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Abstract Epigenetic programming of the pathogen and the host can have a marked

influence on the development and progression of acute and chronic disease. Bac-

terial pathogenesis may be viewed as a developmental program similar to that of

cell differentiation and development in eukaryotes. Bacterial epigenetic program-

ming is imparted by DNA methylation, whereby the virulence traits expressed by a

pathogen may depend on the cumulative interactions between the microbe and its

environment. Such bacterial “memory” provides a means for adaptation to the

varied subsequent microenvironments encountered during the infective process.

DNA methylation can affect DNA–protein interactions and resultant gene expres-

sion by altering DNA thermodynamic stability and curvature and by methyl-group-

mediated steric hindrance. Some of these epigenetic interactions can form heritable

DNA methylation patterns in the microbial genome that control gene expression in

their progeny cells. Microbes can also stimulate heritable changes in the host

epigenome via infection-associated alterations to host epigenetic determinants

including DNA methylation, histone modifications, chromatin-associated com-

plexes, and noncoding RNA-mediated silencing. The resultant changes in host

chromatin remodeling and gene expression may be localized and/or systemic due

to direct microbe-to-host cell communication or via dissemination of microbial-

host signaling. Thus, the role of epigenetics in host–microbe interactions may be the

nexus of many pathological syndromes even though there may be no apparent direct

link between infection and disease, providing the basis for the development of

novel therapeutics and diagnostic tests for diseases with epigenomic determinants.
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5.1 Introduction

Deciphering the mechanisms that govern epigenetic programming in the pathogen

and the host is crucial to the development of new therapeutic approaches to control

acute and chronic disease. For instance, pathogenic Escherichia coli utilize herita-
ble DNA methylation patterns to control pili production via a phase variation

mechanism, whereby individual cells either express pili (phase-ON) or not

(phase-OFF), resulting in periods of attachment and detachment that are critical

for progression of an ascending urinary tract infection (Low and Casadesús 2008;

Marinus and Casadesús 2009). Microbial infection can also stimulate epigenetic

changes in the host epigenome, potentially leading to a variety of human diseases

including cancer and autoimmune disorders (Bierne et al. 2012; Dawson and

Kouzarides 2012; Elinav et al. 2013; Feinberg and Tycko 2004; Stein 2011).

Despite this knowledge, the role of epigenetic modifications on pathogen virulence

is poorly understood, and the role of host epigenetic modifications that contribute

to, or result from, infectious diseases are only just beginning to be elucidated.

5.2 DNA Methylation

DNA methylation is a fundamental epigenetic process that provides a means to

impart additional information to the genomic sequence. In bacteria, DNA methyl-

ation occurs at the N6 position of adenine (6mA) and the C5 or N4 positions of

cytosine (5mC; 4mC), and these modifications are catalyzed by DNA

methyltransferases (Noyer-Weidner and Trautner 1992; Palmer and Marinus

1994; Sánchez-Romero et al. 2015; Wion and Casadesús 2006). Such epigenetic

information can alter the timing and targeting of cellular events including tran-

scription, transposition, chromosomal replication, and DNA repair. The most com-

mon DNA modification in eukaryotes is 5mC, which is involved in a variety of

processes including gene regulation, genomic imprinting, X-chromosome inactiva-

tion, and epigenetic memory maintenance (Jones 2012; Jones and Takai 2001;

Smith and Meissner 2013). Additionally, 6mA has been recently reported as a

possible epigenetic mark in eukaryotes that plays a potential role in transcription

and epigenetic inheritance (Luo et al. 2015).

5.2.1 Bacterial Restriction Modification Systems

DNA methylation is a standard means by which restriction-modification (R-M)

systems serve to protect bacterial cells from foreign DNA (viruses, transposons,

plasmids) (Kobayashi et al. 1999; Meselson et al. 1972; Roberts and Macelis 2001).

In most R-M systems, base methylation by a methyltransferase (on adenine or
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cytosine) prevents DNA cleavage of host DNA by cognate restriction enzymes.

Recent evidence suggests that the role of R-M-associated methyltransferases is not

restricted to protecting host genomes as the lack of certain R-M systems alters the

gene expression pattern of the cell, suggesting a role in epigenetic control of gene

expression (Fang et al. 2012; Furuta et al. 2014; Sánchez-Romero et al. 2015; Vasu

and Nagaraja 2013). E. coli O104:H4 is a hemolytic uremic syndrome (HUS)-

linked outbreak strain that harbors multiple active adenine methyltransferases—

some of which are associated with R-M systems (Fang et al. 2012). E. coliO104:H4
also contains a lysogenic lambdoid phage, fStx104, which encodes Shiga toxin (the

cause of HUS), and an R-M system that engenders both the production of Shiga

toxin and alteration of the bacterium’s transcriptome. These findings indicate that

DNA methyltransferases associated with R-M systems can make considerable

contributions to bacterial virulence (discussed further below).

