
Parallel Forwarding for Efficient Bandwidth Utilization
in Networks-on-Chip

Elham Momenzadeh1, Mehdi Modarressi2(✉), Abbas Mazloumi2,
and Masoud Daneshtalab3,4

1 School of Computer Science, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran

elham.momenzade@gmail.com
2 Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

{modarressi,a.mazloumi}@ut.ac.ir
3 Mälardalen University (MDH), Västerås, Sweden

4 Royal Institute of Technology (KTH), Stockholm, Sweden
masdan@kth.se

Abstract. Networks-on-chip (NoC) provide a scalable and power-efficient commu‐
nication infrastructure for different computing chips, ranging from fully customized
multi/many-processor systems-on-chip (MPSoCs) to general-purpose chip multi‐
processors (CMPs). A common aspect in almost all NoC workloads is the varying size
of data transmitted by each transaction: while large data blocks are transferred as
multiple-flit packets, a part of the traffic consists of short data segment (control data)
that does not even fill a single flit. In conventional NoCs, switch allocator assigns/
grants a switch output (and the link connected to it) to a single flit at each cycle, even
if the flit is shorter than the link bit-width. In this paper, we propose a novel NoC
architecture that enables routers to simultaneously send two short flits on the same
link, effectively utilizing the link bandwidth that otherwise would be wasted. To this
end, new crossbar, virtual channel (VC), and switch allocator architectures are
presented to support parallel short packet forwarding on NoC links. Simulation
results using synthetic and realistic workloads show that the proposed architecture
improves the NoC performance by up to 24%.

Keywords: Network-on-Chip · Heterogeneous packet size · Bandwidth
utilization

1 Introduction

Networks-on-chip (NoC) are widely known as the most promising solution to handle inter-
core communication in multi- and many-core architectures. NoCs provide a power-effi‐
cient infrastructure with scalable bandwidth for on-chip communication. As the core count
and workload complexity of chip multiprocessors (CMP) and multi/many-processor
systems-on-chip (MPSoC) increase, the rate and complexity of on-chip communication raise
considerably. Consequently, there is always a growing demand for NoCs with higher
throughput and lower latency.
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NoC bit width (flit size) is a first-order design parameter that highly affects the
maximum network bandwidth and packet latency. This parameter determines the bit-
width of all NoC datapath components (i.e. link, buffer, and crossbar). As a result, in
addition to its impact on performance, bit-width also plays an important role in deter‐
mining the total NoC implementation cost and power consumption.

Performance metrics always favor enlarging bit-width (as long as the cost constraint
allows), because wider links decrease packet serialization overhead, thereby enhance
both the speed and throughput of networks.

Recent NoC designs and commercial implementations use links as wide as 128 [1, 2],
144 [3], 160 [4], 256 [5], and 512 bits [6] to maximize performance with respect to area
constraints. However, the message size, that is the amount of data transmitted at each
network transaction, varies significantly in realistic workloads [7]. For example, in a typical
CMP workload, the traffic consists of long data and short control packets. Data packets
composed of multiple flits to transfer a cache block, while control packets transfer request
and coherency messages that contain a memory/IO address plus a few control bits. Whereas
the former benefits from larger bit widths, the latter cannot even fill half of the bit width at
each transfer [8].

In some recent studies, it has been shown that a considerable portion of traffic in
CMP workload is the short request and coherency packets [7, 9, 10]. For example, it has
been shown that more than 78% of the packets in the PARSEC suite programs [11] are
short control packets (request or coherency), whereas the remaining packets are long
and contain a full 64B cache line [9]. Very different packet sizes (from 8-bit control
packets to data packets with kilobits of data) are also reported for multimedia and tele‐
communication workloads implemented on application-specific NoCs [12]. As
mentioned before, NoCs enlarge bit-width to reduce data serialization overhead of time-
critical data packets, but this results in considerable bandwidth waste and resource
underutilization when sending short packets: A short control flit uses part of the bit-
width, leaving the remaining bits idle and the link underutilized. Buffers are also become
underutilized in conventional NoCs, because those buffer slots that keep control packets
have many bits zero-padded. However, conventional switch allocators allocate the
switch output (and the corresponding downstream link) to a single flit, regardless its bit-
width usage.

