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Abstract. We describe a system for fully automatic vertebra localisa-
tion and segmentation in 3D CT volumes containing arbitrary regions of
the spine, with the aim of detecting osteoporotic fractures. To avoid the
difficulties of high-resolution manual annotation on overlapping struc-
tures in 3D, the system consists of several 2D operations. First, a Ran-
dom Forest regressor is used to localise the spinal midplane in a coronal
maximum intensity projection. A 2D sagittal image showing the mid-
plane is then produced. A second set of regressors are used to localise
each vertebral body in this image. Finally, a Random Forest Regression
Voting Constrained Local Model is used to segment each detected ver-
tebra.

The system was evaluated on 402 CT volumes. 83% of vertebrae
between T4 and L4 were detected and, of these, 97% were segmented
with a mean error of less than or equal to 1mm. A simple classifier was
applied to perform a fracture/non-fracture classification for each image,
achieving 69% recall at 70% precision.

1 Introduction

Osteoporosis is a common skeletal disorder characterised by a reduction in bone
mineral density (BMD). This is commonly assessed using dual energy X-ray
absorptiometry (DXA); a T-score of <-2.5 (i.e. more than 2.5 standard devia-
tions below the mean in young adults) [13] is used as a criterion suggesting osteo-
porosis. It significantly increases the risk of fractures, most commonly occurring
in the hip, wrist or vertebrae. Approximately 40% of postmenopausal Caucasian
women are affected, increasing their lifetime risk of fragility fractures to as much
as 40% [13]. Osteoporosis therefore presents a significant public health problem
for an ageing population. However, between 30%–60% of vertebral fractures may
be asymptomatic and only about one third of those present on images come to
clinical attention; they are frequently not reported by radiologists, not entered
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into medical records, and do not lead to preventative treatments [8]. Many of
these cases involve images acquired for purposes other than assessment for the
presence of vertebral fractures, so identification may be opportunistic. However,
a recent multi-centre, multinational prospective study [9] found a false nega-
tive rate of 34% for reporting vertebral fractures from lateral radiographs of the
thoracolumbar spine. The potential utility of computer-aided vertebral fracture
identification systems is therefore considerable. Modern clinical imaging is pri-
marily digital, with images acquired in Digital Imaging and Communications in
Medicine (DICOM) format and stored on a Picture Archiving and Communi-
cation System (PACS). A system that could query a PACS to extract images
that include the spine, automatically segment vertebrae, detect any abnormal
shape, and report suspect images for further investigation by a radiologist, would
therefore be particularly valuable.

CT is arguably the ideal modality for opportunistic osteoporotic vertebral
fracture identification, due to the large number of procedures (4.3 million per year
within the UK National Health Service [12]) and the high image quality. However,
a recent audit at the Manchester Royal Infirmary revealed that only 13% of such
fractures visible on CT images were identified [15], similar to identification rates
reported in the literature [1]. Proposed reasons for such low rates [1] include the
difficulty of identifying vertebral height reduction on axial images. Routine pro-
duction of coronal and/or sagittal reformatted images has been proposed, and is
being adopted, but reporting rates on such images remain low [1].

We describe a system for fully automatic localisation and segmentation of
vertebrae in sagittal reformatted CT image volumes covering arbitrary regions
of the spine, based on landmark point annotation. Manual annotation on 3D
spinal images for model training would be a challenging task, due to the large
number of points required to quantify vertebral shape accurately. Therefore, sev-
eral 2D operations are used. A coronal maximum intensity projection (MIP) of
the volume is produced, highlighting the bony structures. Random Forest (RF)
Regression Voting (RFRV) is used to localise points on the spine. This takes
advantage of the fact that the patient is supine in the CT scanner, and so is not
subject to arbitrary rotation in the axial image plane. A single, thick-slice, 2D
sagittal image is then produced, showing the midplanes of all vertebrae present.
A second set of RF regressors is used to localise the posterior-inferior vertebral
corners in this image. Both of these initialisation stages are based on the algo-
rithm described in [4]. Finally, the vertebral corner points are used to initialise
a Random Forest Regression Voting Constrained Local Model (RFRV-CLM),
based on [3], which provides a high-resolution segmentation of the vertebrae
allowing subsequent shape measurement. These algorithms are described briefly
in Sect. 2. The reader is referred to [3,4] for a more complete description, and
discussion of related literature.
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2 Method

