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Preface

We wrote this book to fill the gap between textbooks of quantitative genetic theory and

software manuals that provide details on analytical methods but little context or perspective

on which methods may be most appropriate for particular applications. We do not cover

the basics of quantitative genetics theory; we recommend readers be familiar with two of the

classic introductory texts on the subject, Introduction to Quantitative Genetics, 4th Ed. by

D.S. Falconer and Trudy Mackay, and Genetics and Analysis of Quantitative Traits by

Michael Lynch and Bruce Walsh. We hope to apply the concepts of quantitative genetics to

particular analytical solutions that will be useful to plant and animal breeders, focusing mainly

on methods to predict breeding values. We attempt to demonstrate analyses in freely available

software (such as R packages) where possible, but we also include considerable attention to

the commercial software ASReml because it provides so much flexibility and utility to

analysis of breeding program data. Free (but time-limited) trials of ASReml are available,

and “Discovery” versions of the software are freely available to public institutions in many

developing countries (http://www.vsni.co.uk/free-to-use/asreml-discovery). In addition, we

include some information on SAS analyses for comparison, because SAS is widely used in

the breeding community.

This book is composed of two major sections. The first section (Chaps. 1, 2, 3, 4, 5, 6, 7,

and 8) covers the topic of classical phenotypic data analysis for prediction of breeding values

in animal and plant breeding programs. In Chap. 1, we introduce ASReml software because it

is one the more popular, and we believe one of the most powerful, softwares available for

analyzing data in breeding programs using mixed models analyses. Chapter 2 includes a brief

review of linear mixed models and compares them to ordinary least squares analyses of

variance, with which some readers may be more familiar. This is followed by a general

introduction to variance-covariance structures used in mixed models (Chap. 3). Chapters 4 and

5 cover prediction of breeding values using sire (or general combining ability) models and

animal models. Chapter 6 is about multivariate models used when breeders want to analyze

multiple traits simultaneously and estimate genetic correlations among traits. Chapter 7

introduces spatial analyses for field experimental designs used in tree and crop breeding to

account for environmental heterogeneity within environments. Chapter 8 introduces genotype-

by-environment (GE) interactions in multi-environmental trails and various variance-

covariance structures to model GE and the heterogeneity of error variation among
environments.

In the second section (Chaps. 9, 10, 11, and, 12), we provide the concepts and an overview

of available tools for using DNA markers for predictions of genetic merit in breeding

populations. With recent advancements in DNA sequencing technologies, genomic data,

especially single nucleotide polymorphism (SNP) markers, have become widely available

for animal and plant breeding programs in recent years. Analyses of DNA markers for

prediction of genetic merit are a relatively new and very active research area, with new

methods and improvements of older methods being proposed and tested constantly. The

algorithms and software to implement these algorithms are changing as we speak. Therefore,

Sect. 2 intends to be an introduction to the topic, touching on some of the more widely used
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methods and softwares currently available. Readers should be aware that the methods

discussed here are likely to be modified and improved in the near future, and that new

statistical packages will be introduced. We present this material, however, in the hopes of

providing a solid grounding in the basics of handling large marker data sets and using them to

predict breeding values. In Chap. 9, we describe characteristics of typical DNA marker data

sets and introduce some software tools useful for exploratory analyses (visualization, sum-

mary, and data manipulation) of marker data. Chapter 10 focuses on imputation of missing

genotypes. Chapter 11 covers the use of DNA markers to predict genomic relationships

between individuals in breeding populations and the use of genomic best linear unbiased

prediction (GBLUP) to predict breeding values even of individuals that have not been

phenotyped. Chapter 12 reviews the statistical background of more advanced genomic selec-

tion methods with several examples.

This book is intended for students in plant or animal breeding courses and for professional

breeders interested in using these tools and approaches in their breeding programs. We love to

hear from users about suggestions for improvements and corrections to the text.

We tried our best to give credit to resources we used to write this book. Apologies if we

missed something; please let us know so that we can include the source in a future edition.

Many friends, colleagues, and graduate students helped with the writing, revising, and editing

the original lecture notes and exercises, which turned out to be a huge task. We acknowledge

the contributions of Greg Dutkowski, Salvador Gezan, Steve McKeand, Jérôme Bartholome,

Trevor Walker, Jaime Zapata-Valenzuela, Funda Ogut, Kent Gray, YiJian Huang, Patrick

Cumbie, Alfredo Farjat, Terrance Ye, Jeremy Howard, Francesco Tiezzi, Brian Cullis, Tori

Batista Brooks, Austin Heine, April Meeks, Paula Barnes Cardinale, Onur Troy Isik, Amanda

Lee, Mohammad Nasir Shalizi, Edwin Lauer, and Miroslav Zoric for reviewing drafts of

chapters and providing feedback. Thiago Marino, Jason Brewer, Heather Manching, and

Randy Wisser generously provided unpublished maize data to use as an example in

Chap. 11. Christophe Plomion (INRA, France) provided maritime pine data to use in

Chaps. 9, 10, 11, and 12. Tree Improvement Program at NC State University provided

unpublished pine progeny test data to use in several chapters.

Our colleague Dr. Ross Whetten of NC State University edited Chaps. 1, 2, 3, 4, and 5 and

Chap. 9. Ross helped developed the training workshops on which this book is based, he tested

many scripts, and provided us with invaluable feedback. We are grateful to Ross.

We are also very grateful to Hüsnü Dokak, Professor of Arts at Hacettepe University,

Ankara, Turkey, for sketches/drawings of animals and plants used in the chapters.

Raleigh, NC, USA Fikret Isik

James Holland

Christian Maltecca
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Software Requirements

Several programs were used in this book. If you do not already have the following programs

installed on your computer, we recommend you download and install them.

ASReml: ASReml is a powerful tool for analysis of linear mixed models. Download from

https://www.vsni.co.uk/downloads/asreml. Make sure you obtain a license from VSN, the

company that distributes the program. See program website for details. It typically takes

several days to a week from requesting to receiving a license. For starters, Luis Apiolaza’s
website about ASRem is an excellent source: http://uncronopio.org/ASReml/HomePage

ConTEXT: ConTEXT is a small, fast, and powerful freeware text editor for Windows,

available at http://www.contexteditor.org/. We used it to write ASReml standalone command

files and examine output.

R: Download R from http://cran.r-project.org/, choosing the Windows, Mac, or Linux

version according to the OS on your computer. All R versions are free. For the exercises,

you need to install several packages (and the other packages they depend on). After

installing R, start the R program from the desktop shortcut and copy-paste the following R

script into the R window to install the required packages.

is.installed <- function(mypkg) is.element(mypkg,
installed.packages()[,1])

source("http://bioconductor.org/biocLite.R")
packBIOC=list("GeneticsPed","chopsticks")

for(i in 1:length(packBIOC)){
if(!is.installed(packBIOC[[i]])){biocLite(packBIOC[[i]])}
cat(paste("----------",packBIOC[[i]],"----------",sep="\t"));cat("\n")
}
#-copy to here, paste, and let R finish before copying the rest -
packCRAN=list("MASS","pedigree","rrBLUP","BLR","multicore","plyr")

for(i in 1:length(packCRAN)){
mip=as.character(packCRAN[i])
if(!is.installed(packCRAN[[i]])){install.packages(mip,dependencies =
T)}

cat(paste("----------",packCRAN[[i]],"----------",sep=" 
\t"));cat("\n")
}

Example data sets and code scripts: All of the example codes shown in this book are

available for download from this book website: https://faculty.cnr.ncsu.edu/fikretisik/

breedingbook/. We recommend keeping all of the example data sets together in a common

folder so the examples shown in this book can be run “as-is” except for changing the file paths
to that folder.
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Installing packages from local source:We used a set of scripts bundled in package for the

genomic selection chapter. These are not loaded on CRAN and are made available to readers.

The installation process is slightly different for Mac/Unix and Windows. Please do the

installation of the package after you have run the small script above.

MAC/Unix: Place the package GSa_1.0.tar.gz on your desktop. Open a terminal and

change directory to your desktop (in Mac this will be something like cd/Users/”NAME”/
Desktopwhile in Unix it will likely be cd/home/”NAME”/Desktop). Run the following
command R CMD INSTALL GSa_1.0.tar.gz. Note that you can do the same from the

GUI on a Mac but this is simpler.

Windows: Place the file GSa_1.0.zip on your desktop. If you have a 64bit machine R

will install both versions. In R change directory to your desktop (you can use the buttons of the

GUI to do so) then run the following line install.packages(“GSa_1.0.zip”,
repos¼NULL).

xii Software Requirements
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Abstract

ASReml has been become a default software for analysis of linear mixed models. The Average Information Sparse Matrix

algorithm of ASReml makes the software very fast to solve large number of mixed model equations. The software is

flexible to fit complex variance structures in mixed models. We introduce ASReml stand alone and a brief introduction to

ASReml-R in this chapter. Fitting more complex variance structures in mixed models using ASReml is given in Chaps. 2,

3, 4, 5, 6, 7, and 8.

Why ASReml?

Mixed models are commonly used to analyze many types of data produced by different disciplines. ASReml is a

comprehensive software package developed for linear mixed model analysis. It uses Average Information and Sparse

Matrix Algorithms to solve linear mixed model equations (Gilmour et al. 2014).

ASReml uses restricted maximum likelihood (REML) to estimate parameters. The method finds the parameter estimates

that are most likely given the data, by maximizing the likelihood function L(β, V|y). This function expresses the likelihood
of a model (summarized by the components β (fixed effects) and V (variances and covariances of random effects) given a

vector of observed data (y). REML produces parameter estimates that are efficient and consistent.

ASReml was developed to solve large mixed model equations. ASReml is faster and computationally more efficient than

SAS Proc Mixed (which relies on a Newton-Raphson algorithm) in solving mixed model equations. It is relatively easy to fit

simple linear mixed models. It is also flexibly coded to analyze complex designs, such as diallels and multivariate models,

and to handle pedigrees easily for quantitative genetics analyses. ASReml has certain disadvantages, primarily that it is

specifically designed for mixed models analysis and is not a comprehensive statistical or data management tool. Also, it

requires a good understanding of mixed models theory to fit complex variance structures.

ASReml software must be downloaded from: http://www.vsni.co.uk/downloads/asreml. The installation procedures are

available from the download website. Users must also obtain a license from VSNI and install the license following

instructions from VSNI. Free time-limited trial licenses are available for first-time users.

WinASReml is included in the ASReml installation for windows and can serve as a useful first start to writing command files

(which have file names that end in ‘.AS’) and manage ASReml projects (outputs). However, several text editor programs can

also be used to write command files and view output files. We will focus on the use of the freeware ConTEXT editor in this

book, as a nice text highlighter for ASReml command files has been developed for this software. Finally, ASReml models

can be coded and fit, and output stored as objects in R using the ASReml-R package. We will introduce ASReml-R in this

book, but readers should be aware that models are coded differently in ASReml-R than in the standalone ASReml. We

believe it is simpler to focus on the standalone version, particularly as the models become more complex, as the coding for

models tends to be more transparent in the standalone version. However, the ASReml-R package allows users to tightly

integrate the mixed models analyses with data management, visualization, and other statistical analyses that can be

performed in R, and this can provide a substantial benefit to users. Please note that the ASReml-R package must also be

downloaded directly from VSNI, and it requires a separate installation from the standalone version, it is not available from

the comprehensive R archive network (CRAN). Only a single valid license is required to run either (or both) standalone

ASReml and ASReml-R for a given computer.

ASReml Release 4 introduced functional specification to define the variance structures for mixed models. In functional

specification, the model random terms and residuals are wrapped with the variance functions. In other words, they are not

defined after the model, as was the case in Release 3. The goal is to simplify the coding of variance structures and make the

syntax less error-prone. This model specification is similar to ASReml- R.

ASReml Workflow

A typical standalone ASReml workflow is shown in Fig. 1.1. The user has a data file (typically in comma separated values,

csv, format) and prepares a command file (with extension .as) in a text editor. The command file references the data file,

instructs ASReml how to name and handle the columns of data in the data file, and includes a linear model that should be fit
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to the data. This command file is submitted to ASReml. ASReml produces a number of output files resulting from the

analysis, including a results summary (.asr file), solutions to the mixed model equation effects (.sln file), and if requested,

predictions for some factors in the model (.pvs file).

Setting Up ConTEXT Editor to Create and Execute ASReml Command Files

For Windows environments, we recommend using the ConTEXT text editor to write ASReml command files. It is free and

supports multiple document interfaces; it can be downloaded from http://www.contexteditor.org/. A highlighter file that

ConText uses to highlight ASReml command files to help scripting and editing is provided with the ASReml software itself.

As of ASReml version 4, the highlighter file is named ‘ASReml.chl’ and is located in the ‘Context’ subfolder of the
‘ASReml4’ folder that is normally installed under ‘Program Files’ onWindows computers. Users can copy the ‘ASReml.chl’
file to the folder containing ConText highlighters (usually, ‘C:\Program Files\ConTEXT\Highlighters’).

Here is how you can set up ConTEXT text editor to run ASReml job files:

1. Open ConTEXT text editor.

2. Click on Options and then Environment Options to bring up a dialog box

3. Click on Execute keys

4. Click on Add
5. Click on F9 key

6. Type file name extensions as, asd, csv, txt, dat, tab etc... in the Extension edit box (Fig. 1.2)

The above setup will create ASReml job templates when the data file is open in ConText (hit the F9 key or hit the icon 1 in

ConText). Similarly, ASReml job file (.as) can be run when the job file is open. We can also setup ConText to run another

type of file, called .pin file to calculate functions of variance component e.g. heritability. The .pin file is prepared by the user.
We will see examples later in the chapter. Here is how we setup ConText text editor to run the .pin files (Figs. 1.3 and 1.4).

Starting with ASReml

Data should be in ASCII text format (.txt, .csv, .asd, .dat, etc...). MS Excel spreadsheets cannot be used directly for analysis.

Instead, if you have data in an Excel file, save the file using the comma separated values (.csv) format.

Example 1.1 Pine provenance-progeny data
A provenance-progeny test of a pine species was established. Provenance refers to the different seed sources of a forest tree

species adapted to different environments. They are like genetic groups (or possibly sub-populations of the same species).

Fig. 1.1 Typical standalone

ASReml workflow
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The maternal parent of each tree was known, but the seeds were derived from open-pollination (random outcrossing) of those

female parents, so the male parents of each tree were not known. This represents a half-sib mating design within each

provenance. There are four provenances and 36 half-sib families in total. The field experimental design was a randomized

complete block design with five blocks and from two to six trees measured within each plot. Data are given for each tree. The

first five lines of the data set (Pine_provenance.csv) are given below:

Fig. 1.2 Setting environment

options in ConTEXT to run

ASReml

Fig. 1.3 Setting environment

options in ConTEXT to run>PIN

file in ASReml
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treeid female male prov block plot height diameter volume

191.1 191 0 10 1 1 10.7 15.0 0.072
191.2 191 0 10 1 1 11.5 22.0 0.167
191.3 191 0 10 1 1 12.1 23.8 0.206
191.4 191 0 10 1 1 12.0 22.7 0.186
191.5 191 0 10 1 1 12.2 21.5 0.169
191.6 191 0 10 1 1 12.5 22.8 0.195

treeid A unique tree ID. There are 914 levels

female Mother tree. There are 36 levels

male Pollen parent or father tree (they are all unknown, so they are all coded as 0)

prov Provenance number. There are four provenances

block Block number. There are five blocks

plot Plot (experimental unit) number

height Covariate or measured trait

diameter Covariate or measured trait

volume Covariate or measured trait

Template job file

You may open a data file (csv, txt, dat, tab etc.) in ConTEXT and press F9 to generate a template job file (“.as” suffix). If
ConTEXT is setup correctly as described above, it can generate a template job file directly from the data files. The new file

will take the name of the data file (for example, Pine_provenance.csv will create a file called Pine_provenance.as). Note that

ASReml will only generate a template .as command file if there is not already a file in the directory that has the same .as file

name that it would have generated (so if Pine_provenance.as already exists in the directory, then executing

Pine_provenance.csv will not overwrite the existing command file, it will run the commands in that file). Alternatively,

you may simply start from scratch by providing an appropriate header line and typing the name of fields in the ConTEXT

editor following the exact order in the data file.

Let’s look at the template command file for the Pine_provenance.csv data (Fig. 1.5).

Now open the job command template .as file in ConTEXT and inspect the beginning of the file. The command file has some

header lines then ‘data field definitions’ that names the variables in the data file and their formats (e.g., numeric or

alphanumeric), followed by a linear model. ASReml usually does not interpret all of the data formats correctly, and the

template linear model is a useful placeholder but often a nonsensical model. In this example, the file created is named

Fig. 1.4 Setting up environment

options to run PIN files
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Pine_provenance.as. You will note that there are a few incomplete or wrong fields for the data set. You may also note some

small variation in the format of.as command files generated in this way:

Uncorrected (template) ASReml job file example (Pine_provenance.as)

The lines starting with # are comments that are ignored by ASReml.

Here are three fields that are not correct:

• The treeid field is alphanumeric. Qualifier !I (for integer variables) is not correct. It must be !A (for alphanumeric)

• Height is not an integer factor but a response variable. Remove !I

• The linear mixed model is not complete.

Fig. 1.5 Creating a job file (.AS) and correcting fields in the file
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Here we show a corrected command file (provided in example scripts as Pine_provenance.as) for the Pine_provenance.csv
data and the definitions of the fields.

Code example 1.1

Example of a corrected ASReml job file with simple linear model (Code 1-1_Corrected Pine_provenance.as)

The command (.as) file has specific formatting features that must be adhered to:

• There must be a title at the top of the file.

• For ASReml versions before 4, there must be a blank field (empty space) before each ‘data field definition’ line (the

names of the data file columns, e.g., treeid, female, and male). This is no longer a requirement in version 4.

• Column names (‘fields’) can be followed by a qualifier (called a ‘field_type’) that indicates the type of data in that

column. See the section “Data Field Definitions” that follows for details.
• Fields without a qualifier and those with decimal points in the data are taken as variates or covariates (e.g., height,

diameter, volume).

• Names are case sensitive. Height and height are not the same.

• The data file name (Pine_provenance.csv) and model formula (height~. . .) that follow the data field definitions

should not be preceded by spaces (no space).

• A linear model is required. The trait to be analyzed is given first in the model, followed by ‘~’ and the model terms. An

overall mean (intercept) is not fit in the model by default, so it should be given as ‘mu’ if desired (this is the opposite of

default model specification in SAS Proc GLM, SAS Proc Mixed, or the lm() linear model fitting function in R). Fixed

effect terms follow, then random model terms are given following !r. Although specification of the residual variance

structure is not required, the template model specifies a form of the residual variance: “residual units” (the meaning

of “units” will be introduced in Chap. 7). If the fixed and random parts of the linear model are written on multiple lines,

commas must be used to indicate that the model specification continues on the following line. So, the template model has

a comma after the specification of the fixed effects, and before the line with the random effects, but notice that there is no

comma between the line with random effects and the line specifying the residual variance structure.

• In this simple example, we want to partition the variation into fixed sources due to field seed provenances and also into

random sources due to female parents and experimental units block and the plot effect (block.female interaction). In this

example, female parents are unique for each provenance, so they are ‘nested in’ provenance. However, since each female

is given a unique identifier that is not repeated in any other provenance, we do not need to code the model term explicitly

as nested.
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• Our example fits the linear model: Yijkl ¼ μ + Bi + Pj + Fjk + BFijk + εijkl, where Y is the measured tree height data, Pj is

the fixed effect of the jth provenance, Fjk is the random effect of the kth female parent nested in the jth provenance, Bi

is the random effect of the ith field block, BFijk is the random plot effect or female by block interaction and εijk is the
random residual error effect of the lth tree from female parent jk in the ith block.

• The data file name can be given as if it is in the same folder as the job command file (.AS), but if it is in a different

directory, the path must be given. We can use the !FOLDER qualifier to specify the location of the data file or other input

files (e.g. pedigree file) The !FOLDER qualifier is usually placed on a separate line BEFORE the data filename line or

pedigree file name. Example;

Model building is an iterative process, so it is best to start by running a simple model like this example, reviewing its

output (.asr), and then proceeding by adding more terms to the model one at a time.

Data Field Definitions

Following the title are the data field definitions, these correspond to the columns of the data file, and their order must

correspond to the order of the variable columns in the data file.

General syntax: SPACE label [field type]

• You must have at least one whitespace before the data field, the whitespace is what distinguishes a data field definition

from other parts of the ASReml job program. (ASReml version 4 has relaxed this requirement, but we recommend its use

anyway to make the job scripts easier to read).

• Label identifies the field and must start with a letter. Note that ASReml is case sensitive (unlike SAS, for example). So, if

you label a field as “Block” it must be spelled as “Block” in the model statements to follow; “block or BLOCK”would not
be recognized as the same field.

• Field type defines how a variable is interpreted as it is read and whether it is regarded as a factor, covariate, or response

variable in the linear model

• For the factor variables use *,!I,!A or the number of levels, depending on the field type.

• For covariates or response variables leave the field type blank or specify 1

• You may put more than one data field definition on a single line. For example, the data field definitions for height,

diameter, and volume can be on the same line in the example above.
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Here are a few frequently used field types:

* or n Are used when the data field has sequential values 1,...,n directly coding for the factor. For Example, if plots are coded as 1 through

12 in the data set, we would use plot * or plot 12, meaning that the levels of field plot range from 1 to 12.

!A Means the field is a factor and coded as alphanumeric. For example, if we had 20 Sites coded as “NC11”, “FL09”, etc., we would
use: Site !A. You may give the number of levels (20) after !A (e.g. !A 20) but this is not required if the levels are not greater than

1,000. If the levels are greater than 1,000 then an approximate number (greater than 1000) must be listed after !A.

!I The field is a numeric factor but not sequential integer. For example, if we had blocks coded 11, 24, 49, 80, we would use block !
I. The qualifier !Imust be followed by n if more than 1,000 levels are present. For example if there are 1,200 unique blocks, it must

be written as block !I 1200.
!CSKIP c is used to skip data fields (columns) when reading the data. For example, in the command file the treeid field is commented out by #

and will not be read from data because CSKIP 1 is used after the subsequent data field as shown below. This is useful if you want

ASReml to skip the data fields that are not needed for analysis.

!LL c By default ASReml truncates field labels (level names) to 16 characters. If some labels are longer than 16 characters and it is important to

have them in the output files, you may provide extra space for these fields using !LL c. In example below, let’s say the treeid labels

are longer than 16 characters. We can use !LL 24 to accommodate the long labels. Even with the use of !LL 24, only up to

20 characters will be printed in the prediction output file (.pvs)

!SORT Declared after !A or !I on a field definition line. It will cause ASReml to sort the levels so that labels occur in alphabetic/numeric

order for the analysis. ASReml by default orders the factors by the order in which they appear in the data set. For example, if there are

two locations with names ‘South’ and ‘North’ and South appears first, then ASReml keeps the order as 1¼ South, 2¼North. If we use

!SORT qualifier, ASReml will sort the field in alphabetical order (1 ¼ North, 2 ¼ South) and fits the effect in alphabetical order to

form the design matrices in mixed models. Example: location !A !SORT

!PRUNE If fewer levels are actually present in the factor than were declared, ASReml will reduce the factor size to the actual number of levels.

Let’s say there are 60 females in the data but we declared 100 levels after the female field. The program will prune the number of

levels to 60 for female effect and the extra levels will not appear in the. SLN file. Example: female !A 100 !PRUNE

Transformation of Response Variables

Many data transformation functions are available directly in ASReml, and they are invoked as the fields are declared.

See ASRreml manual for the complete list. Here are some examples of field definitions that transform a variable called

height (Gilmour et al. 2014):
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height !M0 Changes the height data points entered as 0 to missing values

height !M<¼0 !M>100 Converts height data values of ¼ <0 and >100 to missing

height !^0 Takes natural logarithms of the height values

height !D<¼0 Deletes records which have 0, negative, or missing values in the field

!+,!-, !*, !/ Arithmetic operations. For example, height !/10: divides height by 10,

height !*5: Multiplies height by 5

Logheight !¼height !^0 Takes the natural log of height and creates a new variable, Logheight

In the following example, a new variable (named Logheight) is created by taking the logarithmic transformation of height.

Also volume is multiplied by 10 to change the scale.

It is usually more convenient or flexible to use a spreadsheet, R, or SAS to do transformations or data manipulations rather

than using ASReml.

Data File and Job Control Qualifiers

Data file qualifiers

Following the field definition lines, we include a line indicating the name of the data file. ASReml recognizes the data file

line because it is the first line following the field definition line, which is not indented. If the data file is in the same folder as

the .AS program, we do not need to specify the data file path or put the file name in quotes. If not, however, we must provide

the full path of the data file name in quotes, e.g., “C:\users\document\Data.csv”.
On the same line, following the data file name we can include some qualifiers for how the data file is handled. Some

important ones are:

!SKIP n Causes the first n records of the data file to be ignored. Typically these lines contain headings (labels) for the

data fields. For example, Pine_provenance.csv !SKIP 1 skips the first line (column names) in the data.

!FILTER v [ !SELECT n]
[!EXCLUDE n]

Enables a subset of the data to be analyzed; v is the number or the name of a data field. For example block.

!FILTER block !SELECT 2 Selects data only from block 2 to include in the analysis. If the block IDs are string of characters and numbers

such as BL01, then you should put the selected block ID in double quotes as “BL01”.
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!EXCLUDE n Records of the level are ignored. In the following example records of block 2 are ignored (not included in the analysis).!FILTER
block !EXCLUDE 2. NOTE: If !FILTER is specified but!SELECT and !EXCLUDE are omitted, records with zero in field

v are excluded from analysis.

!SUM Provides a summary description of the variables in the data. It provides counts for levels of the factors, overall statistics (mean, standard

deviation, minimum, maximum) of response variables and correlations between variables. The output is saved in a file with .ass

extension. We strongly recommend users to check the file to make sure that the input data are correct. Here is an example of part of an .ass

file

Title. Code example data file qualifiers 16 Jun 2015 13:47:20

------> treeid has 914 levels

Distribution of frequencies of cell counts

914 level(s) with 1 observations

------> female has 36 levels

Level: 1 2 3 4 5 6 7 8 9 10

Count: 29 25 23 26 25 25 27 25 27 24

Level: 11 12 13 14 15 16 17 18 19 20

Count: 27 30 26 21 23 25 24 22 22 23

Level: 21 22 23 24 25 26 27 28 29 30

Count: 27 23 27 25 24 25 26 24 26 24

Level: 31 32 33 34 35 36

Count: 27 27 29 27 28 26

(continued)
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------> male has constant value 1.0000

------> prov has 4 levels

Level: 1 2 3 4

Count: 77 306 267 264

------> block has 5 levels

Level: 1 2 3 4 5

Count: 192 187 188 179 168

...

------> volume

Histogram of volume: MaxFreq 67, Range 0.30000E-02 0.42930

*

**

**

*** * *

**** ** *

***********

************ *

************ * *

*************** **

*******************

*********************

***********************

**************************

******************************** * **

Minimum 0.30000E-02 (ignoring 0 zeros)

Mean 0.11809 Standard Deviation 0.66110E-01

Maximum 0.42930 914 observations distributed

16 19 29 40 43 42 51 67 64 50 45 53 47 45 51

30 36 24 35 29 21 13 14 8 8 9 5 5 5 3

1 3 0 0 0 0 0 1 0 0 0 1 1

Correlations and counts of volume with

height diameter

0.84505 914 0.95625 914

Job qualifiers

Job control qualifiers and arguments that affect the whole program are listed after the data file. An example with some

frequently used job control qualifiers is shown below:
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!DOPATH n or DOPART n Allows one to write multiple models in the job file and run models selectively without editing the .as job

file.!DOPATH n and !DOPART n are used interactively. Which part is run controlled by the n argument of the

!DOPART/!DOPATH. The n can instructs ASReml to run the part. See the section “Processing Multiple

Analyses with One Command File” later in this chapter for details.

!DDF i Requests computation of the approximate denominator degrees of freedom (df) according to (Kenward and

Roger 1997, 2009) for the testing of fixed effects terms. There are three options for i: i ¼ �1 suppresses

computation, i ¼ 1 uses numerical methods, and i ¼ 2 (the default) uses algebraic methods. If testing fixed

effects is not an important goal, consider suppressing the computation of denominator df, as their computation

may significantly increase computational demands.

!MAXIT n Sets the maximum number of iterations. The default is 10. ASReml iterates for n iterations unless convergence
is achieved first. Convergence is presumed when the REML log-likelihood changes less than 0.002* current

iteration number and the individual variance parameter estimates change less than 1%. If convergence is not

reached you may use the !CONTINUE qualifier to start from the final parameter estimates and run the job again.

!DISPLAY n Used to determine which graphical displays are produced.

n ¼ 1 for a variogram for spatial analyses,

n ¼ 2 for a trait histogram,

n ¼ 4 shows row and column trends in spatial analysis

n ¼ 8 shows perspective plots of residuals.

You may use n to represent the sums of codes for desired graphics. For example, n ¼ 3 produces both a

variogram and a histogram.

!X volume !Y height Scatter plot of height and volume.

!X volume Histogram of volume

!X volume (!Y height)
!G block

Histogram of height and volume for each block.

!NODISPLAY Used to suppress graphics display.

Code example 1.2

Example of using data file qualifiers (Code 1-2_Data file qualifiers.as).

!OUTFOLDER
[folder path]

Writes most of the output files in a folder other than the working directory. It must be placed at top

of the job file. Other arguments (!ARGS, !RENAME etc.) can be listed before the !OUTFOLDER qualifiers.
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Specifying Terms in the Linear Model

Before you can write an appropriate model for analysis using ASReml (or any software!) you need to understand the mating

design (how individuals are related), the treatment design (if external factors were applied to the experimental units), and the

experimental design (such as the field blocking design in plant studies) of the experiment. In addition, you need to decide

which design factors are fixed effects and which are random. This decision depends on the inference that a researcher will

make from the results. Fixed and random factors are discussed in more detail in Chap. 2.

Reserved terms

Do not use the reserved terms given below to name your data fields. They are reserved, meaning that ASReml always

interprets them in a particular way as parts of a linear model.

mu the model intercept or the mean

mv missing value estimates

units an extra residual used in some spatial models, described in Chap. 7

If model continues on multiple lines make sure to put comma at the end of non-final lines. Otherwise the programs stops and

gives an error. If specifying the residual term, this should occur on a separate line after the model definition, and no comma

should be used in the final line of the model specification. For example:

height ~ mu ,

!r family

residual idv(units)

Model terms

General rules:

• Response variable(s) is followed by tilde (~)

• Model terms (factors) are separated by spaces

• Fixed terms are listed directly after ~

• Random terms are listed after !r

• The default variance structure for a random term and for the residual structure is idv (homogeneous or identical

variances). It can be specified explicitly at the end of the model (new line) but this is not necessary. The following two

models are identical.

MODEL 1: height ~ mu !r female block

MODEL 2: height ~ mu !r idv(female) block

residual idv(units)

• The + sign can be used to separate model terms, except at the end of the line. If the model continuous on several lines and

if the + sign is used, then the lines after the first line start with a + sign. For example:
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height ~ mu ,

+ prov ,

+ !r idv(female) block

Model formulas use the syntax described below, using the example of ‘family’, ‘site’, ‘block’, and ‘prov’ as factor variables,
‘volume’ as a numeric covariate, and ‘height’ as the response variable:

height ~ mu + family

residual idv(units)

Fits the overall mean plus a fixed family effect: Y ¼ μ + family + ε. ε is the residual from the fitted model.

Make sure the residual term starts on a new line.

height ~ mu !r family

residual idv(units)

Fits the overall mean plus a random family effect: Y ¼ μ + family + ε. Now we assume family effects are

drawn from a normal distribution: family � N 0; σ2family

� �
.

height ~ mu + volume

Fits the overall mean plus the effect of a fixed linear regression coefficient (β) that relates changes in height to

changes in volume: Y ¼ μ + (β∗volume) + ε.

height ~ mu + site !r family family.site

Fits a mixed model with site as a fixed effect and family and family-by-site interaction as random: Y ¼ μ +

site + family + family � site + ε, where family ~ N(0,σ2family) and family � site ~ N(0, σ2family�site ).

height ~ mu + site*family

Fits the main effects of both site and family plus their interaction as fixed effects: Y ¼ μ + site + family +

family � site + ε. This is equivalent to:
height ~ mu + site family family.site.

height ~ mu + prov/family

Fits the main effect of prov and the effect of family nested within prov as fixed effects:Y ¼ μ + prov + family

(prov) + ε. This is equivalent to:
height ~ mu + prov + prov.family.

height ~ mu + site !r at(site).block family

Fits the main effect of site as fixed, a random family effect and at(site).block specifies a unique variance

component for block at each site: Y ¼ μ + site + block(site) + family + ε, where family � N(0, σ2family) and

block ~ N(0,σ2block�sitei), i.e. there is a different block variance for each site i.

height ~ mu + site !r at(site,1).block family

Fits the main effect of site as fixed, a random family effect and at(site,i).block specifies a random

block effect only within the ith level of the site factor, in this example only at the first site.

Variance Header Line and Random Model Terms

Before ASReml Release 4, variance specification for models beyond simple idv structure (identical or homogenous) required

a variance header line, followed by specification of variance structures for the residuals and random effects. The syntax

could be complicated and hard to learn for beginners. With the new syntax for specifying variance structures in ASReml

Release 4, the variance header line and specifications of residual variance and variance for random effects are not needed

anymore. However, they can still be used with version 4, and we include the following sections for users who are familiar

with the previous releases to help with the transition to Release 4. New users can skip this section.

By default, if a factor is specified as a random term in the model, the distribution of the factor level effects is assumed to

follow a simple variance-covariance matrix structure whereby each level effect is a random sample from a common normal

distribution described by a variance component σ2i
� �

with no covariances between effects. This is what the notation family

� N 0; σ2family

� �
means in the examples in the previous section.
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In some cases (many of them very important to breeding applications), we may wish to specify more complex variance-

covariance matrices for some random terms in the model (so-called “G structures”) or for the residual effects (the “R

structure”). This is done in ASReml by including a variance header line below the model formula.

We provide here two small examples to introduce the variance header line and variance component structure definitions.

These examples describe a more verbose way to specify the default variance component structures. There is no need to do

this for default structures, but this syntax is required for more complex structures to be encountered later in the book, so we

show these examples as an introduction to the syntax. We will delve into the details of such structures and their use in

ASReml analyses starting in Chap. 3.

The variance header line follows the model as shown below.

The variance header line consists of three numbers:

s c g
s Refers to the number of sections for the residual variance structure (R structure). Each section of the R structure is independent of the others

and may have a unique variance component associated with it. In multiple environmental trials, each site could correspond to a section.

c Refers to the number of sub-matrices that define each section of the R structure. This can be 1, in which case each section of the R structure is

defined by a single matrix, or it can be 2, in which case the R structure for a section is the direct product of two sub-matrices. Direct products

are introduced in Chap. 3 and their use in defining complex R structures is shown in Chap. 7.

g Refers to the number of random model terms whose G structures will be specified in the subsequent code.

If s > 0, then the R structure definition lines should follow the variance header line first, then the G structure definitions are

given. If s ¼ 0, then c also must equal 0, and the G structure definitions would immediately follow the variance header line.

Here is an example where we specify the R structure for Code example 1.1. This will produce exactly the same model fit and

results as Code example 1.1 but uses the variance header line to indicate that the residual structure consists of only one

section and it is composed of an identity matrix (I) multiplied by a common residual error variance component. In statistical

notation, εi � N 0; Iσ2ε
� �

:

Code example 1.3

Specifying the residual and random effects variance-covariance structures with the variance header line

(Code 1-3_Variance header line.as)
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In PATH 1, we use the variance header line ‘1 1 0’ to specify that there is one R structure, which is defined by a single

matrix, and we are not specifying any special G structures. The R structure definition line ‘treeid 0 IDV’ has three

components:

treeid Specifies the factor whose levels uniquely identify the residual effects. In Code example 1.3, residual effects are associated with

levels of ‘treeid’.
0 Specifies the number of error effects in the section of the R structure. We could put 914 here in Code example 1.3, but 0 is handy

because it tells ASReml that the number of error effects equals the number of levels in the factor specified in the first term of the R

structure definition (‘treeid’ in this example), so we don’t have to know the exact number of levels when writing the code.

IDV Specifies the form of the variance-covariance matrix for the residuals. In this case, we specify an identity matrix.

!
s2¼2.7

Provides a starting value for the residual error variance component. In this example, we used the variance component estimate

already obtained from the previous analysis in Code example 1.1. In practice, one may have to guess at a ballpark initial value.

In PATH 2 theR structure is explicit, like in PATH 1 but the we used functional specification (a different syntax) to defineR.

Here is an example of specifying the variance-covariance structure of the random term ‘female’ from the model shown

in Code example 1.1. Again, the example shown in code example below will produce exactly the same result as Code

example 1.1. We used structural and functional specifications to define the G structure for the random model term ‘family’
effect.

Running ASReml

If environment variables are set up inside of ConTEXT text editor correctly as shown in Fig. 1.2, a command script can be

submitted to ASReml directly from inside ConTEXT, as follows:

• Open the job file (.as) in ConTEXT that you wish to run ASReml.

• Press the “F9” key or icon 1 to run your command file (.as).

• A plot of residuals will come to the screen.

• Check the job progress in the Console (a window at the bottom of the screen).

• Hit any key to finish the job. Do NOT hit X in the upper-left corner of ConTEXT to close the graphics windows – that

would cancel the job.

ASReml can be run as a batch process with minimal user interaction in Windows, Linux, or Macintosh operating systems.

Command line instructions to analyze the job command file ‘Pine_provenenance.as’ on aWindows machine look something

like this:

C:\ASReml>asreml c:\myfolder\Pine_provenance.as
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The job options can be set on the command line or on the first line of the job file.

• If the job options are set on the command line they can be concatenated string in the same format as for the command line.

For example, in the following command line a set of job control options are listed before the job file.

C:\ASReml>asreml –h11r 1 2 3 4 Pine_provenance.as

• They are combined in a single string starting with ‘–‘ sign. Command line options are not case sensitive. They can be

written as –H11R 1 2 3 4

• In above example, the command file runs four jobs (1, 2, 3, 4) in the job file Pine_provenance.as, renames the output

files (r) by adding the PART numbers 1 2 3 4 and sets interactive graphics device (h) and suppresses graphics screens.

It produces windows meta file images (11).

If the job options are listed on the first line of the job file as follows:

then the command line is simply

C:\ASReml>asreml Pine_provenance.as

If qualifiers are listed at the top of the job file they must be in one line. Spreading them over two lines is not allowed because

ASReml takes the second line as the title and gives an error. ASReml ignores the options on the job line if there

are arguments on the command line. See page 194 in ASReml Release4 manual for the list of the job options (Gilmour

et al. 2014).

If the ASReml job executes correctly, a number of output files having the same prefix (e.g., “Pine_provenance1”) but
different suffixes (e.g., “.asr”, “.sln”) will be created. The contents of these files are detailed in the section “ASReml output

files” later in this chapter.

ASReml Output Files

Let’s run Code 1-1_Corrected Pine_provenance.as file and examine output file .asr (primary output file). The primary output

file with extension .asr is the most important output file. It includes of information about the data, the qualifiers, model

convergence messages, possible errors, variance components estimates, and so on. It is important to read and examine this

file carefully. Here is an interpretation of some lines in the primary output file:

ASReml 4.1 [28 Dec 2014] Title. Pine_provenance. Corrected job file

Build lr [18 Mar 2015] 64 bit Windows x64

22 Nov 2015 14:14:32.608 32 Mbyte 01-1_Corrected Pine_provenance

Licensed to: NCSU Cooperative Tree Improvement Program

Your ASReml license expires in 8 days

(continued)
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*****************************************************************

* Contact support@asreml.co.uk for licensing and support *

*********************************************************** ARG *

Folder: V:\Book\Book1_Examples\ch01_asreml

!CSKIP 1

female !I

prov !I

block !I

height diameter volume !*10

Note: 1 data fields will be skipped.

QUALIFIERS: !SKIP 1

QUALIFIER: !DOPART 1 is active

Reading V:\Book\Book1_Examples\data\Pine_provenance.csv FREE FORMAT skipping 1 lines

Univariate analysis of height

Summary of 914 records retained of 914 read

Model term Size #miss #zero MinNon0 Mean MaxNon0 StndDevn

1 female 36 0 0 1 18.5985 36

Warning: Fewer levels found in male than specified

2 male 2 0 914 0 0.0000 0

3 prov 4 0 0 1 2.7856 4

4 block 5 0 0 1 2.9387 5

5 plot 240 0 0 1 115.8239 240

6 height Variate 0 0 4.000 10.48 15.20 1.794

7 diameter 0 0 5.000 18.31 31.20 4.398

8 volume 0 0 0.3000E-01 1.181 4.293 0.6611

9 mu 1

10 block.female 180 4 block : 5 1 female : 36

Forming 226 equations: 5 dense.

Initial updates will be shrunk by factor 0.316

Notice: 1 singularities detected in design matrix.

First always check the summary of data records. The ‘Size’ column shows the number of levels for factor variables; ‘#miss’
is the number of missing data points in that column, ‘#zero’ is the number of 0’s in the column, ‘MinNon0’ is the smallest

value observed in the column aside from any 0’s. The ‘Mean’ column is useful information only for varieties and covariates.

Forming 226 equations: 5 dense.: ‘‘Forming 226 equations: 5 dense’ refers first to the number of effects being

estimated in the model. In this example, the number of equations¼1 mu + 36 families +5 blocks +4 provenances +180 plots

¼226 total. ‘5 dense’ refers to the number of fixed effects in the model: 1 mu + 4 provenances.

Notice: 1 singularities detected in design matrix: Singularities detected in design matrix refer to the

fact that we cannot uniquely estimate all 5 of the fixed effects. For example, we cannot uniquely estimate mu and 4 prov

effects from the mean values of 4 provenances. However, by constraining the prov effect estimates in some way (such as by

forcing them to sum to zero, or alternatively by fixing one prov effect equal to zero), we can uniquely estimate linear

combinations of mu + each prov effect. So, we have one singularity among the fixed provenance effects.

1 LogL=-935.002 S2= 2.4765 910 df

2 LogL=-934.402 S2= 2.4939 910 df

3 LogL=-934.158 S2= 2.5138 910 df

4 LogL=-934.122 S2= 2.5276 910 df

5 LogL=-934.122 S2= 2.5270 910 df

6 LogL=-934.122 S2= 2.5270 910 df

ASReml Output Files 19



This section illustrates the log likelihood (‘LogL’) and residual error variance (‘S2’) at each iteration as the mixed model

equations are solved iteratively.

‘910 df’ refers to the number of degrees of freedom available to the random part of the model. REML maximizes the

likelihood of the random part of the model after absorbing the fixed effects. So, the df here do not refer to the df for the

residual variance or any other part of the model, but to the 914 observations �3 df for provenances – 1 df for mu ¼ 910 df

remaining after accounting for fixed effects.

If there are a small number of variance components estimated, you may see Gamma values for each random effect in the

model at each iteration. The gamma value is usually the ratio of the estimated variance component for a model factor to the

error variance estimate. For complex models with many variance components, as in this example, none of the gamma values

at each iteration are shown.

- - - Results from analysis of height - - -

Akaike Information Criterion 1876.24 (assuming 4 parameters).

Bayesian Information Criterion 1895.50

Approximate stratum variance decomposition

Stratum Degrees-Freedom Variance Component Coefficients

block 4.01 20.7243 162.8 0.1 3.4 1.0

female 31.83 8.39947 0.0 25.6 5.2 1.0

block.female 135.20 3.56543 0.0 0.0 5.3 1.0

Residual Variance 738.96 2.52703 0.0 0.0 0.0 1.0

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.425370E-01 0.107492 1.20 0 P

female IDV_V 36 0.749901E-01 0.189502 2.26 0 P

block.female IDV_V 180 0.782019E-01 0.197618 2.29 0 P

units 914 effects

Residual SCA_V 914 1.00000 2.52703 19.22 0 P

This section shows the variance components estimates. We will not explain the top section (‘Approximate stratum variance

decomposition’), although one can note that the ‘Degrees-Freedom’ sum to 914 for the random part of the model. One might

expect 35 degrees of freedom for the female term in this analysis, so this section of output might confuse readers and

probably should be ignored except by REML experts.

Instead, users will want to focus on the bottom section, which contains the variance components estimates themselves. The

gamma values are presented again, and the next column ‘Sigma’ shows the actual variance components themselves. So, for

this model, the female variance component estimate was 0.189 and the residual variance estimate was 2.527. The column

‘Sigma/SE’ provides the ratio of the variance component estimate to its standard error. If the factor has sufficient levels, this

approximates a t-value, so anything above 2 is probably significant at α ¼ 0.05. It is only an approximate rule of thumb,

however, and this test should not be used to declare factors non-significant, since it has low power for factors with few levels.

See Chap. 2 for details on testing significance of model effects. The column ‘%’ shows the percent change in the variance

component between the final iteration and the previous iteration. If the percent change is not small, it suggests that the

estimate is fluctuating substantially between iterations and the final value may not be stable. The final column ‘C’ provides
information about constraints on the variance components estimate. In this example, both variance components are

constrained by REML to be positive ‘P’. Other constraint indicators include ‘B’ (for variance components that are very

close to the boundary of 0 and have been made a very small positive number to avoid having a zero variance component

estimate hinder continued iteration) and ‘U’ (for unconstrained components, such as covariance components that can be

positive or negative).
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Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

9 mu 1 5.7 3566.99 <.001

3 prov 3 32.0 10.01 <.001

Notice: The DenDF values are calculated ignoring fixed/boundary/singular

variance parameters using algebraic derivatives.

Solution Standard Error T-value T-prev

3 prov

12 -0.623741 0.370135 -1.69

11 -1.66563 0.374134 -4.45 -4.33

13 -1.22019 0.376989 -3.24 1.77

9 mu

1 11.5121 0.361992 31.80

4 block 5 effects fitted

1 female 36 effects fitted

10 block.female 180 effects fitted

Finished: 22 Nov 2015 14:14:34.004 LogL Converged

The last part of the output in the .asr file displays results for fixed effects in the model. Obtaining appropriate denominator

degrees of freedom for testing fixed effects in unbalanced mixed models is a very complex problem, and ASReml provides

several options for doing this. The default option has the advantage of least computing time, but provides approximate

degrees of freedom that may not be very accurate in some cases. “F-inc” and “P-inc” are the F-statistics and associated p-

values from incremental (or ‘sequential’) fitting of fixed effects in the model. Users should be aware that the order that terms

are fit into the model can affect these F-statistics, and the approximate nature of the degrees of freedom computations also

may result in inaccurate p-values. Users with interest in obtaining accurate and appropriate F-tests should consult the User

Guide (Gilmour et al. 2014) and read about the various options for F-tests and degrees of freedom computation. In particular,

the job qualifier !FCON will provide a particular kind of conditional test and !FOWN permits users to specify the terms used

to condition a test.

A note on model convergence message is printed at the end. Look for this message: ‘LogL Converge’. If the model has not

converged, the analysis may require more iterations to converge, or the model may be poorly specified and require some

changes.

Next we examine the solutions output file (.sln).

.sln (Solutions for Fixed /Random effects)

This file does not include a header line, but the columns can be identified as:

Model_Term Level Effect seEffect

prov 10 0.000 0.000

prov 12 -0.6237 0.3701

prov 11 -1.666 0.3741

prov 13 -1.220 0.3770

mu 1 11.51 0.3620

block 1 0.3110 0.1855

block 2 0.1268 0.1858

block 3 0.2056 0.1858

block 4 -0.2919 0.1867

block 5 -0.3516 0.1878

female 191 -0.8257E-01 0.3395

female 192 0.2459 0.3419

female 170 -0.1634 0.3433

...
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BLUE are best linear unbiased estimators of fixed effects; BLUP are best linear unbiased predictors of random effects. Note

that the first estimate of provenance effects (level 10) is fixed to zero. These constraints are required to avoid the singularities

noted previously. Random effect predictions (BLUPs) of block and female are centered on zero.

.yht (Predicted and residual values)

Record Yhat Residual Hat

1 11.770 -1.070 0.1839

2 11.770 -0.2702 0.1839

3 11.770 0.3298 0.1839

4 11.770 0.2298 0.1839

5 11.770 0.4298 0.1839

...

Record: Observation number,Yhat: Predicted value (Yhat¼ y – (Xb + Zu),Residual: Observed – predicted.Hat: Diagonal

elements of Hat matrix, the magnitude of these values indicate the influence of the data point on the fitted value (outliers

have large Hat values).

.res (Statistics from residuals for model selection)

=== === === === Residual statistics for V:\Book\Book1_Examples\ch01_asreml\outputfiles/

Code01-1_Corrected Pine_provenance.asr === === === ===

Convergence sequence of variance parameters

Iteration 1 2 3 4 5 6

LogL -935.002 -934.402 -934.158 -934.122 -934.122 -934.122

Change % 22 24 17 1 0 0

Adjusted 0 0 0 0 0 0

StepSz 0.316 0.562 1.000 1.000 1.000 1.000

3 G 0.100000 0.061854 0.047019 0.042197 0.042533 0.042537 0.042537 0.0

4 G 0.100000 0.090260 0.080426 0.074692 0.074991 0.074990 0.074990 0.0

5 G 0.100000 0.092618 0.084077 0.078013 0.078203 0.078202 0.078202 0.0

C o v a r i a n c e \ c r V a r i a n c e \ c r C o r r e l a t i o n m a t r i x f r o m b l o c k . f e m a l e

[BLUPS]

0.706E-01-0.198 -0.196E-01 0.161 -0.228

-0.114E-01 0.465E-01-0.446 -0.350 -0.100

-0.123E-02-0.229E-01 0.564E-01 0.100 -0.130

0.711E-02-0.125E-01 0.393E-02 0.275E-01-0.221

-0.127E-01-0.454E-02-0.649E-02-0.770E-02 0.440E-01

Rescaled Covariance \cr Variance matrix from block.female

0.78202E-01

-0.15499E-01 0.78202E-01

-0.15311E-02 -0.34911E-01 0.78202E-01

0.12605E-01 -0.27385E-01 0.77940E-02 0.78202E-01

-0.17869E-01 -0.78428E-02 -0.10186E-01 -0.17286E-01 0.78202E-01

Trace of W(W’R^W+G^)^W’ 174.74017

Plot of Residuals [ -5.2983 4.3232] vs Fitted values [ 8.7152 12.2790] _RvE_1

(continued)
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. 1 1 1 .
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. 1 1 3 1 3 3 1 2 2 11 2 1 1 .
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11 2 11 1 31112611112665 322 22214 55353211 1 31 2 1.
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. 21 3 2 212113 22 1 34*5321 2 491 4421 11 1 1 1.
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. 1 2 1 11 23314 4 3 31131 1 1 2 1 .
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1 1 1 11 3 12 1 11 334 13 1 1 1 .

11 1 1 111 1 213 211121 2 1 1 11 .

.1 2 1 1 1 1 2 1 1 1 .

. 1 1 1 1 1 1 1 1 1 1 .

. 1 12 1 1 1 1 1 .

. 11 1 1 2 11 .

. 1 1 .

. 1 1 1 1 .

----1-------------------------1---------------------------–

SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1

-1.16

SLOPES FOR LOG(SDi) on LOG(PVBari) for Section 1

-1.30

Histogram of RvE_1_A: MaxFreq 55, Range -5.2983 4.3232

*

*

* *

* ***** **

* **********

*************

* **************

* **************

** *************** **

* ** *******************

* ************************ *

************************** **

* * * * ******************************

* *****************************************************

Min Mean Max -5.2983 -0.39119E-13 4.3232 omitting 0 zeros

This file provides a first visualization of the relationship between residual and predicted values. This is a useful diagnostic

tool to check that residual errors are independent of the predicted values. (If one sees that errors increase in variance as

predicted values increase, a transformation of data may be required).

Next, a histogram of residuals is displayed, which can be useful to check the assumptions of normality. Finally the line

starting with ‘STND RES’ reports data records with large standardized residuals that might be outliers and need to be
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examined. In this example we do not have any large standardized residuals. If we had one, the output would look like as

follows:

STND RES 47 5.2000 -3.73

Means that observation 47 in the data file (in the order that they exist in the data file) had a value for height of 5.2, and its

standardized residual value from the model fit was �3.73 because it is much lower than expected based on the estimated

values of its block, provenance, and maternal parent effect estimates.

.aov (ANOVA and conditional F-tests)

The file contains the details of ANOVA and conditional F-tests. Most of what users need is already provided in the .asr file,

so this output is mainly to get more details on the sequence of fitting effects.

This file reports details concerning the calculation and testing of the

Wald F-statistics reported in the .asr file.

Table showing the reduction in the numerator degrees of freedom

for each term as higher terms are absorbed.

Source 2 1

1 mu 4 1

2 prov 3

Incremental Wald F statistics - calculation of Denominator degrees of freedom

Source Size NumDF F-value Lambda*F Lambda DenDF

mu 1 1 3566.9926 3566.9926 1.0000 5.7230

prov 4 3 10.0066 10.0066 1.0000 32.0240

.vvp (Covariance matrix of random effects)

This file contains the approximate variance-covariances of the parameters reported in the .asr file. It is designed to be read by

the .pin file for calculation of the standard errors of linear combinations of parameters (e.g., phenotypic variance, heritability

and correlations). The matrix is lower triangle row-wise in the order of parameters (variances in this example) given in the .

asr file. In this simple example, the order of the three variance components in the .asr file is as follows:

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.425370E-01 0.107492 1.20 0 P

female IDV_V 36 0.749901E-01 0.189502 2.26 0 P

block.female IDV_V 180 0.782019E-01 0.197618 2.29 0 P

units 914 effects

Residual SCA_V 914 1.00000 2.52703 19.22 0 P

The .vvp file is as follows:

Variance of Variance components 4

0.808625E-02

0.243998E-04 0.705259E-02

-0.134800E-03 -0.137794E-02 0.743660E-02

-0.371893E-04 -0.922963E-05 -0.328918E-02 0.172833E-01

The first row (0.808625E-02) is the variance of ‘block’ variance component.

In the second row, 0.243998E-04 is the covariance between the female variance component and block variance

component, 0.705259E-02 is the ‘female’ variance component.
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In the third row, �0.134800E-03 is the covariance between the block variance component and the plot variance

components etc.

.rsv (resetting initial parameter values)

The .rsv file holds the initial variance parameter values between runs of ASReml. The file is not normally modified by

the user.

227 6 3349 270

# This .rsv file holds parameter values between runs of ASReml and

# is not normally modified by the User. The current values of the

# the variance parameters are listed as a block on the following lines.

# They are then listed again with identifying information

# in a form that the user may edit.

0.000000 0.000000 0.4253697E-01 0.7499005E-01 0.7820191E-01 1.000000

RSTRUCTURE 1 1 3

VARIANCE 1 1 0

6, V, P, 1.0000000 0 0

STRUCTURE 914 0 0

block 1 1

3, G, P, 0.42536968E-01 0 0

female 1 1

4, G, P, 0.74990052E-01 0 0

block.female 1 1

5, G, P, 0.78201913E-01 0 0

Example: The following code runs two models in PATH 1 and PATH 2, renames the output files for each run by adding the

run-number to the base file. The .asr output file in the second run produces a message as ‘Notice: ReStartValues

taken from testPine2.rsv’

.tsv (resetting initial parameter values)

The .tsv file is created after the initial run of the job. It holds initial variance parameters created by ASReml. If !CONTINUE

2 or !CONTINUE !TSV are used after the data file, then the .tsv file is used instead of the .rsv file.
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# This .tsv file is a mechanism for resetting initial parameter values

# by changing the values here and rerunning the job with !CONTINUE 2.

# You may not change values in the first 3 fields

# or RP fields where RP_GN is negative.

# Fields are:

# GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

3, "block", G, P, 0.10000000 , 3, 1

4, "female", G, P, 0.10000000 , 4, 1

5, "block.female", G, P, 0.10000000 , 5, 1

6, "Variance 1", V, P, 1.0000000 , 6, 1

# Valid values for Pspace are F, P, U and maybe Z.

# RP_GN and RP_scale define simple parameter relationships;

# RP_GN links related parameters by the first GN number;

# RP_scale must be 1.0 for the first parameter in the set and

# otherwise specifies the size relative to the first parameter.

# Multivalue RP_scale parameters may not be altered here.

# Notice that this file is overwritten if not being read.

.msv (Resetting initial parameter values)

After each iteration the current values of variance parameters are written to .rsv and .msv files. It is easier to identify each

variance parameter in the .msv file. This file can be read by rerunning the job with !CONTINUE 3 or !CONTINUE !MSV

listed after the data file.

# This .msv file is a mechanism for resetting initial parameter values

# by changing the values here and rerunning the job with !CONTINUE 3.

# You may not change values in the first 3 fields

# or RP fields where RP_GN is negative.

# Fields are:

# GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

3, "block", G, P, 0.42536968E-01, 3, 1

4, "female", G, P, 0.74990052E-01, 4, 1

5, "block.female", G, P, 0.78201913E-01, 5, 1

6, "Variance 1", V, P, 1.0000000 , 6, 1

# Valid values for Pspace are F, P, U and maybe Z.

# RP_GN and RP_scale define simple parameter relationships;

# RP_GN links related parameters by the first GN number;

# RP_scale must be 1.0 for the first parameter in the set and

# otherwise specifies the size relative to the first parameter.

# Multivalue RP_scale parameters may not be altered here.

# Notice that this file is overwritten if not being read.

Tabulation

TABULATE statements provide a simple way of summarizing data by groups. In the example below, if the command file

were named ‘Pine_provenance.as’, the descriptive statistics of height for each level of prov are written to output file

‘Pine_provenance.tab’.
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The output in the .tab file looks like:

Title. Example of TABULATE

Simple tabulation of height

prov Mean StandDevn Minimum Maximum Count

10 11.5104 1.3081 7.3000 14.2000 77

12 10.8843 1.6383 5.2000 15.2000 306

11 9.8933 1.8536 4.0000 14.9000 267

13 10.2989 1.7916 5.1000 14.7000 264

• Multiple response variables can be listed after Tabulate:

TABULATE height volume ~ prov !STATS

• Separate summary statistics can be requested for multiple factors:

TABULATE height ~ prov block !STATS

• !COUNT requests counts as well as means:

TABULATE height ~ prov !COUNT

• !SD requests standard deviation for each cell:

TABULATE height ~ prov !SD

• !STATS is shorthand for !COUNT, !SD and !RANGE:

TABULATE height ~ prov !STATS

• !DECIMAL is to control for number of decimals in summary statistics:

TABULATE height ~ prov !STATS ! DECIMAL 1

Prediction

Tabulation works by summarizing the data by groups, as shown above. If data are unbalanced, the mean values of

different groups may not be directly comparable because they may be affected differently by other factors in the model.

So, tabulation is a useful summary analysis of the data but not best suited for making comparisons among factor levels.

Prediction, on the other hand, is ideal for making such comparisons; because predictions are adjusted for all model factors so

they are more directly comparable. We can request predictions for both fixed and random model factors, as shown in the

example below:
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You may use multiple prediction statements to obtain predicted values for fixed and random effect factors. For female effect,

we need to use !present prov family so that we get predictions from only the family x prov combinations that actually

exist. If we just use predict prov family, we will get the big hypertable that will have predictions for all 36 females for

each provenance (4 � 36 ¼ 144 predictions) which does not make sense.

The predictions appear in a file with suffix “.pvs”:

Title. Pine_provenance. Corrected job file 22 Nov 2015 19:44:24

cted Pine_provenance

Ecode is E for Estimable, * for Not Estimable

The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors

in the averaging and classify sets.

Use !AVERAGE to move ignored factors into the averaging set.

---- ---- ---- ---- ---- ---- 1 ---- ---- ---- ---- ---- ----

Predicted values of height

The ignored set: block female

prov Predicted_Value Standard_Error Ecode

10 11.5121 0.3620 E

12 10.8883 0.2213 E

11 9.8464 0.2279 E

13 10.2919 0.2326 E

SED: Overall Standard Error of Difference 0.3162

---- ---- ---- ---- ---- ---- 2 ---- ---- ---- ---- ---- ----

Predicted values of height

The ignored set: block

Warning: 108 non-estimable [empty] cell(s) may be omitted from the table.

prov female Predicted_Value Standard_Error Ecode

10 191 11.4295 0.3392 E

10 192 11.7580 0.3498 E

10 170 11.3487 0.3560 E

...

13 232 9.8923 0.3205 E

13 247 9.3855 0.3246 E

13 238 10.6756 0.3225 E

13 252 10.6467 0.3275 E

SED: Overall Standard Error of Difference 0.4142
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You can notice that the predicted values for prov effect are very similar, but not exactly identical to the mean values from the

tabulate command. The predictions are the “best linear unbiased estimates” of the prov effects. The predictions for female

effects are called “best linear unbiased predictors” (BLUPs) because they are random effects. The differences in these

concepts are described in detail in Chap. 2. “SED Overall Standard Error of Difference” is the mean standard error of a

difference between predictors, averaged over all possible comparisons. It can be used as a rough guide to test significance of

particular differences.

Processing Multiple Analyses with One Command File

The qualifiers !CYCLE, !DOPART, !ARGS, and !RENAME provide users a way to include multiple models or analyses of

different traits or parts of the data set in a single job file, and to control how ASReml processes the different parts of the

program and produces output files.

Multiple analyses in one job file with outputs combined: The !CYCLE qualifier

As an example, consider an experiment where the traits height, diameter, and volume were measured on each tree in a

replicated experiment. We could write three separate .as files to analyze the three traits separately. Or we can combine the

three analyses into a single .as file that will produce a single set of output files containing the results for all three analyses

using the !CYCLE qualifier on the top line of the .as file, before the title line:

Code example 1.4

Example of using !CYCLE qualifier for multiple jobs (Code 1-4_CYCLE qualifier.as)

Notice the model formula: instead of writing a particular trait name, such as ‘height’ as the independent variable in the

model, we write ‘$I’. This indicates where the variables listed after the !CYCLE qualifier should be inserted into the

program. So, ASReml takes the first variable listed after !CYCLE, in this case it is ‘height’, and inserts it into the model

formula, then fits the model to ‘height’ data. Then, ASReml substitutes the second variable listed, ‘diameter’, and refits the

model to the ‘diameter’ data, and so on. This is similar to how macros work in some programming languages or in SAS

programs.

In this example, the results from each of the different trait analyses are combined together in the relevant output files.

For example, a single .asr file is produced, and it contains the results from the three trait analyses. Parts of the .asr file

look like:

ASReml 3.0 [01 Jan 2009] Title: Example of using CYCLE qualifier

...

Cycle 1 value is height

Univariate analysis of height

...

(continued)
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- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL: -941.67 2.53118 913 6 height "LogL Converged"

Akaike Information Criterion 1891.34 (assuming 4 parameters).

Bayesian Information Criterion 1910.61

...

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.414920E-01 0.105024 1.19 0 P

female IDV_V 36 0.175159 0.443359 3.16 0 P

block.female IDV_V 180 0.759541E-01 0.192253 2.24 0 P

Residual SCA_V 914 1.00000 2.53118 19.21 0 P

...

Finished: 14 Jul 2015 16:40:06.002 LogL Converged

...

Cycle 2 value is diameter

Univariate analysis of diameter

...

- - - Results from analysis of diameter - - -

LogL:-1789.00 16.9107 913 6 diameter "LogL Converged"

Akaike Information Criterion 3586.00 (assuming 4 parameters).

Bayesian Information Criterion 3605.27

...

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.931124E-02 0.157459 0.82 0 P

female IDV_V 36 0.102997 1.74176 2.82 0 P

block.female IDV_V 180 0.392224E-01 0.663277 1.33 0 P

Residual SCA_V 914 1.00000 16.9107 19.24 0 P

...

Finished: 14 Jul 2015 16:40:06.891 LogL Converged

...

Cycle 3 value is volume

Univariate analysis of volume

...

- - - Results from analysis of volume - - -

LogL: -52.43 0.373735 913 7 volume "LogL Converged"

Local CYCLE LogL Peak at CYCLE: 3 volume LogL: -52.43 Deviance: 3473.14

Akaike Information Criterion 112.86 (assuming 4 parameters).

Bayesian Information Criterion 132.12

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.216182E-01 0.807949E-02 1.08 0 P

female IDV_V 36 0.116894 0.436872E-01 2.93 0 P

block.female IDV_V 180 0.423567E-01 0.158302E-01 1.43 0 P

Residual SCA_V 914 1.00000 0.373735 19.25 0 P

...

Finished: 14 Jul 2015 16:40:07.698 LogL Converged

The !CYCLE qualifier does not have to be on the top line of the job file, it can also be placed on a separate line after the data

file specification and before the model formula:
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This produces an identical output.

We can also analyze different models in the same job file by combining the! CYCLE qualifier with the !DOPATH qualifier.

We can write different models in the same file, indicating the beginning of each model i with ‘!PATH i’. We can select

which of these models to fit in the current job run with the qualifier !DOPATH i placed after the data file specification.

Combining this syntax with the !CYCLE qualifier allows us to cycle through multiple jobs, selecting a different part

(‘PATH’) each time. For example, if we had three different models we wanted to fit in a single job, we could indicate !

CYCLE 1:3 , or equivalently: !CYCLE 1, 2, 3 on the top line of the .as file, then use !DOPATH $I as a qualifier after the data

file specification. This would cause the ‘$I’ symbols to be replaced by the variables listed after the !CYCLE qualifier in turn.

In this example, it would be like running three jobs sequentially, specifying ‘DOPATH 1’, then ‘DOPATH 2’, and finally

‘DOPATH 3’.

Code example 1.5

Using CYCLE and DOPATH qualifiers for multiple jobs (Code 1-5_CYCLE and DOPATH qualifier.as)
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Again, the output of the three jobs is combined into a single set of output files. For example, the .asr file looks like:

...

QUALIFIER: !DOPART 1 is active

Cycle 1 value is 1

Reading Pine_provenance.csv FREE FORMAT skipping 1 lines

Univariate analysis of height

Summary of 914 records retained of 914 read

...

- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL: -947.87 2.77622 910 6 1 "LogL Converged"

Akaike Information Criterion 1899.73 (assuming 2 parameters).

Bayesian Information Criterion 1909.36

...

Model_Term Gamma Sigma Sigma/SE % C

female IDV_V 36 0.165272 0.458929 3.37 0 P

Residual SCA_V 914 1.00000 2.77681 20.95 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

10 mu 1 32.1 11943.35 <.001

4 prov 3 32.0 9.44 <.001

...

Finished: 14 Jul 2015 16:53:34.961 LogL Converged

...

QUALIFIER: !DOPART 2 is active

Cycle 2 value is 2

...

Univariate analysis of height

Summary of 914 records retained of 914 read

...

- - - Results from analysis of height - - -

LogL: -937.89 2.68806 910 6 2 "LogL Converged"

Akaike Information Criterion 1881.78 (assuming 3 parameters).

Bayesian Information Criterion 1896.22

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.403228E-01 0.108390 1.24 0 P

female IDV_V 36 0.831129E-01 0.223412 2.71 0 P

Residual SCA_V 914 1.00000 2.68806 20.91 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

10 mu 1 6.2 3549.60 <.001

4 prov 3 32.0 9.78 <.001

...

Finished: 14 Jul 2015 16:53:35.633 LogL Converged

...

QUALIFIER: !DOPART 3 is active

Cycle 3 value is 3

...

Univariate analysis of height

Summary of 914 records retained of 914 read

...

(continued)
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- - - Results from analysis of height - - -

LogL: -934.12 2.52703 910 6 3 "LogL Converged"

Local CYCLE LogL Peak at CYCLE: 3 3 LogL: -934.12 Deviance: 27.49

Akaike Information Criterion 1876.24 (assuming 4 parameters).

Bayesian Information Criterion 1895.50

...

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.425370E-01 0.107492 1.20 0 P

female IDV_V 36 0.749901E-01 0.189502 2.26 0 P

block.female IDV_V 180 0.782019E-01 0.197618 2.29 0 P

Residual SCA_V 914 1.00000 2.52703 19.22 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

10 mu 1 5.7 3566.99 <.001

4 prov 3 32.0 10.01 <.001

Finished: 14 Jul 2015 16:53:35.633 LogL Converged

In the examples just given,wemake one substitution in each iteration of the cycling operation. For example,we changed the trait to

be analyzed orwe changed the path to be analyzed in each step.We can combine up to four substitutions in each cycle step to allow

more flexibility in combiningmultiple analyses in a single command file. This is done by using $I, $J, $K, and $L in the command

file as reserved names for the first through fourth strings in the program to be substituted. Thenwe provide a list of the substitutions

to make in each cycle step following the !CYCLE qualifier. For a particular step in the cycle we list the string substitutions for

$I, $J, $K, and $L by separating them with semicolons. Spaces then separate the substitutions for other cycle steps.

For example, we can write a single command file that will combine fitting three different models to each trait for three traits,

thus combining the two approaches just shown. To do this, we will use $I to indicate the trait to be analyzed in the model

formulas and we will use $J to indicate the program path to execute. Then we will provide a list of all nine combinations of

traits and paths to the !CYCLE qualifier in the format: height;1 height;2 height;3 diameter;1 . . . volume;3. In the first cycle

step, the program will substitute ‘height’ everywhere that ‘$I’ is found in the program file and will substitute ‘1’ everywhere
that $J is found in the program. In the final cycle step, the program will substitute ‘volume’ for ‘$I’ and ‘3’ for $J. The results
will be combined into common output files. Here is the command file to do this example:

Code example 1.6

Example of CYCLE with two substitutions (Code 1-6_CYCLE with two substitutions.as)
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Now we have nine analyses combined into each of the output files. In the .asr output file, the different cycle steps are

indicated and the substitutions made at each step are shown. The .asr file produced by the example program shown above

will have nine parts, here we show a bit of the first part of each cycle output:

QUALIFIER: !DOPART 1 is active

Cycle 1 value is height

...

QUALIFIER: !DOPART 2 is active

Cycle 2 value is height

...

QUALIFIER: !DOPART 3 is active

Cycle 3 value is height

...

QUALIFIER: !DOPART 1 is active

Cycle 4 value is diameter

...

QUALIFIER: !DOPART 2 is active

Cycle 5 value is diameter

...

QUALIFIER: !DOPART 3 is active

Cycle 6 value is diameter

...

QUALIFIER: !DOPART 1 is active

Cycle 7 value is volume

...

QUALIFIER: !DOPART 2 is active

Cycle 8 value is volume

...

QUALIFIER: !DOPART 3 is active

Cycle 9 value is volume

Multiple analyses in one job file with outputs separated: the !ARGS and !RENAME qualifiers

One may wish to create separate output files, each with a name that indicates which trait or model results are included. This

can be done by using the !ARGS and !RENAME qualifiers instead of the !CYCLE qualifier. Instead of indicating the

variable to change as $I through $L, as we did with !CYCLE, we use either $A or $1 when using !ARGS:

Code example 1.7

Using ARGS and RENAME qualifiers for different traits (Code 1-7_ARGS and RENAME qualifiers.as)

This creates three sets of output files. For example, it creates three .asr files; the name of each file contains the string that was

substituted for $A in that step of the analysis. So, in this case, if we named the .as file as ‘Pine.as’, the .asr files would be
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automatically named ‘Pineheight.asr’, ‘Pinediameter.asr’, and ‘Pinevolume.asr’. Each .asr file contains only the results of

the trait that was substituted into the model formula in that step.

We can use the same trick to analyze several different models for a single trait and rename the outputs to correspond to the

model analyzed:

Code example 1.7b

Using ARGS and RENAME qualifiers for different models (Code 1-7b_ARGS and RENAME qualifiers.as)

If this command file were named “Pine.as”, the .asr output files would be named “Pine1.asr”, “Pine2.asr”, and “Pine3.asr”.

!ARGS also can be used to make multiple substitutions in each run, but it works differently than !CYCLE in this regard.

Similar to how $I, $J, $K, and $L were used with !CYCLE to indicate where multiple string substitutions would occur in a

command file, we can use $A, $B, $C, etc. or $1, $2, $3, etc. in combination with !ARGS to make this happen (but use only

the letter designations or the number designations, you cannot mix and match the two styles in the same command file).

Importantly, and unlike with !CYCLE, with !ARGS and !RENAME we can only substitute different values for one of the

arguments.

We explain with an example. Let’s say that we want to simultaneously substitute a path number and a trait name for each of

multiple ASReml jobs in a common file using !ARGS and !RENAME. We cannot cycle through each combination of trait

and path as we did with the !CYCLE example given above. We can, however, cycle through one of the two variables and

while still including both the trait and path number as part of the output file names. This may be convenient to clearly label

output files produced from a series of ASReml analyses. In the example code below, we use $1 and $2 to indicate the

positions of two string substitutions in the program code. We can only make one substitution for $1, but we can make

multiple substitutions for $2. So, we write ‘!ARGS 1 height diameter volume’ to indicate that the first string ‘1’ will
be substituted for $1 in the subsequent code in every run, but that we will substitute each of ‘height’, ‘diameter’, and
‘volume’ in different runs. We then also include on the same line ‘!RENAME 2’ to indicate that we are going to use two

different variable substitutions in the output file names.
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Code example 1.7c

Using ARGS and RENAME qualifiers to rename output files (Code 1-7c_ARGS and RENAME qualifiers.as).

This program will produce three output files. If the command file is named ‘Pine.as” the output files will be named

“Pine1_height.asr”, “Pine1_diameter.asr”, “Pine1_volume.asr”, where the “1” in each file name refers to the first variable

substitution (the path number) and the trait analyzed is also indicated in the output file name. In this case, only the path

1 model is analyzed for each trait. We could then change the top line of this command file to “!ARGS 2 height

diameter volume !RENAME 2” to produce three new outputs corresponding to the path 2 model for each trait.

We can extend this idea to add a third string to the output names, for example:

Code example 1.7d

Using ARGS and RENAME qualifiers to rename output files with three variables (Code 1-7d_ARGS and

RENAME qualifiers.as).

This will produce a set of outputs labelled as “Pine1_female_height.asr”, “Pine1_ female_diameter.asr”, “Pine1_
female_volume.asr”, each containing the path 1 model fitting the random female term as the only effect in the model.

Notice that now we had to use ‘!RENAME 3’ to indicate that the strings remaining after the first two substitutions would be

used in a cycle to iteratively replace ‘$3’ in the job run.

!ARGS and !CYCLE working together

Finally, we can combine !ARGS and !CYCLE to combining cycling of some strings and joining of parts of the output along

with renaming output files according to the arguments. !ARGS defines an outer loop, in each step of which !CYCLE is run as
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an inner loop. Consider how we ran all nine combinations of three models and three traits in a single job using the !CYCLE

example previously shown:

!CYCLE height;1 height;2 height;3 diameter;1 diameter;2 diameter;3 volume;1 volume;2 volume;3

Perhaps we would prefer the output files to be separated and named according to the trait analyzed, with the outputs of three

models for a particular trait combined. This can be accomplished by using !ARGS to define the outer loop of traits and !

CYCLE to define the inner loop of models (‘paths’). Recall that ‘$I’ through ‘$J’ are used to identify where the string

substitutions controlled by !CYCLE are made, whereas $A through $H or $1 through $9 are used to identify where the

substitutions made by !ARGS occur:

Code example 1.7e

Using ARGS and CYCLE qualifiers to join outputs from multiple models within output files separated and

named according to the trait variable (Code 1-7e_ARGS and RENAME qualifiers.as).

This produces three sets of output files. If we named this command file “Pine.as” the .asr output files would be named

“Pine_height.asr”, “Pine_diameter.asr”, and “Pine_volume.asr”. Each .asr file would have results from the three models for

the trait identified in the file name.

Substitutions using !CYCLE and !ARGS qualifiers can also be implemented in the command line rather than inside the .as

file. This may be convenient when controlling ASReml using batch jobs or as a subroutine to some other program (e.g., one

can write an R program to execute a series of ASReml jobs).

Linear Combinations of Variance Components

One can use the variance components reported in the .asr file to calculate linear combinations of variance components, such

as phenotypic variance, ratios of variance components and heritability. The variances and covariances of variance

components estimates in the .VVP file can be used to estimate approximate standard errors of such functions of variance

components using the Delta method (Lynch and Walsh 1998; Holland et al. 2003).

We can use VPREDICT !DEFINE qualifiers after the model to obtain linear combinations or ratios of variances. We add the

qualifiers after the model.
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Code example 1.8

Linear combinations of variance components (Code 1-8_Heritability.as)

The bold face fonts show how to estimate functions of variance components using the VPREDICT !DEFINE qualifiers. The

qualifier will create a new file with the same root name as the .as file but with the extension .pin. When the .as command file

is executed the .pin file will also be processed to estimate the functions of variance components and produce the result in a

file with extension .pvc.

Alternatively users can also create the .pin file directly if desired. The .pin file can have the same name of the job file or can

have a different name. It can be run independently.

Each line of the !PIN definition has three components: Letter, Label, Coefficients

1. Letter Must start from the first field (no space before the letter)

F is used to calculate linear combinations of variance components

H is used to calculate ratios, e.g. heritability and standard error of the ratio

R is used to calculate correlations and their standard errors

S is used to take the square root

V is for converting components related to a CORUH or an XFA structure into components related to a US structure

2. Label A user-defined name for the function. Labels longer than eight characters can cause errors.

3. Coefficients List of arguments/coefficients for the linear function. A function definition where the relevant variance

component in the function is referred to by its order in the .asr output

F GenVar 1*4.0 Forms a linear function that we will call ‘GenVar’ (because it will equal the estimated additive genetic

variance component) by multiplying ‘1’, the first component (female variance) in the .asr output file, by 4.0.

Alternatively we can use the name of the random term:

F GenVar idv(female)*4.0. Multiplies the variance component of the idv(female) in the .asr file by 4.0. This syntax

is better because the order of the random terms in the .asr file can change.

F PhenVar 1+2 Estimates a term called ‘PhenVar’ which will be the phenotypic variance by adding

variance components ‘1’ and ‘2’ in the .asr output. This is the sum of the first

(family variance) and second components (error variance) in the .asr file.
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Alternatively we can use the names of the terms to calculate the phenotypic variance as:

F PhenVar idv(female)+idv(units) Sums the two variance components named idv(female) and idv(units)
in the .asr file to calculate phenotypic variance.

H h2 3 4 Estimates a ratio of variance components named ‘h2’ by dividing the third

term by the fourth term. This will be the heritability estimate because the third

term in this case is the ‘Additive’ estimate and the 4th term is the ‘Phenotypic’ variance,
considering that these terms were defined next in order after the two variance

components estimated in the .asr file.

Alternatively we can use the name of the terms to calculate the heritability as

H h2 GenVar PhenVar Take the ratio of the two variance components previously defined as GenVar and PhenVar

in the VPREDICT section to estimate heritability.

The results are reported in the Pine_provenance.pvc file:

ASReml 4.1 [28 Dec 2014] Title: Heritability and functions

V:\Book\Book1_Examples\ch01_asreml\outputfiles/Code01-8_Heritability.pvc created

22 Nov 2015 20:31:33.411

- - - Results from analysis of height - - -

1 block V 5 0.107492 0.895767E-01

2 idv(female) V 36 0.189502 0.838504E-01

idv(units) 914 effects

3 idv(units);Residual V 914 2.52703 0.131479

idv(female).block 180 effects

4 idv(female).block;idv(female) V 1 0.197618 0.862961E-01

5 GenVar 2 0.75801 0.33592

6 PhenVar 3 2.9141 0.14973

Herit = GenVar 5/PhenVar 6= 0.2601 0.1099

Notice: The parameter estimates are followed by

their approximate standard errors.

The estimated additive variance is 0.758 with an approximate standard error of about 0.3359. The phenotypic variance

estimate is 2.9141 with a standard error of about 0.1497. The heritability estimate is 0.26 with a standard error of about 0.11.

A Brief Introduction to ASReml-R

ASReml-R version 3.0 was introduced in 2009 to integrate the flexibility and power of ASReml for mixed models with the

advantages of the R environment for managing data, results, and graphical display (Butler et al. 2009). The typical workflow

for using ASReml-R has some differences with the use of standalone ASReml (Fig. 1.6). In particular, users can complete all

data processing steps (merging and concatenating data on different traits and from different sub-experiments) inside of R,

analyze the data with ASReml-R, and manage all of the output from each analysis in R objects, rather than in separate files

written directly to the hard drive.

Large data sets and complicated models may require more memory in ASReml-R than in standalone ASReml. If ASReml-R

runs out of memory for an analysis, the standalone version of ASReml is recommended, since it manages memory more

efficiently (Butler et al. 2009). Here we briefly introduce the use of ASReml-R and focus mainly on how to fit a simple mixed

model and access the results. Users should consult the manual for many details not covered here, including the installation

for different platforms.
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Data Set Used in the Analysis

We will use the same pine data (Pine_provenance.csv) used previously in this chapter to demonstrate ASReml-R. In this

section, all commands are given in R. First, users should set the working directory and read in the data from a CSV file to an

R data frame object:

Code example 1.9

Using ASReml R. The code is written using R markdown (rmd), which can be run in RStudio to generate data

summary in different formats such as PDF using the KnitR package (see file Code 1-9_ASReml-R_intro.Rmd for

more details)

The data frame should be checked before doing any analysis. In particular, the read.csv() and read.table()

functions assume that numeric data columns should be treated as a numeric variate in any subsequent analyses. That means

that, in this example, ‘block’will be treated like a covariate (including block in the analysis results in block being fit as a 1 df
regression variable). To change this, we need to force the numeric model variables to factors in R. First, we check what the

‘structure’ of the data frame is using str(). This will tell us what kind of variable each column in the data set is considered

to be.

> str(pine_prov)

## ’data.frame’: 914 obs. of 9 variables:

## $ treeid : Factor w/ 914 levels "170_1_3_1","170_1_3_2",..: 24 25 26 27 28 29 53 54 55 56

...

## $ female : int 191 191 191 191 191 191 192 192 192 192 ...

## $ male : int 0 0 0 0 0 0 0 0 0 0 ...

## $ prov : int 10 10 10 10 10 10 10 10 10 10 ...

## $ block : int 1 1 1 1 1 1 1 1 1 1 ...

## $ plot : int 1 1 1 1 1 1 2 2 2 2 ...

## $ height : num 10.7 11.5 12.1 12 12.2 12.5 12.8 12 13.9 13.1 ...

## $ diameter: num 15 22 23.8 22.7 21.5 22.8 24.1 19.8 23.4 22.1 ...

## $ volume : num 0.0722 0.167 0.2056 0.1855 0.1692 ...

Raw data files (.csv)

ASReml-R library

Results stored in object of
class ‘asreml’

Predictions (result
$predictions)

Model equation solutions 
(result$coefficients)

Pedigree file (.csv)

R software

asreml() function R Data frame objects

Variance components 
(summary(result)$varcomp)

Fig. 1.6 Typical ASReml-R workflow
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Notice that treeid is correctly considered a factor variable, but the other factors we want to include in the model ( female,
prov, and block) are considered integer (‘int’) variables, which are a special type of numeric variable. We coerce these

variables to be factors with the as.factor() function:

Now, we re-check the structure of the data frame to be certain these commands did what we want:

> str(pine_prov)

## ’data.frame’: 914 obs. of 9 variables:

## $ treeid : Factor w/ 914 levels "170_1_3_1","170_1_3_2",..: 24 25 26 27

28 29 53 54 55 56 ...

## $ female : Factor w/ 36 levels "170","191","192",..: 2 2 2 2 2 2 3 3 3 3

...

## $ male : int 0 0 0 0 0 0 0 0 0 0 ...

## $ prov : Factor w/ 4 levels "10","11","12",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ block : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1

...

## $ plot : int 1 1 1 1 1 1 2 2 2 2 ...

## $ height : num 10.7 11.5 12.1 12 12.2 12.5 12.8 12 13.9 13.1 ...

## $ diameter : num 15 22 23.8 22.7 21.5 22.8 24.1 19.8 23.4 22.1 ...

## $ volume : num 0.0722 0.167 0.2056 0.1855 0.1692 ...

We can use a few other functions to inspect the data set before proceeding to analysis. head() shows the first rows of the

data frame:

> head(pine_prov) #inspect the first few rows of the data frame

## treeid female male prov block plot height diameter volume

## 1 191_1_1_1 191 0 10 1 1 10.7 15.0 0.0722

## 2 191_1_1_2 191 0 10 1 1 11.5 22.0 0.1670

## 3 191_1_1_3 191 0 10 1 1 12.1 23.8 0.2056

## 4 191_1_1_4 191 0 10 1 1 12.0 22.7 0.1855

## 5 191_1_1_5 191 0 10 1 1 12.2 21.5 0.1692

## 6 191_1_1_6 191 0 10 1 1 12.5 22.8 0.1949

names() shows the column names of the data frame:

> names(pine_prov) #get the column names

## [1] "treeid" "female" "male" "prov" "block" "plot"

## [7] "height" "diameter" "volume"

unique() can be used to shows the names of the levels of a particular factor variable: The following code gets the names

of the levels of ‘female’ in the order they first appear. Note these are returned as a factor vector.

> unique(pine_prov$female)

## [1] 191 192 170 210 216 211 212 217 224 219 225 218 213 227 226 207 206

## [18] 201 196 200 202 205 204 197 203 198 233 231 251 253 245 239 232 247

## [35] 238 252

## 36 Levels: 170 191 192 196 197 198 200 201 202 203 204 205 206 207 ... 253
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levels() can also be used to shows the names of the levels of a particular factor variable. The names of the levels of

‘female’ in sorted order, are returned as a vector of character strings.

> levels(pine_prov$female)

## [1] "170" "191" "192" "196" "197" "198" "200" "201" "202" "203" "204"

## [12] "205" "206" "207" "210" "211" "212" "213" "216" "217" "218" "219"

## [23] "224" "225" "226" "227" "231" "232" "233" "238" "239" "245" "247"

## [34] "251" "252" "253"

summary() returns summary statistics for each column of the data frame, including alphanumeric factors, for which the

summaries are not very useful. Basic summary statistics for each column, results don’t mean much unless the column is a

numeric variable.

> summary(pine_prov)

## treeid female male prov block plot

## 170_1_3_1 : 1 218 : 30 Min. :0 10:77 1:192 Min. :1

## 170_1_3_2 : 1 191 : 29 1st Qu.:0 11:267 2:187 1st Qu.:56

## 170_1_3_5 : 1 232 : 29 Median :0 12:306 3:188 Median :112

## 170_1_3_6 : 1 238 : 28 Mean :0 13:264 4:179 Mean :116

## 170_2_84_1: 1 202 : 27 3rd Qu.:0 5 :168 3rd Qu.:181

## 170_2_84_3: 1 204 : 27 Max. :0 Max. :240

## (Other) :908 (Other):744

## height diameter volume

## Min. : 4.0 Min. : 5.0 Min. :0.0030

## 1st Qu. : 9.4 1st Qu.:15.5 1st Qu. :0.0702

## Median :10.6 Median :18.5 Median :0.1098

## Mean :10.5 Mean :18.3 Mean :0.1181

## 3rd Qu. :11.8 3rd Qu.:21.4 3rd Qu. :0.1596

## Max. :15.2 Max. :31.2 Max. :0.4293

##

We can check how many individual progeny trees tested from each female parent using the table() function:

> table(pine_prov$female)

##

## 170 191 192 196 197 198 200 201 202 203 204 205 206 207 210 211 212 213

## 23 29 25 22 25 25 23 22 27 24 27 23 24 25 26 25 27 26

## 216 217 218 219 224 225 226 227 231 232 233 238 239 245 247 251 252 253

## 25 25 30 24 27 27 23 21 24 29 26 28 27 27 27 26 26 24

It can be easier to read the results of table() by coercing them to a data frame object first:

> as.data.frame(table(pine_prov$female))

## Var1 Freq

## 1 170 23

## 2 191 29

## 3 192 25

...

## 36 253 24
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Make a scatterplot of height and volume to check for outliers (Fig. 1.7):

Fitting a Model in ASReml-R

Now that we are assured that the data are formatted correctly, we can fit a linear mixed model using ASReml-R. First we call

the ASReml-R library to make its functions available to the current session. Then we fit a model for height considering prov

as fixed effect and female parent, block and female by block interaction as random effects.

> library(asreml)

## Loading required package: lattice

## Licensed to: North Carolina State University

## Serial Number: 40246062 Expires: 31-dec-2015 (332 days)

Mixed models that do not involve complicated covariance structures can be specified using model formula rules common to

R linear models functions such as lm() in base R and lmer() in the lme4 package (Bates et al. 2013) and similar to the

rules used for ASReml standalone, in terms of how main effects, interactions, and nested effects are specified.

We will fit the same linear model:Y ¼ μ + Bi + Pj + Fjk + BFijk + εijkl, given in Code example 1.1. Where Y is the

measured tree height data, Bi is the random effect of the ith field block, Pj is the fixed effect of the jth provenance, Fjk is

the random effect of the kth female parent nested in the jth provenance, BFijk is the random effect of female by block

interaction and εijk is the random residual error effect of the tree or plot of trees from female parent jk in the ith block.

The model syntax is

Fig. 1.7 Scatter plot of height and volume
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This results in the following message output in the R console:

ASReml: Sun Nov 22 21:05:29 2015

LogLik S2 DF wall cpu

-935.0022 2.4765 910 21:05:29 0.0

-934.4020 2.4939 910 21:05:29 0.0

-934.1584 2.5138 910 21:05:29 0.0

-934.1221 2.5276 910 21:05:29 0.0

-934.1220 2.5270 910 21:05:29 0.0

-934.1220 2.5270 910 21:05:29 0.0

Finished on: Sun Nov 22 21:05:29 2015

LogLikelihood Converged

The model variance parameter estimates are converged. If the model does not converge we can use the update(HT)

statement to rerun the model from its final variance parameters.

This creates an output object called HT (because that is the name we assigned to it in the function call). HT is an object of

class ‘asreml’. It is a sub-class of type ‘List’, which is an important object class in R. It contains a number of different

components that we can access to get different parts of the results. We can use the str() function again to look at the

overall structure of the asreml object first. We present only a small part of the output from the str() function below, because it

is very long – there are 43 components inside of this object!

> str(HT)

List of 43

$ monitor :’data.frame’: 7 obs. of 8 variables:

..$ 1 : num [1:7] -935 2.48 910 0.1 0.1 ...

..$ 2 : num [1:7] -934.402 2.4939 910 0.0903 0.0618 ...

..$ 3 : num [1:7] -934.1584 2.5138 910 0.0804 0.047 ...

...

$ factor.names : chr [1:5] "prov" "(Intercept)" "female" "block" ...

$ fixed.formula :Class ’formula’ length 3 height ~ prov

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

$ random.formula :Class ’formula’ length 2 ~female * block

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

$ sparse.formula :Class ’formula’ length 2 ~NULL

.. ..- attr(*, ".Environment")=<environment: 0x10b28a230>

- attr(*, "class")= chr "asreml"

Since HT is a list, we can access the components by name using the ‘$’ operator. For example, the tests of the fixed effects

are in the component named ‘aovTbl’:

> HT$aovTbl

id df denDF Finc Fcon M Fprob

(Intercept) 2 1 NA 3566.99258 0 0 0

prov 3 3 NA 10.00657 0 0 0
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This result matches the result of the standalone ASReml analysis, it is just formatted a little differently. Here is the log

likelihood:

> HT$loglik

## [1] -934.122

The solutions to fixed and random effects are in the list component “coefficients”, but this component is itself a list:

> str(HT$coefficients)

## List of 3

$ fixed : Named num [1:5] 0 -1.666 -0.624 -1.22 11.512

..- attr(*, "names")= chr [1:5] "prov_10" "prov_11" "prov_12" "prov_13" ...

$ random: Named num [1:221] -0.1634 -0.0826 0.2459 -0.4606 0.3556 ...

..- attr(*, "names")= chr [1:221] "female_170" "female_191" "female_192" "female_196" ...

$ sparse: NULL

- attr(*, "Terms")= chr [1:226] "prov" "prov" "prov" "prov" ...## $ fixed :

Named num [1:10] 0 -1.653 -0.627 -1.226 0 ...

We access the fixed and random effect solutions from sub-lists of ‘coefficients’ list, this is done by specifying both the top

layer and lower layer list components using two ‘$’ characters in the command:

Again, the formatting is different than from the ASReml standalone output in the .sln file, but results are the same. For

example, for both analyses we estimated 0 and�0.6272 for prov levels 10 and 12, respectively. And we predicted a value of

�0.1002 for female 191 in both analyses.

