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Abstract. X-ray is a common modality for diagnosing cervical verte-
brae injuries. Many injuries are missed by emergency physicians which
later causes life threatening complications. Computer aided analysis of
X-ray images has the potential to detect missed injuries. Segmentation
of the vertebrae is a crucial step towards automatic injury detection sys-
tem. Active shape model (ASM) is one of the most successful and popular
method for vertebrae segmentation. In this work, we propose a new ASM
search method based on random classification forest and a kernel den-
sity estimation-based prediction technique. The proposed method have
been tested on a dataset of 90 emergency room X-ray images contain-
ing 450 vertebrae and outperformed the classical Mahalanobis distance-
based ASM search and also the regression forest-based method.
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1 Introduction

The cervical spine or the neck region is vulnerable to high-impact accidents like
road collisions, sports mishaps and falls. Cervical radiographs is usually the first
choice for emergency physicians to diagnose cervical spine injuries due to the
required scanning time, cost, and the position of the spine in the human body.
However, about 20% of cervical vertebrae related injuries remain undetected by
emergency physicians and roughly 67% of these missing injuries result in tragic
consequences, neurological deteriorations and even death [1,2]. Computer aided
diagnosis of cervical X-ray images has a great potential to help the emergency
physicians to detect miss-able injuries and thus reducing the risk of missing
injury related consequences.

Segmentation of the cervical vertebra in X-ray images is a major part of any
computer aided injury detection system. Due to the clinical importance of verte-
brae segmentation, there is a large body of research in the literature [3–11]. Based
on this literature, arguably the most successful segmentation method is the statis-
tical shape model (SSM). Active shape model (ASM) is one version of the SSMs
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that has been performing with success in various fields including medical and facial
images. Since its inception, the algorithm has been studied and modified by many
researchers [12–16]. In [12], a simple gradient maxima search has been introduced
for this task. However, this method is limited to edge like object boundaries. An
improved Mahalanobis distance-based search method has been introduced in [13].
This method involves a training phase and an optimization step to find the amount
of displacement needed to converge the mean shape on the actual object bound-
ary. The method has been shown to work well on cervical vertebra X-ray images
in [3,4]. In [15], a conventional binary classifier and a boosted regression predictor
has been compared and used to improve the performance of ASM segmentation
during image search phase. While these methods detect the displacement of the
shape towards the possible local minima, [16] have proposed a method to directly
predict some of the shape parameters using a classification method. In the state-of-
the-art work on vertebra segmentation [17], a random regression forest has used to
predict the displacement during image search of constrained local model (CLM),
another version of SSM.

In this paper, we propose a one-shot random classification forest-based dis-
placement predictor for ASM segmentation of cervical vertebrae. Unlike the
Mahalanobis distance-based method used in [3,4,13,14], this method predicts
the displacement directly without a need of a sliding window-based search tech-
nique. Our method uses a multi-class forest in contrast with the binary clas-
sification method used in [15]. A kernel density estimation (KDE)-based clas-
sification label prediction method has been introduced which performed better
than traditional classification label prediction method. The proposed algorithm
has been tested on a dataset of 90 emergency room X-ray images and achieved
16.2% lower error than the Mahalanobis distance-based method and 3.3% lower
fit-failure compared with a regression-based framework.

2 Methodology

Active shape model (ASM) has been used in many vertebrae segmentation frame-
works. In this work, we have proposed an improvement in the image search phase
of ASM segmentation using a one-shot multi-class random classification forest
algorithm. The proposed method is compared with a Mahalanobis distance-
based method and a random regression forest-based method. The ASM is briefly
described in Sect. 2.1, followed by the Mahalanobis distance-based search method
in Sect. 2.3, regression forest-based search method in Sect. 2.4 and finally the
proposed search method is explained in Sect. 2.5.

