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Abstract. The interoperability of Electronic Health Records (EHR)
and Clinical Decision Support (CDS) systems is a major challenge in
the medical informatics field. International initiatives propose the use
of ontologies for bridging both types of systems. The next-generation of
EHR and CDS systems are supposed to use ontologies, or at least ontolo-
gies should be fundamental for enabling their interoperability. This situa-
tion makes necessary to analyze if current ontologies are ready for playing
such intended role. In this paper we describe and discuss some impor-
tant issues that need to be solved in order to have optimal ontologies for
such a purpose, such as the need for increasing reuse in ontologies, as
well as getting axiomatically richer ontologies. We also describe how our
recent research results in the areas of ontology enrichment and ontology
evaluation may contribute to such a goal.
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1 Introduction

Humans have been interested in recording information about patient care for
many years and even centuries (see for instance [6,13]). The development of
the information and communication technologies has permitted to store and
exchange the medical information in electronic formats, which has generated
new opportunities for improving clinical research and the quality of health care.

Two relevant types of medical information systems are Electronic Health
Records (EHR) and Clinical Decision Support (CDS). EHR systems provide
the means for storing the medical information generated by the interactions
of patients with the health system. In the most generic way, the EHR of a
patient should provide access to all the medical information of the patient, that
is, from all the healthcare institutions in which the patient has received care.
Unfortunately, this is not possible due to the lack of interoperability between
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different EHR systems. CDS systems try to help physicians in the diagnosis and
treatment of patients, basically by combining the medical knowledge with the
patient data. Consequently, CDS systems should have access to the content of
the EHR and, similarly, to have access to the recommendations of CDS systems
from the EHR system would be helpful for physicians.

As it will be described in Sect. 2, there has been a significant evolution of
EHR and CDS systems, but such evolution has not achieved an effective commu-
nication between those systems. The interoperability of EHR and CDS systems
is indeed an existing challenge for the medical informatics community and it
has been the subject of reports of international efforts and initiatives such as
Semantic HealthNet (SHN)1.

In the last years, the Semantic Web technologies have gained popularity in
the pursuit of the semantic interoperability of health information systems, espe-
cially since the Semantic Health project [17] recommended the use of ontologies
for supporting semantic interoperability in healthcare. The Semantic Web [4]
is a natural space for data integration based on shared meaning [12] in which
the shared models of meaning are provided by ontologies. SHN also proposes
that ontological formalization should be fundamental for enabling a meaning-
ful exchange and cooperation between EHR and CDS systems. The meaningful
exchange between EHR and CDS systems also imposes a series of requirements
on biomedical ontologies related to knowledge representation, data retrieval and
classification.

In this paper, we examine how current biomedical ontologies meet such
requirements, which will determine to what extent current biomedical ontologies
are useful for bridging between EHR and CDS systems. Besides, we describe two
frameworks developed by our research group that contribute to increase the use-
fulness of biomedical ontologies. We believe that these frameworks can be part of
the solution but additional actions are also required. We believe that this work
permits to gain knowledge on the types of actions that will make possible the
effective ontology-based interoperability of EHR and CDS systems.

2 Background

In this section we provide an overview of the evolution of EHR and CDS systems,
including how the interaction between ontologies and such systems has been
addressed in the last years.

2.1 EHR Systems

The first experiences of electronic medical records happened in the sixties, when
the Akron Children’s hospital and IBM collaborated to develop a computer-
based patient information system [32] with the aim of centralising medical infor-
mation, sharing information and reducing paperwork. Since then, EHR systems

1 http://www.semantichealthnet.eu.
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have evolved in many different ways, and today we can see how physicians can
input or have access to the patient records by using tablets or smartphones [21].
This is clearly an advance in the way of interacting with the EHR content, but
its real impact depends on what can be effectively done from such modern inter-
faces. Computer-based records share with paper-based ones the heterogeneity in
structure and content, which makes difficult for computers to understand and to
process the content of the EHR, and so limiting the practical usefulness of EHR
systems.