You may notice that the variance components for random effects are not given directly in the asreml object HT. Instead, the

HT object has the residual error variance estimate in the component ‘sigma2’, and gives estimates of the model random

variance components as ratios relative to the residual error variance in the ‘gammas’ component:

> HT$sigma2

[1] 2.527026

> HT$gammas

female!female.var block!block.var female:block!female.var R!variance

0.07499005 0.04253697 0.07820191 1.00000000
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We can get the variance components estimates by multiplying the gamma estimates by the residual error variance:

> HT$gammas * HT$sigma2

female!female.var block!block.var female:block!female.var R!variance

0.1895018 0.1074920 0.1976183 2.5270259

Now you can see that we get the same variance components estimates as we obtained earlier from standalone ASReml. This

is somewhat non-obvious, but we can more easily obtain a more user-friendly by applying the summary() function to the

asreml object:

> summary(HT)

$call

asreml(fixed = height ~ prov, random = ~female * block, data = pine_prov,

na.method.Y = "include", na.method.X = "include")

$loglik

[1] -934.122

$nedf

[1] 910

$sigma

[1] 1.589662

$varcomp

gamma component std.error z.ratio constraint

female!female.var 0.07499005 0.1895018 0.08397968 2.256520 Positive

block!block.var 0.04253697 0.1074920 0.08992360 1.195371 Positive

female:block!female.var 0.07820191 0.1976183 0.08623574 2.291605 Positive

R!variance 1.00000000 2.5270259 0.13146615 19.221875 Positive

attr(,"class")

[1] "summary.asreml"## $call

Now we can get the variance components directly from the summary of the asreml object.

Finally, if you pass the asreml object to the generic plot() function of R you get a nice set of residual diagnostic plots with

no effort (Fig. 1.8):

We can compute heritability as a function of the variance components by extracting the relevant pieces from the output and

doing the computation in R:
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In calculation of phenotypic variance (Vp), we exclude the component explained by the block effect using HTvcs[�2],

where �2 is the second element (block variance) being excluded. We get the same result as we did from using the ASReml

standalone VPREDICT !DEFINE method. Unfortunately, ASReml-R does not provide the standard error of the estimate

automatically. The user will have to perform the computations for the standard errors separately.

Finally, we can get predictions using the predict() function in ASReml-R. There are three predictions in the code. The

first one is for prov effect, the second one is for female effect, which does not adjust for prov effect and the third one is for

female effect after adjusting for prov effect.

Fig. 1.8 Residual diagnostic

plots of the model
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Each of these predict() function calls results in the model being re-run and each also produces an asreml object output,

very similar to the original HT output object. The difference is that the component $predictions in HT is set to NULL,

whereas we get predictions for prov or female in the output of the predict() function calls:

> predict.prov <- HTprov_pred$predictions

$pvals

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use "average" to move ignored factors into the averaging set.

- The ignored set: female block

prov predicted.value standard.error est.status

1 10 11.512064 0.3619918 Estimable

2 11 9.846431 0.2278751 Estimable

3 12 10.888323 0.2212824 Estimable

4 13 10.291872 0.2325509 Estimable

$avsed

overall

0.3162359

The classify¼"prov:female", options creates a hyper table of prov and female effect. The present¼ option in

ASReml-R sets the value of the ‘extra’ combinations to NA and labels them as ‘Aliased’. We can use a filter to drop them.

Notice that the predictions match exactly those from the ASReml standalone analysis.
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Abstract

In this chapter we will introduce the basic concepts and matrix algebra methods used to perform linear mixed models

analysis. For readers who are more familiar with traditional analysis of variance (ANOVA) based on ordinary least

squares methods, we first will review the ANOVA and compare ANOVA to mixed models analysis to help introduce this

topic. We will show that under certain conditions, results from ANOVA and mixed models analysis are largely

equivalent, but that when data are unbalanced or when we want to relax certain assumptions of the ANOVA, the

mixed model analysis has properties that make it preferable. In this section, we focus on hypothesis testing and estimation

using an empirical data set to show how these analyses are conducted for different methods and for different software

packages. Only a few details of the mathematical machinery involved in the mixed models analysis will be covered here.

A more detailed description of mixed model theory will be covered in later sections of the book. For readers interested in

a more formal treatment of the argument details, they can be found in Sorensen and Gianola (Likelihood, Bayesian, and

MCMC Methods in Quantitative Genetics. Springer Science & Business Media, 2007). Details of ANOVA for balanced

and unbalanced data can be found in Rawlings et al. (Applied regression analysis: A research tool. New York: Springer,

2001) and Milliken and Johnson (Analysis of messy data, Designed Experiments (Vol. 1). Boca Raton: Chapman & Hall/

CRC, 2004).

Mixed Models Compared to Traditional ANOVA

Maize Recombinant Inbred Lines Data

Example data (MaizeRILs.csv) were obtained by testing 62 recombinant inbred line (RIL) progeny from the cross between

inbred maize lines B73 and MO17. RILs were grown in experimental units (plots) of 20 plants each using a randomized

complete block design with two replications at each of four locations. The mean height for five plants within each plot is the

dependent variable used for this experiment. Some data were missing from the actual data set, these were filled in with

simulated data to create a balanced data set for demonstration.

location rep block plot RIL pollen silking ASI height

ARC 1 1 1 RIL-53 74 77 3 184.8

ARC 1 1 2 RIL-40 75 75 0 225.2

ARC 1 1 4 RIL-41 74 74 0 174.4

ARC 1 1 5 RIL-28 69 71 2 147.6

ARC 1 1 6 RIL-11 69 71 2 181.6

location Location of the progeny test

rep Replication number

block Block number. There were 2 blocks at each location

plot Plot number

RIL Recombinant inbred line ID

pollen days to pollen shed

silking days to silking

ASI anthesis-silk interval (silking – pollen)
height Mean height of five plants in each plot

The linear model for this experiment is:

yijk ¼ μþ Li þ B Lð Þij þ Gk þ GLik þ εijk ð2:1Þ
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Where μ ¼ overall mean, Li¼ effect of location i, B(L )ij¼ effect of block j nested within location i (replication effect),

Gk¼ effect of genotype k (RIL effect), GLik¼ effect of interaction between genotype k and location i, εijk¼ residual

(experimental error) effect of the plot containing genotype k in block j of location i. We will assume that all effects except the

overall mean are random.

Balanced Data: ANOVA with SAS Proc GLM

The ANOVA layout for this experiment can be generated before data analysis based on the linear model using the names of

the factors in the data set (“rep”¼ block, “RIL”¼ genotype), following the rules described by (Steel et al. 1997), where nl is

the number of locations, nb is the number of blocks (reps) per location, and ng is the number of genotypes (RILs):

Source df Expected mean squares

Location (L) nl�1 σ2ε þ nbσ2GL þ ngσ2B Lð Þ þ nbngσ2L
Rep(Location) (B) (nb�1) nl σ2ε þ ngσ2B Lð Þ
RIL (G) ng�1 σ2ε þ nbσ2GL þ nbnlσ2G
RIL*Location (GL) (ng�1)(nl�1) σ2ε þ nbσ2GL
Error (ng�1)(nb�1)nl σ2ε
Total nlnbng�1

We can obtain a traditional ANOVA with SAS Proc GLM using this code:

Code example 2.1

Ordinary least squares ANOVA with SAS GLM procedure using the maize RIL data (see Code 2-1_Mixed

models with SAS.sas for details)

The results found in the SAS output are:

The GLM Procedure

Dependent Variable: height

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 251 264462.4916 1053.6354 16.24 <.0001

Error 244 15832.2400 64.8862

Corrected Total 495 280294.7316

(continued)
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R-Square Coeff Var Root MSE height Mean

0.943516 4.423030 8.055199 182.1195

Source DF Type I SS Mean Square F Value Pr > F

location 3 84931.3312 28310.4437 436.31 <.0001

rep(location) 4 3594.2244 898.5561 13.85 <.0001

RIL 61 154937.5322 2539.9595 39.14 <.0001

location*RIL 183 20999.4038 114.7508 1.77 <.0001

Source DF Type III SS Mean Square F Value Pr > F

location 3 84931.3312 28310.4437 436.31 <.0001

rep(location) 4 3594.2244 898.5561 13.85 <.0001

RIL 61 154937.5322 2539.9595 39.14 <.0001

location*RIL 183 20999.4038 114.7508 1.77 <.0001

Notice that the default F-tests for each factor shown here are correct only for the model in which all effects except residuals

are fixed. The default F-tests use the residual error variance as the denominator in all cases. Since we have assumed that all

effects are random, the correct form of the F-test depends on the expected mean squares. So, for example, to test the null

hypothesis that the variation among RILs is zero, the correct F-test is:

F ¼ MS(RIL)/MS(location*RIL)

¼ 2539.959/114.7508 ¼ 22.13 with 61 and 183 df.

We obtain the correct F-tests by using the “random” specification in the SAS code shown above, and the result is a table of

modified F-tests:

Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: height

Source DF Type III SS Mean Square F Value Pr > F

location 3 84931 28310 29.85 0.0022

Error 4.4543 4224.553277 948.420722

Error: MS(rep(location)) + MS(location*RIL) - MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

rep(location) 4 3594.224445 898.556111 13.85 <.0001

location*RIL 183 20999 114.750840 1.77 <.0001

Error: MS(Error) 244 15832 64.886230

Source DF Type III SS Mean Square F Value Pr > F

RIL 61 154938 2539.959544 22.13 <.0001

Error 183 20999 114.750840

Error: MS(location*RIL)

We can also estimate variance components for random effects from the ANOVA using the method of moments, by which we

equate the observed mean squares to their expectations and solve for the variance components. For example, the expected

mean square for the error variance is equal to the error variance component, but the expected mean square for the

location*RIL variance component is the sum of the error variance plus twice the location*RIL variance component. So,

we can solve for the estimated variance components as follows:
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bσ2
ε ¼ MS errorð Þ ¼ 64:89

bσ2
GL ¼ MS location∗RILð Þ �MS errorð Þ

nb
¼ 114:75� 64:89

2
¼ 24:93

bσ2
G ¼ MS RILð Þ �MS location∗RILð Þ

nlnb
¼ 2539:96� 114:75

8
¼ 303:15

ð2:2Þ

Finally, we can estimate the predicted marginal mean value of each RIL using the “lsmeans” statement in the SAS code

above, resulting in least squares means estimates of each genotype. The first eight RILs have the following mean values in

the Proc GLM output:

Least Squares Means

height

RIL LSMEAN

RIL-1 182.100000

RIL-11 182.875000

RIL-12 185.200000

RIL-14 194.250000

. . .

Balanced Data: ANOVA with R

We can also obtain the same results using R and lm() function:

Code example 2.2

Ordinary least squares ANOVA with R using balanced data (see Code 2-2_Mixed models with R.R for more

details)

R results from this output:

Analysis of Variance Table

Response: height

Df Mean Sq F value Pr(>F)

location 3 28310.4 436.3090 < 2.2e-16 ***

RIL 61 2540.0 39.1448 < 2.2e-16 ***

location:RIL 183 114.8 1.7685 1.643e-05 ***

location:rep 4 898.6 13.8482 3.408e-10 ***

Residuals 244 64.9

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Full sample code is available in ’’example2a.r’’ file.

Again, the default F-tests are correct only if we assume all effects are fixed. If we considered these effects to be random, we

would have to construct F-tests some other way (or more appropriately, just do a proper mixed models analysis)!
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The summary() function will present the estimates of coefficients for each term in the model, but in the case of factors in

analysis of variance, these coefficients may be hard to interpret. The lm() function arbitrarily sets the coefficient for the first

level of each factor to zero to avoid singularity because we are fitting more parameters than we have degrees of freedom to

estimate independently. In this case, the output of the summary() call on the m0 object is:

> (m0_summary <- summary(m0))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 179.797 5.742 31.315 < 2e-16 ***

locationCLY 29.122 8.120 3.587 0.000405 ***

locationPPAC -15.965 8.120 -1.966 0.050413 .

locationTPAC -3.289 8.120 -0.405 0.685770

RILRIL-11 4.200 8.055 0.521 0.602559

RILRIL-12 13.400 8.055 1.664 0.097492 .

RILRIL-14 26.600 8.055 3.302 0.001103 **

…

locationCLY:RILRIL-11 -7.700 11.392 -0.676 0.499727

locationPPAC:RILRIL-11 -10.200 11.392 -0.895 0.371465

locationTPAC:RILRIL-11 4.200 11.392 0.369 0.712681

locationCLY:RILRIL-12 -25.400 11.392 -2.230 0.026679 *

locationPPAC:RILRIL-12 -10.800 11.392 -0.948 0.344041

locationTPAC:RILRIL-12 -5.000 11.392 -0.439 0.661113

locationCLY:RILRIL-14 -28.600 11.392 -2.511 0.012701 *

locationPPAC:RILRIL-14 -16.800 11.392 -1.475 0.141569

locationTPAC:RILRIL-14 -12.400 11.392 -1.089 0.277446

…

locationARC:rep2 -8.395 1.447 -5.802 2.02e-08 ***

locationCLY:rep2 -1.839 1.447 -1.271 0.204968

locationPPAC:rep2 5.535 1.447 3.826 0.000165 ***

locationTPAC:rep2 3.384 1.447 2.339 0.020147 *

Notice that although there are four locations, there are coefficients estimated only for three of the four. The first level of

location is “ARC” which has a coefficient set to zero. Similarly, there is no coefficient estimate for RIL-1, it is set to zero.

To obtain the least square means of each RIL, we need to understand how the least square means are estimated as functions

of the model coefficient estimates. The estimate of the mean value of RIL-1 is:

LSMean RIL1ð Þ ¼ �y::1 ¼ μþ L: þ B Lð Þ:: þ G1 þ GL:1 ð2:3Þ

This is simply the linear model we started with, but replacing the generic k subscript for genotypes with 1, averaging over all
other terms in the model, and dropping the term for residual effects since they do not contribute to a marginal mean

prediction. Realizing that the lm() function sets the coefficients for G1and Gi1’s to zero, we are left with this equation for

the first RIL:

LSMean RIL1ð Þ ¼ �y::1 ¼ μþ L: þ B Lð Þ:: ð2:4Þ

We can obtain this from the results of the ANOVA by assigning the ‘coefficients’ element of the m0_summary object to a

new object called ‘coefs’ and pulling out the pieces we need by indexing the row by name and the column by number 1 (since

the coefficients are the first column of the object):
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This agrees with the ‘lsmean’ estimate from SAS Proc GLM. Notice that we averaged over four location effects even though

we have estimates for only three (because the ARC location effect is zero); similary, we averaged over 8 rep effects, even

though we have coefficients for four of them – the other four are set to zero, but nonetheless are part of the average value for

rep effects.

To obtain the least square means of a different RIL, we need to also include the RIL coefficient and the average of its

interactions with locations (and again, notice that this is an average over four interaction terms including one coefficient that

is set to zero):

Of course, this would be a pain to repeat for all of the RILs, so in practice we can use the lsmeans() function of the

lsmeans package, or the LSMeans() function of the doBy package. Here we illustrate applying the lsmeans() function

on the ‘m0’ linear model object:

Balanced Data: ANOVA with ASReml

The same basic ANOVA results can be obtained using the following ASReml code:
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Code example 2.3

Ordinary least squares ANOVA with ASReml using balanced data (see Code 2-3_Mixed models with ASReml.

as for more details)

This produces the following ANOVA output in ASReml:

- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL: -723.88 64.8862 244 2 1 "LogL Converged"

Akaike Information Criterion 1449.76 (assuming 1 parameters).

Bayesian Information Criterion 1453.26

Model_Term Gamma Sigma Sigma/SE % C

Residual SCA_V 496 1.00000 64.8862 11.05 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

10 mu 1 244.0 0.25E+06 <.001

1 location 3 244.0 436.31 <.001

11 rep.location 4 244.0 13.85 <.001

5 RIL 61 244.0 39.14 <.001

12 location.RIL 183 244.0 1.77 <.001

ASReml treats all the terms as fixed, as SAS GLM procedure type 1 sum of squares. Notice that the F statistic for RIL is

39.14, the same as the F test obtained from GLM. The incremental F-tests are not correct. The predictions for RILs are

lsmeans and are produced in the .pvs file.
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Balanced Data: Mixed Models Analysis with SAS Proc MIXED

We can analyze these data using a mixed model with this SAS Proc MIXED code:

Code example 2.1

(continued)

Note that the class statement is identical to Proc GLM, but now we include only fixed effects in the model statement (in this

case the overall mean or intercept is the only fixed term, and since it is implicit, we can write model “trait¼ ;”), and random
effects in the random statement.

The relevant output from this analysis in SAS is:

The Mixed Procedure

Covariance Parameter Estimates

Standard Z

Cov Parm Estimate Error Value Pr Z

location 220.66 186.48 1.18 0.1184

rep(location) 13.4463 10.2484 1.31 0.0948

RIL 303.15 57.5088 5.27 <.0001

location*RIL 24.9323 6.6787 3.73 <.0001

Residual 64.8862 5.8745 11.05 <.0001

Fit Statistics

-2 Res Log Likelihood 3833.2

AIC (smaller is better) 3843.2

AICC (smaller is better) 3843.3

BIC (smaller is better) 3840.1

Some differences between the Proc MIXED and Proc GLM outputs are immediately obvious. First, Proc MIXED output

does not provide degrees of freedom, sum of squares, mean squares, or F-tests for random terms in the model. Instead, the

variance components estimates are provided directly. Note that they are equivalent to the variance components estimates in

this case. Proc MIXED by default estimates variance components and random effects with restricted maximum likelihood

(REML). One of the nice properties of REML is that it gives variance components estimates equal to method of moments

estimates when data are balanced and all components estimates are greater than zero, as in this case. REML restricts variance

components to be greater than or equal to zero, but this is not true for the method of moments. If the method of moments

estimate for one variance component is negative, then all of the variance components estimates may differ between REML

and method of moments methods.

Balanced Data: Mixed Models Analysis with R

We can fit the same mixed model with the lme4 package in R with this code.
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Code example 2.2

(continued)

which produces this output:

Linear mixed model fit by REML

Formula: height ~ 1+(1|RIL)+(1|location/rep)+ (1|location:RIL)

Data: rils

AIC BIC logLik deviance REMLdev

3845 3870 -1917 3839 3833

Random effects:

Groups Name Variance Std.Dev.

location:RIL (Intercept) 24.932 4.9932

RIL (Intercept) 303.151 17.4112

rep:location (Intercept) 13.446 3.6669

location (Intercept) 220.661 14.8547

Residual 64.886 8.0552

Number of obs: 496, groups: location:RIL, 248; RIL, 62; rep:location, 8; location, 4

Fixed effects:

Estimate Std. Error t value

(Intercept) 182.119 7.869 23.14

The variance components estimates from lme4 are identical to the estimates from Proc MIXED, but the AIC and BIC values

are different between lme4 and the SAS Proc MIXED output as well. These differences arise due to details in some of the

assumptions made in models fit with the R lmer function versus SAS Proc MIXED or ASReml and will not be explained in

detail here. For the reader interested in a broader treatment of the subject, see (Bates et al. 2013). In addition, the “Std.Dev.”
values in this output are not the standard errors of the variance components estimates, instead they are simply the square

roots of the variance components estimates (e.g., σG, not SE σ2G
� �

).

Measures of uncertainty in the variance components estimated by lme4() can be obtained as confidence intervals,

however:

>confint(mm)

Computing profile confidence intervals ...

2.5 % 97.5 %

.sig01 3.570868 6.281389

.sig02 14.574225 21.154625

.sig03 1.908606 9.279741

.sig04 6.928737 32.399264

.sigma 7.390111 8.826378

(Intercept) 164.924810 199.314146

The labeling of terms in the output is not totally clear, but the confidence intervals are labeled numerically to match their order

in the summary of the lme4 object. Thus, ‘.sig02’ refers to the second variance component in the previous summary output, that

is, the RIL term. Also, the confidence intervals are reported on the standard deviation scale rather than the variance scale. So, by
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squaring the interval end points, we can obtain the confidence interval for the variance component as (14.5742, 21.1552) ¼
(212.4, 447.5). This can be compared to the approximate 95% confidence interval constructed from the Proc MIXED estimate

of the variance component +/� two times its standard error ¼ 303.15 +/� 2(57.5088) ¼ (188.1, 418.2). The latter estimate

assumes that the estimators are normally distributed, which also implies that they are symmetrically distributed around the

point estimate. The confidence interval from lme4() is based on evaluating the model likelihood at different values of the

variance component and does not assume symmetry, which is why it is more conservative at the high end and less conservative

at the low end compared to the approximate confidence interval based on the standard error. This likelihood profile based

confidence interval is more accurate than the approximation based on the standard error of the variance component.

Balanced Data: Mixed Models Analysis with ASReml

Finally, we can also fit this mixed model in ASReml with part 2 of the following code.

Code example 2.3

(continued)

The ASReml output follows:

Model_Term Gamma Sigma Sigma/SE % C

location IDV_V 4 3.40074 220.661 1.18 0 P

rep.location IDV_V 8 0.207229 13.4463 1.31 0 P

RIL IDV_V 62 4.67204 303.151 5.27 0 P

location.RIL IDV_V 248 0.384246 24.9323 3.73 0 P

Residual SCA_V 496 1.00000 64.8862 11.05 0 P

The standard error of the RIL variance component can be obtained from the following relationship: SE ¼ Sigma/(Sigma/

SE) ¼ 303.151/5.27 ¼ 57.52, very close to the estimated SE from SAS Proc MIXED.
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Hypothesis Testing with Mixed Models

Hypothesis testing for the variance components can be based on the “Z value” obtained by using the “covtest” option in the
Proc MIXED statement. The Z value is the ratio of the variance component to its standard error, and this is also given in the

ASReml output as ‘Sigma/SE’. This test has low power, particularly for variance components estimated with few degrees of

freedom. Thus, in the SAS and ASReml basic output tables it is clear that the variance components for RIL and location*RIL

are significant, but location variation appears not to be significant based on this test, even though it has a rather large variance

component.

Hypothesis testing with higher power can be implemented with the likelihood ratio test. This test requires one to fit an

additional mixed model for each factor to be tested, in which one removes the factor of interest from the model. The

likelihood of this “reduced”model can be compared to the likelihood of the “full”model to form a test of the null hypothesis

that the variance component for the dropped term is zero. If removing the term causes a large decrease in the likelihood of

the reduced model, then there is more evidence that the variance component for the term is greater than zero.

In this example, we can test the null hypothesis of no variation among locations by removing location from the model and

comparing its likelihood to the full model with this code in SAS:

(See Code 2.4_Mixed models with SAS.sas for more details).

All we need from the output of this model to conduct this test is the likelihood:

Fit Statistics

-2 Res Log Likelihood 3841.3

The term in the output is actually �2 times the natural log of the likelihood. The reason this number is provided is to make

the likelihood ratio test (LRT) easy to compute. The LRT is:

LRT ¼ �2ð Þ ln likelihood of reduced model=likelihood of full modelð Þ
¼ �2∗ ln likelihood of reduced modelð Þ � �2ð Þ∗ ln likelihood of full modelð Þ
¼ 3841:3� 3833:2 ¼ 8:1

This value is distributed approximately as a chi-square value with one degree of freedom because the models differ for one

parameter. The p-value for a chi-squared value of 8.1 with 1 df is 0.004. We need to adjust the p-value to half of the tabular
value because we are testing the null hypothesis of a variance component equal to zero; see (Self and Liang 1987) for details.

So, the adjusted p-value is 0.002. As you can see, the LRT provides strong evidence that the location effect is significant

even when the Z-test did not. Further, the adjusted p-value from the LRT is equivalent to the p-value from the F-test for

location using ANOVA in this example with balanced data (shown previously).

For completeness, we show the results of LRTs for the RIL and location*RIL components:

Model �2 RLL LRT Raw p-value Adjusted p-value

Full 3833.2

No RIL 4092.7 259.5 <0.0001 <0.0001

No location*RIL 3850.4 17.20 <0.0001 <0.0001
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Prediction: BLUE and BLUP

As noted before, the predicted marginal mean value of a fixed effect is obtained as a least square mean. This prediction is

obtained as a linear combination of fixed effects estimates from the model. In the ordinary least squares setting, the only true

random effect is the residual error, and these do not contribute to the least square means estimates. The least square mean for

a particular level of a factor is a ‘marginal mean’ because it is averaged over levels of other fixed factors in the model and

also over interaction effects involving the factor level. In the example used in this section, the least square mean of an RIL

involves the linear combination of the overall mean, the particular RIL effect estimate, the average of all environment

effects, and the average of all RIL-by-environment interaction effects that involve the particular RIL.

As we move to the mixed model, we can use the same concept to estimate the predicted marginal means of fixed effects.

These are also called ‘least square means’ in SAS and elsewhere. In the mixed model framework, however, effects for a

given random factor are assumed to have mean values of zero, so that when we average over levels of a random factor, the

average is zero. Thus, random factors do not contribute to the least square mean of a fixed effect. Furthermore, the

interaction effects involving a random effect with one level of a fixed factor also sum to zero; therefore interactions with

any random factors in the model can be ignored in the least square mean of a fixed factor level.

These predicted marginal means or least square means for fixed effects are called best linear unbiased estimators (BLUEs).

They are ‘best’ because they maximize correlations between true values and predicted values, they are ‘linear’ because they
are linear combinations of model effect estimates, and they are ‘unbiased’ because their expected value is equal to the true

value.

To predict the marginal value of random effects in the models, we use an analogous value called a best linear unbiased

predictor (BLUP). To obtain the marginal prediction BLUP, we would again average over levels of fixed effects in the

model, average over interactions between the random effect level of interest and all levels of other fixed effects, ignore other

random effects, and include the intercept (mu) plus the effect prediction for the particular level of the random factor. A

marginal predicted BLUP value is not the only type of BLUP used, however. By convention, animal breeders typically use

the random genotype effect predictions directly as BLUPs for making selections and comparisons, whereas crop breeders

often use marginal effect predictions. In some cases, predictions are made for random effects at a particular level of some

other effect (perhaps a specific level of a fixed treatment or at a particular environment). Any linear combination of effect

estimates from a mixed model analysis that includes random effects is a BLUP (Robinson 1991).

A sometimes more useful BLUP in plant breeding is a ‘conditional’ BLUP, which will have a smaller standard error than the

marginal BLUP because it is predicted for a specific set of random factor levels. The specific set can be chosen as the average

of the random effects, in which case the conditional and marginal BLUPs are usually equal, but the variability in the other

random effects does not contribute to the standard error of the conditional BLUP. This is convenient in situations such as

multi-environment crop variety trials because it relates to the precision of comparisons of variety BLUPs within the set of

tested environments, and the standard error of the conditional predictions relate directly to the typical concept of heritability

relating to selection among variety values evaluated across multiple environemnts. We will demonstrate this difference in

Chap. 7.

To compare the prediction of random RIL values from a mixed model to estimation of RIL means from a fixed model,

consider how this is done in SAS Proc MIXED vs. SAS Proc GLM. The first difference one will notice is that an error

message will result if one includes the statement “lsmeans RIL” as part of the Proc MIXED analysis if RIL is included in the

random effects part of the model. This happens because random effects are ‘predicted’ by BLUPs instead of estimated by

BLUEs, so there is no such thing as a ‘least square mean’ of a random effect.

In practice, we obtain the RIL effect predictions by requesting the solutions for the random effects in the model using the

“/solution” option on the random statement in Proc MIXED. We can then construct marginal BLUPs in this case by

simply adding the estimated overall mean effect (μ, obtained with the “/solution” option on the model statement) to each

RIL effect prediction. (Recall from above that if we considered all the other model effects random, they do not contribute to

the BLUPs for RILs).
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The estimate of μ is 182.12, obtained from the SAS Proc MIXED output:

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 182.12 7.8719 3 23.14 0.0002

The SAS code provided saves the random effect estimates into a new data set, where they can be processed by extracting just

the RIL effects and adding them to the mean estimate to get the RIL BLUPs. The SAS code is included in Code 2-1_ANOVA

with SAS GLM procedure.sas file; here we are interested in the result of that processing for the first eight RILs for

comparison to the LSmeans obtained from Proc GLM:

RIL
Random effect
predictor mu BLUP LSMEAN

Fixed effect
estimate Fixed effect*h2

RIL-1 -0.02 182.12 182.10 182.10 -0.02 -0.02
RIL-11 0.72 182.12 182.84 182.88 0.76 0.72
RIL-12 2.94 182.12 185.06 185.20 3.08 2.94
RIL-14 11.58 182.12 193.70 194.25 12.13 11.58
RIL-15 13.04 182.12 195.16 195.78 13.66 13.04
RIL-16 -8.87 182.12 173.25 172.83 -9.29 -8.87
RIL-20 26.38 182.12 208.50 209.75 27.63 26.38
RIL-21 -15.53 182.12 166.59 165.85 -16.27 -15.53

Notice that the BLUPs are shrunk back toward the overall mean (182.12) compared to the LSmeans. For example, RIL-20

has an LSmean of 209.75 but a BLUP of 208.50, whereas RIL-21 has an LSmean of 165.85 and BLUP of 166.50. The

amount of shrinkage depends on the heritability. In this case the heritability of entry means is:

bh2 ¼ bσ2
RIL

bσ2
RIL þ bσ 2

RIL*location

4
þbσ 2

ε
8

¼ 0:954 ð2:5Þ

Notice that in this case of balanced data, the random effect predictor for RILs is equal to the deviation of the line’s least
square mean from the overall mean times the heritability.

To summarize, ANOVA and mixed models analysis provide equivalent variance components estimates in the case of

balanced data and no negative variance components estimates, although we have to use some different methods to test

hypotheses about the variance components. Random effects are predicted by BLUPs from the mixed model, which are

‘shrunk’ toward the overall mean relative to least squares means (BLUEs). When data are unbalanced either due to a

balanced experimental design with missing data or due to unbalanced designs, ANOVA and mixed models results diverge in

more important ways, as described in the next section.

Unbalanced Data

ANOVA with SAS Proc GLM

To demonstrate the effects of unbalanced data on analysis of variance, we now consider the true original data set of maize

RILs, which includes about 4.5% missing data (MaizeRIL_miss.csv). We will show that the pattern of missing data has

important effects on estimation; note that RIL-5 has data from only two of four locations and RIL-51 has data only from

three locations. When we fit the linear model to these data with SAS Proc GLM, we obtain the following results:
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Code example 2.4

Using SAS GLM procedure for unbalanced data (SeeCode 2-4_Mixed models with SAS unbalanced data.sas for

more details):

Output from the code

The GLM Procedure

Dependent Variable: height

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 248 251616.8381 1014.5840 15.06 <.0001

Error 225 15157.9644 67.3687

Corrected Total 473 266774.8025

R-Square Coeff Var Root MSE height Mean

0.943181 4.509687 8.207846 182.0048

Source DF Type I SS Mean Square F Value Pr > F

location 3 79345.6274 26448.5425 392.59 <.0001

rep(location) 4 3693.2364 923.3091 13.71 <.0001

RIL 61 150287.3376 2463.7268 36.57 <.0001

location*RIL 180 18290.6367 101.6146 1.51 0.0018

Source DF Type III SS Mean Square F Value Pr > F

location 3 77171.8286 25723.9429 381.84 <.0001

rep(location) 4 3677.7950 919.4488 13.65 <.0001

RIL 61 149644.4648 2453.1879 36.41 <.0001

location*RIL 180 18290.6367 101.6146 1.51 0.0018

Comparing this output to the Proc GLM output from the balanced data set, a few key differences should be noted. First, the

degrees of freedom for RIL are still 61 but the degrees of freedom for location*RIL are now 180 instead of 183. The reason

for this is that we have no data on two of the location*RIL interactions involving RIL-5 (because we have no data on this RIL

from two locations) and one of the location*RIL interactions involving RIL-51 (as it is missing in one location). Second,

note that now the Type I and Type III sums of squares (SS) and mean square (MS) results are different from each other in this

case. This occurs because the Type I statistics are computed by fitting the effects in the order given in the model and

computing the sums of squares accounting for each term sequentially, whereas the Type III statistics are computed by

calculating the sums of squares attributable to each term after accounting for all other terms in the model. In the case of

balanced data, all of the model terms are orthogonal to each other such that the order of fitting factors does not affect how

much variation they are associated with. In contrast, with unbalanced data, the different model factors become correlated and

the variation associated with any one term may also be partly associated with a different term, such that the order of fitting

terms affects the sums of squares for the term. Because of this, Type III statistics are preferred since they indicate the amount

of variation attributable to each factor after accounting for the other factors in the model As a result, the sum of Type III

statistics will be less than the total sums of squares for the model: in this example the sum of the Type III SS¼ 248784.7251,

whereas the total SS for the model is 266774.8025.
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Variance components can be estimated by the method of moments from ANOVA Type III MS, but two complications arise

in the case of unbalanced data: First, such estimates are reasonable estimates if the data are not too badly balanced, but the

statistical properties of such estimators are unknown, so it can be difficult to know how reliable they are for a given data set.

Second, the expected mean squares shown for the balanced data set above are not correct for the unbalanced data case, as the

coefficients on the variance components are affected by the data structure. The computation of the coefficients can be

horribly complex (Milliken and Johnson 2004; Rawlings et al. 2001), but we can get the coefficients using SAS Proc GLM

with the random statement, resulting in this output:

Source Type III Expected Mean Square

location Var(Error) + 1.8769 Var(location*RIL) + 57.243

Var(rep(location)) + 114.49 Var(location)

rep(location) Var(Error) + 57.25 Var(rep(location))

RIL Var(Error) + 1.9149 Var(location*RIL) + 7.6105Var(RIL)

location*RIL Var(Error) + 1.9348 Var(location*RIL)

The complex coefficients in the expected mean squares result in the standard F-tests being incorrect. So, for example, with

balanced data we could test the null hypothesis of no RIL variation by the F-test ofMS(RIL)/MS(location*RIL) which had

the expectation:

FRIL ¼ MS RILð Þ
MS location � RILð Þ ¼

σ2ε þ 2σ2location∗RIL þ 8σ2RIL
σ2ε þ 2σ2location∗RIL

¼ 1þ 8σ2RIL
σ2ε þ 2σ2location∗RIL

ð2:6Þ

The extent to which the F-value is greater than one provides evidence for variation due to RILs. However, consider the

expectation of this same F-test in the case of unbalanced data:

FRIL ¼ MS RILð Þ
MS location � RILð Þ ¼

σ2ε þ 1:9149σ2location∗RIL þ 7:6105σ2RIL
σ2ε þ 1:9348σ2location∗RIL

ð2:7Þ

As this expectation does not equal 1 when the null hypothesis is true (RIL variance component ¼0), the F-test is not correct.

Instead, more complicated forms of the F-test are required, and Proc GLM computes these forms when the random statement

is given:

The GLM Procedure

Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: height

Source DF Type III SS Mean Square F Value Pr > F

location 3 77172 25724 27.00 0.0031

Error 4.2929 4089.266951 952.566239

Error: 0.9999*MS(rep(location)) + 0.9701*MS(location*RIL)

- 0.9699*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

rep(location) 4 3677.795036 919.448759 13.65 <.0001

location*RIL 180 18291 101.614649 1.51 0.0018

Error: MS(Error) 225 15158 67.368731

Source DF Type III SS Mean Square F Value Pr > F

RIL 61 149644 2453.187948 24.23 <.0001

Error 182.48 18479 101.262345

Error: 0.9897*MS(location*RIL) + 0.0103*MS(Error)
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Similarly, the variance components can be estimated by method of moments, but the estimation is more complex:

bσ2
ε ¼ MS errorð Þ ¼ 67:37

bσ2
GL ¼ MS location∗RILð Þ �MS errorð Þ

1:9348
¼ 101:61� 67:37

1:9348
¼ 17:7

bσ2
G ¼ MS RILð Þ � 1:9149bσ2

GL � σ2ε
8

¼ 2539:96� 1:9149 17:7ð Þ � 67:37

8
¼ 304:84

ð2:8Þ

Furthermore, as mentioned above, the statistical properties of these estimates are not known, so, for example, exact estimates

of their standard errors are unknown.

Estimation of least square means can also be problematic. Recalling that RILs 5 and 51 were completely missing at least one

location, note the results when we request the least square means for RILs with Proc GLM:

height

RIL LSMEAN

RIL-1 182.100000

RIL-11 182.875000

RIL-12 185.200000

. . .

RIL-49 176.975000

RIL-5 Non-est

RIL-50 200.275000

RIL-51 Non-est

RIL-53 174.425000

“Non-est” indicates that the LSmeans for RILs 5 and 51 are non-estimable. To understand why this is the case, consider the

formula for computing the LSmean of genotype k:

LSmean (Y.k) ¼ Y::kð Þ ¼ μþ �L: þ B Lð Þ:: þ Gk þ GL:k, where �L: and B Lð Þ:: are the averages over all location and replication
effects, andGL:k is the average over all locations of the interaction between RIL k and each location. In the fixed model, the

interaction of a genotype-by-location interaction effect is non-estimable if there are no data on that combination of genotype

and location. Then if some interaction effects included in the LSmean equation are non-estimable, the whole LSmean is

non-estimable.

Unbalanced Data: Mixed Models Analysis with SAS

For comparison, we perform the mixed models analysis of the same data set and obtain the following results from SAS Proc

MIXED. The code is the same as in the previous section “Balanced Data: Mixed Models Analysis with SAS Proc MIXED”,
but now we apply it to the data set with missing observations:

Code example 2.4

(continued)
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which produces the following output:

Covariance Parameter Estimates

Standard Z

Cov Parm Estimate Error Value Pr Z

location 217.69 184.69 1.18 0.1193

rep(location) 15.0591 11.4593 1.31 0.0944

RIL 309.19 58.5756 5.28 <.0001

location*RIL 17.1466 6.4757 2.65 0.0041

Residual 67.9184 6.4110 10.59 <.0001

Notice that the variance components are similar to, but not the same as, those obtained from the ANOVA. More importantly

these estimators have known asymptotic statistical properties (permitting estimation of their standard errors) and have the

properties of maximum likelihood – among all possible estimates they have the highest probabilities given the observed data

and the assumption that the effects of the different levels of random factor are normally distributed.

The BLUPs for RILs are computed as before, and we compare them to the RIL LSmeans shown above from the ANOVA:

RIL
Random effect
predictor mu BLUP LSMEAN

RIL-1 0.39 181.70 182.08 182.10
RIL-11 1.13 181.70 182.83 182.88
RIL-12 3.37 181.70 185.06 185.20
. . .
RIL-49 �4.53 181.70 177.16 176.98
RIL-5 �28.74 181.70 152.96 Non-est
RIL-50 17.84 181.70 199.54 200.28
RIL-51 0.53 181.70 182.22 Non-est
RIL-53 �6.98 181.70 174.71 174.43

The mixed model assumes that the various levels of each effect were sampled from a random normal distribution with a

mean of zero. Thus, when a genotype-location combination is missing from the data the expectation of its value is zero.

We can still predict both the specific genotype-location combination value and the overall genotype value. Comparing

BLUPs to LSmeans is further complicated because the shrinkage effect for each BLUP can be different as it depends on the

amount and pattern of data for each genotype. Thus, the shrinkage effect on the RILs with only a few data points is greater

than that for RILs with more data points, reflecting the higher confidence one has in deviations from the mean based on more

data. Similar results can be obtained with ASReml and lme4 in R.

Box 2.1. A Brief Introduction to Matrices

In the next section of this chapter, we introduce some computational details of mixed models using matrix algebra, as

this provides the most succinct way to represent the mixed model equations and their solutions. A good understanding

of matrix forms and matrix algebra will help the reader understand the material that follows throughout the rest of the

book. We provide this sidebar introduction for readers not well versed in matrix representations and matrix algebra.

More advanced readers can skip this section.

A Matrix is a two-dimensional rectangular array of numbers with the following properties:

• Aij denotes the element in the i-th row and in the j-th column of matrix A

• A matrix is indexed by its rows and columns; the combination of row number and column uniquely specifies each

element.

• The dimensions of the matrix are defined by the number of rows and number of columns, in that order (r � c)

(continued)
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Box 2.1 (continued)

• A matrix with one of its dimensions equal to one is a vector. A vector with dimension (r � 1) is called a ‘column

vector’ because it represents a single column. A vector with dimension (1 � c) is called a ‘row vector’ because it
represents a single row.

We use bold lower case Roman letters (e.g., a), for scalars or vectors and use bold capital letters (e.g., A) for

rectangular or square matrices.

Examples of vectors are:

a ¼ (4) scalar (matrix with dimensions r ¼ 1, c ¼ 1)

c ¼ (4 3) row vector (matrix with dimensions r ¼ 1, c ¼ 2)

d ¼
1

4

2

0
@

1
A column vector (matrix with dimensions r ¼ 3, c ¼ 1)

Matrices can take various forms:

Square Symmetric Diagonal

A ¼
1 2 3

4 9 5

6 7 7

0
B@

1
CA, S ¼

a b c

b k e

c e f

0
B@

1
CA D ¼

a 0 0

0 b 0

0 0 0

0
B@

1
CA

r ¼ c Sij ¼ Sji Dij ¼ 0 i 6¼ jð Þ
Identity Ið Þ Unity Null 0ð Þ

I3x3 ¼
1 0 0

0 1 0

0 0 1

0
B@

1
CA J3,2 ¼

1 1

1 1

1 1

0
B@

1
CA 03,2

0 0 0

0 0 0

� �

Iij ¼ 0 i 6¼ jð Þ
Iii ¼ 1

Jij ¼ Jij ¼ 1 0ij ¼ 0ii ¼ 0

Matrix algebra

Matrix algebra is a set of rules for adding, subtracting, multiplying, and dividing matrices. The rules of matrix

algebra differ from those for scalar numbers.

Summation

Aþ B ¼ a c e

b d f

� �
þ g j n

h k m

� �
¼ aþ g cþ j eþ n

bþ h dþ k f þm

� �

Subtraction

A� B ¼ a c e

b d f

� �
� g j n

h k m

� �
¼ a� g c� j e� n

b� h d� k f �m

� �

Multiplication

Multiplying a matrix by a scalar, z, results in a matrix where each element is the original matrix element times the

scalar:

zS ¼ z
a b c

b k e

c e f

0
@

1
A ¼

za zb zc

zb zk ze

zc ze zf

0
@

1
A

(continued)
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Box 2.1 (continued)

• In order to multiply A (r1 � c1) by B (r2 � c2), their inner indices must be equal. That is, the number of columns of

Amust be equal to the number of rows of B (c1¼ r2). The resulting matrix has dimensions equal to the outer indices

(r1, c2) of A and B.

Ar1�c1 � Br2�c2 ¼ Cr1�c2

• The order of matrices is important for multiplication, as the commutative property of scalar multiplication does not

hold for matrices. In general, AB 6¼ BA

• The element of the resulting product matrix (Cij) is obtained by multiplying row i of A by column j of B, which is

done by multiplying corresponding elements (where the column index of the element in row i matches the row

index of the element in column j) and then summing the results:

This operation requires the inner indices to be equal (r1 ¼ c1 ¼ 3) and produces a resulting matrix with dimensions

r1 � c2 (2 � 2 in this example)

Identity matrix (I)

• The elements on the diagonal (i ¼ j) are 1.

• The elements off the diagonal (i 6¼ j) are 0.

• The identity matrix plays a role similar to 1 in regular algebra. It is like multiplying a scalar by 1:

a� 1 ¼ 1� a ¼ a

A ¼ AI ¼ A

The trace of a square matrix is the sum of its diagonal elements:

Tr Sð Þ ¼ Tr
a b c

b k e

c e f

0
@

1
A ¼ aþ kþ f

Transposition

• The transpose of a matrix is another matrix with rows equal to the columns of the first matrix and columns equal to

the rows of the first matrix:

B ¼ a c e

b d f

� �
, BT ¼

a b

c d

e f

0
@

1
A

• The transpose of a matrix B can be denoted with as BT or as B0 and is called ‘B prime’.
• If two matrices are square, the transpose of their product is equal to the product of the transpose of each.

ABð ÞT ¼ AT BT

(continued)
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Box 2.1 (continued)

• Transposition can be used to convert a row vector (1 � c) into a column vector (r � 1) and vice versa:

a ¼ a1 . . . anð Þ

aT ¼
a1
⋮
an

0
@

1
A

aTð ÞT ¼ a

• We can combine transposition and matrix product operations to define the ‘inner’ and ‘outer’ products of two

vectors. Let a and b be column vectors with elements ai,. . .an and bi,. . .bn, or equivalently, matrices each with

dimension n � 1.

• The ‘inner product’ of the two vectors is the sum of the cross-products of their corresponding elements, which is a

scalar. We can obtain this result by transposing a and multiplying a by b:

ai . . . anð Þ
bi
:
bn

0
@

1
A ¼ aTb ¼

Xn
i¼1

aibi

• The ‘outer product’ of the two vectors is a square matrix of dimension n� n, of which each element ij is the product

of ai � bj. This is obtained by multiplying a by the transpose of b:

a1
⋮
an

0
@

1
A b1 � � � bnð Þ ¼ abT ¼

a1b1 � � � a1bn
⋮ � � � ⋮

anb1 � � � anbn

0
@

1
A

Inverse of a matrix

Multiplication of a matrix by its inverse (in either order) produces an identity matrix:

A�1A ¼ AA�1 ¼ I

AA�1 ¼ I ¼
1 1 1

1 2 3

1 3 4

0
B@

1
CA

1 1 �1

1 �3 2

�1 2 �1

0
B@

1
CA ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA

Thus, a matrix inverse is analogous to the reciprocal of a scalar value, in that any number divided by its reciprocal

equals 1. Also, in scalar algebra, multiplying some number x by the reciprocal of a number y is equal to dividing x by y:

xy�1 ¼ x

y

And by analogy, multiplying by the inverse of a matrix is something like dividing by that matrix. There is no

‘division’ operation defined for matrices, so matrix inverses play an important role to accomplish something analogous

to division. For example, if we have the following equation:

Ax ¼ b

we can solve the value of the vector x by multiplying both sides of the equation by the inverse of A:

Axð ÞA�1 ¼ bA�1

x ¼ bA�1

An important difference between matrix inverses and scalar reciprocals is that whereas all non-zero scalars have a

reciprocal value, not all matrices have an inverse. In particular, only square matrices have an inverse. But not all square

matrices can be inverted. Matrices that cannot be inverted are called ‘singular’matrices. We will avoid details of how

(continued)
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Box 2.1 (continued)

one determines if a square matrix is invertable or singular, but will simply note that a matrix A is singular when there is

no unique solution to the system of equations represented by:

Ax ¼ b

For example, a singularity occurs in fitting statistical models to data when we include confounded parameters in the

model. This could happen if one collected data from an experiment conducted over several years at a different site in

each year, and then tried to fit a model to simultaneously estimate the effects of years and sites. In linear regression or

mixed models analyses, this would result in a singularity in a matrix that must be inverted in order to solve for the

model effects, and no unique solution can be given.

The direct sum and direct product of matrices

These two operators will be used frequently in later chapters to form the structures of the variance-covariance

matrices for residual effects and model effects (these will be called R and G structures, respectively).

Direct Sum - The � symbol denotes a direct sum of two matrices. A direct sum adds square matrices as

independent blocks along the diagonal:

In statistical models, a direct sum can only be used for independent effects. In this example theD and F are assumed

independent.

Direct (Kronecker) Product - The � symbol denotes a Kronecker product.

A direct product multiplies each element of the 1st matrix element-wise by the 2nd matrix.

This structure will be useful later to model correlations between effects of different random factors.

Matrix algebra with R

R has nice facilities for encoding and manipulating matrices. The following functions are key for matrix algebra:

c(): if scalar values are given as arguments, they are concatenated into a numeric vector.

matrix(): forms a matrix from the vector(s) of scalar values given as arguments

diag(n): when n is a scalar value, diag(n) forms an identity matrix of dimension n � n

diag(X): when X is a matrix, diag(X) returns a vector of the diagonal elements of X.

t(X): returns the transpose of X

solve(X): returns the inverse of X

A %*% B: returns the product of matrices A and B

rbind(A, B): returns a new matrix formed by stacking the rows of matrix A on top of the rows of matrix

B (A and B must have the same number of columns).

cbind(A, B): returns a new matrix formed by stacking the columns of matrix A to the left of the columns of

matrix B (A and B must have the same number of rows).
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Code example 2.5

Some examples of matrix algebra using R (see Code 2-5_Matrix algebra with R.R for more details)

(continued)
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Code example 2.5 (continued)

(continued)
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Code example 2.5 (continued)
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Mixed Models in a Nutshell: Theory and Concepts

Mixed linear models are a particular class of models containing both fixed and random effects. Loosely speaking, a mixed

model is a model where some terms remain constant over repeated sampling and some other terms vary at random according

to some distribution. For simplicity from now on we will drop the notation linear and refer to these models simply as mixed

models. For any mixed model we can identify three main components: the equation of the model, the expectations and

variance-covariance for the random effects, and all the remaining assumptions regarding the model.

The Model

A model is a mathematical representation of our understanding of the biological process that explains our observations. We

can think of each observation as a single equation (and in this case we are confining ourselves to linear equations), containing

the trait of interest on one side and factors on the other side that explain the observations. For example:

a1x1 þ a2x2 þ . . .þ anxn ¼ b ð2:9Þ

A system of equations is then a set of these linear equations and a solution for the system must satisfy all equations. With

n unknown parameters (factors) the system takes form:

a11x1 þ a12x2 þ . . .þ a1nxn ¼ b1
a21x1 þ a22x2 þ . . .þ a2nxn ¼ b2
a31x1 þ a32x2 þ . . .þ a3nxn ¼ b3
⋮
am1x1 þ am2x2 þ . . .þ amnxn ¼ bm

ð2:10Þ

with the first subscript referring to the equation number and the second to the variable number. The same set of equations can

be rewritten in a more convenient matrix notation:

Ax¼b

where

A ¼

a11þ a12þ . . .þ a1n
a21þ a22þ . . .þ a2n
a31þ a32þ . . .þ a3n
:
:
:

am1þ am2þ . . .þ amn

2
66666664

3
77777775
, x ¼

x1
x2
x3
:
:
:
xm

2
666666664

3
777777775
,b ¼

b1
b2
b3
:
:
:
bm

2
666666664

3
777777775

ð2:11Þ

From now on we will assume that our model contains both fixed and random effects. Traditionally, mixed models have been

represented in matrix form as follows (Henderson 1990):

y ¼ Xbþ Zuþ e ð2:12Þ
where y is the vector of the observations, b is a vector of fixed effects, u is a vector of random effects (unknown), e is a vector

of random residuals (whatever we cannot explain with our model), and X and Z are incidence matrices that assign each

element of b and u to their corresponding element in y.

Fixed and Random Effects

In most breeding applications (and in all cases in this book) elements of y can be assumed as drawn from a normal

distribution. Keep in mind that although this is a rather convenient assumption that facilitates the analysis of the data, it is not
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always tenable. We have mentioned in the previous section how we will consider both fixed and random effects in our

models. We will now provide a short explanation on what we might consider fixed vs. random. The distinction between fixed

and random applies to the unknown model components. A fixed effect is a known constant that will remain the same over

conceptual repeated sampling, while a random effect is a random variable that arises from the subsampling and random

selection of “treatment” levels.

Imagine a very simple fixed effect model similar to the following:

yi ¼ b0 + ei where we are assuming e ~ NIID(0, σ2).

Where NIID stands for normally, independently and identically distributed. If we were to simulate data points for such a

model we will proceed as follow:

(a) Set the value for b0 (let’s say 10)

(b) Set the value for σ2 (let’s say 5)

(c) Draw a sample of size n of random deviations from a standard normal distribution N(0,1) (z values)

(d) Form a vector of residuals:

e1 ¼ 5z1
e2 ¼ 5z2

:
en ¼ 5zn

(e) Then your vector of observations y will be:

y1 ¼ 10þ 5z1
y2 ¼ 10þ 5z2

:
yn ¼ 10þ 5zn

You should notice that all the variability in your sample comes from e and this would remain the same were you to simulate

new data (a new experiment).

Now consider the same model but assume b0 � NIID a; σ2b
� �

, e � NIID(0, σ2) and Cov(b0, ei) ¼ 0

In this case you would simulate your data like this:

(a) Set the value for the mean of the b0 distribution (‘a’; let’s say 2)

(b) Set the value of σ2b (let’s say 3)

(c) Draw 1 (z) normal deviate from N(0,1)

(d) Form β0 ¼ α + σβz
(e) Set the value for σ2 (let’s say 5)

(f) Draw n (z) random deviations from a standard normal distribution N(0,1)

(g) Form a vector of residuals:

e1 ¼ 5z1
e2 ¼ 5z2

:
en ¼ 5zn

Your vector of observations y will in this case be:

y1 ¼ β0 þ 5z1
y2 ¼ β0 þ 5z2
y3 ¼ β0 þ 5z3
:
yn ¼ β0 þ 5zn
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Note that in this case your observed values will be dependent on the realized value of b0 for that particular realization

(experiment) so that the variance for y will be σ2b þ σ2.

If you were to repeat the experimentm times you would find that in the limit (asm approaches infinity) your estimates of both

a and σ2b will get closer and closer to their true value.

In reality the distinction between fixed and random effects often depends on the practical use and interpretation of parameter

estimates. When the investigator is interested in comparing specific levels of a certain factors (let’s say amount of fertilizer

for a plant or concentrate for a cow) then it is sensible to consider them as fixed effect. When a parameter is not of relevance

for the analysis but rather a nuisance that we want to account for, more often than not we end up treating that effect as

random.

If the researcher believes that the levels of a particular design factor represent random samples from some larger reference

population of effects, and that the distribution of those effects follows normality, then the factor can be considered random.

For random factors, the researcher wants to make inference to the distribution of the population by estimating variance

components. In breeding and genetics studies, researchers often wish to make inference to larger reference populations of

animals or plants, such that the individuals, families, or genotypes represent random effects. Estimations of heritability or

genetic correlation between traits are typical examples where the genetic samples are considered random. In contrast, factors

are considered fixed when inference is made only to the particular levels of the factor studied in the experiment. An example

of a fixed factor might be a specific nutrition treatment provided to some animals (or similarly, specific levels of fertilizer

application in a plant study).

Sometimes genetic factors can also be fixed. This most commonly occurs in plant variety trials where a small sample of elite

cultivars is compared for the purpose of recommending the best cultivar for a particular growing region. Of course, there are

situations where the distinction between random and fixed effects is less clear cut, for example when plant families are

evaluated at a relatively small number of test sites, in which case it may be uncertain whether the test environments should be

considered random or fixed effects. The researcher may hope that the environments represent a random sample of target

production environments, but the researcher may be limited to a few managed research farms that are not really random

samples. On the other hand, if the experiment is replicated over years, the yearly component of environmental variation may

be more random. In such cases, the researcher should decide primarily based on what inferences are to be made, and if the

factor is to be considered random, have enough levels been sampled to adequately estimate a variance component? Finally, if

inference is primarily aimed at the genetic factors in the study, and environments are used mainly to replicate the genetic

evaluations over a reasonable number of environments, the researcher can declare environments as fixed simply to make the

analysis more efficient.

The distinction between fixed and random effects is a prerogative of assuming a frequentist point of view. People employing

Bayesian statistics to analyze mixed models will argue that in reality all the effects are random.

Expectations and Variance-Covariance for the Random Effects

Since we have assumed that random effects come from some large population we need to define location and dispersion for

these parameters. Note that we have assumed that our observations are normally distributed and we will always assume that

our residuals are normally distributed. Keeping the general matrix notation that we have seen before, the expectations of u,

e and y are.

E uð Þ ¼ 0

E eð Þ ¼ 0

E yð Þ ¼ E Xbþ Zuþ eð Þ
¼ E Xbð Þ þ E Zuð Þ þ E eð Þ
¼ XE bð Þ þ ZE uð Þ þ E eð Þ
¼ Xbþ 0þ 0

¼ Xb

ð2:13Þ
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Also, the variances of u and e are

V ¼ u
e

� �
¼ G 0

0 R

� �
ð2:14Þ

The actual structure ofG and R is flexible (and much of this book is concerned with fitting complexG and R structures), but

in the simplest cases G ¼ Iσ2u and R ¼ Iσ2e .

We usually assume that cov(u,e) ¼ 0, so that

V yð Þ ¼ V Xbþ Zuþ eð Þ
¼ V Zuþ eð Þ
¼ ZV uð ÞZ0 þ V eð Þ þ ZCov u; eð Þ þ Cov e; uð ÞZ0

¼ ZGZ0 þ R

ð2:15Þ

Cov y; uð Þ ¼ ZG

Cov y; eð Þ ¼ R

If we call V ¼ ZGZ’ + R, we can summarize the distribution of the data and model factors as:

y � N Xb;Vð Þ;
u � N 0;Gð Þ;
e � N 0;Rð Þ

ð2:16Þ

A Trivial Example: Daughters Lactation Yield

We will follow the motivational example provided by Robinson (1991). Let’s assume we have collected data on lactation

yields of dairy cows in three different herds. Let’s assume that the cows’ sire genetic merit is treated as a random effect while

herds are treated as fixed.

Herd Sire Yield

1 ZA 110
1 AD 100
2 BB 110
2 AD 100
2 AD 100
3 CC 110
3 CC 110
3 AD 100
3 AD 100

Then we can write the system of linear equations as.

110 ¼ herd1 þ sireZA þ e

100 ¼ herd1 þ sireAD þ e

110 ¼ herd2 þ sireBB þ e

100 ¼ herd2 þ sireAD þ e

100 ¼ herd2 þ sireAD þ e

110 ¼ herd3 þ sireCC þ e

110 ¼ herd3 þ sireCC þ e

100 ¼ herd3 þ sireAD þ e

100 ¼ herd3 þ sireAD þ e
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And in matrix form:

y ¼ Xb + Zu + e, where:

y ¼

110

100

110

100

100

110

110

100

100

2
6666666666664

3
7777777777775

is our (n x 1) vector of phenotypic observations,

b ¼
h1
h2
h3

2
4

3
5

is a ( p x 1) vector of fixed herd effects,

u ¼
SZA
SBB
SCC
SAD

2
664

3
775

is a (q x 1) vector of random sire effects,

e ¼

e1
e2
e3
e4
e5
e6
e7
e8
e9

2
6666666666664

3
7777777777775

is a (n x 1) vector of residuals and the design matrices are:

X ¼

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 1

2
6666666666664

3
7777777777775
,Z ¼

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

2
6666666666664

3
7777777777775

X (n x p) and Z (n x q) are incidence matrices that relate phenotypic observations to herd and sire effects.

Let’s now write the assumptions of the model.

Vu ¼ G ¼ Iσ2u
Ve ¼ R ¼ Iσ2e
Vy ¼ Z0GZþ R, so that :
y � NID Xb;Vð Þ; u � NID 0;Gð Þ; e � NID 0;Rð Þ

ð2:17Þ
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For this example, we assume that we know that σ2e ¼ 1 and σ2u ¼ 0:1 and that sires are not related. We can obtain a matrix

representation of the model using the following R code:

Code example 2.6

Mixed models using matrix algebra inR (see Code 2-6_Mixed models using matrices.R for more details)

Solving the Model

Here we demonstrate the matrix algebra involved in solving the mixed model equations. For this small example, we will not

actually estimate the variance components from the data but instead will use fixed values for the variance components as if

they were estimated (or known) a priori (σ2e ¼ 1 and σ2u ¼ 0:1 in this example). This is seldom the case in practice and later

we will see how mixed models provide a powerful tool to simultaneously obtain both solutions for fixed and random effects

and estimates of variance components.

From the model outlined above, the solutions for fixed effects (BLUEs) are:

bb ¼ X0V�1X
� ��1

X0V�1y ð2:18Þ
which are the generalized least squares estimates for b.

For the random effects, the solutions for random effects (BLUPs) are:

bu ¼ GZ0V�1 y� Xbb� �
ð2:19Þ

Solving for our example gives us

bb ¼ 105:64; 104:28; 105:46ð Þ0

bu ¼ 0:40; 0:52; 0:76;�1:67ð Þ0
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We can do this with matrix algebra in R:

You should notice that using the formulas above involves finding the inverse of the variance matrix. While for this

little example this is easily done, that is seldom the case with large data and complex models. We need a more

convenient form.

The Mixed Model Equations

For the general mixed linear model described above, a particular set of equations can be used to find the solutions of each

effect. These are the Henderson’s mixed model equations and were developed for animal breeding by Henderson (1949).

ð2:20Þ

If we assume that residual variance is IID (identical and independent for all observations), the R matrix can be factored out.

In most of the applications we will see from now on, the following form of the equations will be more convenient:

X0X X0Z
Z0X Z0Zþ Iα

� � bbbu
� �

¼ X0y
Z0y

� �
ð2:21Þ

where:

α ¼ σ2e
σ2u

ð2:22Þ

The solutions to these equations are the best linear unbiased estimators of b and the best linear unbiased predictors of u:

BLUE (b)

X0X X0Z½ 	�1 X0y
Z0y

� 	
ð2:23Þ

BLUP (u)

Z0X Z0Zþ Iα½ 	�1 X0y
Z0y

� 	
ð2:24Þ
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which give us the same solutions as before:

bb ¼ 105:64; 104:28; 105:46ð Þ0bu ¼ 0:40; 0:52; 0:76;�1:67ð Þ0

We can obtain the solutions using the following small R script:

Estimability in Models with Multiple Fixed Effects

While we have said we will not spend too much time dealing with fixed effects, a note on estimability is necessary. When

there are multiple effects in the model it is often impossible to obtain unique BLUE for each level of the fixed effects.

Let’s follow the previous example.

Herd Sire Yield

1 ZA 110
1 AD 100
2 BB 110
2 AD 100
2 AD 100
3 CC 110
3 CC 110
3 AD 100
3 AD 100

But let’s consider for this example both herd and sire as fixed so that we can rewrite the X matrix as.
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You should notice that there are dependencies among rows and columns. For example, in this simple case the fourth column

(in red) is equal to the difference of the other columns.

As a consequence X’X is not full rank since its dimension is 7 x 7 yet there are only 6 independent rows and columns. In this

case a unique inverse of the coefficient matrix (X’X) does not exist. Therefore we cannot obtain the BLUE estimates for herd

and sire. This is the same problem we encountered in the previous example in this chapter where some genotypes (RILs)

were missing from some environments. Nonetheless some (useful) linear functions of the solutions are still estimable.

Let’s look at the following small R code that uses the same data.

The code produces the following output.
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A few things are apparent:

If we look at the output of the estimates we notice that what R did was to set to 0 the first level of the sire fixed effect (sire AD

in this case). In this way the model was reparametrized to be full rank and the solutions presented are an estimable function

of the (unknown) BLUEs. Specifically the functions estimated are.

SireAD � SireBB

SireAD � SireCC

SireAD � SireZA

Each of the sires other than AD has daughters that yield 10 units more (on average) than daughters of sire AD. The same

principle can be applied to construct other meaningful estimable functions. Furthermore, treating sire effects as fixed is

equivalent to omitting the G�1 matrix from the mixed model equations of the previous example.

The LHS of the MME equations obtained by R looks like this:

LHS

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 2 0 0 1 0 0 1

[2,] 0 3 0 0 1 0 2

[3,] 0 0 4 0 0 2 2

[4,] 1 0 0 11 0 0 0

[5,] 0 1 0 0 11 0 0

[6,] 0 0 2 0 0 12 0

[7,] 1 2 2 0 0 0 15

Omitting G�1 effectively means reducing the last 4 diagonal elements of the LHS matrix by 10.

LHSm=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ))

LHSm

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 2 0 0 1 0 0 1

[2,] 0 3 0 0 1 0 2

[3,] 0 0 4 0 0 2 2

[4,] 1 0 0 1 0 0 0

[5,] 0 1 0 0 1 0 0

[6,] 0 0 2 0 0 2 0

[7,] 1 2 2 0 0 0 5

The solution given in this case is the least-squares solution for both sires and herds. If we compare what was produced by this

analysis with what obtained through BLUP we get a glimpse of how BLUP works. BLUP solutions take into account the fact

that sire information has less variability than the variance of lactation yield of a single sire’s daughter. Effectively the sires

estimates are shrunk toward the mean (assumed 0). The amount of shrinkage is dependent on the amount of information

available for the sire. For example, if we take the predictions for the 4 sires obtained by BLUP (0.40, 0.52, 0.76, �1.67) we

notice that prediction for sire CC is better than the one for sires ZA and BB even if lactation yield for his daughters are the

same (110) than those for sires ZA and BB. This is because we have more information available for that sire.
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Standard Errors and Accuracy of the Estimates

Accuracy refers to the correlation between true and predicted random genetic effects rĝ ,g
� �

. In some cases, ‘reliability’ of the

predictions is reported; this is the squared correlation between true and predicted random effects r2ĝ ,g

� �
, such that accuracy

is simply the square root of reliability (Mrode 2014). Reliabilities are related to prediction error variances (PEV) as follows:

PEV ¼ var bu � uð Þ ¼ 1� r2û ,u
� �

σ2u ð2:25Þ

For breeding value predictions, the u’s in this equation refer to the genetic effects or breeding values of the individuals, such
that:

PEV ¼ var bg � gð Þ ¼ 1� r2ĝ ,g

� �
σ2A ð2:26Þ

The closer the predictions are to the true values, the closer the reliability is to one, and the smaller the prediction error

variance is (Mrode 2014). The prediction error variances may differ for different individuals, as individuals with more

information will have smaller prediction errors. We can obtain the prediction error variances using the inverse elements of

the mixed model equations.

Let:

X0X X0Z
Z0X Z0Zþ Iα

� �
¼ C11 C12

C21 C22

� �
ð2:27Þ

Then let the inverse of the left hand matrix be

C11 C12

C21 C22

� ��1

¼ C11 C12

C21 C22

� �
ð2:28Þ

Now the prediction error variance isPEV ¼ V bu � uð Þ ¼ C22σ2e . So for each level of a random effect i,PEVi ¼ diσ2e
� �

where

di is the diagonal element of C22. Returning to our first example let’s find the PEV for each sire. If we take the inverse of the

LHS:

round(solve(LHS), digit=3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.547 0.030 0.024 -0.050 -0.003 -0.004 -0.044

[2,] 0.030 0.383 0.031 -0.003 -0.035 -0.005 -0.057

[3,] 0.024 0.031 0.297 -0.002 -0.003 -0.050 -0.045

[4,] -0.050 -0.003 -0.002 0.095 0.000 0.000 0.004

[5,] -0.003 -0.035 -0.003 0.000 0.094 0.000 0.005

[6,] -0.004 -0.005 -0.050 0.000 0.000 0.092 0.008

[7,] -0.044 -0.057 -0.045 0.004 0.005 0.008 0.083

The bottom right corner (bold fonts in diagonal) is C22.

In this case we have assumed a value ofσ2e ¼ 1 so that the prediction error variances are simply the diagonal elements ofC22:

PEV ¼
0:095
0:094
0:092
0:083

2
664

3
775
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From these it is possible to obtain the standard errors of predictions (SEP) as the square roots of the prediction variances.

Furthermore, we can compute the reliabilities for each prediction given the PEVs and the estimated additive variance

component by re-arranging Eq. 2.1 to obtain:

r2bu,u ¼ 1� PEV

σ2u
ð2:29Þ

Interestingly, the ratio of the variances of the true values to the error variance
σ2u
σ2e

� �
can be obtained from the sum of a row or

from the sum of a column of C22 (the inverse of the LHS). In this example they are all equal to 0.1, but there is arounding

error:

0.095 + 0.000 + 0.000 + 0.004 ~ 0.099

0.000 + 0.094 + 0.000 + 0.005 ~ 0.099

0.000 + 0.000 + 0.092 + 0.008 ~ 0.099

0.004 + 0.005 + 0.008 + 0.083 ~ 0.099

0.099 0.099 0.099 0.099

Putting everything together we obtain the following summary, including the prediction (BLUP), prediction variance (PEV),

standard error of the prediction (PEV), and reliability (REL) for each of the sires:

Sire BLUP PEV SEP REL

ZA 0.40 0.095 0.308 0.05
BB 0.52 0.094 0.306 0.06
CC 0.76 0.092 0.303 0.08
ZD �1.67 0.083 0.288 0.17

REL(Sire ZA) = (0.1 – 0.095)/ 0.1 = 0.05

You should notice in this case that sires with no information (and no relationship to observed individuals) would have a PEV

of 0.1 and therefore a reliability of 0.

A Brief Note on REML

Prior to this point in this section we have only been concerned with describing the model used and we assumed that the

variance components were known without error. In practice we must estimate (co)variance components from the data. The

most common method for variance components estimation (and the one used by default by SAS, R and ASReml) is the

restricted maximum likelihood (REML). REML estimates are often ideal for the analysis of complex breeding data sets. We

will describe the principles of REML estimation without formality REML here; See Lynch and Walsh (Lynch and Walsh

1998) for a more thorough explanation.

REML is based on the maximization of the likelihood function (the probability of observing the data given a set of

parameters). In other words, the estimates of variances and covariances chosen by REML are those that would have been

most likely to give us the observed data. While REML and ML (maximum likelihood) share the same principle, REML

attempts to account for the degrees of freedom used in estimating the fixed effects. In other words, in ML we estimate

variance components conditionally on the solutions for fixed effects, essentially treating the fixed effects as known without

error. This is clearly not the case for most of our analyses where we substitute the true effects with their estimates. REML

partially accounts for that uncertainty.

Since we are breeders, in the rest of the book we will deal with the estimation of genetic variances for traits under selection

which could be potentially biased by the very selection process. For most applications we would be interested in estimating

the genetic variances in the “unknown” base population rather than the observed variance in our sample of related

individuals. REML estimates obtained using a relationship matrix in the mixed model to account for genetic relationships
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among the individuals (more on this in Chap. 11) are not (or at least less) influenced by selection in the base population.

More importantly, REML (and ML) estimates of variance components restrict the possible parameter space so that variances

are always positive (or 0). This avoids the embarrassment of having to report negative estimates of a squared quantity as can

happen with methods of moments estimators!

REML estimates of (co)variance components must be obtained through iteration and many algorithms can be used. Among

the most popular are derivative free approaches that do not require any likelihood derivative (for example, those

implemented in the software MTDFREML), methods that require the first derivative of the likelihood function (e.g., the

expectation maximization (EM) algorithm), and finally, methods that require the second derivative of the likelihood function

(the Newton-Raphson algorithm, Fisher scoring, and average information algorithm). SAS proc. MIXED implements the

Newton-Raphson algorithm to solve the mixed model equations, whereas ASReml uses the average information algorithm

(Gilmour et al. 2009; SAS Institute, Inc. 2011a). The more recently developed SAS Proc HPMIXED also implements the

average information algorithm and some other optimization techniques (including sparse matrix representation) to reduce

computational time and memory demands compared to SAS Proc MIXED, but at this time only has limited modeling

flexibility (e.g., only a small set of G and R structures are available) (SAS Institute, Inc. 2011b). Finally, the lmer function in

the R package lme4 uses yet a different method than the other software, including a penalized iteratively reweighted least

squares method for updating estimates at each iteration (Bates et al. 2013).

One last word of caution: While REML has several nice properties many REML algorithms do not guarantee that the

iterative procedure will converge to a global maximum. Thus, especially with small datasets and multiple trait models

(discussed in Chap. 7), it is always a good idea to repeat analyses with several different starting values for variance-

covariance parameters.
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Abstract

Understanding the matrix representations of variance-covariance models is important to be able to fit mixed models with

complex variance structures. In particular, ASReml makes use of a notation for direct products of matrices to form some

complex variance structures. The direct product notation can be applied both to the residual errors from the model (in the

‘R structure’) and to random model factors (in the ‘G structure’). In this chapter we introduce the major variance models

to form more complex R and G structures with some examples, but more detailed applications of variance modeling will

be covered in later chapters.

Variance Model Specifications

Gamma and Sigma Parameterization in ASReml

As we saw in Chap. 2, the variance of response variable y is Var(y) ¼ V ¼ ZGZ
0
+ R. By default the variance of random

effects isG ¼ Iσ2u and the variance of residuals isR ¼ Iσ2e . For a simple mixed model with one random term, the variance of

y isV ¼ σ2uZZ
0 þ Iσ2e . The model has two variance parameters or sigmas, one for the random model effect σ2u

� �
and one for

the residual term σ2e
� �

. This is called sigma parameterization. The other parameterization used in ASReml is the gamma

parameterization. In this parameterization the variance of y is formulated as the ratios of residual variance σ2e as shown

below.

V ¼ σ2e
Pb

i¼1 γgZZ
0 þ In

� �
or

V ¼ σ2e ZG γg

� �
Z0 þ Rc γrð Þ

h i ð3:1Þ

Z and Z0 are the design matrix and its transpose, respectively, for the random term. The gamma value (scaled variance) of the

random term (γg) is the ratio of the variance component for the random term and the variance of the residual error term:

γg ¼ σ2u=σ
2
e ð3:2Þ

The gamma value of the residual error term (γr) is the ratio of the residual variance component to itself: γr ¼ σ2e=σ
2
e ¼ 1. This

is the default parameterization for a simple univariate mixed model in ASReml because it is easier to guess starting values

for the unitless gammas than for the variances (sigmas), which depends on the scale of the trait measurement units. Gamma

parameterization can also speed up model convergence (Butler et al. 2009).

For more complex variance structures, such as correlated residuals, the default parameterization is the sigma parameteriza-

tion. The user can switch from gamma to sigma parameterization in ASReml Release 4, using the !SIGMAP qualifier.

The qualifier must be placed after the response variable as follows:

There are many variance-covariance functions used for different models. A summary of the most common variance

functions is given below (Table 3.1).

Correlation variance models can be appended with v e.g. idv() to add a common (homogeneous) variance or with h (e.g.,

idh()) to add a separate (heterogeneous) variance for each level of the factor.
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Homogenous Variance Models

We will use the maize recombinant inbred lines (RIL) data with missing observations (MaizeRILs_miss.csv) introduced in

Chap. 2 to show the most common variance modeling in ASReml Release 4 (standalone). Let’s start with a simple linear

model.

yijk ¼ μþ Li þ Rj þ eijk ð3:3Þ

where yijk is the k-th observation of the j-th RIL at i-th location, μ is the intercept (fixed), Li is the i-th location effect (fixed),
Rj is the j-th RIL effect (random), eijk is the random error term associated with the k-th observation.

We can write the same model in matrix form as y ¼ Xb + Zu + ewhere y is the vector of observations, b and u are vector of

fixed and random effects, respectively; X and Z are incidence matrices of fixed and random effects and e is the vector of

residuals. The usual model assumptions are that the residual effects (eijk) are normally and independently distributed

e ~ NID(0, R) and random effects are normally and independently distributed u � NID(0, G).

There are 474 observations in this data set (recall that the data are not completely balanced because of missing data on some

plots). The variance-covariance matrix of residual effects (R) is a square matrix with 474 rows by 474 columns. The

diagonal elements are variances of residual effects, all equal to σ2e . The off-diagonal elements are covariances of residual

effects for different observations, which are all 0 because we assume residuals are independent of each other.

R ¼ σ2eI474 ¼ σ2e

1 � � � 0

⋮ . .
.

⋮

0 � � � 1

2
664

3
775 ¼

σ2e � � � 0

⋮ . .
.

⋮

0 � � � σ2e

2
6664

3
7775 ð3:4Þ

The variance for the residuals is set up as a correlation matrix (in this case, the identity matrix I) scaled by a variance σ2e
� �

.

Similarly, we can write the variance-covariance matrix of the 62 random RIL effects (the G structure) as follows:

G ¼ σ2u I62 ¼ σ2u

1 � � � 0

⋮ . .
.

⋮

0 � � � 1

2
664

3
775 ¼

σ2u � � � 0

⋮ . .
.

⋮

0 � � � σ2u

2
6664

3
7775 ð3:5Þ

The variance for the random RIL effect is set up as a correlation matrix (here the identity matrix I) scaled by the variance

component for RIL effects σ2u
� �

.

The model terms in ASReml would be as follows:

Table 3.1 Variance-covariance structures in ASReml

Function name Type Description

id() Correlation IID with variance 1

idv() Variance IID with common variance

idh() Variance Independent with heterogeneous variance

diag() Variance Same as idh()
ar1() Correlation Auto regressive correlation structure of order 1

cor() Correlation Unstructured correlation matrix

giv() Known correlation User defined correlation, or inverse of correlation matrix

giv(,ped¼T) Known correlation User defined inverse correlation matrix derived with a factor argument

us() Variance General unstructured

fa(,k) Variance Factor analytic model of order k

See the ASReml User Guide (Gilmour et al. 2014, Chapter 7) for details
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Code example 3.1

Default variance modeling in ASReml. In the first part (PART 1) the R and G structures are not defined

(implicit) but they are explicit in model 2 (PART 2). (Code 3-1_Default variance modeling.as)

• The model defined in PART 2 is equivalent to the model given in PART 1. They will produce the same results.

• The term residual idv(units)tells ASReml that the residual variance structure is an identity (ID) matrix

multiplied by a uniform variance (V) for all the data points,R � N 0; σ2eI474
� �

. This is the default error variance structure,

so if the error variance structure is not otherwise specified (as in the model in Part 1 in the example), it will be used.

• Similarly, the G variance structure idv(RIL)indicates that the variance associated with the RIL effect is an identity

(ID) matrix multiplied by a uniform variance (V) for all the data points,G � N 0; σ2uI62
� �

. Again, this is the default, so it

does not need to be specified (as in the model in Part 1).

• The variance structure for the nested rep effect is an identity matrix N 0; I8σ2r
� �

• The !SIGMAP qualifier forces ASReml to use a sigma parameterization rather than the default gamma parameterization

used for simple models.

• The units is a reserved term that refers to independent residuals of individual observations.

A subset of the output is given below:

...

Cycle 1 value is 1

- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL:-1389.77 82.6113 470 9 1 "LogL Converged"

Akaike Information Criterion 2785.54 (assuming 3 parameters).

Bayesian Information Criterion 2798.00

Model_Term Gamma Sigma Sigma/SE % C

rep.location IDV_V 8 0.180426 14.9052 1.29 0 P

RIL IDV_V 62 3.77412 311.785 5.32 0 P

Residual SCA_V 474 1.00000 82.6113 14.23 0 P

(continued)
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...

Cycle 2 value is 2

...

- - - Results from analysis of height - - -

LogL:-1389.77 82.6113 470 9 2 "LogL Converged"

Akaike Information Criterion 2785.54 (assuming 3 parameters).

Bayesian Information Criterion 2798.00

Model_Term Gamma Sigma Sigma/SE % C

rep.location IDV_V 8 0.180426 14.9052 1.29 0 P

RIL IDV_V 62 3.77412 311.785 5.32 0 P

Residual SCA_V 474 1.00000 82.6113 14.23 0 P

Heterogeneous R Variance Structures

Sections May Have Different Residual Variances
In the context of residual variance structures, a “section” refers to a group of observations that all have a common error

variance structure and are independent of observations in other groups. In traditional analyses of variance and in the example

in the previous section, we assumed that there is only one section in the data: all the observations have a common error

variance structure. Breeding and genetics experiments often have natural groupings of observations (such as environments

or ages of individuals) that may differ in terms of their error variation. If there are important differences among residual

variances among sites, but these are ignored in the analysis by using an IDV R structure, one may observe some trends in the

residual diagnostic plots, such as a positive relationship between predicted and residual values or distinct clusters of error

effects representing sections with different residual variances. These distributions suggest that the model is not a good fit

because the assumption of homogeneous error variance is wrong. If this is the case, we need to consider a block diagonal

R structure (one section for each location) instead of a common IDV R structure for all observations. In the maize RIL

example, it is reasonable to model the residuals as being independent but having a unique variance within each location. The

R matrix will have 4 sections and we can define the R structure using the direct sum as follows:

R ¼ σ2e1I121 � σ2e2I118 � σ2e3I116 � σ2e4I119 ð3:6Þ

The dimensions of sub-matrices of R (corresponding to sections) are given by the number of observations at each location.

For example, there were 121 observations in location 1, so the dimension of the section for location 1 is 121 � 121 and this

section is the product of a residual error variance specific to location 1 and the identity matrix σ2e1I121
� �

. The overall

dimension of R is 474 � 474, or the sum of all four sections. The block-diagonal R matrix is:

R ¼ � s
j¼1Rj ¼

R1

0

0

0

0

R2

0

0

0

0

R3

0

0

0

0

R4

2
666664

3
777775 ¼

σ2e1I121

0

0

0

0

σ2e2I118

0

0

0

0

σ2e3I116

0

0

0

0

σ2e4I119

2
666664

3
777775

We can zoom in on the R structure for section 1 to show its elements:

R1 ¼ σ2e1I121 ¼

σ2e1

0

0

0

0

σ2e1

0

0

� � �
� � �
� � �
� � �

0

0

0

σ2e1

2
666664

3
777775
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The ASReml syntax for a block-diagonal R structure follows:

Code example 3.2

Block diagonal R structure or heterogeneous residual variance modeling (see Code 3-2_Variance modeling Block

Diagonal.as for more details)

Here we used the sat()function to divide the R matrix into sections defined by levels of the factor location. The model

term ‘residual sat(location).idv(units)’means that the residualR structure is divided into sections defined by the levels of the

factor location, and that within each section the residual effects are distributed identically and independently (‘IID’ or
‘IDV’). ASReml forms this structure as a direct sum (see ‘A brief introduction to matrices’ in Chap. 2) of the individual

section submatrices (Ri). The term idv(units)tells ASReml that the residuals with each section are uniform and

independent, with ‘units’ being a reserved term that refers to individual measurement observations.

- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL:-1378.47 1.00000 470 8 1 "LogL Converged"

Akaike Information Criterion 2768.94 (assuming 6 parameters).

Bayesian Information Criterion 2793.86

Model_Term Sigma Sigma Sigma/SE % C

rep.location IDV_V 8 15.4426 15.4426 1.31 0 P

RIL IDV_V 62 310.573 310.573 5.35 0 P

sat(location,01).idv(units) 121 effects

units ID_V 1 54.1740 54.1740 6.35 0 P

sat(location,02).idv(units) 118 effects

units ID_V 1 139.725 139.725 7.06 0 P

sat(location,03).idv(units) 116 effects

units ID_V 1 78.3899 78.3899 6.57 0 P

sat(location,04).idv(units) 119 effects

units ID_V 1 61.3601 61.3601 6.59 0 P

In the output above (a subset of the .asr file) we highlighted the separate residual error variance estimated for each location,

ranging from 54 to 140, suggesting that there are indeed important differences in the error variance among environments. We

can formally test the null hypothesis that the error variances are equal among environments using a likelihood ratio test (the

log(Likelihood) is also highlighted in the output above):
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LRT ¼ �2 Log L reduced modelð Þ � Log L full modelð Þð Þ ¼ �2 �1389:77þ 1378:47ð Þ ¼ �2* �11:3ð Þ ¼ 22:6

This statistic is distributed approximately as a chi-square variable with 3 degrees of freedom. The degrees of freedom for this

statistic are obtained by comparing the number of variance component parameters fit in the full model (6 components) to that

for the reduced model (3 components). We can get the p-value for this statistic using a little R code:

Recall that we need to divide the raw p-value by two for this likelihood ratio test. In this case, modeling heterogeneous error

variances significantly improves the fit of the model to the data.

Error Effects May Not Be Independent
Modeling heterogeneous error variances as shown in the previous section allows us to have models that do not require the

‘identical’ part of the assumption about identical and independent (IID) residual effects. We can also generalize the model to

allow for non-independent residual effects. This will result in an R matrix structure that does not have 0 values for all of the

off-diagonal elements. Exactly what those off-diagonal covariance values are will depend on some other assumptions we can

make about what patterns of correlations may exist among the residual along with estimation of the correlations from the

actual data.

Before discussing the mathematical details on non-independent residual effects, it may be helpful to consider what kinds

of experimental conditions might lead to correlations among residual effects. A common scenario that occurs in many crop

and tree field experiments is that the experimental field is never completely homogeneous. Even before the plants are

established in the field plots, there is some level of variability in soil properties. After the experiment is established,

additional variation among the experimental units may occur due to management effect, for example fertilizer or irrigation is

not applied equally among plots. Under these conditions, experimental units (the field plots or plant positions) that are closer

together tend to be more similar than plots that are separated by greater distances. Correlations among residual effects may

also arise in other scenarios, for example when measurements on experimental units are taken at different times and

measurement pairs taken at similar times have more similar residual effects than pairs measured at more widely spaced

intervals. In some cases, the variability in experimental plots can be fit into the model using some known factor that is related

to the variability. Often in field experiments, the plots are arranged in a rectangular grid pattern of rows and columns, such

that a linear or non-linear function of row or column position can be fit as a covariate in the model to account for some of the

field variability. Such covariates may not model the experimental error variability well if the variation is ‘patchy’ (highly
non-linearly and not regularly related to the field position coordinates). Fitting a model that allows some correlation between

plots as a function of their physical distance and estimating the correlation from the data often better models the data with

such patchy variability.

How do we model the relationship between distance among experimental units (in space or time) and the correlation

between their residual effects? In fact, many models are possible and they vary in how they relate the correlation

between residuals to the distance between observations: the relationship may be linear or non-linear, one- or

two-dimensional, involve a moving mean or not, and so forth. ASReml provides a wide array of possible models that can

be fit to the data (Table 7.6 of Gilmour et al. 2014). In practice, we most often just fit autoregressive first-order (AR1)

correlation structures to field data, as this model has proven robust across many different data sets. This is not to say that

errors are really correlated in an AR1 fashion, but it means that the AR1 model is a useful approximation to a wide variety of

error effect distributions.

The AR1 structure for residuals means that there are two parameters that we need to estimate to describe the R structure. We

have a variance component for residual effects as always, but in addition there is a correlation coefficient that needs to be

estimated. For any pair of residuals, their covariance is the product of the error variance component and the correlation

coefficient raised to a power equal to the distance between the two observations. Since a correlation coefficient is never

larger than one, the resulting covariance between observations decreases as the distance increases and the correlation
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coefficient is raised to higher powers. Negative correlation coefficients are also possible, and in plant field data may indicate

inter-plot competition, perhaps mediated by differences in plant heights. The units of distance obviously impact the powers

of the correlation coefficient that are fit in the elements of the R structure, but since the correlation coefficient is estimated

from the data, its value will change accordingly. So if we only care about the final R structure and not the specific value of

the correlation coefficient, we do not need to worry about the units of distance.

Next, we could use linear distance between plots as the relevant distance for the AR1 model, but more often in

two-dimensional field grid situations, we consider that distances in the row direction may have a different effect on the

residual covariance as distances in the column direction. Thus we often model an R structure that has ‘separable’
correlations in the row and column direction. At one extreme, we may assume that distances in only the column direction

and not in the row direction affect the covariance between residuals. To show what this R structure looks like, assume we

have 100 observations measured on a grid of 10 rows � 10 columns. If we sort the observations by row position and column

within row and fit an AR1 correlation (ρ) only in the row direction, we have an R structure as described in Fig. 3.1:

Observations in different field columns are independent of each other and have covariance of zero. Observations in a

common row have a covariance that depends on their distance in row units. For example, observations in row 1 and row 2 of

column 1 have a distance of 1 unit and a correlation of ρ1¼ ρ, resulting in a covariance ofρσ2e (Fig. 3.1). Observations in row
1 and in row 10 of a common column have a distance of 9 units, so their covariance is ρ9σ2e , which will be near zero unless ρ
is very close to one.

We can write this matrix in a much more concise form using a direct product between an identity matrix with the dimensions

equal to the number of columns by the matrix of spatial correlations among row residuals. The row residual correlation

matrix for a grid with r rows is:

Σρr ¼

1

ρ

ρ2

⋮

ρr

ρ

1

ρ

⋮

ρr�1

ρ2

ρ

1

⋮

ρr�2

ρ3

ρ2

ρ

⋮

ρr�3

. . .

. . .

. . .

. .
.

. . .

ρr�1

ρr�2

ρr�3

⋮

1

2
666666664

3
777777775

Then the complete R structure is efficiently written as a Kronecker product:

Var eð Þ ¼ R ¼ σ2eIc � Σρr
� � ð3:7Þ

Fig. 3.1 R structure for residuals with autoregressive first order correlations in row direction and independent in column direction
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The dimensions of this R matrix are rc � rc. Writing the R structure using this direct product formulation is helpful for

understanding how to fit the models using ASReml because ASReml allows the user to specify the components of the direct

product, which is the easiest way to represent this structure in terms of data set factors. For example, the R structure shown

here would be represented as a direct product of two structures in ASReml: idv(column)and ar1(row).

If residual errors are correlated both in row and column directions, we have two additional parameters, ρr and ρc,
representing the correlation coefficient in the row and column, directions, respectively. If observations are sorted in row

order and column within row order, the R structure is shown in Fig. 3.2:

Again, this “AR1 � AR1” R structure can be written as a Kronecker product involving two spatial correlation matrices

R¼ σ2e

1 ρc ρ2c . . . ρc�1
c

ρc 1 ρc . . . ρc�2
c

ρ2c ρc 1 . . . ρc�3
c

⋮ ⋮ . .
. � � � ⋮

ρc�1
c ρc�2

c ρc�3
c . . . 1

2
6666666664

3
7777777775
�

1 ρr ρ2r . . . ρr�1
r

ρr 1 ρr . . . ρr�2
r

ρ2r ρr 1 . . . ρr�3
r

⋮ ⋮ . .
. � � � ⋮

ρr�1
r ρr�2

r ρr�3
r . . . 1

2
6666666664

3
7777777775

¼ σ2e Σρc � Σρr
� �

We will cover more details about the spatially correlated residual structures in Chap. 7 (Spatial analysis). To demonstrate

briefly how the Kronecker products are coded in ASReml, we show how to fit the models with residual correlations only in

row direction or in both row and column directions in Code example 3.3. The data set for this example is a single-site

replicated experiment of barley varieties where the field was arranged as a rectangular grid of rows and columns. The data

file (barley.asd) is provided with the ASReml program code, and on a Windows computer will be installed in a folder similar

to “C:\Program Files\ASReml4\Examples\Functional”. This example is also discussed in the ASReml User Guide (Gilmour

et al. 2014) and in Gilmour et al. (1997).

Fig. 3.2 R structure for residuals with separate autoregressive first order correlations in both row and column directions
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Code example 3.3

Correlated residual variance modeling (see Code 3-3_Correlated Residuals.as for more details)

In both cases, the R structure is indicated as a direct product of one covariance matrix and one correlations matrix, using a

period to separate the two components. Recall that we want the R structure to have variances on the diagonal and this is

produced from a direct product between a covariance matrix (which has variances on the diagonal) and a correlation matrix

(which usually has ones on the diagonal). A direct product between two correlation matrices would not work because it

would be scaled to ones on the diagonal instead of the residual variance. Similarly, a direct product between two covariance

matrices would not work because it would result in variances squared on the diagonals. So, for model 1, in principle, we want

to use residual idv(column).ar1(row)instead of residual id(column).ar1(row); the difference is

simply the character ‘v’ appended to ‘id’ to make it a covariance rather than correlation structure. In practice, however,

ASReml will, if possible, adjust the components of the residual structure to produce an appropriate R structure. So, one can

‘get away’ with writing residual id(column).ar1(row)in this case, but we recommend writing the correct

structures as a habit, since there may be instances where one has to get the structure exactly correct, for example, when

providing starting values for covariances vs correlations.

Output from model 1

- - - Results from analysis of yield - - -

Akaike Information Criterion 1468.03 (assuming 2 parameters).

Bayesian Information Criterion 1473.68

Model_Term Gamma Sigma Sigma/SE % C

idv(column).ar1(row) 150 effects

Residual SCA_V 150 1.00000 43374.9 6.16 0 P

row AR_R 1 0.579377 0.579377 8.12 0 P

...
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In this example, the residuals in column direction are identical and independent (not correlated), whereas residual errors are

correlated in the row direction. The correlation in the row direction is is ρ ¼ 0.579. This means that the covariance between

residuals on plots that are in a common column but separated by two rows is ρ2rσ
2
e ¼ 0:5792

� �
43374:9 ¼ 14541.

Output from model 2

- - - Results from analysis of yield - - -

Akaike Information Criterion 1406.64 (assuming 3 parameters).

