
Jens Knoop · Wolfgang Karl
Martin Schulz · Koji Inoue
Thilo Pionteck (Eds.)

 123

LN
CS

 1
01

72

30th International Conference
Vienna, Austria, April 3–6, 2017
Proceedings

Architecture of
Computing Systems –
ARCS 2017

Lecture Notes in Computer Science 10172

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jens Knoop • Wolfgang Karl
Martin Schulz • Koji Inoue
Thilo Pionteck (Eds.)

Architecture of
Computing Systems –
ARCS 2017
30th International Conference
Vienna, Austria, April 3–6, 2017
Proceedings

123

Editors
Jens Knoop
Vienna University of Technology
Vienna
Austria

Wolfgang Karl
Karlsruhe Institute of Technology
Karlsruhe
Germany

Martin Schulz
Lawrence Livermore National Laboratory
Livermore
USA

Koji Inoue
Kyushu University
Fukuoka
Japan

Thilo Pionteck
Otto von Guericke University Magdeburg
Magdeburg
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-54998-9 ISBN 978-3-319-54999-6 (eBook)
DOI 10.1007/978-3-319-54999-6

Library of Congress Control Number: 2017933871

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 30th International Conference on Computer Architecture (ARCS 2017) was hosted
by the Complang Group at the Vienna University of Technology during April 3–6,
2017. It was organized by the special interest group on “Architecture of Computing
Systems” of the GI (Gesellschaft für Informatik e. V.) and ITG (Informationstechnische
Gesellschaft im VDE).

The ARCS conferences series has over 30 years of tradition in reporting
leading-edge research in computer architecture and operating systems. It covers a wide
spectrum of topics from embedded and real-time to large-scale parallel systems as well
as from hardware design to software techniques required to exploit new hardware
systems efficiently. It also covers various cross-cutting themes, such as autonomous
optimization, power and energy awareness, and resilience, providing a comprehensive
platform for systems research. Additionally, a new topic on post-Moore architectures
was added for this year.

Each year the conference selects a special focus topic, which for 2017 was
“Heterogeneous Node Architectures with Deep Memory Systems.” This selection
reflects current trends in node design in high-performance computing (HPC) environ-
ments, which increasingly feature deeper and more complex memory hierarchies, the
integration of non-volatile storage, as well as the use of accelerators, such as GPUs, to
satisfy the ever-rising demand for computational power.

The conference attracted 42 submissions from authors in 19 countries. Each paper
was reviewed by a diverse and dedicated Program Committee, which submitted a total
of 199 reviews. Most papers received five reviews and final decisions were made based
on the reviews as well as online discussions. Following this process, the Program
Committee ended up accepting 19 papers by authors from 11 countries. These papers
were organized into seven sessions: Resilience (2 papers), Accelerators (3 papers),
Performance (2 papers), Memory Systems (3 papers), Parallelism and Many-core
(4 papers), Scheduling (2 papers), and Power/Energy (3 papers).

ARCS has a long tradition of hosting associated workshops, four of which were held
in conjunction with the main conference this year: the 5th International Workshop on
Self-Optimization in Autonomic and Organic Computing Systems (SAOS), the 13th
Workshop on Dependability and Fault Tolerance (VERFE), the Second FORMUS3IC
Workshop, and, for the first time in 2017, the Workshop on Computer Architectures in
Space (CompSpace).

We would like to thank the many individuals who contributed to the success of the
conference, in particular the members of the Program Committee as well as the
additional external reviewers, for the time and effort they put into reviewing the sub-
missions carefully and selecting a high-quality program. Many thanks also to all
authors for submitting their work. The workshops were organized and coordinated by

Carsten Trinitis, the proceedings were compiled by Thilo Pionteck and Gerald Krell,
and the website was maintained by Markus Hoffmann. Our gratitude goes to all of them
as well as all other people who helped in the organization of ARCS 2017.

April 2017 Jens Knoop
Wolfgang Karl
Martin Schulz

Koji Inoue

VI Preface

Organization

General Co-chairs

Jens Knoop Vienna University of Technology, Austria
Wolfgang Karl Karlsruhe Institute of Technology, Germany

Program Co-chairs

Martin Schulz Lawrence Livermore National Lab, USA
Koji Inoue Kyushu University, Japan

Workshop and Tutorial Chair

Carsten Trinitis Technical University of Munich, Germany

Publicity Chair

Miquel Pericàs Chalmers University of Technology, Sweden

Publication Chair

Thilo Pionteck Otto von Guericke University Magdeburg, Germany

Program Committee

Michael Beigl Karlsruhe Institute of Technology, Germany
Mladen Berekovic Technische Universität Braunschweig, Germany
Jürgen Brehm Leibniz Universität Hannover, Germany
Uwe Brinkschulte Goethe-Universität Frankfurt am Main, Germany
João M.P. Cardoso Universidade do Porto, Portugal
Laura Carrington San Diego Supercomputer Center/University of

California, USA
Albert Cohen Inria, France
Martin Daněk daiteq s.r.o., Czech Republic
Ahmed El-Mahdy Egypt-Japan University of Science and Technology,

Egypt
Dietmar Fey Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
William Fornaciari Politecnico di Milano, Italy
Roberto Giorgi University of Siena, Italy
Daniel Gracia Pérez Thales Research and Technology, France
Jan Haase Universität zu Lübeck, Germany

Jörg Hähner University of Augsburg, Germany
Andreas Herkersdorf Technical University of Munich, Germany
Christian Hochberger Technische Universität Darmstadt, Germany
Gert Jervan Tallinn University of Technology, Estonia
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Jörg Keller FernUniversität in Hagen, Germany
Andreas Koch Technische Universität Darmstadt, Germany
Koji Inoue Kyushu University, Japan
Jens Knoop Vienna University of Technology, Austria
Hana Kubátová FIT CTU, Prague, Czech Republic
Olaf Landsiedel Chalmers University of Technology, Sweden
Dong Li University of California, Merced, USA
Erik Maehle Universität zu Lübeck, Germany
Christian Müller-Schloer Leibniz Universität Hannover, Germany
Alex Orailoglu University of California, San Diego, USA
Miquel Pericàs Chalmers University of Technology, Sweden
Luis Miguel Pinho CISTER, ISEP, Portugal
Thilo Pionteck Otto von Guericke University Magdeburg, Germany
Pascal Sainrat IRIT – Université de Toulouse, France
Luca Santinelli ONERA, France
Toshinori Sato Fukuoka University, Japan
Wolfgang

Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Martin Schulz Lawrence Livermore National Laboratory, USA
Muhammad Shafique Vienna University of Technology, Austria
Cristina Silvano Politecnico di Milano, Italy
Leonel Sousa Universidade de Lisboa, Portugal
Rainer G. Spallek Technische Universität Dresden, Germany
Olaf Spinczyk Technische Universität Dortmund, Germany
Benno Stabernack Fraunhofer Institute for Telecommunications, Heinrich

Hertz Institute, Germany
Walter Stechele Technical University of Munich, Germany
Djamshid Tavangarian Universität Rostock, Germany
Jürgen Teich Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Sven Tomforde University of Kassel, Germany
Eduardo Tovar Polytechnic Institute of Porto, Portugal
Carsten Trinitis Technical University of Munich, Germany
Nicolas Tsiftes SICS Swedish ICT, Sweden
Theo Ungerer University of Augsburg, Germany
Hans Vandierendonck Queen’s University Belfast, UK
Stephane Vialle CentraleSupelec and UMI GT-CNRS 2958, France
Lucian Vintan Lucian Blaga University of Sibiu, Romania
Klaus Waldschmidt Goethe-Universität Frankfurt am Main, Germany
Stephan Wong Delft University of Technology, The Netherlands
Sungjoo Yoo Seoul National University, Korea

VIII Organization

Additional Reviewers

Imran Ashraf
Andreas Becher
Christopher Blochwitz
Hendrik Borghorst
Markus Buschhoff
Chongxiao Cao
Florian Franzmann
Alexander Gabrecht
Jose Germano
João F.D. Guerreiro
Fabrice Guet
Jaco Hofmann
Joost Hoozemans
Timo Hönig
Boguslaw Jablkowski
Tobias Klaus
Gerald Krell
Steffen Köhler
Joerg Lenhardt
Paulo Martins
Dominik Meyer
Jörg Mische
Nizar Msadek
Julian Oppermann
Jutta Pirkl

Behnaz Pourmohseni
Thomas B. Preußer
Marco Procaccini
Oskar Pusz
Stefan Reif
Sven Rheindt
Johanna Rohde
Tajas Ruschke
Horst Schirmeier
Florian Schmaus
Alexander Schwarz
Syad Abbas Shah
Manu Shantharam
Romeo Shuka
Lukas Sommer
Akshay Srivatsa
Konstantinos Tovletoglou
Peter Ulbrich
Josef Weidendorfer
Sebastian Weis
Jakob Wenzel
Michael Witterauf
Wei Xie
Martin Zabel

Organization IX

Contents

Resilience

Effectiveness of Software-Based Hardening for Radiation-Induced
Soft Errors in Real-Time Operating Systems. 3

Thiago Santini, Christoph Borchert, Christian Dietrich,
Horst Schirmeier, Martin Hoffmann, Olaf Spinczyk,
Daniel Lohmann, Flávio Rech Wagner, and Paolo Rech

Fault-Tolerant Execution on COTS Multi-core Processors with Hardware
Transactional Memory Support . 16

Florian Haas, Sebastian Weis, Theo Ungerer, Gilles Pokam,
and Youfeng Wu

Accelerators

OpenCL-Based 6D-Vision on Heterogeneous System on Chips. 33
Michael Bromberger, Steffen Ehrle, Michael Scharrer,
Lukas Erlinghagen, and Jens Schick

Hardware-Accelerated Radix-Tree Based String Sorting for Big Data
Applications . 47

Christopher Blochwitz, Julian Wolff, Jan Moritz Joseph, Stefan Werner,
Dennis Heinrich, Sven Groppe, and Thilo Pionteck

Boosting Java Performance Using GPGPUs . 59
James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján

System and Application Performance

A Low Noise Unikernel for Extrem-Scale Systems 73
Stefan Lankes, Simon Pickartz, and Jens Breitbart

A New Approach to Detecting Execution Phases Using Performance
Monitoring Counters . 85

Saman Khoshbakht and Nikitas Dimopoulos

Memory Systems

Adaptive and Scalable Predictive Page Policies for High Core-Count
Server CPUs. 99

Tameesh Suri and Aneesh Aggarwal

http://dx.doi.org/10.1007/978-3-319-54999-6_1
http://dx.doi.org/10.1007/978-3-319-54999-6_1
http://dx.doi.org/10.1007/978-3-319-54999-6_2
http://dx.doi.org/10.1007/978-3-319-54999-6_2
http://dx.doi.org/10.1007/978-3-319-54999-6_3
http://dx.doi.org/10.1007/978-3-319-54999-6_4
http://dx.doi.org/10.1007/978-3-319-54999-6_4
http://dx.doi.org/10.1007/978-3-319-54999-6_5
http://dx.doi.org/10.1007/978-3-319-54999-6_6
http://dx.doi.org/10.1007/978-3-319-54999-6_7
http://dx.doi.org/10.1007/978-3-319-54999-6_7
http://dx.doi.org/10.1007/978-3-319-54999-6_8
http://dx.doi.org/10.1007/978-3-319-54999-6_8

A Method for Fast Evaluation of Sharing Set Management Strategies
in Cache Coherence Protocols. 111

Julie Dumas, Eric Guthmuller, César Fuguet Tortolero,
and Frédéric Pétrot

HBM-Resident Prefetching for Heterogeneous Memory System 124
Mahzabeen Islam, Krishna M. Kavi, Mitesh Meswani, Soumik Banerjee,
and Nuwan Jayasena

Parallelism and Many-Core Systems

Reduced Complexity Many-Core: Timing Predictability
Due to Message-Passing . 139

Jörg Mische, Martin Frieb, Alexander Stegmeier, and Theo Ungerer

Parallel Forwarding for Efficient Bandwidth Utilization
in Networks-on-Chip . 152

Elham Momenzadeh, Mehdi Modarressi, Abbas Mazloumi,
and Masoud Daneshtalab

PLSS: A Scheduler for Multi-core Embedded Systems. 164
Solomon Abera, M. Balakrishnan, and Anshul Kumar

Exploring ILP and TLP on a Polymorphic VLIW Processor 177
Anthony Brandon, Joost Hoozemans, Jeroen van Straten,
and Stephan Wong

Scheduling

Scheduling of Datacompression on Distributed Systems
with Time- and Event-Triggered Messages . 193

Damian Ludwig and Roman Obermaisser

Semi-partitioned Mixed-Criticality Scheduling . 205
Muhammad Ali Awan, Konstantinos Bletsas, Pedro F. Souto,
and Eduardo Tovar

Power and Energy

DVFS Space Exploration in Power Constrained Processing-in-Memory
Systems . 221

Marko Scrbak, Joseph L. Greathouse, Nuwan Jayasena,
and Krishna Kavi

XII Contents

http://dx.doi.org/10.1007/978-3-319-54999-6_9
http://dx.doi.org/10.1007/978-3-319-54999-6_9
http://dx.doi.org/10.1007/978-3-319-54999-6_10
http://dx.doi.org/10.1007/978-3-319-54999-6_11
http://dx.doi.org/10.1007/978-3-319-54999-6_11
http://dx.doi.org/10.1007/978-3-319-54999-6_12
http://dx.doi.org/10.1007/978-3-319-54999-6_12
http://dx.doi.org/10.1007/978-3-319-54999-6_13
http://dx.doi.org/10.1007/978-3-319-54999-6_14
http://dx.doi.org/10.1007/978-3-319-54999-6_15
http://dx.doi.org/10.1007/978-3-319-54999-6_15
http://dx.doi.org/10.1007/978-3-319-54999-6_16
http://dx.doi.org/10.1007/978-3-319-54999-6_17
http://dx.doi.org/10.1007/978-3-319-54999-6_17

Reducing Data Center Resource Over-Provisioning Through Dynamic
Load Management for Virtualized Network Functions 234

Andreas Oeldemann, Thomas Wild, and Andreas Herkersdorf

Dynamic Power Management in a Heterogeneous Processor Architecture 248
Frehiwot Melak Arega, Markus Haehnel, and Waltenegus Dargie

Author Index . 261

Contents XIII

http://dx.doi.org/10.1007/978-3-319-54999-6_18
http://dx.doi.org/10.1007/978-3-319-54999-6_18
http://dx.doi.org/10.1007/978-3-319-54999-6_19

Resilience

Effectiveness of Software-Based Hardening
for Radiation-Induced Soft Errors in Real-Time

Operating Systems

Thiago Santini1(B), Christoph Borchert2, Christian Dietrich3,
Horst Schirmeier2, Martin Hoffmann3, Olaf Spinczyk2, Daniel Lohmann3,

Flávio Rech Wagner4, and Paolo Rech4

1 University of Tübingen,Tübingen, Germany
thiago.santini@uni-tuebingen.de

2 Technische Universität Dortmund, Dortmund, Germany
3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany

4 Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Abstract. For decades, radiation-induced failures have been a known
issue for aero-space systems, in which redundancy mechanisms are
employed as a protection method. Due to the shrinking of structures and
operating voltages, these failures are increasingly becoming an issue even
for terrestrial applications. Unfortunately, redundancy increases costs,
area usage, and power consumption, which can hinder its utilization in
cost- and power-sensitive safety-critical applications, such as automotive.
To overcome this limitation, multiple software-based approaches have
been proposed, which assume the existence of an underlying error-free
operating system. In this paper, we investigate the radiation reliability
of two dependability-oriented real-time operating systems, namely, the
popular eCos operating system hardened through aspect-oriented pro-
gramming methods, and dOSEK, an embedded kernel designed from
the ground up having reliability as a major concern. Both operating
systems were evaluated through extensive neutron-beam testings on a
28 nm ARM-based state-of-the-art system-on-chip, and their fault toler-
ance mechanisms reached reductions in the overall cross-sections relative
to their baselines up to 91% and 74%, respectively.

1 Introduction

Commercial-Off-The-Shelf (COTS) systems have become a valid alternative to
specific radiation-hardened devices in safety-critical applications, like biomedical
implantable devices, automotive control systems, and aircraft or satellite sta-
bilizer and control circuitry. For instance, the spacecraft onboard computer in
NASA’s PhoneSat nano-satellite is built around COTS smartphones running the
Android operating system [9]. The main reason for preferring a COTS device is
that hardened devices are typically very expensive, as they require unique circuit
design and lithography to meet the reliability requirements, and the produced
volumes are very low. On the contrary, COTS components are low cost, flexible,
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-54999-6_1

4 T. Santini et al.

and provide fast time-to-market as well as low power consumption. Nonetheless,
when reliability is a major concern, the use of general-purpose devices must be
carefully evaluated. As technology scales down, CMOS devices are becoming
more susceptible to soft errors induced by ionizing particles; in fact, nowadays
radiation-induced failures are a concern not only in radiation-harsh environ-
ments, such as the space, but also in milder environments, such as at sea level.
High-energy neutrons generated by the interaction of cosmic rays with the terres-
trial atmosphere may in fact have enough energy to corrupt data stored in SRAM
memories or to affect logic computations [2]. This is especially relevant in cost-
sensitive domains, such as the automotive sector. Here, efficiency in terms of per-
unit-prices is a key criterion, so full hardware redundancy can be prohibitively
expensive. One of the proposed approaches to circumvent these limitations in a
cost-effective and flexible way is through software-implemented fault tolerance,
such as software-based redundant multi-threading [28] and process-level redun-
dancy [25]. These approaches assume a fault-free underlying operating system.
However, an operating system (OS) must keep several data structures contain-
ing critical data and pointers, such as device and file descriptors, memory infor-
mation, and process list, which are very likely to lead to a device functional
interruption if corrupted [8], thus making OSs particularly sensitive.

In this context, two approaches have been recently proposed in order to estab-
lish a reliable underlying operating system for real-time embedded computing: (1)
a version of the popular eCos operating system hardened through aspect-oriented
programming methods [4], and (2) dOSEK, an embedded kernel designed from
the ground up with reliability as first-class design goal [12]. These approaches have
been evaluated through ISA-level fault injection with the FAIL* [23] framework
based on an IA-32 platform emulator and assuming a single-bit fault model over
the entire fault space of the architectural view from the software’s perspective (i.e.,
in the main memory as well as instruction pointer, general-purpose, stack, and
flags registers). In this work, we expand on these evaluations through extensive
neutron-beam testing on a 28 nm ARM-based state-of-the-art system-on-chip.
Our main contributions are: (1) Cross-section data to help the device characteri-
zation. These data complement the information provided by sources that investi-
gate the selected device’s radiation sensitivity, such as its bit [15,19], cache memo-
ries [20], and general purpose operating systems [22] cross-sections. (2) A realistic
evaluation of the radiation-reliability of the proposed OS mitigation approaches.
Our experimental evaluation uses the ARM architecture, which is very common
on the actual targets in the embedded domain. We provide expected Failure In
Time (FIT) values in Sect. 4.3.

2 Background

2.1 eCos and Software-Implemented Fault Tolerance

For this study, we chose the off-the-shelf operating system eCos [16] as a typ-
ical representative for embedded real-time operating systems. eCos (embedded
Configurable operating system), as the name suggests, offers configurability at

Effectiveness of Software-Based Hardening 5

compile time of various system components, such as file systems and network-
ing, resulting in roughly one million lines of C/C++ code. To apply software-
implemented fault-tolerance to such an enormous code base, we chose two generic
error-detection and error-correction mechanisms with transparent compiler sup-
port – a manual implementation in C/C++ would be infeasible. 1 Generic
Object Protection (GOP): The principle of GOP [3,5] is to introduce redun-
dancy into the program data structures to implement an error-correcting code. In
this study, we use a Hamming code [10], since it can be efficiently implemented
in software by bit-slicing [24]. The implementation processes 32 bits in parallel,
which allows for correction of multi-bit errors, in particular, all burst errors up to
32 bits. At program run time, the Hamming code gets verified before an instance
of a data structure (C++ object) is used. Then, after object usage and potential
data modification, the Hamming code gets updated. The object-oriented software
structure of the eCos kernel restricts data access to member functions of a data
structure. Thus, it suffices to carry out checks before member-function calls and
to update the Hamming code after the member function has returned. GOP is
implemented by means of Aspect-Oriented Programming [14], which allows for a
completely modular implementation separated from the eCos source code. The
AspectC++ [27] compiler automatically inserts the protection rules at compile
time. 2 Stack Checksum: The second fault-tolerance mechanism applied to
eCos is a 32-bit checksum for stack memory. When the eCos kernel preempts a
thread of control, or when a thread blocks while waiting for a semaphore, a check-
sum covering the thread’s occupied stack memory is attached to the thread. When
the thread is eventually resumed, the checksum gets verified. Thus, errors corrupt-
ing the stack memory while a thread is inactive are detected. Please note that
extending this mechanism to error correction is straightforward by implementing
a Hamming code similar to the GOP. Finally, the Stack Checksum mechanism
is also implemented as a generic module in AspectC++, which instruments the
eCos-kernel source code with minimal effort from the programmer.

2.2 dOSEK – A Soft-Error Resilient OS

As our second system, we chose dOSEK [12], a framework for generating depend-
able real-time kernels. The first-class design objective during the system devel-
opment was resilience against soft-errors. In previous (exhaustive) fault-injection
campaigns, the usage of dOSEKreduced the rate of undetected failures by mul-
tiple orders of magnitude.

dOSEKadheres to the OSEK-OS [18] specification, a standardized kernel
Application Programing Interface (API) developed by the automotive indus-
try. OSEK systems are specified declaratively: the number and configuration
of threads, alarms, interrupts, resources, and events is known at compile time.
dOSEK, following the tradition of OSEK system generators, exploits this sta-
tic application knowledge to foster dependability. Furthermore, two basic design
principles were also applied: removal of unnecessary indirections and integration
of active dependability measures.

6 T. Santini et al.

Like eCos, dOSEKprovides static configurability at compile time. We used
three configuration sets of dependability measures in our test setup. 1 Base-
line: All system objects are allocated statically; pointer indirection is avoided
wherever possible; the kernel is activated through a supervisor call, but executed
only with user privileges; inside the kernel, function calls are avoided by mas-
sive inlining. 2 Encoded: On top of the baseline, specialized data protection is
applied: checksums for thread contexts, parity bits for saved stack pointers, and
dual-modular redundancy (DMR) for counters. For the scheduler, ANB encod-
ing was applied, an active measure that protects data flow as well as the control
flow. 3 Asserts: On top of the baseline, application-specific protection mecha-
nisms were added. By system-wide static analysis, knowledge about the dynamic
behavior of the application-kernel interaction was extracted and run-time asser-
tions to check for compliance were injected.1

3 Experimental Methodology

In this work, we have opted to perform an evaluation of the proposed approaches
through accelerated radiation testing. Radiation testing does not restrain faults
to a single part of the chip, whereas fault injection can be performed only on
a selection of user-accessible resources for those devices, like COTS, for which
an Register Transfer Level (RTL) description is not usually available. Moreover,
although simulators and emulators allow a more controlled fault injection, they
are always an oversimplification of the physical reality and, thus, cannot replace
radiation tests for Radiation Hardness Assurance (RHA) testing [11].

3.1 Device Under Test

The Device Under Test (DUT) is the Xilinx ZynqTM-7000 AP System-on-Chip
(SoC) implemented in a 28 nm CMOS technology. The DUT disposes of two
ARM R©CortexTM-A9 cores with a maximum frequency of 667MHz. Each core
has 32 KiB Level 1 4-way set-associative instruction and data caches, and they
share a 512KiB 8-way set-associative Level 2 cache [7]. During tests, only a single
core (CPU0) was used. Parity checking was disabled for both cache levels to allow
the assessment of the investigated approaches in the absence of hardware-based
protection mechanisms. It is paramount to note that only the SoC chip was
irradiated (i.e., the external DRAM chips were not irradiated). Both OSs were
tested under heavy load, and the amount of threads and resources employed was
selected as to fill up the cache memories in order to maximize attack surface.

1 The Baseline and the Encoded variants are based on and discussed in more detail
in [12], whereas the static application analysis and the system-state assertions are
based on and detailed in [6].

Effectiveness of Software-Based Hardening 7

3.2 eCos Configuration and Benchmarks

We used a port of eCos 3.0 for the aforementioned Zynq2 hardware platform
and selected a minimal configuration of eCos without unneeded device drivers.
In addition, we ignored spurious device interrupts. To reduce corruption of pro-
gram instructions, we disabled the instruction caching at the L2 cache (only
allowing L2 data caching), and the L1 instruction cache was regularly invali-
dated before interrupt processing. For the evaluation of the OS under heavy
load, we selected two benchmarks, both supporting a parameterizable number
of threads, selected as to fill up the caches, from the kernel-test suite bundled
with eCos itself: bin_sem2 (BS) implements a classical synchronization prob-
lem known as Dining Philosophers. We configured 400 threads (philosophers)
that use 400 forks (i.e., Cyg_Binary_Semaphore objects) for mutual exclusion
(eating with two forks). Once a philosopher acquires both neighboring forks,
it checks by an assertion that neighboring philosophers are not in the eating
state. After a pseudo-random delay, the philosopher releases both forks and
tries again for 25,000 iterations. timeslice (TS) verifies that the per-thread
time-slice distribution works under preemption. We configured 800 low-priority
threads that continuously increment a per-thread counter, and a single high-
priority thread is scheduled at regular intervals to preempt the other threads.
The benchmark finishes after a predetermined period of time, such that each
low-priority thread should have received two time slices. Finally, an assertion
tests whether all threads have run.

These benchmarks were evaluated with two eCos variants: a baseline variant
with no protection mechanisms, and a variant hardened through the methods
described in Sect. 2.1. bin_sem2 has a baseline run time of 1.98 s, whereas the
hardened variant has a run time of 2.08 s (an overhead of 4.745%). timeslice2
has a baseline run time of 1.6 s, whereas the hardened variant has a run time of
1.65 s (an overhead of 2.932%).

3.3 dOSEK Configuration and Benchmark

We ported the dOSEKsystem generator to the ARM platform used on the Zynq
hardware while preserving dOSEK’s basic design principles. To ease the com-
parison with the eCos benchmark, we did not use the MMU to provide spatial
isolation between the OSEK threads. Privilege isolation was used to execute ker-
nel and application in user mode; only kernel entry and thread dispatching were
executed with supervisor privileges.

As benchmark, we generated an application compliant with the OSEK BCC1
conformance class, consisting of 250 threads organized in 125 pairs. The test case
was designed to particularly fill up the cache, which is hit by the neutron beam,
with OS state. Each thread pair has a lower-priority non-preemptable thread (L-
thread) and a high-priority thread (H-thread). We configured 250 alarms con-
nected to 250 OSEK counter objects; 125 counters are driven by a hardware

2 https://github.com/antmicro/ecos-mars-zx3/.

https://github.com/antmicro/ecos-mars-zx3/

8 T. Santini et al.

timer and activate the L-thread. The other 125 counters are incremented by the
L-threads and activate the associated H-thread on alarm expiration. The peri-
ods and phases for the alarms were shuffled once by a pseudo-random number
generator. Besides the pair coupling, we also added (pseudo-randomly) cross-
dependencies between pairs: a L-thread activates the H-thread of another pair;
a H-thread chains its execution to another pair’s L-thread; a L-thread waits
actively for another H-thread to set a global variable. In total, 42 such cross
dependencies were introduced.

During execution, each thread queries its associated alarm value, applies some
calculation to it, and hashes the result and its thread ID onto a global CRC32
checksum. The hash update operation is protected by an OSEK non-preemptable
critical section. After 1500 hash updates, the application asserts that the result-
ing hash equals to a golden value calculated at compilation time. Both, checksum
storage and hash update counter are protected with triple-modular redundancy.

The exactly same application was evaluated with the three variants of
dOSEKdescribed in Sect. 2.2, namely, Baseline, Encoded, and Asserts. All
variants exhibited a similar run time (≈ 3.42 s). Since the kernel run time is
orders of magnitude smaller than the application run and idle time, the incurred
run-time penalties of the additional protection measures can be considered neg-
ligible.

3.4 Experimental Setup

Radiation experiments were performed at Los Alamos National Laboratory
(LANL) in the Los Alamos Neutron Science Center (LANSCE) Irradiation of
Chips and Electronics House II, called ICE House II. The ICE House II beam
line provides a white neutron source that emulates the energy spectrum of
the atmospheric neutron flux. The available neutron flux was approximately
1 × 106 n/(cm2s) for energies above 10MeV. The beam was focused on a spot
with a diameter of two inches, which provided uniform irradiation of the SoC,
without directly affecting nearby board power control circuitry and DRAM chips.
It is worth noting that, even if the flux of neutrons at ICE House II is several
orders of magnitude higher than the natural one at sea level (which is estimated
to be about 13n/(cm2h) [13]), the test was tuned to make negligible the prob-
ability of having more than one neutron generating a failure in one single code
execution (estimated through the method described in [21] to be no higher than
1.38 × 10−5 errors/execution). This allows the scaling of experimental data in
the natural radioactive environment without introducing artificial behaviors.

To reduce the uncertainty of the experimental results, four DUTs were irra-
diated in parallel. The four boards with the same hardware revision were aligned
with the beam, placed at 62, 64, 66.5, and 68.5 in. from the source, respectively. A
flux de-rating factor was calculated for each board to take beam degradation due
to the distance from the source into account. To minimize the statistical error
and to avoid experimental results biased on the selected board and distance
de-rating factor, the benchmarks were executed alternatively in all four devices.
In total, the boards received a fluence of 9.87 × 1011 n/cm2, thus receiving the

Effectiveness of Software-Based Hardening 9

radiation equivalent to 8.67 × 106 years of exposure in the natural environment
at sea level. It is worth noticing that hardened variants received more beam time
than baseline ones. Since these systems are intrinsically less prone to errors, they
require longer testing times to achieve a statically significant amount of observed
errors.

A test manager application was responsible for collecting and time-stamping
incoming logs from the boards through UART connections. The test manager
application also served as a watchdog, responsible for detecting otherwise irrecov-
erable failure situations and rebooting the boards through an Ethernet controlled
switch. Whenever such situations happened, they were time-stamped and logged.
Irrecoverable situations are considered when the board exceeds a time-out much
larger than the application execution time without sending successful execution
logs.

4 Experimental Results

We report our results as cross-sections. The cross-section σ is the most widely
used metric to evaluate a device radiation sensitivity and is evaluated by dividing
the amount of observed errors by the particle fluence (n/cm2) received by the
device. By definition, the cross-section, expressed in cm2, is the device sensitive
area – that is, the area that generates a failure if hit by an impinging particle [2].
Values are shown with relative intervals to account for the failure rate estimation
error (95% CI) and neutron count uncertainty.