The information architecture of EHR systems is fundamental for the useful
exploitation of EHR data, and there has also been an evolution in the architec-
ture of EHR systems in the last decades. EHR systems have been studied as
a subsystem of knowledge management [20]. From such perspective, four gen-
erations of systems can be distinguished. The first generation did not include
any possibility for representing knowledge. The systems from the second genera-
tion started to provide some capabilities for knowledge representation. The inte-
gration with clinical decision and the availability of purpose-specific knowledge
bases started to happen in the third generation. Finally, the fourth generation
uses formal knowledge representation languages.

From an information architecture point of view, the early EHR systems fol-
lowed the single-level methodological approach. In a single-level approach, the
medical experts discuss with the software engineers the requirements and needs
of the EHR systems, and all the medical knowledge is implemented in the EHR
system. In this context, implemented has to be understood as hard-coded, since
in most cases the medical knowledge was fixed in the system, and updating the
knowledge usually requires major implementation changes in the EHR system.
This is obviously a suboptimal decision given the current progress of science and
medicine, which requires EHR systems capable to work in a context of dynamic,
evolving knowledge.

In the nineties, the Good European Health Record (GEHR) project [14],
funded by European Health Telematics research, had as main objective to
achieve a generic representation of EHR data that would enable data exchange
between EHR systems. Its most popular result was the dual-level methodology
for the development of EHR systems. This methodology innovates in the relation
between the medical knowledge and the EHR system, because now the EHR sys-
tem uses the medical knowledge, but this is not hard-coded into the system. This
means that the knowledge can be updated without requiring major implemen-
tation changes. This architecture has inspired the development of specifications
and standards such as openEHR2, ISO 136063 or HL7 CDA4. This is the archi-
tecture of the next generation of EHR systems, which is based on standards.

The dual-level methodology uses two modelling levels: information and
knowledge. The information level provides the modeling primitives for repre-
senting, storing and exchanging EHR data. The knowledge level provides the

2 http://www.openehr.org.
3 http://www.iso.org/iso/catalogue detail.htm?csnumber=40784.
4 http://www.hl7.org/implement/standards/product brief.cfm?product id=7.
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clinical models, which define data structures that will be used for capturing the
EHR data in a particular scenario. By clinical model we refer to artifacts such
as archetypes [3], CEMs5, FHIR resources6 or CIMI models7, since they are the
technological solution for the knowledge level proposed by the different speci-
fications. The clinical models facilitate the meaningful exchange of EHR data
between systems, because the meaning of the data captured is provided by means
of links to semantic resources. For simplicity, we focus next on archetypes.

Archetypes contain a terminology (formerly ontology) section, which is used
to provide the specific meaning to the information. In this section we may define
that the valid values for the field “blood phenotype” is a query over SNOMED
CT8. Such association is described using an archetype constraint. This constraint
is a query that would show the user all the SNOMED CT concepts that are the
result of the query. However, once the corresponding code is chosen, it is stored
and used in the EHR system as a code, since the technologies used in archetypes-
based systems are not able to natively exploit the semantics of resources such as
SNOMED CT. This situation is not exclusive for archetypes, but it also happens
with other types of clinical models. The answer to such semantic limitation
provided by a part of the research community has been to propose the use
of semantic formalisms, such as the Web Ontology Language (OWL) as the
common formalism for expressing the reference model, the clinical information
models and the semantic resources used by the former ones [18,19,34].

2.2 CDS Systems

The history of computerized clinical decision support (CDS) systems also starts
in the late fifties/early sixties. The Warner system [37] was one of the earliest
decision support systems, developed for the diagnosis of congenital heart disease
using data from more than 1000 patients. The increasing complexity of medical
knowledge and the amount and types of information sources needed to support
clinical decisions has driven the evolution of CDS systems, with the traditional
objective of having the EHR as the reference source of information. In [39], the
evolution of CDS systems is described using four phases of evolution: (1) stand-
alone systems, which are independent of the EHR system; (2) integrated systems,
which are integrated into clinical information systems, but not necessarily with
the EHR; (3) standards-based systems, which include the use of standards to
represent, encode, store and share knowledge; and (4) service models, in which
CDS and EHR are connected through interfaces. The last two phases are the
most relevant ones for our purpose because they describe a context in which
CDS systems are based on standards and provide ways for communicating and
exchanging information. If we focus on computerized clinical guidelines, a series
of languages and frameworks such as Arden [1], GLIF [23] or PROForma [11]

