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Preface

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the body, the
spinal cord. Spine-related diseases or conditions are common and cause a huge burden
of morbidity and cost to society. Examples include degenerative disc disease, spinal
stenosis, scoliosis, osteoporosis, herniated disks, fracture/ligamentous injury, infection,
tumor, and spondyloarthropathy. Treatment varies with the disease entity, and the
clinical scenario can be nonspecific. As a result, imaging is often required to help make
the diagnosis. Frequently obtained studies include plain radiographs, dual-energy X-ray
absorptiometry (DXA), bone scans, computed tomography (CT), magnetic resonance
(MR), ultrasound, and nuclear medicine. Computational methods play a steadily
increasing role in improving speed, confidence, and accuracy in reaching a final diag-
nosis. Although there has been great progress in the development of computational
methods for spine imaging over recent years, there are a number of significant chal-
lenges in both methodology and clinical applications.

The goal of this workshop on “Computational Methods and Clinical Applications
for Spine Imaging” was to bring together clinicians, computer scientists, and industrial
vendors in the field of spine imaging, for reviewing state-of-art techniques, sharing
novel and emerging analysis and visualization techniques, and discussing clinical
challenges and open problems in this rapidly growing field. We invited papers on all
major aspects of problems related to spine imaging, including clinical applications of
spine imaging, computer-aided diagnosis of spine conditions, computer-aided detection
of spine-related diseases, emerging computational imaging techniques for spinal
diseases, fast 3D reconstruction of the spine, feature extraction, multiscale analysis,
pattern recognition, image enhancement of spine imaging, image-guided spine inter-
vention and treatment, multimodal image registration and fusion for spine imaging,
novel visualization techniques, segmentation techniques for spine imaging, statistical
and geometric modelling for spine and vertebra, spine and vertebra localization.

This was the fourth MICCAI workshop on Computational Methods and Clinical
Applications for Spine Imaging — MICCAI–CSI20161, which was held on October
17, 2016, in Athens, Greece, as a satellite event of the 19th International Conference on
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2016. We
received many high-quality submissions addressing many of the aforementioned
issues. All papers underwent a thorough double-blinded review with each paper being
reviewed by three members of the paper reviewing committee. The Program Com-
mittee consisted of researchers who had actively contributed to the field of spine
imaging in the past. From all submissions, we finally accepted 13 papers. The papers
were grouped into three sessions: Segmentation (4), Localization (5), and Computer-
Aided Diagnosis and Intervention (4).

1 http://csi2016.wordpress.com.

http://csi2016.wordpress.com


In order to give deeper insights into the field and stimulate further ideas, we had
invited lectures during the workshop. We are very thankful to Dr. Tim Cootes from the
University of Manchester, UK, for giving a talk on “Systems for Locating Vertebral
Fractures in X-Ray Images,” and Dr. Franjo Pernuš from the University of Ljubljana,
Slovenia, for a talk on “Image-Guided Spine Intervention.”

Finally, we would like to thank everyone who contributed to this joint workshop and
challenge: the authors for their contributions; the members of the program and scien-
tific review committee for their review work, promotion of the workshop, and general
support; the invited speakers for sharing their expertise and knowledge; and the
MICCAI society for the general support. The event was supported by the SpineWeb2

initiative, a collaborative platform for research on spine imaging and image analysis,
and sincere gratitude goes to Brainlab AG, Germany,3 for the financial support.

February 2017 Jianhua Yao
Tomaž Vrtovec
Guoyan Zheng

Alejandro Frangi
Ben Glocker

Shuo Li

2 http://spineweb.digitalimaginggroup.ca.
3 http://www.brainlab.com.
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Improving an Active Shape Model
with Random Classification Forest

for Segmentation of Cervical Vertebrae

S.M. Masudur Rahman Al Arif1(B), Michael Gundry2,
Karen Knapp2, and Greg Slabaugh1

1 Department of Computer Science, City, University of London, London, UK
S.Al-Arif@city.ac.uk

2 University of Exeter Medical School, Exeter, UK

Abstract. X-ray is a common modality for diagnosing cervical verte-
brae injuries. Many injuries are missed by emergency physicians which
later causes life threatening complications. Computer aided analysis of
X-ray images has the potential to detect missed injuries. Segmentation
of the vertebrae is a crucial step towards automatic injury detection sys-
tem. Active shape model (ASM) is one of the most successful and popular
method for vertebrae segmentation. In this work, we propose a new ASM
search method based on random classification forest and a kernel den-
sity estimation-based prediction technique. The proposed method have
been tested on a dataset of 90 emergency room X-ray images contain-
ing 450 vertebrae and outperformed the classical Mahalanobis distance-
based ASM search and also the regression forest-based method.

Keywords: ASM · Classification forest · Cervical · Vertebrae · X-ray

1 Introduction

The cervical spine or the neck region is vulnerable to high-impact accidents like
road collisions, sports mishaps and falls. Cervical radiographs is usually the first
choice for emergency physicians to diagnose cervical spine injuries due to the
required scanning time, cost, and the position of the spine in the human body.
However, about 20% of cervical vertebrae related injuries remain undetected by
emergency physicians and roughly 67% of these missing injuries result in tragic
consequences, neurological deteriorations and even death [1,2]. Computer aided
diagnosis of cervical X-ray images has a great potential to help the emergency
physicians to detect miss-able injuries and thus reducing the risk of missing
injury related consequences.

Segmentation of the cervical vertebra in X-ray images is a major part of any
computer aided injury detection system. Due to the clinical importance of verte-
brae segmentation, there is a large body of research in the literature [3–11]. Based
on this literature, arguably the most successful segmentation method is the statis-
tical shape model (SSM). Active shape model (ASM) is one version of the SSMs
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-55050-3 1



4 S.M.M.R. Al Arif et al.

that has been performing with success in various fields including medical and facial
images. Since its inception, the algorithm has been studied and modified by many
researchers [12–16]. In [12], a simple gradient maxima search has been introduced
for this task. However, this method is limited to edge like object boundaries. An
improved Mahalanobis distance-based search method has been introduced in [13].
This method involves a training phase and an optimization step to find the amount
of displacement needed to converge the mean shape on the actual object bound-
ary. The method has been shown to work well on cervical vertebra X-ray images
in [3,4]. In [15], a conventional binary classifier and a boosted regression predictor
has been compared and used to improve the performance of ASM segmentation
during image search phase. While these methods detect the displacement of the
shape towards the possible local minima, [16] have proposed a method to directly
predict some of the shape parameters using a classification method. In the state-of-
the-art work on vertebra segmentation [17], a random regression forest has used to
predict the displacement during image search of constrained local model (CLM),
another version of SSM.

In this paper, we propose a one-shot random classification forest-based dis-
placement predictor for ASM segmentation of cervical vertebrae. Unlike the
Mahalanobis distance-based method used in [3,4,13,14], this method predicts
the displacement directly without a need of a sliding window-based search tech-
nique. Our method uses a multi-class forest in contrast with the binary clas-
sification method used in [15]. A kernel density estimation (KDE)-based clas-
sification label prediction method has been introduced which performed better
than traditional classification label prediction method. The proposed algorithm
has been tested on a dataset of 90 emergency room X-ray images and achieved
16.2% lower error than the Mahalanobis distance-based method and 3.3% lower
fit-failure compared with a regression-based framework.

2 Methodology

Active shape model (ASM) has been used in many vertebrae segmentation frame-
works. In this work, we have proposed an improvement in the image search phase
of ASM segmentation using a one-shot multi-class random classification forest
algorithm. The proposed method is compared with a Mahalanobis distance-
based method and a random regression forest-based method. The ASM is briefly
described in Sect. 2.1, followed by the Mahalanobis distance-based search method
in Sect. 2.3, regression forest-based search method in Sect. 2.4 and finally the
proposed search method is explained in Sect. 2.5.

2.1 Active Shape Model

Let xi, a vector of length 2n describing n 2D points of the i-th registered training
vertebra, is given by:

xi = [xi1, yi1, xi2, yi2, xi3, yi3, ..., xin, yin] (1)
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where (xij , yij) is the Cartesian coordinate of the j-th point of the i-th training
vertebra. A mean shape, x̄, can be calculated by averaging all the shapes:

x̄ =
1
N

N∑

i=1

xi (2)

where N is the number of vertebrae available in the training set. Now, the
covariance, Λ, is given by

Λ =
1

N − 1

N∑

i=1

(xi − x̄)(xi − x̄)T (3)

Principal component analysis (PCA) is performed by calculating 2n eigenvectors
pk (k = 1, 2, ..., 2n) of Λ. The eigenvectors with smaller eigenvalues (λk) are
often result from noise and/or high frequency variation. Thus any shape, xi, can
be approximated fairly accurately only by considering first m eigenvectors with
largest eigenvalues.

x̂i ≈ x̄ + P sbi; P s = [p1,p2, ...,pm] (4)

where bi is a set of weights known as shape parameters. The standard practice
to select m is to find the first few eigenvalues, λk’s, that represent a certain
percentage of the total variance of the training data. For any known shape, xi,
shape parameter bi can be computed as:

bi = P T
s (xi − x̄) (5)

2.2 ASM Search

When segmenting a vertebra in a new image, the mean shape is approximately
initialized near the vertebra using manually clicked vertebra centers [18,19].

Fig. 1. ASM search: extraction of normal profiles. Initialized mean shape (magenta),
extracted profiles (green) and shape describing points (blue). (Color figure online)
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The model then looks for displacement of the mean shape towards the actual
vertebra based on the extracted profiles perpendicular to the mean shape in the
image (see Fig. 1). In [12], a simple gradient maxima search have been introduced
for this task but however this method is limited to edge like object boundaries.
An improved Mahalanobis distance-based search method has been introduced
in [13]. This method has been used for vertebrae segmentation in [3,4].

2.3 Mahalanobis Distance-Based ASM Search (ASM-M)

The Mahalanobis distance-based ASM search involves a training phase and an
optimization step to find the amount of displacement needed to converge the
mean shape on actual object boundary. During training for each landmark point,
intensity profiles of length 2l+1 are collected from all the objects. The normalized
first derivatives these profiles (g) are then used to create a mean profile (ḡ) and a
covariance matrix (Λg). When a new profile, gk, is given, then the Mahalanobis
distance can be calculated as:

M(gk) = (gk − ḡ)Λ−1
g (gk − ḡ) (6)

The profile gk is then shifted from the mean shape inwards and outwards by
l pixels and Mahalanobis distance is computed at each position. The desired
amount of displacement ˆ(k) is then computed by minimizing M(gk), which is
equivalent to maximizing the probability that gk originates from a multidimen-
sional Gaussian distribution learned from the training data. The one-dimensional
displacements ˆ(k) for all the points are then mapped into 2D displacement vector
dx. This dx reconfigures the mean shape towards the actual object boundary.

db = P T
s dx; bt = bt−1 + db; x̂t = x̂t−1 + P sbt (7)

where x̂0 = x̄ and b0 is an all zero vector. The process is iterative. The recon-
figuration stops if number of iterations, t, crosses a maximum threshold or dx is
negligible.

2.4 Random Regression Forest-Based ASM Search (ASM-RRF)

Regression-based method has been used for ASM search in [15]. Random for-
est (RF) is a powerful machine learning algorithm [20]. It can be applied to
achieve classification and/or regression [21]. Recent state-of-the-art work on ver-
tebrae segmentation [17], proposed a random forest regression voting (RFRV)
method for this purpose in the CLM framework. The regressor predicts a 2D
displacement for the shape to move towards a local minimum. In order to com-
pare the performance of our proposed one-shot multi-class random classification
forest-based ASM search, a random regression forest-based ASM search has also
been implemented. This forest trains on the gradient profiles collected during a
training phase and predicts a 1D displacement during ASM search.
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ASM-RRF Training: The ASM-M produces a displacement k̂ by minimizing
Eq. 6 over a range of displacements. The predicted displacement ˆ(k) can take
any value from −l to +l representing the amount of shift needed. The ASM-RRF
is also designed to produce the same, only by looking at the gradient profile (g).
To achieve this, the profile vectors (g) for each landmark point are collected
based on the manual segmentation curves of the object. The profiles with man-
ually segmented annotations at the center pixel are assigned shift label 0, then
the profile extraction window is shifted inwards or outwards to create positive
and negative shift labels representing the position of the manually annotated
segmentation pixel with respect to the center. To make the process equivalent to
the previous ASM-M method, the amount of shifting was limited to ±l pixels,
giving us a total of 2l + 1 regression target values to train the forest. The forest
is trained using standard information gain and regression entropy i.e. variance
of the target values.

IG = H(S) −
∑

iε{L,R}

|Sl|
S

H(Si) (8)

H(S) = Hreg(S) = V ar(LS) (9)

where S is a set of examples arriving at a node and SL, SR are the data that
travel left or right respectively and LS is the set of target value available at
the node considered. In our case, LS ⊂ {−l,−l + 1, ..., 0, ..., l − 1, l}. The node
splitting stops when the tree reaches a maximum depth (Dmax) or number of
elements at node falls below a threshold (nMin). The leaf node records the
statistics of the node elements by saving the mean displacement, k̄ln and the
standard deviation σkln

of the node target values.

ASM-RRF Prediction: At test time new profiles are fed into the forest and
they regress down to the leaf nodes of different trees. A number of voting strate-
gies for regression framework are compared in [17]: a single vote at k̄ln, a proba-
bilistic voting weighted by σkln

or a Gaussian spread of votes N(k̄ln, σkln
). They

reported the best performance using the single vote method. Following this, in
this paper, the displacement k̂ is determined by Eq. 10. This k̂ is then returned
to the ASM search process to reconfigure the shape for next iteration.

k̂ =
1
T

T∑

t=1

(k̄lnt) (10)

where T is the number of trees in the forest.

2.5 Random Classification Forest-Based ASM Search (ASM-RCF)

The main contribution of this work is to provide an alternative to the already
proposed ASM-M and ASM-RRF methods with the help of random classification
forest (ASM-RCF) algorithm. Classification-based ASM search methods have
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previously been investigated in [15,16]. A binary classification-based method
is proposed in [15] to predict the displacement while [16] proposed another
classification-based to determine first few shape parameters directly. Like [15]
our also ASM-RCF method determines the displacement but instead of a binary
classification, the problem is designed as a multi-class classification problem.
Thus like regression, it can predict the displacement in one-shot without the
need of sliding window search like ASM-M method and [15].

ASM-RCF Training: The training data is the same as the ASM-RRF method.
Gradient profiles (g) are collected using manual segmentations and shifted
inwards and outwards to create 2l + 1 shift labels. But, instead of consider-
ing the shift labels as continuous regression target values, here we consider them
as discrete classification labels. The classification forest is then trained to predict
2l + 1 class labels. The same information gain of Eq. 8 is used but the entropy
H(S) is replaced by the classification entropy of Eq. 11.

H(S) = Hclass(S) = −
∑

cεC

p(c)log(p(c)) (11)

where C is the set of classes available at the node considered. Here, C ⊂
{−l,−l+1, ..., 0, ..., l−1, l}. Both ASM-RRF and ASM-RCF are parametrized by
maximum depth (Dmax), minimum node element (nMin), number of trees (T ),
numbers of random variables (nV ar) and numbers of random threshold values
(nThresh) to considers for node optimization.

ASM-RCF Prediction: The leaf nodes of our classification forest are associ-
ated with a set of labels, Clnxy

, that contains all the target classification labels
present at that leaf node.

Clnxy
= {c1, c2, ...., cnLeafxy

} (12)

where nLeafxy
is the number of elements at the x-th leaf node of y-th tree of the

forest. At test time, a new profile is fed into the forest and it reaches different
leaf nodes of different trees. We have experimented with two different prediction
methods. First, a classical ArgMax based classification label predictors and
other is a Gaussian kernel-based classification label predictor.

ArgMax based label prediction (RCF-AM): The set of leaf node labels
from each tree is collected in Cforest. The collection of labels is then converted
into a probabilistic distribution over the 2l+1 classification labels as p(Cforest).
Finally, the predicted label ĉ (or the displacement k̂) is determined by finding
the label that maximizes p(Cforest).

k̂ = ĉargmax = arg max
c

p(Cforest) (13)
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where
Cforest = {Ctree1 ∪ Ctree2 ∪ .... ∪ CtreeT

} (14)

Ctreey
= Clnxy

= {c1, c2, ...., cnLeafxy
} (15)

Kernel based label prediction (RCF-KDE): Apart from the RCF-AM
method, we propose a new kernel density estimator (KDE) based method to
determine the classification label ĉ or the displacement k̂ of the test profile.
KDE-based predictors are most commonly used in regression forests. But here,
we demonstrate its usefulness as a multi-class label predictor for classification
forest. Like RCF-AM, here we also collect the all the leaf node labels as Cforest.
Then at each element cin of Cforest a zero mean Gaussian distribution with
variance σ2

kde is added. The predicted class ĉ is determined by the label that
maximizes the resultant distribution.

k̂ = ĉ = arg max
c

(
1
s

s∑

i=1

( 1
σkde

√
2π

exp
− (x−cini

)2

2σ2
kde

))
(16)

where s is number of class labels in Cforest. Figure 2 shows an toy example of
different prediction methods for a forest with a single tree.
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Fig. 2. An example leaf node and different prediction methods: In this particular leaf
node there are in total 40 samples: the shift labels are −5, −4, −3, −2 and 4; number of
samples per label are 6, 10, 7, 5 and 12 respectively. The regression mean of ASM-RRF
method for this leaf node is zero, class label prediction with ArgMax (ASM-RCF-AM)
method is label 5 and with ASM-RCF-KDE method is label −4. The magenta curve
represents the summed kernel densities. (Color figure online)

3 Experiments

3.1 Data

A total of 90 X-ray images have been used for this work. Different (Philips,
Agfa, Kodak, GE) radiographic systems were used for the scans. Pixel spacing
varied from 0.1 to 0.194 pixel per millimetre. The dataset is very challenging and
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Fig. 3. Example of images in the dataset.

Fig. 4. Manual segmentations: centers (+), corners (×) and other points (o).

contains natural variations, deformations, injuries and implants. A few images
from the dataset are shown in Fig. 3. Each of these images was then manually
demarcated by expert radiographers. Radiographers clicked on 20 points along
the vertebra boundary. Some manual demarcation points for C3–C7 are shown
in Fig. 4. The axis (C1) and atlas (C2) of the cervical vertebrae have not been
studied in this work due to their ambiguity in lateral X-ray images similar to
other work in the literature [3,4].

3.2 Training

An ASM is trained for each vertebra separately. Five models are created for
five vertebrae. The means and covariance matrices for ASM-M are computed
separately for each landmark point of each vertebra. The forests (ASM-RRF
and ASM-RCF) are trained separately for each side of the vertebrae (anterior,
posterior, superior and inferior). To increase the forest training samples, the 20
point segmentation shape is converted into a 200 point shape using Catmull-
Rom spline. The training profiles are collected from these points. The training
profiles for all ASM search methods are of length 27 i.e. l = 13, giving us a total
of 27 shift labels: {−13,−12, ..., 0, ..., 12, 13}.
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3.3 Segmentation Evaluation

A 10-fold cross-validation scheme has been followed. For each fold, the ASM,
ASM-M, ASM-RRF and ASM-RCF training has been done on 81 images and
tested on 9 images. After training, each fold consists of 5 vertebrae ASM models
(mean shape, Eigen vectors and Eigen values), (5 vertebra × 20 points =) 100
mean gradient profiles and covariance matrices for ASM-M method and (5 × 4
sides =) 20 forests each for ASM-RRF and ASM-RCF methods. Each forest is
trained on (200 points × 27 labels × 81 training images ÷ 4 sides =) 109350
samples. The experiment is repeated 10 times so that each image in our dataset
of 90 images are considered as test image once. At the end of the experiments,
the Euclidean distance between predicted vertebra shape points and manual
segmentation curves are computed in millimetres as the error metric. The dis-
tance errors are calculated for each segmentation point and averaged over all the
vertebrae as a single metric.

3.4 Parameter Optimization

There are five free parameters in the random forest training: the number of trees
(T ), maximum allowed depth of a tree (Dmax), minimum number of elements
at a node (nMin), number of variables to look at in each split nodes (nV ar)
and number of thresholds (nTresh) to consider per variable. Apart from these,
the kernel density estimation function requires a bandwidth (BW ) which is the
variance σ2

kde of Eq. 16. A greedy sequential approach is employed to optimize
each parameter due to time constraint. The sequence followed is: BW , T , D
and nMin in a 2D fashion, and nV ar and nThresh in a 2D fashion. The cost
function for the optimization is the average absolute difference between predicted
and actual class labels. Figure 5 shows an example parameter search for BW .
BW is chosen based on the minimum error found on the graph i.e. 1.5. Similarly,
all the parameters are optimized and reported in Table 1.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Bandwidth (BW)

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

Av
er

ag
e 

er
ro

r i
n 

pi
xe

ls

Fig. 5. Bandwidth optimization.

Table 1. Optimized parameters.

Parameters Value

BW 1.5

T 100

Dmax 10

nMin 50

nV ar 6

nThresh 5
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4 Results

The mean, median and standard deviation of the average errors in millime-
ters have been reported in Table 2. Both random forest-based methods perform
better than the ASM-M method. Among two options of ASM-RCF methods,
KDE method outperforms the ArgMax (AM) method. ASM-RCF-KDE shows
an improvement of 16.1% in terms of median error over ASM-M method. ASM-
RCF-KDE also outperforms regression-based ASM-RRF slightly in terms of
mean and median. The algorithms are also compared using fit-failures. In this
work, fit-failure is defined as the percentage vertebra having an average error of
1 mm or higher. The last row of Table 2 report the fit-failures. In terms of this
metric, both classification (ASM-RCF) based methods outperform other meth-
ods and ASM-RCF-KDE performs the best with the lowest failure rate of 16.67%.
The algorithms are also compared in Fig. 6 where the proportion of the vertebrae
is shown as a cumulative distribution function over the errors. More area under
the curve indicates better performance. It can be seen that ASM-RCF-KDE
and ASM-RRF are the two best algorithms for ASM search. The cropped and
zoomed version, Fig. 6 (right), indicates that our proposed method ASM-RCF-
KDE slightly outperforms the current state-of-the-art regression-based method.
Some qualitative segmentation results for ASM-RCF-KDE method with the
manual segmentation has been shown in Fig. 7. The method successfully seg-
ments most of the vertebrae. The performance is satisfactory for the vertebrae
with low contrast (4a) and implants (5a) too. But the algorithm still requires
future work. Row (b) of Fig. 7 shows challenging segmentation cases where the

Table 2. Performance comparison: average error in MM.

ASM-M ASM-RRF ASM-RCF-AM ASM-RCF-KDE

Median 0.8019 0.6933 0.7054 0.6896

Mean 0.8582 0.7704 0.8060 0.7688

Standard deviation 0.3437 0.3766 0.3998 0.3965

Fit failures (%Errors >1 mm) 24.00 21.78 20.00 16.67
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Fig. 6. Comparison of performance.
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Fig. 7. Segmentation results: manual segmentation (green), ASM-RCF-KDE (blue).
(Color figure online)

segmentation was unsuccessful. It can be seen that the segmentation sometimes
suffers from low contrast and bad initialization (1b), deformity (2b) and implants
(3b, 4b and 5b).

5 Conclusion

In this paper, we have provided an alternative to standard active shape model
algorithm by introducing a one-shot multi-class random forest in the ASM
search process. The new algorithm has been formulated as a classification prob-
lem which eliminates the sliding window search of Mahalanobis distances-based
method. The improved algorithm provides better segmentation results and an
improvement of 16.1% in point to line segmentation errors has been achieved
for a challenging dataset over ASM-M. The proposed classification forest-based
framework with kernel density-based prediction (ASM-RCF-KDE) outperformed
regression-based methods by 3.3% in terms of fit-failures. The proposed KDE-
based prediction helps to predict the displacement with better accuracy because
it can nullify the effect of false tree predictions by using information from neigh-
bouring classes (Fig. 2).

Our algorithm has been tested on a challenging dataset of 90 emergency room
X-ray images containing 450 cervical vertebrae. We have achieved a lowest aver-
age error of 0.7688 mm. In comparison, current state-of-the-art work [17], reports
an average error of 0.59 mm for a different dataset of DXA images on healthy
thoraco-lumbar spine. Their method uses the latest version of SSM, constrained
local model (CLM) with random forest regression voting based search method.
In the near future, we plan to work on CLM with a classification forest-based
search method. As our overarching goal is to develop an injury detection sys-
tem, the segmentation still requires further work to apply morphometric analysis
to detect injuries especially for the vertebrae with conditions like osteoporosis,
fractures and implants. Our work is currently focused on improving the segmen-
tation accuracy by experimenting with better and automatic initialization using
vertebrae corners [18,19] and/or endplates [5].
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Abstract. Ultrasound (US) guidance is of increasing interest for mini-
mally invasive procedures in orthopedics due to its safety and cost ben-
efits. However, bone segmentation from US images remains a challenge
due to the low signal to noise ratio and artifacts that hamper US images.
We propose to learn the appearance of bone-soft tissue interfaces from
annotated training data, and present results with two classifiers, struc-
tured forest and a cascaded logistic classifier. We evaluated the proposed
methods on 143 spinal images from two datasets acquired at different
sites. We achieved a segmentation recall of 0.9 and precision 0.91 for
the better dataset, and a recall and precision of 0.87 and 0.81 for the
combined dataset, demonstrating the potential of the framework.

1 Introduction

Ultrasound (US) guidance is of increasing interest for minimally invasive proce-
dures in orthopedics due to its safety and cost benefits compared to the more
conventional X-ray guidance systems. However, bony structure segmentation
from US images remains a challenge due to the low signal to noise ratio and
artifacts that hamper US images. In this work we propose to learn the appear-
ance of the bone-soft tissue interface from annotated training data, we propose
novel features for robust classification, and show its performance on 143 images
from two datasets.

In the literature several heuristic techniques have been published for US bone
segmentation. In these works a cost function was manually constructed based on
the image appearance. Kowal et al. utilized the fact that bones, after an inten-
sity correction that took the expected depth of the bone into account, have the
brightest intensity on the image [8]. This approach works well if the depth of the
bone is known and no other tissue interfaces are close by, it is though prone to
fail in a less controlled imaging setup. Hacihaliloglu et al. proposed to use phase
symmetry of the image in the frequency domain [4]. This approach highlights
lines and step edges irrespective of image intensity and is therefore well suited for
bones at variable depths. It is though not possible to distinguish bone interfaces
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 16–25, 2016.
DOI: 10.1007/978-3-319-55050-3 2
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from other bright interfaces. The feature most widely used to detect bone inter-
face is shadowing, which is caused by the reflection of nearly the entire sound
wave by the bone. Karamalis et al. [7] proposed a shadow term which was then
incorporated in the above framework by Quader et al. [9], showing improved
results. Jain et al. proposed a Bayesian framework for bone segmentation, with
the following features: intensity, gradient, shadow, intensity profile along scan-
line, and multiple reflections [5]. Obtaining the correct conditional probabilities
used in the framework is though not straightforward. Foroughi et al. heuristi-
cally combined intensity, shadow, and the Laplacian filtered image for creating
a bone probability map, which was then segmented with a dynamic program-
ming framework [3]. Jia et al. [6] extended this work by including further feature
images such as integrated backscatter, local energy, phase and feature symme-
try. All features were normalized and multiplied to derive the bone probability
image. As opposed to the heuristic bone probability calculations in literature,
we propose to learn the bone probability map from a set of training examples.

Machine learning has been widely used for medical image segmentation, such
as in brain MRI, prostate US, etc. Conventionally, such approaches segment a
structure with a specific intensity and texture profile, surrounded by a closed
contour. Bone interface segmentation in US is different, as here only the outer
reflection is visible. Nevertheless, this bone interface has specific features which
make it a good candidate for machine learning algorithms. We propose a set of
features in this paper and show the accuracy we can achieve with them.

The purpose of this study thus was to answer the following questions. (1) Is it
possible to learn a discriminative classifier for bone interfaces in US? (2) Are the
features used in the literature robust to different scanning protocols? (3) What
accuracy can we achieve with such a system? We address these questions using
two 2D spine datasets acquired at different hospitals with different protocols.

2 Methods

The full segmentation framework is shown in Fig. 1. After pre-processing we
computed features to discriminate bone from soft tissue interfaces. We used
both standard and novel features as described in Sect. 2.2. These features were
fed into a classifier to produce a bone probability map. We investigated two types
of classifiers, namely pixel-wise and region based classifiers. As a post-processing
step dynamic programming was used to produce the final segmentation.

2.1 Pre-processing

We applied two pre-processing steps. First, a Gaussian blurring produces the
blurred image Iσ. We empirically found that a standard deviation of σ = 0.3 mm
worked well, smoothing the speckle pattern but still allowing to distinguish adja-
cent tissue interfaces. A typical speckle size in the depth direction of our images
was about 0.1 mm. Second, oblique edges appear with less contrast in the images
as only part of the reflected sound reaches the transducer. We propose to enhance
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Fig. 1. The schematic method for classification based bone segmentation.

oblique regions with template matching. We took as template the Gabor filter
with orientations of 45◦ and −45◦, wavelength λ = 2 mm, and Gaussian width
σg = 1 mm. These parameters were set such that the filter resembles a single
oblique edge with some room for deviation from the above angles. The filtered
images were then thresholded for retaining only the high score regions, and added
to the blurred image such that

Ipre = Iσ + δ F (Gabor(λ, σg, 45◦) ∗ Iσ) + δ F (Gabor(λ, σg,−45◦) ∗ Iσ) , (1)

where Ipre is the final pre-processed image, and F is representing a thresholding
with 2, and a subsequent Gaussian blurring with σ. The threshold value was
selected empirically, such that only the strongest responses remained, and the
subsequent blurring was used to smooth the edges. We used an δ = 10 weighting,
such that the maximum value of the enhancement was about 50 for an image
with maximum intensity of 255. Examples of original and pre-processed images
are shown in Figs. 1 and 2.

