
Chapter 6

Principal Bundles and Characteristic Classes

A principal bundle is a locally trivial family of groups. It turns out that the theory of
connections on a vector bundle can be subsumed under the theory of connections on
a principal bundle. The latter, moreover, has the advantage that its connection forms
are basis-free.

In this chapter we will first give several equivalent constructions of a connection
on a principal bundle, and then generalize the notion curvature to a principal bun-
dle, paving the way to a generalization of characteristic classes to principal bundles.
Along the way, we also generalize covariant derivatives to principal bundles.

§27 Principal Bundles

We saw in Section 11 that a connection ∇ on a vector bundle E over a manifold M
can be represented by a matrix of 1-forms over a framed open set. For any frame
e = [e1 · · · er] for E over an open set U , the connection matrix ωe relative to e is
defined by

∇X e j = ∑
i
(ωe)

i
j(X)ei

for all C∞ vector fields X over U . If ē= [ē1 · · · ēr] = ea is another frame for E over U ,
where a : U → GL(r,R) is a matrix of C∞ transition functions, then by Theorem 22.1
the connection matrix ωe transforms according to the rule

ωē = a−1ωea+a−1 da.

Associated to a vector bundle is an object called its frame bundle π : Fr(E)→ M;
the total space Fr(E) of the frame bundle is the set of all ordered bases in the fibers of
the vector bundle E → M, with a suitable topology and manifold structure. A section
of the frame bundle π : Fr(E)→ M over an open set U ⊂ M is a map s : U → Fr(E)
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242 §27 Principal Bundles

such that π ◦ s = 1U , the identity map on U . From this point of view a frame
e = [e1 · · · er] over U is simply a section of the frame bundle Fr(E) over U .

Suppose ∇ is a connection on the vector bundle E → M. Miraculously, there
exists a matrix-valued 1-form ω on the frame bundle Fr(E) such that for every frame
e over an open set U ⊂ M, the connection matrix ωe of ∇ is the pullback of ω by the
section e : U → Fr(E) (Theorem 29.10). This matrix-valued 1-form, called an Ehres-
mann connection on the frame bundle Fr(E), is determined uniquely by the connec-
tion on the vector bundle E and vice versa. It is an intrinsic object of which a con-
nection matrix ωe is but a local manifestation. The frame bundle of a vector bundle
is an example of a principal G-bundle for the group G = GL(r,R). The Ehresmann
connection on the frame bundle generalizes to a connection on an arbitrary principal
bundle.

Charles Ehresmann

(1905–1979)

This section collects together some general facts
about principal bundles.

27.1 Principal Bundles

Let E, M, and F be manifolds. We will denote an open
cover U of M either as {Uα} or more simply as an unin-
dexed set {U} whose general element is denoted by U .
A local trivialization with fiber F for a smooth surjection
π : E → M is an open cover U= {U} for M together with
a collection {φU : π−1(U) → U × F | U ∈ U} of fiber-
preserving diffeomorphisms φU : π−1(U)→U ×F:

π−1(U)
φU

π

U ×F

η

U.

where η is projection to the first factor. A fiber bundle with fiber F is a smooth
surjection π : E → M having a local trivialization with fiber F . We also say that it
is locally trivial with fiber F . The manifold E is the total space and the manifold M
the base space of the fiber bundle.

The fiber of a fiber bundle π : E →M over x∈M is the set Ex := π−1(x). Because
π is a submersion, by the regular level set theorem ([21], Th. 9.13, p. 96) each fiber
Ex is a regular submanifold of E. For x ∈U , define φU,x := φU |Ex : Ex → {x}×F to
be the restriction of the trivialization φU : π−1(U)→U ×F to the fiber Ex.

Proposition 27.1. Let π : E → M be a fiber bundle with fiber F. If φU : π−1(U)→
U ×F is a trivialization, then φU,x : Ex →{x}×F is a diffeomorphism.
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Proof. The map φU,x is smooth because it is the restriction of the smooth map φU to
a regular submanifold. It is bijective because φU is bijective and fiber-preserving. Its
inverse φ−1

U,x is the restriction of the smooth map φ−1
U : U ×F → π−1(U) to the fiber

{x}×F and is therefore also smooth. ��
A smooth right action of a Lie group G on a manifold M is a smooth map

μ : M×G → M,

denoted by x ·g := μ(x,g), such that for all x ∈ M and g,h ∈ G,

(i) x · e = x, where e is the identity element of G,
(ii) (x ·g) ·h = x · (gh).

We often omit the dot and write more simply xg for x ·g. If there is such a map μ , we
also say that G acts smoothly on M on the right. A left action is defined similarly.
The stabilizer of a point x ∈ M under an action of G is the subgroup

Stab(x) := {g ∈ G | x ·g = x}.
The orbit of x ∈ M is the set

Orbit(x) := xG := {x ·g ∈ M | g ∈ G}.
Denote by Stab(x)\G the set of right cosets of Stab(x) in G. By the orbit-stabilizer
theorem, for each x ∈ M the map: G → Orbit(x), g �→ x ·g induces a bijection of sets:

Stab(x)\G ←→ Orbit(x),

Stab(x)g ←→ x ·g.
The action of G on M is free if the stabilizer of every point x ∈ M is the trivial
subgroup {e}.

A manifold M together with a right action of a Lie group G on M is called a right
G-manifold or simply a G-manifold. A map f : N → M between right G-manifolds
is right G-equivariant if

f (x ·g) = f (x) ·g
for all (x,g) ∈ N ×G. Similarly, a map f : N → M between left G-manifolds is left
G-equivariant if

f (g · x) = g · f (x)

for all (g,x) ∈ G×N.
A left action can be turned into a right action and vice versa; for example, if G

acts on M on the left, then
x ·g = g−1 · x

is a right action of G on M. Thus, if N is a right G-manifold and M is a left
G-manifold, we say a map f : N → M is G-equivariant if

f (x ·g) = f (x) ·g = g−1 · f (x) (27.1)

for all (x,g) ∈ N ×G.
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A smooth fiber bundle π : P → M with fiber G is a smooth principal G-bundle
if G acts smoothly and freely on P on the right and the fiber-preserving local
trivializations

φU : π−1(U)→U ×G

are G-equivariant, where G acts on U ×G on the right by

(x,h) ·g = (x,hg).

Example 27.2 (Product G-bundles). The simplest example of a principal G-bundle
over a manifold M is the product G-bundle η : M ×G → M. A trivialization is the
identity map on M×G.

Example 27.3 (Homogenous manifolds). If G is a Lie group and H is a closed sub-
group, then the quotient G/H can be given the structure of a manifold such that the
projection map π : G→G/H is a principal H-bundle. This is proven in [22, Th. 3.58,
p. 120].

Example 27.4 (Hopf bundle). The group S1 of unit complex numbers acts on the
complex vector space C

n+1 by left multiplication. This action induces an action of
S1 on the unit sphere S2n+1 in C

n+1. The complex projective space CPn may be
defined as the orbit space of S2n+1 by S1. The natural projection S2n+1 → CPn with
fiber S1 turn out to be a principal S1-bundle. When n = 1, S3 → CP1 with fiber S1 is
called the Hopf bundle.

Definition 27.5. Let πQ : Q → N and πP : P → M be principal G-bundles. A
morphism of principal G-bundles is a pair of maps ( f̄ : Q → P, f : N → M) such
that f̄ : Q → P is G-equivariant and the diagram

Q
f̄

πQ

P

πP

N
f

M

commutes.

Proposition 27.6. If π : P → M is a principal G-bundle, then the group G acts tran-
sitively on each fiber.

Proof. Since G acts transitively on {x}×G and the fiber diffeomorphism φU,x : Px →
{x}×G is G-equivariant, G must also act transitively on the fiber Px. ��
Lemma 27.7. For any group G, a right G-equivariant map f : G → G is necessarily
a left translation.

Proof. Suppose that for all x,g ∈ G,

f (xg) = f (x)g.
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Setting x = e, the identity element of G, we obtain

f (g) = f (e)g = � f (e)(g),

where � f (e) : G → G is left translation by f (e). ��
Suppose {Uα}α∈A is a local trivialization for a principal G-bundle π : P → M.

Whenever the intersection Uαβ :=Uα ∩Uβ is nonempty, there are two trivializations
on π−1(Uαβ ):

Uαβ ×G
φα←− π−1(Uαβ )

φβ−→Uαβ ×G.

Then φα ◦ φ−1
β : Uαβ ×G →Uαβ ×G is a fiber-preserving right G-equivariant map.

By Lemma 27.7, it is a left translation on each fiber. Thus,

(φα ◦ φ−1
β )(x,h) = (x,gαβ (x)h), (27.2)

where (x,h) ∈ Uαβ ×G and gαβ (x) ∈ G. Because φα ◦ φ−1
β is a C∞ function of x

and h, setting h = e, we see that gαβ (x) is a C∞ function of x. The C∞ functions
gαβ : Uαβ → G are called transition functions of the principal bundle π : P → M
relative to the trivializing open cover {Uα}α∈A. They satisfy the cocycle condition:
for all α,β ,γ ∈ A,

gαβ gβγ = gαγ if Uα ∩Uβ ∩Uγ �=∅.

From the cocycle condition, one can deduce other properties of the transition
functions.

Proposition 27.8. The transition functions gαβ of a principal bundle π : P → M rel-
ative to a trivializing open cover {Uα}α∈A satisfy the following properties: for all
α,β ∈ A,

(i) gαα = the constant map e,
(ii) gαβ = g−1

βα if Uα ∩Uβ �=∅.

Proof. (i) If α = β = γ , the cocycle condition gives

gαα gαα = gαα .

Hence, gαα = the constant map e.
(ii) if γ = α , the cocycle condition gives

gαβ gβα = gαα = e

or

gαβ = g−1
βα for Uα ∩Uβ �=∅. ��

In a principal G-bundle P→M, the group G acts on the right on the total space P,
but the transition functions gαβ in (27.2) are given by left translations by gαβ (x)∈G.
This phenomenon is a consequence of Lemma 27.7.
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27.2 The Frame Bundle of a Vector Bundle

For any real vector space V , let Fr(V ) be the set of all ordered bases in V . Suppose
V has dimension r. We will represent an ordered basis v1, . . . ,vr by a row vector
v = [v1 · · · vr], so that the general linear group GL(r,R) acts on Fr(V ) on the right
by matrix multiplication

v ·a = [v1 · · · vr][a
i
j]

=
[
∑via

i
1 · · · ∑via

i
r

]
.

Fix a point v ∈ Fr(V ). Since the action of GL(r,R) on Fr(V ) is clearly transitive and
free, i.e., Orbit(v) = Fr(V ) and Stab(v) = {I}, by the orbit-stabilizer theorem there
is a bijection

φv : GL(r,R) =
GL(r,R)
Stab(v)

←→ Orbit(v) = Fr(V ),

g ←→ vg.

Using the bijection φv, we put a manifold structure on Fr(V ) in such a way that φv

becomes a diffeomorphism.
If v′ is another element of Fr(V ), then v′ = va for some a ∈ GL(r,R) and

φva(g) = vag = φv(ag) = (φv ◦ �a)(g).

Since left multiplication �a : GL(r,R)→ GL(r,R) is a diffeomorphism, the manifold
structure on Fr(V ) defined by φv is the same as the one defined by φva. We call Fr(V )
with this manifold structure the frame manifold of the vector space V .

Remark 27.9. A linear isomorphism φ : V → W induces a C∞ diffeomorphism φ̃ :
Fr(V )→ Fr(W ) by

φ̃ [v1 · · · vr] = [φ(v1) · · · φ(vr)].

Define an action of GL(r,R) on Fr(Rr) by

g · [v1 · · · vr] = [gv1 · · · gvr].

Thus, if φ : Rr → R
r is given by left multiplication by g ∈ GL(r,R), then so is the

induced map φ̃ on the frame manifold Fr(Rr).

Example 27.10 (The frame bundle). Let η : E → M be a C∞ vector bundle of rank r.
We associate to the vector bundle E a C∞ principal GL(r,R)-bundle π : Fr(E)→ M
as follows. As a set the total space Fr(E) is defined to be the disjoint union

Fr(E) =
∐

x∈M

Fr(Ex).

There is a natural projection map π : Fr(E)→ M that maps Fr(Ex) to {x}.
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A local trivialization φα : E|Uα
∼→Uα ×R

r induces a bijection

φ̃α : Fr(E)|Uα
∼→Uα ×Fr(Rr),

[v1 · · · vr] ∈ Fr(Ex) �→ (x, [φα ,x(v1) · · · φα ,x(vr)]).

Via φ̃α one transfers the topology and manifold structure from Uα × Fr(Rr) to
Fr(E)|Uα . This gives Fr(E) a topology and a manifold structure such that
π : Fr(E)→ M is locally trivial with fiber Fr(Rr). As the frame manifold Fr(Rr)
is diffeomorphic to the general linear group GL(r,R), it is easy to check that
Fr(E) → M is a C∞ principal GL(r,R)-bundle. We call it the frame bundle of the
vector bundle E.

On a nonempty overlap Uαβ := Uα ∩Uβ , the transition function for the vector
bundle E is the C∞ function gαβ : Uαβ → GL(r,R) given by

φα ◦ φ−1
β : Uαβ ×R

r →Uαβ ×R
r,

(φα ◦ φ−1
β )(x,w) =

(
x,gαβ (x)w

)
.

Since the local trivialization for the frame bundle Fr(E) is induced from the trivializa-
tion {Uα ,φα} for E, the transition functions for Fr(E) are induced from the transition
functions {gαβ} for E. By Remark 27.9 the transition functions for the open cover
{Fr(E)|Uα} of Fr(E) are the same as the transition functions gαβ : Uαβ → GL(r,R)
for the vector bundle E, but now of course GL(r,R) acts on Fr(Rr) instead of on R

r.

27.3 Fundamental Vector Fields of a Right Action

Suppose G is a Lie group with Lie algebra g and G acts smoothly on a manifold P
on the right. To every element A ∈ g one can associate a vector field A on P called
the fundamental vector field on P associated to A: for p in P, define

Ap =
d
dt

∣∣∣∣
t=0

p · etA ∈ TpP.