2.1 Active Shape Model

Let xi, a vector of length 2n describing n 2D points of the i-th registered training
vertebra, is given by:

xi = [xi1, yi1, xi2, yi2, xi3, yi3, ..., xin, yin] (1)



Improving an ASM with RCF for Segmentation of Cervical Vertebrae 5

where (xij , yij) is the Cartesian coordinate of the j-th point of the i-th training
vertebra. A mean shape, x̄, can be calculated by averaging all the shapes:

x̄ =
1
N

N∑

i=1

xi (2)

where N is the number of vertebrae available in the training set. Now, the
covariance, Λ, is given by

Λ =
1

N − 1

N∑

i=1

(xi − x̄)(xi − x̄)T (3)

Principal component analysis (PCA) is performed by calculating 2n eigenvectors
pk (k = 1, 2, ..., 2n) of Λ. The eigenvectors with smaller eigenvalues (λk) are
often result from noise and/or high frequency variation. Thus any shape, xi, can
be approximated fairly accurately only by considering first m eigenvectors with
largest eigenvalues.

x̂i ≈ x̄ + P sbi; P s = [p1,p2, ...,pm] (4)

where bi is a set of weights known as shape parameters. The standard practice
to select m is to find the first few eigenvalues, λk’s, that represent a certain
percentage of the total variance of the training data. For any known shape, xi,
shape parameter bi can be computed as:

bi = P T
s (xi − x̄) (5)

2.2 ASM Search

When segmenting a vertebra in a new image, the mean shape is approximately
initialized near the vertebra using manually clicked vertebra centers [18,19].

Fig. 1. ASM search: extraction of normal profiles. Initialized mean shape (magenta),
extracted profiles (green) and shape describing points (blue). (Color figure online)
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The model then looks for displacement of the mean shape towards the actual
vertebra based on the extracted profiles perpendicular to the mean shape in the
image (see Fig. 1). In [12], a simple gradient maxima search have been introduced
for this task but however this method is limited to edge like object boundaries.
An improved Mahalanobis distance-based search method has been introduced
in [13]. This method has been used for vertebrae segmentation in [3,4].

2.3 Mahalanobis Distance-Based ASM Search (ASM-M)

The Mahalanobis distance-based ASM search involves a training phase and an
optimization step to find the amount of displacement needed to converge the
mean shape on actual object boundary. During training for each landmark point,
intensity profiles of length 2l+1 are collected from all the objects. The normalized
first derivatives these profiles (g) are then used to create a mean profile (ḡ) and a
covariance matrix (Λg). When a new profile, gk, is given, then the Mahalanobis
distance can be calculated as:

M(gk) = (gk − ḡ)Λ−1
g (gk − ḡ) (6)

The profile gk is then shifted from the mean shape inwards and outwards by
l pixels and Mahalanobis distance is computed at each position. The desired
amount of displacement ˆ(k) is then computed by minimizing M(gk), which is
equivalent to maximizing the probability that gk originates from a multidimen-
sional Gaussian distribution learned from the training data. The one-dimensional
displacements ˆ(k) for all the points are then mapped into 2D displacement vector
dx. This dx reconfigures the mean shape towards the actual object boundary.

db = P T
s dx; bt = bt−1 + db; x̂t = x̂t−1 + P sbt (7)

where x̂0 = x̄ and b0 is an all zero vector. The process is iterative. The recon-
figuration stops if number of iterations, t, crosses a maximum threshold or dx is
negligible.

2.4 Random Regression Forest-Based ASM Search (ASM-RRF)

Regression-based method has been used for ASM search in [15]. Random for-
est (RF) is a powerful machine learning algorithm [20]. It can be applied to
achieve classification and/or regression [21]. Recent state-of-the-art work on ver-
tebrae segmentation [17], proposed a random forest regression voting (RFRV)
method for this purpose in the CLM framework. The regressor predicts a 2D
displacement for the shape to move towards a local minimum. In order to com-
pare the performance of our proposed one-shot multi-class random classification
forest-based ASM search, a random regression forest-based ASM search has also
been implemented. This forest trains on the gradient profiles collected during a
training phase and predicts a 1D displacement during ASM search.
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ASM-RRF Training: The ASM-M produces a displacement k̂ by minimizing
Eq. 6 over a range of displacements. The predicted displacement ˆ(k) can take
any value from −l to +l representing the amount of shift needed. The ASM-RRF
is also designed to produce the same, only by looking at the gradient profile (g).
To achieve this, the profile vectors (g) for each landmark point are collected
based on the manual segmentation curves of the object. The profiles with man-
ually segmented annotations at the center pixel are assigned shift label 0, then
the profile extraction window is shifted inwards or outwards to create positive
and negative shift labels representing the position of the manually annotated
segmentation pixel with respect to the center. To make the process equivalent to
the previous ASM-M method, the amount of shifting was limited to ±l pixels,
giving us a total of 2l + 1 regression target values to train the forest. The forest
is trained using standard information gain and regression entropy i.e. variance
of the target values.