2.2 Features

We used standard bone features from the literature, namely

1. Intensity of the pre-processed image Ipre.
2. Laplacian of Gaussian (LoG) image ILoG = −(LoG ∗ Ipre), with scale σ.
3. Intensity shadow, which was calculated as the cumulative sum of image inten-

sities from bottom to top, scaled with the pixel size of the image.
4. Depth. This feature is the distance in mm-s from the transducer, and is mainly

used to discard the structures too close to the transducer.

In addition to these standard features, we defined the following novel features.

5. Border-to-border distance. This feature discriminates bright lines based on
their length. Lines that run from the left edge of the field of view (FOV)
all the way to the right edge will have a lower value than shorter lines and
areas without line-like structures. We use the Laplacian of Gaussian image
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for enhancing bright line structures. Subsequently, we calculate the weighted
distance function from the left border and the right border of the image
respectively, where the weight image is Iweight = 1/(max(0, ILoG) + 0.01).
The sum of the left and right distances results in low values for pixels that
participate in a long structure, and higher values for short lines. It is useful if
we know that the imaged bone width is less then the FOV, which is the case
with most bones.

6. Centrality. This feature urges the classifier to find structures that are closer
to the center column of the field of view, as those structures tend to be of
greater importance than the ones on the border. We calculate this feature as
the weighted distance function from the center column of the image in both
directions. The same weight image Iweight was used as in the border-to-border
distance.

All feature images except depth were normalized by division by their maximum
value. Depth was normalized by division by 30, so that depth values were between
0–2. In addition, the shadow feature images were translated 1 mm to the top,
in order to sample the cumulative shadow without the possibly bright bone
interface. An example showing all feature images can be seen in Fig. 2.

Fig. 2. Feature images from left to right: Original image, pre-processed image, LoG
image, intensity shadow, border-to-border distance, centrality and depth.

2.3 Classifiers

We compared two classifiers in this work. For the pixel-wise classification we
chose the logistic classifier, as more flexible classifiers quickly overfit. For region
based classification we chose structured forests, as it showed promising results
on edge detection in natural images [2]. The following paragraphs describe both
classifiers in detail.



20 N. Baka et al.

Logistic Classifier. To make better use of the training data, we implemented
a cascade classifier scheme. In the first step, we discarded all regions that did
not contain structure, by a hysteresis threshold HysThr(ILoG, 0.2, 0.03) of the
normalized ILoG feature. In the second step, a logistic classifier was trained on
the pixels remaining after the first step. Negative samples were collected from
locations passing the first cascade step, and being further than 2 mm from the
ground truth. We sampled all positive samples (typically 200–400 samples), and
5000 negative samples from each training image. We then used weighting to
balance the influence of both classes on the decision boundary.

Structured Forest. The structured forest (SF) classifier introduced for edge
detection in natural images by [2] was used in this work. It is a random forest
classifier where the input and output are patches rather than pixels. We replaced
the original RGBD input channels with the feature images described in Sect. 2.2.
The feature pool is calculated from these channels by sampling pixels from the
patch, and by calculating the difference of any two pixels in the patch after
down-sampling it to a size of 5× 5. The 6 channels with a patch size of 32
pixels thereby produce 3336 feature candidates for the forest. The intermediate
mapping used for the splitting criterion of the tree nodes works best if areas
under, and above the bone interface have different labels. We therefore dilated
the ground truth downwards with 5 pixels to form the foreground segmentation.
Training patches were only sampled from locations where ILoG > 0.3 to avoid
sampling locations with no structure. We trained a forest of 4 trees and three
scale levels, using 1e5 positive and 2e5 negative samples. All further parameters
were set as proposed in [2]. The output image that results after applying the
tree to an unseen US image was blurred according to the scale, and added up to
result the forest output. To counteract the intensity loss due to spacial blurring,
we then normalized the image to have the highest probability equal to 100.

2.4 Dynamic Programming Segmentation

The classification step produces a probability map of the expected bone interface
in the image. To get a final smooth segmentation, we use this probability map
and dynamic programming similar to [3], with the cost function C = Cintern +
Cextern. The internal energy is created as

Cintern = 1 − Pbone , (2)

with an extra line added to the cost image with value 0.6. The segmentation
is at this line if there is no bony structure in the image column. The external
energy consists of the penalty for moving between columns, as follows:

Cextern =

{
jumpCost, if jump from or to extra line
α(irowCurr − irowNext)2, with maximum 3 rows difference

(3)

We used jumpCost = 1 and α = 0.1 in our experiments.
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3 Data

We used two sets of 2D ultrasound images in this study.
Dataset 1 consisted of a training set of 106 vertebra images of 15 subjects

(Dataset 1A) and a test set of 56 images of 10 subjects (Dataset1B), acquired at
the Tilburg Hospital with a 2D Philips L12-3 Broadband linear array transducer.
Every vertebra was imaged for about 3 sec at a gain of 45, contrast 55, and base
imaging depth of 5 cm. This depth was adjusted if needed. The patient was
imaged in a supine position. For every vertebra one image of the sequence was
selected for manual annotation of the ground truth bone surfaces.

Dataset 2 consisted of a training set of 91 vertebra images of 11 subjects
(Dataset 2A) and a test set of 87 images of 10 subjects (Dataset 2B), acquired
at Erasmus MC, with a Philips iU22 machine and the 2D L12-5 linear trans-
ducer. The images were acquired with the general musculo-skeletal protocol,
with imaging depth adjusted between 3–5 cm depending on the patient, and
gain 65. Focus was adjusted so that the imaged bone should be in the focus
region. Pixel size in most cases was around 0.1 mm. SonoCT and XRES adap-
tive image enhancement were switched on. The patient was imaged in a sitting
position. The patient population consisted of back-pain patients of ages between
19 and 77, with BMI between 17.9 and 39.1. For every vertebra one image of the
sequence was selected for manual annotation of the ground truth bone surfaces.

Manual annotation was done by spline interpolation between manually placed
control-points in both datasets. In every image only one vertebra was annotated.
In dataset 1 due to the smaller field of view of the transducer this meant all visible
bony structures were segmented. In dataset 2 with a larger field of view in about
half of the cases the edge of neighboring vertebral processes were also visible,
these were not included in the ground truth segmentation.

4 Experiments and Results

We performed experiments to (a) evaluate the accuracy of the two classifiers
and their segmentation performance; (b) assess the robustness of the methods to
different acquisition setups; (c) compare the method with the method of Foroughi
[3]. Comparison with Foroughi was only performed on dataset 1, as there all bony
structures were segmented in the ground truth. To evaluate the performance of
the classifiers and the subsequent dynamic programming segmentation, we used
recall, precision, and the F-measure as follows:

– Classifier recall (RecC): The ratio of ground truth contour that was classified
correctly and the length of the entire contour.

– Classifier precision (PrecC): The ratio of detection inside the dilated ground
truth compared to all detections.

– Segmentation recall (RecS): the number segmentation points inside the dilated
ground truth region, divided by the number of ground truth pixels. As every
column has maximum one pixel marked as bone interface, this results in a
normalized number, such that the perfect contour has sensitivity 1, and if
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bone was not found, sensitivity is 0. However, sensitivity might also be larger
than 1 due to the region enlargement. Values larger than 1 are thresholded
to 1.

– Segmentation precision (PrecS). The length of the segmentation inside the
dilated ground truth divided by the total length of the segmentation.

– F-measure: The F-measure is the harmonic mean of precision and recall: F =
2 prec·rec

prec+rec . The combination of these two measures facilitates the comparison
of classifier accuracies.

Dilation for the ground truth was set to 2 mm where dilation was used.
The threshold value used to calculate the classification evaluation measures

was set to 50% for the logistic classifier, and to 30% for the structured forest
classifier. These values were optimized based on the training set. For the dynamic
programming the parameter values are mentioned in Sect. 2.4. These parameters
were optimized on the Foroughi method with training set A, and were used for
all experiments in this paper.

The results of the experiments are shown in Table 1. Besides the average pre-
cision and recall we also report the number of failures, defined by a segmentation
precision or recall < 0.01. Figure 3 shows examples of bone probability images
and their segmentation using the relative shadow feature.

Table 1. Classification and segmentation results of the proposed framework on the
test set, together with results of the method of Foroughi et al. [3]. 1 and 2 denote
the two different ultrasound datasets used in this paper, 1A2A and 1B2B denotes the
combined training and test dataset respectively.

Classifier Train Test Segmentation Classification

Recall Precision F-meas F-meas Recall Precision #fail

Logistic 1A 1B 0.93 0.76 0.84 0.77 0.87 0.69 1

Logistic 2A 2B 0.93 0.59 0.72 0.70 0.87 0.59 1

Logistic 1A 2B 0.85 0.39 0.53 0.45 0.89 0.30 6

Logistic 2A 1B 0.62 0.61 0.62 0.63 0.56 0.71 12

Logistic 1A2A 1B2B 0.89 0.57 0.69 0.64 0.87 0.50 7

SF 1A 1B 0.90 0.91 0.90 0.85 0.84 0.87 0

SF 2A 2B 0.83 0.80 0.80 0.78 0.77 0.79 6

SF 1A 2B 0.78 0.61 0.66 0.65 0.76 0.57 10

SF 2A 1B 0.58 0.69 0.61 0.62 0.58 0.67 8

SF 1A2A 1B2B 0.87 0.81 0.82 0.80 0.82 0.79 4

Foroughi 1B 0.71 0.67 0.66 6
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Fig. 3. Example images and segmentations from dataset 1. From left to right: Struc-
tured forest, Logistic classifier, and Foroughi et al. [3]. The original images with ground
truth (blue) and dynamic programming segmentations (red) are in the odd rows. The
corresponding probability images are in the even rows. (Color figure online)

5 Discussion and Conclusions

We performed experiments evaluating bone interface classification and segmen-
tation from US images in two datasets (Table 1). The two datasets were acquired
on different machines and with different protocols. Though visually the images
looked similar in the two datasets, the low cross-evaluation accuracy (F measure
between 0.45 and 0.65) shows that the statistical properties of the two datasets
were different. The largest difference we found in the histogram of the shadow
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feature, which showed a clear difference in the optimal threshold value for sep-
aration of bone and non-bone interfaces in the two datasets.

We also found that structured forest with the relative probability threshold
consistently achieved higher accuracy than the logistic classifier (with a differ-
ence between 8–20 % F-measure). Notably, the SF classifier on the combined
dataset achieved an accuracy close to the average accuracy of the purely trained
classifiers. This might be due to the selection of the best features during train-
ing, the non-linear decision boundary, and the use of regional information. This
result is important, as it suggests, that a smart classifier may compensate for
statistical differences in datasets, thereby facilitating robust generally applicable
methods.

We also looked at the failure cases in the combined dataset experiment. The
structured forest classifier failed on four cases. All four cases were from dataset 2.
Two failures were images of short bones far from the FOV center. These were not
detected. One image contained two vertebrae. As only one of them was annotated
in the ground truth, and the other one was segmented by the method, it counted
as a complete failure. The last failure was due to a wrong FOV cropping. There
were 80 zero-padded columns on the right of the image, which interfered with
the way the border-to-border feature is calculated. In lack of this feature the
fat-muscle interfaces were segmented instead of the bone-soft-tissue interface.
Generally, bright well visible bones with distinctive shadow are segmented with
the highest confidence.

Comparing segmentation and classification performances, segmentation may
outperform classification. This is possibly due to the added smoothness and spa-
tial connectedness constraints that help to ignore small false positive and neg-
ative classifications. All dynamic programming segmentation experiments were
performed with the same parameters, optimized for the method of Foroughi [3].
Further improvements might be possible with specially tuned parameter values
for the different datasets.

We also compared our results with the method of Foroughi et al. [3]. Both the
logistic and structured forest classifiers outperformed this heuristic approach. We
also conclude that our dataset must be more challenging than the dataset used
in the original paper, as the results are substantially worse than the reported
ones.

The computation time of the structured forest, with an implementation based
on the optimized Matlab code of [1,2], took 0.5 s, and the subsequent dynamic
programming another 0.2 s. The logistic classifier was implemented in Python
2.7 using scikit-learn package without speed related optimization. The classifier
including the dynamic programming thereby took 2.6 s to compute on a laptop
with intel i7-2760QM 2.4 GHz cpu and 16 GB ram.

We conclude that machine learning is a feasible and accurate way for bone
segmentation in ultrasound. We achieved best results with the structured forest
segmentation scheme with recall and precision as high as 0.90/0.91 on dataset
A, and 0.87/0.81 on the combined dataset.
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Abstract. Segmenting the inner structure of the spinal cord on mag-
netic resonance (MR) images is difficult because of poor contrast between
white and gray matter (WM/GM). We present a variational formulation
to automatically detect cerebrospinal fluid and WM/GM. The segmen-
tation results are obtained by continuous cuts combined with a shape
prior. Intensity-based segmentation guarantees high accuracy while the
shape prior aims at precision. We tested the algorithm on a set of MR
images with visual WM/GM contrast and evaluated it w.r.t. manual GM
segmentations. The automated GM segmentations are on a par with the
manual results.

1 Introduction

Numerous neurological diseases manifest not only in the brain but also in the spinal
cord (SC). Accurate SC segmentation recently gained increasing attention. Mea-
suring the SC cross-sectional area on magnetic resonance (MR) images has shown
to be a good quantitative measure to study diseases of the central nervous system
like multiple sclerosis (MS). MS shows strong influence on the SC, which manifests
e.g. in atrophy and lesion formation [7]. Spinal cord atrophy is occurring early in
the disease progress and was shown to correlate very well with the clinical evalu-
ation (EDSS) of the patient i.e. with MS disability progression [7]. Especially the
SC gray matter area was shown to correlate strongly with MS disability [11].

Delineating white (WM) and gray matter (GM) and measuring their areas
or volumes in-vivo is challenging because of their fine structure, poor WM/GM
imaging contrast, limited practical MR resolution, and inter- and intrapatient
variability of the captured images and of the SCs themselves. On top of that,
high intra- and interobserver variability in manual segmentations make further
statistical evaluations difficult.

To overcome these challenges and to further deepen the knowledge about the
GM/WM atrophy in the SC an automatic quantitative segmentation method is
required that has high accuracy as well as precision.
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 26–37, 2016.
DOI: 10.1007/978-3-319-55050-3 3
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Given an MR image with optimal contrast and signal-to-noise ratio, an
intensity-based segmentation method is perfectly suited for that job. The more
noise is involved the more we need to regularize the method. To handle partial
volume effects of captured fine structures, even shape priors may be necessary.

Yiannakas et al. [16] show the feasibility of segmenting WM/GM in the SC.
Tang et al. [12] use a Bayesian three-class classifier, and Asman et al. [1] use
groupwise multi-atlas segmentation to discriminate WM/GM slice-wise. Taso
et al. [13] construct atlases for cerebrospinal fluid (CSF), WM/GM and propose
atlas based 3D segmentation and classification methods. De Leener et al. [5]
provide a more comprehensive review of the available GM segmentation methods.
However, no standard method has yet been established, which motivates the
search for alternative approaches.

In this paper, we propose an automatic variational segmentation method
that can locate CSF and segment the WM/GM of the spinal cord. We describe
our data in Sect. 2, introduce our generic models in Sect. 3, show the results in
Sect. 4, and discuss them in Sect. 5.

2 Data

For this paper 10 volunteers (6 male, 4 female) were scanned with an experimen-
tal MR sequence (approved by the local ethics review board). In total we acquired
16 axial cross-sectional sets of images on C3 level with acceptable WM/GM con-
trast using a 2D-MOLLI sequence [15] with 0.4 × 0.4mm2 in-plane resolution
and 8 mm slice thickness. The MOLLI sequence acquires altogether 11 aligned
images in each image set with different inversion times TI per slice [15]. The first
image of each image set has good CSF contrast and the average of each set has
good WM/GM contrast. In Fig. 1 we see the first three images and the mean
image of one set. Figure 3 shows more mean images of different contrast quality
and of different subjects.

Two experienced raters segmented the 16 images manually for GM. Rater
1 rated two times at different days with different techniques. In one tech-
nique images in the original resolution were segmented pixel-wise, see Fig. 3. In
the other, 10-fold upsampled cubic interpolated images were segmented whose
masks were downsampled again afterwards. The second technique resulted in a
grayscale segmentation. Rater 2 used the same up- and downsampling technique.

3 Method

In this paper we present a variational approach that segments CSF, WM, GM,
and background given a set of MR images of the same slice. Because binary
segmentation algorithms are more robust than multi-labeling algorithms and
because of the special situation of the MOLLI sequence, where the first image
has good CSF contrast, we split our fully automatic approach into two steps:
a CSF segmentation step and a WM/GM segmentation step. The second step
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Fig. 1. Upper row: first three images of the MOLLI sequence of a cross-sectional neck
scan on C3 level; histogram-equalized mean image and its zoom depict CSF, WM, GM.
Lower row, segmentation steps: CSF contrast image with ellipsoidal prior; zoomed view
on the CSF segmentation (red) and mask (yellow); GM segmentation (green) and the
boundary towards CSF (red) before and after shape regularization. (Color figure online)

makes use of the previously labeled CSF, where we extract the interior of the
ring-shaped CSF and use it as a mask for the WM/GM discrimination, see Fig. 1.

In recent years a tendency towards relaxed convex variational formulations
can be observed because their solutions all enjoy to have the optimal score. The
motivation of using continuous cuts [17] lies in the mathematical beauty and in
the simple algorithmic implementation. The model is convex and finds intended
segmentations robustly, independent of any specific algorithm initialization. Its
dual formulation, also called continuous max flow, has analogies to graph cut
[3], but enables subpixel accuracy and has less metrication errors. We added
different additional features to the continuous cut formulation: anisotropic total
variation (ATV) [8], pose invariant shape priors [4,9], an additive Bhattacharyya
coefficient (BC) [14], and prior boundary curvature dependent capacities.

3.1 Mathematical Ingredients

Before we describe the CSF and WM/GM segmentation steps, we first introduce
continuous cuts [17] and additional energies, which we use in both steps.

The most basic segmentation method is intensity thresholding, where the
pixels are divided into two categories: those with intensity values lower and
respectively higher than a certain threshold. Because of the presence of noise in
high resolution MR images, before thresholding, first an approximation of the
image has to be calculated where the noise is reduced. In the literature this
problem can be modeled with the Mumford-Shah functional [2]. We make use of
a generalized special case of the piecewise-constant Mumford-Shah problem

argmin
O⊂Ω

∫

O
Ct(x) dx +

∫

Ω\O

Cs(x) dx + TVC(∂O), (1)



Variational Segmentation of the White and Gray Matter in the Spinal Cord 29

which is also a generalized version of the Chan-Vese model and can be seen as a
generic segmentation model [17]: Inside the image domain Ω the object O and
the background B := Ω\O shall be found, where Ct, Cs and C are the model
parameters, here called capacity functions. The name capacity and the indices
of Cs and Ct find their roots in graph cuts and stand for source and target. Ct

has to be low on the object O, and Cs has to be low in the background.
For an associated algorithm to be automatic, it is necessary to estimate

proper capacity functions automatically. In this task, mean intensity differ-
ences turned out to be well-suited for the terminal capacities Cs and Ct. For
non-terminal capacities C we chose negative exponential image gradients. The
weighted total variation TVC as an object boundary length regularizer can be
adapted anisotropically to the image structures when introducing a Riemannian
metric tensor A [8], replacing TVC by ATVC .

To find a convex version of the above functional (1) one introduces a relaxed
labeling u : Ω → [0, 1], such that x is in O if u(x) is close to 1 and x is in B if
u(x) is close to 0. This way we can write down the continuous cut with ATV

argmin
u:Ω→[0,1]

∫

Ω

Ct(x)u(x) + Cs(x)(1 − u(x)) + C(x) ‖∇u(x)‖A dx, (2)

where ‖∇u(x)‖A =
√∇u(x)T A(x)∇u(x) =

∥∥S(x)T ∇u(x)
∥∥

2
, and A = SST is

a strongly positive definite, matrix valued function [8]. Olsson et al. [8] proofed
that a coarea formula for ATV holds and thus a thresholding theorem exists for
solutions of (2). This means that for a minimizer u� of (2) and any threshold θ
in ]0, 1] the thresholded superlevel set 11u��θ is again a minimizer of (2).

Algorithms that minimize (2) itself may struggle with the non-differen-
tiability of ‖∇u(x)‖2 twofold: the non-differentiability of ‖·‖2 at the origin and
the calculation of ∇u along jump-parts. A nice work-around is provided by
the primal-dual formulation of (2). As proposed in [10], adding an augmented
Lagrangian and calculating the variational derivatives results in a very short
algorithm: We iterate a valid initialization (p0

s, p
0
t , p

0, u0) with

pk+1
s = min

(
(1−uk)/c + div Spk + pk

t , Cs

)
,

pk+1
t = min

(
uk

/c − div Spk + pk+1
s , Ct

)
,

pk+1 = P (
pk + γ ST ∇ (

divSpk − pk+1
s + pk+1

t − uk
/c

))
,

uk+1 = uk − c
(
div Spk+1 − pk+1

s + pk+1
t

)
,

(3)

where P(p(x)) = sign(p(x))min(|p(x)| , C(x)). We use c = 0.3 and γ = 0.16.
Up to here the model is convex and fulfills a thresholding theorem. Now we

vary the capacity functions and make them dependent on u, thus in general
we lose the mathematical global optimality property. In practice, as long as
the capacity functions do not change too fast, they converge with u. We lose
convexity anyway, as we include additional energy terms like BC [14], and a
mean squared difference to a shape prior [4,9], see next sections. Of course, the
mathematical properties of the continuous cut in practice still help to balance
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out the local properties of the additional energies, as long as they are weighted
appropriately. In turn, BC helps out the segmentation process to stick to the
local intensity structure while the shape prior term includes prior knowledge.

Pose Invariant Shape Prior. Given a grayscale image I : Ω → [0, 1], a shape
prior f0 : Ω → [0, 1], and a relaxed labeling u, we introduce the effective image

Ieff = λ Imodel +μ Iprior, Imodel = c0 (1−u)+ c1 u, Iprior = b0 (1− f)+ b1 f, (4)

with c1 and c0 the mean intensities of the background and foreground, f =
f0 ◦ Tp : Ω → [0, 1] a rigidly transformed version of f0, and b1 and b0 the mean
model intensities on the rigidly transformed shape prior area and its complement
[9]. The idea is to minimize

∫

Ω

λ (I − Imodel)2 + μ (Imodel − Iprior)2 + C ‖∇u‖A dx, (5)

where we segment and force the segmented result to be close to the prior by min-
imizing the mean squared distance to the relaxed piecewise constant approxima-
tion Imodel. By factoring out with remainder, we see that minimizing the latter
is equivalent to minimizing

E(u, c, f, b) =
∫

Ω

(Ieff − c1)2 u + (Ieff − c0)2 (1 − u) + C ‖∇u‖A dx, (6)

which is in the form of a continuous cut, thus can be optimized by (3). In practice,
we replace (Ieff(x)− c1)2 and (Ieff(x)− c0)2 with functions Ct(x) and Cs(x) that
stay close to the idea of (4): The square function is replaced with the absolute
function and c0 and c1 are varied slightly, see below.

Following [9], the rigid coordinates p = (a, b, θ, exp σ) of the prior f can be
iterated by a gradient descent through

an+1 = an − ι
〈f − u,−∂x1f〉

‖f‖2 , θn+1 = θn − ι
〈f − u,−∇fT J(x − (a, b)n+1)〉

‖|x − (a, b)| ∇f‖2 ,

bn+1 = bn − ι
〈f − u,−∂x2f〉

‖f‖2 , σn+1 = σn − ι
〈f − u,−∇fT (x − (a, b)n+1)〉

‖|x − (a, b)| ∇f‖2 ,

(7)
where J =

(
0 1−1 0

)
, and 〈·, ·〉 and ‖·‖ denote the L2 scalar product and norm. The

denominators, obtained through the metric on the Lie group of the transformed
priors, can be seen as automatic step size controllers. We use the stepsize ι = 1.

Bhattacharyya Coefficient. BC is a measure of how different two densities
are. The goal of intensity-based segmentation can be described as finding regions
with maximally distinct histograms. Given the two histogram densities fO and
fB of the object and the background with values in Z, their BC is given by

BC(fO, fB) =
∫

Z

√
fO(z) fB(z) dz. (8)
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Following Wang et al. [14] we calculate the variational derivative δ·
δu of BC:

δBC

δu
(x) =

1
2
δ(u(x) − θ)

∫

Z

√
fO(z) fB(z)

(
1

AB
− 1

AO

)
+

+ δ(I(x) − z)

(√
fO(z)fB(z)

fB(z)
1

AO
−

√
fO(z)fB(z)

fO(z)
1

AB

)
dz,

(9)
where the histograms and the areas AO and AB are represented through thresh-
olded u segmentations, and δ(·) stands for the Dirac-delta distribution. A more
global variant of the BC gradient could be calculated by plugging in u directly,
omitting the factor δ(u(x) − θ) in (9). But since we only want to influence the
continuous cut close to the boundary of the thresholded solution, we chose this
version. In the algorithm we set θ to 0.5 and use a standard arctan approxima-
tion with ε = 1 for the δ function outside the integral. Given a discrete image,
we already calculate discrete histogram densities which also discretizes

∫
Z

dz to∑
z∈Z and δ(I(x) − z) to the Kronecker delta δI(x),z.
Wang et al. [14] combined the level set representation of the Chan-Vese energy

with BC. We now combine the continuous cut energy for shape priors with BC,
weighted with a factor ν:

min
∫

Ω

Ct(u, f, I)u + Cs(u, f, I) (1 − u) + C(f, I) ‖∇u‖A dx + ν BC(u). (10)

With this external energy, the update rule for u in (3) changes to

uk+1 = Pu

(
uk − c

(
divSpk+1 − pk+1

s + pk+1
t + ν

δBC

δu

))
. (11)

The local behavior of the variational derivative of BC is guided by the convex
property of the continuous cut. BC influences twofold: For the terminal capac-
ities, aside mean intensity differences, also object and background histogram
densities can be used. This choice, in practice, turned out unsuited for auto-
matic segmentation when the object is not already well initialized. Using BC
we can incorporate the histogram densities simultaneously with mean intensity
differences. The second benefit is: While continuous cut (6) is computing on the
effective image Ieff, BC is dealing with the original image intensities. BC makes
the choice of the capacities less sensitive and balances the influence of the prior
in the segmentation process.

Statistical Appearance Model. We do not only want the shape prior f0 to be
a statistical mean shape, but we also want the shape prior to adapt to the actual
segmentation. Cremers et al. [4] use an appearance model for this task, because
projection and backprojection are low cost compared to a displacement field
model, where non-rigid registration is involved. They also showed that optimizing
the model parameter inside the set of meaningful parameters is convex.
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Let us model the shape priors by a Gaussian distribution with mean f0

and covariance C and let C = V Λ2V T be its eigendecomposition. Following
[4], we use our continuous cut energy (10) for an appearance model realization
optimization together with an appearance prior regularizer ξ αTΛα:

min
α

∫

Ω

Ctf + Cs(1 − f) + C ‖∇f‖A dx + νBC(u) + ξ αTΛα, (12)

with the backprojection f = f(α, p) = min(max(f0(p) + V (p)Λα, 0), 1), where
f0(p) and V (p) are the rigidly transformed mean GM and eigenshapes at the
rigid coordinates p.

In (12) compared to (10) f(α, p) takes the role of u and since they have to
be similar, we initialize the model parameter α with the projection of uk0 , where
uk0 is an acceptable solution of the model (10). We iterate the model parameter
simultaneously with projected u-updates from (11):

α0 = Λ−1V (p)T (uk0 − f0(p)),

αn+1 = αn − ΔtαΛ−1V (p)T

(
div Spk+1 − pk+1

s + pk+1
t + ν

δBC

δu

)
− 2 ξΛαn.

(13)

The idea behind this algorithm is: projecting u in every iteration into the model
space and using its approximation f as the prior. But since we can choose the
stepsize Δtα, the prior and the segmented structure are, up to the point where
f is initialized, uncoupled from each other.

Anisotropic Total Variation. We use the structure tensor of the image to
design the Riemannian metric matrix field A : Ω → R

2×2 [6]. In
∫

Ω
‖∇u‖A dx

we want the integrand to be small at high image gradients. Thus, for each x
in Ω the eigenvalue of A(x) in image gradient direction, which is parallel to
∇u, has to be small. Let B(x)Λ̂(x)B(x)T be the eigendecomposition of the sym-
metric structure tensor at point x with decreasing order of eigenvalues and let
λ(x) denote the larger eigenvalue. We use the gamma-transformed normalized
negative transform of all image gradient magnitudes (1 − N(λ)(x))2, to scale
the image gradient direction, such that ∇u gets less penalized when the image
gradient is stronger. We define S(x) = B(x) diag((1 − N(λ)(x))2 + ε, 1), where
we add ε > 0 to guarantee strong positiveness of the matrix field. When λ gets
small, (1 − N(λ)(x))2 tends quadratically to 1, thus A approaches the isotropic
identity matrix in regions with weak edges.

