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Abstract. An accurate method for localising and segmenting interverte-
bral discs in magnetic resonance (MR) spine imaging is presented. Atlas-
based labelling of discs in MRI is challenging due to the small field of
view and repetitive structures, which may cause the image registration
to converge to a local minimum. To tackle this initialisation problem, our
approach uses Vantage Point Hough Forests to automatically and
robustly regress landmark positions, which are used to initialise a dis-
crete deformable registration of all training images. An image-adaptive
fusion of propagated segmentation labels is obtained by non-negative
least-squares regression. Despite its simplicity and without using specific
domain knowledge, our approach achieves sub-voxel localisation accuracy
of 0.61 mm, Dice segmentation overlaps of nearly 90% (for the training
data) and takes less than ten minutes to process a new scan.

1 Introduction and Related Work

Automatic analysis of vertebras intervertabral discs in clinical 3D volumes of
the spine is useful for diagnosis, monitoring of disease progression, image-guided
surgical interventions and population studies [16]. While segmenting and local-
ising vertebra bodies have been predominantly performed in CT scans [8,9,15],
the soft tissue contrast and non-ionising acquisition of magnetic resonance imag-
ing (MRI) makes it the preferred modality for intervertabral disc analysis [2,3].
Automated analysis of spine images, which has seen increased research interest
over the last years (also due to the SpineWeb! initiative), is challenging due to
the repetitive appearance of vertebras, restricted field-of-views. Therefore apply-
ing standard segmentation propagation approaches (multi-atlas segmentation)
can easily fail [9] and/or require very long processing times. Thus model-based
approaches [15], the integration of graphical model information [4,19] as well as
regression forests [2,3,8] have been employed to increase robustness for finding
and labelling the correct structures. The goal of the “Automatic Intervertebral
Disc Localization and Segmentation from 3D Multi-modality MR (M3) Images”
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challenge held in conjunction with MICCAI 2016 is the identification, localisa-
tion and segmentation of seven discs, which are mainly within the lumbar spine.

Our work follows a similar methodological approach as [2,9]. First, we
robustly localise the 3D position of the seven discs using a combination of a
regression forest, Hough accumulation and a graphical model. Second, we use
these positions to initialise a fast, discrete multi-atlas registration framework,
which is followed by a non-negative least-squares regression of the most likely seg-
mentation label. These 3D segmentations are then employed to refine the local-
isation estimation. While we build upon previous work, our approach contains
elements that are (to the best of our knowledge) new to automatic spine segmen-
tation/localisation. First, instead of using a supervised axis-parallel regression
forest we adapt the recent concept of vantage-point forests [12] for regression,
which has been shown to outperform random forests for multi-organ segmenta-
tion. Here, the whole length of a binary context feature vector is used to cluster
the data meaningfully without being reliant on ground truth information during
tree generation. Second, the combination of very fast deformable registration
[10] and regression-based label fusion algorithms [14] enables processing times of
less than ten minutes for a multi-atlas label fusion (MALF) reducing the time
requirements compared to most state-of-the-art approaches substantially.

The paper is outlined as follows: we begin by describing our vantage point
regression forests in Sect. 2, which is followed by a vote accumulation in Hough
space and a simple spatial regularisation of candidates using a graphical (Markov
chain) model for an accurate prediction of all disc centres in a new unseen scan.
Note, that our approach does not make any specific use of domain knowledge and
would therefore be applicable to other anatomical localisation tasks. Afterwards,
the multi-atlas registration and label fusion framework is presented based on
[10,14] in Sect.3. A detailed flow-chart of all algorithmic steps is presented in
Fig. 1. Finally, we present our experiments and results on the training dataset of
the challenge in Sect. 4 and discuss our conclusion in Sect. 5. Note, that currently
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Fig. 1. Flow-chart of our proposed algorithm for accurate intervertabral disc localisa-
tion and segmentation. First, initial locations of disc centres are robustly found using
vantage point forests and a graphical model. Next, the disc centres are used as known
correspondences to initialise a deformable registration using a thin-plate spline (TPS)
warp. Finally, multi-atlas label fusion is performed for accurate voxelwise segmentation
and a refinement of disc centres.
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we only employ the standard proton MRI sequence, but further improvements
are to be expected when using all multi-modal scans.