Bayesian Information Criterion 1415.13

Model_Term Gamma Sigma Sigma/SE % C

ar1(column).ar1(row) 150 effects

Residual SCA_V 150 1.00000 38754.3 5.00 0 P

column AR_R 1 0.683769 0.683769 10.80 0 P

row AR_R 1 0.458594 0.458594 5.55 0 P

The residuals from model 2 are correlated both in column (ρc ¼ 0.683) and row directions (ρr ¼ 0.458) with the common

residual variance of 38754.3. So, residuals on plots separated by two rows and three columns would have a covariance of

ρ2rρ
3
cσ

2
e ¼ 0:4592

� �
0:6842
� �

38754:3 ¼ 3819:9.

We can also create models that have spatially correlated residuals with unique variances and correlations across different

sets of observations using the sat() function to model a separate and correlated residual structure for sections (e.g.,

experimental locations). The ASReml manual provides example code for fitting heterogeneous spatially correlated residuals

for a field experiment replicated across three sites (Gilmour et al. 2014). To fit three separate AR1 � AR1 structures at each

site, we can use:

If we find after fitting the model that the column correlation was not significant at site 2, then we can modify the structure to

specify an AR1 structure for rows only specifically at site 2, while fitting row and column correlations at the other two

locations:

Or, more concisely:

Residual effects are also often correlated when we have repeated measures on the same subjects (e.g., measuring the same

trees or animals at different ages) or when we measure multiple traits on each experimental unit and want to fit multivariate

models. A trait measured at different ages can be treated in some cases as just a specific form of a multivariate model with

different traits. For example, tree height could be measured at ages 2, 4 and 6 and recorded as Height2, Height4, Height6.

The algebraic expression of residual variance matrix for repeated measure and for multivariate models is

In � Σ ð3:8Þ
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where I is the identity matrix with n units (random residuals), Σ is usually an unstructured covariance matrix with t x
t dimensions and t is the number of traits (Gilmour et al. 2014). Traits are ordered within units. This structure means that

residuals are assumed to be independent between experimental units, but residuals for different traits measured on the same

experimental unit can be correlated. The unstructured covariance matrix means that we allow each trait to have a unique

error variance and each pair of trait residuals to have its own covariance.

We can specify the residual R structure for a multivariate analysis of height and yield in the maize RIL data set using:

The id(units).us(Trait)structure for repeated and multivariate models is a default. ASReml ‘knows’ we are fitting
a multivariate model if we have more than one dependent variable listed on the left hand side of the model statement. Even if

we do not define the residual term in the model ASReml will automatically add it. Again, it is a useful habit to write the

residual structures explicitly because the user may need to add starting parameter values in some cases.

Heterogeneous G Variance Structures

Block Diagonal G Structure
For a univariate linear mixed model with one random term the variance of the response variable y is

Var yð Þ ¼ σ2uZZ
0 þ σ2eIn. If there is more than one random term, the random effect vectors u can be partitioned into

sub-vectors as u ¼ uT
r ; . . . ; u

T
b

� �T
and the design matrix for random effects can be partitioned into sub-matrices as

Z ¼ [Zr, . . . , Zb].

TheG structure for multiple random terms becomes a block diagonal, with one section and one variance component for each

term. Let’s say there are two random terms, such as the genotype (RIL) and rep effects from the maize RIL example; we use

the direct sum
L

to define the G matrix as

G ¼ �L
j¼1σ

2
uj ¼ σ2gIg � σ2rIr ð3:9Þ

G ¼ �L
j¼1σ

2
uj ¼

σ2gIg 0

0 σ2rIr

� 	
ð3:10Þ

where Ig is identity matrix with dimensions g � g (g being the number of RIL genotypes), Ir is the corresponding identity

matrix for the block effect (r being the number of blocks). To show this structure directly, assume we took a small subset of

the data that included only three RIL genotypes and two reps. The G structure would have dimensions 7 � 7:

G ¼ �L
j¼1σ

2
uj ¼

σ2g 0 0

0 σ2g 0

0 0 σ2g

0

0
σ2r 0

0 σ2r

2
666664

3
777775 ð3:11Þ

The ASReml code for multiple random terms is:
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We can be more explicit about the G structure while fitting the same model as follows:

The model terms idv(RIL) and idv(rep) are simple terms. The RIL and rep effects are assumed to have IID variance

structures, meaning that variance associated with the RIL is the same (identical) across different environments and the rep

effects have the same IID variance structure at different locations. These may not be realistic assumptions.

Nested and Interaction Terms in the G Structure
Interaction effects are formed by joining two terms with a dot or colon (A.B or A:B). Model terms with more than one

factor are called compound terms. In the following ASReml code, a compound model term is given for RIL nested within

location.

The program understands the compound term location.RIL is a nested term because the location main effect is

included, but the RIL term is never listed as a main effect and appears only as an interaction with location. ASReml creates

a compound term with the number of levels equal to the number of locations � number of RIL levels. If there were

3 locations and 20 RIL varieties in each location, the nested (interaction) term would have 60 levels.

The variance of the compound model term can still be IID. However, we can change this assumption and instead fit a model

where RILs have different variances at each location. In ASReml, we create a consolidated model term by combining the

compound term (location.RIL) and associating it with different variances according to location. For example, we may

want a G structure that assume RILs have a different variance at each location and that RILs are independent within locations

and across locations:

GL:R ¼ Σ� Inr ¼
σ2g1Ig
0

0

0

0

σ2g2Ig
0

0

0

0

σ2g3Ig
0

0

0

0

σ2g4Ig

2
664

3
775 ð3:12Þ

We can write this structure as a direct sum of four IDV matrices that each have a separate genotypic variance:

GL:R ¼ σ2g1Ig � σ2g2Ig � σ2g3Ig � σ2g4Ig ð3:13Þ

We can also write the same structure as a direct product of a matrix (∑) representing the variance-covariance relationships of
any one genotype across the four locations and an identity matrix with dimensions equal to the number of RILs:

GL:R ¼ Σ� Ig ¼
σ2g1
0

0

0

0

σ2g2
0

0

0

0

σ2g3
0

0

0

0

σ2g4

2
664

3
775� Ig ð3:14Þ
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The ASReml code for this G structure along with a heterogeneous error variance structure across locations is:

In this example, we use the term idh(location) to create an ‘identity with heterogeneous variances’ matrix (in other

words, a diagonal matrix), which represents the ∑ matrix. Part of the output from this model follows:

Model_Term Sigma Sigma Sigma/SE % C

sat(location,01).idv(units) 121 effects

units ID_V 1 84.7896 84.7896 5.43 0 P

sat(location,02).idv(units) 118 effects

units ID_V 1 107.056 107.056 5.34 0 P

sat(location,03).idv(units) 116 effects

units ID_V 1 69.9691 69.9691 5.31 0 P

sat(location,04).idv(units) 119 effects

units ID_V 1 66.1969 66.1969 5.34 0 P

diag(location).id(RIL) 248 effects

location DIAG_V 1 320.142 320.142 4.82 0 P

location DIAG_V 2 381.756 381.756 4.73 0 P

location DIAG_V 3 241.861 241.861 4.69 0 P

location DIAG_V 4 323.672 323.672 4.95 0 P

In the output, the first four sigmas are residual variances at each of the four locations and the last four sigmas are RIL

variances, one for each location. DIAG_V indicates that the G variance structure is block diagonal.

Effects in G Can Be Correlated
Is the assumption of independent RIL effect across sites realistic? Probably not, because the same RIL varieties are tested

across sites and the performance of a variety in one environment is likely to be related to its performance in another

environment. This implies a correlation between the effects of a common genotype in different environments. We can no

longer use a direct sum
L

to model such a G matrix; instead we need to use a direct product
N

and include the pairwise

environment correlations in one of the component matrices.

As a simplified example, consider the variance structure for three genotypes nested within two locations, allowing each

genotype within location effect to have a correlation with the effect of the same genotype at a different location. The

G matrix is the product of a variance-covariance matrix of genotype effects across levels of location (this time being

unstructured instead of diagonal) and an identity matrix with g � g (3 � 3) dimensions:

GL:R ¼
X

�Ig ð3:15Þ

¼ σ2g1 σg12
σg12 σ2g2

" #
�

1 0 0

0 1 0

0 0 1

2
4

3
5 ¼

σ2g1 0 0 σg12 0 0

0 σ2g1 0 0 σg12 0

0 0 σ2g1 0 0 σg12
σg12 0 0 σ2g2 0 0

0 σg12 0 0 σ2g2 0

0 0 σg12 0 0 σ2g2

2
66666664

3
77777775

ð3:16Þ
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Since we have only two sections in this example, there are two variance components σ2g1 and σ2g2

� �
and one covariance

(σg12) between RIL effects in different locations. We can also parameterize this in terms of correlations instead of

covariances:

GL:R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2g1σ

2
g2

q σ2g1
σ2g2

rg12

rg12
σ2g2
σ2g1

2
6664

3
7775�

1 0 0

0 1 0

0 0 1

2
4

3
5 ¼

σ2g1 0 0 σg12 0 0

0 σ2g1 0 0 σg12 0

0 0 σ2g1 0 0 σg12
σg12 0 0 σ2g2 0 0

0 σg12 0 0 σ2g2 0

0 0 σg12 0 0 σ2g2

2
66666664

3
77777775

Using a correlation matrix parameterization sometimes makes it easier to provide initial values and to converge on a correct

result. We can fit this kind of structure to the maize RIL example data using the following ASReml code:

The variance function coruh(location).id(RIL) means that RIL effects nested within location have a uniform

correlation between pair of sites (coruh) but their variances is heterogeneous across locations (coruh). The second part of

the consolidated term, id(RIL) means that RIL effects are independent of each other. The order of the effects does not

matter as long as we assign the appropriate variance function to the compound terms. For example, coruh(location).

id(RIL)and id(RIL).coruh(location) produces the same results.

Output from this model is:

Model_Term Sigma Sigma Sigma/SE % C

sat(location,01).idv(units) 121 effects

units ID_V 1 79.1657 79.1657 6.27 0 P

sat(location,02).idv(units) 118 effects

units ID_V 1 128.281 128.281 6.13 0 P

sat(location,03).idv(units) 116 effects

units ID_V 1 79.3361 79.3361 6.14 0 P

sat(location,04).idv(units) 119 effects

units ID_V 1 61.8943 61.8943 5.98 0 P

coruh(location).id(RIL) 248 effects

location COR_R 1 0.991999 0.991999 49.49 0 P

location COR_V 1 325.759 325.759 4.87 0 P

location COR_V 2 367.645 367.645 4.70 0 P

location COR_V 3 237.983 237.983 4.71 0 P

location COR_V 4 324.171 324.171 4.98 0 P

It is obvious from this result that RIL effects are strongly correlated across locations, almost perfectly so. The previous

model where we fit a diagonal variance-covariance matrix for the effects within and across locations is analogous for forcing

the correlation coefficient to be zero, which in this case is obviously a poor model.

Correlated Effects Due to Genetics
In the examples up to now, we assumed that the levels of random genotypic effects are independent. In reality, individuals in

a population can have varying levels of genetic similarity. If we have a way to estimate the relatedness for each pair of

individuals in the data set (using pedigree information or marker data), we can account for these relationships in the

G structure of the mixed model. We will cover details in later chapters but give a simple demonstration here.
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Let’s say there are 8 individuals in the pedigree. Individual A is the mother of progenies 4 and 7, each from a different father.

Individual B has progenies 5 and 8, each from different fathers, and individual C has progeny 6. The matrix of additive

genetic relationships derived from pedigree looks like:

Individuals A, B, and C in the parental generation are assumed to be unrelated and independent, so we assign them as having

0 genetic relationships. The additive genetic covariance between individual 1 and its progeny 4 and 7 is 0.5; the additive

genetic covariance between half-sibs 4 and 7 is 0.25. The algebraic form of the G matrix for the random term is G ¼ σ2AA,
where σ2A is the variance component associated with the additive genetic effects and A is the additive genetic relationship

matrix derived from the pedigree. We can fit this relationship matrix to the data on a series of individuals by supplying a

special pedigree information file to ASReml, declaring the appropriate factor (e.g., individual) as associated with the

pedigree using the !P field definition qualifier, and using the model function nrm(). For example:

Initial Values

As described in Chap. 2, ASReml uses the Average Information algorithm to obtain maximum likelihood estimates of the

variance parameters from the data. This requires iteration beginning from some starting values, at each step obtaining

maximum likelihood estimates for one parameter at a time dependent on current values of the other parameters. These steps

are repeated until the parameter estimates change only very little from step to step. This is referred to as ‘convergence’ on the
maximum likelihood solution. Specifically, ASReml stops iterating if the successive REML log-likelihood (LogL) values of

two iterations do not change more than 0.002 and if the parameter estimates are stable.

ASReml by default uses the phenotypic variance of the response to obtain initial values for the variance structure parameters.

For most simple models, the user does not need to provide initial values in the code. For complex models, such as

multivariate models, the ASReml algorithm can have difficulty converging when the starting values are not reasonably

close to the REML solution (Gilmour et al. 2014). When you see ‘Convergence failed’ or ‘LogL did not converge’messages

after running a model, it is likely that the initial values based on the phenotypic variance are not good enough to finish the

job. In such cases, especially for complex models, user need to supply good starting values to achieve convergence.

There are multiple ways to provide initial values. We will use MaizeRILs_miss.csv data
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1. Insert explicit initial values in the job file (.as) using the !INIT qualifier.

In the code, 300 is the initial variance for RIL effect and 1.2 is the initial variance for the block effect.

When !INIT is used to supply initial values for more complex variance structures, the number of parameters and their order

must be correct. In example below a bivariate model (height and silking) is fit to estimate genetic/residual correlations and

covariances between two traits.

We used !INIT qualifier and listed the residual variance for height (92), the covariance between height and silk (0.1) and

the variance for silking (3.2). Notice the order of the initial values. It follows the order of traits in the model.

We can also use !ASSIGN and !INIT qualifiers to supply initial values for the correlated residual effects models. In the

example below, the initial values for the unstructured us() residual variance structure are supplied in the order lower-

triangle row-wise:

Since the initial parameters continue on multiple rows, we use !< string !> to enclose the term. With the !ASSIGN qualifier

we created a file called USe and used it in the code to supply initial values.

Initial values for the RIL variance can be supplied in a similar way:

USg is the initial values for RIL effect and USe is the initial values for the residuals. Since the values for residuals or for RIL

effect are in their respective rows there is no need to use !< !> to enclose the string.
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2. Using .tsv and .msv files to provide initial values.

An example of .tsv file is given below for Code 3-1_Default variance modeling.as.

In each run ASReml writes the initial values of the variance parameters to a file with Code 3-1_Default variance modeling.
tsv extension (template-start-value).

# This .tsv file is a mechanism for resetting initial parameter values

# by changing the values here and rerunning the job with !CONTINUE 2.

# You may not change values in the first 3 fields

# or RP fields where RP_GN is negative.

# Fields are:

# GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

4, "rep.location", G, P, 0.10000000 , 4, 1

5, "RIL", G, P, 0.10000000 , 5, 1

6, "Variance 1", V, P, 1.0000000 , 6, 1

# Valid values for Pspace are F, P, U and maybe Z.

# RP_GN and RP_scale define simple parameter relationships;

# RP_GN links related parameters by the first GN number;

# RP_scale must be 1.0 for the first parameter in the set and

# otherwise specifies the size relative to the first parameter.

# Multivalue RP_scale parameters may not be altered here.

After each iteration, the current values of the variance parameters are written to two files with extensions .rsv (re-start

values) and .msv.

The Code 3-1_Default variance modeling.rsv file

78 6 2173 121

# This .rsv file holds parameter values between runs of ASReml and

# is not normally modified by the User. The current values of the

# the variance parameters are listed as a block on the following lines.

# They are then listed again with identifying information

# in a form that the user may edit.

(continued)
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0.000000 0.000000 0.000000 0.1804261 3.774121 1.000000

RSTRUCTURE 1 1 3

VARIANCE 1 1 0

6, V, P, 1.0000000 0 0

STRUCTURE 474 0 0

rep.location 1 1

4, G, P, 0.18042608 0 0

RIL 1 1

5, G, P, 3.7741206 0 0

The Code 3-1_Default variance modeling.msv file is easier to understand, as it clearly identifies the fields.

# This .msv file is a mechanism for resetting initial parameter values

# by changing the values here and rerunning the job with !CONTINUE 3.

# You may not change values in the first 3 fields

# or RP fields where RP_GN is negative.

# Fields are:

# GN, Term, Type, PSpace, Initial_value, RP_GN, RP_scale.

4, "rep.location", G, P, 0.18042608 , 4, 1

5, "RIL", G, P, 3.7741206 , 5, 1

6, "Variance 1", V, P, 1.0000000 , 6, 1

# Valid values for Pspace are F, P, U and maybe Z.

# RP_GN and RP_scale define simple parameter relationships;

# RP_GN links related parameters by the first GN number;

# RP_scale must be 1.0 for the first parameter in the set and

# otherwise specifies the size relative to the first parameter.

# Multivalue RP_scale parameters may not be altered here.

# Notice that this file is overwritten if not being read.

Notice the difference between initial values in the .tsv and .msv files. The initial values in the .msv file are generated after the

last iteration are closer to actual values. You may edit the PSpace and Initial_value fields.

We can use the !CONTINUE f qualifier to use one of these starting value files.

If !CONTINUE 2 or !TSV is used then the .tsv file is used instead of the .rsv file.

if !CONTINUE 3 or !MSV is used then the .msv file is used instead of the .rsv file.
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We provide the specific file names after !CONTINUE or after !MSV as “Code 3-1_Default variance modeling”

ASReml looks for “Code 3-1_Default variance modeling.msv” file, scans it for parameter values related to current model,

replaces the values obtained from .as file before iteration resumes. If a file name is not provided, ASReml looks for an .rsv

file with the same base name used for the output files, i.e., the .as file suffix name, possibly appended by arguments.
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Abstract

In this chapter we cover the basics of estimating breeding values from field progeny test data for half-sib family selection.

The individual level or ‘animal’ model is introduced to demonstrate prediction of individual breeding values across

generations. Modifications to the basic model are considered, such as maternal effects and genetic group effects.

Family Selection

Many breeders are interested in family selection for species that can easily produce large half-sib or full-sib families,

particularly for traits that cannot be measured on living individuals. Family selection is favored for a number of reasons.

Traits (such as meat quality in livestock species) that cannot be measured on living individuals can be measured in progeny

or siblings of selection candidates, and selections made based on the mean phenotypes of the relatives. Many traits of interest

are controlled by many genes with small effects, and show low to moderate heritability. The phenotype of an individual is

often a poor predictor of its genetic merit as a breeding parent because of large environmental effects, so phenotypic

selection on single individual (mass selection or strict within family selection) is not effective. Testing of inbred lines is one

solution to this problem, but for those species in which inbred lines are not feasible, selection based on family mean

phenotype is an alternative solution. Mass production of progeny of a specific cross may also be a goal, to exploit favorable

specific combining ability (non-additive genetic effects). For example, in forest trees, seed orchard managers prefer parental

selection to establish seed orchards. This is sometimes called backward selection (selection of individuals of a previous

generation) or among-family selection. Breeders use phenotypic data from many progeny to calculate the breeding values

of families or parents with high accuracy.

Depending on the mating design and the experimental design, there are different types of family selection. Half-sib family

selection is often used to select superior individuals for their general combining ability. In contrast, full-sib family selection

is preferred if breeders want to market seed with a known father and mother to increase genetic gain and capture specific

combining ability and hybrid vigor between two parents.

In general, selection units and schemes are more complex when information is available on multiple individuals in some

families (Falconer et al. 1996; White et al. 2007). Selection can be strictly within family (Lynch and Walsh 1998).

Individuals are ranked within each family and then the best individual(s) within each family are selected. In another

scenario, individual estimated values are adjusted by subtracting their family means and the individuals with highest within-

family deviations are selected regardless of their family. This is called selection on within-family deviation. Another type

of selection is family index selection. This is sometimes called combined family and within family selection. Different

weights are assigned to family and individuals within family to rank them. In general, the objective is to increase genetic

gain while putting constraints on coancestry of selected individuals to avoid inbreeding as much as possible in future

generations.

In practice, breeders either use a family model or general combining ability (GCA) model to predict parental breeding

values. General Combining Ability (GCAi) is the deviation of the mean value of progeny of a particular individual (yi.)

from the population mean (μ) : GCAi ¼ yi. � μ. Breeding value (BV) is the value of an individual measured by the mean

phenotype of its progeny obtained by random mating with the population (Falconer and Mackay 1996). Breeding value

measures the average effect of an individual’s alleles as they affect progeny performance, rather than the performance of the

individual itself (which is its genotypic value). In diploid species and in the absence of epistasis, an individual’s GCA value

is half of its BV because a parent transmits exactly half of its alleles to any individual progeny. Compared to animal models,

GCA models do not require as much computer memory to solve mixed model equations, because mixed model equations are

solved only for the parents.

Moving to the progeny generation, we can include parental BV’s in a linear model for the progeny j as the average of its

parental BVs along with a fixed overall mean and random error effect (ei) : yj ¼ μ + 0.5(um + uf) + ej, where um and uf are

male and female parental BVs, respectively. Alternatively, breeders can fit animal models to simultaneously predict

parental and progeny breeding values on the same scale and carry out various selection strategies.

In this chapter we cover half-sib family selection, a commonly used approach in many plant and animal breeding programs.

We first briefly cover some definitions, interpretations of observed variance components and genetic interpretations, then
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introduce several examples of the mixed model equations for GCA models and the syntax in ASReml. We also give an

example on how to derive half-sib family means and the variance of family means as the selection unit and introduce two

animal models. The first example uses the same pine data with shallow pedigree (parent and progeny) used for the GCA

model. The second example uses data from a pig breeding population with deep pedigree.

Causal Variance Components and Resemblance

Variance components estimated from data are observed variance components. We partition the total phenotypic variance

into groups, such as between families and within families. Using the observed variance components and genetic covariances

among relatives, we can calculate the causal variance components. Additive genetic variance is the causal variance

component arising from additive effects of genes that cause resemblance between relatives. Falconer and MacKay (1996)

denote observed variance component by the symbol ‘σ2’ and the causal components by the symbol ‘V’. For most models we

use observed variance components to estimate causal variances or to estimate heritability and other population parameters.

The relationships between the observed and causal variance components is dictated by the degree of covariances among

relatives. Relatives can be classified as ancestral (e.g. parent-offspring) or collateral (e.g. sibs) (Lynch and Walsh 1998).

Relatives resemble each other more than they do other individuals in the population, for traits that have non-zero heritability.

The more closely related the individuals are, the more they resemble each other. The resemblance between individuals is

measured by the genetic covariance, a concept introduced by Fisher (1918) and Wright (1922). We use genetic covariances

to estimate causal variance components from observed estimates.

Covariance of half-sibs

In half-sib families (each consisting of a group of progeny that all share one parent in common, while the other parent is

randomly chosen from the population), the expected value of the estimated variance component explained by half-sib family

effects is 1/4 of the additive genetic variance (Falconer and Mackay 1996). Where does this relationship come from?

We can use a simple model of genotypic values for individuals based on their additive and dominance effects at one locus.

We assume the population is in linkage equilibrium and for now will assume no epistasis, such that our single locus model

can be simply generalized to a multi-locus model for the whole genome by summing up effects and variances over loci.

Obviously, this assumption is probably never completely true in real populations, but nevertheless this kind of model often is

an adequate approximation to the genetic architecture of real populations. The genotypic value of individual A is the sum of

the overall population mean (μ), the average effects of the two alleles that it carries, and the dominance interaction between

those two alleles:

GA ¼ μþ αA1 þ αA2 þ δA12 ð4:1Þ

The phenotypic value of this individual is the sum of its genotypic value and a combination of environmental effects and

random residual term that we will indicate as ε:

PA ¼ GA þ εA ¼ μþ αA1 þ αA2 þ δA12 þ ε ð4:2Þ

The phenotypic variance in the population is the variance of the phenotypic values, which is the sum of the genotypic

variance and environmental/residual effect variance, since we will assume that there is no covariance between genotypic

values and environmental values:

VP ¼ VG þ Vε ¼ V αA1 þ αA2 þ δA12ð Þ þ V εð Þ ð4:3Þ

We can further sub-divide the genotypic variance into components due to the additive effects and the dominance effect. We

assume the population is in Hardy-Weinberg equilibrium, so that the two alleles at a locus within any individual are not

correlated. This lack of correlation results in the variance of the sum of the genetic effects being equal to the sum of the

variances of those effects:

VG ¼ V αA1 þ αA2 þ δA12ð Þ ¼ V αA1ð Þ þ V αA2ð Þ þ V δA12ð Þ ¼ 2V αð Þ þ V δð Þ ¼ VA þ VD ð4:4Þ
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Notice that, by definition, the additive variance (VA) is twice the variance of individual allele additive effects: VA ¼ 2V(α).
This definition also follows from the idea that the breeding value of an individual is the sum of its allelic additive effects, so

for one locus BVA ¼ αA1 + αA2 and the variance of breeding values is:

V BVAð Þ ¼ V αA1 þ αA2ð Þ ¼ 2V αð Þ ¼ VA ð4:5Þ

Now, we use this model to find the covariance between half-sibs. Let’s say individual A mates with individuals B and C, and

produces progenies X (from A� B) and Y (from A� C). We can write the covariance between the genotypic values of these

two offspring as:

Cov GX ,GYð Þ ¼ C αX1 þ αX2 þ δX12ð Þ; αY1 þ αY2 þ δY12ð Þð Þ ð4:6Þ

We use the subscripts X1 and X2 to denote the two alleles in individual X. We know that one of the two alleles was inherited

from its parent A and the other from its parent B. So, we can switch the notation to refer to allele X1 as allele Ai, where Ai

has an equal probability of being either allele carried by parent A. We can make similar substitutions for the other alleles and

we will refer to allele Y1 as the allele that individual Y inherited from A as Ai0, to indicate that it may or may not be the same

as Ai inherited in individual X:

Cov GX ,GYð Þ ¼ C αAi þ αBi þ δAiBið Þ; αAi0 þ αCi þ δAi0Cið Þð Þ
¼ C αAi; αAi0ð Þ þ C αAi; αCið Þ þ C αAi; δAi0Cið Þ
þC αBi; αAi0ð Þ þ C αBi; αCið Þ þ C αBi; δAi0Cið Þ
þC δAiBi; αAi0ð Þ þ C δAiBi; αCið Þ þ C δAiBi; δAi0Cið Þ

ð4:7Þ

The assumption of random mating among unrelated individuals means that alleles inherited from different parents cannot be

identical by descent (IBD), so they are independent. Independence among alleles implies that all of the covariances

involving parents B and C are zero. Random-mating also means that there are no covariances between additive effects

and dominance effects and that the dominance effects have no covariance even if they have one allele in common (both

alleles must be identical by descent for there to be a covariance). Thus, Eq. 4.7 simplifies greatly because all but one

covariance component is zero by definition under random mating:

Cov GX, GYð Þ ¼ C /Ai;/Ai
0

� � ð4:8Þ

The probability that the allele inherited by X from parent A is the same as the allele inherited by Y from parent A is ½. So the

covariance equals half of the covariance between an additive effect and itself, or in other words, half of the variance of one

additive effect, which equals a quarter of the overall additive genetic variance:

Cov GX ,GYð Þ ¼ 1

2
C αAi; αAið Þ ¼ 1

2
V αAið Þ ¼ 1

4
VA ð4:9Þ

If we have randomized the progenies with respect to environmental and error effects, then there is no covariance between

those effects on different progenies, and the phenotypic variance is equal to the genotypic variance:

Cov PX ,PYð Þ ¼ Cov GX þ εX;GY þ εYð Þ ¼ Cov GX ,GYð Þ ¼ 1

4
VA ð4:10Þ

The degree of resemblance between X and Y is measured using the coefficient of coancestry θxy, which is simply the

probability that an allele in individual X is identical by descent to an allele at the same locus in individual Y. The coancestry

coefficient determines the covariance between breeding values of individuals, denoted here as AX and AY:

Cov AX;AYð Þ ¼ 2θXYVA ð4:11Þ

More generally, the covariance between genotypic values of individuals X and Y is a function of the additive variance scaled

by twice the coancestry coefficient and the dominance variance scaled by the ‘double coancestry coefficient’, ΔXY. In the
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absence of inbreeding, the double coancestry coefficient is the probability that the pair of alleles at a locus in one individual
is IBD with the pair of alleles in the other individual:

Cov GX;GYð Þ ¼ 2θXYVA þ ΔXYVD ð4:12Þ

To summarize (Lynch and Walsh 1998):

Genetic covariance between half-sibs

Case Probability Contribution
X and Y have 0 allele IBD 1/2 0
X and Y have 1 allele IBD 1/2

Giving the genetic covariance between half-sibs as

Covariance of full-sibs (both parents are common to all progeny)

Two parents (B and C) are mated to produce full-sib offspring (X and Y). At one locus, the genotype values (G) of

parents are;

GB : αB1 þ αB2 þ δB12

GC : αC1 þ αC2 þ δC12

Each full sib receives one paternal and one maternal allele. The probability that each sib receives the same paternal allele or

maternal allele is ½. The probability that a randomly sampled allele from X is IBD to a randomly sampled allele from its full-

sib Y is the probability that we sample from X and Y sibs inherited from a common parent (1/2) times the probability that

two alleles sampled from that parent are IBD (1/2 for non-inbred parents). Thus, the coancestry coefficient for full sibs is

θXY ¼ 1/4. To determine the double coancestry coefficient, consider that three cases are possible for the number of alleles

per locus that are IBD between full sibs. They can share 0, 1, or 2 alleles IBD (Lynch and Walsh 1998):

Pr 0 alleles IBDð Þ ¼ Pr paternal allele not IBDð Þ∗Pr maternal allele not IBDð Þ

¼ 1

2
∗
1

2
¼ 1

4

Pr 2 alleles IBDð Þ ¼ Pr paternal allele IBDð Þ∗Pr maternal allele IBDð Þ

¼ 1

2
∗
1

2
¼ 1

4

Pr 1 allele IBDð Þ ¼ 1� Pr 2 alleles IBDð Þ þ Pr 0 allele IBDð Þð Þ

¼ 1� 1

4
þ 1

4

� �
¼ 1

2

The probability that the allele pair is IBD between the full-sibs is the probability that both alleles are IBD between them,

which is shown above as 1/4. In the case where the allele pair is IBD, their genetic covariance is:

Cov αA1 þ αB1 þ δA1B1; αA1 þ αB1 þ δA1B1ð Þ
V αA1 þ αB1 þ δA1B1ð Þ ¼ VA þ VD

ð4:13Þ
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Putting the pieces together (Lynch and Walsh 1998);

Genetic covariance between full-sibs 

Case Probability Contribution
X and Y have 0 allele IBD 1/4 0
X and Y have 1 allele IBD 1/2 
X and Y have 2 alleles IBD 1/4 

Or, using the coancestry and double coancestry coefficients directly, we get the same result:

Cov GX ,GYð Þ ¼ 2θXYVA þ ΔXYVD ¼ 2
1

4

� �
VA þ 1

4
VD ¼ 1

2
VA þ 1

4
VD ð4:14Þ

See Lynch and Walsh (1998, Chapter 7) and Falconer and MacKay (1996, Chapter 9) for more details about the genetic

covariances among relatives.

The GCA (Family) Model

There are multiple ways to estimate variance components and breeding values from progeny test data. We might be

interested in parental breeding values. In this case, the GCA models (parental models) may be preferred because they are

easier to fit. All we need to do is to solve linear mixed model equations for the parents, not for the progeny. For example, a

linear mixed model to predict GCA values of parents based on their progeny values measured at a particular age is

yi ¼ μ + age + GCAi + ei, where age refers to the age of individual progeny (a fixed effect). We can set up the mixed

model equations to obtain solutions (GCA estimates) for parents, as follows:

X0X
Z0X

X0Z
Z0Zþ Iα

� � bbbu
� �

¼ X0y
Z0y

� �
ð4:15Þ

where b and u are vectors of fixed and random effects, respectively. In this example, b includes only the effect of the fixed

covariate for age, and u includes the parental GCA values. Z and X are design matrices for the fixed and random effects,

respectively. I is the identity matrix with dimensions equal to the number of parents, α is a ratio of residual variance and

genetic variance explained by the random family effectα ¼ σ2e=σ
2
u. By rearranging the mixed model equations we can obtain

solutions for the fixed (b) and random effects (u) as follows:

bbbu
� �

¼ X0X
Z0X

X0Z
Z0Zþ Iα

� ��1
X0y
Z0y

� �
ð4:16Þ

BLUE bð Þ ¼ X0X X0Z½ ��1 X0y
Z0y

� �
ð4:17Þ

BLUP uð Þ ¼ Z0X Z0Zþ Iα½ �-1 X0y
Z0y

� �
¼

u1
u2
⋮
un

2664
3775 ð4:18Þ
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α ¼ σ2e=σ
2
u is sometimes called the shrinkage factor and has a range of 0 to 1. Notice what happens in the mixed model

equations at the extreme values of heritability for h2 ¼ 0 or h2 ¼ 1. As h2!0, then α ¼ σ2e=σ
2
u ! 1 and the diagonal

components of the Z0Z+Iα part of the BLUP formula become infinitely large. Since that part of the formula gets inverted, it

is like dividing the observed differences in family means by infinity, or like multiplying them all by zero. So, the result is that

all breeding value predictions shrink to zero (there are no genetic differences among parents). As h2 ! 1, then

α ¼ σ2e=σ
2
u ! 0, with the result that the observed progeny values would be perfect indicators of the parental breeding

values, so breeding values would be equal to the mean phenotypes of their progeny (adjusted only by differences in the fixed

covariate).

The identity matrix, I, used in the mixed model equation above is appropriate when we assume no relationships among the

parents. If we know or can estimate the relationships among the parents, based either on recorded pedigrees or genetic

marker data, we can estimate their coancestries and replace the I matrix by a matrix, A, of additive genetic correlations

among the parents. Each element of the Amatrix is two times the coancestry between a pair of individuals (2θXY) as we saw
before:

BLUP uð Þ ¼ Z
0
X Z0Zþ Aα

h i-1 X0y
Z0y

� �
¼

u1
u2
⋮
un

2664
3775 ð4:19Þ

The genetic covariance matrix is traditionally derived from the pedigree, although we will show in later chapters how DNA

markers can be used to estimate genetic relationships. One effect of replacing the I matrix by an A matrix is that the BLUP

for a parent is influenced not only by the phenotype values of its own offspring, but also by the phenotypes of the offspring of

any parents that have a pedigree relationship with the individual (θ > 0 between the parents). In this case, the effect of the

shrinkage factor, α, on the BLUPs is to weigh the influence of the offspring of the parent being predicted versus the

information from offspring of related parents. As heritability increases and α decreases, not only is the overall shrinkage

reduced, but the relative influence of information from direct progeny (which comes from the Z0Z part of the BLUP

equation) versus the progenies of related parents (which comes from the Aα part of the equation) increases. With lower

heritabilities, the information from relatives becomes relatively more important. Again, however, if heritability is zero, the

BLUPs will all be shrunk back to zero.

Among the advantages of the BLUP method are that it:

• Accounts for fixed effects (e.g. site, age) while calculating breeding values.

• Is an efficient method to use information from all relatives while calculating breeding values, allowing breeding values to

be predicted even for individuals that do not have a measured phenotype.

• Accounts for trends in the data and founder effects

• Allows models to account for genotype by environment interactions (correlations)

• Makes calculation of genetic gain straightforward

Analysis of Half-Sib Progeny Data Using GCA Model

We will use the Pine_provenance.csv data introduced in Chap. 1 to demonstrate an example of prediction of half-sib family

breeding values. To recap, the data are on trees from 36 half-sib families, each sampled from one of four provenances. The

field experimental design was a randomized complete block design with five replications and from two to six trees measured

within each plot. When analyzing data, it is important to write the linear model first:

yijkl ¼ μþ Bi þ Pj þ Fk jð Þ þ BFik jð Þ þ εijkl ð4:20Þ

where

yijkl is the lth observation of the ith block, jth provenance and kth family;

μ is the overall mean;
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Bi is the random jth block effect � N 0; σ2b
� �

;

Pj is the fixed provenance effect (j ¼ 1,..,4)

Fk(j) is the random kth female parent effect within its provenance group � N 0; σ2f

� 	
BFik(j) is the random block by female interactions (plot effect), � N 0; σ2bf

� 	
εijkl is the tree within plot residual term � N 0; σ2ε

� �
Depending on the experimental design or mating design, the linear model can change. For example, if we had one tree per

female per block (single-tree plots), then the plot term (BF) would be dropped from above model and would be included in

the residual term.

For this specific example, here is why factors in the model are considered fixed or random:

• We would like to explain the sources of variation for height among the entire population from which trees in the

experiment were sampled. Howmuch of the phenotypic variation is due to genetics and how much is due to environment?

To answer this question, we treat families and their female parents as a random sample of the breeding population. Since

female parents represent a random sample of the population, any interaction effects involving female parents (block by

female interaction, BF) are also random. The residual effect is always considered random.

• The blocks in this experiment represent some larger population of potential block (or microenvironment) effects, and

we want to make inference beyond the specific sample of blocks used in this study, so we treat the block effect as

random.
• Female parents were sampled from four provenances. ‘Provenance’ in forest trees means the region where female parents

were originally selected. Provenance effect was treated as a fixed effect in this example. One reason is that there are too

few (only four) to estimate a variance for the provenance effect. Another reason might be that we are specifically

interested in differences among these four provenances.

Our first objective is to estimate variance components to make some inferences about genetic variation in the population. We

can fit the linear model in ASReml as follows:

Code example 4.1
Half-sib family progeny test data analysis (Code 4-1_HSfamily.as)
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Variance components (‘Sigma’) and the ratio of Sigma’s to their standard errors (‘Sigma/SE’) are reported in the Code
4-1_HSfamily.asr file:

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.425370E-01 0.107492 1.20 0 P

idv(female) IDV_V 36 0.749901E-01 0.189502 2.26 0 P

block.female IDV_V 180 0.782019E-01 0.197618 2.29 0 P

units 914 effects

Residual SCA_V 914 1.00000 2.52703 19.22 0 P

Variance Components and Their Linear Combinations

One of the main objectives of progeny testing is to partition observed phenotypic variance into genetic and environmental

components. Additive genetic variance, phenotypic variance, heritability and genetic gain predictions are calculated using

linear combinations of variance components. Here is an example for estimation of additive and phenotypic variances and

their standard errors from the output for half-sib progeny test data.

Variance components in the .asr output file are observed variance components. For simplicity we will use rounded numbers.

The family variance component (σ2f ¼ 0.189) is an estimate so it has an error (variance) associated with it. The variances

and covariances of variance components estimates are reported in the ASReml output file Code 4-1_HSfamily.vvp.

The standard error of the family variance component is:

SE σ2f
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var σ2f
� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:705259E-02

p
¼ 0:084

Notice that the ratio of the estimated variance component itself to its standard error is 0.189/0.084 ¼ 2.26, matching the

value in the column labeled ‘Sigma/SE’ in the .asr output above.

The phenotypic variance is the sum of the female variance, plot variance, and within-plot residual variance components:

σ2P ¼ σ2f þ σ2bf þ σ2e

σ2P ¼ 0:1895þ 0:1976þ 2:527 ¼ 2:91

The variance of a sum of estimators is the sum of the variances of each term, plus two times their covariances (using a Taylor

series approximation). Using the information from the Code 4-1_HSfamily.vvp file, we get:

Var σ2P
� � ¼ Var σ2f

� 	
þ Var σ2bf

� 	
þ Var σ2ε

� �þ
2 Cov σ2f ; σ

2
bf

� 	
þ Cov σ2f ; σ

2
ε

� 	
þ Cov σ2bf ; σ

2
ε

� 	h i
Var σ2P

� � ¼ 0:00705þ 0:00744þ 0:0173þ 2∗ �0:00138� 0:00009� 0:00329½ �
Var σ2P

� � ¼ 0:02227

The standard error of σ2P is the square root of the variance:

SE σ2P
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var σ2Pð Þ
q

¼ Sqrt 0:02227ð Þ ¼ 0:149
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Additive genetic variance
The variance component associated with the female parent (or half-sib family) effect is 1/4 of the additive genetic variance.

Therefore, the additive genetic variance estimate is four times the family variance component:

σ2A ¼ 4σ2f ¼ 4∗0:1895 ¼ 0:758 Additive genetic variance

Var σ2A
� � ¼ Var 4σ2f

� � ¼ 16Var σ2f

� 	
Variance of additive genetic variance

SE σ2A
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16Var σ2f
� �q

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var σ2f

� �q
¼ 4∗0:00705259 ¼ 0:3359 Standard error of additive genetic variance

Narrow-sense heritability
Narrow-sense heritability is a ratio of additive (σ2A) and phenotypic variances (σ

2
P). It is a population parameter with a range

of 0–1. For this half-sib family example, heritability is

h2i ¼
σ2A
σ2P

¼ 4σ2f
σ2f þ σ2bf þ σ2ε

¼ 0:758=2:91 ¼ 0:26

The approximate variance of a heritability estimator Var h2i
� �

can be obtained in several ways (Piepho and M€ohring 2007),

including the following two methods:

1. Assuming phenotypic variance σ2P
� �

is a constant, we can use the Dickerson approximation (Dickerson 1969) to calculate

variance of heritability:

Var h2i
� � ¼ 16Var σ2f

� �
σ2Pð Þ2

¼ 16∗0:00705

2:91ð Þ2 ¼ 0:01335

SE h2i
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:01335
p ¼ 0:1155

2. The Delta method is a good approximation to obtain the variance of a ratio of estimators because it uses all the

information of moments. See Lynch and Walsh (1998, Appendix 1) and Holland et al. (2003) for a detailed explanation

of the Delta method. Conveniently, ASReml provides Delta method estimates of the standard error of heritability

estimators by default when the VPREDICT !DEFINE statement is used to define a heritability (or correlation) estimate.

We show below how to use this statement to define various functions of the variance components estimates, including

linear combinations or ratios:

Code example 4.1

Half-sib family progeny test data analysis, continued (Code 4-1_HSfamily.as)
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Alternatively, the block of code following VPREDICT !DEFINE can be placed in a separate file with the same root name as

the .as command file but using the extension .pin. Either way, the output from these estimates of functions of variance

components are found in a file with extension .pvc, in this case Code 4-1_HSfamily.pvc:

ASReml 4.1 [28 Dec 2014] Title: Pine_provenance.

Code4-3_HSfamily.pvc created 25 Aug 2015 16:33:26.811

- - - Results from analysis of height - - -

1 idv(female) V 36 0.194272 0.830222E-01

2 block.female V 180 0.158139 0.859451E-01

units 914 effects

3 units;Residual V 914 2.53125 0.131836

5 Pheno 2 2.9141 0.14973

6 Additive 2 0.75801 0.33592

fam_ratio = idv(fema 2/Pheno 2 5= 0.0650 0.0275

plot_ratio = block.fe 3/Pheno 2 5= 0.0678 0.0290

error_ratio = units;Re 4/Pheno 2 5= 0.8672 0.0341

Herit = Additive 6/Pheno 2 5= 0.2601 0.1099

Notice: The parameter estimates are followed by

their approximate standard errors.

The highlighted block contains the estimate of heritability (0.2601) and its standard error (0.1099) obtained with the Delta

method.

Variation Among Family Means

Narrow-sense heritability is useful to predict genetic gains from selection of individuals in a population. This is sometimes

called mass selection. However, in many plant and animal breeding programs the selection units are families rather than

individuals. Similarly, in some animal breeding programs, sires are selected on the basis of their progeny values. In this case,

breeders would be mostly interested in heritability of family means and genetic gain from family (or sire) selection. For

example, in tree breeding, seed orchards are established to produce large quantities of seeds from a small subset of the best

families based on progeny tests.

In the example of the pine provenance data set, we could use half-sib family means as the selection units. After adjusting out

the provenance effects, each family mean is averaged over plots and individual trees (residual effects) that contain that

family effect:

�Y::k: ¼ μþ Fk þ
Pb
i¼1

BFik

b
þ

Pb
i¼1

Pn
l¼1

εikl

bn
ð4:21Þ

where, b ¼ number of blocks, n ¼ number of trees per family per block. The expected variance of half-sib family means is:

V �Y::k:ð Þ ¼ E μþ Fk þ
Pb
i¼1

BFik

b
þ

Pb
i¼1

Pn
l¼1

εikl

bn
� μ

0BBB@
1CCCA

2

ð4:22Þ
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Since the different model effects are uncorrelated because of randomization in the experimental design, this simplifies to:

V �Y::k:ð Þ ¼ E Fkð Þ2 þ E

Xb
i¼1

BFik

b

0BBBB@
1CCCCA

2

þ E

Xb
i¼1

Xn
l¼1

εikl

bn

0BBBB@
1CCCCA

2

¼ E Fkð Þ2 þ bE BFik

b

� �2 þ bnE εikl
bn

� �2 ¼

¼ σ2F þ b
σ2BF
b2

þ bn
σ2ε
bnð Þ2 ¼ σ2F þ

σ2BF
b

þ σ2ε
bn

ð4:23Þ

We can estimate this variance of half-sib family means using the observed variance components estimates and the number of

blocks and plants per block:

Var �Y::k:ð Þ � 0:189þ 0:198=5ð Þ þ 2:527= 5∗5:2ð Þð Þ ¼ 0:326

where b¼ 5 is the number of blocks, and n¼ 5.2 is the average number of individuals per female family per block. Note that

when data are not balanced, the divisors of the variance components should be the harmonic mean of the number of relevant

effects that are averaged over for each family, see Holland et al. (2003).

Heritability of half-sib family means is a ratio of the family variance component (σ2f) to the phenotypic variance of family

means:

h2HS ¼ σ2f =Var �Y::k:ð Þ � 0:189=0:326 ¼ 0:58

Assuming a subset of the families is selected, predicted genetic gain from selection would be the product of family mean

heritability and the selection differential: Δ ¼ h2HSSf . The selection differential, Sf, is the difference between mean of the

selected families and the population mean.

Within-Family Variation

Breeders might be interested in estimating the predicted genetic gains from family index and within-family selection

schemes. For within-family selection we need within-family phenotypic variance and within-family heritability. We can

derive these two terms from the variance components estimates. The difference between total phenotypic variance and

family mean phenotypic variance is the within-family phenotypic variance (σ2w):

σ2w ¼ σ2f þ σ2fb þ σ2ε

� 	
� σ2f þ σ2bf=bþ σ2ε=bn
� �

¼ 0þ b� 1ð Þ
b

σ2fb þ
bn� 1ð Þ
bn

σ2ε

ð4:24Þ

Since the variance among half-sib families, σ2f , is 1/4 of VA, the remainder of the additive genetic variance (3/4 VA) occurs

within families and is contained in the within-family phenotypic variance. Within-family heritability is simply the ratio of

3=4VA ¼ 3σ2f to the within-family phenotypic variance:

h2w ¼ 3σ2f
σ2w

¼ 3∗ 0:1895ð Þ
5�1
5

0:198ð Þ þ 5∗5:2ð Þ�1

5∗5:2

� 	
2:527

¼ 0:5685

0:158þ 2:43
¼ 0:22

Genetic gain from selection among individuals within families can be predicted as the product of within-family heritability

and the mean selection differential within families (the difference between the mean of selected progeny and the

family mean).

We can estimate the heritabilities for these additional within-family selection schemes by adding some additional code for

functions of the variance components to the VPREDICT !DEFINE part of the .as file:
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Code example 4.1
Half-sib family progeny test data analysis, continued (Code 4-1_HSfamily.as)

Output file is Code 4-1_HSfamily.pvc

- - - Results from analysis of height - - -

1 block V 5 0.107492 0.895767E-01

2 idv(female) V 36 0.189502 0.838504E-01

3 block.female V 180 0.197618 0.862961E-01

units 914 effects

4 units;Residual V 914 2.52703 0.131479

5 Pheno 2 2.9141 0.14973

6 Additive 2 0.75801 0.33592

fam_ratio = idv(fema 2/Pheno 2 5= 0.0650 0.0275

plot_ratio = block.fe 3/Pheno 2 5= 0.0678 0.0290

error_ratio = units;Re 4/Pheno 2 5= 0.8672 0.0341

7 Phen_hs 2 0.32758 0.82299E-01

8 Phen_w 3 2.5840 0.12504

9 fam3 2 0.56851 0.25194

h2i = Additive 6/Pheno 2 5= 0.2601 0.1099

h2fm = idv(fema 2/Phen_hs 7= 0.5785 0.1174

h2w = fam3 2 9/Phen_w 8= 0.2200 0.0992

Family effect predictions can be obtained from the solution file Code 4-1_HSfamily.sln. The solutions for the family effect

also represent the BLUP of GCA values of the female parent of each family, and they are distributed around zero. A subset of

the solution file is given below:

Model_Term Level Effect seEffect

prov 10 0.000 0.000

prov 12 -0.6237 0.3701

prov 11 -1.666 0.3741

prov 13 -1.220 0.3770

mu 1 11.51 0.3620

(continued)
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block 1 0.3110 0.1855

block 2 0.1268 0.1858

block 3 0.2056 0.1858

block 4 -0.2919 0.1867

block 5 -0.3516 0.1878

idv(female) 191 -0.8257E-01 0.3395

idv(female) 192 0.2459 0.3419

idv(female) 170 -0.1634 0.3433

...

The GCA values of parents 191 and 192 are�0.0826 and 0.2459, respectively, after adjusting for provenance effects. These

GCA values are appropriate for comparing parental breeding values within the same provenance, but to compare across

provenances, one would want to add the provenance effect to the breeding value. To obtain GCA values centered on the

mean, one may also add the intercept “mu” value.

The Accuracy of Breeding Values

The standard error of a BLUP can be used to assess the reliability of the prediction. However, the standard error is not a

useful estimate to compare the prediction reliability of different traits or for the same trait with different scales because it

depends on the measurement unit. As an alternative, animal breeders developed ‘accuracy’ estimates derived from standard

errors to assess the confidence in predictions. The correlation between true and predicted breeding values is called the

accuracy of the BV (Mrode 2014), and this value is comparable among traits and measurement units because it is scaled to

between 0 and 1. As discussed in Chap. 2, reliabilities are the squares of accuracies, and the accuracies of BLUPs can be

obtained as a function of the standard error of predictions (available in the .sln file). BLUP accuracies for families are:

(Gilmour et al. 2014):

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2

ð1þ FÞσ2F

s
ð4:25Þ

where S is the standard error of the family effect prediction reported in the .sln file, and σ2F is the family variance component

and F is the inbreeding coefficient of individuals. We show below how to compute accuracies of BLUPs within provenances;

this would be an appropriate breeding value to use to select among families within provenances.

Code example 4.2
R script to estimate breeding values within provenances and their accuracies (Code 4-2_HSfamily.R)

(continued)
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Code example 4.2 (continued)

Breeding values of the six five families and their accuracies are printed here:

female gca se.gca mu bv accuracy

170 -0.163 0.343 11.51 11.183 0.627

191 -0.083 0.340 11.51 11.345 0.638

192 0.246 0.342 11.51 12.002 0.631

196 -0.461 0.307 11.51 10.589 0.717

197 0.356 0.302 11.51 12.221 0.729

198 -0.451 0.302 11.51 10.609 0.729

Individual (“Animal”) Model

To predict BVs of grandparents, progeny and parents simultaneously, we can use the so-called animal model, which may

also be referred to as the individual model when applied to plant species. In the individual model, we write the phenotypic

value of an individual as a linear combination of overall mean (μ), individual effect (u) and the error (e):

yi ¼ μþ ui þ ei ð4:26Þ

In the mixed model equations for the individual model, the vector u includes predictions for progeny and parents (and,

further, any individuals with known relationships to the observational units can be included):
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In the animal model, individuals are no longer simply observational units, they (rather than the family units) are factors in
the model representing effects that need to be estimated. As with the GCA models, the animal model requires a genetic

relationship matrix, derived either from a pedigree file or markers.

Why use the individual (animal) model and pedigree information?

• It provides predictions (BV) for grandparents, parents and progeny in one step.

• Breeding values are comparable across all the generations because they are on the same scale

• Facilitates more complex genetic models, such as additive, dominance, paternal and clonal effects

• Uses all the information from relatives. Each relative contributes to the estimate of each individual’s BV depending on

how genetically close they are.

• It provides a prediction even if an individual does not have a measured phenotype, as long as one or more relatives are

measured.

Animal Model for Half-Sib Family Data

To demonstrate a simple example of an individual model, we return to the pine_provenance.csv dataset previously used for

half-sib GCA analysis. We will compare the individual model with the GCA model fit previously in this Chapter. Our

objective is to simultaneously predict parental and progeny breeding values.

We assume that female parents are random independent samples from the reference population, so they have no

relationships. The pedigree for the parents is quite simple:

female parent1 parent2

170 0 0

191 0 0

192 0 0

...

191.1 191 0

191.2 191 0

...

Individuals 191.1 and 191.2 are half-sibs as they share the same female parent and different (unknown) male parents. The

additive genetic relationship matrix (A) is derived from the pedigree with dimension 951 � 951 (915 progeny +36 female

parents). We present as small subset of the A matrix for the three parents and five offspring with pairwise additive genetic

relationship coefficients (2θ) for individuals (Fig. 4.1):

Fig. 4.1 Additive genetic

relationship matrix for three

selected female parents and

selected open-pollinated

progenies from the

pine_provenance.csv data set.

The complete relationship matrix

includes 36 parents and

915 progenies and has dimension

951 � 951
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The coefficient of relationship is 0.5 between parent and offspring and 0.25 for half-sibs. The diagonal elements are 1+F,

where F is the inbreeding coefficient, assumed to be 0 for all individuals in this case.

The linear model (individual tree model) for the data is:

yijk ¼ μþ Bi þ Pj þ Tk þ εijk ð4:28Þ

The main difference from the GCA model is that we have a Tree effect in the model instead of Female (or Family) effect,

where Tk is the random kth tree effect � N 0; σ2u
� �

. Another subtle difference also occurs since we model the effects of

individual trees instead of families: we cannot easily model the plot error effect (which was block by family interaction

previously). In this model, we allow the residual to absorb the plot error effects. In matrix form the model is y ¼ Xb +

Zu + e. The Z matrix relates observations to trees in the pedigree (whether or not they have an observed height record). In

this example, trees 191, 192, and 170 are female parents and they do not have height measurements, but trees in the offspring

generation do have phenotype records (Fig. 4.2).

The ASReml syntax for the model is:

Code example 4.3

Individual model for half-sib progeny test data (Code 4-3_TreeModel.as)

• Notice that the data file is used as a pedigree file. ASReml keeps the first three fields in the data file as pedigree and

disregards the rest. This works only for a shallow pedigree, as in pine data where female parents are genetically independent.

• The treeid field is a random factor and associated with the pedigree (!P).

Parents Progeny

Z =

191 192 170 191.1 191.2 192.1 192.2 170.1
0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Fig. 4.2 Incidence (Z) matrix relating breeding value effects for three selected female parents and five selected open-pollinated progenies to

phenotypic observations from the pine_provenance.csv data set
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• The variance structure for treeid is G ¼ σ2uA, a product of the variance component explained by the tree effect and

additive genetic relationship matrix derived from the pedigree.

Variance components are reported in the primary output file (Code 4-3_TreeModel.asr)

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.537164E-01 0.108390 1.24 0 P

nrm(treeid) NRM_V 950 0.442879 0.893649 2.71 0 P

units 914 effects

Residual SCA_V 914 1.00000 2.01782 7.06 0 P

Wald F statistics

Source of Variation NumDF DenDF F-inc P-inc

10 mu 1 6.2 3550.83 <.001

4 prov 3 32.0 9.78 <.001

The variance explained by the treeid effect (0.8936) is a bit more than the expected four times larger than the variance

component (0.189) explained by the female effect in GCA model (Code Example 4.1). The variance explained by the treeid

is the total additive genetic variance. Also notice that the residual variance in the animal model (2.018) is smaller than the

residual variance in the GCA model (2.527). The differences originate from having different terms in the models.

Heritability estimation from the animal model is straightforward because all we need to do is divide the variance component

explained by the tree effect and the sum of variance components for tree effect and the residual.

h2i ¼
σ2A
σ2P

¼ σ2t
σ2t þ σ2ε

¼ 0:893649= 0:893649þ 2:0178ð Þ ¼ 0:3069

We can estimate the heritability and its standard error using the VPREDICT function in ASReml:

Code example 4.3

Individual model for half-sib progeny test data, continued (Code 4-3_TreeModel.as)

The results of these functions of variance components are reported in file Code 4-3_TreeModel.pvc:

Code4-4_TreeModel.pvc created 04 Sep 2015 08:46:41.045

- - - Results from analysis of height - - -

1 block V 5 0.108390 0.874113E-01

2 nrm(treeid) V 950 0.893649 0.329760

units 914 effects

3 units;Residual V 914 2.01782 0.285810

(continued)
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4 Additive 2 0.89365 0.32977

5 Pheno 2 2.9115 0.14845

h2i = Additive 4/Pheno 2 5= 0.3069 0.1063

Notice: The parameter estimates are followed by

their approximate standard errors.

Phenotypic variance is 2.91, very close to phenotypic variance estimated from the GCA model (2.88). Heritability is slightly

higher because of having different terms in two models.

The solution file (Code 4-3_TreeModel.sln) now includes effect predictions for progeny as well for parents:

Model_Term Level Effect seEffect

prov 10 0.000 0.000

prov 11 -1.649 0.3742

prov 12 -0.6260 0.3702

prov 13 -1.224 0.3771

mu 1 11.51 0.3623

block 1 0.3187 0.1782

block 2 0.1299 0.1787

block 3 0.2106 0.1786

block 4 -0.3040 0.1795

block 5 -0.3552 0.1808

nrm(treeid) 170 -0.3788 0.7042

nrm(treeid) 170.1 0.2431E-01 0.7793

nrm(treeid) 170.2 -0.8484 0.7793

nrm(treeid) 170.3 -0.4245 0.7793

..

nrm(treeid) 191 -0.1974 0.6936

nrm(treeid) 191.1 -0.3564 0.7794

nrm(treeid) 191.2 -0.1569 0.7794

nrm(treeid) 191.3 -0.7346E-02 0.7794

...

nrm(treeid) 192 0.5762 0.7002

nrm(treeid) 192.1 0.4575 0.7793

nrm(treeid) 192.2 0.2581 0.7793

nrm(treeid) 192.3 0.7318 0.7793

...

Notice that the solutions for parents (in bold font) are about two times that of solutions from the GCA model. The standard

errors are also about two times larger. This is because the animal model solutions are breeding values not GCA values. Using

this file we can easily rank all the individuals (parents and progeny) on the same scale and make selections (again, if we are

interested in selecting with equal weight among provenances rather than selecting for overall best predictions that include

provenance effects). Also notice that the standard error of breeding values for parents (191, 192, and 170) are smaller than

standard errors of breeding values for progeny. This is expected because parental breeding values use data from their

progeny whereas progeny have one data point each. This fact also causes another effect that can be observed in the residual

diagnostic plot of residual values plotted against the predicted values (Fig. 4.3).

On the left hand side of Fig. 4.3, the residual values are independently distributed relative to the predicted values from the

GCA model. On the right hand side of Fig. 4.3, the residual values are not independent of the predicted values from the

individual model, instead they are positively correlated, as is obvious from the trend in the scatterplot. This is an effect of

predicting the values of individuals, which have only one observation each, such that the genetic value of the individual is
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entangled with the residual effect of that observation. The mixed model nevertheless can make a prediction for each

individual by combining the information from relatives (in this case the half-sib family mean) and an estimate of the

proportion of an individual’s deviation from the family mean is due to genetics (from the ratio of genetic to total variance

within families). In contrast, the predicted value of the individuals in the GCA model is simply the family mean.

The accuracy of BLUPs for individuals from the animal model is computed following Gilmour et al. (2014) as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2

1þ Fð Þσ2A

s
ð4:29Þ

where S is the standard error of the prediction reported in the .sln file, F is the inbreeding coefficient of the individual being

predicted, and σ2A is the additive variance for individual predictions (see next section on the individual or ‘animal’ model).

Estimates of F for each individual can be obtained by using the !DIAG qualifier after the pedigree file and are reported in an

output file with extension .aif. If the pedigree does not imply inbreeding, all of the F coefficients will be zero.

We can compute the accuracy of breeding values by reading this .sln file into R, and performing the computations with the

following R code:

Code example 4.4

Breeding values from .sln output file processed by R code (Code 4-4_TreeModel.R)

(continued)

A. GCA model B. Individual tree model
Title: Pine_provenance.   Residuals vs Fitted values _RvE_1  
 Residuals (Y) -5.35: 4.45    Fitted values (X)     8.69:   12.44  

Title: Pine_provenance.   Residuals vs Fitted values _RvE_1  
 Residuals (Y) -4.34: 3.43    Fitted values (X)     8.04:   12.86  

Fig. 4.3 Scatterplots of residual

versus predicted values for pine

provenance data based on two

different models: (A) GCA
model, and (B) individual tree
model
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Code example 4.4 (continued)

This R code outputs breeding values (BV) centered on the overall mean, their standard errors (se.BV), and their accuracies:

ID BV se.BV accuracy

1 191 11.31 0.6936 0.67

2 191.1 11.15 0.7794 0.56

3 191.2 11.35 0.7794 0.56

4 191.3 11.50 0.7794 0.56

...

7 191.6 11.60 0.7794 0.56

8 192 12.09 0.7002 0.67

9 192.1 11.97 0.7793 0.56

10 192.2 11.77 0.7793 0.56

11 192.3 12.24 0.7793 0.56

...

Breeding values of parents 191 and 192 from the previous GCA model were 11.34 and 12.00, respectively. Those values are

approximately the same as the estimates from the individual model (in bold font above; there are small differences

introduced by handling the residual error differently). As we expect, some progeny are better than their parents,

e.g. progeny 191.3 has a breeding value of 11.5, whereas its parent (191) has a BV of 11.31.

The Animal Model with Deep Pedigrees and Maternal Effects

An animal model for livestock is in concept the same as the individual tree model just shown. However, the previous

example based on the pine_provenance.csv data set was somewhat limited in that the pedigree was quite shallow, covering

only two generations (only one of which was phenotyped). Furthermore, since the progeny were derived from open-

pollination, we had no information on the fathers of the tree. As an example of a more extensive pedigree that will allow us to

combine information across more generations and incorporate information from fathers, we now turn to the data in the

“pig_data.txt” file:

pig sire dam year sex pen weanage weanwt adg weight loinarea

133 2 1 2004 1 52 21 13.25 2.0 264 5.34

654 2 1 2004 1 58 21 12.45 2.0 266 6.62

(continued)
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655 2 1 2004 1 54 21 13.55 1.6 215 5.50

153 2 1 2004 1 56 21 15.60 1.9 267 7.04

656 4 3 2004 2 59 21 10.40 1.5 210 3.94

657 4 3 2004 2 57 21 10.10 0.9 153 3.74

The first column is an identifier for the individual pig, and the next two columns represent the identifiers of the sire and dam

of each pig. Subsequent columns indicate the year the data were collected on the individual, the sex of the individual, its pen

number, the age in weeks at which it was weaned, its weight at weaning, and three other traits that we will not use in the

subsequent examples.

We have pedigree information on the pigs in this data set extending across seven generations, corresponding to years in the

data set. The first generation for which we have phenotype data is from year 2004, and we have pedigree information on the

direct parents of those pigs. That previous parental generation is a base generation for making inferences about genetic

parameters. We assume that each parent in the first generation of the pedigree was sampled at random from the reference

population, so we assume that all of those parents have no genetic relationships among themselves (all coefficient of ancestry

values, θ, ¼ 0 for that generation). The pedigree data are available in the file “pig_pedigree.txt”:

pig sire dam

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

...

2702 547 652

2703 641 653

2704 641 653

2705 641 653

2706 641 653

2707 641 653

In the first progeny generation (G0 in 2004), there are unrelated pairs of individuals (2θ ¼ 0), half-sibs (2θ ¼ 0.25), and full

sibs or parent-offspring (2θ¼ 0.5, Fig. 4.4). By the later generations, there are more complex relationships because of distant

common ancestors. For example, individuals 211 and 322 have a small relationship (2θ ¼ 0.0625) because of common

ancestry in preceding generations (Fig. 4.4).

To analyze these data and estimate the breeding values of all the individuals in the pedigree, we can include effects of the

year to account for some temporal variability, the fixed effect of the sex of the individual, and the age at which the pig has

been weaned as a covariate:

yijkl ¼ μþ Yi þ Sj þWk þ Pl þ εijkl ð4:30Þ

where Yi is the fixed effect of year, Sj is the fixed effect of the pig’s sex, Wk is the fixed covariate for weaning age, Pl is the

random effect of the pig’s breeding value, and εijkl is the random residual effect.

We can fit this simple animal model in ASReml as shown in Code example 4.5:
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Code example 4.5

Animal model for pig data including only direct genetic effects (Code 4-5_AnimalModel.as)

Once again we can obtain functions of the estimated variance components (h2 in this case) through the VPREDICT !

DEFINE qualifiers to create a .pin file.

Fig. 4.4 Pedigree of selected individuals in pig_data.txt data set. The pedigree extends over six generations. Only small sample of individuals

extending over four generations are presented here. Additive genetic relationship values (2θ) are given for some pairs of individuals connected by

dashed lines
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The resulting variance components are reported in file Code 4-5_AnimalModel.pvc file:

- - - Results from analysis of weanwt - - -

1 nrmv(pig) V 2707 2.08202 0.221964

2 Residual V 2556 2.83718 0.147693

3 Additive 1 2.0820 0.22197

4 Pheno 2 4.9192 0.16444

h2i = Additive 3/Pheno 2 4= 0.4232 0.0358

While the previous model seems reasonable as a first approximation, it is common in livestock species to include maternal

effects in the model. These effects are especially important for growth traits and recognize the importance of the maternal

environment for the performance of an individual. Maternal effects from the progeny’s standpoint are environmental but

have a genetic component in the mother; further, the genetic component of the maternal effect may have a covariance with

the progeny genetic effect. This double structure can efficiently be accommodated in ASReml. Using the same data just seen,

we can expand the previous model as follows:

Code example 4.5
Animal model for pig data, adding maternal genetic effects (Code 4-5_AnimalModel.as)

Here we use the str() function in ASReml to indicate that the terms inside the parentheses use the same Zmatrix to relate

observations to parameter values. In this case, we specify two model terms, pig and dam, that share a common structure.

Since we have specified both of these terms as pedigree-associated factors using the !P qualifier in the field definitions,

ASReml associates both of these terms with the pedigree information we supplied. That information, in turn, is used to

model the variance-covariance structure of the pig and dam effects based on the additive genetic relationship matrix. In the

previous model, where we just specified pig alone as a random pedigree-associated effect, we also estimated both progeny

and dam breeding values as random effects from a common distribution. What is new here is that we are separating the

effects of each pig into its own direct genetic effect on weaning weight and also into a maternal genetic effect (if it was

female and was a mother to some phenotyped offspring), where the variance-covariance structure of the effects is

proportional to the A matrix. In other words, we are modeling both the breeding value of the pig itself and the effect of

its mother on its weight, where both effects have covariances among individuals determined by their coancestries.

Finally, we allow the direct genetic effect of the pig itself and its mother’s maternal genetic effect to have a covariance

via the third term in the str() function, which provides the structure information for the effects: str(pig dam us(2).

nrm(pig)). The term ‘us(2).nrm(pig)’ indicates that the two previously identified model factors (pig and dam) have

a variance-covariance structure that is the direct product of two terms: an unstructured variance-covariance matrix with

dimension 2 and the additive relationship matrix based on the pedigree information from pigs:
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G ¼ us 2ð Þ:nrm pigð Þ ¼ VA CA,Am

CA,Am VAm

" #N 2θ11 2θ12 . . . 2θ1n

2θ21 2θ22 . . . 2θ2n

⋮ ⋮ ⋱ ⋮

2θn1 2θn2 . . . 2θnn

266664
377775

G ¼ us 2ð Þ:nrm pigð Þ ¼ VA CA,Am

CA,Am VAm

" #N
A

ð4:31Þ

Here, VAðor σ2aÞ is the additive variance for direct genetic effects, VAmðor σ2mÞ is the additive variance for maternal genetic

effects, and CA,Am (or σAm) is the covariance between the direct and maternal genetic effects. The dimension of the A matrix

in this examples is 2,707 � 2707 since there are 2,707 animals included in the pedigree. We are estimating 2,707 breeding

values for direct genetic effects, including all of the pigs that were phenotyped and also including generation 0 pigs that do

not have phenotypes. Similarly, we are estimating 2,707 breeding values for maternal effects. This may seem strange, since

male pigs cannot express a maternal effect. However, since we are dealing with breeding values, a male pig transmits alleles

that influence the maternal effects that its daughters can express on their offspring. So, even male pigs have a breeding value

for maternal genetic effects, and they can be predicted using the phenotype information from related females in the same

way that we predict breeding values of unphenotyped parents based on their phenotyped relatives.

The resulting variance (correlation) components from this model are in file Code 4-5_AnimalModel.asr:

The estimated variance component for pig effects (direct genetic effects) is 0.529. The dam (maternal genetic) variance

component estimate is 4.12. They have a covariance of �1.09 and a correlation of �0.74. It is striking how strong the

maternal effect is relative to the pig’s own genotype effect on its weaning weight.

Direct and maternal heritabilities can be defined, keeping in mind that σ2p ¼ σ2a þ σ2m þ σam þ σ2e in this case:

Phenotypic variance is 0.529 + 4.11 + (�1.09) + 2.15 ¼ 5.7

h2 for direct effects is ¼0.529/5.7 ¼ 0.09

h2 for maternal effects is ¼4.11/5.7 ¼ 0.72

We can obtain these heritability estimates using the VPREDICT !DEFINE command directly in the ASReml program. For

complex models like the one in this example, however, it is often not obvious how the variance components are named or

ordered in the output. When in doubt, simply write the VPREDICT !DEFINE command with no subsequent definition lines,

and a .pvc file will be created that includes the covariance components with the names that should be used in the definitions

of functions of the variance components. For example, if no variance component functions are defined after the VPREDICT

!DEFINE directive in !PART 2 of Code 4-5_AnimalModel.as, the resulting .pvc output file is created:
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Code 4-5_AnimalModel.pvc

- - - Results from analysis of weanwt - - -

1 Residual V 2556 2.15066 0.175278

us(2).nrm(pig) 5414 effects

2 us(2).nrm(pig);us(2) V 1 1 0.529062 0.324578

3 us(2).nrm(pig);us(2) C 2 1 -1.09595 -4.02000

4 us(2).nrm(pig);us(2) V 2 2 4.11973 0.371482

pig NRM 2707

Notice: The parameter estimates are followed by

their approximate standard errors.

We can then define the phenotypic variance and the heritability by referring to the direct additive genetic variance either as

component ‘2’ or as ‘us(2).nrm(pig);us(2)[1]’. The suffix ‘[1]’ distinguishes the first variance component of this

complex term in the output. Similarly, the covariance between direct additive and maternal effects is referred to as either

component ‘3’ or ‘us(2).nrm(pig);us(2)[2]’.

The heritability definitions can then be added after the VPREDICT !DEFINE command and the .as file can be re-run to get

the estimates:

Code example 4.5

Heritability estimation from animal model for pig data with maternal genetic effects (Code 4-5_AnimalModel.as)

The results are reported in the Code 4-5_AnimalModel.pvc file:

V:\Book\Book1_Examples\ch04_gca\outputfiles/Code04-5_AnimalModel.pvc created 26 Nov 2015

15:31:02.576

- - - Results from analysis of weanwt - - -

1 Residual V 2556 2.15058 0.175271

us(2).nrm(pig) 5414 effects

2 us(2).nrm(pig);us(2) V 1 1 0.529075 0.324586

3 us(2).nrm(pig);us(2) C 2 1 -1.09593 -4.02000

4 us(2).nrm(pig);us(2) V 2 2 4.11959 0.371469

(continued)
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pig NRM 2707

5 Add_pig 2 0.52907 0.32555

6 Add_dam 4 4.1196 0.37156

7 Pheno 1 5.7033 0.27376

h2pig = Add_pig 5/Pheno 1 7= 0.0928 0.0572

h2dam = Add_dam 6/Pheno 1 7= 0.7223 0.0423

Notice: The parameter estimates are followed by

their approximate standard errors.

A common extension of the maternal effect model is to include non-genetic (‘environmental’) maternal effects in addition to

the genetic maternal effect in the animal model. Environmental maternal effects refer to any maternal differences that are not

due to genetics. For example, differences in diet among mothers can affect their ability to nourish their offspring, but these

differences may be entirely due to management rather than genetics.

To accomplish this, we simply add a term ide(dam) to the random part of the model. The ide() function specifies that a

factor that we have previously defined as a pedigree factor (and so normally has a variance-covariance structure proportional

to the A matrix computed from the pedigree information) should be fit without the pedigree information. So, we fit the dam

effect twice in this model, once where the random dam effects have breeding values with covariances determined by

coancestries, and a second time where the random dam effects have no covariances and an IDV structure. This second term

corresponds to the maternal environment effects, since it includes any maternal effects that cannot be associated with the

pedigree relationships:

Code example 4.5

Animal model for pig data, with maternal genetic and maternal environmental effects

(Code 4-5_AnimalModel.as)

Notice that we also included in the model the term ‘us(2 !GUUU).nrm(pig)’ to permit the variance covariance structure

of the estimates for this term to be unconstrained (i.e., correlations based on the variance and covariance components are

allowed to go out of bounds, greater than 1.0 or less than�1.0). This only needs to be done if we want to add qualifiers to the

model term specified in the str() function. We cannot include the qualifiers directly in the str() function, i.e., ‘str
(pig dam us(2 !GUUU).nrm(pig))’will not be read as a valid random term, so we specify the same variance structure

already given in the str() function a second time and include the qualifiers in this second specification.
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OUTPUT PART 3: This model produces the following result:

Model_Term Gamma Sigma Sigma/SE % C

ide(dam) IDV_V 2707 0.683986 1.59023 5.65 0 P

Residual SCA_V 2556 1.00000 2.32494 14.63 0 P

us(2).nrm(pig) 5414 effects

2 US_V 1 1 0.449416E-01 0.104487 0.36 0 U

2 US_C 2 1 -0.250977 -0.583506 -2.28 0 U

2 US_V 2 2 0.621264 1.44440 3.36 0 U

pig NRM 2707

Covariance/Variance/Correlation Matrix US pig

0.1045 -1.502

-0.5835 1.444

The maternal environment effect variance component estimate is 1.59, the maternal genetic effect variance component is

1.444, and the direct genetic effect variance is 0.104. You will notice something strange about this result: the correlation

between direct and maternal genetic effects is �1.502, which is out of theoretical bounds for a correlation coefficient. This

can occur if we do not constrain the unstructured variance-covariance matrix for these two effects (we used the !GUUU

qualifier on the model term). If we try to constrain the model in this case, it does not converge. This result suggests that we do

not have a reliable estimate of one or more of the variance-covariance terms in this model. Notice that the direct genetic

effect variance is close to zero (and is smaller than its standard error). If a variance component really is zero, it cannot have a

covariance with any other term. So, the trouble is probably occurring because this direct genetic variance component is

approaching zero. We could simplify the model by dropping the direct genetic effects and compare the AIC values of the

reduced model to this one to see if the reduced model could be accepted.

Accounting for Genetic Groups Effect in Predictions

Genetic groups are a common phenomenon in plant and animal breeding programs. Rather than descending from a common

gene pool, individuals in a program may descend from different groups of founders or different breeds. For example, in

forest trees, geographic differences in seed sources (provenances) within a single species can be associated with very large

phenotypic differences in progenies (Isik et al. 1999). Subpopulations within a species often have adapted to very different

elevations or climates, and this can result in substantial genetic differences among individuals descended from parents

sampled across different geographic areas. If the population is composed of distinct genetic groups, such structure should be

accounted for in predictions of breeding values.

By default, breeding values are centered on zero (with negative and positive values). This is based on the assumptions that all

base (ancestral) individuals are equal and they mated at random to produce the population under study. This is not a safe

assumption when the population comprises a mixture of different genetic groups. If the group effect is ignored, additive

genetic variance estimates can be biased upward, and selection may favor a particular provenance at the risk of introducing

some inbreeding in future generations. The provenance or founder effect should be accounted for when estimating breeding

values to avoid such problems.

There are twso ways to handle the genetic group effects in the predictions of breeding values: (1) treating genetic groups as

fixed effects in a GCA model or (2) using pedigree information and the genetic groups model.

Treating Genetic Groups as a Fixed Effect in GCA model

In some cases, the group effect can be considered random to estimate between and within provenance variances. Such

information is useful to study effect of geographical variation among groups for adaptation-related traits. In cases where we

have few groups in the study, it may be better to treat the group effect as fixed since otherwise the variance component for

groups might be poorly estimated. Groups might also be considered fixed effects if provenances were sampled to represent

certain climatic/elevation transects rather than random samples.

134 4 Breeding Values



We will use the Pine_provenance.csv data again to demonstrate modeling genetic group effects. The GCA model that we

used previously already treated provenance as a fixed effect, so the model is the same as previously shown:

yijkl ¼ μþ Bi þ Pj þ Fk jð Þ þ BFik jð Þ þ εijkl ð4:32Þ

Variance components estimates and tests of the fixed effect of provenance are exactly as before. At this point, however, we

shift the focus of genetic value prediction from breeding values within provenances (how good a parent/family is compared

to the overall provenance mean) to ‘net breeding values’ which are appropriate to compare breeding values of individuals

across provenances if we want to select on both the provenance and the individual within provenance values. Recall that the

effect solutions are found in file (Code04-1_HSfamily.sln) includes the BLUEs of fixed effects (e.g., prov) and BLUPs of

family effects (or parental GCA effects). As a reminder, a subset of the prediction file is given below:

Model_Term Level Effect seEffect

prov 10 0.000 0.000

prov 12 -0.6237 0.3701

prov 11 -1.666 0.3741

prov 13 -1.220 0.3770

mu 1 11.51 0.3620

block 1 0.3110 0.1855

block 2 0.1268 0.1858

block 3 0.2056 0.1858

block 4 -0.2919 0.1867

block 5 -0.3516 0.1878

idv(female) 191 -0.8257E-01 0.3395

idv(female) 192 0.2459 0.3419

idv(female) 170 -0.1634 0.3433

idv(female) 210 -0.3584 0.2979

...

Calculation of net breeding values of families

The net breeding values (NBV) of families from the above model can be calculated as follows:

Ajk ¼ μþ Pj þ 2GCAjk ð4:33Þ
where Aij is the NBV of family k from provenance j, μ is the intercept, Pj is the Best Linear Unbiased Estimate of jth

provenance and GCAjk is the GCA prediction of parent k in provenance j.

Parent 191 comes from PROV 10. The adjusted NBV of Parent 191 is

¼ μþ P10 þ 2∗GCA191

¼ 11:51þ 0:0þ 2∗ �0:0826ð Þ ¼ 11:34

Parent 210 comes from PROV 12. The adjusted NBV of Parent 210 is

¼ 11:51þ�0:6237þ 2∗ �0:3584ð Þ ¼ 10:17

Notice that these values are different than the predictions that can be obtained from the same model in ASReml with:

The !PRESENT qualifier prevents reporting predicted values for provenance-family combinations that do not appear in the

data set, in this case predictions for families in some other provenance than their own actual provenance.
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This PREDICT statement produces predicted values found in the output file Code 4-1_HSFamily.pvs:

prov female Predicted_Value Standard_Error Ecode

10 191 11.4295 0.3392 E

10 192 11.7580 0.3498 E

10 170 11.3487 0.3560 E

12 210 10.5299 0.3253 E

...

The predictions in this .pvs file refer to the family mean genetic values (not the parental breeding values), and are obtained asbYij ¼ μþ Pj þ Fjk. The family mean genetic value predictions can be obtained from the effect estimates as:

Family 191 from PROV 10:

¼ μþ P10 þ F191

¼ 11:51þ 0:0� 0:0826 ¼ 11:43

Parent 210 from PROV 12:

¼ 11:51þ�0:6237� 0:3584 ¼ 10:53

Fitting Genetic Groups as Pedigree Information in Individual Model

An alternative to the GCA model with fixed group effects is an individual model with genetic groups accounted for in the

pedigree rather than explicitly as a factor in the model. This alternative will produce directly net breeding values that

includes the group effect. Furthermore, this alternative method is useful for later generations of progenies that may trace

ancestry to more than one founder group. We need to create a pedigree file in order to include the genetic group information

as part of the pedigree. This is done by including the genetic group identifiers at the beginning of the file, then indicating the

group identifier as the male and female parents of the individuals in the first sampled generation from the genetic groups. The

pedigree file (“pine_provenance_pedigree.txt”) appears as:

treeid mother father

10 0 0

11 0 0

12 0 0

13 0 0

170 10 10

191 10 10

192 10 10

... ... ...

191.1 191 10

191.2 191 10

196.9 196 11

The first four lines (10, 11, 12, 13) in the pedigree file are genetic group IDs. Zeroes are used to indicate the mother and

father of the genetic groups. To distinguish the genetic group identifiers from individuals with no known ancestors, we will

also use the !GROUPS n qualifier on the pedigree file name line (in the job file .as) to indicate that the first n records

correspond to groups rather than individuals.

In above pedigree file after the genetic groups, the parental plants are listed in the treeid column, followed by the progeny

generation plants. Notice that every parent generation individual has a genetic group indicated, whereas the progenies

derived from those parents by open-pollination have the known mother plant identified but the genetic group label for the

father. If progeny came from full-sib families, however, only the parents would be assigned to genetic groups (provenances).
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The individual tree model is:

yik ¼ μþ Bi þ Tk þ εik ð4:34Þ

In this model, individual tree values are modeled directly, according to the pedigree structure. We now modify this

individual model to reflect that the pedigree of each tree will trace back to one or more of the founder groups, and the

breeding value of the individual is modeled as the weighted mean of its founder group ancestry effects plus the deviation of

the individual value from the expectation of that mean (Mrode 2014):

Yijk ¼ μþ Bi þ
Xn
j¼1

tjkgk þ ak þ εijk ð4:35Þ

In this model, each individual may have more than one genetic group effect in its ancestry, and these effects are modeled as

the summation of the product of the group effect (gk) times the additive genetic relationship between individual k and the

ancestral group j over j ¼ 1 to n groups. Then, for the mixed model, we introduce a matrix, Q, which corresponds to an

additive relationship matrix between individuals and the ancestral groups, and the mixed model equation (MME) takes the

following form (Mrode 2014; Quaas and Pollak 1981).

X0X X0Z 0

Z0X Z0Zþ A�1
nn α A�1

np α

0 A�1
pn α A�1

pp α

2664
3775 bbbu þ cQgbg
24 35¼ X0y

Z0y
0

24 35 ð4:36Þ

• The inverse of the numerator relationship matrix A�1 is now partitioned into four sub-matrices corresponding to the

inverses of the sub-matrix for genetic groups (App), the sub-matrix for treeid (Ann), and the sub-matrix for covariances

between genetic groups and treeid (Anp or Apn).

• Solving the MME will give the solutions for vectors u (individuals in the pedigree) and g (genetic groups).

• The ranking of trees will be based on both the prediction value of the ancestral genetic contribution (Qg) and the

prediction for the individual’s additive effect deviation from that prediction: ui ¼ μ + Qig + ai for tree i, where Qi is the

row of the Q matrix corresponding to the ith individual (and containing the additive relationship coefficients between

individual i and each of the ancestral groups).

The ASReml syntax for the model is quite simple.

Code example 4.6

Genetic group effect for half-sib progeny test data (Code 4-6_TreeGeneticGroups.as)

Accounting for Genetic Groups Effect in Predictions 137



The treeid field is a random factor and associated with the pedigree (!P). The pedigree file has the qualifier !GROUPS 4 to

indicate that the first 4 lines of the pedigree file identify genetic groups (with zero in both the mother and father fields).

Variance components are reported in the primary output file (Code 4-6_TreeGeneticGroups.asr)

Model_Term Gamma Sigma Sigma/SE % C

block IDV_V 5 0.537163E-01 0.108397 1.24 0 P

nrm(treeid) NRM_V 954 0.442879 0.893708 2.71 0 P

units 914 effects

Residual SCA_V 914 1.00000 2.01795 7.07 0 P

Again, the variance component for the treeid effect is (0.89) is about four times of family variance component in the GCA

model, because it represents total additive genetic variance.

The genetic groups model produces predictions for all the levels of genotypes (prov, female and treeid) in a single run. The

population mean (intercept) is automatically added to the BV to get net BV.

Predictions (Code 4-6_TreeGeneticGroups.sln)

Model_Term Level Effect seEffect

mu 1 0.000 0.000

block 1 0.3187 0.1782

block 2 0.1299 0.1786

block 3 0.2106 0.1786

block 4 -0.3040 0.1795

block 5 -0.3552 0.1808

nrm(treeid) 10 11.51 0.3623

nrm(treeid) 11 9.864 0.2282

nrm(treeid) 12 10.89 0.2216

nrm(treeid) 13 10.29 0.2329

nrm(treeid) 170 11.13 0.5826

nrm(treeid) 191 11.32 0.5500

nrm(treeid) 192 12.09 0.5705

. . .

Notice that the net breeding values of parents are close to what we obtained earlier from the GCA model where we treat the

genetic groups (prov) as fixed. For example, the breeding value prediction for parent 191 from the genetic groups model

above is 11.32, compared to 11.31 estimated by a linear function of effect estimates. The prediction file from the genetic

groups model produces BV predictions for all members of the pedigree on the same scale. No additional computation (such

as multiplying GCA values by two) is needed.

Effect of Self-Fertilization on Variance Components

When one of the parents of progeny is unknown, and the species can self-fertilize, we need to account for the possibility of

selfing in the genetic relationship matrix. For example, in eucalyptus species, it is quite common to assume up to 0.3

probability of selfing (Grattapaglia et al. 2004; Patterson et al. 2004). If the selfing is not accounted for, the additive genetic

variance will be biased upward because the progeny are not all half-sibs – they are more closely related, and therefore more

similar, than the model assumes.
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Mendelian sampling is the effect due to random segregation and recombination of genes coming from mother and father in

the progeny. Selfing will affect the diagonal elements of the A matrix, which represent twice the coancestry of individuals

with themselves. Individuals derived from one generation of selfing have an inbreeding coefficient of 0.5. Additional

generations of selfing will increase the inbreeding coefficient to:

F ¼ 1� 0:5ð Þt ð4:37Þ
for t generations of recurrent selfing. This quickly approaches 1 as t becomes large.

The coancestry of individuals with themselves is:

θXX ¼ 1

2
1þ FXð Þ ð4:38Þ

The elements of the A matrix are twice the coancestries, so the diagonal elements of A are:

Aii ¼ 2θii ¼ 1þ Fið Þ ð4:39Þ

The diagonal elements can be greater than one under inbreeding. For one generation where a father is unknown

and the probability that the unknown father is also the mother is denoted s, the diagonal element of the A matrix is

(Mrode 2014):

Aii ¼ 2θii ¼ 1� sð Þ 1ð Þ þ s 1þ 0:5ð Þ ¼ 1þ 0:5s ð4:40Þ

In ASReml, the probability of selfing is declared after the pedigree file using the !SELF s, qualifier where s is the probability

from 0 to 1. In the following example, the qualifier !SELF s is used to tell ASReml that probability of selfing is 0.1 in the pine

provenance data. The same model was run for selfing probabilities 0.2, 0.3, 0.4, 0.5 and 1 to demonstrate how the selfing

probability affects the variance components estimates.

Code example 4.5
Selfing effect on genetic variance for pine half-sib progeny test data (Code 4-7_Selfing.as)

Variance components for different levels of selfing are reported below. With inbreeding, the observed variance in the partly

inbred population represents more than the additive variance in the non-inbred reference population. Thus, as the probability

of selfing increases, the estimate of the genetic variance in the non-inbred reference population decreases, whereas residual

variance increases as shown below.
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Selfing Genetic Residual

0.0 0.89 2.02

0.1 0.74 2.14

0.2 0.62 2.23

0.3 0.53 2.30

0.4 0.46 2.36

0.5 0.40 2.42

. . .

1.0 0.22 2.58
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Abstract

Some mating designs, such as factorials and diallels produce full-sib families. These mating designs allow decomposing

the observed genetic variance into additive and non-additive genetic effects. Selection among full-sib families is common

in some plant and animal breeding programs. If full-sib families can be propagated, non-additive genetic effects can

contribute to selection gain. In addition, selection among progeny within crosses with known pedigree can be used to

establish the next breeding population. In this chapter we demonstrate one diallel and one factorial example to partition

the observed variance into additive and dominance genetic components. We then show an example of cloned progeny test

data analysis for within-fullsib family selection.

Specific Combining Ability (SCA) and Genetic Values

An individual’s phenotype can be defined as a linear combination of additive (A), dominance (D) and environmental (e)

effects:

yi ¼ μþ Ai þDi þ ei ð5:1Þ

Models based on parental general combining ability (GCA) effects, which are a function of additive genetic effects, were

introduced in Chap. 4. In this chapter we introduce specific combining ability (SCA) effects that result from dominance

effects (allelic interactions within loci). The mean genotypic value of offspring from a particular cross may deviate from

value expected considering the population mean and the sum of the parental GCA effects (Falconer and MacKay 1996).

This deviation is the specific combining ability for that cross. We can define the mean genotypic value (GAB) for the full-sib

family produced by crossing parents A and B as the sum of the overall mean (μ), the GCAs of the two parents and the

SCA value:

GAB ¼ μþ GCAA þ GCAB þ SCAAB ð5:2Þ

The SCA effect for the cross can be derived by subtraction:

SCAAB ¼ GAB � μþ GCAA þ GCABð Þ ð5:3Þ

A classical method to estimate dominance genetic variance (D) is to estimate the variance associated with SCA effects of

many crosses. The expected value of the observed SCA variance component is 1/4 of the dominance genetic variance in the

reference population.

There are several commonly used mating designs used to partition the observed variance into additive and dominance

genetic effects, such as factorial mating designs, nested designs and diallels (Hallauer et al. 2010). Diallels are commonly

used in plant breeding applications where individual plants can be used as both male and female parents; in addition to using

diallels to estimate additive and dominance variances, certain diallel designs may allow estimation of reciprocal cross

effects. Diallels cannot be used in dioecious species (female and male flowers occur in different plants), including mammals.

However, factorial designs can be used in dioecious species to estimate dominance genetic variance. We will demonstrate

one diallel and one factorial example then show an example of cloned progeny test data analysis for within-family selection.

Diallel Mating Designs

In monoecious plant species when the same individuals are used as females and males in breeding, the mating design is a

diallel. Here are some commonly used diallel mating designs in plant breeding:

Full diallels involve all the possible combinations of crosses among parents, including reciprocals and self-fertilization of

the parents. For a sample of n parents, the full-diallel requires n � n progenies, a number that quickly becomes

unmanageable as more parents are sampled.

142 5 Genetic Values



Half diallels: Each parent is mated with every other parent, excluding selfs and reciprocals. This requires making n(n–1)/2

crosses for n parents (Fig. 5.1a).

Partial diallel: Not all the crosses are made. There are no reciprocals or selfs. The goal is to reduce the breeding workload for

a given sample of parents by making less than n(n–1)/2 crosses for n parents (Fig. 5.1b).

Connected diallels: Two groups (1–6 and 7–12) of individuals are used to form two diallels but they are connected by

crossing 4 � 9, 7 � 1, 9 � 3 and 10 � 2. In the example below, the second diallel also includes some selfs (S) and

reciprocals (R) (Fig. 5.2):

If there are no connections between groups of parents, the design is a diallel in sets. Diallel mating designs provide good

evaluation of parents and full-sib families. They also provide estimates of both additive and dominance genetic effects, and

genetic gains due to additive and dominance genetic effects if we assume the sample of parents used is sufficient to represent

the reference population (Baker 1978; Holland et al. 2003). One disadvantage of diallels is that the breeding and progeny

evaluations can be costly due to large number of crosses required. For a full diallel with 6 parents, 36 crosses are required;

a) b)

F/
M

1 2 3 4 5 6

1 . X X X X X

2 . X X X X

3 . X X X

4 . X X

5 . X

6 .

F/
M

1 2 3 4 5 6

1 . X X X

2 . X

3 . X

4 . X

5 . X

6 .

Fig. 5.1 A half-diallel mating

without selfs (left) and partial

mating designs (right). There
are many variations of diallels

used in plant breeding

F/M 1 2 3 4 5 6 7 8 9 10 11 12 

1 . X X X 

2 . X 

3 . X 

4 . X

5 . 