5.2.2 Solitary DNA Methyltransferases

Some bacterial DNA methyltransferases lack cognate restriction enzymes and thus

are not part of R-M systems. These solitary methyltransferases play roles in cellular

regulatory events including those that control bacterial gene regulation, cell-cycle

events, and virulence (Low et al. 2001; Marinus and Casadesús 2009; Reisenauer

et al. 1999).

5.2.2.1 Dam Methylase

DNA adenine methylase (Dam) is a solitary methyltransferase of

Gammaproteobacteria (e.g., E. coli and Salmonella) that methylates the N6 position

of adenine in the sequence “GATC” of the bacterial genome and plays a role in the

timing and targeting of many cellular events by influencing the interactions of

regulatory proteins with DNA (Casadesús and Low 2006; Løbner-Olesen et al.

2005; Low and Casadesús 2008; Low et al. 2001; Marinus and Casadesús 2009).

DNA adenine methylation can affect DNA–protein interactions at GATC

sequences by altering DNA thermodynamic stability and curvature and by methyl-

group-mediated steric hindrance (Wion and Casadesús 2006). There are about

130 molecules of Dam per cell in E. coli, a level that allows sufficient time for

some DNA–protein binding between DNA synthesis and the methylation of GATC

sequences within newly synthesized DNA (Boye et al. 1992). Competition between

Dam and DNA-binding proteins resulted in the formation of ~35 nonmethylated

GATC sequences in the E. coli genome (Hale et al. 1994; Ringquist and Smith

1992; Tavazoie and Church 1998; Wang and Church 1992). The actual number of

nonmethylated sites at any one time is dependent on bacterial growth rate and

growth phase, supporting the hypothesis that the DNA-binding proteins are in
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competition with Dam at these sites to control the timing and targeting of cellular

regulatory events.

5.2.2.2 Cytosine Methylases

Although the role of cytosine methylases has been generally associated with R-M

systems, recent evidence suggests that this view may need to be broadened

(Marinus and Casadesús 2009; Sánchez-Romero et al. 2015). DNA cytosine meth-

ylase (Dcm) is a solitary methyltransferase of Gammaproteobacteria that methyl-

ates the internal cytosine in the CCA/TGG motif at the C5 position (5mC) (Bigger

et al. 1973; Kahramanoglou et al. 2012). E. coli dcm mutants display increased

expression of the stress response sigma factor, RpoS, suggesting cytosine methyl-

ation may be involved in gene expression and the stress response (Kahramanoglou

et al. 2012). Further, the absence of a solitary cytosine methyltransferase (5mC),

HpyA-VIBM, in Helicobacter pylori alters the expression of genes involved in

motility, adhesion, and virulence (Kumar et al. 2012).

5.2.2.3 CcrM Methylase

The role of DNA adenine methylation in cell-cycle-related events has been exten-

sively studied in Caulobacter crescentus, serving as a model organism for bacterial

cell-cycle regulation and development (Gonzalez et al. 2014; Marczynski and

Shapiro 2002; McAdams and Shapiro 2003; Reisenauer et al. 1999).

C. crescentus is a member of the Alphaproteobacteria, which includes Brucella
abortus (brucellosis), Agrobacterium tumefaciens (crown gall disease), and

Sinorhizobium meliloti (nitrogen-fixation). It has a dimorphic life cycle, spending

part of its life cycle as a non-replicating motile swarmer cell and the other as a

replicating sessile stalked cell. Many of the cellular events leading to differentiation

into these morphological stages are modulated by the solitary cell-cycle regulated

methyltransferase, CcrM, which methylates the N6 position of adenine in the

sequence GANTC (Marczynski and Shapiro 2002; McAdams and Shapiro 2003;

Reisenauer et al. 1999). The C. crescentus chromosomal methylation state

(unmethylated, hemimethylated, fully methylated) controls a regulatory cascade

that couples DNA replication and the expression of cell-cycle master regulators,

which facilitate progression of the Caulobacter cell cycle (Collier et al. 2006).
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5.3 DamMethylation Modulates the Timing and Targeting

of Cellular Processes

Dam plays a role in the timing and targeting of many cellular processes including

DNA repair, DNA replication, transposition, conjugation, as well as those specif-

ically involved in bacterial virulence (Løbner-Olesen et al. 2005; Low and

Casadesús 2008; Low et al. 2001; Marinus and Casadesús 2009; Sánchez-Romero

et al. 2015).

5.3.1 Dam Controls DNA Repair and Replication

Errors that occur during replication are corrected by methyl-directed mismatch

repair that can distinguish base mismatches on the newly synthesized strand. Such

DNA strand discrimination is accomplished using hemimethylated DNA that arises

after passage of the replication fork, whereby the parental strand is methylated at

Dam-target sequences (GATC sites) and the newly synthesized strand is

non-methylated (Pukkila et al. 1983). DNA base mismatches on newly synthesized

DNA are recognized and removed by the MutHLS DNA mismatch repair proteins,

and the errors are corrected using the parental strand as a template (Iyer et al. 2006).