2 Regression of Intervertabral Disc Centres

In order to analyse new scans completely automatically a robust initialisation
of the correct disc positions is often necessary. A common problem for disc
localisation in MR spine images is the confusion of two neighbouring discs due
to their similarity and missing anatomical context (abdominal organs are not
clearly visible in the field-of-view). We build our regression upon the recent
concept of vantage point forests [12]. Since, a global localisation is sought, we
sample patches on a uniform grid of locations x; across the whole image domain.
In training the position of seven ground-truth disc centres yj is obtained as the
centre of mass of the provided segmentation masks.

An intensity patch P; € RIFl (with L being the set of voxels), which is
smoothed by a Gaussian kernel with variance og, will be represented by a feature
vector h; € H", where h;; € {£1} defines the d-th dimension of the vector h;q
corresponding to sample 7. For this specific application, we restrict the feature
values to be binary (in Hamming space H") and can be simply obtained by a
comparison of two random locations (g, r) within the patch:

hig = +1 if P;i(q) > Pi(r) for (q,7) € L and h;q = —1 else (1)

as done in previous work on organ or keypoint localisation [1,17]. Note, that
the same random sampling layout is used for every location. The use of binary
features improves robustness against contrast variations often present in MRI
scans [17]. The vantage point tree [20] is a data-structure that is suitable to
cluster high-dimensional feature spaces into nested hyperspheres. In contrast to
previous work on regression forests for landmark localisation [4,8], we do not
perform supervised node optimisation but simply choose a random data point j
from the current node (vantage point) for clustering as follows. The Hamming
distance dg (4,5) = ||h; — h;||m (of the whole feature vectors) to all other data
points ¢ within the current node is calculated and the median distance 7 is used
as threshold to split the data into two equal-sized sets that form the left and
right predecessor (child) nodes (see [12] for more details and an implementation).
When reaching the leaf node a displacement vector d¥ = y* — x; is stored for
every sample ¢ and every landmark k € {1,2,...,7}. Using the full binary feature
vectors enables very discriminative splits even without explicitly modelling the
distribution of displacement vectors and is computationally very efficient due to
the implementation of the Hamming weight as popcount instruction in current
CPUs [1]. A distance threshold 0.y can be used to discard votes (during testing)
from very far away locations. An ensemble of several randomly different vantage
point trees is built to increase the generalisation.

During test the same random sampling layout is used as in Eq. 1 to extract
binary feature vectors for a set of regular grid locations x;. After traversing
each tree all training exemplars are collected and only the displacement vote of
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the one (d;) with lowest Hamming distance with respect to the test sample is
retained. Effectively, vantage point forests enable a very efficient approximate
nearest neighbour search in Hamming space. The votes of all test locations (with
offset vectors x; + d% ) are accumulated in 7 Hough volumes H* (one for each
landmark, cf. [4,6]), which are later smoothed by a Parzen window kernel with
opn. Finally, a graphical model [18] is used to impose spatial constraints and
avoid confusions of neighbouring discs (which occurred twice for all 56 discs
in training). Dynamic programming is applied to all possible pair-wise combi-
nations of candidates of neighbouring discs. The unary term for the model is
chosen to be the negative exponential of the accumulated Hough votes for any
image location, which results in probability maps H* of same size as the input
image. The pairwise regularisation cost (weighted by A) is the squared Euclidean
distance between (average) model offset y* = 1 3" | (y¥ —y¥*1) and difference
between the two respective locations:

I[x; —Xj —WHQ

E(xi,x;,k, H) = exp(—H*(x;)) + A ||7\|
y

(2)

The minimum of E(x;,x;,k, H) for each possible combination (x;,x;) for two
connected landmarks (k,k 4+ 1) can be computed in linear complexity using
distance transforms of sampled functions [5]. Marginal distributions of the like-
lihood (or vice-versa uncertainty) of the position of all landmark positions can
be obtained following [11,19].

3 Multi-atlas Registration and Label Fusion

The publicly available non-parametric discrete registration tool deeds of [10]
was used due to its computational efficiency and good results for MRI segmen-
tation propagation. Given the estimated landmark localisations for a test scan
(using the outcome of the previous section) and the ground truth information
in training scans, we generate bounding boxes (using average disc sizes) and
match a thin-plate spline transformation to their corner points. This transfor-
mation is used to pre-align all training images (and segmentation masks). Local
cross correlation with a radius of r = 3 was used as similarity metric together
with a Gaussian smoothing of 1.2 voxels and symmetry constraint for regulari-
sation. The default multi-resolution and search range settings were used. Each
deformable registration took around 60s.