To understand this equation, first fix a point p ∈ P. Then cp : t �→ p ·etA is a curve
in P with initial point p. By definition, the vector Ap is the initial vector of this curve.
Thus,

Ap = c′p(0) = cp∗
(

d
dt

∣∣∣∣
t=0

)
∈ TpP.

As a tangent vector at p is a derivation on germs of C∞ functions at p, in terms of a
C∞ function f at p,

Ap f = cp∗
(

d
dt

∣∣∣∣
t=0

)
f =

d
dt

∣∣∣∣
t=0

f ◦ cp =
d
dt

∣∣∣∣
t=0

f (p · etA).

Proposition 27.11. For each A ∈ g, the fundamental vector field A is C∞ on P.
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Proof. It suffices to show that for every C∞ function f on P, the function A f is also
C∞ on P. Let μ : P×G → P be the C∞ map defining the right action of G on P. For
any p in P,

Ap f =
d
dt

∣∣∣∣
t=0

f (p · etA) =
d
dt

∣∣∣∣
t=0

( f ◦ μ)(p,etA).

Since etA is a C∞ function of t, and f and μ are both C∞, the derivative

d
dt
( f ◦ μ)(p,etA)

is C∞ in p and in t. Therefore, Ap f is a C∞ function of p. ��
Recall that X(P) denotes the Lie algebra of C∞ vector fields on the manifold P.

The fundamental vector field construction gives rise to a map

σ : g→ X(P), σ(A) := A.

For p in P, define jp : G → P by jp(g) = p ·g. Computing the differential jp∗ using
the curve c(t) = etA, we obtain the expression

jp∗(A) =
d
dt

∣∣∣∣
t=0

jp(e
tA) =

d
dt

∣∣∣∣
t=0

p · etA = Ap. (27.3)

This alternate description of fundamental vector fields, Ap = jp∗(A), shows that the
map σ : g → X(P) is linear over R. In fact, σ is a Lie algebra homomorphism
(Problem 27.1).

Example 27.12. Consider the action of a Lie group G on itself by right multiplication.
For p ∈ G, the map jp : G → G, jp(g) = p · g = �p(g) is simply left multiplication
by p. By (27.3), for A ∈ g, Ap = �p∗(A). Thus, for the action of G on G by right
multiplication, the fundamental vector field A on G is precisely the left-invariant
vector field generated by A. In this sense the fundamental vector field of a right
action is a generalization of a left-invariant vector field on a Lie group.

For g in a Lie group G, let cg : G → G be conjugation by g: cg(x) = gxg−1.
The adjoint representation is defined to be the differential of the conjugation map:
Ad(g) = (cg)∗ : g→ g.

Proposition 27.13. Suppose a Lie group G acts smoothly on a manifold P on the
right. Let rg : P → P be the right translation rg(p) = p ·g. For A ∈ g the fundamental
vector field A on P satisfies the following equivariance property:

rg∗A = (Adg−1)A.

Proof. We need to show that for every p in P, rg∗(Ap) = (Adg−1)A
pg

. For x in G,

(rg ◦ jp)(x) = pxg = pgg−1xg = jpg(g
−1xg) = ( jpg ◦ cg−1)(x).

By the chain rule,

rg∗(Ap) = rg∗ jp∗(A) = jpg∗(cg−1)∗(A) = jpg∗
(
(Adg−1)A

)
= (Adg−1)A

pg
. ��
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27.4 Integral Curves of a Fundamental Vector Field

In this section suppose a Lie group G with Lie algebra g := Lie(G) acts smoothly on
the right on a manifold P.

Proposition 27.14. For p ∈ P and A ∈ g, the curve cp(t) = p · etA, t ∈ R, is the
integral curve of the fundamental vector field A through p.

Proof. We need to show that c′p(t) = Acp(t) for all t ∈R and all p∈ P. It is essentially
a sequence of definitions:

c′p(t) =
d
ds

∣∣∣∣
s=0

cp(t + s) =
d
ds

∣∣∣∣
s=0

petAesA = ApetA = Acp(t). ��

Proposition 27.15. The fundamental vector field A on a manifold P vanishes at a
point p in P if and only if A is in the Lie algebra of Stab(p).

Proof. (⇐) If A ∈ Lie
(

Stab(p)
)
, then etA ∈ Stab(p), so

Ap =
d
dt

∣∣∣∣
t=0

p · etA =
d
dt

∣∣∣∣
t=0

p = 0.

(⇒) Suppose Ap = 0. Then the constant map γ(t) = p is an integral curve of A
through p, since

γ ′(t) = 0 = Ap = Aγ(t).

On the other hand, by Proposition 27.14, cp(t) = p ·etA is also an integral curve of A
through p. By the uniqueness of the integral curve through a point, cp(t) = γ(t)
or p · etA = p for all t ∈ R. This implies that etA ∈ Stab(p) and therefore A ∈
Lie

(
Stab(p)

)
. ��

Corollary 27.16. For a right action of a Lie group G on a manifold P, let p ∈ P and
jp : G → P be the map jp(g) = p ·g. Then the kernel ker jp∗ of the differential of jp

at the identity

jp∗ = ( jp)∗,e : g→ TpP

is Lie
(

Stab(p)
)
.

Proof. For A ∈ g, we have Ap = jp∗(A) by (27.3). Thus,

A ∈ ker jp∗ ⇐⇒ jp∗(A) = 0

⇐⇒ Ap = 0

⇐⇒ A ∈ Lie
(

Stab(p)
)

(by Proposition 27.15). ��
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27.5 Vertical Subbundle of the Tangent Bundle T P

Throughout this section, G is a Lie group with Lie algebra g and π : P → M is a
principal G-bundle. On the total space P there is a natural notion of vertical tangent
vectors. We will show that the vertical tangent vectors on P form a trivial subbundle
of the tangent bundle T P.

By the local triviality of a principal bundle, at every point p ∈ P the differential
π∗,p : TpP → Tπ(p)M of the projection π is surjective. The vertical tangent subspace
Vp ⊂ TpP is defined to be kerπ∗,p. Hence, there is a short exact sequence of vector
spaces

0 → Vp −→ TpP
π∗,p−−→ Tπ(p)M → 0, (27.4)

and
dimVp = dimTpP−dimTπ(p)M = dimG.

An element of Vp is called a vertical tangent vector at p.

Proposition 27.17. For any A ∈ g, the fundamental vector field A is vertical at every
point p ∈ P.

Proof. With jp : G → P defined as usual by jp(g) = p ·g,

(π ◦ jp)(g) = π(p ·g) = π(p).

Since Ap = jp∗(A) by (27.3), and π ◦ jp is a constant map,

π∗,p(Ap) = (π∗,p ◦ jp∗)(A) = (π ◦ jp)∗(A) = 0. ��

Thus, in case P is a principal G-bundle, we can refine Corollary 27.16 to show
that jp∗ maps g into the vertical tangent space:

( jp)∗,e : g→ Vp ⊂ TpP.

In fact, this is an isomorphism.

Proposition 27.18. For p ∈ P, the differential at e of the map jp : G → P is an iso-

morphism of g onto the vertical tangent space: jp∗ = ( jp)∗,e : g ∼→ Vp.

Proof. By Corollary 27.16, ker jp∗ = Lie
(

Stab(p)
)
. Since G acts freely on P, the

stabilizer of any point p ∈ P is the trivial subgroup {e}. Thus, ker jp∗ = 0 and jp∗ is
injective. By Proposition 27.17, the image jp∗ lies in the vertical tangent space Vp.
Since g and Vp have the same dimension, the injective linear map jp∗ : g→ Vp has
to be an isomorphism. ��

Corollary 27.19. The vertical tangent vectors at a point of a principal bundle are
precisely the fundamental vectors.
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Let B1, . . . ,B� be a basis for the Lie algebra g. By the proposition, the funda-
mental vector fields B1, . . . ,B� on P form a basis of Vp at every point p ∈ P. Hence,
they span a trivial subbundle V :=

∐
p∈PVp of the tangent bundle T P. We call V the

vertical subbundle of T P.
As we learned in Section 20.5, the differential π∗ : T P → T M of a C∞ map

π : P → M induces a bundle map π̃∗ : T P → π∗T M over P, given by

TP π̃∗ π∗TM

P

TpP Xp (p,π∗,pXp).

The map π̃∗ is surjective because it sends the fiber TpP onto the fiber (π∗T M)p �
Tπ(p)M. Its kernel is precisely the vertical subbundle V by (27.4). Hence, V fits into
a short exact sequence of vector bundles over P:

0 → V−→ T P
π̃∗−→ π∗T M → 0. (27.5)

27.6 Horizontal Distributions on a Principal Bundle

On the total space P of a smooth principal bundle π : P → M, there is a well-defined
vertical subbundle V of the tangent bundle T P. We call a subbundle H of T P a
horizontal distribution on P if T P =V⊕H as vector bundles; in other words, TpP =
Vp+Hp and Vp∩Hp = 0 for every p∈ P. In general, there is no canonically defined
horizontal distribution on a principal bundle.

A splitting of a short exact sequence of vector bundles 0 → A
i→ B

j→C → 0 over
a manifold P is a bundle map k : C → B such that j ◦ k = 1C, the identity bundle map
on C.

Proposition 27.20. Let

0 → A
i→ B

j→C → 0 (27.6)

be a short exact sequence of vector bundles over a manifold P. Then there is a
one-to-one correspondence

{subbundles H ⊂ B | B = i(A)⊕H}←→ {splittings k : C → B of (27.6)}.
Proof. If H is a subbundle of B such that B = i(A)⊕H, then there are bundle iso-
morphisms H � B/i(A)�C. Hence, C maps isomorphically onto H in B. This gives
a splitting k : C → B.

If k : C → B is a splitting, let H := k(C), which is a subbundle of B. Moreover, if
i(a) = k(c) for some a ∈ A and c ∈C, then

0 = ji(a) = jk(c) = c.

Hence, i(A)∩ k(C) = 0.
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Finally, to show that B = i(A)+ k(C), let b ∈ B. Then

j
(
b− k j(b)

)
= j(b)− j(b) = 0.

By the exactness of (27.6), b− k j(b) = i(a) for some a ∈ A. Thus,

b = i(a)+ k j(b) ∈ i(A)+ k(C).

This proves that B = i(A)+ k(C) and therefore B = i(A)⊕ k(C). ��
As we just saw in the preceding section, for every principal bundle π : P → M

the vertical subbundle V fits into a short exact sequence (27.5) of vector bundles over
P. By Proposition 27.20, there is a one-to-one correspondence between horizontal
distributions on P and splittings of the sequence (27.5).

Problems

27.1. Lie bracket of fundamental vector fields
Let G be a Lie group with Lie algebra g and let P be a manifold on which G acts on the right.
Prove that for A,B ∈ g,

[A,B] = [A,B].

Hence, the map σ : g→ X(P), A �→ A is a Lie algebra homomorphism.

27.2.∗ Short exact sequence of vector spaces

Prove that if 0 → A
i→ B

j→ C → 0 is a short exact sequence of finite-dimensional vector
spaces, then dimB = dimA+dimC.

27.3. Splitting of a short exact sequence

Suppose 0 → A
i→ B →C → 0 is a short exact sequence of vector bundles over a manifold P.

A retraction of i : A → B is a map r : B
j→ A such that r ◦ i = 1A. Show that i has a retraction

if and only if the sequence has a splitting.

27.4.∗ The differential of an action
Let μ : P×G → P be an action of a Lie group G on a manifold P. For g ∈ G, the tangent
space TgG may be identified with �g∗g, where �g : G → G is left multiplication by g ∈ G and
g = TeG is the Lie algebra of G. Hence, an element of the tangent space T(p,g)(P×G) is of
the form (Xp, �g∗A) for Xp ∈ TpP and A ∈ g. Prove that the differential

μ∗ = μ∗,(p,g) : T(p,g)(P×G)→ TpgP

is given by
μ∗(Xp, �g∗A) = rg∗(Xp)+Apg.

27.5. Fundamental vector field under a trivialization
Let φα : π−1Uα →Uα ×G

φα (p) =
(
π(p),gα (p)

)

be a trivialization of π−1Uga in a principal bundle P. Let A ∈ g, the Lie algebra of G and A
the fundamental vector field on P that it induces. Prove that

gα∗(Ap) = �gα (p)∗(A) ∈ Tgα (p)(G).
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27.6. Trivial principal bundle
Prove that a principal bundle π : P → M is trivial if and only if it has a section.

27.7. Pullback of a principal bundle to itself
Prove that if π : P → M is a principal bundle, then the pullback bundle π∗P → P is trivial.

27.8. Quotient space of a principal bundle
Let G be a Lie group and H a closed subgroup. Prove that if πP → M is a principal G-bundle,
then P → P/H is a principal H-subbundle.

27.9. Fundamental vector fields
Let N and M be G-manifolds with G acting on the right. If A ∈ g and f : N → M is
G-equivariant, then

f∗(AN,q) = AM, f (q).
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§28 Connections on a Principal Bundle

Let G be a Lie group with Lie algebra g. As we saw in the preceding section, on
a principal G-bundle P → M, the notion of a vertical tangent vector is well defined,
but not that of a horizontal tangent vector. A connection on a principal bundle is
essentially the choice of a horizontal complement to the vertical tangent bundle on P.
Alternatively, it can be given by a g-valued 1-form on P. In this section we will study
these two equivalent manifestations of a connection:

(i) a smooth right-invariant horizontal distribution on P,
(ii) a smooth G-equivariant g-valued 1-form ω on P such that on the fundamental

vector fields,
ω(A) = A for all A ∈ g. (28.1)

Under the identification of g with a vertical tangent space, condition (28.1) says that
ω restricts to the identity map on vertical vectors.

The correspondence between (i) and (ii) is easy to describe. Given a right-
invariant horizontal distribution H on P, we define a g-valued 1-form ω on P to
be, at each point p, the projection with kernel Hp from the tangent space to the
vertical space. Conversely, given a right-equivariant g-valued 1-form ω that is the
identity on the vertical space at each point p ∈ P, we define a horizontal distribution
H on P to be kerωp at each p ∈ P.

28.1 Connections on a Principal Bundle

Let G be a Lie group with Lie algebra g, and let π : P → M be a principal G-bundle.
A distribution on a manifold is a subbundle of the tangent bundle. Recall that a
distribution H on P is horizontal if it is complementary to the vertical subbundle V

of the tangent bundle T P: for all p in P,

TpP = Vp ⊕Hp.