Subsequently during the cell cycle, the newly synthesized strand is methylated by

Dam at GATC sites resulting in fully methylated DNA. Dam levels are controlled

primarily at the transcriptional level (Løbner-Olesen et al. 2003) and the absence, or

overproduction, of Dam leads to an increase in spontaneous mutation frequency due

to the lack of hemimethylated DNA needed for strand discrimination during DNA

mismatch repair (Heithoff et al. 2007; Herman and Modrich 1982; Marinus and

Morris 1974).

The timing of DNA replication is controlled by a competition between Dam and

DNA-binding proteins that recognize hemimethylated DNA. SeqA binds specifi-

cally to several hemimethylated GATC sites at and near the origin of replication

(oriC), delaying their methylation by Dam (Kang et al. 1999; Lu et al. 1994). The

sequestration of these hemimethylated sites by SeqA delays further replication fork

initiation since it represses transcription of the replication initiator (dnaA) and

inhibits DnaA binding at oriC as both processes operate optimally at fully methyl-

ated GATC sites (Marinus and Casadesús 2009). Additionally, SeqA acts at

hemimethylated sites to play a role in nucleoid structure, organization, and

partitioning into daughter cells (Bach et al. 2003; Helgesen et al. 2015; Joshi

et al. 2013; Skarstad and Katayama 2013). Thus, competition between Dam and

DNA-binding proteins controls the timing and targeting of many cellular events

that are critical to the cell cycle.
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5.3.2 Dam Controls Bacterial Gene Expression

Dam methylation of GATC sites can control gene expression via altering the

affinity of DNA-binding proteins to regulatory sequences, as described in the

following examples (Casadesús and Low 2006; Løbner-Olesen et al. 2005; Low

and Casadesús 2008; Low et al. 2001; Marinus and Casadesús 2009; Sánchez-

Romero et al. 2015).

Initiation of DNA Replication Sequestration of hemimethylated GATC sites by

SeqA at the oriC region delays replication fork initiation via dnaA transcriptional

repression and DnaA-binding inhibition at oriC (discussed above). Implications:
Maintenance of hemimethylated DNA near the oriC region limits the number of

replication forks that can initiate before cell division.

Transposition Tn10 transposition occurs upon the generation of hemimethylated

GATC sites in the transposase promoter (Roberts et al. 1985). The transposase

promoter is only active when the transposase-coding strand is methylated and the

noncoding strand is not methylated. Implications: Transposition is repressed

through most of the cell cycle, preventing high-level transposition that would

otherwise cause detrimental effects to the genome. Transposition is limited to one

copy while the other copy remains in the original location.

Conjugal Plasmid Transfer Stimulation of the tra operon for conjugal transfer of

the Salmonella virulence plasmid occurs upon generation of hemimethylated

GATC sites within the upstream regulatory sequences for traJ expression, a

transcriptional activator of the tra operon. Methylation of the noncoding strand

(but not the coding strand) stimulates binding of the leucine-responsive regulatory

protein (Lrp), with resultant traJ transcription, and conjugal transfer of the meth-

ylated noncoding single-stranded DNA into the recipient bacterium (Camacho and

Casadesús 2002; Camacho and Casadesús 2005). Implications: Conjugal transfer is
repressed through most of the cell cycle via a traJ epigenetic switch, thereby

modulating the considerable metabolic and energetic cost of mating functions to

the cell. Recipient cells are competent for conjugation since the noncoding, meth-

ylated strand serves as a template for DNA replication, reproducing the DNA

methylation pattern that permits Lrp binding.

Cell Invasion Salmonella invasion of human epithelial cells is impaired in the

absence of Dam methylation (Garcia-Del Portillo et al. 1999). Binding of the HdfR

regulatory protein to unmethylated GATC sites in regulatory sequences for the std
fimbrial operon stimulates StdEF-mediated repression of invasion determinants

encoded on Salmonella Pathogenicity Island I (SPI-1) (Jakomin et al. 2008;

López-Garrido and Casadesús 2012). Implications: Methylation state of invasion-

associated regulatory sequences ensures bacterial invasion of only appropriate

cells/cellular compartments that contribute to the onset and progression of

infection.
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Pili Phase Variation Dam methylation controls the production of E. coli
pyelonephritis-associated pili (pap) via a phase-variation mechanism that results

in cells that either express or do not express the pili. Dam is in competition with two

transcriptional activators (Lrp, PapI) for GATC sites in upstream regulatory

sequences for pap expression, forming DNA methylation patterns that can be

inherited in progeny populations similar to that observed in eukaryotes (Low and

Casadesús 2008; Marinus and Casadesús 2009). Implications: Phase variation

(ON-OFF) control of pili adherence via Dam methylation results in periods of

bacterial attachment and detachment, facilitating uropathogenic E. coli progression
from the bladder to kidney, resulting in pyelonephritis.

5.4 DNA Methylation Plays an Essential Role in Bacterial

Virulence

DNA methylation has been shown to play a role or has been implicated in the

virulence of many bacterial pathogens (Casadesús and Low 2006; Heusipp et al.

2007; Low et al. 2001; Marinus and Casadesús 2009; Sánchez-Romero et al. 2015).

Representative examples are discussed below, including pathogens that utilize

solitary or R-M methyltransferases to modulate bacterial virulence.