Notations and Definitions. For super- and lowerlevel sets we set {u ∼ θ} =
{x ∈ Ω |u(x) ∼ θ}, where ∼ stands for a relation (=, >,<,...). We denote the
normalization of a real-valued function v : Ω → R as the function N(v) : Ω →
[0, 1] with N(v)(x) = (v(x)−min

s
v(s))/(max

s
v(s)−min

s
v(s)), and the normalized gamma

transform Γ (v) : Ω × R+ → [0, 1] with Γ (v)(x, γ) = (N(v)(x))γ . We denote the
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shortest Euclidean distance between x and the boundary of {f = 1} by d(x, f).
Fmedian is a median filter of size 3×3. For all the terms that need to be regularized
we add a constant ε = 10−5. Tolerances have been chosen, such that the L1 norm
of an update is smaller than 1 pixel for 10 consecutive iterations.

3.2 CSF Segmentation

Given a histogram-equalized MR image I : Ω ⊂ R
2 → [0, 1] with good CSF

contrast we introduce an ellipsoidal shape prior f0 : Ω → {0, 1}, shown in Fig. 2.
We use the segmentation model (10) with λ = μ = 0.5, ν = 0, and

A while f0 is being registered:

Cs(x) = Fmedian(Γ (|Ieff(x) − mean(I({f > 0.5})| , 3/2)),
Ct(x) = Fmedian(Γ (|Ieff(x) − mean(I({f � 0.5})| , 2/3)),
C(x) = 1/10 log(1 + d(x, f)) + ε,

B after f0 has been registered:

Cs(x) = Fmedian

(
max(log(fO + ε) − log(fB + ε), 0)

log(1 + ε) − log ε

)
,

Ct(x) = Fmedian

(
max(log(fB + ε) − log(fO + ε), 0)

log(1 + ε) − log ε

)
,

C(x) = γ1 exp (−γ2 ‖∇Iassist(x)‖) .

In A, the translational initial point of f is the center of mass of the neck,
calculated through Otsu’s thresholding, which is then iterated through (7). The
terminal capacity functions are gamma-transformed with experimentally chosen
exponents 3/2 and 2/3 to enhance the contrast between object and background.
In B, when f has been registered to the CSF position, we calculate a mask and
use it as the new image domain – marked yellow in Fig. 2. We use the convex hull
of the ellipsoid and dilate it with a box-shaped structuring element of size 4, to
make sure that the segmentation does not leak into surrounding bright intensity
areas, when we switch to other capacity functions. The non-terminal capacity C
is then changed to a negative exponential of gradient magnitudes of an assisting
image Iassist. The assisting image at a bigger TI relaxation time, where the CSF
is black and the spinal tract is brighter, helps in case the captured CSF of the
subject is not ring-shaped. CSF can be pressed away though the gravity of the
spinal tract when lying on the back, compare Fig. 2.

3.3 WM/GM Segmentation

Given an image I : Ω ∩M ⊂ R
2 → [0, 1] with good WM/GM contrast, the inner

part of the segmented CSF as a mask M and a statistical model for GM, we use
(10) and (12) with λ = μ = 0.5, ν = 5, ξ = 0, Δtα = 0.2 (13), and
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Fig. 2. Upper row: CSF segmentation without adapted non-terminal capacity; CSF
segmentation with adapted non-terminal capacity; assisting image Iassist; adapted non-
terminal capacity for CSF – low values along the posterior CSF result in weak length
regularization. Lower row: Ellipsoidal-shaped CSF prior (major and minor axis roughly
10 mm and 7 mm); special mask Mspecial with high values where GM cannot be; negative
exponential of gradient magnitudes combined with Mspecial; negative transformed GM
curvature multiplied by distance map. (Color figure online)

A during initial segmentation and rigid registration:

Cs(x) = Fmedian(Γ (|I(x) − mean(I(M))| , 3/2)),
Ct(x) = Fmedian(Γ (|Ieff(x) − 0| , 2/3)),

C(x) = g(x) +
median(g) + max(g)

2
· Mspecial, g(x) = γ1 exp (−γ2 ‖∇I(x)‖) ,

B during appearance model registration:

Cs(x) = Fmedian(Γ (|Ieff(x) − mean(I({f > 0.5})| , 4)),
Ct(x) = Fmedian(Γ (|Ieff(x) − mean(I({f � 0.5})| , 1/4)),
C(x) = 1/10 log(1 + d(x, f)) · ζ(x, f) + ε.

The time-domain A starts with an initial segmentation according to (10) without
a prior. Once the segmentation updates reach the tolerance, the rigid registration
part starts. The initial translational coordinate is set to the center of mass of the
WM/GM mask M . For C we construct a special mask Mspecial, where capacities
are forced to be high in regions where GM cannot be, see Fig. 2.

When the rigid registration and segmentation updates reach the tolerance,
time-domain B starts. Here the model appearance f is being registered according
to (12). We observed that, as long as f is registered appropriately, calculating
mean intensities of object and background depending on the prior f seems more
stable than looking at the actual areas defined through u. For Cs and Ct, Ieff =
(Imodel+Iprior)/2 is replaced with (I+Iprior)/2, compare (4). This way we combine
again unblurred original image intensities with prior information.

With the curvature κ on the boundary of the prior, we define for any point
in Ω the normalized negative transform of the curvature ζ(x, f) = 1 − N(κ)(x̂)
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Fig. 3. Upper row: Solutions of (10) show disconnected GM regions and depend on the
image quality. Middle row: Proposed solutions show anatomically consistent results.
Lower row: GM contours of pixel-wise manual segmentations of rater 1.
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Fig. 4. GM segmentation results. Dices: intra-rater: binary vs grayscale; inter-rater:
rater 1 vs 2 (grayscale); proposed vs rater 1 (binary); proposed (grayscale) vs rater 1
and 2 (binary and grayscale). Hausdorff: thresholded grayscale segmentations.

of the nearest neighbor x̂. For the capacity function C we multiply the prior
distance map with ζ. This way the boundary has more freedom in regions with
high curvature, see Fig. 2.

It is an advantage to choose Δtα smaller than 1 (we chose 0.2) because
then the prior does not change too fast, in case the Chan-Vese solution at the
initialization time has good quality and would be affected badly by the prior,
which, in turn, would change the prior again.

4 Results

We implemented our models and algorithms in MATLAB and tested the GM
results against the manual segmentation. For each dataset we created a statistical
appearance model for (12) from the aligned manual segmentations of rater 1
and 2 of the remaining datasets, using principal component analysis. The CSF
localization, spinal tract extraction and GM segmentation worked robustly and
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fully automatic on all 16 images. Figure 3 shows exemplary GM results. We
notice that the CSF segmentation is not perfect, because the anterior median
fissure is not seen in the first image, where the CSF has bright intensity and
overrules the thin structure because of partial volume effects.

Figure 4 shows mean Dice coefficients (0.75) and average Hausdorff distances
(1 mm) of the proposed GM results. The Hausdorff distances have the tendency
to be large, because the thin-structured posterior horns are not always delin-
eated with the same length. Taso et al. [13] reach mean GM Dice coefficients of
0.83. Since our image resolution and signal-to-noise ratio are low, our manual
segmentation only reaches a mean intra- and inter-rater Dice of 0.75. Therefore
we expect Dices at best in the latter range, when comparing our method to the
manual raters. Hand-segmented results are thresholded with 0.6, because of the
downsampling technique, and the automated results with a standard 0.5. The
error for thresholding is in the range of non-thresholded inter-rater variance. The
proposed automated solution therefore can be seen as a third rater.

5 Discussion and Conclusion

We developed a variational approach to segment GM inside the spinal cord on
C3 level. The algorithm works robustly on the given data sets and achieves
similar Dice and Hausdorff measures as hand-segmented results. The solutions
of the algorithm depend more on the intensity values gathered through the MR
sequence and less on prior knowledge. Prior knowledge is included but does not
overrule the information given in the MR image.

The quality of the results depends strongly on the imaging quality because
of the fine structures present in the GM. We expect better quality in new images
and thus better segmentation results. The MR sequence is still experimental and
further adaptations are necessary for use in clinical practice.

We consider to implement a spatially adaptive weighting factor between
the information of a given MR image and of the prior knowledge. The sim-
ple ellipsoidal-shaped prior was only used to locate the CSF, and in the future
CSF and WM appearance models will be included. Since variational algorithms
can easily be extended to additional dimensions, our model can be adapted for
3D MR images with good WM/GM contrast.
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Abstract. In this paper, we propose to use deep convolutional neural
networks to solve the challenging Intervertebral Disc (IVD) segmentation
problem. We investigated the influence of four different patch sampling
strategies on the performance of the deep convolutional neural networks.
Evaluated on the MICCAI 2015 IVD segmentation challenge datasets,
our method achieved a mean Dice overlap coefficient of 89.2% and a
mean average absolute surface distance of 1.3 mm. The results achieved
by our method are comparable with those achieved by the state-of-the-
art methods.

1 Introduction

Intervertebral disc (IVD) degeneration is a major cause for chronic back pain and
function incapacity [1]. Magnetic Resonance (MR) Imaging (MRI) has become
one of the key investigative tools in clinical practice to image the spine with IVD
degeneration, not only because MRI is non-invasive and does not use ionizing
radiation, but more importantly because it offers good soft tissue contrast that
allows for visualization of disc’s internal structure [2].

MRI quantification has great potential as a tool for the diagnosis of disc
pathology but before quantifying disc information, the IVDs need to be extracted
from the MRI data. In the literature, different methods have been proposed for
IVD segmentation [3–7]. There exist methods based on watershed algorithm [3],
atlas registration [4], graph cuts with geometric priors from neighboring discs [5],
template matching and statistical shape model [6], or anisotropic oriented flux
detection [7]. All of these methods except [6] work only on 2D sagittal images.

Recently, machine learning-based methods have gained more and more inter-
est. For example, Zhan et al. [8] presented a hierarchical strategy and local
articulated model to detect vertebrae and discs from 3D MR images and Michael
Kelm et al. [9] proposed to use iterated marginal space learning for spine detec-
tion in CT and MR images. A unified data-driven regression and classification
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 38–48, 2016.
DOI: 10.1007/978-3-319-55050-3 4
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Fig. 1. A schematic view of the workflow for the present method. See main texts for
details.

framework was suggested by Chen et al. [10] to tackle the problem of localiza-
tion and segmentation of IVDs from T2-weighted MR data, and Wang et al.
[11] proposed to address the segmentation of multiple anatomic structures in
multiple anatomical planes from multiple imaging modalities via a sparse kernel
machines-based regression.

The more recent development on deep neural networks, and in particular on
convolutional neural networks (CNN), suggests another course of methods to
solve the challenging IVD segmentation problem [12–16]. Contrary to conven-
tional shallow learning methods where feature design is crucial, deep learning
methods automatically learn hierarchies of relevant features directly from the
training data [13]. Motivated by this development, we propose to use deep CNNs
for the automated segmentation of IVDs from T2-weighted MRI data. Figure 1
shows a schematic view of the workflow for our method. Based on this workflow,
we further investigate the influence of four different patch sampling strategies
on the performance of the deep CNNs.

The paper is organized as follows. In Sect. 2, we will describe the proposed
architecture and algorithm. The application to the MICCAI 2015 IVD segmen-
tation challenge dataset will be presented in Sect. 3, and we conclude with a
discussion in Sect. 4.

2 Methods

2.1 Data Description

The training data provided by the MICCAI 2015 IVD challenge organizers con-
sist of 15 3D T2-weighted turbo spin echo MR images and the associated ground
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Fig. 2. Manual segmentation of 7 IVD regions from T2-weighted MR images.

truth segmentation (http://ijoint.istb.unibe.ch/challenge/index.html). These fif-
teen 3D T2-weighted MR images were acquired from fifteen patients in two dif-
ferent studies. Each patient was scanned with 1.5 Tesla MRI scanner of Siemens
(Siemens Healthcare, Erlangen, Germany). The pixel spacings of all the images
are sampled to 2× 1.25× 1.25mm3. There are 7 IVDs T11-L5 to be segmented
from each image. Thus, in each image these IVD regions have been manually
identified and segmented. Figure 2 shows two T2-weighted MR images and the
segmented IVD regions from the images.

The MICCAI 2015 IVD challenge organizers also released two test datasets.
Each test dataset consists of five 3D T2-weighted turbo spin echo MR images.
Thus, in this paper, our CNNs are trained on the fifteen 3D training data first,
and are then evaluated on the ten test data.

2.2 CNN Training

Pre-processing. For any 3D image either from the training data or from the
test data, we conduct a pre-processing pipeline to define a region of interest
(ROI). This is done for each sagittal slice in the 3D volume as follows: (1) we
first downsample the slice to one fourth of the original size; (2) taking two pixels
at the top-left corner and the top-right corner as two seed points respectively,
we conduct region growing from each seed point with a pixel intensity threshold
of 10, followed by a closing operation to get two regions that do not cover any

http://ijoint.istb.unibe.ch/challenge/index.html
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Fig. 3. A sagittal slice of a raw image (left) and the ROI after pre-processing (right,
the red color-masked region is the ROI where we will work on). (Color figure online)

human tissue; (3) we finally upsample these two regions to the original image
resolution and subtract the upsampled regions from the sagittal image space to
get the ROI for later processing (training or testing). See Fig. 3 for an example.

Patch Sampling. Considering the relative small regions of interest for IVDs
when compared with background region, we adopted following patch sampling
strategy during the training stage:

– Voxels inside the IVDs. For each voxel inside the IVDs, we sample a patch
around the voxel and assign the label of the sampled patch as 1 (a postive
patch).

– Voxels at the boundary of the IVDs. In order to obtain the boundary of the
IVDs, we first compute two label images. The first label image is obtained by
dilating the ground truth label image with a 3×3×3 structuring element and
the second label image is obtained by eroding the ground truth label image
with the same cubic structuring element as the first one. The boundary of the
IVDs is then obtained by subtracting the second image from the first image.
For each voxel at the boundary of the IVDs, we sample twice the same patch
around the voxel. The patch label will be the same as the voxel label. Sampling
these patches twice places more weight on the boundary voxels.

– The remaining voxels. We randomly sample negative patches from the remain-
ing voxels in the ROI such that the number of the sampled negative patches
is equal to the number of sampled positive patches.

Figure 4 shows a schematic view on how the sampling is done. We sample
in total 1.6 million patches from the fifteen 3D T2 MR training data. Before
we will use the sampled patches, we first compute an average patch from the
sampled 1.6 million patches and then we subtract the average patch from the
sampled patches to get zero-centered patches for training. In the test stage,
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Fig. 4. Schematic view on a sagittal slice showing how the positive patches (left image,
green color), the boundary patches (both left and right images, red color) and the
negative patches (right image, green dots) are sampled (Color figure online)

for each sampled patch, we will also subtract the same average patch from the
sampled patch.

Patch Design. We investigated two different types of patch. The first type of
image patch is designed to be pure 2D image patches sampled from each sagittal
slice of a 3D T2 MR image while the second type of image patch is designed to
be 2.5D image patches sampled from three sequential sagittal slices of a 3D T2
MR image. For each type of patch, we investigated two different patch sizes, i.e.,
20 × 20 vs. 32 × 32 pixels. In the remainder of this paper, these patch sampling
strategy are referred to as: 2.5D20, 2D20, 2.5D32 and 2D32, respectively.

2.3 CNN Architecture

A CNN is a sequence of layers, and every layer of a CNN transforms one volume
of activations to another through a differentiable function. We used four main
types of layers to build our CNNs: Convolutional Layer (this is also where CNN
derives its name), Max Pooling Layer, Fully-Connected Layer and the Output
Layer (see Fig. 5 for details).

– Convolutional Layer. In the convolutional layer, a stack of feature maps will
be produced by convolving the input with kernels, adding a bias term and
finally applying a non-linear activation function. The activation function in
our CNNs is chosen to be the retified linear unit (ReLU), which has been
shown to expedite the training of CNN [13]. The depth of the stack of feature
maps in our CNNs is chosen to be 128. Each of the feature maps is connected
to all of the feature maps in the previous layer through filters of size 3 × 3
(Please note that this also applies to the first convolutional layer even when
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2.5D patches are used. In such a case, each of the feature maps in the first
convolutional layer is connected to all of the three input feature maps.). Both
the stride size and the zero-padding size in our CNNs are chosen to be one
pixel.

– Max Pooling Layer. In this layer, we will take each feature map output from
the convolutional layer and perform a downsampling operation along the spa-
tial dimensions. In our CNN, each unit in the pooling layer will output the
maximum activation in the 2 × 2 input region. The stride size in this layer
is chosen to be two pixels. Since this layer is used immediately after a con-
volutional layer, to easy the description, below we write these two layers as
“Convolutional & Max Pooling Layers”.

– Fully-Connected Layer. After several convolutional and max pooling layers,
we will do high-level reasoning in this layer. Neurons in this layer have full
connections to all activations in the previous layer.

Fig. 5. Schematic view of the architectures of our CNNs when different patch sampling
strategies are used: a. 2.5D32; b. 2.5D20; c. 2D32; and d. 2D20.
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– Output Layer. The output layer following the fully-connected layer has two
outputs that correspond to the two tissue classes (IVD vs. background). A
2-way softmax layer is used to generate a distribution over the 2 class labels.

Figure 5a, b, c, and d illustrate the architecture of our CNNs when different
patch sampling strategies are used. We have implemented our CNNs using Caffe
[17] on a Linux system with two Nvidia K80 GPUs. Our network minimizes
the cross entropy loss between the predicted label and the ground truth label.
In addition, we use dropout [18] to avoid overfitting when training our CNNs,
which sets the output of each neuron to zero with probability 0.5. We apply this
technique to the first fully-connected layer of each CNN architecture in Fig. 5.
The optimization of our CNNs was done using mini-batch stochastic gradient
descent algorithm on the 1.6 million zero-centered training patches. We chose
to use a batch size of 500. The learning rate was initially set to be 0.0001. In
order to prevent overfitting, we set the weight decay to be 0.0005. During the
training process, we monitored the change of the loss. As soon as the loss will
not decrease any more, we drop the learning rate by a factor of 10. Such an
adjustment was repeated twice. A CNN training was done when we reached the
total number of iterations which was set to be 5000 or when the loss no longer
decreased. It took on average about 20 min to finish the training of a CNN.

2.4 Voxel-Wise Inference and Post-processing

In the test stage, for each voxel in the ROI after pre-processing, we sample an
image patch as the input to our trained CNNs. Output from any one of our
trained CNNs is the probability of this voxel to be part of an IVD. After we
computed probabilities of all voxels in the pre-processed ROI which we called
the probability map, we utilized simple post-processing steps to get the final
results. To this end, we first smoothed the probability map with a 5×5×5 aver-
aging filter. We then binarized the smoothed probability map using a threshold
value of 0.5. Finally the segmentation mask was obtained by first conducting
connected-component labeling to find disjoint areas and then removing those
areas containing less than 512 voxels. We finally only kept the seven biggest

Fig. 6. Post-processing steps displayed on a 2D sagittal slice. Left: the probability map
output from CNN; middle left: after smoothing; middle right: after threshold-based
binarization; and right: output segmentation mask.
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connected components counted from the bottom of the test image. Figure 6 shows
details of the post-processing steps.

3 Experimental Results

3.1 Evaluation Metrics

The metrics introduced in the MICCAI 2015 IVD segmentation challenge are
used here to evaluate the performance of our CNN. The evaluation metrics
on IVD segmentation include the mean Dice overlap coefficients (MDOC) with
standard deviation (SDDOC) between the ground truth segmentation and the
automated segmentation, as well as the mean average absolute surface dis-
tance (MASD) with standard deviation (SDASD) between the surface models
extracted from the ground truth segmentation and those extracted from the
automated segmentation.

3.2 Segmentation Results

Table 1 shows the results of our method when evaluated on the Test1 dataset
of the MICCAI 2015 IVD segmentation challenge and Table 2 shows the results
of our method when evaluated on the Test2 dataset of the MICCAI 2015 IVD
segmentation challenge. For both datasets, the best performance was obtained
when 2D20 patch sampling strategy was used. With such a patch sampling strat-
egy, we achieved a MDOC of 89.2% and a mean AAD of 1.26 mm. Furthermore,
slightly better results were obtained when our method was evaluated on the

Table 1. Results on the Test1 dataset from the MICCAI 2015 IVD segmentation
challenge when different patch sampling strategies are used

Image patch MDOC (%) SDDOC (%) MASD (mm) SDASD (mm)

2.5D20 88.7 3.4 1.30 0.17

2.5D32 79.2 7.5 1.56 0.19

2D20 89.2 3.0 1.27 0.17

2D32 86.6 4.6 1.36 0.22

Table 2. Results on the Test2 dataset from the MICCAI 2015 IVD segmentation
challenge when different patch sampling strategies are used

Image patch MDOC (%) SDDOC (%) MASD (mm) SDASD (mm)

2.5D20 89.0 4.1 1.27 0.21

2.5D32 82.6 4.8 1.47 0.19

2D20 89.2 4.3 1.26 0.21

2D32 86.9 4.1 1.36 0.21
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Fig. 7. Examples of segmentation visualized on 2D sagittal slices when 2D20 image
patches were used. Top two rows: middle sagittal slices from the 5 3D images of the
Test1 data; bottom two rows: middle sagittal slices from the 5 3D images of the Test2
data.

Test2 dataset than when our method was evaluated on the Test1 dataset. With-
out using any time-consuming registration step or incorporating any advanced
shape prior, our method achieved results that were comparable with the
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state-of-the-art methods. For example, the best segmentation method in the
MICCAI 2015 IVD segmentation challenge was the one submitted by Korez et
al. [19] where a MDOC of 91.8% was reported. Other methods submitted to the
same challenge achieved a MDOC in the range from 81.2% to 90.5% [20]. Figure 7
shows examples of automated segmentation of all ten test data. Although all the
computations were done in 3D, we visualized the results on 2D sagittal slices.

It took our method on average 3 min to finish the inference of one 3D T2 test
MR images.

4 Discussions

In this paper, we propose to use deep convolutional neural networks to solve the
challenging IVD segmentation problem. The present method was evaluated on
the MICCAI 2015 IVD segmentation challenge datasets and the results achieved
by the present method were comparable with the state-of-the-art methods.

We investigated the influence of four different patch sampling strategies on
the performance of our CNN. From our experimental results, it is interesting to
find that the best performance was achieved when 2D20 image patches were used.
Previous works in different application contexts have suggested both 2.5D [14,15]
and 2D image patches [16]. Further work still need to be done to investigate why
using 2.5D image patches did not achieved better results than using 2D image
patches.
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Abstract. We describe a system for fully automatic vertebra localisa-
tion and segmentation in 3D CT volumes containing arbitrary regions of
the spine, with the aim of detecting osteoporotic fractures. To avoid the
difficulties of high-resolution manual annotation on overlapping struc-
tures in 3D, the system consists of several 2D operations. First, a Ran-
dom Forest regressor is used to localise the spinal midplane in a coronal
maximum intensity projection. A 2D sagittal image showing the mid-
plane is then produced. A second set of regressors are used to localise
each vertebral body in this image. Finally, a Random Forest Regression
Voting Constrained Local Model is used to segment each detected ver-
tebra.

The system was evaluated on 402 CT volumes. 83% of vertebrae
between T4 and L4 were detected and, of these, 97% were segmented
with a mean error of less than or equal to 1mm. A simple classifier was
applied to perform a fracture/non-fracture classification for each image,
achieving 69% recall at 70% precision.

1 Introduction

Osteoporosis is a common skeletal disorder characterised by a reduction in bone
mineral density (BMD). This is commonly assessed using dual energy X-ray
absorptiometry (DXA); a T-score of <-2.5 (i.e. more than 2.5 standard devia-
tions below the mean in young adults) [13] is used as a criterion suggesting osteo-
porosis. It significantly increases the risk of fractures, most commonly occurring
in the hip, wrist or vertebrae. Approximately 40% of postmenopausal Caucasian
women are affected, increasing their lifetime risk of fragility fractures to as much
as 40% [13]. Osteoporosis therefore presents a significant public health problem
for an ageing population. However, between 30%–60% of vertebral fractures may
be asymptomatic and only about one third of those present on images come to
clinical attention; they are frequently not reported by radiologists, not entered
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into medical records, and do not lead to preventative treatments [8]. Many of
these cases involve images acquired for purposes other than assessment for the
presence of vertebral fractures, so identification may be opportunistic. However,
a recent multi-centre, multinational prospective study [9] found a false nega-
tive rate of 34% for reporting vertebral fractures from lateral radiographs of the
thoracolumbar spine. The potential utility of computer-aided vertebral fracture
identification systems is therefore considerable. Modern clinical imaging is pri-
marily digital, with images acquired in Digital Imaging and Communications in
Medicine (DICOM) format and stored on a Picture Archiving and Communi-
cation System (PACS). A system that could query a PACS to extract images
that include the spine, automatically segment vertebrae, detect any abnormal
shape, and report suspect images for further investigation by a radiologist, would
therefore be particularly valuable.

CT is arguably the ideal modality for opportunistic osteoporotic vertebral
fracture identification, due to the large number of procedures (4.3 million per year
within the UK National Health Service [12]) and the high image quality. However,
a recent audit at the Manchester Royal Infirmary revealed that only 13% of such
fractures visible on CT images were identified [15], similar to identification rates
reported in the literature [1]. Proposed reasons for such low rates [1] include the
difficulty of identifying vertebral height reduction on axial images. Routine pro-
duction of coronal and/or sagittal reformatted images has been proposed, and is
being adopted, but reporting rates on such images remain low [1].

We describe a system for fully automatic localisation and segmentation of
vertebrae in sagittal reformatted CT image volumes covering arbitrary regions
of the spine, based on landmark point annotation. Manual annotation on 3D
spinal images for model training would be a challenging task, due to the large
number of points required to quantify vertebral shape accurately. Therefore, sev-
eral 2D operations are used. A coronal maximum intensity projection (MIP) of
the volume is produced, highlighting the bony structures. Random Forest (RF)
Regression Voting (RFRV) is used to localise points on the spine. This takes
advantage of the fact that the patient is supine in the CT scanner, and so is not
subject to arbitrary rotation in the axial image plane. A single, thick-slice, 2D
sagittal image is then produced, showing the midplanes of all vertebrae present.
A second set of RF regressors is used to localise the posterior-inferior vertebral
corners in this image. Both of these initialisation stages are based on the algo-
rithm described in [4]. Finally, the vertebral corner points are used to initialise
a Random Forest Regression Voting Constrained Local Model (RFRV-CLM),
based on [3], which provides a high-resolution segmentation of the vertebrae
allowing subsequent shape measurement. These algorithms are described briefly
in Sect. 2. The reader is referred to [3,4] for a more complete description, and
discussion of related literature.
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2 Method

2.1 Random Forest Regression Voting

Random Forest Regression Voting (RFRV) uses a RF [2] regressor to localise
a landmark, trained to predict the offset to that point based on local patches
of image features. The training data consists of a set of images I with manual
annotations xl of the point on each. Random displacements dj are generated by
sampling from a uniform distribution with apothem dmax and the same dimen-
sionality as the images. Image patches of area w2

patch are extracted at these
displacements from xl in each training image, and features fj are derived from
them. Haar-like features [14] are used, as they have proven effective for a range
of applications and can be calculated efficiently from integral images. To allow
for inaccurate initial estimates of pose during model fitting, and to make the
detector locally pose-invariant, the process is repeated with random perturba-
tions in scale and orientation. A RF is then constructed; each tree is trained on
a bootstrap sample of pairs {(fj ,dj)} from the training data using a standard,
greedy approach. At each node, a random set of nfeat features is chosen, and a
feature fi and threshold t that best split the data into two compact groups are
selected by minimising an entropy measure [11]. The process is terminated at a
maximum depth Dmax or minimum number of samples Nmin, and repeated to
generate a forest of ntrees.

2.2 RFRV Initialiser Fitting

The coronal and sagittal initialisation algorithms used here are based on [4],
and use RF regressors trained as described in Sect. 2.1. An exhaustive search
is performed over a query image, by defining a grid of positions with a spacing
of 3 pixels. The RFs are applied at each position, and give predictions of the
displacement to the landmarks. The search is repeated at a range of angle and
scale variation: −0.8 to 0.8 radians in steps of θr = 0.1, and scales from 0.1
to 4 in rational/integer steps. The predicted landmark locations from each tree
are collected in a Hough-style voting array. An RF trained to localise a point
on a specific vertebral level will respond strongly to the equivalent points on
neighbouring vertebrae, due to their similar shapes, predicting the closest to
each search position. Full coverage of the spine can be achieved by training a
single RF on concatenated data {(fj ,dj)} from multiple levels. Alternatively,
RFs can be trained on each level and applied in parallel, voting into a single
array. The array is then smoothed using a Gaussian kernel of standard deviation
twice the resolution of the search grid, allowing detection of modes using nine-
way maximum. Modes with weights lower than 20% of the strongest response
are discarded. (In contrast to [4], no additional weighting of the modes was used
here). A graphical method is then used to extract an ordered, linked set of modes,
representing landmarks on all visible vertebra, and to discard false detections.
Starting from the strongest mode, an iterative search is performed in the local
inferior and superior directions, determined from the average pose of the RFRV
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detections for that mode. At each iteration, the closest mode within an angle
constraint of θt = 2θr is added to the set, terminating when no further modes
meet the constraint.