6 . 

7 X S X X X 

8 R S X X 

9 X R S X 

10 X R R . 

11 R S 

12 R S 

Fig. 5.2 A connected diallel

mating design of 12 parents.

In the diagram crossings

between different individuals

are designed by X, reciprocals

by R and selfing by S
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with 10 parents the number of crosses required is 100. While these numbers may be manageable, it may be questioned if a

sample of 10 or so parents can really provide a useful estimate of the reference population genetic variances (Baker 1978).

There are many other combinations of diallel mating designs. See White et al. (2007) and Hallauer and Miranda (1988) for

details.

Diallel Example

Six pine trees were mated using a half-diallel mating design. There were no selfs or reciprocals in the mating. Pines are

monoecious species, meaning that male (pollen catkins) and female (strobili) reproductive organs are found on the same tree.

A tree can be used as male, female or both in the mating. One of the parental combinations was not made, so the half diallel

was not complete. In total, 14 crosses (full-sib families) were obtained. The field experimental design was a randomized

complete block design in which the experimental unit was a plot containing on average 4.3 trees per full-sib family. The

experiment was replicated in four locations and there were six blocks per location. Wood density of trees was measured at

age 10. The first five observations of the data set (in file ‘diallel.csv’) are given below:

Tree Female Male Cross Location Block density

1A11 590 626 590626 1 1 424.9

1A12 590 626 590626 1 1 414.5

1A13 590 626 590626 1 1 394.3

1A14 590 626 590626 1 1 352.4

1A15 590 626 590626 1 1 438.8

Linear mixed model

It is imperative to write the statistical model correctly first before writing the model in ASReml or in another software. Given

the mating design and the experimental design, we can use the following linear model to decompose phenotypic variance of

a trait into genetic and environmental components:

yijklm ¼ μþ Li þ Bj ið Þ þ Gk þ Gl þ Skl þ LGik þ LGil þ LSikl þ εijkl þ wijklm ð5:4Þ

where

yijklm is the observation on the mth tree in the jth block of the ith location for the klth cross;

μ is the overall mean;

Li is the ith fixed location (environment) effect, i ¼ 1 to t;

Bj(i) is the random effect of the jth block nested within the ith location, j ¼ 1 to b;
Gk, Gl are the random general combining ability (GCA) effects of the kth female and the lth male, respectively. These are

normally and independently distributed Gk and Gl � NID 0; σ2G
� �

;

Skl is the random specific combining ability (SCA) effect of the kth and the lth parents k 6¼ lð Þ � NID 0; σ2S
� �

;

LGik, LGil are the random female and male parent GCA by location interactions � NID 0; σ2LG
� �

;

LSikl is the random SCA by location interaction effect � NID 0; σ2LS
� �

;

ɛijkl is the experimental error term for residual variation among plot mean values � NID 0; σ2ε
� �

;

Wijklm is the experimental error term for residual variation among individual trees within a plot � NID 0; σ2w
� �

.

We show in the next sections how to fit the model for the diallel experiment established at multiple locations (Eq. 5.8) in

ASReml.

The GCA model

We start with a simple reduced model to estimate genetic variance due to GCA effects. Unlike half-sib family data we saw

in Chap. 4, writing the GCA effect for diallels is trickier, because the same parents are used as both female and male.
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We are going to model the parental GCA effects as identical whether they are transmitted through the male or female side of

the parent. So, a progeny from parent A is modeled as having the GCA effect of parent A whether A was its male or female

parent. We accomplish this restriction on the model by ‘overlaying’ the design matrix Z for male and female parents in the

linear mixed model. This will estimate one common GCA variance and one GCA estimate for each parent regardless of how

the parents were used.

The reduced linear model ignoring SCA effects is:

yijkm ¼ μþ Li þ B Lð Þj ið Þ þ Gk þ Gl þ εijkl þ wijklm ð5:5Þ

Code example 5.1
GCA model for half diallel. (Code 5-1_diallels.as)

!AS is required to indicate that the level codes for female and male parent effects are identical.
and(male) overlays the design matrix for model term male on the design matrix for the immediately preceding model term

(in this case, female).
!AS and and() used together ensure that we get a single consistent GCA effect estimate for each parent whether a parent is used

as female, male or both.

In the model, the block effect is nested within location effect because the block effect appears only with the location as

location.block. There is no block main effect across locations.

A partial output of Code 5-1_diallels.asr file is given below:

Notice: ASReml assumes female and and(male)

have the same levels in the same order.

...

- - - Results from analysis of density - - -

Model_Term Gamma Sigma Sigma/SE % C

location.block IDV_V 24 0.296193 125.872 2.83 0 P

female IDV_V 6 0.221045 93.9369 1.55 0 P

location.block.female.m IDV_V 864 0.134900 57.3279 4.38 0 P

units 1440 effects

Residual SCA_V 1440 1.00000 424.967 23.87 0 P
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• Notice the message in the output file about female and male having the same levels in the same order. ASReml assumes

that a female parent coded ‘1’ is the same individual as a male parent also coded ‘1’. We used the !AS qualifier and the

and() function to make sure this is the case.

It is important to note that although only one parental GCA component of variance (‘female’) is reported in this output, our

model includes GCA variances for both male and female parents. We restricted the model to force them to be equal, which is

why only one of the two parental GCA variances is reported. The female variance component is expected to equal 1/4 of the

additive genetic variance. The (unreported) male variance component is identical and also is expected to equal 1/4 of

the additive genetic variance. Together, these two GCA variances represent half of the additive genetic variance, which is the

proportion of additive genetic variance expected among full-sib families (Holland et al. 2003). The residual variance in this

model is due to variation among trees within a plot, which includes both within-family genetic variation and extraneous

non-genetic error variation. The within-family genetic variation includes the other half of the additive genetic variance and

all of the non-additive genetic (SCA) variance.

The solution (GCA estimates) for the parents used in the design are reported in the Code 5-1_diallels.sln file:

Model_Term Level Effect seEffect

location 1 0.000 0.000

location 2 -11.86 7.100

location 3 14.37 6.751

location 4 -13.59 6.759

mu 1 410.1 9.242

location.block 1.001 0.1467E-01 5.395

...

female 590 -0.6103 4.139

female 626 -5.062 4.164

female 634 -12.13 4.140

female 652 -1.542 4.143

female 612 2.686 4.173

female 649 16.66 4.138

• A partial output of the solution file is presented here. Parent 649 has a large positive GCA effect estimate (16.66 with a

standard error of 4.138), whereas parent 634 has a large negative value of �12.13 with a standard error of 4.14.

Using pedigree in the GCA model

In the model above, we assumed that the parents are unrelated, such that GCA effects are independent with no covariances:

Gk and Gl � NID 0; σ2G
� �

. If there are known pedigree relationships among the parents, however, we should include that

information in the analysis to account for correlations among effects of related parents.

Pedigree file Among the six parents used in the mating design, trees 590 and 626 have one common parent (333). The

remaining parental pairs are unrelated. The first nine rows of the pedigree file are given below:

TREE FEMALE MALE

333 0 0

590 333 0

626 0 333

634 0 0

652 0 0

612 0 0

649 0 0

1A11 590 626

1A12 590 626

...

146 5 Genetic Values



Although we do not have any observations for grandparent 333, we expand the vector a containing additive effects of

individuals to include all ancestors back to the base population. Thus we will see a solution (GCA value) for 333 in the

solution output file (.sln) for models that use this pedigree information.

The ASReml command file used to incorporate the pedigree relationships among the parents takes the following form:

Code example 5.2
GCA model for half diallel using pedigree information on parents (Code 5-2_diallels_with_pedigree.as)

A partial output from the primary output file is given below (Code 5-2_diallels_with_pedigree.asr). Before the variance

components estimates, the .asr file contains information about the reading of the pedigree file. Notice that ASReml correctly

identified that individual 333 was used as both father and mother in the pedigree and prints a warning (since this should not

happen in a mammalian pedigree). Also, the .asr file reports seven unique identities (the six parents plus one known common

grandparent) in the pedigrees of the phenotyped progenies.

diallel_pedigree.txt !SKIP 1

Reading pedigree file diallel_pedigree.txt: skipping 1 lines

Pedigree Header Line: tree mother father

Pedigree check: fath 333 previously occurred as a moth Now at line 3: 626 0 333

7 identities in the pedigree over 1 generations.

For first parent labelled moth, second labelled fath

moth moth_of_moth fath_of_moth fath moth_of_fath fath_of_fath

1 0 0 1 0 0

Using an adapted version of Meuwissen & Luo GSE 1992 305-313:

PEDIGREE [diallel_pedigree.txt ] has 7 identities, 9 Non zero elements

GIV0 NRM 7 7 -0.58

The variance components estimates are:

Model_Term Gamma Sigma Sigma/SE % C

location.block IDV_V 24 0.296185 125.868 2.83 0 P

female NRM_V 7 0.221136 93.9749 1.55 0 P

location.block.female.m IDV_V 1176 0.134908 57.3310 4.38 0 P

Residual SCA_V 1440 1.00000 424.964 23.87 0 P
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• The variance explained by the GCA effect is 93.97. The female factor (overlaid with male factor) is associated with the

pedigree, which models the variance-covariance structure of the parental effects according to the ‘numerator relationship

matrix’ (identified as ‘NRM_V’ in the .asr output). The female variance component estimate from this pedigree-based

model is slightly larger than in the previous model where we assumed no relationships among the parental effects. Some

increase is expected since the GCA effects of parents with some pedigree relationship are not independent, so when we

treated them as independent in the previous model, we were underestimating the true variance among the GCAs in the

reference population.

The solutions for parent GCA effects are given below (Code 5-2_diallels_with_pedigree.sln):

Model_Term Level Effect seEffect

...

female 333 -2.437 8.219

female 590 -0.8351 4.281

female 626 -5.257 4.307

female 634 -12.33 4.270

female 652 -1.742 4.271

female 612 2.489 4.302

female 649 16.46 4.268

Now the model predicts a GCA value for ancestor 333; otherwise the GCA predictions for the parents are similar to the

model without pedigree.

Adding GCA by location interaction term

Since the crosses were evaluated at multiple locations, we can include GCA by location interaction effects LGik to the model:

yijklm ¼ μþ Li þ B Lð Þj ið Þ þ Gk þ Gl þ LGik þ LGil þ εijkl þ wijklm ð5:6Þ

Modeling the GCA by location interaction for the diallel in ASReml requires some additional tricks. We want to overlay the

design matrix for female by location interaction on to that for male by location interaction using the and() model

specification. However, we cannot do this directly, because the interaction term ‘location.male’ must be first defined before

it is inserted inside the and() specification. This is best explained by example; the model in ASReml is as follows:

Adding GCA-by-environment interaction to model for half diallel using pedigree information on parents (Continued

Code 5-2_diallels_with_pedigree.as)

• loc.female and(loc.male) would be the obvious way to write the last line of model code, but this would not

work because the term inside the and() function is parsed before the interaction term is defined. So, any terms inside the

and()function must be defined directly by a field definition or be explicitly declared previously.

• The previous line of model code, female and (male) works because ‘male’ is defined via the field definitions.

However, loc.female and(loc.male) fails because the loc.male term that has not yet been defined.

• To work around the strict parsing of the and() function, we write: loc.female -loc.male and(loc.male):

-loc.male defines a term for the interaction of location and male without including it in the model so that it is

recognized when the and() term is parsed.
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• Notice that location is shortened as loc. ASReml understands it is location by matching it to the first three letters of

defined field names. Model terms should only be shortened when there is no chance of matching the wrong field.

Variance components from the model are below:

Model_Term Gamma Sigma Sigma/SE % C

location.block IDV_V 24 0.295285 125.461 2.84 0 P

female NRM_V 7 0.220009 93.4776 1.52 0 P

loc.female IDV_V 28 0.210848E-01 8.95855 1.51 0 P

location.block.female.m IDV_V 1176 0.112914 47.9751 3.80 0 P

Residual SCA_V 1440 1.00000 424.881 23.87 0 P

female NRM 7

• Notice that the plot-level experimental error variance for this model (location.block.female.male ¼ 47.97) is

smaller than the plot error variance (57.33) for the model without the G � E interaction term; the GCA-by-location

variance has been modeled as a random effect instead of being combined with the plot variance. In contrast, the residual

within-plot variance has hardly changed.

Specific Combining Ability (SCA) Effect

With the diallel mating design we can decompose total genetic variance into additive genetic variance (explained by the

GCA effect) and dominance genetic variance (explained by the SCA effect). In the model below, the term cross defines

SCA. In the data set, the levels of cross should code for a particular combination of parents without respect to which parent is

male or female. In other words, the level for cross should be identical for reciprocals. SCA can also be defined as an

interaction between female and male effects, but only if we are not treating male and female as pedigree-associated factors

(since the pedigree information forces a specific variance-covariance matrix on the main effects that cannot be simply

generalized to their interaction). Furthermore, to be sure we treat the effect of female k � male l as identical to female

k � male l, we need to use the and() function again. Since there is no field defined as male.female, we would have to

first define it in the model without fitting it, writing the part of the model coding for SCA as:

female.male –male.female and(male.female)

This would produce a single variance component estimate for female.male, and its value would be exactly half of the

variance component estimate for cross, since we are implicitly partitioning the cross variance equally into female.male

and male.female pieces. Considering these complications, it is generally easier to code the model and understand results

if we just create a field for ‘cross’ in the data set.

Finally, we also add a term for SCA by location interaction (loc.cross) in the model:

Adding SCA effects to model for half diallel using pedigree information on parents (Code 5-2_diallels_with_pedigree.as

continued).
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Variance components from the primary output file (.asr) are given below:

Model_Term Gamma Sigma Sigma/SE % C

cross IDV_V 14 0.151500E-02 0.643664 0.18 0 P

location.block IDV_V 24 0.295446 125.524 2.84 0 P

female NRM_V 7 0.219946 93.4463 1.51 0 P

loc.female IDV_V 28 0.211815E-01 8.99918 1.51 0 P

loc.cross IDV_V 56 0.101193E-06 0.429929E-04 0.00 0 B

location.block.cross IDV_V 336 0.111973 47.5728 3.73 0 P

Residual SCA_V 1440 1.00000 424.861 23.87 0 P

female NRM 7

• SCA and SCA by location interaction variances are both very small. The ratios of the estimates to their standard errors are

less than 1, suggesting that the dominance variance is likely not significant. There is almost no difference in log

likelihoods between this model (�5179.14) and the previous GCA model (�5179.16). Therefore we cannot reject the

null hypothesis that the SCA and SCA by location variances are both zero.

The SCA effects for each level of ‘cross’ are included in the solution file (.sln), and the effects are all very small, as expected

if the SCA variance is close to zero:

Model_Term Level Effect seEffect

cross 590626 0.1036 0.7806

cross 590634 0.5447E-02 0.7807

cross 590652 0.1325 0.7790

...

cross 649652 0.2667 0.7802

cross 652626 0.1141 0.7810

cross 652634 -0.3850 0.7823

...

female 333 -2.414 8.234

female 590 -0.7736 4.475

female 626 -5.262 4.500

female 634 -12.04 4.464

female 652 -1.775 4.464

female 612 2.365 4.494

female 649 16.28 4.462

What are the breeding value (BV) and genotypic value (GV) of cross 590 � 626? Parent 590 has a GCA value of �0.7736.

Parent 626 has the GCA value of�5.262. The expected BV of 590 � 626 is simply the sum of its parental GCA values: BV

(590 � 626) ¼ (�0.7736 – 5.262) ¼ � 6.04. The GV is simply the BV plus the SCA estimate for the cross. GV

(590 � 626) ¼ � 6.04 + 0.1036 ¼ � 5.94.

Reciprocal Effects

As discussed in the preceding section, the SCA effect for the cross between parents A and B is common between the two

reciprocal ways of making the cross SCA(A � B) ¼ SCA(B � A). If we have reciprocal crosses in the data, we can model

the reciprocal SCA effect, which is due to differences between A � B and B � A. Furthermore, some part of the reciprocal

effect may be due to differences in the GCA effect of a parent when used as male and female. We can augment the diallel

model to include reciprocal effects of both GCA and SCA. To do this, we need to add a column to the data set for an indicator

variable that distinguishes reciprocal crosses. This indicator variable can be a covariate set to 1 for crosses in one direction

and �1 for crosses in the other direction, and it is arbitrary as to which cross direction is coded as 1.
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For example, the file maize_diallel.csv contains data from a partial diallel in sets in which 55 parent maize plants were

crossed in many ways in 11 sets of five parents each. All possible crosses were attempted, although not all crosses succeeded.

A sample of 3,500 progenies were measured in randomized single plant plots across 2 years. Some progeny data rows in the

file are shown below:

Year Progeny female male cross r DTA PltHt

2013 1 171_11 170_1 170_1 � 171_11 -1 72 270
2013 27 171_11 170_1 170_1 � 171_11 -1 73 225
2013 44 170_1 171_11 170_1 � 171_11 1 73 240
2013 76 170_1 171_11 170_1 � 171_11 1 81 220
2013 131 170_1 167_6 167_6 � 170_1 -1 73 265
2013 147 170_1 167_6 167_6 � 170_1 -1 72 255

In the data set, you can see that when parents 170_1 and 171_11 were crossed, the progeny’s cross field level is set to

170_1� 171_11, irrespective of which parent was used as female. The variable ‘r’ is the covariate that distinguishes the two
reciprocals of this one combination. It is set at �1 when 171_11 was used as female and set at 1 when 170_1 was used as

female. It is arbitrary which reciprocal is labeled as r¼�1 or 1 within a particular combination. For example, when 170_1 is

used as a female in a cross with parent 167_6, the progeny value for r is set at �1.

Having set up the data this way, we can then write the ASReml code to define the field for the ‘r’ variable as a numeric

covariate, and then fit interactions between GCA and SCA effects with this covariate to capture the reciprocal effects

(Holland et al. 2003; M€ohring et al. 2011; Piepho and M€ohring 2007). The full model should also include reciprocal by

environment interactions, which are really three-way interaction between genetic effects, the reciprocal covariate, and

environment:

Code example 5.3
Model for diallel with reciprocal crosses. (see details in Code 5-3_reciprocal_effects.as)
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The variance components estimates from this analysis are:

Model_Term Gamma Sigma Sigma/SE % C

female IDV_V 53 0.107210 64.1576 2.93 0 P

Year.female IDV_V 106 0.497229E-02 2.97556 0.78 0 P

female.r IDV_V 53 0.297211E-03 0.177859 0.14 0 P

Year.female.r IDV_V 106 0.101193E-06 0.605567E-04 0.00 0 B

cross IDV_V 89 0.799283E-01 47.8314 2.07 0 P

cross.r IDV_V 89 0.101193E-06 0.605567E-04 0.00 0 B

Year.cross IDV_V 178 0.122755E-01 7.34601 0.86 0 P

Year.cross.r IDV_V 178 0.101193E-06 0.605567E-04 0.00 0 B

Residual SCA_V 3196 1.00000 598.429 38.86 0 P

• These results show little evidence for reciprocal effects, the variance components corresponding to reciprocal effects are

either very small ( female.r, corresponding to reciprocal GCA) or essentially zero.

Interpretation of Observed Variances from Diallels

Assuming that epistatic genetic effects are negligible, the variance component associated with the female effect (GCA) is 1/4
of the additive genetic variance, and the variance component associated with the cross effect (SCA) is 1/4 of the dominance

variance. If the experiment were established in one environment, these variances may also include contributions due to

confounded genetic-by-environment variances. Variance associated with reciprocal GCA effects ( female.r,σ2GCArÞ can be

due to maternal effects and cytoplasmic genetic effects that are shared among all crosses with a common female parent, but

not shared by crosses where that parent is used as male. The reciprocal SCA variance (cross.r, σ2SCAr) is due to any effects

that are specific to a particular direction of a specific cross; this could occur due to interactions between cytoplasm of the

maternal parent and nuclear alleles of the paternal parent.

The interpretation of observed GCA and SCA variance components as equal to their expected values in terms of additive and

dominance variance in the reference population has to be done with caution. As already mentioned, a major limitation to the

use of diallels for estimating genetic variance components is their generally limited sampling of parents, resulting in

potentially large variation among estimates from different parental samples (Isik et al. 2005). Small samples can also cause

the assumption of independence among loci to be violated even when the reference population is in linkage equilibrium, and

this will affect the estimated variance components (Baker 1978). In general, it is safer to treat the parents as a fixed factor and

avoid estimating variance components (Hallauer and Miranda 1988), but the fixed effects approach may result in difficulties

in estimability of GCA effects if some crosses are missing.

We showed previously that relationships among the parents can be modeled by including pedigree information, which

results in the GCA variance being properly adjusted to reflect the variance among unrelated samples of the reference

population. ASReml internally makes this adjustment by using the numerator relationship matrix to model the additive

effects of the parents. However, ASReml does not automatically adjust the SCA variance to account for the possibility that

some progenies that appear to be half-sibs based on the immediate generation pedigree may in fact have a closer relationship

and share dominance effects. Returning to the pine diallel example, progenies from the cross of parent 590 � 634 are closer

than half-sibs to progenies from 626 � 634 (2θ ¼ 0.3125) because parents 590 and 626 are both progenies of ancestor 333.

Furthermore, progenies within the cross of 590 � 626 are more closely related than full-sibs, their additive relationship is

2θ ¼ 0.625. ASReml accounts for the increased additive relationships in these cases when it uses the pedigree information

on the parents. It does not, however, account for the small covariance between the dominance effects of families 590 � 624

and 626 � 624 (Δ ¼ 0.0625), or the slightly increased dominance covariance between progenies within the 590 � 626

family (Δ ¼ 0.28125). Ignoring these relationships leads to biased estimates of the dominance variance based on the diallel

SCA variance estimate. In the example shown, the bias is expected to be small since the changes in affected coefficients are

small.
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Linear Combinations of Variances from Diallels

Keeping in mind the caveats stated in the previous section, we still may want to use the estimated variance components from

the diallel model to estimate heritability. Given the family structure inherent in the diallel design, we can estimate several

different heritability values, which can be interpreted as being related to response to selection among individuals, half-sib

families, or full-sib families, or combined selection among and within families (Holland et al. 2003).

If we have data on individuals (rather than just mean or total values from plots containing multiple individuals from a

common family), we can estimate phenotypic variance among individuals σ2phen

� �
and the narrow-sense heritability h2i

� �
from the diallel analysis results. The phenotypic variance among individuals within a block from a diallel without

reciprocals replicated across several locations and with multiple individuals per experimental unit is:

σ2phen ¼ 2σ2G þ σ2S þ 2σ2LG þ σ2LS þ σ2ε þ σ2w ð5:7Þ

Narrow-sense heritability is the ratio of additive genetic variance and phenotypic variance among individuals within a block:

h2i ¼ σ2A=σ
2
phen ¼ 4σ2G=σ

2
phen ð5:8Þ

Broad-sense individual heritability (hbs
2) is similar but includes both additive and dominance variance in the numerator:

h2bs ¼ 4 σ2G þ σ2S
� �

=σ2phen ð5:9Þ

The selection unit in diallels could be half-sib family means, in which case the relevant heritability to predict selection

response would be a ratio of the amount of additive variance among families to the variance of half-sib family means. The

variance of half-sib family means can be derived from the linear model and the observed variance components, as follows:

the mean of half-sib family k is:

�Y::k::¼ μþ �L:þ �B::þGkþ
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σ2ε
er p�1ð Þþ

σ2w
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ð5:10Þ

In this equation, p is the number of parents of the diallel, e is the number of environments (locations in this example), r is the

number of replications or blocks per environment, and n is the number of individuals per plot. The half-sib family mean

includes Gk, the GCA of the common female parent k, and averages over p – 1 GCA effects of male parents, p – 1 SCA

effects of combinations between parent k and the other parents, and over the relevant genetic-by-environment interaction

effects, plot effects, and plant within plot effects. If p is large (say, p> 20) then p/(p–1) is approximately 1 and the variance

of family means (Var �Y::k:ð Þ) is approximately:

σ2HS ¼ σ2GCA þ
σ2SCA
p� 1

þ σ2LG
e

þ σ2LS
e p� 1ð Þ þ

σ2ε
er p� 1ð Þ þ

σ2w
ern p� 1ð Þ ð5:11Þ

If the number of individuals per experimental unit varies, then we replace n in the equation above (which refers to a constant

number of individuals per unit), with the harmonic mean of the number of individuals per experimental unit (nh) (Holland

et al. 2003; Nyquist 1991). This equation will also hold for half-sib families derived from male parents.

Heritability of half-sib family means is simply a ratio of the variance component due to GCA and the phenotypic variance of

half-sib family means:
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h2HS ¼
σ2G
σ2HS

¼
1
4
σ2A
σ2HS

ð5:12Þ

Alternatively, breeders may select among full-sib family means. The mean of half-sib family kl is:
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and the variance of full-sib family means Var �Y::k:ð Þð is:

σ2FS ¼ σ2GCA þ σ2GCA þ σ2SCA þ
σ2LG
e

þ σ2LG
e

þ σ2LS
e

þ σ2ε
er

þ σ2w
ern

ð5:14Þ

¼ 2σ2GCA þ σ2SCA þ
2σ2LG
e

þ σ2LS
e

þ σ2ε
er

þ σ2w
ern

ð5:15Þ

If the breeder recombines individuals from selected full-sib families to create a new population, only the additive portion of

the variance among full-sib families contributes to selection gain in the next generation. The dominance variance does not

contribute to gain because the dominance interactions are disrupted by random mating among the selected families:

h2FS ¼ 2σ2G=σ
2
FS ð5:16Þ

In some species, it may be possible to reproduce seeds or progenies of a superior cross in sufficient quantity to serve as a unit

of production, then the selected families could be used directly in production. The gain predicted from growing these

selected families in independent environments compared to growing the original population involves the complete variation

among full-sib family genotype values in the numerator, as the response units share dominance deviations with the selection

units (Holland et al. 2003):

H2
FS ¼

2σ2G þ σ2S
σ2FS

¼ 0:5σ2A þ 0:25σ2D
σ2FS

ð5:17Þ

Breeders might also be interested in selection of the best crosses and the best progeny within crosses. This is simply an index

of family and within family selection. The phenotypic variance within families is the difference between the total variance

among individuals and the phenotypic variance among full-sib family means:

σ2fsw ¼ σ2phen � σ2FS

¼ 2σ2G þ σ2S þ 2σ2LG þ σ2LS þ σ2ε þ σ2w
� �

� 2σ2G þ σ2S þ
2σ2LG
e

þ σ2LS
e

þ σ2ε
er

þ σ2w
ern

� �

¼ e� 1ð Þ2σ2LG
e

þ e� 1ð Þσ2LS
e

þ er � 1ð Þσ2ε
er

þ ern� 1ð Þσ2w
ern

¼ e� 1ð Þ
e

2σ2LG þ σ2LS
� �þ er � 1ð Þσ2ε

er
þ ern� 1ð Þσ2w

ern

ð5:18Þ

The broad-sense and narrow sense within-family heritability estimates are:

h2w ¼ 2σ2G=σ
2
fsw ð5:19Þ
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H2
w ¼ 2σ2G þ 3σ2S

� �
=σ2fsw ð5:20Þ

We can obtain estimates of these kinds of heritabilities as functions of the variance components from ASReml. For example,

we can obtain the heritability estimators for the tree diallel example, by substituting the coefficients e ¼ 4, r ¼ 6, and p ¼ 6

into the equations above, and using the following VPREDICT !DEFINE function after the model including GCA and SCA

and their interactions with environments. There is a slight complication that we also need to compute the harmonic mean of

individuals per plot because the number of individuals per plot was not constant. We can compute the harmonic mean easily

using a little bit of R code:

Code example 5.4

R script to compute the harmonic mean of the number of trees per plot in the diallel.csv data set

(Code 5-4_Harmonic_mean.R):

This returns 4.0017. So, we can use 4 as the value of nh in the family mean heritability computations.

Code example calculating linear combinations of variance components from diallels (Code 5.2_diallels_with_pedigree. as).
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Output of the functions of variance components defined by VPREDICT is stored in the Code 5-2_diallels_with_pedigree.pvc
file:

- - - Results from analysis of density - - -

1 cross V 14 0.643664 3.57591

2 location.block V 24 125.524 44.1986

3 female V 7 93.4463 61.8850

4 loc.female V 28 8.99918 5.95972

5 loc.cross V 56 0.429929E-04 0.00000

6 location.block.cros V 336 47.5728 12.7541

7 Residual V 1440 424.861 17.7990

female NRM 7

8 SCA 1 0.64366 3.6528

9 GCA 3 93.446 61.768

10 GCAxL 4 8.9992 5.9421

11 SCAxL 5 0.42993E-04 0.18008E-05

12 Error 6 47.573 12.766

13 Within 7 424.86 17.796

14 A_var 3 373.79 247.07

15 D_var 1 2.5747 14.611

16 GCA2 3 186.89 123.54

17 SCA.GCA2 8 187.54 123.55

18 SCA3.GCA2 8 188.82 123.91

19 phen_i 9 677.97 125.11

20 phen_hs 9 116.21 74.104

21 phen_fs 9 198.44 123.53

22 phen_wfs 10 479.70 19.794

h2_i = A_var 3 14/phen_i 19= 0.5513 0.2648

h2_hs = GCA 3 9/phen_hs 20= 0.8041 0.0232

h2_fsns = GCA2 3 16/phen_fs 21= 0.9418 0.0429

H2_fsbs = SCA.GCA2 17/phen_fs 21= 0.9451 0.0373

h2_wfs = GCA2 3 16/phen_wfs 22= 0.3896 0.2582

H2_wfs = SCA3.GCA 18/phen_wfs 22= 0.3936 0.2591

Notice: The parameter estimates are followed by

their approximate standard errors.

• The estimate of dominance variance is much smaller than its standard error, so it is likely not different from zero. This is

expected in this case, as we already noted that the SCA variance was not significant in these data.

• As a consequence, the ‘broad-sense’ heritability estimators that include dominance variance in their numerators are about

equal to the corresponding ‘narrow-sense’ heritability estimators.

• The estimate of heritability among individual plants (h2_i) has a large standard error, but the heritabilities among family

means are very high and have relatively small standard errors.

• We caution the reader again that these estimates of heritability should not be considered reliable because of the very small

sample of six parental plants used to establish the diallel.

Factorial Mating Designs

In factorial mating designs, a set of individuals are used as females and another set of individuals are used as males for

mating. Like diallels, there are multiple versions of factorial mating designs (Hallauer and Miranda 1988; White et al. 2007).

Single and double pair mating designs depicted in Fig. 5.3 are often used because the number of crosses required are greatly

reduced compared to a complete factorial.
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A linear model example for a factorial mating design

A factorial mating design was used to cross three unrelated female and three unrelated male individuals. Nine full-sib

families (crosses) were produced. A randomized complete block design with six blocks were used to establish a field test.

The experiment was replicated in another location. Tree height is the response variable measured after six growing seasons.

The statistical model is

yijpqk ¼ μþ Li þ Bj ið Þ þ Fp þMq þ FMpq þ LFip þ LMiq þ LFMipq þ εijpqk ð5:21Þ

where yijpqk is the kth observation of the pqth cross the in the jth block in the ith site; μ is the overall mean; Li is the ith fixed

site (environment) effect, i ¼ 1 to t; Bj(i) is the fixed effect of the jth block nested within the ith site, j ¼ 1 to b; Fp is

the random general combining ability (GCA) effect of the pth female � NID 0; σ2F
� �

; Mq is the random general

combining ability (GCA) effect of the qth male � NID 0; σ2M
� �

;FMpq is the random cross effect of the pth and the qth

parents p 6¼ qð Þ � NID 0; σ2FM
� �

; LFip is the random female by location Interaction� NID 0; σ2LF
� �

; LMiq is the random male

by location Interaction � NID 0; σ2LM
� �

; LFMipq is the random cross by location interaction effect � NID 0; σ2LFM
� �

; εijpqk is

the random error term � NID 0; σ2ε
� �

.

We can use ASReml models similar to diallel models for factorial mating designs. The difference is that male and female

parents are distinct in the factorial mating design, so we would NOT use a field definition like ‘male !AS female’ for the
factorial mating because a male parent coded as ‘1’ would not be the same parent as a female parent coded as ‘1’. Similarly,

we can fit male, female, and male*female interaction effects in the model, but the factorial model coding is much simpler

since we do not need to use the and() function to overlay the design matrices. On the contrary, we want to allow the male

and female factors to be distinct and we will obtain two different estimates of GCA variance, one for male and another for

female parents.

Similar to diallels, we can estimate causal genetic variances (additive, dominance) and derive linear combinations of

variance components. Variance components observed for the female or male are 1/4 of additive genetic variance

σ2F ¼ 1=4σ2A; andσ
2
M ¼ 1=4σ2A

� �
. These may be poor estimates since the number of female or males used in the mating are

often small and the variance components associated with either the female and male effect may have large standard errors. A

better estimate of the additive variance is the average of female and male variance components: σ2A ¼ 2 σ2F þ σ2M
� �

. The

phenotypic variance σ2p

� �
is the sum of the all the variance components, except the variance component for the random block

effect:

σ2phen ¼ σ2F þ σ2M þ σ2FM þ σ2SF þ σ2SM þ σ2SFM þ σ2ε ð5:22Þ

The best estimate of narrow-sense heritability h2i
� �

is:

h2i ¼ 2 σ2F þ σ2M
� �

=σ2phen ð5:23Þ
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Fig. 5.3 Single pair (left) and
double pair factorial mating

designs (right). A full factorial

would produce N ¼ f � m,

where f and m are the numbers of

females and males, respectively
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The mean of a half-sib family means with a common female parent is:

�Y::p:: ¼ μþ �L: þ �B:: þ Fp þM:

m
þ FMp:

m
þ LF:p

l
þ LM::

lm
þ LFM:p:

lm
þ ε::p::
lbmn

ð5:24Þ

The variance of maternal half-sib family means is:

Var �Y::p::

� � ¼ σ2phen f ¼ σ2F þ
σ2M
m

þ σ2FM
m

þ σ2LF
l

þ σ2LM
lm

þ σ2LFM
lm

þ σ2ε
lbmn

ð5:25Þ

Notice that the contribution of the male effect to the phenotypic variance of female means is reduced by the number of males

used to cross to each female parent.

The mean and variance for paternal half-sib family means are analogous:

�Y ...q: ¼ μþ �L: þ �B:: þ F:

f
þMq þ FM:q

f
þ LF::

lf
þ LM:q

l
þ LFM::q

lf
þ ε...q:

lbfn
ð5:26Þ

Var �Y...q:

� � ¼ σ2phen f ¼
σ2F
f

þ σ2M þ σ2FM
f

þ σ2LF
lf

þ σ2LM
l

þ σ2LFM
lf

þ σ2ε
lbfn

ð5:27Þ

We can take the average of female and male parental mean phenotypic variances to get a pooled estimate of half-sib family

phenotypic variance. Heritability estimates for maternal and paternal half-sib family means and a pooled average heritability

can be obtained as:

h2f ¼ σ2F=σ
2
phen f or

h2m ¼ σ2M=σ
2
phen m or

h2fm pooled ¼ 1=2
σ2F þ σ2M

� �
σ2phen pooled

ð5:28Þ

Analysis of Cloned Progeny Test Data

In some plant and animal species, individuals can be cloned and their genetically identical copies can be tested in multiple

environments. Cloning individuals for within family-selection is an especially common practice to develop varieties for

deployment in eucalyptus species (Mullin et al. 2011) and many ornamental plants and vegetatively-propagated crops.

Cloning allows breeders to capture hybrid vigor and non-additive genetic effects among and within crosses. Cloning

individuals and testing in replicated field trials has the advantage of increasing the accuracy of genotypic value predictions

compared to individual evaluations (Isik et al. 2004). With cloned progeny we can increase the heritability both by

increasing the numerator (including all of the genotypic variance because broad-sense heritability is applicable to gain

from selection) and by decreasing the denominator by averaging clonal means over more observations. If progenies from a

mating design are cloned, we can also estimate total genotypic variance in addition to additive variance, providing a means

to assess the relative importance of non-additive genetic variance.

Data

As an example of analysis of data from a clonal evaluation, we present a data set for loblolly pine (Pinus taeda) from the

North Carolina State University Cooperative Tree Breeding Program. A single-pair mating design was used to produce eight

full-sib families (crosses). Some of the parents used in crossing were related. Progeny from crosses were cloned via somatic

embryogenesis. In total, 136 genetically unique progenies were cloned. Clones were field tested using an unbalanced

incomplete block design at three locations. There were eight blocks at two of the locations and four blocks at the third. No
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blocks included all entries, and some entries appeared twice within some blocks. On average, genotypes were represented by

about 15 clonal copies in the experiment. At age 8 years after planting, tree height diamater (dia8) and stem diameter were

measured. Stem forking was recorded as a binary trait, 0 ¼ no forking, 1 ¼ forked stem. The objective was to estimate

variance components and predict genetic values of clones for strictly within family selection. The first five rows of the data

file (Pine_clones.csv) are shown below, cloneid refers to the code for the individual progeny genotype (not to the specific

clonal copy within a genotype):

cloneid parent1 parent2 cross location block height dia8 fork

18 14 16 J Hill 2 35.9 7.0 0

18 14 16 J Hill 4 38.3 6.6 0

18 14 16 J Hill 6 27.7 5.8 0

18 14 16 J Hill 8 37.0 6.4 0

18 14 16 J Orchard 2 35.7 5.4 0

Statistical model

The following linear mixed model was fit to the data to estimate variance components and predict genetic values of cloned

individuals for tree height. We have pedigree information that provides information on the additive relationships among

each cloneid, so we use a form of the individual model and apply the additive relationship matrix to model the variance-

covariance relationships among the clones:

yijk ¼ μþ Li þ Bj ið Þ þ Gk þ LGik þ εijk ð5:29Þ

where yijk is the kth genotype in the jth block of the ith location; μ is the overall mean; Li is the ith fixed location

(environment) effect, i ¼ 1 to t; Bj(i) is the random effect of the jth incomplete block nested within the ith location, j ¼ 1

to b;Gk is the random individual progeny genotype effect� N 0;Aσ2A
� �

; LGik is the random individual by location interaction

effect � N 0;Aσ2AL
� �

; and εijk is the random error term � NID 0; σ2ε
� �

. This model will provide estimates of additive and

additive genetic – by – environment interaction variances.

We can extend this model to include any genetic variation among genotypes that is not captured by the genetic term with

variance-covariance modeled according to the additive genetic relationship matrix. This will include non-additive genetic

variance, although we cannot be more specific about which non-additive variances contribute to this additional term. It could

include epistatic variances and dominance variance. The extended model includes two additional terms:

yijk ¼ μþ Li þ Bj ið Þ þ Gk þ Grk þ LGik þ LGrik þ εijk ð5:30Þ

The terms in this model are identical to the previous model, but we have added two additional factors: Grk, the residual

genetic effects (non-additive) of the kth individual, Grk � NID 0; σ2Gr
� �

; and LGrik the interaction between residual genetic

effects (non-additive) of the kth individual and the ith environment, LGrk � NID 0; σ2LGr
� �

. So, this model includes two

genetic effects for each individual k, one with a variance-covariance structure proportional to the A matrix, and the other

with an independent effect distribution. Note that the sum of the variance components for additive variance and residual

genetic variance does not necessarily equal the total genetic variance because the IID assumption of residual genetic effects

is not correct if the progenies are related. Again, this is why we cannot attach a specific interpretation to the residual genetic

variance other than to say it is non-additive variance.
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The ASReml code for these models is given below.

Code example 5.5
Code example analyzing cloned progeny test data (Code 5-5_clones.as)

• The term nrm(cloneid) fits the additive effects of individuals according to the pedigree information supplied in the

pedigree file.

• Since the factor cloneidwas defined as a pedigree factor in the field definitions, we need to use a special term to fit cloneid

without the pedigree relationships. This is accomplished with the term ide(cloneid), which takes a copy of a

pedigree factor cloneid and fits it without the genetic relationships using an identity matrix for its variance-covariance

structure.

• !NOREORDER qualifier keeps the variances in the order they are specified in the model.
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The variance components estimates from above models are given below:

PART 1

8 LogL=-3824.59 S2= 13.050 2068 df

- - - Results from analysis of height8 - - -

Akaike Information Criterion 7657.18 (assuming 4 parameters).

Bayesian Information Criterion 7679.72

Model_Term Gamma Sigma Sigma/SE % C

location.block IDV_V 24 0.108434 1.41509 2.67 0 P

nrm(cloneid) NRM_V 153 0.438690 5.72501 6.15 0 P

units 2071 effects

Residual SCA_V 2071 1.00000 13.0502 30.94 0 P

cloneid NRM 153

nrm(cloneid).location 459 effects

location ID_V 1 0.101193E-06 0.132059E-05 0.00 0 B

• The variance associated with nrm(cloneid) is the additive genetic variance. The term nrm(cloneid).location refers to

additive genetic – by – location interaction variance and has an estimated variance component of zero, so it could be

dropped from the model.

PART 2

7 LogL=-3824.52 S2= 13.047 2068 df

- - - Results from analysis of height8 - - -

Akaike Information Criterion 7661.03 (assuming 6 parameters).

Bayesian Information Criterion 7694.84

Model_Term Gamma Sigma Sigma/SE % C

location.block IDV_V 24 0.108445 1.41491 2.67 0 P

nrm(cloneid) NRM_V 153 0.341199 4.45173 1.53 0 P

ide(cloneid) IDV_V 153 0.528398E-01 0.689417 0.44 0 P

ide(cloneid).location IDV_V 459 0.101193E-06 0.132030E-05 0.00 0 B

units 2071 effects

Residual SCA_V 2071 1.00000 13.0473 30.94 0 P

cloneid NRM 153

nrm(cloneid).location 459 effects

location ID_V 1 0.101193E-06 0.132030E-05 0.00 0 B

• The ide(cloneid) term explains very little variation (0.689), and the likelihood of this model is nearly identical to the

previous model, so there is no evidence for significant non-additive genetic variance in this case.

Despite the lack of evidence for non-additive variance, for completeness we demonstrate here how to estimate heritability

for individual tree observations from model 2 as:

h2 ¼ σ2A
σ2A þ σ2Gr þ σ2AL þ σ2LGr þ σ2ε

ð5:31Þ
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and the heritability for mean cloneid values averaged across replicated clone trees as:

h2cm ¼ σ2A

σ2A þ σ2Gr þ σ2
AL

l þ σ2
LGr

l þ σ2ε
n

ð5:32Þ

Where l is the number of locations, and n is the harmonic mean of the number of trees measured per cloneid.

The syntax in ASReml is given in the VPREDICT !DEFINE statement following model 2, note that we did not include the

genotype – by – location variances in the phenotypic variance estimates, since they were zero in this example:

In the estimate of phenotypic variance for clone means, the residual term is multiplied by the reciprocal of the harmonic

mean of the number of trees measured per cloneid (1/12.2 ¼ 0.082).

The output of the VPREDICT directive is in Code 5-5_clones.pvc:

- - - Results from analysis of height8 - - -

1 location.block V 24 1.41491 0.52993

2 nrm(cloneid) V 153 4.45173 2.90963

3 ide(cloneid) V 153 0.689417 1.56686

4 ide(cloneid).locatio V 459 0.132030E-05 0.00000

units 2071 effects

5 units;Residual V 2071 13.0473 0.421697

cloneid NRM 153

nrm(cloneid).location 459 effects

6 location V 1 0.132030E-05 0.0000

7 Va 2 4.4517 2.9031

8 Vna 3 0.68942 1.5512

9 Verr 5 13.047 0.42170

10 Vp 7 18.188 1.5626

11 Vp_m 7 6.2110 1.5136

h2 = Va 2 7/Vp 7 10= 0.2448 0.1406

h2_cm = Va 2 7/Vp_m 7 11= 0.7167 0.3074

• The heritability of individual tree measurements is only 0.24, but the heritability of clone mean values (averaged over

clonal copies in different replications and environments) is much higher (0.72).
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A portion of solution from Code 5-5_clones.sln file is shown here:

Model_Term Level Effect seEffect

...

nrm(cloneid) 1 1.495 1.666

nrm(cloneid) 2 -0.2138 2.012

nrm(cloneid) 3 -0.1706 1.945

...

nrm(cloneid) 18 0.3146E-01 1.269

nrm(cloneid) 19 -2.102 1.235

nrm(cloneid) 20 -0.3655 1.147

...

ide(cloneid) 1 0.000 0.8304

ide(cloneid) 2 0.000 0.8304

ide(cloneid) 3 0.000 0.8304

...

ide(cloneid) 18 -0.1362 0.7665

ide(cloneid) 19 -0.7971 0.7614

ide(cloneid) 20 -0.2592 0.7492

• Solutions for cloneid levels 1–17 are for parents. The nrm(cloneid) solutions are the additive genetic effects, and

these can be estimated for parents as well as progeny because of their known pedigree relationships.

• The solutions for cloneid levels 18 and higher are for the progenies that were directly measured in the experiment.

• The solutions for ide(cloneid) are the residual non-additive genetic effects. Notice that solutions for ide

(cloneid) for the parents (levels 1, 2 and 3) are zero because the ide() effects are modeled as independent and

we have no direct measurements on the parents.

• The ide(cloneid) values can be added to the nrm(cloneid) values for the progenies in order to estimate total

genotypic value, which can be useful for selecting progenies to distribute clonally as new varieties for production.

For selecting progenies with best predicted breeding values to intermate to produce a new generation, however, the nrm

(cloneid) values would be appropriate for making selections.
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Abstract

Multivariate models are commonly used to estimate phenotypic, genetic and environmental variances, covariances, and

correlations for multiple traits in plant and animal breeding programs. When traits are correlated, breeding value

predictions from a multivariate model can be more accurate than univariate models. In this chapter we introduce

multivariate models for two data sets: a maize inbred line multi-environment trial and pig data with pedigree information

appropriate for an animal model.

Introduction

In breeding applications, multivariate models offer several advantages over their singe trait counterparts. For example,

empirical breeding values (EBVs) estimated from multivariate models for low heritability traits (such as fitness and fertility)

receive an increase in accuracy by exploiting their covariances with higher heritability traits (such as size and morphology

characteristics). Even highly heritable traits can benefit from multivariate analyses, although the advantage might be limited.

Genetic correlations can also be used to predict the effectiveness of indirect selections on one trait with the primary goal of

improving a different trait. For example, if height is an easily observed trait that is highly correlated with yield, and it takes

more time and effort to improve yield, then it may be possible to select on height to more efficiently make positive changes

in yield in the population. Furthermore, multivariate models are able to accommodate the implicit structure of the selection

process by which individuals may be culled sequentially based on a series of traits over their lifetime, so that data are not

missing at random but are missing more frequently for later-recorded traits. In this and in other cases where individuals may

have missing data for different traits, multivariate analysis is able to better account for the missing data. In contrast, the

ordinary least squares (multivariate ANOVA) approach requires dropping records that have missing values for any one of

the several traits being analyzed jointly. The more efficient use of missing or unbalanced data by mixed models analysis can

have a substantial impact in cases where not all traits are measured on all experimental units, for example where one of the

traits was not measured at one of the environments in a multi-environment plant breeding trial. Analysis of repeated

measures of a single trait at multiple time points is also a specific type of multivariate analysis.

Quantitative genetics researchers are often interested in partitioning observed phenotypic variance into causal (genetics and

environment) components, and multivariate analyses allow this type of approach to be extended to partitioning observed

covariances and correlations into the underlying environmental and genetic covariances and correlations. In population and

evolutionary genetics, genetic correlation estimates are useful to understand how different traits are genetically related to

fitness and how natural selection for higher fitness affects or constrained by other traits.

While multivariate analyses offer several advantages, they come at a cost of increased computational demand. The memory

requirements for REML analysis of multivariate models increase rather quickly especially when several random effects are

included in the model and the number of parameters to be estimated increases. Also, convergence to globally optimal

parameter values becomes more difficult with multivariate models, and the algorithm may converge to a local optimum

solution that is not the best. Therefore the choice of starting values for variances and covariances in multivariate models

becomes more important. As a rule of thumb, it is advisable to first perform initial single trait analysis models and then use

the variance components estimates from the univariate models as starting values for subsequent multivariate models. The

univariate estimates of variance components also serve as a useful check that the multivariate model produces reasonable

parameter estimates. For some complicated models, it may help to run analyses with different starting values and evaluate

the concordance of different runs.

Some Theory

Phenotypic values of different traits measured on the same subjects are often correlated. Both environmental factors and

genetic effects contribute to observed correlations among phenotypic values for different traits. Environmental correlations

arise when a common environmental variation affects multiple traits. For example, temperature can affect both the time to

flowering and height of plants. Genetic correlations can arise by either of two causes: pleiotropy and linkage disequilibrium.

Pleiotropy occurs when one or more genes influence more than one trait. Linkage disequilibrium can result in genotypic
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correlations even when loci affecting a pair of traits are distinct, because the alleles at different loci (affecting different traits)

are not independent. This results in their effects being correlated, and the net effect of these trait correlations across all pairs

of loci can generate a genetic correlation. In this book, we will not distinguish between the causes of genetic correlations, we

will instead focus on estimating the value of the correlation coefficients.

Similar to how we partitioned the phenotypic variance for one trait in variance components, we can decompose the

phenotypic covariance for two or more traits into covariance components associated with different genetic and

non-genetic factors in the experiment. Then we can estimate the phenotypic correlation rP(x, y) between two traits x and

y as the ratio of the phenotypic covariance to the square root of the product of the phenotypic variances for the two traits:

rP x;yð Þ ¼
σG x;yð Þ þ σε x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2Gx þ σ2εx

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Gy þ σ2εy

q ð6:1Þ

where σG(x, y) is genotypic covariance, σε(x, y) is residual environmental covariance, and σ2Gx, σ
2
εx, σ

2
Gy andσ

2
εy are genotypic or

environmental variances for traits x and y, respectively.

The genotypic covariance is the sum of covariances between additive, dominance, and epistatic effects. Recall that genetic

variances for traits x and y are due to additive, dominance, and epistatic interactions as follows:

σ2Gx ¼ σ2Ax þ σ2Dx þ σ2AAx þ σ2ADx þ σ2DDx þ . . . ð6:2Þ

σ2Gy ¼ σ2Ay þ σ2Dy þ σ2AAy þ σ2ADy þ σ2DDy þ . . . ð6:3Þ

In the same way, the genotypic covariance is the sum of covariances for each of these component effects across traits:

σG x;yð Þ ¼ σA x;yð Þ þ σD x;yð Þ þ σAA x;yð Þ þ σAD x;yð Þ þ σDD x;yð Þ þ . . . ð6:4Þ

where σA(x, y) is the additive genetic covariance between traits x and y, and the other terms represent dominance and epistatic

covariances between the traits. If additive and dominance genetic variances can be estimated for each trait using the

experimental designs and analyses outlined in Chaps. 4 and 5, then additive genetic (rA(x, y)), dominance genetic (rD(x, y)) and

residual environmental (rε(x, y)) correlations can also be estimated as ratios of covariance components to variance

components:

rA x;yð Þ ¼
σA x;yð Þffiffiffiffiffiffiffi
σ2Ax

p ffiffiffiffiffiffiffi
σ2Ay

q ð6:5Þ

rD x;yð Þ ¼
σD x;yð Þffiffiffiffiffiffiffi
σ2Dx

p ffiffiffiffiffiffiffi
σ2Dy

q ð6:6Þ

rE x;yð Þ ¼
σE x;yð Þffiffiffiffiffiffiffi
σ2Ex

p ffiffiffiffiffiffiffi
σ2Ey

q ð6:7Þ

In some cases, such as when we lack pedigree information and do not have an adequate mating design, experimental data do

not allow us to partition the total genotypic variance into additive and other component variances. In these cases, the

genotypic covariance and correlation also cannot be partitioned into any component pieces.

The Linear Mixed Model for Multivariate Models

As a toy example, suppose that we have measured height and yield on five individuals from two half-sib families. We would

like to fit a bivariate model to height and yield to obtain variances, covariances and correlations of two traits. The data are

given below:
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Individual Height Yield

1 87 0.52
2 84 0.48
3 75 0.45
4 90 0.69
5 79 0.74

We will use the fact that individuals 1 and 2 are half-sibs and individuals 3, 4, and 5 are half-sibs later to model the variance-

covariance structure of the genetic effects of individuals. The general form of the multivariate model is:

Yij ¼ μj þ Aij þ εij ð6:8Þ
where:

μj is the intercept for trait j, each trait has a separate intercept. We will use j¼ 1 and 2 as subscripts for the two traits. So, we

switch from referring to traits as X and Y as Y1 and Y2.

Aij is the effect of the additive genetic value trait j measured on individual i,

εij is the residual deviation for on individual i.

Multivariate data and linear models can be organized in two distinct ways: the dependent observations can be organized as a

matrix of data, where each column represents a different trait, or as a single vector. These forms are mathematically

equivalent, but the matrix form may be easier to understand for first-time readers, whereas the vector form is required for

some software (Holland 2006).

We first present the model for multivariate data organized as a matrix:

Y¼XbþZuþe

Yn�d ¼ Xn� pþ1ð Þb pþ1ð Þ�d þ Zn�r ur�d þ en�d ð6:9Þ

Here, n is the number of rows (individuals or experimental units, in this example, five); and d is the number of dependent

variables (in this example, two). The design matrix X has dimensions n � (p + 1), where p is the number of fixed predictors

for one trait and an additional column is added for the intercept. b is the matrix of coefficients of fixed predictor effects to be

estimated with dimensions (p + 1) � d. The rows of b correspond to predictor variables and the columns are response

variables. The design matrix Z has dimensions n � r, where r is the number of random effects per trait, and u is an r �
d matrix of random effects. The full set of matrices for this form is:

Y ¼

Y11 Y12

Y21 Y22

Y31 Y32

Y41 Y42

Y51 Y52

26666664

37777775 ¼

87 0:52

84 0:48

75 0:45

90 0:69

79 0:74

26666664

37777775

¼

1

1

1

1

1

26666664

37777775 μ1 μ2½ � þ

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

26666664

37777775

A11 A12

A21 A22

A31 A32

A41 A42

A51 A52

26666664

37777775þ

ε11 ε12

ε21 ε22

ε31 ε32

ε41 ε42

ε51 ε52

26666664

37777775

ð6:10Þ

X ¼

1

1

1

1

1

266664
377775 b ¼ μ1 μ2½ � Z ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

266664
377775 u ¼

A11 A12

A21 A22

A31 A32

A41 A42

A51 A52

266664
377775 e ¼

ε11 ε12
ε21 ε22
ε31 ε32
ε41 ε42
ε51 ε52

266664
377775 ð6:11Þ
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In this very simple example, the Z matrix is an identity matrix, but this will not generally be true.

The alternate formulation that can make computations easier is to organize the observations in a single column vector of

length nd:

Ynd�1 ¼ Xnd� pþ1ð Þd b pþ1ð Þ d�1 þ Znd�rd urd�1 þ end�1 ð6:12Þ

Y ¼

Y11

Y12

Y21

Y22

Y31

Y32

Y41

Y42

Y51

Y52

2666666666666664

3777777777777775
¼

87

0:52
84

0:48
75

0:45
90

0:69
79

0:74

2666666666666664

3777777777777775
¼

1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1

266666666666664

377777777777775
μ1
μ2

� �
þ I10

A11

A12

A21

A22

A31

A32

A41

A42

A51

A52

2666666666666664

3777777777777775
þ

e11
e12
e21
e22
e31
e32
e41
e42
e51
e52

2666666666666664

3777777777777775
ð6:13Þ

X ¼

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

2666666666666664

3777777777777775
b ¼ μ1

μ2

� �
Z ¼ I10 u ¼

A11

A12

A21

A22

A31

A32

A41

A42

A51

A52

2666666666666664

3777777777777775
e ¼

e11
e12
e21
e22
e31
e32
e41
e42
e51
e52

2666666666666664

3777777777777775
ð6:14Þ

In its most compact representation, the mixed model for the multivariate model appears the same as before:Y ¼ Xb +

Zu + e, and this is the same form we used for univariate analysis. However, the design matrices are different, and we can

make the relationship between the structure of the multivariate and univariate mixed models clearer by rewriting the

equation in a way that uses the X and Z matrices of the univariate form:

Ynd ¼ Id � Xn� pþ1ð Þ
� �

b pþ1ð Þ d�1 þ Id � Zn�rð Þurd�1 þ end ð6:15Þ

Again, Y is the vector of traits with nd rows (n individuals times d traits measured per individual), Id is the identity matrix

with dimension d, and X and Z are identical to the univariate model. The direct products of Id with the univariate X and

Z matrices generate the forms needed for the multivariate equations above:

Id � X ¼ 1 0

0 1

� �
�

1

1

1

1

1

266664
377775 ¼

1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1

266666666666664

377777777777775
ð6:16Þ
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Id � Z ¼ 1 0

0 1

� � 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

266664
377775 ¼ I10 ð6:17Þ

We can solve Henderson’s mixed model equations to obtain predictions for two traits, and the mixed model equations are the

same as for univariate analysis (Chap. 2):

X0R�1X X0R�1Z
Z0R�1X Z0R�1ZþG�1

� � bbbu
� �

¼ X0R�1y
Z0R�1y

� �
ð6:18Þ

To use these equations to solve the multivariate models, we need to understand the form of the R and G matrices. In this

example:

G ¼ A� σ2A1 σA12
σA12 σ2A2

� �
ð6:19Þ

R ¼ I� σ2ε1 σε12
σε12 σ2ε2

� �
ð6:20Þ

In each of these variance-covariance matrices for model effects, variances for the two traits are on the diagonal and the

covariances between the traits are the off-diagonal elements. In our example, the first two individuals and the last three

individuals represent half-sib families, so the G matrix is:

G ¼

1 0:25 0 0 0

0:25 1 0 0 0

0 0 1 0:25 0:25

0 0 0:25 1 0:25

0 0 0:25 0:25 1

266666664

377777775� σ2A1 σA12

σA12 σ2A2

" #
¼

σ2A1 σA12 0:25σ2A1 0:25σA12 0 0 0 0 0 0

σA12 σ2A2 0:25σA12 0:25σ2A2 0 0 0 0 0 0

0:25σ2A1 0:25σA12 σ2A1 σA12 0 0 0 0 0 0

0:25σA12 0:25σ2A2 σA12 σ2A2 0 0 0 0 0 0

0 0 0 0 σ2A1 σA12 0:25σ2A1 0:25σA12 0:25σ2A1 0:25σA12

0 0 0 0 σA12 σ2A2 0:25σA12 0:25σ2A2 0:25σA12 0:25σ2A2

0 0 0 0 0:25σ2A1 0:25σA12 σ2A1 σA12 0:25σ2A1 0:25σA12

0 0 0 0 0:25σA12 0:25σ2A2 σA12 σ2A2 0:25σA12 0:25σ2A2

0 0 0 0 0:25σ2A1 0:25σA12 0:25σ2A1 0:25σA12 σ2A1 σA12

0 0 0 0 0:25σA12 0:25σ2A2 0:25σA12 0:25σ2A2 σA12 σ2A2

26666666666666666666664

37777777777777777777775
The additive effects for the two traits on a single individual have a covariance equal to the additive covariance. The additive

effects for trait 1 on individual 1 and trait 2 on its half-sib have a covariance of 0.25 times the additive covariance.

Measurements on unrelated individuals have zero covariance.

The residual effects for the two trait measurements on a single individual have a covariance equal to the residual trait

covariance, but residual effects across individuals have zero covariance in the typical model where residuals for one trait are

independent across individuals:
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R ¼ I5 � σ2ε1 σε12
σε12 σ2ε2

� �
¼

σ2ε1 σε12 0 0 0 0 0 0 0 0

σε12 σ2ε2 0 0 0 0 0 0 0 0

0 0 σ2ε1 σε12 0 0 0 0 0 0

0 0 σε12 σ2ε2 0 0 0 0 0 0

0 0 0 0 σ2ε1 σε12 0 0 0 0

0 0 0 0 σε12 σ2ε2 0 0 0 0

0 0 0 0 0 0 σ2ε1 σε12 0 0

0 0 0 0 0 0 σε12 σ2ε2 0 0

0 0 0 0 0 0 0 0 σ2ε1 σε12
0 0 0 0 0 0 0 0 σε12 σ2ε2

2666666666666664

3777777777777775
This form of the mixed model requires one row (equation) for each combination of individual and trait. If an individual is

missing an observation for one trait, we would still represent that missing trait as a row in the mixed model equations so that

we can maintain the structure of the univariate X and Zmatrices, although the Y observation for that row would be missing.

Maize RILs Multivariate Model

We will use the balanced MaizeRILs.csv data presented in Chap. 2 as an example of a multivariate analysis. A set of

62 recombinant inbred lines (RILs) was tested using a incomplete block design with two complete replications at each of

four locations. Each line had 20 plants in a plot. There are three traits for which we are interested in estimating variances and

genetic correlations: days to pollen shed (pollen), days to silking (silking) and mean height of the five plants in each plot

(height). A small subset of the data are given below:

location rep block plot RIL pollen silking ASI height

ARC 1 1 1 RIL-53 74 77 3 184.8

ARC 1 1 2 RIL-40 75 75 0 225.2

ARC 1 1 4 RIL-41 74 74 0 174.4

ARC 1 1 5 RIL-28 69 71 2 147.6

ARC 1 1 6 RIL-11 69 71 2 181.6

The linear model for this experiment is:

yijk ¼ μþ Li þ B Lð Þij þ Gk þ GLik þ εijk ð6:21Þ

Where μ¼ overall mean, Li ¼ effect of location i, R(L)ij ¼ effect of the replication (complete block) j nested within location

i, Gk ¼ effect of genotype k (RIL effect), GLik ¼ effect of interaction between genotype k and location i, εijk ¼ residual

(experimental error) effect of the plot containing genotype k in complete block j of location i. We will assume that location is

a fixed effect. Replication, RIL and location � RIL interaction effects are random. This model is an example where we can

estimate the genotypic variances, covariances, and correlations, but it is not possible to partition the genotypic covariance

into its additive and non-additive component pieces.

Multivariate models may have trouble converging; good starting values can save a lot of trouble. We recommend analyzing

traits independently using univariate models first to obtain estimates of variance components for each. The variance

estimates from univariate models can be used as starting values for multivariate analysis.

In the following code the same univariate model is fit to height, pollen and silking separately to estimate variance

components for each.
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Code example 6.1

Univariate analysis of maize RIL data (see code Code 6-1_MultivariateMaize.as for details).

As a reminder, we use the !ARGS qualifier (on top line) and the !CYCLE qualifier (immediately after the PATH

1 declaration) to control which parts of the program are executed (see Chap. 1 for more details):

• !ARGS 1 !RENAME 1: indicates that the string variable $A should be replaced by “1” when it appears later in the code

and that the output files will include this string in their name.

• !DOPATH $A: indicates that the string listed after !ARGS on the top line will be substituted here, resulting in the

qualifier ‘!DOPATH 1’ being executed, directing the program to execute the code corresponding to ‘!PATH 1’.
• !CYCLE: qualifier replaces $I in the model with variables listed. So the same model is run for all three traits, one at a

time, and the outputs are combined in a single output file.

• The variance structure for all random terms is the default IID structure. For example, the RIL effects are assumed to have

the distribution � N 0; σ2RILI62
� �

. Since there are multiple random factors (replication, RIL, and RIL-by-location interac-

tion), the variance matrix for all of the random effects is block-diagonal. G ¼ �L
j¼1 σ2uj ¼ σ2repI8�σ2RILI62�σ2loc:RILI248.

• The residual errors have the IID variance structure of R ¼ σ2eI474. This assumes that error variances are the same at all

locations; we show in Chap. 8 how to relax this assumption and permit unique variances for each location.

A subset of the primary output file Code 6-1_MultivariateMaize1.asr is given below:

QUALIFIER: !DOPART 1 is active

... Cycle 1 value is height...

Univariate analysis of height

Model_Term Gamma Sigma Sigma/SE % C

idv(location.rep) IDV_V 8 0.207229 13.4463 1.31 0 P

idv(RIL) IDV_V 62 4.67204 303.151 5.27 0 P

idv(location.RIL) IDV_V 248 0.384246 24.9323 3.73 0 P

idv(units) 496 effects

Residual SCA_V 496 1.00000 64.8862 11.05 0 P

... Cycle 2 value is pollen ...

Univariate analysis of pollen

(continued)
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Model_Term Gamma Sigma Sigma/SE % C

idv(location.rep) IDV_V 8 0.381313 0.449696 1.36 0 P

idv(RIL) IDV_V 62 4.14640 4.88999 5.21 0 P

idv(location.RIL) IDV_V 248 0.486081 0.573253 4.32 0 P

idv(units) 496 effects

Residual SCA_V 496 1.00000 1.17934 11.05 0 P

...Cycle 3 value is silking...

Univariate analysis of silking

Model_Term Gamma Sigma Sigma/SE % C

idv(location.rep) IDV_V 8 0.229566 0.662877 1.32 0 P

idv(RIL) IDV_V 62 1.72876 4.99185 4.95 0 P

idv(location.RIL) IDV_V 248 0.289872 0.837013 3.08 0 P

idv(units) 496 effects

Residual SCA_V 496 1.00000 2.88753 11.05 0 P

Estimated variance components for all of the model terms for each trait are in bold font in the output above. Now that we

have good estimates of the variance components, we are ready to move to a multivariate model, building the model in steps

of increasing complexity. We start with a relatively simple multivariate model, in which we analyze all three traits

simultaneously, but we use a diagonal variance-covariance structure for the random model effects, such that these effects

have zero covariance across traits. In other words, the effects of a particular line on the three traits are independent. In PART

2 of the code we fit a diagonal variance diag().id() structure to all random terms and un-structured id().us() to

residuals:

Code example 6.2

Multivariate analysis of maize RIL data, correlated residuals only (file Code 6-1_MultivariateMaize.as

continued).

The multivariate model requires some specific modifications:

• Trait is the multivariate version of intercept (mu) in the univariate model. It creates a vector holding the intercepts for

each trait included in the analysis. ‘Trait’ is a reserved term in ASReml and should not be used for any other purpose but

for multivariate analysis.

• All fixed effects and random effects should involve an interaction with Trait to create appropriate design matrices for the

effects. For example, it does not make sense to fit a common effect of a location on all three traits, whereas fitting the term

Trait.location more sensibly estimates a separate effect for each location on each trait.
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Variance structures (G matrix) for random effects in the multivariate model require more detailed specifications:

• The G variance structure has one sub-matrix for each random term: Trait.RIL, Trait.location.RIL and Trait.location.rep.
• diag(Trait).id(RIL) specifies that the variance structure for the random RIL effect is the product of two matrices;

the block diagonal matrix Σ (diag(Trait)) and the identity matrix I (id(RIL)):

• Notice that the sub matrix Σ Trait.RIL has zero covariances in the off-diagonals because it is a block diagonal matrix. This

models RIL effects across traits as uncorrelated.

• GRILh , GRILp , GRILs are identical (IDV) sub-matrices for height, pollen and silking, respectively. Each sub matrix has

the same 62 � 62 dimensions representing the variances of effects of the 62 RILs on each trait.

• The final dimension of GTrait.RIL is 3 traits � 62 RILs ¼ 186.

• Trait.location.RIL is a diagonal matrix with 744 dimensions (3 traits � 4 locations � 62 RILs).

• Trait.location.rep is a diagonal matrix with 24 � 24 dimensions (3 traits � 4 locations � 2 reps per location).

Residual variance structure (R matrix):

• id(units).us(Trait): The R matrix is a direct product of the identity matrix I and an unstructured matrix Σ.
Notice that the identity matrix I comes before Σ because traits are nested within experimental units.

R ¼ I496 � Σ ¼ I496 �
σ2ε1 σε12 σε13
σε12 σ2ε2 σε23
σε13 σε23 σ2ε3

24 35

• The elements σ2ε1; σ2ε2; σ2ε3
� �

in the diagonal of the US matrix are residual variances for traits. Unlike the block diagonal

structure used for other effects in the model, the residual effects for measurements of different traits on the same

experimental unit are not independent, resulting in some non-zero off-diagonal elements. The dimensions of R are

496 � 3 ¼ 1488. There are 496 sub matrices with dimensions of 3 � 3, one for each experimental unit.
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A subset of the primary output file Code 6-1_MultivariateMaize2.asr is given below:

...

Multivariate analysis of height pollen silking

Summary of 496 records retained of 496 read

...

9 LogL=-2528.45 S2= 1.0000 1476 df

- - - Results from analysis of height pollen silking - - -

Akaike Information Criterion 5086.90 (assuming 15 parameters).

Bayesian Information Criterion 5166.36

Model_Term Sigma Sigma Sigma/SE % C

id(units).us(Trait) 1488 effects

Trait US_V 1 1 65.7327 65.7327 11.03 0 P

Trait US_C 2 1 0.514130 0.514130 0.94 0 P

Trait US_V 2 2 1.39831 1.39831 11.29 0 P

Trait US_C 3 1 -1.45659 -1.45659 -1.77 0 P

Trait US_C 3 2 1.03521 1.03521 7.99 0 P

Trait US_V 3 3 3.37118 3.37118 11.35 0 P

diag(Trait).id(location.rep) 24 effects

Trait DIAG_V 1 13.3382 13.3382 1.31 0 P

Trait DIAG_V 2 0.421237 0.421237 1.34 0 P

Trait DIAG_V 3 0.607512 0.607512 1.30 0 P

diag(Trait).id(RIL) 186 effects

Trait DIAG_V 1 304.254 304.254 5.28 0 P

Trait DIAG_V 2 4.72115 4.72115 5.25 0 P

Trait DIAG_V 3 4.87996 4.87996 5.02 0 P

diag(Trait).id(location.RIL) 744 effects

Trait DIAG_V 1 23.4447 23.4447 3.58 0 P

Trait DIAG_V 2 0.275315 0.275315 2.70 0 P

Trait DIAG_V 3 0.248401 0.248401 1.16 0 P

Covariance/Variance/Correlation Matrix US Residual

65.73 0.5363E-01 -0.9785E-01

0.5141 1.398 0.4768

-1.457 1.035 3.371

...

Finished: 30 Oct 2015 14:35:07.825 LogL Converged

• The model requires estimates of 15 parameters. The first six are variances and covariances between residual effects,

followed by three parameters for rep.location, RIL and RIL.location terms. For the residuals, US_V refers to variance

components in the unstructured matrix and US_C refers to the covariances between pairs of traits.

• At the bottomwe see the 3 � 3 unstructured covariance/variance/correlation estimatematrix for the residuals. The diagonal

elements are residual variances for height, pollen and silking. The above diagonal elements are correlations between

residuals for different traits measured on the same plot. Pollen and silking traits have a moderate positive environmental

correlation (0.4768) but the residual correlations of these two traits with height are much smaller. The correlation between

residual effects on height and pollen is negative (�0.098). The elements below the diagonal are covariance components.

The model shown in !PATH 2 converged successfully without specifying initial values because we have fit a simple model

to a balanced and relatively small data set. As models become more complex, however, good initial values may be helpful or

even necessary to achieve convergence. We demonstrate two modifications of this model that are identical to model 2 but

specify initial parameter values in two different ways. In model 3 we supply the initial parameter values using the !INIT

qualifier directly inside the G and R structure definitions.
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Code example 6.3

Multivariate analysis of maize RIL data, correlated residuals only, with initial parameter values (file

Code 6-1_MultivariateMaize.as continued).

In the G structure definitions, we need to supply three variance components values for each term. The variance components

should be in the same order as the traits are listed as dependent variables on the left side of the model equation. Thus, we

provide initial estimates of the rep.location variances for height (13.44), pollen (0.45), and silking (0.663) in that order with:

diag(Trait !INIT 13.44 0.45 0.663).id(rep.location).

In the R structure definition Maize RILs multivariate model:, we need to provide three variance components plus three

covariance components, since we are using an unstructured R matrix, which includes covariances as well as variances:

residual id(units).us(Trait 64.9 0.0 1.179 0.0 0.0 2.89). The order of initial parameters follows the

order of elements in the lower triangular representation of the symmetric matrix (∑): σ2εh, σεhp,σ
2
εp, σεhs,σεps,σ

2
εs. Notice we

have zeros as starting values of covariances, since we have no idea what the covariances might be. We are not fixing the

values to be zero, however, and the model solution will give us best estimates of the covariances.

Another way to provide initial values is to use the !ASSIGN qualifier to assign initial values as a string to a named variable,

then include the named variable inside the structure definition for the appropriate term. For example, before the model

definition we can write:

!ASSIGN repDIAG !INIT 13.44 0.45 0.663. This assigns the string value “!INIT 13.44 0.45 0.663” to a

variable we named “repDIAG”. Then in the model definition we can write: diag(Trait $repDIAG).id(rep.

location), and the term acts like a macro variable that gets substituted by its assigned string value, resulting in a

model term defined as: diag(Trait !INIT 13.44 0.45 0.663).id(rep.location). Note that the named

variable cannot be longer than eight characters.

An advantage of this method is that we can define the string values over multiple lines, which can help us keep better track of

the initial values when the model structures become more complex. For example, instead of defining the initial values for

residual variances and covariances as we did in model 3 with: residual id(units).us(Trait 64.88 0.0 1.179

0.0 0.0 2.89), we can write the values in the form of the lower triangular matrix to more easily ensure that we put them

in the correct order:

!ASSIGN RUS !< !INIT

64.88

0.0 1.179

0.0 0.0 2.89 !>

Notice that for our convenience, this follows the form:

σ2εh
σεhp σ2εp
σεhs σεps σ2εs

0@ 1A
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The special characters !< and !> define a block of lines over which the string is defined. Since we assigned this string to a

variable called ‘RUS’ (an arbitrary name chosen for our convenience to remind us that this is for an unstructured R matrix),

then we simply include ‘$RUS’ in the model where we want this string to be inserted.

Code example 6.4

Multivariate analysis of maize RIL data, correlated residuals only, initial values supplied using !ASSIGN (file

Code 6-1_MultivariateMaize.as continued).

This model is identical to Model 3 given before (PATH 3) and provides the same result as both Models 2 and 3, since the

initial values provided did not affect the result in this case.

Tomodel genetic correlations between traits, all we need to do is change the variance structure of the Trait.RIL term andmake

it either US (unstructured covariance matrix, Model 5) or CORGH (heterogeneous variances with correlations, Model 6).

Code example 6.5

Multivariate analysis of maize RIL data, correlated residuals and RIL effects with US structure (file

Code 6-1_MultivariateMaize.as continued).
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• In Model 5, we fit an unstructured matrix (us) and provide initial parameter values for the genotypic variances of three

traits in the diagonal and genotypic covariances between trait pairs in the lower off-diagonal.

• The final GTrait.RIL matrix (186 � 186 dimensions) is sparse and has a banded structure as shown below.

Results of this model are in Code 6-1_MultivariateMaize5.asr:

• Genotypic variance and covariance components are associated with the term us(Trait).id(RIL), so we can write

σ2Gi for the RIL variance component for trait i.
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• Genotypic correlations between pairs of traits are given at the bottom of the output. The bold values in the diagonal of the

Covariance/Variance/Correlation matrix are variance components associated with RIL effects for height, pollen and

silking, respectively. The values above the diagonal are genotypic correlations, ranging from 0.55 and 0.86. The values

below the diagonal are covariances between pairs of traits.

Model 6 is identical to model 5, but parameterized differently, using correlations instead of covariances for the off-diagonal

terms of the variance-covariance matrix for the factor Trait.RIL. We fit a full correlation structure with heterogeneous

variances (corgh) and provide initial values for the variances of three traits in the diagonal and correlations in the off

diagonals. Although the result will be the same as for model 5, the corgh parameterization is computationally more

efficient and may converge better in some circumstances.

Code example 6.6

Multivariate analysis of maize RIL data, correlated residuals and RIL effects with corgh structure (file

Code 6-1_MultivariateMaize.as continued).

Results of this model are in Code 6-1_MultivariateMaize6.asr:

15 LogL=-2483.15 S2= 1.0000 1476 df

- - - Results from analysis of height pollen silking - - -

Notice: US structures were modified 2 times to make them positive definite.

If ASReml has fixed the structure [flagged by B], it may not have

converged to a maximum likelihood solution.

Used !EMFLAG 0 Single standard EM update when AI update unacceptable

You could try !GU (negative definite US) or use XFA instead.

Akaike Information Criterion 5002.31 (assuming 18 parameters).

Bayesian Information Criterion 5097.66

Model_Term Sigma Sigma Sigma/SE % C

id(units).us(Trait) 1488 effects

Trait US_V 1 1 65.7130 65.7130 11.03 0 P

Trait US_C 2 1 0.460983 0.460983 0.85 0 P

Trait US_V 2 2 1.38387 1.38387 11.30 0 P

Trait US_C 3 1 -1.54575 -1.54575 -1.88 0 P

Trait US_C 3 2 1.01289 1.01289 7.91 0 P

Trait US_V 3 3 3.34453 3.34453 11.35 0 P

diag(Trait).id(rep.location) 24 effects

Trait DIAG_V 1 13.3226 13.3226 1.31 0 P

Trait DIAG_V 2 0.421850 0.421850 1.34 0 P

Trait DIAG_V 3 0.608367 0.608367 1.30 0 P

corgh(Trait).id(RIL) 186 effects

Trait COR_R 1 0.596378 0.596378 6.73 0 P

Trait COR_R 2 0.549331 0.549331 5.55 0 P

Trait COR_R 3 0.854742 0.854742 20.63 0 P

Trait COR_V 1 303.397 303.397 5.28 0 P

(continued)
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Trait COR_V 2 4.93772 4.93772 5.26 0 P

Trait COR_V 3 5.07972 5.07972 5.04 0 P

diag(Trait).id(RIL.location) 744 effects

Trait DIAG_V 1 23.5349 23.5349 3.59 0 P

Trait DIAG_V 2 0.280093 0.280093 2.74 0 P

Trait DIAG_V 3 0.257035 0.257035 1.20 0 P

Covariance/Variance/Correlation Matrix US Residual

65.71 0.4834E-01 -0.1043

0.4610 1.384 0.4708

-1.546 1.013 3.345

Covariance/Variance/Correlation Matrix COR corgh(Trait).id(RIL)

303.4 0.5964 0.5493

23.08 4.938 0.8548

21.57 4.281 0.5080

• There is a notice in the output saying that the US structure was modified twice to make it positive definite. This is

referring to the variance-covariance matrix of the residuals; twice during the convergence process, the estimated

covariance parameters were going out of bounds of a consistent, positive definite matrix, but the program ‘pushed
them’ back into bounds. The message also says “If ASReml has fixed the structure [flagged by B], it may not have

converged to a maximum likelihood solution.” This is a warning to check the labels in column ‘C’ for the estimates in the .

asr file; in this example they are all ‘P’ meaning ‘positive definite’ so we don’t have any problems. If you find some

estimates labeled as ‘B’, it means they were forced in bounds. In this case, rerun the model with extra iteration, simplify

the model or let some parameters go out of bounds using !GU.

• The warning message also suggests using a !GU (unbounded) qualifier for some parameters so that they can go out of

bounds (variance components can be negative and covariance components can exceed �1.0 times the square root of the

product of the variances). This may be necessary in some cases to obtain convergence, but you may end up with an

estimated genotypic correlation that exceeds 1.0, which may lead to some embarrassment.

• The warning message also suggests using an extended factor analytic structure (XFA), which can be a more parsimonious

model with fewer parameters to help with model convergence. We will introduce factor analytic structures in Chap. 8 in

the context of multi-environment models, but they can also be used for multivariate models. An example of the XFA

model is included as the final model (model 9) in the file “Code06-1MultivariateMaize.as” for interested readers, but we
will not pursue this any further in this chapter, since the XFA model only becomes more parsimonious when the number

of traits exceeds three.

• The only difference from the model 5 output is that correlation estimates (‘COR_R’) are reported in the Sigma column

rather than covariance estimates for Trait.RIL. The model likelihood, AIC, and parameter estimate values are all identical

between models 5 and 6.

In model 7, we extend model 5 to include covariances between the effects of all model terms on different traits. We change

the diag() structure for Trait.rep.location and Trait.RIL.location terms to us():

Code example 6.7

Multivariate analysis of maize RIL data, all effects random effects with US structure (file

Code 6-1_MultivariateMaize.as continued).
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The results of this analysis are in Code 6-1_MultivariateMaize7.asr:

26 LogL=-2464.44 S2= 1.0000 1476 df

- - - Results from analysis of height pollen silking - - -

Notice: US structures were modified 32 times to make them positive definite.

If ASReml has fixed the structure [flagged by B], it may not have

converged to a maximum likelihood solution.

Used !EMFLAG 0 Single standard EM update when AI update unacceptable

You could try !GU (negative definite US) or use XFA instead.

Akaike Information Criterion 4976.88 (assuming 24 parameters).

Bayesian Information Criterion 5104.02

Model_Term Sigma Sigma Sigma/SE % C

id(units).us(Trait) 1488 effects

Trait US_V 1 1 64.8862 64.8862 11.05 0 P

Trait US_C 2 1 -0.176168 -0.176168 -0.31 0 P

Trait US_V 2 2 1.17934 1.17934 11.05 0 P

Trait US_C 3 1 -1.78707 -1.78707 -2.02 0 P

Trait US_C 3 2 0.637361 0.637361 5.10 0 P

Trait US_V 3 3 2.88753 2.88753 11.05 0 P

us(Trait).id(rep.location) 24 effects

Trait US_V 1 1 13.4463 13.4463 1.31 0 P

Trait US_C 2 1 -1.72941 -1.72941 -1.11 0 P

Trait US_V 2 2 0.449696 0.449696 1.36 0 P

Trait US_C 3 1 -2.26286 -2.26286 -1.15 0 P

Trait US_C 3 2 0.542075 0.542075 1.36 0 P

Trait US_V 3 3 0.662875 0.662875 1.32 0 P

us(Trait).id(RIL) 186 effects

Trait US_V 1 1 303.151 303.151 5.27 0 P

Trait US_C 2 1 22.7931 22.7931 3.81 0 P

Trait US_V 2 2 4.88999 4.88999 5.21 0 P

Trait US_C 3 1 21.5031 21.5031 3.56 0 P

Trait US_C 3 2 4.18711 4.18711 4.70 0 P

Trait US_V 3 3 4.99185 4.99185 4.95 0 P

us(Trait).id(RIL.location) 744 effects

Trait US_V 1 1 24.9323 24.9323 3.73 0 P

Trait US_C 2 1 1.47768 1.47768 2.19 0 P

Trait US_V 2 2 0.573253 0.573253 4.32 0 P

Trait US_C 3 1 0.370188 0.370188 0.39 0 P

Trait US_C 3 2 0.562225 0.562225 3.74 0 P

Trait US_V 3 3 0.837013 0.837013 3.08 0 P

Covariance/Variance/Correlation Matrix US Residual

64.89 -0.2014E-01 -0.1306

-0.1762 1.179 0.3454

-1.787 0.6374 2.888

Covariance/Variance/Correlation Matrix US us(Trait).id(rep.loc

13.45 -0.7033 -0.7580

-1.729 0.4497 0.9929

-2.263 0.5421 0.6629

(continued)
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Covariance/Variance/Correlation Matrix US us(Trait).id(RIL)

303.2 0.5920 0.5528

22.79 4.890 0.8475

21.50 4.187 4.992

Covariance/Variance/Correlation Matrix US us(Trait).id(RIL.loc

24.93 0.3909 0.8104E-01

1.478 0.5733 0.8117

0.3702 0.5622 0.8370

Wald F statistics

Source of Variation NumDF F-inc

10 Trait 3 14962.38

11 Trait.location 9 224.35

15 us(Trait).id(rep.location) 24 effects fitted

17 us(Trait).id(RIL) 186 effects fitted

20 us(Trait).id(RIL.location) 744 effects fitted

6 possible outliers: see .res file

Finished: 28 Sep 2016 08:41:18.886 LogL Converged

Notice the large number of parameters that are estimated with this model. As model complexity increases, convergence on

the REML solution can become more difficult (although in this particular case we did not have a problem). There are a

number of approaches that users can take to attain convergence for complex models. One is to increase the number of

iterations with the !MAXIT qualifier and see if convergence will happen eventually. Another possibility is to provide initial

parameter estimates to get ASReml closer to the eventual solution at the first iteration. In some cases, re-parameterizing the

model may help. As an example of reparameterization, model 8 uses CORGH() structures to produce a model identical to

model 7 but is parameterized in terms of correlations, rather than the covariances of the US() structures. It turns out that

convergence of model 8 in this example requires fitting missing values as sparse effects using the ‘!f mv’ term. In general,

this term is not required for multivariate analysis, but it sometimes helps convergence; on the other hand, sometimes it slows

convergence (model 7 is an example). Users can try including it in cases where the model did not converge without it. In

addition, ‘!f mv’, along with the job qualifier ‘ASUV’, is required for models where the residual is something other than the

id(units).us(Trait) structures used in the examples in this chapter. An example might be a repeated measures

model where the residual effects of measurements taken at different time points are constrained to have uniform variances

and covariances (id(units).coruv(Trait)).

Code example 6.8

Multivariate analysis of maize RIL data, all random effects correlated (file Code 6-1_MultivariateMaize.as

continued).
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Results of this model are in Code 6-1_MultivariateMaize8.asr:

14 LogL=-2464.44 S2= 1.0000 1476 df

- - - Results from analysis of height pollen silking - - -

Notice: US structures were modified 2 times to make them positive definite.

If ASReml has fixed the structure [flagged by B], it may not have

converged to a maximum likelihood solution.

Used !EMFLAG 0 Single standard EM update when AI update unacceptable

You could try !GU (negative definite US) or use XFA instead.

Akaike Information Criterion 4976.88 (assuming 24 parameters).

Bayesian Information Criterion 5104.01

Model_Term Sigma Sigma Sigma/SE % C

id(units).us(Trait) 1488 effects

Trait US_V 1 1 64.8862 64.8862 11.05 0 P

Trait US_C 2 1 -0.176168 -0.176168 -0.31 0 P

Trait US_V 2 2 1.17934 1.17934 11.05 0 P

Trait US_C 3 1 -1.78707 -1.78707 -2.02 0 P

Trait US_C 3 2 0.637361 0.637361 5.10 0 P

Trait US_V 3 3 2.88753 2.88753 11.05 0 P

corgh(Trait).id(rep.location) 24 effects

Trait COR_R 1 -0.703295 -0.703295 -2.48 0 P

Trait COR_R 2 -0.757950 -0.757950 -3.07 0 P

Trait COR_R 3 0.992848 0.992848 31.00 0 P

Trait COR_V 1 13.4463 13.4463 1.31 0 P

Trait COR_V 2 0.449696 0.449696 1.36 0 P

Trait COR_V 3 0.662877 0.662877 1.32 0 P

corgh(Trait).id(RIL) 186 effects

Trait COR_R 1 0.591998 0.591998 6.62 0 P

Trait COR_R 2 0.552766 0.552766 5.54 0 P

Trait COR_R 3 0.847481 0.847481 19.86 0 P

Trait COR_V 1 303.151 303.151 5.27 0 P

Trait COR_V 2 4.88999 4.88999 5.21 0 P

Trait COR_V 3 4.99185 4.99185 4.95 0 P

corgh(Trait).id(RIL.location) 744 effects

Trait COR_R 1 0.390865 0.390865 2.26 0 P

Trait COR_R 2 0.810354E-01 0.810354E-01 0.38 0 P

Trait COR_R 3 0.811653 0.811653 6.09 0 P

Trait COR_V 1 24.9323 24.9323 3.73 0 P

Trait COR_V 2 0.573253 0.573253 4.32 0 P

Trait COR_V 3 0.837013 0.837013 3.08 0 P

Covariance/Variance/Correlation Matrix US Residual

64.89 -0.2014E-01 -0.1306

-0.1762 1.179 0.3454

-1.787 0.6374 2.888

Covariance/Variance/Correlation Matrix COR corgh(Trait).id(rep.

13.44 -0.7032 -0.7579

-1.728 0.4496 0.9928

-2.262 0.5419 0.6627

Covariance/Variance/Correlation Matrix COR corgh(Trait).id(RIL)

303.2 0.5920 0.5528

22.79 4.890 0.8475

21.50 4.187 4.992

Covariance/Variance/Correlation Matrix COR corgh(Trait).id(RIL.

24.93 0.3909 0.8104E-01

1.478 0.5733 0.8117

0.3702 0.5622 0.8370
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Notice that the likelihoods and parameter estimates (for example, the highlighted genotypic correlations) are identical for

models 7 and 8. Many of the trait correlations for non-genetic effects (rep and RIL – by – location) are far from zero,

suggesting that this model might be better than the preceding models that fit those effects as independent across traits. We

can compare the different models using their AIC values (Table 6.1):

Even after penalizing models 7 and 8 for the additional parameters introduced to account for the covariances between traits for

rep.location andRIL.location effects, their AIC value is lower (better) than the othermodels, indicating that they are indeed best.

Linear Combinations of Variances and Covariances

We obtain the genotypic correlation estimates directly in the outputs from the multivariate models. However, we do not

directly get standard errors of these estimates. There are several ways to obtain the standard errors of the correlation

estimates from ASReml. In all cases, these are the ‘delta method’ approximate standard errors that are reasonable when

sample sizes are sufficiently large (Holland 2006).

One way to obtain the standard error of the genotypic correlation estimate from the CORGH()model output is back-calculate

from Sigma/SE. Notice that the parameter estimate is followed by the ratio of the estimate to its approximate standard error.

For example, in Code 6-1_MultivariateMaize8.asr, we have the following correlation estimates for RILs:

Model_Term Sigma Sigma Sigma/SE % C

...

corgh(Trait).id(RIL) 186 effects

Trait COR_R 1 0.591998 0.591998 6.62 0 P

Trait COR_R 2 0.552766 0.552766 5.54 0 P

Trait COR_R 3 0.847481 0.847481 19.86 0 P

...

From these values, we can back-calculate the standard errors (SE’s) as the estimate (Sigma) divided by the ratio of the

estimate to its standard error (Sigma/SE):

Parameter Estimate Estimate/SE SE

rghp 0.591998 6.62 0.591998/6.62 ¼ 0.089

rghs 0.552766 5.54 0.100

rgps 0.847481 19.86 0.043

A better approach, however, is to get the standard errors of all the correlation coefficients estimated in the CORGHmodel by

requesting a default .pvc output with the VPREDICT directive added following the model definition:

Table 6.1 A sequence of variance structures fit to the maize multivariate model

Model term Model 2–4 Model 5 Model 6 Model 7–8

rep.location DIAG DIAG DIAG CORGH

RIL DIAG US CORGH CORGH

RIL.location DIAG DIAG DIAG CORGH

Residual US US US US

# of parameters 15 18 18 24

LogL �2528.45 �2483.15 �2483.15 �2464.44

AIC 5086.90 5002.31 5002.31 4976.88
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Code example 6.9

Multivariate analysis of maize RIL data, ‘empty’ VPREDICT !DEFINE statement used to generate a default .

pvc output (file Code 6-1_MultivariateMaize.as continued).

If we do not include any definitions of combinations of variance components, the .pvc output file will be generated with

the estimates of all of the parameters in themodel, each followed by their standard error (Code06-1MaizeMultivariateData8.pvc):
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• The highlighted values are the estimate genotypic correlations and their approximate standard errors. Notice that the

standard errors for the genotypic correlations match our computations above.

A third way to obtain the standard errors of the correlation estimates is to define them directly as functions of the

covariance and variance components using the VPREDICT directive. There is no reason to use this approach if

the correlations of interest are directly produced by the CORGH model, as shown above. Nevertheless, there may be

more complex correlations or other functions of variance components of interest, such as the phenotypic correlation, that

cannot be obtained from the CORGH model directly. The phenotypic correlation between a pair of traits x and y in this

experiment is:

rp x;yð Þ ¼
Covp x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vp xð ÞVp yð Þ

p ¼ σg x;yð Þ þ σge x;yð Þ þ σε x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2g xð Þ þ σ2ge xð Þ þ σ2ε xð Þ

	 

σ2g yð Þ þ σ2ge yð Þ þ σ2ε yð Þ

	 
r ð6:22Þ

To estimate the phenotypic correlation, we need the covariances of genotype (RIL), genotype – by – environment (RIL – by

– location), and residual effects between trait pairs. We will obtain these values by returning to the US() model (model 7)

for these effects. We first run this model with no functions defined below the ‘VPREDICT !DEFINE’ statement. This will

produce a default .pvc output (Code 6-1_MultivariateMaize7.pvc) that we need to check to ensure that we can reference the
variance/covariance components correctly in our functions:
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First, we can compute (again!) the correlations for RIL, RIL – by – location, and residual effects from these results to

demonstrate some peculiarities of the function definitions with VPREDICT. To start with, we can compute all three

genotypic correlations from the RIL variances and covariances with a single function definition starting with the code

‘R’, which will estimate all correlations if given a single variance-covariance matrix as the input. For this term, we can refer

to the complete variance-covariance structure for RILs as ‘us(Trait).id(RIL)’, matching the label for this structure

highlight in the .pvc output above.