5.4.1 DNA Methylation Controls Bacterial Pathogenesis

Salmonella spp. Nontyphoidal Salmonella (NTS) is the greatest foodborne-disease
burden in the United States, with greater than one million illnesses annually (Gilliss

et al. 2011; Scallan et al. 2011). Salmonella enterica infection can result in any of

four disease syndromes: enterocolitis/diarrhea, bacteremia, typhoid fever, and

chronic asymptomatic carriage (Coburn et al. 2007). Many serovars infect both

humans and animals, with the particular syndrome a function of the serovar

(serotypic variant), strain virulence, and host susceptibility (Coburn et al. 2007;

Heithoff et al. 2012). Dam methylation plays an essential role in Salmonella
virulence (Garcia-Del Portillo et al. 1999; Heithoff et al. 1999). The lack or

overproduction of Dam confers significant virulence attenuation (10,000-fold) in

murine models of typhoid fever. Dam methylation is involved in the invasion of

nonphagocytic cells, M-cell cytotoxicity, bile resistance, envelope stability, cell

motility, fimbrial, O-antigen and cytotoxin production, systemic dissemination, and

the elicitation of host innate and adaptive immune responses (Badie et al. 2007;

Garcia-Del Portillo et al. 1999; Heithoff et al. 1999, 2001, 2007, 2008; López-

Garrido and Casadesús 2010; Pucciarelli et al. 2002; Sarnacki et al. 2009;

Shtrichman et al. 2002; Simon et al. 2007). Implications: Dam methylation controls

the production of many factors underlying microbial virulence (adhesins, invasins,
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toxins) and impacts host–pathogen interactions that compromise host immunity.

Salmonella dammutants are capable of eliciting cross-protection against a diversity

of salmonellae and are well-tolerated when applied as modified live vaccines in

mice (Heithoff et al. 2001, 2008, 2015), poultry (Dueger et al. 2001, 2003a), sheep

(Mohler et al. 2011) and calves (Dueger et al. 2003b; Mohler et al. 2006, 2008).

Induction of immunity is rapid, and the vaccine can be delivered in drinking water

for low-cost and low-stress vaccination of livestock populations (Mohler et al.

2011, 2012).

Yersinia spp. Yersinia pseudotuberculosis and enterocolitica are zoonotic

foodborne pathogens that can cause severe disease in humans including gastroen-

teritis, mesenteric lymphadenitis, and septicemia (Galindo et al. 2011; Tauxe 2015).

Many pathogenic strains infect both humans and animals whereby the particular

syndrome is a function of the serotype, strain virulence, and host susceptibility. The

dam gene is essential in certain strains of Yersinia species, and the lack or

overproduction of Dam in Y. pseudotuberculosis leads to severe virulence attenu-

ation in murine models of bacteremia (Julio et al. 2001; Kubicek-Sutherland et al.

2014; Taylor et al. 2005) and confers protection to heterologous

Y. pseudotuberculosis or Y. pestis challenge (Julio et al. 2001; Kubicek-Sutherland

et al. 2014; Taylor et al. 2005). Dam overproducing Y. pseudotuberculosis ectop-
ically secrete several Yersinia outer proteins (e.g., YopE cytotoxin) as well as LcrV,

a low-calcium-responsive virulence factor normally involved in Yop synthesis,

localization, and suppression of host inflammatory activities (Badie et al. 2004;

Julio et al. 2001, 2002). Dam overproducing Y. enterocolitica confer altered

invasion, motility, and composition of the lipopolysaccharide (LPS) O-antigen

and also display ectopic Yop secretion via increased ClpP protease degradation of

the LcrG regulatory protein that normally blocks Yop secretion (Fälker et al. 2005,

2006, 2007). Implications: Dam methylation controls the strict environmental

regulation of Yersinia virulence function synthesis and localization, serving to

modulate bacterial pathogenesis and host inflammatory activities.

Enterohemorrhagic E. coli EHEC are a subgroup of Shiga toxin-producing E. coli
(STEC) that can cause severe intestinal disease [i.e., hemorrhagic colitis [HC] and

hemolytic uremic syndrome [HUS] (Hartland and Leong 2013; Mahan et al. 2013)].

EHEC intestinal adherence requires the delivery of the type III secretion system

(TTSS) effector proteins Tir and EspFU into the host cell and expression of the

bacterial outer membrane adhesin, intimin. Increased adherence exhibited by dam
mutant EHEC was correlated with increased protein levels of Tir, EspFU, and

intimin (Campellone et al. 2007). Dam also controls the maintenance of lysogeny

for a bacteriophage (933W) that encodes Shiga toxin (Stx-2), which inhibits protein

synthesis (via ribosomal inactivation) and leads to renal toxicity in HUS patients

(Murphy et al. 2008). Implications: Dam methylation modulates EHEC intestinal

adherence and Shiga toxin production during infection.