2.3 Constrained Local Models (CLMs)

The CLM [7] uses a statistical shape model (SSM) to constrain the fitting of
multiple, independent RFRVs for a set of landmarks. The training data consists
of a set of images I with manual annotations xl of a set of N points l = 1...N
on each. The images are first aligned into a standardised reference frame using
a similarity registration, giving a transformation T with parameters θ, and then
resampled into this frame by applying Ir(m,n) = I(T−1

θ (m,n)), where (m,n)
specify pixel coordinates. The reference frame width, in pixels, is controlled by a
parameter wframe, allowing variation of the resolution of the resampled images.
The concatenated, reference-frame coordinates of the points in each training
image define its shape; the SSM is generated by applying principal component
analysis (PCA) to the set of training shapes [5]. This yields a linear model of
shape variation, giving the position of point l

xl = Tθ(x̄l + Plb + rl) (1)

where x̄l is the mean point position in the reference frame, Pl is a set of modes of
variation, b encodes the shape model parameters, and rl allows small deviations
from the model. For each point l = 1...N , an RF Rl is trained as described in
Sect. 2.1, using data from the resampled images.

2.4 RFRV-CLM Fitting

The fitting of a RFRV-CLM to a query image Iq is initialised via an esti-
mate of pose (b and θ) from a previous model or a manual initialisation. The
image is resampled in the reference frame using the current pose Iqr(m,n) =
Iq(T−1

θ (m,n)). For each point l, a grid of locations zl is defined covering a search
range of apothem dsearch around the initial estimate of its position. Regressor Rl

is applied to the image features extracted from the local patch around each grid
location. Each tree in Rl predicts the offset to the true point position, and casts
a vote into an accumulator array Cl at the predicted position. This is performed
independently for each point. The shape model places a constraint on the results
from all regressors. The quality of fit Q is given by

Q(p) = ΣN
l=1Cl(Tθ(x̄l + Plb + rl)) s.t. bTS−1

b b ≤ Mt and |rl| < rt (2)

where Sb is the covariance matrix of shape model parameters b, Mt is a threshold
on the Mahalanobis distance, and rt is a threshold on the residuals. Mt is chosen
using the cumulative distribution function (CDF) of the χ2 distribution so that
98% of samples from a multivariate Gaussian of the appropriate dimension would
fall within it. This ensures a plausible shape by assuming a flat distribution
for model parameters b constrained within hyper-ellipsoidal bounds [6]. Q is
iteratively optimised, over parameters p = {b, θ, rl}, as described in [11].
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2.5 Data Collection and Manual Annotation

The PACS (Centricity Universal Viewer, GE Healthcare, Little Chalford,
Buckinghamshire, UK) at Central Manchester University Hospital NHS Trust
(CMFT) was queried to produce a list of CT scans acquired during May and June
2014 and January to September 2015. The scans that (a) were from non-trauma
patients, (b) included any part of the thoracic or lumbar spine and (c) were of
patients over 18 years of age, were selected. This gave a list of 868 patients’ scans.
The CMFT PACS was also queried for non-trauma CT scans during January to
April and July to December 2014 in patients over 60 years of age that contained
osteoporotic vertebral fractures, producing a second list of 132 patients. The
sagittal reformatted volumes from both lists were downloaded in DICOM for-
mat. 402 volumes were selected to form a training set for the models, including
the 132 fracture-rich images to ensure high fracture prevalence. The remaining
images were reserved for validation purposes. The 402 image list was divided into
quarters for leave-1/4-out training and testing, with the fracture-rich images dis-
tributed evenly. Each volume was up-sampled to give isotropic voxel dimensions,
equal to the smallest voxel dimension from the original volume, using tri-cubic
interpolation.

A coronal MIP was generated from each image volume, and manual annota-
tion of a landmark on the neural arch of each visible vertebra was performed.
2D sagittal images were generated from each volume, as described Sect. 2.6, by
summing all sagittal slice rasters within ±5mm of the plane defined by the coro-
nal annotations. This thickness was chosen by manual inspection of the results,
to minimise blurring of the endplates whilst ensuring that the middle of each
endplate was visible. High-resolution manual annotation of 33 points on each
vertebral body between T4 and L4 inclusive was then performed on the sagittal
images by trained radiographers. Finally, each annotated vertebra was classified
by an expert radiologist as normal, deformed but not fractured, or grade 1, 2 or
3 osteoporotic fracture, according to the Genant definitions [10].

2.6 Midplane Image Extraction

Osteoporotic vertebral fractures typically develop as a depression of the middle
of the vertebral endplates (biconcave fracture), followed by anterior collapse
of the vertebral body (wedge fracture) and posterior collapse (crush fracture).
Therefore, height reductions must be measured at the endplate midplanes to
avoid underestimation of the fracture severity. If the superior-inferior axis of the
subject is not aligned exactly with the CT scanner, or if any degree of scoliosis is
present, then no single slice of the sagittal reformatted volume will pass through
all midplanes. Therefore, an algorithm was developed to extract a 2D image
along the spine midplane. First, a coronal maximum intensity projection (MIP)
was produced from the volume, to show the bony structures. In particular, the
point at which the laminae join to form the spinous process of the neural arch
is a distinctive, U-shaped structure on each vertebra in such images (Fig. 1a).
These points were manually annotated on each image (see Sect. 2.5).
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Fig. 1. (Top left) An example coronal MIP of a CT volume; note the presence of
confounding structures both outside (cardiac monitoring equipment) and inside (from
previous abdominal surgery) the subject. (Top centre) Manual annotations of the neural
arch, with the undisplaced sample regions used in RF training. (Top right) Density
plot of the Hough voting array from the RF search. (Bottom left) Modes of the array.
(Bottom centre) Result of linking and filtering; red links are those rejected by the filter.
(Bottom right) Extrapolated piecewise-linear curve through the filtered modes (solid
line) and the ±5mm range (dashed line) over which sagittal rasters were summed to
produce the sagittal projection. (Color figure online)

A RF regressor was then trained to localise the neural arch points as described
in Sect. 2.1. Undisplaced sample patches were defined by using half of the average
vector to the neighbouring points as the apothem of a square region of interest
(ROI) (Fig. 1b). Free parameters were set to the values given in [4], and a single
RFRV was trained using data from all points. Example images of each stage
of the algorithm are shown in Fig. 1. Several confounding structures are visible
inside and outside the body. The algorithm was robust to such features, but did
produce false detections on some non-spine bony structures, such as the pelvis
and mandible. Therefore, a filtering stage was implemented. Any image with
fewer than four detections was removed from the analysis. The median Lm of
the distances between neighbouring modes was then calculated. If the first or
last mode in the list was further than 3Lm from its neighbour, it was removed.



Localisation of Vertebrae in CT Using RFRV 57

The final set of ordered, filtered modes defined a midplane through the vol-
ume, and was used to extract a 2D sagittal image. A piecewise-linear curve was
defined through the modes; at the extremities, it was extrapolated vertically
to the boundary of the volume (Fig. 1f). For each axial slice from the original
volume, all anteroposterior raster lines (i.e. rasters of sagittal slices) that passed
within Dt of this curve were averaged to give a single raster line of a sagittal
image. Repeating this for all axial images gave a single, thick-slice, 2D sagittal
image that showed the midplane of each vertebra, but remained in the coordi-
nate system of the original volume, so points annotated onto it could be directly
translated to projections of a different Dt. In the remainder of this paper, “man-
ual” and “automatic” projection refer to images produced from the manual and
automatic annotations on the coronal MIP images, respectively.

2.7 Vertebra Localisation

Next, a set of RF regressors was trained to detect the inferior corners of each
vertebral body present in the sagittal projection images. Manual annotations of
the vertebrae from T4 to L4 were performed as described in Sect. 2.5 (Fig. 2a).
As in [4], undisplaced sample patches were defined as square ROIs with the two
lower endplate corner points at proportional positions of (0.25, 0.75) and (0.75,
0.75) (Fig. 2b). One RF regressor was trained for each vertebral level from T5
to L3, using only images where both neighbors were present, to prevent strong
responses to the boundaries of the image volume.

Fitting and extraction of a linked set of modes xl, l = 1...nm proceeded as
described in Sect. 2.6 (Fig. 2). The aim was to use the detected vertebral corners
to initialise an RFRV-CLM that modeled a triplet of neighbouring vertebrae,
so it was essential to deal with any missing detections. Therefore, several filters
were applied. First, all images with fewer than three detections were discarded,
as they could not provide a reliable initialisation. In each image, the distance
between neighbouring modes was compared to the median distance between all
pairs of neighbours. Where the ratio was greater than 1.5, the most probable
number of missed detections nl was

nl =
⌊

Ll

μ1/2(L)
+ 0.5

⌋
−1 where L = {Ll |Ll = ||xl+1 −xl|| ∀i ∈ {1, nm −1}}

(3)
where μ1/2(.) represents the median, and nl points (0.0, 0.0) were entered into
the list to represent missing detections. Where this left a singlet or doublet of
modes at the end of the list, these were removed. Finally, all modes outside the
range of the detections from the coronal initialisation (Fig. 2c) were removed.

2.8 High-Resolution Vertebral Segmentation

Finally, a high-resolution segmentation of the vertebrae detected by the sagit-
tal initialisation algorithm was performed using an RFRV-CLM (see Sects. 2.3
and 2.4). The model used a 2-stage, coarse-to-fine RFRV-CLM covering a triplet
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Fig. 2. (Top left) An example ±5mm manual sagittal image projection from a CT
volume, with high-resolution manual annotation. (Top centre) Inferior corner points,
used to define sampling ROIs for RF training. (Top right) ±5mm automatic sagittal
image projection, with the manual annotations superimposed; the red lines show the
extent of the RFRV annotations on the coronal maximum intensity projection. (Bottom
left) Smoothed Hough voting array of the posterior-inferior corner point regressors.
(Bottom centre) Modes of the Hough voting array, detected using a nine-way maximum.
(Bottom right) Result of linking and filtering; red points are those rejected by the filters.
(Color figure online)

of vertebrae with 33 points on each. It was trained on all triplets of vertebrae from
the training images. All free parameters were set to the values given in [3]. Fit-
ting was initialised using the filtered list of posterior-inferior corner points from
the sagittal regressor described in Sect. 2.7. All points represented as (0.0, 0.0)
were considered to be undefined. The model was fitted to all triplets of neigh-
bouring vertebrae with at least two defined points. Points from the fitted models
were then concatenated to give the final segmentation (Fig. 5a). Averaging was
not applied; where two models covered a single vertebra, points from the central
vertebra in a triplet were used in preference to those from an extremal vertebra,
and only points on vertebrae with a defined initialisation point were used.

3 Evaluation

Training and testing of the system on the 402 images was performed in a leave-
1/4-out fashion. Errors for the coronal initialisation were measured as the mean
of the minimum Euclidean distances, over each image, between the detected
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Fig. 3. Cumulative distribution functions showing the accuracy of the coronal and
sagittal initialisation algorithms, before and after filtering. (Left) The mean P2C error
of points on the spine midline in each image produced by the coronal regressors. (Right)
The mean P2P error of posterior-inferior vertebral corner points in each image produced
by the sagittal regressors.

points and a piecewise linear curve through the manual annotations (P2C error).
For the sagittal initialisation, they were measured as the mean of the Euclidean
distance, over each image, between the detected points and the closest manually
annotated posterior-inferior vertebral corner point (P2P error). In both cases,
detections outside the axial range of the manual annotations, ±half of the median
vertebra height, were removed from the analysis to avoid penalising accurate
detections of vertebra that had not been manually annotated.

Figure 3 shows CDFs of the coronal initialisation errors. Prior to filtering,
94.3% of the midplanes had a mean error of ≤ 5mm, and this rose to 98.3% after
filtering. The difference at ≤ 10mm was small (98.3% and 99.2%). Therefore, as
with the manual projections, a thickness of Dt = ±5mm was used for automatic
sagittal projection1. The filtering removed 41 images (10.2%). Figure 3 also shows
CDFs of the sagittal initialisation errors. The mean errors across all points in
all images were 2.14 mm prior to filtering, and 1.34 mm after; the medians were
0.98 mm and 0.96 mm, respectively. At the higher end of the CDF, 97.5% of all
points in all images achieved ≤ 5mm prior to filtering, rising to 99.4% after
filtering. The filtering removed 27 images from the analysis i.e. 6.7%, for a total
of 16.9% removed during both initialisation stages.

An example of RFRV-CLM annotation on an automatically projected image
with automatic sagittal initialisation is shown in Fig. 5a. Again, any vertebrae
where the centroid lay outside the axial range of the manually annotated verte-
brae, ±half of the median vertebral height, were eliminated from the analysis.
The error for each vertebra was then calculated as the mean of the minimum
Euclidean distances between each automatic annotation and a piecewise-linear
curve through the manual annotations (P2C error). Correspondence between

1 The remainder of the evaluation was repeated with Dt = ±10mm, but this pro-
duced no improvements in the accuracy of subsequent stages, and the results are not
reported here.
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Fig. 4. Cumulative distribution functions of P2C error for high-resolution annotations
on vertebrae using manual (left) and automatic (right) coronal and sagittal initialisa-
tion, divided by vertebral classification.

Table 1. Statistics of the mean point-to-curve errors on each vertebra after RFRV-
CLM fitting, using manual and automatic initialisation.

Diagnosis % of Sample Manual initialisation Automatic initialisation

Median (mm) % > 2mm % Detected Median (mm) % > 2mm

Normal 64.7% 0.24 0.55% 84.7% 0.27 0.83%

Deformed 25.2% 0.30 1.29% 84.9% 0.32 1.51%

Grade 1 2.84% 0.27 0.00% 75.0% 0.30 0.00%

Grade 2 3.71% 0.34 0.68% 71.3% 0.41 4.87%

Grade 3 3.59% 0.56 7.27% 56.8% 0.57 11.11%

automatically and manually annotated vertebrae was established by calculating
this error for all manual vertebrae, and taking the smallest response. Figure 4
shows CDFs of these errors for both the fully automatic system, and for RFRV-
CLM fits to manual sagittal projections, initialised using manual annotations on
the vertebral corners. Numerical data derived from these curves, together with
the percentages of all vertebrae between T4 and L4 detected (including those in
images discarded during the initialisation stages) are given in Table 1, using a
mean error of ≥ 2mm to indicate fit failure. The results show that automatic
coronal and sagittal initialisation had little effect on the accuracy of successful
RFRV-CLM fits. However, they did lead to a 4 percentage point rise in fit fail-
ures on moderate and severe fractures. Overall, 67.2% of the fractured vertebrae
were detected by the fully automatic system, of which 89.1% were successfully
fitted according to the ≥ 2mm threshold.

The significance of the segmentation accuracy was evaluated by applying
a simple classifier, based on six-point morphometry, as described in [3]. The
anterior ha, middle hm and posterior hp heights of each detected vertebra were
calculated from the relevant points, together with a predicted posterior height
hp′ , calculated as the maximum of the posterior heights of the four closest ver-
tebrae. The wedge rw = ha/hp, biconcavity rb = hm/hp, and crush rc = hp/hp′
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Fig. 5. (Top left) Example RFRV-CLM fit based on automatic coronal and sagittal
initialisation. (Top right) Biconcavity and wedge ratios for all detected vertebrae. (Bot-
tom left) ROC curves for classification of vertebrae, based on 6-point morphometry, for
manual annotations and RFRV-CLM fits with stages of manual and automatic projec-
tion (MP and AP, respectively) and initialisation (MI and AI, respectively). (Bottom
right) Precision-recall curves for classification of images.

ratios were derived, and the data were whitened by subtracting the medians of
each ratio and dividing by the square-root of the covariance matrix, calculated
using the median standard deviation. The data contained far more normal than
deformed or fractured vertebrae, and so this process whitened to the distribution
of the normal class. A scatter plot of rb and rw for all detected vertebrae between
T4 and L4 is shown in Fig. 5b. A simple fracture/non-fracture classification was
performed by applying a threshold to r2c + r2b + r2w; deformed vertebrae were
counted correct when classified into either class. This was applied to the manual
annotations, the RFRV-CLM fits on manually projected images initialised from
both manual and automatic corner points, and to the fully automatic system.
Receiver-operator characteristic (ROC) curves produced by varying the thresh-
old are shown in Fig. 5d. The classifier achieved 80% sensitivity at a 10% false
positive rate. More importantly, however, the fully automatic system achieved
sensitivities no worse than 2% points lower than classification from manual pro-
jection and annotation, at any threshold.

The classifier was also applied on a per-image basis. This simulated the use
of the system in clinical practice, as described in Sect. 1, to generate a list of
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potentially fracture-containing images. A threshold on r2c + r2b + r2w was used to
classify each automatically detected vertebra, and classify the images into two
groups: all vertebrae normal; some vertebrae fractured. Images filtered out during
initialisation were classified as fractured. Manual diagnoses were used to classify
the images into normal and fractured groups, counting non-fracture deformi-
ties as normal. Figure 5d shows precision-recall curves produced by varying the
threshold. Note that curves for automatic initialisation do not reach (0, 1), due
to the filtered images being classified as fractured. The fully automatic system
achieved 69% recall (higher than current clinical practice; see Sect. 1) at 70%
precision (i.e. 2/3 of reported images contained fractures).

4 Conclusion

The strikingly low detection rates for osteoporotic vertebral fractures on CT
image volumes in clinical practice create an opportunity for an automatic system
that can draw attention to images containing fractured vertebrae. The high
image quality and 3D nature of CT volumes allow the automatic extraction
of a single, thick, 2D sagittal slice that shows the vertebral midplanes, and
does not suffer the problems of overlapping bony structures (ribs, scapulae and
iliac crests) that make accurate vertebral segmentation difficult in alternative
modalities such as DXA. Robust and accurate segmentation can then be achieved
using a RFRV-CLM, allowing quantification of vertebral shape. This paper has
shown that, even using a simple classifier, detection rates can be achieved that
exceed those found in clinical practice. In future work, we intend to investigate
the use of more accurate classifiers. The shape parameters of the SSM that
forms part of the RFRV-CLM would provide a more complete quantification
of vertebral shape than the six-point morphometry approach described above.
However, osteoporosis also changes the texture of bone, since it affects horizontal
trabeculae more than vertical ones. Therefore, classifiers based on both shape
and texture will also be investigated.
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Abstract. Injuries in cervical spine X-ray images are often missed by
emergency physicians. Many of these missing injuries cause further com-
plications. Automated analysis of the images has the potential to reduce
the chance of missing injuries. Towards this goal, this paper proposes
an automatic localization of the spinal column in cervical spine X-ray
images. The framework employs a random classification forest algorithm
with a kernel density estimation-based voting accumulation method to
localize the spinal column and to detect the orientation. The algorithm
has been evaluated with 90 emergency room X-ray images and has
achieved an average detection accuracy of 91% and an orientation error
of 3.6◦. The framework can be used to narrow the search area for other
advanced injury detection systems.

Keywords: Random forest · Classification · Cervical · Vertebra ·
Localization · Orientation

1 Introduction

The cervical spine is vulnerable to high-impact accidents like automobile colli-
sion, sports mishaps and falls. Due to the scanning time required, cost, and the
position of the spine in the human body, X-ray is the first mode of investiga-
tion for cervical spine injuries. Unfortunately, roughly 20% of cervical vertebrae
related injuries remain undetected by emergency physicians and about 67% of
these missing injuries result in tragic consequences like loss of motor control, dis-
ability to move the neck and other neurological deteriorations [1,2]. Providing
emergency physicians with an automated analysis of the cervical X-ray images
has a great potential to reduce the chances of missing injuries. Towards that
goal, this paper takes the first step to localise the cervical spine in an arbitrary
X-ray image. Our method involves a machine learning process which employs a
patch based framework to localize the vertebrae column. It is also able to predict
the orientation of the spinal curve.

c© Springer International Publishing AG 2016
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Some limited work has been presented in the literature for global localiza-
tion of the cervical spine on X-ray images. Most of the methods revolve around
the generalized Hough transform (GHT). Tezmol et al. [3] used a GHT based
framework using mean vertebra templates and an innovative voting accumu-
lator structure. A more recent work [4], proposed another template matching
based approach relying on GHT which involves a training phase. In contrast,
our work is designed as a machine learning classification problem and votes are
accumulated, then refined in a novel fashion to generate a bounding box.

Random forest is a popular machine learning algorithm [5]. It has been used
in recent vertebra related literature [6–11]. Glocker et al. presented a random
regression forest based localization and identification framework for vertebrae in
arbitrary CT scans [10]. They proposed another framework using random classi-
fication forest which have shown better performance in localizing and identifying
vertebrae with pathological cases [11]. Our work also uses random classification
forest. But instead of localizing and identifying each vertebrae, it finds the global
position and orientation of the vertebral column in cervical X-ray images.

The recent work by Bromiley et al. [6], demonstrated a segmentation method
based on constrained local model (CLM) and random forest regression voting
(RFRV). Like other statistical shape model (SSM)-based approaches [7,12], this
work also requires initialization of the mean shape near the actual vertebra. The
initialization is usually done with help of manual click points [6,12] or other
automatic methods [7]. Random regression forest-based initialization method
described in [7] requires a bounding box from where the input features are col-
lected. In their work, the bounding box around the vertebrae curve is generated
using hard parameters which are empirically found based on the training images.
In our work, we propose an automatic way to locate the vertebrae column in
X-ray images.

In this work, 90 cervical X-ray images of emergency room patients were eval-
uated. The images contain a total of 450 cervical vertebrae (C3–C7). A random
forest is trained to distinguish between vertebra and non-vertebra image patches
from the images. The task is designed as a binary classification problem: vertebra
and non-vertebra. The framework employs a two-stage coarse-to-fine approach.
In the first coarse localization stage, a sliding window sparsely scans a test image
to vote for vertebrae patches. After this sparse voting, an accumulation phase
converts the votes into a bounding box which indicates the position of the spinal
column inside the image. The fine localization stage scans the resultant bound-
ing box of the first stage densely with different patch sizes and orientations. The
same voting accumulation phase is applied again and a refined bounding box is
generated. The angle of this bounding box determines the predicted orientation
of the vertebrae column. Even on a dataset of emergency room X-ray images,
91% of the vertebrae area has been detected under the first stage bounding box
and an average error of 3.6◦ has been achieved for orientation prediction with
the second stage bounding box.
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2 Data

Our dataset of 90 lateral view emergency room X-ray images was collected from
the Royal Devon and Exeter Hospital, and consists of patients exhibiting symp-
toms, ranging from pain to serious trauma. Different radiography systems were
used. The resolution of the images were in the range from 0.1 to 0.194 mm per
pixel and the exposure time varied from 16 to 345 ms. The ages of the patients
were in the range from 18 to 91. All the scans were digital and taken in 2014–15.
These images were anonymized and collected through appropriate procedures to
be used for research.

Along with the data, our partners at University of Exeter have also provided
manual segmentations of the vertebrae. A set of 20 landmark (LM) points per
vertebra was annotated by experts in the field and these annotations were used
in training and to evaluate the performance of our algorithm quantitatively.
Figure 1a shows example images from our dataset and Fig. 1b shows manual
segmentation points on a spine. For this work, vertebra C3 to C7 are considered.
C1 and C2 are not studied as their appearance is ambiguous in lateral cervical
X-ray images.

Fig. 1. (a) X-ray images in the dataset. (b) Manual segmentation points.

3 Methodology

The localization framework is based on the detection of vertebrae patches in
the images. The detection is done by image patches where a machine learning
algorithm decides whether the patch belongs to a vertebra or not. To learn this,
a random classification forest [5] has been used. Image patches are generated
from the image datasets and labelled into vertebra class and non-vertebra class.
The patches are considered with different patch sizes and patch orientations.
To generate positive patches, the manual segmentation of the vertebra points is
used. The center of the vertebra is used as an anchor point on which different
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sizes and orientations are considered for training. In order to generate patches
for the non-vertebra class, 50% of the patches are considered from both sides of
the vertebral column and the rest are collected from other areas of the image.
Figure 2a shows the areas from which the positive and negative patches are
collected; positive patches are collected from the green box, 50% of the negatives
patches are collected from the blue boxes and other negative patches are collected
from the remainder of the image randomly. More importance is provided in the
areas adjacent to the vertebral column for negative patch creation so that the
forest has a better opportunity to distinguish these areas. These image patches
are then converted to structured forest (SF) feature vectors [13,14]. This feature
vector collects gradient magnitude and orientation information at different scales
and angles. This feature vector recently has shown outstanding performance on
the edge detection problem [14]. As vertebrae patches are mostly filled with
edge-like structures, this feature vector is chosen. Once the feature vectors and
corresponding binary output labels are ready, a random classification forest is
trained on the data.

Fig. 2. (a) Area of positive patches (green box) and area of 50% of the negative patches
(blue boxes). (b) Positive patch boundaries around a vertebra with different orienta-
tions and sizes. (Color figure online)

3.1 Stage 1: Coarse Localization

At test time, a new image is fed into the framework for localization. A set of
test points is generated on the image at fixed step size (S1). A single orientation
0◦ (O1) and a fixed patch size, P1, is considered to generate image patches, one
at each of the test points. The generated image patches overlap neighbouring
image patches. The amount of overlapping is controlled by the parameters S1

and P1. These patches are fed into the forest. The forest determines which test
points belong to vertebrae. These positive predicted points, xis, are then passed
to the vote accumulation phase to generate a bounding box.
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Vote Accumulator: The vote accumulator adds a Gaussian kernel at each of
the positive votes. The bandwidth, t, of these kernels are automatically estimated
using a diffusion-based technique proposed by Botev et al. [15]. This method
allows the bandwidth (t) to change dynamically based on the vote distribution
from image to image. The resultant distributions are then added together to
form a single distribution, F , over the image space.

F (x) =
1
N

N∑

i=1

1√
2πt

e− (x−xi)
2

2t (1)

where N is the number of total positive votes coming to the accumulator.
This distribution over the image space is converted to a binary image, B,

by dynamic thresholding (Eq. 2). The resulting binary image may be divided
into a number of parts, Bjs (Fig. 3c). The area of these parts are measured (Aj)
and weighted (wj) based on the distance from the image center (Cimage) to the
centroid of the concerned image part (CBj

). As the images are taken to diagnose
cervical vertebrae related injuries, the assumption is that the spine should be
located near the image center, not at any extreme corner of the image. Then
some of these areas are eliminated if they are small enough or located far from
any adjacent areas (Eq. 6). This process reduces the chance of misdetection, for
example, the area in the skull region of Fig. 3c. Finally, a minimal bounding
parallelogram is generated to enclose the rest of areas [16]. This parallelogram is
the output of the coarse localization stage. The process is summarized in Fig. 3.

B(x) =

{
1 if F (x) > Ft,

0 otherwise.
(2)

where Ft = K × max(F ) and K is an empirically chosen constant. As max(F )
is different for different images, Ft dynamically changes accordingly.

Fig. 3. (a) Positive votes on the image. (b) Resultant distribution F . (c) F after bina-
rization. (d) F after elimination of invalid areas with the minimum bound parallelo-
gram.



Global Localization and Orientation of the Cervical Spine in X-ray Images 69

Aj = area(Bj) (3)

wj =
1

distance(Cimage, CBj
)

(4)

wAj = Aj × wj (5)

where j = 1, 2, ...,M ; M is the number of disconnected areas in B and Ca denotes
the centroid of the area a. In Fig. 3c M = 3.

B̂j = Bj =

{
valid (kept) if wAj > At & dBj

< dt

invalid (eliminated) otherwise.
(6)

dBj
= minimum

({
distance(CBk

, CBj
) : kε{1, 2, ...,M} and k �= j

})
(7)

where At and dj are the empirical area and distance threshold respectively.

BoundingBoxcoarse = mBP
({

B̂j : jε{1, 2, ..., O}
})

(8)

where mBP computes the minimum bound parallelogram enclosing the valid
Bjs [16] and O is the number of valid disconnected areas. In Fig. 3d O = 2.

3.2 Stage 2: Fine Localization

The previous stage is a single resolution single orientation phase, thus less prob-
able to find vertebra with uncommon orientation or size. As the bounding box
of the previous stage is only meant to find the approximate area covered by
the vertebra, coarse localization is enough. But in order to find the orientation
of the vertebrae curve, a finer localization with multiple patch resolutions and
orientations is necessary. In this stage, a new set of test points is created within
the coarse localization bounding box, with varying step sizes, S2. At each test
point, multiple patches are generated with different patch sizes (P2) and angles
(O2). Then the same random forest patch classification and vote accumulation
phase are conducted. This creates a refined bounding box within the first stage
bounding box. The orientation angle of this smaller bounding box is computed
as the orientation of the vertebrae column.

4 Experiment and Results

To train the random classification forest, different sizes and orientations of the
image patches have been considered. The orientation of the patch is defined as
the rotation of the angle from the mean vertebral axis. To train the forest, 7
different patch sizes with a step of 0.5 mm (starting from the vertebra size) and
19 orientations of −45◦ to +45◦ with a step of 5◦ have been used. From the
450 cervical vertebrae of our dataset, a total of 450 × 7 × 19 = 59, 850 vertebra
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(positive) images patches were generated. To balance the data, equal numbers
of non-vertebra patches were generated from the rest part of each image. Each
these image patches was converted to a SF feature vector of length 6116.

The random forest has a number free parameters: maximum allowable tree
depth (nD), minimum number of sample at a node (nMin), number of trees
(nTree) and number of variables to test at node split (nV ar) and number of
thresholds to choose from (nThresh). To find optimum parameters, a sequential
parameter search has been applied to a fixed set of training and test images
from the dataset. Final parameters are reported in Table 1. To measure the
performance of the trained forest, a ten-fold cross-validation scheme is followed.
For each fold, 10% of the images are considered as test images and others are
used for forest training. Table 2 reports the patch classification accuracies of each
forest.

The localization framework also has a set of free parameters mentioned in
Sects. 3.1 and 3.2 which are empirically chosen and reported in Table 1. The
localization algorithm has been applied on all the images and for each image,
the forest was chosen from the ten forests such that the test image is not used in
training. We have reported two metrics for the coarse localization bounding box:
(1) Average percentage of vertebrae area covered inside the bounding box and
(2) Average percentage of landmark points falling outside the bounding box. The
orientation of the second stage bounding box is calculated based on the angle of
the longer axis of the parallelogram with the horizontal axis. The ground truth
orientation is measured by a smallest possible parallelogram that covers the

Table 1. Optimized parameters
and values.