The outcome of each application run was classified as benign or malign.
Benign executions are those in which the expected output was produced, or
an error was detected before it could lead to a Silent Data Corruption (SDC)
or Functional Interruption (FI). Malign executions are those in which a SDC
was produced (e.g., one of the assertions described in Sects. 3.2 and 3.3 failed,
garbage was found in the output) or a FI occurred (e.g., the board rebooted
by itself, no correct output was produced before the test manager watchdog ran
out). Each malign execution was accounted as a single error when calculating
cross-sections and only if the preceding execution was benign. For the remainder
of this paper, we will use the term very rare to refer to events that had less
than three occurrences observed per benchmark; we consider their probability
to be negligible and, since we cannot draw any additional statistically significant
conclusion about these events, refrain from further discussing them. Events with
zero occurrences are explicitly shown through a cross-section of 0.

4.1 eCos

As shown in Fig. 1a, the hardening resulted in a reduction in the overall cross-
section by a factor of at least 55% (upper TSHardened relative to the lower
TSBaseline) up to 91% (lower BSHardened relative to the upper BSBaseline).

Table 1 details the possible outcomes for each benchmark run, and the overall
cross-section is broken down into its contributors in Fig. 1b. The occurrences

10 T. Santini et al.

of rst and scorr were very rare. From the remaining (and major) cross-section
contributors, it is clear that in all cases tout occurrences are fairly more probable
than fail ones. In other words, a system hang (the system stops producing any
output) was more common than an SDC. These hangs likely originate from
illegal memory accesses and jumps; invalid data accesses can leave the system in
a corrupt state, and deviant instruction accesses (e.g., stemming from corrupted
return addresses in the stack) can lead to the execution of arbitrary code, both
likely to stop the system from producing an output in a timely manner. Moreover,
both the eCos kernel and the application run in supervisor mode [16], which can
exacerbate this effect since invalid accesses from the application do not cause
the OS to terminate the application.

The hardening had similar effects in both applications: fail became a very
rare event, whereas tout occurrences were significantly reduced. Unfortunately,
it is not possible to establish one-to-one relationships between the employed
fault-tolerance mechanisms and the malign events reduction due to the Archi-
tectural Vulnerability Factor (AVF) [17]; in other words, there are errors that
are corrected by the employed mechanisms that would not influence the system
in an observable way. In fact, the cross-section for correction/detection events
(≈ 1.2×10−8 for both hardened benchmarks) is much larger than those of malign
events for the baseline versions. Nonetheless, we break down the relative activa-
tions for these mechanisms in Fig. 2. This figure suggests that stack data are the
largest attack surface for the BS benchmark, in contrast to the TS benchmark,
in which eCos class members data seem to present the largest attack surface.
Furthermore, it is worth noting that the d-trp cross-section for both benchmarks
(BSBaseline = 9.45× 10−10 and TSBaseline = 1.01× 10−9) were diminished with
the employment of the hardening mechanisms (BSHardened = 2.66 × 10−10 and
TSHardened = 1.42 × 10−10), showing a replacement of generic hardware traps
by more specific detection mechanisms, which could be more easily corrected if
possible and desired.

Fig. 1. Overall cross-sections for the bin_sem2 (BS) and timeslice2 (TS) bench-
marks (a) as well as their comprehensive cross-section list (b); note the y-semilog scale
on (b).

Effectiveness of Software-Based Hardening 11

Table 1. Possible outcomes for the eCos
benchmarks

Baseline Hardened Description

ok � � Successful run

okcor - � GOP corrected

d-gop - Detect GOP (uncorrectable)

d-stk - Detect Wrong stack checksum

d-trp Detect Detect Hardware trap

fail SDC SDC Application assertion
failed

scorr SDC SDC Serial corrupted

rst FI FI Board rebooted

tout FI FI Timeout without output

Fig. 2. Relative activations for the
detection/correction mechanisms for
the hardened benchmarks versions.

4.2 dOSEK

In Fig. 3a, the overall cross-section of the observed errors is shown for all three
variants. The application-specific assertions reduce the cross-section by at least
0.93% (upper Asserts relative to lower Baseline) up to 64% (lower Asserts relative
to upper Baseline); the kernel encoding by at least 28% up to 74%.

Each application run was classified into one of the categories from Table 2.
Fail, scorr, rst, and tout are counted as errors and contribute to the overall
cross-section, which is broken down in Fig. 3b. The results for dOSEKare similar
to eCos: Occurrences of scorr were very rare, and rst events did not occur. A
hanging system was more likely than a failing one, whereas Asserts and Encoded
significantly reduced these tout events. The actual fail cross-section was reduced
at least by 33% (Asserts) up to 92% (Encoded).

It is noteworthy that in both variants the detection was mainly driven by
a single measure: the detection for the Assert variant (σ = 8.57 × 10−10) is
dominated by the introduced assertions (76For the Encoded variant, detection
(σ = 1.36 × 10−9) stems mainly from the ANB-encoded scheduler (68experi-
ments.

Fig. 3. Overall cross-sections for the three dOSEKvariants (a) as well as their com-
prehensive cross-section list (b); note the y-semilog scale on (b).

12 T. Santini et al.

Table 2. Possible outcomes for the
dOSEKvariants.

Baseline Encoded Asserts Description

ok � � � Successful run

d-xor - Detect - Thread
context
checksum

d-dmr - Detect - Counters
DMR

d-anb - Detect - Scheduler
ANB encoding

d-par - Detect - Saved stack
pointer parity

d-sta - - Detect dOSEKassertion
failed

d-log Detect Detect Detect Impossible
control flow

d-trp Detect Detect Detect Hardware trap

d-unk Detect Detect Detect Spurious fault
detection hook

fail SDC SDC SDC Application
assertion
failed

scorr SDC SDC SDC Serial
corrupted

rst FI FI FI Board
rebooted

tout FI FI FI Timeout
without
output

Table 3. FIT at sea level for ener-
gies higher than 10MeV (Flux ≈
13n/(cm2h) [13]).

OS Variant FIT

eCos Baseline/bin_sem2 26.65
Hardened/bin_sem2 5.53
Baseline/timeslice2 17.68
Hardened/timeslice2 5.01

dOSEK Baseline 20.02
Asserts 12.40
Encoded 8.98

4.3 FIT Figures

As mentioned in Subsect. 3.4, due to the characteristics of our neutron source
and failure rate, it is possible to scale our experimental results to Earth’s natural
environment. Table 3 reports the worst-case FIT figures at sea level given the
measured cross-sections, expressed as errors per billion hours of device operation.
These values represent a reference for evaluating if the tested device meets the
reliability requirement of a project based on the environment of operation and
the relevant functional safety standard (e.g., ISO 26262 [1]).

5 Final Remarks

In this paper, we evaluated the radiation reliability of two dependability-oriented
real-time operating systems and the efficacy of their fault-tolerance mechanisms.
Both investigated approaches (eCos and dOSEK) exhibited a significant reduc-
tion in the overall cross-section (up to 91% and 74% relative to the baseline
variants, respectively), attesting for the capabilities of the investigated fault-
tolerance mechanisms for usage at an environment with similar neutron flux to

Effectiveness of Software-Based Hardening 13

the terrestrial one. In fact, the baseline versions would limit the Safety Integrity
Level (SIL) of the Equipment Under Control (EUC) in continuous operation
mode at sea level to IEC61508 SIL 3 – i.e., within (10−7, 10−8] failures per
hour [26]. In contrast, the hardened eCos variant and dOSEKEncoded variant
would mitigate enough faults as to allow the EUC to attain SIL 4 (i.e., within
(10−8, 10−9] failures per hour), the highest SIL3. It is worth noticing that we
cannot directly compare the results for eCos to those of dOSEKbecause the
evaluation is highly dependent on the application. In retrospect, it would have
been more advantageous to have used exactly the same application to evaluate
both operating systems. Nonetheless, the evaluated applications are conceptually
similar (in the sense that they stress-test the kernel scheduling, preemption, and
timer functionalities), and the investigated approaches exhibited failure rates in
the same order of magnitude. Furthermore, due to massive function inlining to
avoid run time indirections, the code size of dOSEKis two orders of magnitude
higher than that of eCos, and it is worth noticing that the protection mechanisms
applied to harden eCos are generic and can be applied to other object-oriented
C++ programs easily.

As future work, we plan to extend the FAIL* framework to evaluate the
systems here evaluated through fault injection campaigns. The intention of this
future work is threefold: (1) to corroborate FAIL* and the accelerated radiation
tests, (2) to better comprehend the way in which these OSs fail and help devel-
oping further fault tolerance mechanisms, and (3) to provide an open framework
to evaluate the reliability of ARM-based processors.

References

1. ISO/DIS 26262. Technical report (2011)
2. Baumann, R.: Soft errors in advanced computer systems. IEEE Design Test Com-

put. 22(3), 258–266 (2005)
3. Borchert, C., Spinczyk, O.: Hardening an L4 microkernel against soft errors by

aspect-oriented programming and whole-program analysis. In: Proceeding of the
8th Workshop on Programming Languages and Operating Systems. ACM (2015)

4. Borchert, C., et al.: Generative software-based memory error detection and cor-
rection for operating system data structures. In: 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pp. 1–12. IEEE
(2013)

5. Borchert, C., et al.: Generic soft-error detection and correction for concurrent data
structures. IEEE Trans. Dependable Secure Comput. PP(99) (2015)

6. Dietrich, C., et al.: Cross-kernel control-flow-graph analysis for event-driven real-
time systems. In: Proceeding of the Conference on Languages, Compilers and Tools
for Embedded Systems (LCTES 2015). ACM, June 2015

7. Digilent: Zedboard data sheet overview (2014). http://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

3 It is important to notice that this is based solely on the estimated failure rate figures
and assuming all failures could lead to dangerous consequences; no hazard and risk
assessment was carried out, nor was the software tested for coverage; we do not claim
the EUC to achieve these SILs.

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

14 T. Santini et al.

8. Gu, W., et al.: Characterization of Linux kernel behavior under errors. In: Inter-
national Conference on Dependable Systems and Networks (DSN). IEEE (2003)

9. Guillen Salas, A., et al.: PhoneSat in-flight experience results. In: Proceeding of
the Small Satellites and Services Symposium, May 2014

10. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J.
29(2), 147–160 (1950)

11. Herrera-Alzu, I., Lopez-Vallejo, M.: System design framework and methodology
for Xilinx Virtex FPGA configuration scrubbers. IEEE Trans. Nucl. Sci. 61(1),
619–629 (2014)

12. Hoffmann, M., et al.: dOSEK: the design and implementation of a dependability-
oriented static embedded kernel. In: Proceeding of the 21st Real-Time and Embed-
ded Technology and Applications (RTAS 2015). pp. 259–270. IEEE, April 2015

13. JEDEC Solid State Technology Association: JESD89-3A: Test Method for Beam
Accelerated Soft Error Rate. http://www.jedec.org/standards-documents/docs/
jesd-89-3a

14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.
1007/BFb0053381

15. Lesea, A., et al.: Soft error study of ARM SoC at 28 nanometers. In: Proceeding
of the IEEE Workshop on Silicon Errors in Logic - System Effects 2014 (2014)

16. Massa, A.: Embedded Software Development with eCos. Prentice Hall Professional
Technical Reference (2002)

17. Mukherjee, S.S., et al.: A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor. In: Proceeding of the
36th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
(2003)

18. OSEK/VDX Group: operating system specification 2.2.3. Technical report. http://
portal.osek-vdx.org/files/pdf/specs/os223.pdf, Accessed 29 Sept 2014

19. Quinn, H., et al.: Single-event effects in low-cost, low-power microprocessors. In:
Radiation Effects Data Workshop (REDW), pp. 1–9. IEEE, July 2014

20. Santini, T., et al.: Reducing embedded software radiation-induced failures through
cache memories. In: 19th European Test Symposium (ETS), pp. 1–6. IEEE (2014)

21. Santini, T., et al.: Beyond cross-section: spatio-temporal reliability analysis. ACM
Trans. Embed. Comput. Syst. 15(1), 3:1–3:16 (2015)

22. Santini, T., et al.: Exploiting cache conflicts to reduce radiation sensitivity of oper-
ating systems on embedded systems. In: Proceeding of the International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems, CASES,
pp. 49–58. IEEE (2015)

23. Schirmeier, H., et al.: FAIL*: an open and versatile fault-injection framework for
the assessment of software-implemented hardware fault tolerance. In: Proceeding
of the 11th European Dependable Computing Conference, pp. 245–255. IEEE,
September 2015

24. Shirvani, P.P., et al.: Software-implemented EDAC protection against SEUs. IEEE
Trans. Reliab. 49(3), 273–284 (2000)

25. Shye, A., et al.: PLR: a software approach to transient fault tolerance for multicore
architectures. IEEE Trans. Dependable Secure Comput. (2009)

26. Smith, D.J., Simpson, K.G.: Safety Critical Systems Handbook: a straightfoward
guide to functional safety, IEC 61508 and related standards, including process IEC
61511 and machinery IEC 62061 and ISO 13849. Elsevier (2010)

http://www.jedec.org/standards-documents/docs/jesd-89-3a
http://www.jedec.org/standards-documents/docs/jesd-89-3a
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

Effectiveness of Software-Based Hardening 15

27. Spinczyk, O., Lohmann, D.: The design and implementation of AspectC++.
Knowl.-Based Syst. 20(7), 636–651 (2007). Special Issue on Techniques to Pro-
duce Intelligent Secure Software

28. Wang, C., et al.: Compiler-managed software-based redundant multi-threading for
transient fault detection. In: Proceeding of the International Symposium on Code
Generation and Optimization, CGO 2007, pp. 244–258. IEEE (2007)

Fault-Tolerant Execution on COTS Multi-core
Processors with Hardware Transactional

Memory Support

Florian Haas1(B), Sebastian Weis1, Theo Ungerer1, Gilles Pokam2,
and Youfeng Wu2

1 Department of Computer Science,
University of Augsburg, Augsburg, Germany

{haas,weis,ungerer}@informatik.uni-augsburg.de
2 Intel Corporation, Santa Clara, USA

{gilles.a.pokam,youfeng.wu}@intel.com

Abstract. The demand for fault-tolerant execution on high perfor-
mance computer systems increases due to higher fault rates resulting
from smaller structure sizes. As an alternative to hardware-based lock-
step solutions, software-based fault-tolerance mechanisms can increase
the reliability of multi-core commercial-of-the-shelf (COTS) CPUs while
being cheaper and more flexible. This paper proposes a software/
hardware hybrid approach, which targets Intel’s current x86 multi-core
platforms of the Core and Xeon family. We leverage hardware transac-
tional memory (Intel TSX) to support implicit checkpoint creation and
fast rollback. Redundant execution of processes and signature-based com-
parison of their computations provides error detection, and transactional
wrapping enables error recovery. Existing applications are enhanced
towards fault-tolerant redundant execution by post-link binary instru-
mentation. Hardware enhancements to further increase the applicability
of the approach are proposed and evaluated with SPEC CPU 2006 bench-
marks. The resulting performance overhead is 47% on average, assuming
the existence of the proposed hardware support.

1 Introduction

Errors in computer systems can never be avoided completely and the field of
application dictates the required counter-measures. With error detection, erro-
neous computations can be identified. However, re-execution is required, induc-
ing down time for error correction and system restart. Dependable server systems
are usually designed as fail-stop systems, i.e. erroneous execution is detected and
the system is stopped or restarted. In contrary, fail-operational systems provide
built-in error correction and thus can continue to operate correctly in case of
errors. While current processors are already protected against faults on different
memory levels with error correcting codes (ECC), transient faults can still occur
within the data and control paths of the processor’s pipelines. Processors often
implement tightly coupled lockstep execution to detect transient faults, which
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 16–30, 2017.
DOI: 10.1007/978-3-319-54999-6 2

Fault-Tolerant Execution on COTS Multi-core Processors 17

requires a complete duplication of the hardware resources and cycle-by-cycle
synchronization. However, the integration of hardware-based lockstep mecha-
nisms in up-to-date COTS multi-core processors is complex and would require
deep changes to the microarchitecture, since COTS processors also implement
various power management and performance optimization mechanisms, which
complicate synchronization at a cycle-by-cycle granularity [1]. Furthermore, cur-
rent dual-modular redundant (DMR) lockstep processors only detect faults and
therefore only support fail-stop execution. Triple-modular redundancy (TMR) is
required to provide fault tolerance through forward-error correction. While hard-
ware fault-tolerance mechanisms require complex and costly modifications to the
microarchitecture of state-of-the-art COTS processors, pure software-based fault
tolerance techniques, which duplicate instructions or processes to detect faults,
e.g. [13,14], usually have a high performance impact, require specific compilers,
and support limited recovery capabilities.

Hardware Transactional Memory (HTM) was first proposed for concurrency
control [7] and is able to increase the parallelism and ease the programmabil-
ity of parallel applications. Intel introduced the Transactional Synchronization
Extensions (TSX) as part of the Haswell instruction set architecture [5]. The
rollback mechanism of TSX, where all modified data from within a transaction
is restorable, can be utilized for fault tolerance. A rollback to the implicitly
created checkpoint helps to recover from detected errors. In this paper, we pro-
pose a software/hardware hybrid fault-tolerance mechanism to lift check-point
restart systems from fail-stop to fail-operational by fast and fine-grained check-
point generation and restart using Intel TSX. We leverage the recovery capa-
bilities of TSX to support fault-tolerant execution of arbitrary, single-threaded
applications. Our approach combines redundant execution of processes to detect
differences in their executions, and backward error recovery by restarting trans-
actions in the case of detected errors. Modifications of the existing hardware
to facilitate error detection can increase the performance of our approach. We
therefore evaluated the benefits to be expected by hardware support for signa-
ture generation and exchange. Our approach is based on binary instrumentation
to achieve fault-tolerant execution. Post-link binary instrumentation allows the
fault-tolerant execution of existing and already compiled programs on POSIX-
compatible platforms.

We proposed the idea of leveraging Intel TSX for recoverability on existing
hardware in [3,4]. A software-based implementation was presented to show the
general applicability of Intel TSX for checkpointing in redundant processes. In this
first approach, source code modifications were required and no full coverage of the
instrumented application was achieved. This paper makes the following new con-
tributions: (1) We present a software/ hardware hybrid fault-tolerance approach,
which uses redundant process execution and post-link binary instrumentation to
detect faults, and exploits the rollback-capabilities of Intel TSX to support effi-
cient and low-overhead checkpointing and error recovery. (2) We propose hard-
ware enhancements, which can significantly speed up our fault-tolerance mecha-
nism. (3) We present a detailed evaluation of our approach for SPEC2006 integer

18 F. Haas et al.

and floating point benchmarks and show a performance overhead of 47% on aver-
age, assuming the existence of the proposed hardware support.

The rest of this paper is organized as follows. Section 2 provides a short
overview of related work. The concept of our approach to detect errors through
redundant execution and the recovery mechanism are described in Sect. 3. Possi-
ble hardware modifications and enhancements are discussed in Sect. 4. A detailed
evaluation is presented in Sect. 5. Limitations and future work are discussed in
Sect. 6. The paper is concluded in Sect. 7.

2 Related Work

Various methods for fault-tolerant execution on different types of processors
exist. The most well-known method is lock-stepping [11], where two cores are
coupled tightly. Comparison of the equality of both cores’ computations hap-
pens on cycle or instruction level. Loosely coupled lockstep architectures sup-
port SMT [12] and multi-core processors [9]. However, to support error detection
and recovery in such systems, complex changes are required to the pipeline and
the memory hierarchy. This renders the applicability of such approaches on cur-
rent high-performance COTS processors difficult and costly. As an alternative to
hardware-based approaches, different software-only fault-tolerance mechanisms
exist. They need to modify the program, either after compilation by binary
instrumentation, or during compilation. A well-known compiler-based approach
is SWIFT [13], where instructions are duplicated within the same process and
a comparison of both results ensures correct execution of single-threaded appli-
cations. Unlike our approach, SWIFT cannot guarantee error isolation among
dual executed streams, since memory protection works only between individ-
ual processes. A technique that uses process level redundancy was introduced
with PLR [14] where a whole single-threaded process is duplicated. On system
call granularity, both processes are compared. However, these software-based
approaches cannot recover from detected errors, or impose high cost on check-
point creation and recovery.

Transactional memory originated in high performance computing to allow
optimistic synchronization. As the first commercial hardware implementations
became available, the application of hardware transactional memory in embed-
ded systems was suggested [2]. Beside the possibility of increased performance
by optimistic synchronization in COTS-based dependable systems, the authors
encourage the use of implicit checkpointing and rollback mechanism for fast
and easy recovery in case of detected errors. Yalcin et al. [15] implemented
a custom hardware transactional memory to support fault-tolerant execution
of multi-threaded applications. The extendability of this transactional memory
system allows execution of redundant transactions in parallel and comparison
of signatures in hardware. In contrary to custom hardware implementations of
transactional memory with focus on fault tolerance, our paper is based on Intel
TSX, an existing, performance-oriented hardware transactional memory. As an
alternative to full redundant execution, instruction level redundancy [8] allows

Fault-Tolerant Execution on COTS Multi-core Processors 19

error detection without process duplication. Instead, instructions are replicated
to repeat the computation on different registers. Before writing to memory and
at basic block boundaries, the data is compared to detect errors. This approach
instruments applications during compilation, and also uses TSX transactions for
checkpointing and rollback.

This paper presents a comprehensive evaluation of the performance over-
head of redundant process execution on the Intel Haswell architecture. Further-
more, we propose hardware enhancements to increase the performance of our
approach. The instrumentation mechanisms provide an increased code coverage
with less performance overhead than other approaches. Combining the flexibil-
ity of software-based redundant execution with existing hardware transactional
memory allows efficient checkpointing and rollback for specific applications, or
selected critical parts of applications, for fault-tolerant execution.

3 Error Detection

We target a fault model where transient errors in the cores can be tolerated,
and permanent errors can be detected. Transient faults (also known as single
event upsets) induced for example by environmental radiation, electromagnetic
interferences, or voltage fluctuations [11], occur sporadically and can lead to the
so-called soft errors. We assume that all memory is protected with ECC, but
errors may still appear in the CPU itself. The main objective of our approach is
to ensure correct execution even when soft errors occur. For this, fail-operational
execution requires error detection, error recovery, and error containment. We
use the error containment and recovery capability of Intel TSX to provide fail-
operational execution. Our approach consists of an enhanced binary instrumen-
tation tool and a dynamic library, which provides the required functionality for
redundant execution, comparison and rollback. No modifications to the source
code of the application are required. The instrumentation enhances the applica-
tion’s binary with signature generation instructions to provide error detection.
The remaining functionality for process management, signature comparison, and
error recovery is implemented in a library to keep the required instrumentation
of the original binary minimal.

3.1 Redundant Execution

The main principle of our approach is to redundantly execute user processes. The
loosely coupled redundant execution allows error detection by repeatedly com-
paring both processes through signatures of blocks based on function boundaries.
With the encapsulation of these blocks in transactions, error recovery is imple-
mented. Our approach is based on process level redundancy, which results in two
mostly identical processes with the same virtual address space. The advantage of
process redundancy in contrary to redundant threads is that the virtual memory
management of the operating system guarantees physical memory isolation and

20 F. Haas et al.

thus prevents error propagation from a process to its duplicate. Also, since vir-
tual addresses are equal in both processes, no modifications of memory addresses
are required. Existing programs are enhanced with error detection and recovery
capabilities by modifying the program’s binary with help of the instrumentation
tool PEBIL [10]. Some of the required functionality is implemented in a library,
which reduces the amount of code to instrument directly. To setup redundant
execution, the binary instrumentation tool inserts a call to the library’s setup
function at the very beginning of the program, which usually is before calling
main. Another call to end redundant execution is inserted into the exit code. The
output of the instrumentation is a new binary ready for fault-tolerant execution
on a common Intel CPU with support for TSX.

To enable redundant execution, the application’s process is duplicated in the
library’s setup code by invoking a fork system call. The program then exe-
cutes a leading and a trailing process. Both processes execute the same program
code and also have identical virtual address spaces, which are physically sepa-
rated by the memory management unit. Since the instrumentation is done on
the binary and the process duplication takes place at run-time, the executed
code of both processes is almost identical. As a consequence, the instrumenta-
tion requires no awareness of the actual process that executes the instrumented
code. The distinction of the processes happens only in the library functions by
means of the value of a global variable. Comparison of both processes is done
on the level of function-based blocks, or also called dependable blocks. For an
efficient comparison, we create signatures of these dependable blocks, which are
exchanged between both processes. Figure 1 shows a schematic of the redun-
dant execution and block-based comparison. A process is duplicated at its entry
point before calling main. All code within the program is executed redundantly
(step 1). Binary instrumentation divides this code into blocks, which are aligned
at function boundaries (step 2). Signatures of these blocks are calculated in each

dependable
code

1
leading

process p

2

trailing
process p′

3

si
gn

at
ur

eb1
b2
b3

b′
1

b′
2

b′
3

Fig. 1. Instrumentation on function-based dependable blocks bn and redundant exe-
cution in processes p and p′.

Fault-Tolerant Execution on COTS Multi-core Processors 21

process and transferred from the leading process to the trailing process (step 3).
There, signatures are compared to detect errors. We use a FIFO queue in shared
memory between both processes for signature exchange, which implicitly enforces
the correct ordering between the leading and the trailing process.

3.2 Signature Generation

To compare both executions of redundant blocks, we implemented a signature-
based approach to integrate all modified data within a block. For signature
creation we selected 32 bit CRC, which is available as the crc32 instruction in the
Haswell ISA. This allows a fast calculation with guaranteed detection of single
bit flips. To create a signature, all registers of a dependable block are examined
by the instrumentation tool and instructions are inserted for all used or defined
registers to calculate a signature of the register content. If the same register is
written multiple times inside a single block, it is sufficient to include the last
value of the register in the signature. This is due to the fact that erroneous
intermediate values either are propagated to other registers that are also added
to the signature or the erroneous value is transitive over multiple operations
(for example additions with same source and destination). Any register that is
redefined inside the block would need to have the last value before the redefinition
to be accumulated into the signature. A special case involves the memory write
operations, since afterwards, their used registers are free to be newly assigned.
In this case, data and addresses of the memory operation could be lost at the
end of the block. As a consequence, memory write operations are immediately
followed by their signature accumulation instructions. Further, floating-point
operations are supported, and their used registers are also added to the signature.
Since these instructions work on floating-point registers, an additional step is
required, where we copy chunks of 64 bits into a general purpose register before
calculating the CRC signature. Figure 2 shows an example instrumentation with
two memory instructions and three ALU instructions. Register R15 is used to
accumulate the CRC signature, while register R14 holds the signature of the other
process for comparison. If these registers are already in use by the program code
of the current block, two other free registers are used. A block is split in case no

mov (%rax), %rbx

add $0x01 , %rbx

add $0x02 , %rbx

mov %rbx , (%rax)

mov $0x03 , %rbx

mov (%rax), %rbx

add $0x01 , %rbx

add $0x02 , %rbx

mov %rbx , (%rax)

crc32 %rbx , %r15

mov $0x03 , %rbx

crc32 %rax , %r15

crc32 %rbx , %r15

Fig. 2. Instrumentation of five instructions: used registers are accumulated by the
hashing function crc32 at the end of the block. Memory write operations require an
immediate signature accumulation (see 5th line in code listing on the right).

22 F. Haas et al.

free registers can be found for storing the signatures. Splitting is repeated until
at least two free registers are available.

3.3 Signature Exchange

Error detection requires the comparison of the redundant processes’ signatures.
Unfortunately, exchanging the signature within a transaction always results in
an abort due to conflicting accesses. To overcome this, the signatures must be
exchanged before the transaction is started in the trailing process. As a con-
sequence, the process without transactions has to execute its block completely
before the corresponding block of the transaction-enhanced process can be exe-
cuted. In between, the signature is exchanged through a FIFO queue imple-
mented in shared memory. The process that writes its signature to the queue is
named leader, since its execution is at least one block ahead. The other process
is named trailer. The trailer reads the leader’s signature from the FIFO queue,
stores it in a reserved register, and executes its block transactionally (see Fig. 3).
Then the transaction is started, the block’s code is executed and the signature
is calculated. Before committing the transaction, both signatures are compared.
In case of a mismatch, the transaction will be aborted. The use of a FIFO queue
instead of a simple signature exchange buffer is beneficial for performance. The
trailing process is slower, due to additional instructions for transactions and sig-
nature comparison. The FIFO queue now allows the leader to run ahead a fixed
number of blocks, which is determined by the size of the queue. If writes from

Time

Leader Trailer

Block 5
Calc. signature

FIFO buffer

Exchange signature

TX begin

Block 5’
Calc. signature

Compare

TX abort or TX commit

Block 5
Calc. signature

Kill & restart leader

Fig. 3. Detailed view on the interlaced execution of both redundant processes. The
calculated signature is exchanged through a FIFO buffer and compared with the local
signature of the trailing process. Mismatches lead to transaction rollback of the trailing
process and restart of the leading process.

Fault-Tolerant Execution on COTS Multi-core Processors 23

the leader process and reads from the trailer process are separated, cache line
collisions vanish.

3.4 Error Recovery and Containment

Error detection takes place at the end of the transactional block in the trailing
process. Before committing the transaction, the locally calculated signature and
the leading process’ signature are compared. In case of a detected error, the
transaction is explicitly aborted. Afterwards, the trailing process starts over at
the beginning of the block, which previously was hit by the transient error.
However, the leading process is at least one block ahead and not able to roll
back to a point before the execution of the erroneous block. To overcome this,
the leading process is killed by means of the operating system and a fork creates
a new leading process. Also, the FIFO queue is cleared, since the signatures,
which have already been produced, are probably faulty. The program execution
then continues at the beginning of the previously faulty block. Figure 3 shows
the transaction abort after signature comparison, with termination and restart
of the leading process, which then executes the same block again. After rollback
and forking the new process, the execution is guaranteed to be error-free, since
the transaction rolled back and the leading process is replaced by a copy of
the correct process. Memory protection between both processes avoids error
migration from one process to the other. All data that is written to memory by
the trailing process within a block becomes visible only if both signatures are
equal, since the signatures are compared inside of the transaction.

Transactions may not only abort explicitly due to detected errors. Over-
flowing cache, unfriendly instructions, or other external influences can cause a
transaction to abort. If a transaction aborts, the abort handler checks the status
and only if an explicit abort was forced due to a detected error, the error handler
is called. Otherwise, the transaction is simply restarted.

4 Hardware Enhancements

The unmodifiable Haswell micro architecture impedes hardware enhancements,
which can further improve our approach. Thus we investigated the potential
impact of the following hardware-based enhancements.