Brucella abortus B. abortus is an intracellular pathogen and the causative agent of
brucellosis, a zoonotic disease that causes abortions and stillbirths in livestock and
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acute febrile illness in humans, which may progress to chronically debilitating

disease (World Health Organization 2006). It is also designated as a select agent

with the potential for bioterrorism due to the chronic nature of disease in livestock

and humans and its ability to undergo aerosolization (Centers for Disease Control

and Prevention 2015). B. abortus is a member of the Alphaproteobacteria which

have defined morphological stages that are modulated by the solitary cell cycle-

regulated DNA methyltransferase, CcrM (Marczynski and Shapiro 2002). CcrM is

essential for viability in B. abortus, and its overexpression attenuates replication

within murine macrophages (Robertson et al. 2000). Implications: CcrM methyla-

tion may play a role in intracellular replication of the bacterium within phagocytes,

a key virulence characteristic for both acute and chronic cases of brucellosis.

Mycobacterium tuberculosis M. tuberculosis infections cause nine million active

cases and 1.5 million tuberculosis deaths annually, with one-third of the world’s
population having latent infections (World Health Organization 2014a). Although

there are no predicted dam homologues, the M. tuberculosis solitary DNA

methyltransferase, MamA, plays a role in gene expression and fitness during

hypoxia, and different methyltransferases are observed in different lineages of

M. tuberculosis (Shell et al. 2013). Implications: DNA methylation may play a

role in M. tuberculosis lineage-specific differences in preferences for distinct host

environments and different disease courses in humans.

Haemophilus influenzae Non-typeable H. influenzae (NTHi) is a major cause of

middle ear (otitis media) infections in children (Haggard 2008). NTHi contains

R-M systems comprised of a methyltransferase (mod) and a restriction endonucle-

ase (res) (Srikhanta et al. 2010). Phase variable (ON-OFF) switching of mod alleles
(due to the presence of tandem repeats in the corresponding mod genes) regulates

the expression of multiple proteins that are involved in antibiotic resistance, biofilm

formation, and immune evasion. Recent studies indicate that mod switching to the

ON orientation was highly selected in a chinchilla model of otitis media, and ON

phase-variants formed more robust biofilms in vitro (Atack et al. 2015). These

findings suggest that mod is involved in bacterial virulence, immune evasion, and

niche adaptation. Several other human pathogens contain phase-variable R-M

systems, including H. pylori (atrophic gastritis), Neisseria meningitidis (meningi-

tis), N. gonorrhoeae (gonorrhea), and Moraxella catarrhalis (otitis media) (Atack

et al. 2015; Srikhanta et al. 2010). Implications: Phase-variable R-M systems that

modulate microbial virulence traits may be shared across the microbial realm.
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5.5 Perspectives: Epigenetic Programming of the Pathogen

and Disease Susceptibility

Bacterial pathogenesis can be regarded as a developmental program (Casadesús and

D’Ari 2002; Mahan et al. 2010) similar to eukaryotic cell differentiation and

development (Bird 2002, 2007; Jaenisch and Bird 2003). Bacterial epigenetic

programming is imparted by DNA methylation, whereby the virulence traits

expressed are dependent on the aggregate of interactions between the microbe

and its environment. Thus, the bacterial epigenome provides a means for bacterial

“memory,” engendering the capacity for adaption to the disparate microenviron-

ments encountered as the infection proceeds due to dissemination to new host sites,

tissue breakdown, inflammation, and immune clearance mechanisms. Thus, a

microbial population may comprise a spectrum of genotypically identical cells

with significant phenotypic differences in virulence traits since pathogenicity may

be a reflection of cumulative exposure to selective pressures within host(s) and

environments experienced during the microbial life cycle. Epigenetic programming

may provide insights into the virulence disparities of closely related strains that

exhibit marked differences with regard to pathogenicity, host range, and prefer-

ences for distinct host environments and different disease courses in humans.

5.6 Microbial Infection, Epigenetic Reprogramming,

and Human Disease

Microbe-associated changes in the host epigenome can play a significant role in

human disease via chromatin remodeling and resultant transcriptional

reprogramming driven by host DNA methylation, histone modifications,

chromatin-associated complexes, and noncoding RNA-mediated silencing (Ban-

nister and Kouzarides 2011; Bierne et al. 2012; Dawson and Kouzarides 2012;

Herceg et al. 2013; Paschos and Allday 2010). DNA methylation occurs at the 50

position of cytosines within CpG dinucleotides, and can recruit protein complexes

that can alter chromatin structure or affect the binding of transcription factors with

resultant gene silencing (Bird 2002, 2007; Dawson and Kouzarides 2012; Jones and

Takai 2001). Histone modifications (e.g., methylation, acetylation, phosphoryla-

tion, ubiquitination) can alter chromatin structure and affect gene expression

(Bannister and Kouzarides 2011; Dawson and Kouzarides 2012). Noncoding

RNA-mediated silencing involves microRNAs (noncoding, 18–25 nucleotides)

that target mRNAs and negatively control gene expression (He and Hannon 2004;

Sato et al. 2011).