Code example 6.10

Multivariate analysis of maize RIL data, genotypic correlation estimated from variance and covariance

components (file Code 6-1_MultivariateMaize.as continued).

This produces the following output below the default .pvc output lines (Code 6-1_MultivariateMaize7.pvc):

...

rg 2 1 = us(Tr 14/SQR[us(Tr 13*us(Tr 15]= 0.5920 0.0895

rg 3 1 = us(Tr 16/SQR[us(Tr 13*us(Tr 18]= 0.5528 0.0999

rg 3 2 = us(Tr 17/SQR[us(Tr 15*us(Tr 18]= 0.8475 0.0427

Again, the standard errors of the estimates match our previous computations.

Now, things get tricky when we try to estimate the correlations of RIL – by – location effects. Following the example above,

it seems sensible to write:

Code example 6.11

Univariate analysis of maize RIL data, genotypic correlation of RIL-by-ocation

But this produces an error:

...

ERROR: Failed to locate model term which matches us(Trait).id(RIL.location)

Notice: VPREDICT line format is

[C|D|F|S|V|X|R|H] in position 1, a label starting in position 3

and an expression depending of line type. Skipping line:

R rge us(Trait).id(RIL.location)

...
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The problem is that, ASReml internally truncated the name of the term ‘us(Trait).id(RIL.location)’. We can see

the truncation in the default part of the .pvc output (Code 6-1_MultivariateMaize7.pvc):

Model terms with long label names can be a problem. There are several different shortcuts to identify the appropriate term in

the function definitions:

1. Sometimes, the truncated form of the parameter can be determined from the default .pvc output. See the second

highlighted term in the output box above. We can substitute exactly this part of the parameter label before the ‘;’ when
referring to the term in the function definition:

2. Another way to refer to parameters derived from direct products is from the names of the component factors separated by

‘;’ as the parameter label appears in the default .pvc output (see the highlighted part of the name below):

So, we can write the function definition as:

Or, in fact using any unique substring to refer to the consolidated term in the parameter name:

3. Use the parameter number. From the default .pvc output, we can see that the composite term ‘us(Trait).id(RIL.
location)’ is associated with six different parameters, numbered 19–24:
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We can refer to such a consecutive sequence of parameter values using an index of numbers:

Similarly, we can request the correlations of the residual effects by referring to the error variance-covariance matrix as ‘id
(units).us(Trait)’, ‘units;us(Trait)’, or ‘1:6’:

These three function definitions will produce nine correlation estimates (bold) and their standard errors in the .pvc output

(Code 6-1_MultivariateMaize7.pvc):

rg 2 1 = us(Tr 14/SQR[us(Tr 13*us(Tr 15]= 0.5920 0.0895

rg 3 1 = us(Tr 16/SQR[us(Tr 13*us(Tr 18]= 0.5528 0.0999

rg 3 2 = us(Tr 17/SQR[us(Tr 15*us(Tr 18]= 0.8475 0.0427

rge 2 1 = us(Tr 20/SQR[us(Tr 19*us(Tr 21]= 0.3909 0.1732

rge 3 1 = us(Tr 22/SQR[us(Tr 19*us(Tr 24]= 0.0810 0.2119

rge 3 2 = us(Tr 23/SQR[us(Tr 21*us(Tr 24]= 0.8117 0.1332

rerr 2 1 = id(un 2/SQR[id(un 1*id(un 3]= -0.0201 0.0640

rerr 3 1 = id(un 4/SQR[id(un 1*id(un 6]= -0.1306 0.0629

rerr 3 2 = id(un 5/SQR[id(un 3*id(un 6]= 0.3454 0.0564

• Notice that the correlations are labeled using integers to identify the traits (1, 2, or 3). The user has to know the order that

the traits are listed in the model statement to know which they refer to (height, pollen, and silk in this example).

Now to estimate the phenotypic correlation, we need a function to first estimate the phenotypic covariance, functions to

extract the variances needed, and a final function to compute the correlation. First we demonstrate how to extract specific

values from the variance-covariance results to compute the phenotypic correlation between height and pollen. Later we will

demonstrate how to efficiently compute all of the phenotypic correlations at once.

To estimate the phenotypic covariance between height and pollen, we need to sum the RIL, RIL – by – location, and residual

covariances for height and pollen. These are the second of the six values within each of the overall variance-covariance

matrices for these three terms. We can refer to the ith value of such a composite term using ‘[i]’ after the name of the

Maize RILs Multivariate Model 189



overall term in the function definition. So the phenotypic covariance for height and pollen is computed using the following

function:

Code example 6.12

Multivariate analysis of maize data. Phenotypic covariance

(note that in the program file, there is no line break in the function definition).

The phenotypic covariance provides us the numerator of the phenotypic correlation. To get the terms for the denominator,

we need the phenotypic variances for height and pollen, which are each the sum of the first or third values in each of the

variance-covariance matrices for RIL, RIL – by –location, and residual terms. Finally, we construct the correlation using ‘R’
to indicate this is a correlation, then providing the components of the correlation in the following order: (1) variance of one

trait, (2) covariance, (3) variance of the second trait. This order must be used to define the correlation correctly. All together,

this is:

Code example 6.13

Multivariate analysis of maize RIL data, phenotypic correlations (file Code 6-1_MultivariateMaize.as continued).

This generates the following lines of output in the .pvc file (Code 6-1_MultivariateMaize13.pvc):

...

25 Cov_p_hp 14 24.095 6.0029

26 Vp_h 13 392.97 57.749

27 Vp_p 15 6.6426 0.94401

rp_hp = Cov_p_hp/SQR[Vp_h 13 *Vp_p 15 ]= 0.4716 0.0757

The phenotypic correlation coefficient is 0.47 with a standard error of 0.08. This approach of extracting the pieces of the

phenotypic correlations can be cumbersome, but fortunately, ASReml provides a shortcut whereby we can compute linear

combinations of whole matrices of composite terms. So, we can add the three covariance matrices (for RIL, RIL – by –

genotype, and error effects) to create one matrix that contains all of the phenotypic variances and covariances. Then we

provide that matrix to the ‘R’ function and it knows to estimate all of the correlations from the matrix. At the same time, this

also provides a more efficient way to estimate the heritabilities for each trait, because the phenotypic variance-covariance

matrix contains the denominators of the heritabilities (on a plot-basis) for the three traits:
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Code example 6.14

Multivariate analysis of maize RIL data, heritabilities estimated from variance components (file

Code 6-1_MultivariateMaize.as continued).

Now we get the three phenotypic correlations and the three heritabilities with their approximate standard errors in the .pvc

output (Code 6-1_MultivariateMaize14.pvc):

Predictions from Multivariate Models

The predicted breeding values of height will be different from the multivariate model than from the univariate model,

because information on pollen and silk for a particular RIL influence is predicted value for height. If the traits are correlated,

we expect lower standard errors of predictions from the multivariate model because of the additional information used in

computing the prediction. For example, we can obtain the predicted values for RILs from the univariate model by adding the

statement after model 1:
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The predictions are found in output file Code06-1MaizeMultivariateData1.pvs:

. . .

---- ---- ---- ---- 1 height ---- ---- ---- ----

Predicted values of height

The SIMPLE averaging set: location

The ignored set: rep

RIL Predicted_Value Standard_Error Ecode

RIL-1 182.1005 3.0964 E

RIL-11 182.8557 3.0964 E

RIL-12 185.1213 3.0964 E

. . .

---- ---- ---- ---- 1 pollen ---- ---- ---- ----

Predicted values of pollen

The SIMPLE averaging set: location

The ignored set: rep

RIL Predicted_Value Standard_Error Ecode

RIL-1 78.3525 0.4467 E

RIL-11 74.4663 0.4467 E

RIL-12 77.8667 0.4467 E

. . .

---- ---- ---- ---- 1 silking ---- ---- ---- ----

Predicted values of silking

The SIMPLE averaging set: location

The ignored set: rep

RIL Predicted_Value Standard_Error Ecode

RIL-1 82.7819 0.6487 E

RIL-11 76.8206 0.6487 E

RIL-12 78.8077 0.6487 E

. . .

We can compare the univariate model predictions to the multivariate model predictions by adding the following statement

after model 8:

The predictions are found in output file Code06-1MaizeMultivariateData8.pvs:

---- ---- ---- ---- ---- ---- 1 ---- ---- ---- ---- ---- ----

The SIMPLE averaging set: location

The ignored set: rep

RIL Trait Predicted_Value Standard_Error Ecode

RIL-1 height 182.6460 3.0728 E

RIL-1 pollen 78.4022 0.4433 E

RIL-1 silking 82.5288 0.6266 E

RIL-11 height 182.2226 3.0728 E

RIL-11 pollen 74.5053 0.4433 E

RIL-11 silking 76.7818 0.6266 E

RIL-12 height 184.9607 3.0728 E

RIL-12 pollen 77.8466 0.4433 E

RIL-12 silking 78.9407 0.6266 E

. . .
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The predictions are slightly different for the two models, for example RIL-1 has a predicted height of 182.1 cm from the

univariate model and 182.6 cm from the multivariate model. This occurs because the predicted value of height in the

multivariate model is influenced by the observations of silk and pollen observations on that line, since the traits have genetic

(and other) correlations. As expected, the standard errors of predictions are lower from the multivariate model than the

univariate model, since more information enters into the multivariate predictions. The largest decrease in standard errors

occurs with silking (SE of predictions decrease from 0.65 to 0.63), since it has the lowest heritability but moderate to high

genetic correlation with the other, higher heritability, traits. Hence silking predictions have the most to gain from

information on the related traits.

The Animal Model in a Multivariate Re-visitation

In the previous section, we partitioned phenotypic covariance into components due to genotype, genotype-by-environment,

and residual effects, but we were not able to partition the genotypic covariance or correlation into additive and non-additive

components. In this section we will extend the pedigree-based ‘animal model’ first introduced in Chap. 4 to incorporate

correlations between traits, and use the additive genetic relationships among the individuals to estimate the additive genetic

covariance and correlation between traits. We will again use the same example data set, found in “pig_data.txt”:

pig sire dam year sex pen weanage weanwt adg weight loinarea

133 2 1 2004 1 52 21 13.25 2.0 264 5.34

654 2 1 2004 1 58 21 12.45 2.0 266 6.62

655 2 1 2004 1 54 21 13.55 1.6 215 5.50

153 2 1 2004 1 56 21 15.60 1.9 267 7.04

656 4 3 2004 2 59 21 10.40 1.5 210 3.94

657 4 3 2004 2 57 21 10.10 0.9 153 3.74

We will conduct a bivariate analysis of the traits ‘weanwt’ (animal weight at weaning) and ‘weight’ (weight at the end of the
growing test period). Recall from Chap. 4 that it is possible to fit a model that includes the breeding values of the pigs

themselves, the breeding values of the dammaternal effects, the covariance between the direct and maternal breeding values,

plus a term for maternal ‘environmental’ effects, but for weanwt, the complete model did not converge in theoretical bounds.

Therefore, in this chapter we will not attempt to fit the maternal environmental effect term ide(dam) and focus instead on

fitting the direct and maternal additive genetic values, showing how we can incorporate covariances across traits for all of

these effects. Univariate analyses for the two traits can be performed with the following ASReml model. Previous tests

indicated that we should include year, sex, and weanage as fixed covariates for weanwt and year, sex, and pen as fixed

covariates for weight.

Code example 6.15

Univariate animal models with maternal effects (part of file Code 6-2_BivariateAnimal.as).

(continued)

The Animal Model in a Multivariate Re-visitation 193



Code example 6.15 (continued)

• Recall that str() causes the terms inside the parentheses to share a common variance-covariance coefficient matrix.

Therefore the term str(pig dam corgh(2).nrm(pig)) means that the model includes the effect of the pig being

measured and the effect of its mother (dam) with a common variance-covariance structure so that both are proportional to

the additive ‘numerator’ relationship matrix based on the pedigree nrm(pig). We allow direct genetic and maternal

genetic effects to each have a unique variance and a covariance between them with the corgh(2) structure.

These models produce the following univariate outputs:

Output for PART 1 (Code 6-2_BivariateAnimal1.asr file).

- - - Results from analysis of weanwt - - -

Akaike Information Criterion 5717.47 (assuming 4 parameters).

Bayesian Information Criterion 5740.84

Model_Term Gamma Sigma Sigma/SE % C

Residual SCA_V 2556 1.00000 2.15065 12.27 0 P

corgh(2).nrm(pig) 5414 effects

2 COR_R 1 -0.742342 -0.742342 -4.41 0 P

2 COR_V 1 0.246000 0.529062 1.63 0 P

2 COR_V 2 1.91557 4.11973 11.09 0 P

pig NRM 2707

Covariance/Variance/Correlation Matrix COR pig

0.5291 -0.7423

-1.096 4.120

• Recall that this output indicates that the direct effect of a pig’s breeding value on its own weaning weight phenotype has a
variance of 0.591, whereas the breeding values of the dam effects on their progeny is much larger (4.120), and the two

effects have a correlation of �0.74.

Output for PART 2 (Code 6-2_BivariateAnimal2.asr).

- - - Results from analysis of weight - - -

Akaike Information Criterion 18611.96 (assuming 4 parameters).

Bayesian Information Criterion 18635.24

Model_Term Gamma Sigma Sigma/SE % C

Residual SCA_V 2556 1.00000 387.074 13.01 0 P

corgh(2).nrm(pig) 5414 effects

2 COR_R 1 -0.423929E-01 -0.423929E-01 -0.22 0 P

2 COR_V 1 0.465325 180.115 3.38 0 P

2 COR_V 2 0.438955 169.908 5.37 0 P

pig NRM 2707

(continued)
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Covariance/Variance/Correlation Matrix COR pig

180.1 -0.4240E-01

-7.417 169.9

• This output indicates that the direct effect of a pig’s breeding value on its own weight phenotype has a variance of

180.1, whereas the breeding values of the dam effects on their progeny is 169.9, and the two effects are not correlated

(�0.042).

Breeding values for direct effects on weight at the end of the study period are much more important (variance 180.1) than

they were for weaning weight. This makes sense because the effect of a pig’s genotype on its phenotype is expected to be

stronger later in life than at weaning, at which point its weight is largely dependent on its mother’s care.

Now we fit a simple multivariate model that includes only the direct genetic effects (no maternal genetic effects) with

separate variances for the traits but no covariances across traits using the DIAG() structure. We are allowing traits to have

separate residual variances and covariances across traits using the unstructured US() matrix for residual effects. In other

words, the model assumes that traits are not correlated at the level of genetic effects but the residuals are correlated.

Code example 6.16

Bivariate animal model with diagonal structure for pig effects (part of file Code 6-2_BivariateAnimal.as).

Notice that we can use at() to fit weanage as a fixed covariate only for weanwt and pen as a fixed effect only for weight.

The G structure for the animal effect is block diagonal formed by the Kronecker product of two matrices; a block-diagonal

matrix of trait additive genetic variances and the A matrix derived from the pedigree. We could also write the term diag

(Trait).pig as diag(Trait).nrm(pig) to clarify that the pig effects have variance-covariance structure propor-

tional to the numerator relationship matrix (A). It is not necessary, however, since we defined pig as a pedigree-associated

effect in the field definitions, so by default it is associated with the A matrix, not an identity matrix. This produces the

following output:

Output for PART 3 (Code 6-2_BivariateAnimal3.asr).

14 LogL=-2389.06 S2= 1.0000 5037 df

- - - Results from analysis of weanwt weight - - -

Akaike Information Criterion 24788.13 (assuming 5 parameters).

Bayesian Information Criterion 24820.75

(continued)
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Model_Term Sigma Sigma Sigma/SE % C

idv(units).us(Trait) 5112 effects

Trait US_V 1 1 2.89147 2.89147 20.06 0 P

Trait US_C 2 1 12.4938 12.4938 12.83 0 P

Trait US_V 2 2 385.789 385.789 16.57 0 P

diag(Trait).pig 5414 effects

Trait DIAG_V 1 1.98813 1.98813 9.49 0 P

Trait DIAG_V 2 315.811 315.811 8.65 0 P

pig NRM 2707

Covariance/Variance/Correlation Matrix US Residual

2.891 0.3741

12.49 385.8

• Weanwt has additive genetic variance of 1.98813 whereas weight has additive genetic variance of 315.811. The residual

environmental correlation between two traits is 0.3741.

If the !nodisplay argument is used in the ASReml job file, a scatter plot of residuals is produced by default. The plot is

split into two subplots, one for each trait in the model (Fig. 6.1). The first plot is for the trait listed first (weanwt).

For model 4, we extend the multivariate animal model to include correlations between direct genetic effects of pig breeding

values using a CORGH structure:

Code example 6.17

Bivariate animal model with CORGH structure for pig effects (part of file Code 6-2_BivariateAnimal.as).

Title: Bivariate Animal model Residuals vs Fitted values _RvE11
1 (Y) 5.30: 4.37 2 (Y) 89.65:49.00

Fig. 6.1 Residual plots of two

traits from the bivariate model
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Output for PART 4 (Code 6-2_BivariateAnimal4.asr).

- - - Results from analysis of weanwt weight - - -

Akaike Information Criterion 24788.44 (assuming 6 parameters).

Bayesian Information Criterion 24827.59

Model_Term Sigma Sigma Sigma/SE % C

idv(units).us(Trait) 5112 effects

Trait US_V 1 1 2.85247 2.85247 19.36 0 P

Trait US_C 2 1 11.3732 11.3732 8.35 0 P

Trait US_V 2 2 378.932 378.932 15.85 0 P

corgh(Trait).pig 5414 effects

Trait COR_R 1 0.956054E-01 0.956054E-01 1.24 0 P

Trait COR_V 1 2.05446 2.05446 9.35 0 P

Trait COR_V 2 328.723 328.723 8.54 0 P

pig NRM 2707

Covariance/Variance/Correlation Matrix US Residual

2.852 0.3459

11.37 378.9

Covariance/Variance/Correlation Matrix COR corgh(Trait).pig

2.054 0.9561E-01

2.485 328.7

• The additive genetic correlation between traits is low in thismodel (~ 0.10), and its inclusion does not appearwarranted, since

the AIC of this model increased compared to model 3. We will maintain this term in subsequent models for completeness.

For model 5, we introduce the maternal effects that can be explained as due to additive genetics effects. We introduce this as

a separate term from the direct genetic effects, which means they are modeled as independent (zero covariance) from the

direct genetic effects. However, we allow covariances within direct and maternal effects across traits with CORGH

structures on each.

Code example 6.18

Bivariate animal model with pig and dam effects, independent of each other (part of file

‘Code 6-2_BivariateAnimal.as’).
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This produces the following output:

Output for PART 5 (Code 6-2_BivariateAnimal5.asr)

- - - Results from analysis of weanwt weight - - -

Akaike Information Criterion 24133.59 (assuming 9 parameters).

Bayesian Information Criterion 24192.31

Model_Term Sigma Sigma Sigma/SE % C

idv(units).us(Trait) 5112 effects

Trait US_V 1 1 2.39593 2.39593 18.42 0 P

Trait US_C 2 1 11.2124 11.2124 8.40 0 P

Trait US_V 2 2 381.957 381.957 14.79 0 P

corgh(Trait).pig 5414 effects

Trait COR_R 1 -0.994588 -0.994588 -0.10 0 P

Trait COR_V 1 0.108348E-01 0.108348E-01 0.05 0 P

Trait COR_V 2 187.036 187.036 4.18 0 P

pig NRM 2707

corgh(Trait).dam 5414 effects

Trait COR_R 1 0.193259 0.193259 2.41 0 P

Trait COR_V 1 3.61617 3.61617 11.30 0 P

Trait COR_V 2 174.592 174.592 6.39 0 P

dam NRM 2707

Covariance/Variance/Correlation Matrix US Residual

2.396 0.3706

11.21 382.0

Covariance/Variance/Correlation Matrix COR corgh(Trait).pig

0.1083E-01 -0.9946

-1.416 187.0

Covariance/Variance/Correlation Matrix COR corgh(Trait).dam

3.616 0.1933

4.856 174.6

• Fitting direct additive and maternal genetic effects as independent terms suggests that the direct additive genetic effect is

almost zero (0.0108) and the trait is pretty much under control of maternal genetic effect (187.036). The correlation of

�0.994588 is misleading in this case because of almost zero additive direct genetic variance.

Based on AIC, this model is superior to any of the previous multivariate models. Now we can extend this model by allowing

covariances between the pig and dam effects within and across traits. This is done by extending the univariate model term

str(pig dam corgh(2).nrm(pig)) to its multivariate analog: str(Trait.pig Trait.dam corgh(4).nrm

(pig). In the multivariate case, the dimension of the CORGH matrix is four because there are two direct effects (one for

each trait) for each pig and two direct effects for each dam. This will produce a matrix with four variances and six

covariances between all pairs of effects:
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Code example 6.19

Bivariate animal model with correlated pig and dam effects (part of file Code 6-2_BivariateAnimal.as).

Output for PART 6 (Code 6-2_BivariateAnimal6.asr).

- - - Results from analysis of weanwt weight - - -

Akaike Information Criterion 24121.12 (assuming 13 parameters).

Bayesian Information Criterion 24205.94

Model_Term Sigma Sigma Sigma/SE % C

idv(units).us(Trait) 5112 effects

Trait US_V 1 1 2.12811 2.12811 12.03 0 P

Trait US_C 2 1 10.1967 10.1967 6.20 0 P

Trait US_V 2 2 383.131 383.131 12.94 0 P

corgh(4).nrm(pig) 10828 effects

4 COR_R 1 0.772225E-01 0.772225E-01 0.27 0 P

4 COR_R 2 -0.713218 -0.713218 -4.71 0 P

4 COR_R 3 -0.206750 -0.206750 -1.61 0 P

4 COR_R 4 -0.302079 -0.302079 -1.37 0 P

4 COR_R 5 -0.134150E-01 -0.134150E-01 -0.07 0 P

4 COR_R 6 0.256988 0.256988 2.99 0 P

4 COR_V 1 0.577114 0.577114 1.75 0 P

4 COR_V 2 185.100 185.100 3.48 0 P

4 COR_V 3 4.10084 4.10084 11.11 0 P

4 COR_V 4 176.907 176.907 5.53 0 P

pig NRM 2707

Covariance/Variance/Correlation Matrix US Residual

2.128 0.3571

10.20 383.1

Covariance/Variance/Correlation Matrix COR Trait.pig

0.5771 0.7722E-01 -0.7132 -0.3021

0.7981 185.1 -0.2067 -0.1342E-01

-1.097 -5.696 4.101 0.2570

-3.052 -2.429 6.922 176.9
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This model improves the AIC a bit more, but the variance component for direct genetic effects on weanwt (0.5771) appears
small here, so maybe it is not needed in the model. A way to test that is to fit a reduced model that does not include the direct

genetic effect on weanwt but does include it for weight. To demonstrate how to fit a complex variance-covariance structure

that includes effects on only some of the trait, we will use at() to fit the direct pig effects only for weight, but include this

term inside the str() function so that those direct effects have a covariance with the maternal genetic effects. Since we are

excluding the direct effects on weanwt, the dimension of the CORGHmatrix in this case is reduced from four to three and we

will get estimates for three variance components and their three pairwise correlations:

Code example 6.20

Reduced bivariate animal model with correlated pig and dam effects but no direct genetic effects on weanwt

(part of file ‘Code 6-2_BivariateAnimal.as’).

Output for PART 7 (Code 6-2_BivariateAnimal7.asr).

- - - Results from analysis of weanwt weight - - -

Akaike Information Criterion 24133.44 (assuming 9 parameters).

Bayesian Information Criterion 24192.16

Model_Term Sigma Sigma Sigma/SE % C

idv(units).us(Trait) 5112 effects

Trait US_V 1 1 2.40114 2.40114 31.93 0 P

Trait US_C 2 1 10.5130 10.5130 13.24 0 P

Trait US_V 2 2 384.584 384.584 13.25 0 P

us(3).nrm(pig) 8121 effects

3 US_V 1 1 182.037 182.037 3.52 0 P

3 US_C 2 1 -2.56877 -2.56877 -0.80 0 P

3 US_V 2 2 3.62664 3.62664 12.29 0 P

3 US_C 3 1 7.01333 7.01333 0.21 0 P

3 US_C 3 2 5.11434 5.11434 2.30 0 P

3 US_V 3 3 169.590 169.590 5.48 0 P

pig NRM 2707

Covariance/Variance/Correlation Matrix US Residual

2.401 0.3460

10.51 384.6

(continued)
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Covariance/Variance/Correlation Matrix US at(Trait,2).pig

182.0 -0.1000 0.3992E-01

-2.569 3.627 0.2062

7.013 5.114 169.6

Notice that the AIC value for this model (24133.44) is worse (larger) than the AIC value for the more complete model, model

6 (24121.12) suggesting that we should not drop the direct genetic effects on weanwt and that model 6 is better for estimating

variances and correlations and for predicting breeding values.
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Abstract

In this chapter we describe spatial analyses that deal with heterogeneity of errors in a post-hoc analysis, rather than in the

experimental design. These spatial analyses can improve the estimation of genetic effects by modeling more accurately

the spatial distribution of error effects in a field trial. Selecting an optimal model can be complicated when models differ

for both fixed and random effects. We demonstrate a process by which models can be compared to choose a model that is

likely to provide the best predictions of genetic values.

Background

An assumption of the ordinary least squares analysis of variance is that error effects are independently and identically

distributed (IID). This assumption is probably reasonable in many animal breeding and genetics studies, where an animal

itself is an experimental unit, and is able to move about, limiting the effects of spatial trends in its environment. This

assumption may not hold for many field experiments in plant or tree breeding, however. When possible, plant breeders select

homogeneous field sites for experiments, but some fields may exhibit a high level of heterogeneity due to differences in soil

type, fertility, water holding capacity, and so forth. As the number of experimental entries becomes larger, the ability to

partition experimental fields into blocks of homogeneous experimental units becomes more difficult. Randomized complete

blocks are an excellent experimental design when a single plot of each experimental entry can be fit into each of several

homogeneous blocks, but this becomes increasingly difficult as the number of test genotypes becomes large.

Incomplete block designs, such as lattices (Cochran and Cox 1957) and alpha designs (Patterson and Williams 1976) were

developed to handle situations where experimental units are not uniform within complete blocks. Incomplete block designs

introduce unbalance into the experimental design, which can be well handled by mixed models analysis that simultaneously

estimates the effects of random complete blocks and incomplete blocks along with the (random or fixed) treatment effects.

Incomplete block designs will be very efficient when the experimental units within an incomplete block are homogeneous,

but there is no guarantee that this will be the case in field experiments. In general, it is unlikely that an incomplete block

design will capture the heterogeneity of experimental units in a field with unknown spatial trends (although some trends may

be obvious before planting, many others will not; still other spatial trends will only appear after planting due to trends in

management and data collection). Row-column alpha designs (John and Eccleston 1986) permit blocking in both the row

and column directions while optimizing balance in the precision of pairwise entry comparisons as part of the design.

In this chapter we consider both randomized complete block and incomplete block field designs, and also describe spatial

analyses that deal with heterogeneity of errors in a post-hoc analysis, rather than in the experimental design. These spatial

analyses can improve the estimation of genetic effects by modelling more accurately the spatial distribution of error effects

in a field. The potential improvement in analysis of field data by spatial analysis should not be taken as a reason to abandon

the principles of good experimental design. Indeed, we recommend using incomplete block and row-column designs when

possible for large experiments, and to compare traditional incomplete block design analyses with spatial analyses, and

perhaps combine aspects of both analyses to optimally model the non-genetic variation in field experiments as a way to

improve the estimation of breeding values of the test materials.

Modeling Spatial Effects

The randomized complete block design is one approach to handling heterogeneity in the experimental units by fitting the

main effects of blocks in the analysis. The extent to which plots in different replications are different on average is attributed

to the block effects, and the variation explained by the block effects is accounted for in the model itself, thus reducing the

residual error variance compared to an analysis that ignored block effects. Incomplete block and row-column designs extend

this concept further, absorbing additional variation due to the effects of incomplete blocks within complete blocks, at a cost

of more parameters to estimate, introduction of imbalance to the experimental design, and different levels of precision for

pairwise entry comparisons. When possible, we recommend the use of these incomplete block and row-column designs for

large experiments designed to evaluate breeding values or genotypic values of crops or trees.
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In some cases, for practical reasons, it is not possible to use a row-column design. For example, the North Carolina State

University maize breeding program conducts research at several experimental research stations that manage experiments for

a wide range of crops and research projects. Fields are rotated among crops and projects over years, and the identity of the

fields to be used for planting are typically not known until after the time required to design experiments to allow seeds to be

counted and packaged for planting. Thus, alpha lattices are typically used for experimental designs, with the knowledge that

the incomplete blocks will likely not represent rectangular subsections of the field. Nevertheless, they may still capture some

portion of field gradients, so are useful. The use of repeated check varieties (as in various forms of the augmented design,

(Federer and Raghavarao 1975) in either a systematic or random fashion (Müller et al. 2010) helps to provide information on

spatial trends and allows them to be modeled in this way.

In addition to designing experiments a priori to account for variability within complete blocks, there are post-hoc analysis

approaches that attempt to model field position effects. For example, row and column effects can be included in the analysis

by using trend analysis (which fits orthogonal polynomial variables to row and column positions; (Brownie et al. 1993),

splines (Gilmour et al. 1997), penalized splines (Rodrı́guez-Álvarez et al. 2016), or even by simply fitting row and column as

random effects if there is sufficient overlap of entries among rows and columns. Alternatively, one can model the error

effects as being correlated due to spatial proximity as a way to account for spatial heterogeneity (see next section). Finally,

these approaches are not exclusive, one can fit row and column factors in the model as fixed or random effects, and also

model correlations among the residuals. A combination of incomplete block or row-column designs, spatial analysis, and

model selection can improve accuracy of variety selection trials considerably (Qiao et al. 2000, 2004). A key challenge when

these approaches are used is to avoid over-fitting the model and to choose an optimal model among the many various

possibilities.

Variance-Covariance Matrix of Residuals

The typical ANOVA model for randomized complete blocks assumes that residuals are independent and identically

distributed (εi � iidN 0; σ2e
� �

). This means that the structure of the variance-covariance matrix of residuals, R, for plots

1 to n is:

R ¼

1 2 3 � � � n

1

2

3

..

.

n

σ2ε 0 0 � � � 0

0 σ2ε 0 0 0

0 0 σ2ε 0 0

..

.
0 0 . .

.
0

0 0 0 0 σ2ε

2
666664

3
777775

¼ Inσ
2
ε ð7:1Þ

In order to write the model to permit spatial correlations we need to understand the formation of variance structures via direct

products (
N

). Recall from Chap. 3 that the direct product of two matrices is

Amxp � Bnxq ¼
a11B . . . a1pB

..

. . .
. ..

.

am1B . . . ampB

2
64

3
75 ð7:2Þ

For example, for matrices A and B:

A ¼ x z

y w

� �
, B ¼

D G K

E H L

F I N

2
4

3
5 ð7:3Þ
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Their direct product is:

A� B ¼

xD xG xK zD zG zK

xE xH xL zE zH zL

xF xI xN zF zI zN

yD yG yK wD wG wK

yE yH yL wE wH wL

yF yI yN wF wI wN

2
6666666664

3
7777777775

ð7:4Þ

A typical model for spatially correlated errors for field trials is the separable first-order autoregressive model in two

dimensions (AR1� AR1) (Cullis et al. 1998). This models the residuals as correlated based on the distance between plots in

the row and column directions (with the correlation decreasing as increasing powers of the correlation with distance), and

with different values of the spatial correlation in the two directions. If the field is arranged as a rectangular grid or rows and

columns, we can use the direct product to efficiently write the complex variance-covariance matrix of residuals, R.

By sorting the experimental units rows within columns, the variance-covariance matrix of the residuals can be written as a

direct product of two sub matrices:

σ2e Σc ρcð Þ � Σr ρrð Þ ð7:5Þ

where ∑r(ρr) is the correlation matrix for the row model with dimension r � r and ρr is the auto-correlation parameter in the

row direction; ∑c(ρc) is the correlation matrix for the column model with dimension c � c and ρc is the auto-correlation

parameter in the column direction. Both are symmetrical matrices, so we show only the lower triangle elements:

Σr ¼

1

ρr 1

ρ2r ρr 1

� � � �
ρr�1
r ρr�2

r ρr�3
r . . . 1

2
6666664

3
7777775 Σc ¼

1

ρc 1

ρ2c ρc 1

� � � �
ρc�1
c ρc�2

c ρc�3
c . . . 1

2
6666664

3
7777775 ð7:6Þ

In this model, correlations will be greater between pairs of residuals on adjacent plots than between residuals that are

separated by more than one row or column, and the correlations will tend toward zero as the distance between plots grow.

The residual correlation in the row direction is raised to the power of the distance between the two plots in the row dimension

(where the distance is measured either as geographic distance or simply as the number of rows apart). Similarly, the residual

correlation in the column direction is raised to a power equal to the distance between the columns that the two plots are

located in. Since the correlation coefficients ρc and ρr are less than or equal to one, the pairwise correlation between plots will
decrease as the distance between the plots increases. The two-dimensional pattern permits the correlation to change

differently as distance increases in the row direction compared to in the column direction.

As an example, consider a field layout with 12 plots arranged in a grid of 3 rows and 4 columns:

Column 1 Column 2 Column 3 Column 4

Row 3 9 10 11 12

Row 2 5 6 7 8

Row 1 1 2 3 4

An AR1 � AR1 residual structure would require three residual parameter estimates: σ2e , ρc, and ρr. The R matrix would be

given by the product of the error variance and the direct product of the row and column AR1 matrices:
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Σr ρrð Þ ¼
1 ρr ρ2r
ρr 1 ρr

ρ2r ρr 1

2
64

3
75 ð7:7Þ

Σc ρcð Þ ¼

1 ρc ρ2c ρ3c
ρc 1 ρc ρ2c
ρ2c ρc 1 ρc

ρ3c ρ2c ρc 1

2
66664

3
77775 ð7:8Þ

R ¼ σ2e Σr ρrð Þ � Σc ρcð Þ ¼ σ2e

1

ρc 1

ρ2c ρc 1

ρ3c ρ2c ρc 1

ρr ρrρc ρrρ
2
c ρrρ

3
c 1

ρrρc ρr ρrρc ρrρ
2
c ρc 1

ρrρ
2
c ρrρc ρr ρrρc ρ2c ρc 1

ρrρ
3
c ρrρ

2
c ρrρc ρr ρ3c ρ2c ρc 1

ρ2r ρ2rρc ρ2rρ
2
c ρ2rρ

3
c ρr ρrρc ρrρ

2
c ρrρ

3
c 1

ρ2rρc ρ2r ρ2rρc ρ2rρ
2
c ρrρc ρr ρrρc ρrρ

2
c ρc 1

ρ2rρ
2
c ρ2rρc ρ2r ρ2rρc ρrρ

2
c ρrρc ρr ρrρc ρ2c ρc 1

ρ2rρ
3
c ρ2rρ

2
c ρ2rρc ρ2r ρrρ

3
c ρrρ

2
c ρrρc ρr ρ3c ρ2c ρc 1

2
66666666666666666666666664

3
77777777777777777777777775

ð7:9Þ

In this symmetric matrix, element R[5, 4] is the correlation between residuals on plots row 5 and column 4, which are

separated by one row and three columns, so the correlation is ρrρ
3
c .

As a numerical example, if the correlation in the row direction were 0.9 and the correlation in the column direction were 0.5,

the following R matrix would result:

R ¼ σ2e

1

0:5 1

0:25 0:5 1

0:125 0:25 0:5 1

0:9 0:45 0:225 0:1125 1

0:45 0:9 0:45 0:225 0:5 1

0:225 0:45 0:9 0:45 0:25 0:5 1

0:1125 0:225 0:45 0:9 0:125 0:25 0:5 1

0:81 0:405 0:2025 0:10125 0:9 0:45 0:225 0:1125 1

0:405 0:81 0:405 0:2025 0:45 0:9 0:45 0:225 0:5 1

0:2025 0:405 0:81 0:405 0:225 0:45 0:9 0:45 0:25 0:5 1

0:10125 0:2025 0:405 0:81 0:1125 0:225 0:45 0:9 0:125 0:25 0:5 1

2
66666666666666666666666664

3
77777777777777777777777775
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In this example, you can see that the pairwise error correlation is greatest between plots in the same column and adjacent

rows, for example plot pairs [row,col] [1,5] and [8, 4], with r ¼ 0.9. It is lowest between the most distant plots, for example

plot pairs [12,1] and [9,4], with r ¼ 0.10125.

Model Selection

The objective of analysis of field trial data is to select a model that most accurately and parsimoniously characterizes the

extraneous spatial effects in the field, and consequently provides the most accurate and precise estimates of variety effects.

Recommendations for appropriate methods for model selection vary among authors. Brownie et al. (1993) and Brownie and

Gumpertz (1997) gave highest priority to modelling fixed trends, and suggest selecting an appropriate residual variance-

covariance (R matrix) structure only after accounting for fixed field trends. In contrast, Gilmour et al. (1997) recommend

modelling the residual structure first, then fitting fixed trend effects after selecting an appropriate R structure. These authors

also differ as to the relative importance of maximizing precision of variety predictions vs. model fitting criteria when

selecting models.

Model selection can be conducted with likelihood ratio tests if two models being compared are nested models. That is, the

two models share the same fixed effects, and one model (the “reduced model”) has a subset of the random effects in the other

model (the “full model”). If the two models share the same fixed effects but are not nested, they can be compared with

information criteria such as Akaike’s (AIC) or Schwarz’s Bayesian Information Criteria (BIC)(Lynch and Walsh 1998;

Welham et al. 2010). A technical issue complicates model selection procedures with mixed models, however: models that

have different fixed effects and different random effects cannot be compared on the basis of their residual likelihoods or

likelihood-based information criteria (AIC or BIC). REML proceeds by first absorbing fixed effects, then estimating the

maximum likelihood random part of the model given the residual deviations from the fixed part of the model (Lynch and

Walsh 1998). Thus, the likelihood spaces of models with different fixed effects estimated with REML are not equivalent, and

the models cannot be compared on the basis of likelihoods. This means that we cannot compare a model with fixed trend

effects and IID R structure (R ¼ σ2eI) to a model with no fixed trend effects and spatially correlated R structure on the basis

of their likelihoods.

We suggest the following procedure to conduct model selection for spatial analyses, to allow consideration of models with

and without fixed trend effects, random block terms, and complex R structures:

1. Fit a base model with variety effects only; inspect graphical plots of residuals against rows and columns of the field grid to

get a sense of the potential importance of field trends.

2. Fit a model with random blocks. These can include complete and incomplete blocks.

3. Fit a model with random row and column terms. Models 2 and 3 are not nested but can be compared by AIC or BIC

(Kehel et al. 2010; Lynch and Walsh 1998). Users should be cautious about fitting this model if the experiment has

limited replication in the absence of repeated check plots. This step involves fitting nr and nc effects, one for each row and

column in the field grid, and this may result in an over fitted model.

4. Fit a model with fixed polynomial trend effects (up to 4th order in both directions (Brownie et al. 1993). This model is

typically more parsimonious than Model 3 because it fits a maximum of eight effects for the trends, and perhaps can be

used in some cases where Model 3 cannot be fit due to limited replication. (Alternatively, fit smoothing splines as fixed

effects to capture extraneous variation in the row and column directions (Gilmour et al. 1997). Model 4 cannot be

compared to models 2 or 3 based on likelihood criteria because their fixed effects differ. Nevertheless, the F-tests for the

fixed trend terms can be inspected for significance, and the models can be compared on the basis of residual error

variance, F-test for variety effects, and average standard error for pairwise variety comparisons. Choose the model that

has the highest significance for the variety F-test and the lowest pairwise variety mean comparison standard error.

5. Add AR1 � AR1 R structure to best model selected in previous step and test the significance of this structure using a

likelihood ratio test. It is possible that the spatial correlations are important in only one direction, which can be judged

roughly by the magnitude of the correlation coefficient and the ratio of the correlation coefficient to its standard error. In

such a case, a nested reduced model with AR1 � ID structure can be fit and tested with a likelihood ratio test.

6. After fitting the R structure, the fixed trend effects can be rechecked based on their F tests. Or if random row, column,

or block structures were selected in step 3, they can be re-tested with a likelihood ratio test comparing models in

steps 3 and 5. If not significant, they can be dropped to obtain a final parsimonious model.
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Example of Spatial Analyses of Field Trial Data

We take as an example data from a barley field variety trial, composed of a randomized complete block with six

replications of 25 varieties. These data are provided as one of the example data sets distributed with ASReml (“barley.

asd”, included with the data sets for this book) and their analysis is discussed in the ASReml user’s guide example section

(Gilmour et al. 2009), and in greater detail in Gilmour et al. (1997). The field arrangement was a regular grid of 10 rows

and 15 columns. Complete blocks (reps) are composed of 25 plots representing the intersection of 5 rows and 5 columns.

To demonstrate some of the features of ASReml Version 4, we created a new data file “barley_missing_data.csv” which

is identical to the original data set, but we deleted the record for the last plot in the experiment (positioned in row

10, column 15 of the spatial plot grid).

A sequence of 10 models following the procedure outlined above is given in the program file “Code 7-1_SpatialAnalysis.as”.
A sample R script for drawing residual heat maps is provided in “Code 7-2_Heatmaps.R”. Some key statistics for each model

are presented in Table 7.1. An equivalent code for ASReml-R based on code provided by Miraslov Zoric (Institute of Field

and Vegetable Crops, Serbia) is also included in the file ‘Code 7-3_Spatial_asremlR.R’.

Code example 7.1
Spatial analysis of barley data (see example Code 7-1_SpatialAnalysis.as file for more details).

Model 1: No block or spatial effects

The base model is very simple, the only random term is the residual which has the default IID variance-covariance structure.

We highlight a few new qualifiers and terms introduced in this model. First, we introduce !ROWFACTOR and !COLFACTOR

as data file qualifiers. These terms are interpreted by ASReml as indicating the two factors that define the two dimensions of

the spatial grid of the experimental unit. In this example, the dimension factors were conveniently names ‘row’ and

‘column’, but they could have had any other name. This qualifier is important because in combination with the term ‘!f
mv’ in the model, they will check that all combinations of the two factors exist in the data set (e.g., all possible combinations

of row and column), and if some are missing, they will be created internally to complete the grid. The complete grid will be

required in later models where we fit spatial correlations among the residuals. ‘!f mv’ indicates that ASReml should

estimate missing values fit as ‘sparse fixed’ effects. We include another data file qualifier, ‘!BRIEF -1’ to tell ASReml that

we want to obtain estimates of the fixed effects in the .asr file directly (otherwise we have to find them in the .sln file). We use

this for convenience because later models will include some fixed effect covariates and we want to be able to quickly judge

how important their effects are. For model 1, we do not need any of these additional qualifiers and terms, but they will
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become important later. (However, if !ROWFACTOR and !COLFACTOR qualifiers are included without a complete spatial

grid we must also use !f mv in the model, even if we are not fitting a spatial model. Furthermore, we also need to specify

‘residual units’, otherwise the default residual structure becomes a spatially correlated model).

In this example there are 149 plots, but by augmenting the data set to complete the grid, we end up with estimated effects for

150, so the residual variance structure is R ¼ σ2eI150. Key diagnostic statistics for this and subsequent models are given in

Table 7.1. “Average SED” (Table 7.1) refers to the average standard error of a difference between two variety means, and it

is given at the bottom of the .pvs output file from ASReml if the “predict variety” statement is included after the model.

Model 2: RCBD model

We can fit the complete block effects of the RCBD design by adding a random rep effect to the model:

The model has two random terms; replications (compete blocks; ur ~ N(0, σ2r I6), and a residual component (IID residuals, or

‘unit’ effects, R ¼ σ2eI150). We can compare diagnostic statistics between the base and RCBD models (Table 7.1).

The statistics in Table 7.1 demonstrate that the RCBD model is better than the base model. The spatial distribution of

residuals can be seen in heat maps of the residuals plotted against row and column position for each model (Fig. 7.1). In each

heat map, each box represents the residual effect on a plot, with darker boxes indicating plots with larger positive residuals,

whereas lighter boxes indicate plots with larger negative residuals, and gray boxes have near zero residual (Fig. 7.1). The

blocking structure of the randomized complete block design is superimposed on the heat map with black lines. The heat map

for model 1 shows obvious spatial trends in the data, with generally small groups of adjacent plots sharing residuals of the

same sign. This is a very patchy spatial distribution of residuals. The RCBDmodel (model 2) captures the generally negative

Table 7.1 A sequence of ten models used to analyze barley data set: their random and fixed effects, R structure, log likelihood, residual variance,

F-statistic for H0: no variety differences, and the average standard error of a difference (SED) between two variety means

Model: 
R structure

Random
effects

Fixed 
effects LogL AIC Residual 

variance F SED

1: IID – variety −747 1496.72 44108 2.41 122

2: IID rep variety −738 1479.98 34936 3.04 108

3: IID row, col variety −732 1469.11 25523 3.79 99

4: IID – variety, pol(row,4), 
pol(col, 4) −696a 1394.11 31604 3.31 106

5: IID – variety, pol(row,4), 
pol(col, 3) −700 1401.09 31334 3.36 105

6: AR1×AR1 row, col variety −695 1400.25 35663 13.08 59

7: AR1×AR1 – variety −695 1396.74 39002 12.91 60

8: AR1×AR1+units – variety −692 1391.72 46143+4927 10.11 61

9: ID×AR1+units – variety −705 1416.06 42615+0 8.68 68
aModels 4 and 5 have different fixed effects than other models, they cannot be compared to each other or to other models using likelihood-based

criteria, such as AIC
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Fig. 7.1 Heat map of residuals from analysis of barley yield trial data: Model 1 (base model fitting only variety effects), Model 2 (RCBD model),

Model 3 (random row and column effects), Model 6 (row and column effects plus AR1 � AR1 residual), Model 7 (AR1 � AR1 residual), and

Model 8 (AR1 � AR1 plus units residual)
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effect of the block in the upper right hand of the field grid, so that the residuals from this block are not uniformly negative

(Fig. 7.1). Nevertheless, it is obvious that much of the spatial heterogeneity occurs in patches that are not delimited by the

borders of the complete blocks. Thus, more complex spatial analysis models might better capture the heterogeneity of this

field.

Model 3: Random row and column effects

Even though this experiment was not designed as a row-column incomplete block designs, we can nevertheless fit the effects

of rows and columns in the analysis at the cost of imbalance in the analysis and the fitting of 10 row and 15 column effects.

A substantial reduction in error variance and average SED, along with increases in the variety F-test and log likelihood of

model 3 compared to the RCBD model suggests that the random row and column effects do a better job of modelling and

controlling the spatial variability than the complete blocks (Table 7.1). We cannot use a likelihood ratio test to compare these

two models, because they are not nested models, but we can compare the models with AIC and BIC as both have the same set

of fixed effects. AIC and BIC are reported in the .asr outputs, but here we demonstrate how they are computed:

AIC ¼ �2lnL + 2k, where lnL is the log likelihood of a model, k is the number of random covariance parameters. So, in this

example k ¼ 2 for Model 2 (one variance component each for replication and residual), and k ¼ 3 for Model 3 (variance

components for row, column, and residual).

AIC (model 2) ¼ �2(�743.340) + 4 ¼ 1480

AIC (model 3) ¼ �2(�736.828) + 6 ¼ 1470

The model with lower AIC value (in this case model 3) is considered the better model. The BIC has a stronger penalty for

fitting additional model terms than the AIC, so we can also compare the models using BIC:

BIG ¼ � 2 ln L + k ln(n), where lnL and k are the same as in the AIC definition, and n is the total number of observations.

n ¼ 149 for both models,

BIC (model 2) ¼ �2(�738) + 2(ln(149)) ¼ 1486

BIC (model 3) ¼ �2(�732) + 3(ln(149)) ¼ 1479

The difference in BIC between the models is a little smaller, because the improvement in likelihood in model 3 is penalized

more for the additional parameter used. The results of AIC and BIC are consistent in this case, the random row and column

terms do a better job than the complete blocks of the RCBD design in controlling residual variance.

Model 4: Fixed row and column orthogonal polynomial trends

Fitting random row and column effects in model 3 provided an improved model fit, but required estimating 25 additional

effects. We can attempt to capture the important linear and non-linear trends in the field more parsimoniously by fitting up to

4th order orthogonal polynomials in the row and column directions instead. Typically these are fit as fixed covariates.
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The term pol(row,�4) creates 4 orthogonal polynomials from first to 4th order based on the row factor. The row and column

polynomials are significant based on their F-tests in the output:

Wald F statistics

Source of Variation NumDF DenDF_con F-inc F-con M P-con

8 mu 1 116.0 10208.11 9908.85 . <.001

6 variety 24 116.0 3.36 3.31 A <.001

9 pol(row,-4) 4 116.0 4.06 4.03 A 0.004

10 pol(column,-4) 4 116.0 10.20 10.20 A <.001

Notice that each trend term has four degrees of freedom. We get a combined F-test for all four row polynomials together, for

example. We can check if we really need to fit up to 4th order polynomials by examining the individual regression coefficient

estimates and their standard errors in the .asr output file:

Solution Standard Error T-value T-prev

10 pol(column,-4)

1 -103.240 24.5588 -4.20

2 -74.5544 30.4151 -2.45 0.75

3 150.740 34.4541 4.38 5.10

4 -0.136026E-01 32.8986 -0.00 -3.28

9 pol(row,-4)

1 -63.3770 23.5678 -2.69

2 -5.70253 28.7630 -0.20 1.56

3 50.1794 27.1655 1.85 1.42

4 63.9285 25.2398 2.53 0.37

This indicates that the linear trend effect in the column direction is �103.2 (where the units are scaled to the change that

would occur by moving halfway across the field), and its standard error is 24.6. A rough guide to significance for these

regression coefficients is that their absolute value should be more than about twice their standard error to be significant

(T-value with absolute value greater than two). In this example, it appears that the 4th order column polynomial is not

significant and the 2nd and perhaps 3rd order row polynomials are not significant. We should therefore consider dropping the

4th order column polynomial and the 2nd and 3rd order row polynomials. ASReml does not have a simple function to fit, for

example, the 1st and 4th order row polynomials only, however. Thus, if we want to fit the 4th order row polynomial, we must

fit 1st through 4th order terms.

We cannot compare Models 4 and 3 on the basis of likelihoods, because they have different fixed effects. Model 3 has a

smaller error variance and SE for variety comparisons and a larger variety F statistic than Model 4, however, suggesting it is

a better model. But before abandoning the fixed polynomial trend effects, we can attempt to improve the model by dropping

the 4th order column term.

Model 5: Fixed 1st to 4th order row and 1st to 3rd order column trends

Model 5 is a small modification to Model 4, differing only in that we now fit up to 3rd order column trends.
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Model 5 seems better than Model 4 in every aspect, except for log likelihood, but we know that we cannot compare the

models on that basis. The overall F-test for column trend polynomial is improved by fitting only up to 3rd order:

Wald F statistics

Source of Variation NumDF DenDF_con F-inc F-con M P-con

8 mu 1 117.0 10296.12 10030.47 . <.001

6 variety 24 117.0 3.39 3.36 A <.001

9 pol(row,-4) 4 117.0 4.10 4.07 A 0.004

10 pol(column,-3) 3 117.0 13.72 13.72 A <.001

But based on the F-test for variety effects and the precision of variety differences, we still prefer Model 3, so we will not

attempt to fit fixed spatial covariates any further.

As an aside, if we attempt to predict variety effects from either Model 4 or Model 5 with the usual statement:

We do not get variety predictions; instead we get the following error message in the .pvs file:

Predict statement 1 aborted: cannot average over pol(column,-4)

Nominate a particular level of column to predict.

We need to explicitly include values of the covariates at which we want to make the predictions. A sensible approach is to

make predictions where the scaled row and column variables are zero, which is the center of the field:

Model 6: Random row and column effects plus spatially correlated residuals in row and column direction (AR1 � AR1)

Now we augment Model 3 by allowing the residual effects to be correlated following the autoregressive spatial correlation

pattern in both the row and column directions. We now specify the R structure as the direct product of two sub-matrices that

model the correlations in column and row directions.

In the functional specifications of R, residual ar1v(row).ar1(column)tells ASReml that R is a direct product of

two correlation matrices R ¼ σ2e
P

r ρrð Þ �P
c ρcð Þ� �

, giving a two-dimensional (row and column) first order separable
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autoregressive spatial structure for error. Note that ∑c(ρc) is not a summation, but a correlation matrix structure, as shown

previously in this chapter. We allow different correlations along the column and row directions.

The variance components estimates for this model are shown in the .asr output file as:

Model_Term Gamma Sigma Sigma/SE % C

row IDV_V 10 0.833561E-01 2972.74 0.64 0 P

column IDV_V 15 0.122790E-06 0.437907E-02 0.00 0 B

ar1v(row).ar1(column) 150 effects

Residual SCA_V 150 1.00000 35663.2 4.40 0 P

row AR_R 1 0.482957 0.482957 5.60 0 P

column AR_R 1 0.644831 0.644831 7.36 0 P

The term labelled with ‘Residual’ and ‘SCA_V’ is the residual error variance component; the following terms labelled ‘row’
or ‘column’ and ‘AR_R’ are the autoregressive spatial correlations in the row and column directions.

Models 3 and 6 can be compared with a likelihood ratio test, as Model 3 is a nested model relative to Model 6. The difference

in log likelihoods is considerable (about 37 units) with the addition of only two new parameters to the model (the two spatial

error correlations), so it is obvious that Model 6 is preferred. The F-test for variety has increased dramatically from 3.79 to

13.08, and the average SED has been cut nearly in half (Table 7.1). Clearly, we have made a significant advance in modelling

the spatial variation with this model. It may be strange to note, therefore, that the error variance of this model is actually quite

a bit higher than that of Model 3. This is actually typical of AR1 � AR1 models. They achieve an improvement in model fit

not by necessarily reducing the estimated residual error variance, but by modelling residuals more accurately through the

spatial correlation structure. Recall that the variance of a comparison between two values is:

Var X � Yð Þ ¼ Var Xð Þ þ Var Yð Þ � 2Cov X; Yð Þ ð7:10Þ

When we assume independent errors, then we assume that the covariance between the residuals of different plots is

zero, so that there is also no covariance between the means of two varieties, and we can ignore the last term in this

variance. If we model errors with spatial covariances, however, then the precision of each pairwise entry comparison

will be different and it will depend on how close the plots of each entry are to each other. In this example, with only

25 entries, the two variety plots in the same rep, and even those in different reps, will not be too far apart; with a strong

spatial correlation of residuals, the residuals on these plots will have a substantial positive covariance. Thus, if X and Y

in the equation above represent the means of varieties X and Y from this experiment, the terms Var(X) and Var(Y) will
be larger in Model 6 than in Model 3, but the Cov(X,Y) term will also be fairly large and positive in Model 6 (and zero

in Model 3), reducing the variance of the variety comparison to an extent that it more than offsets the increase in the

error variance.

The effect of the AR1 � AR1 model on the spatial structure of residuals is, again, not to reduce the magnitude of the

residuals, but instead to smooth out the edges of the patches so that negative residuals tend to group together (Fig. 7.1).

When a spatially correlated R structure is specified in ASReml, the program by default will generate two graphical

displays of the residuals. One is the semivariogram, which displays the expected variance of a difference between

residuals plotted against plot distance in row and column directions. For Model 6 of this example, the semivariogram is

shown in Fig. 7.2.

Interpretation of semivariograms can be difficult especially for large trials, but sharp undulations in the pattern are an

indication of poor modelling of the spatial trends (Gilmour et al. 1997). In this example, the semivariogram does not

smoothly plateau as is ideal, but it does not indicate major deficiencies in the model.
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Another default graphical output of spatial models in ASReml is a plot of residual trends across columns for each row, which

is an alternative display of the same information shown in the heat map, but also includes the row and column marginal

summaries of residuals (Fig. 7.3).

While Model 6 is an improvement over previous models, it is no longer clear that the random main effects for row and

column are needed. The variance for column effects is zero, so it can be dropped, but the variance component for row effects

is also smaller than its standard error. It is not surprising that modelling the spatial correlations in row and column directions

absorbs much of the variation that was previously associated with the row and column main effects and vice-versa. Hence,

the next step is to drop the row and column random effects.

Fig. 7.2 Semi-variogram of

residuals from Model 6 (random

row and column effects plus AR1

� AR1 residual structure)

Fig. 7.3 Plot of residual trends

from Model 6 (random row and

column effects plus AR1 � AR1

residual structure)
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Model 7: Spatially correlated residuals in row and column directions (AR1 � AR1) only

Comparing the results of Models 6 and 7 demonstrates a discrepancy among model selection criteria that can sometimes

occur. According to the likelihood criteria, Model 7 is better. Since Model 7 is a nested model relative to Model 6, we can

test the null hypothesis of no row and no column main effects using a likelihood ratio test (with two degrees of freedom), and

there is almost no difference in likelihood between the models, so we would not reject the null hypothesis, and dropping row

and column main effects seems justified. The AIC is also improved by dropping row and column main effects. However, the

F-test for variety differences, the residual error variance, and the standard error for variety mean comparisons all are worse

for Model 7, suggesting we should keep the row and column main effects (or, alternatively, that they only appear better for

Model 6 due to overfitting). Our suggestion is to use likelihood criteria to compare models and to favor parsimony when

possible, to avoid overfitting models. In this example, Model 7 has the better AIC and fewer parameters, so we suggest this

model should be preferred.

A modification of the spatial residual model is to partition the residual variance into two separate pieces, one of which has

spatial correlation, and the other of which has an independent distribution with no correlations. The independent part of the

residual can be fit in the model by specifying ‘units’ in the random part of the model rather than as part of the residual. Recall

that ‘units’ is a reserved term in ASReml that refers to the effects of individual observations, so the variance associated with

the term is a residual variance.

Model 8: Spatially correlated residuals in row and column directions (AR1 � AR1) with units variance

The term units is added to the random part of the model, but it is really a residual variance term. The units term is sometimes

called the nugget effect or the measurement error. It tells ASReml to construct an additional random term with one level for

each experimental unit (e.g., tree or plot) so that a second (independent) error term can be fitted in addition to the

(non-independent) residual effect modelled in the R structure. The unit or nugget variance is identically and independently

distributed. So, this separates the residual effects into one portion that is independent among plots, and another part that is

correlated between plots according to the spatial distances. If there is some part of the error that may be affected by spatial

positioning (e.g, soil fertility and water holding capacity) and another part that is not affected by field position (e.g., the

variation due to measurement error that is constant no matter where in the field the data are collected), this model makes

sense.

We can also use this form of the model, where we fit units as the IID residual term and include the spatial variance structure

due to row and column in the random part of the model:
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The results are identical, although the labelling of terms in the output will differ. In both cases the actual residual variance

structure is:

R ¼ σ2e γnI150 þ
X

r
ρrð Þ�

� �X
c
ρcð Þ

The variance components estimates for this model are:

Model_Term Gamma Sigma Sigma/SE % C

units IDV_V 150 0.106788 4927.46 2.72 0 P

ar1(row).ar1(column) 150 effects

Residual SCA_V 150 1.00000 46142.7 2.73 0 P

row AR_R 1 0.684346 0.684346 6.68 0 P

column AR_R 1 0.844095 0.844095 12.31 0 P

The first term is the unit or nugget variance that has independent distribution, the second term is the residual variance

component, which follows the AR1 � AR1 distribution, and the spatial correlation coefficients follow. Note that the

unit variance is an order of magnitude smaller than the spatial error variance, indicating that most of the residual

effects are spatially correlated. Also notice that the spatial correlation coefficients in both directions increased in Model

8 compared to Model 7. This occurs because we have partitioned the residuals into a part that is affected by spatial

correlations and a part that is not, so the residual effects that remain in the spatially correlated part of the model have a

stronger correlation.

Comparing the error variance between models 8 and 7, we see that the residual variance has increased dramatically,

although the average SED has not changed much. Again, this occurs because the precision of comparisons of varieties

means takes into account the correlations among their residuals, and as those correlations become more strongly

positive, then they offset the inflation of the residual variance component. The variety F-test has decreased a bit, which

brings into question whether this is really a better model or not. We can make a formal test of the significance of the

units variance by noting that Model 7 is a reduced nested model compared to Model 8 and that they differ by one

parameter, so the likelihood ratio test is about 6 with one degree of freedom, so the p-value is less than 0.05. The

addition of the unit variance significantly improves the model, even though it reduces the precision of the variety

comparisons by a small amount. The semivariogram does not change noticeably, but the heat map shows that the trend

toward smoothing the patchiness of the residuals observed in Model 7 is enhanced (Fig. 7.1). Again, this occurs,

because Model 8 estimates even higher levels of the spatial correlations, meaning that it models strong positive

correlations among adjacent plots.

Model 9: Spatial correlation in one direction

Results from Model 7 suggest that the spatial correlations are strong and significant in both row and column directions.

Therefore, there is no reason to drop one or the other correlation. For demonstration purposes only, however, we show a

reduced model whereby we replace the AR1 � AR1 R structure with an ID � AR1 structure, which has residuals correlated

based solely on their distance in the column direction only.
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This code specifies a two-dimensional spatial structure for error but with spatial correlation in the column direction only, and

independence in the row direction (ID); that is � σ2eI10
NP

r ρrð Þ. Variance components estimates from this model are:

Model_Term Gamma Sigma Sigma/SE % C

units IDV_V 150 0.101193E-06 0.431237E-02 0.00 0 B

idv(row).ar1(column) 150 effects

Residual SCA_V 150 1.00000 42615.3 4.66 0 P

column AR_R 1 0.731845 0.731845 11.78 0 P

Comparing Models 8 and 9, it is obvious that dropping the residual correlation in the row direction significantly reduces the

fit of the model, so we should not consider the ID � AR1 R structure further. We select Model 8 as our final model and

estimate the variety means from this model using the predict statement.

Heritability Estimate from Spatial Model

In the barley example we assumed that the variety effect is fixed because we were interested in comparing the variety means

and selecting the desired ones. If the analyst is interested in estimation of some population genetic parameters, such as

variance components, heritability and genetic correlations, then the variety effect can be treated as random. However, the

spatially correlated residual model introduces some complications for estimating heritability, since we saw previously that

correlated errors model may provide a better fit to the data but with a larger residual variance. The typical heritability

estimate uses only the variance components and ignores the correlations among residual effects, so if the residual error

variance increases, the heritability estimate will decrease. Intuitively, breeders will not prefer a model with lower heritabil-

ity. We show here that an alternative estimator of heritability is more appropriate in this case and will better reflect the

effectiveness of selection with correlated errors models.

For demonstration, we will compare two alternative models where we fit variety as a random effect. In the first case (Model

10) we fit replications as a random effect and use an IID error structure. In the second case (Model 11), we drop the

replication main effect and fit the residuals using an AR1� AR1 structure with IID units. The ASReml code is given below.
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Models 10 and 11: variety as random effect, with reps and IID residuals or with AR1 � AR1 + units residual

structure

For both models, we want to estimate heritability on a plot-basis (H_plt) and on a line mean-basis (H_lm) using the

VPREDICT directive. For Model 10, the phenotypic variance among plots is the sum of the variety and residual variances;

for Model 11, we include both the nuggets (units) variance and the residual variances. The summary results from the two

models are:

Results of Model 10

7 LogL=-869.009 S2= 34921. 148 df 0.2678 0.3415

Final parameter values 0.2678 0.3415

- - - Results from analysis of yield - - -

Akaike Information Criterion 1744.02 (assuming 3 parameters).

Bayesian Information Criterion 1753.01

Approximate stratum variance decomposition

(continued)
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Stratum Degrees-Freedom Variance Component Coefficients

Model_Term Gamma Sigma Sigma/SE % C

rep IDV_V 6 0.267832 9352.85 1.37 0 P

variety IDV_V 25 0.341482 11924.8 2.30 0 P

units 150 effects

Residual SCA_V 150 1.00000 34920.6 7.71 0 P

Results of Model 11

11 LogL=-822.656 S2= 5194.8 148 df

- - - Results from analysis of yield - - -

Akaike Information Criterion 1655.31 (assuming 5 parameters).

Bayesian Information Criterion 1670.30

Model_Term Gamma Sigma Sigma/SE % C

variety IDV_V 25 3.00380 15604.2 3.09 0 P

units 150 effects

Residual SCA_V 150 1.00000 5194.83 2.90 0 P

ar1v(row).ar1(column) 150 effects

row AR_R 1 0.694413 0.694413 6.91 0 P

row AR_V 1 8.76838 45550.3 2.68 0 P

column AR_R 1 0.845972 0.845972 12.37 0 P

Since there are no fixed factors in either model, we can compare the model fits using likelihoods and AIC/BIC. It is clear that

Model 11 is a better fitting model by all criteria. However, when we estimate the heritabilities using functions of variance

components, we find that the heritability estimate from Model 11 is lower because the residual variances are larger from the

correlated errors model:

Model 10 .pvc

- - - Results from analysis of yield - - -

1 rep V 6 9352.85 6826.90

2 variety V 25 11924.8 5184.70

units 150 effects

3 units;Residual V 150 34920.6 4529.26

4 pheno_plt 2 46845. 6366.5

5 pheno_lm 2 17757. 5129.1

H_plt = variety 2/pheno_pl 4= 0.2546 0.0895

H_lm = variety 2/pheno_lm 5= 0.6716 0.1040
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Model 11 pvc

- - - Results from analysis of yield - - -

1 variety V 25 15604.2 5049.90

units 150 effects

2 units;Residual V 150 5194.83 1791.32

ar1v(row).ar1(column) 150 effects

3 ar1v(row).ar1(column);ar1v(row) R 1 0.694413 0.100494

4 ar1v(row).ar1(column);ar1v(row) V 1 45550.3 16996.4

5 ar1v(row).ar1(column);ar1(column) R 1 0.845972 0.683890E-01

6 pheno_plt 1 66349. 18115.

7 pheno_lm 1 24079. 5823.5

H_plt = variety 1/pheno_pl 6= 0.2352 0.0848

H_lm = variety 1/pheno_lm 7= 0.6481 0.1075

As discussed previously, the explanation of this apparent paradox is that the variance of variety mean differences is actually

smaller in Model 11 because the correlated residuals introduce a covariance term that is subtracted from the variance

components (Eq. 7.9). The standard error of a difference between two variety means involves the nugget variance

component plus the spatial variance component minus the average covariance between plot residuals for the two varieties.

If we ignore the spatial variance component and use only the units variance, we underestimate the phenotypic variance. If we

include the spatial variance component without accounting for the covariances of the residual effects, we overestimate the

phenotypic variance. To properly account for the correlated residuals, we should use an alternative approach for estimating

the heritability that is appropriate for complex residual structures and unbalanced experimental designs introduced by Cullis

et al. (2006) and discussed by Piepho and M€ohring (2007):

HC ¼ 1�
�VBLUP difference

2bσ2
G

ð7:11Þ

Where �VBLUPdifference is the average variance of a difference between a pair of variety BLUPs.

Notice that this definition of heritability is related to reliability of breeding value predictions introduced in Chaps. 2 and 4

and its square root of accuracy (Eq. 4.25). The reliability of a random effect prediction is the squared correlation between

predicted and true values of the effect u and can be estimated as a function of the prediction error variance (PEV) and the

genetic variance component (Mrode 2014):

br2
g,bg ¼ 1� PEVbσ2

g

ð7:12Þ

In Chap. 4, we used a specific form of this equation to obtain the accuracy of a breeding value prediction. In our current

example, the variety effects correspond to inbred genotypes and are not interpretable as breeding values, but we can use this

same general formula. The expectation of average reliability across all tested genotypes is the generalized heritability

applicable to predicting response to selection based on genotype BLUPs (Piepho and M€ohring 2007):

E br2
g,bg

� �
¼ σ2g

σ2P
¼ h2 ð7:13Þ
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To understand the relationship between Eqs. 7.10 and 7.11, notice the relationship between the average standard error of

prediction differences (which we obtain from ASReml using the prediction directive) in the case of uncorrelated errors and

PEV:

SE of prediction differences ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var BLUP differencesð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bYi � bYi0

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Var bY� �

i

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2PEV

p

Substituting the average standard error of prediction differences into the reliability formula gives:

1� PEVbσ2
g

¼ 1� SE of prediction differences=
ffiffiffi
2

p� �2
bσ2
g

¼ 1�
bVBLUP difference

2bσ2
g

ASReml provides the average standard error of a difference between variety predictions (the square root of �VBLUPdifference in

Eq. 7.10) in the last line of the prediction output file (.pvs):

Average standard error of difference between variety BLUPs from Model 10:

SED: Overall Standard Error of Difference 88.68

Average standard error of difference between variety BLUPs from Model 11:

SED: Overall Standard Error of Difference 57.92

These values are the square roots of the average variances for BLUP differences that we need for the Cullis estimators of

heritability. For model 10, we have:

HC ¼ 1�
�VBLUP difference

2bσ2
G

¼ 1� 88:682

2 11924:8ð Þ ¼ 1� 0:33 ¼ 0:67 ð7:14Þ

Notice that in the case of balanced data and IID residuals, this estimator of heritability is identical to the classical estimate of

heritability on a line mean-basis based on variance components. However, for Model 11, the estimate of heritability on a line

mean-basis is:

HC ¼ 1�
�VBLUP difference

2bσ2
G

¼ 1� 57:922

2 15604:2ð Þ ¼ 1� 0:11 ¼ 0:89 ð7:15Þ

The generalized heritability for line means from the AR1�AR1 model is substantially higher, and this is congruent with the

result that it is a better fitting model. The estimate on line basis using V_BLUP_difference (0.89) is also higher than the

estimate (0.648) we obtained from Model 11 (.pvc file). The estimator of heritability for spatial analysis proposed by Cullis

et al. (2006) is preferred over the variance components-based estimator for models with non-IID residual variance structures,

because the variance components-based estimators are biased downward when the spatial error correlations are positive.

Notice that we can obtain the correct heritability estimates also by computing the average reliabilities of the varieties if we

request conditional predictions averaged across the observed levels of replications (in Model 10) or row and column

(in Model 11). The marginal predictions themselves are fine, but their standard errors are too large, since they include

variation due to the variation across replications (or across rows and columns). The marginal predictions are obtained with

the following predict statements:
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For Model 10, the marginal predictions for the first three varieties are:

variety Predicted_Value Standard_Error Ecode

1 1291.0009 74.4751 E

2 1494.2845 74.4751 E

3 1461.4679 74.4751 E

. . .

SED: Overall Standard Error of Difference 88.68

For Model 11, the marginal predictions are:

variety Predicted_Value Standard_Error Ecode

1 1262.2420 98.4421 E

2 1510.4295 98.4350 E

3 1403.2221 98.7673 E

. . .

SED: Overall Standard Error of Difference 57.92

Notice that we obtain the same marginal predictions and standard errors if we ignore the row and column effects in the

predict statement (‘predict variety’) or if we predict them at level ‘0’ of row and column (‘predict variety row 0 column 0’).

The conditional predictions are obtained by explicitly requesting their values at the average levels of the other random

effects:
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Notice that we obtain the same predictions for Model 10 and the same average standard error of a variety difference, but the

individual conditional predictions have lower standard errors.

Model 10 conditional predictions:

variety Predicted_Value Standard_Error Ecode

1 1291.0009 63.1485 E

2 1494.2845 63.1485 E

3 1461.4679 63.1485 E

. . .

SED: Overall Standard Error of Difference 88.68

Notice that almost all of the standard errors of the individual variety predictions are the same; their average value (63.31)

times the square root of 2 gives about the overall standard error of variety prediction differences (88.68). Similarly, if we

compute reliability for each variety i as:

br2gi,gi ¼ 1� PEVibσ2
g

¼ 1� SEið Þ2
11924:8

ð7:16Þ

the average of the reliabilities from Model 10 is 0.66, almost equal to the estimate obtained in Eq. 7.11.

The conditional predictions obtained from Model 11 are different from the values predicted by ignoring the row and column

factors, since now we are averaging over the levels of row and column:

variety Predicted_Value Standard_Error Ecode

1 1288.4823 40.9721 E

2 1536.6699 42.1394 E

3 1429.4624 40.7044 E

. . .

SED: Overall Standard Error of Difference 57.92

However, the relative differences among variety predictions remain identical (they are all increased by 26.24 compared to

the marginal predictions), and the overall standard error of difference has not changed. The individual prediction standard

errors, however, are much lower for the conditional predictions than the marginal predictions from the same model, and their
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average value is about
ffiffiffi
2

p
times greater than the overall standard error of differences. The average reliability of variety

predictions for Model 11 is equal to the Cullis estimator of heritability obtained previously:

br2gi,gi ¼ 1� SEið Þ2
15604:2

¼ 0:89:

where SEi is the average standard error of variety prediction (41.4278).
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Abstract

Most field tests for plant breeding are replicated across different environments to measure the performance of breeding

stocks across a range of environmental conditions to which a cultivar might be exposed. Multi-environment trials provide

information about the adaptability of genotypes to specific environments or to sets of environments. The variance-

covariance structures introduced in preceding chapters can be used to model genotype-by-environment interactions in

multi-environmental trials. The number of parameters required to fit fully specified multi-environment trial models

increases faster than the number of environments, so more parsimonious models are preferred when the number of

environments is large. In this chapter we compare an unstructured matrix that involves separate parameters for genetic

variance within each environment and for genetic correlations between each pair of environments to more parsimonious

models, such as factor analytic structures, which require fewer parameters. Factor analytical structures can often

efficiently capture the genotype-by-environment patterns without requiring extraordinary model complexity.

Introduction

In multi-environmental trials (MET) a set of genotypes or families are raised in a number of environments. The objectives

are to compare genotypes across a range of environments and identify those that are generally adaptable across the testing

environments, or to identify superior genotypes for subsets of the testing environments. If broad adaptation is not possible,

then the breeder may instead prioritize selecting different genotypes with good performance in subsets of the environments.

Proper analysis of MET data can reveal not only which genotypes are ‘best’ overall or in subsets of environments, but also

can reveal the relationships among environments in terms of the genotype by environment (GxE) interaction patterns. This

information can be used to improve the efficiency of breeding programs by identifying highly correlated clusters of

environments that may represent oversampling of similar environments.

In addition to using METs to estimate GxE interactions, METs can serve a practical purpose in reducing the risk of losing the

genetic materials due to environmental catastrophes. In many cases, breeders test a subset of material that is available in a

given year and establish new field trails as new material becomes available. A subset of the genetic material (such as ‘check’
varieties) is used across multiple years to establish connections between testing series (years). A series of field trials

established over time are also METs.

For yield and growth traits, large differences are often observed among environments. This occurs because of variation in

soil fertility, precipitation, temperatures, and pathogen pressure. In perennial species, additional variation may be introduced

because the ages of tests may differ among environments. For example, different growth rates may cause significant GxE

interaction due to differences in the magnitude of genotypic variances across sites, even if genotype ranks do not change

across environments (Cockerham 1963; Cooper and DeLacy 1994). This is a form of GxE interaction that does not hinder

breeding gains, but is simply caused by the scale effect.

Ignoring heterogeneity in the variances can introduce bias in the predictions of breeding values and estimates of genetic

variances, particularly if the breeding units are not replicated across all environments (Hill 1984). Accounting for

heterogeneity in the data improves the accuracy of evaluations. In crop trials and in forest tree field tests, which may be

balanced across sites within a year, accounting for heterogeneity of error variances in the mixed model can improve

genotype predictions by giving more weight to information from environments with lower error variances.

Historically, such problems were not easy to handle with ordinary least squares ANOVA, but the flexibility of mixed models

permits fitting complex multi-environment models that account for differences between residual as well as genotypic

variances among sites. Further, mixed models approaches allow modelling of the pairwise genetic correlations among

environments that provide a more realistic treatment than assuming that all pairs of environments have a common

correlation, as was done in traditional ANOVA.

MET: General Approach and Considerations

Depending on the number of sites, we can perform one-stage or two-stage MET analysis. One stage is preferable but may not

be feasible if there are large numbers of trials. Two-stage analysis proceeds as follows:
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• Analyse data for each environment separately to check the data quality and estimate means and variances. We

recommend this step even for one-stage analysis.

• If field position coordinates of plots are available, select the optimal spatial model for each site and predict site-specific

genotype values for varieties

• Save predictions and their standard errors in a file

• Conduct a combined analysis across the sites based on the site-specific predictions. In combined analysis, some or most of

the variances can be fixed to help with model convergence.

• The second stage can be weighted by the inverse of the variances of predictions of values from the first stage (Welham

et al. 2010).

With increased computing power, one-stage analysis has become more feasible for large data sets. ASReml facilitates fitting

different models for within-environment non-genetic effects and variation for different sites in the multi-environment single

stage analysis. Differences among sites can include: (1) different field designs and covariates, (2) different spatial models

within sites, and (3) heterogeneous variances across sites.

Modelling genetic correlations between each pair of sites using an unstructured (US) covariance matrix is feasible if there

are a few sites and many entries. For s environments, the US covariance model requires s within-environment genetic

variances and s(s�1)/2 pairwise environment covariances. If there are many sites, the number of parameters to estimate

becomes very large. In such cases, factor analytic (FA or XFA) models are often more appropriate for modelling complex

GxE patterns because they are more parsimonious, involving fewer parameter estimates. ASReml also allows fixing some

variances and correlations that are at the boundary of theoretically allowable values to help models converge. For a given

MET data set, we can consider a hierarchy of models of increasingly complex variance-covariance structures for both

residuals (the R matrix) and genotype-environment effects (the G matrix). Like spatial analysis of field trials, a major focus

of MET analysis is on selecting the best fitting model (while avoiding over fitting) to account for heterogeneity and predict

the breeding values of genetic entries with high confidence.

Typical R structures that can be tested in MET analyses include:

• IDV structure: one common error variance for all environments

• DIAG structure: heterogeneous error variances across sites

• AR1 structure: heterogeneous spatially correlated R structure: each environment has unique error variance and

two-dimensional spatial error correlation pattern.

Commonly used G structures for MET include:

• DIAG structure: each environment has a unique genetic variance, but there are no correlations between environments

(1 parameter for G)

• CORUV structure: constant genetic correlation between environments and genetic variance within environments

(2 parameters for G). We show below that this is the traditional ANOVA structure for multi-environment models. This

structure is also called “compound symmetry.”
• CORUH structure: constant genetic correlations between pairs of environments but heterogeneous genetic variances

within environments (with s + 1 variance parameters). If there are s ¼ 10 environments, then s + 1 ¼ 11 variance

parameters are needed.

• US structure: unstructured covariance and heterogeneous variance. Each environment has a unique genetic variance and

each pair of environments has a unique covariance, with s(s + 1)/2 variance parameters. For 10 environments, 10(11)/

2 ¼ 55 variance parameters are needed.

• CORGH¼US structure: This is also a fully heterogeneous genetic correlation and variance structure, so is equivalent to
the US structure, but it is parameterized in terms of correlations instead of covariances between environments.

• FAn and XFAn structures: Factor analytic and extended factor analytic models that model heterogeneous within-

environment genetic variances and unique pairwise correlations between environments, but the correlations are

constrained to capture only the first n multivariate factors in the data. This requires s(k+1)�k(k�1)/2 parameters,

where k is the number of factors modelled. For ten environments, an FA1 model requires 20 parameter estimates. This

is a large reduction compared to US and CORGH structures.
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Statistical Models

The classical ANOVA model for a cross-classified design of m genotypes evaluated at s environments with b complete

blocks at each site is:

Yijkl ¼ μþ Ei þ Gj þ GEij þ B Eð Þik þ εijkl ð8:1Þ

where μ is the overall mean, Ei is the fixed effect of environment i; Gj is the random effect of genotype j,Gj � N 0; σ2G
� �

; GEij

is the random interaction between genotype j and environment i, GEij � N 0; σ2GE
� �

; B(E)ik is the random effect of block

k nested in environment i,B Eð Þik � N 0; σ2B
� �

; εijkl is the residual error associated with the experimental unit l of genotype j in

k-th block of environment i, εijkl � N 0; σ2ε
� �

.

From the analysis of variance, we can estimate the variance components and compute the means of genotypes at

specific sites and across all environments. Importantly, this model assumes that there are no correlations between

different factors in the model. Based on that assumption, the covariance between the values of a genotype at two

environments i and i
0
is:

Cov Yij:; Yi0j:
� � ¼ Cov Gj;Gj

� �þ Cov GEij;GEi0j
� � ¼ σ2G þ 0 ð8:2Þ

Where Yij. and Yi0j: are values of a genotype j at two environments; Gj is the genetic value of genotype j, which is the same at

the two environments; GEij and GEi0j are interaction effects of genotype j with the environments. By definition, the

covariance of the genotype j effect with itself is the variance of genotype effects. The covariance between interaction

effects of genotype j with two different environments is zero. So, the covariance of genotype j at two environments is the

variance of genotypes (σ2G). The variance of true genotypic values within an environment (measured without error) is:

Var Yij:

� � ¼ Var Gj

� �þ Var GEij

� � ¼ σ2G þ σ2GE ð8:3Þ

So, the correlation between true values of one genotype at any two sites is

r Yij; Yi0j
� � ¼ Cov Yij; Yi0j

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Yij

� �
Var Yi0j
� �q ¼ σ2Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2G þ σ2GE
� �

σ2G þ σ2GE
� �q ¼ σ2G

σ2G þ σ2GE
ð8:4Þ

The ratio σ2G= σ2G þ σ2GE
� �

is sometimes called a ‘type B genetic correlation’. Typically, type B genetic correlations refer to

correspondence in performance of family means at different environments (Yamada 1962). The ratio is bounded as

0 � rB � 1. A value of rB ¼ 0 indicates no correspondence between performance of a genotype in different environments,

whereas rB ¼ 1 suggests perfect correspondence between performance of genotypes in different environments (Burdon

1977). If we analyze two sites separately and estimate breeding values of genotypes tested at these two sites, the product-

moment correlation between breeding values would be similar to rB.

Thus, this model assumes that the genotypic variances expressed within all environments are equal: σ2G1 ¼ σ2G2 ¼ σ2G3, . . . ,
¼ σ2Gs and that the correlation of genotypic values between environments is the same for all pairs of environments,

r12 ¼ r13 , . . . , ¼ r(s � 1)s. The mixed model approach will allow us to relax these assumptions, but the way to do this

may not be immediately obvious, as it combines the genotype and genotype-by-environment factors into a single compound

model factor of genotype nested within environment: G(E)ij. This formulation then allows us to specify the pattern of

genotypic variances within environments and also the correlation structure for the effects of a common genotype across

environments. We start by specifying the nested model as

Yijkl ¼ μþ Ei þ G Eð Þij þ B Eð Þik þ εijkl ð8:5Þ

The effects in the model are the same as in the cross-classified model given in Eq. 8.1, but we have combined Gj and GEij

into a single factor, G(E)ij. We can start with the assumption that the distribution of G(E)ij is identical and independently
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distributed (iid): G Eð Þij � N 0; σ2G Eð Þ
� �

. Under this assumption, the covariance between values of a common genotype at

different environments is zero:

Cov Yij; Yi0j
� � ¼ Cov G Eð Þij;G Eð Þi0j

h i
¼ 0 ð8:6Þ

and the variance of true genotypic values within environments is due solely to genotype-by-environment interaction

variances as they were defined in the cross-classified model:

Var Yij

� � ¼ Var G Eð Þij
h i

¼ σ2GE ð8:7Þ

Of course, the independent, identical distribution assumption is usually worse than the original cross-classified model we

started with, but writing the model in this form and using mixed models analysis gives great flexibility to specify a range of

alternate assumptions and model forms. For example, we can make the model equivalent to the cross-classified analysis by

changing the variance-covariance structure of the compound G(E)ij effects so that they have a common variance within

environments and a common covariance across environment pairs (three environments in this example):

Cov Yij; Yi0j
� � ¼ Cov G Eð Þij þ G Eð Þi0j

h i
¼ σ2G

Var G Eð Þij
h i

¼
σ2G þ σ2G Eð Þ σ2G σ2G

σ2G σ2G þ σ2G Eð Þ σ2G

σ2G σ2G σ2G þ σ2G Eð Þ

26664
37775� Im ¼ σ2G

ð8:8Þ

where Im is the identity matrix withm�m dimensions form genotypes. For example, with three environments, the variance-

covariance matrix in Eq. 8.8 has dimension 3 � 3. By changing the structure of the 3 � 3 matrix in this Kronecker product,

we can then allow for genotypic variances and covariances to vary among environments and pairs of environments,

respectively. For example, at the other extreme of model complexity, we can allow each environment to have its own

genetic variance and each pair of environments to have their own covariance. This is the unstructured (US) covariance model

for genotype within environment effects and it involves six unique parameters:

Var G Eð Þij
h i

¼
σ2G E1ð Þ σ2G21 σ2G31

σ2G12 σ2G E2ð Þ σ2G32

σ2G13 σ2G23 σ2G E3ð Þ

2664
3775 � Im ¼ σ2G ð8:9Þ

The US covariance formulation of the G matrix for METs involving large numbers of genotypes and environments may

often fail to converge. For example, the unstructured G matrix in an experiment involving 50 environments requires

estimation of 1275 parameters. Clearly, estimation of such a large number of parameters can be computationally prohibitive.

Factor analytic (FA) covariance structures for METs offer a more parsimonious approach to capture the complexity of

covariances among many environments while limiting the number of parameters that require estimation (Smith et al. 2001,

2005; Thompson et al. 2003). For s trials, the number of parameters to be estimated for the US model is p ¼ s(s + 1)/2,

whereas for FA models it is s(k + 1) � k(k � 1)/2, where k is the number of factors (Thompson et al. 2003). The reduction

in parameters requiring estimation can be noted for the case of 50 environments and k ¼ 1 factor, for which only

100 parameters are estimated compared to the 1275 required for the unstructured model.

The US and compound symmetry models can be formulated as specific cases of the FA model. For example, if we fit the

maximum of k¼ s� 1 factors, we recapitulate the US model with s(s + 1)/2 parameters. At the other extreme, we can create

the compound symmetry model in this framework by fitting k¼ 1 factor and forcing the site loadings (explained below) to be

equal, requiring only two parameters, one factor to generate the correlation between environments and one variance

component (Cullis et al. 2014; Meyer 2009).
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If the vector of genetic effects nested within sites is written as ug, we can conceive of these effects being arranged as a matrix

of effects with m rows (for m genotypes) and s columns (for s environments). Conceptually, then, this matrix of effects can

be subjected to factor analysis, in which the patterns of genotype response across environments are modelled as interactions

between genotype effects and one or a small number of factors that underlie the environmental influences on genotype-

within-environment phenotypes. FA models can be interpreted as random regression models of genotype and GE effects on

k unknown environmental covariates, in which each genotype has its own slope (genotypic scores) but a common intercept

(Crossa et al. 2006). The slopes measure the sensitivity of genotypes to hypothetical environmental factors represented in the

model by the numerical ‘loadings’ for each site in each factor (Piepho et al. 2007; Smith et al. 2005). In this model, the

genotypic effect for genotype j in site i (ugij) is a sum of k multiplicative terms (Cullis et al. 2014; Smith et al. 2002):

ugij ¼ λ1if 1j þ λ2if 2j þ . . .þ λkif kj þ δij ð8:10Þ

The terms in the multiplicative model include λ1i, the loading for environment i on the first factor; f1j, the genetic effect

(score) of genotype j on the first factor; λki, the loading for environment i on factor k; fkj, the score of genotype j on factor k,

and δij is the deviation of the observed genetic effect of genotype j in environment i from its predicted value based on the

multiplicative factor model fit. Factor analysis is related to principal components analysis but whereas principal components

decomposition of the matrix of GE effects would identify eigenvectors based on their ability to account for the variation

within and covariance between environments, the FA model identifies factors that maximally explain the covariance among

environments and introduces an additional unique variance to capture any additional variation within each environment.

The FA models are named based on the number of the k factors (multiplicative terms) included in the model, e.g., FA1, FA2,

and FAk. Our hope is to identify a model that can accurately describe the observed variance-covariance relationships among

and within environments with as few factors as possible.

For a given number of factors k selected, the covariance between a genotype’s performance in different environments is

estimated as (Smith et al. 2002):

Cov Yij;Yi0j
� � ¼X k

f¼1
λfiλfi0 ð8:11Þ

Notice that this generates a unique covariance for each pair of environments if loadings differ among the environments. The

variance of genotypic effects within an environment is estimated as:

Var Yij

� � ¼X k

f¼1
λ2fi þ

Xm

j¼1

Var δ2ij

� �
m

ð8:12Þ

The second piece of this expected variance is the average site-specific variance over all m genotypes within environment i.

This is the within-site variance that is not accounted for by the factor loadings, and will be designatedΨgi (Smith et al. 2002).

Var Yij

� � ¼X k

m¼1
λ2mi þ Ψgi ð8:13Þ

Writing the vector of genotypic effects within environments in the m � s matrix form, we have:

ug ¼ Λ� Imð Þfþ δ ð8:14Þ

Where Im is the identity matrix with dimensions m� m, Λ is the matrix of environment loadings (with dimension s� k), f is
the vector of genotypic scores with dimensions mk � 1, and δ is a vector of residual genetic effects (with dimensions

ms � 1). If the genotypic effects are additive breeding values with an additive relationship matrix A, then the variances of f

and δ are:

Var fð Þ ¼ A� Ik ð8:15Þ

Var δð Þ ¼ A�Ψ ð8:16Þ
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where Ik is a k� k identity matrix andΨ is an s� s diagonal matrix with site-specific genetic variances (ψ s) on the diagonal

and zero covariance between sites. A can be replaced with Im if relationships are unknown and families are assumed

independent, or with some other relationship matrix, such as the realized relationship matrices described in Chap. 11.

The variance of additive genotypic effects across all trials is:

Var ug
� � ¼ Gg ¼ ΛΛT þΨ

� �� A ð8:17Þ

Typically, the model fitting process starts by fitting an FA1 model and proceeds to fit more complex (k > 1) models. Since

the models are nested we can use likelihood ratio tests (LRT), Akaike Information Criterion (AIC), or Bayesian Information

Criterion (BIC) to select models, although at some point model convergence may hinder fitting more complex models and

we can stop. Smith et al. (2014) suggested that AIC and LRT might select models that are too complex (overfit), whereas

BIC which penalizes model complexity more, might select underfit models that miss some important signal in the data. They

suggest measuring goodness-of-fit for each model based on both the percent variance explained by k factors at within each

individual environment (Vi) and averaged across environments �Vð Þ as follows

Vi ¼ 100

P k
r¼1 λ

2
riP k

r¼1 λ
2
ri þ ψ2

i

ð8:18Þ

�V ¼ 100
tr ΛΛT
� �

tr ΛΛT þΨ
� � ð8:19Þ

where tr() is the trace of the matrix (sum of diagonal elements) (Smith et al. 2014). The first factor accounts for as much of

the covariances of genotype performances among environments as possible; subsequent factors are independent of previous

factors and explain consecutively less covariance. Smith et al. (2015) recommend a model where the proportion of variation

within most environments is high and few environments have low variance explained. These metrics are useful diagnostics,

but unfortunately, they do not provide a model selection criterion. The choice of the number of factors to fit remains

complicated; ideally a few factors can capture most of the patterns in the observed data, which is ideal for reducing the

number of parameters.