In this paper, we propose a novel architecture that enables routers to transfer and store two
short flits through each port in parallel. In this architecture, if two or more short flits request for
an output port, the switch allocator grants the port to two flits: the second flit uses the other‐
wise idle bit-width of the link to go downstream in parallel with the first flit. The input port
also supports receiving and buffering two short flits simultaneously.

These scheme decreases the switch allocation failure rate and hence, part of the
unnecessary short flit blocking latency is eliminated.

As a quantitative motivation on the potential impact of our proposed parallel
forwarding on performance. Table 1 shows the percentage of switch allocations with at
least one loser under two representative workloads: a workload with high injection rate
from the ISPASS GPU benchmark suite [13] and a workload with light traffic load from
the PARSEC CMP suite [14]. The table also shows in what percentage of the total switch
allocation failures a short flit is blocked by another short flit.
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Table 1. Switch allocation failure analysis

Workload Total switch allocation
failures (%)

Percentage of total
failures with two short
flits (%)

PARSEC: Ferret (0.08
flit/node/cycle)

16.32 36.12

GPU: BFS (0.3 flit/node/
cycle)

38.08 30.93

As the table shows, the proposed parallel short packet forwarding can potentially
reduce switch allocation failure rate (which is 16% and 38% in Table 1) by up to 36%.
This architecture allows designers to increase bit width in favor of long data packets and
mitigate resource underutilization by parallel short packet transfer/storage.

Since control transfers account for a considerable amount of on-chip traffic in CMP
workloads, many flits can take advantage of the proposed mechanism and so, the
performance and resource utilization of the NoC increases considerably.

Several prior works proposed to use physically separate sub-networks to handle each
traffic class (data and control) appropriately [6] or to reduce power [8].

For example, Intel Xeon Phi uses a 512-bit wide ring for data packets and very
narrower sub-networks for control and address packets [6]. However, multiple sub-
networks have a higher cumulative area than a single network. This can potentially
increase the implementation cost and power consumption of the NoC.

Our mechanism implements different sub-networks into the same NoC fabric. It can
be considered as a polymorphic NoC: long packets see links and buffers as single n-bit
structures, whereas these components act as two n/2-bit parallel structures from the short
packets’ perspective.

In the next sections, we first explore the related work, introduce the proposed NoC
architecture and then show it can reduce NoC latency by up to 24% and throughput by
30%, on average.

2 Related Work

Several hybrid network-on-chip designs can be found in the literature that partition the
NoC into multiple parts and optimize each part for a specific traffic class.

Using physically separated NoCs for data and control packets is also proposed in
many related work. The authors in [15] show the potential benefits of using multiple
physicals sub-networks for control and data packets.

In [16], a NoC is partitioned into two packet-switched and circuit-switched sub-networks
using time-division multiplexing (TDM). The packet-switched sub-network carries request
packets, whereas the circuit-switched part is used to make shortcut paths for data packets. Each
request packet makes circuit for its corresponding data packet while traveling towards the
destination. Proactive Resource Allocation (PRA) NoC exploits the distinct characteristics of
data and control packet to increase performance [17]. In PRA, most short request packets use
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conventional packet switching, but multi-flit data packets are provided by pre-allocated paths,
on which they are forwarded with low per-hop latency and power consumption.

Cache Coherent NoC (CCNoC) architecture is another hybrid architecture presented
in [8]. It uses two different sub-networks for control and data to reduce the power
consumption. As cache coherency protocols produce a group of write and read-request
messages, managing cache coherency is done more efficiently by using dedicated sub-
networks, in terms of both performance and power consumption. As control packets are
smaller, lower bit width (64 bits) is applied for the request sub-network. Consequently,
power consumption decreases while performance gets no impact. Response packets
convey several cache blocks and so, require a higher bit width (112 to 128 bits). They
showed that in addition to power-efficiency, using a heterogeneous structure results in
a better performance than a unified NoC. As another insightful study in this field, [7]
investigates the effect of bit width on performance and scalability of NoCs and concludes
that the flit size should be set to the smallest packet type’s size.

The above works focus on different aspects of workloads with mixed packet types.
To the best of our knowledge, our proposed work is the first method that focuses on the
underutilized NoC resources when forwarding short flits and modifies routers to allow
parallel transfer of such short flits.