Suppose H is a horizontal distribution on the total space P of a principal
G-bundle π : P → M. For p ∈ P, if jp : G → P is the map jp(g) = p ·g, then the ver-
tical tangent space Vp can be canonically identified with the Lie algebra g via the
isomorphism jp∗ : g → Vp (Proposition 27.18). Let v : TpP = Vp ⊕Hp → Vp be
the projection to the vertical tangent space with kernel Hp. For Yp ∈ TpP, v(Yp) is
called the vertical component of Yp. (Although the vertical subspace Vp is intrinsi-
cally defined, the notion of the vertical component of a tangent vector depends on
the choice of a horizontal complement Hp.) If ωp is the composite

ωp := j−1
p∗ ◦ v : TpP

v→ Vp
j−1
p∗→ g, (28.2)

then ω is a g-valued 1-form on P. In terms of ω , the vertical component of
Yp ∈ TpP is

v(Yp) = jp∗
(
ωp(Yp)

)
. (28.3)
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Theorem 28.1. If H is a smooth right-invariant horizontal distribution on the total
space P of a principal G-bundle π : P → M, then the g-valued 1-form ω on P defined
above satisfies the following three properties:

(i) for any A ∈ g and p ∈ P, we have ωp(Ap) = A;

(ii) (G-equivariance) for any g ∈ G, r∗gω = (Adg−1)ω;
(iii) ω is C∞.

Proof. (i) Since Ap is already vertical (Proposition 27.17), the projection v leaves it
invariant, so

ωp(Ap) = j−1
p∗
(
v(Ap)

)
= j−1

p∗ (Ap) = A.

(ii) For p ∈ P and Yp ∈ TpP, we need to show

ωpg(rg∗Yp) = (Adg−1)ωp(Yp).

Since both sides are R-linear in Yp and Yp is the sum of a vertical and a horizontal
vector, we may treat these two cases separately.

If Yp is vertical, then by Proposition 27.18, Yp = Ap for some A ∈ g. In this case

ωpg(rg∗Ap) = ωpg

(
(Adg−1)A

pg

)
(by Proposition 27.13)

= (Adg−1)A (by (i))

= (Adg−1)ωp(Ap) (by (i) again).

If Yp is horizontal, then by the right-invariance of the horizontal distribution H,
so is rg∗Yp. Hence,

ωpg(rg∗Yp) = 0 = (Adg−1)ωp(Yp).

(iii) Fix a point p ∈ P. We will show that ω is C∞ in a neighborhood of p. Let
B1, . . . ,B� be a basis for the Lie algebra g and B1, . . . ,B� the associated fundamental
vector fields on P. By Proposition 27.11, these vector fields are all C∞ on P. Since H
is a C∞ distribution on P, one can find a neighborhood W of p and C∞ horizontal vec-
tor fields X1, . . . ,Xn on W that span H at every point of W . Then B1, . . . ,B�,X1, . . . ,Xn

is a C∞ frame for the tangent bundle T P over W . Thus, any C∞ vector field X on W
can be written as a linear combination

X = ∑aiBi +∑b jXj

with C∞ coefficients ai,b j on W . By the definition of ω ,

ω(X) = ω
(
∑aiBi

)
= ∑aiBi.

This proves that ω is a C∞ 1-form on W . ��
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Note that in this theorem the proof of the smoothness of ω requires only that the
horizontal distribution H be smooth; it does not use the right-invariance of H.

Definition 28.2. An Ehresmann connection or simply a connection on a principal
G-bundle P → M is a g-valued 1-form ω on P satisfying the three properties of
Theorem 28.1.

A g-valued 1-form α on P can be viewed as a map α : T P → g from the tangent
bundle T P to the Lie algebra g. Now both T P and g are G-manifolds: the Lie group
G acts on T P on the right by the differentials of right translations and it acts on g on
the left by the adjoint representation. By (27.1), α : T P → g is G-equivariant if and
only if for all p ∈ P, Xp ∈ TpP, and g ∈ G,

α(Xp ·g) = g−1 ·α(Xp),

or
α(rg∗Xp) = (Adg−1)α(Xp).

Thus, α : T P → g is G-equivariant if and only if r∗gα = (Adg−1)α for all g ∈ G.
Condition (ii) of a connection ω on a principal bundle says precisely that ω is G-
equivariant as a map from T P to g.

28.2 Vertical and Horizontal Components of a Tangent Vector

As we noted in Section 27.5, on any principal G-bundle π : P → M, the vertical
subspace Vp of the tangent space TpP is intrinsically defined:

Vp := kerπ∗ : TpP → Tπ(p)M.

By Proposition 27.18, the map jp∗ naturally identifies the Lie algebra g of G with the
vertical subspace Vp.

In the presence of a horizontal distribution on the total space P of a principal
bundle, every tangent vector Yp ∈ TpP decomposes uniquely into the sum of a vertical
vector and a horizontal vector:

Yp = v(Yp)+h(Yp) ∈ Vp ⊕Hp.

These are called, respectively, the vertical component and horizontal component of
the vector Yp. As p varies over P, this decomposition extends to a decomposition of
a vector field Y on P:

Y = v(Y )+h(Y ).

We often omit the parentheses in v(Y ) and h(Y ), and write vY and hY instead.

Proposition 28.3. If H is a C∞ horizontal distribution on the total space P of a prin-
cipal bundle, then the vertical and horizontal components v(Y ) and h(Y ) of a C∞

vector field Y on P are also C∞.
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Proof. Let ω be the g-valued 1-form associated to the horizontal distribution H

by (28.2). It is C∞ by Theorem 28.1(iii). In terms of a basis B1, . . . ,B� for g, we
can write ω = ∑ω iBi, where ω i are C∞ 1-forms on P. If Yp ∈ TpP, then by (28.3) its
vertical component v(Yp) is

v(Yp) = jp∗(ωp(Yp)) = jp∗
(
∑ω i

p(Yp)Bi
)
= ∑ω i

p(Yp)(Bi)p.

As p varies over P,
v(Y ) = ∑ω i(Y )Bi.

Since ω i, Y , and Bi are all C∞, so is v(Y ). Because h(Y ) = Y − v(Y ), the horizontal
component h(Y ) of a C∞ vector field Y on P is also C∞. ��

On a principal bundle π : P → M, if rg : P → P is right translation by g ∈ G, then
π ◦ rg = π . It follows that π∗ ◦ rg∗ = π∗. Thus, the right translation rg∗ : TpP → TpgP
sends a vertical vector to a vertical vector. By hypothesis, rg∗Hp =Hpg and hence
the right translation rg∗ also sends a horizontal vector to a horizontal vector.

Proposition 28.4. Suppose H is a smooth right-invariant horizontal distribution on
the total space of a principal G-bundle π : P → M. For each g ∈ G, the right trans-
lation rg∗ commutes with the projections v and h.

Proof. Any Xp ∈ TpP decomposes into vertical and horizontal components:

Xp = v(Xp)+h(Xp).

Applying rg∗ to both sides, we get

rg∗Xp = rg∗v(Xp)+ rg∗h(Xp). (28.4)

Since rg∗ preserves vertical and horizontal subspaces, rg∗v(Xp) is vertical and rg∗h(Xp)
is horizontal. Thus, (28.4) is the decomposition of rg∗Xp into vertical and horizontal
components. This means for every Xp ∈ TpP,

vrg∗(Xp) = rg∗v(Xp) and hrg∗(Xp) = rg∗h(Xp). ��

28.3 The Horizontal Distribution of an Ehresmann Connection

In Section 28.1 we showed that a smooth, right-invariant horizontal distribution on
the total space of a principal bundle determines an Ehresmann connection. We now
prove the converse.

Theorem 28.5. If ω is a connection on the principal G-bundle π : P → M, then
Hp := kerωp, p ∈ P, is a smooth right-invariant horizontal distribution on P.

Proof. We need to verify three properties:

(i) At each point p in P, the tangent space TpP decomposes into a direct sum
TpP = Vp ⊕Hp.
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(ii) For p ∈ P and g ∈ G, rg∗(Hp)⊂Hpg.
(iii) H is a C∞ subbundle of the tangent bundle T P.

(i) Since Hp = kerωp, there is an exact sequence

0 →Hp → TpP
ωp→ g→ 0.

The map jp∗ : g → Vp ⊂ TpP provides a splitting of the sequence. By Proposi-
tion 27.20, there is a sequence of isomorphisms

TpP � g⊕Hp � Vp ⊕Hp.

(ii) Suppose Yp ∈Hp = kerωp. By the right-equivariance property of an Ehresmann
connection,

ωpg(rg∗Yp) = (r∗gω)p(Yp) = (Adg−1)ωp(Yp) = 0.

Hence, rg∗Yp ∈Hpg.

(iii) Let B1, . . . ,B� be a basis for the Lie algebra g of G. Then ω = ∑ω iBi, where
ω1, . . . ,ω� are smooth R-valued 1-forms on P and for p ∈ P,

Hp =
�⋂

i=1

kerω i
p.

Since ωp : TpP → g is surjective, ω1, . . . ,ω� are linearly independent at p.
Fix a point p ∈ P and let x1, . . . ,xm be local coordinates near p on P. Then

ω i =
m

∑
j=1

f i
j dx j, i = 1, . . . , �

for some C∞ functions f i
j in a neighborhood of p.

Let b1, . . . ,bm be the fiber coordinates of T P near p, i.e., if vq ∈ TqP for q near p,
then

vq = ∑b j ∂
∂x j

∣∣∣∣
q
.

In terms of local coordinates,

Hq =
�⋂

i=1

kerω i
q = {vq ∈ TqP | ω i

q(vq) = 0, i = 1, . . . , �}

= {(b1, . . . ,bm) ∈ R
m |

m

∑
j=1

f i
j(q)b

j = 0, i = 1, . . . , �}.

Let Fi(q,b) = ∑m
j=1 f i

j(q)b
j, i = 1, . . . , �. Since ω1, . . . ,ω� are linearly indepen-

dent at p, the Jacobian matrix [∂Fi/∂b j] = [ f i
j], an �×m matrix, has rank � at p.

Without loss of generality, we may assume that the first �× � block of [ f i
j(p)] has
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rank �. Since having maximal rank is an open condition, there is a neighborhood
Up of p on which the first �× � block of [ f i

j] has rank �. By the implicit function

theorem, on Up, b1, . . . ,b� are C∞ functions of b�+1, . . . ,bm, say

b1 = b1(b�+1, . . . ,bm),

...

b� = b�(b�+1, . . . ,bm).

Let

X1 =
�

∑
j=1

b j(1,0, . . . ,0)
∂

∂x j +
∂

∂x�+1

X2 =
�

∑
j=1

b j(0,1,0, . . . ,0)
∂

∂x j +
∂

∂x�+2

...

Xm−� =
�

∑
j=1

b j(0,0, . . . ,1)
∂

∂x j +
∂

∂xm .

These are C∞ vector fields on Up that span Hq at each point q∈Up. By the subbundle
criterion (Theorem 20.4), H is a C∞ subbundle of T P. ��

28.4 Horizontal Lift of a Vector Field to a Principal Bundle

Suppose H is a horizontal distribution on a principal bundle π : P → M. Let X be a
vector field on M. For every p ∈ P, because the vertical subspace Vp is kerπ∗, the
differential π∗ : TpP → Tπ(p)M induces an isomorphism

TpP

kerπ∗
∼→Hp

∼→ Tπ(p)M

of the horizontal subspace Hp with the tangent space Tπ(p)M. Consequently, there is
a unique horizontal vector X̃p ∈Hp such that π∗(X̃p) = Xπ(p) ∈ Tπ(p)M. The vector
field X̃ is called the horizontal lift of X to P.

Proposition 28.6. If H is a C∞ right-invariant horizontal distribution on the total
space P of a principal bundle π : P → M, then the horizontal lift X̃ of a C∞ vector
field X on M is a C∞ right-invariant vector field on P.

Proof. Let x ∈ M and p ∈ π−1(x). By definition, π∗(X̃p) = Xx. If q is any other point
of π−1(x), then q = pg for some g ∈ G. Since π ◦ rg = π ,

π∗(rg∗X̃p) = (π ◦ rg)∗X̃p = π∗X̃p = Xp.

By the uniqueness of the horizontal lift, rg∗X̃p = X̃pg. This proves the right-invariance
of X̃ .
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We prove the smoothness of X̃ by proving it locally. Let {U} be a trivializing

open cover for P with trivializations φU : π−1(U) ∼→U ×G. Define

Z(x,g) = (Xx,0) ∈ T(x,g)(U ×G).

Let η : U ×G → U be the projection to the first factor. Then Z is a C∞ vector field
on U ×G such that η∗Z(x,g) = Xx, and Y := (φU∗)−1Z is a C∞ vector field on π−1(U)

such that π∗Yp = Xπ(p). By Proposition 28.3, hY is a C∞ vector field on π−1(U).
Clearly it is horizontal. Because Yp = v(Yp)+h(Yp) and π∗v(Yp) = 0, we have π∗Yp =
π∗h(Yp) = Xπ(p). Thus, hY lifts X over U . By the uniqueness of the horizontal lift,

hY = X̃ over U . This proves that X̃ is a smooth vector field on P. ��

28.5 Lie Bracket of a Fundamental Vector Field

If a principal bundle P comes with a connection, then it makes sense to speak of hor-
izontal vector fields on P; these are vector fields all of whose vectors are horizontal.

Lemma 28.7. Suppose P is a principal bundle with a connection. Let A be the fun-
damental vector field on P associated to A ∈ g.

(i) If Y is a horizontal vector field on P, then [A,Y ] is horizontal.
(ii) If Y is a right-invariant vector field on P, then [A,Y ] = 0.

Proof. (i) A local flow for A is φt(p) = petA = retA(p) (Proposition 27.14). By the
identification of the Lie bracket with the Lie derivative of vector fields [21, Th. 20.4,
p. 225] and the definition of the Lie derivative,

[A,Y ]p = (LAY )p = lim
t→0

(re−tA)∗YpetA −Yp

t
. (28.5)

Since right translation preserves horizontality (Theorem 28.5), both (re−tA)∗YpetA and
Yp are horizontal vectors. Denote the difference quotient in (28.5) by c(t). For every
t near 0 in R, c(t) is in the vector space Hp of horizontal vectors at p. Therefore,
[A,Y ]p = limt→0 c(t) ∈Hp.

