Principal Bundles and Characteristic Classes

A principal bundle is a locally trivial family of groups. It turns out that the theory of connections on a vector bundle can be subsumed under the theory of connections on a principal bundle. The latter, moreover, has the advantage that its connection forms are basis-free.

In this chapter we will first give several equivalent constructions of a connection on a principal bundle, and then generalize the notion curvature to a principal bundle, paving the way to a generalization of characteristic classes to principal bundles. Along the way, we also generalize covariant derivatives to principal bundles.

§27 Principal Bundles

We saw in Section 11 that a connection ∇ on a vector bundle *E* over a manifold *M* can be represented by a matrix of 1-forms over a framed open set. For any frame $e = [e_1 \cdots e_r]$ for *E* over an open set *U*, the connection matrix ω_e relative to *e* is defined by

$$\nabla_X e_j = \sum_i (\omega_e)^i_j(X) e_i$$

for all C^{∞} vector fields *X* over *U*. If $\bar{e} = [\bar{e}_1 \cdots \bar{e}_r] = ea$ is another frame for *E* over *U*, where $a: U \to \operatorname{GL}(r, \mathbb{R})$ is a matrix of C^{∞} transition functions, then by Theorem 22.1 the connection matrix ω_e transforms according to the rule

$$\omega_{\bar{e}} = a^{-1}\omega_e a + a^{-1} da.$$

Associated to a vector bundle is an object called its *frame bundle* π : Fr(*E*) \rightarrow *M*; the total space Fr(*E*) of the frame bundle is the set of all ordered bases in the fibers of the vector bundle $E \rightarrow M$, with a suitable topology and manifold structure. A *section* of the frame bundle π : Fr(*E*) $\rightarrow M$ over an open set $U \subset M$ is a map $s: U \rightarrow$ Fr(*E*)

such that $\pi \circ s = \mathbb{1}_U$, the identity map on *U*. From this point of view a frame $e = [e_1 \cdots e_r]$ over *U* is simply a section of the frame bundle Fr(E) over *U*.

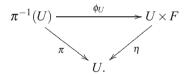
Suppose ∇ is a connection on the vector bundle $E \to M$. Miraculously, there exists a matrix-valued 1-form ω on the frame bundle Fr(E) such that for every frame e over an open set $U \subset M$, the connection matrix ω_e of ∇ is the pullback of ω by the section $e: U \to Fr(E)$ (Theorem 29.10). This matrix-valued 1-form, called an *Ehresmann connection* on the frame bundle Fr(E), is determined uniquely by the connection on the vector bundle E and vice versa. It is an intrinsic object of which a connection matrix ω_e is but a local manifestation. The frame bundle of a vector bundle is an example of a principal G-bundle for the group $G = GL(r, \mathbb{R})$. The Ehresmann connection on the frame bundle generalizes to a connection on an arbitrary principal bundle.

This section collects together some general facts about principal bundles.

27.1 Principal Bundles

Let *E*, *M*, and *F* be manifolds. We will denote an open cover \mathfrak{U} of *M* either as $\{U_{\alpha}\}$ or more simply as an unindexed set $\{U\}$ whose general element is denoted by *U*. A *local trivialization* with fiber *F* for a smooth surjection $\pi: E \to M$ is an open cover $\mathfrak{U} = \{U\}$ for *M* together with a collection $\{\phi_U: \pi^{-1}(U) \to U \times F \mid U \in \mathfrak{U}\}$ of fiberpreserving diffeomorphisms $\phi_U: \pi^{-1}(U) \to U \times F$:

Charles Ehresmann (1905–1979)



where η is projection to the first factor. A *fiber bundle* with fiber *F* is a smooth surjection $\pi: E \to M$ having a local trivialization with fiber *F*. We also say that it is *locally trivial* with fiber *F*. The manifold *E* is the *total space* and the manifold *M* the *base space* of the fiber bundle.

The *fiber* of a fiber bundle $\pi: E \to M$ over $x \in M$ is the set $E_x := \pi^{-1}(x)$. Because π is a submersion, by the regular level set theorem ([21], Th. 9.13, p. 96) each fiber E_x is a regular submanifold of E. For $x \in U$, define $\phi_{U,x} := \phi_U|_{E_x}: E_x \to \{x\} \times F$ to be the restriction of the trivialization $\phi_U: \pi^{-1}(U) \to U \times F$ to the fiber E_x .

Proposition 27.1. Let $\pi: E \to M$ be a fiber bundle with fiber F. If $\phi_U: \pi^{-1}(U) \to U \times F$ is a trivialization, then $\phi_{U,x}: E_x \to \{x\} \times F$ is a diffeomorphism.

Proof. The map $\phi_{U,x}$ is smooth because it is the restriction of the smooth map ϕ_U to a regular submanifold. It is bijective because ϕ_U is bijective and fiber-preserving. Its inverse $\phi_{U,x}^{-1}$ is the restriction of the smooth map $\phi_U^{-1}: U \times F \to \pi^{-1}(U)$ to the fiber $\{x\} \times F$ and is therefore also smooth.

A smooth *right action* of a Lie group G on a manifold M is a smooth map

$$\mu: M \times G \to M$$
,

denoted by $x \cdot g := \mu(x, g)$, such that for all $x \in M$ and $g, h \in G$,

(i) $x \cdot e = x$, where *e* is the identity element of *G*,

(ii) $(x \cdot g) \cdot h = x \cdot (gh)$.

We often omit the dot and write more simply xg for $x \cdot g$. If there is such a map μ , we also say that *G* acts smoothly on *M* on the right. A left action is defined similarly. The *stabilizer* of a point $x \in M$ under an action of *G* is the subgroup

$$\operatorname{Stab}(x) := \{ g \in G \mid x \cdot g = x \}.$$

The *orbit* of $x \in M$ is the set

$$Orbit(x) := xG := \{x \cdot g \in M \mid g \in G\}.$$

Denote by $\operatorname{Stab}(x) \setminus G$ the set of right cosets of $\operatorname{Stab}(x)$ in *G*. By the orbit-stabilizer theorem, for each $x \in M$ the map: $G \to \operatorname{Orbit}(x)$, $g \mapsto x \cdot g$ induces a bijection of sets:

$$\begin{aligned} \operatorname{Stab}(x) \backslash G &\longleftrightarrow \operatorname{Orbit}(x), \\ \operatorname{Stab}(x)g &\longleftrightarrow x \cdot g. \end{aligned}$$

The action of G on M is *free* if the stabilizer of every point $x \in M$ is the trivial subgroup $\{e\}$.

A manifold *M* together with a right action of a Lie group *G* on *M* is called a *right G*-manifold or simply a *G*-manifold. A map $f: N \to M$ between right *G*-manifolds is *right G*-equivariant if

$$f(x \cdot g) = f(x) \cdot g$$

for all $(x,g) \in N \times G$. Similarly, a map $f: N \to M$ between left *G*-manifolds is *left G*-equivariant if

$$f(g \cdot x) = g \cdot f(x)$$

for all $(g, x) \in G \times N$.

A left action can be turned into a right action and vice versa; for example, if G acts on M on the left, then

$$x \cdot g = g^{-1} \cdot x$$

is a right action of G on M. Thus, if N is a right G-manifold and M is a left G-manifold, we say a map $f: N \to M$ is G-equivariant if

$$f(x \cdot g) = f(x) \cdot g = g^{-1} \cdot f(x)$$
 (27.1)

for all $(x,g) \in N \times G$.

A smooth fiber bundle $\pi: P \to M$ with fiber *G* is a smooth *principal G-bundle* if *G* acts smoothly and freely on *P* on the right and the fiber-preserving local trivializations

$$\phi_U \colon \pi^{-1}(U) \to U \times G$$

are G-equivariant, where G acts on $U \times G$ on the right by

$$(x,h) \cdot g = (x,hg).$$

Example 27.2 (*Product G-bundles*). The simplest example of a principal *G*-bundle over a manifold *M* is the product *G*-bundle $\eta: M \times G \to M$. A trivialization is the identity map on $M \times G$.

Example 27.3 (*Homogenous manifolds*). If *G* is a Lie group and *H* is a closed subgroup, then the quotient G/H can be given the structure of a manifold such that the projection map $\pi: G \to G/H$ is a principal *H*-bundle. This is proven in [22, Th. 3.58, p. 120].

Example 27.4 (*Hopf bundle*). The group S^1 of unit complex numbers acts on the complex vector space \mathbb{C}^{n+1} by left multiplication. This action induces an action of S^1 on the unit sphere S^{2n+1} in \mathbb{C}^{n+1} . The complex projective space $\mathbb{C}P^n$ may be defined as the orbit space of S^{2n+1} by S^1 . The natural projection $S^{2n+1} \to \mathbb{C}P^n$ with fiber S^1 turn out to be a principal S^1 -bundle. When $n = 1, S^3 \to \mathbb{C}P^1$ with fiber S^1 is called the *Hopf bundle*.

Definition 27.5. Let $\pi_Q: Q \to N$ and $\pi_P: P \to M$ be principal *G*-bundles. A *morphism* of principal *G*-bundles is a pair of maps $(\bar{f}: Q \to P, f: N \to M)$ such that $\bar{f}: Q \to P$ is *G*-equivariant and the diagram

commutes.

Proposition 27.6. *If* π : $P \rightarrow M$ *is a principal G-bundle, then the group G acts transitively on each fiber.*

Proof. Since *G* acts transitively on $\{x\} \times G$ and the fiber diffeomorphism $\phi_{U,x} \colon P_x \to \{x\} \times G$ is *G*-equivariant, *G* must also act transitively on the fiber P_x . \Box

Lemma 27.7. For any group G, a right G-equivariant map $f: G \rightarrow G$ is necessarily a left translation.

Proof. Suppose that for all $x, g \in G$,

$$f(xg) = f(x)g.$$

Setting x = e, the identity element of *G*, we obtain

$$f(g) = f(e)g = \ell_{f(e)}(g),$$

where $\ell_{f(e)}$: $G \to G$ is left translation by f(e).

Suppose $\{U_{\alpha}\}_{\alpha \in A}$ is a local trivialization for a principal *G*-bundle $\pi \colon P \to M$. Whenever the intersection $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta}$ is nonempty, there are two trivializations on $\pi^{-1}(U_{\alpha\beta})$:

$$U_{\alpha\beta} \times G \xleftarrow{\phi_{\alpha}} \pi^{-1}(U_{\alpha\beta}) \xrightarrow{\phi_{\beta}} U_{\alpha\beta} \times G.$$

Then $\phi_{\alpha} \circ \phi_{\beta}^{-1}$: $U_{\alpha\beta} \times G \to U_{\alpha\beta} \times G$ is a fiber-preserving right *G*-equivariant map. By Lemma 27.7, it is a left translation on each fiber. Thus,

$$(\phi_{\alpha} \circ \phi_{\beta}^{-1})(x,h) = (x, g_{\alpha\beta}(x)h), \qquad (27.2)$$

where $(x,h) \in U_{\alpha\beta} \times G$ and $g_{\alpha\beta}(x) \in G$. Because $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is a C^{∞} function of xand h, setting h = e, we see that $g_{\alpha\beta}(x)$ is a C^{∞} function of x. The C^{∞} functions $g_{\alpha\beta} : U_{\alpha\beta} \to G$ are called *transition functions* of the principal bundle $\pi : P \to M$ relative to the trivializing open cover $\{U_{\alpha}\}_{\alpha \in A}$. They satisfy the *cocycle condition*: for all $\alpha, \beta, \gamma \in A$,

$$g_{\alpha\beta}g_{\beta\gamma} = g_{\alpha\gamma}$$
 if $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$.

From the cocycle condition, one can deduce other properties of the transition functions.

Proposition 27.8. The transition functions $g_{\alpha\beta}$ of a principal bundle $\pi: P \to M$ relative to a trivializing open cover $\{U_{\alpha}\}_{\alpha\in A}$ satisfy the following properties: for all $\alpha, \beta \in A$,

(i) $g_{\alpha\alpha} = the \ constant \ map \ e$, (ii) $g_{\alpha\beta} = g_{\beta\alpha}^{-1} \ if \ U_{\alpha} \cap U_{\beta} \neq \emptyset$.

Proof. (i) If $\alpha = \beta = \gamma$, the cocycle condition gives

 $g_{\alpha\alpha}g_{\alpha\alpha}=g_{\alpha\alpha}.$

Hence, $g_{\alpha\alpha}$ = the constant map *e*. (ii) if $\gamma = \alpha$, the cocycle condition gives

$$g_{\alpha\beta}g_{\beta\alpha} = g_{\alpha\alpha} = e$$

or

$$g_{\alpha\beta} = g_{\beta\alpha}^{-1} \quad \text{for } U_{\alpha} \cap U_{\beta} \neq \emptyset.$$

In a principal *G*-bundle $P \rightarrow M$, the group *G* acts on the right on the total space *P*, but the transition functions $g_{\alpha\beta}$ in (27.2) are given by left translations by $g_{\alpha\beta}(x) \in G$. This phenomenon is a consequence of Lemma 27.7.

27.2 The Frame Bundle of a Vector Bundle

For any real vector space *V*, let Fr(V) be the set of all ordered bases in *V*. Suppose *V* has dimension *r*. We will represent an ordered basis v_1, \ldots, v_r by a row vector $v = [v_1 \cdots v_r]$, so that the general linear group $GL(r, \mathbb{R})$ acts on Fr(V) on the right by matrix multiplication

$$v \cdot a = [v_1 \cdots v_r][a_j^i]$$

= $\left[\sum v_i a_1^i \cdots \sum v_i a_r^i\right].$

Fix a point $v \in Fr(V)$. Since the action of $GL(r,\mathbb{R})$ on Fr(V) is clearly transitive and free, i.e., Orbit(v) = Fr(V) and $Stab(v) = \{I\}$, by the orbit-stabilizer theorem there is a bijection

$$\phi_{v} \colon \operatorname{GL}(r, \mathbb{R}) = \frac{\operatorname{GL}(r, \mathbb{R})}{\operatorname{Stab}(v)} \longleftrightarrow \operatorname{Orbit}(v) = \operatorname{Fr}(V),$$
$$g \longleftrightarrow vg.$$

Using the bijection ϕ_v , we put a manifold structure on Fr(V) in such a way that ϕ_v becomes a diffeomorphism.

If v' is another element of Fr(V), then v' = va for some $a \in GL(r, \mathbb{R})$ and

$$\phi_{va}(g) = vag = \phi_v(ag) = (\phi_v \circ \ell_a)(g).$$

Since left multiplication ℓ_a : $GL(r, \mathbb{R}) \to GL(r, \mathbb{R})$ is a diffeomorphism, the manifold structure on Fr(V) defined by ϕ_v is the same as the one defined by ϕ_{va} . We call Fr(V) with this manifold structure the *frame manifold* of the vector space *V*.

Remark 27.9. A linear isomorphism $\phi: V \to W$ induces a C^{∞} diffeomorphism $\tilde{\phi}$: $Fr(V) \to Fr(W)$ by

$$\widetilde{\boldsymbol{\phi}}[v_1 \cdots v_r] = [\boldsymbol{\phi}(v_1) \cdots \boldsymbol{\phi}(v_r)].$$

Define an action of $GL(r, \mathbb{R})$ on $Fr(\mathbb{R}^r)$ by

$$g \cdot [v_1 \cdots v_r] = [gv_1 \cdots gv_r].$$

Thus, if $\phi : \mathbb{R}^r \to \mathbb{R}^r$ is given by left multiplication by $g \in GL(r, \mathbb{R})$, then so is the induced map ϕ on the frame manifold $Fr(\mathbb{R}^r)$.

Example 27.10 (*The frame bundle*). Let $\eta : E \to M$ be a C^{∞} vector bundle of rank *r*. We associate to the vector bundle *E* a C^{∞} principal $GL(r, \mathbb{R})$ -bundle $\pi : Fr(E) \to M$ as follows. As a set the total space Fr(E) is defined to be the disjoint union

$$\operatorname{Fr}(E) = \coprod_{x \in M} \operatorname{Fr}(E_x).$$

There is a natural projection map π : $Fr(E) \rightarrow M$ that maps $Fr(E_x)$ to $\{x\}$.

A local trivialization $\phi_{\alpha} : E|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \mathbb{R}^{r}$ induces a bijection

$$\widetilde{\phi_{\alpha}} \colon \operatorname{Fr}(E)|_{U_{\alpha}} \xrightarrow{\sim} U_{\alpha} \times \operatorname{Fr}(\mathbb{R}^{r}),$$
$$[v_{1} \cdots v_{r}] \in \operatorname{Fr}(E_{x}) \mapsto (x, [\phi_{\alpha,x}(v_{1}) \cdots \phi_{\alpha,x}(v_{r})]).$$

Via $\widetilde{\phi_{\alpha}}$ one transfers the topology and manifold structure from $U_{\alpha} \times \operatorname{Fr}(\mathbb{R}^r)$ to $\operatorname{Fr}(E)|_{U_{\alpha}}$. This gives $\operatorname{Fr}(E)$ a topology and a manifold structure such that $\pi \colon \operatorname{Fr}(E) \to M$ is locally trivial with fiber $\operatorname{Fr}(\mathbb{R}^r)$. As the frame manifold $\operatorname{Fr}(\mathbb{R}^r)$ is diffeomorphic to the general linear group $\operatorname{GL}(r,\mathbb{R})$, it is easy to check that $\operatorname{Fr}(E) \to M$ is a C^{∞} principal $\operatorname{GL}(r,\mathbb{R})$ -bundle. We call it the *frame bundle* of the vector bundle *E*.

On a nonempty overlap $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta}$, the transition function for the vector bundle *E* is the C^{∞} function $g_{\alpha\beta} : U_{\alpha\beta} \to \operatorname{GL}(r,\mathbb{R})$ given by

$$\begin{split} \phi_{\alpha} \circ \phi_{\beta}^{-1} \colon U_{\alpha\beta} \times \mathbb{R}^{r} \to U_{\alpha\beta} \times \mathbb{R}^{r}, \\ (\phi_{\alpha} \circ \phi_{\beta}^{-1})(x, w) = (x, g_{\alpha\beta}(x)w). \end{split}$$

Since the local trivialization for the frame bundle Fr(E) is induced from the trivialization $\{U_{\alpha}, \phi_{\alpha}\}$ for *E*, the transition functions for Fr(E) are induced from the transition functions $\{g_{\alpha\beta}\}$ for *E*. By Remark 27.9 the transition functions for the open cover $\{Fr(E)|_{U_{\alpha}}\}$ of Fr(E) are the same as the transition functions $g_{\alpha\beta}: U_{\alpha\beta} \to GL(r,\mathbb{R})$ for the vector bundle *E*, but now of course $GL(r,\mathbb{R})$ acts on $Fr(\mathbb{R}^r)$ instead of on \mathbb{R}^r .