Parameters Values

P1 24mm

S1 10mm

O1 0

K 0.5

At 10 pixel

dt 15mm

P2 20, 30, 40 mm

S2 P2/2

O2 −45, 0, 45

nD 10

nMin 50

nTree 10

nV ar 85

nThresh 5

Table 2. Patch classification accu-
racy of the forests.

Forest Accuracy

Fold 1 97.90%

Fold 2 98.48%

Fold 3 95.34%

Fold 4 97.91%

Fold 5 98.21%

Fold 6 95.92%

Fold 7 97.63%

Fold 8 98.25%

Fold 9 97.62%

Fold 10 98.36%
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Table 3. Performance of the coarse localization bounding box.

Percentage of area
inside the bounding
box

Percentage of
landmark points
outside the bounding
box

Vertebra Median Mean Std Median Mean Std

C3 100% 97% 14% 0% 7% 16%

C4 100% 99% 4% 0% 2% 7%

C5 100% 97% 12% 0% 4% 14%

C6 100% 92% 22% 0% 11% 24%

C7 87% 69% 37% 33% 37% 36%

Overall 100% 91% 24% 0% 12% 25%

Table 4. Orientation error in degree(◦): GTO: Ground truth orientation, ALMP: All
landmark points, FLMP: Landmark points inside the first stage bounding box.

Coarse localization Fine localization

GTO type ALMP FLMP ALMP FLMP

Median 5.73 3.89 3.07 2.37

Mean 8.16 6.26 4.59 3.60

Std 8.21 7.18 5.27 4.55

manual annotations (Fig. 4a). The error is calculated by the absolute different
between the ground truth orientation and predicted orientation in degrees (◦).
The results are reported in Tables 3 and 4. Overall 91% of the vertebra area
fell inside the predicted bounding box. Only 12% of the landmark points were
outside the box. The best performance is achieved by the vertebra C4 at 99%,
followed by C3 and C5 both at 97%. The performance is worse as we go down
the spine, C6 reports 92% and C7 69%. In terms of percentage of landmark
points falling outside the bounding box, from C3 to C7, the numbers are 7%,
2%, 4%, 11%, and 37%. Figure 5 demonstrates the metrics graphically. Almost
80% of the vertebrae have no parts of it outside the bounding box. In terms of
landmark points, 70% the vertebrae have no LM points outside the bounding
box and about 80% have less than three points out of 20 LM points (15%).

The orientation error metric can be computed in two ways. One with all the
vertebrae (ALMP), C3–C7, the other with only the landmark points that fall
inside the bounding box of the first stage (FLMP). As the second stage can only
use the information what’s inside the first stage bounding box, the later seems
more fair to judge its ability. When considering all the vertebra the average error
is 4.59◦ while the other results in an average of 3.6◦. For the coarse localization
bounding box the average errors are larger: 8.16◦ and 6.26◦ respectively.
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Fig. 4. (a) Manual annotation points and ground truth bounding box (green). (b)–
(p) Coarse (blue) and fine (cyan) localization bounding boxes. (p) An example of the
ongoing vertebral curve detection method (magenta). (Color figure online)
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Fig. 5. Percentage of area and landmark points outside the coarse localization bounding
box.

Table 5. Localization performance.

Coarse localization Fine localization

Dice coeff. Sensitivity Specificity Dice coeff. Sensitivity Specificity

Median 0.65 0.93 0.97 0.71 0.61 1.00

Mean 0.62 0.88 0.97 0.69 0.62 0.99

Std 0.14 0.14 0.03 0.11 0.15 0.01

Table 5 reports the average Dice coefficient, sensitivity (true positive rate)
and specificity (true negative rate) of the coarse and fine localization bounding
boxes. These metrics are computed by comparing the ground truth bounding box
(Fig. 4a) with predicted bounding boxes. The Dice coefficient for coarse local-
ization bounding box averages at 0.62 where it stands at 0.69 for the fine local-
ization bounding box. However in terms of sensitivity, the first stage bounding
box scores 0.88 while the second stage bounding box scores only 0.62. Specificity
is high for both bounding boxes: 0.97 for coarse localization and 0.99 for fine
localization.

5 Discussion and Conclusion

In this work, a coarse to fine cervical spine localization algorithm has been
evaluated on a set of 90 emergency room X-ray images. The algorithm is based
on a random forest patch classifier which distinguishes between the vertebra and
the non-vertebra image patches. Based on the centers of vertebra patches on a
test image, a novel vote accumulator converts the votes into a bounding box.
A second multi-resolution multi-orientation patch classification is applied inside
the initial bounding box to determine the orientation of the vertebral column.
The resultant coarse localization bounding box covers 91% of the all vertebral
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area on an average with a maximum of 99% for vertebra C4. C4’s location on
the spine is key to the increased accuracy. On average only 12% of the landmark
points fell outside the bounding box, most of which are from the lowest vertebra,
C7, where the image quality is often reduced.

While coarse localization creates a larger bounding box, the fine localization
creates a smaller and refined bounding box. This bounding box predicts the
orientation of the spinal column better. The average orientation error of the fine
localization bounding box is 3.6◦ only while for the coarse bounding box, the
error is 6.26◦. The fine localization scans the coarse localization box with more
variation and thus it can find the spinal orientation with better accuracy.

To measure the compactness of the both bounding boxes, Dice coefficients
and sensitivity metrics are computed. The Dice coefficient of the fine localization
bounding box is 9% higher than the Dice coefficient of the coarse localization box.
However, in terms of sensitivity, coarse localization outperforms fine localization
bounding box by 30%. Based on the application in which the bounding boxes
will be used, the user may choose between the two options.

Our algorithms outperformed the performances of [3,4]. [3] reported an aver-
age orientation error of 4.16◦ and [4] reports a vertebra detection 89%. However,
[3] report only 10% landmark points to be outside the bounding box which is
lower than our 12%. But their landmark points did not consider the posterior
points. It is also important to mention that both of these works, has been per-
formed on a small (40 and 50) images from NHANES-II dataset of scanned X-ray
images, where the images are collected from healthy patients for the purpose of
developing automatic algorithms thus contains less variation, injuries and expo-
sure differences. In our case, the dataset represents X-ray images collected from
real life emergency room images where resolution, patient age, injury, orienta-
tion, X-ray exposure all vary widely. Figure 4 shows examples of images with
low contrast (h, i), bone implants (f, l, n), displacements (j, m) and osteoporosis
(d, k). Our algorithm works well in all these conditions.

The algorithm is written in MATLAB2014b on a Intel Core-i5 3 GHz machine
with 8GB RAM and have not been optimized for execution time. The unopti-
mized code takes on average around 2.5 s to run the whole localization procedure
(both coarse and fine). The execution time varies based on the image size, reso-
lution and number of positive votes at each stage.

The performance of our algorithm can be attributed to the training of the
forests and to the novel voting accumulation process. The patch classification
accuracy of forests is in the range of 95 to 98% (Table 2) which eliminates the
majority of the false detections. The novel voting accumulation method which
utilises dynamic diffusion based kernel density estimation and weighted area fil-
tering eliminates the rest of the false detection and thus the final results are good.
We are currently working on a vertebral curve detection method (Fig. 4(p)),
which can detect the anterior and posterior vertebral curves. A single orienta-
tion angle is not capable of describing the spinal column accurately. In many
cases, the spinal column is a curve than a straight line (Fig. 4(d, m)). Thus,
these curves will tell us more about the global orientation of the spine. Our
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next target is to detect the vertebrae centers or other landmarks automatically
like [6–9]. The output of this work will be helpful in order to limit our search over
the image. It can also help algorithms [7–9] where the search area was manually
reduced with hard coded parameters.
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Abstract. An accurate method for localising and segmenting interverte-
bral discs in magnetic resonance (MR) spine imaging is presented. Atlas-
based labelling of discs in MRI is challenging due to the small field of
view and repetitive structures, which may cause the image registration
to converge to a local minimum. To tackle this initialisation problem, our
approach uses Vantage Point Hough Forests to automatically and
robustly regress landmark positions, which are used to initialise a dis-
crete deformable registration of all training images. An image-adaptive
fusion of propagated segmentation labels is obtained by non-negative
least-squares regression. Despite its simplicity and without using specific
domain knowledge, our approach achieves sub-voxel localisation accuracy
of 0.61mm, Dice segmentation overlaps of nearly 90% (for the training
data) and takes less than ten minutes to process a new scan.

1 Introduction and Related Work

Automatic analysis of vertebras intervertabral discs in clinical 3D volumes of
the spine is useful for diagnosis, monitoring of disease progression, image-guided
surgical interventions and population studies [16]. While segmenting and local-
ising vertebra bodies have been predominantly performed in CT scans [8,9,15],
the soft tissue contrast and non-ionising acquisition of magnetic resonance imag-
ing (MRI) makes it the preferred modality for intervertabral disc analysis [2,3].
Automated analysis of spine images, which has seen increased research interest
over the last years (also due to the SpineWeb1 initiative), is challenging due to
the repetitive appearance of vertebras, restricted field-of-views. Therefore apply-
ing standard segmentation propagation approaches (multi-atlas segmentation)
can easily fail [9] and/or require very long processing times. Thus model-based
approaches [15], the integration of graphical model information [4,19] as well as
regression forests [2,3,8] have been employed to increase robustness for finding
and labelling the correct structures. The goal of the “Automatic Intervertebral
Disc Localization and Segmentation from 3D Multi-modality MR (M3) Images”
1 http://spineweb.digitalimaginggroup.ca.
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challenge held in conjunction with MICCAI 2016 is the identification, localisa-
tion and segmentation of seven discs, which are mainly within the lumbar spine.

Our work follows a similar methodological approach as [2,9]. First, we
robustly localise the 3D position of the seven discs using a combination of a
regression forest, Hough accumulation and a graphical model. Second, we use
these positions to initialise a fast, discrete multi-atlas registration framework,
which is followed by a non-negative least-squares regression of the most likely seg-
mentation label. These 3D segmentations are then employed to refine the local-
isation estimation. While we build upon previous work, our approach contains
elements that are (to the best of our knowledge) new to automatic spine segmen-
tation/localisation. First, instead of using a supervised axis-parallel regression
forest we adapt the recent concept of vantage-point forests [12] for regression,
which has been shown to outperform random forests for multi-organ segmenta-
tion. Here, the whole length of a binary context feature vector is used to cluster
the data meaningfully without being reliant on ground truth information during
tree generation. Second, the combination of very fast deformable registration
[10] and regression-based label fusion algorithms [14] enables processing times of
less than ten minutes for a multi-atlas label fusion (MALF) reducing the time
requirements compared to most state-of-the-art approaches substantially.

The paper is outlined as follows: we begin by describing our vantage point
regression forests in Sect. 2, which is followed by a vote accumulation in Hough
space and a simple spatial regularisation of candidates using a graphical (Markov
chain) model for an accurate prediction of all disc centres in a new unseen scan.
Note, that our approach does not make any specific use of domain knowledge and
would therefore be applicable to other anatomical localisation tasks. Afterwards,
the multi-atlas registration and label fusion framework is presented based on
[10,14] in Sect. 3. A detailed flow-chart of all algorithmic steps is presented in
Fig. 1. Finally, we present our experiments and results on the training dataset of
the challenge in Sect. 4 and discuss our conclusion in Sect. 5. Note, that currently

Fig. 1. Flow-chart of our proposed algorithm for accurate intervertabral disc localisa-
tion and segmentation. First, initial locations of disc centres are robustly found using
vantage point forests and a graphical model. Next, the disc centres are used as known
correspondences to initialise a deformable registration using a thin-plate spline (TPS)
warp. Finally, multi-atlas label fusion is performed for accurate voxelwise segmentation
and a refinement of disc centres.
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we only employ the standard proton MRI sequence, but further improvements
are to be expected when using all multi-modal scans.

2 Regression of Intervertabral Disc Centres

In order to analyse new scans completely automatically a robust initialisation
of the correct disc positions is often necessary. A common problem for disc
localisation in MR spine images is the confusion of two neighbouring discs due
to their similarity and missing anatomical context (abdominal organs are not
clearly visible in the field-of-view). We build our regression upon the recent
concept of vantage point forests [12]. Since, a global localisation is sought, we
sample patches on a uniform grid of locations xi across the whole image domain.
In training the position of seven ground-truth disc centres yk is obtained as the
centre of mass of the provided segmentation masks.

An intensity patch Pi ∈ R
|L| (with L being the set of voxels), which is

smoothed by a Gaussian kernel with variance σ2
p, will be represented by a feature

vector hi ∈ H
n, where hid ∈ {±1} defines the d-th dimension of the vector hid

corresponding to sample i. For this specific application, we restrict the feature
values to be binary (in Hamming space H

n) and can be simply obtained by a
comparison of two random locations (q, r) within the patch:

hid = +1 if Pi(q) > Pi(r) for (q, r) ∈ L and hid = −1 else (1)

as done in previous work on organ or keypoint localisation [1,17]. Note, that
the same random sampling layout is used for every location. The use of binary
features improves robustness against contrast variations often present in MRI
scans [17]. The vantage point tree [20] is a data-structure that is suitable to
cluster high-dimensional feature spaces into nested hyperspheres. In contrast to
previous work on regression forests for landmark localisation [4,8], we do not
perform supervised node optimisation but simply choose a random data point j
from the current node (vantage point) for clustering as follows. The Hamming
distance dH(i, j) = ||hi − hj ||H (of the whole feature vectors) to all other data
points i within the current node is calculated and the median distance τ is used
as threshold to split the data into two equal-sized sets that form the left and
right predecessor (child) nodes (see [12] for more details and an implementation).
When reaching the leaf node a displacement vector dk

i = yk − xi is stored for
every sample i and every landmark k ∈ {1, 2, . . . , 7}. Using the full binary feature
vectors enables very discriminative splits even without explicitly modelling the
distribution of displacement vectors and is computationally very efficient due to
the implementation of the Hamming weight as popcount instruction in current
CPUs [1]. A distance threshold δmax can be used to discard votes (during testing)
from very far away locations. An ensemble of several randomly different vantage
point trees is built to increase the generalisation.

During test the same random sampling layout is used as in Eq. 1 to extract
binary feature vectors for a set of regular grid locations xi. After traversing
each tree all training exemplars are collected and only the displacement vote of
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the one (di∗) with lowest Hamming distance with respect to the test sample is
retained. Effectively, vantage point forests enable a very efficient approximate
nearest neighbour search in Hamming space. The votes of all test locations (with
offset vectors xi + dk

i∗) are accumulated in 7 Hough volumes Hk (one for each
landmark, cf. [4,6]), which are later smoothed by a Parzen window kernel with
σH . Finally, a graphical model [18] is used to impose spatial constraints and
avoid confusions of neighbouring discs (which occurred twice for all 56 discs
in training). Dynamic programming is applied to all possible pair-wise combi-
nations of candidates of neighbouring discs. The unary term for the model is
chosen to be the negative exponential of the accumulated Hough votes for any
image location, which results in probability maps Hk of same size as the input
image. The pairwise regularisation cost (weighted by λ) is the squared Euclidean
distance between (average) model offset yk = 1

n

∑n
i=1(y

k
i −yk+1

i ) and difference
between the two respective locations:

E(xi,xj , k,H) = exp(−Hk(xi)) + λ
||xi − xj − yk||2

||yk|| (2)

The minimum of E(xi,xj , k,H) for each possible combination (xi,xj) for two
connected landmarks (k, k + 1) can be computed in linear complexity using
distance transforms of sampled functions [5]. Marginal distributions of the like-
lihood (or vice-versa uncertainty) of the position of all landmark positions can
be obtained following [11,19].

3 Multi-atlas Registration and Label Fusion

The publicly available non-parametric discrete registration tool deeds of [10]
was used due to its computational efficiency and good results for MRI segmen-
tation propagation. Given the estimated landmark localisations for a test scan
(using the outcome of the previous section) and the ground truth information
in training scans, we generate bounding boxes (using average disc sizes) and
match a thin-plate spline transformation to their corner points. This transfor-
mation is used to pre-align all training images (and segmentation masks). Local
cross correlation with a radius of r = 3 was used as similarity metric together
with a Gaussian smoothing of 1.2 voxels and symmetry constraint for regulari-
sation. The default multi-resolution and search range settings were used. Each
deformable registration took around 60 s.

Following the well-known concept of multi-atlas label fusion (MALF), we
estimate a local weighting for each (of the 7) registered atlas scan based on
local cross correlation and a non-negative least square regression [14]. This step
produces spatially coherent and accurate disc segmentations (see Fig. 2(c)), is
very fast in practise (≈10 s), and can effectively compensate registration errors.
Afterwards, the disc locations are re-estimated as the centre of mass of the fused
segmentation labels for improved accuracy.
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4 Experiments and Results on Training Data

In our experiments the combination of vantage point forests, Hough aggrega-
tion and this simple graphical model (see example results in Fig. 2) achieved
very robust results (without a single misclassification of intervertebral discs)
and required less tuning than random regression forests (for which we could
not find sufficient settings for all training cases). We smoothed patches with
σp = 2.5 mm, used n = 320 binary features drawn randomly within a radius of
25 mm, a stride of 4 voxels for the regular grid of voting voxels xi, and built 15
trees with a leaf size termination of 5. The application of the model to a test
scan took approx. 2 s (including Hough aggregation and graphical model). The
Parzen kernel for Hough aggregation was σH = 3.75 mm, the distance threshold
δmax = 37.5 mm and the regularisation weighting λ = 2. We obtained an average
localisation error of 7.09 mm (max: 39 mm) without and 3.87 mm (max: 10 mm)
with graphical model (see Table 1). While a lower error could easily be achieved
by including a (cascaded) refinement stage [3,7], we are here mainly interested in
the robustness of this step, since small misalignments will easily be corrected by
the following deformable registration. After applying the multi-atlas registration
and label fusion of Sect. 3, we achieve very high segmentation overlap (with an
average Dice of 0.89) and a very low disc location error of 0.69 mm (the scan
resolution is 1.25 mm3) using the centre-of-mass re-estimation.

Table 1. Quantitative evaluation of our vantage point Hough forest regression (VPF).
The robustness is increased by a subsequent graphical model (MRF). When used to
initialise a fast multi-atlas registration and label fusion (MALF), very low localisation
and segmentation surface distances as well as high Dice scores are achieved.

Method Metric avg. #1 #2 #3 #4 #5 #6 #7 #8

MALF w/o regr. Localisation
(mm)

5.51 0.75 37.58 2.79 0.48 0.71 0.53 0.79 0.50

Surface dist.
(mm)

3.34 0.52 19.92 3.65 0.56 0.44 0.39 0.40 0.85

Dice overlap 0.76 0.89 0.02 0.70 0.90 0.88 0.89 0.90 0.88

VPF+Hough Localisation
(mm)

7.09 4.10 12.44 12.60 9.25 3.44 2.52 5.58 6.80

Loc. max
(mm)

5.72 39.89 38.41 39.81 5.32 5.79 26.82 27.31

+MRF Localisation
(mm)

3.87 3.87 2.90 3.78 5.25 3.08 4.16 3.91 3.97

Loc. max
(mm)

5.51 7.07 6.38 8.93 5.50 7.86 7.68 10.05

+MALF Localisation
(mm)

0.61 0.76 0.57 0.52 0.53 0.68 0.50 0.84 0.50

Surface dist.
(mm)

0.38 0.37 0.39 0.39 0.38 0.36 0.36 0.35 0.39

Dice overlap 0.89 0.89 0.89 0.90 0.91 0.89 0.89 0.90 0.88
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(a) Overlay with ground truth (b) MALF with linear init. (c) MALF with VPF init.

Fig. 2. Sagittal slice of 3D MRI of case B with segmentations of all seven discs overlaid
in colour. (a) Ground truth manual segmentation. (b) Misaligned segmentations using
standard multi-atlas label fusion (MALF) due to poor initialisation. (c) Proposed van-
tage point forest regression improves overlap and successfully segments all discs as it
provides better initialisation for MALF. Best viewed in colour. (Color figure online)

5 Discussion

We have presented a simple yet very robust and fast method for finding anatom-
ical landmarks (intervertebral discs) in spine MRI scans. The use of (unsu-
pervised) vantage point forest together with discriminative binary feature vec-
tors enables very good regression results without tuning of different trade-offs
between classification and regression in supervised random forests. A subse-
quent multi-atlas registration and label fusion (initialised using a thin-plate
spline transform obtained from this automatic disc localisation) achieve a Dice
score of 89% on average and a refined average localisation error of 0.69 mm with
a processing time of ≈10 min per unseen scan. Further improvements may be
obtained by employing all multi-channel MR sequences (here we only used the
proton MRI), which could be easily integrated using [13]. The source-code for all
processing steps will be made available on http://mpheinrich.de/software.html.
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Abstract. Automatic localization and segmentation of intervertebral
discs (IVDs) from volumetric magnetic resonance (MR) images is impor-
tant for spine disease diagnosis. It dramatically alleviates the workload
of radiologists given that the traditional manual annotation is time-
consuming and error-prone with limited reproducibility. Compared with
single modality data, multi-modality MR images are able to provide com-
plementary information. However, how to effectively integrate them to
generate more accurate segmentation results still remains open for stud-
ies. In this paper, we introduce a multi-scale and modality dropout learn-
ing framework to segment IVDs from four-modality MR images. Specif-
ically, we design a 3D fully convolutional network which takes multiple
scales of images as input and merges these pathways at higher layers
to jointly integrate multi-scale information. Furthermore, in order to
harness the complementary information from different modalities, we
propose a modality dropout strategy to alleviate the co-adaption issue
during the training. We evaluated our method on the MICCAI 2016
Challenge on Automatic Intervertebral Disc Localization and Segmen-
tation from 3D Multi-modality MR Images. Our method achieved the
best overall performance with the mean segmentation Dice as 91.2% and
localization error as 0.62 mm, which demonstrated the superiority of our
proposed framework.

1 Introduction

Accurate localization and segmentation of intervertebral discs (IVDs) from volu-
metric magnetic resonance (MR) images plays an important role for spine disease
related diagnosis. Automatic localization and segmentation of IVDs are quite
challenging due to the large intra-class variations and similar appearance among
different IVDs.

Previous methods segmented the IVDs by employing hand-crafted features
which were derived based on intensity and shape information [2,8,12]. However,
these hand-crafted features tend to suffer from limited representation capability
compared with the automatically learned features. Furthermore, these methods
were usually performed based on 2D slices which might neglect the volumetric
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 85–91, 2016.
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Fig. 1. Illustration of IVD appearance in multi-modality MR images.

spatial contexts, thus degrading the performance. Recently, deep learning based
methods have been proposed to directly localize and segment IVDs or vertebrae
from volumetric data [4,7,10,14]. For example, Jamaludin et al. [10] proposed
a convolutional neural network (CNN) framework to automatically label each
disc and the surrounding vertebrae with a number of radiological scores. Chen
et al. [5] introduced a 3D fully convolutional network (FCN) to localize and
segment IVDs, which has achieved the state-of-the-art localization performance
in MICCAI 2015 IVD localization and segmentation challenge.

Those previous works employed single modality MR data instead of taking
multi-modality information into consideration, which would limit the localization
and segmentation accuracy. Multi-modality MR images (see Fig. 1) collected by
setting different scanning configurations can provide comprehensive information
for robust diagnosis and treatment. Previous studies on brain segmentation indi-
cated that multi-modality data could help to improve the segmentation perfor-
mance significantly [3,6,15]. Meanwhile, incorporating multi-scale information
into the learning process can further improve the performance [6,11].

In these regards, we propose a 3D multi-scale and modality dropout learning
framework for localizing and segmenting IVDs from multi-modality MR images.
Our contribution in this paper is twofold. First, we propose a novel multi-scale
3D fully convolutional network which consists of three pathways to integrate mul-
tiple scales of spatial information. Second, we propose a modality drop strategy
for harnessing the complementary information from multi-modality MR data.
Experimental results on the MICCAI 2016 Challenge on Automatic Interver-
tebral Disc Localization and Segmentation from 3D Multi-modality MR Images
have demonstrated the superiority of our proposed framework.

2 Method

Figure 2 presents an overview of our proposed multi-scale and modality dropout
learning framework based on multi-modality MR images. Our multi-scale fully
convolutional network consists of three pathways with each inputting a different
scale of volumetric image. In each training iteration, modality dropout strategy is
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Fig. 2. An overview of our proposed multi-scale and modality dropout learning frame-
work for IVDs segmentation and localization from multi-modality MR images

used on the input multi-modality data in order to reduce the feature co-adaption
and encourage each single modality image to provide discriminative information.

2.1 Multi-scale FCN Architecture

One limitation of previous methods for IVDs segmentation is that they usually
considered a single scale of spatial information surrounding the discs. However,
multi-scale contextual information can contribute to better recognition perfor-
mance. With this consideration, we employ multi-scale fully convolutional neural
network with different scales of input data volumes. Figure 3 shows details of our
proposed architecture, indicating input patch sizes, construction of layers, and
kernel size and numbers. This multi-scale architecture consists of three path-
ways corresponding to different input volume sizes. During the training phase,
three selected modality volumes (with one modality being randomly dropped)
are input to the architecture. A 3D probability map with voxelwise predictions
is generated as the output of the network. The final segmentation results can be
determined from the score volume while the localization results can be generated
as the centroids of the segmentation masks. In the experiments, we observe that
the number of IVD voxels is much less than background voxels. To deal with
the problem of imbalanced training samples, we employed weighted loss function
during the training process, as shown in the following:

L =
1
N

N∑

i=1

[−w · ti log p(xi) − (1 − ti) log(1 − p(xi))] (1)

where w is the weight for strengthening the importance of foreground voxels. N
denotes the total number of voxels in each training process, ti denotes the label
at voxel i and p(xi) denotes the corresponding prediction for voxel xi.

2.2 Dropout Modality Learning

Dropout technique was proposed in [9,13] and it has been recognized as an effec-
tive way to prevent co-adaption of feature detectors and alleviate the overfitting
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Fig. 3. The architecture of our proposed 3D multi-scale FCN. The red, blue and green
boxes represent different scales of input to three different pathways. We only include
one modality in this figure for clear illustration of the multi-scale framework. In exper-
iments, the inputs are actually multi-modality images. (Color figure online)

problem. In our task of IVD localization and segmentation from multi-modality
MR images, an intuitive approach is to input all modality data into the network
for training. However, training four modality volumes all together may cause
too much dependency among modalities, which leads to feature co-adaption and
thus degrades the performance. Therefore, in order to fully take advantage of the
complementary information from different modalities, we randomly dropped one
modality during each training iteration to break the co-adaption and encourage
harnessing discriminative information from remaining modalities. This can be
regarded as a regularization on the optimization of neural networks. In the test-
ing phase, we took all the four modality images as the input and generated the
final segmentation and localization results.

3 Experiment

3.1 Dataset and Preprocessing

We evaluated our method on the dataset from 2016 MICCAI Challenge on Auto-
matic Intervertebral Disc Localization and Segmentation from 3D Multi-modality
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MR Images [1]. The dataset was collected from a study investigating the effects
of prolonged bed rest on lumbar intervertebral discs. The training data contains
volumetric images from 8 patients and each subject consists of four modality MR
datasets, i.e., in-phase, opposed-phase, fat and water. There are at least 7 IVDs
in each image (size 36×256×256). These multi-modality images of each subject
are well registered and one binary mask is provided by manual annotation from
radiologists. The testing data includes 6 subjects with ground truth held out by
the organizers for independent evaluation.

3.2 On-site Competition Results

The evaluation metric for IVDs localization is mean localization distance (MLD)
with standard deviation (SD), where MLD measures the accuracy of localiza-
tion and SD quantifies the degree of variation. For IVDs segmentation evaluation,
Mean Dice Overlap Coefficients (MDOC) and standard deviation (SDDOC) are
used to measure the accuracy and variation of segmentation results. Mean Aver-
age Absolute Distance (MASD) with standard deviation (SDASD) is another
measurement for evaluating segmentation accuracy. More details can be found
on the challenge website [1]. Table 1 and Fig. 4 show the on-site challenge results.
Our method achieved the performance of MDOC as 91.2% and MLD as 0.62 mm,
which demonstrated the superiority of our proposed framework. We achieved the
first place out of 3 teams during the on-site challenge according to the overall
performance of these measurements.

Table 1. IVDs localization and segmentation results of our method in on-site challenge.

MLD (mm) SD MDOC (%) SDDOC MASD (mm) SDASD Rank

Ours 0.62 0.38 91.2 1.8 1.26 1.22 1

Fig. 4. Example of on-site challenge results from one testing patient. We show one slice
of the 3D volumetric data for clear visualization.
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4 Conclusion

In this paper, we proposed a novel 3D multi-scale and dropout modality learn-
ing method for IVDs localization and segmentation from multi-modality images.
Experimental results on the challenge demonstrated the advantage of our pro-
posed method, which is inherently general and can be applied in other multi-
modality image segmentation tasks. Future work includes shape regression based
methods to further improve the performance and applying our method on larger
dataset.
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Abstract. In this paper, we propose a fully automatic framework to
localize and segment intervertebral discs (IVDs) from 3D Multi-modality
MR Images. Random forest regression is employed to coarsely localize
the IVD. Then IVDs are segmented sequentially by training the specific
convolutional neural network (CNN) classifier for each IVD. We com-
pared the performance using single- and multi-modality images. Evalu-
ated on the MICCAI 2016 IVD on-site challenge datasets, our method
achieved a mean localization distance of 0.64 mm and a mean Dice over-
lap coefficient of 90.8%. The results show that our method is robust and
comparable with state-of-the-art methods.