Formulation of FA models in ASReml

In ASReml, FA models are specified in a covariance form, correlation form, or in an extended factor analytic (XFAk) form
(Gilmour et al. 2014). In the covariance formulation of FA models, the variance is given as the direct product of an FA

covariance matrix for sites (environments) and a genotype effect correlation matrix (which could be IDV or a numerator or

other relationship matrix for genotype effects). The FA covariance structure for sites is parameterized as ΛΛT + Ψ, where Λ
is the matrix of loadings on the covariance scale. As an example, the covariance matrices for FA1 model with m unrelated

genotypes tested at four sites would be:

k ¼ 1 factor

Λ ¼

λ11

λ12

λ13

λ14

26664
37775,Ψ ¼

Ψ 1 0 0 0

0 Ψ 2 0 0

0 0 Ψ 3 0

0 0 0 Ψ 4

26664
37775,

Gg ¼ ΛΛT þΨ
� �� Im ¼

λ211 þ Ψ 1 λ11λ12 λ11λ13 λ11λ14

λ11λ12 λ212 þ Ψ 2 λ12λ13 λ12λ14

λ11λ13 λ12λ13 λ213 þ Ψ 3 λ13λ14

λ11λ14 λ12λ14 λ13λ14 λ214 þ Ψ 4

26664
37775� Im
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The covariance matrices for FA2 model with m unrelated genotypes tested at four sites would be:

k ¼ 2 factors

Λ ¼

λ11

λ12

λ13

λ14

λ21

λ22

λ23

λ24

26664
37775,

Gg ¼

λ211 þ λ221 þ Ψ 1 λ11λ12 þ λ21λ22 λ11λ13 þ λ21λ23 λ11λ14 þ λ21λ24

λ11λ12 þ λ21λ22 λ212 þ λ222 þ Ψ 2 λ12λ13 þ λ22λ23 λ12λ14 þ λ22λ24

λ11λ13 þ λ21λ23 λ12λ13 þ λ22λ23 λ213 þ λ223 þ Ψ 3 λ13λ14 þ λ23λ24

λ11λ14 þ λ21λ24 λ12λ14 þ λ22λ24 λ13λ14 þþλ23λ24 λ214 þ λ224 þ Ψ 4

26664
37775� Im

In the correlation parameterization of FA models, the factor loadings are scaled by the genetic variances within sites. The

matrix of loadings is now referred to as F and is analogous to the Λ matrix in the covariance form. For example, for an FA1

model on the correlation scale:

F ¼

f 11

f 12

f 13

f 14

26664
37775 ¼

λ11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ211 þ Ψ 1

q
λ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ212 þ Ψ 2

q
λ13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ213 þ Ψ 3

q
λ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ214 þ Ψ 4

q

2666666666666666664

3777777777777777775
The off-diagonal elements of the product FFT are the correlations between environments. However, FFT is not a correlation

matrix because its diagonal elements are not equal to 1. Therefore, we create a correlation matrixC by adding to the diagonal

elements of FFT to make them 1:

C ¼ FFT + E, where E is a diagonal matrix defined as E ¼ diag(1 � F2).

We can then generate the covariance matrix for sites as DCD, where D is an s � s diagonal matrix whose elements are

square roots of the genetic variance within each site, i.e.D11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ211 þ Ψ 1

q
for an FA1 model. Then the covariance structure

for lines within sites is:

Gg ¼ DCD½ � � Im

Notice that DF in the FA correlation model is equal to Λ in the FA covariance formulation. Similarly, DED in the FA

correlation formulation is equal to Ψ in the FA covariance formulation (Gilmour et al. 2014).

The covariance and correlation formulations of model parameterizations can have convergence problems and produce zero

or even negative site-specific variances. This can occur when the factors alone (ΛΛT or FFT) explain all of the variance

within a site or predict more variance than is actually observed, such that one or more elements of Ψ or E are zero or

negative. This situation is referred to as a Heywood case (Smith et al. 2001). Extended factor analytical (XFAk) models

were developed to avoid convergence problems related to Heywood cases and also to increase computational efficiency

(Meyer 2009; Thompson et al. 2003). XFA models have the same parameterization as FA covariance models ΛΛT + Ψ, but

the algorithm used to fit the model is different. The common factors (λrifrj) are fit separately from the specific factors (δgij),

which leads to greater sparsity in the mixed model equations; furthermore, if a site-specific variance is zero, the δgij effects at

that site are set to zero without hindering convergence for estimating the other model effects (Meyer 2009; Thompson et al.
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2003). In ASReml syntax, the parameters in the covariance and correlationmodels are specified in the order of loadingsΛ or

F followed by specific variances,Ψ or E. In contrast, in XFAkmodels, the specific variances,Ψ, are specified first, followed

by the loadings, Λ.

Example: Analysis of Pine Polymix MET Data

Polymix mating involves pollinating a set of individuals using bulked pollen from another set of individuals to reduce the

cost of breeding. The goal is to predict breeding values of females for half-sib family selection. The Cooperative Tree

Improvement Program at North Carolina State University used polymix breeding in the third cycle of loblolly pine (Pinus

taeda L.) selection to predict the general performance of female parents (McKeand and Bridgwater 1998). In one of the test

series, 70 individuals were mated with bulked pollen collected from another set of 40 individuals. Progeny from crossing

were considered half-sibs with known mother and different fathers. A randomized complete block design was used with

20 blocks. Each female parent had one progeny in each block, for a total of 20 progeny at a site at the time of the planting.

The experiment was replicated at 12 sites in the southeastern US. Height of tree, stem volume, fusiform rust disease

incidence (present¼ 1, absent¼ 0) and stem straightness (1–6, 1 being the most strait) were assessed at age 6 years. A subset

of the data is given below (polymix.csv).

female male site block height volume rust stemform

16 0 101 18 25.5 0.76 0 1

16 0 101 5 21.5 1.09 0 4

16 0 101 6 24.5 1.19 0 4

16 0 101 3 29.0 2.15 0 5

16 0 101 17 32.0 2.85 0 2

16 0 101 16 27.0 1.64 0 3

Summarize Data for Each Site

This section allows us to check that our program is reading the data correctly and also provides summary statistics for each

site. The only terms included in the linear model are fixed intercept and site effects and a random female effect.

Code example 8.1

Analysis of pine polymix data (see Code 8-1_MET.as for more details)

• The line starting with the exclamation point and space writes the text that follows to the primary output file (.asr). This is a

way to include comments preceding the output.
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• We requested tabulation (TABULATE) of height for each site. This will generate a file with a .tab extension including the

mean, standard deviation, minimum, and maximum of plant height measures as well as the total number of observations

for each site. The second TABULATE statement generates summary statistics for female parents.

The output from TABULATE (Code 8-1_MET1_height.tab) includes descriptive statistics for sites. The range of site means

for height growth is 21.8–29.7. The number of observations per site ranged from 1125 to 1372. The approximate F-tests in

the primary output file .asr are given below.

Wald F statistics

Source of Variation NumDF DenDF_con F-inc F-con M P-con

9 mu 1 69.4 79076.11 79076.11 . <.001

3 site 11 15313.2 1205.49 1205.49 A <.001

The large and significant F-value for site effect indicates that the variation among sites is significant. A common observation

in multi environmental trials (MET) data is that when the mean values for a trait vary significantly among environments,

often the error variances may also differ significantly among site. This is often simply a matter of scale, with larger variances

associated with larger observed measurements. In such cases, the default assumption of homogeneous residuals at all sites

(ε � N(0,σ2eIn)) may not hold.

Analyze Each Site Separately to Obtain Variances

The second step is to analyse each site separately to obtain site-specific error variances and genetic variances. The model for

each site is: Yijk ¼ μ + Bi + Gj + εijk, where Bi is the random block effect, Gj is the random female effect and εijk is the
random residual. Variance components from individual sites can be used as starting parameters when we run the combined

MET analysis and attempt to fit heterogeneous error variances. One way to run the same model for different sites is to use ‘!
FILTER site !SELECT n‘ in combination with !ARGS:

• The argument $A after naming the data file indicates the point at which the first argument (‘2’) will be substituted (the

PART to analyse).

• The argument $B in the models indicates the point at which the second argument (‘height’) will be substituted (the trait to
analyse).

• $C indicates the point at which the program will iteratively substitute the remaining arguments, one at a time (‘1’ through
‘12’). Here $C indicates the level of site to select when filtering the data set in the current iteration. !FILTER v !
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SELECT n together are used to select data from a single site for analysis. The v is the number or name of a data field

(‘site’ in this case) and n is the value of the field to be selected. It can be an integer (as in this example) or a character

string in quotes. This is similar to using the BY statement in SAS procedures.

Different output files will be created for each site (file names will include three variable suffix values corresponding to

PART, TRAIT, and SITE). In the output files we see large differences between sites for both genetic (range 0.45–1.48) and

residual variances (3.18–11.41). Block differences at each site also explain considerable variation and should remain in

subsequent multi-environment models. Heritability estimates had a range of 0.28–0.61. Now that we have a sense of the

heterogeneity in the data, we will keep in mind that our final model should reflect this. Before we include such complexity in

the combined model, however, we will start with the simplest model, a cross-classified ANOVA.

Model 3: Cross-Classified ANOVA

We can perform the combined analysis across environments using the traditional cross-classified genotype-environment

model. The variance structures for random effects, including the residual, are scaled identical and independent (IID)

variances. The linear model is Yijk ¼ μ + Si + SBij + Fk + SFik + εijk, where Yijk is the observation on a progeny of female

k in block j at site i, Si is the i-th site effect, SBj is the random block effect nested within site, Fk is the random female effect,

SFik is the random female by site interaction effect and εijkl is the random residual associated with the data point. We can fit

site as fixed effect since we have a balanced design in this case and we are not interested in making predictions or inferences

about site effects or variances. Female is a random factor. Therefore the site-by-female interaction is random, even if site

effect is considered fixed effect.

A small subset of the output from .asr file is given below.

OUTPUT 3

7 LogL=-3323.03 S2= 7.1215 15379 df

- - - Results from analysis of height - - -

Akaike Information Criterion 46654.05 (assuming 4 parameters).

Bayesian Information Criterion 46684.61

Model_Term Sigma Sigma/SE % C

female IDV_V 70 0.563185 5.42 0 P

site.block IDV_V 240 0.931300 9.53 0 P

site.female IDV_V 840 0.174454 5.95 0 P

Residual SCA_V 15391 7.12148 84.68 0 P

• All variance components seem to be significant since they are at least two times their standard errors (Sigma/SE column).
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Model 4: Compound Symmetry

We can modify the factorial family-environment model to be a family nested within environment model as: Yijk ¼ μ + Si +

SBij + SFik + εijk, where the terms are the same as above, except that by removing the family main effect, the family effects

become nested within sites. We can recover a model equivalent to the cross-classified ANOVAmodel by fitting a compound
symmetry model (coruvG structure) to the nested site.female effect. This fits a common genetic variance within sites and a

common pairwise correlation between sites. We assume a uniform variance (coruv) for female within site effects and a

uniform correlation (coruv) or covariance between pairs of sites. The model in ASReml is:

PART 4

• The covariance structure shown to the right is for four sites only as an example.

• In the model there is no female main effect. It appears with site as a consolidated term (site.female).

OUTPUT 4

8 LogL=-3323.03 S2= 7.1215 15379 df

- - - Results from analysis of height - - -

Akaike Information Criterion 46589.43 (assuming 15 parameters).

Bayesian Information Criterion 46704.04

Model_Term Sigma Sigma/SE % C

site.id(block) IDV_V 240 0.931300 9.53 0 P

Residual SCA_V 15391 7.12148 84.68 0 P

coruv(site).id(female) 840 effects

site COR_R 1 0.763497 16.76 0 P

site COR_V 1 0.737639 6.88 0 P

• The parameters related to site.female effect are labeled with “site COR_R” for pairwise correlation between sites

(identical for pairs of sites) or with “site COR_V” for the female within site variance component.

The relationship of COR_R and COR_V estimates from model 4 to the variance components from the cross-classified model

(PART 3) may not be immediately obvious but they are indeed the same model. We have just changed how the model is

parameterized. Notice that the residual LogL of models 3 and 4 are identical. Recall that the cross-classified ANOVA model

produced a variance component estimate of 0.5632 for female effect and a variance component of 0.1744 for the female.site

interaction effect. The sum of these two variance components from the ANOVA model (0.5632 + 0.1744) is equal to the

variance component for the compound term site.female in the nested model,Var Yij

� � ¼ Var G Eð Þij
� �

¼ σ2G þ σ2GE ¼ 0:737.

Further, the ratio of female to the sum of female and site.female variance components estimated from the ANOVA cross-

classified model, 0.5632 / (0.5632 + 0.1744)¼ 0.76 is equal to the pairwise site correlation estimate from the nested CORUV

model (COR_R ¼ 0.76).
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Model 5: Heterogeneous Residuals and Block Effects

In the models above we assumed that residuals and blocks nested within sites have scaled identity variance structures.

However, we saw in part 2 that the models fit within each site separately resulted in widely different residual variances.

Checking for heterogeneity in the residual variances across sites is a recommended practice. We can perform a formal test of

the null hypothesis that the residual variances are uniform among sites by fitting the block diagonal residual structure

residual sat(site).id(units), which fits a separate residual variance for each site, and comparing the resulting

log likelihood to model 3 or 4. The LogL for the heterogeneous R structure model was �2909 while it was LogL ¼ �3323

for the homogeneous residual model (OUTPUT 4). The likelihood ratio test statistic would be 2(�2909 � (�3323)) ¼ 828

with 11 degrees of freedom (1 residual variance versus 12). Clearly a chi-square value of 828 with 11 df is significant (the

critical value of chi-square for 11 df is 19.67 at p ¼ 0.05), so we can safely reject the null hypothesis of equal residual

variances among sites. We can also test the assumption that the block within site variances are equal among environments by

fitting a heterogenous block within site variance structure with the model term idh(site).block (or, equivalently,

at(site).block). The heterogeneous block within site variance model was also significantly better, so for the

remaining examples in this chapter, we will use both heterogeneous residual and block variances across sites. Next, we

will focus on fitting different G structures to model the variance-covariance relationships among family-within-site effects.

Model 6: CORUH G Structure

The compound symmetry structure, coruv() of genetic effects in models 4 and 5 assumes that the random genotype and

genotype by environment interaction effects are constant. It involved only two genetic parameters; a variance and a

correlation. This is an underfit model, as we shall see in the following models. We can relax a uniform G structure by

allowing different genetic ( female) variances at each site. This makes sense since there appeared to be large differences

between sites for female variance components, with a range of 0.45 (site 12) to 1.48 (site 1) observed among the individual

site models in part 2. Part 6 of our ASReml program fits a CORUH model:

PART 6

• The G structure for F(E)ij effects is a direct product of the s � s variance-covariance matrix for a common female’s
effects within and across sites (although we only show a matrix for four sites in the example above) and the identity

matrix (assuming females are unrelated). The variance function coruh() fits a heterogeneous variance structure to

female effects. The coru stands for uniform correlation, and h indicates heterogeneous variances.
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A subset of the results is given below:

OUTPUT 6

• The logL of model 6 is �2850.48. This is a substantial improvement over the modified model 5 that included

heterogeneous block and residual variances (results not shown).

Models 7 and 8: US and CORGH Structures

In model 6 we relaxed the constant variance assumption and fit a heterogeneous variance structure for the female within site

effect. However, the coruh() model may still be too restrictive because it assumes a constant genetic correlation between

pairs of environments. The general form of the variance structure for female effects would have different variances at each

environment and different correlations (or covariances) between pairs of environments. In other words, fitting the us() and

corgh() structures with p ¼ s sþ1ð Þ
2

parameters. As the number of environments increases, model convergence and

reliability of parameters become an issue. Therefore these structures are not recommended for multi environmental models

with large numbers of environments (Smith et al. 2005). In this example, the number of parameter estimates for the female

within site effect for these models is 78. The ASReml code to fit these models are included as models 7 and 8 in the example

code file “Code 8-1_MET.as”; we were able to attain convergence only for model 8 (the CORGH model), which had a log

likelihood of �2804.06, Akaike Information Criterion of 45812.12, and Bayesian Information Criterion of 46591.48.

Model 9: FA1 Covariance Structure

In PART 9 we fit the FA1 (k ¼ 1) model to the data using the covariance parameterization.
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• The variance-covariance structure for the compound term site.female is the direct product of an FA1 matrix for site

effects and an identity matrix for female effects. If pedigree information were available on the females, we could use nrm

(female) to account for genetic relationships among females.

A subset of the .asr output file is given here:

OUTPUT 9: FA1 covariance model
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• The log likelihood of the FA1 model is �2829.63, which is similar to the corgh() model (model 8 log likeli-

hood¼�2804.06), although the FA1 model requires only 24 parameters for the genotype within environment covariance

matrix compared to 78 for the us()/corgh() models. By capturing the variance/covariance structure well with many

fewer parameters, the FA1 model has much better (lower) Akaike and Bayesian Information Criteria than the corgh()

model.

• In the .asr output file, site loadings on the correlation scale are labeled ‘FACV_L’. Values with label ‘FACV_V’ are the
site-specific genetic variances (the diagonal elements of Ψ).

• The within-site genetic variances and between site covariances and correlation estimates are given in the ‘covariance/
variance/correlation matrix’ at the bottom of the output. In the example output above, we highlighted in bold the estimates

for the first four environments.

• The diagonal elements of the FACV covariance matrix are obtained as the squared loadings plus the site-specific

variances. For example, for site 1, the variance (element [1,1] in the covariance/variance/correlation matrix) is:

σ2g eð Þ1 ¼ λ211 þΨ1 ¼ 0:824275ð Þ2 þ 0:769548 ¼ 1:45

• Notice that a relatively large additional site-specific variance must be added to the squared loading for site 1 to obtain a

good estimate of the within-site genetic variance. In contrast, for site 4, its within-site variance is estimated accurately by

the square of its loading, so its site-specific variance is close to zero.

• The estimated genetic covariance between a family’s performance at sites 1 and 2 (element [2,1] in the covariance/

variance/correlation matrix) is simply the product of their loadings:

σg12 ¼ λ11λ12 ¼ 0:824275ð Þ 0:678831ð Þ ¼ 0:56

• The estimated genetic correlation between a family’s performance at sites 1 and 2 (element [2,1] in the covariance/

variance/correlation matrix) is the covariance divided by the square root of the product of the within-site genetic

variances:

rg12 ¼ λ11λ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ211 þ Ψ1

� �
λ212 þ Ψ2

� �q ¼ 0:56ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:45ð Þ 0:55ð Þp ¼ 0:62

• In this example, female effects represent half-sib family means, so the genetic variance and covariance estimates are a

quarter of the additive genetic variances/covariances. The correlation estimates are additive genetic correlations.

Model 10: FA1 Correlation Structure

In PART 10 we fit the FA1 model using the correlation parameterization.
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A subset of the .asr output file is given here:

OUTPUT 10: FA1 correlation model

• In the .asr output file, residual variances and genetic correlations for pairs of sites and genetic variances are reported

(under the column heading ‘sigma’). Site loadings on the correlation scale are labeled ‘FA_R’ in the output. Values with
label ‘FA_V’ are genetic variances within each site (which are the sum of the squared site loadings and the site-specific

variance). Several site loadings on the correlation scale are very close to one (FA_R ¼ 0.9995) and are constrained at the

boundary flagged by ‘B’.
• The genetic variance and correlation estimates are also given in the covariance/variance/correlation matrix at the bottom

of the output. Notice that the model likelihood and the covariance/variance/correlation estimates are identical for models

9 and 10. The only difference is in how the parameter estimates are reported.

• The loadings on the correlation scale are equal to the covariance model loadings divided by the square root of the within-

site genetic variance. For example, for site 1, the correlation loading is equated to the covariance model parameters as:

f 11 ¼
λ11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ211 þ Ψ1

q ¼ 0:824275ffiffiffiffiffiffiffiffiffi
1:45

p ¼ 0:68

• The estimates labelled as ‘FA_V’ are the squared diagonal elements of the D matrix, equal to the within-site variances

estimated from the covariance parameterization. For example, for site 1: D2
11 ¼ λ211 þ Ψ1 ¼ 1:45
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The between-site genetic correlations are obtained directly as products of the correlation loadings (the ‘FA_R’ values in the
output), which are the elements of the F vector. As an example, consider the loadings for only the first four environments:

F ¼
0:6847
0:9183
0:9412
0:9999

2664
3775

We can construct something close to the correlation matrix from the product FFT.

FFT ¼

0:47

0:63

0:64

0:68

0:63

0:84

0:86

0:92

0:64

0:86

0:89

0:94

0:68

0:92

0:94

0:99

26664
37775

The off-diagonal elements of the product are the correlations between pairs of environments, e.g.

r12 ¼ 0.6847 * 0.9183 ¼ 0.63.

However, the diagonal elements are not equal to one, so FFT is not a proper correlation matrix. For example, the element

(1,1) of FFT is (0.6847)2¼ 0.47. Therefore we construct a matrix E ¼ diag(1 ‐ F2) and add it to FFT to make the correlation

matrix C, which now has diagonal elements equal to exactly one:

E ¼
1� 0:6847ð Þ2

0

0

0

0

1� 0:9183ð Þ2
0

0

0

0

1� 0:9412ð Þ2
0

0

0

0

1� 0:9999ð Þ2

26664
37775

C ¼ FFT þ E ¼

1

0:63

0:64

0:68

0:63

1

0:86

0:92

0:64

0:86

1

0:94

0:68

0:92

0:94

1

26664
37775

The D matrix has square roots of the genetic variances within each site on the diagonal:

D ¼

ffiffiffiffiffiffiffiffiffi
1:45

p

0

0

0

0ffiffiffiffiffiffiffiffiffi
0:55

p

0

0

0

0ffiffiffiffiffiffiffiffiffi
0:59

p

0

0

0

0ffiffiffiffiffiffiffiffiffi
0:55

p

26664
37775

The correlation matrix for family within site effects is obtained as:

G ¼ DCDT � Iσ2F ¼

1:45

0:56

0:60

0:61

0:56

0:55

0:49

0:51

0:60

0:49

0:59

0:54

0:61

0:51

0:54

0:55

26664
37775� Iσ2F

Now, consider how this model can be reformulated in terms of a covariance matrix. The loadings on the covariance scale (Λ)
are equal to the product DF from the correlation parameterization:

Λ ¼ DF ¼

ffiffiffiffiffiffiffiffiffi
1:45

p

0

0

0

0ffiffiffiffiffiffiffiffiffi
0:55

p

0

0

0

0ffiffiffiffiffiffiffiffiffi
0:59

p

0

0

0

0ffiffiffiffiffiffiffiffiffi
0:55

p

26664
37775

0:6847

0:9183

0:9412

0:9999

26664
37775 ¼

0:8243

0:6788

0:7204

0:7436

26664
37775

This is the set of loadings we obtained with the covariance forms of the FA1 model (model 9).
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Model 11: XFA1 Structure

The XFA1 model is a third model equivalent to FACV1 and FA1, but has a different parameterization that improves

computational efficiency.

OUTPUT 10: A subset of the output from XFA1 model
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• The residual LogL is the same as it was for models 9 and 10. The AIC/BIC values of model 11 are different because

ASReml does not count any site-specific variances in Ψ that are fixed at zero as parameters in the XFA model, whereas

these parameters are set to very small values close to zero in the FACV and FA models. This artificially makes the XFA1

appear to be a better fitting model, but effectively the models are all the same.

• The parameter estimates in the output for the XFAmodel are identical to the FACVmodel, except they appear in different

order.

• Parameter estimates labeled ‘XFA_V’ are the site-specific variances (the diagonal elements of Ψ), four of which are fixed
at 0 in this example.

• The values labeled ‘XFA_L’ are site loadings on the covariance scale (Λ).
• The covariance/variance/correlation matrix for sites is given at the bottom of the output. This matrix is identical to the

matrices estimated by models 9 and 10, except that one extra row and one extra column are added to the matrix.

• The extra column added to the right side of the matrix contains the factor loadings on the correlation scale (equal to the

F vector in the FA model).

• The additional row at the bottom of the matrix has the factor loadings on the covariance scale (Λ).

To aid with model diagnosis and selection, a plot of the proportion of within-site variances estimated by the factor part of the

model appears in the .res file (“Code 8-1_MET11_height.res”). The column labeled “%expl” corresponds to the within-site
genetic variances described in Eqs. 8.12 and 8.13:

In above output less than half of the variation among females within sites 1 and 5 (highlighted in the output) is explained by

the factor part of the model, so fairly large site-specific variances (“PsiVar”) are needed to explain the observed variation at
those environments.

Model 12: XFA2 Structure

In PART 12 the XFA with 2 factors is fitted. The XFA2 model assumes that two factors explain the correlation structure

between pairs of sites:

The output of the XFA2 model follows (result may differ slightly due to different starting values).
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• The XFA2 model has a better log likelihood than the XFA1 model (�2820.25 vs. �2829.63) but it uses 12 additional

parameters to capture additional variation. Depending on the penalty used for adding parameters to the model, the XFA2

model could be considered better or worse than the XFA1 model. The XFA2 model has better Akaike Information

Criterion than the XFA1 model (45744.51 for XFA2 vs. 45747.27 for XFA1) but worse Bayesian Information Criterion
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(46141.83 for XFA2 vs. 46083.46 for XFA1). Therefore, choice of XFA1 vs XFA2 model in this case is not clear cut and

is up to the judgement of the researcher.

• Parameter estimates labeled ‘XFA_V’ are the site-specific variances and ‘XFA_L’ are loadings. For the XFA2 model, the

loadings are indexed by the factor number (1 or 2) and the site number (1 through 12):

– XFA_L 1 1 refers to the loading on the first factor for the first site,

– XFA_L 1 2 refers to the loading on the first factor for the second site,

– XFA_L 2 1 refers to the loading on the second factor for the first site and so forth.

• For the XFA2model,Λ g has s rows for sites and two columns for two factors. The loadings for the first four environments

on the two factors are:

Λ ¼

0:84 �0:18

0:68 �0:14

0:72 0:11

0:74 0:23

26664
37775

• Notice that the loadings on the first factor are different than the loadings in XFA1 model. For the second factor, some sites

had negative loadings. The factor loadings are not unique solutions, and other solutions can be produced.

• The last two columns in the XFA output (orange color vectors) are site loadings on the correlation scale. Notice that

correlations can go out of theoretical bounds (>1) in the XFA2 model.

• Also notice that some of the site-specific variances (for example, site 4) are negative. The genetic variance predicted at site

4 based on the two factors is the sum of the squared loadings for site 4:
P2

r¼1 λ
2
i4 ¼ 0:74ð Þ2 þ 0:23ð Þ2 ¼ 0:60. However, this

is an overestimate of the genetic variance within site 4. So, a negative site-specific variance needs to be added to the sum of

squared loadings to get a better estimate of the within-site variance:Var G Eð Þ4
� � ¼P2

r¼1 λ
2
i4 þ Ψ 4 ¼ 0:60� 0:10 ¼ 0:50.

This is within rounding error of element [4,4] of the covariance/variance/correlation matrix in the output above.

Model 13: XFA3 Structure

In PART 13 of the example code, the XFA with 3 factors model is fitted. We do not show the output from this model, as its

AIC and BIC values are worse than the XFA2 model. A summary of the models fit to pine polymix data is given in Table 8.1:

Model LogL values decrease as model complexity (the number of parameters) increases. AIC value follows the same trend

until the FA2 model, after which the penalty for additional parameters outweighs the improvement in likelihood. The BIC

penalizes additional parameters more stringently, such that the simple CORUV model (equivalent to the classical factorial

model) has the best BIC value. In such situations, model choice is not clear cut, but we note that the FA1/XFA1 model

provides a good compromise betweenmodel fit and number of parameters, such that it has second best AIC and third best BIC.

MET Models with ASReml-R

For interested readers, an R markdown file (Code 8-2_pine_met.Rmd) and its knitted output (Code 8-2_pine_met.html) are

provided to show the sequence of analyses using ASReml-R. In ASReml-R, the US and FA3 models did not converge

despite using initial values and update.asreml() function of ASReml-R. Another detail that ASReml-R users should

be aware of is that for FA models with k > 1, the factor loading solutions are not unique and ASReml-R produces different

Table 8.1 Model fit statistics (log likelihood, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), standard error of

differences of family mean predictions, and number of parameters for the site.female term) for pine polymix data

Model G Structure LogL AIC BIC SED G(E) Parameters

CORUV (Model 5) �2865.30 45782.59 45981.25 0.2418 2

CORUH (Model 6) �2850.48 45774.97 46057.67 0.2425 13

CORGH (Model 8) �2804.06 45812.12 46591.48 0.2395 78

XFA1 (Models 9/10/11) �2829.04 45747.27 46083.46 0.2438 24

XFA2 (Model 12) �2818.66 45744.51 46141.83 0.2413 56

XFA3 (Model 13) �2814.42 45754.63 46236.20 0.2412 63

Models differ for site.female compound term only
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solutions than ASReml standalone (Cullis et al. 2010). We show in the code how to perform an orthogonal rotation of the

ASReml-R loading solutions to match the ASReml standalone solutions.

Genetic Prediction with FA Models

FromMET data, we can predict family values within sites or averaged across sites. Typically, the familymeans across sites are

most useful for selection, but there are cases in which one site or group of sites may be distinct (with a low or negative

correlation with other sites) and we may want to predict performance specifically in different groups of sites. Here, we

demonstrate how to predict family values within and across sites with ASReml and how the predictions relate to the model

effect estimates.We start with the simplest model (cross-classified and compound symmetry) and continue to theXFA1model.

Model 3 – Cross-classified predictions

For the cross-classified model, we can obtain the across-site and within-site predictions using:

• The first predict statement is for prediction of female effect across all the sites. The second predict statement is site-

specific predictions for females.

• The !PLOT qualifier produces a postscript graphic of predictions for females with one standard error.

The across-site predictions appear in the .pvs file above the site-specific predictions:
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• There are two separate predictions in the .pvs file. The first output at the top is predicted breeding values of females across

the sites.

• In the second part of the prediction we included the predictions for three families (16, 18, 580) at sites 101, 102, and 103.

Female 580 did not have data at site 103 but its value is predicted. Notice that the standard error of this site-specific

prediction for female 580 is 0.5513, higher than standard error of its predictions in sites 101 and 102. This is because in

the absence of data for the particular site-family combination, the prediction is based on the main effects of the site and

the family, with the predicted interaction effect exactly zero. Users may want to exclude such predictions from the .pvs
file. This can be done by requesting the site-specific predictions with the qualifier !present site female.

Model 4 – CORUV predictions

Although we do not have family main effects in the CORUVmodel, we can nevertheless predict family values across sites as

well as within sites using the same prediction statements as for the cross-classified model:

This produces predictions identical to the cross-classified model:

female Predicted_Value Standard_Error Ecode

16 27.9609 0.1803 E

18 26.4248 0.1860 E

580 26.0100 0.2595 E

...

SED: Overall Standard Error of Difference 0.2518

---- ---- ---- ---- ---- ---- 2 ---- ---- ---- ---- ---- ----

Predicted values of height

The ignored set: block

Warning: 6 non-estimable [empty] cell(s) may be omitted from the table.

site female Predicted_Value Standard_Error Ecode

101 16 25.7900 0.4339 E

101 18 23.9636 0.4317 E

101 580 23.1160 0.4708 E

site female Predicted_Value Standard_Error Ecode

102 16 31.1890 0.4308 E

102 18 29.5329 0.4318 E

102 580 29.3640 0.4666 E

...

site female Predicted_Value Standard_Error Ecode

113 16 23.4069 0.4373 E

113 18 21.8089 0.4383 E

...

• Since we used “!present site female” there is no prediction for female 580 at site 113.
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Model 11 – XFA1 predictions

The FA and XFA models partition the family within environment effects into a part due to the multiplicative interactions

between factor loadings and family scores, and a second part due to site-specific genetic deviations for the family. This

permits some flexibility in the across-sites and within-site family predictions, as the predictions can account for or ignore the

site-specific genetic deviations. Recall that the predicted effect for genotype j at environment i, accounting for both the factor

loadings and the site-specific effects for an FAk model is:

bugij ¼ bλ1ibf1j þ bλ2ibf2j þ . . .þ bλkibfkj þ bδij ð8:20Þ

This is a prediction with narrow inference: it is the family’s effect in the specific environment i included in the experiment.

The predicted value of the family also includes the intercept and site effect:

bYij ¼ μþ bSi þ bugij ð8:21Þ

We can also make a prediction of the family’s site-specific value based only on the factors, ignoring the site-specific

deviations:

bu∗gij ¼ bλ1i bf 1j þ bλ2i bf 2j þ . . .þ bλki bf kj ð8:22Þ

bY∗
ij ¼ μþ bS: þ bu∗gij ð8:23Þ

This type of prediction has a wider inference: it refers to the family’s predicted effect in a future environment that is perfectly

correlated with environment i.

Similarly, the predictions across sites can refer to the average performance across the set of environments actually included

in the study:

bY:j ¼ μþ bS: þ bug:j ð8:24Þ

This is equal to averaging the site-specific predictions including the site-specific genetic deviations. A prediction with wider

inference would ignore the site-specific deviations and refer to performance at a hypothetical ‘average’ environment by

predicting at the mean values of the factors:

bY∗
:j ¼ μþ bS: þ bu∗gij ¼ μþ bS: þ 1

r

X r

k¼1
bλk:bfkj ð8:25Þ

Here we demonstrate how to obtain these various predictions from ASReml, using the XFA1 model. In this case, we need

only account for loadings and scores for a single factor; for models with k> 1, the sum of the products of loadings and scores

over factors are needed.

The usual marginal predictions of family values across sites (bY :j, the narrow-scope inference that includes the site-specific

genetic deviations) are obtained as:

Here we use !AVE block site to get the conditional predictions with appropriate standard errors for computing

reliability (which we will show in the next section). The predictions for females across sites produce values similar to the

other models (with differences due to allowing the within-site variances and between-site correlations to vary):
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female Predicted_Value Standard_Error Ecode

16 27.9630 0.1752 E

18 26.4088 0.1815 E

...

580 25.9551 0.2453 E

...

SED: Overall Standard Error of Difference 0.2439

The standard errors of the predictions are a bit smaller than in the previous model because of a better model fit. For female

580 at site 1, the SE of prediction is 0.2453 from XFA1 model compared to 0.2595 in CORUV model.

Prediction of family effects at a hypothetical ‘average’ environment can be accomplished with:

Here, the qualifier !ONLY xfa1(site).id(female) tells ASReml to make the prediction only using the parameter

estimates of the XFA1 part of the model. The qualifier !AVE site 12*0 0.752 refers to coefficients for the XFA1 model

parameters: we set the coefficients for the first 12 parameters (the site-specific genetic variances) to zero to exclude them,

and then we specify 0.752 as the average value of the site loadings on the first (and only) factor (λ1:).

The output from this predict statement in the .pvs file is an effect prediction, one could add it to the overall mean to get a

predicted value:

female Predicted_Value Standard_Error Ecode

580 -0.4136 0.2583 E

The standard error of this predicted effect is a bit larger than the standard error for the average of site-specific predictions

because it is predicted for a new, untested environment.

The predicted values of females at individual sites including the site-specific genetic deviation effects are easily obtained

with:

For example, the predicted value of family 580 at the first site is:

site female Predicted_Value Standard_Error Ecode

101 580 22.7646 0.6318 E

We can also obtain this predicted value as the sum of the intercept, the site 101 effect, and the predicted effect of family

580 at site 101:

bY1:580 ¼ μþ bS1 þ bλ1:1bf 1:580 þ bδ1:580
The values needed to compute this prediction are found in the .sln file:
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Model_Term Level Effect seEffect

site 101 0.000 0.000

...

site 113 -1.942 0.2195

mu 1 23.78 0.1989

diag(site).block 101.018 -0.1346 0.3062

...

xfa1(site).id(female 101.580 -1.016 0.6309

...

The term labelled ‘xfa1(site).id(female’ is the predicted genetic effect of family 580 at site 101, including the site

specific genetic deviation:

bug1:580 ¼ bλ1:1bf 1:580 þ bδ1:580 ¼ �1:016:

So the predicted value is: bY1:580 ¼ 23:78þ 0� 1:016 ¼ 22:764, matching the prediction given directly in the .pvs file. We

can also obtain the predicted effect of family 580 in site 101 based on only the FA1 part of the model as:

bu∗g1:580 ¼ bλ1:1bf 1:580
We have already shown that the loading for site on the first factor is obtained in the .asr file:

Model_Term Sigma Sigma/SE % C

...

site XFA_L 1 1 0.824247 5.75 0 P

...

The factor score for family 580 is found in the last set of effect estimates in the .sln file. Note that the genotype factor scores
are not printed out for the FACV or FA formulations of the model, only for XFA forms:

xfa1(site).id(female 1.580 -0.5501 0.3436

The predicted effect for this combination of family and site based only on the factor is:

bu∗1:580 ¼ 0:824247∗ �0:5501ð Þ ¼ �0:4533, and the predicted value is:

bY∗
1:580 ¼ μþ bS1 þ bu∗g1:580 ¼ 23:78þ 0þ�0:4533 ¼ 23:327

One can also obtain the factor-based family within site effects with a predict statement that excludes the site-specific genetic

deviations:

This is very similar to the predict statement used previously to get the family effect prediction within a hypothetical

‘average’ environment, but in this case we use the loading for the first environment (0.824) instead of the average loading,

resulting in the following prediction in the .pvs file:

female Predicted_Value Standard_Error Ecode

580 -0.4533 0.2831 E
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Estimating Heritability and Reliability from FA Models

Estimating heritability as a function of observed variance components can be tricky when there are consolidated (compound)

terms and complex covariance structures in the model, as in FA or US models. One difficulty is defining the appropriate

function of variance components, for example if we have a model in which the genotypic variance is different for every

environment. Understanding the labelling of parameter estimates in the function definitions in ASReml adds some additional

complexity. Another difficulty can be having different mating designs such as half-sib families and full-sib families in the

same data. In this case calculation of causal genetic variances (e.g. additive genetic variance) may not be obvious.

Before considering how to extend heritability estimates to complex MET models, it helps to consider the concepts of

heritability, genetic variance, and environmental variance in the context of replicated family evaluation trials that often

occur in tree and crop breeding experiments. Conceptually, the simplest assumption is that we have a reference population of

genotypes from which the parents of the families are sampled, and, similarly, we have sampled the testing environments at

random from the target population of environments, usually production environments within a defined geographic range

(Cooper and DeLacy 1994). The variance components estimates for genotype main effects, environment main effects, and

genotype-by-environment interaction effects refer to the variability in these conceptual reference populations (Dudley and

Moll 1969).

In this context, the expected response to selection based on an individual’s phenotype when its progenies are evaluated in an
independent environment depends on the narrow-sense heritability, h2i ¼ σ2A=σ

2
P. We can estimate the pieces (additive

genetic variance bσ2
A, and phenotypic variance bσ2

P) of this heritability estimator from a half-sib family evaluation like the pine

polymix example using the traditional cross-classified analysis model as bσ2
A ¼ 4bσ2

F and bσ2
P ¼ bσ2

F þ bσ2
FE þ bσ2

E . Thus, the

narrow-sense heritability that is appropriate to predict response to selection among individual trees is:

h2 ¼ 4σ2F
σ2F þ σ2FE þ σ2E

ð8:26Þ

whereσ2F is the variance component due to family main effects,σ2FE is the variance component due to family-by-environment

interaction, andσ2E is the experimental error variance. Below, we will describe how to generalize this heritability estimator to

more complex models such as the US and FA models with heterogeneous residual variances. Here, we will consider the

appropriate heritability estimator to predict response to selection among family means. If we select superior families based

on their means across environments and measure the response observed by growing remnant half-sib progenies in an

independent environment sampled from the same reference population of environments, response to selection is a function

of the selection differential and the heritability of family means defined using the cross-classified model structure as:

h2f ¼
σ2F

σ2F þ σ2FE
s þ σ2E

sr

ð8:27Þ

where s is the number of environments and r is the number of blocks per environment from which the means were calculated

(Holland et al. 2003).

We can begin to generalize the estimator of family means-basis heritability by first considering the case where we have

unbalanced data, with different numbers of plot measurements and environmental replications among families. One

modification for unbalanced data is to use harmonic means of numbers of environments (sh) and total plots (nh) in which

each family is measured (Holland et al. 2003):

h2f ¼
σ2F

σ2F þ σ2
FE

sh
þ σ2E

nh

ð8:28Þ

Another modification is the Cullis heritability estimator we introduced in Chap. 7 (Cullis et al. 2006):

h2fC ¼ 1�
�VBLUP difference

2bσ2
f

ð8:29Þ
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The variance of the BLUP differences can be obtained from ASReml by squaring the average standard error of differences

provided in the .pvs file when across-site family predictions are requested. Related to this estimator is the average of the

prediction reliabilities, as introduced in Chap. 7.

A third modification is the bootstrapping method (Piepho and M€ohring 2007). Note that no modification of the individual-

basis narrow-sense heritability estimator is required when data are unbalanced because the selection units are individuals

rather than family mean values.

To continue generalizing, when we have heterogeneous residual error variances, such that there are s distinct

residual variances, the denominator of the narrow-sense heritability involves an average of the within-environment error

variances:

h2 ¼ 4σ2F
σ2F þ σ2FE þ σ2E

ð8:30Þ

Where σ2E is the average within-environment error variance. The family mean-basis heritability estimate with heterogeneous

error variances includes a weighted average of within-environment variances:

h2f ¼
σ2F

σ2F þ σ2FE
sh

þ 1
s

P s
i¼1

σ2Ei
rhi

ð8:31Þ

Where σ2Ei is the error variance within the ith environment and rhi is the harmonic mean of number of plots per family in the

ith environment. The Cullis estimator can also be used in this situation.

Finally, we generalize to the situation where the model has no genotype main effects, but rather genotype effects nested in

environments. The response to selection among individual phenotypes as measured by their half-sib relatives grown in an

independent environment is a function of a heritability estimator equal to the covariance of the selection and response

individuals divided by the variance of individuals under selection (Nyquist 1991; Holland et al. 2003):

h2 ¼
E Cov f ij; f i0j

� �h i
V f ij

� � ð8:32Þ

This is easily constructed from the estimated common genetic covariance between environments (bσgii0) and common within-

environment genetic variance component (bσ2
gi) from the CORUV model:

h2 ¼ bσgii0bσ2
gi þ σ2E

ð8:33Þ

For family-based selection, the predicted value of a family across sites is the average of its within-site predictions. To predict

the response to selection based on this mean value as measured in an independent environment from the same reference

population of environments used for the evaluation experiment, we want the expected covariance of the family mean to its

value in an independent environment divided by the phenotypic variance of the family means:

h2f ¼
E Cov �f :j; f i0j

� �h i
V �f :j

� � ð8:34Þ

Note that in the simple case of a model with family main effects and a common genotype-by-environment variance, the

expected covariance of a family mean value with the family’s value in an independent environment is estimated by the

family variance component, and we have the usual heritability estimator for this model.
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Considering the CORUV or compound symmetry model, we can use bσgii0 and bσ2
gi to estimate heritability:

E bσgii0
� � ¼ E Cov �f :j; f i0j

� �h i
¼ σ2f

E bσ2
gi

h i
¼ E V geij

� �h i
¼ σ2f þ σ2fe

V �f :j

� �
¼ σ2f þ

σ2fe
sh

þ 1

s

Xs
i¼1

σ2Ei
rhi

¼ sh � 1ð Þbσgii0 þ bσ2
gi

sh
þ 1

s

Xs
i¼1

σ2Ei
rhi

bh2f ¼ Cov �f :j; f i0j

� �
V �f :j

� � ¼ bσgii0

sh�1ð Þbσ gii0 þbσ 2
gi

sh
þ 1

s

P s
i¼1

σ2Ei
rhi

ð8:35Þ

If we have the more complex case of unequal pairwise variances among environments, our best estimate of the expected

value of the covariance between the family mean value and its value in an independent environment is the average of the

observed pairwise genotypic covariances between environments:

dCov �f :j; f i0j

� �
¼ Cov �f :j; f i0j

� �
¼ 1

s s� 1ð Þ=2
Xs�1

i¼1

X s

i0¼iþ1
bσgii0 ¼ bσgii0 ð8:36Þ

The variance among family mean predictions is complicated if we have unbalanced data; it is the average over families of the

variance of average family-by-environment effects:

bV �f :j

� �
¼ �V �f :j

� �
¼ 1

nf

X f

j¼1
V

PS
i¼1 geij
sj

 !2

þ 1

s2

Xsj

i¼1

σ2Ei
rhi

ð8:37Þ

Here, the value sj refers to the number of environments in which family j was tested. The effects of a common family at

different environments are not independent, so we need to include the covariances among these terms as well as their

variances in this case:

�V �f :j

� �
¼ 1

f

X f

j¼1

1

sj2

Xsj

i¼1
V geij

� �
þ
X f

j¼1

1

sj2

Xsj

i¼1

Xsj

i0 6¼i
C geij; gei0j

� �	 

þ 1

s2

X s

i¼1

σ2Ei
rhi

¼ 1

f

X f

j¼1

1

sj2

Xsj

i¼1
bσ2
gi þ

X f

j¼1

1

sj2

Xsj

i¼1

Xsj

i0 6¼i
bσgii0

	 

þ 1

s2

X s

i¼1

σ2Ei
rhi

ð8:38Þ

If data are balanced, this simplifies to:

�V �f :j

� �
¼ bσ2

gi

s
þ s� 1ð Þbσgii0

s
þ 1

s2

X s

i¼1

σ2Ei
r

¼ bσ2
gi

s
þ s� 1ð Þbσgii0

s
þ σ2Ei

sr
ð8:39Þ

Translating this to the model with family main effects, the variance of family mean values is:

�V �f :j

� �
¼ σ2F þ σ2FE

s
þ s� 1ð Þσ2F

s
þ σ2Ei

sr

¼ σ2F þ
σ2FE
s

þ σ2Ei
sr

ð8:40Þ

This simplifies further in the case of homogenous error variances to the standard estimator of heritability from multi-

environment trials with balanced data:
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�V �f :j

� �
¼ σ2F þ

σ2FE
s

þ σ2E
sr

ð8:41Þ

Putting the average covariance between families across environments as the numerator and the average variance of family

means across environments as the denominator as the heritability estimate, we get for the case of unbalanced data and

heterogeneous genetic variances and covariances across sites:

h2f ¼
bσgii0

1
f

P f
j¼1

1
sj2

Psj
i¼1 bσ2

gi þ
P f

j¼1
1
sj2

Psj
i¼1

Psj
i0 6¼i
bσgii0

h i
þ 1

s2

P s
i¼1

σ2Ei
rhi

ð8:42Þ

In the case of balanced data but heterogeneous error variances, this simplifies to:

h2f ¼
bσgii0bσ 2

gi

s þ s�1ð Þbσ gii0
s þ σ2Ei

sr

ð8:43Þ

Now we will use the parameter estimates from different models for the pine polymix data to estimate heritability of family

means across environments. About 3% of plots are missing in this data set, so we should use Eq. 8.42, which involves the

mean within-site variances weighted by the harmonic mean of replications per family at each site, but for simplicity, and

because the level of imbalance is low, we will use the balanced data formula (Eq. 8.43), substituting the harmonic mean of

the number replications per family and site (17.8) for the value r.

The harmonic mean of trees per family per site can be computed easily in R from a data frame (called “ds” in this example)

holding our data:

First, we estimate narrow-sense and family mean-basis heritabilities for the cross-classifiedMET model with homogeneous

error variances:

h2 ¼ 4σ2F
σ2F þ σ2FE þ σ2ε

¼ 4 0:563ð Þ
0:563þ 0:174þ 7:12

¼ 0:29

h2f ¼
σ2F

σ2F þ
σ2FE
s

þ σ2ε
rs

¼ 0:563

0:563þ 0:174

12
þ 7:12

17:8∗12

¼ 0:92

Using the parameter estimates (rounded to the third decimal) from the compound symmetry (CORUV) model, we get the

same results:

h2 ¼ 4rgbσgii0bσ2
gi þ σ2ε

¼ 4 0:763ð Þ 0:738ð Þ
0:738þ 7:12

¼ 0:29

h2f ¼
bσgii0bσ2

gi

s
þ s� 1ð Þbσgii0

s
þ σ2ε

rs

¼ rgbσ2
gibσ2

gi

s
þ s� 1ð Þrgbσ2

gi

s
þ σ2ε

rs

¼ 0:763ð Þ 0:738ð Þ
0:738

12
þ 11 0:763ð Þ 0:738ð Þ

12
þ 7:12

17:8∗12

¼ 0:92
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The estimates for the CORUV model with heterogeneous error variances are:

h2 ¼ 4rgbσgii0bσ2
gi þ σ2εi

¼ 4 0:8428ð Þ 0:6607ð Þ
0:6607þ 7:21

¼ 0:28

h2f ¼
rgbσ2

gibσ2
gi

s
þ s� 1ð Þrgbσ2

gi

s
þ 1

s2

X s

i¼1

σ2εi
r

¼ 0:843ð Þ 0:661ð Þ
0:661

12
þ 11 0:843ð Þ 0:661ð Þ

12
þ 10:23þ 3:18þ . . .þ 9:40

122∗17:8

¼ 0:557

0:598
¼ 0:93

Finally, for the XFA1 model with heterogeneous error variances, recall that the lower diagonal of the variance-covariance

matrix of family within environment effects is (for 4 sites out of 12):

1.449 0.6288 0.6445 0.6848....

0.6260 0.6848 0.6445 0.6755....

0.5595 0.5464 0.8643 0.9183....

0.8395 0.9183 0.8643 0.9059....

...

The heritability estimate is based on the estimated variance-covariance matrix of family within environment effects.

For this model, the average of the diagonal elements (0.7408) is the mean within-site family variance, and the average

of the off-diagonal elements (0.563) is the average covariance between sites. The mean of the 12 site-specific residual

variances is 7.15:

h2 ¼ 4bσgii0bσ2
gi þ σ2εi

¼ 4 0:563ð Þ
0:741þ 7:15

¼ 0:28

In the heritability for individual measurements, the mean within-site family variance in the numerator is multiplied by

4 because the mean within-site female variance is 1/4 of the additive genetic variance due to the half-sib family structure in

the data. In contrast, for the estimate of heritability on a family mean basis, we use the family variance component directly in

the numerator, since our inference is to selection among the family mean predictions:

h2f ¼
bσgii0bσ 2

gi

s þ s�1ð Þbσ gii0
s þ 1

s2

P s
i¼1

σ2Ei
rhi

¼ 0:563
0:741
12

þ 11 0:563ð Þ
12

þ 7:15
122∗17:8

¼ 0:92

Again, for the XFA1 model we obtained similar narrow-sense and family mean heritabilities.

We can also estimate the family mean-basis heritability using the Cullis estimator by taking the average of the standard error

of across-site family differences (SED) from the .pvs file:

SED: Overall Standard Error of Difference 0.2438

h2fC ¼ 1�
�VBLUP difference

2bσ2
f

¼ 1� 0:2438ð Þ2

2 bσgii0
� � ¼ 1� 0:2438ð Þ2

2 0:563ð Þ ¼ 0:947
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This is close to the family mean-basis heritability based on variance components.

One more way to estimate the family mean-basis heritability is as the average of the prediction reliabilities, using the

formula:

REL ¼ 1� PEVffiffiffiffiffi
σ2f

q ¼ 1� PEVffiffiffiffiffiffi
σii0

p ð8:44Þ

From the XFA model, we will use 0.563 in the denominator of the reliability equation. From the .pvs output of the statement

‘predict female !AVE block site’ in model 11, we can compute reliabilities (Table 8.2):

The average of the reliabilities (0.947) is identical to the Cullis estimator of family mean heritability.

We can obtain the estimates based on functions of variance components using the VPREDICT !DEFINE option in ASReml.

As shown in Chap. 6, the easiest way to get the correct labels of parameter estimates from a complex ASReml model is to use

VPREDICT !DEFINE at the end of the model and leave a blank line after it to generate a .pvc file with names and numbers of

parameters identified. In this example we will estimate heritability from the XFA1 structure in model 11.

• The components labeled ‘female’ were created using V female xfa1(site).

• V is the function to convert components from XFA to unstructured (US) model parameters (i.e., to provide the within-

environment variances and each of the pairwise environment covariances), ‘female’ is the label we assign and ‘xfa1
(site)’ is the identifier of the variance component.

Table 8.2 Family predictions across sites from model 11 (XFA1) and their

reliabilities

Female Predicted_Value Standard_Error REL

16 27.9630 0.1638 0.952

18 26.4088 0.1705 0.948
414 27.5957 0.1711 0.948

. . .
580 25.9551 0.2372 0.900

. . .
Average 0.947
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The output found in “Code 8-1_MET11_height.pvc” is given below:

- - - Results from analysis of height - - -

sat(site,01).id(units) 1359 effects

1 sat(site,01).id(units);Residual_1 9.81099 0.389325

...

12 sat(site,12).id(units);Residual_12 5.46531 0.218263

...

xfa1(site).id(female) 910 effects

25 xfa1(site).id(female);xfa1(site) V 0 1 0.769546 0.226337

...

36 xfa1(site).id(female);xfa1(site) V 0 12 0.126178E-01 0.525742E-01

37 xfa1(site).id(female);xfa1(site) L 1 1 0.824246 0.149050

...

48 xfa1(site).id(female);xfa1(site) L 1 12 0.675730 0.803484E-01

49 female 1.4489 0.32321 (variance site 1)

50 female 0.55949 0.13227 (cov 1,2)

51 female 0.54638 0.11257 (variance site 2)

52 female 0.59378 0.14588 (cov 1,3)

53 female 0.48899 0.97253E-01 (cov 2,3)

54 female 0.58588 0.15189 (variance site 3)

55 female 0.61280 0.14262 (cov 1,4)

...

124 female 0.50422 0.97664E-01 (cov_9,12)

125 female 0.66804 0.13021 (cov_10,12)

126 female 0.46923 0.11384 (cov_11,12)

Notice: The parameter estimates are followed by

their approximate standard errors.

• Coefficients are identified by the numbers in the first field and by labels. For example, residual variances for sites are

numbered from 1 to 12, and labeled as

1 sat(site,01).id(units);Residual_1

2 sat(site,02).id(units);Residual_2

• The fields named female (numbered from 49 to 126) are female within-site variance components (bold) and

covariances between pairs of site. If we rearrange them in matrix format it will be more obvious how they relate to the

US parameterization (for the first 4 sites):

site1 site2 site3 site4

site1 1.449

site2 0.5595 0.5464

site3 0.5938 0.4890 0.5859

site4 0.6128 0.5047 0.5356 0.5527

In the following example, we compute phenotypic variances, additive genetic variances, and heritabilities for selection

among individual trees or family means.

260 8 Multi Environmental Trials



PART 10

A subset of the output (Code 8-1_MET11_height.pvc) is given below:

- - - Results from analysis of height - - -

...

127 err 1 85.820 1.0644

128 err.m127 7.1514 0.88693E-01

129 fem.site 49 8.8899 1.1220

130 fem.sitem129 0.74079 0.93495E-01

131 cov 50 37.190 5.6923

132 covm131 0.56348 0.86247E-01

133 Additive132 2.2539 0.34499

134 phen128 7.8922 0.12610

135 phen_f130 0.58104 0.86409E-01

h2i = Additive132 133/phen128 134= 0.2856 0.0407

h2f = covm131 132/phen_f13 135= 0.9211 0.0105

Notice: The parameter estimates are followed by

their approximate standard errors.
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These estimates agree with our computations above. As the number of environments increases, the number of covariance for

pairs of environment increases (66 in this example). This makes heritability calculations cumbersome in ASReml. Care is

needed to make sure variances and covariances are selected correctly.

Biplots from FA Models

Biplots can be useful visualizations of GxE interactions from FA models. The responses of genotypes to environments on a

two-dimensional surface are frequently reported in the plant breeding literature. A biplot displays site loadings and genotype

scores simultaneously. R code to read in results from an XFA2 model produced by ASReml standalone and to generate a

biplot is provided in “Code 8-3_biplot.R”. Another form of the biplot using output of ASReml-R is provided in “Code 8-

2_pine_met.Rmd”. Figure 8.1 was produced by the first set of code and displays site loadings as vectors in blue on the two

factors and family scores in black. This figure shows a typical problem with biplots: if the number of genotypes or families is

large, the plot becomes very busy and hard to read. Nevertheless, even from this plot, it is clear that site 105 affected

genotype performance differently than other sites. This is congruent with the result observed in the correlation estimates

from the XFA models that indicate that this site had the lowest average correlation with other sites. A large number of

genotypes are at the center of the plot; genotypes that are closer to the end of a particular site vector have scores with the

same sign and similar magnitude of that site’s loading compared to the rest of the population. This indicates that those

families have their most positive effect at that environment. For example, family 421’s score is near the loading for site

105, indicating that it has the most favorable effect at that site. Indeed, family 421 has the highest predicted value at site

105 (30.7, compared to a population mean of 28.9 at that site). Biplots are descriptive, however, and should be interpreted

cautiously as they may not depict all aspects of the GxE interactions, including crossover interactions (Yang et al. 2009).
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Fig. 8.1 Biplot for site loadings (blue vectors) and female scores (black text labels) on two factors from the XFA2 model. Site 105 has high

within-site variation but has the smallest correlation with other sites. Genotypes 421, 504 and 427 have large positive scores for both factors
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Abstract

Genetic data sets available to breeders are increasing in size, both in numbers of markers and in numbers of breeding

individuals or lines genotyped. The scale of the data sets requires breeders to use software to perform quality control

checks, visualize, and manipulate data. Breeders will often want to combine genetic marker data with physical or linkage

map information, phenotypic data, and pedigree information. In this chapter we demonstrate the use of base R and the

synbreed package of R to process an example data set from a maritime pine breeding population. The synbreed package

defines the gpData object class, which can hold phenotypes, genotypes, pedigree, and genetic map information. This

package is particularly useful to streamline data manipulation and analyses that combine genotype and phenotype data.

Readers should be aware that algorithm and software developments for genomic data are areas of active research, more

efficient and powerful methods are constantly being developed.

Marker Data and Some Definitions

Due to advances in next generation DNA sequencing and other genomics technologies, large amounts of data can be

produced efficiently, even at the scale of animal and plant breeding populations. Compared to traditional phenotypic data

collected from field or greenhouse trials, genetic marker data sets can be very large. For example, genotyping 2,000

individuals for 10,000 SNP markers is feasible for many breeding programs. The data set resulting from this genotyping will

contain 20 million data points.

Raw marker data are usually not ready for analyses. When genotype data are obtained, often the first task is to organize,

summarize, and reformat the data for subsequent analysis by available software packages. Genotype data come in different

formats from different labs or companies, and usually require reformatting before they can be merged or used as input data

for analysis. Also, some software may require removal of monomorphic loci (at which all individuals have the same

genotype) before analysis. Finally, missing data and heterozygotes may need to be handled in different ways for different

analysis software.

With large data sets, manual curation and formatting is a bad approach in general. It becomes very difficult to consistently

make reformatting changes, and is also likely to introduce new errors. In this section, we present some approaches to

reformatting, summarizing, and visualizing marker data using the synbreed R package (Wimmer et al. 2012). We focus on

this package because in addition to providing useful functions for manipulating data, it interfaces with other packages in R,

such as the BLR, the previous version of BGLR package (Pérez et al. 2010). The synbreed package provides estimates of

important population genetic parameters, such as linkage disequilibrium (LD), and to fit statistical models for genomic

estimated breeding values and model validation (Wimmer et al. 2012). Conveniently, it also can output relationship matrices

formatted for use in ASReml.

Before describing code for reformatting, we review a typical raw data format and describe a modified format that is often more

desirable for subsequent analysis. A common situation is to receive SNP genotype results as base pair calls, such as GG or CC

for the homozygous genotypes and GC for the heterozygous genotype (e.g. from Illumina GenomeStudio). In some cases the

marker genotypes are pairs of observed nucleotides, e.g. G/G, C/C, and G/C. For most quantitative analyses of marker data,

however, it is preferable to recode genotypes from base pair calls to counts ofminor alleles carried by an individual at the locus.

In general, most analysts use several software packages to accomplish various data analysis tasks, because no single package

can handle all the different types of data manipulations, summary, and data visualizations. Similarly, algorithms and software

developed to handle large numbers of markers are numerous, and they are constantly being revised to meet the challenges of

large and complex data generated by constantly evolving methods of sequencing and genotyping. Readers should be aware

that algorithm and software developments for genomic data are active areas of research. The tools covered here and

subsequent chapters may be out of date in a few years and more efficient versions of the packages may become available.

As an example, Table 9.1 shows a subset of marker data in character format, reflecting the SNP base pair calls for a sample

of diploid individuals:

We may prefer to transform this data set by first transposing columns and rows so that individuals are in rows instead of

columns. Then the minor and major alleles at each locus can be easily identified by their frequencies in each column. By

definition, aminor allele has a frequency less than 0.5; different bases could be themajor allele at different loci. In Table 9.2

we have transposed the previous data matrix and identified the minor allele call above the column headers (“MA ¼ . . .”):
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Notice that there is no minor allele for locus 01-559. Although we do not see allele A for locus 01-256 in the small sample of

six individuals in the table, the minor allele at this locus, A, is found in some individuals not included in the table.

Now we wish to recode the base pair calls numerically as gene content of the minor allele, such that an individual that is

homozygous for the minor allele carries two copies of the minor allele and is coded as 2, a heterozygous individual has one

copy of the minor allele and is coded as 1, and a homozygote for the major allele carries no copies of the minor allele and is

coded as 0. One could also recode the data as gene content for the major allele, all subsequent analyses will still work, but

their interpretation has to be adjusted to reflect how the data were coded. As a specific example, locus 01-71 in Table 9.2 is

segregating for nucleotides A and C, where C is the minor allele, so genotypes at this locus can be recoded for gene content

of the minor allele as AA ¼ 0, AC or CA ¼ 1 and CC ¼ 2. Ind1 has one minor allele (C) for locus 01-71 but Ind2 does not

have any minor alleles at this locus.

In Table 9.3 we have the minor allele count for each combination of locus and individual instead of letters representing base

pair calls. Further, the “0” calls for missing scores in the original data set must be changed now to “NA” (or some other

non-numeric code) so that they are distinguished from homozygous major allele calls. The sample of this data set would

appear as follows after re-coding:

Table 9.1 A matrix of SNP base pair calls (in rows) for individuals

MarkerID Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 ... 
01-256 GG GG GG GG GG GG GG
01-71 AC AA AA CC AA AA AA
01-559 CC CC CC CC CC CC CC
01-431 GG AG GG 0 GG AG AG
... AA GG GG 0 GA GG GG

• The rows are marker names; usually strings of text and numbers.
• The columns are subject or sample names (Ind1, Ind2, ...).
• Ind1 is homozygous (GG) at locus 01-256 but heterozygous (AC) at locus 01-71.
• The 0 values are missing genotypes due to a failed or low quality SNP assay. Missing genotypes may be coded in a variety of

formats, including “NA” or with just a blank space.

• Sometimes, there is no segregation for a marker in the genotyped population. For example, all the individuals are homozygous
CC genotypes for marker 01-559.  This marker is “fixed” (monomorphic) in the sample of individuals. It is possible that this
locus may be segregating in a different population sample, however.

Table 9.2 A transposed matrix of SNP base pair calls. Individuals are in rows; base pair calls (markers) are in columns. Minor allele of each locus

is given at the top of the columns

MA=A MA=C MA=. MA=G MA=A

MarkerID 01-256 01-71 01-559 01-431 ...
Ind1 GG AC CC GG AA
Ind2 GG AA CC AG GG
Ind3 GG AA CC GG GG
Ind4 GG CC CC NA NA
Ind5 GG AA CC GG GA
Ind6 GG AA CC AG GG
... GG AA CC AG GG
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Let’s look at a few definitions of genetic terms, which may be encountered during the data analyses.

Allele Frequencies

By definition the minor allele is the allele at a locus with frequency less than 0.5 in the population. With biallelic SNP

markers, a marker locus can have only two alleles. Sequence data on populations may reveal more than two bases segregating

at a position, and the researcher will have to make some choices on how to handle such data. One possibility is to simply drop

such loci from the analysis. Another option is to create two or more different biallelic markers from a multiallelic locus. One

marker could have scores representing the counts of one rare allele in each individual, while the second marker represents the

counts of a different rare allele. For this book, however, we will assume that SNP data are strictly biallelic or have been

recoded to follow a biallelic format. Given this assumption, a sample of n individuals can have three different genotypes

(e.g. AA, AT, TT) at the locus. The allele frequency ( pj) of marker j can be calculated from genotypes in 0, 1, 2 format as

pj¼
Pn

i¼1 wij

2n
j ¼ 1, . . . , p ð9:1Þ

Where wij is the marker genotype for individual i and marker j and n is the number of individuals (Wimmer et al. 2012).

To demonstrate the computation of allele frequencies in a simple example, the following is a small sample data set of

genotype calls at two sequence positions, M1 and M2, in five samples:

Sample M1 M2

1 AA GA

2 AT GG

3 TA AA

4 TT AA

5 TT AA

The frequency of allele A at positionM1 is pA ¼ sum of copies of A over all individuals/2 times of number of individuals ¼ 4/

2 � 5 ¼ 0.4. The frequency of the T allele is qT ¼ (1 � pA) ¼ 1 � 0.4 ¼ 0.6. If the data were recoded in 0, 1, 2 format, the

minor allele frequency at M1 would be calculated as (2 + 1 + 1 + 0 + 0)/(2 � 5) ¼ 4/10 ¼ 0.4, and the major allele

frequency is still (1 � pA) ¼ 1 � 0.4 ¼ 0.6.AlthoughA is theminor allele at positionM1, it is themajor allele at positionM2.

Hardy-Weinberg Equilibrium (HWE)

The simple definition of HWE is ‘genotype and allele frequencies in a random mating population remain constant from one
generation to another if there are no disturbing factors (mutation, migration, genetic drift and selection)’. In such an ideal

population the two alleles an individual receives, one from each parent are independent, such that genotype frequencies can

be predicted from allele frequencies.

An example for a biallelic locus, let the allele frequencies be p for A allele, and q for T allele ( p + q¼ 1). In order to predict

the genotype frequencies, all we need are allele frequencies p and q:

Table 9.3 Minor allele count for each locus and individual

MarkerID 01-256 01-71 01-559 01-431 ...
Ind1 0 1 0 2 2
Ind2 0 0 0 1 0
Ind3 0 0 0 1 0
Ind4 0 2 0 NA NA
Ind5 0 0 0 2 1
Ind6 0 0 0 1 0
... 0 0 0 1 0
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The frequency of AA ¼ p2

The frequency of AT ¼ pq + qp ¼ 2pq

The frequency of TT ¼ q2

Genotype frequencies sum to (p + q)2 ¼ p2 + 2pq + q2 ¼ 1

In the absence of selection, mutation, migration and genetic drift, allele frequencies and genotype frequencies remain

constant from one generation to the next (HWE). Comparing the predicted genotype frequencies to observed genotype

frequencies in a population can provide insight to the importance of inbreeding or selection in the population.

Polymorphism Information Content

The polymorphism information content (PIC) measures the probability of differentiating the allele transmitted by a given

parent to its offspring given the marker genotype of father, mother, and offspring (Botstein et al. 1980):

PIC¼1�
Xn

i¼1
p2i �

Xn

i¼1

Xn�1

j¼iþ1
2p2i p

2
j ð9:2Þ

where pi and pj are frequencies of alleles, n is the number of alleles (n ¼ 2 for SNPs). Loci with values close to 1 are more

desirable, but can only occur with many alleles. The maximum PIC for a biallelic locus occurs when the allele frequencies

are equal, and PIC ¼ 0.375.

Heterozygosity

Adiploid locus has two alleles, each inherited from a different parent. If an individual has the same alleles e.g. AA at a given locus

then the individual is homozygous. If the individual has two different alleles at the given locus, e.g. AT or TA, then the individual

is heterozygous.Heterozygosity is simply the proportion of heterozygous individuals in the population. This parameter is used to

define the genetic variation in a population. The allelic diversity, sometimes called the expected heterozygosity, is the expected

proportion of heterozygous individuals in the data set when HWE holds. Allelic diversity is a better measure of diversity when

there is inbreeding because the frequency of heterozygotes does not indicate the actual segregation at the locus.

Linkage Disequilibrium (LD)

Gametic phase disequilibrium, more commonly referred to as Linkage Disequilibrium (LD) is the non-random association
of alleles at different loci. Its converse, Linkage Equilibrium (LE), is random association between alleles at different loci,

such that the frequency of allelic combinations (genotype frequency) is predicted accurately by the products of the individual

allele frequencies. Alleles at loci located close together on the same homologous chromosome tend to retain their linkage

relationship after meiosis, because recombination events are relatively infrequent (often only one or two per chromosome),

and are therefore unlikely to occur between two loci that are physically near each other. Recombination is more likely to

occur between two loci that are far apart on a chromosome. Over many generations, most alleles at many pairs of loci reach

linkage equilibrium because of the accumulated effects of recombination between homologous chromosomes.

The exception to this is loci that are extremely close together, new mutations (which have not undergone sufficient meiotic

generations to reach linkage equilibrium with neighboring loci), or pairs of loci that have an interaction that confers a

selective advantage or disadvantage on individuals that inherit specific combinations of alleles – such loci can remain in

linkage disequilibrium for many generations.

LD impacts the accuracy of predictions from genomic data (Habier et al. 2007) and the resolution of association analyses

(Flint-Garcia et al. 2003). Breeders have little ability to change it at the level of the entire species (Hayes et al. 2009), although

LD can be increased by creation of sub-populations with limited effective population size (Grattapaglia and Resende 2011).

Commonly used statistics to measure LD in a population are the coefficient of disequilibrium D, the scaled coefficient of

disequilibrium D0, and the coefficient of determination, r2. For example, consider two loci A and B, each with two alleles Aa
and Bb (Fig. 9.1).
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If gamete frequencies are equal to the product of their allele frequencies, this implies that the alleles at different loci are

independent, and therefore in linkage equilibrium (LE):

hAB ¼ pApB

hAb ¼ pApb

haB ¼ papB

hab ¼ papb

As an example, suppose allele A has a frequency of pA ¼ 0.6 and allele B has a frequency of pB ¼ 0.4. If the two loci are in

LE then the expected gamete frequency would be hAB ¼ pApB ¼ 0.6∗0.4 ¼ 0.24.

Linkage disequilibrium can be measured as D, the difference between the observed gamete frequencies and the gamete

frequencies expected under linkage equilibrium:

DAB ¼ hAB � pApB

DAb ¼ hAb � pApb

. . .

If two loci are independent then D would be zero and we say the two loci are in LE in the population. A value greater or

smaller than zero suggests LD. LD can also be calculated as

D ¼ hABhab � hAbhaB

D is dependent on allele frequency, which makes it difficult to compare LD among pairs of loci. The maximum value ofD is:

Dmax ¼ min pApB; 1� pAð Þ 1� pBð Þf g when D < 0

Dmax ¼ min pA 1� pBð Þ; 1� pAð ÞpBf g when D > 0

Dmax is the smaller of pApB and (1 � pA)(1 � pB) when D is negative.

Dmax is the smaller of pA(1 � pB) and (1 � pA)pB when D is positive.

D can be standardized (scaled) following (Lewontin 1964):

D0 ¼ D

Dmax
ð9:3Þ

D0 has the range of�1 to 1, with the extreme values of�1 and +1 indicating no evidence of recombination between markers.

D0 is not a desirable statistic for small samples or loci with rare alleles, as it tends to be inflated under those conditions, so is

also not entirely comparable across loci with different allele frequencies. A more commonly used statistic to measure LD is

the coefficient of determination (r2 or Δ2).

r2 ¼ D2

pA 1�pAð ÞpB 1�pBð Þ ð9:4Þ

Locus A

A a Total

Locus B B

b

Total

Fig. 9.1 Two loci A and B each with two alleles. hAB, hAb, haB, hab are probability of observing gamete frequencies (allele combinations). pA, pa,
pB, pb are allele frequencies
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The statistic r2 has a range of 0–1 with 0 indicating linkage equilibrium and 1 indicating complete disequilibrium. LD for

each pair of loci tested can be plotted against the physical distance between the loci as a way to understand the relationship

between LD and physical distance (Reich et al. 2001) in the population. We will give an example later in the chapter.

Software and Tools for Processing Marker Data

We will demonstrate the use of the base R supplemented with packages from the Bioconductor project (http://www.

bioconductor.org) and from CRAN for processing and analysing genome-wide marker data. The Bioconductor project is

focused on producing tools for R users involved in high-throughput genomic research, and provides a wide array of packages

for analysis of microarray, high-throughput sequencing, and SNP genotyping experimental data.

Introduction to the Synbreed Package

There are several R packages available, such as GenABEL (Aulchenko et al. 2007) and genetics (Warnes et al. 2013) to

manage and visualize marker data, and new tools are being developed constantly. Synbreed is a comprehensive package

composed of functions to manipulate and analyze marker, phenotype, genetic map and pedigree data (Wimmer et al. 2012).

The package is available through CRAN at http://cran.r-project.org/web/packages/synbreed. In this chapter we will give

examples using synbreed for exploratory marker data analysis, visualization and data processing. In subsequent chapters we

will demonstrate with examples using synbreed to impute missing genotypes, calculate genomic relationships from markers,

and fit statistical models to estimate genomic-based breeding values.

Synbreed creates an object of data class called gpData for analysis. The components of this object include phenotypes, the

genetic map, genotype scores, covariates and pedigree information for a set of individuals. An object of class gpData is

stored in a sparse binary format, which efficiently stores large amounts of data. The synbreed package can be downloaded

and installed following Code Example 9.1:

Code example 9.1

Exploratory marker data analysis using synbreed package (Code 9-1_Data steps.R). The code reads different

data sets (pedigree, phenotype, genotype and genetic map) and creates a unified object
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Maritime Pine Data Example

We will use data adapted from Isik et al. (2016) to demonstrate marker data processing and visualization in this chapter and

will return to this data set later in Chaps. 11 and 12 to demonstrate genomic BLUP and genomic selection methods. A SNP

chip was used to genotype 654 maritime pine (Pinus pinaster) trees with 2,600 SNP markers. The population was composed

of two generations of breeding: The G0 generation (founders) had 184 individuals. The G1 generation (descended from G0)

had 470 individuals. Some samples were dropped because of errors in identification or because of lack of phenotype. Many

of the 2,600 markers were placed on 12 linkage groups (Chancerel et al. 2011, 2013). We created four simulated phenotypic

traits for each individual to demonstrate how to incorporate phenotype data into a common gpData object with the

pedigree, marker, and map information. First, let’s look at the elements used to create the gpData object.

Genotypic Data
The pedigree and genotype data are combined in a file (maritime pine genoped.csv) where individuals are in rows and

markers in columns. The first four fields are unique individual IDs, code for parent 1, code for parent 2, and generation

number. Genotypes are base pair calls (e.g., “AA”, “AT”, “TT”). Missing values were coded as NA. In the following code

we read the data using the read.csv function of R and assign the unique tree IDs as row names to the resulting data frame.

The input format is a little tricky, we force the Par1 and Par2 columns containing the parental codes in the pedigrees to be

read as character type, this is required in later analyses when we create a pedigree-based relationship matrix, so that offspring

will be matched correctly to their parents, which are coded as character type in the row names of the data frame. The output

from head(genoped[, 1:6]) is:

Par1 Par2 gener 384_PP2C-246 AJ300737-208 BX666025-170

0001 0 0 0 GG GG GG

0003 0 0 0 AG GG GG

0003-3 0003 0 1 AG GG GG

0004 0 0 0 GG GG GG

0005 0 0 0 GG GG GG

0006 0 0 0 GG GG GG

Phenotypic Data
For input, either a data frame or an array can be used. We read in the simulated phenotype trait data from the file ‘maritime
pine simul pheno.csv’:
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The output from head(pheno) shows the individual IDs as row names and the trait values for the four simulated

phenotypes.

Sim.Pheno Sim.Pheno.2 Sim.Pheno.3 Sim.Pheno.4

0001 8.75 52.76 87.39 75.37

0003 10.36 51.18 84.54 74.86

0003-3 9.60 53.23 86.09 73.66

0004 9.43 48.83 86.11 75.70

0005 9.80 51.90 84.43 73.14

0006 9.17 52.98 85.19 75.01

It is important that the rownames of the objects to be combined in the gpData object match, so that marker data and

phenotype data can be combined appropriately. We test that they match by using the identical function in R. When we

run it we should see ‘TRUE’ in the R console.

Pedigree
The pedigree file can be an independent file. In this example, the pedigree information was already combined with the

genotype scores. Here, we extract the pedigree information from the genoped data frame. We then use the create.

pedigree function in synbreed to create a pedigree object from the data, this function sorts the pedigree to make sure that

an individual is listed in the ID field first before it is listed as a Parent1 or Parent2:

The first three columns in the ped object are character strings, while the last field (‘gener’) is an integer type. Zeroes in the

parental codes indicate that the parents are unknown. The “ID” variable in the ped object is used to match pedigrees to the

rownames of the geno and pheno components of the gpData object we will create.

> summary(ped)

Number of

individuals 654

Par 1 189

Par 2 90

generations 2

> head(ped)

ID Par1 Par2 gener

1 0001 0 0 0

2 0003 0 0 0

4 0004 0 0 0

5 0005 0 0 0

6 0006 0 0 0

8 0008 0 0 0
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Convert Marker Data to a Matrix and Match with Pedigree
The synbreed package requires marker data in a matrix format with row names taken from the pedigree file. In the following

code we extract the marker score columns from the genoped data frame and use the as.matrix function of R to create

the matrix of markers scores. We then check that the row names of the resulting matrix and the values of the pedigree ped

$ID variable are identical.

The output shows a small part of the matrix of genotypes. The pedigree fields are dropped. Notice that the elements have

double quotes because gmat is a matrix of character strings.

> head(gmat[,1:5)

384_PP2C.246 AJ300737.208 BX666025.170 F51TW9001ARTXE.215 F51TW9001B0OJP.1031

0001 "GG" "GG" "GG" "AA" "AA"

0003 "AG" "GG" "GG" "AA" "AA"

0003-3 "AG" "GG" "GG" "AA" "AA"

0004 "GG" "GG" "GG" "AA" "AA"

0005 "GG" "GG" "GG" "AA" "AA"

0006 "GG" "GG" "GG" "AA" "AA"

Marker Map
In the following code we read “maritime pine genetic map.csv”. The file contains the genetic position in centiMorgans (cM)

of markers on 12 chromosomes of maritime pine. The centiMorgan (cM) is a unit of genetic distance or crossover frequency

on a chromosome. Markers separated by one cM have about a 1% chance of recombination in a single generation. The data

frame resulting from reading in the file has marker locus IDs as rownames and columns chr (chromosome indicator from 1 to

12) and pos (cM position on the chromosome). Variables chr and pos must be numeric. There are 2,600 loci listed in the file

but only 2,258 of them are mapped (chr and pos of 342 loci are missing).
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The output shows the positions of markers on chromosomes. Notice that the first two markers are not mapped on any linkage

group and they have missing values for chr and pos.

> head(map)

chr pos

384_PP2C-246 NA NA

AJ300737-208 NA NA

BX666025-170 7 92.60

F51TW9001ARTXE-215 4 7.66

F51TW9001B0OJP-1031 10 125.19

F51TW9001BF8Q1-922 1 83.05

The variable pos can be in cM units (as in this example) or in base pairs, if the physical position of the markers are known.

Not all species and populations have genetic maps, and the map object is not required.

Putting All the Elements Together
The function create.gpData merges the individual data sources (genotype, phenotype, genetic map, pedigree) into a

single object. The rownames of the genotype and phenotype inputs should match the “ID” column of the pedigree object.

The return value is a gpData object, which is a modified list with elements pheno, geno, map, pedigree, covar,

and info. The str function returns a compact display of the internal structure of the gp data object, and is especially well

suited to display the (abbreviated) contents of lists of the gp data object.

The result of str(gp)is a view of the elements contained inside the gp object. Element covar is a data frame with

654 individuals and 4 variables. The id field is character, phenotyped, genotyped and family fields are logical.

This element indicates which individuals are included in the genotype and phenotype data. The elements named ‘pheno’,
‘geno’, ‘map,’ and ‘pedigree’ hold phenotypic, genotypic, genetic map, and pedigree information, respectively. We used a

subset of the original pheno object, including only the first phenotype (subsetting not shown).
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> str(gp)

List of 7

$ covar :’data.frame’: 654 obs. of 4 variables:

..$ id : chr [1:654] "0001" "0003" "0004" "0005" ...

..$ phenotyped: logi [1:654] TRUE TRUE TRUE TRUE TRUE TRUE ...

..$ genotyped : logi [1:654] TRUE TRUE TRUE TRUE TRUE TRUE ...

..$ family : logi [1:654] NA NA NA NA NA NA ...

$ pheno : num [1:654, 1, 1] 8.75 10.36 9.6 9.43 9.8 ...

..- attr(*, "dimnames")=List of 3

.. ..$ : chr [1:654] "0001" "0003" "0003-3" "0004" ...

.. ..$ : chr "Sim.Pheno"

.. ..$ : chr "1"

$ geno : chr [1:654, 1:2600] "AG" "AG" "GG" "AG" ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:654] "0001" "0003" "0003-3" "0004" ...

.. ..$ : chr [1:2600] "F51TW9001A34NZ-1129" "F51TW9001A34NZ-1367" "F51TW9001A34NZ-175"

"BX679184-252" ...

$ map :Classes ‘GenMap’ and ’data.frame’: 2600 obs. of 2 variables:

..$ chr: num [1:2600] 1 1 1 1 1 1 1 1 1 1 ...

..$ pos: num [1:2600] 0 0 0 3.24 3.24 3.24 3.24 7.65 7.65 9.22 ...

$ pedigree :Classes ‘pedigree’ and ’data.frame’: 654 obs. of 4 variables:

..$ ID : chr [1:654] "0001" "0003" "0004" "0005" ...

..$ Par1 : chr [1:654] "0" "0" "0" "0" ...

..$ Par2 : chr [1:654] "0" "0" "0" "0" ...

..$ gener: int [1:654] 0 0 0 0 0 0 0 0 0 0 ...

$ phenoCovars: NULL

$ info :List of 3

..$ map.unit: chr "cM"

..$ codeGeno: logi FALSE

..$ version : chr "gpData object was created by synbreed version 0.11-29"

- attr(*, "class")= chr "gpData" - attr(*, "class")= chr "gpData"

The output of the summary function also helps to understand the contents of a gpData object, including the number of

individuals phenotyped and genotyped, descriptive statistics of response variables, the number of markers, the proportion of

missing marker scores, and the number of markers per chromosome:
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> summary(gp)

object of class ’gpData’

covar

No. of individuals 654

phenotyped 654

genotyped 654

pheno

No. of traits: 1

Sim.Pheno

Min. : 7.950

1st Qu.: 9.472

Median : 9.994

Mean : 9.988

3rd Qu.:10.488

Max. :12.112

geno

No. of markers 2600

genotypes AA AC AG AT CC CG GA GC GG TA TC TG TT

frequencies 0.1427341 0.03877382 0.1259845 0.01232004 0.1483598

0.01716655 0.004114326 0.01691778 0.1732586 0.01316455 0.1194337

0.04364679 0.1422689

NA’s 0.186 %

map

No. of mapped markers 2258

No. of chromosomes 12

markers per chromosome

1 2 3 4 5 6 7 8 9 10 11 12

172 182 201 188 172 205 194 154 206 175 208 201

pedigree

Number of

individuals 654

Par 1 189

Par 2 90

generations 2 2
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Recoding Loci and Imputing Missing Genotypes

The synbreed codeGeno function is used to perform the following data processing steps on a gpData object (Wimmer et al.

2012):

1. Remove markers with too many missing values

2. Recode marker genotypes from base pairs (or allele pairs) to counts of minor allele

3. Impute missing genotype scores

4. Recode minor and major alleles if imputation results in the ‘less common’ allele in the raw data becoming the ‘more

common’ allele
5. Remove markers with low minor allele frequency (MAF)

6. Remove redundant markers

In the following example, we use codeGeno function to recode the genotypes from base pair calls to numeric minor allele

frequency counts. At the same time, we impute the missing genotypes (impute.type¼”random”) as random samples

from the expected genotype frequency distribution, given the observed allele frequencies and assuming HWE. The random

imputation method is not generally recommended, we use it in this example because it is fast; more details about alternative

methods for imputation of missing genotypes are described in Chap. 10. We also discard markers with MAF of 0.01 or less

(maf¼0.01), or with 10% or more missing genotypes (nmiss¼0.1).

If there are heterozygotes in the original base pair call genotypes, we need to include the argument ‘label.heter¼’. The
value of this argument should be either a vector of strings identifying all possible heterozygous codes in the original data or a

function that returns TRUE given any genotype code string that refers to a heterozygote. If the original data are coded as base

pair calls like “A/T”, “AT”, “A:T”, or “A|T” to indicate heterozygotes, as in this example, we can just set the argument to:

label.heter ¼ “alleleCoding”.

In the example, gp is the object of class gpData, and the option verbose¼TRUE prints out a report in the R console about

details of what is being done. Finally, the save function of R saves the object gp.num in the working directory for future

use. For further data analysis, the object can be loaded into the R environment with the command ‘load(file ¼"mari-

time pine codeGeno data.rda")’ instead of running all the data steps to re-create the gp.num object.

The following output will be printed to the terminal because we requested the option verbose¼TRUE:

step 1 : 2 marker(s) removed with > 10 % missing values

step 2 : Recoding alleles

step 4 : 31 marker(s) removed with maf < 0.01

step 7 : Imputing of missing values

step 7d : Random imputing of missing values

step 8 : No recoding of alleles necessary after imputation

step 9 : 0 marker(s) removed with maf < 0.01

(continued)
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step 10 : No duplicated markers removed

End : 2567 marker(s) remain after the check

Summary of imputation

total number of missing values : 3016

number of random imputations : 3016

After processing to remove markers with high missing data rates or low MAF, 2,567 markers remain. Imputation replaced

3,016 NA scores with random draws from expected genotype distribution given the observed allele frequencies for each

marker. The resulting genotype data are coded 0, 1 and 2. A subset of the summary of gp.num object is given below. The

only differences compared to the gp object is that the genotypes are now allele contents, and no genotype scores are missing.

> summary(gp.num)

object of class ’gpData’

covar

No. of individuals 654

phenotyped 654

genotyped 654

…

geno

No. of markers 2567

genotypes 0 1 2

frequencies 0.4924888 0.396962 0.1105492

NA’s 0.000 %

Genetics Package for Estimating Population Parameters

An example below demonstrates the calculation of population genetic parameter estimates, such as HWE, polymorphism

information content and heterozygosity using the genetics package.

Code example 9.2

Using genetics package to calculate some population parameters (Code 9-2_Population parameters.R)

The first part of the script reads the original marker and pedigree data file with base call encoding (e.g., AA, AT, TT),

extracts just the marker data and creates a matrix of marker genotypes.
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To conduct analysis, the genetics package requires genotype calls to be pairs of observed nucleotides separated by a slash

(e.g., “A/T”) as genotypes. In this example, our data are formatted without the slash (“AT”) so we need to do a little work to
add the slash between the two alleles of each individual’s genotype. Genotype conversion is not done for missing values

(NA). Then we use the genetics package function makeGenotypes to convert it to a special data frame format that is used

by other analysis functions of the genetics package.

Some of the calculations such as HWE can take a long time. For demonstration purposes we create a factor named

gpine1locus with one locus and use the functions summary(), HWE.exact(), and HWE.chis() to check the

segregation at the locus and test it for deviation from Hardy-Weinberg equilibrium expectations.
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The output of these commands is shown below. The summary function prints out the allele and genotype frequencies,

heterozygosity, and polymorphic information content of the first locus. After the summary, we performed exact and

chi-squared tests of Hardy-Weinberg Equilibrium at this locus; both tests indicate no evidence to reject the null hypothesis

that the population genotype frequencies are in HWE.

> head(gpine[,1:4])

384_PP2C-246 AJ300737-208 BX666025-170 F51TW9001ARTXE-215

0001 G/G G/G G/G A/A

0003 G/A G/G G/G A/A

0003-3 G/A G/G G/G A/A

0004 G/G G/G G/G A/A

0005 G/G G/G G/G A/A

0006 G/G G/G G/G A/A

> summary(gpine1locus)

Number of samples typed: 653 (99.8%)

Allele Frequency: (2 alleles)

Count Proportion

G 1286 0.98

A 20 0.02

NA 2 NA

Genotype Frequency:

Count Proportion

G/G 633 0.97

G/A 20 0.03

NA 1 NA

Heterozygosity (Hu) = 0.03018195

Poly. Inf. Content = 0.02970406

> HWE.exact(gpine1locus)

Exact Test for Hardy-Weinberg Equilibrium

data: gpine1locus

N11 = 633, N12 = 20, N22 = 0, N1 = 1286, N2 = 20, p-value = 1

> HWE.chisq(gpine1locus)

Pearson’s Chi-squared test with simulated p-value (based

on 10000 replicates)

data: tab

X-squared = 0.15794, df = NA, p-value = 1

It is awkward to conduct this test for each locus one at a time. Instead, we can use the apply() function of R to apply the

HWE.chisq function to all of the loci at once. This function runs a bit slow, but returns a list of results for all the markers.

Then we can use the sapply() function to extract the p-values from all of the tests and simplify the return object to a
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named vector. It is a simple matter to find the smallest p-values corresponding to the loci with most extreme deviations from

HWE, and go back and inspect those loci.

The results demonstrate that some markers, such as ‘BX253931-1759’, deviate quite substantially from HWE expectations,

due to a deficiency of heterozygotes. Users should consider whether such markers should be removed from further analysis

or if this result is biologically significant.

> head(all.HWE.p)

BX253931-1759 BX253126-1425 F51TW9001AQDJL-451

0.00009999 0.00049995 0.00069993

FN695545-1347 BX252003-1657 BX680071-376

0.00079992 0.00079992 0.00099990

> summary(gpine[[names(all.HWE.p[1])]])

Number of samples typed: 649 (99.2%)

Allele Frequency: (2 alleles)

Count Proportion

C 737 0.57

G 561 0.43

NA 10 NA

Genotype Frequency:

Count Proportion

C/C 240 0.37

C/G 257 0.40

G/G 152 0.23

NA 5 NA

Heterozygosity (Hu) = 0.4911857

Poly. Inf. Content = 0.3703614

> HWE.exact(gpine[[names(all.HWE.p[1])]])

Exact Test for Hardy-Weinberg Equilibrium

data: gpine[[names(all.HWE.p[1])]]

N11 = 240, N12 = 257, N22 = 152, N1 = 737, N2 = 561,

p-value = 9.81e-07
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Data Summary and Visualization

Data on breeding populations may be complex and involve information from markers, phenotypes, genetic maps, and

pedigrees. Graphical summaries (‘data visualization’) are increasingly useful to understand large and complex multi-

dimensional data sets. Although regular R graphic functions, such as hist and plot, can be used to visualize data,

more advanced functions or more coding may be needed to produce higher quality images. The ggplot2 package of R

provides an excellent framework for producing a wide array of customizable data visualizations (Wickham 2010). Some of

the specialized packages, such as synbreed, also implement visualizations from their specifically formatted internal objects.

In the following example we use functions from various packages to visualize and summarize the maritime pine data,

following Isik et al. (2016). Before running the script Code 9-3_Visualize.R, users must first load the R data set ‘maritime
pine gpData.rda’ previously created by Code 9-1_Data steps.R into the working environment. We show the results of

visualizations here, leaving the details in the supplementary code.

Genetic Map

Low-density marker maps can be obtained by using the plotGenMap function of synbreed package.

Code example 9.3

Visualizing genetic map using the plotGenMap function (see details in R code Code 9-3_Visualize.R)

Changing the argument dense¼F to dense¼T generates high density maps. If there are many markers, it may take some

time to generate the high density map. The nMarker option controls whether to show the number of markers on the linkage

group or not. If true, the numbers of markers are printed below each linkage group in a genetic map (Fig. 9.2).
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Pairwise Linkage Disequilibrium

The pairwiseLD function in the synbreed package estimates pairwise Linkage Disequilibrium (LD) between markers,

expressed as r2, using an object of class gpData. The option type¼ controls if the output of pairwise LD estimates is a

matrix or a data frame. Some functions or packages require the matrix format. Pairwise LD calculation is carried out for all

chromosomes by option ‘chr¼ ’ but it can be limited to a single chromosome by specifying a chromosome number,

e.g. ‘chr¼1’ for chromosome 1.

We subset the LD.df to have a data frame for chromosome 1 only. There are five variables in the chr1 data frame,

as shown in the output below. The first two variables are marker1 and marker2. They are followed by r and r2

and dist. The “dist” is the distance between marker positions, which could be in cM or in base pairs, depending on the

input object.

’data.frame’: 14535 obs. of 5 variables:

$ marker1: chr "F51TW9001A34NZ-1129" "F51TW9001A34NZ-1129" "F51TW9001A34NZ-1129"

"F51TW9001A34NZ-1129" ...