27.3 Fundamental Vector Fields of a Right Action

Suppose *G* is a Lie group with Lie algebra \mathfrak{g} and *G* acts smoothly on a manifold *P* on the right. To every element $A \in \mathfrak{g}$ one can associate a vector field \underline{A} on *P* called the *fundamental vector field on P associated to A*: for *p* in *P*, define

$$\underline{A}_p = \left. \frac{d}{dt} \right|_{t=0} p \cdot e^{tA} \in T_p P$$

To understand this equation, first fix a point $p \in P$. Then $c_p: t \mapsto p \cdot e^{tA}$ is a curve in *P* with initial point *p*. By definition, the vector \underline{A}_p is the initial vector of this curve. Thus,

$$\underline{A}_p = c'_p(0) = c_{p*} \left(\left. \frac{d}{dt} \right|_{t=0} \right) \in T_p P.$$

As a tangent vector at p is a derivation on germs of C^{∞} functions at p, in terms of a C^{∞} function f at p,

$$\underline{A}_p f = c_{p*} \left(\left. \frac{d}{dt} \right|_{t=0} \right) f = \left. \frac{d}{dt} \right|_{t=0} f \circ c_p = \left. \frac{d}{dt} \right|_{t=0} f(p \cdot e^{tA}).$$

Proposition 27.11. For each $A \in \mathfrak{g}$, the fundamental vector field \underline{A} is C^{∞} on P.

Proof. It suffices to show that for every C^{∞} function f on P, the function $\underline{A}f$ is also C^{∞} on P. Let $\mu: P \times G \to P$ be the C^{∞} map defining the right action of G on P. For any p in P,

$$\underline{A}_p f = \left. \frac{d}{dt} \right|_{t=0} f(p \cdot e^{tA}) = \left. \frac{d}{dt} \right|_{t=0} (f \circ \mu)(p, e^{tA}).$$

Since e^{tA} is a C^{∞} function of t, and f and μ are both C^{∞} , the derivative

$$\frac{d}{dt}(f\circ\mu)(p,e^{tA})$$

is C^{∞} in p and in t. Therefore, $\underline{A}_{p}f$ is a C^{∞} function of p.

Recall that $\mathfrak{X}(P)$ denotes the Lie algebra of C^{∞} vector fields on the manifold *P*. The fundamental vector field construction gives rise to a map

$$\sigma \colon \mathfrak{g} \to \mathfrak{X}(P), \quad \sigma(A) := \underline{A}.$$

For *p* in *P*, define $j_p: G \to P$ by $j_p(g) = p \cdot g$. Computing the differential j_{p*} using the curve $c(t) = e^{tA}$, we obtain the expression

$$j_{p*}(A) = \left. \frac{d}{dt} \right|_{t=0} j_p(e^{tA}) = \left. \frac{d}{dt} \right|_{t=0} p \cdot e^{tA} = \underline{A}_p.$$
(27.3)

This alternate description of fundamental vector fields, $\underline{A}_p = j_{p*}(A)$, shows that the map $\sigma: \mathfrak{g} \to \mathfrak{X}(P)$ is linear over \mathbb{R} . In fact, σ is a Lie algebra homomorphism (Problem 27.1).

Example 27.12. Consider the action of a Lie group *G* on itself by right multiplication. For $p \in G$, the map $j_p: G \to G$, $j_p(g) = p \cdot g = \ell_p(g)$ is simply left multiplication by *p*. By (27.3), for $A \in \mathfrak{g}$, $\underline{A}_p = \ell_{p*}(A)$. Thus, for the action of *G* on *G* by right multiplication, the fundamental vector field \underline{A} on *G* is precisely the left-invariant vector field generated by *A*. In this sense the fundamental vector field of a right action is a generalization of a left-invariant vector field on a Lie group.

For g in a Lie group G, let $c_g: G \to G$ be conjugation by g: $c_g(x) = gxg^{-1}$. The *adjoint representation* is defined to be the differential of the conjugation map: $Ad(g) = (c_g)_*: g \to g$.

Proposition 27.13. Suppose a Lie group G acts smoothly on a manifold P on the right. Let $r_g: P \to P$ be the right translation $r_g(p) = p \cdot g$. For $A \in \mathfrak{g}$ the fundamental vector field <u>A</u> on P satisfies the following equivariance property:

$$r_{g*}\underline{A} = (\operatorname{Ad} g^{-1})A.$$

Proof. We need to show that for every p in P, $r_{g*}(\underline{A}_p) = \underline{(\operatorname{Ad} g^{-1})}A_{pg}$. For x in G,

$$(r_g \circ j_p)(x) = pxg = pgg^{-1}xg = j_{pg}(g^{-1}xg) = (j_{pg} \circ c_{g^{-1}})(x).$$

By the chain rule,

$$r_{g*}(\underline{A}_p) = r_{g*}j_{p*}(A) = j_{pg*}(c_{g^{-1}})_*(A) = j_{pg*}((\operatorname{Ad} g^{-1})A) = \underline{(\operatorname{Ad} g^{-1})A}_{pg}.$$

27.4 Integral Curves of a Fundamental Vector Field

In this section suppose a Lie group G with Lie algebra $\mathfrak{g} := \text{Lie}(G)$ acts smoothly on the right on a manifold P.

Proposition 27.14. For $p \in P$ and $A \in \mathfrak{g}$, the curve $c_p(t) = p \cdot e^{tA}$, $t \in \mathbb{R}$, is the integral curve of the fundamental vector field <u>A</u> through p.

Proof. We need to show that $c'_p(t) = \underline{A}_{c_p(t)}$ for all $t \in \mathbb{R}$ and all $p \in P$. It is essentially a sequence of definitions:

$$c_p'(t) = \left. \frac{d}{ds} \right|_{s=0} c_p(t+s) = \left. \frac{d}{ds} \right|_{s=0} p e^{tA} e^{sA} = \underline{A}_{pe^{tA}} = \underline{A}_{c_p(t)}. \qquad \Box$$

Proposition 27.15. The fundamental vector field \underline{A} on a manifold P vanishes at a point p in P if and only if A is in the Lie algebra of Stab(p).

Proof. (\Leftarrow) If $A \in \text{Lie}(\text{Stab}(p))$, then $e^{tA} \in \text{Stab}(p)$, so

$$\underline{A}_p = \left. \frac{d}{dt} \right|_{t=0} p \cdot e^{tA} = \left. \frac{d}{dt} \right|_{t=0} p = 0.$$

 (\Rightarrow) Suppose $\underline{A}_p = 0$. Then the constant map $\gamma(t) = p$ is an integral curve of \underline{A} through p, since

$$\gamma'(t) = 0 = \underline{A}_p = \underline{A}_{\gamma(t)}.$$

On the other hand, by Proposition 27.14, $c_p(t) = p \cdot e^{tA}$ is also an integral curve of <u>A</u> through *p*. By the uniqueness of the integral curve through a point, $c_p(t) = \gamma(t)$ or $p \cdot e^{tA} = p$ for all $t \in \mathbb{R}$. This implies that $e^{tA} \in \text{Stab}(p)$ and therefore $A \in \text{Lie}(\text{Stab}(p))$.

Corollary 27.16. For a right action of a Lie group G on a manifold P, let $p \in P$ and $j_p: G \to P$ be the map $j_p(g) = p \cdot g$. Then the kernel ker j_{p*} of the differential of j_p at the identity

$$j_{p*} = (j_p)_{*,e} \colon \mathfrak{g} \to T_p P$$

is $\operatorname{Lie}(\operatorname{Stab}(p))$.

Proof. For $A \in \mathfrak{g}$, we have $\underline{A}_p = j_{p*}(A)$ by (27.3). Thus,

$$A \in \ker j_{p*} \iff j_{p*}(A) = 0$$

$$\iff \underline{A}_p = 0$$

$$\iff A \in \operatorname{Lie}(\operatorname{Stab}(p)) \quad \text{(by Proposition 27.15).} \square$$

27.5 Vertical Subbundle of the Tangent Bundle TP

Throughout this section, *G* is a Lie group with Lie algebra \mathfrak{g} and $\pi: P \to M$ is a principal *G*-bundle. On the total space *P* there is a natural notion of vertical tangent vectors. We will show that the vertical tangent vectors on *P* form a trivial subbundle of the tangent bundle *TP*.

By the local triviality of a principal bundle, at every point $p \in P$ the differential $\pi_{*,p}: T_pP \to T_{\pi(p)}M$ of the projection π is surjective. The *vertical tangent subspace* $\mathcal{V}_p \subset T_pP$ is defined to be ker $\pi_{*,p}$. Hence, there is a short exact sequence of vector spaces

$$0 \to \mathcal{V}_p \longrightarrow T_p P \xrightarrow{\pi_{*,p}} T_{\pi(p)} M \to 0, \qquad (27.4)$$

and

$$\dim \mathcal{V}_p = \dim T_p P - \dim T_{\pi(p)} M = \dim G.$$

An element of \mathcal{V}_p is called a *vertical tangent vector* at p.

Proposition 27.17. *For any* $A \in \mathfrak{g}$ *, the fundamental vector field* <u>*A*</u> *is vertical at every point* $p \in P$.

Proof. With $j_p: G \to P$ defined as usual by $j_p(g) = p \cdot g$,

$$(\pi \circ j_p)(g) = \pi(p \cdot g) = \pi(p).$$

Since $\underline{A}_p = j_{p*}(A)$ by (27.3), and $\pi \circ j_p$ is a constant map,

$$\pi_{*,p}(\underline{A}_p) = (\pi_{*,p} \circ j_{p*})(A) = (\pi \circ j_p)_*(A) = 0.$$

Thus, in case *P* is a principal *G*-bundle, we can refine Corollary 27.16 to show that j_{p*} maps g into the vertical tangent space:

$$(j_p)_{*,e} \colon \mathfrak{g} \to \mathcal{V}_p \subset T_p P.$$

In fact, this is an isomorphism.

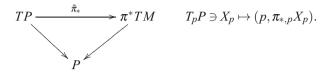
Proposition 27.18. For $p \in P$, the differential at e of the map $j_p: G \to P$ is an isomorphism of \mathfrak{g} onto the vertical tangent space: $j_{p*} = (j_p)_{*,e}: \mathfrak{g} \xrightarrow{\sim} \mathcal{V}_p$.

Proof. By Corollary 27.16, ker $j_{p*} = \text{Lie}(\text{Stab}(p))$. Since *G* acts freely on *P*, the stabilizer of any point $p \in P$ is the trivial subgroup $\{e\}$. Thus, ker $j_{p*} = 0$ and j_{p*} is injective. By Proposition 27.17, the image j_{p*} lies in the vertical tangent space \mathcal{V}_p . Since \mathfrak{g} and \mathcal{V}_p have the same dimension, the injective linear map $j_{p*}: \mathfrak{g} \to \mathcal{V}_p$ has to be an isomorphism.

Corollary 27.19. The vertical tangent vectors at a point of a principal bundle are precisely the fundamental vectors.

Let B_1, \ldots, B_ℓ be a basis for the Lie algebra \mathfrak{g} . By the proposition, the fundamental vector fields $\underline{B}_1, \ldots, \underline{B}_\ell$ on P form a basis of \mathcal{V}_p at every point $p \in P$. Hence, they span a trivial subbundle $\overline{\mathcal{V}} := \coprod_{p \in P} \mathcal{V}_p$ of the tangent bundle TP. We call \mathcal{V} the *vertical subbundle* of TP.

As we learned in Section 20.5, the differential $\pi_*: TP \to TM$ of a C^{∞} map $\pi: P \to M$ induces a bundle map $\tilde{\pi}_*: TP \to \pi^*TM$ over *P*, given by



The map $\tilde{\pi}_*$ is surjective because it sends the fiber $T_p P$ onto the fiber $(\pi^* TM)_p \simeq T_{\pi(p)}M$. Its kernel is precisely the vertical subbundle \mathcal{V} by (27.4). Hence, \mathcal{V} fits into a short exact sequence of vector bundles over P:

$$0 \to \mathcal{V} \longrightarrow TP \xrightarrow{\tilde{\pi}_*} \pi^* TM \to 0. \tag{27.5}$$

27.6 Horizontal Distributions on a Principal Bundle

On the total space *P* of a smooth principal bundle $\pi: P \to M$, there is a well-defined vertical subbundle \mathcal{V} of the tangent bundle *TP*. We call a subbundle \mathcal{H} of *TP* a *horizontal distribution* on *P* if $TP = \mathcal{V} \oplus \mathcal{H}$ as vector bundles; in other words, $T_pP = \mathcal{V}_p + \mathcal{H}_p$ and $\mathcal{V}_p \cap \mathcal{H}_p = 0$ for every $p \in P$. In general, there is no canonically defined horizontal distribution on a principal bundle.

A *splitting* of a short exact sequence of vector bundles $0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$ over a manifold *P* is a bundle map $k: C \to B$ such that $j \circ k = \mathbb{1}_C$, the identity bundle map on *C*.

Proposition 27.20. Let

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0 \tag{27.6}$$

be a short exact sequence of vector bundles over a manifold P. Then there is a one-to-one correspondence

$$\{subbundles \ H \subset B \mid B = i(A) \oplus H\} \longleftrightarrow \{splittings \ k: \ C \to B \ of \ (27.6)\}.$$

Proof. If *H* is a subbundle of *B* such that $B = i(A) \oplus H$, then there are bundle isomorphisms $H \simeq B/i(A) \simeq C$. Hence, *C* maps isomorphically onto *H* in *B*. This gives a splitting $k: C \rightarrow B$.

If $k: C \to B$ is a splitting, let H := k(C), which is a subbundle of B. Moreover, if i(a) = k(c) for some $a \in A$ and $c \in C$, then

$$0 = ji(a) = jk(c) = c.$$

Hence, $i(A) \cap k(C) = 0$.

Finally, to show that B = i(A) + k(C), let $b \in B$. Then

$$j(b-kj(b)) = j(b) - j(b) = 0.$$

By the exactness of (27.6), b - kj(b) = i(a) for some $a \in A$. Thus,

$$b = i(a) + kj(b) \in i(A) + k(C)$$

This proves that B = i(A) + k(C) and therefore $B = i(A) \oplus k(C)$.

As we just saw in the preceding section, for every principal bundle $\pi: P \to M$ the vertical subbundle \mathcal{V} fits into a short exact sequence (27.5) of vector bundles over *P*. By Proposition 27.20, there is a one-to-one correspondence between horizontal distributions on *P* and splittings of the sequence (27.5).

Problems

27.1. Lie bracket of fundamental vector fields

Let *G* be a Lie group with Lie algebra \mathfrak{g} and let *P* be a manifold on which *G* acts on the right. Prove that for $A, B \in \mathfrak{g}$,

$$[A,B] = [\underline{A},\underline{B}].$$

Hence, the map $\sigma \colon \mathfrak{g} \to \mathfrak{X}(P), A \mapsto \underline{A}$ is a Lie algebra homomorphism.

27.2.* Short exact sequence of vector spaces

Prove that if $0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$ is a short exact sequence of finite-dimensional vector spaces, then dim $B = \dim A + \dim C$.

27.3. Splitting of a short exact sequence

Suppose $0 \to A \xrightarrow{i} B \to C \to 0$ is a short exact sequence of vector bundles over a manifold *P*. A *retraction* of *i*: $A \to B$ is a map $r: B \xrightarrow{j} A$ such that $r \circ i = \mathbb{1}_A$. Show that *i* has a retraction if and only if the sequence has a splitting.

27.4.* The differential of an action

Let $\mu: P \times G \to P$ be an action of a Lie group *G* on a manifold *P*. For $g \in G$, the tangent space $T_g G$ may be identified with $\ell_{g*}\mathfrak{g}$, where $\ell_g: G \to G$ is left multiplication by $g \in G$ and $\mathfrak{g} = T_e G$ is the Lie algebra of *G*. Hence, an element of the tangent space $T_{(p,g)}(P \times G)$ is of the form $(X_p, \ell_{g*}A)$ for $X_p \in T_p P$ and $A \in \mathfrak{g}$. Prove that the differential

$$\mu_* = \mu_{*,(p,g)} \colon T_{(p,g)}(P \times G) \to T_{pg}P$$

is given by

$$\mu_*(X_p, \ell_{g*}A) = r_{g*}(X_p) + \underline{A}_{pg}$$

27.5. Fundamental vector field under a trivialization

Let $\phi_{\alpha} \colon \pi^{-1}U_{\alpha} \to U_{\alpha} \times G$

$$\phi_{\alpha}(p) = (\pi(p), g_{\alpha}(p))$$

be a trivialization of $\pi^{-1}U_{ga}$ in a principal bundle *P*. Let $A \in \mathfrak{g}$, the Lie algebra of *G* and <u>A</u> the fundamental vector field on *P* that it induces. Prove that

$$g_{\alpha*}(\underline{\mathbf{A}}_p) = \ell_{g_{\alpha}(p)*}(A) \in T_{g_{\alpha}(p)}(G).$$

27.6. Trivial principal bundle

Prove that a principal bundle $\pi: P \to M$ is trivial if and only if it has a section.

27.7. Pullback of a principal bundle to itself

Prove that if $\pi: P \to M$ is a principal bundle, then the pullback bundle $\pi^*P \to P$ is trivial.

27.8. Quotient space of a principal bundle

Let *G* be a Lie group and *H* a closed subgroup. Prove that if $\pi P \to M$ is a principal *G*-bundle, then $P \to P/H$ is a principal *H*-subbundle.