5 http://informatics.mayo.edu/sharp/index.php/CEMS.
6 https://www.hl7.org/fhir/.
7 http://www.opencimi.org/.
8 http://www.ihtsdo.org/snomed-ct.

http://informatics.mayo.edu/sharp/index.php/CEMS
https://www.hl7.org/fhir/
http://www.opencimi.org/
http://www.ihtsdo.org/snomed-ct


Can Existing Biomedical Ontologies Be More Useful for EHR and CDS? 7

have been proposed in the last decades. They provide ways for expressing clinical
knowledge, expressing and executing clinical guidelines, but they cannot easily
be connected with the EHR. One of the main reasons was identified in [15]: “The
inclusion of a guideline-based system into an existing electronic medical record
system is hard because they are designed as a closed monolithic system with a
lack of interoperability methods.” Basically, this means that despite EHR and
CDS systems use standards to represent the medical knowledge required, such
standards are not really interoperable, which limits the joint operation of EHR
and CDS systems.

Recently, the Guideline Definition Language (GDL) [7] was proposed by the
openEHR Foundation to palliate this situation. GDL is a formal language for
expressing decision support logic, and closely related to the openEHR Reference
Model (RM) and Archetype Model (AM). GDL proposes to specify the decision
support logic using the entities provided by the openEHR RM and AM. Con-
sequently, the queries described in the guideline would be compatible with the
structure of the EHR and, therefore, CDS systems could effectively reuse the
EHR data.

In Sect. 2.1 we have mentioned that EHR standards based on archetypes
are limited in the processing of the semantics associated with the data and
the clinical information models. The logic included in the guidelines may need
to perform inferences, which requires to be able to exploit the semantics of
all the information involved. Consequently, to date, approaches such as GDL
keep having the drawback of their limited exploitation of the semantics of the
resources used for providing the meaning to the data.

Ontologies have been used in CDS systems in the last years. In the nineties,
ontologies were already used to support protocol-based decisions [36], and we
can find a number of papers with related use since then [5,10,22,40]. The speci-
fication of guidelines was also approached using ontologies, see for instance [31].
More recently, ontologies have been proposed to drive the execution of the guide-
line [16], and to mediate between the guideline and the medical knowledge [38].
However, none of them solve the integration of EHR and CDS systems. Inter-
estingly, according to the results of the review presented in [24], the integration
of clinical guidelines with the EHR has not been one of the most active areas in
the period 2001–2013.

3 Ontologies in the Interface EHR-CDS

The evolution of EHR and CDS systems reveals that ontologies are gaining
momentum. This is supported by the fact that clinical models may use ontologies
for providing the semantics to the data, the existing experiences in the use of
ontologies and semantic web technologies for representing clinical models and
EHR data, and that ontologies have been used for modelling and driving the
execution of computerized clinical guidelines. However, the integration of EHR
and CDS systems remains unsolved.

We could ask ourselves whether ontologies could be an effective bridge for
EHR and CDS systems. This question is not novel, since the central role of
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ontologies for connecting EHR and CDS systems has been proposed ealier. [29]
describes the relations between the patient data model (information model),
the concept model (ontology), and the guideline model (inference model). This
vision proposes that clear interfaces between these models are required in order
to get interoperability between EHR and CDS systems. Moreover, an interface
between the three models is also needed. Whereas ontologies provide the static
domain knowledge, guidelines provide the dynamic one, which means that both
should use the same building blocks, and share the same concepts, that is, use
a common knowledge model.

[29] makes a statement that reinforces the role of ontologies in the interface
EHR-CDS: “The concept model should be capable of classifying the information
of the medical record under the abstractions used in the guideline”. A practical
interpretation of this statement is that if the medical record contains a blood
pressure measurement of an individual of 190/110 and the guideline manages the
concept “elevated blood pressure”, then the concept model (ontology) should be
capable of classifying that individual as a “person with elevated blood pressure”.
Consequently, the ontology would be the bridge between the EHR data and the
CDS knowledge.