(ii) If Y is right-invariant, then

(re−tA)∗YpetA = Yp.

In that case, it follows from (28.5) that [A,Y ]p = 0. ��

Problems

28.1. Maurer–Cartan connection
If θ is the Maurer–Cartan form on a Lie group and π2 : M ×G → G is the projection to the
second factor, prove that ω := π∗

2 θ is a connection on the trivial bundle π1 : M×G → M. It is
called the Maurer–Cartan connection.



28.5 Lie Bracket of a Fundamental Vector Field 261

28.2. Convex linear combinations of connections
Prove that a convex linear combination ω of connections ω1, . . . ,ωn on a principal bundle
π : P → M is again a connection on P. (ω = ∑λiωi, ∑λi = 1, λi ≥ 0.)

28.3. Pullback of a connection
Let πQ : Q → N and πP : P → M be principal G-bundles, and let ( f̄ : Q → P, f : N → M) be a
morphism of principal bundles. Prove that if θ is a connection on P, then f̄ ∗θ is a connection
on Q.
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§29 Horizontal Distributions on a Frame Bundle

In this section we will explain the process by which a connection∇ on a vector bundle
E over a manifold M gives rise to a smooth right-invariant horizontal distribution on
the associated frame bundle Fr(E). This involves a sequence of steps. A connection
on the vector bundle E induces a covariant derivative on sections of the vector bundle
along a curve. Parallel sections along the curve are those whose derivative vanishes.
Just as for tangent vectors in Section 14, starting with a frame ex for the fiber of
the vector bundle at the initial point x of a curve, there is a unique way to parallel
translate the frame along the curve. In terms of the frame bundle Fr(E), what this
means is that every curve in M has a unique lift to Fr(E) starting at ex representing
parallel frames along the curve. Such a lift is called a horizontal lift. The initial
vector at ex of a horizontal lift is a horizontal vector at ex. The horizontal vectors at
a point of Fr(E) form a subspace of the tangent space Tex

(
Fr(E)

)
. In this way we

obtain a horizontal distribution on the frame bundle. We show that this horizontal
distribution on Fr(E) arising from a connection on the vector bundle E is smooth and
right-invariant. It therefore corresponds to a connection ω on the principal bundle
Fr(E). We then show that ω pulls back under a section e of Fr(E) to the connection
matrix ωe of the connection ∇ relative to the frame e on an open set U .

29.1 Parallel Translation in a Vector Bundle

In Section 14 we defined parallel translation of a tangent vector along a curve in a
manifold with an affine connection. In fact, the same development carries over to an
arbitrary vector bundle η : E → M with a connection ∇.

Let c : [a,b] → M be a smooth curve in M. Instead of vector fields along the
curve c, we consider smooth sections of the pullback bundle c∗E over [a,b]. These
are called smooth sections of the vector bundle E along the curve c. We denote by
Γ(c∗E) the vector space of smooth sections of E along the curve c. If E = T M is the
tangent bundle of a manifold M, then an element of Γ(c∗T M) is simply a vector field
along the curve c in M. Just as in Theorem 13.1, there is a unique R-linear map

D
dt

: Γ(c∗E)→ Γ(c∗E),

called the covariant derivative corresponding to ∇, such that

(i) (Leibniz rule) for any C∞ function f on the interval [a,b],

D( f s)
dt

=
d f
dt

s+ f
Ds
dt

;

(ii) if s is induced from a global section s̃ ∈ Γ(M,E) in the sense that s(t) = s̃
(
c(t)

)
,

then
Ds
dt

(t) = ∇c′(t)s̃.
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Definition 29.1. A section s ∈ Γ(c∗E) is parallel along a curve c : [a,b] → M if
Ds/dt ≡ 0 on [a,b].

As in Section 14.5, the equation Ds/dt ≡ 0 for a section s to be parallel is
equivalent to a system of linear first-order ordinary differential equations. Suppose
c : [a,b]→ M maps into a framed open set (U,e1, . . . ,er) for E. Then s ∈ Γ(c∗E) can
be written as

s(t) = ∑si(t)ei,c(t).

By properties (i) and (ii) of the covariant derivative,

Ds
dt

= ∑
i

dsi

dt
ei +∑

j
s j D

dt
e j,c(t)

= ∑
i

dsi

dt
ei +∑

j
s j∇c′(t)e j

= ∑
i

dsi

dt
ei +∑

i, j
s jω i

j

(
c′(t)

)
ei.

Hence, Ds/dt ≡ 0 if and only if

dsi

dt
+∑

j
s jω i

j

(
c′(t)

)
= 0 for all i.

This is a system of linear first-order differential equations. By the existence and
uniqueness theorems of differential equations, it has a solution on a small interval
about a give point t0 and the solution is uniquely determined by its value at t0. Thus,
a parallel section is uniquely determined by its value at a point. If s ∈ Γ(c∗E) is a
parallel section of the pullback bundle c∗E, we say that s(b) is the parallel transport
of s(a) along c : [a,b] → M. The resulting map: Ec(a) → Ec(b) is called parallel
translation from Ec(a) to Ec(b).

Theorem 29.2. Let η : E → M be a C∞ vector bundle with a connection ∇ and let
c : [a,b] → M be a smooth curve in M. There is a unique parallel translation ϕa,b

from Ec(a) to Ec(b) along c. This parallel translation ϕa,b : Ec(a) → Ec(b) is a linear
isomorphism.

The proof is similar to that of Theorem 14.14.
A parallel frame along the curve c : [a,b]→M is a collection of parallel sections(

e1(t), . . . ,er(t)
)
, t ∈ [a,b], such that for each t, the elements e1(t), . . . ,er(t) form a

basis for the vector space Ec(t).
Let π : Fr(E)→ M be the frame bundle of the vector bundle η : E → M. A curve

c̃(t) in Fr(E) is called a lift of the curve c(t) in M if c(t) = π(c̃(t)). It is a horizontal
lift if in addition c̃(t) is a parallel frame along c.

Restricting the domain of the curve c to the interval [a, t], we obtain from Theo-
rem 29.2 that parallel translation is a linear isomorphism of Ec(a) with Ec(t). Thus, if
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a collection of parallel sections
(
s1(t), . . . ,sr(t)

) ∈ Γ(c∗E) forms a basis at one time
t, then it forms a basis at every time t ∈ [a,b]. By Theorem 29.2, for every smooth
curve c : [a,b]→ M and ordered basis (s1,0, . . . ,sr,0) for Ec(a), there is a unique par-
allel frame along c whose value at a is (s1,0, . . . ,sr,0). In terms of the frame bundle
Fr(E), this shows the existence and uniqueness of a horizontal lift with a specified
initial point in Fr(E) of a curve c(t) in M.

29.2 Horizontal Vectors on a Frame Bundle

On a general principal bundle vertical vectors are intrinsically defined, but horizontal
vectors are not. We will see shortly that a connection on a vector bundle E over a
manifold M determines a well-defined horizontal distribution on the frame bundle
Fr(E). The elements of the horizontal distribution are the horizontal vectors. Thus,
the notion of a horizontal vector on the frame bundle Fr(E) depends on a connection
on E.

Definition 29.3. Let E → M be a vector bundle with a connection ∇, x ∈ M, and
ex ∈ Fr(Ex). A tangent vector v∈ Tex(Fr(E)) is said to be horizontal if there is a curve
c(t) through x in M such that v is the initial vector c̃′(0) of the unique horizontal lift
of c̃(t) of c(t) to Fr(E) starting at ex.

Our goal now is to show that the horizontal vectors at a point ex of the frame
bundle form a vector subspace of the tangent space Tex

(
Fr(E)

)
. To this end we

will derive an explicit formula for c̃′(0) in terms of a local frame for E. Suppose
c : [0,b] → M is a smooth curve with initial point c(0) = x, and c̃(t) is its unique
horizontal lift to Fr(E) with initial point ex = (e1,0, . . . ,er,0). Let s be a frame for E
over a neighborhood U of x with s(x) = ex. Then s(c(t)) is a lift of c(t) to Fr(E) with
initial point ex, but of course it is not necessarily a horizontal lift (see Figure 29.1).
For any t ∈ [0,b], we have two ordered bases s(c(t)) and c̃(t) for Ec(t), so there is a
smooth matrix a(t) ∈ GL(r,R) such that s(c(t)) = c̃(t)a(t). At t = 0, s(c(0)) = ex =
c̃(0), so that a(0) = I, the identity matrix in GL(r,R).

Lemma 29.4. In the notation above, let s∗ : Tx(M)→ Tex(Fr(E)) be the differential
of s and a′(0) the fundamental vector field on Fr(E) associated to a′(0) ∈ gl(r,R).
Then

s∗
(
c′(0)

)
= c̃′(0)+a′(0)

ex
.

Proof. Let P = Fr(E) and G = GL(r,R), and let μ : P×G → P be the right action
of G on P. Then

s
(
c(t)

)
= c̃(t)a(t) = μ

(
c̃(t),a(t)

)
, (29.1)

with c(0) = x, c̃(0) = ex, and a(0) = the identity matrix I. Differentiating (29.1) with
respect to t and evaluating at 0 gives

s∗
(
c′(0)

)
= μ∗,(c̃(0),a(0))

(
c̃′(0),a′(0)

)
.
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M

Fr(E)

x

ex

π

c̃(t)

s(c(t)) = c̃(t)a(t)

c(t)

Fig. 29.1. Two liftings of a curve

By the formula for the differential of an action (Problem 27.4),

s∗
(
c′(0)

)
= ra(0)∗c̃′(0)+a′(0)

c̃(0)
= c̃′(0)+a′(0)

ex
. ��

Lemma 29.5. Let E → M be a vector bundle with a connection ∇. Suppose s =
(s1, . . . ,sr) is a frame for E over an open set U, c̃(t) a parallel frame over a curve c(t)
in U with c̃(0) = s(c(0)), and a(t) the curve in GL(r,R) such that s(c(t)) = c̃(t)a(t).
If ωs = [ω i

j] is the connection matrix of ∇ with respect to the frame (s1, . . . ,sr) over
U, then a′(0) = ωs(c′(0)).

Proof. Label c(0) = x and c̃i(0) = si
(
c(0)

)
= ei,x. By the definition of the connection

matrix,

∇c′(0)s j = ∑ω i
j

(
c′(0)

)
si
(
c(0)

)
= ∑ω i

j

(
c′(0)

)
ei,x. (29.2)

On the other hand, by the defining properties of the covariant derivative
(Section 29.1),

∇c′(t)s j =
D(s j ◦ c)

dt
(t) =

D
dt ∑ c̃i(t)a

i
j(t)

= ∑(ai
j)
′(t)c̃i(t)+∑ai

j(t)
Dc̃i

dt
(t)

= ∑(ai
j)
′(t)c̃i(t) (since Dc̃i/dt ≡ 0).

Setting t = 0 gives
∇c′(0)s j = ∑(ai

j)
′(0)ei,x. (29.3)

Equating (29.2) and (29.3), we obtain (ai
j)
′(0) = ω i

j(c
′(0)). ��

Thus, Lemma 29.4 for the horizontal lift of c′(0) can be rewritten in the form

c̃′(0) = s∗
(
c′(0)

)−a′(0)
ex
= s∗

(
c′(0)

)−ωs
(
c′(0)

)
ex
. (29.4)
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Proposition 29.6. Let π : E → M be a smooth vector bundle with a connection over
a manifold M of dimension n. For x ∈ M and ex an ordered basis for the fiber Ex, the
subset Hex of horizontal vectors in the tangent space Tex(Fr(E)) is a vector space of
dimension n, and π∗ : Hex → TxM is a linear isomorphism.

Proof. In formula (29.4), ωs(c′(0)) is R-linear in its argument c′(0) because ωs is
a 1-form at c(0). The operation A �→ Aex

of associating to a matrix A ∈ gl(r,R) a
tangent vector Aex

∈ Tex

(
Fr(E)

)
is R-linear by (27.3). Hence, formula (29.4) shows

that the map

φ : TxM → Tex

(
Fr(E)

)
,

c′(0) �→ c̃′(0)

is R-linear. As the image of a vector space TxM under a linear map, the set Hex of
horizontal vectors c̃′(0) at ex is a vector subspace of Tex

(
Fr(E)

)
.

Since π
(
c̃(t)

)
= c(t), taking the derivative at t = 0 gives π∗

(
c̃′(0)

)
= c′(0), so

π∗ is a left inverse to the map φ . This proves that φ : TxM → Tex

(
Fr(E)

)
is injective.

Its image is by definition Hex . It follows that φ : TxM →Hex is an isomorphism with
inverse π∗ : Hex → Tex M. ��

29.3 Horizontal Lift of a Vector Field to a Frame Bundle

We have learned so far that a connection on a vector bundle E → M defines a hor-
izontal subspace Hp of the tangent space TpP at each point p of the total space of
the frame bundle π : P = Fr(E) → M. The horizontal subspace Hp has the same
dimension as M. The vertical subspace Vp of TpP is the kernel of the surjection
π∗ : TpP → Tπ(p)M; as such, dimVp = dimTpP− dimM. Hence, Vp and Hp have
complementary dimensions in TpP. Since π∗(Vp) = 0 and π∗ : Hp → Tπ(p)M is an
isomorphism, Vp ∩Hp = 0. It follows that there is a direct sum decomposition

Tp(Fr(E)) = Vp ⊕Hp. (29.5)

Our goal now is to show that as p varies in P, the subset H :=
⋃

p∈PHp of the tangent
bundle T P defines a C∞ horizontal distribution on P in the sense of Section 27.6.

Since π∗,p : Hp → Tπ(p)M is an isomorphism for each p ∈ P, if X is a vector field
on M, then there is a unique vector field X̃ on P such that X̃p ∈Hp and π∗,p(X̃p) =
Xπ(p). The vector field X̃ is called the horizontal lift of X to the frame bundle P.

Since every tangent vector Xx ∈ TxM is the initial vector c′(0) of a curve c, for-
mula (29.4) for the horizontal lift of a tangent vector can be rewritten in the following
form.