(continued)
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Fig. 9.2 Genetic map of
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chromosomes. The numbers of

markers on each chromosome are
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$ marker2 : chr "F51TW9001A34NZ-1367" "F51TW9001A34NZ-175" "BX679184-252" "CR394043-2000" ...

$ r : num 1 0.3577 -0.1219 0.0295 -0.0317 ...

$ r2 : num 1 0.127972 0.014866 0.000868 0.001007 ...

$ dist : num 0 0 3.24 3.24 3.24 3.24 7.65 7.65 9.22 9.22 ...

In the code below we use ggplot2 to produce mean LD for chromosome 1. We first use a function named “meanLD” to
calculate the mean of a given vector (r2 values in chr1) and call it in the ggplot code.

The mean LD on chromosome 1 is very low (r2 ¼ 0.011) and decays rapidly as the distance between markers increases

(Fig. 9.3). The LD values between some pairs of markers is very high (>0.5). By definition LD is non-random association

between markers. If a population has genetically related individuals, as in a breeding population or if there is a genetic

structure (two different founder groups) in the population, LD estimates might be biased (Mangin et al. 2012). Very high LD

values can also be artifact of having physically linked markers belonging to the same contig or bias in composite linkage

genetic maps (Plomion et al. 2014). Some bias in LD estimation can be reduced by using the genomic relationships of the

individuals (Isik et al. 2016).

Fig. 9.3 LD between pairs of markers as a function of distance (cM) on chromosome 1. LD decays rapidly as the distance increases
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The pairwise LD can also be visualized by using the LDMap function as shown below. The function requires a matrix of LD

values. We create a matrix of LD values for chromosome 1 by using the pairwiseLD function with option chr¼1 and

save it as LD.mat.chr1. We then use the LDMap function to generate a map of LD on the chromosome (Fig. 9.4).

Each colored rectangle represents the squared correlation (r2) measure of LD between a pair of SNPs. Since LD is near zero

for most pairs of loci, the area is mostly empty. We see high LD depicted by blocks of dark red color, which only occur

among SNPs at relatively close map positions. The map positions are illustrated on the diagonal line (Shin et al. 2006).

The LD (r2) between adjacent markers along each chromosome can also be visualized as a heat map (Fig. 9.5) using the

function plotNeighbourLD of the LDheatmap package (Shin et al. 2006). The function uses the genetic map in gp.num

object created by synbreed and LD.matrix, the matrix of pairwise LD calculated previously.

Pairwise LD on chromosome 1

Genetic Map Length:115cM

R2 Color Key

0 0.2 0.4 0.5 0.6 1

Fig. 9.4 The pairwise LD for 171 markers on chromosome 1 as the upper diagonal of the matrix. The lines on the diagonal show the location of

markers (genetic distance)

284 9 Exploratory Marker Data Analysis



15
0

10
0

50
0

chr

po
s

1 2 3 4 5 6 7 8 9 10 11 12

171 182 200 185 172 198 192 154 205 172 202 200

r2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9.5 Pairwise LD between

adjacent markers on each

chromosome as a heat map. The

dark bands suggest very high LD

between adjacent markers

distributed on a chromosome

Data Summary and Visualization 285



Imputing Missing Genotypes 10

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-3-319-55177-7_10) contains supplementary material,

which is available to authorized users.

# Springer International Publishing AG 2017

F. Isik et al., Genetic Data Analysis for Plant and Animal Breeding, DOI 10.1007/978-3-319-55177-7_10
287



Abstract

The term ‘imputation’ refers to the estimation of values to replace missing observations in a data set. In this chapter, we

are interested in imputing missing genotype values. The chapter is not intended as a rigorous treatment of the use and

implications of imputation in breeding values prediction, but rather as a brief overview of some common strategies

currently employed. For the reader interested in a more in-depth treatment, references are provided within the chapter.

Introduction

The imputation process can be carried out either using only the information contained within the dataset of interest, or by

incorporating additional data from other sources (such as a reference panel of haplotypes from a haplotype discovery

project) if available. In both cases, the availability of at least one reference sequence for the species is needed to locate

markers on chromosomes and place them in correct order with respect to the physical sequence. A larger number of

sequenced individuals from the species is required to use reference haplotype panels, and these are not available for many

crop and tree species. The availability of reference genomes is likely to improve within the next few years for many

organisms. Within this chapter, we will discuss the two basic scenarios for imputation: (1) imputation from a densely

genotyped reference panel to an experimental population genotyped at lower marker density, and (2) imputation of more or

less randomly missing genotype values using only the experimental population itself. In both cases, we assume that markers

are ordered correctly based on a common reference sequence. Recently, a few methods have been proposed to perform

imputation of unordered marker sets that do not require a reference genome (Money et al. 2015; Rutkoski et al. 2013). As

these methods are relatively new and untested in large populations, we will not cover these in this edition of the book.

With the advent of the genomic era there is an unprecedented amount of genotypic information being generated routinely.

Within this context there are two main reasons for imputing data. The first is that no assay is perfect, and so some fraction of

genotype data will be missing from virtually every genotype dataset. The second reason is that high-density genotyping

(or sequencing) is expensive, and imputing genotype data can be much less expensive than genotyping. Dropping the

individual or locus records in which these missing values occur is an option for single-marker methods such as association

genetics, provided that the overall level of missing data is relatively low for each locus. Analytical methods that consider

more than one locus at a time are often much more sensitive to missing data, because it is not cost-effective to drop

individuals that are missing data at any one of the loci being analyzed. In the extreme case in which all marker loci in the

genome are analyzed at once, the approach of dropping individuals with missing genotype data can mean discarding

hundreds or thousands (or even hundreds of thousands) of correct data values in order to remove a small proportion of

missing values. Furthermore, predictions of genetic merit of individuals using linear models and the realized genomic

relationship matrix often require that there be no individual markers missing values. Some software do accept missing

values, but those programs must carry out some imputation internally before the data can be analyzed, and often the

imputation used is ad hoc and not necessarily accurate or optimal.

Imputing missing genotypic data can be less expensive and almost as accurate as experimentally determining the genotypes.

Imputation methods that exploit linkage disequilibrium (LD) among SNP loci can often impute missing genotypes with 90%

or greater accuracy (Huang et al. 2012). Breeders frequently work with populations derived from structured mating designs

in which many individuals share one or both parents in common, and can use the LD created by such mating designs to

impute genotypes in progeny based on known genotypes in parents. High-density SNP genotyping in parents of a population

allows accurate imputation of missing genotypes in progeny of those parents that are genotyped at a much lower density.

This approach provides the benefits of high-density SNP genotyping with much of the cost-effectiveness of low-density

genotyping, and can work very well in populations designed specifically to take advantage of within-family LD for

imputation (Habier et al. 2009; Yu et al. 2008). As noted above, linkage disequilibrium can be a powerful asset in imputing

missing values with high accuracy. To exploit LD, however, it is essential to know which SNPs are in LD with any particular

SNP that has missing values. LD across a population of unrelated individuals is typically a function of population history and

genetic or physical distance between loci, so finding SNPs that are physically or genetically tightly linked is valuable. In

species for which a reference genome sequence is available, the chromosomal positions of SNP loci are often available from

the genome sequence, but for species that lack a reference genome sequence, alternative approaches need be used to identify

loci in LD with a target SNP.
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The Idea Behind Imputation

The following diagram shows a three-generation pedigree of diploid individuals, with a segment of one homologous pair of

chromosomes shown as haplotypes below the symbol for each individual. This figure outlines one common scenario for

imputation: genotype values are not missing randomly, rather, some part of the population has been genotyped at higher

density than other members of the population, and we wish to impute all the SNPs identified in the high density genotyping

platform to the whole sample.

The SNP loci in bold are those genotyped in all individuals; the loci in gray are genotyped only in the ancestors, and the

genotypes of progeny at those loci are to be inferred by comparing the haplotypes at the bold SNP loci from related

individuals. In the first generation we have 8 distinct haplotypes (four per cross) that can be passed to the progeny of the

crosses, a1, a2, b1, b2, c1, c2, and d1, d2. In the second generation we can resolve which haplotype has been passed to the

two progeny: a1 and b1 to the first individual and c1 and d1. In the third generation only bold markers were genotyped. In

this case the haplotypes of individual 1 are ambiguous: it is not possible to know whether it inherited the a1 and the d1
haplotypes, or the b1 and the c1 haplotypes. Individual 2 inherited the a1 and the c1 haplotypes. Individuals 3 and 4 inherited

the b1 haplotype from one parent and d1 haplotype from the other. You should notice that imputation essentially relies on

knowing/or inferring the haplotype phase of individuals and then use linkage disequilibrium (LD) information from nearby

markers to replace missing genotypes.

In most cases the methods used for imputation rely on a known genome assembly (so that the order of markers is known

before analysis) and a combination of maximum likelihood and Bayesian methods to predict missing genotypes. We will

shortly describe one of these methods but Figs. 10.1 and 10.2 shows in a conceptual way how these software work, without

concern for the details of the algorithms involved. The diplotype (genotype) of an individual consists of a pair of haploid

gametes (haplotypes) encoded as unphased pairs of alleles at a certain position.

In the most common situation arising with genomic information in breeding we observe diplotypes as opposed to haplotypes.

The reasons for this are manifold. Diplotypes can be obtained easily through high-throughput platforms, while there are not

equivalent platforms for haplotypes. In addition, methods for estimating genomic relationships and predicting genetic values

from SNP genotype data are for the most part geared toward the use of diplotypes, rather than haplotypes, although the use of

haplotypic values has been proposed. As a result, one common way of encoding genotypes numerically is as minor allele

content, or the number of copies of the minor allele, as discussed in Chap. 9.

For example, assuming that A and C are the major alleles, and T and G are the minor alleles, at loci 1 and 2, respectively,

then the minor allele content for the three possible genotypes is as fol7lows:

locus1 Content locus2 content

AA 0 CC 0
AT/TA 1 CG/GC 1
TT 2 GG 2

This method of encoding SNP genotypes is readily used in subsequent analyses that relate genetic information to phenotype

information, to estimate allele additive and dominance substitution effects on a phenotype; genetic merit of individuals

across all markers or genetic merit based on additive, dominance and total genetic marker effects.

Pedigree Free Imputation

Several pedigree-free methods have been used in livestock and plant science to perform genotype imputations. These

methods were mostly developed for application in human populations where pedigree information is for the most part not

available or relatively incomplete. Other methods that effectively make use of deep pedigree information have been

proposed, particularly for livestock (Hickey et al. 2012; Sargolzaei et al. 2014; VanRaden et al. 2013). While some of

these pedigree-based methods are extremely effective, pedigree-free methods remain very popular due to their overall

versatility.

The concept of phasing, as outlined in previous sections is closely related to that of imputing missing genotypes. Genotype

phasing tries to determine the non-observed haplotypes that underlie the observed genotypes. Genotype imputation is a

Pedigree Free Imputation 289



process that is very similar to phasing. It attempts to model the non-observed haplotypes using a reduced proportion of

observed genotypes. All pedigree-free imputation methods rely on the same “intuition”. In a genomic region there are a few

haplotypes that are common and all the remaining ones are likely to be derivations of existing haplotypes through either

recombination or mutation. So the majority of methods effectively try to recognize “haplotype clusters” as a common

consensus haplotype and a set of related (derived) haplotypes. Effectively, the possible haplotypes originate from a finite

Fig. 10.1 Imputation of missing

loci using haplotypes. The SNP

loci in bold are those genotyped

in all individuals; the loci in gray

are genotyped only in the

ancestors
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number of clusters. So the methods attempt to compute the probability of a particular haplotype given a cluster p(haplotype|
cluster). Different methods differ in the way they recognize and organize these clusters but the general intuition remains the

same. After having inferred the cluster membership based on the observed genotypes, the algorithms then impute missing

genotypes based on their cluster membership.

Pedigree-free imputation algorithms are for the most part hidden Markov Model (HMM)-based approaches that try to

approximate the demographic history of a sample and capture linkage disequilibrium information. Hidden Markov Models

have a basic structure that make them suitable for both of these tasks. HMM have underlying hidden states that cannot be

observed and they use other observed data that is controlled by the non-observed hidden states when attempting to resolve

these hidden states. When using HMM for genotype phasing and/or imputation, the observed (non-missing) genotypes form

the observed states and the non-observed haplotypes are represented by the hidden states. Transition probabilities, which are

related to recombination fractions and haplotype frequencies, are used to determine the ways in which hidden states can

change from one to another. Currently the most common HMM used for genotype phasing/imputation are implemented in

four software packages: fastPHASE (Scheet and Stephens 2006), Beagle (Browning and Browning 2007), IMPUTE2

(Howie et al. 2009), and MaCH (Li et al. 2010). Within this chapter we will provide an example of imputation using

Beagle, since this software has established itself as a “de facto” standard for most of crop/livestock applications. Nonetheless

all proposed software have pros and cons. Marchini and Howie (2010) and Browning and Browning (2011) have compared

these algorithms theoretically and from the point of view of application to human data sets. The reader is referred to these

publications for an in-depth treatment of the subject.

Beagle is a mature software that is currently at version 4.1. Each new version has changes and improvements of both the

algorithm used and the formats and options available to the user, so we will not focus on the specifics of the software beyond

what is strictly necessary. The reader can refer to software webpage for a complete overview of the software options. (https://

faculty.washington.edu/browning/beagle/beagle.html). Furthermore we will not cover in depth the details of the Beagle

algorithm. Details on the inception and evolution of the method can be found in related papers (Browning and Browning

2011, 2013; Browning and Yu 2009; Browning 2006).

We have mentioned before how imputation software rely on the concept of clustering haplotypes into blocks. A simple

solution to find haplotype blocks would be to use sliding windows of markers to cover the entire genome. While this

approach is simple, fixed window size would not be able to effectively capture LD patterns. Alternatively, windows of all

possible sizes could be used to account for linkage structure, but this would result in extremely high computation costs.

Fig. 10.2 Imputation concept based on LD and a reference haplotypes
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Browning (2006) proposed an heuristic method for building localized haplotype clusters by taking into account linkage

disequilibrium. The algorithm uses a Markov Chain approach of variable length. As a result, haplotypes are clustered at each

marker and the number of clusters is not fixed a priori. The algorithm is an extension of the cursive writing recognition

algorithm proposed by Ron and colleagues (Ron et al. 1995). The algorithm represents haplotypes as directed acyclic graphs

and it builds trees representing each distinct haplotype. For each edge it counts the number of haplotypes “passing through”
that particular edge, essentially weighting each edge. After that it iteratively merges nodes for which the transition

probability to downstream nodes are sufficiently similar. Beagle builds on this algorithm by adding an iterative procedure

(similar to the expectation-maximization algorithm) to perform phasing and imputation. In a nutshell, the algorithm is

initialized making a predetermined number of copies of each available genotype. Missing alleles are then imputed at random

using allele frequencies and haplotypes are likewise created by randomly phasing.

An iterative approach follows by which localized haplotype clusters are built following the scheme described above and

haplotypes pairs are sampled using an HMM for each genotype. This step is repeated several times and in the end the most

likely haplotype for each genotype is imputed using the Viterbi algorithm, a particular HMM algorithm that is better at

reconstructing sequences, such as haplotypes, than algorithms for imputing individual sites separately.

Imputation from Densely Genotyped Reference Panel
to Individuals Genotyped at Lower Density

The following is a simplified example of how to use Beagle to impute missing genotypes from a reference panel to a related

set of individuals from the same population, but with genotyped at lower marker density. This approach relies on the

assumption that the reference panel accurately represents the haplotype frequencies of the set to be imputed, so the

experimental set of individuals should be sampled from the same population as the reference set of genotypes. We use

simulated data for 500 individuals with SNPs called on two autosomes. On the first chromosome we have 3000 SNP markers

while on the second we have 2000. It should be noted that in this example we have simulated markers with a relatively low

linkage disequilibrium (average r2 between markers <0.05). This is a typical situation of populations with a large effective

population size. The data are contained in two files. The first file holds the diplotypes (ImputeGenotype):

844 0 2 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 2 0 0 0 2 4 0 0 0 4 4 3 2 0 4 4 0 0 3 0

0 2 3 0 0 0 3 0 0 0 4 2 2 0 3 2 2 0 0 4 4 3 0 0 0 4 3 0 0 4 4 0 0 4 0 2 2 0 0

0 0 0 3 0 0 0 3 0 3 0 0 4 0 0 0 0 0 0 0 2 0 2 0 0 0 2 2 0 0 0 0 0 3 2 3 0 5

854 0 0 4 3 0 3 2 0 2 0 0 0 4 3 0 0 3 0 0 3 0 4 4 0 0 0 0 0 0 4 0 0 0 0 4 4 0

0 0 0 0 0 0 2 0 3 0 0 2 3 0 0 2 2 0 0 0 0 2 0 2 4 3 2 3 3 0 0 0 3 3 3 2 3 4 0

0 0 0 0 0 0 3 3 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 4 3 0 0

The bold numbers are individual IDs. The subsequent numbers are the numerical allele content diplotype codes for each SNP

marker, with the marker genotypes given in order of their physical position. The genotype codes 3 and 4 represent the two

phased heterozygous (0/1 and 1/0, respectively). Finally, the code 5 represents unknown (./.) genotypes.

You should notice that in this case the diplotypes are already phased (e.g., we already know which chromosome individuals

have inherited from each parent). This is done in this example to keep calculations to a minimum, yet it is not a requirement

of the software the phased ‘3’ and ‘4’ heterozygous codes could be replaced with the non-phased ‘1’ diplotype code for

heterozygotes.

The second file (ImputeMarkerMap) is a map file containing the chromosome and position of each marker.

1 1_78635 0 78635

1 1_153228 0 153228

1 1_243172 0 243172

1 1_334883 0 334883

1 1_417617 0 417617

1 1_489702 0 4897021
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In this case the first field corresponds to the chromosome number. The second column contains the marker name. The third

column is reserved for the genetic linkage map. The map is assumed to be in centiMorgans (cM). The genetic map is used to

account for heterogeneity of recombination events during imputation. If the genetic map is not provided Beagle will assume

a constant recombination rate of 1cM/Mb. In the example provided the genetic map is omitted (every value in the columns is

given as 0). Finally, the fourth column contains the physical position of the markers on the chromosome (in Mb).

We are going to start by reading the two files in R and prepare them in the correct Beagle format.

Code example 10.1

Creating VCF genotype format for Beagle v4 for imputation with a reference panel (see ‘Code 10-1_
GenotypeSetUpBeagle4.R’ for details).

Beagle from version 4.0 and later requires a Variant Call Format (VCF) 4.2 as input. A VCF file is a text file commonly used

to store genotype data. The VCF file has three sections: a meta-information section (lines beginning with ##), a header

section (one line beginning with #LG or #CHROM) and a section where data lines are accumulated. See an example below.

A detailed explanation of the file format can be found at http://faculty.washington.edu/browning/beagle/intro-to-vcf.html.
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The next section of the R code accomplishes a few tasks. First it converts minor allele content to the genotype format (0/0,

0/1, 1/0, 1/1) required. Furthermore it splits the data in order to create a couple of sets. A first set contains a reduced panel of

100 individuals for which we want to perform imputation. For these individuals the script deletes marker information

sampling only every fifth marker. The remaining 400 individuals are placed in a reference set in which all markers are

genotyped. The scripts attach the required meta-data and header lines to each of the two sets and write them to four files. Two

reference files, one per chromosome: ref_data1.inp, and ref_data2.inp, respectively, and two reduced files (the ones that will
be imputed): Geno_data1.inp, Geno_data2.inp, respectively. As BEAGLE works with compressed files the script then

proceed to gzip all files.
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Below are a few lines of one of the files to be imputed
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and of one of the reference files (‘ref_data1.inp.gz’):

Notice that the samples of individuals (the columns) differ between the two files. The reference panel has ‘complete’ data
and is not included in the set to be imputed. Also notice that the reference panel has many more markers (rows) listed than

the set for imputation; only the markers in red are in common between the files. The markers that are included in the

reference data set but not in the target set will be imputed and included in the output files.

Also notice that the two files formats are essentially identical except for one difference. In the reference file (see the line

highlighted in red) the | sign is used in lieu of the/to encode the diplotypes. As a consequence of the different encoding in the
reference the diplotypes will be considered correctly phased and the software will not attempt to phase them. Conversely in

the reduced files phase provided will be discarded and markers will be phased.

Now that we have created the correct input files for Beagle we will need to install and run the software. First, users should

install the beagle program file (with extension ‘.jar’) from this website: https://faculty.washington.edu/browning/beagle/

beagle.html. The name of the file follows the format ‘beagle’ followed by the date of the current release, ending with ‘.jar’.
Place the downloaded file into the folder holding the input data sets. (Some browsers may attach a ‘.txt’ extension to the file,
if so, edit the name of the file to remove the ‘.txt’ so the filename ends in ‘.jar’.) A ‘.jar’ file is an executable java program

archive, this beagle program can be run in Linux by giving the command ‘java -jar beagle.27Jul16.86a.jar’ if

‘beagle.27Jul16.86a.jar’ is the name of the program file downloaded. However this command is not sufficient, we must

also supply the names of the input files and set the arguments on the command line. In this case, to impute the markers on

chromosome 1 using the reference panel, we need to use this command:

If we separate the call we can identify a few parts:
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This is the call to the program itself.

This part has the two main files required (in bold): gt, the reduced density genotype data for the individuals to be imputed

and ref, the phased genotype data on the reference panel used to guide the imputation.

The last part, impute¼TRUE, tells Beagle to perform imputation, and specifies the prefix name for the output file as an

argument to the option out.

To make this easier, we have included a shell script that executes this command in a loop over both chromosomes, in the file

‘BeagleLoop.sh’. The script will work for Apple OSX and Linux operating systems, but Windows users should see Box 10.1

for details on how to run this shell script and the Beagle analysis in a Windows operating system. Furthermore, the user must

edit the script (using a simple text editor) so that the name of the Beagle.jar file in the script matches the one the user has

downloaded.

Code example 10.2

Linux shell script to execute Beagle imputation in a loop over chromosomes (see ‘BeagleLoop.sh’ for details).

The script (which is invoked as sh BeagleLoop.sh) creates two calls to the Beagle software, one for each chromosome,

and stores them in two files that are sequentially called. The following are a few lines from the output file (‘Phased_data_1.
gt.vcf.gz’):
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Again you should notice that the file format is the same (VCF). The file contains information for all non-reference samples

and reports phased diplotypes. A few extra lines of meta-data have been added and some extra information is reported, but

the most notable difference between this file and the previous is that next to the phased genotype the allelic dosage is

reported after the: sign. For example, a genotype value of 0|0:0 indicates that the genotype is homozygous for the major

allele (0|0) and the estimated minor allele dosage is zero (:0). Values of 1|0:1 and 0|1:1 indicate heterozygotes with

minor allele dosage of 1. Values such as 0|0:0.15 are returned for imputed scores and indicate that the most likely

genotype for that SNP-individual combination is homozygous for the major allele, but its expected allele dosage is not

exactly zero, rather it is 0.15. If the locus is segregating for a major allele A and a minor allele a, the expected minor allele

dosage is p(Aa) + 2p(aa).

Notice that the genotype calls in this set for the first marker (at position 78635) match exactly those given in the input data

set, because this marker had complete genotype data in the imputed set, so nothing has changed. For the first four individuals

(coded 844, 854, 855, and 856) the marker scores are 0/0, 0/0, 1/0, and 1/0 (highlighted in red above), just as they were in the

original data set. For the second SNP (at position (153228), the imputed genotypes are 0/0 for the first four individuals (also

highlighted in red).

To check how well imputation works we will read the phased data back into R and transform them back into the original file

format.

Imputation from Densely Genotyped Reference Panel to Individuals Genotyped at Lower. . . 299



Code example 10.1
(Continued)

We are going to write the phased result to a file ImputePhasedGenotypes to make it easier to perform the comparison.
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Code Example 10.1
(Continued)

To compare the actual genotypes with the imputed ones we just subtract the original values from the imputed ones and for

any value different than 0 (the result if the imputation value is correct), we assign a value of 1. Then we obtain the error rate

as the mean proportion of errors per row, computed across only the 4000 SNPs that were imputed.

In this example (100 individuals to be imputed 1000 markers genotyped in the reduced panel) we obtain an accuracy of

approximately 0.67. The error rate includes heterozygote calls that are correct but have the wrong phase (e.g., 0|1 instead of

1|0). Some additional code is included in Code Example 10.2 to compute the accuracy ignoring phase, in which case the

accuracy improves to about 0.70. The imputation accuracy will depend on the number of individuals in the reference, the

number of markers to be imputed, their distribution across the genome, their allele frequency and the overall LD structure

and connectedness of the sample. As stated in the previous section, in the current example data were generated with low LD

and therefore, imputation accuracy is relatively low.

The example reported is intentionally minimalist and several factors influence imputation accuracy. Furthermore, in the case

presented only few markers were imputed. Significant differences are to be expected when imputation happens from low

density panels to sequence information.

Imputation from Densely Genotyped Reference Panel to Individuals Genotyped at Lower. . . 301



Box 10.1: Running Linux Commands in the Windows Operating System

The examples in this chapter will not run in a Windows environment directly. Although Beagle can be run using the

Windows command line, we recommend that Windows users install separate software to run the shell scripts and

Linux type commands. One possibility for Windows users is to install a Unix Virtual Machine, such as VMware

(http://www.vmware.com/products/player.html) or VM Virtual Box (http://www.oracle.com/technetwork/server-stor

age/virtualbox/downloads/index.html). This will run a Linux environment alongside of the Windows operating

system. This is a good option for users who will make extensive use of Linux programs, although it requires some

effort to set up properly to share the computer’s RAM and access the appropriate directories on the user’s computer. A

simpler approach is to install a free Linux shell program, such as Cygwin (https://www.cygwin.com/). Cygwin

provides a shell program that allows users to use Linux commands and basic utilities, as well as additional Linux

programs that the user can install (in our context, Beagle).

After installing Cygwin and launching the program, a command line box appears, for example:

The $ symbol is the command line prompt. The default home directory is ‘C:\Users\username’ but a few

tricks are needed to navigate the windows directories from inside Cygwin. First, Linux systems use ‘/’ instead of ‘\’ to
indicate subdirectories. Second, folder names with spaces in them that are often used in Windows have to be provided

in quotes to the Linux shell in Cygwin. Third, from inside Cygwin, a Windows path that looks like:

“C:\Users\jholland\Google Drive\Book\Book1_Examples\Ch10_impute”
has to be provided as:

"/cygdrive/c/Users/jholland/Google Drive/Book/Book1_Examples/Ch10_impute"

Notice the use of ‘/’ instead of ‘\’ and the use of "/cygdrive/c/Users. . ." instead of “C:\Users. . .”, and finally, a

subtle but important difference is that the quotation marks used inside of Cygwin are not identical to the open and close

quotation marks used in some word processing programs (so copying and pasting them to the Cygwin shell will fail).

Using some basic Linux commands, such as ‘cd’ for change directory and ‘ls’ to list the files present inside a

directory (see https://www.linux.com/ for tutorials and help documents), we can see the files inside the folder holding

the example data sets created for this chapter, and use the gzip command to compress the file ‘Geno_data1.inp’ created
by the R script in Code Example 10.1 to a gzip version:

(continued)
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Box 10.1 (continued)

You may have some different files, but you should have at least the files that end in ‘.inp’ if you have run the R script

in Code Example 10.1 Notice that the default gzip command creates a new file called ‘Geno_data1.inp.gz’ and deletes
the original file ‘Geno_data1.inp’:

To prepare all of the input files for the first imputation example for Beagle, we have to run gzip on the data input file

for chromosome 2 and also for the reference panel data inputs for both chromosomes, so that finally we have:

(continued)
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Box 10.1 (continued)

Then we can run the BeagleLoop.sh shell script to execute the Beagle imputation analysis:

This will run for some time, and when it finishes, it produces a series of output files:

The imputed genotypes are found in the files ‘Phased_data1.gt.vcf.gz’ and ‘Phased_data2.gt.vcf.gz’. These are read
in and checked for accuracy against the original ‘known’ genotypes in the second part of the R script given in Code

Example 10.1.

Imputation Without a Reference Panel

In some species, no high density reference genotypes or sequences are available to use as a means to estimate the population

frequencies of haplotypes. Or, what high density genotyped samples are available may not provide reasonable estimates of

the haplotype frequencies in a particular breeding population of interest. In these cases, the imputation can be carried out

using information only from the samples within the population of interest. In some cases, genotype data are obtained from

relatively low coverage sequencing, resulting in a data set with many SNPs called across the whole sample, but also many

individual genotype calls that are missing because of the stochastic nature of some next generation sequencing platforms. So,

the researcher may be faced with a case of many missing genotype calls in the sample but no reliable reference panel to use

to guide the imputation. The structure of the missing data is different in this case than in the case of the high density reference

panel to low density target population described previously. Instead of missing data on a consistent set of markers that were

not included in the low density genotyping platform, the missing data will be closer to randomly distributed across SNPs and

individuals. In this case, the imputation can proceed by inferring haplotype frequencies from the available data alone. The

accuracy of this approach depends strongly on the proportion of missing data and the extent of linkage disequilibrium in the

sample. More extensive linkage disequilibrium results in fewer haplotypes with higher frequencies, which helps imputation

accuracy.

To simulate this scenario, Code Example 10-3 (‘Code 10-3_GenotypeSetUpBeagle4NoRef.R’) is an R script that takes in the

same initial data as used for the reference panel imputation scenario, but instead of splitting the data into a reference panel

and a target set with lower density, keeps the whole sample of 500 individuals together in a common data set and randomly

introduces 20% missing data.
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Code example 10.3
Generating random missing genotypes (see Code 10-3_GenotypeSetUpBeagle4NoRef.R for details).

Details of the simulation are in the R code and will not be discussed here, but the resulting data set for the first three markers

on chromosome 1 (in file ‘Geno_data_miss_rand1.inp’) looks like this:

1 78635 1_78635 C T . PASS . GT 0/0 0/0 1/0 ./. ./. 0/0

0/0 0/0 1/0 0/0 1/1 ./. 0/1 0/0 1/0 0/0 1/1 0/0 ./. 0/0

0/1 ./. 0/1 0/0 0/1 0/0 0/0

. . .

1 153228 1_153228 C T . PASS . GT 1/1 0/0 0/0 0/0 0/0 0/1

0/0 0/0 0/0 0/0 0/0 ./. ./. 0/0 0/0 0/0 0/0 ./. 0/0 0/0

0/0 0/0 ./. 0/0 0/0 0/0

. . .

(continued)
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1 243172 1_243172 C T . PASS . GT ./. 1/0 0/1 ./. 1/0 0/0

0/1 0/0 0/0 0/1 0/0 1/0 1/0 0/0 0/0 0/0 0/0 0/0 1/0 0/0

0/0 0/0 0/0 0/0 0/0 ./.

. . .

Notice that the individuals missing a genotype call at the first marker are not the same as those missing calls at the other

markers. Each SNP and each individual have a unique pattern of missing data. Once the files with randomly missing data are

created and compressed to .gz format, we can run the Beagle analysis using Code Example 10.4, which is a shell script

named ‘BeagleLoop2.sh’. This script operates very similarly to BeagleLoop.sh, but in this case Beagle is executed only with

a ‘gt’ file input and the ‘ref’ input file option is not used. For example, the call to execute imputation on chromosome 1 is:

Code example 10.4

Imputation on chromosome 1 using Beagle (see shell script BeagleLoop2.sh for details)

Since we execute Beagle without a reference panel input, Beagle estimates the haplotype frequencies using only the data

provided in the input genotype file, the same samples that we are imputing. Once the two Beagle analyses finish, they will

produce two key output files:

These can be read back into R using the second part of Code Example 10.3 script and compared to the original complete data

set. In this example, the accuracy is very poor, only about 43% (and that includes 20% of calls that were correct to begin

with!). With so much missing data and low levels of LD, estimation of the haplotype frequencies is very difficult. SNPs

called from low coverage sequencing often display substantial variation in the proportion of missing data among individuals,

and it is advantageous to first filter out the SNPs with high missing data rates and attempt to impute only sites with a

reasonable amount of data present.

Imputation with the Synbreed Package

The R package Synbreed discussed in Chap. 9 has several functions to impute missing genotypes without using a reference

panel (Wimmer et al. 2012). Code Example 10.5 provides a script to read in the same set of 5000 markers on 500 individuals

used previously in this chapter, randomly introduces 20% missing data, and imputes them using Synbreed. Synbreed has

several options for imputing missing data; this example demonstrates the using of the ‘random’ imputation method, which,

for each SNP, estimates the genotype frequencies from the available data, then replaces missing data with random draws

from the observed genotype frequency. Obviously, this information does not use LD or haplotype information, so it will tend

not to be very accurate, but it is fast and perhaps useful for situations with only a small amount of missing data and lacking

marker order information.
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Code example 10.5
Imputing missing genotype data with Synbreed (see code Code 10-3_ImputeWithSynbreed.R for details)

(continued)
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Code example 10.5 (continued)

The results of this script are printouts of the first ten SNPs on the first ten individuals from the original complete data set, the

data set with missing data, and the resulting imputed data set:
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The random imputation method is not generally recommended but Synbreed includes several other options for imputation.

Some of the other options also do not use haplotype information, but could be useful in specific cases (e.g., the impute.

type ¼ “family” method can be useful for doubled haploids or recombinant inbred lines from biparental crosses). In

addition, Synbreed has the option impute.type ¼ “beagle”, which will export the genotype data in a format that can

be read by Beagle and will send a shell command to execute the beagle analysis, however, it can be tricky to set up the

correct path information to make this work, and it does not always use the most current version of Beagle.
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Abstract

The resemblance between individuals in a population has been traditionally estimated from pedigrees. High-throughput

genotyping technology has enabled the use of large numbers of DNA markers to estimate the amount of genome shared

by individuals. Genetic similarity estimates based on genetic markers are more precise than those based on pedigree

information. Using the genomic relationships derived from markers for prediction of genetic merit of individuals has

gained considerable attention in animal and plant breeding in recent years. In this chapter, we introduce the concept and

provide some examples.

Realized Genomic Relationships

Traditional genetic evaluations combine phenotypic data and resemblance between relatives to predict genetic merit of

individuals. The resemblance coefficients derived from pedigrees are based on probabilities that alleles are identical by

descent (IBD). More recently, genetic markers distributed throughout the entire genome have been used to measure genetic

similarities more precisely than pedigree information (VanRaden 2008). Genetic markers estimate the proportion of

chromosome segments shared by individuals based on the identical by state (IBS) matching of marker alleles. Whereas

the matrix of pairwise pedigree relationships is referred to as the A matrix (because the elements are pedigree-based

estimates of additive genetic relationships), the matrix of pairwise realized genomic relationships estimated from marker

information is referred to as the G matrix. In this chapter, we will describe methods to compute the G matrix from markers

and the use of the G matrix to predict breeding values using genomic relationships. The methods described to compute

G require complete data (no missing values) and numericalized marker genotypes, so raw SNP data must first be processed

using the data recoding and imputation methods described in the previous two chapters.

We provide here a very small data example so the reader can follow the computations more easily. We start with a

numericalized genotype data set as described in Chap. 9, reflecting the dosage of minor alleles at each locus and individual.

For example, gene content values for three individuals at four loci might appear as:

Locus1 Locus2 Locus3 Locus4

Indiv1 0 1 0 2
Indiv2 2 1 1 1
Indiv3 2 0 0 0
. . .

We will refer to this matrix of raw marker scores as M. In the M matrix, the rows are individuals and the columns are loci.

Dimensions of the matrix are n (number of individuals) by m (number of loci). In this example, individuals 2 and 3 are

homozygous for the minor allele at locus 1. The designation of which allele is minor is based on the allele frequencies

estimated over the whole sample, not just these three individuals.

We can use a simple matrix multiplication to compute the number of homozygous loci in each individual and for each pair,

the number of loci with matching homozygous genotypes minus the number of loci homozygous for different alleles. This is

a kind of homozygous identity in state matching coefficient. To do this, first we rescale the gene content scores in M by

subtracting one from all elements, we get a new matrix with scores of �1, 0, and 1:

Locus1 Locus2 Locus3 Locus4

Indiv1 �1 0 �1 1
Indiv2 1 0 0 0
Indiv3 1 �1 �1 �1

We refer here to this matrix asM–1 (although VanRaden (2008) refers to this asM). If we compute the cross-product of the

rows of marker scores (mij for marker j in individual i) in M�1 for individuals 1 and 2, we get the number of loci at which

they are homozygous for the same loci (matching) minus the number of loci for which they are homozygous for different loci
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(not matching): Cross-product of rows 1 and 2 ofM�1:
Pm

j m1jm2j ¼ �1∗1ð Þ þ 0∗0ð Þ þ �1∗0ð Þ þ 1∗0ð Þ ¼ 1. Similarly,

the sum of squares of the first row with itself counts the number of homozygous loci in individual 1: Sum of squares of row

1 of M�1:
Pm

j m2
1j ¼ �1ð Þ2 þ 02 þ �1ð Þ2 þ 12 ¼ 3.

We can scale this up to compute the cross-products and sums of squares of all the rows simultaneously by simply multiplying

M–1 by its transpose. To make this clear, consider that the first column of the result of M–1*(M–1)T is equal to the matrix

M–1 times the first column vector of (M–1)T (Fig. 11.1).

Computing the other columns of the result in the same way, we get:

Consider the last column of this result, which corresponds to the cross-products of individual 3 with the others and itself: (�1

1 4)T. Individuals 1 and 3 have matching homozygous genotypes at locus 3 but have non-matching homozygous genotypes at

loci 1 and 4, so the element (1,3) in the result matrix is 1–2¼�1. Individuals 2 and 3 have matching homozygous genotypes

at locus 1 and no loci with non-matching homozygous genotypes, so the element (2,3) in the result is 1–0¼ 1. Individual 3 is

homozygous at all four loci in this example, so the element (3,3) equals 4.

-1 0 -1 1

1 0 0 0

1 -1 -1 -1

-1 1 1
0 0 -1

-1 0 -1

1 0 -1

=

-1

1
1

0

0
-1

-1

0
-1

1

0
-1

-1 + 0 + -1 + 1=

=

1

-1
-1

1

0
1

1

0
-1 3

-1
-1

+ +=

=

(M-1) (M-1)T

Column 1 of (M-1) (M-1)T

Fig. 11.1 Computing the first column of M–1(M–1)T. Diagonal element at the bottom (3) counts number of homozygous loci in individual

1. Off-diagonal elements (�1,�1) (row ¼ 2, col ¼ 1), and (row ¼ 3, col ¼ 1) count number of loci at which individual 1 is homozygous for same

allele minus homozygous for alternate alleles as individuals 2, 3

Realized Genomic Relationships 313



This example can be demonstrated with the R code in Code example 11.1.

Code example 11.1

Example of similarity matrices estimated from minor allele count data (“Code 11-1_M and Z matrices for

computing relationship matrix.R”)

> M <- matrix(c(0,1,0,2,2,1,1,1,2,0,0,0), nrow=3,ncol=4, byrow=T)

> M

[,1] [,2] [,3] [,4]

[1,] 0 1 0 2

[2,] 2 1 1 1

[3,] 2 0 0 0

> M-1

[,1] [,2] [,3] [,4]

[1,] -1 0 -1 1

[2,] 1 0 0 0

[3,] 1 -1 -1 -1

> (M-1)%*%t(M-1)

[,1] [,2] [,3]

[1,] 3 -1 -1

[2,] -1 1 1

[3,] -1 1 4

This cross-product matrix can be interpreted as a similarity matrix based on identity by state (IBS). However, our real

interest is in estimating identity by descent (IBD) relationships among the individuals, so we need a scaling of the marker

scores that will reflect covariance among the individuals in terms of IBD relationships.

As an example of why IBS measures are not directly appropriate to estimate IBD relationships, consider the contribution to

M�1*(M�1)T of a locus with a low minor allele frequency of p¼ 0.01. If the population is in Hardy-Weinberg equilibrium

we expect about 98% of the population to have genotype code 0 and only 0.01% of the population to have genotype code

2. The probability of sampling two unrelated individuals with matching 0 genotype codes at this locus is very high: 96%.

Since a huge proportion of pairs will match for homozygous major alleles even without common ancestry, it is clear that

IBS matches at this locus will provide little information about IBD relationships. In contrast to the limited information

provided by common allele matches, rare allele matches at this locus will be very informative about common ancestry. The

probability that an unrelated pair will both be homozygous for the minor allele at this locus is exceedingly small: p4 ¼ 10�8!

It should be clear that we need a method that appropriately weights the genotype matches to give more weight to matches

that are less likely to occur by chance without shared ancestry.

Wright’s (1922) definition of the coefficient of pedigree relationship between individuals as a correlation suggests that a

realized relationship coefficient estimator should be based on the covariance or correlation among marker scores for each

pair of individuals. For a single pair of individuals, i and j (members of a finite pedigree whose ancestors are unrelated),

twice their single-locus coancestry coefficient can be estimated as the cross product of their centered gene content values

divided by twice the allelic variance (Speed and Balding 2015).:

2rij ¼
xi � 2pð Þ xj � 2p

� �
2pq

ð11:1Þ

InEq. 11.1, xi andxj are theminor allele contents for individuals i and j, andp andq are theminor andmajor allele frequencies at the

locus.Themeangene content value at this locus is 2p, and thismeanvalue is subtracted fromthe observedgene contents inEq. 11.1

to get values centered on zero. To obtain the genome-wide realized relationship coefficients that can be interpreted as analogous to

classical pedigree relationships coefficients,we can average these values over allmarkers assayed.There is samplingvariancewith

these estimates, and the more markers used, the lower the sampling variance of the genome-wide estimate.

We will center the marker scores at each locus i by subtracting the mean score Pi ¼ 2bpi, where bpi is the estimated minor

allele frequency based on the marker data available. As an example of this scaling, let’s assume that the minor allele

frequencies estimated from all the individuals in the population for the four loci in the exampleMmatrix above are 0.01, 0.1,
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0.25, and 0.48. We will construct a matrix P containing twice the minor allele frequencies for each locus as the elements in

each column:

P ¼
0:02 0:2 0:5 0:96
0:02 0:2 0:5 0:96
0:02 0:2 0:5 0:96

24 35
Then we scale the original M matrix by subtracting P from it to compute a new matrix, Z:

Z ¼ M� P ¼
0 1 0 2

2 1 1 1

2 0 0 0

24 35�
0:02 0:2 0:5 0:96
0:02 0:2 0:5 0:96
0:02 0:2 0:5 0:96

24 35

Z ¼
�0:02 0:8 �0:5 1:04
1:98 0:8 0:5 0:04
1:98 �0:2 �0:5 �0:96

24 35
The difference between M and Z is a function of the allele frequencies, so it varies among columns of Z. For the first locus

(the first column of each matrix), the minor allele frequency was very low, so Z is very similar to the original matrix M.

Since homozygous common genotypes are scored as zero in M, they will contribute very little to the cross-products

computed from Z for loci where the minor allele frequency is low. In contrast, the homozygous rare genotypes at this locus

are near 2, so they will contribute proportionally much more to the cross-products computed from Z. In contrast, locus 4 had

nearly balanced allele frequencies, so that heterozygous matches count for little and homozygous matches contribute about

equal amounts, but still less than the homozygous matches at locus 1. The increased influence of rare allele matches in ZZT

compared toM�1*(M�1)T is shown in Fig. 11.2, this is precisely the weighting desired to reflect IBD relationship. Notice

that homozygosity of rare alleles also inflates the diagonal elements e.g., element (2,2).

We show the computations to form the ZZT matrix in R starting with a vector of estimated minor allele frequencies at each

locus in Code example 11.1

3 -1 -1

-1 1 1

-1 1 4

-1 0 -1 1

1 0 0 0

1 -1 -1 -1

-.02 0.8 -0.5 1.04

1.98 0.8 0.5 0.04

1.98 -0.2 -0.5 -0.96

1.972 0.392 -0.948

0.392 4.812 3.472

-0.948 3.472 5.132

(M-1)(M-1)T

Z = M-2PM-1

ZZT

Low MAF High MAF

ind1

ind2

ind3

ind1

ind2

ind3

ind1 Ind2 Ind3ind1 Ind2 Ind3

m1 m2 m3 m4 m1 m2 m3 m4

Fig. 11.2 Centering the columns of the marker data matrix M�1 to form Z matrix in a covariance matrix ZZT that reflects IBD relationships

Individual 2 homozygosity for rare allele at locus 1 is given high weight in ZZT. Similarly, individuals 2 and 3 matching homozygosity for rare

allele at locus 1 are given high weight in ZZT
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Code example 11.1

(continued)

> maf <- c(0.01, 0.1, 0.25, 0.48)

> P <- 2*c(1,1,1)%*%t(maf)

> P

[,1] [,2] [,3] [,4]

[1,] 0.02 0.2 0.5 0.96

[2,] 0.02 0.2 0.5 0.96

[3,] 0.02 0.2 0.5 0.96

> Z <- M-P

> Z

[,1] [,2] [,3] [,4]

[1,] -0.02 0.8 -0.5 1.04

[2,] 1.98 0.8 0.5 0.04

[3,] 1.98 -0.2 -0.5 -0.96

> Z%*%t(Z)

[,1] [,2] [,3]

[1,] 1.972 0.392 -0.948

[2,] 0.392 4.812 3.472

[3,] -0.948 3.472 5.132

Since ZZT is a covariance matrix, its elements get larger as we include more markers in the computation. To remove the

influence of marker number of the estimate, we can compute the average covariance per marker by dividing this matrix by

the sum of the variances at each locus, and it is this matrix that we will use as the estimated genomic realized relationship

matrix, G:

G ¼ ZZ0

2
P

pi 1� pið Þ ð11:2Þ

Dividing by 2 ∑ pi(1 � pi) (which is summed over m loci) scales G to be analogous to the numerator relationship matrix

A (VanRaden 2008; Forni et al. 2011), such that the expected off-diagonal coefficient for half-sibs is 0.25, for example.

Theoretical derivations of this realized relationship matrix estimator are given by Habier et al. (2007) and Endelman and

Jannink (2012). This formula is the basis for the relationship matrix estimation function in the synbreed R package (Wimmer

et al. 2012). Alternative estimators of the relationship matrix have also been proposed. These are summarized in Box 11.1.

We complete the computation of G for this example using R code:

Code example 11.1

(continued)

> denom = as.numeric(2*t(maf)%*%(1 - maf))

> denom

[1] 1.074

> G = (Z%*%t(Z))/denom

> G

[,1] [,2] [,3]

[1,] 1.8361266 0.3649907 -0.8826816

[2,] 0.3649907 4.4804469 3.2327747

[3,] -0.8826816 3.2327747 4.7783985
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The elements of the G matrix estimate the realized values of 2θij, twice the probability that individuals i and j are IBD for

alleles sampled at random from a common locus. The diagonal elements estimate 2θii, twice the probability that two alleles
sampled at random at a locus within individual i are IBD, which is related to the inbreeding coefficient (Fi) of individual i as
follows:

E 2θiið Þ ¼ 1þ Fi ð11:3Þ

Thus, the diagonal elements ofG are expected to be 1 for non-inbred individuals, and the average of the diagonal elements is

the average inbreeding coefficient for the population. Even in a non-inbred population where the average of diagonal

elements is about 1 as expected, there can be some variation around that number, as some individuals may have some

genomic regions that are inbred due to shared recent ancestry. In the example above, the diagonal elements of G for

individuals 2 and 3 are substantially greater than 1, suggesting that they are homozygous more often than expected based on

Hardy-Weinberg expectations. Of course, a sample of four loci is not to be taken seriously, but in real world situations, one

may see reliable evidence of inbreeding for some individuals based on genome-wide marker information, even if it was not

predicted by pedigree.

Similarly, in a non-inbred population, the off-diagonal elements of G are expected to be 0.25 for half-sibs and 0.5 for full-

sibs, but there will be variation around those values for specific pairs of siblings. By chance, some full-sibs will be IBD at

more than 50% of their alleles and other pairs of full-sibs will be IBD at less than 50% of their alleles. Finally, unrelated

individuals will have realized relationship coefficients around zero on average, but there will be variation around this value.

Some pairs of individuals in unrelated families may share more alleles than expected by random chance, and these

individuals can have coefficients greater than 0. These properties of the G matrix are what make it more effective for

predicting breeding values than the pedigree relationship matrix, which consists only of the expected IBD relationships

based on pedigree information. The G matrix more effectively weights information from siblings, based on their specific

levels of relatedness to an individual whose breeding value is being predicted, rather than giving all full-sibs, for example,

equal weight. Furthermore, if there are relationships between families that are not recognized by pedigree but become clear

with marker data, information can be shared across families unrelated by pedigree.

One may notice that realized genomic relationship matrices can have some surprising values when viewed as estimates of

coefficients of coancestry. For example, the element ofG for individuals 1 and 3 is negative! It is not possible to reconcile a

negative number as an estimate for a probability parameter (which is bounded by 0 and 1). It is perhaps better to consider the

G matrix as estimators of two times the correlation matrix of allelic composition of individuals in the population (Powell

et al. 2010). In this way, a zero off-diagonal value in the G matrix represents a pair of individuals that share alleles at a

frequency equal to what is expected by random sampling of alleles at the loci tested. A negative off-diagonal value in the

Gmatrix represents a pair of individuals that share alleles at a frequency lower than what is expected by random sampling of

alleles at the loci tested, that is, a pair of individuals that is more unrelated than expected by random chance. A positive

off-diagonal value in the G matrix represents a pair of individuals that share alleles at a frequency higher than what is

expected by random sampling of alleles at the loci tested.

Another surprising value that can occur in realized relationship matrices are diagonal elements that are greater than 2. Having

argued that the G matrix can be viewed as an estimator of twice the correlation matrix of alleles among individuals in a

population, we might expect that the maximum value of a diagonal element is 2 since the maximum value of a correlation

coefficient is 1. However, in practice, with highly inbred lines, which have an expected inbreeding coefficient of 1 and

consequently an expected diagonal G coefficient of 2, one can observe values greater than 2. This occurs because of the

heavier weight placed on rare allele matches in the computation of theGmatrix, as mentioned previously. Across loci within

an inbred individual, homozygosity for rare alleles has more weight than homozygosity for common alleles when computing

the realized relationship coefficients. So, a completely inbred individual that is homozygous for more rare alleles than
expected by chance will have a diagonal elements greater than 2. Conversely, completely inbred individuals that are

homozygous for more common alleles than expected will have diagonal elements less than 2. In both cases, the lines may be

completely homozygous, but their diagonal elements can vary. The average of the diagonal elements should be a reliable

estimator of the average inbreeding coefficient in the population, but the individual values may not be directly interpretable

as related solely to the inbreeding coefficient of the individuals.
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If one observes values well out of expected bounds in a realized relationship matrix, it is likely an indication of population

structure in the sample of individuals. For example, if most individuals are sampled from one common population, but a few

individuals are sampled from a distinct population with different allele frequencies, the latter individuals will be much more

likely to be homozygous for alleles that are rare in the first population but more common in the second population. These

individuals will appear to be inbred relative to expectations based on the combined sample allele frequencies, even if they

would appear non-inbred when compared to the sub-population from which they were sampled. Endelman and Jannink

(2012) considered replacing the typical G matrix estimator with a ‘shrinkage’ estimator (that will ‘push’ extreme values of

the diagonal elements toward the population mean), showing that this can improve breeding value predictions in some cases,

particularly with smaller numbers of markers, lower heritability phenotypes, and for individuals with no phenotype records.

In a similar vein, VanRaden (2008) and Yang et al. (2010) proposed adjusting the raw G matrix by regressing the pairwise

realized relationship estimates onto their pedigree expectations, resulting in another form of shrinkage of the estimators with

some useful properties (Yang et al. 2010). This last approach requires knowing the pedigree relationships among individuals,

and can result in biased estimates of the average inbreeding coefficient (Endelman and Jannink 2012).

Because of these inconsistencies between classical theory behind describing inbreeding and genetic covariances in terms of

probabilities of allelic identity by descent (IBD) on the one hand, and more recent developments in estimating genetic

covariances based on identity by state (IBS) of markers, some authors have proposed new ways to conceive and measure

genetic relatedness. Powell et al. (2010) suggested that IBD relationships are not really desirable for modern applications

such as estimating genetic variances, predicting phenotypes (or breeding values), or association analyses. Rather, these

applications rely on predicting identity in state (IBS) relationships at causal variants using IBS information at the observed

markers. Thus, the interpretation of realized relationship matrices should be in terms of realized genomic correlations that

reflect IBS relationships relative to the study population in hand rather than some conceptual ancestral reference population.

Alternative measures of relatedness do away with the concept of non-inbred ancestral reference populations and define

relatedness in terms of number of generations required to trace alleles back to a common ancestral allele, along the lines of

coalescent theory. For the purposes of breeding, however, we can continue to work in the framework of IBD, since we are

often able to identify reference populations, and the number of generations between a current breeding population and the

reference population is usually relatively small. For applications involving more distant relationships, the newer concepts of

relatedness may prove useful.

Box 11.1 Alternative estimators of the realized relationship matrix

Equation 11.2 is a generally recommended estimator for the realized relationship matrix, since the expectations of its

elements equal pedigree estimators under the assumptions that the individuals are members of a known pedigree

derived from unrelated ancestors. However, various other methods of estimation of the relationship matrix have been

proposed. These differ in how they adjust for population allele frequencies, scale the contributions from different loci,

or if they are regressed on known pedigree relationships (Habier et al. 2007; Forni et al. 2008; vanRaden 2008; Powell

et al. 2010; Speed and Balding 2015).

The minor allele frequencies in the base population are unknown. In Eq. 11.2, we use the estimated minor allele

frequencies based on the observed data. In some cases, the sample size may be insufficient to have reliable estimates of

the allele frequencies, or the observed data may come from a sample of individuals that are not representative of the

reference population. The use of estimated allele frequencies in the formula introduces some bias. Alternative forms of

the relationship matrix may be useful in some circumstances. Forni et al. (2011) compared several variants of the

realized relationship matrix, referring to Eq. 11.2 as the GOF (‘G based on observed frequencies’) estimator. They

also considered alternative matrices based on substituting p ¼ 0.5 for all markers (G05), as proposed by VanRaden

(2008), or p ¼ mean of minor allele frequencies across all loci (GMF) in Eq. 11.2. These adjusted relationship

matrices can have better predictive value than those based on estimated allele frequencies in some cases (Forni et al.

2011; VanRaden 2008).

A different approach to estimating relationships is by weighting markers by reciprocals of their expected variance

as GD ¼ ZDZ´, where D is diagonal with Dii ¼ (m[2pi(1 � pi)])
�1 (Forni et al. 2011; VanRaden 2008). (This is

identical to averaging Eq. 11.1 over all loci). Both GOF and GD can be computed with the R package synbreed, using

the arguments ret ¼ “realized” or ret ¼ “realizedAB” to the kin() function. “realizedAB” refers to the formulation

(continued)
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Box 11.1 (continued)

presented in Astle and Balding (2009), equivalent to GD in Forni et al. (2011). This scaling is commonly used in

human genetics studies and has the effect of giving each marker locus equal contribution to the estimated relationship

matrix, since it reduces the contribution of loci with larger minor allele frequencies relative to the unscaled version in

Eq. 11.3 (Campos et al. 2013; Powell et al. 2010; Speed and Balding 2015). Another way to understand the effect of

this scaling is that rare allele matches are given even greater weight than before in the computation of the relationship

matrix, which is appropriate if rare alleles tend to have larger additive effects (Speed and Balding 2015).

TheGmatrix can also be normalized (GN) so that its average diagonal coefficients are equal to 1, as appropriate for

a non-inbred population (Forni et al. 2011):

GN ¼ ZZ
0

trace ZZ
0� �� �

=n
ð11:4Þ

The trace of a square matrix is the sum of the diagonal elements:
Pn

i¼l aii. Higher levels of inbreeding can be

accommodated by substituting n with 1 + F.

Another class of modifications of the relationship matrix involves regressing the observed genomic relationships on

the expected additive relationships based on pedigrees. The idea here is that the realized additive relationship estimates

should be close to their pedigree expectations on average, so biases and large deviations from the expectations can be

removed by regressing observed on expected relationships. VanRaden (2008) suggested first regressing the (M�1)

(M�1)´ matrix on A, to estimate intercept (g0) and regression coefficients (g1):

M� 1ð Þ M� 1ð Þ0 ¼ g011
0 þ g1Aþ E ð11:5Þ

Estimates of g0 and g1 are obtained by solving the following equation (VanRaden 2008).
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E includes real differences between true and expected fractions of DNA in common (Mendelian sampling

variation), plus measurement error. Having estimated the regression coefficients, a regressed version of the

G matrix can be computed as:

Greg ¼ MM0 � g011
0

g1
ð11:7Þ

Similar concepts are behind alternative regression or ‘shrinkage’ estimators of the relationship matrix proposed by

Yang et al. (2010) computed by GCTA software (Yang et al. 2011) and by Endelman and Jannink (2012) computed as

an option in the R package rrBLUP (Endelman 2011).

Finally, any of these realized genomic relationship matrices may be singular (not invertible) with small numbers of

markers, if some pairs of individuals have identical genotypes at all markers, or if the number of markers is smaller

than the number of individuals genotyped. If a pedigree-based matrix is available for at the same set of individuals, it

can be used to remove singularities in theGmatrix by using a weighted average of the rawGmatrix and the Amatrix:

Gw ¼ wGþ 1� wð ÞA ð11:8Þ
The weighting value w is typically chosen between 0.95 and 0.98, its exact value has little impact on results

(Aguilar et al. 2010, 2011; VanRaden 2008).

Calculation of G Matrices

For demonstration we will use a simulated marker data set with a known pedigree to estimate a realized relationship matrix.

We will demonstrate the use of Eq. 11.2 to estimate the most commonly used form ofG, but will show how this compares to

four other estimators of the relationship matrix outlined in Box 11.1. The pedigree information is contained in the file
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sim_pedigree.txt, indicating the mothers and fathers of 1246 individuals over 16 generations. The marker data are contained

in the file sim_markers.txt, which has information on 1000 loci (in columns) genotyped on 100 individuals (in rows). The

loci are coded as gene content of the minor allele. The first six observations of both files loci are printed below:

Pedigree:

> ped

V1 V2 V3

1 2208166 2208112 2208052

2 2208977 2208055 2208096

3 2208220 2208166 2208977

4 2208384 2208036 2208149

5 2208282 2208220 2208384

6 2208078 2208011 2208111

Markers:

> Markers

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

1 48793 2 0 1 0 1 0 0 0 0 1 1 0 0 1

2 97315 0 1 1 0 1 0 0 0 1 1 0 0 0 1

3 110167 2 1 0 1 1 0 0 1 0 1 0 0 0 2

4 113252 0 0 0 0 2 0 1 1 1 0 1 0 0 0

5 121279 1 0 0 2 1 0 0 0 0 1 1 0 0 0

6 123530 1 0 0 0 1 1 1 0 0 0 0 0 1 0

An R script to estimate G matrices is given below and in the accompanying file Code 11-2_Gmatrix.R. In order to make the

script work we need to have the GeneticsPed package installed. The GeneticsPed package is available from the

Bioconductor project, and is installed using the biocLite() function available from the Bioconductor website; this is

different than the typical R package installation from the CRAN website:

In addition, this script uses a custom function called GenomicRel() that we have made available in the code supplements.

The GenomicRel() function calculates markers-based coefficients using five different methods (GOF ¼ Eq. 11.3; GD,

G05, GMF, and Greg are outlined in Box 11.2). This function is in the file GenomicRel.R and we make this function

available in the current working environment in R by using the ‘source’ command and pointing to the location of this file.

The ‘source’ and ‘path’ commands in this example must be modified to match the directories of the user’s computer that hold

the relevant files.
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Code example 11.2

Genomic relationship matrices estimated for a simulated DNA marker data set. See “Code 11-2_Gmatrix.R” for
more details.

After running the script, we have five estimators of the G matrix, each saved as a data frame with 5050 row and 4 columns.

The first two variables in each data frame index the pair of individuals being compared, which correspond to the column

(“col”) and row indices of the G matrix. The last two variables are the realized marker-based (“G”) and pedigree-based

relationship estimators (“A”). The 5050 rows include the 100 diagonal elements and the (100 * 99) / 2 ¼ 4950 off-diagonal

elements from half of the symmetric 100 � 100 G matrix. A few elements of three of the matrices are shown below:
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> head(GOF)

col row G A

1 1 1 1.010 1.017

2 2 1 0.107 0.062

3 2 2 1.067 1.038

4 3 1 0.005 0.033

5 3 2 -0.014 0.017

6 3 3 1.004 1.000

> head(GD)

col row G A

1 1 1 1.016 1.017

2 2 1 0.105 0.062

3 2 2 1.096 1.038

4 3 1 0.021 0.033

5 3 2 -0.020 0.017

6 3 3 1.042 1.000

> head(Greg)

col row G A

1 1 1 1.044 1.017

2 2 1 0.158 0.062

3 2 2 1.073 1.038

4 3 1 0.049 0.033

5 3 2 0.018 0.017

6 3 3 0.992 1.000

The cases where row and column indices are equal represent the relationship of individuals with themselves, for which the

values inG and A are estimates of 1 + F (the inbreeding coefficient) for the individuals. Summaries of genomic relationships

calculated from the markers can be compared to the A matrix derived from pedigree:

Code example 11.2

(continued)

• We first merge five G matrices by pulling out the 3rd column in each and naming them GOF, GD, G05, GMF and Greg.

We select the 4th column of GOF holding the pedigree estimates and name it A. The result is a data frame named CorrOpt

with variables for row, col, GOF, GD, G05, GMF, Greg and A.
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• A scatter plot ofGOF andAmatrices and a histogram of realized genomic relationships ofGOFmatrix are produced (not

presented).

The first six rows of CorrOpt data frame appear as:

row col A GOF GD G05 GMF Greg

1 1 1 1.017 1.010 1.016 0.860 1.849 1.044

2 2 1 0.062 0.107 0.105 0.186 0.915 0.158

3 2 2 1.038 1.067 1.096 0.876 1.939 1.073

4 3 1 0.033 0.005 0.021 0.140 0.818 0.049

5 3 2 0.017 -0.014 -0.020 0.114 0.813 0.018

6 3 3 1.000 1.004 1.042 0.886 1.894 0.992

Correlations between the elements of the different relationship matrices are given in Table 11.1. Except GMF, all

G matrices had the same high correlation (r ¼ 0.95) with the A matrix.

The following R script calculates summary statistics of the different genetic relationships estimators compared in

Table 11.2:

Code example 11.2

(continued):

Notice that the range of relatedness coefficients for the pedigree-derived A matrix is from zero to 0.58. In contrast, some of

the marker-derived realized genetic relationships have negative values. All matrices show inbreeding for some individuals.

Table 11.1 Correlations between genetic relationships derived from the pedigree

and SNP markers in five different ways

A GOF GD G05 GMF Greg

A 1 0.95 0.95 0.95 0.88 0.95

GOF 0.95 1 1.00 0.99 0.96 0.96

GD 0.95 1.00 1 0.98 0.96 0.96

G05 0.95 0.99 0.98 1 0.94 0.96

GMF 0.88 0.96 0.96 0.94 1 0.85

Greg 0.95 0.96 0.96 0.96 0.85 1
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Genomic BLUP

We have seen in previous sections how it is possible to obtain a better measure of relationships between individuals with the

aid of molecular data. We can incorporate these marker-based relationship estimators into linear mixed models to predict

breeding values of individuals with phenotype records and also any other individuals included in the G matrix even if they

have no phenotype information. This is simply extending the ideas of breeding value prediction based on pedigree

relationships introduced in Chaps. 4 and 5. We can use the same mixed model equations as shown for a pedigree-based

prediction but substituting theGmatrix for the Amatrix to calculate genomic estimated breeding values (GBLUP). Here we

summarize theory later we demonstrate an example of genomic prediction using GBLUP with the maritime pine data

introduced in the examples in Chap. 9. The mixed model for GBLUP analysis has the usual form:

y ¼ Xbþ Zuþ e ð11:9Þ

where y denotes the n� 1 vector of observations. In the simplest case, y represents “raw” data on n unreplicated individuals,
as is typical for animal breeding experiments, b is the p � 1 vector of fixed effects, X is an n � p design matrix relating

observations to the fixed effects, Z is an n � n identity matrix relating the n observations to the n unique individual effects,

and u is an n � 1 vector of the breeding values of each individual, and e is the n � 1 vector of residual errors with variance

Iσ2e .

More complex models can also be used. For example, often in plant breeding experiments the y vector represents the

phenotypes of multiple-plant plots, and the g families are replicated over s environments. In such cases, the Z matrix will

have dimensions of at least n� (g + s), relating the n observations to the g family breeding values and s environment effects.

More complex structures involving family-by-environment interactions also can be fit, using the G structures described in

Chap. 8. Furthermore, the R structure can be more complex than an IDV structure, allowing for environment-specific error

variances (Chap. 8) and spatial correlations (Chap. 7). Using raw data from the individual experimental units along with

design factors and covariates in the model has the advantage of efficiently using all of the information in the data. If the

number of records is very large and the model very complex, however, model convergence may be slow and difficult to

achieve. In such cases, two-step analyses can be used, usually with some loss of information (M€ohring and Piepho 2009).

These are described in Box 11.2.

The mixed model equations used to solve Eq. 11.9 can be extended to include realized genomic relationships as follows

(assuming an IDV R structure):

XTX XTZ
ZTX ZTZþ G�1λ

� 	
b
u

� 	
¼ XTy

ZTy

� 	
ð11:10Þ

Equation 11.10 is exactly equal to an animal model (e.g., Eq. 4.26) but with the genomic relationship matrix, G, substituted

for the additive relationship matrix derived from the pedigree, A. With the mixed model equations in Eq. 11.10 we can

obtain predictions of u, which represent the genomic BLUPs (GBLUPs) or genomic estimated breeding values (GEBVs) for

all the individuals included in the G matrix whether or not they have direct phenotypic records in y. The reliabilities of

predictions for individuals with direct phenotype records will be higher than those of individuals with no phenotypes.

Table 11.2 Summary statistics of genetic relationships. The methods to obtain

genomic relationships differed slightly, except G05 method, which assumes that

the minor allele frequency in the base population is 0.5

Diagonal elements Off-diagonal elements

Mean Min Max Mean Min Max

Chapter 1 A 1.02 1.00 1.10 0.06 0.00 0.58

Chapter 2 GOF 0.99 0.85 1.19 �0.01 �0.16 0.57

GD 0.99 0.82 1.19 �0.01 �0.15 0.60

G05 0.88 0.78 1.04 0.15 0.02 0.58

GMF 1.83 1.60 2.13 0.78 0.57 1.44

Greg 1.02 0.89 1.18 0.06 �0.14 0.62
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Box 11.2 Two-step methods for GBLUP and genomic selection

GBLUP can be conducted using data on individuals (or individual experimental units), incorporating extraneous

factors or complex genotype-by-environment interactions. Such models, however, may be too computationally

demanding or slow for practical use, or they may present convergence difficulties. More complex genomic selection

models to be described in Chap. 12 often have even greater computational demands and are even less likely to be easily

analyzed with a single analysis model based on individual data if complex interactions with the environment or

complexR structures are desired. In these cases, two-step methods are useful. The first step is to analyze the phenotype

data using an appropriate mixed model to obtain adjusted summary phenotype values (such as adjusted phenotypes or

adjusted means) for the individuals or families. In the second step, the GBLUP or genomic selection model can be fit to

the summary phenotype values.

A common situation in plant breeding experiments is that a series of breeding trials has been conducted to evaluate

replicated families or lines across many environments. The breeding trials may be highly unbalanced, with different

sets of families evaluated in different environments. In such a case, the first step of a two-step GBLUP analysis is to fit

a mixed model incorporating covariates, environment and genotype-by-environment effects, and the desired

R structure can be fit to the raw data on experimental units, using the various modeling strategies for phenotype

data outlined in previous chapters. Families can be treated as fixed effects to obtain marginal predictions of family

values across environments. In the second step of the analysis, the marginal predictions can be used as dependent

variables in a mixed model analysis corresponding to Eq. 11.9, in which the n observations correspond to the n ¼ g
families. The prediction accuracy of family effects from the first stage may vary among families when the data are

unbalanced, and in such cases, a weighted R structure accounting for this variation can improve accuracy (M€ohring

and Piepho 2009). A typical weighted R structure for the second stage analysis iswIσ2e , where w is an n � 1 vector of

the variances of the n family predictions from the first stage analysis.

In animal breeding situations, the “phenotypic” information available can be any of a variety of direct

measurements or adjusted values: raw individual phenotypes, individual phenotypes adjusted for systematic effects,

de-regressed breeding values obtained from conventional pedigree analyses weighted by corresponding reliabilities, or

yield deviations of individuals’ progeny weighted by either their reliability or the effective progeny contribution.

While the use of raw phenotypes is straightforward, the use of derived measures based on estimated breeding values

presents some concerns. The advantage, however, especially when the genomic selection scheme is mostly applied to

the male fraction of the population, is that “pseudo-phenotypes” increase the effective heritability of the trait analyzed,
and therefore reduce the number of individuals needed in the training population to achieve a given accuracy. For

example, if training will be performed using a trait BV as phenotype, for a population of individuals with reliabilities

>0.9, the narrow-sense heritability for that trait in the analysis will effectively be ~0.9.

Garrick et al. (2009) outlined some differences among the types of phenotypic information employed in training

populations for genomic selection, and how these should be weighted. Ideally, training would be performed on the true

breeding values of unrelated individuals chosen from a population not under selection, however, this is rarely the case

in practice. Using estimated breeding values (EBVs) as phenotypes for the training population can be less than

optimal, for several reasons. First, EBVs obtained by BLUP are predictions, so they are composed of a true value plus

a prediction error. The BLUP procedure has the property that prediction error reduces the variance in the EBVs, which

results in underestimation of the value of superior individuals and overestimation of the value of inferior individuals.

A second issue is that BLUP, as we have seen in Chap. 2, is a shrinkage estimator, meaning that predictions are

shrunk towards the mean. The amount of shrinkage for each observation will depend on how much information is

available for that particular individual. The EBV for different genotypes at a particular marker will be shrunk, relative

to what would be obtained using phenotypic data, but by different amounts according to the reliability of the EBV. Our

interest is to obtain a contrast between the genotypes for the phenotype, but the contrast will be confounded by

variation in reliability of EBV among individuals in the training population.

In most cases the best solution to account for the problem of having shrunk measures is to “re-inflate” the estimated

breeding values through a de-regression process, by weighting each observation by its reliability so that û*i ¼ ûi /r
2
i.

De-regressed information should then be weighted in the second step of the analysis according to

(continued)
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Box 11.2 (continued)

wi ¼ 1� h2

cþ 1� r2i
� �

=r2i
� �

h2
ð11:11Þ

where r2 is the reliability of EBV, h2 is the heritability of the trait, and c is the proportion of variance not accounted for

by genomic marker information. We don’t know c in advance of doing the analysis, so usually exploratory analyses are

used to establish a reasonable value of c for a particular set of data. When the mean of individuals’ repeated phenotypic
measures are employed for half-sib and full-sib families, a different set of weights can be applied, see Garrick et al.

(2009) for details.

Below is a simple R function to obtain de-regressed breeding values along with weights to use in the training set

starting from BLUP EBV and their respective reliabilities.

dereg<-function(gs,ps,gm,pm,gi,pi,lambda,c){

###############################################################
# calculates deregressed BVs and weights starting from EBV and
reliabilities
# gs, gm, gi are the EBVs of sire dam and individual respectively
# ps, pm and pi are the reliabilities of sire, dam and individual 
respectively
#lambda is the Ve/Va ratio (obtained from the BLUP analysis)
# c is the proportion of variance (un)explained by the markers
# returns a list of de-regressed BV accuracies of de-regressed and 
weights 
################################################################

rpa<-(ps+pm)/4
gpa<-(gs+gm)/2
alpha<-1/(0.5-rpa)
delta<-(0.5-rpa)/(1-pi)
ZZpa<-lambda*(0.5*alpha-4)+0.5*lambda*sqrt(alpha^2+16/delta)
ZZi<-delta*ZZpa+2*lambda*(2*delta-1)
LHS<-rbind(cbind(ZZpa+4*lambda,-2*lambda),cbind(-

2*lambda,ZZi+2*lambda))
RHS<-rbind(gpa,gi)
so<-LHS%*%RHS
de<-so[2]/ZZi
rw<-1-lambda/(ZZi+lambda)
w<-(1/(c+(1-rw)/rw))*lambda
return(c(de,rw,w))

}

In addition to de-regression and weighting, Garrick et al. (2009) recommend removing the parental averages from

the estimated breeding values (EBV) for two reasons. First, BLUP methods will yield an EBV for all individuals,

regardless of whether phenotypic information exists for the individual itself or only for progeny or other relatives.

Individuals that lack phenotypic observations for the individual itself do not contribute any genomic information that

would not be contributed by their parents’ genotypes and EBV. Second, if any of the parents are segregating for a QTL
near a marker, approximately half of the progeny will inherit the favorable allele for the marker and half the

unfavorable. Nonetheless the EBVs of both groups of progeny will be shrunk towards the parental mean by the

same amount, introducing more error into the model. Different procedures can be employed to remove parental

average from EBV and detailed information can be found in Garrick et al. (2009).
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GBLUP with the Synbreed Package

For demonstration, we will use the maritime pine data set previously introduced in Chap. 9. In Chap. 9, the raw base pair

calls on 654 individual trees at 2600 SNPs were read into R and used to create a gpData object using the synbreed package.

Markers with high rates of missing data or very low minor allele frequencies were removed. The SNP genotype calls were

converted to numeric minor allele content codes. The results were saved in an R data set (maritime pine codeGeno data.rda)

that and copied to the Chap. 11 subfolder of the example data and scripts.

The synbreed package has a function called kin to estimate genetic relationships among individuals included in a gpData

object (Wimmer et al. 2012). The ‘ret ¼’ argument in the kin function determines which type of relationship is calculated.

For example, ‘ret ¼ add’ will return an additive numerator coefficient relationship matrix based on the pedigree. Pedigree-

based dominance relationship coefficients and other forms of additive relationship coefficients based on pedigree are also

available as options. Two different marker-based realized genetic relationship matrices can also be computed. If the

‘ret ¼ realized’ argument is used, the G matrix is estimated using Eq. 11.2, where p is the estimated observed allele

frequency at each locus (VanRaden 2008). If the ‘ret ¼ realizedAB’ argument is used, the G matrix is computed as ‘GD’
described in Box 11.2, based on the formula in Astle and Balding (2009).

The output of the kin function is an object of class relationshipMatrix holding all of the elements of a G matrix for

the individuals included in the gpData object (Wimmer et al. 2012). The write.relationshipMatrix of synbreed

function converts the matrix from table format to a long format for ASReml. Code example 11.3 demonstrates the estimation

of realized genetic relationships in the maritime pine data set using synbreed.

Code example 11.3

Calculation of genetic relationships and GBLUP using synbreed package (see Code 11-3_GBLUP.R for more

details)

When we load the R data, the “gp.num” object becomes available in the environment of the R session. The names()

function shows the names of the components of the “gp.num” object. The head() function is used in the script to show the

first six lines of the ‘geno’ and ‘pedigree’ components. The ‘geno’ component is a numeric matrix with row names

corresponding to individual tree IDs and column names corresponding to locus names. The elements of the matrix are the

gene content values (0, 1, 2) for each combination of individual and locus. The pedigree component is a data frame with

columns indicating tree ID, parent1, parent2 and generation for each individual.
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Code example 11.3

(continued)

ls()

"gp.num" "gpath" "path"

names(gp.num)

[1] "covar" "pheno" "geno "map" "pedigree" "phenoCovars" "info"

head(gp.num$geno[,1:3])

F51TW9001A34NZ.1129 F51TW9001A34NZ.1367 F51TW9001A34NZ.175

0001 1 1 1

0003 1 1 0

0003-3 0 0 0

0004 1 1 0

0005 1 1 0

0006 2 2 0

> head(gp.num$pedigree)

ID Par1 Par2 gener

1 0001 0 0 1

2 0003 0 0 1

172 0004 0 0 1

3 0005 0 0 1

4 0006 0 0 1

5 0008 0 0 1

Next we use provide the “gp.num” object to the kin function to estimate the pedigree-based additive relationship matrix (A)

and the realized genomic relationship matrix (G):

Code example 11.3

(continued)
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Summaries of the A and G matrices can be compared as follows:

> summary(Additive)

dimension 654 x 654

rank 654

range of off-diagonal values 0 -- 0.5

mean off-diagonal values 0.005432466

range of diagonal values 1 -- 1

mean diagonal values 1

number of unique values 3

> summary(Realized)

dimension 654 x 654

rank 653

range of off-diagonal values -0.146215 -- 0.6313384

mean off-diagonal values -0.001521728

range of diagonal values 0.868 -- 1.16

mean diagonal values 0.9936881

number of unique values 208603

• The range of pedigree-based genetic relationship coefficients across individuals (off-diagonal components) is

0 (no pedigree relationship) to 0.5 (full-sibs) with an average of 0.0054, indicating that most pairs are unrelated by

pedigree. All the diagonal elements are 1 because the pedigree indicates no inbreeding in the population.

• Off-diagonal elements of the G matrix range from �0.146 to 0.631, with a mean value very close to zero. As in the

previous example in this chapter, we see that negative coefficients for realized genomic relationships are possible and

indicate pairs of individuals that are less related than expected by random chance. The mean of the diagonal elements of

G is very close to 1, in agreement with the pedigree estimates, but some individuals show a bit more heterozygosity than

expected by random mating (diagonal elements as low as 0.87) and some have a bit more homozygosity than expected

(diagonal elements as high as 1.16).

• Notice that the rank of the Additive matrix is equal to the number of individuals, 654, indicating it is a full-rank matrix

that can be inverted. In this example, the rank of the Realized matrix is 653, less than the number of rows, indicating that

the matrix is singular and will not be invertible.

• Another complication is that the Additive and Realized matrices are not sorted in the same order, this will cause problems

if we try to compare them and may cause problems fitting them to the phenotype data.

To deal with these problems, the following code checks if the order of rows and columns is identical in the two matrices, then

sorts them to match the order of the phenotype data. Next, we deal with the singularity by using the nearPD() function

from the Matrix package, which returns a positive definite matrix (which will be invertible) very similar to the original

matrix. The functions in the Matrix package return objects that are a special class, so we have to do a little work to extract the

components and create a regular matrix class object again. Then, just to be sure we have a matrix that will be invertible by

various functions (which have different tolerances for how close to singular a matrix can be), we add a very small constant

value to the diagonal elements. Finally, we coerce the resulting matrix to the subclass “relationshipMatrix” that

synbreed uses, and we check that its smallest eigenvalue is positive and not too small.
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Code example 11.3

(continued)

The output from the last three commands is:

> str(G)

relationshipMatrix [1:654, 1:654] 1.02197 -0.0617 -0.00364 0.08207 0.02484 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:654] "0001" "0003" "0003-3" "0004" ...

..$ : chr [1:654] "0001" "0003" "0003-3" "0004" ...

> summary(G)

dimension 654 x 654

rank 654

range of off-diagonal values -0.146215 – 0.6313384

mean off-diagonal values -0.001521727

range of diagonal values 0.878 – 1.17

mean diagonal values 1.003688

number of unique values 213527

> summary(eigen(G)$values)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0100 0.2046 0.4979 1.0040 1.2120 10.7800

Notice in the summary ofG that the rank of updated matrix is equal to the row and column dimensions, and that the smallest

eigenvalue is 0.01, so it should have no problem with inversion. The results of the summary also indicate that the values in

the matrix have changed only slightly, which is what we want.
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We can generate heat map representations of the two relationship matrixes very easily with the plot() function.

Code example 11.3

(continued)

The pedigree-based relationship matrix is sparse with many zero elements (Fig. 11.3a), whereas the matrix of realized

genetic relationships based on markers is dense (Fig. 11.3b).

We can visualize the distribution of G matrix coefficients according to their corresponding A coefficients (11.4):

Code example 11.3

(continued)

Figure 11.4 indicates generally good agreement between theG and A coefficients, but the variation inG coefficients around

their expected values in A is also obvious. In particular, there are numerous outliers with realized relationship coefficients

much higher than zero for individuals with no pedigree relationship (A ¼ 0). These could be cases where the pedigree is

wrong or incomplete (e.g., male parent is unknown in the pedigree but is in fact one of the individuals genotyped). The

converse is also true, there are cases where the pedigree indicates a half-sib (A ¼ 0.25) or a full-sib or parent-offspring

relationship (A ¼ 0.5) but the realized relationship coefficient is near zero, suggesting that the pedigree is wrong. Users

should check these outliers carefully and verify that the DNA sampling and genotyping analysis is correct or correct the

pedigree information to match the observed coefficients better.

To compare specific elements of the two matrices and identify which pairs are outliers in Fig. 11.4, we can create data frames

holding the elements in table form using the write.relationshipMatrix() function of synbreed. This function

returns a data frame with observations for all the diagonal elements and all non-zero elements of the lower triangle of the

matrix, a variable indicating the row index number, a variable with the column index number, and a variable for the value of

the coefficient. Most of the values of the Additive matrix are zero, but none of the Realized elements are exactly zero, so the

data frames have very different sizes. We can merge them together, set all of the missing row/column combinations from the

Additive matrix to zero, and find the most extreme differences between the A and G coefficients:

Fig. 11.3 Heat map of additive

relationship matrix based on

pedigree (a) and realized genomic

relationship matrix (b) of
654 maritime pine plants based on

marker information
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Code example 11.3

(continued)
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Fig. 11.4 Boxplots of the distribution of realized relationship matrix coefficients (G) according to their corresponding pedigree-based relation-

ship coefficients (A)
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The observations with largest negative differences between A and G are shown in the output:

> head(AG)

Row Column A G diff

178470 597 564 0 0.579 -0.579

211404 650 479 0 0.573 -0.573

211540 650 615 0 0.573 -0.573

79004 398 1 0 0.548 -0.548

92754 431 89 0 0.545 -0.545

111310 472 154 0 0.543 -0.543

> gp.num$pedigree[gp.num$pedigree$ID %in% rownames(Additive)[c(564, 597)],]

ID Par1 Par2 gener

564 F1.2486 0152 1311 1

597 F1.2778 3110 3603 1

The last part of the output shows the pedigree information for the two individuals involved in the most extreme negative

difference between A and G. The pedigree indicates no relationship, but the G matrix suggests they are full-sibs since they

are both in the progeny generation. Their pedigree records should be checked for errors. The pairs where A coefficients are

much bigger than their G coefficients are sorted to the other end of the data frame:

Code example 11.3

(continued)

> tail(AG)

Row Column A G diff

35496 266 251 0.5 -0.056 0.556

127691 505 431 0.5 -0.057 0.557

92941 431 276 0.5 -0.057 0.557

194533 624 157 0.5 -0.064 0.564

191359 619 88 0.5 -0.065 0.565

74849 387 158 0.5 -0.077 0.577

> gp.num$pedigree[gp.num$pedigree$ID %in% rownames(Additive)[c(505, 431)],]

ID Par1 Par2 gener

431 F1.0739 4301 3110 1

505 F1.1580 4301 3110 1

The individuals with the biggest difference in this group are full-sibs according to the pedigree, but their realized relationship

values are below zero, so either the pedigree is wrong or there was a mixup in connecting marker data to one of the

individuals. Both possibilities should be checked and errors corrected.

Now we are ready to use the realized genetic relationship created above to predict breeding values using both pedigree

information (‘ABLUP’) and the realized relationship matrix (GBLUP). In this initial analysis we include all individuals; in

this example, we have phenotype and genotype data on all individuals. This demonstrates the use of the realized relationship

matrix to potentially improve predictions even where we have direct phenotype observations on all of the individuals. This is

analogous to using pedigree information to estimate breeding values, which are the best predictions given the direct

phenotype records as well as the information shared by relatives. Later, we will demonstrate the use of ABLUP and
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GBLUP to predict breeding values for some individuals that have genotype but no phenotype records, a situation where

genomic breeding value predictions may have the greatest efficiency in practice.

Code example 11.3

(continued)

• The function gpMod fits genomic prediction models based on phenotypic and genotypic data in the gp.num object. Both

ABLUP and GBLUP models use the option model ¼ ‘BLUP’; they differ for which relationship matrix (‘Additive’ or
“Realized’) is provided to the BLUP model.

• This is a simple mixed model. There is only one fixed effect, which is the intercept. Additional fixed effects can be

included in the model using the ‘fixed¼’ option. We can also fit more complex GBLUP models using ASReml.

The summaries of the two predictions models are:

> summary(Ablup)

Object of class ’gpMod’

Model used: BLUP

Nr. observations 654

Genetic performances:

Min. 1st Qu. Median Mean 3rd Qu. Max

-0.85510 -0.23180 -0.02526 -0.01615 0.17680 0.84680

–

Model fit

Likelihood kernel: K = (Intercept)

Maximized log likelihood with kernel K is -125.467

Linear Coefficients:

Estimate Std. Error

(Intercept) 10.004 0.04

Variance Coefficients:

Estimate Std. Error

kinTS 0.223 0.053

In 0.348 0.045
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> summary(Gblup)

Object of class ’gpMod’

Model used: BLUP

Nr. observations 654

Genetic performances:

Min. 1st Qu. Median Mean 3rd Qu. Max

-1.088000 -0.254300 -0.006471 0.000000 0.256000 0.973100

–

Model fit

Likelihood kernel: K = (Intercept)

Maximized log likelihood with kernel K is -112.407

Linear Coefficients:

Estimate Std. Error

(Intercept) 9.988 0.022

Variance Coefficients:

Estimate Std. Error

kinTS 0.262 0.046

In 0.319 0.032

• kinTS identifies the additive variance components estimated with each model based on all the individuals in the ‘test
set’. In this example, the test set comprises all the individuals for which we have data. Later we will show how to use

different samples in the estimation and test sets for cross-validation.

• In is the identical and independent residual variance for each model.

• The ABLUP model explained 0.223/(0.223 + 0.348) ¼ 39% of the total variance.

• The GBLUP model explained 0.262/(0.262 + 0.319) ¼ 45% of the total variance.

The gpMod objects returned from the gpMod() function are lists, from which we can extract the original phenotypic values

as component ‘y’ and the model-based predicted values as ‘g’. We can estimate the correlations between predicted and

observed values for each of the models and visualize the regressions (GBLUP values in gray and ABLUP values in blue)

with the following code:

Code example 11.3

(continued)

The correlations between the observed values and the breeding value predictions are high in both cases (Fig. 11.5). The

correlation for the ABLUP model is a bit higher than the correlation for the GBLUP model, which may be surprising given

the higher proportion of variance explained by the GBLUP model in the mixed model analysis. The reason is that the

correlation and regression analyses assume no covariances among observations, unlike the mixed models. Thus, in this case,

the higher correlation between observed and predicted values in the ABLUP model really just indicates that the pedigree-
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based EBVs are more similar to the original observations than the GBLUP estimates are. This is why this type of correlation

analysis is not an adequate evaluation of the predictive ability of the models.

Cross-Validation

In the last section, we saw that we cannot evaluate the prediction accuracy of EBVs or GEBVs by comparing them against

the phenotypic measurements from which the models were built, since those kinds of correlations simply tell us which model

results in predictions most similar to the original phenotypic values. For example, we can get a perfect correlation between

the original observations and the predicted breeding values in that case by simply using the original observations as the

predictions (i.e., not fitting any model at all!). A more appropriate way to evaluate prediction accuracy of different models is

to use cross-validation. Cross-validation operates by sampling phenotypic values from only part of the data set (called the

‘training set’ or ‘estimation set’), fitting a prediction model with that subset of phenotypes, then predicting values for the

validation set (or ‘test set’). The estimated correlation between the observed and predicted values for the validation set (the

individuals whose phenotypes were not included in the training set) is an unbiased estimate of the model’s prediction

accuracy (Fig. 11.6). Cross-validation is a widely used technique for evaluating prediction accuracy of many different kinds

of models (Hastie et al. 2009). For example, in Chap. 12 we will use cross-validation to compare the accuracy of several

different genomic selection models. k-fold cross-validation means the data are split into k folds of approximately equal size,

and each fold is used once and only once as a validation set across k analyses.

The relative size of the prediction and validation datasets depends on the overall number of individuals for which data are

available. The larger the training population used to estimate model components, the higher the predictive accuracy of the

model is likely to be. The larger the validation population size, the more meaningful the correlation of predicted genetic

value to known genetic values will be.

It is important to recognize that GBLUP and other genomic selection models (to be described in Chap. 12) absorb

information from pedigree and more distant relationships, familial linkage, and QTL inheritance (Habier et al. 2013).

Therefore, in some cases, splitting individuals between training and validation sets randomly may represent a situation

where the training and validation sets are more closely related than the actual training and selection individuals are in some

breeding programs. For example, a breeder may want to use models trained on a subset of the available pedigrees to select
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Fig. 11.5 Pedigree-base estimated breeding values (in blue) and genomic estimated breeding values (in gray) plotted against the original

observations for the analysis in which all individuals are included
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among individuals that are not well-represented in the training set. In this case, a GBLUP model may have poor accuracy

because it is trained on the ‘wrong’ material. But a cross-validation study within the training set may provide overly

optimistic estimates of the prediction accuracy because of the closer relationships within the training set. In such cases,

random allocation of individuals to training and validation sets is not ideal. To better reflect a situation where the

relationships are more distant between training and selection sets than within sets, allocation of individuals to training

and validation sets for cross-validation should be restricted to minimize the relationships between the training and validation

sets (Saatchi et al. 2011; Tiezzi et al. 2015). This issue may be particularly important for the Bayesian models described in

Chap. 12 that try to prioritize significant regions of the genome.

Synbreed has a function crossVal() that will perform cross-validation analysis for a single type of prediction model. The

function is quite flexible in allowing the user to define the assignments to training and validation sets or it will randomly

assign observations to folds. BLUP models can be fit as one of the prediction model options, and we can control whether the

models use ABLUP or GBLUP by specifying which relationship matrix is used. The function can take the estimated variance

components from an initial analysis of the complete data set and use it for all training sets, or it can call ASReml to re-fit the

model to the training data each time and re-estimate the variance components for each split of the data. The first approach is

not correct, since the variance components estimates are influenced by the validation set, so our estimates of prediction

accuracy can be biased upward. Re-estimating the variance components for each training set is the correct approach,

although the user must have their operating system set up to understand ‘ASReml’ as a batch command. We show here how

to use crossVal() based on the variance components estimated from the full data set although this is not a recommended

approach. Later, we show how to perform the more appropriate approach by creating cross-validation data sets and using

ASReml separately to re-fit the prediction models for each training set and evaluating the predicted and observed values of

the validation sets independently. The code to perform five replications of five-fold cross-validation for each of the ABLUP

and GBLUP models follows:

Code example 11.3

(continued)

Fold 1 Training Validation Training Training Training 

Fold 2 Training Training Training Training Validation 

Fold 5 Training Training Training Validation Training 

Fig. 11.6 Example of five-fold

cross-validation. In each fold,

20% of the phenotypic

observations are assigned to the

validation set and not used to

estimate parameters of the

prediction model. Predictions are

based on a model fit to the other

80% of observations (the training

set). The correlation between

predicted and observed values of

the validation set is estimated

separately for each fold and

averaged to obtain the correlation

between predicted and observed

observations in validation sets
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This analysis takes some time because in each of five replications, the data are split into five folds, such that 25 analyses are

conducted for each method. The summaries report the average correlations between predicted and observed values of each

validation set, as well as the variation in this correlation among the 25 analyses for each model.