2.1 Random Forest Regression Voting

Random Forest Regression Voting (RFRV) uses a RF [2] regressor to localise
a landmark, trained to predict the offset to that point based on local patches
of image features. The training data consists of a set of images I with manual
annotations xl of the point on each. Random displacements dj are generated by
sampling from a uniform distribution with apothem dmax and the same dimen-
sionality as the images. Image patches of area w2

patch are extracted at these
displacements from xl in each training image, and features fj are derived from
them. Haar-like features [14] are used, as they have proven effective for a range
of applications and can be calculated efficiently from integral images. To allow
for inaccurate initial estimates of pose during model fitting, and to make the
detector locally pose-invariant, the process is repeated with random perturba-
tions in scale and orientation. A RF is then constructed; each tree is trained on
a bootstrap sample of pairs {(fj ,dj)} from the training data using a standard,
greedy approach. At each node, a random set of nfeat features is chosen, and a
feature fi and threshold t that best split the data into two compact groups are
selected by minimising an entropy measure [11]. The process is terminated at a
maximum depth Dmax or minimum number of samples Nmin, and repeated to
generate a forest of ntrees.

2.2 RFRV Initialiser Fitting

The coronal and sagittal initialisation algorithms used here are based on [4],
and use RF regressors trained as described in Sect. 2.1. An exhaustive search
is performed over a query image, by defining a grid of positions with a spacing
of 3 pixels. The RFs are applied at each position, and give predictions of the
displacement to the landmarks. The search is repeated at a range of angle and
scale variation: −0.8 to 0.8 radians in steps of θr = 0.1, and scales from 0.1
to 4 in rational/integer steps. The predicted landmark locations from each tree
are collected in a Hough-style voting array. An RF trained to localise a point
on a specific vertebral level will respond strongly to the equivalent points on
neighbouring vertebrae, due to their similar shapes, predicting the closest to
each search position. Full coverage of the spine can be achieved by training a
single RF on concatenated data {(fj ,dj)} from multiple levels. Alternatively,
RFs can be trained on each level and applied in parallel, voting into a single
array. The array is then smoothed using a Gaussian kernel of standard deviation
twice the resolution of the search grid, allowing detection of modes using nine-
way maximum. Modes with weights lower than 20% of the strongest response
are discarded. (In contrast to [4], no additional weighting of the modes was used
here). A graphical method is then used to extract an ordered, linked set of modes,
representing landmarks on all visible vertebra, and to discard false detections.
Starting from the strongest mode, an iterative search is performed in the local
inferior and superior directions, determined from the average pose of the RFRV
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detections for that mode. At each iteration, the closest mode within an angle
constraint of θt = 2θr is added to the set, terminating when no further modes
meet the constraint.

2.3 Constrained Local Models (CLMs)

The CLM [7] uses a statistical shape model (SSM) to constrain the fitting of
multiple, independent RFRVs for a set of landmarks. The training data consists
of a set of images I with manual annotations xl of a set of N points l = 1...N
on each. The images are first aligned into a standardised reference frame using
a similarity registration, giving a transformation T with parameters θ, and then
resampled into this frame by applying Ir(m,n) = I(T−1

θ (m,n)), where (m,n)
specify pixel coordinates. The reference frame width, in pixels, is controlled by a
parameter wframe, allowing variation of the resolution of the resampled images.
The concatenated, reference-frame coordinates of the points in each training
image define its shape; the SSM is generated by applying principal component
analysis (PCA) to the set of training shapes [5]. This yields a linear model of
shape variation, giving the position of point l

xl = Tθ(x̄l + Plb + rl) (1)

where x̄l is the mean point position in the reference frame, Pl is a set of modes of
variation, b encodes the shape model parameters, and rl allows small deviations
from the model. For each point l = 1...N , an RF Rl is trained as described in
Sect. 2.1, using data from the resampled images.