4.1 Signature Generation

Since the most relevant bottleneck is the signature generation, our approach
benefits from hardware signature generation. A possible hardware extension may
calculate the signature implicitly, by issuing an accumulation on every read from
a register and on every write to a register or to memory. The accumulation can
happen in a dedicated register, which can be reset and read by the software. The
instrumentation tool is then only required to reset the signature register at the
beginning of a block. The comparison at the end of the block reads from this
signature register instead of the reserved general purpose register.

24 F. Haas et al.

4.2 Hardware Queue

Further improvement is possible by supporting signature exchange in hardware.
This requires a mechanism to send data uni-directionally between individual
cores, additionally with buffering to form a FIFO queue. It is sufficient to connect
pairs of cores, a queue between every single core is not required. The assignment
of processes to cores is handled by the software library.

4.3 Transactional Memory

Enhancements to TSX can also increase the performance and the versatility
of our approach. Transactions should not abort in the error-free case, since
conflicts do not occur. However, transactions are limited in their size, which
depends on the cache, and are sensitive to interrupts and other system-related
events. Also various instructions are not allowed to be executed inside of a
transaction. Robust transactions surviving such events would allow a guaran-
teed transactional execution, resulting in a better coverage and less overhead for
instrumented programs. Escape actions allow to read or write data in or out of
a transaction without triggering a conflict. This enables parallel transactional
execution of both redundant processes. In this case, signatures can be exchanged
during the commit phase, and the transaction will only be allowed to commit if
the signatures match. Otherwise, both transactions are rolled back and restarted.

5 Evaluation

The implementation of the concept described in the previous sections was eval-
uated by enhancing real-world programs. Execution of these programs is pos-
sible on existing hardware that supports the TSX instructions. In our setup,
we used an Intel Xeon E5-2697 v4 “Broadwell-EP” with Turbo-Boost disabled.
Further, hyper-threading was disabled to avoid transaction capacity problems
due to shared L1 caches. A subset of the SPEC CPU 2006 benchmark suite [6]
was used to compare the execution times of software with fault-tolerance dis-
abled and enabled. Due to the restrictions of TSX on the length of transactions,
and instructions that are not allowed in transactions, some benchmarks must
have been elided from the evaluation. In this section, we break down the run
time overhead and discuss its main sources. The effect of the possible hardware
improvements proposed in Sect. 4 on the performance is shown afterwards.

5.1 Performance Overhead

On the Xeon E5 v4, the redundant execution on two cores takes more than
twice the time for some benchmarks (see Fig. 5). To determine the sources of the
overhead, individual parts of the instrumentation have been disabled. Results
are shown in Fig. 4 and described in the following paragraphs.

Fault-Tolerant Execution on COTS Multi-core Processors 25

Transactional Overhead. One source of overhead is the transaction instructions,
which wrap the dependable blocks in the trailing process. Since TSX does not
guarantee a non-conflicting transaction to commit eventually, aborts due to other
reasons may occur. These reasons are for example cache overflows, exceptions,
and interrupts. Such aborts are transparent to the instrumented program, since
the affected transaction is executed again. The chances to commit successfully
are high for the second try of a transaction, depending on the abort reason.
The resulting overhead of aborted and restarted transactions consists of the
time needed to rollback the transaction plus the time needed to re-execute the
code inside of this transaction. Cache overflows and exceptions may lead to
never-committing transactions. In this case, the affected block is executed non-
transactional by setting a flag for a conditional jump placed before the transac-
tion start and end instructions. Within Fig. 4, the fraction of the performance
overhead related to transactional memory instructions is shown in the black
bars at the bottom (“Transaction”). Table 1 lists the executed transactions per
benchmark, together with the average percentage of transaction aborts. Aborts
due to cache overflow relative to the total number of transaction aborts and the
number of non-transactionally executed blocks relative to the overall number of
transactions are shown in the middle of Table 1.

Signature Generation. Signatures are calculated at the end of every block, except
for memory write instructions. For these, the signature is accumulated directly
after the write instruction. The overhead of signature generation depends on the
size of the blocks and on the number of blocks. Larger blocks decrease the overall
overhead of signature generation, since less signature calculations are required.
The percentage of overhead due to signature generation is shown in the bars
labeled “Signature” in Fig. 4.

401
.bz

ip2

410
.bw

ave
s

429
.m

cf

433
.m

ilc

434
.ze

usm
p

445
.go

bm
k

456
.hm

mer

458
.sje

ng

462
.lib

qu
ant

um

473
.as

tar

0%

20%

40%

60%

80%

100%

Transaction Signature Communication Instrumentation

Fig. 4. Performance overhead arising from transaction instructions, signature genera-
tion and exchange, and binary instrumentation.

26 F. Haas et al.

401
.bz

ip2

410
.bw

ave
s

429
.m

cf

433
.m

ilc

434
.ze

usm
p

445
.go

bm
k

456
.hm

mer

458
.sje

ng

462
.lib

qu
ant

um

473
.as

tar

0%

200%

400%

0%
47%

140%

Fig. 5. Relative execution time overhead on an Intel Xeon E5 v4 (gray bars). Aver-
age performance overhead is 140%. With emulation of hardware support for signature
creation and exchange (black bars), average overhead is reduced to 47%.

Core-to-Core Communication. The performance of the communication between
redundant processes is crucial, since signature reception is on the critical path
of the trailing process. The FIFO queue decouples writing to and reading from
the signature exchange buffer. Transmitting signatures from one core to another
is still costly, since reading a cache line full of signatures always entails a cache
miss. The execution time overhead related to signature exchange is shown in
Fig. 4, labeled “Communication”.

Instrumentation Overhead. Additionally, we evaluated the performance over-
head induced by the duplicated execution itself. In the instrumentation phase,
signature generation, exchange, and comparison, as well as the transaction
instructions were omitted. Only code that is required for duplicated process
execution, consisting of process-identifying code and register-saving code, is
inserted. Also, the redundant process is created. The gray bars on top in Fig. 4
(“Instrumentation”) show the instrumentation overhead. On average, the instru-
mentation overhead is 36%.

5.2 Impact of Proposed Hardware Enhancements

To estimate the maximum possible performance improvements with the pre-
viously proposed hardware enhancements, we modified the instrumentation to
emulate the availability of signature generation and exchange in hardware. This
emulation requires the modification of the signature comparison, since it is
no longer possible to use real and correct values for the signatures. Signature
comparison can be replaced in a way where the number and type of instruc-
tions can be the same, but the comparison results are always equal. By remov-
ing the crc32 instructions in the instrumentation, we get an emulation of the
hardware-integrated signature creation and a timing behavior close to what can
be expected. To estimate the maximum performance improvement in case of a

Fault-Tolerant Execution on COTS Multi-core Processors 27

hardware-assisted core-to-core communication, we modified the instrumentation
to assume zero cost for writing and reading signatures. Calls to the appropriate
functions are replaced with nop, and the signature comparison was disabled as
described above. This is required to execute the program, otherwise the error
detection would always roll back due to mismatching signatures. The emula-
tion of hardware support for signature generation and exchange leads to signif-
icantly improved performance. The relative performance overhead of our app-
roach decreases to 47% on average and below 10% for some benchmarks (see
Fig. 5 and the rightmost column in Table 1).

Table 1. Performance of instrumented benchmarks. The number of transactionally exe-
cuted blocks is listed with the relative amount of aborted transactions. Cache-related
aborts are relative to aborted transactions and the number of non-transactionally exe-
cuted blocks is relative to the total number of blocks. The execution time is relative
to the execution time of the original benchmark. In the rightmost column, the relative
execution time of instrumented benchmarks with emulation of hardware support is
listed.

Benchmark # blocks Aborts Cache no TX rel. ex. time HW opt.

401.bzip2 10.9 M 0.64% 78.7% 0.25% 1.26 1.05

410.bwaves 3.6 M 3.52 % 22.6% 0.33% 1.07 1.05

429.mcf 2.6 M 8.91% 95.6% 4.30% 1.21 1.03

433.milc 9.6 M 19.13% 5.8% 2.19% 1.19 1.07

434.zeusmp 27.7 M 0.15% 83.3% 0.03% 1.28 1.20

445.gobmk 653.6 M 0.03% 59.5% 0.01% 4.50 2.49

456.hmmer 47.8 M 0.22% 83.6% 0.09% 2.55 1.45

458.sjeng 265.6 M 0.06% 10.1% 0.00% 5.49 2.73

462.libquantum 0.7 M 2.48% 99.6% 1.24% 3.18 1.36

473.astar 127.3 M 2.27% 99.0% 1.03% 2.32 1.34

6 Limitations and Future Work

The efficient implementation of transactional memory in Intel TSX allows fast
checkpoint creation and rollback. Since it is a fixed hardware implementation,
some limitations appear when leveraging TSX for fault-tolerant execution. As
an optimistic and best-effort synchronization mechanism, the eventual successful
execution of a transaction cannot be guaranteed. This can lead to regions in the
application code containing unfriendly instructions, which cannot be executed
in a transaction. Additionally, transactions may overflow easily if the L1 cache
exceeds due to its limited associativity. The fixed hardware implementation of
TSX causes some limitations, which must be handled by the instrumentation.
Since TSX uses the L1 cache to hold back data which is not yet committed, a

28 F. Haas et al.

transaction must be aborted in case of a full cache or cache-set. This can happen
frequently, since the L1 cache is eight-way set-associative.

A transaction may abort not only due to conflicting memory accesses, but
also due to unfriendly instructions or other system events, like interrupts. Most
unfriendly instructions modify processor flags or control registers, and thus rarely
occur in user space code. In case of an abort due to exceptions or interrupts, the
transaction usually commits after a few tries. However, TSX does not guarantee
that a transaction commits eventually, and some instructions always lead to a
transaction abort. If our library detects repeated aborts of the same transaction,
the affected block must be executed without a transaction. In fact, the execution
of this specific block is then vulnerable. Error detection is still possible, but the
non-transactional execution prevents a rollback. This reduces the fault-tolerant
coverage of the application, but the instrumentation of the program can be
optimized to lower the number of always aborting transactions, e.g. by splitting
blocks to shorten transactions. Further, TSX transactions cannot be paused in
a way that would allow to escape the transaction. Escape actions would allow
to use transactions in both processes and to compare the signatures within the
same transaction. In case of a rollback, the leading process would not be required
to be killed, since it still would be possible to rollback the faulty block. As a
workaround, the interleaved execution with signature exchange through a FIFO
queue was implemented. However, this makes rollback complicated, since the
leading process has to be killed and newly forked.

The presented approach is currently not capable of instrumenting multi-
threaded programs, due to the difficulty of organizing the program execution
of multiple redundant threads, synchronization in between, and assurance of
correct execution after error recovery. This challenging topic will be part of our
future work.

For a complete sphere of replication, calls to external functions and system
calls require interception. Currently, external functions are executed without
instrumentation in both processes to ensure the same functionality as the origi-
nal, non-instrumented application. However, this prevents I/O on the same file
handle. With an enhanced sphere of replication, redundant processes become
transparent for their environment. External functions then are executed only
once, with their result being provided to both redundant process. This is also
required to support synchronization in redundant parallel applications.

7 Conclusion

In this paper, we proposed a software/hardware hybrid fault-tolerant execu-
tion on an Intel Xeon “Broadwell-EP” multi-core CPU. Transient errors can be
detected by redundant execution and signature-based process comparison. By
leveraging the checkpointing and rollback mechanisms of Intel’s hardware trans-
actional memory, an efficient method for error recovery and containment was
presented.

Binary instrumentation enhances already compiled programs without requir-
ing modifications of the source code. This allows a wide range of applications for

Fault-Tolerant Execution on COTS Multi-core Processors 29

fault-tolerant execution with full coverage of the program code. The resulting
execution time overhead of redundant and fault-tolerant execution was shown to
be 140% on average on existing hardware. Signature generation and transactional
execution are the main contributors to the increased execution time. However,
hardware enhancements and the integration of advanced techniques for signature
creation and exchange reduce the average run time overhead to 47%.

References

1. Bernick, D., Bruckert, B., Vigna, P.D., Garcia, D., Jardine, R., Klecka, J., Smullen,
J.: NonStop R© advanced architecture. In: Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN), pp. 12–21 (2005)

2. Fetzer, C., Felber, P.: Transactional memory for dependable embedded systems. In:
Proceedings of the International Conference on Dependable Systems and Networks
Workshops (DSN-W), pp. 223–227 (2011)

3. Haas, F., Weis, S., Metzlaff, S., Ungerer, T.: Exploiting Intel TSX for fault-tolerant
execution in safety-critical systems. In: Proceedings of the International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pp. 197–202 (2014)

4. Haas, F., Weis, S., Ungerer, T., Pokam, G., Wu, Y.: POSTER: fault-tolerant execu-
tion on COTS multi-core processors with hardware transactional memory support.
In: Proceedings of the International Conference on Parallel Architecture and Com-
pilation Techniques (PACT), pp. 421–422 (9 2016)

5. Hammarlund, P., Martinez, A.J., Bajwa, A.A., Hill, D.L., Hallnor, E., Jiang,
H., Dixon, M., Derr, M., Hunsaker, M., Kumar, R., et al.: Haswell: the Fourth-
Generation Intel Core Processor. IEEE Micro 34(2), 6–20 (2014)

6. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

7. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the International Symposium on Computer
Architecture (ISCA), pp. 289–300 (1993)

8. Kuvaiskii, D., Faqeh, R., Bhatotia, P., Felber, P., Fetzer, C.: HAFT: hardware-
assisted fault tolerance. In: Proceedings of the European Conference on Computer
Systems (EuroSys), pp. 25:1–25:17 (2016). http://doi.acm.org/10.1145/2901318.
2901339

9. LaFrieda, C., Ipek, E., Martinez, J.F., Manohar, R.: Utilizing dynamically coupled
cores to form a resilient chip multiprocessor. In: Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pp. 317–326 (2007)

10. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: PEBIL: efficient static
binary instrumentation for Linux. In: Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 175–183 (2010)

11. Mukherjee, S.: Architecture Design for Soft Errors. Morgan Kaufmann Publishers
Inc., San Francisco (2008)

12. Reinhardt, S.K., Mukherjee, S.S.: Transient Fault Detection via Simultaneous Mul-
tithreading. In: Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), pp. 25–36 (2000)

13. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: soft-
ware implemented fault tolerance. In: Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pp. 243–254 (2005)

http://doi.acm.org/10.1145/2901318.2901339
http://doi.acm.org/10.1145/2901318.2901339

30 F. Haas et al.

14. Shye, A., Blomstedt, J., Moseley, T., Reddi, V.J., Connors, D.A.: PLR: a soft-
ware approach to transient fault tolerance for multicore architectures. IEEE Trans.
Dependable Secure Comput. (TDSC) 6(2), 135–148 (2009)

15. Yalcin, G., Unsal, O.S., Cristal, A.: Fault tolerance for multi-threaded applications
by leveraging hardware transactional memory. In: Proceedings of the International
Conference on Computing Frontiers (CF), pp. 4:1–4:9 (2013)

Accelerators

OpenCL-Based 6D-Vision on Heterogeneous
System on Chips

Michael Bromberger1(B), Steffen Ehrle1, Michael Scharrer1,2,
Lukas Erlinghagen2, and Jens Schick2

1 Chair of Computer Architecture and Parallel Processing,
Karlsruhe Institute of Technology, Karlsruhe, Germany

bromberger@kit.edu
2 MYESTRO Interactive GmbH, Karlsruhe, Germany

Abstract. Object tracking is an important task in many applications.
6D-Vision circumvent drawbacks of approaches solely based on sequences
of images. But 6D-Vision is computationally very expensive, hence most
approaches rely on non-embedded hardware or even on hardware accel-
eration to enable a high-performance execution. This work considers 6D-
Vision on a low-power heterogeneous System on Chip for the first time.
Therefore, we present a powerful 6D-Vision pipeline that fully exploits
the capabilities of a FPGA-based System on Chip. We reduce the com-
plexity of the design using OpenCL and introduce different optimizations
in order to implement a high-performance calculation of a 6D field. Our
6D-Vision pipeline processes 24 frames per second and provides useful
information about a traffic scene. Moreover, we have successfully inte-
grated the design for a gesture control application.

1 Introduction

Detecting, tracking, and classifying moving objects is a significant task for many
applications, especially for mobile systems. Autonomous driving or gesture con-
trol often relies on tracking moving objects in accordance with minimum frame-
rate, maximum power, and maximum cost constraints. A 6D-Vision system
describes each point in a scene by a 3D position and a 3D velocity vector, hence
it allows tracking and classifying of objects. 6D-Vision is a key technology for
intelligent vehicles and provides knowledge about the current car situation [6].
Knowing the movement of an object, which is represented as a cluster of 6D
points, an estimate of the likelihood for a collision can be given. Sequences of
stereo camera images are used to calculate a 6D field [4].

Reliable tracking of moving objects based on 6D-Vision requires a certain
density of the 6D field. Furthermore, dense fields make the system more robust
against inaccurate 6D vectors. Most of the current approaches rely on high-end
hardware, since the main parts, i.e. stereo vision and optical flow are compu-
tationally very intensive. Implementations of such algorithms, which calculate
6D fields of sufficient quality, are too slow on low-power embedded CPUs as our

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 33–46, 2017.
DOI: 10.1007/978-3-319-54999-6 3

34 M. Bromberger et al.

investigation reveals. But for many applications including autonomous cars, com-
mon desktop or high-end hardware are too expensive or too power-consuming.
Moreover, mobile systems should include multiple 6D-Vision systems in order to
achieve redundancy and a surround view.

Heterogeneous System on Chips (SoCs) are promising platforms for such
tasks, since they make hardware acceleration possible while also allowing CPU
implementations. Stereo vision greatly benefits from such an acceleration. Most
of the work in 6D-Vision is mainly focused on density and accuracy of 6D
fields instead of low-power and low-cost solutions. A proposed heterogeneous
6D-Vision system offers a performance of 20 frames per second for images of
size 320 × 240, but it uses a high-end GPU and it is not clear which FPGA is
used [1]. The work of Sahlbach et al. [11] is most related to our work, but has sev-
eral drawbacks. Firstly, the allowed maximum disparity as well as displacement
between positions over time is limited, hence it prevents the usage for real-world
scenarios. Secondly, the image size is small and it uses a high-end FPGA. Finally,
the design is implemented using a hardware description language which is error-
prone and time-consuming. But the main drawback of their paper is that an
evaluation about the quality is missing. Therefore, we address following issues
regarding the state-of-the-art:

1. FPGAs are suitable as part of a high-performance 6D-Vision system, but
require low-level programming

2. Few approaches have its focus on high-performance 6D-Vision
3. No approach considers an entire solution on a low-power heterogeneous SoC

for 6D-Vision

To overcome the first issue, we exploit the arise of OpenCL to implement FPGA
designs. Based on OpenCL, we analyze, design, and implement components that
are required by a 6D-Vision system. Due to hardware limitations, concessions
have to be made regarding the density and accuracy of the 6D field. We describe
several design choices that enable a processing of these components on a low-
power heterogeneous SoC. Our main contributions in this work are:

– We outperform the most related work, i.e. [11] in terms of performance, sup-
ported disparities as well as flow displacements. We also provide an evaluation
of the accuracy.

– We apply several optimizations, i.e. a multi iteration approach and intro-
duce a sorting step which better fits to a FPGA, and make several design
choices which drastically reduces resource consumption and increases the per-
formance.

– We analyze the performance of the entire 6D-vision pipeline for different use-
cases. The resulting 6D-Vision data provide valuable information about traffic
scenes. Furthermore, we show that a gesture control system successfully works
using our low-power 6D-Vision design.

– This is the first work that considers the reduction of the design complexity for
high-performance 6D-Vision using OpenCL.

OpenCL-Based 6D-Vision on Heterogeneous System on Chips 35

2 Preliminaries

Our goal is a 6D-Vision system that provides reasonable performance for different
applications. Moreover, our design goals comprise reducing resources as far as
possible and focusing on a low power and low-cost solution, while we target
to maximize the accuracy of a 6D field under those hardware constraints. This
is especially important for mobile systems where hardware costs and energy
consumption play a mayor role during the design phase. Minimizing the design
effort is equally important, hence we exploit a high-level hardware language, i.e.
OpenCL. Above design goals prevent us from using variational methods for 6D-
Vision, which are commonly used, hence we rely on another solution. We use an
approach for computing 6D vectors which is based on pixel correspondences from
multiple images that are taken from different positions and instances in time.
Using corresponding pixels in four frames of two stereo pair images, we can
calculate an estimation for a 6D vector regarding the current considered point
in the scene. In Fig. 1, l and r present the current stereo image, while l′ and r′

present the previously taken image. To calculate a 6D vector for a certain point,
we have to find a 4-pixel correspondence, which needs three correspondence
pairs. Two pairs are calculated via stereo vision (green lines) and the other
using optical flow (orange line). The major issue with the approach above is
that if one of the three correspondence pairs is undefined, no 6D vector can be
constructed. Stereo Vision allow to calculate a 3D position vector of a certain
point in an image. Optical flow calculates the position of the same point, but at
the time of the previous frame. Hence, we have enough information to calculate
a 3D velocity vector. The two 3D vectors form the final 6D vector of a point
in the scene. Hence, we divide the problem of calculating 6D data into two sub
problems.

Fig. 1. Fusion of stereo and optical flow. Image from [10]. (Color figure online)

36 M. Bromberger et al.

The computation complexity of stereo vision is reduced to a 1D search prob-
lem by using warped images. Such theoretical restrictions are not possible or
optical flow, because points can move in any direction. Therefore, we use two
different algorithms for optical flow and stereo matching, which is different to
the design in [11]. This allows to reduce significant amount of resources for stereo
vision as well as optical flow, since we integrate different optimizations which
would not be possible else. In the following, we discuss the design decisions for
stereo vision and optical flow.

2.1 Stereo Vision

Semi-global method (SGM) approaches rely on high bandwidth and huge mem-
ory resources, which limits the usage of low cost FPGAs as well as the perfor-
mance [7]. Since our focus is on a solution which uses less resources and offers
a high performance, we decide to consider local methods. There are two main
local approaches, Sum-of-Absolute-Differences (SAD) and sum of hamming dis-
tances (SHD). Applying preprocessing methods on the input image, e.g. sobel
and census transform, enables to increase the accuracy of the matching.

We did an extensive evaluation of different approaches with the result, that
for SAD in combination with a sobel preprocessing step the accuracy is increased
by using a larger region around a pixel, i.e. block, but the FPGA resource uti-
lization drastically increases with the number of possible disparities. Using SHD
with census transformation, resources are drastically reduced, since less adders
are required due to hamming operations. Moreover, a line matcher which exploits
a census transform pattern similar to min census [8] provide similar accuracy
compared to block matchers for SHD, which further reduces resources.

Filter. A min census transform, lcensus and rcensus, is applied to the left l()
and right r() image. Hence, a pixel p is presented as a bit field of length n. a(i)
defines a list of n pixel displacements.

lcensus/rcensusi(p)i=1,..,n =

{
1, if l(p + a(i)) > l(p)

0, otherwise
(1)

Stereo Matcher. As cost function, we use SHD within a 1×9 region of possible
correspondences around a pixel p = (u, v), which results in the best choice
between execution time, accuracy, and resource consumption according to our
evaluation. The best corresponding pixel of p is

corresp(p) = arg min
p̄∈Ap

cost(p, p̄)

cost(p, p̄) =
4∑

i=−4

hamming(lcensus(p) + (i, 0)), rcensus(p̄ + (i, 0)))
(2)

The distance regarding the dimension u of the image between p and p̄ presents
the disparity value of p.

OpenCL-Based 6D-Vision on Heterogeneous System on Chips 37

Sub-pixel Matching. A single pixel difference means often a large real-world
distance, hence it is useful to exploit the sub-pixel domain. Therefore, we use
linear interpolation which is suitable for the above task and has low resource
impact on the FPGA compared to more computationally intensive interpolation
approaches, since low resource utilization is one of our most important design
goals.

Post-processing. We apply two steps to reduce the amount of false matches,
which impacts density but increases the accuracy of matches. Firstly, we use a
uniqueness criterion. Since camera images include noise, it is quite possible that
the lowest value is not the best match. But often the lowest and second lowest
value are also similar, even with sub-pixel matching. Therefore, we accept a
match only, if the difference between the lowest and the third lowest value is
greater than a pre-defined minimum, which is determined empirically. Secondly,
we exploit left-right consistency check [7]. Disparity values are only accepted, if
matching from left to right and right to left returns only a small difference for
the disparity of a certain position.

2.2 Optical Flow

As already mentioned, most optical flow approaches are based on total varia-
tional methods, but they do not allow sufficient performance on resource-limited
architectures. Local approaches for optical flow require to search correspondence
pixels in a 2D region around a certain pixel and use, e.g. SAD. But as our eval-
uation for SAD approaches reveals, such an approach is very resource intensive,
hence limits supported flow displacements. This aspect strongly influences the
accuracy. Therefore, we apply an approach which is based on an unique match
approach [12], which avoids the usage of adders and has no limit for supported
flow displacements.

Generating Features. The first part of the algorithm generates unique fea-
tures for each pixel in the right and left image individually. Each feature consists
of an image position (u, v) and a 24-bit key. The key is generated from a 7 × 7
pixel region around the current pixel by exploiting a variant of a census trans-
form. It was shown that such keys have a low probability to be equal for two
different pixels, if they do not represent the same point in scene. But still, there
are collisions because of recurring patterns in the scene, hence to avoid false cor-
respondences we have to filter them out. Since filtering results in a low density,
we only filter out keys which occur on more than 16 different positions.

Matching Features. In this step, equal keys in both images are identified, in
case there are multiple features using the same key, the closest ones regarding
the pixel position are chosen. This approach is reasonable because very large dis-
placements are unlikely, if the recording rate is low. In [12], the authors use hash

38 M. Bromberger et al.

tables for finding matches. This has several drawbacks for a FPGA execution.
Assuming the entries of the hash table are a single bits, where a bit states the
existence of a key in the other frame, the hash table has a size of 224 bits = 2 MB
which is too large for the on-chip memory resources of low-cost FPGAs. This
is even worse in our case where several positions have to be stored in the hash
table. Hence, it requires the usage of off-chip memory and storing and loading
data from this memory in a random access way. Since the hash is generated
on the FPGA, we have a backward dependency because the current memory
access depends on the previous one and a load requires up to hundreds of cycles.
Therefore, we need a different solution to efficiently port the above algorithm
to a FPGA. Our novel solution is to sort features according to the key for both
images. After sorting, above described matching becomes an easy task.

Post-processing. To remove likely incorrect matches, we apply two differ-
ent post-processing steps. We discard all matches having an unrealistic large
displacement and accept correspondences only, if there is a certain number of
matches in the neighborhood.

3 Related Work

In this section, we summarize current work in 6D-Vision. Additionally, we also
give a brief overview about optical flow and stereo vision, since it is part of our
6D-Vision approach.

3.1 6D-Vision

Vogel et al. [14] propose a variational approach, but despite the high accuracy
the computational complexity rule out solutions on low-cost hardware. 6D data
based on monocular camera images requires to solve an optimization problem
and high computing power [15]. A high-performance approach running on a
common consumer laptop was proposed in [2]. A system exploiting heteroge-
neous hardware resources relies on high-end GPUs and FPGAs which are too
power-consuming for many embedded applications [1]. The most related work to
our work is too limited regarding allowed disparity and possible flow displace-
ments [11]. Moreover, their solution relies on the resource hungry SAD approach
and share the same resources for optical flow and stereo vision which limits per-
formance. They also do not apply any post processing steps and do not provide
an evaluation about the accuracy of the resulting 6D-field. It must be noted,
that 6D vision is used in commercial cars but details are not publicity available.
Therefore, we present the first 6D vision approach focusing on a low-resource
and low-cost design.

3.2 Stereo-Vision

Approaches resulting in highly accurate depth maps are based on a global or
SGM which are very time-consuming [7]. SGM requires high memory bandwidth

OpenCL-Based 6D-Vision on Heterogeneous System on Chips 39

and high internal resources. A recent approach exploits convolutional neural
networks, but it is also very compute-intensive [17]. Most high-performance
approaches are based on hardware accelerators, e.g. FPGAs and GPUs, and
use local approaches, e.g. SAD, which are easier to parallelize. Similar to [8], we
implement a variant of the mini census transform method as stereo vision core
on a FPGA, but our method supports more disparities. Additionally, our design
easily enables a trade-off between resource consumption and execution time by
an iterative approach.

3.3 Optical Flow

Variational approaches are the basis for most optical flow algorithms [16]. Such
approaches rely on optimizing a global energy function which is highly non-
convex. While the quality of the result is promising, the complexity hampers
high-performance execution. Such global algorithms are accelerated by orders
of magnitude using FPGAs, but even if they provide enough performance for
above described applications the resource consumption is significant high [3].
This is mainly caused by the warping stage required for the hierarchical app-
roach. Our focus is on a low resource consuming design, however above method
could be integrated into our design for the optical flow matcher as well. Local
approaches based on unique features like the one which is used in our work,
provide a high frame rate on modern desktop CPUs [12]. A reduced version was
optimized for a FPGA execution [5], but the small allowed maximum displace-
ment between frames limits the usage for real-world applications, e.g. self-driving
cars, and their solution requires more internal memory resources, since they do
not apply min census. An important filter for ambiguous features, which reduces
false matchings, is missing. In [13], they propose a FPGA-based approach requir-
ing a two-dimensional search which doubles execution time and highly increase
resource consumption but calculates more accurate flow maps.

4 FPGA-Based SoC for Supporting 6D-Vision

Our system architecture is shown in Fig. 2. As input a stereo image recorded
by a stereo camera or simulation data are used. Both images will be warped,
i.e. rectified, and used to calculate a disparity and a flow map afterward. The
Stereo Matcher and the Optical Flow Matcher are performed on a FPGA,

Stereo
Camera

Image Data

Warp
Buffer

Stereo
Matcher

Optical Flow
Matcher

Correspondences

Buffer
Fusion 6D field

left

right

Fig. 2. Pipeline for generating 6D data.

40 M. Bromberger et al.

while the Fusion, which is not computationally expensive, are executed on a
CPU. All modules form a macro pipeline. The Stereo Matcher and the Optical
Flow Matcher run data-parallel, hence in the same pipeline step. As writing to
random memory addresses is significantly slower compared to contiguous access
patterns (up to ten times on our evaluation system), we reduce random accesses
to a minimum.

4.1 Warp

Warping is an important step for stereo vision, since it reduces the correspon-
dence problem to 1D. Usually, so-called reverse warping is performed, but it
demands two data-dependent lookup operations. We test a CPU version of the
reverse warping algorithm but no real-time execution is feasible. Therefore, we
use pre-rectified images as input which is quite common in literature and consider
warping in future work.