Following the well-known concept of multi-atlas label fusion (MALF), we
estimate a local weighting for each (of the 7) registered atlas scan based on
local cross correlation and a non-negative least square regression [14]. This step
produces spatially coherent and accurate disc segmentations (see Fig.2(c)), is
very fast in practise (=10s), and can effectively compensate registration errors.
Afterwards, the disc locations are re-estimated as the centre of mass of the fused
segmentation labels for improved accuracy.
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4 Experiments and Results on Training Data

In our experiments the combination of vantage point forests, Hough aggrega-
tion and this simple graphical model (see example results in Fig.2) achieved
very robust results (without a single misclassification of intervertebral discs)
and required less tuning than random regression forests (for which we could
not find sufficient settings for all training cases). We smoothed patches with
op=2.5mm, used n = 320 binary features drawn randomly within a radius of
25 mm, a stride of 4 voxels for the regular grid of voting voxels x;, and built 15
trees with a leaf size termination of 5. The application of the model to a test
scan took approx. 2s (including Hough aggregation and graphical model). The
Parzen kernel for Hough aggregation was oy = 3.75 mm, the distance threshold
Omax = 37.5 mm and the regularisation weighting A = 2. We obtained an average
localisation error of 7.09 mm (max: 39 mm) without and 3.87 mm (max: 10 mm)
with graphical model (see Table 1). While a lower error could easily be achieved
by including a (cascaded) refinement stage [3,7], we are here mainly interested in
the robustness of this step, since small misalignments will easily be corrected by
the following deformable registration. After applying the multi-atlas registration
and label fusion of Sect. 3, we achieve very high segmentation overlap (with an
average Dice of 0.89) and a very low disc location error of 0.69 mm (the scan
resolution is 1.25 mm?) using the centre-of-mass re-estimation.

Table 1. Quantitative evaluation of our vantage point Hough forest regression (VPF).
The robustness is increased by a subsequent graphical model (MRF). When used to
initialise a fast multi-atlas registration and label fusion (MALF), very low localisation
and segmentation surface distances as well as high Dice scores are achieved.

Method Metric avg. | #1 | #2 #3 #4 #5 | #6 | #7 #8
MALF w/o regr. | Localisation |5.51 |0.75|37.58 |2.79 |0.48 |0.71/0.53|0.79 |0.50
(mm)
Surface dist. |3.34/0.5219.92 |3.65 |0.56 |0.440.390.40 |0.85
(mm)

Dice overlap |0.76|0.89/0.02 | 0.70 |0.90 |0.880.89|0.90 |0.88
VPF+Hough Localisation |7.09 |4.10 | 12.44 | 12.60 | 9.25 |3.442.52|5.58 |6.80

(mm)
Loc. max 5.72|39.89 | 38.41 | 39.81 | 5.32 5.79 | 26.82 27.31
(mm)

+MRF Localisation | 3.87 |3.87 2.90 |3.78 |5.25 |3.08 4.16 3.91 | 3.97
(mm)
Loc. max 5.51|7.07 6.38 893 |5.50 7.86 7.68 | 10.05
(mm)

+MALF Localisation | 0.61 | 0.76 |0.57 |0.52 |0.53 | 0.68 0.50 0.84 | 0.50
(mm)
Surface dist. |0.38 0.37 0.39 | 0.39 |0.38  0.36 0.36 0.35 | 0.39
(mm)

Dice overlap |0.89|0.89/0.89 1090 |0.91 |0.890.89|0.90 |0.88
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(a) Overlay with ground truth (b) MALF with linear init. (¢) MALF with VPF init.
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Fig. 2. Sagittal slice of 3D MRI of case B with segmentations of all seven discs overlaid
in colour. (a) Ground truth manual segmentation. (b) Misaligned segmentations using
standard multi-atlas label fusion (MALF) due to poor initialisation. (¢) Proposed van-
tage point forest regression improves overlap and successfully segments all discs as it
provides better initialisation for MALF. Best viewed in colour. (Color figure online)

5 Discussion

We have presented a simple yet very robust and fast method for finding anatom-
ical landmarks (intervertebral discs) in spine MRI scans. The use of (unsu-
pervised) vantage point forest together with discriminative binary feature vec-
tors enables very good regression results without tuning of different trade-offs
between classification and regression in supervised random forests. A subse-
quent multi-atlas registration and label fusion (initialised using a thin-plate
spline transform obtained from this automatic disc localisation) achieve a Dice
score of 89% on average and a refined average localisation error of 0.69 mm with
a processing time of ~10min per unseen scan. Further improvements may be
obtained by employing all multi-channel MR, sequences (here we only used the
proton MRI), which could be easily integrated using [13]. The source-code for all
processing steps will be made available on http://mpheinrich.de/software.html.
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