Such transcriptional reprogramming can alter host defense genes involved in

TLR (Toll-like receptor), MAPK (mitogen-activated protein kinase), interferon

(IFN), and NF-kB signaling pathways (Gómez-Dı́az et al. 2012; Paschos and

Allday 2010; Stein 2011). For instance, M. tuberculosis inhibits IFN-γ-induced
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chromatin remodeling by TLR2 and MAPK signaling (via inhibition of histone

acetylation), leading to reduced expression of several immune genes and resultant

persistence of chronic infections (Pennini et al. 2006). Influenza virus suppresses

the antiviral response via the production of a histone mimic that serves as a sink for

a host transcription factor (hPAF1) involved in antiviral gene expression (Marazzi

et al. 2012). Conversely, some microbe-associated epigenome changes are protec-

tive. Following acute viral infection, chromosome remodeling is implicated in the

formation of memory CD8+ T cells that provide the host with long-term protective

immunity against the pathogen (Youngblood et al. 2010).

5.6.1 Microbial Infection and Cancer

Microbe-associated cancers account for a significant proportion (>20%) of all

human cancers (Moore and Chang 2010; zur Hausen 2009). The molecular basis

involves microbe-stimulated changes in the host epigenome, with resultant changes

in host chromatin remodeling, gene expression, and metabolism (Dawson and

Kouzarides 2012; Esteller 2008; Feinberg and Tycko 2004; Herceg et al. 2013;

Stein 2011).

Hepatitis B Virus (HBV) Liver cancer is the second leading cause of cancer death

worldwide (World Health Organization 2014b, 2015). The risk for liver cancer is

increased 100-fold in individuals with chronic HBV infection (Fernandez et al.

2009), and recent estimates indicate that ~250 million individuals in the human

population are chronically infected with HBV (Schweitzer et al. 2015). HBV

persists in host cells by the nuclear accumulation of covalently closed circular

DNA (cccDNAs) that serve as a template for transcription of all viral mRNAs and

are organized into minichromosomes by histones and nonhistone viral and cellular

proteins (Grimm et al. 2011; Protzer 2015). High viral loads in patients with chronic

hepatitis correlate with hyperacetylation of histone H3 and H4 bound to cccDNA in

liver biopsy samples (Pollicino et al. 2006), allowing access of the HBV cccDNA

chromatin-like structure to liver-specific transcription factors and subsequent rep-

lication (Quasdorff et al. 2008). The HBx regulatory protein (Kew 2011) relieves

chromatin-mediated transcriptional repression of HBV cccDNA that involves the

histone methyltransferase, SETDB1 (Rivière et al. 2015). HBx also upregulates

several DNA methyltransferases (DNMTs), resulting in increased promoter meth-

ylation and repression of tumor-suppressor genes encoding p16, a cyclin-dependent

kinase inhibitor that functions in cell-cycle arrest and cellular senescence, and

E-cadherin, a cell–cell adhesion molecule that affects tumor invasiveness

(Fernandez and Esteller 2010; Jung et al. 2007; Tian et al. 2013). Patient samples

from various stages of HBV infection show increased methylation of the HBV

genome as an acute infection transitions to a chronic infection and during the

subsequent progression to premalignant lesions and cancer (Fernandez and Esteller

2010; Fernandez et al. 2009; Stein 2011). Additionally, microRNA (miR-152),
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whose normal function is to downregulate DNMT1, is downregulated in patients

with HBV-associated liver cancer, thus causing DNA hypermethylation (Huang

et al. 2010; Saito et al. 2014). These findings suggest a tumor-suppressive role of

miR-152, and therapeutic use of this microRNA may reduce aberrant DNA

methylation.

Human Papillomavirus (HPV) Genital human papillomavirus (HPV) is the most

commonly diagnosed sexually transmitted infection in the United States and is

associated with 95% of cervical and anal cancers and 60% of oropharyngeal

cancers. (Centers for Disease Control and Prevention 2012; Gilmer 2015). Through

preexisting lesions, HPV infects the basal (lower) layer of the stratified cervical

epithelium, and viral genomes are maintained as episomal DNA in the nuclei of

infected cells (Kajitani et al. 2012). HPV oncoproteins E6 and E7 inactivate p53

and retinoblastoma (pRb) tumor-suppressing proteins, respectively, resulting in

aberrant proliferation and delayed differentiation of infected host cells (Münger
et al. 2004). The productive phase of the lifecycle (genome amplification, virion

assembly/release) occurs in upper layers of the cervical epithelium that are termi-

nally differentiated. In infections with HPV “high-risk” invasive serotypes (16 and

18), progression of the disease is associated with increased methylation of the HPV

genome and considerable suppression of E-cadherin (Anayannis et al. 2015;

Fernandez and Esteller 2010; Fernandez et al. 2009; Sun et al. 2011; Wilson et al.