4.2 Stereo Matcher

A census transform is applied to the warped left and right frame, hence two
census transform units are implemented on the FPGA for performance reasons.
We exploit a large shift register to implement (1) efficiently. The core part of
the stereo matcher, i.e. finding the best correspondence per position, gets the
census transformed frames as input. Again we use a shift register to implement
the function corresp(p). Since the resource consumption linearly grows with the
amount of considered disparities |Ap| and the required amount for most appli-
cations is high, it would be impossible to implement the Stereo Matcher and
the Optical Flow Matcher on a low-end FPGA. Therefore, the used approach
for the Stereo Matcher is to split the task into multiple iterations, where each
iteration considers only a certain amount of possible disparities. The design of
the Stereo Matcher is shown in Fig. 3a. interpolate applies a moving average
on the right frame. By running the Stereo Matcher once with interpolation
and once without, we achieve half-pixel matching. Afterwards, the basic stereo
matcher described above estimates the best disparity on the current disparities
under consideration. This optimum is compared to the previously calculated
optimum. The calculated disparity and minimum cost values are buffered in the
local off-chip RAM of the FPGA and used to choose the best disparity in the fol-
lowing iteration. After the last iteration only the disparity values are transferred
to the local memory and a buffer handles the different bit widths efficiently.
Using above approach, we can reduce FPGA resources while having a higher
execution time and a higher required memory bandwidth, but we are still able
to process the frames in a sufficient rate. The uniqueness check is done in the
stereo matcher core. To enable left-right consistency check, the memory streamer
supports forward and backward streaming. A left-right depth map requires for-
ward streaming, while backward streaming is used for a right-left depth map,
but the disparities are reversed in the memory. The actual check is performed

OpenCL-Based 6D-Vision on Heterogeneous System on Chips 41

Fig. 3. Stereo matcher core including half-pixel matching and exploiting the multi-
iteration approach (a). Different steps of the Optical Flow Matcher (b).

on the CPU because it is computationally less expensive and requires random
access on a row-wise scheme.

4.3 Optical Flow Matcher

In order to calculate the final flow map, we perform several steps (A, B, C, and D)
as shown in Fig. 3b. Each step is performed on the FPGA sequentially. We place
buffers before the random access out streamers in order to collect data as far
as possible, which enables memory burst transfers. The first step A generates the
features according to Sect. 2.2 for the current image and applies a preprocessing
for the sorting task. The second step B performs the sorting according to the
24-bit keys. We consider different sorting algorithms which are potentially suit-
able for a FPGA execution. A combination of block sort and merge sort is well
suited [9], but it requires large block sizes to achieve a good performance. Hence,
it consumes a large amount of resources and makes it impossible to implement
it together with other steps on a low-end FPGA. Moreover, reconfiguration of
the FPGA using OpenCL is not possible since it requires roughly 200 ms as we
measured and rules out real-time execution. Therefore, we apply radix sort (see
Fig. 4). Radix sort applies a bucket sort on a portion of the bits in the key in
several iterations, e.g. starting with the 2 least significant bits then using the
next two bits and so on. The parameter i specifies the current iteration, hence
states which bits are considered for sorting. These bits select the buffer to store
the current feature. If a buffer is full, it is written to memory. Counters enable
to have a contiguous chunk of data where each bucket is adjacent to his neigh-
bor without a gap, hence the correct starting address for each bucket in the
memory has to be known to avoid fragmentation. This is achieved by counting
the elements per bucket in advance (left part of Fig. 4a). For the first iteration,

42 M. Bromberger et al.

Fig. 4. Kernel for the radix sort (a). Matcher as part of the Optical Flow Matcher (b).

it is done in Step A. Because of the used sorting, step B has to be performed
several times according to the considered bits of the key. The resource consump-
tion exponentially grows with the number of considered bits, while the execution
time only linearly decreases.

Step C removes keys that occur more than 16 times by using a shift register
of size 16. Finally, Step D performs the matching of features (see Fig. 4b). The
Synchronize unit takes care that always elements from the stream which have
a lower key will be read until keys are equal in both streams. Then all following
equal keys are transfered to two shift registers which are of size k = 16. Padding
is used to invalidate elements in case one stream has more equal keys following.
Since moving data to operators causes additional logic resources by the OpenCL
tool flow, we perform more operations to avoid moving the data. A key of the
reference frame can occur at any position starting from 15 elements before and
15 elements afterwards in the other stream. Between each pair the Euclidean
distance is calculated by using DSP blocks. Additionally, the equality of keys
is considered to avoid false matches. In case, more points having the same key
the ones with the closest distance are selected. If the distance is lower than a
certain limit as discussed earlier, they are transfered to the local memory. Since
sorting (step B) is the performance bottleneck, implementing the Optical Flow
Matcher as pipeline on the FPGA only causes additional resource overhead with
less performance improvement.

4.4 Fusion

Bad matches are removed by taking the values of neighboring pixels into account.
This is computationally simple enough in order to run it on the CPU. Combining
the depth and flow map to a 6D field needs random memory accesses and low
computational effort, hence FPGA acceleration is not required even under high-
performance scenarios. Therefore, we map this task to the CPU.

OpenCL-Based 6D-Vision on Heterogeneous System on Chips 43

5 Evaluation Setup

We use the SoCrates II board as platform of choice. The SoCrates uses a Cyclone
V FPGA, which combines two ARM Cortex A9 running at 800 MHz, a reconfig-
urable FPGA fabric with an external clock of 100 MHz, and 1 GB DDR3 RAM at
a frequency of 333 MHz. There are 41910 Logic Array Blocks (LABs), 112 Dig-
ital Signal Processors (DSPs), and 5 662 720 Memory Bits on the FPGA. The
CPUs and the FPGA share the RAM. The board offers several interfaces like
USB or Ethernet and runs a full-fledged Linux operating system. We measure
the power consumption of the board while running a fully booted but otherwise
idle operating system and get 2 W. The maximum power consumption is around
6 W for computing stereo-vision. We implemented all algorithms in OpenCL,
taking advantage of PC OpenCL drivers and the Altera emulation environment
for fast development and testing reiteration. All OpenCL kernels are put into
Altera’s OpenCL compiler, which generates Verilog code. Thus, each kernel is
synthesized into a specialized IP core for the FPGA. Kernels are connected via
so-called channels, which are hard-coded in the design. A single work item is exe-
cuted per kernel (using enqueueTask()). Out-of-order queues allow a parallel
execution of kernels, which are controlled by event objects. These cores are com-
bined with the FPGA system project and synthesized into a single bitstream.
At runtime, the OpenCL drivers on the SoC’s ARM Linux host take care of
reconfiguring the FPGA with the correct bitstream for the required kernels.

6 Evaluation

In this section, we evaluate the performance and resource consumption of the
different kernels running on the FPGA or CPU. Afterwards, we use the KITTI-
Benchmark [10] to consider the quality of the 6D field.

6.1 Performance and Resource Consumption

In Table 1, we show the resource consumption and performance of different com-
ponents inside the 6D-Vision system. As input we use images of size 640 × 480.
Additionally, we compare the performance against a CPU execution on a core
of the ARM Cortex A9. We use equivalent algorithms, but we optimize them
for CPU execution, e.g. we apply an 8-bit radix sort because it performs best
on CPU. All execution times include OpenCL overhead. The memory accesses
of the kernel itself are part of the kernel execution, hence are included in the
measurements. While Stereo Matching and calculating flow features massively
benefit from a FPGA-based acceleration, sorting is only slightly faster. An exe-
cution of the Stereo Matcher requires ∼3.6 ms and supports 32 disparities in
half-pixel resolution. “Stereo total” comprises 8 calls of the Stereo Matcher
because we consider 128 possible disparities and perform matching from both
sides for the consistency check. “Flow total” includes 3-bit radix sort, because
it offers the best trade off between resource consumption and execution time.

44 M. Bromberger et al.

Table 1. Resource consumption and performance of different components.

Component Time [ms] Speed-Up
FPGA CPU

Stereo Total 28.7 3771.2 131

Flow Total 41.6 1067.7 25.7
Flow Features 3.6 867.6 241
Sort 2 bit 46.8 83.2 1.7
Sort 3 bit 32.3 83.2 2.5
Sort 4 bit 25.1 83.2 3.31
Flow Remove 3.6 18.4 5.6
Flow Match 2.1 107.3 56.1

Resource Amount Utilization

LABs 31,321 75%
DSP blocks 21 19%
Memory Bits ∼1,011k 18%
RAM blocks 234 42%

Frequency 100 MHz

The remaining CPU tasks such as fusion and filtering are much faster than tasks
running on the FPGA. According to the performance measures, the optical flow
is the slowest component of the 6D pipeline, hence each pipeline stage processes
24.0 frames per second. The latency of each frame is 78 ms.

Unfortunately, the current version of the OpenCL framework for the SoCrates
II board has problems with scheduling too many OpenCL kernels in a short time
which causes unexpected crashes. Despite the shared memory data have to be
transfered between OpenCL buffers, which is not efficient yet. Some of above
issues are resolved in the next version of the OpenCL framework. However, we
are able to successfully use our design for gesture control. The goal is to find a
dominant moving object in the scene as well as determining direction and speed
(see Fig. 5a). Therefore, we calculate 6D points using our system and cluster
them on the CPU. The cluster with the highest movement is considered as the
dominant object i.e. the hand.

(a) (b) Scene (c) Resulting 6D field

Fig. 5. Detecting moving hand (a). A real-world traffic scene [10] (b+c). (Color figure
online)

6.2 KITTI Benchmark

We use example sequences from the KITTI benchmark [10] to evaluate the den-
sity of the 6D field. In order to use our pipeline, we crop the original images of
KITTI to size 640×375. Interestingly, the 6D field has a similar density than the
flow map, hence stereo information was most of the time obtained where flow
correspondences are found. The KITTI evaluation tool analyzes the quality of
a totally dense 6D field, and applies simplistic interpolation for submitted fields

OpenCL-Based 6D-Vision on Heterogeneous System on Chips 45

Table 2. Comparison of different approaches.

Method Performance Platform KITTI benchmark

Rank D1-all D2-all SF-all Time

PRSM – 1 core @ 2.5 GHz 1 4.26% 7.28% 9.43% 300 s

PCSF – GPU @ 2.0 GHz 7 8.46% 22.80% 33.02% 0.09 s

HWBSF – 4 cores @ 3.5 GHz 10 20.12% 34.46% 46.02% 7min

VSF – 1 core @ 2.5 GHz 12 26.28% 57.08% 67.08% 125min

Our approach 24 fps (640 × 480) Socrates II 13 28.91% 80.64% 83,81% 0.08 s

[11] 20.15 fps (512 × 384) Virtex 5 – – – – –

[1] 20 fps (320 × 240) FPGA/GeForce

GTX 480

– – – – –

that have a lower density. Therefore, it does not distinguish between points for
that no 6D data is found and wrong results. D1 states the quality of the depth
map, D2 of the flow map and SF for the 6D field. Low values are better. While
we perform at least for stereo vision in a similar range compared to low-ranked
desktop solutions, we perform poor for the 6D field because of the poor optical
flow density (cf. Table 2). But only our approach in the KITTI ranking enables a
high-performance execution on an embedded system, while the only similar one
in terms of performance requires a high-end GPU.

An issue with KITTI benchmark is that accuracy is stated independent from
found objects, hence there is no difference between points which are part of the
row, and points that are part of obstacles. Approaches that uses smoothing can
miss small objects in the scene but get a high accuracy value in the benchmark.
This is caused by the small penalty for missing small objects. Therefore, we
do a qualitative analysis which shows that our approach is useful for providing
information about a traffic scene (see Fig. 5b, c). Objects in the scene can be
found in the 6D field using a clustering of similar 6D vectors. A line connects
points in the current frame with the same point seen at the previous frame and
the color presents the distance, hence the velocity. Therefore, the relatively fast
movement of the black car (red circle) is seen as red lines. Our approach is able
to find the critical objects in the scene.

Compared to [11], our solution has a higher performance despite a slower
clock rate and requires less power (10.56 W against 6 W). As they provide no
accuracy evaluation, comparing the accuracy is not possible. Our approach also
outperforms the solution of Wedel et al. in terms of performance. Results are
difficult to compare, since they have not applied it on the KITTI benchmark.

7 Conclusion

In this paper, we have presented a high-performance 6D-Vision pipeline on a
heterogeneous FPGA-based System on Chip. We discussed and introduced opti-
mizations that allow to implement time critical tasks on a low-cost FPGA. Our
pipeline processes stereo images at 24 frames per second. The resulting 6D field
provides useful information about a traffic scene and is successfully used for
gesture control.

46 M. Bromberger et al.

References

1. Wedel, A., et al.: Stereoscopic scene flow computation for 3D motion understand-
ing. Int. J. Comput. Vis. 95(1), 29–51 (2011)

2. Badino, H., Kanade, T.: A head-wearable short-baseline stereo system for the
simultaneous estimation of structure and motion. In: MVA, pp. 185–189 (2011)

3. Barranco, F., Tomasi, M., Diaz, J., Vanegas, M., Ros, E.: Parallel architecture for
hierarchical optical flow estimation based on FPGA. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 20(6), 1058–1067 (2012)

4. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion
field estimation from stereo image sequences in real-time. In: Daniilidis, K., Mara-
gos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 582–595. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15561-1 42

5. Claus, C., Laika, A., Jia, L., Stechele, W.: High performance FPGA based optical
flow calculation using the census transformation. In: Intelligent Vehicles Sympo-
sium, pp. 1185–1190. IEEE (2009)

6. Franke, U., Rabe, C., Badino, H., Gehrig, S.: 6D-vision: fusion of stereo and motion
for robust environment perception. In: Kropatsch, W.G., Sablatnig, R., Hanbury,
A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 216–223. Springer, Heidelberg (2005).
doi:10.1007/11550518 27

7. Hirschmüller, H., Buder, M., Ernst, I.: Memory efficient semi-global matching.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 3, 371–376 (2012)

8. Jin, M., Maruyama, T.: A fast and high quality stereo matching algorithm on
FPGA. In: 22nd International Conference on Field Programmable Logic and Appli-
cations (FPL), pp. 507–510. IEEE (2012)

9. Koch, D., Torresen, J.: FPGASort: a high performance sorting architecture exploit-
ing run-time reconfiguration on FPGAs for large problem sorting. In: Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pp. 45–54. ACM (2011)

10. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2015)

11. Sahlbach, H., Whitty, S., Ernst, R.: A high-performance dense block matching solu-
tion for automotive 6D-vision. In: Design, Automation Test in Europe Conference
Exhibition, pp. 268–271, March 2012

12. Stein, F.: Efficient computation of optical flow using the census transform.
In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM
2004. LNCS, vol. 3175, pp. 79–86. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28649-3 10

13. Tanabe, Y., Maruyama, T.: Fast and accurate optical flow estimation using FPGA.
SIGARCH Comput. Archit. News 42(4), 27–32 (2014)

14. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid
scene model. Int. J. Comput. Vis. 115(1), 1–28 (2015)

15. Xiao, D., Yang, Q., Yang, B., Wei, W.: Monocular scene flow estimation
via variational method. Multimed. Tools Appl., 1–23 (2015). doi:10.1007/
s11042-015-3091-6

16. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation.
IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1744–1757 (2012)

17. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network
to compare image patches. CoRR abs/1510.05970 (2015). http://arxiv.org/abs/
1510.05970

http://dx.doi.org/10.1007/978-3-642-15561-1_42
http://dx.doi.org/10.1007/11550518_27
http://dx.doi.org/10.1007/978-3-540-28649-3_10
http://dx.doi.org/10.1007/978-3-540-28649-3_10
http://dx.doi.org/10.1007/s11042-015-3091-6
http://dx.doi.org/10.1007/s11042-015-3091-6
http://arxiv.org/abs/1510.05970
http://arxiv.org/abs/1510.05970

Hardware-Accelerated Radix-Tree Based String
Sorting for Big Data Applications

Christopher Blochwitz1(B), Julian Wolff1, Jan Moritz Joseph3, Stefan Werner2,
Dennis Heinrich2, Sven Groppe2, and Thilo Pionteck3

1 Institute of Computer Engineering, Universität zu Lübeck, Lübeck, Germany
{blochwitz,wolff}@iti.uni-luebeck.de

2 Institute of Information Systems, Universität zu Lübeck, Lübeck, Germany
{werner,heinrich,groppe}@ifis.uni-luebeck.de

3 Hardware-Oriented Technical Computer Science, Universität Magdeburg,
Magdeburg, Germany

{jan.joseph,thilo.pionteck}@ovgu.de

Abstract. In this paper, a scalable hardware architecture for string
sorting in the application field of Big Data is presented. Current hardware
architectures focus on the acceleration of sorting small sets of data with
a maximum string length. In contrast, we propose an FPGA-accelerated
architecture based on Radix-Trees, which has the ability to sort large sets
of strings without practical limitation of the string length. The Radix-
Tree is parameterizable and so is the design, which enables the adaptation
for application-specific properties, such as diversity of strings and size of
the used alphabet. The scalable design has a hierarchical processing and
memory architecture, which operate in parallel. Optimal parameters and
configurations are evaluated by using a dataset of the Semantic Web, as
an example of Big Data applications. The results are analyzed with a
focus on throughput, memory requirement, and utilization. The hard-
ware design is faster for all values of the radix parameter and achieves a
maximum speed-up factor of 2.78 compared to a software system.

Keywords: Radix-Tree · Big data · Dictionary generation · Semantic
web · String sorting · Field-programmable gate array

1 Introduction

The concept of Big Data is usually based on a huge amount of data produced by
research, medicine, humans, etc. In most Big Data applications, string handling,
storage, and sorting are important parts. For example the Semantic Web [13],
where so called triples consisting of three unique Uniform Resource Identifiers
(URI) are combined on the basis of string matching. However, the handling
of such big data sets is very time-consuming and the software systems require
many hardware resources for processing, analysis, and storage. For instance, the
generation of a Semantic Web Database consisting of the btc-2009 datasets [1]
with 830 million triples requires 30 h on a cluster of 6 Intel Core2Quad Q9400

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 47–58, 2017.
DOI: 10.1007/978-3-319-54999-6 4

48 C. Blochwitz et al.

computers and consumes about 100 GB of storage [6]. Therefore, efficient data
handling and data structures are required.

One possibility of sorting strings is a tree-based data structure. Blochwitz
et al. [2] propose a hardware-optimized Radix-Tree which has a simplified struc-
ture for a hardware compatible use case. The nodes have a well-defined structure
with a fixed maximum number of children and fixed length of content. A hierar-
chical and scalable hardware design for Radix-Tree generation is proposed, which
addresses Big Data applications. The time-consuming task of tree generation is
accelerated by the hardware domain, which is evaluated by sorting datasets of
the Semantic Web.

In this paper, we focus on a flexible and pipelined hardware architecture for
string sorting, which uses internal and external memory, controller units, and two
main processing units. The first processing unit builds small Radix-Trees in par-
allel and is called Radix-Tree-Engine. Afterwards, the Radix-Trees are merged by
the second processing unit, called Merge-Engine. We use different memory types
in a hierarchical structure: fast but small memory for local operations of the
Radix-Tree-Engine and relatively slow but big memory (DDR4) for storing the
merged Radix-Tree. The number of engines, number of memories, size of mem-
ories, and width of interfaces are parameterizable and designed to process the
hardware-optimized Radix-Tree on a Xilinx Virtex Ultrascale. Different memo-
ries such as Block RAM, DDR, and SATA-SSD can be used for a scalable design.
Therefore, a flexible and defined interface is required, which is realized by the
integration of AXI-Interfaces. We evaluate the design on performance, memory
requirement, and utilization, using a dataset of the billion triple challenge.

The paper is structured as follows: First, we provide an overview of related
work, focusing on string sorting and tree generation for hardware architectures.
Then, we summarize the essentials of the hardware-optimized Radix-Tree. After-
wards, we propose our hardware design, the main processing units (Radix-Tree-
Engine and Merge-Engine), additional modules, interfaces, and parameters.
Finally, we evaluate our design and discuss the results regarding performance
and utilization for different parameters for the Radix-Tree and design.

2 Related Work

For some decades, there have been well-established string sorting trees for soft-
ware systems. Morrison [10] initially presents a new algorithm for sorting strings
in an alphanumerical order called: PATRICIA – Practical Algorithm To Retrieve
Information Coded in Alphanumeric. This is the first publication dealing with a
specialized data structure for sorting strings. He claims that the response is O(n)
with n equal to the size of the searched string and independent of the number of
stored strings. Because trees require a lot of memory, Ferragina and Grossi [4]
introduce a String B-Tree, which sorts strings by storing pointers to an external
memory, where the string is stored. Because of the balanced B-Tree and the
lightweight storing of pointers, the required memory accesses are reduced by a

Hardware-Accelerated Radix-Tree for Big Data Applications 49

factor of 8. An adaptive Radix-Tree is described by Leis et al. [8], where only
the required memory of the data structure is allocated without reservation for
future data. The search performance is comparable with hash tables reducing
the required memory by half.

There is also some work in the field of hardware-based string sorting for
different types of applications and problem sizes. Marcelino et al. [9] compare
different sorting algorithms for hardware implementations. For small data, the
speed-up factor is about 80. Because of the limited number of internal memory,
larger data sets must be processed by a hybrid system, which has a speed-up
factor of 20 in contrast to a software approach on a Xilinx Microblaze softcore.
Harkins et al. [7] also analyze different sorting algorithms on an FPGA system
and the results show a gain of a factor of up to 2.75 compared to a node with two
Intel Xeon 2.8 GHz CPUs and 1 GB main memory. A high performance hardware
design for large-scale sorting for Big Data streaming applications is introduced
by Srivastava et al. [11]. They use a hybrid sorting network consisting of serial
merge networks and bitonic merge units in higher stages, which use internal
memory. They theoretically analyze maximum throughput and latency of the
sorting network. In comparison to the state-of-the-art implementation, they are
1.2 times faster, have a lower latency, and a better memory efficiency.

3 Radix-Tree

This work is part of a larger project in the field of Semantic Web Databases
as an example of a Big Data application, where string sorting is important.
The fundamental unit of the Semantic Web is a triple consisting of a subject,
predicate, and object. A semantic context or graph is generated by combining
triples. Typically, triples have a Uniform Resource Identifier (URI) style, which
ensures a unique identification of the triple’s components and are realized by
string literals.

A Semantic Web Database is processed by specialized engines, which typically
consist of two components. First, the database itself, where the triples are stored
and, second, the query engine, which is responsible for queries. The generation
of the database and the query processing evolve a huge amount of comparisons
of triples. Hence, many read/write operations on the memory are required. The
effort of comparing strings with an arbitrary length is high for hardware as well
as for software systems. Therefore, it is important to convert the strings to a
data structure with a fixed length, which will also reduce the number of memory
accesses. Furthermore, the data structure must represent the alphanumerical
order of the URIs. Therefore, integers are established, which map the set of
strings to an incremental set of integers with a fixed bit width. This allows an
efficient processing on hardware compared to the ASCII string representation
with a variable length. Due to the string-integer mapping, a dictionary is needed
for encoding and decoding.

50 C. Blochwitz et al.

3.1 An Optimized Radix-Tree

As mentioned above, the dictionary generation for a Semantic Web Data-
base consisting of string-integer pairs in an alphanumerical order is very time-
consuming and an efficient sorting is needed. For this, algorithms as well as data
structures with a sorting ability are suitable. Well-established sorting data struc-
tures are trees. Especially for strings, the Radix-Tree is used. For two strings with
a prefix length of n, the tree is forked and two child nodes are created, which
is illustrated in Fig. 1a. One of the main benefits of the trees is the good com-
pression especially for strings of the Semantic Web because URIs of the same
context have long identical prefixes. For example, the prefix, as shown in Fig. 1a.

For software systems, tree-based data structures are common and well-known.
A node has an unlimited content size and pointers to its child nodes. For a
hardware design, nodes with a fixed maximum length m of the content and a
defined number of children are required. The hardware-optimized Radix-Tree [2]
has the required abilities and is based on a traditional Radix-Tree. As shown
in Fig. 1b, the first node is split after the maximum content length of m = 10
into. The radix, which is the numeral base of the used alphabet defines the
atomic block-size of bits which can not be split. Implicitly, it defines the number
of children, because for every member of the alphabet, a fork is possible. The
number of children is equal to 2radix. As illustrated in Fig. 1c, the bit size of
an ASCII character is 7-bit, which is a prime and, therefore, no multiple of the
radix = 2. Hence, not all characters of a string are convertible into the block-size,
and at the end, there are some remaining bits. In the example of string b, the
remainder is 0 and for c, it is 1. All strings without a remainder are represented

<http://context.org#

st

udent>

artTime>

read>

professor>

lecture>

has>

(a)

<http://co ntext.org#

st

udent>

artTime>

read>

professor>

lecture>

has>

(b)

string ASCII rem

b 11 00 01 0

c 11 00 01 1

bc 11 00 01 01 10 00 11 ε

(c)

Fig. 1. (a) A Radix-Tree with six elements. (b) A hardware-optimized Radix-Tree
with six elements and a maximum content length of m = 10. (c) Example strings,
their meaning in ASCII coding grouped by two bits as the radix = 2. The bits marked
in bold are not elements of the alphabet. This remainder is stored in the node data
structure in the isEndFlag [2].

Hardware-Accelerated Radix-Tree for Big Data Applications 51

with the end-symbol ε, as shown in Fig. 1c for the string bc. For this reason, a
node of the hardware-optimized Radix-Tree has 2radix − 1 isEndFlag bits. This
also means that one end node can include multiple strings. Both the radix as
well as the maximum content length m are parameterizable and, therefore, can
be used for different use cases, scalable for different memories and processing
units.

4 Hardware Architecture

The proposed design provides string sorting for Big Data applications, which off-
loads the hard workload of the generation of Radix-Trees to the hardware. The
design has a pipelined architecture with two stages. First, the Radix-Tree-Engine,
which generates Radix-Trees out of the received strings. Multiple Radix-Tree-
Engines can be implemented, which work in parallel and increase the through-
put. The Radix-Tree-Engines are connected to Block RAM modules to store the
trees. The Block RAM modules can be bound flexibly on the engines and work
as a buffer between Radix-Tree-Engine and Merge-Engine. Second, the Merge-
Engine, which is connected to a large external memory merges small Radix-Trees
from the Block RAM modules into the large memory. The input data of the merg-
ing process consists of nodes and, therefore, only node-based operations such as
splitting are required and a high percentage of the time is used to copy sub-trees
by fast bursts. Both Radix-Tree-Engine and Merge-Engine are independent and
work in parallel.

The design overview is given in Fig. 2, where the data flow is from the left to
the right side. At first, there is the Xillybus PCIe interconnect [3], which manages
the data from the host system followed by the first main unit, the Radix-Tree-
Engine. The next unit is a crossbar for Block RAM modules with a controller,
which manages the control signals to the engines. On the other port of the dual
port Block RAM, an AXI-Controller is implemented, which is connected to an
AXI-Interconnect and, therefore, to the second main unit, the Merge-Engine.
Finally, the external memory (e.g. DDR4) is connected to the right side of the
Merge-Engine, where the final Radix-Tree is stored. The number of Radix-Tree-

M
A

R
4

R
D

D

Merge-Engine

Block
RAM

Radix-Tree-Engine lrtc

tcennocretnI
I

X
A

rabssor
C

PCIe

Radix-Tree-Engine

ctrl

FiFo

String-Buffer
Controller

Xillybus
stream

Packet
Consumer Block

RAM

lrtc

Block
RAM

lrtc

PCIe

FiFo

String-Buffer
Controller

Xillybus
stream

Packet
Consumer

Fig. 2. An overview of the pipelined and scalable design. The Radix-Tree-Engine of the
first stage is placed on the left. In the middle the internal Block RAM and interconnects
and on the right, the Merge-Engine as the second stage is shown.

52 C. Blochwitz et al.

Engines and Block RAM modules is parameterizable, which allows a scalable
and flexible design.

4.1 Xillybus and Packet-Consumer

The communication between the host system and the FPGA is realized by a PCIe
connection. The used IP core is called Xillybus [3] and provides multiple FIFOs
for different datastreams, which allows an independent and flexible use of the
Radix-Tree-Engines. In our use case, a FIFO is connected to a Packet-Consumer
(Fig. 2), which belongs to a dedicated Radix-Tree-Engine. The Packet-Consumer
manages the flow control of the FIFO, extracts the packet, and hands over the
string to the Radix-Tree-Engine. This design allows to send packets to a Radix-
Tree-Engine consisting of a single string and the string’s length.

4.2 String-Buffer Controller

The String-Buffer Controller is placed between the Packet-Consumer and the
Radix-Tree-Engine consisting of a FIFO and a shift register, as shown in Fig. 2.
The FIFO adapts the width of the Xillybus stream to the content length m,
which is required by the Radix-Tree-Engine. At any time, only one string is
stored in the String-Buffer FIFO, which is assigned by the Packet-Consumer.
The Radix-Tree-Engine consumes various leading characters with a maximum
size of m, the content length. Therefore, a shift register is required which shifts
the string by the size of the consumed substring. The size of the FIFO is given by
the longest string, which must be stored. In our case, the data set of the billion
triple challenge is used whose longest string has a size of 65.244 characters [5].

4.3 Radix-Tree-Engine

The Radix-Tree-Engine is one of two main units. It generates small Radix-Trees
out of strings. The Radix-Tree is stored in the Block RAM module, which can be
seen in Fig. 2 on the left side. The Block RAM provides memory access in every
clock cycle and, therefore, a low latency and high throughput. The width of the
Block RAM module is parametrized with e.g. 256 bit, which is equal or greater
than the size of a node. Hence, a node can be stored in one line and is accessible
after one clock cycle. The size of the used Block RAM is parameterizable as well
and limits the size of the Radix-Tree. Memory accesses are performed by the
rd/wr Controller, which also manages the filling level and free addresses. The
clock frequency is doubled in comparison to the Radix-Tree-Engine because in
case a node is split, two write accesses are required.

The insertion of a string in an existing Radix-Tree starts when the String-
Buffer Controller receives a new string and provides the leading m bits to the
Radix-Tree-Engine, which is called further compare string. The engine reads the
root node from the Block RAM and calculates the prefix length of the node’s
content and the compare string. If it is a prefix of the compare string, the next
child node is read and the compare string is shifted by the String-Buffer Con-
troller by the value of the prefix length. The comparison is repeated child by

Hardware-Accelerated Radix-Tree for Big Data Applications 53

child until the comparison is false. The remaining string is inserted in new nodes
and, if needed, an existing node is split. Afterwards, the String-Buffer Controller
is ready to receive a new string.