Semantic HealthNet (SHN)9 has been an EU FP7 Network of Excellence
which has run in the period 2011–2015. SHN identified four major axes of activ-
ity for the “consistent representation, access and interpretation” of health data:
(1) data and record structure and content; (2) workflow; (3) terminology sys-
tems; and (4) privacy. An analysis of the content of each axe shows a close
relation between the first three ones and the models proposed in [29]. The SHN
deliverables10 4.4 and 4.5 also contain some statements reinforcing the role of
ontologies in the interface EHR-CDS:

– The information model must hold the patient information necessary to deter-
mine whether certain clinical guidelines criteria are satisfied.

– Clinical models and clinical guidelines must share the same ontology for rep-
resenting their concepts.

– Guideline creators should map their non-standardized vocabularies to stan-
dardized ontologies.

– The elements of clinical models should be mapped to standardized ontologies
and used in the guidelines.

The potential role of ontologies as a bridge between EHR and CDS systems
has been described in previous sections. This helps us to understand the useful-
ness of an ontology in this context, which we approach as to what extent a given
ontology may play such role. Given that bridging between EHR and CDS can be
too generic, the following specific requirements for usefulness can be identified:

9 http://www.semantichealthnet.eu.
10 http://www.semantichealthnet.eu/index.cfm/deliverables.
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1. Representation, sharing and reuse of knowledge for information and inference
models.

2. Classification of EHR data according to guideline rules.
3. EHR data retrieval according to guideline rules.
4. Quality-assured ontology.

The first three requirements can be drawn from the content of the previous
sections, but the fourth one comes from the need of using quality-proof artifacts
in legacy health information systems. In the remaining of this section, an analysis
of the usefulness of current biomedical ontologies is performed. The results of
such analysis will be the input for revising and proposing methods for increasing
the usefulness of ontologies.

Performing a systematic analysis of ontologies requires to define, measure
and evaluate a series of indicators that would capture our intended meaning
of usefulness. The ontology engineering community has not been able to reach
a consensus on a series of metrics that should be used for the analysis of a
given ontology. The number of classes, properties, axioms, labels, or the visits
to the ontology are some indicators that have been traditionally measured and
evaluated in ontologies, although they do not generate enough information for
our purpose. Initiatives such as the OBO Foundry [33] have proposed a series
of good design principles for biomedical ontologies. Among such criteria we can
identify three that can be useful for our objective:

– Delineated content: The OBO Foundry promotes the development of an
orthogonal collection of biomedical ontologies. This means that biomedical
ontologies should reuse the content from other existing ontologies to avoid
overlaps.

– Relations: There should be a consistent formulation of relational assertions,
which is related to the number and types of relations used in biomedical ontolo-
gies. This aspect will be approached in a more general way, since the types of
axioms, not only relations, will be analyzed.

– Naming conventions: The labels associated with the concepts in the ontology
should be meaningful for humans. Besides, there should be lexical relations
between the labels of taxonomically related concepts. Since a taxonomic child
concept is a specialization of its parent, then the label of the child concept
could be an extension of the label of the parent.

Next, a summary of the results of analyzing more than 200 OWL ontologies
retrieved from BioPortal is presented, whereas the complete results can be found
in related papers [26,27].

Reuse. The analysis of how ontology content is being reused by other ontologies
has a direct implication on the requirement 1, that is, on the representation,
sharing and reuse of knowledge. Besides, reuse can be approached from two
different perspectives, namely, effective and potential reuse.

Effective reuse is measured by taking into account how many ontologies are
imported and reused. Our results show that only 23% of the ontologies analyzed
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reuse content from other ontologies, 90% of which reuse only one ontology. Both
results are a sign of low effective reuse in biomedical ontologies. However, some
positive findings were also obtained in this analysis. The most frequently reused
ontologies are the Basic Formal Ontology (BFO)11, the OBO Relations Ontol-
ogy12 and the Information Artifact Ontology (IAO)13. Those ontologies can be
considered top-level or very general knowledge frameworks, so their frequent
reuse means that many ontologies are using a common background knowledge,
which positively contributes to requirement 1.