27.9. Fundamental vector fields

Let N and M be G-manifolds with G acting on the right. If $A \in \mathfrak{g}$ and $f: N \to M$ is G-equivariant, then

$$f_*(\underline{A}_{N,q}) = \underline{A}_{M,f(q)}.$$

§28 Connections on a Principal Bundle

Let *G* be a Lie group with Lie algebra \mathfrak{g} . As we saw in the preceding section, on a principal *G*-bundle $P \rightarrow M$, the notion of a vertical tangent vector is well defined, but not that of a horizontal tangent vector. A connection on a principal bundle is essentially the choice of a horizontal complement to the vertical tangent bundle on *P*. Alternatively, it can be given by a \mathfrak{g} -valued 1-form on *P*. In this section we will study these two equivalent manifestations of a connection:

- (i) a smooth right-invariant horizontal distribution on P,
- (ii) a smooth G-equivariant \mathfrak{g} -valued 1-form ω on P such that on the fundamental vector fields,

$$\omega(\underline{A}) = A \quad \text{for all } A \in \mathfrak{g}. \tag{28.1}$$

Under the identification of \mathfrak{g} with a vertical tangent space, condition (28.1) says that ω restricts to the identity map on vertical vectors.

The correspondence between (i) and (ii) is easy to describe. Given a rightinvariant horizontal distribution \mathcal{H} on P, we define a g-valued 1-form ω on P to be, at each point p, the projection with kernel \mathcal{H}_p from the tangent space to the vertical space. Conversely, given a right-equivariant g-valued 1-form ω that is the identity on the vertical space at each point $p \in P$, we define a horizontal distribution \mathcal{H} on P to be ker ω_p at each $p \in P$.

28.1 Connections on a Principal Bundle

Let *G* be a Lie group with Lie algebra \mathfrak{g} , and let $\pi: P \to M$ be a principal *G*-bundle. A *distribution* on a manifold is a subbundle of the tangent bundle. Recall that a distribution \mathcal{H} on *P* is *horizontal* if it is complementary to the vertical subbundle \mathcal{V} of the tangent bundle *TP*: for all *p* in *P*,

$$T_p P = \mathcal{V}_p \oplus \mathcal{H}_p.$$

Suppose \mathcal{H} is a horizontal distribution on the total space *P* of a principal *G*-bundle $\pi: P \to M$. For $p \in P$, if $j_p: G \to P$ is the map $j_p(g) = p \cdot g$, then the vertical tangent space \mathcal{V}_p can be canonically identified with the Lie algebra \mathfrak{g} via the isomorphism $j_{p*}: \mathfrak{g} \to \mathcal{V}_p$ (Proposition 27.18). Let $v: T_pP = \mathcal{V}_p \oplus \mathcal{H}_p \to \mathcal{V}_p$ be the projection to the vertical tangent space with kernel \mathcal{H}_p . For $Y_p \in T_pP$, $v(Y_p)$ is called the *vertical component* of Y_p . (Although the vertical subspace \mathcal{V}_p is intrinsically defined, the notion of the vertical component of a tangent vector depends on the choice of a horizontal complement \mathcal{H}_p .) If ω_p is the composite

$$\omega_p := j_{p*}^{-1} \circ v \colon T_p P \xrightarrow{v} \mathcal{V}_p \xrightarrow{j_{p*}^{-1}} \mathfrak{g}, \qquad (28.2)$$

then ω is a g-valued 1-form on *P*. In terms of ω , the vertical component of $Y_p \in T_p P$ is

$$v(Y_p) = j_{p*}(\omega_p(Y_p)).$$
(28.3)

Theorem 28.1. If \mathcal{H} is a smooth right-invariant horizontal distribution on the total space *P* of a principal *G*-bundle π : $P \to M$, then the \mathfrak{g} -valued 1-form ω on *P* defined above satisfies the following three properties:

- (i) for any $A \in \mathfrak{g}$ and $p \in P$, we have $\omega_p(\underline{A}_p) = A$;
- (ii) (*G*-equivariance) for any $g \in G$, $r_g^* \omega = (\operatorname{Ad} g^{-1})\omega$;
- (iii) ω is C^{∞} .

Proof. (i) Since \underline{A}_p is already vertical (Proposition 27.17), the projection v leaves it invariant, so

$$\omega_p(\underline{A}_p) = j_{p*}^{-1}(v(\underline{A}_p)) = j_{p*}^{-1}(\underline{A}_p) = A.$$

(ii) For $p \in P$ and $Y_p \in T_p P$, we need to show

$$\omega_{pg}(r_{g*}Y_p) = (\operatorname{Ad} g^{-1})\omega_p(Y_p).$$

Since both sides are \mathbb{R} -linear in Y_p and Y_p is the sum of a vertical and a horizontal vector, we may treat these two cases separately.

If Y_p is vertical, then by Proposition 27.18, $Y_p = \underline{A}_p$ for some $A \in \mathfrak{g}$. In this case

$$\omega_{pg}(r_{g*\underline{A}_p}) = \omega_{pg}\left(\underline{(\operatorname{Ad} g^{-1})A}_{pg}\right) \quad \text{(by Proposition 27.13)}$$
$$= (\operatorname{Ad} g^{-1})A \qquad (\operatorname{by}(i))$$
$$= (\operatorname{Ad} g^{-1})\omega_p(\underline{A}_p) \qquad (\operatorname{by}(i) \text{ again}).$$

If Y_p is horizontal, then by the right-invariance of the horizontal distribution \mathcal{H} , so is $r_{g*}Y_p$. Hence,

$$\omega_{pg}(r_{g*}Y_p) = 0 = (\operatorname{Ad} g^{-1})\omega_p(Y_p).$$

(iii) Fix a point $p \in P$. We will show that ω is C^{∞} in a neighborhood of p. Let B_1, \ldots, B_{ℓ} be a basis for the Lie algebra \mathfrak{g} and $\underline{B_1}, \ldots, \underline{B_{\ell}}$ the associated fundamental vector fields on P. By Proposition 27.11, these vector fields are all C^{∞} on P. Since \mathcal{H} is a C^{∞} distribution on P, one can find a neighborhood W of p and C^{∞} horizontal vector fields X_1, \ldots, X_n on W that span \mathcal{H} at every point of W. Then $\underline{B_1}, \ldots, \underline{B_{\ell}}, X_1, \ldots, X_n$ is a C^{∞} frame for the tangent bundle TP over W. Thus, any C^{∞} vector field X on W can be written as a linear combination

$$X = \sum a^i \underline{B_i} + \sum b^j X_j$$

with C^{∞} coefficients a^i, b^j on W. By the definition of ω ,

$$\omega(X) = \omega\left(\sum a^i \underline{B_i}\right) = \sum a^i B_i.$$

This proves that ω is a C^{∞} 1-form on W.

Note that in this theorem the proof of the smoothness of ω requires only that the horizontal distribution \mathcal{H} be smooth; it does not use the right-invariance of \mathcal{H} .

Definition 28.2. An *Ehresmann connection* or simply a *connection* on a principal *G*-bundle $P \rightarrow M$ is a g-valued 1-form ω on *P* satisfying the three properties of Theorem 28.1.

A g-valued 1-form α on *P* can be viewed as a map α : $TP \rightarrow \mathfrak{g}$ from the tangent bundle *TP* to the Lie algebra \mathfrak{g} . Now both *TP* and \mathfrak{g} are *G*-manifolds: the Lie group *G* acts on *TP* on the right by the differentials of right translations and it acts on \mathfrak{g} on the left by the adjoint representation. By (27.1), α : $TP \rightarrow \mathfrak{g}$ is *G*-equivariant if and only if for all $p \in P$, $X_p \in T_pP$, and $g \in G$,

$$\alpha(X_p \cdot g) = g^{-1} \cdot \alpha(X_p),$$

or

$$\alpha(r_{g*}X_p) = (\operatorname{Ad} g^{-1})\alpha(X_p).$$

Thus, $\alpha: TP \to \mathfrak{g}$ is *G*-equivariant if and only if $r_g^* \alpha = (\operatorname{Ad} g^{-1}) \alpha$ for all $g \in G$. Condition (ii) of a connection ω on a principal bundle says precisely that ω is *G*-equivariant as a map from *TP* to \mathfrak{g} .

28.2 Vertical and Horizontal Components of a Tangent Vector

As we noted in Section 27.5, on any principal *G*-bundle $\pi : P \to M$, the vertical subspace \mathcal{V}_p of the tangent space T_pP is intrinsically defined:

$$\mathcal{V}_p := \ker \pi_* : T_p P \to T_{\pi(p)} M.$$

By Proposition 27.18, the map j_{p*} naturally identifies the Lie algebra \mathfrak{g} of G with the vertical subspace \mathcal{V}_p .

In the presence of a horizontal distribution on the total space *P* of a principal bundle, every tangent vector $Y_p \in T_p P$ decomposes uniquely into the sum of a vertical vector and a horizontal vector:

$$Y_p = v(Y_p) + h(Y_p) \in \mathcal{V}_p \oplus \mathcal{H}_p.$$

These are called, respectively, the *vertical component* and *horizontal component* of the vector Y_p . As p varies over P, this decomposition extends to a decomposition of a vector field Y on P:

$$Y = v(Y) + h(Y).$$

We often omit the parentheses in v(Y) and h(Y), and write vY and hY instead.

Proposition 28.3. If \mathcal{H} is a C^{∞} horizontal distribution on the total space P of a principal bundle, then the vertical and horizontal components v(Y) and h(Y) of a C^{∞} vector field Y on P are also C^{∞} .

Proof. Let ω be the g-valued 1-form associated to the horizontal distribution \mathcal{H} by (28.2). It is C^{∞} by Theorem 28.1(iii). In terms of a basis B_1, \ldots, B_ℓ for \mathfrak{g} , we can write $\omega = \sum \omega^i B_i$, where ω^i are C^{∞} 1-forms on P. If $Y_p \in T_p P$, then by (28.3) its vertical component $v(Y_p)$ is

$$v(Y_p) = j_{p*}(\omega_p(Y_p)) = j_{p*}\left(\sum \omega_p^i(Y_p)B_i\right) = \sum \omega_p^i(Y_p)(\underline{B_i})_p.$$

As p varies over P,

$$v(Y) = \sum \omega^i(Y)\underline{B_i}.$$

Since ω^i , *Y*, and $\underline{B_i}$ are all C^{∞} , so is v(Y). Because h(Y) = Y - v(Y), the horizontal component h(Y) of a C^{∞} vector field *Y* on *P* is also C^{∞} .

On a principal bundle $\pi: P \to M$, if $r_g: P \to P$ is right translation by $g \in G$, then $\pi \circ r_g = \pi$. It follows that $\pi_* \circ r_{g*} = \pi_*$. Thus, the right translation $r_{g*}: T_pP \to T_{pg}P$ sends a vertical vector to a vertical vector. By hypothesis, $r_{g*}\mathcal{H}_p = \mathcal{H}_{pg}$ and hence the right translation r_{g*} also sends a horizontal vector to a horizontal vector.

Proposition 28.4. Suppose \mathcal{H} is a smooth right-invariant horizontal distribution on the total space of a principal *G*-bundle $\pi: P \to M$. For each $g \in G$, the right translation r_{g*} commutes with the projections v and h.

Proof. Any $X_p \in T_p P$ decomposes into vertical and horizontal components:

$$X_p = v(X_p) + h(X_p).$$

Applying r_{g*} to both sides, we get

$$r_{g*}X_p = r_{g*}v(X_p) + r_{g*}h(X_p).$$
(28.4)

Since r_{g*} preserves vertical and horizontal subspaces, $r_{g*}v(X_p)$ is vertical and $r_{g*}h(X_p)$ is horizontal. Thus, (28.4) is the decomposition of $r_{g*}X_p$ into vertical and horizontal components. This means for every $X_p \in T_pP$,

$$vr_{g*}(X_p) = r_{g*}v(X_p)$$
 and $hr_{g*}(X_p) = r_{g*}h(X_p)$.

28.3 The Horizontal Distribution of an Ehresmann Connection

In Section 28.1 we showed that a smooth, right-invariant horizontal distribution on the total space of a principal bundle determines an Ehresmann connection. We now prove the converse.

Theorem 28.5. If ω is a connection on the principal *G*-bundle $\pi: P \to M$, then $\mathcal{H}_p := \ker \omega_p, p \in P$, is a smooth right-invariant horizontal distribution on *P*.

Proof. We need to verify three properties:

(i) At each point p in P, the tangent space T_pP decomposes into a direct sum $T_pP = \mathcal{V}_p \oplus \mathcal{H}_p$.

258 §28 Connections on a Principal Bundle

- (ii) For $p \in P$ and $g \in G$, $r_{g*}(\mathcal{H}_p) \subset \mathcal{H}_{pg}$.
- (iii) \mathcal{H} is a C^{∞} subbundle of the tangent bundle *TP*.
- (i) Since $\mathcal{H}_p = \ker \omega_p$, there is an exact sequence

$$0 \to \mathcal{H}_p \to T_p P \stackrel{\omega_p}{\to} \mathfrak{g} \to 0.$$

The map j_{p*} : $\mathfrak{g} \to \mathcal{V}_p \subset T_p P$ provides a splitting of the sequence. By Proposition 27.20, there is a sequence of isomorphisms

$$T_pP\simeq \mathfrak{g}\oplus \mathcal{H}_p\simeq \mathcal{V}_p\oplus \mathcal{H}_p.$$

(ii) Suppose $Y_p \in \mathcal{H}_p = \ker \omega_p$. By the right-equivariance property of an Ehresmann connection,

$$\omega_{pg}(r_{g*}Y_p) = (r_g^*\omega)_p(Y_p) = (\operatorname{Ad} g^{-1})\omega_p(Y_p) = 0.$$

Hence, $r_{g*}Y_p \in \mathcal{H}_{pg}$.

(iii) Let B_1, \ldots, B_ℓ be a basis for the Lie algebra \mathfrak{g} of G. Then $\omega = \sum \omega^i B_i$, where $\omega^1, \ldots, \omega^\ell$ are smooth \mathbb{R} -valued 1-forms on P and for $p \in P$,

$$\mathcal{H}_p = \bigcap_{i=1}^{\ell} \ker \omega_p^i.$$

Since $\omega_p: T_p P \to \mathfrak{g}$ is surjective, $\omega^1, \ldots, \omega^\ell$ are linearly independent at *p*.

Fix a point $p \in P$ and let x^1, \ldots, x^m be local coordinates near p on P. Then

$$\omega^i = \sum_{j=1}^m f^i_j dx^j, \quad i = 1, \dots, \ell$$

for some C^{∞} functions f_i^i in a neighborhood of p.

Let b^1, \ldots, b^m be the fiber coordinates of *TP* near *p*, i.e., if $v_q \in T_q P$ for *q* near *p*, then

$$v_q = \sum b^j \left. \frac{\partial}{\partial x^j} \right|_q.$$

In terms of local coordinates,

$$\mathcal{H}_{q} = \bigcap_{i=1}^{\ell} \ker \omega_{q}^{i} = \{ v_{q} \in T_{q}P \mid \omega_{q}^{i}(v_{q}) = 0, i = 1, \dots, \ell \}$$
$$= \{ (b^{1}, \dots, b^{m}) \in \mathbb{R}^{m} \mid \sum_{j=1}^{m} f_{j}^{i}(q)b^{j} = 0, i = 1, \dots, \ell \}.$$

Let $F^i(q,b) = \sum_{j=1}^m f^i_j(q)b^j$, $i = 1, ..., \ell$. Since $\omega^1, ..., \omega^\ell$ are linearly independent at p, the Jacobian matrix $[\partial F^i/\partial b^j] = [f^i_j]$, an $\ell \times m$ matrix, has rank ℓ at p. Without loss of generality, we may assume that the first $\ell \times \ell$ block of $[f^i_i(p)]$ has

rank ℓ . Since having maximal rank is an open condition, there is a neighborhood U_p of p on which the first $\ell \times \ell$ block of $[f_j^i]$ has rank ℓ . By the implicit function theorem, on U_p, b^1, \ldots, b^ℓ are C^{∞} functions of $b^{\ell+1}, \ldots, b^m$, say

$$b^{1} = b^{1}(b^{\ell+1},...,b^{m}),$$

 \vdots
 $b^{\ell} = b^{\ell}(b^{\ell+1},...,b^{m}).$

Let

$$\begin{aligned} X_1 &= \sum_{j=1}^{\ell} b^j (1, 0, \dots, 0) \frac{\partial}{\partial x^j} + \frac{\partial}{\partial x^{\ell+1}} \\ X_2 &= \sum_{j=1}^{\ell} b^j (0, 1, 0, \dots, 0) \frac{\partial}{\partial x^j} + \frac{\partial}{\partial x^{\ell+2}} \\ &\vdots \\ X_{m-\ell} &= \sum_{j=1}^{\ell} b^j (0, 0, \dots, 1) \frac{\partial}{\partial x^j} + \frac{\partial}{\partial x^m}. \end{aligned}$$

These are C^{∞} vector fields on U_p that span \mathcal{H}_q at each point $q \in U_p$. By the subbundle criterion (Theorem 20.4), \mathcal{H} is a C^{∞} subbundle of TP.

28.4 Horizontal Lift of a Vector Field to a Principal Bundle

Suppose \mathcal{H} is a horizontal distribution on a principal bundle $\pi: P \to M$. Let *X* be a vector field on *M*. For every $p \in P$, because the vertical subspace \mathcal{V}_p is ker π_* , the differential $\pi_*: T_p P \to T_{\pi(p)} M$ induces an isomorphism

$$\frac{T_p P}{\ker \pi_*} \xrightarrow{\sim} \mathfrak{H}_p \xrightarrow{\sim} T_{\pi(p)} M$$

of the horizontal subspace \mathcal{H}_p with the tangent space $T_{\pi(p)}M$. Consequently, there is a unique horizontal vector $\tilde{X}_p \in \mathcal{H}_p$ such that $\pi_*(\tilde{X}_p) = X_{\pi(p)} \in T_{\pi(p)}M$. The vector field \tilde{X} is called the *horizontal lift* of X to P.

Proposition 28.6. If \mathcal{H} is a C^{∞} right-invariant horizontal distribution on the total space P of a principal bundle $\pi: P \to M$, then the horizontal lift \tilde{X} of a C^{∞} vector field X on M is a C^{∞} right-invariant vector field on P.

Proof. Let $x \in M$ and $p \in \pi^{-1}(x)$. By definition, $\pi_*(\tilde{X}_p) = X_x$. If q is any other point of $\pi^{-1}(x)$, then q = pg for some $g \in G$. Since $\pi \circ r_g = \pi$,

$$\pi_*(r_{g*}\tilde{X}_p) = (\pi \circ r_g)_*\tilde{X}_p = \pi_*\tilde{X}_p = X_p.$$

By the uniqueness of the horizontal lift, $r_{g*}\tilde{X}_p = \tilde{X}_{pg}$. This proves the right-invariance of \tilde{X} .