Lemma 29.7 (Horizontal lift formula). Suppose ∇ is a connection on a vector bun-
dle E → M and ωs is its connection matrix on a framed open set (U,s). For x ∈ U,
p = s(x) ∈ Fr(E), and Xx ∈ TxM, let X̃p be the horizontal lift of Xx to p in Fr(E).
Then

X̃p = s∗,x(Xx)−ωs(Xx)p
.
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Proposition 29.8. Let E → M be a C∞ rank r vector bundle with a connection and
π : Fr(E)→ M its frame bundle. If X is a C∞ vector field on M, then its horizontal
lift X̃ to Fr(E) is a C∞ vector field.

Proof. Let P = Fr(E) and G = GL(r,R). Since the question is local, we may assume
that the bundle P is trivial, say P = M×G. By the right invariance of the horizontal
distribution,

X̃(x,a) = ra∗X̃(x,1). (29.6)

Let s : M → P=M×G be the section s(x) = (x,1). By the horizontal lift formula
(Lemma 29.7),

X̃(x,1) = s∗,x(Xx)−ωs(Xx)(x,1). (29.7)

Let p = (x,a) ∈ P and let f be a C∞ function on P. We will prove that X̃p f is C∞ as
a function of p. By (29.6) and (29.7),

X̃p f = ra∗s∗,x(Xx) f − ra∗ωs(Xx)(x,1) f , (29.8)

so it suffices to prove separately that
(
ra∗(s∗,xXx)

)
f and

(
ra∗ωs(Xx)(x,1)

)
f are C∞

functions on P.
The first term is

(
ra∗s∗,x(Xx)

)
f = Xx( f ◦ ra ◦ s)

= X( f ◦ ra ◦ s)
(
π(p)

)

= X
(

f
(
s(π(p))a

))
= X

(
f
(
μ(s(π(p)),a)

))

= X
(

f
(
μ(s(π(p)),π2(p))

))
, (29.9)

where μ : P×G→P is the action of G on P and π2 : P=M×G→G is the projection
π2(p) = π2(x,a) = a. The formula (29.9) expresses

(
ra∗s∗,x(Xx)

)
f as a C∞ function

on P.
By the right equivariance of the connection form ωs, in (29.8) the second term

can be rewritten as

ra∗ωs(Xx)(x,1) f = (Ada−1)ωs(Xx)(x,a) f

=
(

Adπ2(p)−1)ωs
(
Xπ(p)

)
p

f ,

where
(

Adπ2(p)−1
)
ωs(Xπ(p)) is a C∞ function: P → gl(r,R) that we will denote by

A(p). The problem now is to show that p �→ A(p)
p

f is a C∞ function of p.

Let μ : P×G → P be the right action of G = GL(r,R) on P = Fr(E). Then

A(p)
p

f =
d
dt

∣∣∣∣
t=0

f (p · etA(p)) =
d
dt

∣∣∣∣
t=0

f (μ(p,etA(p))).

Since f , μ , A, and the exponential map are all C∞ functions, A(p)
p

f is a C∞ function

of p. Thus, X̃p f in (29.8) is a C∞ function of p. This proves that X̃ is a C∞ vector
field on P. ��
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Theorem 29.9. A connection ∇ on a smooth vector bundle E → M defines a C∞

distribution H on the frame bundle π : P = Fr(E)→ M such that at any p ∈ P,

(i) TpP = Vp ⊕Hp;
(ii) rg∗(Hp) =Hpg for any g ∈ G = GL(r,R),

where rg : P → P is the right action of G on P.

Proof. To prove that H is a C∞ subbundle of T P, let U be a coordinate open set in
M and s1, . . . ,sn a C∞ frame on U . By Proposition 29.8 the horizontal lifts s̃1, . . . , s̃n

are C∞ vector fields on Ũ := π−1(U). Moreover, for each p ∈ Ũ , since π∗,p : Hp →
Tπ(p)M is an isomorphism, (s̃1)p, . . . ,(s̃n)p form a basis for Hp. Thus, over Ũ the
C∞ sections s̃1, . . . , s̃n of T P span H. By Theorem 20.4, this proves that H is a C∞

subbundle of T P.
Equation (29.5) establishes (i).
As for (ii), let c̃′(0) ∈Hp, where c(t) is a curve in M and c̃(t) = [v1(t) · · · vr(t)]

is its horizontal lift to P with initial point p. Here we are writing a frame as a row
vector so that the group action is simply matrix multiplication on the right. For any
g = [gi

j] ∈ GL(r,R),

c̃(t)g =
[
∑gi

1vi(t) · · · ∑gi
rvi(t)

]
.

Since Dvi/dt ≡ 0 by the horizontality of vi and gi
j are constants, D(∑gi

jvi)/dt ≡ 0.
Thus, c̃(t)g is the horizontal lift of c(t) with initial point c̃(0)g. It has initial tangent
vector

d
dt

∣∣∣∣
t=0

c̃(t)g = rg∗c̃′(0) ∈Hpg.

This proves that rg∗Hp ⊂ Hpg. Because rg∗ : Hp → Hpg has a two-sided inverse
rg−1∗, it is bijective. In particular, rg∗Hp =Hpg. ��

29.4 Pullback of a Connection on a Frame Bundle
Under a Section

Recall that a connection ∇ on a vector bundle E can be represented on a framed open
set (U,e1, . . . ,er) for E by a connection matrix ωe depending on the frame. Such a
frame e = (e1, . . . ,er) is in fact a section e : U → Fr(E) of the frame bundle. We now
use the horizontal lift formula (Lemma 29.7) to prove that the Ehresmann connection
ω on the frame bundle Fr(E) determined by ∇ pulls back under the section e to the
connection matrix ωe.

Theorem 29.10. Let ∇ be a connection on a vector bundle E → M and let ω be the
Ehresmann connection on the frame bundle Fr(E) determined by∇. If e=(e1, . . . ,er)
is a frame for E over an open set U, viewed as a section e : U → Fr(E)|U , and ωe is
the connection matrix of ∇ relative to the frame e, then ωe = e∗ω .
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Proof. Let x ∈U and p = e(x) ∈ Fr(E). Suppose Xx is a tangent vector to M at x. If
we write ωe,x for the value of the connection matrix ωe at the point x ∈U , then ωe,x

is an r× r matrix of 1-forms at x and ωe,x(Xx) is an r× r matrix of real numbers, i.e.,
an element of the Lie algebra gl(r,R). The corresponding fundamental vector field
on Fr(E) is ωe,x(Xx). By Lemma 29.7, the horizontal lift of Xx to p ∈ Fr(E) is

X̃p = e∗Xx −ωe,x(Xx)p
.

Applying the Ehresmann connection ωp to both sides of this equation, we get

0 = ωp(X̃p) = ωp(e∗Xx)−ωp

(
ωe,x(Xx)p

)

= (e∗ωp)(Xx)−ωe,x(Xx) (by Theorem 28.1(i)).

Since this is true for all Xx ∈ TxM,

e∗ωp = (e∗ω)x = ωe,x. ��
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§30 Curvature on a Principal Bundle

Let G be a Lie group with Lie algebra g. Associated to a connection ω on a principal
G-bundle is a g-valued 2-form Ω called its curvature. The definition of the curvature
is suggested by the second structural equation for a connection ∇ on a vector bundle
E. Just as the connection form ω on the frame bundle Fr(E) pulls back by a section e
of Fr(E) to the connection matrix ωe of∇with respect to the frame e, so the curvature
form Ω on the frame bundle Fr(E) pulls back by e to the curvature matrix Ωe of ∇
with respect to e. Thus, the curvature form Ω on the frame bundle is an intrinsic
object of which the curvature matrices Ωe are but local manifestations.

30.1 Curvature Form on a Principal Bundle

By Theorem 11.1 if ∇ is a connection on a vector bundle E → M, then its connection
and curvature matrices ωe and Ωe on a framed open set (U,e) = (U,e1, . . . ,er) are
related by the second structural equation (Theorem 11.1)

Ωe = dωe +ωe ∧ωe.

In terms of the Lie bracket of matrix-valued forms (see (21.12)), this can be rewrit-
ten as

Ωe = dωe +
1
2
[ωe,ωe].

An Ehresmann connection on a principal bundle is Lie algebra-valued. In a general
Lie algebra, the wedge product is not defined, but the Lie bracket is always defined.
This strongly suggests the following definition for the curvature of an Ehresmann
connection on a principal bundle.

Definition 30.1. Let G be a Lie group with Lie algebra g. Suppose ω is an Ehres-
mann connection on a principal G-bundle π : P → M. Then the curvature of the
connection ω is the g-valued 2-form

Ω = dω +
1
2
[ω,ω].

Recall that frames for a vector bundle E over an open set U are sections of the
frame bundle Fr(E). Let ω be the connection form on the frame bundle Fr(E) det-
ermined by a connection ∇ on E. In the same way that ω pulls back by sections of
Fr(E) to connection matrices, the curvature form Ω of the connection ω on Fr(E)
pulls back by sections to curvature matrices.

Proposition 30.2. If ∇ is a connection on a vector bundle E → M and ω is the asso-
ciated Ehresmann connection on the frame bundle Fr(E), then the curvature matrix
Ωe relative to a frame e = (e1, . . . ,er) for E over an open set U is the pullback e∗Ω
of the curvature Ω on the frame bundle Fr(E).
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Proof.

e∗Ω = e∗dω +
1
2

e∗[ω,ω]

= de∗ω +
1
2
[e∗ω,e∗ω] (e∗ commutes with d and [ , ] by Proposition 21.8)

= dωe +
1
2
[ωe,ωe] (by Theorem 29.10)

= Ωe. (by the second structural equation) ��

30.2 Properties of the Curvature Form

Now that we have defined the curvature of a connection on a principal G-bundle
π : P → M, it is natural to study some of its properties. Like a connection form,
the curvature form Ω is equivariant with respect to right translation on P and the
adjoint representation on g. However, unlike a connection form, a curvature form
is horizontal in the sense that it vanishes as long as one argument is vertical. In
this respect it acts almost like the opposite of a connection form, which vanishes on
horizontal vectors.

Lemma 30.3. Let G be a Lie group with Lie algebra g and π : P → M a principal
G-bundle with a connection ω . Fix a point p ∈ P.

(i) Every vertical vector Xp ∈ TpP can be extended to a fundamental vector field A
on P for some A ∈ g.

(ii) Every horizontal vector Yp ∈ TpP can be extended to the horizontal lift B̃ of a C∞

vector field B on M.

Proof. (i) By the surjectivity of jp∗ : g→Vp (Proposition 27.18) and Equation (27.3),

Xp = jp∗(A) = Ap

for some A ∈ g. Then the fundamental vector field A on P extends Xp.

(ii) Let x = π(p) in M and let Bx be the projection π∗(Yp) ∈ TxM of the vector Yp.
We can extend Bx to a smooth vector field B on M. The horizontal lift B̃ of B extends
Yp on P. ��

By Proposition 28.6, such a horizontal lift B̃ is necessarily right-invariant.

Theorem 30.4. Let G be a Lie group with Lie algebra g. Suppose π : P → M is a
principal G-bundle, ω a connection on P, and Ω the curvature form of ω .

(i) (Horizontality) For p ∈ P and Xp,Yp ∈ TpP,

Ωp(Xp,Yp) = (dω)p(hXp,hYp). (30.1)

(ii) (G-equivariance) For g ∈ G, we have r∗gΩ = (Adg−1)Ω.
(iii) (Second Bianchi identity) dΩ = [Ω,ω].
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Proof. (i) Since both sides of (30.1) are linear in Xp and in Yp, we may decompose
Xp and Yp into vertical and horizontal components, and so it suffices to check the
equation for vertical and horizontal vectors only. There are three cases.

Case 1. Both Xp and Yp are horizontal. Then

Ωp(Xp,Yp) = (dω)p(Xp,Yp)+
1
2
[ωp,ωp](Xp,Yp) (definition of Ω)

= (dω)p(Xp,Yp)

+
1
2

(
[ωp(Xp),ωp(Yp)]− [ωp(Yp),ωp(Xp)]

)

= (dω)p(Xp,Yp) (ωp(Xp) = 0)

= (dω)p(hXp,hYp). (Xp, Yp horizontal)

Case 2. One of Xp and Yp is horizontal; the other is vertical. Without loss of gener-
ality, we may assume Xp vertical and Yp horizontal. Then [ωp,ωp](Xp,Yp) = 0 as in
Case 1.

By Lemma 30.3 the vertical vector Xp extends to a fundamental vector field A on
P and the horizontal vector Yp extends to a right-invariant horizontal vector field B̃
on P. By the global formula for the exterior derivative (Problem 21.8)

dω(A, B̃) = A(ω(B̃))− B̃(ω(A))−ω([A, B̃]).

On the right-hand side, ω(B̃) = 0 because B̃ is horizontal, and B̃ω(A) = B̃A = 0
because A is a constant function on P. Being the bracket of a fundamental and a hor-
izontal vector field, [A, B̃] is horizontal by Lemma 28.7, and therefore ω([A, B̃]) = 0.
Hence, the left-hand side of (30.1) becomes

Ωp(Xp,Yp) = (dω)p(Ap, B̃p) = 0.

The right-hand side of (30.1) is also zero because hXp = 0.

Case 3. Both Xp and Yp are vertical. As in Case 2, we can write Xp = Ap and
Yp = Bp for some A,B ∈ g. We have thus extended the vertical vectors Xp and Yp to
fundamental vector fields X = A and Y = B on P. By the definition of curvature,

Ω(X ,Y ) = Ω(A,B)

= dω(A,B)+
1
2

(
[ω(A),ω(B)]− [ω(B),ω(A)]

)

= dω(A,B)+ [A,B]. (30.2)

In this sum the first term is

dω(A,B) = A
(
ω(B)

)−B
(
ω(A)

)−ω
(
[A,B]

)

= A(B)−B(A)−ω
(
[A,B]

)
(Problem 27.1)

= 0−0− [A,B].
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Hence, (30.2) becomes

Ω(X ,Y ) =−[A,B]+ [A,B] = 0.

On the other hand,
(dω)p(hXp,hYp) = (dω)p(0,0) = 0.