Potential reuse identifies content from other ontologies that could be reused
in a given ontology by performing lexical matches between the content of the
labels of the classes. Three types of matches are taken into account:

– Internal exact match (IEM): The lexical regularity is the full label of another
class of the same ontology. For example, there is an internal exact match
between the class “amine binding” and “binding” if both classes are in the
same ontology. In this case, reuse would mean that the class “binding” could
be used for defining the axioms associated with the class “amine binding”.

– External exact match (EEM): The lexical regularity is the full label of a class
of a different ontology. For example, there is an external exact match between
the class “peptide antigen binding” in the Gene Ontology [2] and “antigen”
in SNOMED CT. In this case, the class “antigen” could be used for defining
the axioms associated with the class “peptide antigen binding”.

– External regularity match (ERM): The lexical regularity is also a regularity
in a different ontology. For example, there is an external regularity match
between the class “peptide antigen binding” in the Gene Ontology and “anti-
gen role” in OBI, since “antigen” is a shared regularity. In this case, the
semantics associated with “antigen” could be used for defining the axioms
associated with the two classes of this ERM.

The first step in the analysis of potential reuse was to calculate the regu-
larities existing in the labels of the classes of our corpus. For this study, only
those regularities with frequency greater than 1% were used, in this case, 8175
regularities. Then, we calculated the IEM, EEM and ERM for all the classes in
the corpus. The results were that 15.60% of the regularities had IEMs, 36.44%
of the regularities had EEMs, and 23.49% of the regularities had ERMs. These
results clearly show that there is a huge potential reuse in biomedical ontologies,
which is yet to be exploited.

Axioms. The analysis of the axiomatic richness of an ontology is closely related
to requirements 2–3, that is, the classification and retrieval of data. It is also
related to the fourth one, since the axiomatization of the ontology has tradition-
ally been linked to the quality of ontologies. Besides, it is related to the machine
understandability of the content of the ontology.
11 http://www.obofoundry.org/ontology/bfo.html.
12 http://www.obofoundry.org/ontology/ro.html.
13 http://www.obofoundry.org/ontology/iao.html.
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This study has focused on the analysis of the types of axioms used in the cor-
pus of ontologies analyzed. The results reveal that the most frequently used type
of axiom is Annotation Assertion (57.63%), followed by subClassOf (26.84%).
Hence, two types of axioms (out of 35 types of axioms in OWL2) cover more
than 84% of the axioms defined in this corpus.

Annotation axioms provide content that is basically in natural language such
as labels, comments or descriptions, so that content cannot be easily used by
the machine. The taxonomic relation provides the hierarchical structure of the
ontologies, so most ontologies in this corpus can be described as plain taxonomies
rich in natural language content. Consequently, its axiomatic richness is lower
than expected to fulfil our usefulness requirements.

Systematic Naming. The analysis of the application of a systematic naming
convention is directly related to the understandability of the content of the
ontology for humans, but we also see it related to the axiomatization of the
ontology due to the potential reuse in biomedical ontologies. There are tools such
as Ontocheck [30] that permit to test the application of naming conventions in
ontologies. Basically, the application of naming conventions implies that there
is an agreement on how to name and label the classes. In practical terms, the
application of the naming convention implies that taxonomically related classes
should have similar linguistic labels, and the labels of the child concepts should be
extensions of the labels of the parent ones. Consequently, the systematic naming
of classes must have an impact on the regularity of the content of the labels and
on the number of words repeated in different labels. Our study focused on the
analysis of the regularities as a sign of the application of a systematic naming
convention in our corpus. We found that the percentage of repeated words in the
labels was 67.7%, all the ontologies having values over 50% and the maximum
reaching 94.7%. The existence of regularities with length over 10 words is also a
clear sign of application of naming conventions.

4 Increasing the Usefulness of Ontologies

Two main limitations of existing biomedical ontologies can be identified from our
usefulness perspective: effective reuse and axiomatization. However, it is worth
to study whether the results obtained in terms of potential reuse and system-
atic naming conventions can be used for overcoming such limitations. For this
purpose, we performed a clustering of the ontologies in the corpus described
in previous sections. We performed an agglomerative hierarchical clustering
(k-means) by taking into account three variables: percentage of classes with
regularities, percentage of classes with IEM or EEM matches, and percentage
of repeated words. The inspection of the dendrogram suggested the existence of
three differentiated groups of ontologies.