2.4 RFRV-CLM Fitting

The fitting of a RFRV-CLM to a query image Iq is initialised via an esti-
mate of pose (b and θ) from a previous model or a manual initialisation. The
image is resampled in the reference frame using the current pose Iqr(m,n) =
Iq(T−1

θ (m,n)). For each point l, a grid of locations zl is defined covering a search
range of apothem dsearch around the initial estimate of its position. Regressor Rl

is applied to the image features extracted from the local patch around each grid
location. Each tree in Rl predicts the offset to the true point position, and casts
a vote into an accumulator array Cl at the predicted position. This is performed
independently for each point. The shape model places a constraint on the results
from all regressors. The quality of fit Q is given by

Q(p) = ΣN
l=1Cl(Tθ(x̄l + Plb + rl)) s.t. bTS−1

b b ≤ Mt and |rl| < rt (2)

where Sb is the covariance matrix of shape model parameters b, Mt is a threshold
on the Mahalanobis distance, and rt is a threshold on the residuals. Mt is chosen
using the cumulative distribution function (CDF) of the χ2 distribution so that
98% of samples from a multivariate Gaussian of the appropriate dimension would
fall within it. This ensures a plausible shape by assuming a flat distribution
for model parameters b constrained within hyper-ellipsoidal bounds [6]. Q is
iteratively optimised, over parameters p = {b, θ, rl}, as described in [11].
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2.5 Data Collection and Manual Annotation

The PACS (Centricity Universal Viewer, GE Healthcare, Little Chalford,
Buckinghamshire, UK) at Central Manchester University Hospital NHS Trust
(CMFT) was queried to produce a list of CT scans acquired during May and June
2014 and January to September 2015. The scans that (a) were from non-trauma
patients, (b) included any part of the thoracic or lumbar spine and (c) were of
patients over 18 years of age, were selected. This gave a list of 868 patients’ scans.
The CMFT PACS was also queried for non-trauma CT scans during January to
April and July to December 2014 in patients over 60 years of age that contained
osteoporotic vertebral fractures, producing a second list of 132 patients. The
sagittal reformatted volumes from both lists were downloaded in DICOM for-
mat. 402 volumes were selected to form a training set for the models, including
the 132 fracture-rich images to ensure high fracture prevalence. The remaining
images were reserved for validation purposes. The 402 image list was divided into
quarters for leave-1/4-out training and testing, with the fracture-rich images dis-
tributed evenly. Each volume was up-sampled to give isotropic voxel dimensions,
equal to the smallest voxel dimension from the original volume, using tri-cubic
interpolation.

A coronal MIP was generated from each image volume, and manual annota-
tion of a landmark on the neural arch of each visible vertebra was performed.
2D sagittal images were generated from each volume, as described Sect. 2.6, by
summing all sagittal slice rasters within ±5mm of the plane defined by the coro-
nal annotations. This thickness was chosen by manual inspection of the results,
to minimise blurring of the endplates whilst ensuring that the middle of each
endplate was visible. High-resolution manual annotation of 33 points on each
vertebral body between T4 and L4 inclusive was then performed on the sagittal
images by trained radiographers. Finally, each annotated vertebra was classified
by an expert radiologist as normal, deformed but not fractured, or grade 1, 2 or
3 osteoporotic fracture, according to the Genant definitions [10].

2.6 Midplane Image Extraction

Osteoporotic vertebral fractures typically develop as a depression of the middle
of the vertebral endplates (biconcave fracture), followed by anterior collapse
of the vertebral body (wedge fracture) and posterior collapse (crush fracture).
Therefore, height reductions must be measured at the endplate midplanes to
avoid underestimation of the fracture severity. If the superior-inferior axis of the
subject is not aligned exactly with the CT scanner, or if any degree of scoliosis is
present, then no single slice of the sagittal reformatted volume will pass through
all midplanes. Therefore, an algorithm was developed to extract a 2D image
along the spine midplane. First, a coronal maximum intensity projection (MIP)
was produced from the volume, to show the bony structures. In particular, the
point at which the laminae join to form the spinous process of the neural arch
is a distinctive, U-shaped structure on each vertebra in such images (Fig. 1a).
These points were manually annotated on each image (see Sect. 2.5).
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Fig. 1. (Top left) An example coronal MIP of a CT volume; note the presence of
confounding structures both outside (cardiac monitoring equipment) and inside (from
previous abdominal surgery) the subject. (Top centre) Manual annotations of the neural
arch, with the undisplaced sample regions used in RF training. (Top right) Density
plot of the Hough voting array from the RF search. (Bottom left) Modes of the array.
(Bottom centre) Result of linking and filtering; red links are those rejected by the filter.
(Bottom right) Extrapolated piecewise-linear curve through the filtered modes (solid
line) and the ±5mm range (dashed line) over which sagittal rasters were summed to
produce the sagittal projection. (Color figure online)