(ii) Since the connection form ω is right-equivariant with respect to Ad,

r∗gΩ = r∗g

(
dω +

1
2
[ω,ω]

)
(definition of curvature)

= dr∗gω +
1
2
[r∗gω,r∗gω] (Proposition 21.8)

= d(Adg−1)ω +
1
2
[(Adg−1)ω,(Adg−1)ω]

= (Adg−1)

(
dω +

1
2
[ω,ω]

)

= (Adg−1)Ω.

In this computation we used the fact that because Adg−1 = (cg−1)∗ is the differential
of a Lie group homomorphism, it is a Lie algebra homomorphism.

(iii) Taking the exterior derivative of the definition of the curvature form, we get

dΩ =
1
2

d[ω,ω]

=
1
2
([dω,ω]− [ω,dω]) (Proposition 21.6)

= [dω,ω] (Proposition 21.5)

=
[
Ω− 1

2
[ω,ω],ω

]
(definition of Ω)

= [Ω,ω]− 1
2
[[ω,ω],ω]

= [Ω,ω]. (Problem 21.5) ��
In case P is the frame bundle Fr(E) of a rank r vector bundle E, with structure

group GL(r,R), the second Bianchi identity becomes by Proposition 21.7

dΩ = [Ω,ω] = Ω∧ω −ω ∧Ω, (30.3)

where the connection and curvature forms ω and Ω are gl(r,R)-valued forms on
Fr(E). It should not be so surprising that it has the same form as the second Bianchi
identity for the connection and curvature matrices relative to a frame e for E (Propo-
sition 22.3). Indeed, by pulling back (30.3) by a frame e : U → Fr(E), we get

e∗dΩ = e∗(Ω∧ω)− e∗(ω ∧Ω),

de∗Ω = (e∗Ω)∧ e∗ω − (e∗ω)∧ e∗Ω,

dΩe = Ωe ∧ωe −ωe ∧Ωe,

which is precisely Proposition 22.3.
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Problems

30.1. Curvature of the Maurer–Cartan connection
Let G be a Lie group with Lie algebra g, and M a manifold. Compute the curvature of the
Maurer–Cartan connection ω on the trivial bundle π : M×G → M.

30.2. Generalized second Bianchi identity on a frame bundle
Suppose Fr(E) is the frame bundle of a rank r vector bundle E over M. Let ω be an Ehresmann
connection and Ω its curvature form on Fr(E). These are differential forms on Fr(E) with
values in the Lie algebra gl(r,R). Matrix multiplication and the Lie bracket on gl(r,R) lead
to two ways to multiply gl(r,R)-valued forms (see Section 21.5). We write Ωk to denote the
wedge product of Ω with itself k times. Prove that d(Ωk) = [Ωk,ω].

30.3. Lie bracket of horizontal vector fields
Let P → M be a principal bundle with a connection, and X ,Y horizontal vector fields on P.

(a) Prove that Ω(X ,Y ) =−ω([X ,Y ]).
(b) Show that [X ,Y ] is horizontal if and only if the curvature Ω(X ,Y ) equals zero.



31.1 The Associated Bundle 275

§31 Covariant Derivative on a Principal Bundle

Throughout this chapter, G will be a Lie group with Lie algebra g and V will be a
finite-dimensional vector space. To a principal G-bundle π : P → M and a represen-
tation ρ : G → GL(V ), one can associate a vector bundle P×ρ V → M with fiber V .
When ρ is the adjoint representation Ad of G on its Lie algebra g, the associated
bundle P×Ad g is called the adjoint bundle, denoted by AdP.

Differential forms on M with values in the associated bundle P×ρ V turn out to
correspond in a one-to-one manner to certain V -valued forms on P called tensorial
forms of type ρ . The curvature Ω of a connection ω on the principal bundle P is
a g-valued tensorial 2-form of type Ad on P. Under this correspondence it may be
viewed as a 2-form on M with values in the adjoint bundle AdP.

Using a connection ω , one can define a covariant derivative D of vector-valued
forms on a principal bundle P. This covariant derivative maps tensorial forms to
tensorial forms, and therefore induces a covariant derivative on forms on M with
values in an associated bundle. In terms of the covariant derivative D, the curvature
form is Ω = Dω , and Bianchi’s second identity becomes DΩ = 0.

31.1 The Associated Bundle

Let π : P → M be a principal G-bundle and ρ : G → GL(V ) a representation of G
on a finite-dimensional vector space V . We write ρ(g)v as g · v or even gv. The
associated bundle E := P×ρ V is the quotient of P×V by the equivalence relation

(p,v)∼ (pg,g−1 · v) for g ∈ G and (p,v) ∈ P×V . (31.1)

We denote the equivalence class of (p,v) by [p,v]. The associated bundle comes with
a natural projection β : P×ρ V → M, β ([p,v]) = π(p). Because

β ([pg,g−1 · v]) = π(pg) = π(p) = β ([p,v]),

the projection β is well defined.
As a first example, the proposition below shows that an associated bundle of a

trivial principal G-bundle is a trivial vector bundle.

Proposition 31.1. If ρ : G → GL(V ) is a finite-dimensional representation of a Lie
group G, and U is any manifold, then there is a fiber-preserving diffeomorphism

φ : (U ×G)×ρ V ∼→U ×V,

[(x,g),v] �→ (x,g · v).
Proof. The map φ is well defined because if h is any element of G, then

φ
(
[(x,g)h,h−1 · v])= (

x,(gh) ·h−1 · v)= (x,g · v) = φ
(
[(x,g),v]

)
.
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Define ψ : U ×V → (U ×G)×ρ V by

ψ(x,v) = [(x,1),v].

It is easy to check that φ and ψ are inverse to each other, are C∞, and commute with
the projections. ��

Since a principal bundle P → M is locally U ×G, Proposition 31.1 shows that
the associated bundle P×ρ V → M is locally trivial with fiber V . The vector space
structure on V then makes P×ρ V into a vector bundle over M:

[p,v1]+ [p,v2] = [p,v1 + v2],

λ [p,v] = [p,λv], λ ∈ R.
(31.2)

It is easy to show that these are well-defined operations not depending on the choice
of p ∈ Ex and that this makes the associated bundle β : E → M into a vector bundle
(Problem 31.2).

Example 31.2. Let Ad: G→GL(g) be the adjoint representation of a Lie group G on
its Lie algebra g. For a principal G-bundle π : P → M, the associated vector bundle
AdP := P×Ad g is called the adjoint bundle of P.

31.2 The Fiber of the Associated Bundle

If π : P → M is a principal G-bundle, ρ : G → GL(V ) is a representation, and E :=
P×ρ V → M is the associated bundle, we denote by Px the fiber of P above x ∈ M,
and by Ex the fiber of E above x ∈ M. For each p ∈ Px, there is a canonical way of
identifying the fiber Ex with the vector space V :

fp : V → Ex,

v �→ [p,v].

Lemma 31.3. Let π : P → M be a principal G-bundle, ρ : G → GL(V ) a finite-
dimensional representation, and E = P×ρ V the associated vector bundle. For each
point p in the fiber Px, the map fp : V → Ex is a linear isomorphism.

Proof. Suppose [p,v] = [p,w]. Then (p,w) = (pg,g−1v) for some g ∈ G. Since G
acts freely on P, the equality p = pg implies that g = 1. Hence, w = g−1v = v. This
proves that fp is injective.

If [q,w] is any point in Ex, then q ∈ Px, so q = pg for some g ∈ G. It follows that

[q,w] = [pg,w] = [p,gw] = fp(gw).

This proves that fp is surjective. ��
The upshot is that every point p of the total space P of a principal bundle gives

a linear isomorphism fp : V → Eπ(p) from V to the fiber of the associated bundle E
above π(p).
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Lemma 31.4. Let E = P×ρ V be the vector bundle associated to the principal G-
bundle P → M via the representation ρ : G → GL(V ), and fp : V → Ex the linear
isomorphism v �→ [p,v]. If g ∈ G, then fpg = fp ◦ ρ(g).

Proof. For v ∈V ,

fpg(v) = [pg,v] = [p,g · v] = fp(g · v) = fp
(
ρ(g)v

)
. ��

Example 31.5. Let π : P → M be a principal G-bundle. The vector bundle P ×ρ
V → M associated to the trivial representation ρ : G → GL(V ) is the trivial bundle
M×V → M, for there is a vector bundle isomorphism

P×ρ V → M×V,

[p,v] = [pg,g−1 · v] = [pg,v] �→ (
π(p),v

)
,

with inverse map
(x,v) �→ [p,v] for any p ∈ π−1(x).

In this case, for each p ∈ P the linear isomorphism fp : V → Ex = V , v �→ [p,v], is
the identity map.

31.3 Tensorial Forms on a Principal Bundle

We keep the same notation as in the previous section. Thus, π : P → M is a principal
G-bundle, ρ : G → GL(V ) a finite-dimensional representation of G, and E := P×ρ V
the vector bundle associated to P via ρ .

Definition 31.6. A V -valued k-form ϕ on P is said to be right-equivariant of type
ρ or right-equivariant with respect to ρ if for every g ∈ G,

r∗gϕ = ρ(g−1) ·ϕ.

What this means is that for p ∈ P and v1, . . . ,vk ∈ TpP,

(r∗gϕ)p(v1, . . . ,vk) = ρ(g−1)
(
ϕp(v1, . . . ,vk)

)
.

In the literature (for example, [12, p. 75]), such a form is said to be pseudo-
tensorial of type ρ .

Definition 31.7. A V -valued k-form ϕ on P is said to be horizontal if ϕ vanishes
whenever one of its arguments is a vertical vector. Since a 0-form never takes an
argument, every 0-form on P is by definition horizontal.

Definition 31.8. A V -valued k-form ϕ on P is tensorial of type ρ if it is right-
equivariant of type ρ and horizontal. The set of all smooth tensorial V -valued
k-forms of type ρ is denoted by Ωk

ρ(P,V ).
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Example. Since the curvature Ω of a connection ω on a principal G-bundle P is
horizontal and right-equivariant of type Ad, it is tensorial of type Ad.

The set Ωk
ρ(P,V ) of tensorial k-forms of type ρ on P becomes a vector space

with the usual addition and scalar multiplication of forms. These forms are of special
interest because they can be viewed as forms on the base manifold M with values in
the associated bundle E := P×ρ V . To each tensorial V -valued k form ϕ ∈ Ωk

ρ(P,V )

we associate a k-form ϕ� ∈ Ωk(M,E) as follows. Given x ∈ M and v1, . . . ,vk ∈ TxM,
choose any point p in the fiber Px and choose lifts u1, . . . ,uk at p of v1, . . . ,vk, i.e.,
vectors in TpP such that π∗(ui) = vi. Then ϕ� is defined by

ϕ�
x(v1, . . . ,vk) = fp

(
ϕp(u1, . . . ,uk)

) ∈ Ex, (31.3)

where fp : V → Ex is the isomorphism v �→ [p,v] of the preceding section.
Conversely, if ψ ∈ Ωk(M,E), we define ψ� ∈ Ωk

ρ(P,V ) as follows. Given p ∈ P
and u1, . . . ,uk ∈ TpP, let x = π(p) and set

ψ�
p(u1, . . . ,uk) = f−1

p

(
ψx(π∗u1, . . . ,π∗uk)

) ∈V. (31.4)

Theorem 31.9. The map

Ωk
ρ(P,V )→ Ωk(M,E),

ϕ �→ ϕ�,

is a well-defined linear isomorphism with inverse ψ� ←� ψ .

Proof. To show that ϕ� is well defined, we need to prove that the definition (31.3) is
independent of the choice of p∈Px and of u1, . . . ,uk ∈ TpP. Suppose u′1, . . . ,u

′
k ∈ TpP

is another set of vectors such that π∗(u′i) = vi. Then π∗(u′i −ui) = 0 so that u′i −ui is
vertical. Since ϕ is horizontal and k-linear,

ϕp(u
′
1, . . . ,u

′
k) = ϕp(u1 +vertical, . . . ,uk +vertical)

= ϕp(u1, . . . ,uk).

This proves that for a given p ∈ P, the definition (31.3) is independent of the choice
of lifts of v1, . . . ,vk to p.

Next suppose we choose pg instead of p as the point in the fiber Px. Because
π ◦ rg = π ,

π∗(rg∗ui) = (π ◦ rg)∗ui = π∗ui = vi,

so that rg∗u1, . . . ,rg∗uk are lifts of v1, . . . ,vk to pg. We have, by right equivariance
with respect to ρ ,

ϕpg(rg∗u1, . . . ,rg∗uk) = (r∗gϕpg)(u1, . . . ,uk)

= ρ(g−1)ϕp(u1, . . . ,uk).

So by Lemma 31.4,
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fpg
(
ϕpg(rg∗u1, . . . ,rg∗uk)

)
= fpg

(
ρ(g−1)ϕp(u1, . . . ,uk)

)

=
(

fp ◦ ρ(g)
)(

ρ(g−1)ϕp(u1, . . . ,uk)
)

= fp
(
ϕp(u1, . . . ,uk)

)
.

This proves that the definition (31.3) is independent of the choice of p in the fiber Px.
Let ψ ∈ Ωk(M,E). It is clear from the definition (31.4) that ψ� is horizontal. It

is easy to show that ψ� is right-equivariant with respect to ρ (Problem 31.4). Hence,
ψ� ∈ Ωk

ρ(P,V ).
For v1, . . . ,vk ∈ TxM, choose p∈Px and vectors u1, . . . ,uk ∈ TpP that lift v1, . . . ,vk.

Then

(ψ��)x(v1, . . . ,vk) = fp
(
ψ�

p(u1, . . . ,uk)
)

= fp

(
f−1
p

(
ψx(π∗u1, . . . ,π∗uk)

))

= ψx(v1, . . . ,vk).

Hence, ψ�� = ψ .
Similarly, ϕ�� = ϕ for ϕ ∈ Ωk

ρ(P,V ), which we leave to the reader to show (Prob-

lem 31.5). Therefore, the map ψ �→ ψ� is inverse to the map ϕ �→ ϕ�. ��
Example 31.10 (Curvature as a form on the base). By Theorem 31.9, the curvature
form Ω of a connection on a principal G-bundle P can be viewed as an element of
Ω2(M,AdP), a 2-form on M with values in the adjoint bundle AdP.

When k = 0 in Theorem 31.9, Ω0
p(P,V ) consists of maps f : P →V that are right-

equivariant with respect to ρ:

(r∗g f )(p) = ρ(g)−1 f (p),

or
f (pg) = ρ(g−1) f (p) = g−1 · f (p).