Figure 1 shows the spatial distribution of the ontologies and the three clus-
ters. Cluster 1 contains 43% of the ontologies, Cluster 2 33% and Cluster 3
24%. Cluster 1 includes ontologies with many regularities, many repeated words
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and those ontologies with the highest percentage of matches. Cluster 2 includes
those ontologies with many repeated words and high degree of regularity. Cluster
3 includes the ontologies with the lowest values for the three variables. We think
that the axiomatic richness and reuse in the ontologies of Clusters 1 and 2 could
be addressed by analyzing and exploiting the regularities and matches existing in
such ontologies. This conclusion is reinforced by the distance between the clus-
ters depicted in the figure. In the next subsections we describe two frameworks
that can contribute to increase the usefulness of biomedical ontologies. First, we
need to facilitate the reuse of ontologies. This requires facilitating the task of
identifying which ontology provides the best knowledge for the new ontology.
This support is needed because the current set of existing biomedical ontologies
is not orthogonal. Second, we need to support ontology developers in creating
axiomatically-rich ontologies and in evaluating and assuring the quality of their
ontologies. These frameworks deal with (1) ontology enrichment and (2) ontology
evaluation. The first one has the objective of identifying and analyzing the reg-
ularities in the content and structure of the labels in biomedical ontologies, and
to find content from other ontologies that could be used for adding or improving
existing axioms in ontologies. The second one has the objective of identifying
strengths and flaws in ontologies from an engineering perspective.

Fig. 1. 3D scatterplot of the clusters obtained with more than 200 BioPortal ontologies
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4.1 Ontology Enrichment

This process takes advantage of the fact that biomedical ontologies have hid-
den semantics [35], that is, some content of the ontologies is only expressed in
natural language, but not as logical axioms. Consequently, such content is only
available for humans, not for machines. This ontology enrichment method, called
OntoEnrich, is inspired by the “lexically suggest, logically define” principle [28],
which means that what is expressed in natural language for humans should be
expressed in the form of axioms for the machines.

Fig. 2. Diagram of the different stages of the ontology enrichment framework

Figure 2 shows the stages included in our ontology enrichment approach:

– Stage 1: Identification and basic characterization of lexical regularities. The
content of the labels of the classes of biomedical ontologies is processed using
Natural Language Processing techniques to identify the lexical regularities,
which are ordered, consecutive words that appear in different labels. This
stage selects the regularities whose frequency is over a user-defined threshold.
The primary characterization also finds the IEM, EEM, and ERM with the
ontologies existing in BioPortal.

– Stage 2: Advanced characterization of lexical regularities. A series of met-
rics are calculated for each regularity: locality, modularity and cross-products
extensions (CPE). Locality accounts for how close the classes that exhibit a
given regularity are in the ontology. The enrichment of the classes associated
with regularities with high locality would affect a particular region of the ontol-
ogy. Modularity analyses the distribution of the regularity in selected modules
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of the ontology, which permits to identify which modules are associated with
the regularity. In this context, a module refers to a subontology, and it is iden-
tified by its root class. The CPE analyses to what extent the content of the
regularity has matches with classes from the same or different ontologies. For
example, if the content of the regularity can be fully decomposed in matching
classes, then the axioms associated with the regularity could be defined by
reusing existing classes.

– Stage 3: Filtering lexical regularities. The analysis of the metrics associated
with the lexical regularities may help the ontology developer to filter out the
regularities less promising for the enrichment of the ontology. Besides filters
based on frequency, locality, modality or CPE metrics, the method permits to
filter based on the super/subrelations that may hold between regularities. This
would permit to focus on the most general or the most specific regularities.

– Stage 4: Extraction of relations. The method is able to automatically suggest
taxonomic links between classes sharing a regularity. This requires that the
regularity matches the full label of one class in the ontology, which would be
the superclass in those taxonomic links.

– Stage 5: Design and execution of axioms. The user may define a template
axiom for a given regularity, which can be applied to the classes that exhibit
such regularity using the OPPL2 language14.