We prove the smoothness of \tilde{X} by proving it locally. Let $\{U\}$ be a trivializing open cover for *P* with trivializations $\phi_U \colon \pi^{-1}(U) \xrightarrow{\sim} U \times G$. Define

$$Z_{(x,g)} = (X_x, 0) \in T_{(x,g)}(U \times G).$$

Let $\eta: U \times G \to U$ be the projection to the first factor. Then *Z* is a C^{∞} vector field on $U \times G$ such that $\eta_* Z_{(x,g)} = X_x$, and $Y := (\phi_{U*})^{-1}Z$ is a C^{∞} vector field on $\pi^{-1}(U)$ such that $\pi_* Y_p = X_{\pi(p)}$. By Proposition 28.3, *hY* is a C^{∞} vector field on $\pi^{-1}(U)$. Clearly it is horizontal. Because $Y_p = v(Y_p) + h(Y_p)$ and $\pi_* v(Y_p) = 0$, we have $\pi_* Y_p =$ $\pi_* h(Y_p) = X_{\pi(p)}$. Thus, *hY* lifts *X* over *U*. By the uniqueness of the horizontal lift, $hY = \widetilde{X}$ over *U*. This proves that \widetilde{X} is a smooth vector field on *P*.

28.5 Lie Bracket of a Fundamental Vector Field

If a principal bundle *P* comes with a connection, then it makes sense to speak of horizontal vector fields on *P*; these are vector fields all of whose vectors are horizontal.

Lemma 28.7. Suppose *P* is a principal bundle with a connection. Let <u>A</u> be the fundamental vector field on *P* associated to $A \in \mathfrak{g}$.

(i) If Y is a horizontal vector field on P, then [A,Y] is horizontal.
(ii) If Y is a right-invariant vector field on P, then [A,Y] = 0.

Proof. (i) A local flow for <u>A</u> is $\phi_t(p) = pe^{tA} = r_{e^{tA}}(p)$ (Proposition 27.14). By the identification of the Lie bracket with the Lie derivative of vector fields [21, Th. 20.4, p. 225] and the definition of the Lie derivative,

$$[\underline{A}, Y]_p = (\mathcal{L}_{\underline{A}}Y)_p = \lim_{t \to 0} \frac{(r_{e^{-tA}})_* Y_{pe^{tA}} - Y_p}{t}.$$
(28.5)

Since right translation preserves horizontality (Theorem 28.5), both $(r_{e^{-tA}})_* Y_{pe^{tA}}$ and Y_p are horizontal vectors. Denote the difference quotient in (28.5) by c(t). For every t near 0 in \mathbb{R} , c(t) is in the vector space \mathcal{H}_p of horizontal vectors at p. Therefore, $[\underline{A}, Y]_p = \lim_{t \to 0} c(t) \in \mathcal{H}_p$.

(ii) If Y is right-invariant, then

$$(r_{e^{-tA}})_*Y_{pe^{tA}}=Y_p.$$

In that case, it follows from (28.5) that $[\underline{A}, Y]_p = 0$.

Problems

28.1. Maurer-Cartan connection

If θ is the Maurer–Cartan form on a Lie group and $\pi_2: M \times G \to G$ is the projection to the second factor, prove that $\omega := \pi_2^* \theta$ is a connection on the trivial bundle $\pi_1: M \times G \to M$. It is called the *Maurer–Cartan connection*.

28.2. Convex linear combinations of connections

Prove that a convex linear combination ω of connections $\omega_1, \ldots, \omega_n$ on a principal bundle $\pi: P \to M$ is again a connection on *P*. ($\omega = \sum \lambda_i \omega_i, \sum \lambda_i = 1, \lambda_i \ge 0.$)

28.3. Pullback of a connection

Let $\pi_Q: Q \to N$ and $\pi_P: P \to M$ be principal *G*-bundles, and let $(\bar{f}: Q \to P, f: N \to M)$ be a morphism of principal bundles. Prove that if θ is a connection on *P*, then $\bar{f}^*\theta$ is a connection on *Q*.

§29 Horizontal Distributions on a Frame Bundle

In this section we will explain the process by which a connection ∇ on a vector bundle E over a manifold M gives rise to a smooth right-invariant horizontal distribution on the associated frame bundle Fr(E). This involves a sequence of steps. A connection on the vector bundle E induces a covariant derivative on sections of the vector bundle along a curve. Parallel sections along the curve are those whose derivative vanishes. Just as for tangent vectors in Section 14, starting with a frame e_x for the fiber of the vector bundle at the initial point x of a curve, there is a unique way to parallel translate the frame along the curve. In terms of the frame bundle Fr(E), what this means is that every curve in M has a unique lift to Fr(E) starting at e_x representing parallel frames along the curve. Such a lift is called a *horizontal lift*. The initial vector at e_x of a horizontal lift is a *horizontal vector* at e_x . The horizontal vectors at a point of Fr(E) form a subspace of the tangent space $T_{e_x}(Fr(E))$. In this way we obtain a horizontal distribution on the frame bundle. We show that this horizontal distribution on Fr(E) arising from a connection on the vector bundle E is smooth and right-invariant. It therefore corresponds to a connection ω on the principal bundle Fr(E). We then show that ω pulls back under a section e of Fr(E) to the connection matrix ω_e of the connection ∇ relative to the frame *e* on an open set *U*.

29.1 Parallel Translation in a Vector Bundle

In Section 14 we defined parallel translation of a tangent vector along a curve in a manifold with an affine connection. In fact, the same development carries over to an arbitrary vector bundle $\eta: E \to M$ with a connection ∇ .

Let $c: [a,b] \to M$ be a smooth curve in M. Instead of vector fields along the curve c, we consider smooth sections of the pullback bundle c^*E over [a,b]. These are called *smooth sections of the vector bundle* E along the curve c. We denote by $\Gamma(c^*E)$ the vector space of smooth sections of E along the curve c. If E = TM is the tangent bundle of a manifold M, then an element of $\Gamma(c^*TM)$ is simply a vector field along the curve c in M. Just as in Theorem 13.1, there is a unique \mathbb{R} -linear map

$$\frac{D}{dt}\colon \Gamma(c^*E)\to \Gamma(c^*E),$$

called the *covariant derivative* corresponding to ∇ , such that

(i) (Leibniz rule) for any C^{∞} function f on the interval [a,b],

$$\frac{D(fs)}{dt} = \frac{df}{dt}s + f\frac{Ds}{dt};$$

(ii) if s is induced from a global section $\tilde{s} \in \Gamma(M, E)$ in the sense that $s(t) = \tilde{s}(c(t))$, then

$$\frac{Ds}{dt}(t) = \nabla_{c'(t)}\tilde{s}.$$

Definition 29.1. A section $s \in \Gamma(c^*E)$ is *parallel along a curve* $c : [a,b] \to M$ if $Ds/dt \equiv 0$ on [a,b].

As in Section 14.5, the equation $Ds/dt \equiv 0$ for a section *s* to be parallel is equivalent to a system of linear first-order ordinary differential equations. Suppose $c: [a,b] \rightarrow M$ maps into a framed open set (U, e_1, \ldots, e_r) for *E*. Then $s \in \Gamma(c^*E)$ can be written as

$$s(t) = \sum s^i(t) e_{i,c(t)}.$$

By properties (i) and (ii) of the covariant derivative,

$$\begin{aligned} \frac{Ds}{dt} &= \sum_{i} \frac{ds^{i}}{dt} e_{i} + \sum_{j} s^{j} \frac{D}{dt} e_{j,c(t)} \\ &= \sum_{i} \frac{ds^{i}}{dt} e_{i} + \sum_{j} s^{j} \nabla_{c'(t)} e_{j} \\ &= \sum_{i} \frac{ds^{i}}{dt} e_{i} + \sum_{i,j} s^{j} \omega_{j}^{i} (c'(t)) e_{i} \end{aligned}$$

Hence, $Ds/dt \equiv 0$ if and only if

$$\frac{ds^{i}}{dt} + \sum_{j} s^{j} \omega_{j}^{i} (c'(t)) = 0 \text{ for all } i.$$

This is a system of linear first-order differential equations. By the existence and uniqueness theorems of differential equations, it has a solution on a small interval about a give point t_0 and the solution is uniquely determined by its value at t_0 . Thus, a parallel section is uniquely determined by its value at a point. If $s \in \Gamma(c^*E)$ is a parallel section of the pullback bundle c^*E , we say that s(b) is the *parallel transport* of s(a) along $c: [a,b] \to M$. The resulting map: $E_{c(a)} \to E_{c(b)}$ is called *parallel translation* from $E_{c(a)}$ to $E_{c(b)}$.

Theorem 29.2. Let $\eta : E \to M$ be a C^{∞} vector bundle with a connection ∇ and let $c : [a,b] \to M$ be a smooth curve in M. There is a unique parallel translation $\varphi_{a,b}$ from $E_{c(a)}$ to $E_{c(b)}$ along c. This parallel translation $\varphi_{a,b} : E_{c(a)} \to E_{c(b)}$ is a linear isomorphism.

The proof is similar to that of Theorem 14.14.

A *parallel frame along* the curve $c: [a,b] \to M$ is a collection of parallel sections $(e_1(t), \ldots, e_r(t)), t \in [a,b]$, such that for each t, the elements $e_1(t), \ldots, e_r(t)$ form a basis for the vector space $E_{c(t)}$.

Let π : Fr(*E*) \rightarrow *M* be the frame bundle of the vector bundle η : *E* \rightarrow *M*. A curve $\tilde{c}(t)$ in Fr(*E*) is called a *lift* of the curve c(t) in *M* if $c(t) = \pi(\tilde{c}(t))$. It is a *horizontal lift* if in addition $\tilde{c}(t)$ is a parallel frame along *c*.

Restricting the domain of the curve *c* to the interval [a,t], we obtain from Theorem 29.2 that parallel translation is a linear isomorphism of $E_{c(a)}$ with $E_{c(t)}$. Thus, if

a collection of parallel sections $(s_1(t), \ldots, s_r(t)) \in \Gamma(c^*E)$ forms a basis at one time t, then it forms a basis at every time $t \in [a,b]$. By Theorem 29.2, for every smooth curve $c: [a,b] \to M$ and ordered basis $(s_{1,0}, \ldots, s_{r,0})$ for $E_{c(a)}$, there is a unique parallel frame along c whose value at a is $(s_{1,0}, \ldots, s_{r,0})$. In terms of the frame bundle Fr(E), this shows the existence and uniqueness of a horizontal lift with a specified initial point in Fr(E) of a curve c(t) in M.

29.2 Horizontal Vectors on a Frame Bundle

On a general principal bundle vertical vectors are intrinsically defined, but horizontal vectors are not. We will see shortly that a connection on a vector bundle E over a manifold M determines a well-defined horizontal distribution on the frame bundle Fr(E). The elements of the horizontal distribution are the horizontal vectors. Thus, the notion of a horizontal vector on the frame bundle Fr(E) depends on a connection on E.

Definition 29.3. Let $E \to M$ be a vector bundle with a connection ∇ , $x \in M$, and $e_x \in \operatorname{Fr}(E_x)$. A tangent vector $v \in T_{e_x}(\operatorname{Fr}(E))$ is said to be *horizontal* if there is a curve c(t) through x in M such that v is the initial vector $\tilde{c}'(0)$ of the unique horizontal lift of $\tilde{c}(t)$ of c(t) to $\operatorname{Fr}(E)$ starting at e_x .

Our goal now is to show that the horizontal vectors at a point e_x of the frame bundle form a vector subspace of the tangent space $T_{e_x}(\operatorname{Fr}(E))$. To this end we will derive an explicit formula for $\tilde{c}'(0)$ in terms of a local frame for E. Suppose $c: [0,b] \to M$ is a smooth curve with initial point c(0) = x, and $\tilde{c}(t)$ is its unique horizontal lift to $\operatorname{Fr}(E)$ with initial point $e_x = (e_{1,0}, \ldots, e_{r,0})$. Let s be a frame for Eover a neighborhood U of x with $s(x) = e_x$. Then s(c(t)) is a lift of c(t) to $\operatorname{Fr}(E)$ with initial point e_x , but of course it is not necessarily a horizontal lift (see Figure 29.1). For any $t \in [0,b]$, we have two ordered bases s(c(t)) and $\tilde{c}(t)$ for $E_{c(t)}$, so there is a smooth matrix $a(t) \in \operatorname{GL}(r, \mathbb{R})$ such that $s(c(t)) = \tilde{c}(t)a(t)$. At t = 0, $s(c(0)) = e_x =$ $\tilde{c}(0)$, so that a(0) = I, the identity matrix in $\operatorname{GL}(r, \mathbb{R})$.

Lemma 29.4. In the notation above, let s_* : $T_x(M) \to T_{e_x}(\operatorname{Fr}(E))$ be the differential of s and $\underline{a'(0)}$ the fundamental vector field on $\operatorname{Fr}(E)$ associated to $a'(0) \in \mathfrak{gl}(r,\mathbb{R})$. Then

$$s_*(c'(0)) = \tilde{c}'(0) + \underline{a'(0)}_{e_x}.$$

Proof. Let P = Fr(E) and $G = GL(r, \mathbb{R})$, and let $\mu : P \times G \to P$ be the right action of *G* on *P*. Then

$$s(c(t)) = \tilde{c}(t)a(t) = \mu(\tilde{c}(t), a(t)), \qquad (29.1)$$

with c(0) = x, $\tilde{c}(0) = e_x$, and a(0) = the identity matrix *I*. Differentiating (29.1) with respect to *t* and evaluating at 0 gives

$$s_*(c'(0)) = \mu_{*,(\tilde{c}(0),a(0))}(\tilde{c}'(0),a'(0)).$$

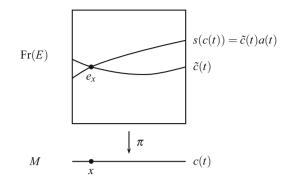


Fig. 29.1. Two liftings of a curve

By the formula for the differential of an action (Problem 27.4),

$$s_*(c'(0)) = r_{a(0)*}\tilde{c}'(0) + \underline{a'(0)}_{\tilde{c}(0)} = \tilde{c}'(0) + \underline{a'(0)}_{e_x}.$$

Lemma 29.5. Let $E \to M$ be a vector bundle with a connection ∇ . Suppose $s = (s_1, \ldots, s_r)$ is a frame for E over an open set U, $\tilde{c}(t)$ a parallel frame over a curve c(t) in U with $\tilde{c}(0) = s(c(0))$, and a(t) the curve in $GL(r, \mathbb{R})$ such that $s(c(t)) = \tilde{c}(t)a(t)$. If $\omega_s = [\omega_j^i]$ is the connection matrix of ∇ with respect to the frame (s_1, \ldots, s_r) over U, then $a'(0) = \omega_s(c'(0))$.

Proof. Label c(0) = x and $\tilde{c}_i(0) = s_i(c(0)) = e_{i,x}$. By the definition of the connection matrix,

$$\nabla_{c'(0)} s_j = \sum \omega_j^i (c'(0)) s_i(c(0)) = \sum \omega_j^i (c'(0)) e_{i,x}.$$
(29.2)

On the other hand, by the defining properties of the covariant derivative (Section 29.1),

$$\nabla_{c'(t)}s_j = \frac{D(s_j \circ c)}{dt}(t) = \frac{D}{dt}\sum_{i}\tilde{c}_i(t)a_j^i(t)$$
$$= \sum_{i}(a_j^i)'(t)\tilde{c}_i(t) + \sum_{i}a_j^i(t)\frac{D\tilde{c}_i}{dt}(t)$$
$$= \sum_{i}(a_j^i)'(t)\tilde{c}_i(t) \qquad (\text{since } D\tilde{c}_i/dt \equiv 0).$$

Setting t = 0 gives

$$\nabla_{c'(0)} s_j = \sum (a_j^i)'(0) e_{i,x}.$$
(29.3)

Equating (29.2) and (29.3), we obtain $(a_j^i)'(0) = \omega_j^i(c'(0))$.

Thus, Lemma 29.4 for the horizontal lift of c'(0) can be rewritten in the form

$$\vec{c}'(0) = s_*(c'(0)) - \underline{a'(0)}_{e_x} = s_*(c'(0)) - \underline{\omega}_s(c'(0))_{e_x}.$$
(29.4)

Proposition 29.6. Let $\pi: E \to M$ be a smooth vector bundle with a connection over a manifold M of dimension n. For $x \in M$ and e_x an ordered basis for the fiber E_x , the subset \mathcal{H}_{e_x} of horizontal vectors in the tangent space $T_{e_x}(\operatorname{Fr}(E))$ is a vector space of dimension n, and $\pi_*: \mathcal{H}_{e_x} \to T_x M$ is a linear isomorphism.

Proof. In formula (29.4), $\omega_s(c'(0))$ is \mathbb{R} -linear in its argument c'(0) because ω_s is a 1-form at c(0). The operation $A \mapsto \underline{A}_{e_x}$ of associating to a matrix $A \in \mathfrak{gl}(r, \mathbb{R})$ a tangent vector $\underline{A}_{e_x} \in T_{e_x}(\operatorname{Fr}(E))$ is \mathbb{R} -linear by (27.3). Hence, formula (29.4) shows that the map

$$\phi: T_x M \to T_{e_x} (\operatorname{Fr}(E)),$$
$$c'(0) \mapsto \tilde{c}'(0)$$

is \mathbb{R} -linear. As the image of a vector space $T_x M$ under a linear map, the set \mathcal{H}_{e_x} of horizontal vectors $\tilde{c}'(0)$ at e_x is a vector subspace of $T_{e_x}(\operatorname{Fr}(E))$.

Since $\pi(\tilde{c}(t)) = c(t)$, taking the derivative at t = 0 gives $\pi_*(\tilde{c}'(0)) = c'(0)$, so π_* is a left inverse to the map ϕ . This proves that $\phi: T_x M \to T_{e_x}(\operatorname{Fr}(E))$ is injective. Its image is by definition \mathcal{H}_{e_x} . It follows that $\phi: T_x M \to \mathcal{H}_{e_x}$ is an isomorphism with inverse $\pi_*: \mathcal{H}_{e_x} \to T_{e_x} M$.