A RF regressor was then trained to localise the neural arch points as described
in Sect. 2.1. Undisplaced sample patches were defined by using half of the average
vector to the neighbouring points as the apothem of a square region of interest
(ROI) (Fig. 1b). Free parameters were set to the values given in [4], and a single
RFRV was trained using data from all points. Example images of each stage
of the algorithm are shown in Fig. 1. Several confounding structures are visible
inside and outside the body. The algorithm was robust to such features, but did
produce false detections on some non-spine bony structures, such as the pelvis
and mandible. Therefore, a filtering stage was implemented. Any image with
fewer than four detections was removed from the analysis. The median Lm of
the distances between neighbouring modes was then calculated. If the first or
last mode in the list was further than 3Lm from its neighbour, it was removed.
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The final set of ordered, filtered modes defined a midplane through the vol-
ume, and was used to extract a 2D sagittal image. A piecewise-linear curve was
defined through the modes; at the extremities, it was extrapolated vertically
to the boundary of the volume (Fig. 1f). For each axial slice from the original
volume, all anteroposterior raster lines (i.e. rasters of sagittal slices) that passed
within Dt of this curve were averaged to give a single raster line of a sagittal
image. Repeating this for all axial images gave a single, thick-slice, 2D sagittal
image that showed the midplane of each vertebra, but remained in the coordi-
nate system of the original volume, so points annotated onto it could be directly
translated to projections of a different Dt. In the remainder of this paper, “man-
ual” and “automatic” projection refer to images produced from the manual and
automatic annotations on the coronal MIP images, respectively.

2.7 Vertebra Localisation

Next, a set of RF regressors was trained to detect the inferior corners of each
vertebral body present in the sagittal projection images. Manual annotations of
the vertebrae from T4 to L4 were performed as described in Sect. 2.5 (Fig. 2a).
As in [4], undisplaced sample patches were defined as square ROIs with the two
lower endplate corner points at proportional positions of (0.25, 0.75) and (0.75,
0.75) (Fig. 2b). One RF regressor was trained for each vertebral level from T5
to L3, using only images where both neighbors were present, to prevent strong
responses to the boundaries of the image volume.

Fitting and extraction of a linked set of modes xl, l = 1...nm proceeded as
described in Sect. 2.6 (Fig. 2). The aim was to use the detected vertebral corners
to initialise an RFRV-CLM that modeled a triplet of neighbouring vertebrae,
so it was essential to deal with any missing detections. Therefore, several filters
were applied. First, all images with fewer than three detections were discarded,
as they could not provide a reliable initialisation. In each image, the distance
between neighbouring modes was compared to the median distance between all
pairs of neighbours. Where the ratio was greater than 1.5, the most probable
number of missed detections nl was

nl =
⌊

Ll

μ1/2(L)
+ 0.5

⌋
−1 where L = {Ll |Ll = ||xl+1 −xl|| ∀i ∈ {1, nm −1}}

(3)
where μ1/2(.) represents the median, and nl points (0.0, 0.0) were entered into
the list to represent missing detections. Where this left a singlet or doublet of
modes at the end of the list, these were removed. Finally, all modes outside the
range of the detections from the coronal initialisation (Fig. 2c) were removed.

2.8 High-Resolution Vertebral Segmentation

Finally, a high-resolution segmentation of the vertebrae detected by the sagit-
tal initialisation algorithm was performed using an RFRV-CLM (see Sects. 2.3
and 2.4). The model used a 2-stage, coarse-to-fine RFRV-CLM covering a triplet
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Fig. 2. (Top left) An example ±5mm manual sagittal image projection from a CT
volume, with high-resolution manual annotation. (Top centre) Inferior corner points,
used to define sampling ROIs for RF training. (Top right) ±5mm automatic sagittal
image projection, with the manual annotations superimposed; the red lines show the
extent of the RFRV annotations on the coronal maximum intensity projection. (Bottom
left) Smoothed Hough voting array of the posterior-inferior corner point regressors.
(Bottom centre) Modes of the Hough voting array, detected using a nine-way maximum.
(Bottom right) Result of linking and filtering; red points are those rejected by the filters.
(Color figure online)