This method has been implemented and made available online in our OntoEn-
rich platform15. There, the results of a series of analyses can be found. The
“lexically suggest, logically define” principle has inspired our ontology enrich-
ment process but can also be used with the purpose of quality assurance, that
is, to check that the logical axioms have the meaning expressed in the content
in natural language. We have actually applied our method with such purpose
on SNOMED CT, and this has permitted to identify potential cases of subop-
timal axiomatization in SNOMED CT [25], which would lead to queries with
incomplete results if issued against EHR datasets.

4.2 Ontology Quality Evaluation: The OQuaRE Framework

Assuring the quality of ontologies requires to perform a series of different types of
analyses over them, which would measure different properties of the ontologies.
Many ontology evaluation methods have traditionally been applied with the
objective of ranking ontologies for a given purpose, although we approach it
from the perspective of identifying strengths and flaws in biomedical ontologies.
Such findings should help the ontology developers to improve their ontologies,
and ontology users to select the ontologies that provides the best match to
their requirements. It should be noted that quality evaluation tasks are usually
understood as objective evaluations to test to what extent a determined product
meets some requirements.

14 http://oppl2.sourceforge.net.
15 http://sele.inf.um.es/ontoenrich.
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In the last years we have designed and developed an objective, reproducible,
quantitative framework for evaluating the quality of ontologies, which is called
OQuaRE [8]. OQuaRE is adapted from SQuaRE16, an international standard for
software product quality evaluation. The complete description of the OQuaRE
framework can be found in its website17, although its main features are described
next. OQuaRE structures the evaluation of the quality of an ontology using
four out of the five divisions proposed by SQuaRE: quality evaluation, quality
requirements, quality model (characteristics and subcharacteristics) and qual-
ity measurements. OQuaRE uses the eight quality characteristics proposed by
SQuaRE for measuring software quality: functional adequacy, reliability, oper-
ability, maintainability, compatibility, transferability, performance efficiency and
quality in use. Besides, OQuaRE adds the structural characteristic, because of
the relevance of structural aspects in the quality of ontologies. Each quality char-
acteristic has a set of associated quality subcharacteristics, which are measured
through quality metrics. The values of the quality metrics are automatically
calculated.

The current version of OQuaRE includes 9 characteristics, 49 subcharacteris-
tics and 16 metrics. The values of the metrics are scaled to the range [1, 5], which
has been traditionally used in quality evaluation frameworks. The weighted mean
of the metrics scores associated with each subcharacteristic permits to assign a
[1, 5] score to each quality subcharacteristic. The quality scores of each quality
characteristic are obtained by the weighted average of the scores of its subchar-
acteristics. Although it is possible to calculate a quality score for the whole
ontology, we think that such score is not relevant for our purpose of showing
strengths and flaws, but for the application of the framework with the purpose
of ranking ontologies. Consequently, the quality scores could guide the process
of deciding which ontology to reuse, since the scores should permit the users
to make informed decisions by matching their requirements to the ontologies’
scores.

It would be expected that an axiomatically richer ontology would have bet-
ter quality scores for certain properties. This was shown by the application of
OQuaRE to two different versions of the Cell Type Ontology [8]. One version,
called oCTO, was the original Cell Type Ontology. The second version, called
nCTO, was the result of a redesign of the ontology, including more axioms.
Figure 3 shows the scores of the quality characteristics for both ontologies. The
results show that nCTO obtains higher scores for most characteristics, what has
an implication on the practical usefulness of both ontologies. Besides, a method
such as OQuaRE should contribute to analyze whether changes in the ontolo-
gies have the expected impact on the quality characteristics. Recently, we have
developed an extension of the OQuaRE framework which is capable of analyzing
the evolution of an ontology [9]. Figure 4 shows the evolution of the values of
selected metrics (TMOnto, NOMOnto, RFCOnto, LCOMOnto, RROnto) for a

16 http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?
csnumber=35683.