On the right-hand side of Theorem 31.9,

Ω0(M,P×ρ V ) = Ω0(M,E) = sections of the associated bundle E.

Hence, we have the following corollary.

Corollary 31.11. Let G be a Lie group, P → M a principal G-bundle, and ρ : G →
Aut(V ) a representation of G. There is a one-to-one correspondence

{
G-equivariant maps
f : P →V

}
←→

{
sections of the associated bundle
P×ρ V → M

}
.

By the local triviality condition, for any principal bundle π : P → M the projec-
tion map π is a submersion and therefore the pullback map π∗ : Ω∗(M)→ Ω∗(P) is
an injection. A differential form ϕ on P is said to be basic if it is the pullback π∗ψ
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of a form ψ on M; it is G-invariant if r∗gϕ = ϕ for all g ∈ G. More generally, for any
vector space V , these concepts apply to V -valued forms as well.

Suppose ρ : G→GL(V ) is the trivial representation ρ(g) =1 for all g∈G. Then
an equivariant form ϕ of type ρ on P satisfies

r∗gϕ = ρ(g−1) ·ϕ = ϕ for all g ∈ G.

Thus, an equivariant form of type ρ for the trivial representation ρ is exactly an
invariant form on P. Unravelling Theorem 31.9 for a trivial representation will give
the following theorem.

Theorem 31.12. Let π : P → M be a principal G-bundle and V a vector space.
A V-valued form on P is basic if and only if it is horizontal and G-invariant.

Proof. Let ρ : G → GL(V ) be the trivial representation. As noted above, Ωk
ρ(P,V )

consists of horizontal, G-invariant V -valued k-forms on P.
By Example 31.5, when ρ is the trivial representation, the vector bundle E =

P×ρ V is the product bundle M ×V over M and for each p ∈ P, the linear isomor-
phism fp : V → Ex =V , where x = π(p), is the identity map. Then the isomorphism

Ωk(M,E) = Ωk(M,M×V ) = Ωk(M,V )→ Ωk
ρ(P,V ),

ψ �→ ψ#,

is given by

ψ#
p(u1, . . . ,uk) = ψx(π∗u1, . . . ,π∗uk) (by (31.4))

= (π∗ψ)p(u1, . . . ,uk).

Therefore,

ψ# = π∗ψ.

This proves that horizontal, G-invariant forms on P are precisely the basic forms. ��

31.4 Covariant Derivative

Recall that the existence of a connection ω on a principal G-bundle π : P → M is
equivalent to the decomposition of the tangent bundle T P into a direct sum of the
vertical subbundle V and a smooth right-invariant horizontal subbundle H. For any
vector Xp ∈ TpP, we write

Xp = vXp +hXp

as the sum of its vertical and horizontal components. This will allow us to define
a covariant derivative of vector-valued forms on P. By the isomorphism of Theo-
rem 31.9, we obtain in turn a covariant derivative of forms on M with values in an
associated bundle.

Let ρ : G → GL(V ) be a finite-dimensional representation of G and let E :=
P×ρ V be the associated vector bundle.
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Proposition 31.13. If ϕ ∈ Ωk(P,V ) is right-equivariant of type ρ , then so is dϕ .

Proof. For a fixed g ∈ G,

r∗gdϕ = dr∗gϕ = dρ(g−1)ϕ

= ρ(g−1)dϕ,

since ρ(g−1) is a constant linear map for a fixed g. ��
In general, the exterior derivative does not preserve horizontality. For any V -

valued k-form ϕ on P, we define its horizontal component ϕh ∈ Ωk(P,V ) as follows:
for p ∈ P and v1, . . . ,vk ∈ TpP,

ϕh
p(v1, . . . ,vk) = ϕp(hv1, . . . ,hvk).

Proposition 31.14. If ϕ ∈ Ωk(P,V ) is right-equivariant of type ρ , then so is ϕh.

Proof. For g ∈ G, p ∈ P, and v1, . . . ,vk ∈ TpP,

r∗g(ϕh
pg)(v1, . . . ,vk) = ϕh

pg(rg∗v1, . . . ,rg∗vk) (definition of pullback)

= ϕpg(hrg∗v1, . . . ,hrg∗vk) (definition of ϕh)

= ϕpg(rg∗hv1, . . . ,rg∗hvk) (Proposition 28.4)

= (r∗gϕpg)(hv1, . . . ,hvk)

= ρ(g−1) ·ϕp(hv1, . . . ,hvk) (right-equivariance of ϕ)

= ρ(g−1) ·ϕh
p(v1, . . . ,vk) ��

Propositions 31.13 and 31.14 together imply that if ϕ ∈ Ωk(P,V ) is right-
equivariant of type ρ , then (dϕ)h ∈ Ωk+1(P,V ) is horizontal and right-equivariant
of type ρ , i.e., tensorial of type ρ .

Definition 31.15. Let π : P → M be a principal G-bundle with a connection ω
and let V be a real vector space. The covariant derivative of a V -valued k-form
ϕ ∈ Ωk(P,V ) is Dϕ = (dϕ)h.

Let ρ : G → GL(V ) be a finite-dimensional representation of the Lie group G.
The covariant derivative is defined for any V -valued k-form on P, and it maps a right-
equivariant form of type ρ to a tensorial form of type ρ . In particular, it restricts to a
map

D : Ωk
ρ(P,V )→ Ωk+1

ρ (P,V ) (31.5)

on the space of tensorial forms.

Proposition 31.16. Let π : P → M be a principal G-bundle with a connection and
ρ : G → GL(V ) a representation of G. The covariant derivative

D : Ωk
ρ(P,V )→ Ωk+1

ρ (P,V )

on tensorial forms of type ρ is an antiderivation of degree +1.
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Proof. Let ω,τ ∈ Ω∗
ρ(P,V ) be tensorial forms of type ρ . Then

D(ω ∧ τ) =
(
d(ω ∧ τ)

)h

=
(
(dω)∧ τ +(−1)degω ω ∧dτ)h

= (dω)h ∧ τh +(−1)degω ωh ∧ (dτ)h

= Dw∧ τh +(−1)degω ωh ∧Dτ .

Since τ and ω are horizontal, τh = τ and ωh = ω . Therefore,

D(ω ∧ τ) = Dω ∧ τ +(−1)degω ω ∧Dτ . ��
If E := P×ρ V is the associated vector bundle via the representation ρ , then the

isomorphism of Theorem 31.9 transforms the linear map (31.5) into a linear map

D : Ωk(M,E)→ Ωk+1(M,E).

Unlike the exterior derivative, the covariant derivative depends on the choice of
a connection on P. Moreover, D2 �= 0 in general.

Example 31.17 (Curvature of a principal bundle). By Theorem 30.4 the curvature
form Ω ∈ Ω2

Ad(P,g) on a principal bundle is the covariant derivative Dω of the con-
nection form ω ∈ Ω1(P,g). Because ω is not horizontal, it is not in Ω1

Ad(P,g).

31.5 A Formula for the Covariant Derivative of a Tensorial Form

Let π : P → M be a smooth principal G-bundle with a connection ω , and let ρ : G →
GL(V ) be a finite-dimensional representation of G. In the preceding section we
defined the covariant derivative of a V -valued k-form ϕ on P: Dϕ = (dϕ)h, the
horizontal component of dϕ . In this section we derive a useful alternative formula
for the covariant derivative, but only for a tensorial form.

The Lie group representation ρ : G → GL(V ) induces a Lie algebra representa-
tion ρ∗ : g→ gl(V ), which allows us to define a product of a g-valued k-form τ and
a V -valued �-form ϕ on P: for p ∈ P and v1, . . . ,vk+� ∈ TpP,

(τ ·ϕ)p(v1, . . . ,vk+�)

=
1

k!�! ∑
σ∈Sk+�

sgn(σ)ρ∗
(
τp(vσ(1), . . . ,vσ(k))

)
ϕp

(
vσ(k+1), . . . ,vσ(k+�)

)
.

For the same reason as the wedge product, τ ·ϕ is multilinear and alternating in
its arguments; it is therefore a (k+ �)-covector with values in V .

Example 31.18. If V = g and ρ = Ad: G → GL(g) is the adjoint representation, then

(τ ·ϕ)p =
1

k!�! ∑
σ∈Sk+�

sgn(σ)
[
τp(vσ(1), . . . ,vσ(k)),ϕp(vσ(k+1), . . . ,vσ(k+�))

]
.

In this case we also write [τ ,ϕ] instead of τ ·ϕ .
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Theorem 31.19. Let π : P → M be a principal G-bundle with connection form ω ,
and ρ : G → GL(V ) a finite-dimensional representation of G. If ϕ ∈ Ωk

ρ(P,V ) is a
V -valued tensorial form of type ρ , then its covariant derivative is given by

Dϕ = dϕ +ω ·ϕ.

Proof. Fix p ∈ P and v1, . . . ,vk+1 ∈ TpP. We need to show that

(dϕ)p(hv1, . . . ,hvk+1) = (dϕ)p(v1, . . . ,vk+1)

+
1
k! ∑

σ∈Sk+1

sgn(σ)ρ∗
(
ωp(vσ(1))

)
ϕp

(
vσ(2), . . . ,vσ(k+1)

)
. (31.6)

Because both sides of (31.6) are linear in each argument vi, which may be de-
composed into the sum of a vertical and a horizontal component, we may assume
that each vi is either vertical or horizontal. By Lemma 30.3, throughout the proof we
may further assume that the vectors v1, . . . ,vk+1 have been extended to vector fields
X1, . . . ,Xk+1 on P each of which is either vertical or horizontal. If Xi is vertical, then
it is a fundamental vector field Ai for some Ai ∈ g. If Xi is horizontal, then it is the
horizontal lift B̃i of a vector field Bi on M. By construction, B̃i is right-invariant
(Proposition 28.6).

Instead of proving (31.6) at a point p, we will prove the equality of functions

(dϕ)(hX1, . . . ,hXk+1) = I+ II, (31.7)

where

I = (dϕ)(X1, . . . ,Xk+1)

and

II =
1
k! ∑

σ∈Sk+1

sgn(σ)ρ∗
(
ω(Xσ(1))

)
ϕ
(
Xσ(2), . . . ,Xσ(k+1)

)
.

Case 1. The vector fields X1, . . . ,Xk+1 are all horizontal.
Then II = 0 because ω(Xσ(1)) = 0 for all σ ∈ Sk+1. In this case, (31.7) is trivially
true.

Case 2. At least two of X1, . . . ,Xk+1 are vertical.
By the skew-symmetry of the arguments, we may assume that X1 = A1 and X2 = A2

are vertical. By Problem 27.1, [X1,X2] = [A1,A2] is also vertical.
The left-hand side of (31.7) is zero because hX1 = 0. By the global formula for

the exterior derivative [21, Th. 20.14, p. 233],

I =
k+1

∑
i=1

(−1)i−1Xiϕ(. . . , X̂i, . . .)+ ∑
1≤i< j≤k+1

(−1)i+ jϕ([Xi,Xj], . . . , X̂i, . . . , X̂ j, . . .).
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In this expression every term in the first sum is zero because ϕ is horizontal and at
least one of its arguments is vertical. In the second sum at least one of the arguments
of ϕ is X1, X2, or [X1,X2], all of which are vertical. Therefore, every term in the
second sum in I is also zero.

As for II in (31.7), in every term at least one of the arguments of ϕ is vertical, so
II = 0.

Case 3. The first vector field X1 = A is vertical; the rest X2, . . . ,Xk+1 are horizontal
and right-invariant.
The left-hand side of (31.7) is clearly zero because hX1 = 0.

On the right-hand side,

I = (dϕ)(X1, . . . ,Xk+1)

= ∑(−1)i+1Xiϕ(X1, . . . , X̂i, . . . ,Xk+1)

+∑(−1)i+ jϕ([Xi,Xj],X1, . . . , X̂i, . . . , X̂ j, . . . ,Xk+1).

Because ϕ is horizontal and X1 is vertical, the only nonzero term in the first sum is

X1ϕ(X2, . . . ,Xk+1) = Aϕ(X2, . . . ,Xk+1)

and the only nonzero terms in the second sum are

k+1

∑
j=2

(−1)1+ jϕ([X1,Xj], X̂1,X2, . . . , X̂ j, . . . ,Xk+1).

Since the Xj, j = 2, . . . ,k+1, are right-invariant horizontal vector fields, by Lemma 28.7,

[X1,Xj] = [A,Xj] = 0.

Therefore,
I = Aϕ(X2, . . . ,Xk+1).

If σ(i) = 1 for any i ≥ 2, then

ϕ(Xσ(2), . . . ,Xσ(k+1)) = 0.

It follows that the nonzero terms in II all satisfy σ(1) = 1 and

II =
1
k! ∑

σ∈Sk+1
σ(1)=1

sgn(σ)ρ∗
(
ω(X1)

)
ϕ
(
Xσ(2), . . . ,Xσ(k+1)

)

=
1
k! ∑

σ∈Sk+1
σ(1)=1

sgn(σ)ρ∗(A)ϕ
(
Xσ(2), . . . ,Xσ(k+1)

)

= ρ∗(A)ϕ (X2, . . . ,Xk+1) (because ϕ is alternating).
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Denote by f the function ϕ(X2, . . . ,Xk+1) on P. For p ∈ P, to calculate Ap f ,
choose a curve c(t) in G with initial point c(0) = e and initial vector c′(0) = A, for
example, c(t) = exp(tA). Then with jp : G → P being the map jp(g) = p ·g,

Ap f = jp∗(A) f = jp∗
(
c′(0)

)
f = jp∗

(
c∗
(

d
dt

∣∣∣∣
t=0

))
f

= ( jp ◦ c)∗
(

d
dt

∣∣∣∣
t=0

)
f =

d
dt

∣∣∣∣
t=0

( f ◦ jp ◦ c).

By the right-invariance of the horizontal vector fields X2, . . . ,Xk+1,

( f ◦ jp ◦ c)(t) = f
(

pc(t)
)

= ϕpc(t)

(
X2,pc(t), . . . ,Xk+1,pc(t)

)

= ϕpc(t)

(
rc(t)∗X2,p, . . . ,rc(t)∗Xk+1,p

)

= r∗c(t)ϕpc(t)

(
X2,p, . . . ,Xk+1,p

)

= ρ(c(t)−1)ϕp
(
X2,p, . . . ,Xk+1,p

)
(right-equivariance of ϕ)

= ρ(c(t)−1) f (p).