4.4 Merge-Engine

The second main unit is the Merge-Engine, which merges smaller Radix-Trees
into a bigger one. In Fig. 2 on the left side of the Merge-Engine, the Block RAM
modules are illustrated, which store small Radix-Trees, and on the right side, the
bigger destination memory is shown. The memories on the left and right side are
connected to separate controllers via the AXI-Interface. The AXI-Interface pro-
vides a flexible and scalable integration of different Intellectual Property Cores
especially memory controllers for Block RAM, DDR, and SATA. The address
spaces are managed by Xilinx’s Vivado. The Merge-Engine has two stack memo-
ries, which are used to traverse each of the two radix trees. The size of the stack
is defined by the depth of the Radix-Tree and contains the nodes from the root
up to the current node. Also a memory for translation between the two address
domains of the left and right memory is implemented as well as a unit, which
manages the free space on the right memory.

The process of merging starts by assigning a new Block RAM to the Merge-
Engine, which contains a Radix-Tree. The root node of both sides are read and
stored into the two associated stacks. The node’s content is compared and if it is
unequal, one of these two strings is split at the position of the calculated prefix
length. Otherwise and after the split, the end flags and children are merged. To
merge children, there are two possible cases: First, the node on the right side has
no children at this specific position. Then, the children with their full sub-tree of
the left side can be copied by a fast burst. In the second case, the position of the
children is occupied, then, both children will be read and put on the stacks. This
process is performed recursively until the left Radix-Tree is merged completely
into the right one.

5 Evaluation

For a structured evaluation of the design, this section starts with a description
of the used parameters, configurations, and data set. Afterwards, the perfor-
mance and memory requirements of the design are evaluated and finally the
device utilization is presented. The performance of the hardware is compared to
a lightweight C++ implementation of a Radix-Tree without a limitation in the
string length and only one end flag per node. The software implementation uses
the standard character and string operations. Hence, an ASCII coding with a
radix = 8 is used. We evaluate a random part of a real dataset from the billion
triple challenge 2014 [12]. The full data set consists of 4 billion triples and 1.1 TB
of unzipped data. We use datasets with a size between 100 and 1 million strings
and an 8 bit ASCII coding.

The server where the Semantic Web Database engine and benchmarks are
processed consists of an Intel Xeon E3-1226v3 with 4x 3.30 GHz, 32 GB of DDR3

54 C. Blochwitz et al.

memory, and the Xilinx FPGA VCU108 Evaluation Kit with a Virtex UltraScale
XCVU095 FPGA, 144 MB RLDRAM3, 2x 2.5 GB DDR4 memory (only 2 GB
are accessible, the remaining 0.5 GB are reserved for ECC), a PCIe Gen3 x8
connector, and other peripherals. The operating system is CentOS 7 and Xilinx
Vivado 2016.2 is used for synthesis. Software benchmarks are repeated 100 times
to eliminate side effects like scheduling and background tasks and processed on
a single core.

5.1 Evaluated Parameter

In a previous work, we proposed the hardware-optimized Radix-Tree and found
optimal candidates of parameters for the Semantic Web application. It shows
that a small radix = 1 to 4 is good and the maximum content length can be
chosen by other constraints such as required bit width of interfaces or device
utilization.

Hence, we create multiple test systems with different parameters of the radix
and fix the content length to m = 128 for a fair comparison of the radix in per-
formance and utilization. The required space for a single node with the content
from radix 1 to 4 is 210, 224, 312, and 448 bits, which results in a bit width of
224, 256, 320, and 448 of the interface of the internal Block RAM.

5.2 Design Configuration

As mentioned above, the design is flexible and scalable and consists of two stages,
which work in parallel. The execution time is measured with a custom and cycle
accurate timing module. For an optimal evaluation, both the Radix-Tree-Engine
and the Merge-Engine are evaluated separately. The memory requirements for a
Radix-Tree are recorded by the memory controller of each engine. The latency of
the PCIe core is negligible because of the streaming characteristic of the design.
The two configurations for evaluation are designed as follows:

Radix-Tree-Engine: The Radix-Tree-Engine is implemented as shown in
Fig. 2 on the left. The data path to the host is realized by PCIe and the
engine is connected to an internal Block RAM with a depth of 65 k.
Merge-Engine: In this case, the configuration of the Radix-Tree-Engine is
extended by the external DDR4 memory with 2 GB. As illustrated in Fig. 2,
the Merge-Engine is connected to the second port of the Block RAM module
and the DDR4 memory via a separate AXI controller.

5.3 Performance Radix-Tree-Engine

In this section, the Radix-Tree-Engine with different values of the radix =
{1, 2, 3, 4} is compared with a lightweight software implementation of a Radix-
Tree. The number of inserted strings is up to 100 k and is limited by the number
of lines of the Block RAM Module of 65 k. As mentioned in Sect. 2, the time

Hardware-Accelerated Radix-Tree for Big Data Applications 55

0

20

40

60

80

100

120

140

0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

m
e

[m
s]

number of string

radix 1

radix 2

radix 3

radix 4

radix C++

Fig. 3. Time of Radix-Tree generation in relation to the string number

complexity of a single string insertion into a Radix-Tree is O(1) and the genera-
tion of a full Radix-Tree with n strings is O(n). In Fig. 3, the execution time in
µs is compared to the number of inserted strings of a dataset of the billion triple
challenge. It can be seen, that the expected linear dependence between execution
time and string number is present. For any configuration and string number, the
hardware-optimized Radix-Tree is faster than the software implementation. The
counted clock cycles are decreasing the higher the radix, because the tree is flat
and, therefore, the number of steps to the last node respectively the memory
accesses are fewer. When taking frequency (see Table 1) into account, the differ-
ences become smaller between radix = {1, 2, 4}. The radix = 3 is significantly
slower, because the clock frequency is nearly halved. That is caused by a couple
of VHDL processes of the prefix calculation, where division and multiplication
is used. For a radix equal to 2n, shifts can be used, which is much faster.

5.4 Performance Merge-Engine

The performance of the Merge-Engine depends mainly on three things: First, the
characteristic of the Radix-Tree, which is evaluated in Subsect. 5.3. Second, the
bit width of the Block RAM module. Hence, the AXI interface has a fixed width
and the data must be serialized, which requires additional clock cycles. Third,
the percentage of disjunction of the Radix-Trees. The tested dataset has no
big percentage of presorted strings and, therefore, the generation time increases
linearly. This behavior is demonstrated in Fig. 4. Because of a higher AXI latency
and clock frequency, the time difference between the hardware implementations
is smaller. The influence of the radix parameter on performance is not as big
as on the Radix-Tree-Engine. Further, to achieve a higher speed-up, presorting
strategies must be evaluated.

5.5 Memory Requirement

In Fig. 5, the required memory of a Radix-Tree in relation to the number of
strings is shown. For comparison, the required space of the software Radix-

56 C. Blochwitz et al.

0

10000

20000

30000

40000

50000

60000

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

m
e

[m
s]

number of string

radix 1

radix 2

radix 3

radix 4

radix C++

Fig. 4. Time of merging Radix-Trees in relation to the string number

0

500

1000

1500

2000

2500

3000

3500

4000

0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

m
em

or
y

[K
B]

number of strings

radix 1

radix 2

radix 3

radix 4

radix C++

Fig. 5. Memory requirement of radix trees in relation to the string number

Tree is also included. The software implementation uses dynamic data structures
for storing child-pointers and, therefore, a minimum of memory is required. As
expected, the size of the tree grows linearly with the number of strings, except
for the hardware-optimized Radix-Tree with a radix = 3. As mentioned above,
the maximum content length is fixed to m = 128 for all configurations. There-
fore, only the radix influences the memory requirement of a hardware-optimized
Radix-Tree. In general, a higher radix requires more memory because of the
additional child-pointers and isEndFlags, which can be seen in Fig. 5. In com-
parison to the software implementation, a radix = {1, 2} requires less memory
and in contrast, a tree with a radix = 4 requires more than the software. The
unexpected behavior of the memory requirement of a radix = 3 is caused by
the characteristic of the hardware-optimized Radix-Tree, which has multiple
isEndFlags. This is the only configuration where the radix is no divider of sin-
gle characters, which has 8 bit. Therefore, multiple isEndFlags of one node are
used in parallel and not only the ε of the isEndFlags. This characteristic of the
hardware-optimized Radix-Tree allows a better memory requirement by choos-
ing a good value of the radix in dependency to the the used data. The used

Hardware-Accelerated Radix-Tree for Big Data Applications 57

Table 1. Utilization of the Radix-Tree-Engine (m = 128) and clock frequency.

Radix LUT FlipFlop Block RAM Clk MHz

abs % abs % abs %

Total 537,600 1,075,200 1,728

1 8,459 1.57 2,341 0.22 15.5 0.9 94.5

2 8,730 1.62 2,545 0.24 15.5 0.9 90.9

3 11,417 2.12 2,951 0.27 15.5 0.9 44.6

4 12,458 2.32 4,084 0.38 15.5 0.9 84,7

Table 2. Utilization of the Merge-Engine

Radix LUT FlipFlop Block RAM Clk MHz

abs % abs % abs %

Total 537,600 1,075,200 1,728

1 13825 2.6 4008 0.4 103 6.0 120.6

2 18483 3.4 4781 0.4 109 6.3 111.5

3 24569 4.6 6428 0.6 120 6.9 79.6

4 37586 7.0 9720 0.9 141 8.2 70.3

strings are part of the billion triple challenge and are very similar to each other.
Therefore the probability for storing multiple ends in a node is very high.

5.6 Utilization

The utilizations for a Radix-Tree-Engine, Merge-Engine, and interface modules
are analyzed by choosing different values of the radix parameter, which influences
the required interface width and, therefore, the register and operator size in
hardware. Table 1, shows the utilization of a Radix-Tree-Engine for different
values of the radix. The total amount of resources of the FPGA is given in
Table 1, as well as the absolute and relative used resource. The utilization of
LUT and register increases linearly with the radix parameter and the Block
RAM is constant because the input buffer and a FIFO in the PacketConsumer
only depends on the maximum content length, which is fixed to m = 128.

The utilization of the Merge-Engine is shown in Table 2. Overall, the required
resources are higher compared to the Radix-Tree-Engine. Also the increasing of
resources is higher and non linear. The reason could be the higher influence
of the node size, in the engine as well as in the AXI controllers. The address
mapping of the Merge-Engine requires a relatively high number of Block RAMs
but is constant. The stacks are also realized by Block RAMs, which are increasing
with the radix, because the nodes to store are wider.

58 C. Blochwitz et al.

6 Conclusion

In this paper, we presented a scalable hardware architecture for string sorting in
the field of Big Data applications based on the hardware-optimized Radix-Tree.
The engine is faster for higher radix values and achieves a maximum speed-
up is 2.78 for a radix = 4. The required memory for a Radix-Tree is optimal
for a radix = 3, because the feature of multiple isEndFlags are used. For the
other cases, the required memory is increasing with the radix. An optimal radix
parameter can be chosen by a low memory requirement (radix = 3) or high per-
formance (radix = 4). For the field of Big Data, a high performance is important
and therefore, we will focus on a radix = 4 and expand our design with multiple
Radix-Tree-Engines and a hierarchical design with multiple external memories.
The integration of multiple Radix-Tree-Engines allows different data streams,
for example a disjunct set of strings. Therefore, the Merge-Engine can process
in the fast copy mode more often.

References

1. Harth, A.: Billion triples challenge data set (2012)
2. Blochwitz, C., Joseph, J.M., Backasch, R., Pionteck, T., Werner, S., Heinrich, D.,

Groppe, S.: An optimized radix-tree for hardware-accelerated dictionary generation
for semantic web databases. In: 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–7 (2015)

3. Billauer, E.: Xillybus (2016)
4. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search

in external memory and its applications. J. ACM 46(2), 236–280 (1999)
5. Grimnes, G.A.: (Still) Nothing clever – Billion Triple Challenge (2009)
6. Groppe, S.: Data Management and Query Processing in Semantic Web Databases.

Springer, Heidelberg (2011)
7. Harkins, J., El-Ghazawi, T., El-Araby, E., Huang, M.: Performance of sorting algo-

rithms on the SRC 6 reconfigurable computer. In: 2005 IEEE International Con-
ference on Field-Programmable Technology, pp. 295–296 (2005)

8. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing for
main-memory databases. In: 2013 29th IEEE International Conference on Data
Engineering (ICDE 2013), pp. 38–49 (2013)

9. Marcelino, R., Neto, H.C., Cardoso, J.M.P.: A comparison of three representative
hardware sorting units. In: IECON 2009–35th Annual Conference of IEEE Indus-
trial Electronics (IECON), pp. 2805–2810 (2009)

10. Morrison, D.R.: PATRICIA–practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15(4), 514–534 (1968)

11. Srivastava, A., Chen, R., Prasanna, V.K., Chelmis, C.: A hybrid design for high
performance large-scale sorting on FPGA. In: 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pp. 1–6 (2015)

12. Käfer, T., Harth, A.: Billion triples challenge data set (2014)
13. World Wide Web Consortium. Semantic Web - W3C (2011)

Boosting Java Performance Using GPGPUs

James Clarkson(B), Christos Kotselidis, Gavin Brown, and Mikel Luján

School of Computer Science, University of Manchester, Manchester, UK
{james.clarkson,christos.kotselidis,gavin.brown,

mikel.lujan}@manchester.ac.uk

Abstract. In this paper we describe Jacc, an experimental framework
which allows developers to program GPGPUs directly from Java. The
goal of Jacc, is to allow developers to benefit from using heterogeneous
hardware whilst minimizing the amount of code refactoring required.
Jacc utilizes two key abstractions: tasks which encapsulate all the infor-
mation needed to execute code on a GPGPU; and task graphs which cap-
ture both inter-task control-flow and data dependencies. These abstrac-
tions enable the Jacc runtime system to automatically choreograph data
movement and synchronization between the host and the GPGPU; elim-
inating the need to explicitly manage disparate memory spaces. We
demonstrate the advantages of Jacc, both in terms of programmabil-
ity and performance, by evaluating it against existing Java frameworks.
Experimental results show an average performance speedup of 19x, using
NVIDIA Tesla K20m GPU, and a 4x decrease in code complexity when
compared with writing multi-threaded Java code across eight evaluated
benchmarks.

1 Introduction

Heterogeneous programming languages, such as CUDA [2] and OpenCL [3],
enable developers to execute portions of their code on specialized hardware.
Typically, this involves offloading work from a host onto a device such as a
GPGPU, and doing this requires developers to be mindful of the different con-
texts their code may execute on. Hence, the developer is burdened with writ-
ing the application and the extra code to manage its execution over disparate
devices. This paper describes a programming framework (JIT compiler and run-
time system), which has been designed to eliminate, or automate, a large amount
of this responsibility to help reduce the burden placed on developers.

Current established heterogeneous programming languages, such as CUDA
and OpenCL, require developers to logically separate their applications into
code that runs either on the host or on the device (known as a kernel). As a
consequence, these approaches require additional code to co-ordinate execution
between the host and kernels.

This paper describes a simplified heterogeneous programming model in the
context of the Java language. We make use of implicit parallelism and task-based
parallel execution. The Java Acceleration system, hereafter Jacc, is inspired by
and shares many similarities with directive-based approaches such as OpenMP

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 59–70, 2017.
DOI: 10.1007/978-3-319-54999-6 5

60 J. Clarkson et al.

4.0 [15]. However, the true benefits of Jacc are derived from the Java program-
ming language: modular, statically typed code and dynamic compilation. Thus,
a Jacc application does not need to be ported across different operating systems
or hardware devices and it is possible to compose complex processing pipelines
from existing code. Overall the paper makes the following contributions:

(1) Provides an overview of Jacc, its components, and design rationale.
(2) Discusses how Jacc can be used to write concise data-parallel code in Java

and the sub-set of the Java language supported.
(3) Analyzes the implementation of the internal components of Jacc. The Jacc

JIT compiler, unlike most prior work, compiles Java bytecode directly to
PTX code which can be executed directly by NVidia drivers.

(4) Provides an in-depth comparative performance analysis of Jacc and standard
Java multi-threaded benchmarks.

2 The Jacc Framework

Jacc is a Java based framework which simplifies the programming of heteroge-
neous hardware. At present, we have been able to use Jacc to program a wide
range of devices such as multi-core processors, Xeon Phi, and both embedded
and discrete GPGPUs. In this paper we describe our initial prototype that has
been developed to program CUDA enabled GPGPUs. As depicted in Fig. 1, the
two major components of Jacc are: its API and the runtime system.

The Jacc API has been designed to make possible the creation of high per-
formance data-parallel code without forcing developers to, unnecessarily, change
their software engineering practices. In order to support the API, Jacc has a
runtime system that is able to manage the execution of application code on dis-
parate hardware. This typically requires support for generating and executing

Fig. 1. Jacc system overview.

Boosting Java Performance Using GPGPUs 61

code, moving data between devices, and synchronization. Using both compo-
nents together, Jacc is able to automate and optimize many common house-
keeping tasks involved in writing heterogeneous code; relieving the developer
from a number of burdens that exist in languages such as CUDA and OpenCL.

The API is built on top of two basic abstractions: the task and the task
graph. A task encapsulates all the information needed to perform some action
on a disparate hardware device such as code execution, data transfers or synchro-
nization. Hence, a task which executes some code will encapsulate: a reference
to the code, references to all the data accessed by the code and some meta-data.
The meta-data is used to pass task specific parameters to the runtime system -
such as the device it should execute on, the number of threads, or the size of each
thread group, allowing dynamic adaption of those parameters during runtime.

Tasks which perform data transfers and synchronization are implicitly han-
dled by the runtime system - leaving the developer responsible for defining only
those which execute code. These tasks can be created from any method in the
application. Furthermore, their meta-data contain a mapping which associates
each one of them with the device it should execute on. Typically, this mapping
is defined when a task is inserted into a task graph, but as it is just an entry in
their meta-data it can also be updated dynamically.

Executing tasks on a GPGPU requires a number of actions to be performed:
compilation, data movement to the GPGPU, execution on the GPGPU, and
data movement back to the host. Although this can be done synchronously, it
is inefficient to execute tasks in this manner - especially when multiple tasks
operate on shared data. To make task execution more efficient, Jacc provides
the task graph abstraction - a mechanism which allows the runtime system to
optimize task execution through lazy evaluation. After a task graph is created,
the runtime system uses its meta-data to build an executable directed acyclic
graph (DAG). Once built, the runtime system is able to optimize the DAG by
inspecting task meta-data to remove redundant data transfers and re-organize
the order in which tasks are executed.

Jacc exploits many features of the Java platform in order to simplify the
development workflow. The GPGPU code is directly generated from Java byte-
code which avoids the need to either: embed source code inside the application,
like OpenCL, or re-parse the source code. This means that the code running
on the GPGPU is created using a single type system, unlike OpenCL which
introduces a second type system to the developer.

2.1 Writing Data Parallel Code

There are two ways in which developers can write parallel code: explicitly or
implicitly. Although the Jacc framework supports both, implicit parallelism is
strongly encouraged since the code will produce the same result whether executed
serially or in parallel. This provides Jacc with the option to revert back to serial
execution if an error is encountered whilst offloading onto the GPGPU.

Jacc provides an annotation based API, similar to OpenMP, which allows
developers to statically define task meta-data. However, unlike OpenMP this

62 J. Clarkson et al.

meta-data can also be provided or adapted dynamically at runtime. For instance,
information such as the parallelization strategy and type of variable access, spec-
ified by the @Jacc, @Read, @Write and @ReadWrite annotations, is better defined
statically. In certain circumstances it may be beneficial to override these settings
- for example to ensure data is always fetched from the host and not cached on
the GPGPU or if a specific device responds better to a different parallelization
scheme. The only aspects of the API which cannot be overridden are the ones
which directly influence code generation, such as @Atomic or @Shared, as they
are embedded directly into Java bytecode.

To produce data-parallel code, the Jacc compiler has the ability to re-write
certain classes of loop-nests so that each iteration of a loop is executed by a
different thread. This can be done by adding to a method the @Jacc annota-
tion and setting the iterationSpace parameter. The iteration space parameter
defines how many levels of the loop-nest should be re-written. (e.g. A value of 2
will re-write the two outermost loops.) Since it is not possible to use annotations
at a sub-method granularity in Java 7, the Jacc compiler will only parallelize
the first loop-nest encountered in a method1.

As some loop-nests communicate data between iterations, Jacc provides the
ability to perform inter-thread communications via shared memory atomics. A
field can be declared as @Atomic which forces the compiler to use atomic oper-
ations when reading from and writing to this field. To support reduction opera-
tions, it is possible to specify an operation that can be applied in each update
of the field. In this case, the field is initialized with a default value at the start
of execution and then updated with the result of applying the operation to the
existing and incoming values.

In cases where it is impossible to express a kernel using a single loop-nest,
the developer has two choices: to split functionality across multiple kernels or to
manually parallelize the code similarly to CUDA and OpenCL. The advantage
of the latter approach is that developers can create highly optimized parallel
code for a specific device. Unfortunately, this comes at the expense of reduced
code re-use as Java applications cannot readily use this code.

Figure 2 (right) provides an example of how the data-parallel code is written
while Fig. 2 (left) demonstrates how a task is created and scheduled using a task-
graph. Initially, we want each iteration of the outermost loop to be executed by
independent threads — each thread will read a single element of the array and
accumulate the value in result. To achieve this, a parallelization strategy is
selected in line four, using the @Jacc annotation, to specify that only the outer-
most loop should be parallelized. Finally, to handle the accumulation of partial
results in the result variable, line 11, we use the @Atomic annotation which
instructs the compiler to update this variable atomically.

In order to execute this code on a GPGPU, we need to define a task, add
it to a task-graph, and schedule it. This is shown in Fig. 2 (left) where the task
is defined in lines 1–11. In this case, the task-graph consists of a single task
which has been mapped onto the GPGPU. The number of threads used and the

1 This problem is resolved in Java 8.

Boosting Java Performance Using GPGPUs 63

1 DeviceContext gpgpu =
2 Cuda.getDevice (0). createContext ();
3
4 Reduction r = new Reduction (...);
5 Task task = Task.create(
6 Reduction.class ,methodName ,
7 new Dims(array.length),
8 new Dims(BLOCK_SIZE));
9

10 task.setParameters(r, data);
11 tasks = new TaskGraph () {
12 @Override
13 public void create () {
14 executeTaskOn(task , gpgpu);
15 }
16 }
17 tasks.execute ();

public class Reduction {
@Atomic(op=ADD) float result;

@Jacc(iterationSpace=ONE_DIMENSION)
public void reduction(

@Read float [] array) {
float sum=0;
for(int i=0;i<array.length;i++) {

sum+=array[i];
}
result=sum;

}
}

Fig. 2. Left: Reduction by generating a TaskGraph, Right: Reduction operation using
implicit parallelism.

dimensions of each thread group are defined in lines 7–8, where array.length
threads are specified - one for each iteration of the loop. On invoking the execute
method of the task-graph, the runtime system will: compile the code for the
GPGPU, move data to the GPGPU, execute the code, and synchronize the data
between the host and the GPGPU.

2.2 Current Subset of Java Supported for Execution on GPGPUs

Objects: Jacc provides object support and is able to freely access fields and
invoke methods on objects or classes2. Jacc is not integrated directly with the
garbage collector and, thus, it only supports the manipulation of existing objects
on the GPGPU. However, due to escape analysis, stack allocated objects can be
freely accessed. In practise, we have found that most tasks amenable for GPGPU
offloading perform some form of volume reduction and object creation is often
not needed. At present we do not maintain object headers in order to reduce
storage requirements and improve serialization times. Consequently, we do not
yet support reflection or the instanceof keyword3.

Arrays: Use of arrays of primitives, objects and multi-dimensional arrays is
supported as long as the element type is not an interface.

Virtual and Static Method Calls: Practically, the aggressive use of inlining
removes all method calls except polymorphic calls which introduce indirection
into the generated code. Tasks can be created from either static or virtual meth-
ods. The only difference between these two, is that the developer must remember
to insert the this object reference as the first task parameter. The advantage of
virtual methods is that the this object reference neatly encapsulates state that
needs to be shared among multiple kernels.

2 However, this can easily lead to a large number of indirect-memory accesses in the
generated code - which will degrade performance on a GPGPU.

3 There is no technical reason why support can not be added at a later date.

64 J. Clarkson et al.

Memory Allocations: Jacc is able to support the new keyword under certain
circumstances. The compiler will try to inline the constructor and any memory
is allocated on the stack. Additionally, the use of inlining enables the elimination
of a number of field accesses using scalar replacement. If the developer wishes to
allocate memory in a certain memory space, the variable must be declared as a
field with the declaration using the annotation specifying the memory space.

Assertions and Exceptions: Jacc has the ability to handle assertions and
some limited exception checking on the GPGPU. Exception checks such as null
pointer and array index out of bounds can be inserted by the compiler. If the
runtime system detects that an exception has been thrown, it will attempt to
run the same code within the JVM to produce a valid stack trace.

3 Runtime System

3.1 JIT Compiler

The Jacc JIT compiler, shown in Fig. 1, unlike most prior work compiles Java
bytecode directly to PTX code which can be executed directly by NVidia drivers.
The compiler is organized in three layers: the front-end - responsible for pars-
ing bytecode; the mid-end - responsible for transforming and optimizing the
code for data-parallel execution; and the back-end - responsible for emitting the
GPGPU specific machine-code. The front-end of the compiler has been imple-
mented using the SOOT framework [17]. It generates various levels of IR from
Java bytecode and leverages a number of advanced optimizations (e.g. common
sub-expression elimination, loop invariant code motion, copy propagation, con-
stant folding, straightening, and dead code elimination).

Initially, the IR is augmented with information about kernel entry points,
exception handlers, and sets up accesses to the different memory spaces. Next,
an optional transformation performs parallelization - this involves searching for
loop-nests and updating the schedule of their induction variables so that itera-
tions are assigned to different threads. This update is dependent on the value of
the iterationSpace parameter specified in the meta-data of each task4. After
parallelization, the remainder of the mid-end aims to generate high quality data-
parallel code through a set of optimizations.

To optimize away costly functions calls, we search the IR for call-sites which
map directly onto hardware instructions and replace them with appropriate
intrinsics. If it is not possible to substitute a specific call-site, the compiler then
tries to inline the code. If inlining is deemed infeasible the compiler will generate
the code to support the call. If the compiler is unable to determine the actual
method invoked at a particular call-site, the compilation will be terminated
with an exception. Additionally, the compiler tries to minimize the number of
branches in the IR. For example, it attempts to fully exploit the fact that PTX

4 In our experience, the majority of kernels that we could not auto-parallelize using
this scheme was due containing multiple loop-nests.

Boosting Java Performance Using GPGPUs 65

supports predicated execution by replacing simple branch statements with pred-
icated instructions.

The mid-end is also responsible for handling code which access variables that
are stored in different memory spaces or use shared memory atomics. Data-flow
analyses are used to discover which loads/stores access a particular memory
space and templated code is used to handle the initialization and update of
variables accessed using atomics.

After passing through the mid-end, the IR goes through a lowering process
which converts each statement of the IR into lower-level IR statements which
generate one or more PTX instructions — this is marked as the ISA bridge.
Finally, the PTX emitter converts each statement into valid PTX instructions.

3.2 Memory Management

As a prerequisite to execution, data must be pre-loaded into the GPGPU memory
by a memory manager (an instance is assigned to each device). To enable Jacc
to target as many devices as possible, we have taken the decision that the Jacc
runtime should be responsible for explicitly managing GPGPU memory; opposed
to using CUDA’s unified memory — as it is not yet available on all devices.
This also has the secondary advantage of allowing Jacc to optimize data layout
on a per-device basis. Typically, Jacc is able to avoid copying un-used data
and minimizes the number of indirect memory accesses in the code. Hence, the
memory manager is responsible for maintaining a custom data layout scheme.
The format used is built dynamically, in concert between the memory manager
and the compiler, and is communicated to the compiler and data serializer via a
data schema. The generated schema maps each element of a composite type onto
a specific memory location (relative to a given address). If the runtime system
wishes to transfer data to the GPGPU it must serialize each object according to
the schema provided by the memory manager.

A key design goal of Jacc is the ability to allow data to persist on the GPGPU.
This feature makes possible to have multiple tasks or even task-graphs operate
on the same data - avoiding the continual need to transfer data between host
and device. However, as Jacc is unable to determine whether an object has been
modified on the JVM, the developer is responsible for maintaining the state
of persistent data. Typically, Jacc ensures shared state remains consistent by
blocking until the task-graph has finished executing, at which point the memory
managers will have synchronized any modified data with the host.

Generally, variables or arrays of primitive types can be copied “as-is” and
composite types are laid out according to the data schema provided by each
device manager. In order to tackle the data serialization process of objects,
we developed a novel compiler driven approach that dynamically builds data
schemas during compilation. A schema starts empty, and as compilation pro-
gresses and new composite-types are discovered, dynamic new data schemas are

66 J. Clarkson et al.

built with on-demand object references. This minimizes the number of objects
transferred to the device during data serialization5.

4 Evaluation

The experimental hardware platform used has two Intel Xeon E5-2620 proces-
sors (12 cores/24 threads total @2.0 GHz), 32 GB of RAM and a NVIDIA Tesla
K20m GPGPU with 5 GB of memory. Regarding the experimental software
stack, CentOS 6.5, CUDA 6.5 and Java SDK 1.7.0 25 were used. All CUDA
implementations are taken from the CUDA SDK except the matrix multiplica-
tions: SGEMM is taken from the cuBLAS library and SPMV from cuSPARSE. The
benchmarks used for the performance evaluation are:
Vector Addition adds two 16,777,216 element vectors (300 iterations).
Reduction performs a summation over an array of 33,554,432 elements (500
iterations).
Histogram produces frequency counts for 16,777,216 values placing the results
into 256 distinct bins (400 iterations).
Dense Matrix Multiplication of two 1024× 1024 matrices (400 iterations)6.
Sparse Matrix Vector Multiplication performs a sparse matrix-vector mul-
tiplication using a 44609 × 44609 matrix with 1029655 non-zeros (The bcsstk32
matrix from Matrix Market) (400 iterations).
2D Convolution of a 2048 × 2048 image with a 5 × 5 filter (300 iterations).
Black Scholes is an implementation of the Black Scholes option pricing model.
The benchmark is executed to calculate 16,777,216 options over 300 iterations
and is supplied as an example in the APARAPI source code.
Correlation Matrix is an implementation of the Lucene OpenBitSet “intersec-
tion count”. The benchmark is executed using 1024 Terms and 16384 Documents
and is supplied as an example in the APARAPI source code. Only a single iter-
ation is performed.

Jacc is compared against: serial Java, multi-threaded Java, OpenMP, CUDA
and the more mature APARAPI [1] framework that uses OpenCL [3]. The per-
formance of each benchmark is calculated by measuring the time to perform the
specified number of iterations of the performance critical section of the bench-
mark. Each quoted performance number is an average across a minimum of ten
different experiments. The reported Jacc execution times are inclusive of a sin-
gle data transfer to the device and a single transfer to the host but exclusive
of JIT compilation times. This is done in order to demonstrate both the peak-
performance of Jacc generated code and the low-overheads of the runtime system.
In terms of programmability, we take the stance that code complexity is propor-
tional to code size and that code can be accelerated, using a GPGPU, without

5 The schema also tracks which fields are accessed and modified by the code, to min-
imize the cost of synchronizing data with the host after a task has been executed.