IG = H(S) −
∑

iε{L,R}

|Sl|
S

H(Si) (8)

H(S) = Hreg(S) = V ar(LS) (9)

where S is a set of examples arriving at a node and SL, SR are the data that
travel left or right respectively and LS is the set of target value available at
the node considered. In our case, LS ⊂ {−l,−l + 1, ..., 0, ..., l − 1, l}. The node
splitting stops when the tree reaches a maximum depth (Dmax) or number of
elements at node falls below a threshold (nMin). The leaf node records the
statistics of the node elements by saving the mean displacement, k̄ln and the
standard deviation σkln

of the node target values.

ASM-RRF Prediction: At test time new profiles are fed into the forest and
they regress down to the leaf nodes of different trees. A number of voting strate-
gies for regression framework are compared in [17]: a single vote at k̄ln, a proba-
bilistic voting weighted by σkln

or a Gaussian spread of votes N(k̄ln, σkln
). They

reported the best performance using the single vote method. Following this, in
this paper, the displacement k̂ is determined by Eq. 10. This k̂ is then returned
to the ASM search process to reconfigure the shape for next iteration.

k̂ =
1
T

T∑

t=1

(k̄lnt) (10)

where T is the number of trees in the forest.

2.5 Random Classification Forest-Based ASM Search (ASM-RCF)

The main contribution of this work is to provide an alternative to the already
proposed ASM-M and ASM-RRF methods with the help of random classification
forest (ASM-RCF) algorithm. Classification-based ASM search methods have
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previously been investigated in [15,16]. A binary classification-based method
is proposed in [15] to predict the displacement while [16] proposed another
classification-based to determine first few shape parameters directly. Like [15]
our also ASM-RCF method determines the displacement but instead of a binary
classification, the problem is designed as a multi-class classification problem.
Thus like regression, it can predict the displacement in one-shot without the
need of sliding window search like ASM-M method and [15].

ASM-RCF Training: The training data is the same as the ASM-RRF method.
Gradient profiles (g) are collected using manual segmentations and shifted
inwards and outwards to create 2l + 1 shift labels. But, instead of consider-
ing the shift labels as continuous regression target values, here we consider them
as discrete classification labels. The classification forest is then trained to predict
2l + 1 class labels. The same information gain of Eq. 8 is used but the entropy
H(S) is replaced by the classification entropy of Eq. 11.

H(S) = Hclass(S) = −
∑

cεC

p(c)log(p(c)) (11)

where C is the set of classes available at the node considered. Here, C ⊂
{−l,−l+1, ..., 0, ..., l−1, l}. Both ASM-RRF and ASM-RCF are parametrized by
maximum depth (Dmax), minimum node element (nMin), number of trees (T ),
numbers of random variables (nV ar) and numbers of random threshold values
(nThresh) to considers for node optimization.

ASM-RCF Prediction: The leaf nodes of our classification forest are associ-
ated with a set of labels, Clnxy

, that contains all the target classification labels
present at that leaf node.

Clnxy
= {c1, c2, ...., cnLeafxy

} (12)

where nLeafxy
is the number of elements at the x-th leaf node of y-th tree of the

forest. At test time, a new profile is fed into the forest and it reaches different
leaf nodes of different trees. We have experimented with two different prediction
methods. First, a classical ArgMax based classification label predictors and
other is a Gaussian kernel-based classification label predictor.

ArgMax based label prediction (RCF-AM): The set of leaf node labels
from each tree is collected in Cforest. The collection of labels is then converted
into a probabilistic distribution over the 2l+1 classification labels as p(Cforest).
Finally, the predicted label ĉ (or the displacement k̂) is determined by finding
the label that maximizes p(Cforest).

k̂ = ĉargmax = arg max
c

p(Cforest) (13)
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where
Cforest = {Ctree1 ∪ Ctree2 ∪ .... ∪ CtreeT

} (14)

Ctreey
= Clnxy

= {c1, c2, ...., cnLeafxy
} (15)