Differentiating this expression with respect to t and using the fact that the differential
of the inverse is the negative [21, Problem 8.8(b)], we have

Ap f = ( f ◦ jp ◦ c)′(0) =−ρ∗(c′(0)) f (p) =−ρ∗(A) f (p).

So the right-hand side of (31.7) is

I+ II = A f +ρ∗(A) f =−ρ∗(A) f +ρ∗(A) f = 0. ��
If V is the Lie algebra g of a Lie group G and ρ is the adjoint representation of

G, then ω ·ϕ = [ω,ϕ]. In this case, for any tensorial k-form ϕ ∈ Ωk
Ad(P,g),

Dϕ = dϕ +[ω,ϕ].

Although the covariant derivative is defined for any V -valued form on P, The-
orem 31.19 is true only for tensorial forms. Since the connection form ω is not
tensorial, Theorem 31.19 cannot be applied to ω . In fact, by the definition of the
curvature form,

Ω = dω +
1
2
[ω,ω].

By Theorem 30.4, Ω = (dω)h = Dω . Combining these two expressions for the
curvature, one obtains

Dω = dω +
1
2
[ω,ω].

The factor of 1/2 shows that Theorem 31.19 is not true when applied to ω .
Since the curvature form Ω on a principal bundle P is tensorial of type Ad, Theo-

rem 31.19 applies and the second Bianchi identity (Theorem 30.4) may be restated as

DΩ = dΩ+[ω,Ω] = 0. (31.8)
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Problems

Unless otherwise specified, in the following problems G is a Lie group with Lie algebra g,
π : P → M a principal G-bundle, ρ : G → GL(V ) a finite-dimensional representation of G,
and E = P×ρ V the associated bundle.

31.1. Transition functions of an associated bundle
Show that if {(Uα ,φα )} is a trivialization for P with transition functions gαβ : Uα ∩Uβ → G,
then there is a trivialization {(Uα ,ψα )} for E with transition functions ρ ◦ gαβ : Uα ∩Uβ →
GL(V ).

31.2. Vector bundle structure on an associated bundle
Show that the operations (31.2) on E = P×ρ V are well defined and make the associated
bundle β : E → M into a vector bundle.

31.3. Associated bundle of a frame bundle
Let E → M be a vector bundle of rank r and Fr(E) → M its frame bundle. Show that the
vector bundle associated to Fr(E) via the identity representation ρ : GL(r,R) → GL(r,R) is
isomorphic to E.

31.4. Tensorial forms
Prove that if ψ ∈ Ωk(M,P×ρ V ), then ψ� ∈ Ωk(P,V ) is right-equivariant with respect to ρ .

31.5. Tensorial forms
For ϕ ∈ Ωk

ρ (P,V ), prove that ϕ�� = ϕ .



32.2 The Chern–Weil Homomorphism 287

§32 Characteristic Classes of Principal Bundles

To a real vector bundle E → M of rank r, one can associate its frame bundle
Fr(E)→ M, a principal GL(r,R)-bundle. Similarly, to a complex vector bundle of
rank r, one can associate its frame bundle, a principal GL(r,C)-bundle and to an
oriented real vector bundle of rank r, one can associate its oriented frame bundle,
a principal GL+(r,R)-bundle, where GL+(r,R) is the group of all r × r matrices
of positive determinant. The Pontrjagin classes of a real vector bundle, the Chern
classes of a complex vector bundle, and the Euler class of an oriented real vector
bundle may be viewed as characteristic classes of the associated principal G-bundle
for G = GL(r,R),GL(r,C), and GL+(r,R), respectively.

In this section we will generalize the construction of characteristic classes to
principal G-bundles for any Lie group G. These are some of the most important
diffeomorphism invariants of a principal bundle.

32.1 Invariant Polynomials on a Lie Algebra

Let V be a vector space of dimension n and V∨ its dual space. An element of
Symk(V∨) is called a polynomial of degree k on V . Relative to a basis e1, . . . ,en

for V and corresponding dual basis α1, . . . ,αn for V∨, a function f : V → R is a
polynomial of degree k if and only if it is expressible as a sum of monomials of
degree k in α1, . . . ,αn:

f = ∑aIα i1 · · ·α ik . (32.1)

For example, if V = R
n×n is the vector space of all n× n matrices, then trX is a

polynomial of degree 1 on V and detX is a polynomial of degree n on V .
Suppose now that g is the Lie algebra of a Lie group G. A polynomial f : g→R

is said to be Ad(G)-invariant if for all g ∈ G and X ∈ g,

f
(
(Adg)X

)
= f (X).

For example, if G is the general linear group GL(n,R), then (Adg)X = gXg−1 and
trX and detX are AdG-invariant polynomials on the Lie algebra gl(n,R).

32.2 The Chern–Weil Homomorphism

Let G be a Lie group with Lie algebra g, P → M a principal G-bundle, ω an Ehres-
mann connection on P, and Ω the curvature form of ω . Fix a basis e1, . . . ,en for g
and dual basis α1, . . . ,αn for g∨. Then the curvature form Ω is a linear combination

Ω = ∑Ωiei,

where the coefficients Ωi are real-valued 2-forms on P. If f : g→R is the polynomial
∑aIα i1 · · ·α ik , we define f (Ω) to be the 2k-form
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f (Ω) = ∑aIΩi1 ∧·· ·∧Ωik

on P. Although defined in terms of a basis for g, the 2k-form f (Ω) is independent of
the choice of a basis (Problem 32.2).

Recall that the covariant derivative Dϕ of a k-form ϕ on a principal bundle P is
given by

(Dϕ)p(v1, . . . ,vk) = (dϕ)p(hv1, . . . ,hvk),

where vi ∈ TpP and hvi is the horizontal component of vi.

Lemma 32.1. Let π : P → M be a principal bundle. If ϕ is a basic form on P, then
dϕ = Dϕ .

Proof. A tangent vector Xp ∈ TpP decomposes into the sum of its vertical and hori-
zontal components:

Xp = vXp +hXp.

Here h : TpP → TpP is the map that takes a tangent vector to its horizontal compo-
nent. Since π∗Xp = π∗hXp for all Xp ∈ TpP, we have

π∗ = π∗ ◦ h.

Suppose ϕ = π∗τ for τ ∈ Ωk(M). Then

Dϕ = (dϕ) ◦ h (definition of D)

= (dπ∗τ) ◦ h (ϕ is basic)

= (π∗dτ) ◦ h ([21, Prop. 19.5])

= dτ ◦ π∗ ◦ h (definition of π∗)

= dτ ◦ π∗ (π∗ ◦ h = π∗)

= π∗dτ (definition of π∗)

= dπ∗τ ([21, Prop. 19.5])

= dϕ (ϕ = π∗τ). ��

The Chern–Weil homomorphism is based on the following theorem. As before,
G is a Lie group with Lie algebra g.

Theorem 32.2. Let Ω be the curvature of a connection ω on a principal G-bundle
π : P → M, and f an Ad(G)-invariant polynomial of degree k on g. Then

(i) f (Ω) is a basic form on P, i.e., there exists a 2k-form Λ on M such that f (Ω) =
π∗Λ.

(ii) Λ is a closed form.
(iii) The cohomology class [Λ] is independent of the connection.

Proof. (i) Since the curvature Ω is horizontal, so are its components Ωi and there-
fore so is f (Ω) = ∑aIΩi1 ∧·· ·∧Ωik .
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To check the G-invariance of f (Ω), let g ∈ G. Then

r∗g
(

f (Ω)
)
= r∗g

(
∑aIΩi1 ∧·· ·∧Ωik

)

= ∑aIr
∗
g(Ω

i1)∧·· ·∧ r∗g(Ω
ik).

Since the curvature form Ω is right-equivariant,

r∗gΩ = (Adg−1)Ω

or

r∗g(∑Ωiei) = ∑
(
(Adg−1)Ω

)i
ei,

so that

r∗g(Ω
i) =

(
(Adg−1)Ω

)i
.

Thus,

r∗g
(

f (Ω)
)
= ∑aI

(
(Adg−1)Ω

)i1 ∧·· ·∧ (
(Adg−1)Ω

)ik

= f
(
(Adg−1)Ω

)

= f (Ω) (by the AdG-invariance of f ).

Since f (Ω) is horizontal and G-invariant, by Theorem 31.12, it is basic.
(ii) Since π∗ : TpP→ Tπ(p)M is surjective, π∗ : Ω∗(M)→Ω∗(P) is injective. There-

fore, to show that dΛ = 0, it suffices to show that

π∗dΛ = dπ∗Λ = d f (Ω) = 0.

If f = ∑aIα i1 · · ·α ik , then

f (Ω) = ∑aIΩi1 ∧·· ·∧Ωik .

In this expression, each aI is a constant and therefore by Lemma 32.1

DaI = daI = 0.

By the second Bianchi identity (31.8), DΩ = 0. Therefore, DΩi = 0 for each i.
Since the Ωi are right-equivariant of type Ad and horizontal, they are tensorial
forms. By Lemma 32.1 and because D is an antiderivation on tensorial forms
(Proposition 31.16)

d
(

f (Ω)
)
= D

(
f (Ω)

)
= D

(
∑aIΩi1 ∧·· ·∧Ωik

)

= ∑
I

∑
j

aIΩi1 ∧·· ·∧DΩi j ∧·· ·∧Ωi2k

= 0.

(iii) Let I be an open interval containing the closed interval [0,1]. Then P× I is a
principal G-bundle over M× I. Denote by ρ the projection P× I → P to the first
factor. If ω0 and ω1 are two connections on P, then

ω̃ = (1− t)ρ∗ω0 + tρ∗ω1 (32.2)
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is a connection on P× I (Check the details). Moreover, if it : P → P× I is the
inclusion p �→ (p, t), then i∗0ω̃ = ω0 and i∗1ω̃ = ω1.
Let

Ω̃ = dω̃ +
1
2
[ω̃, ω̃]

be the curvature of the connection ω̃ . It pulls back under i0 to

i∗0Ω̃ = dı∗0ω̃ +
1
2

i∗0[ω̃, ω̃]

= dω0 +
1
2
[i∗0ω̃, i∗0ω̃]

= dω0 +
1
2
[ω0,ω0]

= Ω0,

the curvature of the connection ω0. Similarly, i∗1Ω̃ = Ω1, the curvature of the
connection ω1.
For any Ad(G)-invariant polynomial

f = ∑aIα i1 · · ·α ik

of degree k on g,

i∗0 f (Ω̃) = i∗0 ∑aIΩ̃i1 ∧·· ·∧ Ω̃ik

= ∑aIΩi1
0 ∧·· ·∧Ωik

0

= f (Ω0)

and

i∗1 f (Ω̃) = f (Ω1).

Note that i0 and i1 : P → P× I are homotopic through the homotopy it . By the
homotopy axiom of de Rham cohomology, the cohomology classes [i∗0 f (Ω̃)]
and [i∗1 f (Ω̃)] are equal. Thus, [ f (Ω0)] = [ f (Ω1)], or

π∗[Λ0] = π∗[Λ1].

By the injectivity of π∗, [Λ0] = [Λ1], so the cohomology class of Λ is indepen-
dent of the connection. ��

Let π : P → M be a principal G-bundle with curvature form Ω. To every Ad(G)-
invariant polynomial on g, one can associate the cohomology class [Λ]∈H∗(M) such
that f (Ω) = π∗Λ. The cohomology class [Λ] is called the characteristic class of P
associated to f . Denote by Inv(g) the algebra of all Ad(G)-invariant polynomials
on g. The map

w : Inv(g)→ H∗(M)

f �→ [Λ], where f (Ω) = π∗Λ, (32.3)

that maps each Ad(G)-invariant polynomial to its characteristic class is called the
Chern–Weil homomorphism.
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Example 32.3. If the Lie group G is GL(r,C), then by Theorem B.10 the ring of
Ad(G)-invariant polynomials on gl(r,C) is generated by the coefficients fk(X) of
the characteristic polynomial

det(λ I +X) =
r

∑
k=0

fk(X)λ r−k.

The characteristic classes associated to f1(X), . . . , fk(X) are the Chern classes of a
principal GL(r,C)-bundle. These Chern classes generalize the Chern classes of the
frame bundle Fr(E) of a complex vector bundle E of rank r.

Example 32.4. If the Lie group G is GL(r,R), then by Theorem B.13 the ring of
Ad(G)-invariant polynomials on gl(r,R) is also generated by the coefficients fk(X)
of the characteristic polynomial

det(λ I +X) =
r

∑
k=0

fk(X)λ r−k.

The characteristic classes associated to f1(X), . . . , fk(X) generalize the Pontrjagin
classes of the frame bundle Fr(E) of a real vector bundle E of rank r. (For a real
frame bundle the coefficients fk(Ω) vanish for k odd.)

Problems

32.1. Polynomials on a vector space
Let V be a vector space with bases e1, . . . ,en and u1, . . . ,un. Prove that if a function
f : V → R is a polynomial of degree k with respect to the basis e1, . . . ,en, then it is
a polynomial of degree k with respect to the basis u1, . . . ,un. Thus, the notion of a
polynomial of degree k on a vector space V is independent of the choice of a basis.

32.2. Chern–Weil forms
In this problem we keep the notations of this section. Let e1, . . . ,en and u1, . . .un be
two bases for the Lie algebra g with dual bases α1, . . . ,αn and β 1, . . . ,β n, respec-
tively. Suppose

Ω = ∑Ωiei = ∑Ψ ju j

and

f = ∑aIα i1 · · ·α ik = ∑bIβ i1 · · ·β ik .

Prove that

∑aIΩi1 ∧·· ·∧Ωik = ∑bIΨi1 ∧·· ·∧Ψik .

This shows that the definition of f (Ω) is independent of the choice of basis for g.

32.3. Connection on P× I
Show that the 1-form ω̃ in (32.2) is a connection on P× I.

32.4. Chern–Weil homomorphism
Show that the map w : Inv(g)→ H∗(M) in (32.3) is an algebra homomorphism.
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