of vertebrae with 33 points on each. It was trained on all triplets of vertebrae from
the training images. All free parameters were set to the values given in [3]. Fit-
ting was initialised using the filtered list of posterior-inferior corner points from
the sagittal regressor described in Sect. 2.7. All points represented as (0.0, 0.0)
were considered to be undefined. The model was fitted to all triplets of neigh-
bouring vertebrae with at least two defined points. Points from the fitted models
were then concatenated to give the final segmentation (Fig. 5a). Averaging was
not applied; where two models covered a single vertebra, points from the central
vertebra in a triplet were used in preference to those from an extremal vertebra,
and only points on vertebrae with a defined initialisation point were used.

3 Evaluation

Training and testing of the system on the 402 images was performed in a leave-
1/4-out fashion. Errors for the coronal initialisation were measured as the mean
of the minimum Euclidean distances, over each image, between the detected
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Fig. 3. Cumulative distribution functions showing the accuracy of the coronal and
sagittal initialisation algorithms, before and after filtering. (Left) The mean P2C error
of points on the spine midline in each image produced by the coronal regressors. (Right)
The mean P2P error of posterior-inferior vertebral corner points in each image produced
by the sagittal regressors.

points and a piecewise linear curve through the manual annotations (P2C error).
For the sagittal initialisation, they were measured as the mean of the Euclidean
distance, over each image, between the detected points and the closest manually
annotated posterior-inferior vertebral corner point (P2P error). In both cases,
detections outside the axial range of the manual annotations, ±half of the median
vertebra height, were removed from the analysis to avoid penalising accurate
detections of vertebra that had not been manually annotated.

Figure 3 shows CDFs of the coronal initialisation errors. Prior to filtering,
94.3% of the midplanes had a mean error of ≤ 5mm, and this rose to 98.3% after
filtering. The difference at ≤ 10mm was small (98.3% and 99.2%). Therefore, as
with the manual projections, a thickness of Dt = ±5mm was used for automatic
sagittal projection1. The filtering removed 41 images (10.2%). Figure 3 also shows
CDFs of the sagittal initialisation errors. The mean errors across all points in
all images were 2.14 mm prior to filtering, and 1.34 mm after; the medians were
0.98 mm and 0.96 mm, respectively. At the higher end of the CDF, 97.5% of all
points in all images achieved ≤ 5mm prior to filtering, rising to 99.4% after
filtering. The filtering removed 27 images from the analysis i.e. 6.7%, for a total
of 16.9% removed during both initialisation stages.

An example of RFRV-CLM annotation on an automatically projected image
with automatic sagittal initialisation is shown in Fig. 5a. Again, any vertebrae
where the centroid lay outside the axial range of the manually annotated verte-
brae, ±half of the median vertebral height, were eliminated from the analysis.
The error for each vertebra was then calculated as the mean of the minimum
Euclidean distances between each automatic annotation and a piecewise-linear
curve through the manual annotations (P2C error). Correspondence between

1 The remainder of the evaluation was repeated with Dt = ±10mm, but this pro-
duced no improvements in the accuracy of subsequent stages, and the results are not
reported here.
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Fig. 4. Cumulative distribution functions of P2C error for high-resolution annotations
on vertebrae using manual (left) and automatic (right) coronal and sagittal initialisa-
tion, divided by vertebral classification.

Table 1. Statistics of the mean point-to-curve errors on each vertebra after RFRV-
CLM fitting, using manual and automatic initialisation.

Diagnosis % of Sample Manual initialisation Automatic initialisation

Median (mm) % > 2mm % Detected Median (mm) % > 2mm

Normal 64.7% 0.24 0.55% 84.7% 0.27 0.83%

Deformed 25.2% 0.30 1.29% 84.9% 0.32 1.51%

Grade 1 2.84% 0.27 0.00% 75.0% 0.30 0.00%

Grade 2 3.71% 0.34 0.68% 71.3% 0.41 4.87%

Grade 3 3.59% 0.56 7.27% 56.8% 0.57 11.11%

automatically and manually annotated vertebrae was established by calculating
this error for all manual vertebrae, and taking the smallest response. Figure 4
shows CDFs of these errors for both the fully automatic system, and for RFRV-
CLM fits to manual sagittal projections, initialised using manual annotations on
the vertebral corners. Numerical data derived from these curves, together with
the percentages of all vertebrae between T4 and L4 detected (including those in
images discarded during the initialisation stages) are given in Table 1, using a
mean error of ≥ 2mm to indicate fit failure. The results show that automatic
coronal and sagittal initialisation had little effect on the accuracy of successful
RFRV-CLM fits. However, they did lead to a 4 percentage point rise in fit fail-
ures on moderate and severe fractures. Overall, 67.2% of the fractured vertebrae
were detected by the fully automatic system, of which 89.1% were successfully
fitted according to the ≥ 2mm threshold.