1 Introduction

Intervertebral disc (IVD) degeneration is a major cause for chronic back pain
and function incapacity [1]. The accurate localization and segmentation of IVD
region is of great significance for the follow-up treatment and diagnosis of disc
disease. Recently, Magnetic Resonance (MR) Imaging (MRI) has become a very
useful tool for the diagnosis of IVD disease for its advantages of non-invasiveness,
no radiation exposure and offering good soft tissue contrast [2]. In clinical prac-
tice, radiologists usually localize and segment IVDs manually for the quanti-
tative diagnosis of disc pathology (See Fig. 1) [3]. However, this progress is
time-consuming and experience-dependent, which often leads to significant inter-
observer diagnosis variations [4]. Therefore automatic methods for IVD localiza-
tion and segmentation may help to improve diagnostic efficiency and decrease
inter-observer variability.

In the literature, a number of methods have been proposed for the localization
and segmentation of the IVDs from MR images [5–8]. There exist methods based
on regression forests [5], atlas registration [6], graph cut [7], template match-
ing and statistical shape model [8]. Recently, machine learning-based methods
have been adopted for solving the challenging problem. Chen et al. [4] pro-
posed a unified data-driven regression and classification framework to tackle the
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 92–101, 2016.
DOI: 10.1007/978-3-319-55050-3 9
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Fig. 1. Manual segmentation of 7 IVD regions from T2-weighted MR images.

problem of localization and segmentation of IVDs from T2-weighted MR data.
Wang et al. [9] addressed the segmentation of multiple anatomic structures from
multi-modality images via a sparse kernel machines-based regression. In previ-
ous learning-based methods, typically only one classifier was trained to segment
all IVDs from MR images. However, it may affect the classification performance
due to the large appearance variations of different IVDs.

In this study, our task is to automatically locate and segment seven defined
IVDs from each set of 3D multi-modality MR images provided by the MICCAI
2016 IVD challenge organizers. We propose a novel learning-based framework for
both localization and segmentation tasks. Random forest regression [10] is first
employed to coarsely localize the S1-L5 IVD. Then seven IVDs are segmented
sequentially from the S1-L5 IVD to T12-T11 IVD by training one convolutional
neural network (CNN) [11] classifier for each IVD. The current IVD to be seg-
mented is coarsely localized by the mean shape model based on the locations of
the segmented IVDs.

The paper is organized as follows. In Sect. 2, we will describe the proposed
architecture and algorithm. The application to the MICCAI 2016 IVD segmen-
tation challenge dataset will be presented in Sect. 3, and we conclude with a
discussion in Sect. 4.

2 Methods

The flowchart of the proposed learning framework is shown in Fig. 2. Compared
with other IVDs, the S1-L5 IVD is located at the bottom and its appearance is
the most discriminative due to the curved shape of the IVDs. We first coarsely
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Fig. 2. A schematic view of the workflow for the present method.

localize the center of the S1-L5 IVD (k = 1) by training the random forest
regressor [10]. Next, we train the k -th (k ∈ [1, 7]) CNN classifier to segment the
k -th IVD sequentially. After segmentation, the center of the k -th IVD is refined
accordingly. Then the center of the (k + 1)-th IVD is predicted by the mean
shape model and previously segmented IVDs for accurate segmentation.

2.1 Coarse Localization of the S1-L5 IVD

Random forest [12] is an ensemble learning technique that has been widely
applied to a lot of medical image analysis applications with promising perfor-
mances. This learning algorithm can effectively avoid over-fitting problem with
good generalization capability [12]. We employ the forest regression technique
[10] to coarsely localize the S1-L5 IVD. The location of the S1-L5 IVD will be
used for its accurate segmentation and predicting other IVDs’ locations. The
parameters of the random forest we set in this study are shown in Table 1.

Table 1. Parameters used in our random forest model

Parameters Values

No. of sample 16000

No. of feature 200

No. of tree 10

Max depth of each tree 15

Min Leaf number 5
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The training and testing progress of the regression model is shown in Fig. 3.
We randomly sample a set of 3D image patches around the S1-L5 IVD’s center
from water images. The 3D random Haar filter [10] is used for computing the
visual feature response of each patch. The displacement of each patch to the
S1-L5 IVD’s center is also computed. Once we obtained the feature matrix and
the displacement matrix, we employed the random forest to train the regression
model. On the testing phase, given an unseen MR image, the trained regressor
was used to predict each voxel’s displacement to the target. The voting map
is then obtained for the target by adopting the voting strategy in [10] on the
displacement maps. Finally, the center of the S1-L5 IVD can be identified by
searching the most votes in its voting map.

Fig. 3. Illustration of the regression model training. Red points on water image rep-
resent centers of sampling patches. 3D Random Haar is used to extract the feature
vector of each patch and random forest is used to train our regression model.

2.2 Building Mean Shape Model of IVDs

Our proposed learning framework aims at accurately segmenting each IVD
sequentially. Hence, the coarse localization of each IVD is a prerequisite for the
following segmentation. In this regard, the mean IVD shape model is constructed
for the coarse localization of IVDs. By observing that the shape variance of the
curve connecting the centers of seven IVDs is relatively low, we build the shape
model by simply averaging the coordinates of each IVD’s center of all training
data sets (Fig. 4). It is worth noting that the S5-L1 IVD is used as the origin to
compute the relative spatial relationship among seven IVDs.

2.3 Accurate Localization and Segmentation of IVDs

Recently, CNN has achieved great success in various medical applications
[13–15]. In this study, we trained seven CNN classifiers to segment IVDs
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Fig. 4. The mean IVD shape model.

sequentially. The advantage is that the classifier will become more specific for
segmenting each IVD. Table 2 lists the architecture of our CNNs implemented
using Caffe [16]. Four channels are used to represent multi-modality images in
the input layer. The activation function in our CNNs is chosen to be the retified
linear unit (ReLU), which has been shown to expedite the training of CNN [11].
The optimization of our CNNs was done using mini-batch stochastic gradient
descent algorithm. Moreover, considering the relative small regions of interest
for IVDs when compared with background region, we adopted following patch
sampling strategy during the training stage: for each voxel inside the IVDs, we
sample a patch around the voxel; for each voxel at the boundary of the IVDs,
we sample twice the same patch around the voxel to place more weight on the
boundary voxels.

Table 2. Architecture of our CNN model (Conv: convolution, Pool: pooling, FC: fully
connected)

Layer Kernel size/stride Output size Feature maps

Input –/– 20 × 20 4

Conv1 5 × 5/1 16 × 16 128

Pool1 2 × 2/2 8 × 8 128

Conv2 3 × 3/1 8 × 8 128

Pool2 2 × 2/2 4 × 4 128

FC –/– 1 × 1 512

Softmax –/– 1 × 1 2

Once the CNN models are trained, the probability map of the S1-L5 IVD
was first obtained using its CNN within the local region detected by the regres-
sion model. In practice, multiple regions may be classified as candidates from
backgrounds. In this study, we choose the region nearest to the coarsely localized
center as the segmentation mask. Then, the center of the current IVD is refined
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using the segmentation result. For the next IVD to be segmented, we make use
of the mean shape model and refined IVDs’ centers to get its coarse localiza-
tion and segment it again until all IVDs are segmented. The detailed progress is
shown in Fig. 5.

Fig. 5. Localization and segmentation of IVDs using trained CNN models.

3 Experiments and Results

3.1 Materials

The training data provided by the MICCAI 2016 IVD challenge organizers con-
sist of 8 sets of multi-modality MR (M3) images (Denoted as A1, B1, ... H1
for convenience) and the associated ground truth segmentation. Each set of M3

images include four aligned 3D images: in-phase, opposed-phase, fat and water
images (See Fig. 6). The resolution of all images are 2×1.25×1.25m3. There are
2 sets of M3 images released to verify the developed system before the on-site
challenge. In the on-site challenge, 6 more datasets were released to evaluate our
proposed method.

3.2 Evaluation Metrics

The metrics introduced in the MICCAI 2016 IVD segmentation challenge are
used here to evaluate the performance of our methods. The evaluation metrics
for IVD localization include mean localization distance (MLD) with standard
deviation (SD) and successful detection rate or percentage Pt of IVD center
localized with various ranges of accuracy (t = 2.0 mm, 4.0 mm and 6.0 mm). If
the absolute difference between the localized IVD center and the ground truth
center is no greater than t mm, the localization of this IVD is considered as an
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Fig. 6. Multi-modality MR images and associated ground-truth.

accurate detection; otherwise, it is considered as a false localization. The eval-
uation metrics on IVD segmentation include the mean Dice overlap coefficients
(MDOC) with standard deviation (SDDOC) between the ground truth segmen-
tation and the automated segmentation, as well as the mean average absolute
surface distance (MASD) with standard deviation (SDASD) between the surface
models extracted from the ground truth segmentation and those extracted from
the automated segmentation.

3.3 Evaluation on Off-site Challenge Datasets

The qualitative segmentation results of off-site challenge datasets by our method
are shown in Fig. 7. It demonstrates that our segmentation results are consis-
tent with the ground-truth. Table 3 shows the segmentation results with the
leave-one-out cross validation on training data. We computed the Dice overlap
coefficient to evaluate our method. We achieved a MDOC of 90.4%. The results
on 2 validation datasets were evaluated by the challenge organizers (Tables 4
and 5). We achieved a MLD of 0.68 mm for localization and a MDOC of 90.9%
for segmentation.

Table 3. Segmentation results with leave-one-out cross validation

Dice overlap coefficient (%)

A1 B1 C1 D1 E1 F1 G1 H1 MDOC ± SDDOC

90.5 89.8 91.2 91.8 90.4 90.1 90.2 88.8 90.4 ± 2.5
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Fig. 7. Examples of segmentation visualized on our methods with leave-one-out cross
validation. (Red: segmentation results by our methods; Green: ground-truth). (Color
figure online)

Table 4. Localization results on 2 validation datasets

MLD SD P2 P4 P6

0.68 mm 0.38 mm 100.0% 100.0% 100.0%

We further compared the segmentation results using multi-modality (Multi)
images and single-modality images (denoted as Fat, Inn, Opp and Wat, respec-
tively) in Table 6. It can be observed that we achieved the best result on multi-
modality images. The results on opposed-phase and water images are comparable
to the best result.

3.4 Evaluation on On-site Challenge Datasets

The quantitative localization and segmentation results of on-site challenge
datasets by our method are shown in Table 7. We achieved a MLD of 0.64 mm
for localization and a MDOC of 90.8% for segmentation. The results are highly
consistent with previous results on training and validation datasets.

Table 5. Segmentation results on 2 validation datasets

MDOC SDDOC MASD SDASD

90.9% 1.7% 1.04 mm 0.03 mm
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Table 6. Comparison of segmentation results using multi- and single-modality images

MDOC (%)

Multi Fat Inn Opp Wat

90.4 ± 2.5 87.2 ± 3.7 80.5 ± 8.6 90.2 ± 2.2 90.3 ± 2.4

Table 7. Localization and segmentation results with the 6 on-site test datasets

MLD SD MDOC SDDOC MASD SDASD

0.64 mm 0.50 mm 90.8% 3.9% 1.07 mm 0.17 mm

3.5 Computation Time

Different from global segmentation methods, we first localize IVDs before seg-
mentation. Our method can save much time of computing on background voxels.
Generally, for a set of multi-modality MR images of 36×256×256, it takes about
30 s to obtain final results including 5 s for localization and 25 s for segmenta-
tion using a standard PC with a 2.60 GHz Intel (R) Xeon (R) E5-2650 V2 CPU
and a NVIDIA Tesla K80 GPU. The fast speed makes our system promising for
clinical application.

4 Conclusions

In this paper, we propose a novel learning framework for fully automatic local-
ization and segmentation of IVDs from multi-modality MR images. Random
forest and CNN are employed for localization and segmentation tasks, respec-
tively. Evaluation on the MICCAI 2016 IVD challenge datasets shows that our
method is robust and comparable with state-of-the-art methods. In addition, we
investigated the influence of modality information on the performance. Future
work will include further refining the segmentation on the IVD boundaries and
testing our method on pathological cases.
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Abstract. In this paper, we present a quantitative comparison of
manual and computer-assisted preoperative pedicle screw placement
plans, obtained from three-dimensional (3D) computed tomography
(CT) images of 17 patients with thoracic spinal deformities. Manual plan-
ning was performed by two spine surgeons by means of a dedicated soft-
ware for planning of surgical procedures, while computer-assisted plan-
ning was based on automated 3D segmentation and modeling of vertebral
structures from CT images, and automated modeling of the pedicle screw
in 3D with maximization of the screw fastening strength. The analysis of
the size (diameter and length) and insertion trajectory (pedicle crossing
point, sagittal and axial inclinations) for 316 pedicle screws revealed a
statistically significant difference in the screw size and insertion trajec-
tory. However, computer-assisted planning did not propose narrower and
shorter screws, which was reflected through a higher normalized screw
fastening strength.

1 Introduction

Vertebral fixation by pedicle screw placement is one of the most widely used
stabilization techniques in spine surgery [1–3]. It is used for treating various
pathological conditions of the spine, such as deformities, tumors and fractures,
as well as for other degenerations that cause spinal instability. The procedure is
based on anchoring two (or more) vertebrae to each other by inserting screws
through vertebral pedicles from the posterior side so that they reach the inte-
rior of the vertebral body, and then bilaterally (i.e. on each side of the verte-
bra) attaching a stabilizing rod to the exterior part of the screws [4]. As such,
the procedure is considered complex and technically demanding with a steep
learning curve, because the visibility of anatomical structures is limited during
the surgery, and therefore a mental conceptualization of three-dimensional (3D)
spinal anatomical structures that are hidden from direct view is required.

Although pedicles are, from the biomechanical point of view, the hardest
part of the vertebra, their narrow anatomical shape poses a risk of injury to
the spinal cord, spinal nerve roots, vascular structures and vital organs that can
c© Springer International Publishing AG 2016
J. Yao et al. (Eds.): CSI 2016, LNCS 10182, pp. 105–115, 2016.
DOI: 10.1007/978-3-319-55050-3 10
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be caused by pedicle wall breakthrough or other damage in the case of pedicle
screw misplacement [5]. For a safe pedicle screw placement, the spine surgeon
has to perform proper surgery planning by taking into account the morphom-
etry (shape and structure) of pedicles and vertebral bodies, and choosing the
appropriate size (i.e. diameter and length) and insertion trajectory (i.e. entry
point and inclinations) of each pedicle screw, which has proved valuable for
reducing the risk of screw misplacement. However, the accuracy of pedicle screw
placement is directly related to the expertise of the spine surgeon, and there-
fore several methods for computer-assisted surgery (CAS) have been developed,
where intraoperative navigation based on markers and adequate software is used
to visualize and track surgical instruments relative to the patient anatomy [6].
The advantages of CAS are reflected in a less invasive surgery, higher accuracy
of pedicle screw placement, lower costs from the point of view of screw misplace-
ment, and in allowing simulations, which help spine surgeons to gain experience.
On the other hand, the disadvantages of CAS are variable patient positioning
during the procedure, variable accuracy of surgical instrument tracking and a
relatively high cost of the system.

Preoperative surgery planning based on 3D images of the spine, which are
usually acquired by the computed tomography (CT) imaging technique [7] that
provides an accurate insight into the anatomical structure and shape of the spine,
has become essential for pedicle screw placement. In this paper, we present a
quantitative comparison of manual and computer-assisted pedicle screw place-
ment plans, obtained from CT images with thoracic spinal deformities.

2 Methodology

2.1 Manual Pedicle Screw Placement Plans

Manual planning was performed by means of 3D visualization of the spine
anatomy from CT images and by using a dedicated medical software for trauma
and orthopedic surgery planning (EBS, Ekliptik d.o.o., Ljubljana, Slovenia),
which was divided into three steps. In the first step, the spine was segmented
by simple thresholding of CT image intensities to obtain the corresponding 3D
triangular mesh model, which enabled 3D visualization of the spine (Fig. 1(a)).
In the second step, manual labeling of vertebrae (segments T1–T12) was first
performed based on the visualized 3D spine model and the CT image, and then
the initial pedicle screw insertion trajectory was determined by placing a 3D
pedicle screw model into the 3D spine model and the CT image, and through its
manipulation the virtual screw entry point into each observed pedicle and the
virtual screw exit point from the corresponding vertebral body were identified
(Fig. 1(b)). The final pedicle screw trajectory (i.e. entry point and inclinations)
was determined in the third step by moving the pedicle screw virtual entry and
exit points within the oblique cross-section, defined by the initial insertion tra-
jectory and the normal to the current view in the 3D space (Fig. 1(c)), while the
final pedicle screw size (i.e. diameter and length) was determined by a thorough
analysis of the anatomy of the observed pedicle and the corresponding vertebral
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Fig. 1. Manual ((a)–(c)) and computer-assisted ((d)–(f)) planning of the pedicle screw
size and insertion trajectory. (a) The 3D triangular mesh model of the spine, obtained
by thresholding the CT image. (b) Determination of the virtual entry point into the
pedicle and the virtual exit point from the vertebral body. (c) Determination of the
final pedicle screw trajectory within the predefined cross-section. (d) The 3D model
of the vertebral body, representing its segmentation from the CT image. (e) The 3D
models of the left and right pedicle, representing their segmentations from the CT
image. (f) The 3D models of the screws through the left and right pedicle.

body. The resulting pedicle screw sizes and insertion trajectories had to provide
a high level of safety for their insertion (i.e. preventing pedicle and/or vertebral
body wall breakthrough) considering the maximal allowable screw diameters and
lengths, which were consistent with the usage and availability of pedicle screws in
clinical practice, i.e. the screw diameter was determined by increments of 0.5 mm
and the screw length by increments of 5 mm. In the case the pedicle anatomy
did not allow a safe insertion of the screw with a diameter of at least 3 mm (the
smallest available diameter), the screw was excluded from the preoperative plan.

2.2 Computer-Assisted Pedicle Screw Placement Plans

Computer-assisted planning was performed by means of the method proposed
by Knez et al. [8] that first automatically segments the vertebral bodies and
pedicles from the CT image by 3D geometrical modeling, and then automatically
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determines the size and insertion trajectory of each pedicle screw by modeling
the screw in 3D and maximization of its fastening strength.

The initial 3D vertebral body model is represented in the form of an elliptical
cylinder, which is then deformed by introducing additional shape parameters
and aligned to the observed vertebral body in the CT image by maximizing the
similarity between the 3D model and the corresponding anatomy. The final 3D
vertebral body model (Fig. 1(d)) is represented by 31 parameters, out of which
six represent its position and orientation in the 3D image, three represent its
3D size and the remaining 22 represent specific 3D anatomical deformations of
the vertebral body (i.e. the shape of the vertebral body at the location of the
left pedicle, right pedicle, vertebral foramen and anterior part of the vertebral
body; the concavity of the vertebral body wall at its anterior part and at the
vertebral foramen; the concavity and sagittal inclinations of vertebral endplates;
the increasing size and torsion of the vertebral body).

The obtained final 3D vertebral body model is used to define the location of
the initial 3D pedicle model, which is also represented in the form of an elliptical
cylinder, and is then again deformed by introducing additional shape parameters
and aligned to the observed pedicle in the CT image. The final 3D pedicle model
(Fig. 1(e)) is represented by 38 parameters, out of which six represent its position
and orientation in the 3D image, three represent its 3D size and the remaining
29 represent specific 3D anatomical deformations of the pedicle (i.e. the pedicle
wall concavity at its anterior, posterior, right and left parts; the shape of the
pedicle at its anterior, posterior, right and left tails; the teardrop and kidney
shape of the pedicle cross-section; the torsion of the pedicle).

Both the obtained final 3D vertebral body and pedicle models are then used
to model the corresponding pedicle screw in the form of a circular cylinder
(Fig. 1(f)). The pedicle screw size (i.e. diameter and length) is determined from
the geometrical properties of the corresponding anatomy, represented by the 3D
vertebral body and pedicle models, i.e. its diameter is determined as 70% of the
narrowest pedicle diameter [9], while its length as 80% of the anteroposterior
size of the vertebral body [2]. On the other hand, the pedicle screw insertion
trajectory (i.e. entry point and inclination angles) is determined from the struc-
tural properties of the corresponding anatomy by maximizing the screw fastening
strength, defined as the sum of the underlying CT image intensities. It was shown
that CT image intensities as well as the screw pull-out strength correlate with the
corresponding bone mineral density (BMD) [2,10], and consequently the screw
fastening strength is strongly related with its pull-out strength [11], which repre-
sents one of the most important biomechanical properties for pedicle screw place-
ment. For the computation of the fastening strength, only CT image intensities
within a relatively small neighborhood of the 3D pedicle screw surface, repre-
senting the surrounding volume around the screw thread, are taken into account
and additionally weighted according to the distance from the longitudinal pedi-
cle axis in order to reduce the potential impact of higher intensities close to the
pedicle screw surface. Moreover, the fastening strength is normalized with the
surrounding volume around the screw thread to avoid the influence of different
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Table 1. The number of the observed vertebral bodies (VBs) and pedicle screws for
each vertebral segment (T1–T12) and patient’s diagnosis, i.e. adolescent idiopathic
scoliosis (AIS) and Scheuermann’s kyphosis (SK) in CT images of the thoracic spine
from 17 patients.

Segment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 All

No. of VBs 3 10 12 13 14 15 14 17 16 17 17 16 164

AIS 3 8 10 11 11 12 11 13 13 13 13 12 130

SK 0 2 2 2 3 3 3 4 3 4 4 4 34

No. of screws 6 20 22 23 27 28 27 33 31 33 34 32 316

AIS 6 16 19 19 22 22 21 25 25 25 26 24 250

SK 0 4 3 4 5 6 6 8 6 8 8 8 66

screw sizes. Besides structural, also geometrical properties of the corresponding
anatomy are taken into account for the determination of the pedicle screw inser-
tion trajectory, i.e. each screw has to be completely inside the corresponding
3D vertebral body and pedicle models, and the intersection point between the
screw insertion trajectory and the plane of sagittal symmetry of the vertebral
body has to be outside the corresponding 3D vertebral body model. Therefore,
computer-assisted planning automatically determines the optimal pedicle screw
size and insertion trajectory with the highest possible screw fastening strength
according to the structure of the observed vertebra while limiting both the screw
size and insertion trajectory by the anatomical shape of the observed pedicle and
the corresponding vertebral body.

3 Results

Quantitative comparison of pedicle screw placement plans was performed for 17
patients (males: 12; females: 5; mean age: 17.6 years; age range: 12–14 years)
with thoracic spinal deformities (adolescent idiopathic scoliosis: 13; Scheuer-
mann’s kyphosis: 4). All patients were appointed for the pedicle screw placement
surgery at Orthopaedic Hospital Valdoltra, Slovenia, between 2013 and 2016. For
the purpose of surgery planning, preoperative CT images of the thoracic spine
were acquired, usually between the first (T1) and last (T12) thoracic vertebra
(GE LightSpeed VTC; pixel size: 0.25–0.38 mm; slice thickness: 0.6 mm). For
all patients, a spine surgeon manually defined preoperative pedicle screw place-
ment plans that were used to construct patient-specific drill guides, which were
intraoperatively laid over the visible part of the spine. Pedicle screws with pre-
defined sizes were then placed along these guides, which defined their insertion
trajectory.

For the purpose of quantitative comparison, manual planning was addition-
ally performed by two experienced spine surgeons, who independently deter-
mined pedicle screw sizes and insertion trajectories as described in Sect. 2.1
(first surgeon: M1; second surgeon: M2), while computer-assisted planning was
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performed by the automated method of Knez et al. [8] as described in Sect. 2.2
(computer: C) with an estimated modeling accuracy of 0.39 ± 0.31 mm for ver-
tebral bodies and 0.31 ± 0.25 mm for pedicles [8] in terms of the mean absolute
difference (MAD) and corresponding standard deviation (SD). The results were
obtained for CT images of all 17 patients, where the parameters for 316 pedi-
cle screws through 158 left and 158 right pedicles of 164 vertebral bodies were
determined (Table 1). The obtained pedicle screw parameters consisted of the
screw size (i.e. diameter D and length L), insertion trajectory (i.e. pedicle cross-
ing point pc = [xc, yc, zc], sagittal ωx and axial ωz inclinations) and normalized
fastening strength Fn (Fig. 1(f)). For each parameter of the pedicle screw, three
values (M1, M2 and C) were independently obtained and further used for quan-
titative comparison and statistical analysis (Student t-test; significance level:
p < 0.05). The results are presented in Tables 2 and 3, while Fig. 2 shows exam-
ples of the obtained pedicle screw placement plans.

The quantitative comparison of the obtained pedicle screw sizes and insertion
trajectories between manual plans M1 and manual plans M2 (Tables 2 and 3)

Table 2. Quantitative comparison of manual (M1 and M2) and computer-assisted (C)
preoperative planning of the size (i.e. diameter D and length L) and insertion trajectory
(i.e. pedicle crossing point pc, sagittal inclination angle ωx and axial inclination angle
ωz) for 316 pedicle screws in CT images of the thoracic spine (segments T1–T12)
from 17 patients in terms of the mean absolute difference (MAD) and corresponding
standard deviation (SD).

Segment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 All

D{M1 vs. M2} (mm) 0.8
(0.5)

0.5
(0.5)

0.3
(0.3)

0.2
(0.2)

0.3
(0.4)

0.3
(0.4)

0.3
(0.3)

0.6
(0.5)

0.5
(0.4)

0.6
(0.5)

0.4
(0.4)

0.4
(0.4)

0.4

(0.4)

D{M1 vs. C} (mm) 1.0
(0.7)

0.6
(0.5)

0.3
(0.4)

0.4
(0.4)

0.3
(0.4)

0.4
(0.5)

0.3
(0.4)

0.6
(0.6)

0.4
(0.4)

0.7
(0.6)

0.8
(0.5)

0.6
(0.4)

0.5

(0.5)

D{M2 vs. C} (mm) 0.4
(0.4)

0.3
(0.3)

0.4
(0.3)

0.4
(0.3)

0.4
(0.3)

0.4
(0.3)

0.4
(0.4)

0.4
(0.3)

0.4
(0.3)

0.3
(0.3)

0.5
(0.4)

0.5
(0.4)

0.4

(0.3)

L{M1 vs. M2} (mm) 1.7
(2.6)

3.0
(3.0)

2.5
(2.6)

3.0
(2.9)

2.0
(3.2)

2.5
(2.5)

2.6
(3.2)

2.8
(2.8)

3.4
(3.3)

2.7
(2.5)

2.6
(3.3)

4.2
(3.4)

2.9

(3.0)

L{M1 vs. C} (mm) 2.3
(1.9)

3.2
(2.4)

3.7
(2.5)

4.1
(3.2)

2.7
(2.1)

3.4
(4.0)

4.3
(3.9)

4.1
(3.7)

4.5
(3.7)

3.8
(3.5)

3.5
(2.6)

6.7
(3.8)

4.0

(3.4)

L{M2 vs. C} (mm) 2.0
(1.8)

2.3
(1.5)

4.0
(4.4)

3.3
(3.2)

2.4
(1.5)

3.3
(3.1)

3.0
(2.3)

3.0
(4.0)

4.3
(4.1)

3.7
(3.4)

3.6
(3.0)

5.0
(3.3)

3.5

(3.3)

pc{M1 vs. M2} (mm) 1.2
(0.9)

1.3
(1.0)

1.3
(0.7)

1.4
(0.9)

1.3
(1.0)

1.4
(1.0)

1.4
(1.4)

1.4
(1.1)

1.4
(1.2)

2.0
(1.6)

2.8
(2.2)

2.0
(1.2)

1.7

(1.4)

pc{M1 vs. C} (mm) 2.0
(1.1)

1.3
(1.1)

1.5
(1.0)

1.3
(1.0)

1.1
(0.8)

1.2
(0.9)

1.2
(0.9)

1.5
(1.2)

1.4
(0.8)

1.6
(0.9)

2.3
(1.3)

2.1
(1.1)

1.6

(1.1)

pc{M2 vs. C} (mm) 1.4
(1.2)

1.3
(1.1)

1.1
(0.7)

1.0
(0.6)

1.3
(1.0)

1.3
(0.7)

1.3
(0.7)

1.4
(0.9)

1.4
(0.9)

1.9
(1.5)

2.1
(1.2)

1.9
(1.4)

1.5

(1.1)

ωx{M1 vs. M2} (◦) 5.3
(2.8)

3.6
(2.9)

3.1
(3.3)

3.9
(3.4)

4.1
(3.3)

3.7
(3.2)

4.3
(3.2)

3.5
(2.8)

3.3
(2.8)

3.7
(2.7)

5.0
(3.7)

3.7
(3.4)

3.8

(3.2)

ωx{M1 vs. C} (◦) 18.6
(7.4)

7.7
(6.8)

8.5
(4.0)

8.4
(5.6)

11.3
(6.0)

9.7
(5.9)

10.3
(5.8)

10.5
(4.5)

10.7
(5.7)

12.1
(5.4)

11.7
(6.6)

9.7
(5.9)

10.4

(5.9)

ωx{M2 vs. C} (◦) 17.1
(4.3)

7.6
(4.7)

8.6
(3.8)

8.0
(4.4)

10.1
(5.4)

10.1
(6.0)

10.8
(4.8)

10.3
(4.3)

10.2
(6.3)

12.0
(6.0)

13.5
(7.8)

8.9
(5.5)

10.6

(5.9)

ωz{M1 vs. M2} (◦) 3.7
(2.4)

6.9
(3.4)

5.3
(4.2)

3.2
(2.8)

3.7
(2.8)

3.7
(2.9)

4.7
(3.5)

4.3
(3.0)

4.5
(2.8)

4.1
(3.1)

4.0
(3.3)

3.2
(3.0)

4.2

(3.3)

ωz{M1 vs. C} (◦) 2.9
(3.0)

7.9
(5.0)

5.6
(3.9)

4.2
(3.0)

4.9
(4.4)

5.3
(3.6)

5.8
(4.5)

5.9
(4.2)

6.1
(3.5)

6.4
(4.0)

5.6
(4.1)

6.2
(4.6)

5.8

(4.1)

ωz{M2 vs. C} (◦) 4.0
(3.1)

3.8
(2.9)

4.4
(4.6)

4.1
(2.6)

4.2
(3.1)

4.2
(2.8)

4.7
(3.6)

4.4
(3.0)

4.0
(2.6)

5.0
(3.8)

5.2
(4.3)

5.8
(5.1)

4.6

(3.6)
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Table 3. Quantitative comparison of manual (M1 and M2) and computer-assisted (C)
preoperative planning of the normalized fastening strength Fn for 316 pedicle screws
in CT images of the thoracic spine (segments T1–T12) from 17 patients in terms of
the mean absolute difference (MAD) and corresponding standard deviation (SD).