29.3 Horizontal Lift of a Vector Field to a Frame Bundle

We have learned so far that a connection on a vector bundle $E \to M$ defines a horizontal subspace \mathcal{H}_p of the tangent space T_pP at each point p of the total space of the frame bundle $\pi: P = \operatorname{Fr}(E) \to M$. The horizontal subspace \mathcal{H}_p has the same dimension as M. The vertical subspace \mathcal{V}_p of T_pP is the kernel of the surjection $\pi_*: T_pP \to T_{\pi(p)}M$; as such, dim $\mathcal{V}_p = \dim T_pP - \dim M$. Hence, \mathcal{V}_p and \mathcal{H}_p have complementary dimensions in T_pP . Since $\pi_*(\mathcal{V}_p) = 0$ and $\pi_*: \mathcal{H}_p \to T_{\pi(p)}M$ is an isomorphism, $\mathcal{V}_p \cap \mathcal{H}_p = 0$. It follows that there is a direct sum decomposition

$$T_p(\operatorname{Fr}(E)) = \mathcal{V}_p \oplus \mathcal{H}_p. \tag{29.5}$$

Our goal now is to show that as *p* varies in *P*, the subset $\mathcal{H} := \bigcup_{p \in P} \mathcal{H}_p$ of the tangent bundle *TP* defines a C^{∞} horizontal distribution on *P* in the sense of Section 27.6.

Since $\pi_{*,p} \colon \mathcal{H}_p \to T_{\pi(p)}M$ is an isomorphism for each $p \in P$, if X is a vector field on M, then there is a unique vector field \tilde{X} on P such that $\tilde{X}_p \in \mathcal{H}_p$ and $\pi_{*,p}(\tilde{X}_p) = X_{\pi(p)}$. The vector field \tilde{X} is called the *horizontal lift* of X to the frame bundle P.

Since every tangent vector $X_x \in T_x M$ is the initial vector c'(0) of a curve c, formula (29.4) for the horizontal lift of a tangent vector can be rewritten in the following form.

Lemma 29.7 (Horizontal lift formula). Suppose ∇ is a connection on a vector bundle $E \rightarrow M$ and ω_s is its connection matrix on a framed open set (U,s). For $x \in U$, $p = s(x) \in Fr(E)$, and $X_x \in T_x M$, let \tilde{X}_p be the horizontal lift of X_x to p in Fr(E). Then

$$\tilde{X}_p = s_{*,x}(X_x) - \underline{\omega_s(X_x)}_p.$$

Proposition 29.8. Let $E \to M$ be a C^{∞} rank r vector bundle with a connection and π : $Fr(E) \to M$ its frame bundle. If X is a C^{∞} vector field on M, then its horizontal lift \tilde{X} to Fr(E) is a C^{∞} vector field.

Proof. Let P = Fr(E) and $G = GL(r, \mathbb{R})$. Since the question is local, we may assume that the bundle *P* is trivial, say $P = M \times G$. By the right invariance of the horizontal distribution,

$$\tilde{X}_{(x,a)} = r_{a*}\tilde{X}_{(x,1)}.$$
 (29.6)

Let $s: M \to P = M \times G$ be the section s(x) = (x, 1). By the horizontal lift formula (Lemma 29.7),

$$\tilde{X}_{(x,1)} = s_{*,x}(X_x) - \underline{\omega_s(X_x)}_{(x,1)}.$$
(29.7)

Let $p = (x, a) \in P$ and let f be a C^{∞} function on P. We will prove that $\tilde{X}_p f$ is C^{∞} as a function of p. By (29.6) and (29.7),

$$\tilde{X}_{p}f = r_{a*}s_{*,x}(X_{x})f - r_{a*}\underline{\omega_{s}(X_{x})}_{(x,1)}f,$$
(29.8)

so it suffices to prove separately that $(r_{a*}(s_{*,x}X_x))f$ and $(r_{a*}\omega_s(X_x)_{(x,1)})f$ are C^{∞} functions on *P*.

The first term is

$$(r_{a*}s_{*,x}(X_x))f = X_x(f \circ r_a \circ s)$$

= $X(f \circ r_a \circ s)(\pi(p))$
= $X(f(s(\pi(p))a)) = X(f(\mu(s(\pi(p)),a)))$
= $X(f(\mu(s(\pi(p)),\pi_2(p)))),$ (29.9)

where $\mu: P \times G \to P$ is the action of *G* on *P* and $\pi_2: P = M \times G \to G$ is the projection $\pi_2(p) = \pi_2(x, a) = a$. The formula (29.9) expresses $(r_{a*}s_{*,x}(X_x))f$ as a C^{∞} function on *P*.

By the right equivariance of the connection form ω_s , in (29.8) the second term can be rewritten as

$$r_{a*}\underline{\omega_s(X_x)}_{(x,1)}f = \underline{(\operatorname{Ad} a^{-1})\omega_s(X_x)}_{(x,a)}f$$
$$= \underline{(\operatorname{Ad} \pi_2(p)^{-1})\omega_s(X_{\pi(p)})}_p f$$

where $(\operatorname{Ad} \pi_2(p)^{-1})\omega_s(X_{\pi(p)})$ is a C^{∞} function: $P \to \mathfrak{gl}(r,\mathbb{R})$ that we will denote by A(p). The problem now is to show that $p \mapsto A(p)_n f$ is a C^{∞} function of p.

Let $\mu: P \times G \to P$ be the right action of $G = GL(r, \mathbb{R})$ on P = Fr(E). Then

$$\underline{A(p)}_{p}f = \frac{d}{dt}\Big|_{t=0}f(p \cdot e^{tA(p)}) = \frac{d}{dt}\Big|_{t=0}f(\mu(p, e^{tA(p)})).$$

Since f, μ, A , and the exponential map are all C^{∞} functions, $\underline{A(p)}_p f$ is a C^{∞} function of p. Thus, $\tilde{X}_p f$ in (29.8) is a C^{∞} function of p. This proves that \tilde{X} is a C^{∞} vector field on P.

Theorem 29.9. A connection ∇ on a smooth vector bundle $E \to M$ defines a C^{∞} distribution \mathcal{H} on the frame bundle $\pi \colon P = \operatorname{Fr}(E) \to M$ such that at any $p \in P$,

(i) $T_p P = \mathcal{V}_p \oplus \mathcal{H}_p$; (ii) $r_{g*}(\mathcal{H}_p) = \mathcal{H}_{pg}$ for any $g \in G = \operatorname{GL}(r, \mathbb{R})$,

where $r_g: P \rightarrow P$ is the right action of G on P.

Proof. To prove that \mathcal{H} is a C^{∞} subbundle of TP, let U be a coordinate open set in M and s_1, \ldots, s_n a C^{∞} frame on U. By Proposition 29.8 the horizontal lifts $\widetilde{s_1}, \ldots, \widetilde{s_n}$ are C^{∞} vector fields on $\widetilde{U} := \pi^{-1}(U)$. Moreover, for each $p \in \widetilde{U}$, since $\pi_{*,p} : \mathcal{H}_p \to T_{\pi(p)}M$ is an isomorphism, $(\widetilde{s_1})_p, \ldots, (\widetilde{s_n})_p$ form a basis for \mathcal{H}_p . Thus, over \widetilde{U} the C^{∞} sections $\widetilde{s_1}, \ldots, \widetilde{s_n}$ of TP span \mathcal{H} . By Theorem 20.4, this proves that \mathcal{H} is a C^{∞} subbundle of TP.

Equation (29.5) establishes (i).

As for (ii), let $\tilde{c}'(0) \in \mathcal{H}_p$, where c(t) is a curve in M and $\tilde{c}(t) = [v_1(t) \cdots v_r(t)]$ is its horizontal lift to P with initial point p. Here we are writing a frame as a row vector so that the group action is simply matrix multiplication on the right. For any $g = [g_i^i] \in \mathrm{GL}(r, \mathbb{R})$,

$$\tilde{c}(t)g = \left[\sum g_1^i v_i(t) \cdots \sum g_r^i v_i(t)\right].$$

Since $Dv_i/dt \equiv 0$ by the horizontality of v_i and g_j^i are constants, $D(\sum g_j^i v_i)/dt \equiv 0$. Thus, $\tilde{c}(t)g$ is the horizontal lift of c(t) with initial point $\tilde{c}(0)g$. It has initial tangent vector

$$\left.\frac{d}{dt}\right|_{t=0}\tilde{c}(t)g=r_{g*}\tilde{c}'(0)\in\mathfrak{H}_{pg}.$$

This proves that $r_{g*}\mathcal{H}_p \subset \mathcal{H}_{pg}$. Because $r_{g*} \colon \mathcal{H}_p \to \mathcal{H}_{pg}$ has a two-sided inverse $r_{g^{-1}*}$, it is bijective. In particular, $r_{g*}\mathcal{H}_p = \mathcal{H}_{pg}$.

29.4 Pullback of a Connection on a Frame Bundle Under a Section

Recall that a connection ∇ on a vector bundle *E* can be represented on a framed open set (U, e_1, \ldots, e_r) for *E* by a connection matrix ω_e depending on the frame. Such a frame $e = (e_1, \ldots, e_r)$ is in fact a section $e: U \to Fr(E)$ of the frame bundle. We now use the horizontal lift formula (Lemma 29.7) to prove that the Ehresmann connection ω on the frame bundle Fr(E) determined by ∇ pulls back under the section *e* to the connection matrix ω_e .

Theorem 29.10. Let ∇ be a connection on a vector bundle $E \to M$ and let ω be the Ehresmann connection on the frame bundle Fr(E) determined by ∇ . If $e = (e_1, \ldots, e_r)$ is a frame for E over an open set U, viewed as a section $e: U \to Fr(E)|_U$, and ω_e is the connection matrix of ∇ relative to the frame e, then $\omega_e = e^* \omega$.

Proof. Let $x \in U$ and $p = e(x) \in Fr(E)$. Suppose X_x is a tangent vector to M at x. If we write $\omega_{e,x}$ for the value of the connection matrix ω_e at the point $x \in U$, then $\omega_{e,x}$ is an $r \times r$ matrix of 1-forms at x and $\omega_{e,x}(X_x)$ is an $r \times r$ matrix of real numbers, i.e., an element of the Lie algebra $\mathfrak{gl}(r,\mathbb{R})$. The corresponding fundamental vector field on Fr(E) is $\omega_{e,x}(X_x)$. By Lemma 29.7, the horizontal lift of X_x to $p \in Fr(E)$ is

$$\tilde{X}_p = e_* X_x - \underline{\omega_{e,x}(X_x)}_p.$$

Applying the Ehresmann connection ω_p to both sides of this equation, we get

$$0 = \omega_p(\tilde{X}_p) = \omega_p(e_*X_x) - \omega_p\left(\underline{\omega_{e,x}(X_x)}_p\right)$$

= $(e^*\omega_p)(X_x) - \omega_{e,x}(X_x)$ (by Theorem 28.1(i)).

Since this is true for all $X_x \in T_x M$,

$$e^*\omega_p = (e^*\omega)_x = \omega_{e,x}.$$

§30 Curvature on a Principal Bundle

Let *G* be a Lie group with Lie algebra \mathfrak{g} . Associated to a connection ω on a principal *G*-bundle is a \mathfrak{g} -valued 2-form Ω called its curvature. The definition of the curvature is suggested by the second structural equation for a connection ∇ on a vector bundle *E*. Just as the connection form ω on the frame bundle $\operatorname{Fr}(E)$ pulls back by a section *e* of $\operatorname{Fr}(E)$ to the connection matrix ω_e of ∇ with respect to the frame *e*, so the curvature form Ω on the frame bundle $\operatorname{Fr}(E)$ pulls back by *e* to the curvature matrix Ω_e of ∇ with respect to *e*. Thus, the curvature form Ω on the frame bundle is an intrinsic object of which the curvature matrices Ω_e are but local manifestations.

30.1 Curvature Form on a Principal Bundle

By Theorem 11.1 if ∇ is a connection on a vector bundle $E \to M$, then its connection and curvature matrices ω_e and Ω_e on a framed open set $(U, e) = (U, e_1, \dots, e_r)$ are related by the second structural equation (Theorem 11.1)

$$\Omega_e = d\omega_e + \omega_e \wedge \omega_e.$$

In terms of the Lie bracket of matrix-valued forms (see (21.12)), this can be rewritten as

$$\Omega_e = d\omega_e + rac{1}{2}[\omega_e, \omega_e].$$

An Ehresmann connection on a principal bundle is Lie algebra-valued. In a general Lie algebra, the wedge product is not defined, but the Lie bracket is always defined. This strongly suggests the following definition for the curvature of an Ehresmann connection on a principal bundle.

Definition 30.1. Let *G* be a Lie group with Lie algebra \mathfrak{g} . Suppose ω is an Ehresmann connection on a principal *G*-bundle $\pi: P \to M$. Then the *curvature* of the connection ω is the \mathfrak{g} -valued 2-form

$$\Omega = d\omega + \frac{1}{2}[\omega, \omega].$$

Recall that frames for a vector bundle *E* over an open set *U* are sections of the frame bundle Fr(E). Let ω be the connection form on the frame bundle Fr(E) determined by a connection ∇ on *E*. In the same way that ω pulls back by sections of Fr(E) to connection matrices, the curvature form Ω of the connection ω on Fr(E) pulls back by sections to curvature matrices.

Proposition 30.2. If ∇ is a connection on a vector bundle $E \to M$ and ω is the associated Ehresmann connection on the frame bundle Fr(E), then the curvature matrix Ω_e relative to a frame $e = (e_1, \ldots, e_r)$ for E over an open set U is the pullback $e^*\Omega$ of the curvature Ω on the frame bundle Fr(E).

Proof.

$$e^*\Omega = e^*d\omega + \frac{1}{2}e^*[\omega, \omega]$$

= $de^*\omega + \frac{1}{2}[e^*\omega, e^*\omega]$ (e^{*} commutes with d and [,] by Proposition 21.8)
= $d\omega_e + \frac{1}{2}[\omega_e, \omega_e]$ (by Theorem 29.10)
= Ω_e . (by the second structural equation)

30.2 Properties of the Curvature Form

Now that we have defined the curvature of a connection on a principal *G*-bundle $\pi: P \to M$, it is natural to study some of its properties. Like a connection form, the curvature form Ω is equivariant with respect to right translation on *P* and the adjoint representation on g. However, unlike a connection form, a curvature form is horizontal in the sense that it vanishes as long as one argument is vertical. In this respect it acts almost like the opposite of a connection form, which vanishes on horizontal vectors.

Lemma 30.3. Let G be a Lie group with Lie algebra \mathfrak{g} and $\pi: P \to M$ a principal G-bundle with a connection ω . Fix a point $p \in P$.

- (i) Every vertical vector $X_p \in T_p P$ can be extended to a fundamental vector field <u>A</u> on P for some $A \in \mathfrak{g}$.
- (ii) Every horizontal vector $Y_p \in T_p P$ can be extended to the horizontal lift \tilde{B} of a C^{∞} vector field B on M.

Proof. (i) By the surjectivity of j_{p*} : $\mathfrak{g} \to \mathcal{V}_p$ (Proposition 27.18) and Equation (27.3),

$$X_p = j_{p*}(A) = \underline{A}_p$$

for some $A \in \mathfrak{g}$. Then the fundamental vector field <u>A</u> on P extends X_p .

(ii) Let $x = \pi(p)$ in M and let B_x be the projection $\pi_*(Y_p) \in T_x M$ of the vector Y_p . We can extend B_x to a smooth vector field B on M. The horizontal lift \tilde{B} of B extends Y_p on P.

By Proposition 28.6, such a horizontal lift \tilde{B} is necessarily right-invariant.

Theorem 30.4. Let G be a Lie group with Lie algebra \mathfrak{g} . Suppose $\pi: P \to M$ is a principal G-bundle, ω a connection on P, and Ω the curvature form of ω .

(i) (Horizontality) For $p \in P$ and $X_p, Y_p \in T_pP$,

$$\Omega_p(X_p, Y_p) = (d\omega)_p(hX_p, hY_p). \tag{30.1}$$

(ii) (*G*-equivariance) For $g \in G$, we have $r_g^* \Omega = (\operatorname{Ad} g^{-1}) \Omega$.

(iii) (Second Bianchi identity) $d\Omega = [\Omega, \omega]$.

Proof. (i) Since both sides of (30.1) are linear in X_p and in Y_p , we may decompose X_p and Y_p into vertical and horizontal components, and so it suffices to check the equation for vertical and horizontal vectors only. There are three cases.

Case 1. Both X_p and Y_p are horizontal. Then

$$\begin{split} \Omega_p(X_p,Y_p) &= (d\omega)_p(X_p,Y_p) + \frac{1}{2}[\omega_p,\omega_p](X_p,Y_p) & (\text{definition of }\Omega) \\ &= (d\omega)_p(X_p,Y_p) \\ &+ \frac{1}{2} \Big([\omega_p(X_p),\omega_p(Y_p)] - [\omega_p(Y_p),\omega_p(X_p)] \Big) \\ &= (d\omega)_p(X_p,Y_p) & (\omega_p(X_p) = 0) \\ &= (d\omega)_p(hX_p,hY_p). & (X_p,Y_p \text{ horizontal}) \end{split}$$

Case 2. One of X_p and Y_p is horizontal; the other is vertical. Without loss of generality, we may assume X_p vertical and Y_p horizontal. Then $[\omega_p, \omega_p](X_p, Y_p) = 0$ as in Case 1.

By Lemma 30.3 the vertical vector X_p extends to a fundamental vector field \underline{A} on P and the horizontal vector Y_p extends to a right-invariant horizontal vector field \tilde{B} on P. By the global formula for the exterior derivative (Problem 21.8)

$$d\omega(\underline{A}, \tilde{B}) = \underline{A}(\omega(\tilde{B})) - \tilde{B}(\omega(\underline{A})) - \omega([\underline{A}, \tilde{B}]).$$

On the right-hand side, $\omega(\tilde{B}) = 0$ because \tilde{B} is horizontal, and $\tilde{B}\omega(\underline{A}) = \tilde{B}A = 0$ because A is a constant function on P. Being the bracket of a fundamental and a horizontal vector field, $[\underline{A}, \tilde{B}]$ is horizontal by Lemma 28.7, and therefore $\omega([\underline{A}, \tilde{B}]) = 0$. Hence, the left-hand side of (30.1) becomes

$$\Omega_p(X_p, Y_p) = (d\omega)_p(\underline{A}_p, \underline{B}_p) = 0.$$

The right-hand side of (30.1) is also zero because $hX_p = 0$.