2013). E-cadherin is utilized by Langerhans cells (antigen processing/presentation)

to move through stratified epithelium, and its reduction may impact HPV clearance

and the length of persistent infections. In a keratinocyte cell line, the HPV E7

oncoprotein is necessary for E-cadherin downregulation via augmentation of host

DNMT1 levels and resultant E-cadherin repression (Laurson et al. 2010). DNMT

inhibition (via 5-aza-deoxycytidine administration) restored E-cadherin levels,

suggesting that epigenetic intervention may have utility in combating persistent

infections via restoring influx of Langerhans cells to infected tissue. Further,

epigenetic alterations to the viral genome via methylation of viral promoter regions

have been implicated in HPV E6 and E7 expression during a transforming infection

(Steenbergen et al. 2014). The overall consequence of deregulated expression of E6

and E7 in proliferating cells is chromosomal instability, leading to accumulation of

lesions in host cell cancer genes and subsequent progression toward cancer

(Korzeniewski et al. 2011).

Epstein–Barr Virus (EBV) EBV is carried in the vast majority (>90%) of the

human population as an asymptomatic lifelong infection, yet it is also correlated

with several nonmalignant and malignant diseases (Odumade et al. 2011; Rickinson

et al. 2014; Thompson and Kurzrock 2004; Thorley-Lawson 2015). EBV causes

mononucleosis and many human tumors of B cell, T cell, and epithelial origin such

as Burkett’s lymphoma, Hodgkin’s disease, gastric carcinoma, nasopharyngeal

carcinoma, and lymphoproliferative tumors in immunocompromised individuals.

The EBV lifecycle involves infection of oropharyngeal cells; host colonization

through growth-transforming latent infection of B cells within oropharyngeal

lymphoid tissues; long-term persistence within recirculating memory B cells as a
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silent latent infection; and reactivation to the viral lytic phase and subsequent

infection of naı̈ve host cells (Rickinson et al. 2014). Many of these events are

driven by epigenetic reprogramming of the pathogen and host, whereby B cell

growth transformation is facilitated by several latent proteins, including EBV

nuclear antigens (EBNAs) and latent membrane proteins (LMPs), followed by

regulated shutdown of latent protein expression that ultimately results in latency

in recirculating B cells (Hammerschmidt 2015; Paschos and Allday 2010).

Increased methylation of the EBV genome occurs as an acute infection transitions

to chronic infection and during subsequent development and progression of cancer

(Fernandez and Esteller 2010; Fernandez et al. 2009), and infection of B lympho-

cytes or nasopharyngeal carcinoma cell lines results in the expression of several

DNMTs (Schmeinck 2011; Tsai et al. 2006). During the latent phase, EBV lytic

genes are transcriptionally silenced by histone methyltransferase EZH2, a compo-

nent of the Polycomb Repressive Complex 2, PRC2; and these “histone marks” are

erased upon lytic phase induction (Hammerschmidt 2015; Woellmer et al. 2012).

These findings indicate that epigenetic modifications of viral DNA determine viral

latency.

Helicobacter pylori Stomach cancer is the third leading cause of cancer death

worldwide (World Health Organization 2014b, 2015). H. pylori is a gastric patho-
gen that colonizes approximately 50% of the world’s population (Wroblewski et al.

2010), associated with 65% of gastric cancers, and classified as a class I carcinogen

(Polk and Peek 2010; World Health Organization 2014b). In patients infected with

H. pylori, aberrant methylation and repression of tumor-suppressor genes

(E-cadherin, p16) was linked with increased gastric cancer risk (Kaise et al. 2008;

Maekita et al. 2006; Nakajima et al. 2006; Yoshida et al. 2013). In a gerbil model of

gastric cancer, H. pylori infection was shown to be causally involved in the

induction of aberrant methylation in the host epigenome, which was associated

with the upregulation of several inflammation-related genes (CXCL2, IL-1β, NOS2,
TNF-α) (Niwa et al. 2010). Methylation decreased upon bacterial clearance but

remained significantly higher than that observed in uninfected control animals.

Suppressing inflammation with the immunosuppressive drug, cyclosporin A,

prevented aberrant methylation without affecting colonization, indicating that

epigenetic modifications occurred as a consequence of inflammation rather than

the infection itself. These studies revealed an “epigenetic field defect” whereby

increased DNA methylation that arises as a result of infection marks a region with

higher risk for transformation (Niwa et al. 2010; Stein 2011). Thus, DNA methyl-

ation has potential clinical utility as a biomarker for the risk of malignant transfor-

mation for a number of cancers, offering new therapeutic opportunities that target

and monitor epigenetic changes (discussed below).

5 Epigenetic Programming by Microbial Pathogens and Impacts on Acute and. . . 101



5.7 Concluding Remarks: Microbial Infection and Its

Impact on the Host Epigenome and Disease

The origin of some diseases may have a microbial component even though there

may be no apparent direct link between infection and disease. How does this occur

and what are the possible implications? Microbial infection can trigger heritable

changes in the host epigenome that lead to profound differences in disease suscep-

tibility, host cell metabolism, inflammation, and immune responses, and some of

these responses may be maintained long after microbial clearance (Bierne et al.

2012; Davis et al. 2011; Stein 2011). The primary challenge toward establishing a

causal link between infection-associated changes in the host epigenome and disease

origin is the considerable interplay between epigenetic, genetic (mutational), and

nonmicrobial (e.g., carcinogen) risk factors that cloud the assignment of primary

versus secondary events leading to disease development and progression (Fig. 5.1).