Kernel based label prediction (RCF-KDE): Apart from the RCF-AM
method, we propose a new kernel density estimator (KDE) based method to
determine the classification label ĉ or the displacement k̂ of the test profile.
KDE-based predictors are most commonly used in regression forests. But here,
we demonstrate its usefulness as a multi-class label predictor for classification
forest. Like RCF-AM, here we also collect the all the leaf node labels as Cforest.
Then at each element cin of Cforest a zero mean Gaussian distribution with
variance σ2

kde is added. The predicted class ĉ is determined by the label that
maximizes the resultant distribution.

k̂ = ĉ = arg max
c

(
1
s

s∑

i=1

( 1
σkde

√
2π

exp
− (x−cini

)2

2σ2
kde

))
(16)

where s is number of class labels in Cforest. Figure 2 shows an toy example of
different prediction methods for a forest with a single tree.
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Fig. 2. An example leaf node and different prediction methods: In this particular leaf
node there are in total 40 samples: the shift labels are −5, −4, −3, −2 and 4; number of
samples per label are 6, 10, 7, 5 and 12 respectively. The regression mean of ASM-RRF
method for this leaf node is zero, class label prediction with ArgMax (ASM-RCF-AM)
method is label 5 and with ASM-RCF-KDE method is label −4. The magenta curve
represents the summed kernel densities. (Color figure online)

3 Experiments

3.1 Data

A total of 90 X-ray images have been used for this work. Different (Philips,
Agfa, Kodak, GE) radiographic systems were used for the scans. Pixel spacing
varied from 0.1 to 0.194 pixel per millimetre. The dataset is very challenging and
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Fig. 3. Example of images in the dataset.

Fig. 4. Manual segmentations: centers (+), corners (×) and other points (o).

contains natural variations, deformations, injuries and implants. A few images
from the dataset are shown in Fig. 3. Each of these images was then manually
demarcated by expert radiographers. Radiographers clicked on 20 points along
the vertebra boundary. Some manual demarcation points for C3–C7 are shown
in Fig. 4. The axis (C1) and atlas (C2) of the cervical vertebrae have not been
studied in this work due to their ambiguity in lateral X-ray images similar to
other work in the literature [3,4].

3.2 Training

An ASM is trained for each vertebra separately. Five models are created for
five vertebrae. The means and covariance matrices for ASM-M are computed
separately for each landmark point of each vertebra. The forests (ASM-RRF
and ASM-RCF) are trained separately for each side of the vertebrae (anterior,
posterior, superior and inferior). To increase the forest training samples, the 20
point segmentation shape is converted into a 200 point shape using Catmull-
Rom spline. The training profiles are collected from these points. The training
profiles for all ASM search methods are of length 27 i.e. l = 13, giving us a total
of 27 shift labels: {−13,−12, ..., 0, ..., 12, 13}.
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3.3 Segmentation Evaluation

A 10-fold cross-validation scheme has been followed. For each fold, the ASM,
ASM-M, ASM-RRF and ASM-RCF training has been done on 81 images and
tested on 9 images. After training, each fold consists of 5 vertebrae ASM models
(mean shape, Eigen vectors and Eigen values), (5 vertebra × 20 points =) 100
mean gradient profiles and covariance matrices for ASM-M method and (5 × 4
sides =) 20 forests each for ASM-RRF and ASM-RCF methods. Each forest is
trained on (200 points × 27 labels × 81 training images ÷ 4 sides =) 109350
samples. The experiment is repeated 10 times so that each image in our dataset
of 90 images are considered as test image once. At the end of the experiments,
the Euclidean distance between predicted vertebra shape points and manual
segmentation curves are computed in millimetres as the error metric. The dis-
tance errors are calculated for each segmentation point and averaged over all the
vertebrae as a single metric.

3.4 Parameter Optimization

There are five free parameters in the random forest training: the number of trees
(T ), maximum allowed depth of a tree (Dmax), minimum number of elements
at a node (nMin), number of variables to look at in each split nodes (nV ar)
and number of thresholds (nTresh) to consider per variable. Apart from these,
the kernel density estimation function requires a bandwidth (BW ) which is the
variance σ2

kde of Eq. 16. A greedy sequential approach is employed to optimize
each parameter due to time constraint. The sequence followed is: BW , T , D
and nMin in a 2D fashion, and nV ar and nThresh in a 2D fashion. The cost
function for the optimization is the average absolute difference between predicted
and actual class labels. Figure 5 shows an example parameter search for BW .
BW is chosen based on the minimum error found on the graph i.e. 1.5. Similarly,
all the parameters are optimized and reported in Table 1.
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Fig. 5. Bandwidth optimization.