3 The Proposed NoC Architecture

3.1 NoC Packet Size

As our method targets CMP workloads, we consider two different kinds of packets in
the network: long data and short control packets. Control packets are either memory and
I/O requests or coherency messages that consist of a memory or I/O address along with
a few control flags. Data packets are sent in response to a request and transfer a cache
or memory block to a remote core. As the payload of these packets is a cache block,
which can be as large as 32-128 bytes in a conventional cache (e.g. 64-bytes for Intel
Xeon Phi [6] and ARM Cortex A15 [18]), they are long and should be fragmented into
multiple flits. Carrying a memory address (which is 40-bit wide in ARM Cortex A15
[18], for example), a control packet would fill half of a 128-bit flit (40 bit memory address
as payload, 10 bit destination address for network routing in a 1024-node network, and
the remaining 14 bits for control, routing, and error recovery data), while a data packet
requires five 128-bit flits (4 payload and one header). As an off-chip example, the
HyperTransport protocol, which is implemented in modern AMD processors, also uses
512-bit packet for data and 64-bit packet for control transfer [19]. Therefore, in this
paper, we use 128-bit links (flits), 64-bit control messages (that are sent as a single 128-
bit flit in a conventional NoC with 64 zero-padded bits) and five-flit data packets.

3.2 Proposed Router Architecture

In a conventional architecture, as mentioned, each datapath element handles a single flit
at each cycle. In this work, we propose to transfer and store two short control packet in
parallel to use the idle bit width of the links, crossbar switches, and buffers that otherwise
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would be wasted (filled by zero-padded null data). To this end, several router compo‐
nents must be modified: switch allocator to detect short flits and allocate a 128-bit link
to two requesting ones, crossbar switch and links to transfer two short flits in parallel
(in addition to the baseline one long flit), and virtual channels to accept and store two
short flits simultaneously. This architecture is depicted in Fig. 1.
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Fig. 1. The proposed router architecture and the internal connections of one crosspoint (East-
West crosspoint) of the crossbar. Bit width is set to 4 for the sake of simplicity

Crossbar. In order to send two short flits simultaneously, the crossbar crosspoints
should be capable to switch half bit width of inputs and outputs independently. For
example, the crossbar should be able to connect the high half (n/2 bit) of input port E to
the low half of output port S and the low half of input port E to the high half of output
port N. However, if a long data packet is traversing the crossbar, the required connection
is established on the full bit-width, just like a conventional NoC.

Figure 1 also shows the internal connections of a crosspoint. The figure shows 4-bit
wide links for simplicity. The switches in the orthogonal positions implement the regular
connections for full bit-width switching.

The other switches are added in our design to allow half bit width switching. As the
figure shows, the new crossbar needs more switches to support half width switching.

Figure 2 shows several sample connections established on the crossbar at a cycle. In
this figure, two control flits that come from input port N are connected to output ports
S and E. A full width data flit that comes from input port E is connected to output port
W. the idle half bit width of output port E is also connected to input port S. The internal
connections of two connection points are also depicted in the figure, where the connected
switches are identified by a circle.

Links. Two short flits should be able to pass a link at the same cycle. However, there
is no need to add any logic to links to manage this parallel transfer, because short flit
concatenation is done by crossbar switch. The two short flits will be directed to the right
VCs assigned to them at the upstream router through the multiplexer at the downstream
input port (Fig. 3). The multiplexers are set by upstream router, just like what a conven‐
tional router does.
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Fig. 2. Several full width and half width connections on the proposed crossbar and the internal
connections of two sample switches. The switches identified by a red circle are turned on. (Color
figure online)
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Fig. 3. The structure of the input unit with one data VC and two half width control VCs

Input VCs. NoCs that are used in CMPs often use different VCs for request, data, and
coherency messages. The main advantage of using different VCs for each traffic class
is that we can assign priority to packets based on packet’s VC and order memory trans‐
actions to avoid protocol deadlocks. So, we consider two VCs per port and assign them
to data and control (coherency or request) packets.