Microbes cause cancer directly via harboring oncogenes that contribute to cell

transformation or indirectly through chronic inflammation whereby ultimately

carcinogenic mutations are generated in host cells (Moore and Chang 2010;

Parsonnet 1999; zur Hausen 2001). Additionally, microbial and nonmicrobial

associated alterations in host epigenetic determinants influence many biological

Fig. 5.1 Epigenetic programming of the pathogen and the host can stimulate the development and

progression of acute and chronic disease. (a) The epigenome of pathogenic microbes can be

modified to stimulate the production of virulence determinants (via Dam; host DNMTs). Patho-

genic bacteria can modify the host epigenome (dark circles) via DNA methylation, histone

modifications, chromatin-associated complexes, and noncoding RNA mediated silencing. (b)

Environmental inputs can alter disease susceptibility by stimulating genetic (mutational; red
circles) or epigenetic changes (nonmutational; dark circles) in the host genome via carcinogen

exposure, cell signaling, and inflammation. (c) Chronic disease (e.g., cancer) can be stimulated

directly by genetic changes in the host genome caused by exposure to carcinogens, microbial

oncogenes, and chronic inflammation or indirectly via epigenetic changes in the host genome by

inactivation of tumor-suppressor genes and/or DNA-repair genes, which predispose the genome to

mutation. Such complex interactions between genetic, epigenetic, and environmental inputs result

in host gene dysregulation and human disease

102 M.J. Mahan et al.



processes that are fundamental to the development of cancer including the inacti-

vation of tumor-suppressor genes and/or DNA-repair genes, which predispose the

genome to mutation (Baylin and Herman 2000; Dawson and Kouzarides 2012;

Herceg et al. 2013; Moore and Chang 2010; Paschos and Allday 2010; Romani

et al. 2015; Stein 2011).

Despite these challenges, significant advances have been made toward

establishing a direct link between microbe-associated changes in the host

epigenome and cancer, and it remains a possibility that certain disorders are a

consequence of chronic inflammation with microbial origin (Bierne et al. 2012;

Costenbader et al. 2012; Elinav et al. 2013; Feinberg and Tycko 2004; Grivennikov

et al. 2010; Herceg et al. 2013; Liu et al. 2008; Portela and Esteller 2010; Schett

et al. 2013; Ushijima and Hattori 2012; Van Vliet et al. 2007; Wilson 2008). For

example, the gut microbiome (the largest reservoir of microbes in the body)

stimulates host epigenome changes that are linked to inflammatory bowel disease

(Khor et al. 2011; Knights et al. 2013; Kostic et al. 2014; Ventham et al. 2013).

Since there are ~100 trillion microbial cells in the gastrointestinal tract—roughly

ten times more than the cells in the human body—the gut microbiome has the

capacity to produce a variety of compounds that can impact host genomic/

epigenomic processes and metabolism (Bianconi et al. 2013; Garagnani et al.

2013; Shenderov 2012; Stilling et al. 2014). Examples include microbial structural

components and metabolites (e.g., peptides, polysaccharides, endotoxins, short-
chain fatty acids, co-factors) that are potential epigenomic modifiers, which can

affect gene expression and metabolism in the host via transcriptional

reprogramming of host signaling pathways (Gómez-Dı́az et al. 2012; Knights

et al. 2013; Paschos and Allday 2010; Stein 2011). Notably, host–gut microbe

interactions can lead to considerable systemic signaling, involving many organs

and organ systems, including the central nervous system (Stilling et al. 2014). Thus,

the role of epigenetics in host–microbe interactions leading to pathological syn-

dromes—with the potential of the disruption of homeostasis due to pathogen

exposure—provides the foundation for the development of new medicines and

diagnostic tests for diseases with epigenomic determinants.

The significant challenge of epigenetic therapies lies in the lack of specificity—

and the global hypomethylation achieved by DNMT inhibitors—which may be

detrimental to developing an effective treatment. Notwithstanding, cancer treat-

ment applications include administration of small molecules that inhibit epigenetic

factors (Dawson and Kouzarides 2012; Romani et al. 2015), risk assessments that

link the degree of aberrant DNA methylation to the likelihood of cell transforma-

tion (Niwa et al. 2010; Stein 2011), and gene therapy targeting epigenetic factors

(Yao et al. 2015). The use of “epigenetic modifier drugs” may extend beyond

cancer to other epigenetically based diseases as evidenced by their current testing

in noncancer clinical trials (e.g., irritable bowel syndrome, Alzheimer disease,

cardiovascular disease, thalassemia, psoriasis) (Romani et al. 2015). Additionally,

combinational therapies—comprising epigenetic modifier drugs and antimicro-

bials—may prove useful in combating infectious diseases and associated disease

manifestations such as blood clotting and inflammation that can cause severe tissue
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damage and organ failure leading to death (Grewal et al. 2013; Herceg et al. 2013;

Moore and Chang 2010; Schleithoff et al. 2012; Yang et al. 2015).
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