The significance of the segmentation accuracy was evaluated by applying
a simple classifier, based on six-point morphometry, as described in [3]. The
anterior ha, middle hm and posterior hp heights of each detected vertebra were
calculated from the relevant points, together with a predicted posterior height
hp′ , calculated as the maximum of the posterior heights of the four closest ver-
tebrae. The wedge rw = ha/hp, biconcavity rb = hm/hp, and crush rc = hp/hp′
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Fig. 5. (Top left) Example RFRV-CLM fit based on automatic coronal and sagittal
initialisation. (Top right) Biconcavity and wedge ratios for all detected vertebrae. (Bot-
tom left) ROC curves for classification of vertebrae, based on 6-point morphometry, for
manual annotations and RFRV-CLM fits with stages of manual and automatic projec-
tion (MP and AP, respectively) and initialisation (MI and AI, respectively). (Bottom
right) Precision-recall curves for classification of images.

ratios were derived, and the data were whitened by subtracting the medians of
each ratio and dividing by the square-root of the covariance matrix, calculated
using the median standard deviation. The data contained far more normal than
deformed or fractured vertebrae, and so this process whitened to the distribution
of the normal class. A scatter plot of rb and rw for all detected vertebrae between
T4 and L4 is shown in Fig. 5b. A simple fracture/non-fracture classification was
performed by applying a threshold to r2c + r2b + r2w; deformed vertebrae were
counted correct when classified into either class. This was applied to the manual
annotations, the RFRV-CLM fits on manually projected images initialised from
both manual and automatic corner points, and to the fully automatic system.
Receiver-operator characteristic (ROC) curves produced by varying the thresh-
old are shown in Fig. 5d. The classifier achieved 80% sensitivity at a 10% false
positive rate. More importantly, however, the fully automatic system achieved
sensitivities no worse than 2% points lower than classification from manual pro-
jection and annotation, at any threshold.

The classifier was also applied on a per-image basis. This simulated the use
of the system in clinical practice, as described in Sect. 1, to generate a list of
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potentially fracture-containing images. A threshold on r2c + r2b + r2w was used to
classify each automatically detected vertebra, and classify the images into two
groups: all vertebrae normal; some vertebrae fractured. Images filtered out during
initialisation were classified as fractured. Manual diagnoses were used to classify
the images into normal and fractured groups, counting non-fracture deformi-
ties as normal. Figure 5d shows precision-recall curves produced by varying the
threshold. Note that curves for automatic initialisation do not reach (0, 1), due
to the filtered images being classified as fractured. The fully automatic system
achieved 69% recall (higher than current clinical practice; see Sect. 1) at 70%
precision (i.e. 2/3 of reported images contained fractures).

4 Conclusion

The strikingly low detection rates for osteoporotic vertebral fractures on CT
image volumes in clinical practice create an opportunity for an automatic system
that can draw attention to images containing fractured vertebrae. The high
image quality and 3D nature of CT volumes allow the automatic extraction
of a single, thick, 2D sagittal slice that shows the vertebral midplanes, and
does not suffer the problems of overlapping bony structures (ribs, scapulae and
iliac crests) that make accurate vertebral segmentation difficult in alternative
modalities such as DXA. Robust and accurate segmentation can then be achieved
using a RFRV-CLM, allowing quantification of vertebral shape. This paper has
shown that, even using a simple classifier, detection rates can be achieved that
exceed those found in clinical practice. In future work, we intend to investigate
the use of more accurate classifiers. The shape parameters of the SSM that
forms part of the RFRV-CLM would provide a more complete quantification
of vertebral shape than the six-point morphometry approach described above.
However, osteoporosis also changes the texture of bone, since it affects horizontal
trabeculae more than vertical ones. Therefore, classifiers based on both shape
and texture will also be investigated.
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