Case 3. Both X_p and Y_p are vertical. As in Case 2, we can write $X_p = \underline{A}_p$ and $Y_p = \underline{B}_p$ for some $A, B \in \mathfrak{g}$. We have thus extended the vertical vectors X_p and Y_p to fundamental vector fields $X = \underline{A}$ and $Y = \underline{B}$ on *P*. By the definition of curvature,

$$\Omega(X,Y) = \Omega(\underline{A},\underline{B})$$

= $d\omega(\underline{A},\underline{B}) + \frac{1}{2} ([\omega(\underline{A}), \omega(\underline{B})] - [\omega(\underline{B}), \omega(\underline{A})])$
= $d\omega(\underline{A},\underline{B}) + [A,B].$ (30.2)

In this sum the first term is

$$d\omega(\underline{A},\underline{B}) = \underline{A}(\omega(\underline{B})) - \underline{B}(\omega(\underline{A})) - \omega([\underline{A},\underline{B}])$$

= $\underline{A}(B) - \underline{B}(A) - \omega([\underline{A},B])$ (Problem 27.1)
= $0 - 0 - [A,B].$

Hence, (30.2) becomes

$$\Omega(X,Y) = -[A,B] + [A,B] = 0.$$

On the other hand,

$$(d\omega)_p(hX_p,hY_p) = (d\omega)_p(0,0) = 0.$$

(ii) Since the connection form ω is right-equivariant with respect to Ad,

$$\begin{aligned} r_g^* \Omega &= r_g^* \left(d\omega + \frac{1}{2} [\omega, \omega] \right) & \text{(definition of curvature)} \\ &= dr_g^* \omega + \frac{1}{2} [r_g^* \omega, r_g^* \omega] & \text{(Proposition 21.8)} \\ &= d(\operatorname{Ad} g^{-1}) \omega + \frac{1}{2} [(\operatorname{Ad} g^{-1}) \omega, (\operatorname{Ad} g^{-1}) \omega] \\ &= (\operatorname{Ad} g^{-1}) \left(d\omega + \frac{1}{2} [\omega, \omega] \right) \\ &= (\operatorname{Ad} g^{-1}) \Omega. \end{aligned}$$

In this computation we used the fact that because $\operatorname{Ad} g^{-1} = (c_{g^{-1}})_*$ is the differential of a Lie group homomorphism, it is a Lie algebra homomorphism.

(iii) Taking the exterior derivative of the definition of the curvature form, we get

$$d\Omega = \frac{1}{2}d[\omega, \omega]$$

= $\frac{1}{2}([d\omega, \omega] - [\omega, d\omega])$ (Proposition 21.6)
= $[d\omega, \omega]$ (Proposition 21.5)
= $\left[\Omega - \frac{1}{2}[\omega, \omega], \omega\right]$ (definition of Ω)
= $[\Omega, \omega] - \frac{1}{2}[[\omega, \omega], \omega]$
= $[\Omega, \omega].$ (Problem 21.5)

In case *P* is the frame bundle Fr(E) of a rank *r* vector bundle *E*, with structure group $GL(r, \mathbb{R})$, the second Bianchi identity becomes by Proposition 21.7

$$d\Omega = [\Omega, \omega] = \Omega \wedge \omega - \omega \wedge \Omega, \qquad (30.3)$$

where the connection and curvature forms ω and Ω are $\mathfrak{gl}(r,\mathbb{R})$ -valued forms on Fr(E). It should not be so surprising that it has the same form as the second Bianchi identity for the connection and curvature matrices relative to a frame *e* for *E* (Proposition 22.3). Indeed, by pulling back (30.3) by a frame $e: U \to Fr(E)$, we get

$$e^*d\Omega = e^*(\Omega \wedge \omega) - e^*(\omega \wedge \Omega), \ de^*\Omega = (e^*\Omega) \wedge e^*\omega - (e^*\omega) \wedge e^*\Omega, \ d\Omega_e = \Omega_e \wedge \omega_e - \omega_e \wedge \Omega_e,$$

which is precisely Proposition 22.3.

274 §30 Curvature on a Principal Bundle

Problems

30.1. Curvature of the Maurer-Cartan connection

Let *G* be a Lie group with Lie algebra \mathfrak{g} , and *M* a manifold. Compute the curvature of the Maurer–Cartan connection ω on the trivial bundle $\pi: M \times G \to M$.

30.2. Generalized second Bianchi identity on a frame bundle

Suppose Fr(E) is the frame bundle of a rank r vector bundle E over M. Let ω be an Ehresmann connection and Ω its curvature form on Fr(E). These are differential forms on Fr(E) with values in the Lie algebra $\mathfrak{gl}(r,\mathbb{R})$. Matrix multiplication and the Lie bracket on $\mathfrak{gl}(r,\mathbb{R})$ lead to two ways to multiply $\mathfrak{gl}(r,\mathbb{R})$ -valued forms (see Section 21.5). We write Ω^k to denote the wedge product of Ω with itself k times. Prove that $d(\Omega^k) = [\Omega^k, \omega]$.

30.3. Lie bracket of horizontal vector fields

Let $P \rightarrow M$ be a principal bundle with a connection, and X, Y horizontal vector fields on P.

(a) Prove that $\Omega(X, Y) = -\omega([X, Y])$.

(b) Show that [X,Y] is horizontal if and only if the curvature $\Omega(X,Y)$ equals zero.

§31 Covariant Derivative on a Principal Bundle

Throughout this chapter, *G* will be a Lie group with Lie algebra \mathfrak{g} and *V* will be a finite-dimensional vector space. To a principal *G*-bundle $\pi: P \to M$ and a representation $\rho: G \to \operatorname{GL}(V)$, one can associate a vector bundle $P \times_{\rho} V \to M$ with fiber *V*. When ρ is the adjoint representation Ad of *G* on its Lie algebra \mathfrak{g} , the associated bundle $P \times_{Ad} \mathfrak{g}$ is called the *adjoint bundle*, denoted by Ad *P*.

Differential forms on M with values in the associated bundle $P \times_{\rho} V$ turn out to correspond in a one-to-one manner to certain V-valued forms on P called *tensorial forms of type* ρ . The curvature Ω of a connection ω on the principal bundle P is a g-valued tensorial 2-form of type Ad on P. Under this correspondence it may be viewed as a 2-form on M with values in the adjoint bundle Ad P.

Using a connection ω , one can define a covariant derivative *D* of vector-valued forms on a principal bundle *P*. This covariant derivative maps tensorial forms to tensorial forms, and therefore induces a covariant derivative on forms on *M* with values in an associated bundle. In terms of the covariant derivative *D*, the curvature form is $\Omega = D\omega$, and Bianchi's second identity becomes $D\Omega = 0$.

31.1 The Associated Bundle

Let $\pi: P \to M$ be a principal *G*-bundle and $\rho: G \to GL(V)$ a representation of *G* on a finite-dimensional vector space *V*. We write $\rho(g)v$ as $g \cdot v$ or even gv. The *associated bundle* $E := P \times_{\rho} V$ is the quotient of $P \times V$ by the equivalence relation

$$(p,v) \sim (pg,g^{-1} \cdot v)$$
 for $g \in G$ and $(p,v) \in P \times V$. (31.1)

We denote the equivalence class of (p, v) by [p, v]. The associated bundle comes with a natural projection $\beta : P \times_{\rho} V \to M$, $\beta([p, v]) = \pi(p)$. Because

$$\beta([pg,g^{-1}\cdot v]) = \pi(pg) = \pi(p) = \beta([p,v]),$$

the projection β is well defined.

As a first example, the proposition below shows that an associated bundle of a trivial principal *G*-bundle is a trivial vector bundle.

Proposition 31.1. If $\rho : G \to GL(V)$ is a finite-dimensional representation of a Lie group G, and U is any manifold, then there is a fiber-preserving diffeomorphism

$$\phi: (U \times G) \times_{\rho} V \xrightarrow{\sim} U \times V,$$
$$[(x,g),v] \mapsto (x,g \cdot v).$$

Proof. The map ϕ is well defined because if h is any element of G, then

$$\phi([(x,g)h,h^{-1} \cdot v]) = (x,(gh) \cdot h^{-1} \cdot v) = (x,g \cdot v) = \phi([(x,g),v]).$$

Define $\psi \colon U \times V \to (U \times G) \times_{\rho} V$ by

$$\boldsymbol{\psi}(\boldsymbol{x}, \boldsymbol{v}) = [(\boldsymbol{x}, 1), \boldsymbol{v}].$$

It is easy to check that ϕ and ψ are inverse to each other, are C^{∞} , and commute with the projections.

Since a principal bundle $P \to M$ is locally $U \times G$, Proposition 31.1 shows that the associated bundle $P \times_{\rho} V \to M$ is locally trivial with fiber V. The vector space structure on V then makes $P \times_{\rho} V$ into a vector bundle over M:

$$[p, v_1] + [p, v_2] = [p, v_1 + v_2], \lambda[p, v] = [p, \lambda v], \quad \lambda \in \mathbb{R}.$$
(31.2)

It is easy to show that these are well-defined operations not depending on the choice of $p \in E_x$ and that this makes the associated bundle $\beta : E \to M$ into a vector bundle (Problem 31.2).

Example 31.2. Let Ad: $G \to GL(\mathfrak{g})$ be the adjoint representation of a Lie group *G* on its Lie algebra \mathfrak{g} . For a principal *G*-bundle $\pi: P \to M$, the associated vector bundle Ad $P := P \times_{Ad} \mathfrak{g}$ is called the *adjoint bundle* of *P*.

31.2 The Fiber of the Associated Bundle

If $\pi: P \to M$ is a principal *G*-bundle, $\rho: G \to GL(V)$ is a representation, and $E := P \times_{\rho} V \to M$ is the associated bundle, we denote by P_x the fiber of *P* above $x \in M$, and by E_x the fiber of *E* above $x \in M$. For each $p \in P_x$, there is a canonical way of identifying the fiber E_x with the vector space *V*:

$$f_p \colon V \to E_x,$$
$$v \mapsto [p, v]$$

Lemma 31.3. Let $\pi: P \to M$ be a principal *G*-bundle, $\rho: G \to GL(V)$ a finitedimensional representation, and $E = P \times_{\rho} V$ the associated vector bundle. For each point *p* in the fiber P_x , the map $f_p: V \to E_x$ is a linear isomorphism.

Proof. Suppose [p,v] = [p,w]. Then $(p,w) = (pg,g^{-1}v)$ for some $g \in G$. Since G acts freely on P, the equality p = pg implies that g = 1. Hence, $w = g^{-1}v = v$. This proves that f_p is injective.

If [q,w] is any point in E_x , then $q \in P_x$, so q = pg for some $g \in G$. It follows that

$$[q,w] = [pg,w] = [p,gw] = f_p(gw).$$

This proves that f_p is surjective.

The upshot is that every point *p* of the total space *P* of a principal bundle gives a linear isomorphism $f_p: V \to E_{\pi(p)}$ from *V* to the fiber of the associated bundle *E* above $\pi(p)$.

Lemma 31.4. Let $E = P \times_{\rho} V$ be the vector bundle associated to the principal *G*bundle $P \to M$ via the representation $\rho: G \to GL(V)$, and $f_p: V \to E_x$ the linear isomorphism $v \mapsto [p, v]$. If $g \in G$, then $f_{pg} = f_p \circ \rho(g)$.

Proof. For $v \in V$,

$$f_{pg}(v) = [pg,v] = [p,g \cdot v] = f_p(g \cdot v) = f_p(\rho(g)v).$$

Example 31.5. Let $\pi: P \to M$ be a principal *G*-bundle. The vector bundle $P \times_{\rho} V \to M$ associated to the trivial representation $\rho: G \to GL(V)$ is the trivial bundle $M \times V \to M$, for there is a vector bundle isomorphism

$$P \times_{\rho} V \to M \times V,$$

$$[p,v] = [pg,g^{-1} \cdot v] = [pg,v] \mapsto (\pi(p),v),$$

with inverse map

$$(x,v)\mapsto [p,v]$$
 for any $p\in \pi^{-1}(x)$.

In this case, for each $p \in P$ the linear isomorphism $f_p: V \to E_x = V, v \mapsto [p, v]$, is the identity map.

31.3 Tensorial Forms on a Principal Bundle

We keep the same notation as in the previous section. Thus, $\pi: P \to M$ is a principal *G*-bundle, $\rho: G \to GL(V)$ a finite-dimensional representation of *G*, and $E := P \times_{\rho} V$ the vector bundle associated to *P* via ρ .

Definition 31.6. A *V*-valued *k*-form φ on *P* is said to be *right-equivariant of type* ρ or *right-equivariant with respect to* ρ if for every $g \in G$,

$$r_g^* \varphi = \rho(g^{-1}) \cdot \varphi.$$

What this means is that for $p \in P$ and $v_1, \ldots, v_k \in T_p P$,

$$(r_g^*\boldsymbol{\varphi})_p(v_1,\ldots,v_k) = \boldsymbol{\rho}(g^{-1})(\boldsymbol{\varphi}_p(v_1,\ldots,v_k)).$$

In the literature (for example, [12, p. 75]), such a form is said to be *pseudo-tensorial of type* ρ .

Definition 31.7. A *V*-valued *k*-form φ on *P* is said to be *horizontal* if φ vanishes whenever one of its arguments is a vertical vector. Since a 0-form never takes an argument, every 0-form on *P* is by definition horizontal.

Definition 31.8. A V-valued k-form φ on P is *tensorial of type* ρ if it is rightequivariant of type ρ and horizontal. The set of all smooth tensorial V-valued k-forms of type ρ is denoted by $\Omega_{\rho}^{k}(P,V)$. *Example.* Since the curvature Ω of a connection ω on a principal G-bundle P is horizontal and right-equivariant of type Ad, it is tensorial of type Ad.

The set $\Omega_{\rho}^{k}(P,V)$ of tensorial k-forms of type ρ on P becomes a vector space with the usual addition and scalar multiplication of forms. These forms are of special interest because they can be viewed as forms on the base manifold M with values in the associated bundle $E := P \times_{\rho} V$. To each tensorial V-valued k form $\phi \in \Omega_{\rho}^{k}(P,V)$ we associate a *k*-form $\varphi^{\flat} \in \Omega^k(M, E)$ as follows. Given $x \in M$ and $v_1, \ldots, v_k \in T_x M$, choose any point p in the fiber P_x and choose lifts u_1, \ldots, u_k at p of v_1, \ldots, v_k , i.e., vectors in $T_n P$ such that $\pi_*(u_i) = v_i$. Then φ^{\flat} is defined by

$$\boldsymbol{\varphi}_{\boldsymbol{x}}^{\flat}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k) = f_p\left(\boldsymbol{\varphi}_p(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k)\right) \in E_{\boldsymbol{x}},\tag{31.3}$$

where $f_p: V \to E_x$ is the isomorphism $v \mapsto [p, v]$ of the preceding section. Conversely, if $\psi \in \Omega^k(M, E)$, we define $\psi^{\sharp} \in \Omega^k_p(P, V)$ as follows. Given $p \in P$ and $u_1, \ldots, u_k \in T_p P$, let $x = \pi(p)$ and set

$$\psi_p^{\sharp}(u_1,\ldots,u_k) = f_p^{-1} \big(\psi_x(\pi_* u_1,\ldots,\pi_* u_k) \big) \in V.$$
(31.4)

Theorem 31.9. The map

$$\begin{split} \Omega^k_\rho(P,V) &\to \Omega^k(M,E), \\ \varphi &\mapsto \varphi^\flat, \end{split}$$

is a well-defined linear isomorphism with inverse $\psi^{\sharp} \leftrightarrow \psi$.

Proof. To show that ϕ^{\flat} is well defined, we need to prove that the definition (31.3) is independent of the choice of $p \in P_x$ and of $u_1, \ldots, u_k \in T_p P$. Suppose $u'_1, \ldots, u'_k \in T_p P$ is another set of vectors such that $\pi_*(u_i') = v_i$. Then $\pi_*(u_i' - u_i) = 0$ so that $u_i' - u_i$ is vertical. Since φ is horizontal and k-linear,

$$\varphi_p(u'_1, \dots, u'_k) = \varphi_p(u_1 + \text{vertical}, \dots, u_k + \text{vertical})$$
$$= \varphi_p(u_1, \dots, u_k).$$

This proves that for a given $p \in P$, the definition (31.3) is independent of the choice of lifts of v_1, \ldots, v_k to p.

Next suppose we choose pg instead of p as the point in the fiber P_x . Because $\pi \circ r_g = \pi$,

$$\pi_*(r_{g*}u_i)=(\pi\circ r_g)_*u_i=\pi_*u_i=v_i,$$

so that $r_{g*}u_1, \ldots, r_{g*}u_k$ are lifts of v_1, \ldots, v_k to pg. We have, by right equivariance with respect to ρ ,

$$\varphi_{pg}(r_{g*}u_1, \dots, r_{g*}u_k) = (r_g^*\varphi_{pg})(u_1, \dots, u_k)$$

= $\rho(g^{-1})\varphi_p(u_1, \dots, u_k).$

So by Lemma 31.4,

$$f_{pg}(\varphi_{pg}(r_{g*}u_1,...,r_{g*}u_k)) = f_{pg}(\rho(g^{-1})\varphi_p(u_1,...,u_k))$$

= $(f_p \circ \rho(g))(\rho(g^{-1})\varphi_p(u_1,...,u_k))$
= $f_p(\varphi_p(u_1,...,u_k)).$

This proves that the definition (31.3) is independent of the choice of p in the fiber P_x .

Let $\psi \in \Omega^k(M, E)$. It is clear from the definition (31.4) that ψ^{\sharp} is horizontal. It is easy to show that ψ^{\sharp} is right-equivariant with respect to ρ (Problem 31.4). Hence, $\psi^{\sharp} \in \Omega_{\rho}^k(P, V)$.

For $v_1, \ldots, v_k \in T_x M$, choose $p \in P_x$ and vectors $u_1, \ldots, u_k \in T_p P$ that lift v_1, \ldots, v_k . Then

$$(\boldsymbol{\psi}^{\sharp\flat})_{\boldsymbol{x}}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k) = f_p\left(\boldsymbol{\psi}_p^{\sharp}(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k)\right)$$
$$= f_p\left(f_p^{-1}\left(\boldsymbol{\psi}_{\boldsymbol{x}}(\boldsymbol{\pi}_*\boldsymbol{u}_1,\ldots,\boldsymbol{\pi}_*\boldsymbol{u}_k)\right)\right)$$
$$= \boldsymbol{\psi}_{\boldsymbol{x}}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k).$$

Hence, $\psi^{\sharp\flat} = \psi$.

