem.

Theorem 3. If there exists an adversary A that can break the traceability of
the scheme, then there exists an adversary B that can break either break the
Soundness of the Zero-Knowledge proof or the OMRSD problem.

Proof. The proof is straightforward, the simulator starts by simulating the ZK
proofs on every honest signing queries. Then, he picks an identity at random
expecting it to be the targeted honest user (this happens with non-negligible
probability) and sets his tracing key B.y�

∗ as s, for the other identities the
simulator sends a request to the RSD oracle, and forwards the answer.

Receiving the adversary answers, the simulator uses the ROM, to extract the
value y∗ solution to the challenge.

7 Instantiation

Our scheme is generic and can be used with any trapdoor matrix and public
key encryption scheme. In our rank-based context, RankSign and LRPC embed-
ded into Niederreiter setting (see Sect. 2) constitute well-suited candidates for
respectively instantiating matrices Hs and Hc introduced in Sect. 5.

According to Sects. 5 and 6, correctness and security of our scheme generi-
cally rely on matrices Hs and Hc meant to be indistinguishable from random
ones. With such an instantiation, the security is maintained through the puta-
tive indistinguashibilty of LRPC and RankSign public matrices with random
matrices [19].

Parameters. As it will exhibited below, it is sufficient in practice to consider
matrices A and B with only one row and then according to previous section, the
security of the protocol relies on the D-RSD problem or the OMRSD problem
associated to matrices Hs and Hc. We now give parameters to obtain an overall
security of 2100.

Following [20], we can consider parameters n′ = 23, k′ = 10, t = 3, m = 24
and q = 28 to design a RankSign public matrix Hs of dimension (n′ − k′) ×
(n′ +t) with coordinates lying in GF (qm). In particular, t denotes the number of
generalized erasures handled by such an instantiation. The size of the group then
consists in the number of potential antecedents to a common public syndrome
s; namely it corresponds to the number of possibilities to form t independent
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vectors lying over GF (qm) which roughly leads to qtm users (28×24 here). We
refer the reader to [20] for more details on this point. On the other hand, the
matrix Hc can be instantiated with the cyclic LRPC cryptosystem embedded
in Niederreiter setting; following [19], we consider parameters n = 74, k = 37,
q = 28 and the working field GF (qm). Now, matrices A and B are only used to
differentiate the B.yT

i (procedure Open) and since q = 28 and m = 24, there are
2192 possibilities for B.yT

i by simply taking A and B with one row. Finally, with
A and B made of one row and Hc cyclic, the size of the public key is mainly due
to Hs. By considering the systematic form with aforesaid parameters, it leads to
Hs of size (n′ − k′) × (n′ + t − n′ + k′) = (23 − 10) × (10 + 3) over GF (28×24).
Adding contributions of A, B and one line of Hc, it finally leads to a public key
of around 5 kB.

The signature size depends both on the security level and the length of a
proof of knowledge in RCSP (Fig. 3). Let us first notice that random matrices
involved in the protocol can be sent through seeds from which they could be
regenerated. Hence, the preponderant data sent during the protocol consists in
the vectors belonging to Vn and Vn′ : thus we get on average 4/3 elements of the
ambient space GF (qm)n+n′

representing 4/3 × (74 + 23) × 8 × 24 bits. When
targeting a 100 bits security level for which 100/log2(3/2) repetitions of the
protocol are required, this leads to a signature of 550 kB. One should notice
that these parameters are versatile and it would be easy to find parameters to
fit another security level.

Asymptotic Complexity. To study the asymptotic complexity, we first recall
that:

– the number of users N is roughly qmt = 2mtlog(q);
– in practice and as exhibited above, parameters t, k′ and m are set to O(n′) so

that the public key is approximated by O(n′3 × log(q)).

For a given security level, it is possible to increase the number of users by
increasing the size of q. In that case we consider all parameters except q as fixed.
From the previous recalls, the number of users is then N = 2O(log(q)) when the
size of parameters is in O(log(q)) = O(log(N)).

Finally, in terms of computation time, the protocol is very efficient since in
themselves the LRPC and RankSign cryptosystems are very fast (a few millisec-
onds for encryption/decryption or signature).

Concurrent Works. Our dynamic scheme compares very well with code-based
concurrent works such as [17,18]. Indeed, it features public key and signature
sizes logarithmic in N while those of the static scheme presented in [18] are
linear in N . Furthermore, when considering at maximum 224 users, the latter
one leads to a public key of size 1.16 GB with the advantage of only relying
on the SD-problem. Even if dynamic and with public key and signature sizes
in N1/

√
log(N), the group signature of [17] leads to signatures of size 20 MB
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and a public key of 2.5 MB. In parallel, despite recent progress and satisfying
asymptotic performances [11,13–16] (public keys and signatures logarithmic in
the number of group members), lattice-based constructions still suffer great sizes
of parameters. Indeed, the most efficient one due to [16], improving works of
[13,14], proposes signatures and a public key respectively of size 61.5 MB and
4.9 MB for a group made of only 1024 users and an overall security of 280.

8 Conclusion

This work proposes the first rank-based group signature scheme that is dynamic
in a relaxation of the BSZ model and compares very well with concurrent post-
quantum schemes. By introducing a rank-based ZK authentication protocol,
which could be of independent interest, we obtain a signature scheme via Fiat-
Shamir paradigm. Its security in the ROM, relies on LRPC related cryptosystems
(RankSign and Niederreiter), the RSD problem, and rank-based computational
problems introduced along with this work (OMRSD and D-RSD problems). With
an asymptotic complexity better than code-based constructions and similar to
best lattice-based results, our scheme features public key and signature sizes
logarithmic in the number of group members. Last but not least, with well cho-
sen parameters, we obtain an instantiation with public key and signature sizes
respectively of 550 kB and 5 kB so that our scheme appears fairly practical and
as the most efficient post-quantum group signature protocol up to date.

References

1. Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.1007/
3-540-46416-6 22

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 38

3. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3 11

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

5. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 4

6. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Pro-
ceedings of CCS 2004, pp. 168–177. ACM Press (2004)

7. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 34

http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-39200-9_38
http://dx.doi.org/10.1007/978-3-540-30574-3_11
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1007/978-3-540-24676-3_34


274 Q. Alamélou et al.

8. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 10

9. Libert, B., Yung, M.: Efficient traceable signatures in the standard model. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 187–205.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03298-1 13

10. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 23

11. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group sig-
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