Segment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 All

Fn{M1 vs. M2} (%) 47

(5)

19

(25)

16

(22)

12

(19)

12

(12)

11

(16)

10

(8)

8

(6)

8

(7)

8

(10)

10

(6)

12

(16)

11

(14)

Fn{M1 vs. C} (%) 11

(10)

26

(36)

12

(14)

18

(32)

13

(12)

14

(9)

15

(15)

18

(17)

17

(19)

18

(23)

15

(15)

15

(16)

16

(20)

Fn{M2 vs. C} (%) 12

(9)

22

(44)

14

(21)

24

(30)

21

(19)

20

(23)

21

(16)

20

(19)

10

(16)

18

(21)

16

(12)

16

(15)

19

(22)

revealed that the differences between M1 and M2 are on average 0.4 ± 0.4 mm
for diameter D and 2.9 ± 3.0 mm for length L related to the pedicle screw size,
1.7±1.4 mm for pedicle crossing point pc, 3.8±3.2◦ for sagittal inclination ωx and
4.3±3.3◦ for axial inclination ωz related to the insertion trajectory, and 11±14%
for normalized screw fastening strength Fn. Statistically significant differences
were observed for planning of the pedicle screw size (p < 0.001) and inclinations
(p < 0.05), where, in comparison to M2, manual planning M1 proposed narrower
(p < 0.05) and longer (p < 0.05) screws with a smaller corresponding normalized
fastening strength (p < 0.05). The comparison among both manual plans M1 and
M2, and computer-assisted plans C (Tables 2 and 3) revealed that the differences
between M1 and C are on average 0.5±0.5 mm for diameter D and 4.0±3.4 mm
for length L related to the pedicle screw size, 1.6 ± 1.1 mm for pedicle crossing
point pc, 10.4±5.9◦ for sagittal inclination ωx and 5.8±4.1◦ for axial inclination
ωz related to the insertion trajectory, and 16±20% for normalized screw fastening
strength Fn. The differences between M2 and C are on average 0.4± 0.3 mm for
diameter D and 3.5 ± 3.3 mm for length L related to the pedicle screw size,
1.5± 1.1 mm for pedicle crossing point pc, 10.6± 5.9◦ for sagittal inclination ωx

and 4.6 ± 3.6◦ for axial inclination ωx related to the insertion trajectory, and
19 ± 22% for normalized screw fastening strength Fn. Statistically significant
differences were observed for planning of the pedicle screw size (p < 0.001) and
inclinations (p < 0.05), where, in comparison to M1 and M2, computer-assisted
planning C did not propose narrower (p < 0.05) and shorter (p < 0.001) screws,
but the corresponding normalized fastening strength was higher (p < 0.001).

4 Discussion

In this paper, we present a quantitative comparison and analysis of manual
and computer-assisted preoperative planning of the pedicle screw size and inser-
tion trajectory. Although modern software enables 3D visualization of medical
images, navigation through 3D images and manipulation with 3D pedicle screw
models, the above described manual planning of the pedicle screw size and inser-
tion trajectory is still a relatively time-consuming procedure. Moreover, by man-
ual planning it is impossible to take into account all parameters, which are
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Fig. 2. Manual planning M1 (in red), manual planning M2 (in blue) and computer-
assisted planning C (in gray) of the pedicle screw size and insertion trajectory for
(a) patient 1: segment T7, (b) patient 4: segment T3 and (c) patient 12: segment T10.
From top to bottom are displayed the sagittal CT cross-sectional view through the
right pedicle, the sagittal CT cross-sectional view through the left pedicle, the axial
CT cross-sectional view through both pedicles, and a 3D view. (Color figure online)
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important for the insertion of pedicle screws, such as the screw pull-out strength
and the corresponding screw fastening strength. On the other hand, computer-
assisted planning is a relatively fast procedure, as it can be performed without
the presence of a spine surgeon and/or a second observer, while still allow-
ing to perform some eventual manual adjustments or other settings. An impor-
tant advantage of computer-assisted planning is its repeatability and reliability,
because it is based on the optimization of the parameters that are important for
pedicle screw placement, i.e. searching for the highest possible screw fastening
strength for the observed structure and shape of the vertebral body and pedicle.

The differences between manual plans (M1 vs. M2), obtained from two
experienced spine surgeons, were on average relatively small, however, surgeon
M1 proposed narrower and longer pedicle screws with a smaller corresponding
normalized fastening strength. The size and the related fastening strength of
manually planned pedicle screws are consistent with the findings of Chapman
et al. [12] and Bianco et al. [13], who reported that the screw pull-out strength is
mainly affected and in fact increases by its diameter. However, the pedicle screw
length, compared to its diameter, does not largely affect its pull-out strength,
which additionally confirms the findings of Hirano et al. [14], who reported that
approximately 60% of the pedicle screw pull-out strength is within the pedicle
and the remaining 40% is within the vertebral body. The differences between
manual and computer-assisted plans (M1 vs. C and M2 vs. C) are comparable
according to the order of magnitude, which is consistent with previous finding
that the differences between both manual plans are relatively small. Further-
more, the average differences between both manual plans and computer-assisted
plans (M1 vs. C and M2 vs. C) are in most cases relatively small and compara-
ble to the differences between manual plans (M1 vs. M2), except for the sagittal
inclination of the screw insertion trajectory, where on average higher differences
occurred because vertebral morphometry allows a greater range of pedicle screw
inclinations in the sagittal plane. As a result, two techniques of pedicle screw
insertion are established in clinical practice, i.e. the anatomical technique with
the screw insertion trajectory parallel to the longitudinal axis of the pedicle [15],
and the straight-forward technique with the screw insertion trajectory parallel to
the superior endplate of the vertebral body [16], where a difference of up to 25◦

in sagittal screw inclinations can occur between both insertion techniques [2].
The average differences in sagittal screw inclinations between the obtained man-
ual and computer-assisted plans are within the above mentioned range (i.e.
10.4 ± 5.9◦ for M1 vs. C and 10.6 ± 5.9◦ for M2 vs. C), and the analysis of
non-absolute differences in sagittal inclinations revealed that computer-assisted
plans were more consistent with the anatomical technique, while manual plans
were more consistent with the straight-forward technique. The statistical analy-
sis of the obtained results also revealed that, at higher screw fastening strength,
computer-assisted plans did not result in narrower and shorter pedicle screws
when compared to both manual plans, which is in accordance to the above men-
tioned findings that the pedicle screw length does not largely influence the screw
pull-out strength in comparison to the screw diameter.
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Abstract. The identification and detection of degenerative osteophytes
of the spine is a challenging and time-consuming task that is important
for the diagnosis of many spine diseases. Previous attempts to auto-
mate this task have been focused on using image features derived from
radiographic diagnostic expertise rather than directly learning features.
In this paper, we present a bottom-up approach to generate features
for classification using a region-based convolutional neural network with
unwrapped cortical shell maps from 18F-NaF positron emission tomogra-
phy and computed tomography scans of the vertebral bodies of the tho-
racic and lumbar spine. We evaluated osteophyte detection performance
on 45 individuals with 5-fold cross validation and achieved state-of-the-
art performance with 85% sensitivity at 2 false positive detections per
patient.

Keywords: Osteophyte detection · Convolutional neural networks ·
18F-NaF PET/CT · Spine

1 Introduction

Osteophytes are bony outgrowths that develop along the margins of joints and
disc spaces and have been linked to chronic and intense pain. Osteophytes of
the spine become more prevalent with age, and are found in over 90% of the
population age 60 years and above [8]. Further examinations show that osteo-
phytes occur more often in men rather than women and in individuals whose
occupations require regular heavy physical labor [9].

The identification and annotation of these pathologies on diagnostic imag-
ing studies can be both time consuming and difficult to complete. However,
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there have been increasing efforts to use computer-aided detection for identifying
pathology of the spine and to segment these abnormal structures. By applying a
series of successive level sets to segment the vertebra and to capture the curva-
ture of both the endplates and the rim of the cortical shell, Tan et al. provided a
technique to segment syndesmophytes, a similar type of bony outgrowth at the
intervertebral disc (IVD) margins seen in individuals with ankylosing spondylitis
[10]. Brown et al. developed a system using region-specific intensity threshold-
ing on bone scans for identifying and segmenting metastatic lesions of the bone
[3]. Additionally, on sodium fluoride (18F-NaF) positron emission tomography
(PET) and computed tomography (CT) studies, spinal osteophytes and sclerotic
metastatic lesions can appear similar, creating false positive lesion detections and
potentially altering therapy [2]. The development of these computer-aided detec-
tion algorithms provides a means to differentiate similar-looking pathology and
to more comprehensively evaluate the spine for subsequent medical intervention.

In recent years, the use of deep learning (DL) and convolutional neural net-
works (CNNs) in medical image analysis has gained momentum and begun to
replace the need for entire systems to be designed for specific problems as well
as the difficult task of manually engineering distinct but robust features using
prior understanding of the data. By learning features from the data and training
the system in an end-to-end supervised manner, CNNs have outperformed more
traditional machine learning methods by a significant margin on natural images
[6]. More recent applications to medical imaging include the work of Bar et al.,
which showed that CNNs can improve the detection of pathology on chest x-rays
over GIST descriptors, low dimensional feature vectors, as well as Bag-of-Visual-
Words, a visual word dictionary [1]. Liu et al. applied region-based convolutional
neural networks (R-CNN), an extensively tested visual object detection system,
to the task of colitis detection in the colon and achieved performance nearing a
threshold of acceptance for clinical use [7]. These results provide evidence that
suggests the potential increase in detection performance by using CNNs is not
limited to natural images.

Despite variability in shape, density, and location, radiologists generally iden-
tify spinal osteophytes on CT by their relatively high intensity and morphological
projections at the IVD space margin, typically spanning multiple vertebra levels
(Fig. 1). We revisit this task by utilizing previous efforts to detect osteophytes
where Yao et al. used unwrapped surface representations of the cortical shell of
vertebral bodies derived from 18F-NaF PET/CT scans [12] with a three-tier clas-
sification scheme using region covariance matrices to detect spinal degenerative
osteophytes [13]. We propose the application of a deep learning framework using
R-CNN for feature acquisition [4], which leverages high-capacity convolutional
neural networks with bottom-up region proposals, to unwrapped cortical shell
images for the detection of spinal degenerative osteophytes using linear support
vector machines (SVM).
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Fig. 1. Left: Axial view of annotated thoracic and lumbar vertebrae (T8, L1, L5) with
spinal degenerative osteophytes (indicated by dots) on select CT slices and Right:
corresponding unwrapped cortical shell feature map with selected annotations.

2 Methods

The method for detecting spinal degenerative osteophytes is outlined as follows
(Fig. 2). Unwrapped cortical shell maps of the thoracic and lumbar vertebral bod-
ies from PET/CT scans were assembled. After preprocessing the input images,
region proposals were generated as inputs for feature learning by the CNN. Out-
put feature vectors from the CNN were classified using a linear SVM. Detection
boxes were then combined in order to evaluate osteophyte detection performance
on a per-image basis.

2.1 Cortical Shell Unwrapping

Spinal degenerative osteophytes can be modeled on CT as high intensity protru-
sions of the cortex that project radially from the vertebral body. Understanding
this fundamental component of where in the vertebrae they develop, the detec-
tion problem can be simplified. Rather than directly applying deep learning to
entire PET/CT scans, unwrapped representations of the cortical shell of the
vertebral bodies were produced [12]. This required the extraction of the spinal
column and partitioning of all thoracic and lumbar vertebrae as described by
Yao et al. [14].
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Fig. 2. Pipeline for spinal degenerative osteophyte detection. PET/CT scans used to
create unwrapped cortical shell maps. Region proposals of patch size 17×17 were gen-
erated from the unwrapped maps, combined into a 3-channel RGB image, and upscaled
to 227×227×3 inputs into the CNN. After propagating through the 5 convolutional, 3
max-pooling, and 2 fully-connected layers, a 4096-dimensional feature vector was used
for classification via linear SVM and detection on full unwrapped map (ground truth
in green, true positive detections in yellow, and false positive detections in red). (Color
figure online)

By creating a deformable dual-surface model, both the endosteal and
periosteal surfaces of the cortical shell were extracted using anatomical informa-
tion from CT, producing a complete segmentation of the cortical layer. Because
osteophytes appear as high intensity objects, they were captured by the corti-
cal shell segmentation. The cortical shell volumes of each vertebra were then
individually unwrapped by mapping into 2D space using cylindrical coordinates
and realigned to form unwrapped maps of the full spine as seen in Fig. 1. This
technique was identically applied to both CT and PET scans, and generated a
series of feature maps of the cortical shell thickness, radius from the center of the
vertebral body, and intensities on CT as well as standard uptake values (SUV)
on PET shown in Fig. 3.

2.2 Region Proposal Generation

The region-based convolutional neural network learns features from bottom-
up region proposals derived from the input images [4]. Although the orig-
inal R-CNN package utilized selective search [11] as a means to generate
category-independent region proposals by combining a graph-based segmenta-
tion method with a hierarchical grouping algorithm, we chose a fixed-size sliding
window approach which was found to achieve significantly higher detection rates.



120 Y. Wang et al.

Fig. 3. Example unwrapped cortical shell images of the full spine with Left: annotated
osteophytes (marked by white dots) on CT, Middle: cortical shell intensity on CT,
and Right: cortical shell SUV on PET.

Experiments with region proposal size showed that patches of 17×17 pixels
resulted in peak detection performance with an average of 20,000 region pro-
posals per image.

2.3 CNN Network Architecture

The GPU-accelerated CUDA-based Caffe implementation [5] of the AlexNet
CNN architecture by Krizhevsky et al. was used for the task of feature extraction
[6]. The AlexNet architecture consists of 7 hidden layers, 5 convolutional layers, 3
max-pooling layers, and 2 fully-connected layers to produce a 4096-dimensional
vector of features. One requirement of AlexNet is the use of 3-channel RGB image
inputs. By reading separate maps from the CT and PET data as individual
channels to formulate an RGB image, the CNN can utilize information from
multiple imaging modalities in order to determine features for extraction. The
network converted all 17×17 patch region proposals into a fixed size 227×227
patch 3-channel input image required by AlexNet.

2.4 CNN Training

In the case of performing an object detection task on small image datasets, it
can be difficult to create a robust model by training a CNN from the ground
up without over-fitting the classification results. However, by leveraging models
built from existing datasets of natural images as large as hundreds of thou-
sands of images, transfer learning provides a means to apply previously trained
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networks to a novel task such as spinal degenerative osteophyte detection. Net-
work parameters can then be fine-tuned to our image domain in the later layers
of the CNN while retaining the more generic image features learned from the
pre-trained network.

The CNN was pre-trained on the ILSVRC2012 dataset1, a widely-used
dataset for benchmarking object detection algorithms. Domain-specific fine tun-
ing was completed on the fully-connected layers using a subset of labeled train-
ing images after 50,000 iterations. The training of the network was completed by
treating region proposals with ≥ 0.5 intersection over union (IoU) overlap with
a given ground-truth box as a positive training example and ≤ 0.3 as negative
examples. The rest of our method followed the original parameters described
by Girshick et al., using stochastic gradient descent for optimizing the network
parameters at a learning rate of 0.001 and linear SVM for the classification task
[4]. Training was evaluated using the detection performance on a small subset
of the training set and completed after 14 h on an 8-core Intel Xeon PC with a
Nvidia GTX Titan Z GPU.

2.5 CNN Feature Extraction and SVM Classification

Features for classification were extracted as 4096-dimensional feature vectors for
each region proposal. After acquiring feature vectors for all region proposals,
a committee of linear support vector machines was used for the binary task
of classifying spinal degenerative osteophytes [4]. A greedy non-maximum sup-
pression algorithm was applied in order to reduce the number of overlapping
detection boxes by selecting detections with a largest IoU with the ground-truth
boxes. Detection boxes belonging to the same patient were aggregated in order
to determine performance on a per-patient level.

3 Experiments and Results

3.1 Dataset

The dataset of 45 18F-NaF PET/CT scans used in this experiment was obtained
with IRB approval. Scans were acquired on a Philips GEMINI TF scanner from
45 patients with anonymized demographics ranging from around 51 to 85 years
old. Patients were intravenously administered a dose of 18F-NaF ranging from
112×106–203×106 Bq/ml with a physiological uptake period of 114 to 126 min
prior to PET image acquisition. Axial PET images of size 144×144 or 169×169
pixels were obtained with an axial spatial resolution of 4 mm×4 mm per pixel
and 4 mm slice spacing. CT images were obtained using a low dose technique
with a 5 mm slice thickness, 120 kVp, no intravenous contrast, and convolution
kernel B. Osteophytes were annotated by a trained radiologist on the axial CT
slices, and osteophytes spanning multiple vertebra levels were condensed into
one rectangular ground-truth box for CNN training and testing.

1 http://image-net.org/.

http://image-net.org/
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3.2 Results

Performance was evaluated using free-response operating characteristic (FROC)
curve analysis with 5-fold cross validation. All 3-channel images contained the
cortical shell CT intensity and the cortical shell PET SUV maps as two of
the three input channels. The addition of the trabecular CT intensity and the
vertebral body radius maps as the third channel were compared. If the area
of the detection box had ≥ 0.7 IoU with any ground-truth box, it was treated
as a true positive detection and the remainder were treated as negatives. The
threshold for true positive detection was based on a more selective value than
the IoU threshold for CNN positive training sample selection (area ≥ 0.5 IoU)
asince the lower training threshold was used to enforce greater variability for
feature learning.

Using a combination of the cortical shell CT intensity and the cortical shell
PET SUV with sliding window region proposals, a sensitivity of 85% at 2 false
positives per patient (FPs/patient) and F1 score of 0.91 was achieved (Fig. 4).
This effectively reduced the false positive rate by nearly 50% compared to the
method of using handcrafted features from unwrapped cortical shell maps in Yao
et al., which had a sensitivity of 84% at 3.8 FPs/patient [13]. In addition, at the
same false positive rate of 3.8 FPs/patient, our method obtained a much higher

Fig. 4. Free-response operating characteristic (FROC) curves with 5-fold cross valida-
tion. The first two image channels fixed on cortical shell CT intensity and cortical shell
PET SUV. Three configurations were compared: vertebral body radius as last channel
with sliding window (blue), trabecular CT intensity with sliding window (red), and
trabecular CT intensity with selective search (yellow). (Color figure online)
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Fig. 5. Spinal osteophyte detection examples: (a) cortical shell CT intensity map, (b)
cortical shell CT intensity map with detections: ground truth (green), true positive
detections (yellow), and false positive detections (red), (c) trabecular CT intensity,
(d) cortical shell PET SUV map, and (e) vertebral body radius map. (Color figure
online)

sensitivity of 94%. Using sliding window for region proposal generation vastly
outperformed selective search (F1 score of 0.69) which operated at a sensitivity
of 53% at 2 FPs/patient (p-value < 10-3), and the use of the vertebral body
radius map (F1 score of 0.89) with a sensitivity of 82% at 2 FPs/patient did
not produce any statistically significant performance benefits (p-value = 0.527).
Examples of osteophyte detection results are shown in Fig. 5.

4 Conclusion

By following a previous method developed by Yao et al., our results can be evalu-
ated as a more direct comparison of using learned features through R-CNN rather
than hand-crafted features, and show a significant reduction in the amount of
false positives generated on a per-patient level as well as a much higher sensitiv-
ity at a similar false positive rate [13]. In addition, with 45 patients, our dataset
was more than twice the size of that used in the previous paper. These signifi-
cant improvements in osteophyte detection may drive future investigative efforts
to differentiate similarly appearing pathologies of the spine and interventional
medical treatments.
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124 Y. Wang et al.

References

1. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest
pathology detection using deep learning with non-medical training. In: IEEE 12th
International Symposium on Biomedical Imaging (ISBI), 2015, pp. 294–297. IEEE
(2015)

2. Bastawrous, S., Bhargava, P., Behnia, F., Djang, D.S., Haseley, D.R.: Newer pet
application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic
practice. Radiographics 34(5), 1295–1316 (2014)

3. Brown, M.S., Chu, G.H., Kim, H.J., Allen-Auerbach, M., Poon, C., Bridges, J.,
Vidovic, A., Ramakrishna, B., Ho, J., Morris, M.J., et al.: Computer-aided quanti-
tative bone scan assessment of prostate cancer treatment response. Nuclear Med.
Commun. 33(4), 384 (2012)

4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

5. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Pro-
ceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM
(2014)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

7. Liu, J., Lay, N., Wei, Z., Lu, L., Kim, L., Turkbey, E., Summers, R.M.: Colitis
detection on abdominal CT scans by rich feature hierarchies. In: SPIE Medical
Imaging, p. 97851N. International Society for Optics and Photonics (2016)

8. Nathan, H.: Osteophytes of the vertebral column. J. Bone Joint Surg. Am. 44(2),
243–268 (1962)

9. Resnick, D.: Degenerative diseases of the vertebral column. Radiology 156(1), 3–14
(1985)

10. Tan, S., Yao, J., Ward, M.M., Yao, L., Summers, R.M.: Computer aided evaluation
of ankylosing spondylitis. In: 3rd IEEE International Symposium on Biomedical
Imaging: Nano to Macro, pp. 339–342. IEEE (2006)

11. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

12. Yao, J., Burns, J.E., Munoz, H., Summers, R.M.: Detection of vertebral body frac-
tures based on cortical shell unwrapping. In: Ayache, N., Delingette, H., Golland, P.,
Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 509–516. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33454-2 63

13. Yao, J., Munoz, H., Burns, J.E., Lu, L., Summers, R.M.: Computer aided detec-
tion of spinal degenerative osteophytes on Sodium Fluoride PET/CT. In: Yao, J.,
Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for
Spine Imaging. LNCVB, vol. 17, pp. 51–60. Springer, Cham (2014). doi:10.1007/
978-3-319-07269-2 5

14. Yao, J., O’Connor, S.D., Summers, R.M.: Automated spinal column extraction and
partitioning. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano
to Macro, pp. 390–393. IEEE (2006)

http://dx.doi.org/10.1007/978-3-642-33454-2_63
http://dx.doi.org/10.1007/978-3-319-07269-2_5
http://dx.doi.org/10.1007/978-3-319-07269-2_5


Reconstruction of 3D Lumvar Vertebra
from Two X-ray Images Based on 2D/3D

Registration

Longwei Fang1,2, Zuowei Wang4,5, Zhiqiang Chen1,2,
Fengzeng Jian4, and Huiguang He1,2,3(B)

1 Research Center for Brain-inspired Intelligence, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

huiguang.he@ia.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Center for Excellence in Brain Science and Intelligence Technology,
Chinese Academy of Sciences, Beijing, China

4 Division of Spine, Department of Neurosurgery, Xuanwu Hospital, China
International Neurological Institute, Capital Medical University, Beijing, China

5 Department of Neurosurgery, Beijing Hospital, Beijing, China

Abstract. Constructing a 3D bone from two X-ray images is a chal-
lenging task, especially when we would like to build a complicated struc-
ture like spine. This paper presents a novel method for reconstructing
lumbar vertebra by building correspondence of two X-ray images with
a prior model. First, the pose between X-ray images and the vertebra
model was estimated; second, the correspondences between the Digitally
Reconstructed Radiographies (DRRs) and vertebra model were built;
third, the deformation field from DRRs to X-ray images was calculated;
last, deformation field was applied to vertebra model to generate the
patient’s specified 3D model. This method just needs one prior model for
3D reconstruction. The experiments on nine vertebrae of three patients
show the average reconstruction error is 1.2mm (1.0mm–1.3mm) which
is comparable to the state of the art.

Keywords: 3D reconstruction · Lumbar vertebra model · X-ray
images · 2D/3D registration · 2D/2D deformable registration

1 Introduction

Image-guided radiotherapy has been more and more widely used in the hospi-
tal. Images shown in 3D form are very useful and convenient for the doctor to
understand the pathology. Generally, the Computed Tomography (CT) or Mag-
netic Resonance Image (MRI) is used to reconstruct the patient’s 3D model,
however, it is difficult and inconvenient to collect CT/MRI data in operation.
Therefore, the technique that use X-ray images to construct patient’s 3D model
is developed recently [1–7].
c© Springer International Publishing AG 2016
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Statistical Shape Model (SSM) or Point Distribution Model (PDM) was
widely used [1–4] for 3D reconstruction. Zheng et al. [5] used two X-ray images
and a PDM to construct distal femur. Contours of the surface defined by the
PDM were projected into two 2D planes and established correspondences with
features detected from fluoroscopic images; these contour points were then back-
projected into 3D space, reconstructed into 3D points; then those points were
registered to the corresponding 3D point set by deforming the point distribution
model to generate patient specified model. Prakoonwit et al. [6] reconstructed
distal femur using several X-ray images and a SSM by camera calibration tech-
nique. The correspondences between X-ray images were built by camera calibra-
tion, and then the correspondence points was back-projected into 3D space and
reconstructed into 3D point set, then the statistical shape model was deformed
by registering to those points. Whitmarsh et al. [3] proposes a method that using
statistical shape model combined with statistical density model to reconstruct
patient lumbar vertebrae model. In prepare phase, statistical shape model and
statistical density model was constructed from a large dataset of QCT scans, in
reconstruction phase, the models were simultaneously registered onto the two
DXA images by an intensity based 2D/3D registration process, then the opti-
mized registration was found by adjust the parameters of statistical model. This
optimized registration model is the reconstructed patient specified model.

There are some deficiencies in existing methods. Only the boundary or profile
of the X-ray images were used [1,2,4–6] to restrict the deformation of the SSM
or PDM, they do not make good use of the intensity information inside the
boundary. Other methods [3,7] use the intensity information of the whole 2D
X-ray images, but the construction speed is very slow as they need to calculate
the probability distribution of the shape model in each iteration.

The nature of SSM/PDM method is using a large number of collecting data
to build a mean model and a set of deformable parameters, then giving those
deformable parameters different weights and adding them to mean shape to
generate a series of model and choose one that has the minimal difference with
specific patient model. Therefore, the accuracy of those reconstruction methods
depend heavily on the unknown patient-specific shape variation covered by the
SSM/PDM [8]. In real clinic cases, the pathology spine maybe have a strange
shape, the SSM or PDM unable to cover an arbitrary pathology. Actually, if we
can find a way to calculate the difference between the prior model and the real
data, then we can generate the specific patient model by deforming the prior
model with those difference, this kind of method do not rely on the coverage of
model shape and can handle more complex cases.

In this paper, we propose a novel methods that using two X-ray images and
a prior vertebral model to reconstruct the patient specified vertebral. We only
use one vertebral model as prior knowledge, all the deformation are completed
in 2D images, the 3D reconstruction accuracy is comparable to the state of art,
and the reconstruction speed is fast.

This paper is organized as follows. Section 2 presents the details of recon-
struction procedure. Section 3 describes the experiment design and the result,
the discussion and conclusion is in Sect. 4.
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2 Meterials and Methods

2.1 Brief Introduction of Reconstruction

The main idea is that we introduce a prior model into our method, and we esti-
mate the pose, position and the deformation between the X-ray images and the
prior model, and then we apply these parameters to deform the prior model to
get the final 3D specific patient model. The whole reconstruction process was
divided into four parts: First, the pose between X-ray images and the vertebral
model was estimated; second, the correspondence between DRRs and vertebral
model was built; third, the deformation field from DRRs to X-ray images was
calculated; last, deformation field was applied to the vertebra model to gener-
ate the patient specified 3D model. Figure 1 is the flow diagram of the whole
reconstruction process.

Fig. 1. The flow diagram of the whole reconstruction process

2.2 Data Collection

The CT data of vertebra model or prior model was provided by Beijing
Hospital, the model is the third lumbar vertebrae in human body. The
data collecting device is GE Discovery HD720, and the resolution of CT is
0.24 mm * 0.24 mm * 0.7 mm. The vertebra specimen is labelled with thirteen
landmarks before data collection, six landmarks were posted on vertebra body,
one was on spinous process, two were on transverse process and two were on the
superior articular process. Figure 2(a) shows the picture of landmarks on verte-
bra model and Fig. 2(b) is the reconstructed 3D CT image of vertebra model.