Similarly, $\varphi^{\flat \sharp} = \varphi$ for $\varphi \in \Omega^k_{\rho}(P, V)$, which we leave to the reader to show (Problem 31.5). Therefore, the map $\psi \mapsto \psi^{\sharp}$ is inverse to the map $\varphi \mapsto \varphi^{\flat}$. \Box

Example 31.10 (*Curvature as a form on the base*). By Theorem 31.9, the curvature form Ω of a connection on a principal *G*-bundle *P* can be viewed as an element of $\Omega^2(M, \text{Ad}P)$, a 2-form on *M* with values in the adjoint bundle Ad*P*.

When k = 0 in Theorem 31.9, $\Omega_p^0(P, V)$ consists of maps $f: P \to V$ that are right-equivariant with respect to ρ :

$$(r_{g}^{*}f)(p) = \rho(g)^{-1}f(p),$$

or

$$f(pg) = \rho(g^{-1})f(p) = g^{-1} \cdot f(p).$$

On the right-hand side of Theorem 31.9,

 $\Omega^0(M, P \times_{\rho} V) = \Omega^0(M, E) =$ sections of the associated bundle *E*.

Hence, we have the following corollary.

Corollary 31.11. *Let G be a Lie group,* $P \rightarrow M$ *a principal G-bundle, and* $\rho : G \rightarrow Aut(V)$ *a representation of G. There is a one-to-one correspondence*

$$\begin{cases} G\text{-equivariant maps} \\ f: P \to V \end{cases} \longleftrightarrow \begin{cases} \text{sections of the associated bundle} \\ P \times_{\rho} V \to M \end{cases}$$

By the local triviality condition, for any principal bundle $\pi: P \to M$ the projection map π is a submersion and therefore the pullback map $\pi^*: \Omega^*(M) \to \Omega^*(P)$ is an injection. A differential form φ on *P* is said to be *basic* if it is the pullback $\pi^* \psi$

of a form ψ on M; it is *G*-invariant if $r_g^* \varphi = \varphi$ for all $g \in G$. More generally, for any vector space V, these concepts apply to V-valued forms as well.

Suppose ρ : $G \to GL(V)$ is the trivial representation $\rho(g) = 1$ for all $g \in G$. Then an equivariant form φ of type ρ on P satisfies

$$r_g^* \varphi = \rho(g^{-1}) \cdot \varphi = \varphi$$
 for all $g \in G$.

Thus, an equivariant form of type ρ for the trivial representation ρ is exactly an invariant form on *P*. Unravelling Theorem 31.9 for a trivial representation will give the following theorem.

Theorem 31.12. Let $\pi: P \to M$ be a principal *G*-bundle and *V* a vector space. A *V*-valued form on *P* is basic if and only if it is horizontal and *G*-invariant.

Proof. Let $\rho: G \to GL(V)$ be the trivial representation. As noted above, $\Omega_{\rho}^{k}(P,V)$ consists of horizontal, *G*-invariant *V*-valued *k*-forms on *P*.

By Example 31.5, when ρ is the trivial representation, the vector bundle $E = P \times_{\rho} V$ is the product bundle $M \times V$ over M and for each $p \in P$, the linear isomorphism $f_p: V \to E_x = V$, where $x = \pi(p)$, is the identity map. Then the isomorphism

$$\begin{split} \Omega^k(M,E) &= \Omega^k(M,M\times V) = \Omega^k(M,V) \to \Omega^k_\rho(P,V), \\ \psi &\mapsto \psi^\#, \end{split}$$

is given by

$$\psi_p^{\#}(u_1, \dots, u_k) = \psi_x(\pi_* u_1, \dots, \pi_* u_k) \quad \text{(by (31.4))} = (\pi^* \psi)_p(u_1, \dots, u_k).$$

Therefore,

$$\psi^{\#} = \pi^* \psi.$$

This proves that horizontal, G-invariant forms on P are precisely the basic forms. \Box

31.4 Covariant Derivative

Recall that the existence of a connection ω on a principal *G*-bundle $\pi: P \to M$ is equivalent to the decomposition of the tangent bundle *TP* into a direct sum of the vertical subbundle \mathcal{V} and a smooth right-invariant horizontal subbundle \mathcal{H} . For any vector $X_p \in T_p P$, we write

$$X_p = vX_p + hX_p$$

as the sum of its vertical and horizontal components. This will allow us to define a covariant derivative of vector-valued forms on P. By the isomorphism of Theorem 31.9, we obtain in turn a covariant derivative of forms on M with values in an associated bundle.

Let $\rho: G \to GL(V)$ be a finite-dimensional representation of *G* and let $E := P \times_{\rho} V$ be the associated vector bundle.

Proposition 31.13. *If* $\varphi \in \Omega^k(P,V)$ *is right-equivariant of type* ρ *, then so is d* φ *.*

Proof. For a fixed $g \in G$,

$$r_g^* d\varphi = dr_g^* \varphi = d\rho(g^{-1})\varphi$$

= $\rho(g^{-1})d\varphi$,

since $\rho(g^{-1})$ is a constant linear map for a fixed g.

In general, the exterior derivative does not preserve horizontality. For any *V*-valued *k*-form φ on *P*, we define its *horizontal component* $\varphi^h \in \Omega^k(P,V)$ as follows: for $p \in P$ and $v_1, \ldots, v_k \in T_p P$,

$$\varphi_p^h(v_1,\ldots,v_k)=\varphi_p(hv_1,\ldots,hv_k).$$

Proposition 31.14. If $\varphi \in \Omega^k(P,V)$ is right-equivariant of type ρ , then so is φ^h .

Proof. For $g \in G$, $p \in P$, and $v_1, \ldots, v_k \in T_p P$,

$$\begin{aligned} r_g^*(\varphi_{pg}^h)(v_1,\ldots,v_k) &= \varphi_{pg}^h(r_{g*}v_1,\ldots,r_{g*}v_k) & (\text{definition of pullback}) \\ &= \varphi_{pg}(hr_{g*}v_1,\ldots,hr_{g*}v_k) & (\text{definition of } \varphi^h) \\ &= \varphi_{pg}(r_{g*}hv_1,\ldots,r_{g*}hv_k) & (\text{Proposition 28.4}) \\ &= (r_g^*\varphi_{pg})(hv_1,\ldots,hv_k) \\ &= \rho(g^{-1}) \cdot \varphi_p(hv_1,\ldots,hv_k) & (\text{right-equivariance of } \varphi) \\ &= \rho(g^{-1}) \cdot \varphi_p^h(v_1,\ldots,v_k) & \Box \end{aligned}$$

Propositions 31.13 and 31.14 together imply that if $\varphi \in \Omega^k(P,V)$ is right-equivariant of type ρ , then $(d\varphi)^h \in \Omega^{k+1}(P,V)$ is horizontal and right-equivariant of type ρ , i.e., tensorial of type ρ .

Definition 31.15. Let $\pi: P \to M$ be a principal *G*-bundle with a connection ω and let *V* be a real vector space. The *covariant derivative* of a *V*-valued *k*-form $\varphi \in \Omega^k(P,V)$ is $D\varphi = (d\varphi)^h$.

Let $\rho: G \to GL(V)$ be a finite-dimensional representation of the Lie group *G*. The covariant derivative is defined for any *V*-valued *k*-form on *P*, and it maps a rightequivariant form of type ρ to a tensorial form of type ρ . In particular, it restricts to a map

$$D: \Omega^k_\rho(P, V) \to \Omega^{k+1}_\rho(P, V) \tag{31.5}$$

on the space of tensorial forms.

Proposition 31.16. Let $\pi: P \to M$ be a principal *G*-bundle with a connection and $\rho: G \to GL(V)$ a representation of *G*. The covariant derivative

$$D: \Omega^k_{\rho}(P,V) \to \Omega^{k+1}_{\rho}(P,V)$$

on tensorial forms of type ρ is an antiderivation of degree +1.

Proof. Let $\omega, \tau \in \Omega^*_{\rho}(P, V)$ be tensorial forms of type ρ . Then

$$D(\omega \wedge \tau) = (d(\omega \wedge \tau))^h$$

= $((d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau)^h$
= $(d\omega)^h \wedge \tau^h + (-1)^{\deg \omega} \omega^h \wedge (d\tau)^h$
= $Dw \wedge \tau^h + (-1)^{\deg \omega} \omega^h \wedge D\tau$.

Since τ and ω are horizontal, $\tau^h = \tau$ and $\omega^h = \omega$. Therefore,

$$D(\omega \wedge \tau) = D\omega \wedge \tau + (-1)^{\deg \omega} \omega \wedge D\tau. \qquad \Box$$

If $E := P \times_{\rho} V$ is the associated vector bundle via the representation ρ , then the isomorphism of Theorem 31.9 transforms the linear map (31.5) into a linear map

$$D: \Omega^k(M, E) \to \Omega^{k+1}(M, E).$$

Unlike the exterior derivative, the covariant derivative depends on the choice of a connection on *P*. Moreover, $D^2 \neq 0$ in general.

Example 31.17 (*Curvature of a principal bundle*). By Theorem 30.4 the curvature form $\Omega \in \Omega^2_{Ad}(P, \mathfrak{g})$ on a principal bundle is the covariant derivative $D\omega$ of the connection form $\omega \in \Omega^1(P, \mathfrak{g})$. Because ω is not horizontal, it is not in $\Omega^1_{Ad}(P, \mathfrak{g})$.

31.5 A Formula for the Covariant Derivative of a Tensorial Form

Let $\pi: P \to M$ be a smooth principal *G*-bundle with a connection ω , and let $\rho: G \to GL(V)$ be a finite-dimensional representation of *G*. In the preceding section we defined the covariant derivative of a *V*-valued *k*-form φ on *P*: $D\varphi = (d\varphi)^h$, the horizontal component of $d\varphi$. In this section we derive a useful alternative formula for the covariant derivative, but only for a tensorial form.

The Lie group representation $\rho: G \to GL(V)$ induces a Lie algebra representation $\rho_*: \mathfrak{g} \to \mathfrak{gl}(V)$, which allows us to define a product of a \mathfrak{g} -valued *k*-form τ and a *V*-valued ℓ -form φ on *P*: for $p \in P$ and $v_1, \ldots, v_{k+\ell} \in T_p P$,

$$(\tau \cdot \varphi)_p(\nu_1, \dots, \nu_{k+\ell}) = \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn}(\sigma) \rho_* (\tau_p(\nu_{\sigma(1)}, \dots, \nu_{\sigma(k)})) \varphi_p(\nu_{\sigma(k+1)}, \dots, \nu_{\sigma(k+\ell)}).$$

For the same reason as the wedge product, $\tau \cdot \varphi$ is multilinear and alternating in its arguments; it is therefore a $(k + \ell)$ -covector with values in *V*.

Example 31.18. If $V = \mathfrak{g}$ and $\rho = \operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ is the adjoint representation, then

$$(\tau \cdot \varphi)_p = \frac{1}{k!\ell!} \sum_{\sigma \in S_{k+\ell}} \operatorname{sgn}(\sigma) \left[\tau_p(v_{\sigma(1)}, \dots, v_{\sigma(k)}), \varphi_p(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)}) \right].$$

In this case we also write $[\tau, \varphi]$ instead of $\tau \cdot \varphi$.

Theorem 31.19. Let $\pi: P \to M$ be a principal *G*-bundle with connection form ω , and $\rho: G \to GL(V)$ a finite-dimensional representation of *G*. If $\varphi \in \Omega_{\rho}^{k}(P,V)$ is a *V*-valued tensorial form of type ρ , then its covariant derivative is given by

$$D\varphi = d\varphi + \omega \cdot \varphi.$$

Proof. Fix $p \in P$ and $v_1, \ldots, v_{k+1} \in T_p P$. We need to show that

$$(d\varphi)_p(hv_1,\ldots,hv_{k+1}) = (d\varphi)_p(v_1,\ldots,v_{k+1}) + \frac{1}{k!} \sum_{\sigma \in S_{k+1}} \operatorname{sgn}(\sigma) \rho_* \left(\omega_p(v_{\sigma(1)}) \right) \varphi_p \left(v_{\sigma(2)},\ldots,v_{\sigma(k+1)} \right).$$
(31.6)

Because both sides of (31.6) are linear in each argument v_i , which may be decomposed into the sum of a vertical and a horizontal component, we may assume that each v_i is either vertical or horizontal. By Lemma 30.3, throughout the proof we may further assume that the vectors v_1, \ldots, v_{k+1} have been extended to vector fields X_1, \ldots, X_{k+1} on *P* each of which is either vertical or horizontal. If X_i is vertical, then it is a fundamental vector field $\underline{A_i}$ for some $A_i \in \mathfrak{g}$. If X_i is horizontal, then it is the horizontal lift $\tilde{B_i}$ of a vector field B_i on *M*. By construction, $\tilde{B_i}$ is right-invariant (Proposition 28.6).

Instead of proving (31.6) at a point p, we will prove the equality of functions

$$(d\varphi)(hX_1,\ldots,hX_{k+1}) = \mathbf{I} + \mathbf{I},\tag{31.7}$$

where

$$\mathbf{I} = (d\varphi)(X_1,\ldots,X_{k+1})$$

and

$$II = \frac{1}{k!} \sum_{\sigma \in S_{k+1}} \operatorname{sgn}(\sigma) \rho_* \left(\omega(X_{\sigma(1)}) \right) \varphi \left(X_{\sigma(2)}, \dots, X_{\sigma(k+1)} \right).$$

Case 1. *The vector fields* X_1, \ldots, X_{k+1} *are all horizontal.*

Then II = 0 because $\omega(X_{\sigma(1)}) = 0$ for all $\sigma \in S_{k+1}$. In this case, (31.7) is trivially true.

Case 2. At least two of X_1, \ldots, X_{k+1} are vertical.

By the skew-symmetry of the arguments, we may assume that $X_1 = \underline{A_1}$ and $X_2 = \underline{A_2}$ are vertical. By Problem 27.1, $[X_1, X_2] = [A_1, A_2]$ is also vertical.

The left-hand side of (31.7) is zero because $hX_1 = 0$. By the global formula for the exterior derivative [21, Th. 20.14, p. 233],

$$\mathbf{I} = \sum_{i=1}^{k+1} (-1)^{i-1} X_i \varphi(\dots, \widehat{X}_i, \dots) + \sum_{1 \le i < j \le k+1} (-1)^{i+j} \varphi([X_i, X_j], \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots).$$

In this expression every term in the first sum is zero because φ is horizontal and at least one of its arguments is vertical. In the second sum at least one of the arguments of φ is X_1 , X_2 , or $[X_1, X_2]$, all of which are vertical. Therefore, every term in the second sum in I is also zero.

As for II in (31.7), in every term at least one of the arguments of φ is vertical, so II = 0.

Case 3. The first vector field $X_1 = \underline{A}$ is vertical; the rest X_2, \ldots, X_{k+1} are horizontal and right-invariant.

The left-hand side of (31.7) is clearly zero because $hX_1 = 0$.

On the right-hand side,

$$I = (d\varphi)(X_1, \dots, X_{k+1})$$

= $\sum (-1)^{i+1} X_i \varphi(X_1, \dots, \widehat{X}_i, \dots, X_{k+1})$
+ $\sum (-1)^{i+j} \varphi([X_i, X_j], X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, X_{k+1}).$

Because φ is horizontal and X_1 is vertical, the only nonzero term in the first sum is

$$X_1\varphi(X_2,\ldots,X_{k+1})=\underline{A}\varphi(X_2,\ldots,X_{k+1})$$

and the only nonzero terms in the second sum are

$$\sum_{j=2}^{k+1} (-1)^{1+j} \varphi([X_1, X_j], \widehat{X}_1, X_2, \dots, \widehat{X}_j, \dots, X_{k+1}).$$

Since the X_j , j = 2, ..., k+1, are right-invariant horizontal vector fields, by Lemma 28.7,

$$[X_1, X_j] = [\underline{A}, X_j] = 0.$$

Therefore,

$$\mathbf{I} = \underline{A} \boldsymbol{\varphi}(X_2, \ldots, X_{k+1}).$$

If $\sigma(i) = 1$ for any $i \ge 2$, then

$$\varphi(X_{\sigma(2)},\ldots,X_{\sigma(k+1)})=0.$$

It follows that the nonzero terms in II all satisfy $\sigma(1) = 1$ and

$$II = \frac{1}{k!} \sum_{\substack{\sigma \in S_{k+1} \\ \sigma(1)=1}} \operatorname{sgn}(\sigma) \rho_*(\omega(X_1)) \varphi(X_{\sigma(2)}, \dots, X_{\sigma(k+1)})$$
$$= \frac{1}{k!} \sum_{\substack{\sigma \in S_{k+1} \\ \sigma(1)=1}} \operatorname{sgn}(\sigma) \rho_*(A) \varphi(X_{\sigma(2)}, \dots, X_{\sigma(k+1)})$$
$$= \rho_*(A) \varphi(X_2, \dots, X_{k+1}) \qquad (\text{because } \varphi \text{ is alternating}).$$

Denote by *f* the function $\varphi(X_2, ..., X_{k+1})$ on *P*. For $p \in P$, to calculate $\underline{A}_p f$, choose a curve c(t) in *G* with initial point c(0) = e and initial vector c'(0) = A, for example, $c(t) = \exp(tA)$. Then with $j_p: G \to P$ being the map $j_p(g) = p \cdot g$,

$$\underline{A}_{p}f = j_{p*}(A)f = j_{p*}(c'(0))f = j_{p*}\left(c_*\left(\frac{d}{dt}\Big|_{t=0}\right)\right)f$$
$$= (j_p \circ c)_*\left(\left.\frac{d}{dt}\right|_{t=0}\right)f = \left.\frac{d}{dt}\right|_{t=0}(f \circ j_p \circ c).$$

By the right-invariance of the horizontal vector fields X_2, \ldots, X_{k+1} ,

$$(f \circ j_{p} \circ c)(t) = f(pc(t))$$

= $\varphi_{pc(t)}(X_{2,pc(t)}, \dots, X_{k+1,pc(t)})$
= $\varphi_{pc(t)}(r_{c(t)*}X_{2,p}, \dots, r_{c(t)*}X_{k+1,p})$
= $r_{c(t)}^{*}\varphi_{pc(t)}(X_{2,p}, \dots, X_{k+1,p})$
= $\rho(c(t)^{-1})\varphi_{p}(X_{2,p}, \dots, X_{k+1,p})$ (right-equivariance of φ)
= $\rho(c(t)^{-1})f(p)$.