6 The OpenMP implementation uses the OS supplied libatlas library.

Boosting Java Performance Using GPGPUs 67

1

10

100

Sparse Mat. Mult. Histogram VectorAdd Reduction Conv. 2D Mat. Mult

S
pe

ed
up

 O
ve

r S
er

ia
l J

av
a

(lo
g1

0)

Threads 1 2 4 8 12 16 20 24

(a)

1

10

100

Sparse Mat. Mult. Histogram VectorAdd Reduction Conv. 2D Mat. Mult

Java MT (Peak) OpenMP (Peak) Jacc CUDA

(b)

Fig. 3. Left: The speedups obtained using multi-threaded Java code only, Right: The
performance of GPGPU accelerated implementations normalized to the performance
of the serial Java implementation.

0

10

20

Black Scholes Vector Add Correlation Matrix

S
pe

ed
up

 O
ve

r
S

er
ia

l J
av

a

APARAPI Jacc

(a)

Speedup Lines of Code

Benchmark Serial Java MT Peak Java MT Jacc Reduction

Vector Add 21.52 6.00 (20) 40 6 6.67x
Matrix Mult. 98.56 13.08 (24) 46 16 2.88x
2D Conv. 60.31 10.18 (24) 66 33 2.00x
Reduction 28.31 4.21 (16) 43 11 3.91x
Histogram 11.86 7.53 (24) 61 8 7.62x
Sparse Mult. 2.85 0.63 (20) 51 14 3.64x
Black Scholes 5.93 - - - -
Cor. Matrix 26.16 - - - -

Geo. Mean 19.27 5.02 50 13 4.01x

(b)

Fig. 4. Left: Speedup obtained by APARAPI and Jacc over serial Java implementa-
tions, Right: A comparison of Jacc against Java based implementations.

requiring any significant increase in code complexity over a multi-threaded imple-
mentation. We assess this by measuring the number of source code lines required
to express the data-parallel kernel(s).

4.1 Java Multi-threaded Performance

Figure 3a shows the speedups achieved by converting from serial to multi-
threaded Java implementations. The results show that these benchmarks scale
with increased thread counts. In this scenario, the largest performance increases
are observed when the number of threads used is equal to or less than the number
of physical cores in the system (up to 12 threads). Figure 4b provides a summary
of the peak performances of each benchmark and the number of threads used.

Figure 3b compares the same benchmarks against the Jacc implementations
running on the GPGPU. As a sanity check, we have also implemented all bench-
marks in OpenMP 3.2 and CUDA. By comparing the multi-threaded Java and
OpenMP implementations, we see that our Java implementations have a number
of inefficiencies. However, with the exception of the sparse matrix vector multi-
plication benchmark, Jacc still outperforms the OpenMP implementations. Fur-
thermore, in order to provide a strong comparison point, the OpenMP version of

68 J. Clarkson et al.

SGEMM is provided by libatlas. Results indicate that even in this case Jacc
is still able to outperform OpenMP, albeit by a reduced margin in comparison
to Java multi-threaded implementations.

4.2 Performance and Code Size in Heterogeneous Environment

In terms of performance, Jacc is evaluated against: serial Java, multi-threaded
Java, multi-threaded OpenMP and CUDA. The effect on programmability is
studied by comparing the lines of code required to implement data-parallel code
on the GPGPU against that required to write multi-threaded Java code.

Figure 4b summarizes the speedups obtained by Jacc against our Java imple-
mentations. We have normalized the speedups with the performance of two dif-
ferent Java implementations: a serial Java implementation and the peak perform-
ing multi-threaded Java implementation. Results indicate that Jacc, on average,
outperforms the serial and peak multi-threaded performance of all Java imple-
mentations by 19x and 5x respectively. Our pathological case is the sparse vector
multiplication benchmark, where the irregular memory accesses pattern is not
well suited to our current parallelization strategies. This can be resolved either
algorithmically or through better code generation — assigning loop iterations on
a per warp basis and making use of the texture cache. The table also contains the
results of the difference in code complexity implementing a data-parallel kernel
in multi-threaded Java or using Jacc. The results show that using Jacc to create
data-parallel code requires 4x fewer lines of codes than writing them using Java
threads.

Additionally, we compare against APARAPI [1], an alternative Java based
framework, using three of their benchmarks: Vector addition, Black Scholes, and
Correlation Matrix. A comparison of the results is shown in Fig. 4. To understand
the impact of JIT compilation on performance, we conducted experiments that
are both inclusive and exclusive of compilation times. Comparing the geometric
mean of these speedups, we observe that both frameworks are very similar in
terms of performance; APARAPI just incurs less overheads due to its faster JIT
compilation.

In contrast to our approach, APARAPI is built upon OpenCL and uses
source-to-source translation to generate OpenCL C from Java bytecode. This
approach provides APARAPI with two advantages: consistently low-compilation
times, around 400 milliseconds, and a high quality of generated code. As our com-
piler matures, the cost of our JIT compilation will fall, so that it is comparable
with APARAPI.

In the Correlation Matrix benchmark, Jacc significantly outperforms
APARAPI because of its ability to easily tune the number of threads in each
work group7 and to replace an entire method with a single PTX instruction —
popc.

7 We found that changing Jacc’s work group size, to match that of APARAPI, severely
reduced performance but remained faster than APARAPI.

Boosting Java Performance Using GPGPUs 69

5 Related Work

Most prior work focuses on embedded support for heterogeneous programming
inside existing languages targeting GPGPUs, FPGAs, vector units, and multi-
core processors [1,5,8–10,12–14,16,18]. Jacc is different from the majority of these
efforts since it does not rely on translating bytecode into CUDA or OpenCL C to
generate code for the GPGPU. Instead it generates PTX code which can be JIT
compiled by the GPGPU driver. To the best of our knowledge, the most complete
attempt at enabling the use of GPGPUs from Java is APARAPI [1] which trans-
lates Java bytecode into OpenCL C. We improve over APARAPI since we impose
less restrictions on developers while making it easier to build complex multi-kernel
codes. Jacc does not force developers to separate data-parallel code into singleton
classes and our task-graph abstraction enables a series of runtime optimizations
that are not possible in APARAPI. This work was being used as inspiration for
the now defunct OpenJDK Sumatra project [4].

Rootbeer [16] is another attempt at exposing GPGPUs to Java developers.
In contrast to APARAPI, it uses ahead of time code generation by extending
SOOT [17] with support for emitting CUDA code. Other projects [5,6,10,12,13]
use supersets of Java which include special syntax and language features to
simplify the writing of data-parallel code, or advocate the use of a functional
style programming on a specialized array class. Finally, projects such as [7,
11] use a new intermediate language (IL) which is enriched with support for
parallel execution allowing the JIT to be embedded in domain-specific dynamic
programming languages. Jacc is different from these approaches as we use an
existing IL, Java bytecode, and we aim to support general purpose programming
in Java.

6 Conclusions

Heterogeneous programming allows developers to improve performance by run-
ning portions of their code on specialized hardware resources. In this paper we
have introduced the Jacc framework and shown how it is possible to write concise
data-parallel code and execute it on GPGPUs. Moreover, our task-based pro-
gramming model and runtime system means that a large amount of tedium asso-
ciated with programming heterogeneous devices can be automated. Our experi-
mental results demonstrate that Jacc is able to generate code which outperforms
serial Java code by 19x on average and that it requires 4x less code than a multi-
threaded Java implementation.

Acknowledgments. This work is supported by the AnyScale Apps and PAMELA
projects funded by EPSRC EP/L000725/1 and EP/K008730/1. Dr. Luján is supported
by a Royal Society University Research Fellowship.

70 J. Clarkson et al.

References

1. Aparapi. http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/
2. CUDA. http://developer.nvidia.com/cuda-zone
3. OpenCL. https://www.khronos.org/opencl/
4. Project Sumatra. http://openjdk.java.net/projects/sumatra/
5. Auerbach, J., Bacon, D.F., Cheng, P., Rabbah, R.: Lime: a java-compatible and

synthesizable language for heterogeneous architectures. In: Proceedings of the
ACM International Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA 2010). ACM (2010)

6. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: compiling an embedded
data parallel language. In: Proceedings of the 16th ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP 2011). ACM (2011)

7. Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R., Olukotun, K.: A
domain-specific approach to heterogeneous parallelism, p. 35. ACM Press (2011)

8. Chafik, O.: ScalaCL: faster scala: optimizing compiler plugin+GPU-based collec-
tions (openCL). http://code.google.com/p/scalacl

9. Dotzler, G., Veldema, R., Klemm, M.: JCudaMP. In: Proceedings of the 3rd Inter-
national Workshop on Multicore Software Engineering (2010)

10. Fumero, J.J., Steuwer, M., Dubach, C.: A composable array function interface
for heterogeneous computing in java. In: Proceedings of ACM SIGPLAN Interna-
tional Workshop on Libraries, Languages, and Compilers for Array Programming
(ARRAY 2014). ACM (2014)

11. Garg, R., Hendren, L.: Velociraptor: an embedded compiler toolkit for numerical
programs targeting CPUs and GPUs. In: Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation (PACT 2014). ACM (2014)

12. Hayashi, A., Grossman, M., Zhao, J., Shirako, J., Sarkar, V.: Accelerating
habanero-java programs with openCL generation. In: Proceedings of the 2013
International Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (2013)

13. Herhut, S., Hudson, R.L., Shpeisman, T., Sreeram, J.: River trail: a path to paral-
lelism in javascript. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages Applications
(OOPSLA 2013). ACM (2013)

14. Nystrom, N., White, D., Das, K.: Firepile: run-time compilation for GPUs in scala.
In: Proceedings of the 10th ACM International Conference on Generative Program-
ming and Component Engineering (GPCE 2011). ACM (2011)

15. OpenMP Architecture Review Board: OpenMP Specification (version 4.0) (2014)
16. Pratt-Szeliga, P., Fawcett, J., Welch, R.: Rootbeer: seamlessly using GPUs from

java. In: Proceedings of 14th International IEEE High Performance Computing
and Communication Conference on Embedded Software and Systems (2012)

17. Vallèe-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Phong, C.: Soot
- a java optimization framework. In: Proceedings of CASCON 1999 (1999)

18. Yan, Y., Grossman, M., Sarkar, V.: JCUDA: a programmer-friendly interface for
accelerating java programs with CUDA. In: Sips, H., Epema, D., Lin, H.-X. (eds.)
Euro-Par 2009. LNCS, vol. 5704, pp. 887–899. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03869-3 82

http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/
http://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
http://openjdk.java.net/projects/sumatra/
http://code.google.com/p/scalacl
http://dx.doi.org/10.1007/978-3-642-03869-3_82
http://dx.doi.org/10.1007/978-3-642-03869-3_82

System and Application Performance

A Low Noise Unikernel
for Extrem-Scale Systems

Stefan Lankes1(B), Simon Pickartz1, and Jens Breitbart2

1 E.ON Energy Research Center,
Institute for Automation of Complex Power Systems,

RWTH Aachen University, Aachen, Germany
{slankes,spickartz}@eonerc.rwth-aachen.de

2 Bosch Chassis Systems Control, Stuttgart, Germany
jens.breitbart@de.bosch.com

Abstract. We expect that the size and the complexity of future super-
computers will increase on their path to exascale systems and beyond.
Therefore, system software has to adapt to the complexity of these sys-
tems to simplify the development of scalable applications. In cloud envi-
ronments, the activity of a virtual machine on a neighboring core may
decrease performance due to issues such as cache contamination (noise
neighbor problem). In this paper, we present the unikernel operating sys-
tem HermitCore coming up with predictable runtimes, which improves
the scalability. It extends the multi-kernel approach with unikernel fea-
tures while providing better programmability and scalability for hierar-
chical systems. In addition, the same binary can be used to run as uniker-
nel within virtual machines. By using a unikernel, the memory footprint
of Virtual Machines (VMs) is decreased, which reduces the pressure on
the cache system and improves the overall performance. We prove the
predictable runtime of the design via micro benchmarks by taking the
example of HermitCore on the upcoming manycore architecture Knights
Landing.

1 Introduction

System noise is considered a major challenge for the application scalability across
nodes on exascale systems [1] as the impact of the noise is linearly proportional
to the job size [2]. This property becomes critical for extreme scale systems uti-
lizing thousands of nodes. Upcoming manycore CPU architectures such as Intel’s
Knights Landing require high intra-node scalability for the efficient utilization of
shared memory within a node, i.e., one of the rather slow cores can easily block
a large portion of the remaining cores. Unikernels are an attractive approach for
the development of scalable and secure Operating Systems (OSs) [3]. These are
single-address-space kernels constructed by using library OSs which are tailored
to the needs of the respective application. They are typically built by compiling
(high-level) programming languages directly into specialized machine images. As
a result, system calls are replaced by common function calls promising a faster
handling of resources.
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 73–84, 2017.
DOI: 10.1007/978-3-319-54999-6 6

74 S. Lankes et al.

In previous works we introduced the High-performance Computing (HPC)
kernel HermitCore which extends the multi-kernel approach by using unikernel
features [4]. Our kernel runs HPC workloads bare-metal by using a library OS
alongside Linux. This approach reduces the OS complexity and enhances appli-
cation performance due to lower OS noise. Furthermore, it eases the software
development process as HermitCore itself deals with the complexity that arises
from Non-Uniform Memory Access (NUMA). HermitCore is integrated into the
GCC toolchain and supports C/C++, Fortran, Pthreads, and OpenMP.

In this paper we present the extension of HermitCore that enables the stand-
alone execution as unikernel within a VM and also bare-metal on real hardware.
This makes HermitCore an attractive choice for cloud and real-time environ-
ments, due to the reduced memory footprint. This implicitly reduces the pressure
on the cache system and promises a predictable runtime behavior.

In addition, HermitCore now supports Intel’s recent manycore architecture
Knights Landing (KNL). HermitCore can be easily integrated into the existing
infrastructure by the registration of a proxy which is then able to start the Her-
mitCore applications bare-metal on pre-defined cores or within a VM. Hermit-
Core provides less noise compared to Linux on both traditional Intel multicore
CPUs, but also Intel’s KNL.

The rest of this paper is structured as follows: In Sect. 2, we start with
a discussion of the related work in the design of operating systems for high-
performance computing. Subsequently, we present the new design of the uniker-
nel HermitCore in Sect. 4. Afterwards, we conclude the paper in Sect. 5 with a
performance evaluation and finally in Sect. 6 with a summary.

2 Related Work

The specialization of the OS to the needs of HPC applications is common practice
as only a subset of the features provided by standard OSs is required in this
domain. The employment of standard OS kernels results in an increased pressure
on the cache and interrupt system which is also referred to as system or OS
noise. A notable reduction of the application performance is the result. Dan
Tsafrir et al. provide a probabilistic argument showing that the effect of OS
noise is linearly proportional to the size of the cluster [2], e.g., the probability
of a single-node delay of a petascale machine possessing tens of thousands of
nodes should not exceed 10−6 to keep the probability of suffering from noise at
a reasonable level. Hence, the noise generated by OS layer is a key aspect for
upcoming systems and should be kept as low as possible.

There is a lot of ongoing research towards a reduction of the system noise
with the goal of increasing the scalability. The following three approaches are
most common: (1) Full-Weight Kernels (FWKs) stripped down to the features
required to run HPC workloads, (2) Light-Weight Kernels (LWKs) abolishing
full compatibility to common FWKs such as Linux, and finally a relatively recent
development: multi-kernels combining the advantages of FWKs and LWKs.

A Low Noise Unikernel for Extrem-Scale Systems 75

Cray’s Extreme Scale Linux [5], Catamount [6] and ZeptoOS [7] are common
representatives for FWKs tailored to the needs of HPC. However, their mainte-
nance imposes challenges as new features and bug fixes of the upstream kernel
have to be back-ported. With Kitten1 and Blue Gene’s CNK [8] there are two
examples for the LWK approach. Although they are able to provide excellent
performance and facilitate the maintenance due to the small code basis, they are
restricted with respect to the compatibility to the underlying hardware. Device
drivers usually have to be written from scratch or back-ported from existing
kernels. FusedOS [9], mOS [10], and McKernel [11] are representatives of the
multi-kernel approach. They employ a standard kernel such as Linux on a small
subset of cores for the provision of basic services, e.g., the file system. The remain-
ing cores run a LWK fulfilling the demands of HPC applications. To allow for
the execution of traditional applications on the top of this LWK, system calls
have to be delegated to the FWK which provides full support for the Portable
Operating System Interface (POSIX) API.

HermitCore extends the multi-kernel approach by combining Linux with a
unikernel [3], i.e., a single-address-space kernel constructed by using a library
operating system. These specialized kernels target at a minimal overhead to the
application’s execution by replacing system calls with common function calls.
This promises a more efficient handling of resources. By using this technique,
HermitCore guarantees maximum performance and scalability while Linux pro-
vides support for common interfaces to the OS layer and non-performance critical
tasks. In contrast to the works presented above, a majority of the system calls is
directly handled by the unikernel. Since HermitCore focuses on HPCs program-
ming models such as Message Passing Interface (MPI) and OpenMP, it lacks full
POSIX compliance for the sake of performance and a small code basis.

3 KNL

We conducted all our experiments on Intel’s latest generation Xeon Phi proces-
sors codename KNL which is extensively described by Jeffers et al. [12]. The Xeon
Phi product line comprises CPUs especially designed for HPC that are consid-
ered manycore CPUs. In contrast to the standard Xeon product line, Xeon Phi
products sacrifice single core performance to allow for more cores on a chip. The
KNL cores are based on a modified Intel’s Silvermont micro-architecture, which
is typically used for Intel Atom processors. Compared to a modern Xeon CPU
core, the KNL core for example uses:

– wider vector units/registers supporting up to 512 bit, i.e., a single instruction
is sufficient for the modification of a whole cache line.

– supports 4-wide Simultaneous Multithreading (SMT) (called Hyperthreading
by Intel).

1 https://software.sandia.gov/trac/kitten.

https://software.sandia.gov/trac/kitten

76 S. Lankes et al.

Currently, the KNL is only available as a self-booting processor, but may
also be released as a PCIe card. The self-booting processor supports two mem-
ory flavours: well-known DDR-4 DRAM (up to 384 GiB) and 16 GiB of Multi-
Channel DRAM (MCDRAM). The latter is 3D-stacked DRAM that is put close
to the processor and thereby provides higher bandwidth. In a stream benchmark,
DRAM only provides about 90 GiB/s whereas MCDRAM provides over 400 GiB.
The memory latency differs based on the (bandwidth) utilization of the mem-
ory type. In an idle state, DRAM provides a slightly lower latency compared
to MCDRAM but that evens out once the bandwidth utilization increases. The
KNL possess two memory controllers for DRAM (on opposing sides of the chip)
and 8 for MCDRAM (two available in each quarter of the chip.). The on-chip
MCDRAM can be configured in three ways by modifying the BIOS settings
accordingly:

flat. It is exposed explicitly as part of the address space (via its own NUMA
domain) and can be directly accessed by read/write instructions.

cache. It is configured as a cache for DRAM and not visible to the OS.
hybrid. A portion of the MCDRAM is directly accessible while the remaining

part serves as a cache.

Using MCDRAM as a cache results in a rather high cache-miss latency since
accesses to MCDRAM has about the same latency as DRAM. There is no on-
chip L3 cache as it is available in current Xeon CPUs. However, the KNL provides
a directory based L2 cache (1 MiB shared by two cores each) and a core-local
L1 cache (32 KiB for data). As a result, L1 cache misses are served from the
local L2 if possible, or the on-chip tag directory must be queried for the state of
the requested address. Depending on the result, the data is provided by another
L2 cache or MCDRAM cache is queried (if enabled) In case the data is not
available in any cache, it must be provided by MCDRAM/DRAM depending on
the actual location of the data. The processor can be split into 4 virtual clusters
for a reduction of the latency and congestion of memory accesses. With enabled
cluster mode, the tag directories are guaranteed to be in the same quadrant
of the L2 cache responsible to cache the data, however the memory controller
responsible may not be in the same quadrant. This option is transparant to the
software stack. To further reduce the latency, sub-numa-clustering (SNC) can be
enabled. This mode exposes the four virtual clusters to the software via NUMA
domains including four additional NUMA domains containing the MCDRAM
local to each cluster (in case flat/hybrid mode is enabled). As a result, the
software can explicitly store data in local DRAM or MCDRAM.

Our measurement were run on an Intel Xeon Phi 7210 with 64 cores exposing
256 hyperthreads in total. These cores are clocked at 1.3 GHz, equipped with
96 GiB DDR4 RAM and 16 GB MCDRAM. We deactivated the turbo mode to
avoid any side effects.

A Low Noise Unikernel for Extrem-Scale Systems 77

4 Design of HermitCore

In previous works we introduced the first version of HermitCore [4] while mainly
focusing on HPC workloads in common multi-core clusters. We extended our
objectives by the support for upcoming many-core architectures such as Intel’s
KNL. Furthermore, we added standalone support for running our kernel without
Linux alongside, e.g., such setups can be used to guarantee predictable runtimes
in cloud computing environments. Now the same binary is executable within a
virtual machine as traditional unikernel or directly on the hardware as single-
/multi-kernel.

Consequently, HermitCore targets at an improved programmability and scal-
ability of HPC systems, but also at the building of virtual clusters that can be
easily started, stopped, and migrated within a real cluster. Virtual clusters ease
the creation of checkpoints since the application including all dependencies is
encapsulated within an isolated environment. Thereby, the resiliency of current
and future HPC systems can be improved. For the same reason, load balanc-
ing is facilitated since virtual machines provide means for migrations across the
cluster [13].

In case of the multi-kernel approach, every NUMA node runs an individual
HermitCore instance only managing local resources such as memory and CPU
cores (cf. Fig. 1). This hides the hardware complexity by presenting the applica-
tion developer a traditional Uniform Memory Access (UMA) architecture. Inter-
kernel Communication (IKC) among the HermitCore instances is realized by
means of a virtual IP device based on Light-weight IP (LwIP)2 or by the mes-
sage passing library iRCCE [14,15]. In multi-kernel environments HermitCore
requires a special loader that is capable of handling a slightly modified Exe-
cutable and Linking Format (ELF). This identifies HermitCore applications by
a magic number in the binary’s header and launches a proxy (cf. Fig. 2) for the
communication with the outside world. The application itself is then booted on
an exclusive set of cores which is unregistered from the running Linux kernel.

For cloud environments, the proxy is able to boot HermitCore directly within
VMs without the need for a Linux kernel running alongside. Therefore, QEMU
is used which comes with support for the Multiboot Specification3. Thereby, OS
kernels can be directly booted that come in the ELF format. The communication
to the outside world is realized over an IP connection between HermitCore and
the Linux proxy which is initialized on the startup of QEMU. The boot loader
grub also supports the Multiboot Specification and the same technique can be
used to boot the kernel as single-kernel directly on the hardware. Device drivers
for typical network interfaces are already part of HermitCore. As a consequence,
the same binary can be used in a multi-kernel environment together with Linux,
as unikernel within a VMs, or as unikernel bare-metal on the hardware.

2 http://savannah.nongnu.org/projects/lwip/.
3 https://www.gnu.org/software/grub/manual/multiboot/multiboot.html.

http://savannah.nongnu.org/projects/lwip/
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html

78 S. Lankes et al.

Core Core

Memory N
IC

Linux

Node 0

Core Core

Memory vN
IC

HermitCore

Node 1

Core Core

Memory vN
IC

HermitCore

Node 2

Core Core

Memory vN
IC

HermitCore

Node 3

V
ir
tu
al

IP
D
ev
ic
e
/
M
es
sa
ge

Pa
ss
in
g
In
te
ra
fc
e

Fig. 1. A NUMA system with one satellite kernel per NUMA node (from [4]).

Hardware

Linux kernel

libc

Proxy

libos
(LwIP, IRQ, etc.)

Newlib

OpenMP /MPI

App

Fig. 2. The software stack of HermitCore in a multi-kernel setup (from [4]).

HermitCore is implemented as library OS which enables the implementation
of all system calls as common function calls. This guarantees a small overhead
and promises an excellent runtime behavior in HPCs and real-time environments.
The design requires that the initialization routines of the library OS has to be
located on predictable address and is accessible at boot time. For a simplification
of the boot process, the kernel is stored in a special section and located at the
beginning of the application (cf. Fig. 3).

Functionality which is currently not supported by our kernel, can be provide
in multi-kernel setups by Remote Procedure Calls (RPCs) to the Linux kernel via
the IP connection to the proxy. In [4], we propose a technique, where HermitCore
is able to directly access hardware devices such as InfiniBand. Although most
system calls are directly handled by HermitCore, the RPC mechanism offers
backward compatibility at the expense of peak performance.

A Low Noise Unikernel for Extrem-Scale Systems 79

.bss (uninitialized data)

thread local storage / per core storage

.data / .text (application code + data)

.kdata / .ktext (kernel code + data)

.boot (initialize kernel)

lib
O
S

Fig. 3. Memory layout of a HermitCore application

4.1 Support for Intel’s Xeon and Xeon Phi Architectures

HermitCore is a small 64 bit kernel providing basic OS functionalities, i.e., mem-
ory management and priority-based round-robin scheduling. It is designed with
focus on Intel’s 64 bit processors and comes with support for SMT, SSE4, AVX2,
and AVX512. The maximal number of threads in the system is defined at compile
time as HPC applications typically start an amount of threads equivalent to the
number of cores. Consequently, static arrays can be used for internal data struc-
tures such as the process control block and the ready queue. This promises fast
and cache-aware accesses. HermitCore still provides a scheduler, since garbage
collection of managed programming languages or performance monitoring may
result in more threads than available cores. Currently, this does not support load
balancing since explicit thread placement is favoured over automatic strategies
in HPC.

HermitCore employs a dynamic timer, i.e., the kernel does not interrupt
computation threads which run exclusively on a certain core and do not use
any timer. This does not only reduce the scheduling overhead to a minimum
but also results in a reduction of the OS noise. The MCDRAM of the KNL is
supported by means of new memory allocation functions and is already used
for the IKC facilities within HermitCore. Therefore, we ported iRCCE [14,15]
to serve as communication layer between the HermitCore isles. This is a non-
blocking communication extension to the RCCE Communication Library [16]
which was designed for Intel’s Single-Chip Cloud Computer (SCC). In case of
HermitCore, the on-die memory is emulated by shared memory regions between
the HermitCore isles. The behavior of the SCC is similar to HermitCore’s target
platforms. In case of the SCC, each core has its own on-die memory and is able
to share the memory with the other cores. The access to the local on-die memory
is faster than a remote access. This fits the behavior of a NUMA architecture
which is HermitCore’s target platform. Consequently, each HermitCore isle, i.e.,
each NUMA node, exports a local memory region as virtual on-die memory to
the other isles and hence provides a similar behavior to that of the SCC. If
case of Knights Landing, the virtual on-die memory is located in the MCDRAM
which is close the NUMA node. With these modifications, we are able to use
SCC-MPICH [17] without modifications on the top of HermitCore, which was
designed for the SCC and based on the communication layer iRCCE.

80 S. Lankes et al.

4.2 Building HermitCore Applications

HermitCore applications can be built by using a cross toolchain which is based
on the GNU binutils and the GNU Compiler Collection. Thereby, HermitCore
supports all programming languages which are supported by gcc requiring min-
imal modifications to the original GNU toolchain. It was sufficient to integrate
the support of the target for HermitCore (x86 64-hermit) into the cross config-
ure script of binutils and gcc. We already successfully tested Go, Fortran, C, and
C++ code on the top of HermitCore.

In addition to our previous works [4], we ported the complete Go runtime to
HermitCore by removing all methods related to process creation or inter-process
communication. As single address-space kernel, HermitCore does not support
the execution of more than one process at a time. We already successfully tested
web-services written in Go in conduction with our unikernel.

Furthermore, it is possible to use other C/C++ compilers (e.g., Intel’s C com-
piler) instead of our cross compiler suite. In this case, the compilers have to
use the header files of HermitCore instead of the Linux headers. The resulting
object files have to be converted to HermitCore objects, as the compilers gen-
erated Linux objects per default. Therefore, we provide an adapted version of
elfedit as part of HermitCore’s toolchain.

5 Performance Evaluation

For all benchmarks we used KNL’s SNC mode with four NUMA nodes using
DDR4 RAM and MCDRAM. We used an adapted 3.10 Linux kernel on a
CentOS 7 installation and compiled the micro benchmarks by using gcc with
enabled hardware-independent4 and hardware dependent5) optimizations. All
micro benchmarks, which run on the unmodified CentOS system, are compiled
with the gcc 4.8.5, which is part of the CentOS’s software distribution, while
benchmarks on the HermitCore kernel used the gcc 5.3.1.

For an estimation of the OS noise, we performed measurements using the
Linux kernel’s isolcpu6 feature. This allows for the exclusion of a set of cores
from the balancing and scheduling algorithms for user-tasks. Isolcpu promises
lower OS noise but demands for the explicit allocation of the respective cores
via the CPU affinity calls.

5.1 Operating System Micro-benchmarks

At first, the overhead of a system call and a reschedule are evaluated. The
used benchmark, which we already published in [4] and is part of Hermit-
Core’s software distribution7, calls up 10 000 times the system calls getpid and

4 Hardware-independent optimization flags: -O3.
5 Hardware-dependent optimization flags: -march=native -mtune=native.
6 https://www.kernel.org/doc/Documentation/kernel-parameters.txt.
7 http://www.hermitcore.org.

https://www.kernel.org/doc/Documentation/kernel-parameters.txt
http://www.hermitcore.org

A Low Noise Unikernel for Extrem-Scale Systems 81

sched yield after a cache warm-up. getpid is the system call with smallest
runtime and represents nearly the overhead of a system call. The system call
sched yield checks if another task is ready and switches to them. In our case,
the system is idle and consequently the system call returns directly after the
check of the ready queues. Table 1 summarizes the results as average number of
CPU cycles for Linux and HermitCore.

To allow for a comparison of a KNL-based and a Haswell-based system, we
also add the results from our previous works [4], which based on Intel Haswell
CPUs (E5-2650 v3). The overhead of HermitCore is clearly smaller because in a
library operating system the system calls are mapped to common functions. The
gap between HermitCore and Linux is clearly larger on Knights Landing because
the system activities utilizes only a single core and the single-core performance is
clearly lower in contrast to the Haswell processor. This proves also the demand
on an efficient operating system design to improve overall performance. Further-
more, the difference between getpid and sched yield is on HermitCore smaller,
which proves the small overhead of HermitCore’s scheduler.