128 L. Fang et al.

Fig. 2. Landmarks position on vertebra model (a) Landmarks on physical model (b)
landmarks on reconstructed CT images

2.3 Pose Estimation Between X-ray Images and Vertebra Model

The projection parameters are the position and pose of the two ray sources when
combining the X-ray images and the lumbar vertebra CT into the same coordi-
nate. Two steps were needed to estimate the projection parameters: the recon-
structed lumbar vertebrae was segmented from X-ray images and the landmarks
were labelled on the segmented images; and the landmarks based 2D/3D rigid
registration between X-ray images and the vertebra model. Figure 3(a) shows the
calculation procedure of projection parameters. We used the Intelligent Scissors
[9] to segment the vertebra. After segmentation, landmarks should be labeled on
the segmented image according to the markers position on vertebra model shown
in Fig. 2(a). We just labeled the landmarks that can be seen on the segmented
image, the landmarks labeled in two images can be different.

We assumed that the distance of the CT center to projection plane is fixed.
V i

pc, V i
ps represent the projection of landmarks on coronal and sagittal plane,

separately; V i
xc, V i

xs represent the landmarks of X-ray images on coronal and
sagittal plane, separately. We assumed that the distance of the ray source to
projection plane is d, then we can use Eq. 1 to solve the projection parameters.

Ω = arg max
Ω=(Ω1,Ω2)

⎛

⎝
M∑

i

‖V i
pc(Ω1) − V i

xc‖2 +
N∑

j

‖V j
ps(Ω2) − V j

xs‖2
⎞

⎠ (1)

In Eq. (1), the origin of coordinate system is the center of CT data, ‖ · ‖ is
the Euclidean distance; Ω1 = {rx1, ry1, rz1, tx1, tz1}, Ω1 = {rx2, ry2, rz2, tx2, tz2}
is the projection parameters of two ray source; rx∗, ry∗, rz∗ is the rotate angle
along three axis, tx∗, tz∗ is the translation along x and z axis; M represents the
landmarks on coronal plane, N represents the landmarks on sagittal plane.

2.4 Building Correspondence Between Projection Images
and Vertebra Model

This process could be achieved by three steps: vertebra model surface extraction,
DRRs generation, projecting control points into DRRs. Figure 3(b) shows the
correspondence building between projection images and vertebra model.

First, the surface of the lumbar vertebra model was extracted. The vertexes
of the mesh were the control points which were used to reconstruct the patient
specified vertebra model. The number of the vertices was 3500.
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Fig. 3. The flow chart of whole reconstruction process (a) shows the pose estimation
between X-ray images and vertebra model (b) shows the correspondence built between
DRRs and vertebra model (c) shows the flow chart of calculating deformation field (d)
shows the process of model deformation to generate the specific patient model

Second, projection images or DRRs were generated by projecting the CT
data into projection planes. We used the ray casting algorithm [10] to generate
the DRRs. Figure 4(a) shows the DRRs in coronal and sagittal plane, separately.

Last, the intersection coordinates that lines which are Connect the ray source
and control points with projection planes (DRRs plane) were calculated. Divid-
ing the intersection coordinates by the pixel space and rounding the result, we
will find the correspondence location on the DRRs for the projection of the con-
trol points. The projection of the same control point in two planes are a control
point pair and the projection of control points moved when the correspondence
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Fig. 4. The intermediate result of calculating deformation field of projection images
(a) DRRs generated from CT data (b) projection of control points (c) deformation
field after deformable registration, we change the background into white for clearly
showing the deformation field (d) results of deformation on DRRs (e) projection of
control points mapping in X-ray images before registration (f) projection of control
points mapping in X-ray images after registration. The red dots in above images are
the projection of same control point (Color figure online)

pixels in DRRs moved. Figure 4(b) shows the projection of the control points in
the coronal and sagittal plane separately, the reds ones are the projection of a
same control point.

2.5 Calculating the Deformation Field from DRRs to X-ray Images

The deformation field from DRRs to X-ray images was calculated by Free-Form
Deformation registration method [11]. Figure 3(c) shows the flow chart of cal-
culation. Figure 4(c) is the deformation field after registration, Fig. 4(d) is the
deformation result of DRRs, Fig. 4(e) is the projection of control points map-
ping into the X-ray images before registration and Fig. 4(f) is the projection of
control points mapping in the X-ray images after registration.

2.6 Model Deformation

We assume V i
pc(Ω), V i

ps(Ω) are the projection of the same control point in coronal
and sagittal plane separately, where V i

pc(Ω) = [xi
c, y

i
c]

T , V i
ps(Ω) = [xi

s, y
i
s]

T ;
Di

pc, Di
ps represent deformation vector in coronal projection image and sagittal

projection image separately, where Di
pc = [di

cx, di
cy]T , Di

ps = [di
sx, di

sy]T ; and
[d∗x, d∗y]T is the deformation in position [x, y]T . N i

pc, N i
ps are the new position

of control point’s projection after deformation in two planes. Then we have
{

N i
pc = V i

pc(Ω) + Di
pc = [xi

c + di
cx, yi

c + di
cy]T

N i
ps = V i

ps(Ω) + Di
ps = [xi

s + di
sx, yi

s + di
sy]T

(2)

The intersection point M i by the line ScN
i
pc(Ω) and line SsN

i
ps(Ω) is the new

position of the control point i. Figure 3(d) shows the deformation of vertebra
model.
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3 Experiments and Results

3.1 Experiments Design

The X-ray images of three patients were used to validate the method, and the
X-ray images were shown in Fig. 5. L2, L3 and L4 of the lumbar vertebra were
chose for reconstruction. We segmented vertebra model from corresponding CT
and extracted its surface as the ground truth, the vertex number of the surface
was 3500. The average distance from reconstructed mesh to the ground truth was
regard as reconstruction error. For the experiment, we used 18 Inter(R) Xeon(R)
CPU e5-2687w @3.10 GHz with 64 G RAM, the operation system is CentOS6.3
and the programming language is C++ mixed with MATLAB.

Fig. 5. The X-ray images of three patients

3.2 Result

We used the proposed method to reconstruct L2, L3 and L4 lumbar vertebra
successfully, the average reconstruction error was 1.2 mm (1.0 mm–1.3 mm), and
the average reconstruction time was 45 s. Table 1 shows the reconstruction error
and time of each lumbar vertebra, and Fig. 6 shows the result of reconstruction,
for each patient, the left column is the ground truth with the color-coded error
distribution; the middle column shows the result of reconstruction; right column
is the histogram of the reconstruction error, 95% of the reconstruction error less
than the value in red line.

Table 1. Reconstruction error and time of all three patients

Case P1-L2 P1-L3 P1-L4 P2-L2 P2-L3 P2-L4 P3-L2 P3-L3 P3 -L4

Error (mm) 1.2± 1.1 1.3± 1.3 1.3± 1.0 1.2± 1.0 1.2± 1.0 1.3± 1.2 1.1± 0.8 1.0± 0.8 1.2± 1.0

Time (s) 46 42 43 48 44 45 45 47 44



132 L. Fang et al.

Fig. 6. Reconstruction result. For each patient, left column is ground truth models
with the color-coded error distributions; middle column is the reconstruction result,
right column is the histogram of the reconstruction error, 95% of the reconstruction
error less than the value in red line (Color figure online)

4 Discussion and Conclusion

We proposed a novel method to reconstruct lumbar vertebra with two X-ray
images and showed its application on nine lumbar vertebras. This novel method
performed reconstruction by building correspondence of two X-ray images with
a known lumbar vertebra model, it was tested in nine lumbar vertebras of three
patients, the average reconstruction error was 1.2 mm (1.0 mm–1.3 mm) and the
average construction time was 45 s. The experiments showed the good perfor-
mance of our method in reconstruction.

The main difference between the present technique and the other works [1–7]
lies in the fact that we use one prior model rather than SSM/PDM to reconstruct
the specific patient model. We calculate the difference between the patient images
and the prior knowledge and then add this difference to prior model to generate
the specific patient model while the SSM/PDM based method build a series
model and choose one that has a minimal difference with the patient date. What’s
more, we use the full information of the X-ray images rather than the boundary
information of the information and the iteration process is finished in 2D images
in our method, not in the 3D model, so the reconstruction speed is very fast.
Moreover, the control points of our method evenly distribute in the whole ROI
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of the segmented X-ray images, as shown in Fig. 4(f), while the other methods
[4–6] just distribute along the boundary of images.

There are some deficiencies in present approach. First, it needs to segment the
reconstructed lumbar vertebra from X-ray image and add landmarks manually,
although the reconstruction process does not take much time, the segmenta-
tion takes a lot of time; second, the reconstruction accuracy depends heavily
on 2D/2D deformable registration between X-ray images and DRRs, the recon-
struction error will be large when the registration result is not good. Nonetheless,
the experiments from the present study demonstrate that this method will be
more widely used in the future if it can cooperate with other auto segmentation
methods and a more accurate 2D/2D registration method.
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Abstract. Adolescent idiopathic scoliosis (AIS) is a 3-D deformation
of the spine. Identifying curve progression in AIS at the first visit is a
clinically relevant problem but remains challenging due to lack of rele-
vant descriptors. We present here a classification framework to identify
patients whose spine deformity will progress from those who will remain
stable. The method uses personalized 3-D spine reconstructions at base-
line from progressive (P) and non-progressive (NP) patients to train a
predictive model. Morphological changes between groups are detected
using a manifold learning algorithm based on Grassmannian kernels in
order to assess the similarity between shape topology and inter-vertebral
poses in both groups (P, NP). We test the method to classify 52 progres-
sive and 81 non-progressive patients enrolled in a prospective clinical
study, yielding classification rates comparing favorably to standard clas-
sification methods.

1 Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3-D) deformation
of the spine with unknown aetiopathogenesis. For children between 6 and 17
years old, the prevalence of AIS with a principal curvature greater than 10◦ is of
1.34%. A large scale study demonstrated that close to 40% of children screened
at school and subsequently followed by a clinician are diagnosed with AIS [1].
One of the most challenging problems in AIS is the effective prediction of curve
progression from a patient’s baseline visit, once they are diagnosed with this
pathology. In current clinical practice, factors such as patient maturity, including
age and skeletal maturity using Risser sign, menarchal status, curve magnitude
and curve location are used to assess a curve’s probability for progression. These
parameters are often used to establish treatment strategies, such as surgery or
orthopedic braces, as well as scheduling follow-up examinations. Methods based

This study was Supported by NSERC, CHU Sainte-Justine Academic Research Chair
in Spinal Deformities, the Canada Research Chair in Medical Imaging and Assisted
Interventions.
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on alignment charts were made by [2] to link progression incidences with specific
types of deformation, however these could not stratify progressive from non-
progressive cases to determine optimal treatment strategies. Curve progression
has become the primary concern for both patients and their families as it can
cause significant distress from both an aesthetic and lifestyle perspective.

In recent years, spine morphology and in particular 3-D morphometric para-
meters have shown significant promise to assess the link with respect to curve
progression. In orthopaedics, 3-D spine models generated from medical images
can assist specialists in the diagnosis of deformations and for the surgical plan-
ning of patients, by providing an accurate modeling and landmark localization
for deformed articulated spine segments. A retrospective evaluation of 3-D para-
meters based on spinal and vertebral morphology was performed to classify pro-
gressive and non-progressive patients [3]. More recently, a prospective study was
performed to evaluate the differences in 3-D morphological spine parameters
between both AIS groups using the patient’s first visit [4]. These prediction sys-
tems are derived from the clustering of hand-engineered parameters, which were
calculated from 3-D spine reconstructions. However, relying on geometric indices
sets out on a quest in search of the best characteristics to describe the 3-D nature
of scoliotic spines.

Contrary to explicit parametric models, numerical or statistical methods are
able to capture within a simplified space, the highly dimensional and complex
nature of a fully geometric 3-D reconstruction of the spine, both on a regional
(spinal) and local (vertebra) level. Ultimately, 3-D spine models could be inter-
preted implicitly instead of using expert-based features which were examined
in previous studies. While wavelet-based compression was used to assess spine
curvature [5], manifold learning performed on locally linear embeddings was
able to reduce the dimensionality of thoracic 3-D spine models [6]. Non-linear
embeddings have been investigated in numerous studies based on probabilis-
tic Gaussian [7] or spectral latent variables [8]. Indeed, they seek to preserve
neighborhood relationships of similar object geometries, thereby revealing the
underlying structure of the data which can be used for statistical modeling.
Unfortunately, these dimensionality reduction algorithms based on local estima-
tion are prone to the out of sample problem and sensitive to samples which map
outside the normal distribution of the observed data. Recent studies based on
deep learning algorithms such as stacked auto-encoders have successfully repre-
sented multiple types of spinal deformations, but was limited to retrospective
classification analysis [9].

The objective of this study is to propose a classifier which distinguishes
between patients whose main curve will progress over 6◦ from those whose pro-
gression is under 6◦ at follow-up. First, geometric spine models are reconstructed
in 3-D from calibrated bi-planar radiographs to create a training set of person-
alized scoliotic shapes. Once a training set of spine shapes is created for patients
of these two clinically relevant groups (P, NP), a discriminant manifold based on
Grassmannian kernels [10] is trained using the approach by [10] to maximize the
separation between these two groups and improve the prediction accuracy for
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any unseen baseline reconstruction, which can be processed by mapping the 3-D
spine model onto the trained manifold. The main contribution of this paper is to
develop a prediction pipeline for curve progression based on their Grassmannian
space representation. The paper is structured as follows. Section 2 presents the
method in terms of geometric modeling and manifold training. Experiments are
shown in Sect. 3, with a discussion in Sect. 4 and a conclusion in Sect. 5.

2 Methods

The input to our prediction approach is a collection of 3-D spine models which
comprises a set of learning shapes with pose vectors for each level from progres-
sive (P) and non-progressive (NP) AIS patients. These shapes are a constellation
of annotated vertebrae with landmarks defined as characteristic points uniquely
localized across a set of objects. We first build a discriminant manifold struc-
ture based on Grassmannian kernels from a training database to differentiate
P and NP curves by embedding the data into a low-dimensional sub-space, the
dimensionality of which corresponds to the domain of admissible variations.

2.1 3-D Spine Reconstruction from Sparse and Shape+Pose
Modeling

In order to reconstruct the spine in 3-D, a coarse-to-fine modeling framework
previously developed for the 3-D reconstruction of the scoliotic spine from bipla-
nar X-ray images was used in this study [11]. First, the spine centerline, which
is represented by the cubic spline in terms of its control points and local poly-
nomial coefficients, is extracted from input biplanar radiographic images and
used as a data descriptor for the underlying sparse modeling approach in order
to obtain the initial 3-D reconstruction. By finding a sparse representation of
the input descriptor, non-Gaussian errors (e.g. noisy and erroneous extracted
centerlines) can be accounted for during the reconstruction process. We then
adapt a multi-object pose+shape model proposed by Bossa and Olmos [12],
where pose and shape variations are separately extracted and then correlated
to present a joint pose+shape model. In contrast to articulated models, pose
parameters were represented by similarity transformations, separately for each
vertebral level. To obtain the final 3-D reconstruction of the scoliotic spine S, the
pose+shape model is fitted to spine landmarks that were initially reconstructed
by sparse modeling and later adjusted using a semi-automatic method to refine
landmark positions [13].

To train the shape+pose model, a database consisting of 804 pairs of biplanar
X-ray images of AIS patients was used. For each patient, a 3-D reconstruction of
its spine (17 vertebrae in total) was generated from 3-D anatomical landmarks
using the approach described above, and validated by an expert on digital radi-
ographs. Six anatomical landmarks were identified on each vertebra from the first
thoracic (T1) to the last lumbar (L5), i.e. two adjacent landmarks on superior
and inferior vertebral endplates, and four landmarks at the tips of both pedicles.
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Furthermore, each 3-D reconstruction was normalized against the spine height,
i.e. the distance between the T1 center superior endplate landmark, denoted by
lT1, and the L5 center inferior endplate landmark, denoted by lL5. A common
(default) coordinate system for each 3-D reconstruction in the training database
was established by applying the Gram-Schmidt orthonormalization procedure
on a set of vectors {lT1 − lL5,e2,e2 × (lT1 − lL5)}, where e2 = [0, 1, 0]T . Finally,
the matrix R = [r1, r2, . . . , rL] ∈ R

3M×L represented 3-D spine reconstructions
stacked side-by-side, where each ri ∈ R

3M×1, i = 1, 2, . . . , L vertebra levels, cor-
responded to the concatenation of 3-D coordinates of all M = 6 ·17 ground truth
landmarks from the i-th spine. The same six precise anatomical landmarks (4
pedicle tips and 2 on the vertebral body) were annotated on each triangulated
model as shown in Fig. 1. The coordinates for each anatomical point were used
to generate 3-D meshes for each vertebral body which defines the position and
rotation (i.e. the ground-truth 3-D pose).

Fig. 1. Annotated landmarks on the triangulated mesh model of the first lumbar ver-
tebra, with the 4 pedicle tips and 2 vertebral body centers.

2.2 Progression Prediction Using Discriminant Grassmannian
Manifolds

Manifold learning algorithms are based on the premise that data are often of
artificially high dimension and can be embedded in a lower dimensional space.
However the presence of outliers and multi-class information can on the other
hand affect the discrimination and/or generalization ability of the manifold. We
propose to learn the optimal separation between two classes (1) non-progressive
(NP) AIS patients and (2) progressive (P) AIS patients, by using a discriminant
graph-embedding [10]. Each reconstructed spine model S can be viewed as the
set of low-dimensional m subspaces of R

n on a Grassmannian manifold and
represented by orthonormal matrices, each with a size of n × m, with n the
higher dimensionality of vertices defined earlier. Two points on a Grassmannian
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manifold are equivalent if one can be mapped into the other one by a m ×
m orthogonal matrix. In this work, similarity between two models (Si, Sj) on
the manifold is measured as a linear combination of projection and canonical
correlation Grassmannian kernels Ki,j defined in the Hilbert Space by weighting
parameters. By describing different features of the spine shape with each kernel,
Ki,j can improve discriminatory accuracy between shapes.

In order to effectively discover the low-dimensional embedding, it is necessary
to maintain the local structure of the data in the new embedding. The structure
G = (V ,W ) is an undirected similarity graph, with a collection of nodes V
connected by edges, and the symmetric matrix W describing the edges between
nodes of the graph. The diagonal matrix D and the Laplacian matrix L are
defined as L = D − W , with D(i, i) =

∑
j �=i W ij∀i. Here, N labelled spine

models S = {(Si, ci)}Ni=1 are generated from the underlying manifold M, where
ci denotes the label (NP or P). The task at hand is to maximize a measure
of discriminatory power by mapping the underlying data into a vector space,
while preserving similarities between data points in the high-dimensional space.
Discriminant graph-embedding based on locally linear embedding (LLE) [14]
uses graph-preserving criterions to maintain these similarities, which are included
in a sparse and symmetric N × N matrix, denoted as M .

Within and between similarity graphs: In our work, the geometrical struc-
ture of M can be modeled by building a within-class similarity graph W w for
spine models of the same group and a between-class similarity graph W b, to
separate spine models from the two classes. When constructing the discriminant
LLE graph, elements are partitioned into W w and W b classes. The intrinsic
graph G is first created by assigning edges only to samples of the same class
(e.g. NP). The local reconstruction coefficient matrix M(i, j) is obtained by
minimizing:

min
M

∑

j∈Nw(i)

‖Si − M(i, j)Sj‖2
∑

j∈Nw(i)

M(i, j) = 1 ∀i (1)

with Nw(i) as the neighborhood of size k1, within the same region as point i (e.g.
3-D spine model from a NP patient). Each sample is therefore reconstructed only
from 3-D model of the same clinical group. The local reconstruction coefficients
are incorporated in the within-class similarity graph, such that the matrix W w

is defined as:

W w(i, j) =

{
(M + MT − MTM)ij , if Si ∈ Nw(Sj) or Sj ∈ Nw(Si)
0, otherwise.

(2)

Conversely, the between-class similarity matrix W b depicts the statistical prop-
erties to be avoided in the optimization process and used as a high-order con-
straint. Distances between P and NP samples are computed as:

W b(i, j) =

{
1/k2, if Si ∈ Nb(Sj) or Sj ∈ Nb(Si)
0, otherwise

(3)
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with Nb containing k2 neighbors having different class labels from the ith sample.
The objective is to transform points to a new manifold M′ of dimensionality d,
i.e. Si → yi, by mapping connected samples from the same group in W w as
close as possible to the class cluster, while moving P and NP models of W b as
far away from one another as possible. This results in optimizing the objective
functions:

f1 = min
y

1
2

∑

i,j

(yi − yj)2W w(i, j) f2 = max
y

1
2

∑

i,j

(yi − yj)2W b(i, j) (4)

Supervised manifold learning: The optimal projection matrix, mapping new
points to the manifold, is obtained by simultaneously maximizing class separa-
bility and preserving interclass manifold property, as described by the objective
functions in Eq. (4). Assuming points on the manifold are known as similar-
ity measures given by the Grassmannian kernel Ki,j , a linear solution can be
defined, i.e., yi = (〈α1, Si〉, . . . , 〈αr, Si〉)T for the r largest eigenvectors with
αi =

∑N
j=1 aijSj . Defining the coefficient Al = (al1, . . . , alN )T and kernel K i =

(ki1, . . . , kiN )T vectors, the output can be described as yi = 〈αl, Si〉 = AT
l K i.

By replacing the linear solution in the minimization and maximization of the
between- and within-class graphs, the optimal projection matrix A is acquired
from the optimization of the function as proposed in [10]. The proposed algo-
rithm uses the points on the Grassmannian manifold implicitly (i.e., via measur-
ing similarities through a kernel) to obtain a mapping A. The matrix maximizes a
quotient similar to discriminant analysis, while retaining the overall geometrical
structure. Hence for any unseen 3-D spine shape reconstruction Sq, a manifold
representation can be obtained using the kernel function based on Sq and map-
ping A.

3 Experiments

3.1 Clinical Data

To train the prediction model, a database of baseline 3-D spine reconstructions
was used, originating from 133 patients demonstrating several types of deformi-
ties. Patients were recruited from a single center prospective study [4], with the
inclusion criteria being evaluated by an orthopedic surgeon and a main curva-
ture angle between 11 and 40◦. Patients were divided in two groups based on
the severity of the main curve, with the first group composed of 52 progressive
patients with a difference of 6◦ between the first and last visits, which varied
between 6 and 48 months. The second group was composed of 81 non-progressive
(NP) patients with a difference of 6◦ or less between baseline and longitudinal
scans (up to 3 years after baseline). This threshold was selected based on the
level of confidence for radiographic measurements.
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This cohort was comprised of 116 girls and 17 boys. The mean age of subjects
was 12.6 years old at the time of the first visit. The average main Cobb angle on
the frontal plane at the first visit was 22.1◦± 8.4◦. For each patient in the dataset,
a 3-D reconstruction of the spine was obtained from the method described in the
methodology, from which a series of clinical 2D and 3-D geometrical parameters
can be computed, such as computerized Cobb angles and angles of planes of
maximum curvature. There were 32 right thoracic curves, 48 double curves (22
main thoracic, and 26 main left lumbar), 7 triple curves, 36 left thoracolumbar
curves, and 10 right lumbar or left thoracic curve.

3.2 Automatic Classification Results

In this study, a 9-fold cross-validation was performed to assess the performance of
the method. We evaluated the classification accuracy for discriminating between
NP and P scoliotic patients using the baseline 3-D reconstructions, by training
the model using vertebral shapes, inter-vertebral (IV) poses and with a combi-
nation of both shape+IV poses. Figure 2 shows P and NP examples from similar
baseline examinations. Figure 3 presents ROC curves obtained by the proposed
and comparative methods such as SVM (nonlinear RBF kernel), LLE and LL-
LVM [15]. The discriminative nature of the proposed framework clearly shows an
improvement to standard learning approaches models which were trained using
shape only, IV poses only and combined features. Table 1 presents accuracy, sen-
sitivity and specificity results for classification between NP and P patients. It
illustrates that increased accuracy (77.4%) can be achieved by combining shape
and IV pose features, showing the benefit of extracting complementary features
from the dataset for prediction purposes. When comparing the performance of
the proposed method to the other learning methods (SVM, LLE, LL-LVM), the
probabilistic model integrating similarity graphs shows a statistically significant
improvement (p < 0.01) to all three approaches based on paired t-test.

(a) (b)

Fig. 2. Examples of similar baseline 3D reconstructions with different longitudinal
outcomes. (a) A non-progressive case. (b) A progressive case.



142 W. Mandel et al.

Fig. 3. ROC curves comparing the SVM, LLE and LL-LVM with the proposed method
for NP/P prediction using only shape, only inter-vertebral (IV) poses and combining
both shape and IV poses.

4 Discussion

With the intent of determining optimal surgical strategies and treatments for
patients with AIS, quantification and classification of spinal deformities such
as AIS in 3-D remains challenging because of the difficulty of translating com-
plex geometrical concepts into clinically applicable paradigms [16]. A number
of studies have investigated into pattern classification based on explicit clinical
parameters. It is recognized from clinical experience that progression in AIS is
primarily driven by skeletal and chronological age, as well as on the class of defor-
mation (thoracic, lumbar), and the severity of the curve deformation. However
these discrete parameters, such as curve magnitude obtained at the first visit are
not sufficient to accurately predict whether the main curve will progress or not.
Sangole et al. [17] found spinal curves in scoliosis have abnormal orientations in
3-D space with respect to the sagittal plane. The proposed framework is able to
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Table 1. Performance results for conversion prediction from between P and NP
patients, compared to SVM, LLE and LL-LVM [15]. Training performed using only
shape information, only inter-vertebral (IV) poses and combined shape-IV features.
AUC= Area under curve.

Data Method Accuracy Sensitivity Specificity AUC

Shape SVM 58.5 53.6 62.7 0.614

LLE 66.2 63.5 67.1 0.701

LL-LVM 70.7 72.7 67.9 0.762

Proposed 72.6 77.8 70.0 0.769

Poses SVM 53.7 48.4 56.7 0.560

LLE 60.8 59.0 64.7 0.651

LL-LVM 69.0 70.7 71.6 0.749

Proposed 75.0 77.5 74.3 0.794

Shape+poses SVM 61.6 54.3 64.1 0.658

LLE 67.0 66.5 63.3 0.733

LL-LVM 69.5 76.3 72.6 0.783

Proposed 78.6 85.1 72.5 0.827

process the entire spine model which adds significant insight on the predominant
features used for the prediction of curve progression. A previous study by the
Scoliosis Research Society 3-D Scoliosis Committee demonstrated that similar
3-D profiles can lead to different 3-D morphology progression and thus stressed
on quantifying 3-D deformations. In [4], a number of clinical parameters includ-
ing the angulation of the main curve and apical inter-vertebral axial rotation
are leading predictors. The main problem in dividing the different geometrics
of deformation as potential risk factor of progression is the lack of robustness
based on the accuracy of these measures. Villemure et al. [18] found a concomi-
tant progression between curve severity and 3-D vertebral body wedging. This
observation was also seen in this study as it reveals increased local vertebra
deformation from the baseline reconstruction is correlated to the predicted class
outcome. Our results also show an increase in performance when using inter-
vertebral transformations in comparison to only geometric shape represented by
vertex positions of all vertebral models. The combination of both features yield
the highest overall accuracy with classification rates over 78%.

The main contribution of this paper consists in describing anatomical vari-
ations of the scoliotic spine in a discriminant nonlinear graph embedding with
Grassmannian manifolds to detect wether a patient’s deformation will progress
or not. An accurate modeling of the vertebra shape and the overall pose of the
articulated spine model in relation to inter-vertebral transformation enables to
capture the inherent geometric properties of spinal deformations. This is crit-
ical to construct a reliable training set of geometric spine shapes from vari-
ous pathological groups. A manifold embedding including intrinsic and penalty
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graphs measuring similarity within clinical relevant groups and between P and
NP patients was trained to differentiate between the different spine shapes which
have different progression outcomes. Canonical correlation kernels creates a sec-
ondary manifold to simplify the deviation estimation from normality, improving
detection of pathology compared to standard LLE. Experiments show the need
of nonlinear embedding of the learning data, and the relevance of the proposed
method for stratifying different stages of curve progression. In the context of
AIS, the method can improve for the early detection of the curve evolution with
promising classification rates based on ground-truth knowledge.

The technique presented in this paper provides a means to predict the pro-
gression of the spinal deformities in both thoracolumbar and lumbar regions,
which is critical to determine the optimal follow-up strategy and determine
treatment options. Populations of 3-D scoliotic patients obtained from sparse
and shape+pose models can be analyzed and subsequently classified in order to
determine patterns in pathological cases. Hence personalized 3-D reconstructions
of thoracic/lumbar spines obtained from a cohort of various deformation classes
were analyzed with a discriminant manifold algorithm.

5 Conclusion and Future Work

We presented a method for predicting scoliotic curve progression using baseline
3-D reconstructions of spine models generated from biplanar X-ray images. By
taking a more global approach for curve progression prediction, using discrimi-
native machine learning algorithms that minimize the effects of noisy data, the
proposed methodology yields classification rates that are encouraging for clinical
assessment of spinal deformities and personalizing follow-up examinations. This
allows for a quantitative analysis of the spinal deformity based on the implicit
representation of the entire spine geometry, which is more representative of the
nature of deformation. The results of our current study suggest that a more
stable estimation of the 3-D progression prediction in scoliosis is within reach.
The advantage of using machine learning techniques to classify scoliosis is that
it synthesizes knowledge from hundreds of samples with known outcomes. This
opens the possibility for a 3-D classification paradigm of scoliosis that will not
only be more user friendly, but also more accurate in describing this deformity.
Future work will try to predict morphology evolution through spatio-temporal
models, which will not only output binary classifications, but also predict struc-
tural outcomes.
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