In our design, the data VC has m-entry n-bit wide buffer, as in a baseline router. The
control VC consumes the same buffering space, but is horizontally partitioned to get two
m-entry n/2-bit buffers (Fig. 3). Each narrow buffer has its own control logic to load/
store flits simultaneously. As Fig. 3 shows, each input port has a single n-bit line to
crossbar switch input. Switch allocator configures the multiplexers of this line to connect
either one long flit or two short flits to the crossbar based on its allocation decision.

Switch Allocator. This component should distinguish short and long flits and grants
each output link to at most one long or two short packets (if any). It should also allow
a crossbar input to be shared by two short flits by appropriately setting the select line of
the multiplexers between the input units and crossbar (see Fig. 3).

VC Allocator. VC allocator selects one of the control or data VCs for a packet based
on its type. If there are more than one control VCs, a VC is selected for a requesting
packet in a round robin fashion.
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Please note that the VC allocation unit considers each narrow half-width VC as an
independent VC. The demultiplexer in front of the input unit is capable to send two half-
width flits to two different half-width control VCs in parallel (apart from its basic func‐
tionality that sends a full-width flit to a data VC).

4 Experimental Results

4.1 Experimental Environment

We use a cycle-accurate NoC simulator, BookSim [20], to simulate our architecture.
We have tested the proposed NoC architecture under the uniform synthetic traffic
pattern, as well as several traffic traces from the ISPASS GPU [13] and PARSEC bench‐
mark suites. PARSEC traffic obtained from the Netrace library [14]. The GPU workload
is the traffic between shader cores and memory modules extracted by GPGPUSim [13].

We use the mesh topology with wormhole-switched routers and 128-bit links (max
flit size = 128). The routers are 3-stage pipelined (look-ahead routing + VC allocation,
switch allocation, crossbar traversal + link traversal) and the routing algorithm is deter‐
ministic XY.

The network has two message classes that is a common configuration for CMPs to
provide different levels of priority for response (data), and control (request and coher‐
ency) messages and resolve memory protocol deadlocks. A single virtual channel is
considered for each message class. The data virtual channel is 128-bit wide and 8-flit
deep. The control virtual channel that keeps short packets is partitioned horizontally and
is arranged as two parallel 64-bit 8-flit buffers.

To evaluate our method, we compare each test-case with a conventional packet-
switched network (referred to as Conventional in the graphs) that features all the above-
mentioned architectural parameters, except that it does not have parallel short packet
forwarding and partitioned control VC.

4.2 Performance Evaluation

Synthetic Traffic. First, we use a uniform traffic pattern to evaluate the network
performance in different injection rates. The traffic is composed of 50% short (one 64-
bit flit) and 50% long (five 128-bit) packets. Figure 4 shows the average packet latency
for different injection rates. We consider 4 × 4 and 8 × 8 mesh networks with two half-
width VCs for control and one full-width 128-bit VC for data packets.

As illustrated in the figure, our approach outperforms the baseline under most of the
traffic injection rates. Furthermore, it pushes the saturation point by 22% for the 4 × 4
and 30% for the 8 × 8 NoCs.
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(a)

(b)

Fig. 4. Average packet latency of the proposed and conventional NoCs in (a) 4 × 4 mesh and (b)
8 × 8 mesh

Under low traffic, the arbitration failure rate is low, so few flits benefit from parallel
packet transfer that is used to resolve arbitration failures. Therefore, the latency
approaches to the baseline latency. As the injection rate increases, however, the proba‐
bility of arbitration failure increase that in turn, provides more opportunity for our
proposed parallel packet transfer to improve performance. Consequently, the difference
between the performance of the proposed NoC and the baseline increases under higher
injection rates.

Realistic Workloads. Next, we evaluate the NoCs under four PARSEC and four GPU
workloads. The experiments are done on an 8 × 8 mesh network for PARSEC and 5 × 5
for GPU.

Figure 5 shows the performance comparison results. The request and coherency
packets have one 64-bit flit and data (response) packets have five 128-bit flits. In the
GPU benchmarks some data packets have two 128-bit flits (together with the 5-flit
packets). As the figure shows, performance is improved by 13%, on average for PARSEC
and 24% for GPU. Again, the main source of better performance of our method is its
ability to effectively use idle link bandwidth to remove many unnecessary control packet
blocking situations. The GPU programs have considerably higher traffic loads than
PARSEC, which translates to more efficiency of simultaneous packet forwarding.
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Fig. 5. Average packet latency comparison for realistic workloads

Cost Evaluation. The area overhead of the proposed architecture over the baseline is
evaluated by synthesizing the VHDL description of our proposed router by a commercial
synthesis tool in 45 nm technology. The amount of area overhead highly depends on the
number of depth of virtual channels, but for configuration described earlier in this section
the proposed NoC architecture increase the area of a baseline packet-switched NoC by
8%.