Table 1. A performance comparison of HermitCore and Linux regarding basic system
services on two different architectures. The results are given in CPU cycles. (based
on [4])

System activity KNL Haswell

HermitCore Linux HermitCore Linux

getpid() 15 486 14 143

sched yield() 197 983 97 370

malloc() 3 051 12 806 3715 6575

First write access to a page 2 078 3 967 2018 4007

Finally, the memory allocation and initialization are evaluated. On both
operating systems malloc reserves a space on the heap. The first access to the
reserved memory region triggers a pagefault and the exception handler maps
a page frame to the virtual address space. The used benchmark allocates 1024
arrays with an array size of 1 MiB. Afterwards the benchmark writes on each allo-
cated page 1 Byte. By writing this small number of bytes, the first write access
is dominated by handling of the pagefault. Both, the memory allocation and the
pagefault handling is on HermitCore (cf. Table 1) clearly faster in contrast to
Linux.

5.2 Hourglass Benchmark

To determine the OS noise, we use the Hourglass benchmark [18]. It was intro-
duced for the analysis of the time slices assigned by the operating system to
multiple processes. In this work, the concept was used for determining the gaps

82 S. Lankes et al.

in the execution time caused mainly by the operating system. In principle, the
benchmark continuously reads the time stamp counter of the processor. Besides
some blocked system service, the benchmark runs exclusively on the system and
is bound to a specific core. Consequently, if a larger gap between two read oper-
ations occurs, the kernel of the operating system steals some time from the user
application to maintain the system (e.g., scheduling or interrupt handling).

Figure 4 presents the results of the hourglass benchmark showing gaps larger
than 234 cycles to filter cache misses [1]. As expected, the results reveal that a
standard Linux system has the most and the largest gaps (cf. Fig. 4a) in com-
parison to the other configurations. The isolation feature of the Linux kernel has

0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

Time in s

G
ap

in
T
ic
ks

(a)

0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

Time in s

G
ap

in
T
ic
ks

(b)

0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

Time in s

G
ap

in
T
ic
ks

(c)

0 100 200 300
0

0.2

0.4

0.6

0.8

1
·105

Time in s

G
ap

in
T
ic
ks

(d)

Fig. 4. Scatter plot of observing the hourglass benchmark for 1 min on Core 16 in four
different configurations: (a) Standard Linux, (b) Linux with enabled isolcpus and nohz
on all cores but Core 0, and (c) HermitCore, and (d) HermitCore without IP thread.

A Low Noise Unikernel for Extrem-Scale Systems 83

only a limited effect. It reduces the number of gaps but the gap size remains on
a high level as kernel threads are still scheduled on the isolated cores.

Besides the idle loop and the application threads, HermitCore creates only
one additional thread for the handling of IP packets, which could induce OS
noise. The results of the core, which handle the IP threads, is shown in Fig. 4c.
The OS noise is noticeable but the gap size is smaller compared to Linux. All
other cores are exclusively assigned to thread and are not interrupted by an
interrupt. Consequently, the results of these cores (cf. Fig. 4d) shows the smallest
OS noise. But it is not completely noise-free because hyperthreading induces a
latency when switching between the threads.

6 Conclusion

In this paper, we present a new operating system design. On the one hand it
supports the traditional unikernel approach while on the other hand the same
binary can be employed in multi-kernel setups. A single-address-space kernel
promises minimal overhead, excellent scalability, and a low operating system
noise. We achieve promising preliminary results with respect to the system noise.

HermitCore already supports AVX-512, Knights Landing’s MCDRAM, a
message passing interface, Intel’s OpenMP runtime, and a fully integrated GNU
cross toolchain. For future work we plan a comprehensive evaluation of the per-
formance by using application benchmarks to compare these results with tradi-
tional operating systems.

References

1. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system
noise on large-scale applications by simulation. In: SC (2010)

2. Tsafrir, D., Etsion, Y., Feitelson, D.G., Kirkpatrick, S.: System noise, OS clock
ticks, and fine-grained parallel applications. ACM (2005)

3. Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T.,
Smith, S., Hand, S., Crowcroft, J.: Unikernels: library operating systems for the
cloud. In: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2013), pp.
461–472. ACM, New York (2013)

4. Lankes, S., Pickartz, S., Breitbart, J.: HermitCore: a unikernel for extreme scale
computing. In: Proceedings of the 6th International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS 2016), pp. 4:1–4:8. ACM, New York
(2016)

5. Oral, S., Wang, F., Dillow, D.A., Miller, R., Shipman, G.M., Maxwell, D., Henseler,
D., Becklehimer, J., Larkin, J.: Reducing application runtime variability on Jaguar
XT5. In: Proceedings of Cray User Group (CUG 2010) (2010)

6. Kelly, S.M., Brightwell, R.: Software Architecture of the Light Weight Kernel,
Catamount. In: In Cray User Group, pp. 16–19 (2005)

7. Yoshii, K., Iskra, K., Naik, H., Beckman, P., Broekema, P.C.: Characterizing the
performance of big memory on Blue Gene linux. In: Proceedings of the 2nd Inter-
national Workshop on Parallel Programming Models and Systems Software for
High-End Computing (P2S2 2009), pp. 65–72 (2009)

84 S. Lankes et al.

8. Giampapa, M., Gooding, T., Inglett, T., Wisniewski, R.W.: Experiences with a
Lightweight supercomputer kernel: lessons learned from Blue Gene’s CNK. In: 2010
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–10, November 2010

9. Park, Y., Van Hensbergen, E., Hillenbrand, M., Inglett, T., Rosenburg, B.S., Ryu,
K.D., Wisniewski, R.W.: FusedOS: fusing LWK Performance with FWK function-
ality in a heterogeneous environment. In: SBAC-PAD, pp. 211–218 (2012)

10. Wisniewski, R.W., Inglett, T., Keppel, P., Murty, R., Riesen, R.: mOS: an architec-
ture for extreme-scale operating systems. In: Proceedings of the 4th International
Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2014),
New York, pp. 1–8. ACM Request Permissions, June 2014

11. Shimosawa, T., Gerofi, B., Takagi, M., Nakamura, G., Shirasawa, T., Saeki, Y.,
Shimizu, M., Hori, A., Ishikawa, Y.: Interface for heterogeneous kernels: a frame-
work to enable hybrid OS designs targeting high performance computing on many-
core architectures. In: 2014 21st International Conference on High Performance
Computing (HiPC), pp. 1–10 (2014)

12. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Coprocessor High Performance
Programming, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

13. Pickartz, S., Lankes, S., Monti, A., Clauss, C., Breitbart, J.: Application migration
in HPC - a driver of the exascale era? In: 2016 International Conference on High
Performance Computing Simulation (HPCS), pp. 318–325, July 2016

14. Clauss, C., Lankes, S., Reble, P., Galowicz, J., Pickartz, S., Bemmerl, T.: iRCCE:
a non-blocking communication extension to the RCCE communication library for
the Intel single-chip cloud computer - version 2.0 iRCCE FLAIR. Technical report,
Chair for Operating Systems, RWTH Aachen University Users’ Guide and API
Manual (2013)

15. Clauss, C., Lankes, S., Reble, P., Bemmerl, T.: New system software for parallel
programming models on the Intel SCC many-core processor. Concurr. Comput.
Pract. Exp. 27(9), 2235–2259 (2015)

16. Mattson, T.G., van der Wijngaart, R.F., Riepen, M., Lehnig, T., Brett, P., Haas,
W., Kennedy, P., Howard, J., Vangal, S., Borkar, N., Ruhl, G., Dighe, S.: The
48-core SCC processor: the programmer’s view. In: 2010 International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), pp.
1–11, November 2010

17. Clauss, C., Lankes, S., Reble, P., Bemmerl, T.: Recent advances and future
prospects in iRCCE and SCC-MPICH. In: Proceedings of the 3rd Symposium of
the Many-core Applications Research Community (MARC), Ettlingen. KIT Scien-
tific Publishing Poster Abstract, July 2011

18. Regehr, J.: Inferring scheduling behavior with hourglass. In: Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, Monterey, pp. 143–156,
June 2002

A New Approach to Detecting Execution Phases
Using Performance Monitoring Counters

Saman Khoshbakht(B) and Nikitas Dimopoulos

Department of Electrical and Computer Engineering,
University of Victoria, Victoria, BC, Canada

{samankh,nikitas}@ece.uvic.ca

Abstract. In this paper, a new hierarchical view of the workload phase
classification problem is introduced. Execution phases are the continuous
pieces of execution that show consistent behaviour in terms of perfor-
mance and power. To the best of our knowledge, this is the first work
which uses a hierarchical approach to collect and cluster the performance
monitoring counters in order to detect macroscopic phases in an applica-
tion. Our results show the ability of our model to differentiate between
execution phases according to the processor power behaviour. Further-
more, we investigate the power consistency inside each phase. The results
show the effectiveness of our proposed methodology in classifying phases
with similar power behaviour. This information can be used by the sys-
tem to control and maintain power bursts, increasing the data centre’s
power efficiency by reducing the maximum-to-average power ratio.

1 Introduction

Having insight into current and near future behaviour of the workload gives
the system the opportunity to better manage the available resources. Although
recent processors tend to have several power management strategies such as Intel
SpeedStep, Turbo Boost and Running Average Power Limit (RAPL), current
schedulers do not speculate about the near-future demands of the running jobs
in terms of resources such as power, memory or CPU time.

On the other hand, our observations along with those of previous works [1,2]
show benchmarks to have distinct sections of execution where the behaviour
of the software in terms of the monitored feature (power, resource usage, etc.)
stays consistent. These continuous portions of the execution are referred to as
Execution Phases (or Phases). Our work is motivated by the observations
that firstly the execution trace comprises several phases each of which are con-
siderably long. Secondly we observed that these phases show repeating patterns
with similar power and performance behaviour. In this work we introduce a new
methodology to classify each time stamp of the execution into one of the phases.

By having a-priori knowledge about the resource demands of each phase, the
system can strive for a more uniform power by modifying the processor frequency
according to the power currently needed by the software. It is more desirable
for data centers to utilize the available power headroom as much as possible
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 85–96, 2017.
DOI: 10.1007/978-3-319-54999-6 7

86 S. Khoshbakht and N. Dimopoulos

Fig. 1. Snippets of some SPEC CPU2006 benchmark power patterns

by reducing the max(power) − mean(power) factor during the execution of the
workload [3] which results in a smoother power trace for each workload. The
goal of this work is to provide the system with the information about the phase
power demands of the workload in order to lower the max(power)−mean(power)
factor.

Figure 1 shows some examples of the repeating patterns in some SPEC
CPU2006 [4] benchmarks. Most of the benchmarks we chose show power patterns
seen either in very large periods (e.g. calculix) or tighter repeating patterns (e.g.
GemsFDTD). Some benchmarks show distinct behaviour along different times
through whole runtime. An example of this type is bzip2. The third group consist
of benchmarks showing uniform power or indistinct phases (e.g. cactusADM).
This is an exploratory work in order to develop a method for phase classifica-
tion. Our ultimate goal is to develop a hardware-assisted speculative component
which will be responsible to speculate the near-future power demands of the
workload based on its current performance behaviour utilizing the phase infor-
mation. For this purpose, we chose 9 of the SPEC CPU2006 benchmark suite
for preliminary testing. From the benchmarks we managed to manually compile,
we tried to choose the ones showing the most power variance. As our method
aims to reduce the max(power)−mean(power) factor, it will not be of much use
when applied to flat-powered workloads. The benchmarks chosen for this work
are as follows: bzip2, cactusADM, calculix, gcc, GemsFDTD, gobmk, gromacs,
lbm and namd.

1.1 Related Work

Some approaches to phase detection look at phases from the software point
of view by dividing the execution into high-level phases, using the program
trace. Benomar et al. [2] use a shortened version of the trace to create a phase
history based on a heuristic genetic algorithm. This work focuses on the high-
level footprint of the software to determine the phases from the software point of
view. JIVE [5] and AMIDA [6] use a similar approach to divide and categorize
Java codes into phases using the method call graphs. As software trace collection
is intrusive to workload flow, the accuracy of the above methods is compromised.

A New Approach to Detecting Execution Phases 87

Other approaches use the hardware-implemented Performance Monitoring
Counters (PMC) to detect the workload phase. These techniques have the advan-
tage of incurring lower overhead to the system. Isci and Martonosi [7] compare
PMC-based phase classification to Basic Block Vector (BBV)-based approaches
with regards to workload’s power demands. They implemented both techniques
using Intel Pin and showed PMC-based results to provide an average 33% less
power characterization error than BBV approaches. Zhang and Chang [8] used
PMCs to divide the execution trace into two major phases: memory-intensive
and CPU-intensive by determining the amount of L2 cache misses. They use this
information to lower the processor frequency in order to save energy in memory
intensive phases. Cochran et al. [9] made use of these counters to determine the
execution phase in each 100 ms time sample by clustering the data into sepa-
rate phases and showed to be able to detect future IPCs within a 10% error.
Similar to [8], the goal of this work was to differentiate between two major soft-
ware phases: low-power and high-power stable sections. One of the advantages
of our methodology over [7–9] is the two-level hierarchical approach to phase
classification, which provides lower noise in phase detection in addition to fine
timing granularity. Additionally, the number of phases in our method is esti-
mated dynamically, whereas above works assumes a static number of phases in
all benchmarks (i.e. 5 phases in [7] and 2 phases in [8,9]).

All of the models mentioned above utilize a fixed-time sampling rate and the
data in each sample is used in order to determine the phase of that sample. Using
this approach, increasing the length of the sampling period would lead to loss
of fine details while reducing it introduces unwanted artefacts and noise to the
system. Our model introduces a novel hierarchical view to classify and analyse
the workload execution. We also investigated the effects of utilizing a secondary
derived parameter (i.e. power proxy) in our model to increase the accuracy of
the results. In short, our contributions can be summarized as:

– Using PMC information, designed a low-overhead methodology for classifying
the program execution into phases.

– Developed a hierarchical view of the execution in order to provide coarse-grain
phase analysis while retaining fine details for each time sample.

– Utilized a secondary power model to improve power-oriented phase detection.

In the next section, the developed methodology for detecting phases is
described. Section 3 summarizes the results this method provides when applied
to a number of SPEC CPU2006 benchmarks and Sect. 4 covers the future works
and concludes the paper.

2 Methodology

After a short warm-up period of 1sec, we collect the information from the first
10% of the execution. The collected data is used as the training set in our
method. To test our methodology, we apply the phase model created using the
training set to the whole benchmark in order to score our phase results.

88 S. Khoshbakht and N. Dimopoulos

In order to achieve high timing precision in detecting phases, choosing a high
sampling rate is necessary. However, shortening the time slices decreases the
accuracy of phase detection by adding noise and unwanted artefacts induced by
the operating system in the performance counter values. Our proposed method
approaches this dilemma in a new way. We collect the input data in short time
intervals (1 ms) but by considering the value of the counters in the previous
samples, we include the history of the counters in our phase calculations. Using
this approach, we use the history along with each time slice’s data in order to
detect the phase of each time stamp.

2.1 Collecting PMC Data

Figure 2 shows the overall architecture of our proposed methodology. We use the
PAPI tool [10] to collect the Performance Monitoring Counter (PMC) informa-
tion. The system lets us collect up to five performance counter values each time.
As this work mainly focuses on power behaviour in execution phases, we con-
sulted a number of previous works which used a selection of performance coun-
ters for modeling power [11–13]. After choosing a number of PMC candidates,
we determined the correlation between each performance counter and power
while calculating the cross-correlation between each counter pair. We selected
the counters based on maximum correlation to measured power while having
minimal cross-correlation. The counters we selected are the total number of
cycles, number of stalled cycles, number of L1 and L2 instruction cache misses
and number of L3 total cache misses.

2.2 Data Preparation

We used a low-overhead, in-house developed profiling tool [14] for synchronously
collecting the PMC information along with the real processor power and the
RAPL energy estimates in 1 ms intervals. Our tool incurs less than 1% timing
overhead to the system. We use the training set to create the benchmark-specific
phase model for each benchmark. We then use the model to analyse the rest of
the benchmark based on the training set, using the same sampling frequency of
1 ms. We normalize the data using the “standard score” based on a previously
collected sample run of benchmarks. Although our framework can also perform
a Principal Component Analysis on the inputs, we have elected not to use this
capability for the present work as the number of descriptors are quite small.

2.3 Execution Phase and Sub-phase Detection

Clustering is traditionally used to detect major behaviour classes. However, in
our case, the behaviour of the workload may change very rapidly, or it may enter
a sustained pattern of distinctive and successive behaviour states. Our approach
is tailored to identify sustained and consistent behaviour.

We have adapted a two-stage approach. The first stage clusters the states of
computation as exemplified by the values of the PMC counters plus potentially

A New Approach to Detecting Execution Phases 89

Fig. 2. Our proposed methodology

other parameters (such as derived power). The second stage tries to identify
sustained patterns in the succession of behavioural states classified through first-
stage clustering. We denote the classes resulted from the first-stage clustering of
the PMC values as Sub-phases. We denote the classes identified as sustained
during the second stage of our approach as Execution Phases (or “Phases”
in short). Figure 3 shows an example of phases and sub-phases for calculix. In
detail, we proceed as follows:

After collecting the information from the first 10% of the benchmark we use
kmeans, or Lloyd’s, algorithm to cluster each time slice into one of N1 clusters
based on the five PMC values in each time slice. N1 is a predefined value. Our
tests showed that using N1 = 10 clusters leads to enough distinction while
providing acceptable clustering overhead. The assigned sub-phase for each time
slice t is denoted as S(t) ∈ {1, 2, ..., N1}. The maximum number of iterations for
this step is set to 1000, and the initial seeds for centroids are chosen using the
kmeans++ algorithm.

To determine the execution phases we use a sliding window with length W .
Within this time window, we count the number of time slices associated with a
particular sub-phase and annotate the current time with this information. We
define the buffer B as a vector of N1 values where N1 is the number of sub-
phases. We use N1 = 10 for our tests. At any given time T , each component Bi

of vector B is calculated as

0 ≤ Bi(T) =
∑t=T

t=T−W Ci,t

W
≤ 1 i = 1, ..., N1 (1)

where Ci,t = 1 if S(t) = i and 0 otherwise. Bi(T) denotes the share of sub-phase
i during the time window T − W to T . The subsequent clustering of Bi(T)
in every time slice T will determine the phase in each time slice. To choose
the number of phases for each benchmark, we adopt the “Elbow method” [15].
After determining the number of clusters for the benchmark, we use kmeans for
clustering in this step, using the same configuration as the first stage. The results
from this step are the raw phase data which represent the corresponding phase
for each time slice. We then filter the phase data in order to merge any closely
detected phases and remove empty clusters if needed. Finally, we determine the
radius for each phase as Mean + 2 ∗ stddev of distances between each member
and the centroid within the phase. Ultimately, any data point outside of this

90 S. Khoshbakht and N. Dimopoulos

radius is considered “Background Phase”. Figure 3 shows an example of the
phases and sub-phases detected in a section of calculix.

2.4 Using a Secondary Power Proxy

We propose two different models to create the phase information. In Model A,
only the performance monitoring counter information is collected and used for
the first level clustering. This model does not need any information regarding
power and is simpler to implement. We propose a second model, Model B,
which uses a power model as a sixth descriptor for each time slice. We expect
this model to show improvement in differentiating between slices which exhibit
the same behaviour in the collected PMCs, but different power dissipation. There
are many previous works which provide different models for estimating the power
dissipation of the processor [11,12,16,17]. We compared the models which could
be used in our system, including Intel’s RAPL energy estimate model. Among
the tested models, RAPL showed to be the most accurate power model, therefore
we elected to use RAPL as the sixth descriptor in our tests.

3 Experimental Results

This section provides the information we obtained from each benchmark. As an
example, Fig. 3 shows the phasing results for a portion of calculix benchmark.
In the following sections we shall report the coverage of our methodology and
analyse whether the results obtained during the training phase are applicable
to the whole execution. Further, we shall analyse whether a phase maintains its
behaviour as time progresses by comparing all instances of each phase along the
runtime of the execution.

The tests were conducted on a Dell Optiplex 7010 tower PC, running on
an Intel Core i7-3770 processor. We used CentOS Linux release 7.1.1503 and

Fig. 3. Detected sub-phases and phases in calculix using Model B

A New Approach to Detecting Execution Phases 91

stripped down the OS from unwanted services and processes in order to reduce
power and performance artefacts. In order to have full control on the environment
in which the tests were conducted, we switched off all but one of the processor’s
cores as well as dynamic voltage and frequency controlling (DVFS) mechanisms.
This is done in order to validate the effectiveness of the methodology indepen-
dent of current power-control mechanisms, as we aim to provide a software-aware
replacement for current OS-controlled power management techniques. The power
is measured by a secondary system using a non-invasive current clamp. The
framework designed by the authors [14] includes a power profiler developed in
Labview and implemented in a NI PXIe-1062Q data acquisition system. The
results reported are the average scores of 20 runs where we apply our method-
ology to each benchmark under both models. Having chosen 9 benchmarks for
our tests, we performed a total of 360 separate experiments.

3.1 Coverage Results

The phasing stage either maps each time-stamp within the workload with one
of the phases, or classifies it as the “background phase” as discussed in Sect. 2.3.
We define CP or Coverage as the ratio between all time stamps with a reported
phase value (not including “background phase” time stamps) over all time stamps
collected. Additionally, we want to know how much of the execution time con-
sists of phases longer than a certain minimum length. These phases (referred
to as “Long phases”) are of importance since any change to the system para-
meters (e.g. processor frequency control, rescheduling, etc.) incurs a non-trivial
overhead. We define LPCl or the Long Phase Coverage as the sum length of
all phases longer than l divided by the whole runtime of the workload. Table 1
shows coverage (CP) and Long Phase Coverage (LPCl) for l = 11 ms for all
benchmarks. We chose l = 11 ms as it is the round-robin time slice in the oper-
ating system. The results show slightly lower coverage in both factors in Model
B compared to Model A, which can be explained by the addition of the sixth
input (i.e. the derived power) introducing variance in the clustering space.

On average, the overall coverage (CP) for our two models are 99% and 96%
respectively, while the average LPC11 is 96% and 94% respectively.

3.2 Power Estimate Validation

To show how much we can depend on the first 10% of the benchmark to be
the representative of the power behaviour of the phases, we compare the power
histograms of real phase power for the whole benchmark with the estimated
phase power derived from performing a weighted sum of the power histogram
recorded for each sub-phase of the training set (i.e. the first 10%). We use cross-
correlation analysis to compare two histograms.

To calculate the overall Estimated Power Score (Pest) for the benchmark
we perform a weighted sum of the power correlation of each phase to its estimate.
Our results show the estimate and real phase power histograms to correlate
closely. As an example, Fig. 4 shows this correlation for calculix.

92 S. Khoshbakht and N. Dimopoulos

Table 1. Coverage (CP), Long Phase Coverage (LPC11), estimated power score (Pest),
phase power improvement (Pσ) and phase power consistency (Sλ and Sσ) results using
models A and B.

Benchmark CP LPC11 Pest Pσ Sλ Sσ

A B A B A B A B A B A B

calculix 1.00 1.00 0.99 0.99 0.99 0.99 1.22 1.39 0.034 0.024 0.58 0.36

GemsFDTD 1.00 1.00 0.98 0.98 0.98 0.98 1.49 1.73 0.024 0.021 0.17 0.18

gobmk 1.00 1.00 0.96 0.98 0.97 0.98 1.18 1.18 0.012 0.012 0.47 0.46

gromacs 0.99 0.99 0.95 0.98 0.99 0.99 1.11 1.26 0.012 0.012 0.64 0.55

bzip2 0.97 0.99 0.94 0.96 0.95 0.97 1.09 1.26 0.035 0.022 0.67 0.68

cactusADM 0.98 0.70 0.97 0.69 0.99 0.95 1.03 1.32 0.019 0.011 0.62 0.41

zeusmp 1.00 1.00 0.95 0.96 0.96 0.90 1.06 1.52 0.032 0.020 0.95 0.75

namd 1.00 1.00 0.98 0.99 0.99 0.99 1.19 1.16 0.008 0.011 0.92 0.97

gcc 0.99 0.99 0.94 0.94 0.98 0.97 1.19 1.27 0.027 0.026 0.45 0.46

Average 0.99 0.96 0.96 0.94 0.98 0.97 1.17 1.34 0.023 0.018 0.61 0.54

Fig. 4. (a) Estimated and (b) measured power histogram of phases in calculix, along
with each phase’s respective size in the (a) training set and (b) whole benchmark

Table 1 shows the results for Pest for all benchmarks. It can be seen that
there is a strong correlation between estimated and real power histograms of the
benchmarks, showing the power recorded for the phases from the first 10% of the
runtime can be a good representative of the benchmark, even for benchmarks
with varying behaviour along the runtime (e.g. bzip2 in Fig. 1).

3.3 Phase Power Differentiation

To measure the ability of our methodology in separating the execution into
phases based on the power behaviour of each phase, we define Phase Power
Improvement (Pσ) as the ratio between the standard deviation of the power
along the whole benchmark (HBM) and the weighted sum of the standard devi-
ation of power within each phase, as follows:

Pσ =
σ(HBM)

∑p=NC2
p=1 Wp ∗ σ(Hp)

(2)

Where Hp is the power distribution within phase p and Wp is the share of
phase p from the whole runtime. σ(HBM) is the standard deviation of power

A New Approach to Detecting Execution Phases 93

Fig. 5. Power histogram of phases in 459.GemsFDTD, showing phase power sepa-
ration for (a) model A and (b) model B

along the whole benchmark. This factor is used to show how successful the
method is in separating phases according to their power attributes. The working
assumption is that the power within each phase is consistent and hence its density
function (i.e. the power histogram) is narrower as compared to that of the entire
benchmark. A value of Pσ = 1 does not show any improvement in this criteria,
while larger values show improved results.

As it is shown in Fig. 5, which shows the power histogram for each phase
of GemsFDTD (under both models) compared to the histogram of the whole
benchmark shown in the leftmost graphs, the power histogram of the whole
benchmark is separated among the benchmark’s phases. As Table 1 shows, on
average, using Model A improves this factor by 17% while Model B provided
34% improvement in Pσ. The improvement resulted by using the power estimate
in Model B is expected as we introduce the power estimate as the sixth input to
the sub-phase clustering stage.

3.4 Phase Power Consistency

The main goal of our proposed methodology is to detect and classify similar
consistent phases throughout the execution. We expect the power distributions
of the instances of a phase to be similar. To validate this claim, we compare
all instances within a phase in terms of their mean and standard deviation of
measured power. In order to score each phase in this aspect, we first collect
the mean and standard deviation of each phase instance. We define λpi

as the
mean and σpi

as the standard deviation of power in instance i of phase p. We
define λλp

as the average of all mean powers in phase p and σλp
as the standard

deviation of the all mean powers in phase p.

λλp
=

ΣMp

i=1λpi

Mp
and σλp

=

√
1

Mp
ΣMp

i=1(λpi
− λλp

)2 (3)

In order to score each phase, we compare σλp
with λλp

to calculate the
standard error for mean power of each phase p. To analyse the whole benchmark
in terms of Phase Power Consistency, we report Sλ as the weighted geometric
mean of

σλp

λλp
among all phases of the benchmark

94 S. Khoshbakht and N. Dimopoulos

Sλ =
Ws

√

Πp=N2
p=1

(
σλp

λλp

)Wp

where Ws = Σp=N2
p=1 Wp (4)

Additionally, in order to investigate how close the standard deviation of power
is among different phase instances, we calculate the standard error of power for
each phase instance. To calculate the overall score of the phase p in terms of
standard deviation (i.e. Sσp

), we calculate the standard deviation over average
for all instances within the phase p.

Sσp
=

√
1

Mp
.
∑Mp

i=1(Si − ¯Sσp
)2

¯Sσp

where Si =
σpi

λpi

(5)

Where ¯Sσp
is defined as the average of Si among all instances in the phase. We

report Sσ as the geometric mean of the standard error of the standard deviation
of power in all phase instances.

The smaller the values of Sλ and Sσ are, the better our methodology per-
forms, with zero being the ideal score. Table 1 shows Sλ and Sσ for all bench-
marks. According to this table, using our methodology, we can achieve an average
of 2.3% error in terms of Sλ value, using model A. This score is improved even
more in model B, leading to 1.8% error on average. The Sλ scores verify that all
instances of a phase have nearly the same mean power (within about 2% error).
The Sσ score shows the phase instances consistency in terms of their standard
deviation. Our methodology scores 61% for model A and 54% when using model
B. The Sσ score signifies the presence of noise. It shows the standard deviation
of the instances to vary as much as 61% in average indicating the contribution
of noise to our measurement.

3.5 Power Management Utilizing Phase Results

Creating the phase information model for the benchmark is the first step in
controlling the execution in order to control the overall power dissipation of the
system. To show an example of how the phase information can be used to manage
power, we manually created a frequency management trace for two benchmarks
(calculix and GemsFDTD) based on their phase results to be used to control
the CPU frequency in later executions. We utilized a frequency control daemon
we developed for this purpose. Creating an automated tool which responds to
the phase data and controls the CPU frequency in an online manner is a part of
our future works.

Figure 6 shows the result of this technique. In this figure the normal power
traces are shown on the left (Fig. 6(a) and (c)) while frequency-controlled power
traces are shown on the right (Fig. 6(b) and (d)). In case of GemsFDTD the
power control mechanism was switched on at t = 1600 ms to provide a com-
parable trace in this figure. The intervals shown in this figure correspond to
the same sections of execution with or without power control. The maximum
power dropped from 15.4 W to 14.4 W (6.5%) in calculix and from 14.98 W

A New Approach to Detecting Execution Phases 95

Fig. 6. Measured power traces of (a) calculix normal execution - (b) calculix with Power
control - (c) GemsFDTD normal execution - (d) GemsFDTD with Power control

to 12.65 W (15.5%) in GemsFDTD. We also reduced the average power from
13.2 W to 12.76 W (3.3%) in calculix and from 13.25 W to 11.85 W (10.6%) in
GemsFDTD. The frequency drop decreased the performance of calculix and
GemsFDTD by 2.7% and 6.9% respectively. Using our method, the overall
max(power) − mean(power) parameter dropped from 2.20 W to 1.64 W (25%)
in calculix and from 1.74 W to 0.8 W (54%) in GemsFDTD.