17 http://sele.inf.um.es/oquare.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35683
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35683
http://sele.inf.um.es/oquare
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Fig. 3. Radar graph showing the quality scores of seven OQuaRE quality characteris-
tics for both versions of the Cell Type Ontology

biomedical ontology. In the figure, each line represents the evolution of the qual-
ity scores (scale 1–5) of each metric across the eighteen versions of EDAM. We
can observe that the quality scores of some metrics vary significantly between
the initial versions and the final ones. Besides, it can be seen that version 4
is key because this version triggers most of the major changes in the quality
scores. The inspection of that version reveals that there was a change in the
modeling style for some properties in the ontology, and such design decision had
an impact on the metrics. Frameworks such as OQuaRE permits ontology devel-
opers to analyze the changes made in their ontologies from a quality evaluation
perspective. This helps them to check whether the effects are in line with the
requirements for their ontologies, which contributes to achieve higher quality,
more useful biomedical ontologies.

5 Discussion and Conclusions

In this paper we have described the evolution of EHR and CDS systems, illustrat-
ing why their meaningful communication has not been reached yet. According
to the international recommendations, ontologies should play an important role
for enabling such meaningful communication, which led us to briefly analyzed
how ontologies have been used in EHR and CDS systems, and identifying some
requirements ontologies should meet in order to be useful for bridging between
EHR and CDS systems. Some results analyzing how existing ontologies meet
those requirements were presented, identifying a series of improvements in bio-
medical ontologies for optimizing their efficacy for playing the intended bridging
role: (1) the reuse of content from standardized ontologies, which should help to
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Fig. 4. Evolution of the values of the metrics across the different versions of an ontology

build the knowledge required to capture and describe EHR data and the clin-
ical guidelines, (2) increasing the axiomatization of ontologies to improve data
retrieval and classification; and (3) assuring the quality of ontologies as products.

We have described two frameworks that have demonstrated in the last years
that they can help to increase the usefulness of biomedical ontologies. The ontol-
ogy enrichment framework, implemented in the OntoEnrich platform, pursues to
convert the hidden semantics existing in the labels of biomedical ontologies into
explicit knowledge, that is, logical axioms. This framework contributes to the
reuse of content by identifying matches between classes from different ontolo-
gies since it includes algorithms for token-based lexical alignment. Besides, it
contributes to the axiomatization of ontologies because its methods permit to
design new logical axioms that can be added to a set of classes in the ontol-
ogy. Finally, this framework can also contribute to quality assurance, since it
permits to analyze how principles such as “lexically suggest, logically define”
are applied. The ontology evaluation framework, implemented in the OQuaRE
platform, contributes to the quality assurance of the ontology by providing quan-
titative information to ontology developers about the strengths and flaws of the
ontologies during their whole development, since it permits to analyze the effects
of changes in different versions of an ontology. Moreover, reuse can also be sup-
ported by OQuaRE, since its quantitative information can be applied by users
for making informed decisions about which content to reuse.

Nevertheless, these are only two of the processes needed to increase the useful-
ness of biomedical ontologies. For example, one of the requirements for biomed-
ical ontologies is reusing standardized ontologies, including top-level ontologies
such as BFO18 or BioTop19. Despite our results show that BFO is the most
reused ontology, the size and modeling style of top-level ontologies is not han-
dled by ontology tools in an optimal way, what makes difficult to explore and
find the right classes. We also believe that EHR standards and CDS frameworks
18 http://www.obofoundry.org/ontology/bfo.html.
19 http://purl.bioontology.org/ontology/BT.

http://www.obofoundry.org/ontology/bfo.html
http://purl.bioontology.org/ontology/BT
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should be rethought to be grounded on standardized ontologies. This would help
to overcome limitations such as the ones described in current archetype-based
technology. That would certainly require agreements on the semantic model-
ing primitives for both types of systems, which would certainly facilitate their
interoperability.

In summary, biomedical ontologies should play a fundamental role for the
meaningful exchange of data between EHR and CDS systems, but they need to
be improved in a series of ways in order to optimize their efficacy and efficiency.
The notion of usefulness applied in this work focuses on making more knowledge
available for the machines and in facilitating the reuse of content, but other
complementary aspects must also be taken into account. We hope that the work
described in this paper contributes to gear up the efforts in this area.

Acknowledgements. This work has been partially funded by to the Spanish Min-
istry of Economy and Competitiveness, the FEDER Programme and by the Fundación
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