Differentiating this expression with respect to t and using the fact that the differential of the inverse is the negative [21, Problem 8.8(b)], we have

$$\underline{A}_p f = (f \circ j_p \circ c)'(0) = -\rho_*(c'(0))f(p) = -\rho_*(A)f(p).$$

So the right-hand side of (31.7) is

$$\mathbf{I} + \mathbf{II} = \underline{A}f + \boldsymbol{\rho}_*(A)f = -\boldsymbol{\rho}_*(A)f + \boldsymbol{\rho}_*(A)f = 0.$$

If *V* is the Lie algebra \mathfrak{g} of a Lie group *G* and ρ is the adjoint representation of *G*, then $\omega \cdot \varphi = [\omega, \varphi]$. In this case, for any tensorial *k*-form $\varphi \in \Omega^k_{Ad}(P, \mathfrak{g})$,

$$D\varphi = d\varphi + [\omega, \varphi].$$

Although the covariant derivative is defined for any V-valued form on P, Theorem 31.19 is true only for tensorial forms. Since the connection form ω is not tensorial, Theorem 31.19 cannot be applied to ω . In fact, by the definition of the curvature form,

$$\Omega = d\omega + \frac{1}{2}[\omega, \omega].$$

By Theorem 30.4, $\Omega = (d\omega)^h = D\omega$. Combining these two expressions for the curvature, one obtains

$$D\omega = d\omega + \frac{1}{2}[\omega, \omega].$$

The factor of 1/2 shows that Theorem 31.19 is not true when applied to ω .

Since the curvature form Ω on a principal bundle *P* is tensorial of type Ad, Theorem 31.19 applies and the second Bianchi identity (Theorem 30.4) may be restated as

$$D\Omega = d\Omega + [\omega, \Omega] = 0. \tag{31.8}$$

Problems

Unless otherwise specified, in the following problems *G* is a Lie group with Lie algebra \mathfrak{g} , $\pi: P \to M$ a principal *G*-bundle, $\rho: G \to \operatorname{GL}(V)$ a finite-dimensional representation of *G*, and $E = P \times_{\mathfrak{g}} V$ the associated bundle.

31.1. Transition functions of an associated bundle

Show that if $\{(U_{\alpha}, \phi_{\alpha})\}$ is a trivialization for *P* with transition functions $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$, then there is a trivialization $\{(U_{\alpha}, \psi_{\alpha})\}$ for *E* with transition functions $\rho \circ g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to GL(V)$.

31.2. Vector bundle structure on an associated bundle

Show that the operations (31.2) on $E = P \times_{\rho} V$ are well defined and make the associated bundle $\beta : E \to M$ into a vector bundle.

31.3. Associated bundle of a frame bundle

Let $E \to M$ be a vector bundle of rank r and $Fr(E) \to M$ its frame bundle. Show that the vector bundle associated to Fr(E) via the identity representation $\rho : GL(r, \mathbb{R}) \to GL(r, \mathbb{R})$ is isomorphic to E.

31.4. Tensorial forms

Prove that if $\psi \in \Omega^k(M, P \times_{\rho} V)$, then $\psi^{\sharp} \in \Omega^k(P, V)$ is right-equivariant with respect to ρ .

31.5. Tensorial forms

For $\varphi \in \Omega^k_{\rho}(P, V)$, prove that $\varphi^{\flat \sharp} = \varphi$.

§32 Characteristic Classes of Principal Bundles

To a real vector bundle $E \to M$ of rank r, one can associate its frame bundle $Fr(E) \to M$, a principal $GL(r, \mathbb{R})$ -bundle. Similarly, to a complex vector bundle of rank r, one can associate its frame bundle, a principal $GL(r, \mathbb{C})$ -bundle and to an oriented real vector bundle of rank r, one can associate its oriented frame bundle, a principal $GL^+(r, \mathbb{R})$ -bundle, where $GL^+(r, \mathbb{R})$ is the group of all $r \times r$ matrices of positive determinant. The Pontrjagin classes of a real vector bundle, the Chern classes of a complex vector bundle, and the Euler class of an oriented real vector bundle for $G = GL(r, \mathbb{R})$, $GL(r, \mathbb{C})$, and $GL^+(r, \mathbb{R})$, respectively.

In this section we will generalize the construction of characteristic classes to principal G-bundles for any Lie group G. These are some of the most important diffeomorphism invariants of a principal bundle.

32.1 Invariant Polynomials on a Lie Algebra

Let *V* be a vector space of dimension *n* and V^{\vee} its dual space. An element of $\text{Sym}^k(V^{\vee})$ is called a *polynomial* of degree *k* on *V*. Relative to a basis e_1, \ldots, e_n for *V* and corresponding dual basis $\alpha^1, \ldots, \alpha^n$ for V^{\vee} , a function $f: V \to \mathbb{R}$ is a polynomial of degree *k* if and only if it is expressible as a sum of monomials of degree *k* in $\alpha^1, \ldots, \alpha^n$:

$$f = \sum a_I \alpha^{i_1} \cdots \alpha^{i_k}. \tag{32.1}$$

For example, if $V = \mathbb{R}^{n \times n}$ is the vector space of all $n \times n$ matrices, then trX is a polynomial of degree 1 on V and detX is a polynomial of degree n on V.

Suppose now that \mathfrak{g} is the Lie algebra of a Lie group *G*. A polynomial $f : \mathfrak{g} \to \mathbb{R}$ is said to be $\operatorname{Ad}(G)$ -*invariant* if for all $g \in G$ and $X \in \mathfrak{g}$,

$$f((\operatorname{Ad} g)X) = f(X)$$

For example, if *G* is the general linear group $GL(n, \mathbb{R})$, then $(\operatorname{Ad} g)X = gXg^{-1}$ and tr*X* and det*X* are Ad*G*-invariant polynomials on the Lie algebra $\mathfrak{gl}(n, \mathbb{R})$.

32.2 The Chern–Weil Homomorphism

Let *G* be a Lie group with Lie algebra $\mathfrak{g}, P \to M$ a principal *G*-bundle, ω an Ehresmann connection on *P*, and Ω the curvature form of ω . Fix a basis e_1, \ldots, e_n for \mathfrak{g} and dual basis $\alpha^1, \ldots, \alpha^n$ for \mathfrak{g}^{\vee} . Then the curvature form Ω is a linear combination

$$\Omega = \sum \Omega^i e_i,$$

where the coefficients Ω^i are real-valued 2-forms on *P*. If $f : \mathfrak{g} \to \mathbb{R}$ is the polynomial $\sum a_I \alpha^{i_1} \cdots \alpha^{i_k}$, we define $f(\Omega)$ to be the 2*k*-form

288 §32 Characteristic Classes of Principal Bundles

$$f(\Omega) = \sum a_I \Omega^{i_1} \wedge \cdots \wedge \Omega^{i_k}$$

on *P*. Although defined in terms of a basis for \mathfrak{g} , the 2*k*-form $f(\Omega)$ is independent of the choice of a basis (Problem 32.2).

Recall that the *covariant derivative* $D\varphi$ of a *k*-form φ on a principal bundle *P* is given by

$$(D\boldsymbol{\varphi})_p(v_1,\ldots,v_k)=(d\boldsymbol{\varphi})_p(hv_1,\ldots,hv_k),$$

where $v_i \in T_p P$ and hv_i is the horizontal component of v_i .

Lemma 32.1. Let $\pi: P \to M$ be a principal bundle. If φ is a basic form on P, then $d\varphi = D\varphi$.

Proof. A tangent vector $X_p \in T_p P$ decomposes into the sum of its vertical and horizontal components:

$$X_p = vX_p + hX_p.$$

Here $h: T_pP \to T_pP$ is the map that takes a tangent vector to its horizontal component. Since $\pi_*X_p = \pi_*hX_p$ for all $X_p \in T_pP$, we have

$$\pi_* = \pi_* \circ h$$

Suppose $\varphi = \pi^* \tau$ for $\tau \in \Omega^k(M)$. Then

$D \varphi = (d \varphi) \circ h$	(definition of D)	
$=(d\pi^* au)\circ h$	$(\phi \text{ is basic})$	
$=(\pi^*d au)\circ h$	([21, Prop. 19.5])	
$= d au \circ \pi_* \circ h$	(definition of π^*)	
$= d au \circ \pi_*$	$(\pi_* \circ h = \pi_*)$	
$=\pi^{*}d au$	(definition of π^*)	
$= d\pi^* au$	([21, Prop. 19.5])	
$= d \varphi$	$(\boldsymbol{\varphi} = \boldsymbol{\pi}^* \boldsymbol{\tau}).$	

The Chern–Weil homomorphism is based on the following theorem. As before, G is a Lie group with Lie algebra \mathfrak{g} .

Theorem 32.2. Let Ω be the curvature of a connection ω on a principal *G*-bundle $\pi: P \to M$, and *f* an Ad(*G*)-invariant polynomial of degree *k* on \mathfrak{g} . Then

- (i) $f(\Omega)$ is a basic form on P, i.e., there exists a 2k-form Λ on M such that $f(\Omega) = \pi^* \Lambda$.
- (ii) Λ is a closed form.
- (iii) The cohomology class $[\Lambda]$ is independent of the connection.

Proof. (i) Since the curvature Ω is horizontal, so are its components Ω^i and therefore so is $f(\Omega) = \sum a_I \Omega^{i_1} \wedge \cdots \wedge \Omega^{i_k}$.

To check the *G*-invariance of $f(\Omega)$, let $g \in G$. Then

$$r_g^*(f(\Omega)) = r_g^*(\sum a_I \Omega^{i_1} \wedge \dots \wedge \Omega^{i_k})$$
$$= \sum a_I r_g^*(\Omega^{i_1}) \wedge \dots \wedge r_g^*(\Omega^{i_k}).$$

Since the curvature form Ω is right-equivariant,

$$r_g^*\Omega = (\operatorname{Ad} g^{-1})\Omega$$

or

$$r_g^*(\sum \Omega^i e_i) = \sum \left((\operatorname{Ad} g^{-1}) \Omega \right)^i e_i,$$

so that

$$r_g^*(\Omega^i) = ((\operatorname{Ad} g^{-1})\Omega)^i.$$

Thus,

$$r_g^*(f(\Omega)) = \sum a_I ((\operatorname{Ad} g^{-1})\Omega)^{i_1} \wedge \dots \wedge ((\operatorname{Ad} g^{-1})\Omega)^{i_k}$$

= $f((\operatorname{Ad} g^{-1})\Omega)$
= $f(\Omega)$ (by the Ad *G*-invariance of *f*).

Since $f(\Omega)$ is horizontal and *G*-invariant, by Theorem 31.12, it is basic.

(ii) Since $\pi_*: T_p P \to T_{\pi(p)} M$ is surjective, $\pi^*: \Omega^*(M) \to \Omega^*(P)$ is injective. Therefore, to show that $d\Lambda = 0$, it suffices to show that

$$\pi^* d\Lambda = d\pi^* \Lambda = df(\Omega) = 0.$$

If $f = \sum a_I \alpha^{i_1} \cdots \alpha^{i_k}$, then

$$f(\mathbf{\Omega}) = \sum a_I \mathbf{\Omega}^{i_1} \wedge \cdots \wedge \mathbf{\Omega}^{i_k}.$$

In this expression, each a_I is a constant and therefore by Lemma 32.1

$$Da_I = da_I = 0.$$

By the second Bianchi identity (31.8), $D\Omega = 0$. Therefore, $D\Omega^i = 0$ for each *i*. Since the Ω^i are right-equivariant of type Ad and horizontal, they are tensorial forms. By Lemma 32.1 and because *D* is an antiderivation on tensorial forms (Proposition 31.16)

$$d(f(\Omega)) = D(f(\Omega)) = D(\sum a_I \Omega^{i_1} \wedge \dots \wedge \Omega^{i_k})$$

= $\sum_I \sum_j a_I \Omega^{i_1} \wedge \dots \wedge D\Omega^{i_j} \wedge \dots \wedge \Omega^{i_{2k}}$
= 0.

(iii) Let *I* be an open interval containing the closed interval [0,1]. Then $P \times I$ is a principal *G*-bundle over $M \times I$. Denote by ρ the projection $P \times I \rightarrow P$ to the first factor. If ω_0 and ω_1 are two connections on *P*, then

$$\tilde{\omega} = (1-t)\rho^*\omega_0 + t\rho^*\omega_1 \tag{32.2}$$

is a connection on $P \times I$ (Check the details). Moreover, if $i_t : P \to P \times I$ is the inclusion $p \mapsto (p,t)$, then $i_0^* \tilde{\omega} = \omega_0$ and $i_1^* \tilde{\omega} = \omega_1$. Let

$$\tilde{\Omega} = d\tilde{\omega} + \frac{1}{2}[\tilde{\omega}, \tilde{\omega}]$$

be the curvature of the connection $\tilde{\omega}$. It pulls back under i_0 to

$$egin{aligned} &i_0^* ilde{\Omega} = d \iota_0^* ilde{\omega} + rac{1}{2} i_0^* [ilde{\omega}, ilde{\omega}] \ &= d \omega_0 + rac{1}{2} [i_0^* ilde{\omega}, i_0^* ilde{\omega}] \ &= d \omega_0 + rac{1}{2} [\omega_0, \omega_0] \ &= \Omega_0, \end{aligned}$$

the curvature of the connection ω_0 . Similarly, $i_1^* \tilde{\Omega} = \Omega_1$, the curvature of the connection ω_1 .

For any Ad(G)-invariant polynomial

$$f=\sum a_I\alpha^{i_1}\cdots\alpha^{i_k}$$

of degree k on \mathfrak{g} ,

$$i_0^* f(\tilde{\Omega}) = i_0^* \sum a_I \tilde{\Omega}^{i_1} \wedge \dots \wedge \tilde{\Omega}^{i_k}$$

= $\sum a_I \Omega_0^{i_1} \wedge \dots \wedge \Omega_0^{i_k}$
= $f(\Omega_0)$

and

$$i_1^* f(\tilde{\Omega}) = f(\Omega_1).$$

Note that i_0 and $i_1: P \to P \times I$ are homotopic through the homotopy i_t . By the homotopy axiom of de Rham cohomology, the cohomology classes $[i_0^* f(\tilde{\Omega})]$ and $[i_1^* f(\tilde{\Omega})]$ are equal. Thus, $[f(\Omega_0)] = [f(\Omega_1)]$, or

$$\pi^*[\Lambda_0] = \pi^*[\Lambda_1].$$

By the injectivity of π^* , $[\Lambda_0] = [\Lambda_1]$, so the cohomology class of Λ is independent of the connection.

Let $\pi: P \to M$ be a principal *G*-bundle with curvature form Ω . To every Ad(*G*)invariant polynomial on \mathfrak{g} , one can associate the cohomology class $[\Lambda] \in H^*(M)$ such that $f(\Omega) = \pi^* \Lambda$. The cohomology class $[\Lambda]$ is called the *characteristic class* of *P* associated to *f*. Denote by Inv(\mathfrak{g}) the algebra of all Ad(*G*)-invariant polynomials on \mathfrak{g} . The map

w: Inv(
$$\mathfrak{g}$$
) $\to H^*(M)$
 $f \mapsto [\Lambda]$, where $f(\Omega) = \pi^* \Lambda$, (32.3)

that maps each Ad(G)-invariant polynomial to its characteristic class is called the *Chern–Weil homomorphism*.

Example 32.3. If the Lie group *G* is $GL(r, \mathbb{C})$, then by Theorem B.10 the ring of Ad(G)-invariant polynomials on $\mathfrak{gl}(r, \mathbb{C})$ is generated by the coefficients $f_k(X)$ of the characteristic polynomial

$$\det(\lambda I + X) = \sum_{k=0}^{r} f_k(X) \lambda^{r-k}.$$

The characteristic classes associated to $f_1(X), \ldots, f_k(X)$ are the *Chern classes* of a principal $GL(r, \mathbb{C})$ -bundle. These Chern classes generalize the Chern classes of the frame bundle Fr(E) of a complex vector bundle *E* of rank *r*.

Example 32.4. If the Lie group *G* is $GL(r, \mathbb{R})$, then by Theorem B.13 the ring of Ad(G)-invariant polynomials on $\mathfrak{gl}(r, \mathbb{R})$ is also generated by the coefficients $f_k(X)$ of the characteristic polynomial

$$\det(\lambda I + X) = \sum_{k=0}^{r} f_k(X)\lambda^{r-k}.$$

The characteristic classes associated to $f_1(X), \ldots, f_k(X)$ generalize the Pontrjagin classes of the frame bundle Fr(E) of a real vector bundle *E* of rank *r*. (For a real frame bundle the coefficients $f_k(\Omega)$ vanish for *k* odd.)

Problems

32.1. Polynomials on a vector space

Let *V* be a vector space with bases e_1, \ldots, e_n and u_1, \ldots, u_n . Prove that if a function $f: V \to \mathbb{R}$ is a polynomial of degree *k* with respect to the basis e_1, \ldots, e_n , then it is a polynomial of degree *k* with respect to the basis u_1, \ldots, u_n . Thus, the notion of a polynomial of degree *k* on a vector space *V* is independent of the choice of a basis.

32.2. Chern–Weil forms

In this problem we keep the notations of this section. Let e_1, \ldots, e_n and u_1, \ldots, u_n be two bases for the Lie algebra \mathfrak{g} with dual bases $\alpha^1, \ldots, \alpha^n$ and β^1, \ldots, β^n , respectively. Suppose

$$\Omega = \sum \Omega^i e_i = \sum \Psi^j u_j$$

and

$$f = \sum a_I \alpha^{i_1} \cdots \alpha^{i_k} = \sum b_I \beta^{i_1} \cdots \beta^{i_k}$$

Prove that

$$\sum a_I \Omega^{i_1} \wedge \cdots \wedge \Omega^{i_k} = \sum b_I \Psi^{i_1} \wedge \cdots \wedge \Psi^{i_k}$$

This shows that the definition of $f(\Omega)$ is independent of the choice of basis for g.

32.3. Connection on $P \times I$

Show that the 1-form $\tilde{\omega}$ in (32.2) is a connection on $P \times I$.

32.4. Chern–Weil homomorphism

Show that the map w: Inv(\mathfrak{g}) $\rightarrow H^*(M)$ in (32.3) is an algebra homomorphism.