Table 1. Optimized parameters.

Parameters Value

BW 1.5

T 100

Dmax 10

nMin 50

nV ar 6

nThresh 5
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4 Results

The mean, median and standard deviation of the average errors in millime-
ters have been reported in Table 2. Both random forest-based methods perform
better than the ASM-M method. Among two options of ASM-RCF methods,
KDE method outperforms the ArgMax (AM) method. ASM-RCF-KDE shows
an improvement of 16.1% in terms of median error over ASM-M method. ASM-
RCF-KDE also outperforms regression-based ASM-RRF slightly in terms of
mean and median. The algorithms are also compared using fit-failures. In this
work, fit-failure is defined as the percentage vertebra having an average error of
1 mm or higher. The last row of Table 2 report the fit-failures. In terms of this
metric, both classification (ASM-RCF) based methods outperform other meth-
ods and ASM-RCF-KDE performs the best with the lowest failure rate of 16.67%.
The algorithms are also compared in Fig. 6 where the proportion of the vertebrae
is shown as a cumulative distribution function over the errors. More area under
the curve indicates better performance. It can be seen that ASM-RCF-KDE
and ASM-RRF are the two best algorithms for ASM search. The cropped and
zoomed version, Fig. 6 (right), indicates that our proposed method ASM-RCF-
KDE slightly outperforms the current state-of-the-art regression-based method.
Some qualitative segmentation results for ASM-RCF-KDE method with the
manual segmentation has been shown in Fig. 7. The method successfully seg-
ments most of the vertebrae. The performance is satisfactory for the vertebrae
with low contrast (4a) and implants (5a) too. But the algorithm still requires
future work. Row (b) of Fig. 7 shows challenging segmentation cases where the

Table 2. Performance comparison: average error in MM.

ASM-M ASM-RRF ASM-RCF-AM ASM-RCF-KDE

Median 0.8019 0.6933 0.7054 0.6896

Mean 0.8582 0.7704 0.8060 0.7688

Standard deviation 0.3437 0.3766 0.3998 0.3965

Fit failures (%Errors >1 mm) 24.00 21.78 20.00 16.67
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Fig. 6. Comparison of performance.
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Fig. 7. Segmentation results: manual segmentation (green), ASM-RCF-KDE (blue).
(Color figure online)

segmentation was unsuccessful. It can be seen that the segmentation sometimes
suffers from low contrast and bad initialization (1b), deformity (2b) and implants
(3b, 4b and 5b).

5 Conclusion

In this paper, we have provided an alternative to standard active shape model
algorithm by introducing a one-shot multi-class random forest in the ASM
search process. The new algorithm has been formulated as a classification prob-
lem which eliminates the sliding window search of Mahalanobis distances-based
method. The improved algorithm provides better segmentation results and an
improvement of 16.1% in point to line segmentation errors has been achieved
for a challenging dataset over ASM-M. The proposed classification forest-based
framework with kernel density-based prediction (ASM-RCF-KDE) outperformed
regression-based methods by 3.3% in terms of fit-failures. The proposed KDE-
based prediction helps to predict the displacement with better accuracy because
it can nullify the effect of false tree predictions by using information from neigh-
bouring classes (Fig. 2).

Our algorithm has been tested on a challenging dataset of 90 emergency room
X-ray images containing 450 cervical vertebrae. We have achieved a lowest aver-
age error of 0.7688 mm. In comparison, current state-of-the-art work [17], reports
an average error of 0.59 mm for a different dataset of DXA images on healthy
thoraco-lumbar spine. Their method uses the latest version of SSM, constrained
local model (CLM) with random forest regression voting based search method.
In the near future, we plan to work on CLM with a classification forest-based
search method. As our overarching goal is to develop an injury detection sys-
tem, the segmentation still requires further work to apply morphometric analysis
to detect injuries especially for the vertebrae with conditions like osteoporosis,
fractures and implants. Our work is currently focused on improving the segmen-
tation accuracy by experimenting with better and automatic initialization using
vertebrae corners [18,19] and/or endplates [5].
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