The area of control-path components of the proposed router, i.e. switch and VC
allocators, are increased, but their total area has insignificant contribution to the entire
router area (less than 7%). In the data-path side, the area of the buffers in the proposed
router is roughly the same as a baseline conventional router with two VCs. However,
the main source of area overhead in our design includes the extra multiplexers at the
input port and additional crosspoint switches for the crossbar. Please note that the
number of crossbar input and output ports, as well as the bit width of each port, which
determines the crossbar layout and has the first-order effect on its area footprint, is the
same as the baseline, but the crosspoints are doubled. Our synthesis shows that the
modifications increase the crossbar’s area from 22,900 um2 to 24,500 um2 (the total area
of the modified router is 62,000 um2).

Synthesis results in 45 nm technology also show that in the proposed router, the delay
of route computation, switch allocation, VC allocation (two VCs), and crossbar traversal
pipeline stages are 63 ps, 380 ps, 435 ps, and 254 ps, respectively. VC allocator has
often the longest router pipeline latency, but our simple VC allocation scheme, where
the message class determines the VC, leads to a simple and fast VC allocator logic.

As the results show, the latency of all stages is below 500 ps and so, the router can
work at 2 Ghz, which is high enough as the working frequency of a high performance
NoC.

Comparison with CCNoC. We also compare the proposed method with CCNoC [8].
The network parameters are the same as the previous experiments, but CCNoC has two
physically separate sub-networks (128-bit data, 64-bit control) and uses a single VC per
sub-network.
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Figure 6 compares the average packet latency of the proposed NoC with CCNoC.
The figure also compares the performance of CCNoC with a scaled-up version of the
proposed NoC that has the same area as CCNoC. Our area analysis shows that by
increasing the bit-width of the proposed NoC to 192 bits, it has a close area (within 5%)
to an equivalent CCNoC. To simulate this bit-width, three short messages can pass a
link simultaneously. Long (5-flit) packets also pass the wider links in four consecutive
cycles (1.5 flits per cycle).

Fig. 6. Average packet latency comparison with CCNoC

Fig. 7. Energy per flit (J) comparison with CCNoC

This configuration (represented by the bars marked as Proposed 192-bit in Fig. 6)
actually shows the performance that the proposed parallel short packet forwarding would
offer if the extra area overhead of CCNoC is invested to increase the bit-width of the
proposed NoC.

As Fig. 6 shows, although the baseline proposed NoC suffers from an average
performance loss of 7.5%, its area-normalized version can improve the performance by
up to 21% over CCNoC.

The traffic load of many CMP applications is somewhat light and places between
the zero load and saturation points. In CCNoC, this light traffic is further divided into
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two lighter traffic loads. Consequently, the resources will be left underutilized and the
performance is close to our proposal that utilizes the unused bandwidth of a single
network to manage both control and data traffic.

Figure 7 compares the energy consumption of CCNoC with the proposed NoC. The
results are obtained through the Dsent power library [21] and show that our NoC has
9% less energy usage, on average, mainly due to the less static power it wastes.

5 Conclusion

In this paper, we proposed a method to support parallel transfer and storage of short
control flits in modern NoCs. In these NoCs, a large portion of bandwidth is wasted
because a considerable part of packets consist of short control packets that are by far
narrower than the link and buffer bit width. By the proposed parallel short flit sending
the idle bit width is utilized to effectively reduce unnecessary control packet blocking
latency. We showed that the proposed mechanism can be a more power and area-efficient
alternative of the multiple physical sub-network schemes that has been used in some
recent research and commercial NoC designs. One can consider the proposed NoC a
polymorphic NoC architecture that integrates a wide data and a narrow control NoCs
and has different bit widths from the point of view of different packet classes. The
experimental results under a set of realistic and synthetic benchmarks revealed that this
architecture can significantly reduce packet latency and improve throughput of NoCs.
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