> summary(cv.Ablup)

Object of class ’cvData’

5 -fold cross validation with 5 replication(s)

Sampling: random

Variance components: committed

Number of random effects: 654

Number of individuals: 654 – 654

Size of the TS: 130 – 131

Results:

Min Mean +- pooled SE Max

Predictive ability: 0.0913 0.2518 +- 0.0066 0.3381

Rank correlation: 0.0918 0.2338 +- 0.005098 0.3611

Mean squared error: 0.425 0.526 +- 0.001403 0.644

Bias (reg. slope) 0.3851 1.0347 +- 0.02564 1.5121

10% best predicted: 10.44 10.47 +- 0.01507 10.52

> summary(cv.Gblup)

Object of class ’cvData’

5 -fold cross validation with 5 replication(s)

Sampling: random

Variance components: committed

Number of random effects: 654

Number of individuals: 654 – 654

Size of the TS: 130 – 131

Results:

Min Mean +- pooled SE Max

Predictive ability: 0.1905 0.3341 +- 0.006738 0.4624

Rank correlation: 0.2094 0.3286 +- 0.005926 0.4779

Mean squared error: 0.380 0.499 +- 0.002593 0.583

Bias (reg. slope) 0.5265 0.9471 +- 0.02696 1.4422

10% best predicted: 10.32 10.44 +- 0.04297 10.57

In our example there are 654 data points. With k¼ 5 folds we assign either 130 or 131 individuals to each fold. The statistics

reported to compare models are predictive ability, rank correlations, mean squared error (MSE), bias, and mean of the
phenotypic observations for the highest 10% of individuals within analysis (Wimmer et al. 2012). The predictive ability for

each replication in each fold is the correlation r(yVS, GEBV) between phenotype and genomic estimated breeding value

(GEBV) in the validation set. The bias is the coefficient of regression (bβ) of the observed phenotypes of the validation set on
their GEBVs. A regression coefficient of 1 indicates no bias, whereas bβ < 1 indicates ‘inflation’ meaning more variance

among the predicted (X-axis) than observed (Y-axis) values and bβ > 1 indicates ‘deflation’meaning less variance among the

predicted than observed values. Themean squared error (MSE) of each fold is calculated as the average squared deviation

of GEBV from observed phenotype MSE ¼ n�1
Pn

i¼1 yi � GEBVið Þ2

 �

over all individuals (Legarra et al. 2008). The best

10% is the mean of observed values for the individuals with the highest ranking 10% of GEBVs for each replicate.

The average prediction ability (the correlation between predicted and observed values within validation sets) averaged over

25 fold-replicate combinations was 0.25 for the ABLUP model and 0.33 for the GBLUP model. Notice that these values are

much lower than the correlations estimated from the single analysis of the full data set earlier (which were around 90%),

because here the predictions are made without direct phenotypic observations on the individuals. Also notice that in these

independent validations, the GBLUP model has considerably higher prediction accuracy than the ABLUP model.
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We can also execute cross-validation analysis with ASReml by assigning individuals randomly to folds (or, if desired,

assigning them to training and validation sets based on sub-population origins or some other criterion to be used to split the

data). We can then create training data sets by copying the original phenotypic data into five new variables (for five-fold

cross-validation) and setting the new trait values to missing for the individuals in the validation set for each fold. The data

sets can be written to the hard drive along with the relationship matrix and analyzed in ASReml standalone. We will show an

example of that approach in the next section. Here we show how to submit the training sets to ASReml-R, obtain predicted

values for the validation set individuals from each fold, and evaluate prediction ability from the validation sets using base R

commands. To use the realized relationship matrix to model the variance-covariance structure of the individuals’ genetic
effects in ASReml standalone or ASReml-R, we need to write the matrix in tabular form.

Code example 11.3

(continued)

The function write.relationshipMatrix() generates a data frame with three variables, corresponding to the row

and column indices and the coefficient for each of the of the diagonal and lower triangular elements of the G matrix. In this

example, we requested type ¼ c("ginv"), which will return the elements of the inverse of the G matrix in the data

frame. This is required for ASReml-R; ASreml standalone will accept either the elements of G itself or the elements of its

inverse.
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> round(head(G.giv),3)

row column coefficient

1 1 1 4.356

2 2 1 0.046

656 2 2 19.399

3 3 1 0.308

657 3 2 -0.683

1311 3 3 2.717

Next, the code executes ASReml-R in a loop for each of the five new dependent variables, estimating the genetic and

residual variance components separately for each fold and fitting the full relationship matrix for all individuals each time. In

this way, we will get solutions for the effects for all of the individuals in every analysis, even those in the validation set

whose phenotypes were set to missing in the current fold. The resulting asreml objects and predictions of random genotype

effects are saved as components in two lists (result.list and pred.list). Next, we extract the variance components for each fold

from the result.list object and the predictions from only the validation set for each fold from the pred.list object. We compute

the reliabilities of the predictions from the validation sets and inspect the top of the resulting data frame.

Code example 11.3

(continued)
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The merged validation set predictions and original observations are:

> head(preds.obs)

fold ID Sim.Pheno.1 solution se z ratio

269 3 0001 8.747177 -0.435884423 0.4231936 -1.02998819

270 3 0003 10.356366 -0.118972428 0.2515398 -0.47297650

513 4 0003-3 9.597672 -0.204642434 0.4262935 -0.48005054

241 2 0004 9.433572 0.129164649 0.4009577 0.32214038

119 1 0005 9.799212 -0.376820347 0.4461908 -0.84452745

274 3 0006 9.173060 -0.007441302 0.4655570 -0.01598365

Va Vresid mu pred reliability

269 0.2953927 0.3052332 9.986628 9.550744 0.3937128

270 0.2953927 0.3052332 9.986628 9.867656 0.7858028

513 0.2551090 0.3198337 9.987614 9.782971 0.2876530

241 0.2271021 0.3340722 10.007016 10.136181 0.2920936

119 0.3056859 0.2966048 9.970005 9.593184 0.3487230

274 0.2953927 0.3052332 9.986628 9.979187 0.2662538

The very high reliability of individual with ID “0003” stands out. This individual is in the parental generation, so it is

possible that it has a high reliability because it has many progenies in the data set. To verify that this value is reasonable, we

count the number of progenies for individuals “0001”, “0003”, and “0006” to see if individual “0003” has an unusually large
number of progenies:

Indeed, individual “0003” has 19 progenies in the data set, and this explains its very high prediction reliability even when its
value is predicted without a direct phenotypic observation. Individuals “001” and “006” had only one data point each, thus

their low prediction reliability.
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The validation set predictions are merged with the original phenotypic observations and we can compute the overall

summary statistics for prediction ability:

Code example 11.3

(continued)

This gives the summary statistics:

preds.obs$pred

PredAbi 0.32

RankCor 0.32

Best10 10.44

Bias 0.94

MSE 0.50

These results are congruent with the results of the crossVal() function reported previously.

GBLUP with Replicated Family Data in ASReml

Here will show an example of using ASReml standalone to fit a GBLUP model to raw plot-level data from a plant breeding

experiment, where families were replicated across blocks and sites. Further, we demonstrate how to predict the phenotypic

values of all the individuals with genotype data even if they are missing direct phenotypic observations. This can be a

powerful method to predict the genetic values of untested families, which may have high economic efficiency if marker data

can be collected with fewer resources or faster than phenotypes. An advantage of fitting the GBLUP model to raw plot-level

data is the ability to incorporate more complex model structures for residuals and for genotype-by-environment interactions,

while accounting directly for unbalance in the data and differing levels of precision among the genotype effects due to

different amounts of missing data.

The example data set used consists of 508 S1 families (or “lines”) from a maize population. S1 families are derived from

non-inbred individuals from a randomly-mated population that were self-fertilized one generation to produce S1 generation

progenies. In this example, 263 of the 508 families were measured in replicated trials in up to six environments for plant

height and seed yield. The experimental design was unbalanced with three environments containing only 69 lines. This part

of the data come from Horne et al. (2016). All of the phenotyped lines and an additional set of 245 untested lines were

genotyped with 5677 SNPs. The genotype data are available in file “Maize_S1_genos.csv”, the genetic map with marker

positions in base pairs is available in “Maize_S1_map.csv” (although we don’t need this information for the analysis to be

described), and the plot-level trait data are available in “Maize_S1_traits.csv”.

We start by using synbreed package to recode the marker data from base pair calls to counts of minor alleles and to compute

a realized relationship matrix. The relationship matrix in tabular form appropriate for use by ASReml is written to a file

“Maize_S1_G.grm”.
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Code example 11.4

R code to read raw genotype calls for maize S1 lines, convert to minor allele counts, and compute realized

relationship matrix (“Code 11-4_Gmatrix_maizeS1.R”).

Now we can use the realized relationship matrix to model the covariance structure among lines in ASReml. This requires

that we define line ID as a pedigree factor and we provide a pedigree file to ASReml as well as the file containing the

elements of the relationship matrix and the phenotype data file. In this example, the lines were derived from randomly

sampled plants from the population, so we have no pedigree information about the lines. The effective population size during

intermating was about 20, so some close relationships (and possibly some selfing) are expected among these lines, but since

pollen was bulked for fertilization and seeds were bulked at harvest, the pedigree relationships are unknown. Therefore, the

parents of all individuals were set to zero in the pedigree file:

Excerpt from file “Maize_S1_pedigree.csv”:

line mother father

12FL0001-1 0 0

12FL0001-2 0 0

12FL0001-3 0 0

12FL0001-4 0 0

. . .

Although the pedigree file is not informative, it serves a critical function in the analysis in ASReml: the order of rows and

columns of the relationship matrix must match the order of individuals (or lines, in this case) in the pedigree file. This is

necessary because the elements in the relationship matrix are indexed by row and column numbers, not by line identifiers:

Excerpt from file “Maize_S1_G.grm”:
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1 1 1.0055436083

2 1 -0.0608484678

2 2 1.3310142478

3 1 -0.0287343037

3 2 -0.0495885535

3 3 0.9644275375

. . .

The first row of this file has the G coefficient for line 1 (“12FL0001-1”) with itself, the second row has the G coefficient for

lines 1 and 2 (“12FL0001-2”), and so forth. It is also possible to provide the elements of the inverse ofG to ASReml, but the

file extension should be .giv instead of .grm in that case. The pedigree file is needed to connect the row/column indices to the

levels of the “line” factor that we will declare as a field in the trait data file and as a factor in the analysis in the ASReml file:

Code example 11.5

ASReml standalone code to fit realized relationship matrix to maize S1 line data and produce GBLUPs (“Code

11-5_Maize_S1_multivar_GBLUP.as”):

At the beginning of the ASReml standalone file, we set some job options then declare the data fields being read in from the

data file called “Maize_S1_traits.csv’). The variable line is declared as a pedigree-associated factor with qualifier “!P”, and
we specify a pedigree file containing all of the line names in the order that they are represented in the G matrix file. In this

example, the G matrix includes all of the additional lines that were genotyped but not included in the phenotyping trials, so

those lines are included in the pedigree file even though they never appear in the trait data file.

Following the specification of the data files, we have written three different parts of the analysis code to begin with simple

univariate models and work up to a multivariate model that incorporates the realized relationship matrix. The first part of the

analysis fits separate univariate models to the data, ignoring the relationships among the lines, but permitting the residual

variances to differ among environments:

Code example 11.5

(continued)
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The results of these models are in result file “Code 11-5_Maize_S1_multivar_GBLUP1.asr”:

- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL:-4407.04 1.00000 1416 8 height "LogL Converged"

Akaike Information Criterion 8834.07 (assuming 10 parameters).

Bayesian Information Criterion 8886.63

Model_Term Sigma Sigma Sigma/SE % C

env IDV_V 6 369.953 369.953 1.56 0 P

rep.env IDV_V 12 9.74798 9.74798 1.51 0 P

line NRM_V 508 233.036 233.036 10.29 0 P

line.env IDV_V 3048 15.0444 15.0444 2.34 0 P

at(env,1).units 342 effects

Residual_1 SCA_V 342 126.730 126.730 9.38 0 P

at(env,2).units 338 effects

Residual_2 SCA_V 338 97.7683 97.7683 8.27 0 P

at(env,3).units 323 effects

Residual_3 SCA_V 323 70.2833 70.2833 7.50 0 P

at(env,4).units 138 effects

Residual_4 SCA_V 138 133.929 133.929 6.86 0 P

at(env,5).units 138 effects

Residual_5 SCA_V 138 108.312 108.312 6.60 0 P

at(env,6).units 138 effects

Residual_6 SCA_V 138 101.647 101.647 6.94 0 P

env NRM 508

- - - Results from analysis of yield - - -

LogL:-4788.31 1.00000 1414 8 yield "LogL Converged"

Akaike Information Criterion 9596.62 (assuming 10 parameters).

Bayesian Information Criterion 9649.16

Model_Term Sigma Sigma Sigma/SE % C

env IDV_V 6 102.563 102.563 1.50 0 P

rep.env IDV_V 12 7.18482 7.18482 1.26 0 P

line NRM_V 508 160.438 160.438 8.51 0 P

line.env IDV_V 3048 34.8291 34.8291 2.59 0 P

at(env,1).units 342 effects

Residual_1 SCA_V 342 203.656 203.656 8.48 0 P

at(env,2).units 338 effects

Residual_2 SCA_V 338 152.418 152.418 8.19 0 P

at(env,3).units 321 effects

Residual_3 SCA_V 321 248.249 248.249 9.19 0 P

at(env,4).units 138 effects

Residual_4 SCA_V 138 216.477 216.477 6.44 0 P

at(env,5).units 138 effects

Residual_5 SCA_V 138 221.584 221.584 6.78 0 P

at(env,6).units 138 effects

Residual_6 SCA_V 138 261.549 261.549 6.85 0 P

env NRM 508

In part 2 we model the covariance among lines as proportional to the realized relationship matrix for each trait:
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Code example 11.5

(continued)

The model function grm(line) associates the genetic relationship matrix (which is defined previously in the code after the

pedigree file and before the phenotype data file) to the factor “line” found in the trait data. Notice that we model both the

main effects of lines and their interactions with environments as proportional to the realized relationship matrix. This results

in the following output (“Code 11-5_Maize_S1_multivar_GBLUP2.asr”):

- - - Results from analysis of height - - -

LogL: LogL Residual NEDF NIT Cycle Text

LogL:-4348.50 1.00000 1416 8 height "LogL Converged"

Akaike Information Criterion 8716.99 (assuming 10 parameters).

Bayesian Information Criterion 8769.55

Model_Term Sigma Sigma Sigma/SE % C

env IDV_V 6 372.416 372.416 1.56 0 P

rep.env IDV_V 12 9.52119 9.52119 1.51 0 P

grm(line) GRM_V 508 304.857 304.857 9.17 0 P

at(env,1).units 342 effects

Residual_1 SCA_V 342 127.965 127.965 10.51 0 P

at(env,2).units 338 effects

Residual_2 SCA_V 338 89.2178 89.2178 9.55 0 P

at(env,3).units 323 effects

Residual_3 SCA_V 323 80.8619 80.8619 9.12 0 P

at(env,4).units 138 effects

Residual_4 SCA_V 138 135.262 135.262 7.09 0 P

at(env,5).units 138 effects

Residual_5 SCA_V 138 105.792 105.792 6.84 0 P

at(env,6).units 138 effects

Residual_6 SCA_V 138 100.651 100.651 7.07 0 P

grm(line) Maiz 508

grm(line).env 3048 effects

env ID_V 1 15.6113 15.6113 3.36 0 P

- - - Results from analysis of yield - - -

LogL:-4777.75 1.00000 1414 8 yield "LogL Converged"

Akaike Information Criterion 9575.50 (assuming 10 parameters).

Bayesian Information Criterion 9628.04

Model_Term Sigma Sigma Sigma/SE % C

env IDV_V 6 103.692 103.692 1.51 0 P

rep.env IDV_V 12 6.40997 6.40997 1.19 0 P

grm(line) GRM_V 508 258.379 258.379 7.44 0 P

at(env,1).units 342 effects

Residual_1 SCA_V 342 211.005 211.005 10.31 0 P

(continued)
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at(env,2).units 338 effects

Residual_2 SCA_V 338 174.462 174.462 9.99 0 P

at(env,3).units 321 effects

Residual_3 SCA_V 321 275.683 275.683 10.71 0 P

at(env,4).units 138 effects

Residual_4 SCA_V 138 231.603 231.603 6.96 0 P

at(env,5).units 138 effects

Residual_5 SCA_V 138 242.984 242.984 7.18 0 P

at(env,6).units 138 effects

Residual_6 SCA_V 138 279.659 279.659 7.28 0 P

grm(line) Maiz 508

grm(line).env 3048 effects

env ID_V 1 19.2736 19.2736 2.30 0 P

The models fit in part 2 do not differ in the number of parameters compared to the models fit in part 1, they differ only in

changing the covariance structure of lines from IDV in part 1 to proportional to the realized relationship matrix in part

2. Therefore, we can directly compare the likelihoods of the two models for each trait. For height, the log likelihood

improved from �4407.04 (IDV model) to �4348.50 (GBLUP model); for yield the difference was �4788.31 (IDV model)

versus �4777.75 (GBLUP model). The estimated genetic variance components changed from 233.036 (IDV) to 304.857

(GBLUP) for height and from 160.438 (IDV) to 258.379 (GBLUP) for yield. The line by environment interaction term

changed little for height but decreased from about 35 (IDV) to about 19 (GBLUP) for yield.

Finally, we extend the GBLUP model to a multivariate model for height and yield in model 3. The key term in this model is

“glm(line).us(Trait)”, which fits the variance covariance for line effects on height and yield as:

Var

G1h

G1y

G2h

G2y

⋮

266664
377775

0BBBB@
1CCCCA ¼

G11σ2gh G11σghy G12σ2gh G12σghy . . .

G11σghy G11σ2gy G12σghy G12σ2gy
G12σ2gh G12σghy G22σ2gh G22σghy
G12σghy G12σ2gy G22σghy G22σ2gy

⋮ . .
.

26666664

37777775 ð11:12Þ

¼ G� σ2gh σghy
σghy σ2gy

" #

Similarly, the line-by-environment interactions are modeled proportional to the direct product of a 6� 6 identity matrix (for

six environments) by the Gmatrix by the unstructured trait variance-covariance matrix with the term “env.grm(line).

us(Trait)”.

Code example 11.5

(continued)
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The results of this analysis include 2� 2 trait covariance components for the residuals at each of six environments as well as

for the line and line-by-environment effects (“Code 11-5_Maize_S1_multivar_GBLUP3.asr”):

In Table 11.3 we compare the predictions and their standard errors for three lines with phenotypic data (their line identifiers

start with “12FL”) and three untested lines (their line identifiers start with “15CL”) for yield for each of the three models.

The most notable differences among the models are the predictions of the untested lines from Model 1, which all have a

constant prediction at the population mean and zero reliability. Models 2 and 3 use the realized relationship matrix to predict

the values of those lines based on their covariances with the tested lines. The Model 2 and 3 predictions of the untested lines

Table 11.3 Predicted yields of maize S1 lines from three models. Tested lines were evaluated in up to six environments;

untested lines have no phenotypic records. All lines were genotyped and included in a realized relationship matrix

Model 1

(IDV)

Model 2

(GBLUP)

Model 3

(Multivariate GBLUP)

Line Prediction (SE) Rel. Prediction (SE) Rel. Prediction (SE) Rel.

Tested lines

12FL0001-1 91.05 (4.40) 0.88 93.97 (4.44) 0.92 93.91 (4.45) 0.92

12FL0001-2 84.68 (4.40) 0.88 86.04 (4.40) 0.93 86.03 (4.40) 0.93

12FL0001-3 70.11 (4.37) 0.88 70.71 (4.30) 0.93 70.37 (4.30) 0.93

Untested lines

15CL1006-11 83.73 (12.9) 0 80.47 (8.69) 0.71 80.20 (8.72) 0.71

15CL1006-16 83.73 (12.9) 0 88.84 (9.72) 0.63 89.05 (9.73) 0.64

15CL1006-17 83.73 (12.9) 0 86.16 (8.84) 0.70 85.71 (8.85) 0.70
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have much higher standard errors than the tested lines, but nevertheless they are reasonably good predictions with

reliabilities around 0.7. The predictions from Model 3 are only slightly different than from Model 2 with very small

increases in reliability. As discussed in Chap. 6, the multivariate models will have greatest effect when the missing data

patterns are different and the genetic correlation is high for the traits analyzed, and neither is true in this example.

Blended Genetic Relationships

Genotyping the entire breeding population may not be reasonable due to high cost and logistical limitations. In order to

incorporate information from individuals that were not genotyped but have pedigree information, a blended genetic

relationship matrix (H matrix) was proposed (Misztal et al. 2009; Legarra, et al. 2009; Christensen and Lund 2010). This

is done by adding the genomic relationships (G matrix) of a subset of the population to the numerator relationship matrix

A derived from pedigree for the all the population (Misztal et al. 2009; Legarra, et al. 2009).

Let u be a vector of genetic effects. Starting with a model of expected additive genetic relationships based on pedigree, the

variance of u is a product of the A matrix and the variance (σ2u) explained by polygenic effects: var uð Þ ¼ Aσ2u (Legarra et al.
2009). Consider, however, that there are two types of individuals in u: non-genotyped individuals (u1) and genotyped

individuals (u2). Then A can be partitioned as:

A ¼ A11

A21

A12

A22

���� ���� ð11:13Þ

where A11 is the pedigree-based relationship matrix of non-genotyped individuals, A22 is the pedigree-based relationship of

the genotyped individuals, and A12 and its transpose A21 are the relationships between genotyped and non-genotyped

individuals.

Since we have genotype information on the individuals in u2, we can replace the pedigree expected relationships in A22 with

the realized genomic relationships among those individuals, which would be a G matrix as described earlier in this chapter.

The relationships between the genotyped individuals and non-genotyped individuals in A12 then need to be adjusted to take

into account the realized relationships inG as well as their known pedigree relationships. The unified relationship matrix that

accounts for both the realized relationships among the genotyped individuals and the pedigree relationships of all other

individuals is referred to as an H matrix (Legarra et al. 2009):

H ¼ A11 þ A12A
�1
22 G� A22ð ÞA�1

22 A21 A12A
�1
22 G

G A�1
22 A21 G

�����
����� ð11:14Þ

The upper left corner in theHmatrix is the variance of ungenotyped individuals, notice that it is no longer simply a function

of their pedigree relationships because now it incorporates additional information from the G matrix that is shared via the

pedigree relationships with the genotyped individuals. The H matrix is a semi-positive or positive definite matrix by

construction (Legarra et al. 2009). The inverse of H matrix has a simple form that is easier to understand:

H�1 ¼ A�1 þ 0 0

0 G�1 � A�1
22

���� ���� ð11:15Þ

In this equationA�1 is the inverse of numerator relationship matrix for all individuals,G�1 is the inverse of realized genomic

relationship matrix and A�1
22 is the inverse of A matrix for the genotyped individuals (Aguilar et al. 2010; Legarra and

Ducrocq 2012; Legarra et al. 2009).

Var u1ð Þ ¼ A11 þ A12A
�1
22 G� A22ð ÞA�1

22 A21

� �
σ2A ð11:16Þ

Gσ2A is the variance of genotyped individuals and A12A
�1
22 Gσ2A is the covariance between u1 and u2 (Legarra et al. 2009).
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Example Calculation of H Matrix

To demonstrate computation of a blended relationship matrix, H, we use data from a tree breeding study in which nine

crosses were generated using 13 individuals as females and males (Ogut et al. 2012; Zapata-Valenzuela et al. 2013). A

single-pair mating design was used. A total 354 progeny trees were evaluated. Out of 354 trees, 166 were genotyped using

3461 SNP markers. There are two pedigree files. The first pedigree file is called H_complete_ped.txt, with 367 � 3

dimension (354 individuals + 13 parents ¼ 367). The second pedigree file is called H_geno_ped.txt with dimension of

178� 3. This second file includes parents at the top of the file (the first 13 individuals) followed by 166 genotyped trees. The

genotyped trees are numbered from 202 to 367. A subset of the H_geno_ped.txt is given below.

> H_geno_ped

tree par1 par2

1 1 0 0

2 2 0 0

3 3 0 0

...

11 11 0 0

12 12 0 0

13 13 4 12

14 202 1 2

15 203 1 2

16 204 1 2

...

177 365 9 8

178 366 9 8

179 367 9 8

An R script to obtain blended genomic relationship matrix H is given below. This part loads the GeneticPed package from

CRAN website, reads the pedigree file and creates the A matrix.

Code example 11.6

R code to calculate blended genetic relationship matrix (see Code 11-5_Hmatrix.R for details).

(continued)
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Code example 11.6 (continued)

The following R script partitioned the A matrix into four sub matrices as A_un (A11) is the matrix of trees with no genotype
information, A_gen (A22) is the matrix of trees with genotypes, A_covup (A12) upper triangle and A_covlow (A21) lower

triangle covariances between non-genotyped and genotyped individuals.

Code example 11.6

(continued)
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The following script combines the A matrix derived from pedigree for the whole population (N ¼ 367) and genomic

relationships matrix G of n ¼ 166 individuals.

Code example 11.6

(continued)

This example involved a small data set. For large data sets, computing the inverses of A and G matrices can be difficult.

Readers should consider optimized software that can handle large data sets. For example, Ignacio Aguilar and Ignacy

Misztal at University of Georgia developed the PreGSF90 module to calculate genetic relationships for their BLUPF90

software (http://nce.ads.uga.edu/wiki/doku.php?id¼application_programs).

A partial output from H matrix in table format (367 � 367) is given below.

> round(H[1:10,1:8],2)

1.05 0.01 0.01 -0.06 0.02 0.02 0.02 -0.06

0.01 0.80 -0.06 0.11 -0.02 -0.03 -0.03 -0.04

0.01 -0.06 0.95 -0.16 0.02 -0.01 -0.01 -0.10

-0.06 0.11 -0.16 0.77 -0.01 -0.06 -0.06 -0.08

0.02 -0.02 0.02 -0.01 0.98 0.08 0.08 -0.01

0.02 -0.03 -0.01 -0.06 0.08 0.99 -0.01 0.02

0.02 -0.03 -0.01 -0.06 0.08 -0.01 0.99 0.02

-0.06 -0.04 -0.10 -0.08 -0.01 0.02 0.02 0.73

0.04 -0.10 0.01 -0.16 0.08 0.14 0.14 -0.19

-0.02 0.01 -0.06 -0.05 0.03 0.09 0.09 0.15
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The following section of Code 11-6_Hmatrix.R code converts the H inverse to a sparse format for ASReml to use in

prediction of genomic estimated breeding values.

Code example 11.6

(continued)

The output file HinvPine.giv has three columns named ‘row’, ‘col’ and ‘coefficient’. A subset of the file is given below.

round(head(Hinv.sp.df), 2)

row col coefficient

1 1 1 35.5

2 2 1 8.0

3 2 2 31.0

4 3 1 0.0

5 3 2 0.0

6 3 3 36.5

The coefficients are inversed genetic covariances between individuals and the inbreeding coefficients of individuals.
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Abstract

The whole genome regression approach to genomic selection is based on using large numbers of DNA markers to predict

breeding values of individuals in animal and plant breeding programs. It is related to GBLUP introduced in Chapter 11,

but it is distinguished from GBLUP by simultaneously modeling the effects of many DNA markers, and using the sum of

marker allele effect estimates to predict breeding values of individuals. Since the introduction of the concept in 2001

(Meuwissen et al. 2001), it has revolutionized crop and livestock breeding. Genomic selection is a very active area of

research so that new algorithms, software and methods are constantly being developed. Within this context we will briefly

introduce a few key ideas and provide some examples for demonstration.

Regression Models for Genomic Prediction

Meuwissen et al. (2001) suggested the use of all available molecular markers in regression models to predict the overall

genomic merit of an individual. Since then the application of that concept, which is known as genomic selection (GS) has

been widely adopted in livestock (VanRaden et al. 2009; Hayes and Goddard 2010; Wolc et al. 2011; Duchemin et al. 2012)

and as well as crop (Rutkowski et al. 2011; Zhao et al. 2012) species. Inclusion of genomic information in many livestock

and some plant breeding schemes has become routine, permitting the generation of fast and accurate individual breeding

value predictions. Considering the breeder’s equation for genetic gain (Δg) provides some insight into how GS has impacted

breeding programs. The breeder’s equation can be written in this form:

Δg ¼ riσa
L

ð12:1Þ

where r is the accuracy of the prediction; i is the selection intensity; σa is the standard deviation of genetic variance and L is

the generation interval. A major impact of GS on genetic gain has been to reduce the generation interval (L), because it

enables identification of selection candidates at an earlier age than was previously possible. Furthermore, GS has enabled a

significant boost in selection intensity i, through an increased number of candidates genotyped and available for selection.

Yet, GS has not substantially changed the fundamental basis of breeding gains, since genomic information is used to rank

individuals based on their additive genetic breeding values, which is the same criterion for selection that breeders have used

for most of the preceding century, and that we have used in earlier chapters of this book. In Chap. 11 we described the

prediction of breeding values from molecular genetic marker data using a Gmatrix that describes the genomic relationships

among genotyped individuals. This method is flexible and easy to implement, and works well since replacing the numerator

relationship matrix A with G allows to better characterize the relationship among individuals and improve within-family

selection by better accounting for Mendelian sampling. The GBLUP approach relies on the ‘infinitesimal’model of classical

quantitative genetics, in which genetic control of complex traits is assumed to be equally distributed across many

(infinite) loci.

A second class of models is equally popular, and arguably more powerful for traits in which individual DNA variants

account for a significant fraction of phenotypic variance. We will refer to this large class of models with the loose (and

somewhat misleading) term of Bayesian alphabet models. We have seen in previous chapters how BLUPs are shrinkage

estimators. The idea behind whole genome regression via Bayesian alphabet models is similar. The advantage of shrinkage

estimators (at the marker level) in the context of whole genome regression is that shrinkage can improve prediction based on

markers by reducing the mean squared error of the estimate, especially with a large number of markers, with a relatively

small trade-off of introducing some bias because it forces some of the estimated regression coefficients towards zero.

We will provide a brief introduction of this class of models here and provide a general overview of some differences between

few of the most popular options. For a formal treatment, readers are referred to the original Meuwissen et al. (2001) paper,

and to reviews papers on the subject (Gianola et al. 2009; Habier et al. 2011).
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A Brief Tour of Bayesian Concepts

It is important to remark that while historically the vast majority of the models used in genomic prediction have been

developed in a Bayesian context, this is not a requirement. It is nonetheless a convenient and relatively computationally

parsimonious way to obtain shrinkage estimators for all markers simultaneously. It is also important to recognize that a

Bayesian implementation is not prerogative of whole genome regression models, and even most of the BLUP machinery

developed in previous chapters can be implemented efficiently in a Bayesian framework. A key concept of all Bayesian

approaches resides on the fact that all the parameters in the model are treated as random variables. In a Bayesian context,

loosely speaking, we can quantify our knowledge (which can be very vague) of a particular parameter before observing the

data by assigning a prior probability to that parameter. This is then combined with the evidence arising from the data (the

likelihood) through the Bayes theorem. Bayes theorem gives the conditional probability of a set of parameter values given

some observed data (also called the “prior probability”) as:

f θjyð Þ ¼ f yjθð Þf θð Þ
f yð Þ / f yjθð Þf θð Þ ð12:2Þ

f(yjθ) ¼ The data likelihood

f(θ) ¼ The prior

θ ¼ The parameter vector

y ¼ The data vector

Effectively this equation “weighs” the evidence on the parameter we are interested in estimating arising from the data

(my current experiment), with the previous knowledge we might have on the parameter (which comes from previous

experiments). As you might see intuitively, the stronger is the assumption we make about the prior probability the higher the

influence it will have on the posterior probability. For example, consider an experiment in which you want to determine the

yield of a particular crop. You could measure the yield on a number of plants (say 100) and then use the average (the natural

estimator and also the maximum likelihood estimator) as your estimate of the yield for that crop. Let’s say that the average

yield measured in your experiment is 17.8 kg with a standard error of 5 kg. Now let’s assume that a scientist before you

carried out 3 separate experiments similar to yours and found that the average yield was 17.4 kg with a standard error of 5 kg.

If we apply the Bayes theorem with y being the data and theta (θ) being the average crop yield we want to estimate (and we

assume a normal prior distribution), we find that using the /f(yjθ)f(θ) of Bayes theorem will produce a posterior mean of

17.6 kg, so that effectively the information of the previous experiment has been incorporated. The posterior mean is closer to

the prior mean than the mean based only on the current measurements. Now, let’s say that after a 1000 experiments the crop

yield measured by the previous scientist was still 17.4 kg but with a standard error of only 1 kg. In this case, the posterior

mean will be 17.5 kg, so that the stronger assumption regarding the prior will be reflected in the posterior. If no experiment

was previously run, we might still want use a prior but we might want to choose a relatively vague one. So we might still

assume that the average yield was 17.4 kg but the standard error can be very large, say 20 kg. In this case, we would be

effectively saying that a priori we know very little about the yield of the crop and we will strongly rely on the data collected

in our experiment (the likelihood), so that the posterior estimate for our crop yield will be 17.8 kg.

The overall application of this simple principle becomes complex relatively quickly, because f(θjy) often does not have

closed form, or its calculation may involve multiple integrations. For this reason, Bayesian analyses are often carried out

with the use of Markov Chain Monte Carlo (MCMC) methods, in which inferences on the parameters are obtained from

statistics of samples obtained empirically from f(θjy). Among the most popular approaches, and the one used in most

Bayesian models for GS, is the Gibbs sampler. This method obtains samples for all the parameters sequentially for each

iteration from the distribution of a particular parameter conditional on all others. Further details and a rigorous treatment of

the topic can be found in Gelman and Rubin (1992), and specifically for breeding applications in Sorensen and Gianola

(2007).

The general model employed in most of whole genome regression analyses, following notation provided by Gianola et al.

(2009) is:

y ¼ XbþWam þ e ð12:3Þ
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where y is a vector of phenotypic values. Note that the choice of the phenotypes employed has implications on the

application of GS; see Garrick et al. (2009) for an in-depth discussion. X is an incidence matrix for the fixed effects

(which in the simplest case reduces to a vector of 1s for the overall mean), b is a vector of fixed effects, including the overall

mean, μ.W is a known matrix of numeric genotype scores for each marker. This could be a matrix of minor allele frequency

dosage (e.g., 0, 1, or 2 copies of the minor allele at each marker) as was used in Chaps. 10 and 11 or it could be the deviation

of minor allele counts from the heterozygous genotype (-1, 0, and 1 codes). The am is a vector of molecular marker additive

effects and e is a vector of residuals with distribution e � N 0; Iσ2e
� �

. The vectors of coefficients has a multivariate normal

distribution, and in most implementation marker-specific prior variances of different form are implemented (de los Campos

et al. 2009, 2010; Pérez et al. 2010). The τ2j are exponential priors, τ
2
j � Exp λ2

� �
. The λ2 can have a Gamma prior distribution

λ2 � Gamma(r, δ) where r (shape) and δ (rate) are hyper parameters. The residual variance is commonly a scaled inverse

chi-square prior distribution withσ2e � χ�2 df e; Seð Þ (Park and Casella 2008). Several authors have discussed advantages and
disadvantages of this implementation (de los Campos et al. 2009; Yi and Xu 2008).

In the following section we briefly introduce a general framework of whole genome regression methods with a Bayesian

interpretation.

Ridge Regression

When the number of predictors ( p) is larger than the number of observations (n), as in analysis of genomic data for breeding,

regularization (shrinkage) is commonly used to overcome singularity in estimation of regression coefficients. Ridge

regression introduced by Hoerl and Kennard (1970) constrains regression coefficients by adding a small constant (λ) to
the diagonal matrix of (WTW) to estimate the coefficients.

baRidge ¼ WTWþ λIp
� ��1

WTy ð12:4Þ

The solutions for ridge regression also minimize the following equation

baRidge ¼ Xn
i

yi �WT
i a

� �2 þ λ
Xp
j¼1

a2j ð12:5Þ

The first part of the model
Pn
i

yi �WT
i a

� �2
minimizes the residual sum of squares, the second part λ

Pp
j¼1

a2j puts constrains on

the coefficientsba. The penalty term is a product of a constant (λ) and the squared vector a2j

� �
of coefficients. As λ approaches

0, the ba coefficients approach ordinary least-squares solutions. As λ approaches infinity, the coefficients approach 0. The

ridge regression penalty introduces some bias by shrinking the estimates toward zero. At the same time though, it reduces the

variance of estimates and thus, usually, results in a lower mean square error MSE ¼ Bias2 þ σ2a.

The same concept can be given a Bayesian interpretation by assigning marker effects to a multivariate normal prior

distribution with a common variance (σ2a). The common variance of marker effects can be modelled hierarchically usually

through a scaled inverted χ2 distribution, σ2a � χ�2 df a; Sað Þ where the degrees of freedom dfa and scale Sa are normally

treated as hyperpriors (they are assigned fixed values). Similarly a scaled inverted χ2 prior distribution with degrees of

freedom dfe, and scale parameter Se, σ2e � χ�2 df e; Seð Þ is normally employed for the residual variance (de los Campos et al.

2009; Gianola 2013; Pérez et al. 2010).

It is important to point out that ridge regression obtains coefficients predictions for all the loci so that even for large λ values
the coefficients are not shrunk to exactly zero. It is also worth noting that ridge regression uncannily resembles the GBLUP

approach described in previous chapters. In reality the two approaches are equivalent (see for example VanRaden 2008) as

an equivalent model can be produced utilizing the W’W product (a m markers by m markers matrix) or the WW’ product
(an n individuals by n individuals matrix that is proportional to the G matrix estimators introduced in Chap. 11). In the first

case solving the model will produce predictions of each individual marker effect, while in the second predictions of each

individual’s breeding value will be obtained. Nonetheless, with minimal algebraic manipulation it is possible to go from one

solution to the other (Ruppert et al. 2003).

BayesA and BayesB

In Meuwissen et al. (2001) two models were proposed for GS with Bayesian methods.
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In BayesA the prior distribution (again our prior belief about the parameters) of each marker (ax) is assumed normal with

mean 0 and varianceσ2ax . The value of ax depends on the variance parameter, so a further prior distribution is placed on eachσ2ax ,

namely a scaled inverted χ2 with 2 hyperpriors: ν (degrees of freedom) and S2 (scale). Thus (following again Gianola’s
notation)

ax j σ2ax � N 0; σ2ax

� �
σ2ax j ν, S2 � νS2χ�2

ν

ð12:6Þ

so that the prior for each ax (the marker effect) is a t-distribution [ak| 0, ν, S
2].

The result is that this t-distribution (with fatter tails than a normal distribution) will allow some markers to have a large

effect, “escaping” the shrinkage toward their expected value (0), effectively capturing QTL (individual loci with large

effects on trait variation) (Fig. 12.1).

It should be noted that in this case each marker is effectively assigned its own variance. Furthermore, in most

implementations the residuals are assigned the following prior distribution:

en j σ2e � N 0; σ2e
� �

σ2e j νe, S2e � νeS
2
eχ

�2
νe

ð12:7Þ

Additional prior distributions are also assigned to other effects (including the mean). We will not present these and will just

point out that the sampling scheme remains the same.

An additional condition is introduced in BayesB where

ak j σ2ax �
0 for σ2ax ¼ 0

N 0; σ2ax

� �
σ2ax > 0

8<
: ð12:8Þ

and

σ2ax j π �
0 prob π

νS2χ�2
ν prob 1� πð Þ

(
ð12:9Þ
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Fig. 12.1 Student’s t distributions for various degrees of freedom (v ¼ 1, 4 and 20) and comparison with Gaussian distribution. The tails for

t-distribution are fatter compared to the Gaussian distribution. When used as priors they allow QTLs to have a larger effect
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So that effectively:

p ax; σ
2
ax
jπ

� �
�

ax, σ2ax ¼ 0 prob π

N 0; σ2ax

� �
, p νS2χ�2

ν

� �
prob 1� πð Þ

8<
: ð12:10Þ

Finally, we have:

p axjπð Þ �
ax ¼ 0 prob π

t 0; ν; s2½ � prob 1� πð Þ

(
ð12:11Þ

Again, in this model eachmarker possesses its own variance. The difference is introduced by the parameter π that represents the
probability that a marker’s effect is exactly 0. Two things should be noted. The first is that by setting π (again a hyper-parameter

in this implementation) at different levels we specify how many markers (at each iteration) will escape this strong shrinkage.

Does this seem arbitrary? It is, but it can be generalized (see below). The second is that by setting π¼0we revert back toBayesA.

One last important note: Bayes-B is not an explicit model selection approach, at least not in the traditional sense. During the

Gibbs sampling process, at each iteration each marker can be assigned zero effect (with probability π), so that no marker is

permanently discarded from the analysis.

Although these two models are extremely popular they are not free of drawbacks. Because of their structure, both Bayes A

and B models are sensitive to the choice of priors and hyper-parameters employed and are dependent on the prior

information used. An extensive review of the properties of these models is found in Gianola et al. (2009). Attempts to

generalize the choice of the degrees of freedom and scale parameters (assigning them a prior distribution) can be found in

literature (Cleveland et al. 2012; Maltecca et al. 2012; Yi and Xu 2008). It should be noted, though, that the overall impact of

these efforts on the actual predictive ability of the models with real data is somewhat limited.

BayesC and BayesCpi

A different implementation of Bayesian regression analyses was developed by Habier et al. (2011). In this paper, the problems

arising in BayesA andB are tackled by using a singlemarker variance rather than a locus specific variance, so that the influence

of the scale parameter is lessened. In addition, the authors introducedmethods to treat the π parameter as an extra unknown and

to estimate it from the data. The model in this case is similar to the previous ones, with the difference that in BayesC:

σ2ax ¼ σ2a ð12:12Þ
meaning that all the markers have a priori a common variance, which in its most common implementation is:

ax j σ2a � N 0; σ2a
� �

σ2a j ν, S2 � νS2χ�2
ν

ð12:13Þ

with ν¼ 4.2 and S2 obtained similarly to BayesA and B. The result of this change is that SNPs belonging to the (1- π) bin
(those loci with effects) are from a mixture of multivariate t distributions t[0, ν, IS2]. The remaining structure of the model is

similar to BayesA and BayesB although the sampling scheme of the models is slightly different.

Bayesian Lasso

Another alternative model for marker effects involves double exponential priors for the marker effects (with the distribution

of residuals typically remaining as an inverted chi-square distribution). This leads to the so-called Bayesian Lasso

implementation with a different kind of shrinkage on the markers (Park and Casella 2008; Tibshirani 1996). The distribution

is defined by the location μ and a scale parameter β (Andrews and Mallows 1974) and has fatter tails than the normal

distribution (Fig. 12.2), so that it gives more weight to some markers while shrinking the effects of a large number of

markers, including the possibility of shrinkage to exactly zero effect.

There is no explicit variable selection in the Bayesian version of Lasso, but the effects of some markers become zero. The

only difference from ridge regression is that the absolute values of coefficients are used in the penalty part instead of squares.

In the frequentist version of Lasso the marker effects are estimated as
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baLasso ¼ argmin
a

y�Waj j2 þ λ
Xp
i¼1

aij j
( )

ð12:14Þ

Where y is the vector of phenotypes, W is the genotypes matrix and a is the vector of markers effects, The λ is again a

regularization parameter. The argument (argmin) refers to estimation of regression coefficients (a) while minimizing the

expression inside the curly brackets. The expression |y � Wa|2 refers to the sum of squares penalty (minimizing the residual

sum of squares), while λ
Pp
i¼1

aij j puts a stronger shrinkage on markers with small effect, pushing some to zero effect, and

making the model sparse (Gianola 2013; Heslot et al. 2012). Shrinkage of markers is dependent on the regularization

parameter λ and shrinkage is not uniform. Compared to the ridge regression, the change is subtle but can improve the model

performance substantially in some cases.

Choice of Statistical Models

The true genetic architecture of the trait of interest should dictate whether the Bayesian models provide greater predictive

power than GBLUP (de los Campos et al. 2013). The models described in the previous section are just a fraction of the

possible marker regression models. Many models that appear very different are in reality fundamentally related. Often the

change of a few model assumptions leads from one model to the other. A good review of the relationships between several of

the most popular models is provided in de los Campos et al. (2013). It is important to note that with simulated data,

differences between models become more marked, often reflecting the assumptions made in simulating the data. However,

in real life, model performance will depend more on the trait genetic architecture (which we do not really know) and the

population structure than on the choice of priors.

Furthermore, the bulk of these models have been built with a “QTL mapping” attitude, meaning that they attempt to

effectively capture the LD between markers and QTL and weed out uninformative markers. Nevertheless, a surprising

number of complex traits seem to be (or at least behave) as truly polygenic with a very large number of QTL with small

effects (Buckler et al. 2009; Hill et al. 2008). Under these conditions, differences between models are typically small. Lastly

GS models trace not only the LD between markers and QTL but also the familial linkage (Habier et al. 2007; Saatchi et al.

2011), so that the population structure becomes as important as the choice of the model for the analysis. There is no one

model that is best for all circumstances and a careful consideration of models, training/prediction splits, and nature of the

trait is needed when analyzing real data (de los Campos et al. 2010).
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Fig. 12.2 Double exponential (Laplace) distribution for different regularization parameter (lambda) values used as prior density in Bayesian

regression
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Bayesian Regression Examples with BGLR Package

In the following section we will use the BGLR R package (Pérez and de los Campos 2014) to demonstrate the use of

Bayesian whole genome regression prediction models. The BGLR package implements a variety of Bayesian and semi-

parametric methods, such as Bayesian reproducing kernel Hilbert spaces regression, Bayesian Ridge, Bayesian Lasso,

BayesA, BayesB and BayesC etc. We will start by running a script that demonstrates the use of Bayesian Lasso genomic

prediction, which will introduce the basic commands. For demonstration, the maritime pine data set introduced in Chap. 9

and also used for GBLUP in Chap. 11 will be used. Briefly, 654 pine trees were genotyped using 2600 SNP markers to

establish associations with simulated phenotypes. Several different traits with different degrees of polygenicity were

simulated. We will start with some data manipulation.

Code example 12.1

Bayesian Lasso regression for genomic prediction using BGLR package. See R code Code12-1_BayesianModels.

R for more details.
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In the next section of the code we randomly split the data into k ¼ 2 folds, and we use one set for training (TS contains

554 individuals) and the smaller set for validation (VS contains 100 individuals). In the training set, individuals have both

phenotype and genotypes. In the validation set the trait is set to missing. Individual marker effects in the training set are

obtained by fitting the Bayesian Lasso regression model. The sum of all marker effects for an individual in the validation set

is the genomic estimated breeding value (GEBV) of the individual. The correlation between GEBV and the phenotype of

individuals in the validation set are used to evaluate the predictive ability of markers. This process is normally repeated

many times to get a distribution of the accuracy and other model fit statistics.

Code example 12.1
(continued)

The BGLR function fits the Bayesian marker regression model (Bayesian Lasso in this case). The selection of the Bayesian

Lasso model is determined by the ‘model ¼ BL’ option in the code. For this demonstration we ran 20,000 iterations, out of

which 1000 iterations were used as burn-in and only one of every 100 posterior samples was kept to thin the chain. In an

MCMC run, the “burn-in” is a number of iterations discarded at the beginning of the chain to make sure that the samples

taken come from the posterior distribution desired. Some authors describe this process as an unnecessary step and mention

some undesirable effects (Toft et al. 2007). In sampling, “thinning” is used so that only a certain proportion of the iteration

results are kept to reduce the autocorrelation between samples. In this example, every 10th draw was kept from the posterior

sequence and the rest were discarded.

In this example, we ran only 20,000 iterations, but for large numbers of markers (or more complex models) much longer

chains should be run. The R package coda provides a set of functions to help the user to monitor the status of Markov Chain

convergence (Plummer et al. 2006).

While the BGLR package accepts categorical traits, we are analyzing a continuous trait in this case so that the

type ¼ "gaussian" argument was employed. The ‘a¼’ and ‘b¼’ parameters are vectors for upper and lower limits

of the censored response variables, respectively. Since there is no censoring in this data, they were set to null. The argument

ETA ¼ refers to a two tier list that specifies the linear predictors, such as intercept and other fixed or random effects. This is

an important part of the model and allows selecting the type of regression chosen.

For this first example we used a Bayesian Lasso with the default priors provided by the package. The “BL” option allows one
to set the λ as a fixed parameter. In alternative implementations λ can have two possible prior distributions: a gamma or a

beta distribution. The program default is type ¼ ‘gamma’, which fixes the shape parameter of a gamma density to 1.1 and

then solves for the rate parameter to match the expected proportion of variance accounted for by the corresponding element

of the linear predictor (for details see http://genomics.cimmyt.org/BGLR-extdoc.pdf). The proportion of variance explained
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by the linear element has a general interpretation but in the case of marker effects it can be (at least loosely) be interpreted as

the proportion of variance accounted for by the markers. This parameter is governed by the argument R2. The default value

of R2 is set to 0.5.

We have assigned the output to an R object called fmR. The object contains a wealth of information on the structure, fit and

outputs of the model. The structure of the object can be seen by typing str(fmR) in the R console. It is a list object and

each element of the list can be accessed by the use of the dollar sign. For example, the R2 employed in the model can be seen

by typing fmR$ETA$MRK$R2. A subsection of the output is given below.

> str(fmR)

List of 21

$ y : num [1:654] NA 10.4 9.6 NA NA ...

...

$ df0 : num 5

$ S0 : num 1.62

$ yHat : num [1:654] 9.57 9.91 9.67 10.07 10.07 ...

$ SD.yHat : num [1:654] 0.385 0.225 0.326 0.401 0.411 ...

$ mu : num 10.1

$ SD.mu : num 0.309

$ varE : num 0.344

...

$ ETA :List of 1

..$ MRK:List of 16

.. ..$ model : chr "BL"

...

.. ..$ R2 : num 0.5

.. ..$ lambda : num 57

.. ..$ type : chr "gamma"

.. ..$ shape : num 1.1

.. ..$ rate : num 4.97e-05

...

.. ..$ tau2 : num [1:2567] 0.000689 0.000675 0.000694 ...

...

The R2 is reported as 0.5, because we allowed the program to set this parameter at its default value. The lambda value

(regularization parameter) was set to λ ¼ 57. Larger values of lambda would shrink the marker effects more strongly. The

prior density of λ2 is set to a gamma distribution with shape r and rate δ parameters, with expectations λ2 ~ gamma(r, δ). The
shape parameter was set as previously mentioned at 1.1 and the rate was δ ¼ 4.97e � 05. The package assigns a flat prior

(meaning conveying vague almost uniform prior knowledge) to the vector of fixed effects (intercept in this example), thus

the expectation of the intercept is p(μ) / 1. ‘tau2’ is the vector of marker-specific variances. The tau values for the first

three markers are shown in the str(fmR) output above. The complete vector of values can be accessed as fmR$ETA$MRK

$tau2. In a Bayesian Lasso model, markers are assigned identical and independent distributed exponential priors with

expectations τ2j � Exp λ2
� �

. At the beginning of the output we see two parameters (df0 and S0). These two values represent

the degrees of freedom and scale parameter for the prior distribution of the residual variance. The residual variance is

assigned a scaled inverse χ2 prior distribution with degrees of freedom dfe ¼ 5, and scale parameter Se ¼ 1.62. That is, the

expectations of residuals are σ2e � χ�2 df e; Seð Þ (de los Campos et al. 2013; de los Campos and Perez Rodriguez 2014).

The summary of the model can be obtained by using the function ‘summary()’

> summary(fmR)

------------------–> Summary of data & model <--------------------

Number of phenotypes= 554

(continued)
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Min (TRN)= 7.949793

Max (TRN)= 12.11167

Variance of phenotypes (TRN)= 0.5719

Residual variance= 0.3681

N-TRN= 554 N-TST= 100

Correlation TRN= 0.8696

-- Linear Predictor --

Intercept included by default

Coefficientes in ETA[ 1 ] ( MRK ) modeled as in BL

N-TRN ¼554 is the size of the training set, N-TST ¼ 100 is the size of the validation set. The correlation of direct genetic

values and the phenotype in the training set is 0.8696. Markers explained about 61% of the variance in phenotype in the

training set ~0.5719/(0.5719 + 0.3681).

In order to understand the predictive power of markers we can estimate model fit statistics; the predicted ability of markers,

rank correlations, model bias and the phenotypic mean of the top 10% of individuals ranked on their GEBV (Wimmer et al.

2012). See Chap. 11 for the explanation of model fit statistics.

Code example 12-1
(continued)

PredAbi Rank MSE Bias Best10

Height 0.41 0.39 0.41 1.03 11.1

For this one-time cross validation, the prediction ability of the markers is 0.41, with little bias on the predictions (1.03). The

rank correlation between phenotype and GEBV in the validation set is 0.39. When individuals are ranked based on their

GEBV, the top 10 had height mean of 11.1. See the R code “Code example 12.1” for visualization of the relationships

between phenotype and GEBV.

Comparisons of some Bayesian models

In the following code, we compare Bayesian Ridge Regression, Bayesian Lasso, BayesA, BayesB and BayesC models,

following an example in de los Campos and Perez Rodriguez (2014). We leave the priors at their default settings and do not

try to optimize any of the models, as the objective is to compare a large variety of models. A particular note in this case is

necessary for the BayesB model. While in the traditional implementation of the model, as described in the previous section

of the chapter, the π is treated as a hyper prior, in BGLR this is treated as another random parameter with its own prior

distribution and assigned a beta distribution π ~ Beta( p0, π0). That is actually one of the nice properties of Bayesian

hierarcical models. Choosing values p0 ¼ 2 , π0 ¼ 0.5 will produce a flat uniform [0,1] prior for π. Conversely, increasing
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the value of p0 will increase the mass of the distribution towards the value of π0. So for example, if we want a strong prior on

π0 for a oligogenic architecture (a trait controlled by a few major genes) we could choose a large p0 and a π0 ¼ 0.05. The π
governs the proportion of markers at any iteration that have a non 0 effect. The default values of BGLR are p0 ¼ 10 , π0
¼ 0.5. You might have noticed that while in the previous sections we have presented π as the prior probability of a marker of

being 0 (the usual way in which is presented in the majority of implementations) in BGLR the interpretation of the parameter

π0 is reversed representing the prior probability of a maker to be 6¼0. So from this point on we will refer to π0 as a prior

probability of a marker of having non null value.

Code example 12.1

(continued)
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The ‘pD’ is the effective number of predictors, showing the complexity of the model (Spiegelhalter et al. 2002). The ‘DIC’ is
deviance information criteria. Small DIC values are preferred. Model fit statistics pD, DIC, residual variance and predicted

ability of markers for statistical models are summarized below.

PredAbi varE pD DIC

BLasso 0.410 0.361 166.310 1172.716

BRidge 0.421 0.348 179.770 1163.091

BayesA 0.416 0.353 174.289 1165.808

BayesB 0.399 0.352 176.262 1166.047

BayesC 0.415 0.348 179.192 1162.593

For this small example, the models did not differ for prediction ability of markers. Bayesian Lasso had the highest residual

error variance, lowest effective number of predictors (pD) and highest deviance information criteria (DIC). The estimated

residual variances were similar for all the models.

The predicted marker coefficients from Bayesian Ridge regression and BayesB are plotted in Fig. 12.3 for demonstration

using code Code 12-1_BayesianModels.R. It can be seen from the plot how BayesB puts less shrinkage on markers with

large effect (red dots) compared to Ridge Regression (black dots).

Model Fit Statistics and Model Convergence

In maximum likelihood-based methods, convergence is reached when the change in likelihood between the current and

previous iterations is less than some chosen threshold. The same approach is not possible with MCMC methods because in

this case, parameter estimates are constructed as statistics of the respective posterior distributions. Therefore, it is necessary

to check model convergence in other ways. The simplest way is to inspect the trace plots of the residual variance and other

parameter estimates that indicate how their values change over iterations. After the burn-in phase, the trace plots should

appear as random samples from the target posterior without large “jumps” or erratic behaviors. In the example below we plot

the convergence of residual variance and the regularization parameter (lambda) over iterations.
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Fig. 12.3 Markers effects (absolute beta values) from Bayesian Ridge Regression (black dots) and BayesB models (red dots). BayesB favors loci

with large effect as shown by red dots
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Code example 12.1
(continued)

In the residual plot (Fig. 12.4), the residual variance (h ¼ fmBL$varE) estimated from the model is the horizontal line, the

X-axis labelled “index” represents the sequential iteration number that was maintained after thinning. The ratio of “burn-in”
to “thinning” is used as the vertical line (v ¼ fmBL$burnIn/fmBL$thin).

More formal methods to check for convergence are available, but we will not discuss them here in detail. R packages offer a

wealth of possibilities in this regard. Below is a simple example using our data and the R package coda, one of the most used

and intuitive packages. There is unfortunately no silver bullet to check convergence in MCMC analyses. For this example,

we will use a commonly employed measure, the Gelman-Rubin statistic (in practice, multiple tests of convergence are

usually recommended). The Gelman-Rubin statistic checks the convergence of MCMC by comparing differences between

multiple chains. The test aims at comparing the estimated between-chain and within-chain variances for a particular
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Fig. 12.4 Trace plots of the

Bayesian Lasso regression model

for 20,000 iterations. The

horizontal axes represent the

sequential iteration retained after

thinning. Vertical axes are the

model parameters residual

variance (left) and regularization

parameter lambda (right). The
vertical lines represent the end of

the burn-in phase. The horizontal

lines are the posterior means of

the residual variance and the

shrinkage factor lambda
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parameter. The difference is measured through the potential scale reduction factor (Brooks and Roberts 1998). Large values
of potential scale reduction factor indicate lack of convergence. A potential scale reduction factor of 1 means that between-

and within-chain variances are equal and therefore convergence has been reached. As a rule of thumb, values below 1.1 are

considered acceptable. When the test fails, a longer chain is required or a different model specification is needed. The

Gelman plot shows potential scale reduction factor over time, and can be used to determine whether a chain reduction is also

stable as large variation over-time of the potential scale reduction factor might be indicative of poor convergence.

As the Gelman-Rubin statistic requires multiple chains we will start by running five chains using the model specifications

outlined in the previous sections.

Code example 12.1

(continued)
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Next, we load the saved MCMC samples for σ2e into an R object.

Code example 12.1

(continued)

We will then create an MCMC object with all the chains (note that the coda package requires objects of class “MCMC”).

Code example 12.1
(continued)

Finally, we compute the Gelman-Rubin statistic.

Code example 12.1
(continued)
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The output of the call is reported below:

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.03 1.06

As you can see both the point estimate and the upper confidence interval for the potential scale reduction factor of σ2e are

below 1.1 indicating convergence. Additionally, we can also produce a Gelman plot to examine the stability of the potential

scale reduction factor over samples and verify that the decrease in potential scale reduction factor is stable (Fig. 12.5).

Choice of Priors

BGLR provides a convenient way to choose the shape of prior distributions shape via the R2 argument. By default the R2 is

set to 0.5. That is, the effect modeled explains 50% of the total variance. If there is more than one linear predictor, each will

have its own R2 values.

In the following example, we will set the residual variance priors as well as lambda mimicking the default values of the “BL”
option (Bayesian Lasso). As before, residuals are assigned a scaled inverse χ2 distribution. By default, the degrees of

freedom are set to 5 and that the relevant scale parameter is obtained from R2 by solving Se ¼ Var(y)(1 � R2)(dfe + 2).

This guarantees that the prior mode of the residual variance is Var(y)(1 � R2). The same process can be applied for other

variances too. The following code will reproduce default values for the residual variance:
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Fig. 12.5 Gelman plot of the shrinkage factor for σ2e . The X axis is the iteration number. The Y axis is a measure of convergence, the potential

scale reduction factor
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Code example 12.1
(continued)

Similarly, using the BL specification, the default lambda (if not fixed a priori) can also be specified with the option:

type ¼ ‘gamma’. This fixes the shape parameter of a gamma density to 1.1 and solve for the rate parameter to reflect the

R2. The rate is calculated as s� 1ð Þ= 2 1�R2ð Þ
R2 MSx

� �
, where MSx is the sum of sample variances of the columns of genotypes and

s is the shape parameter.

Code example 12.1
(continued)

We can now fit the same example with the updated prior list:

Code example 12.1
(continued)

In the example dataset, varying the R2 parameter does not dramatically affect the posterior distributions (solid lines in

Fig. 12.6). This is not uncommon and in many cases, most of the information in a run will come from the likelihood, rather

than from the prior. A sensitivity analysis is always a sensible choice to empirically evaluated howmuch the prior and hyper-

parameter settings influence the results. Further details on rules for choosing prior specifications and hyper-parameters can

be found at http://genomics.cimmyt.org/BGLR-extdoc.pdf.
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Here we demonstrate a small sensitivity analysis with the example data set:

Code example 12.1
(continued)

Webegin by setting the different values forσ2eR2usingpropE¼c(0.8,0.6,0.4). Thenwe specify the different prior values

as outlined in the previous section. Finally we run the sequential calls of BGLR using the different priors and save the outputs.

Code example 12.1
(continued)
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After the analysis we can load the MCMC runs (for σ2e) and put them all in an R object for further manipulation.

Code example 12.1

(continued)

We can now plot prior and posterior densities. Note that we are going to plot the prior using the function dinvgamma()

in R, so that we are not using the MCMC samples but a plot generated using the density function and parameters specified to

match the priors used.

Code example 12.1

(continued)

Then we produce the posterior density, making use of the generated MCMC samples.

Code example 12.1
(continued)

Finally, we plot the results.
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Code example 12.1
(continued)

The figure suggests that priors’ effect on the posterior distribution of residual variance is limited. Despite choosing three

different priors (residual variance is assumed 80%, 60% and 40%), the posterior means of the residual variance were close to

each other (0.34, 0.33, 0.33). The exercise could be repeated with all other parameters for which a prior distribution is specified.
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Fig. 12.6 Prior (dashed lines)
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densities (solid lines) for the
residual variance assuming three

informative priors in Bayesian
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Genetic Architecture

We have seen in the previous example how model choice did not significantly affect the result of our analysis. In the

following section we will explore the influence of model choice when the trait analyzed has different genomic architectures.

The example data set includes four simulated traits with different genetic architectures so we can demonstrate the influence

of genetic architecture on Bayesian analysis results. The first simulated trait has a completely additive polygenic architecture

(no QTL) while for traits 2 to 4, we simulated an increasing number of causative loci underlying the trait (2, 10 and 100 QTL,

respectively) in addition to additive polygenic effects. For a given trait, all QTL have identical true effects. Although this is

unrealistic, it simplifies interpretation of differences between the models employed. For each of the four traits we will run

Bayesian Ridge Regression, BayesA, BayesB, BayesC, and Bayesian LASSO models (using default values for priors) and

compare the predictive ability of the models. The code example below loops through the four traits, fitting each of the

models to each trait and evaluating their prediction abilities.

Code example 12.1
(continued)

(continued)
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The resulting output is reported below.

$TRAIT_1

PredAbi varE pD DIC

BRidge 0.455 0.341 185.324 1227.982

BayesA 0.456 0.344 183.208 1231.820

BayesB 0.452 0.353 175.644 1237.907

BayesC 0.453 0.343 185.707 1231.653

BLasso 0.448 0.353 173.912 1237.622

$TRAIT_2

PredAbi varE pD DIC

BRidge 0.502 2.144 250.393 2383.088

BayesA 0.735 1.750 90.324 2103.156

BayesB 0.734 1.730 96.520 2101.898

BayesC 0.727 1.959 31.998 2113.096

BLasso 0.694 1.313 275.636 2111.773

$TRAIT_3

PredAbi varE pD DIC

BRidge 0.408 1.331 200.816 2052.399

BayesA 0.563 1.203 208.085 1998.584

BayesB 0.700 1.301 107.687 1947.973

BayesC 0.694 1.296 111.528 1949.099

BLasso 0.491 1.295 197.169 2028.970

(continued)
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$TRAIT_4

PredAbi varE pD DIC

BRidge 0.356 0.508 204.830 1483.607

BayesA 0.368 0.498 204.444 1471.021

BayesB 0.407 0.477 216.179 1457.777

BayesC 0.391 0.490 211.429 1467.967

BLasso 0.371 0.518 195.375 1483.115

For the first trait (controlled by a purely polygenic architecture), there is almost no difference among models; ridge

regression performed as well as the “QTL-oriented” Bayesian models. For trait 2 (2 QTL plus polygenic background),

however, Bayes A, B, C and LASSO all perform well, and are substantially better than Bayesian Ridge Regression. As the

number of QTL increases from trait 2 to 100 (trait 2 to trait 4), the differences among models decreases. Even in the presence

of a finite number of QTL, the use of a Bayesian alphabet model does not automatically guarantee good performance and for

QTL of moderate size a large number of observations would be needed to truly take advantage of these models.

Next, we will attempt to tune model priors to increase predictive ability. In the following example we show the impact of

varying the π0 parameter (roughly speaking, the prior proportion of markers we expect to have a significant contribution for a

trait) on a BayesC analysis. We created a function called PiInf to make running the comparison easier.

Code example 12.1

(continued)

The function takes few parameters as input and passes them sequentially to different BGLR calls. Specifically, the number of

iterations and burn-in, the models to be run and the two parameters that define π in BGLR: probIn (not shown in above

piece of code), defining the probability π0 and counts, which regulates the degree of belief in the probability of inclusion

( p0). Large values of p0 correspond to stronger belief in the prior. For each simulated trait we initialized a series of BayesC

models with different value of π0 (0.99, 0.9, 0.8, 0.5, and 0.10). Remember BGLR models π0 as the probability of inclusion
so a probIn of 0.01 will means that we assume a prior probability of not being 0 of 1%). For all models we use a large prior

credibility with counts values of 200 to maximize the influence of the priors on the results. See ‘Code 12-1_BayesianModels.

R’ and the next page for details.
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Code example 12.1
(continued)

Bayesian Regression Examples with BGLR Package 379



A call to the function with default values and results assigned to an object called rs<-PiInf()will produce the following

results.

$TRAIT_1

PredAbi varE pD DIC

BayesC_01 0.481 0.450 106.764 1317.615

BayesC_10 0.456 0.367 170.406 1259.039

BayesC_20 0.445 0.350 183.514 1242.488

BayesC_50 0.428 0.332 197.749 1225.903

BayesC_90 0.426 0.332 197.749 1224.992

$TRAIT_2

PredAbi varE pD DIC

BayesC_01 0.817 1.971 15.438 2101.023

BayesC_10 0.820 1.838 66.254 2109.304

BayesC_20 0.807 1.604 149.464 2110.596

BayesC_50 0.584 1.996 253.924 2239.406

BayesC_90 0.463 1.996 253.924 2344.012

$TRAIT_3

PredAbi varE pD DIC

BayesC_01 0.618 1.354 66.554 1929.406

BayesC_10 0.553 1.189 151.510 1936.810

BayesC_20 0.498 1.129 211.090 1963.667

BayesC_50 0.421 1.313 206.500 2023.452

BayesC_90 0.391 1.313 206.500 2049.896

$TRAIT_4

PredAbi varE pD DIC

BayesC_01 0.555 0.594 146.064 1519.501

BayesC_10 0.545 0.501 199.313 1471.533

BayesC_20 0.508 0.487 210.120 1464.278

BayesC_50 0.461 0.506 205.252 1474.328

BayesC_90 0.439 0.506 205.252 1482.828

Once again for the first trait (completely polygenic) no significant differences are apparent for the different choices of the

π0 parameter. Conversely for the second trait (with two large-effect QTL), two things are evident. The first is that the tuned

version of BayesC performs better with respect to the previous non tuned example (BayesC 0.727). Second, it is possible

to see that the choice of π0 does influence the results. Increasing π0 from 0.01 to 0.90 reduces the predictive ability almost in

half for this trait. At the lower values of π0, the model will include the effects of fewer markers and allow their effects to be

larger, which better matches the genetic architecture of this trait. Results for a larger number of QTL per traits are more

nuanced but show the same pattern. Once again such striking results are due to the oversimplified simulated data employed

here. Yet results show that different genetic architectures can be effectively accounted for by choosing and tuning the right

model. Although we used only BayesC for this example, tuning the parameters for the other models could also improve their

performance.

We can check the effect of the counts parameter (which models our “degree of belief” in π0) by running a similar analysis

with a much smaller value of the counts.
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Code example 12.1
(continued)

The results are reported below.

$TRAIT_1

PredAbi varE pD DIC

BayesC_01 0.317 0.420 127.547 1295.687

BayesC_10 0.424 0.353 185.147 1248.054

BayesC_20 0.444 0.346 190.197 1241.106

BayesC_50 0.446 0.350 183.732 1237.405

BayesC_90 0.443 0.350 183.732 1242.333

$TRAIT_2

PredAbi varE pD DIC

BayesC_01 0.763 2.018 11.427 2110.254

BayesC_10 0.763 2.017 12.071 2110.518

BayesC_20 0.762 2.017 13.353 2111.469

BayesC_50 0.762 2.014 12.914 2110.567

BayesC_90 0.763 2.014 12.914 2110.674

$TRAIT_3

PredAbi varE pD DIC

BayesC_01 0.641 1.460 53.416 1962.122

BayesC_10 0.642 1.423 72.817 1966.113

BayesC_20 0.645 1.427 71.235 1965.750

BayesC_50 0.641 1.428 69.472 1964.425

BayesC_90 0.644 1.428 69.472 1965.036

$TRAIT_4

PredAbi varE pD DIC

BayesC_01 0.282 0.561 168.985 1508.213

BayesC_10 0.334 0.509 197.754 1478.732

BayesC_20 0.346 0.512 196.119 1478.667

BayesC_50 0.353 0.511 203.157 1481.997

BayesC_90 0.366 0.511 203.157 1485.769

In this case, focusing on the second trait, we see that by putting less “certainty” on π, the model results rely more heavily on

the evidence provided by the current experiment (the likelihood) than the prior, so the results of models with very different

values of π are more similar.

Cross-Validation

In the previous sectionswe have used a simple strategy to assess accuracy of prediction by splitting data into a single training and

prediction set. To help avoid inflation of estimated prediction accuracy by hidden data structure, we should split the data into

many subsets (k-folds) and evaluate prediction accuracy for many combinations of training and validation sets. Because the

estimate of prediction ability is subject to sampling variation, more so when the training set is not large. In the code below we

demonstrate how to randomly sample 60 individuals as the validation set for k¼ 5 folds for multiple traits, run a BayesCmodel

on each training set, evaluate its fit on the appropriate validation set, and summarize model fit statistics over replicated folds.
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Code example 12.1
(continued)

(continued)
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Code example 12.1 (continued)
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The summary statistics of the cross-validation analysis are provided below.

Sim.Pheno Sim.Pheno.2 Sim.Pheno.3

PredAbi 0.41 (0.27-0.54) 0.77 (0.72-0.83) 0.61 (0.58-0.67)

RankCor 0.39 (0.20-0.52) 0.72 (0.65-0.80) 0.58 (0.52-0.62)

MSE 0.50 (0.42-0.57) 2.12 (1.95-2.35) 1.57 (1.16-1.90)

Bias 1.15 (0.74-1.53) 1.07 (0.92-1.19) 1.04 (0.87-1.23)

Best10 11.39 (11.09-11.57) 55.03 (54.42-55.68) 87.99 (87.43-88.28)

Sim.Pheno.4

PredAbi 0.44 (0.35-0.52)

RankCor 0.41 (0.32-0.49)

MSE 0.81 (0.64-1.03)

Bias 1.15 (0.93-1.53)

Best10 77.01 (76.67-77.43)

In this simple cross validation example the prediction ability for trait ‘Sim.Pheno’ ranged from 0.27 to 0.54 with a mean of

0.41. This wide variation in results suggests that in practice, we should conduct additional replications of the cross-validation

to get a better estimate of the mean prediction ability.
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Legarra, A., Robert-Granié, C., Manfredi, E., & Elsen, J.-M. (2008). Performance of genomic selection in mice. Genetics, 180, 611–618.

doi:10.1534/genetics.108.088575.

Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92,
4656–4663. doi:10.3168/jds.2009-2061.

Lewontin, R. C. (1964). The interaction of selection and linkage. I. General considerations; heterotic models. Genetics, 49, 49–67.
Li, Y., Willer, C. J., Ding, J., Scheet, P., & Abecasis, G. R. (2010). MaCH: Using sequence and genotype data to estimate haplotypes and

unobserved genotypes. Genetic Epidemiology, 34, 816–834. doi:10.1002/gepi.20533.
Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits (1st ed.). Sunderland: Sinauer Associates.
Maltecca, C., Parker, K. L., & Cassady, J. P. (2012). Application of multiple shrinkage methods to genomic predictions. Journal of Animal

Science, 90, 1777–1787. doi:10.2527/jas.2011-4350.
Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., & Cierco-Ayrolles, C. (2012). Novel measures of linkage disequilibrium that correct

the bias due to population structure and relatedness. Heredity, 108, 285–291. doi:10.1038/hdy.2011.73.
Marchini, J., & Howie, B. (2010). Genotype imputation for genome-wide association studies. Nature Reviews. Genetics, 11, 499–511.

doi:10.1038/nrg2796.

McKeand, S. E., & Bridgwater, F. E. (1998). A strategy for the third breeding cycle of loblolly pine in the southeastern US. Silvae Genetica, 47,
223–234.

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics,
157, 1819–1829.

Literature Cited 391

http://dx.doi.org/10.3168/jds.2008-1646
http://dx.doi.org/10.1007/978-3-642-74487-7_1
http://dx.doi.org/10.1007/978-3-642-74487-7_1
http://dx.doi.org/10.2135/cropsci2011.06.0297
http://dx.doi.org/10.1017/S0003356100032220
http://dx.doi.org/10.1371/journal.pgen.1000008
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.2135/cropsci2015.06.0333
http://dx.doi.org/10.1371/journal.pgen.1000529
http://dx.doi.org/10.1007/s00122-005-1957-0
http://dx.doi.org/10.1093/biomet/73.2.301
http://dx.doi.org/10.2134/agronj2010.0175
http://dx.doi.org/10.2307/2533558
http://dx.doi.org/10.1016/j.csda.2008.12.013
http://dx.doi.org/10.3168/jds.2011-4982
http://dx.doi.org/10.1534/genetics.108.088575
http://dx.doi.org/10.3168/jds.2009-2061
http://dx.doi.org/10.1002/gepi.20533
http://dx.doi.org/10.2527/jas.2011-4350
http://dx.doi.org/10.1038/hdy.2011.73
http://dx.doi.org/10.1038/nrg2796


Meyer, K. (2009). Factor-analytic models for genotype x environment type problems and structured covariance matrices. Genetics Selection
Evolution, 41, 21.

Milliken, G. A., & Johnson, D. E. (2004). Analysis of messy data, Designed Experiments (Vol. 1). Boca Raton: Chapman & Hall/CRC.

Misztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic

information. Journal of Dairy Science, 92, 4648–4655. doi:10.3168/jds.2009-2064.
M€ohring, J., & Piepho, H.-P. (2009). Comparison of weighting in two-stage analysis of plant breeding trials. Crop Science, 49, 1977. doi:10.2135/

cropsci2009.02.0083.

M€ohring, J., Melchinger, A. E., & Piepho, H. P. (2011). REML-based diallel analysis. Crop Science, 51, 470. doi:10.2135/cropsci2010.05.0272.
Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.-Y., & Myles, S. (2015). LinkImpute: Fast and accurate genotype imputation

for nonmodel organisms. G3: Genes|Genomes|Genetics, 5, 2383–2390.
Mrode, R. A. (2014). Linear models for the prediction of animal breeding values (3rd ed.). Boston: CABI.

Müller, B. U., Schützenmeister, A., & Piepho, H.-P. (2010). Arrangement of check plots in augmented block designs when spatial analysis is used.

Plant Breeding, 129, 581–589. doi:10.1111/j.1439-0523.2010.01803.x.
Mullin, T., Andersson, B., Bastien, J. -C., Beaulieu, J., Burdon, R. D., Dvorak, W. S., King, J. N., Kondo, T., Krakowski, J., Lee, S. J., McKeand,
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A
A-BLUP, 333

Additive variance (VA), 110

Akaike Information Criterion (AIC), 233

ANOVA, 50–65

linear mixed models and

with ASReml, 55, 56, 59

hypothesis testing, 60

Maize recombinant inbred lines data, 50

prediction (BLUE and BLUP), 61, 62

with R, 53–55, 57, 58

with SAS Proc GLM, 51, 52

with SAS Proc MIXED code, 57

unbalanced data

with SAS Proc GLM, 62–65

ASReml software, 3, 5–17, 21–48, 88–106

ASReml-R, 39

data set used in analysis, 40–43

fitting model, 43–48

ConTEXT text editor, 3

output files, 18–21

.aov (ANOVA and conditional F-tests), 24

.msv (resetting initial parameter values), 26

.res (Statistics from residuals for model selection), 23, 24

.rsv (resetting initial parameter values), 25

.sln (Solutions for Fixed / Random effects), 21, 22

.tsv (resetting initial parameter values), 25

.vvp (Covariance matrix of random effects), 24

.yht (Predicted and residual values), 22

prediction, 27–29

tabulation, 26, 27

processing multiple analyses with one command file, 29

!ARGS and !CYCLE together, 37

!ARGS and !RENAME qualifiers, 34–36

!CYCLE qualifier, 29–34

linear combinations of variance components, 37–39

purpose of, 2

running, 17, 18

starting with

data field definitions, 8, 9

data file qualifiers, 10–12

job control qualifiers, 12, 13

pine provenance-progeny data, 3, 5–8

specifying terms in linear model, 14, 15

transformation of response variables, 9, 10

variance header line and random model terms, 15–17

variance modeling

gamma and sigma parameterization, 88

heterogeneous G variance structures, 98–102

heterogeneous R variance structures, 91–98

homogenous variance models, 89–91

initial values, 102–106

workflow, 2, 3

ASReml-R package, 2

ASReml-R version 3.0, 39

data set used in analysis, 40–43

fitting model, 43–48

!ASSIGN qualifier, 103

B
Bayesian concepts

BayesA and BayesB, 358–360

BayesC and BayesCpi, 360

Bayesian Lasso, 360, 361

genomic prediction, 357

Markov Chain Monte Carlo (MCMC) methods, 357

ridge regression, 358

whole genome regression analyses, 357

Bayesian Information Criterion (BIC), 233

Bayesian statistics, 76

Beagle, 292. See Imputing missing genotypes values

Best linear unbiased estimators (BLUEs), 61, 62

Best linear unbiased predictor (BLUP), 61, 62

BGLR package, 362–384

Biplots, 262

Blended genetic relationships, 351, 353, 354

calculation, H Matrix, 351–354

genotyped trees, 351

R code, 353, 354

effects, 350

genotype information, 350

genotyping, 350

variance of genotyped individuals, 350

variance of ungenotyped individuals, 350

Breeding value (BV). See also Causal variance components

family selection, 108, 109

C
Causal variance components

ancestral/collateral, 109

covariance, full-sibs, 111, 112

covariance, half-sibs, 109–111

centiMorgan (cM), 272

Cloned Progeny Test Data

ASReml code, 160

cloneid values, 162

code example, 160

Code05-5_clones.sln file, 163

data, 158

estimation, 161
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Cloned Progeny Test Data (cont.)
eucalyptus species, 158

non-additive genetic variance, 158

statistical model, 159

VPREDICT directive, 162

Coefs, 54

Column vector, 67

Combined family and within family selection, 108

Compound symmetry (CORUV) model, 257

Comprehensive R archive network (CRAN), 2

Conditional BLUP, 61

ConTEXT text editor, 3

D
Delta method, 116

Diallel mating designs

connected, 143
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full, 142

GCA model, 144, 146

half, 143

interpretation, observed variances, 152

linear combinations, variances, 153–156

linear mixed model, 144

location interaction term, 148

monoecious plant species, 142

partial, 143

pedigree, GCA model, 146–148

pine trees, 144

R script, 155

reciprocal effects, 150–152

SCA effect, 149, 150

Double coancestry coefficient, 110

E
Empirical breeding values (EBVs), 166

Exploratory marker data analysis, 281–285

allele frequencies, 266

base pair calls, 264

BGLR package, 264

convert marker data, 272

data summary and visualization

genetic map, 281

pairwise linkage disequilibrium, 282–285

DNA sequencing and genomics technologies, 264

elements, 273–275

genetics package, 277–280

genotype data, 264, 270

heterozygosity, 267

HWE, 266–267

LD, 267–269

maritime pine data, 270–277

marker map, 272, 273

minor allele, 264, 266

pairs of observed nucleotides, 264

pedigree, 271

phenotypic data, 270, 271

PIC, 267

recoding loci and imputing missing genotypes, 276, 277

SNP base pair calls, 264

synbreed package, 264, 269

synbreed R package, 264

F
FA models

ASReml, 233–235
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BLUP, 255
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CORUV or compound symmetry model, 256

CORUV predictions, 250
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cross-classified predictions, 249, 250
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Cullis heritability estimator, 254

estimating heritability, 254

family mean-basis heritability, 259
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genotype effects, 255
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heritability estimate, 258

homogeneous error variances, 257
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narrow-sense heritability, 254

within-environment error variances, 255

XFA1 model, 258

XFA1 predictions, 251–253

Factorial mating designs, 156–158

Family index selection, 108

Family model, 108

Family selection, 108

Full-sib family selection, 108

G
Gamma parameterization, 88

GCA (family) model

accuracy, breeding values, 120, 121

BLUP method, 113

factors, 114

fixed and random effects, 112

genetic covariance matrix, 113

half-sib family progeny test, 114

half-sib progeny data, 114

linear mixed model, 112

linear model, 113

parental breeding values, 112

provenance effects, 117

shrinkage factor, 113

variance components and linear combinations, 115–117

within-family variation, 118–120

Gelman-Rubin statistic, 368–370

General combining ability (GCA), 108, 142

Genetic groups

breeding values, 134

fixed effect, GCA model, 134–136

pedigree information, individual model, 136–138

plant and animal breeding programs, 134

Genetic values

SCA, 142

Genomic estimated breeding value (GEBV), 363

Genomic estimated breeding values (GBLUP), 324, 343–349

analysis, 324

approach, 358

and genomic selection, 325, 326

GEBVs, 324
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plant breeding, 324

replicated family data in ASReml

analysis code, 345

elements, 344

glm(line).us(Trait), 348

IDV model, 348

Maize_S1_G.grm, 344

Maize_S1_pedigree.csv, 344

outcomes, 346, 347

phenotypic values, 343

predicted yields of maize, 349

R code, 343

relationship matrix, 349

synbreed package, 343

trait analysis, environments, 349

Synbreed Package, 327–336

Genomic relationships, 319–321, 323–339, 342, 343, 350–354

allele frequencies, 318

allele minus homozygous, 313

blended (see Blend genetic relationships)

calculation, G matrices

biocLite() function, 320
CorrOpt data, 323
DNA marker data set, 321

estimators, 321

GeneticsPed package, 320

GenomicRel(), 320
pedigree and SNP markers, 323

pedigree information, 319

relationship, 319

statistics, 324

cross-product matrix, 314

cross-products, 315

cross-validation, 343–350

A-BLUP and G-BLUP models, 337

ASreml, 339

ASReml, 339

average prediction ability, 338

EBVs or GEBVs, 336

evaluating prediction accuracy, 336

five-fold cross-validation, 337

GBLUP, 336

GBLUP with Replicated Family Data in ASReml (see Genomic

estimated breeding values (GBLUP))

mean squared error (MSE), 338

merged validation set predictions and original observations, 342

operation, 336

predictive ability, 338

progenies, 342

statistics, 343

Synbreed, 337
estimation, genetic markers estimate, 312

estimation, IBD relationships, 314

estimators, 318

and G-BLUP (see Genomic estimated breeding values (GBLUP))

genotype data, 312

Hardy-Weinberg expectations, 317

homozygous identity, 312

IBD, 312

IBS, 312, 314, 318

loci, 317

marker data matrix, 315

minor allele count data, 314

pedigree relationship, 314

phenotypic data and resemblance, 312

values, 317

Genomic selection

choice of priors, 371–375

cross-validation, 381–384

genetic architecture, 376–381

regression models, 356–361

H
Half-sib family selection, 108

Hardy-Weinberg Equilibrium (HWE), 109, 266

Heterogeneous G variance structures

block diagonal, 98, 99

correlated effects, 100, 101

correlated effects due to genetics, 101, 102

nested and interaction terms, 99, 100

Heterogeneous R variance structures

error effects, 93–96, 98

residual sat(location).idv(units), 92

residual variances, 91–93

Heterozygosity, 267

Hidden Markov Model (HMM), 291, 292

Highest deviance information criteria, 367

Homogenous variance models, 89–91

Hypothesis testing

with mixed models, 60

I
Identical by descent (IBD), 110

Identity matrix, 68

Imputing missing genotypes values, 289, 292–304

analytical methods, 288

availability, reference genomes, 288

diplotypes, 289

dropping, 288

encoding SNP genotypes, 289

genetic marker effects, 289

genome assembly, 289

genomic information, breeding, 289

haplotypes, 289

imputing data, 288

LD and reference haplotypes, 291

linkage disequilibrium (LD), 288

missing loci, haplotypes, 290

pedigree-free methods (see Pedigree free imputation)

predictions, 288

process, 288

reference panel (see Reference panel, imputing missing genotypes)

SNP genotyping, 288

SNP loci, 289

Synbreed Package, 306–309

unordered marker sets, 288

Incomplete block design, 204, 212

Individual (“animal”) model, 122–134

deep pedigrees and maternal effects

AIC values, 134

breeding values, 131

Code04-5_AnimalModel.pvc file, 130, 132
covariate, 128

direct and maternal heritabilities, 131

direct genetic effect, 130, 131

generations, 128

genetic component, 130

ide() function, 133
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Individual (“animal”) model (cont.)
livestock, 127

non-genetic (‘environmental’) maternal effects, 133

phenotypic variance and heritability, 132

pig_data.txt data set, 129

random pedigree-associated effect, 130

str() function, 130, 133

variance (correlation) components, 131

variance-covariance structure, 130

VPREDICT !DEFINE command, 131, 132

GCA models, 122

half-sib family data

additive genetic relationship matrix, 122

ASReml syntax, 123

BLUPs, 126

breeding values, 125

Code04_3_TreeModel.pvc, 124

components, 124

GCA model, 123

incidence (Z) matrix, 123

linear model (individual tree model), 123

parental and progeny breeding values, 122

pine_provenance.csv dataset, 122
R code, 126, 127

residual vs. predicted values, 125, 126

treeid and female effect, 124

VPREDICT function, 124

observational units, 121

plant species, 121

!INIT qualifier, 103

L
Lasso regression, 363

Least square means, 61

Likelihood ratio tests (LRT), 233

Linear mixed models, 50–62, 65, 66, 74–81

estimability, 81–83

in Nutshell, 74

equations, 80, 81

expectations and variance-covariance for random

effects, 76

fixed and random effects, 74–76

model, 74

solving the model, 79

trivial example, 77, 78

REML, 85, 86

standard errors and accuracy, 84

and traditional ANOVA

hypothesis testing, 60

Maize recombinant inbred lines data, 50

prediction (BLUE and BLUP), 61, 62

with ASReml, 55, 56, 59

with R, 53–55, 57, 58

with SAS Proc GLM, 51, 52

with SAS Proc MIXED code, 57

unbalanced data

with SAS, 65, 66

Linear model, ASReml, 14

reserved terms, 14, 15

Linkage disequilibrium (LD), 264, 267–269

Linkage group, 270, 281

lm() function, 54

lme4 package, 57

‘lsmeans RIL’ statement, 61

‘lsmeans’ statement, 53

LSMeans() function, 55

M
Maize RILs multivariate model

ASReml, 182

G and R structure, 175

random effects, 174

recombinant inbred lines (RILs), 171

residual variance structure, 174

sequence of variance structures, 184

univariate analysis, 172, 173

Marginal mean, 61

Markov Chain Monte Carlo (MCMC)methods, 357, 367, 368, 370, 374

Mass selection, 117

Matrix, 66

algebra, 67

algebra with R, 70

direct sum and direct product of, 70

inverse of, 69

multiplication, 67, 68

transposition, 68, 69

Mendelian sampling, 139

Mixed model equation (MME), 137

Model convergence, 367–371

Model fit statistics, 367–371

Monomorphic loci, 264

MTDFREML software, 86

Multi-environmental trials (MET)

analyze each site separately to obtain variances, 236, 237

ANOVA, 228

ASReml-R, 248, 249

compound symmetry, 238

CORUH G structure, 239, 240

cross-classified ANOVA, 237

FA1 Correlation Structure, 242–244

FA1 Covariance Structure, 240–242

G structures, 229

genotype by environment (GxE) interaction, 228

heterogeneous residuals and block effects, 239

ignoring heterogeneity, 228

Pine Polymix MET data, 235–249

R structures, 229

TABULATE, 236

two-stage analysis, 228, 229

unstructured (US) covariance matrix, 229

US and CORGH Structures, 240

XFA1 Structure, 245, 246

XFA2 Structure, 246–248

XFA3 Structure, 248

Multivariate models

Animal Model, 193–201

genetic correlations, 166

genotypic covariance, 167

linear mixed model, 167–171

phenotypic values, 166

predictions, 191–193

quantitative genetics researchers, 166

REML analysis, 166

variances and covariances, 184–191

N
Narrow-sense heritability, 116, 117

Newton-Raphson algorithm, 2, 86

O
Observed variance components, 109

Orthogonal polynomial, 205
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P
Pedigree, 271

Pedigree free imputation

Beagle algorithm, 291

costs, 291

crop/livestock applications, 291

deep pedigree information, 289

fastPHASE, 291

haplotype blocks, 291

heuristic method, 292

Hidden Markov Models (HMM), 291, 292

IMPUTE2, 291

linkage structure, 291

livestock and plant science, 289

MaCH, 291

Markov Chain approach, 292

methods, 290

missing alleles, 292

missing genotypes, 289

Polymorphism information content (PIC), 267

Posterior distribution, 363, 372, 375

predict() function, 47

Prediction error variance (PEV), 84, 222, 223

Proc MIXED, 57, 61

Progeny testing, 115

R
Random model effect, 88

Random-mating, 110

Reciprocal effects, 150–152

Recombinant inbred lines (RIL) data, 50, 89

Reference panel, 292–294, 297–301, 304–306

imputation

Apple OSX and Linux operating systems, 298

assumption, 292

Beagle, 292, 297, 298

Beagle format, 293

differences, 297

EAGLE, 294

ImputeGenotype, 292
ImputeMarkerMap, 292
ImputePhasedGenotypes, 300
LD structure, 301

markers, 297

R and transform, 299

R code, 294

rate of 1cM/Mb, 293

ref_data1.inp.gz, 297
SNP marker, 292

Variant Call Format (VCF), 293

VCF, 299

without imputation

Beagle analysis, 306

high density genotyped samples, 304

LD, 306

markers on chromosome, 305

missing data, 304

SNPs, 304, 306

Regularization parameter, 361, 364

REML log-likelihood (LogL) values, 102

Resemblance. See Causal variance components

Residual error, 88

Residual idv(units), 90

Residual variance, 358, 364, 367, 371

Restricted maximum likelihood (REML), 2, 57, 85, 86

S
Scaled identity, 239

Selection on within-family deviation, 108

Self-fertilization, 138–140

Sigma parameterization, 88

!SIGMAP qualifier, 90

Singular matrices, 69

Spatial analysis, 209–215, 217–219

BLUPs, 223

conditional predictions, 224

Cullis estimator, 226

field data, 204

field trial data

ASReml, 209

fixed row and column orthogonal polynomial trends, 212, 213

no block or spatial effects, 209

random row and column effects, 212, 214, 215

RCBD model, 210, 211

spatial correlation, 218, 219

spatially correlated residuals, 217, 218

marginal predictions, 223

model selection, 208

modeling spatial effects, 204–208

prediction error variance (PEV), 222, 223

Row-column alpha designs, 204

variance-covariance matrix, 205–208

Specific Combining Ability (SCA), 142, 149, 150

Standard errors of predictions (SEP), 85

Statistical models

ANOVA model, 230

cross-classified model, 231

environments, 230

FA models, 232

Factor analytic (FA) covariance, 231

genotypic effects, 232

genotypic variances, 230

identical distribution, 231

marker regression models, 361

mixed model approach, 230

multiplicative model, 232

nested model, 230

QTL mapping, 361

sensitivity of genotypes, 232

type B genetic correlation, 230

unstructured (US) covariance model, 231

unstructured model, 231

US model, 231

vector of genetic effects, 232

vector of genotypic effects, 232

within-site variance, 232

Synbreed Package, 327, 329–331, 333, 334, 336

GBLUP

and A-BLUP, 333

differences, 333

function, 329, 331

gpData, 327
Heat map, 331

kin function, 327

negative differences, 333

output, 330

pedigree-base estimated breeding values, 336

pedigree-based genetic relationship coefficients, 329

pedigree-based relationship, 331

plot() function, 331

predictions models, 334

SNP genotype, 327
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t-distribution, 359

V
Variance modeling in ASReml

gamma and sigma parameterization, 88

heterogeneous G variance structures, 98–102

heterogeneous R variance structures, 91–98

homogenous variance models, 89–91

initial values, 102–106

Variogram, 215

W
WinASReml, 2

X
XFA (factor analytic), 229
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