4 Conclusions and Future Works

In order to provide the system with information about the current conditions
of the workload, we proposed a new hierarchical methodology for classifying
the execution into distinct phases. Using current and previously read processor
performance counter values, our method maps each time slice into one of dynam-
ically created execution phases. We showed our model’s ability to separate the
benchmark’s phases in terms of their power histogram using a portion of the
execution as the training set. We compared only using the performance counter
values (i.e. model A) with utilizing an additional secondary power derivative
(i.e. model B). We investigated the consistency of phase instances in terms of
their power behaviour and achieved an average of 2.3% or 1.8% error in con-
sistency of mean power in phase instances, based on the chosen model. Using
the secondary power model improves the phase consistency scores (Sλ and Sσ)
and the phase power improvement factors (Pσ) while it does not meaningfully
affect coverage (CP and LPCi) or the phase power estimation results (Pest). As
for further expansions of this work, we are developing a methodology to use the
phasing data to forecast near-future phases and automatically manage the CPU
frequency accordingly.

96 S. Khoshbakht and N. Dimopoulos

References

1. Srinivasan, S., Kumar, R., Kundu, S.: Program phase duration prediction and its
application to fine-grain power management. In: 2013 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp. 127–132, August 2013

2. Benomar, O., Sahraoui, H., Poulin, P.: Detecting program execution phases using
heuristic search. In: Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp.
16–30. Springer, Cham (2014). doi:10.1007/978-3-319-09940-8 2

3. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: Proceedings of the 34th Annual International Symposium on Com-
puter Architecture. ISCA 2007, pp. 13–23. ACM (2007)

4. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

5. Reiss, S.P.: Dynamic detection and visualization of software phases. ACM SIG-
SOFT Softw. Eng. Notes 30(4), 1–6 (2005)

6. Ishio, T., Watanabe, Y., Inoue, K.: AMIDA: A sequence diagram extraction toolkit
supporting automatic phase detection. In: Companion of the 30th International
Conference on Software Engineering, pp. 969–970. ACM (2008)

7. Isci, C., Martonosi, M.: Phase characterization for power: evaluating control-flow-
based and event-counter-based techniques. In: HPCA 2006, pp. 121–132 (2006)

8. Zhang, Z., Chang, J.M.: A cool scheduler for multi-core systems exploiting program
phases. IEEE Trans. Comput. 63(5), 1061–1073 (2014)

9. Cochran, R., Reda, S.: Thermal prediction and adaptive control through workload
phase detection. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 18(1), 7
(2013)

10. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

11. Sun, Y., Wanner, L., Srivastava, M.: Low-cost estimation of sub-system power. In:
International Green Computing Conference (IGCC), pp. 1–10. IEEE (2012)

12. Kim, Y., Park, S., Cho, Y., Chang, N.: System-level online power estimation using
an on-chip bus performance monitoring unit. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 30(11), 1585–1598 (2011)

13. Bartalos, P., Blake, M.B.: Green web services: modeling and estimating power
consumption of web services. In: 2012 IEEE 19th International Conference on Web
Services (ICWS), pp. 178–185. IEEE (2012)

14. Khoshbakht, S., Dimopoulos, N.: SAPPP: the software-aware power and perfor-
mance profiler (under Review)

15. Hardy, A.: An examination of procedures for determining the number of clusters
in a data set. In: Diday, E., Lechevallier, Y., Schader, M., Bertrand, P., Burtschy,
B. (eds.) New Approaches in Classification and Data Analysis. Studies in Clas-
sification, Data Analysis, and Knowledge Organization, pp. 178–185. Springer,
Heidelberg (1994). doi:10.1007/978-3-642-51175-2 20

16. Bircher, W.L., John, L.K.: Complete system power estimation using processor
performance events. IEEE Trans. Comput. 61(4), 563–577 (2012)

17. Rodrigues, R., Annamalai, A., Koren, I., Kundu, S.: Scalable thread scheduling
in asymmetric multicores for power efficiency. In: 2012 IEEE 24th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pp. 59–66. IEEE (2012)

http://dx.doi.org/10.1007/978-3-319-09940-8_2
http://dx.doi.org/10.1007/978-3-642-51175-2_20

Memory Systems

Adaptive and Scalable Predictive Page Policies for High
Core-Count Server CPUs

Tameesh Suri(✉) and Aneesh Aggarwal

Intel Corporation, 2200 Mission College Boulevard, Santa Clara, CA 95054, USA
{tameesh.suri,aneesh.aggarwal}@intel.com

Abstract. Increasing datacenter compute requirements has led to tremendous
growth in the cadence of CPU cores on chip-multiprocessors. With large number
of threads running on a single node, it is critical to achieve high memory band‐
width efficiency on large scale CMPs to support continued growth in the number
CPU cores. In this paper, we present several mechanisms that improve the
memory efficiency by improving the page hit rate for multi-core processors. In
particular, we present memory page-policies that dynamically adapt to the
runtime workload characteristics and use thread awareness to reduce contention
between different memory address streams from the different threads. Unlike
contemporary DRAM page policies such as static or timer-based, the proposed
framework profiles the memory stream at runtime and uncovers opportunities to
close or keep DRAM pages open, resulting in reduced page-conflicts and
improved efficiencies. We implement the proposed policies in a cycle-accurate
performance model simulating an 8-core processor. Our results show that the
proposed adaptive page policies increase performance of high memory bandwidth
workloads in SPECint2006 by up to 3%, and can attain 83% average performance
relative to a “perfect” page prediction policy. We further show that the perform‐
ance improvement from the techniques increases with the number of cores and
with making the policies thread-aware in a many-core processor. The implemen‐
tation cost of our techniques is extremely low, an area overhead of only 69 bits,
making them extremely attractive for real-life products.

1 Introduction

We are seeing tremendous growth in the data center capacities, driven in large part by
the exponential growth in internet connections and data storage requirements. The data
center capacities are increasing in terms of both the number of nodes deployed in the
data centers as well as the number of cores within each node. This has resulted in the
current many-core data center CPUs, with the expectation that the number of cores will
increase significantly in every new generation. However, the memory channels that a
vendor can integrate in a CPU is many times limited by other constraints such as package
size, pin-out limitations, etc. Hence, each memory controller in these many-core CPUs
is expected to handle high memory bandwidths from the multiple cores. Furthermore,
the memory traffic observed by a memory controller is a mix of streams from the multiple
cores and the overall traffic mix is highly dependent on each application’s stream.

© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 99–110, 2017.
DOI: 10.1007/978-3-319-54999-6_8

The page policy implemented in the memory controllers decides whether to keep a
page open or close the page after it has been accessed. The page policy that will work
the best will be different for different workloads. For instance, some workloads may
prefer an open-page policy whereas other workloads may prefer a closed-page policy.
The optimal page policy may also differ between the different phases within a single
workload. Furthermore, different DRAM banks within a single phase may prefer
different page policies.

The current DRAM page policies implemented in the memory controllers are mostly
static in nature [7]. These policies either close the page on every access or keep the page
open for a time before closing it if there are no further accesses to that page [2, 3, 7].
Such “one size fits all” policies do not adapt the page open/close policy to the current
memory traffic stream observed by the memory controller, so as to minimize the memory
access time and maximize the bandwidth.

To show the importance of having a page policy that adapts to the applications’
memory streams, we experimented with two static policies with some intelligence built
into the policies that looks ahead at the other commands in the pipe. Intelligent page
open (IPO) policy keeps a page open on an access by default, but closes the page if there
is a conflicting page to the same bank pending in the queue. Intelligent page close (IPC)
policy closes the page by default but keeps it open if there is another access to the same
page pending.

To further motivate adaptive page policies, we modeled a “perfect” page policy.
Perfect page policy keeps a page open if a subsequent memory transaction to the bank
is a page-hit, and closes the page if the subsequent transaction to the bank accesses a
different DRAM row. No additional penalties are incurred in the perfect page policy to
predict whether to close the page or to keep the page open. The experimental setup is
discussed in Sect. 4.

Fig. 1. SPECintrate2006 performance increase using “perfect” page prediction policy over
baseline IPO and IPC policies

100 T. Suri and A. Aggarwal

Figure 1 shows performance improvement using “perfect” page predictor over base‐
line IPO and IPC policies. Firstly, note that for memory intensive components such as
mcf and omnetpp, IPC performs slightly better than IPO because bank contention due
to multiple threads prefers closing the page. In contrast, there are other components,
mainly gcc and xalancbmk, for which IPO performs better than IPC. This illustrates the
importance of adapting the page policy to the behavior of the applications.

Secondly, the high memory bandwidth components of the SPECInt Suite, such as
mcf and omnetpp, observe 3–4% performance gains with perfect page prediction poli‐
cies. This motivates the need to accurately predict whether to close a page or keep it
open. Even though we experiment with an 8-core processor, we expect that adaptive
page-policies will perform better with more cores. However, such predictive page poli‐
cies need to adapt to several factors, including workload phases, number of threads, and
inter-arrival transaction rate (dictated primarily by the choice of interconnect).

In this paper, we propose a mechanism to dynamically predict and optimize the page
open/close policy for the current behavior of the application. The high level architectural
details for the proposed page-policies are also presented in a recently granted US patent
[1]. Our experiments show that the proposed mechanisms give up to 3% better perform‐
ance for memory intensive applications running on an 8-core processor with 2 memory
channels. We further show that with enough pages per core, there is almost no benefit
with any adaptive page policies, but as number of cores increase, the benefit of adapting
the page policies increases. For instance, for the same intensive applications on 2-
channel CPU, the improvement of adaptive policies reduces to 1% for 4 cores, 0.5% for
2 cores. If we go beyond 8 cores, the improvement is expected to be higher. We also
propose using thread-awareness along with memory access history pattern to further
optimize the policy for each thread. Thread-awareness leads to the most optimal page-
policy decisions in a many-core system and results in higher memory efficiency and
better performance. Our best case page-policy can achieve 83% of “perfect” page policy
performance with an additional area overhead of only 69 bits.

The rest of the paper is organized as follows. Section 2 gives a brief background on
DRAM page policies and incurred latencies for different page modes. Section 3 describe
the proposed adaptive page policies, including thread-aware schemes. Section 4 presents
the evaluation methodology and results from different schemes. Section 5 summarizes
the related work, and finally, Sect. 6 presents our conclusions.

2 DRAM Organization

Contemporary DRAM used in server systems are available commercially as dual in-line
memory modules (DIMMs). Each DIMM is typically a collection of one or more
ranks, and depending on the DRAM bus width (usually 64-bits), rank may constitute
multiple DRAM chips. Each rank is further organized into several memory banks, where
each bank supports concurrent memory request from the memory controller. Data is
read out from the memory bank in DRAM page granularity (also referred as rows) and
are stored in row buffers.

Adaptive and Scalable Predictive Page Policies 101

DRAM row buffer supports three states: open, close and empty. Before read or write trans‐
actions are issued, DRAM row (where transaction resides) is required to be in open state.
Each bank supports at most one open page in the row buffer, and subsequent transactions to
this bank addressed to another page require a precharge operation to close the current page,
and an activate operation to open the new page before the read or write CAS transaction.
This process is termed as page conflict, and results in highest latency penalty for the
memory transaction. If a row buffer is empty, i.e. no page is opened, before memory trans‐
action is issued, an activate operation is needed to open the addressed row – known as page
empty. In comparison, if subsequent memory transactions are addressed to the same open
row, read or write CAS operation can be directly issued. This results in best case latency for
any memory transaction, and is called page hit.

Table 1 shows the latency penalty for different page status for memory transactions.
General practice is to use open page policy (i.e. keep the page open on every access) if
the memory stream demonstrates locality and close page policy for irregular traffic.
These are (mostly) static in nature, and configured during boot time.

Table 1. DDR timing for page hits, page misses and page conflicts.

Page status DDR timing DDR3-1600 (dclks)
Page conflict tRP + tRCD + tCL 33
Page miss tRCD + tCL 22
Page hit tCL 11

CPU cores continue to increase rapidly, while memory channel growth is severely
limited, primarily by package I/O pin constraints and overall chip costs. This leads to
exponential increase in contention on each memory bank, resulting in increased latencies
and reduced memory efficiencies. Static policies and look-ahead schemes in memory
controller which generally worked for single-core or smaller CMPs are ineffective with
the increased thread contention. As an example, a dual channel DDR3 memory controller
supporting dual-rank DIMMS provides a total of 32 independent banks, or parallel
memory address streams, while 50 + core chips are soon becoming a common-
place [16].

3 Adaptive Page Policy Schemes

This section describes the proposed page-policy schemes. We summarize some archi‐
tectural aspects, including decisions and trade-offs. The section is divided primarily into
two sub-sections: counter and history-based page policies, describing various variations.

3.1 Page-Hit Counter (PHC)

We propose a Page-Hit-Counter (PHC) approach that predicts whether the next access
to the page will be a hit or a miss. The predictor is a set of simple saturating counters
that count the page hit rate. The counters are provided for each memory channel and are
reset periodically to more accurately identify the page hit rates in different phases of the

102 T. Suri and A. Aggarwal

workloads. If the page hit rate is higher than a pre-determined value, then the pages are
kept open, and if the page hit rate is lower than the pre-determined value, then the pages
are auto-closed.

We explore two variations of the PHC:

1. Global PHC (GPHC) that has a single page hit rate for all the banks in a channel
2. Per Bank PHC (BPHC) that has a page hit rate for each bank.

Figure 2 shows the process to determine whether to auto-close a DRAM page on an
access or to keep the page open. The process is the same between GPHC and BPHC,
the only difference being the counters used to determine the hit ratio.

Fig. 2. GPHC and BPHC process flowchart to determine the current page policy

To update the page hit counters accurately, a register is provided for each bank to
store the row address of the last access to that bank. When a new access is generated to
that bank, the current row address is compared with the last row address. If the row
addresses are the same, the page hit counter is incremented, and if the row addresses are
different, the page hit counter is decremented. The row address registers are particularly
useful in determining the page hits and misses for the cases where the pages have been
auto-closed.

3.2 History Based and Thread-Aware Page Predictors

The proposed mechanism predicts whether to keep a DRAM page open or to auto-close
the page when the particular page is accessed. The mechanism uses a two-level predictor
to predict the policy for each page as shown in Fig. 3. A page history shift register
(PSHR) is maintained that records the history of whether a page is kept open or auto-
closed on every access. The PSHR is used to index into a page policy table (PPT), where

Adaptive and Scalable Predictive Page Policies 103

each entry is a 2-bit saturating counter that indicates whether the page should be kept
open or auto-closed (00 – strong close; 01 - weak close; 10 - weak open; 11 – strong
open). Several variations of this multi-level predictor can be implemented.

Fig. 3. CMP-based multi-level page prediction policy

Some of the apparent variations are:

1. Global PSHR and global PPT (GPGP)
2. Global PSHR and per-bank PPT (GPPP)
3. Per-bank PSHR and global PPT (PPGP)
4. Per-bank PSHR and per-bank PPT (PPPP)
5. CMP-aware PSHR and global PPT (CMP-GPGP), where the PSHR bits are hashed

with some address bits and thread-id to further differentiate the policy for each page

We explain the GPGP mechanism here; the mechanism can be accordingly modified
for the other variations. When the memory controller accesses a DRAM page, it uses
the PSHR to index into the PPT. If the PPT suggests that the page should be closed, the
memory controller generates the command with auto-close enabled. If the PPT suggests
that the page should be kept open, the memory controller generates the command with
the auto-close disabled. The suggestion from the PPT can be overridden if there is a
pending access to the same page or a conflicting access to the same bank. If the prediction
is to keep the page open, then the PSHR is left-shifted and a “1” is inserted at the right,
and if the prediction is to close the page, then the PSHR is right-shifted and a “0” is
inserted at the right.

In parallel to making a prediction, the PPT is also updated based on the previous
predictions. If the DRAM access results in a page hit or the page that was last closed on
the bank is re-opened, then the PPT index pointed to by the PSHR (or by PSHR hashed
with the address bits depending on the implementation) is incremented. It is important
to note that the PSHR value for a bank (when using a global PSHR) can change between
two consecutive accesses to that bank. Another possible implementation is to record the

104 T. Suri and A. Aggarwal

PSHR value at the time of prediction and then using that PSHR value, instead of the
current PSHR value, to update the PPT. To accurately update the PPT, the address of
the DRAM page that was most recently closed is recorded for each bank. On the other
hand, if the DRAM access results in a page miss or a page other than the most recently
closed page is opened on a bank, the PPT index is decremented.

In addition to GPGP, CMP-aware GPGP scheme variant hashes parts of address-bits
and thread-id to distinguish memory streams and avoid polluting saturating counters
across threads. This scheme specifically targets multi-core architectures, and includes
both, global history of page-predictions and thread specific address isolation needed for
large scale CMPs. We also explored thread-based PHSR, however, area cost increases
rapidly with growth in number of cores, while CMP-aware GPGP requires no additional
hardware in comparison to GPGP.

4 Evaluation Methodology and Results

The proposed page policies were implemented in a cycle-accurate performance simu‐
lator for an 8-core processor. The performance simulator models all aspects of server
CPUs in comprehensive details, including the CPU cores, interconnect network and
snoop traffic, and the memory controller. It is important to note that the precise model
details are very important in uncovering and understanding the interplay and contention
amongst various threads. Table 2 shows some of the parameters of our model.

Table 2. Performance simulator parameters

CPU
Cores 8
Out of order/Issue width 3
L2 Size (shared with 2 cores) 2 MB
Interconnect
Topology Crossbar/point-to-point
Memory controller
DDR-speed DDR3-1600
Memory Channels 2
Pending queue entries 32
Ranks dual-rank

Our performance model is trace-driven, and we use SPECintrate 2006 traces with 8
copies to measure the performance impact of the proposed policies. It is important to
note that only a few components in SPECint2006 exhibit high memory bandwidth, and
these workloads are expected to show most performance gains. We use Intel Compiler
(IC) version 12.1 compiled binaries.

Adaptive and Scalable Predictive Page Policies 105

4.1 Performance Impact of PHC

We measured the performance benefit of the PHC approach, and experimented with a
number of counter sizes. In addition to global and bank-aware saturating counters, we
updated our schemes to be CMP-aware – maintaining per-thread counters for each
scheme. We note that adding per-thread counters increases the overall hardware cost
significantly with growing number of cores, however, this hypothetical experiment
outlines performance implications of counter contention due to multiple threads.

Figure 4 summarizes the performance benefit obtained for GPHC, BPHC, and CMP-
aware variations compared to the intelligent closed-page approach. Although we experi‐
mented with several counter-sizes, most optimal performance per additional unit hard‐
ware was observed using 5-bit saturating page hit counters. In interest of space, Fig. 4
shows performance using 5-bit saturating counters. It is interesting to note that CMP-
aware saturating counter policies show performance advantage on every SPECint
component compared to baseline PHC policies – emphasizing on the increase in thread
contention. In comparison to the proposed baseline GPHC and BPHC approach which
gives an average 0.24% increase in SIR performance, CMP-aware approach improves
SIR performance by 0.48% for the tested configuration. In fact, omnetpp (high-band‐
width SPECint component) shows performance inversion using baseline GPHC and
BPHC policies, primarily due to thread contention not captured by global or per bank
saturating counter. However, with CMP-aware saturating counters, pollution due to
thread contention is avoided, and all SPECint components show performance improve‐
ment. Please note that the overall extent of the performance benefit depends highly on
the configuration of the system.

Fig. 4. Performance impact of various PHC policies on SPECintrate2006 over IPC

106 T. Suri and A. Aggarwal

Fig. 5. Performance sensitivity of core-scaling on page-policies

Fig. 6. Performance impact of CMP-based multi-level page prediction policies over IPC

4.2 Performance Impact of History Based and Thread-Aware Schemes

We experimented with several PSHR sizes and Fig. 6 summarizes the performance
benefit obtained with GPGP and CMP-aware GPGP with a 5-bit PSHR, i.e. 32-entry
PPT compared to the intelligent closed-page approaches. GPGP performs an average of
0.6% (>1% for some benchmarks) better than the best performing currently used policy
(IPC for our configuration). In comparison, CMP-GPGP scheme observes SIR

Adaptive and Scalable Predictive Page Policies 107

performance improvement of 0.83%, emphasizing the performance impact of thread-
awareness. As shown in Fig. 1, perfect prediction achieves 1% performance improve‐
ment over baseline IPC translating to 83% relative performance using CMP-GPGP
scheme. Unlike hypothetical perfect prediction policy, CMP-GPGP is able to achieve
these performance benefits with minimal hardware overhead – 5 bits for PHSR and 64-
bits for 32-entry saturating counter table, for a total of 69 bits.

4.3 Core Scaling

The performance improvement from the proposed techniques is expected to increase
with the number of cores. As the number of cores increase, the memory BW require‐
ments increase putting more pressure on the memory subsystem. Furthermore, the
number of memory banks per core reduces, which increases the number of address
streams targeting the same bank. In such a scenario, being able to adapt the page policy
for that particular bank is expected to provide increased performance benefits. To eval‐
uate the benefit of the proposed schemes, we experiment with different number of cores
which keeping the number of memory channels at two. Figure 5 shows the SIR perform‐
ance improvements of a perfect page predictor over IPC, IPO and CMP-GPGP (lower
point represents closer to perfect policy/higher performance). As can be seen that,
performance improvement from the perfect predictor increases with more cores,
although difference between IPC/IPO and perfect page policies increases with growing
core count. IPO performance is closer to perfect page policies at lower core counts (more
banks/thread), however, IPC shows higher performance compared to IPO past 4-cores.
In comparison, performance benefits of CMP-GPGP scheme remain comparable to
perfect prediction policies with increase core count – achieving 83% of perfect page
predictor performance for 8-core configuration.

4.4 Additional Benefits of Adaptive Page-Policies

The benefits of our approach include improved performance because of lower memory
access latency (the approach eliminates activations on page hits and pre-charges on page
misses). Furthermore, eliminating unnecessary page close and opens also reduces
DRAM by eliminating the unnecessary reads and writes in the buffers used in the DRAM
to cache the data from the open pages. Our experiments show that our adaptive page
policies reduce the total number of page closes and opens by ~5%. Adaptive page policies
can also lower the occurrence of row hammer issue compared to any page close policy
by reducing the unnecessary row buffer write-backs and re-activations for accesses that
would have otherwise hit in the DRAM.

5 Related Work

There are two main categories of mechanisms proposed to improve the page hit rate
achieved by the memory controllers. There is a significant body of work on techniques
to improve the address mapping in the multi-core systems in order to improve the page

108 T. Suri and A. Aggarwal

hits by reducing bank conflicts [4, 5, 7, 15]. Other page policies proposed to improve
the page hit rate are mostly static/look-ahead policies [6–9, 11, 15]. A few adaptive page-
policies have been proposed in the past [2–4, 10, 12–14]. The policies in [3, 4] are timer-
based controller policies that use an adaptive timer for page closure. Another timer-
based approach [13] distinguishes time based on live and dead timer to keep page open
or close. The adaptive policy in [2] uses prediction based on number of accesses to dram
row buffer. Some of these approaches use history based techniques [10, 12, 14] with the
histories stored in tables or data structures somewhat similar to ours. However, these
predictive policies are very expensive to implement and not thread-aware as is required
in a many core system. Furthermore, the design focus and evaluation have been limited
to single-core systems. In contrast, we propose page-policies that are inexpensive to
implement and specifically focused for many core processors. Furthermore, our policies
are expected to scale with increasing number of CPU cores [1]. One key aspect for the
policies designed for many core systems is that these policies need to handle both the
thread contention and traffic mix from the multiple threads while improving the page
hit rates.

6 Conclusions

Increasing number of cores in server systems are leading to increased pressure on the
memory subsystem due to thread contention and intermix of the memory traffic from
the different threads. Static page policies may not be able to perform well in these many
core systems and reduce the overall memory controller efficiency. The challenge is to
develop adaptive page policies that adapt to the runtime memory traffic characteristics
from the different threads in a multi-core system and scale with the number of cores
integrated in the CPU. This paper proposes several adaptive DRAM page-policies that
predict whether to close a page or keep it open when accessing a DRAM page. The paper
also elaborates on the performance implications of these schemes on a representative 8-
core server system. Our results show that our proposed policies can achieve 83%
performance improvement relative to a perfect page prediction policy with minimal
hardware overhead of 69 bits. This also translates to 0.83% absolute performance
improvement for SPECintrate2006, with some high bandwidth workloads observing 3%
performance gains. We expect the proposed policies to show greater impact with
increasing number of CPU cores, leading to increased demand for memory bandwidth.

References

1. Aggarwal, A., Suri, T.: Dynamic Memory Page Policy. US Patent 9,378,127 B2 (2016)
2. Awasthi, M., Nellans, D.W., Balasubramonian, R., Davis, A.: Prediction based dram row-

buffer management in the many-core era. In: IEEE International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2011)

3. Boughton, K., Gill, R.: Everything you always wanted to know about sdram memory but were
afraid to ask (2010). http://www.anandtech.com/show/3851/everything-you-always-wanted-
to-know-aboutsdram-memory-but-were-afraid-to-ask

4. Dodd, J.: Adaptive page management. US Patent 7,076,617 (2006)

Adaptive and Scalable Predictive Page Policies 109

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-aboutsdram-memory-but-were-afraid-to-ask
http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-aboutsdram-memory-but-were-afraid-to-ask

5. Ghasempour, M., Jaleel, A., Garside, J., Luján, M.: HAPPY: hybrid address-based page policy
in DRAMs. In: MEMSYS (2006)

6. Huan, D., Li, Z., Hu, W., Liu, Z.: Processor directed dynamic page policy. In: Jesshope, C.,
Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, pp. 109–122. Springer, Heidelberg (2006).
doi:10.1007/11859802_10

7. Jacob, B., Ng, S., Wang, D.: Memory Systems: Cache, DRAM, Disk. Morgan Kaufmann, CA
(2010)

8. Kaseridis, D., Stuecheli, J., John, L.K.: Minimalist open-page: a dram page-mode scheduling
policy for the many-core era. In: 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) (2011)

9. Ma, C., Chen, S.: A dram precharge policy based on address analysis. In: Digital System
Design Architectures, Methods and Tools (DSD) (2007)

10. Miura, S., Ayukawa, K., Watanabe, T.: A dynamic-sdram-mode-control scheme for low-
power systems with a 32-bit risc cpu. In: International Symposium on Low Power Electronics
and Design (ISLPED) (2001)

11. Park, S.I., Park, I.C.: History-based memory mode prediction for improving memory
performance. In: International Symposium on Circuits and Systems (2003)

12. Stankovic, V., Milenkovic, N.: Access latency reduction in contemporary dram memories.
Facta universitatis (NIS) (2004)

13. Stankovic, V., Milenkovic, N.: Dram controller with a complete predictor. In: 7th International
Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services
(2005)

14. Stankovic, V., Milenkovic, N.: Dram controller with a close-page predictor. In: EUROCON
(2005)

15. Xu, Y., Agarwal, Aabhas, S., Davis, Brian, T.: Prediction in dynamic SDRAM controller
policies. In: Bertels, K., Dimopoulos, N., Silvano, C., Wong, S. (eds.) SAMOS 2009. LNCS,
vol. 5657, pp. 128–138. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03138-0_14

16. Xeon Processor E7 Family. http://www.intel.com/content/www/us/en/processors/xeon/xeon-
processor-e7-family.html

110 T. Suri and A. Aggarwal

http://dx.doi.org/10.1007/11859802_10
http://dx.doi.org/10.1007/978-3-642-03138-0_14
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html

A Method for Fast Evaluation
of Sharing Set Management Strategies

in Cache Coherence Protocols

Julie Dumas1,2(B), Eric Guthmuller1,2,
César Fuguet Tortolero1,2, and Frédéric Pétrot3

1 Univ. Grenoble Alpes, 38000 Grenoble, France
2 CEA, LETI, MINATEC Campus, 38054 Grenoble, France

{julie.dumas,eric.guthmuller,cesar.fuguettortolero}@cea.fr
3 CNRS, TIMA Laboratory, Université Grenoble Alpes, 38031 Grenoble, France

frederic.petrot@imag.fr

Abstract. With the emergence of manycore processors with potentially
hundreds of processors in the embedded market, the scalability of cache
coherence protocols is again at stake. One seemingly simple issue is the
management of the set of sharers of a memory block, but with that many
processors, it is a major bottleneck in terms of hardware resources. In this
paper, we define a high level simulation method to evaluate sharing set
management strategies, using memory access traces obtained through
cycle accurate simulation (e.g. gem5). The goal of the method is to
rank protocols based on latency, traffic and hardware cost, to help either
choose an existing approach for a given application context, or evalu-
ate new approaches. We demonstrate the applicability of our proposal
by evaluating three existing scalable cache coherence protocols, obtain-
ing results consistent with previous, low level, evaluations much more
rapidly.

1 Introduction

According to [7], we have entered the manycore era for some time now. Even
though the scalability of cache coherence protocols has been a problem for
long [11], it remains so in the absence of a credible hardware abstraction alter-
native for software [15].

Cache coherence protocols are often seen as high level Finite State Machines
(FSM) governing actions taken for each cache block. These actions may be either
local to the cache or be visible by other parts of the system. Many works have
been done to compare these FSMs during the 80’s, e.g. [1], which is representative
of the performance analysis that can be done. At that time, most multiprocessors
were bus based and thus using something different than the snoop protocol was
not appealing. Indeed, as a message sent on a bus is implicitly broadcasted to
every connected component, each component can snoop transactions even if it is
not the target. With the advent of more sophisticated interconnects, it rapidly

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 111–123, 2017.
DOI: 10.1007/978-3-319-54999-6 9

112 J. Dumas et al.

became clear that the way to identify which cache should be the target of a
message was of primary importance, and led to the notion of sharing set. The
first proposal, due to [6], was to maintain in main memory a presence bit for
each processor. The fact of centralizing the information at the memory, called
directory, allows to limit the number of messages to the caches that actually
need them (multicast). However, it increases linearly the memory cost with the
number of processors, which is simply not scalable. Furthermore, the usage of
a directory adds one indirection, thus increasing the protocol latency. To cope
with these issues, the researchers’ imagination was challenged: plenty of solutions
have been proposed, many are still under investigation.

Doing a fair comparison between the solutions proposed to manage the shar-
ers set in modern Network-on-Chip (NoC) based multiprocessor architectures is
not easy. As snoop protocols broadcast their coherence messages, they poten-
tially generate a lot of traffic, but they have constant latency as long as the NoC
is not saturated. Directory-based protocols generate only the necessary traffic
and the latency depends on the network topology and application deployment
on the CPUs and memory banks. To increase the performance and memory
throughput, most existing manycore architectures are NUMA [4], i.e. they fea-
ture Non-Uniform Memory Access times: the memory access time depends on
the memory location and the requester CPU location. Still, manycore archi-
tects need a way to select the best cache coherence protocol for their application
considering performance (i.e. latency, bandwidth, power consumption) and hard-
ware related costs. The problem is worsened by the wide number of strategies
to manage the sharing set: static ones like bit-vector or snoop protocol [20], or
dynamic ones like linked-list protocol [22], Ackwise limited sharers list [12] or the
heap sharing set strategy [13]. As many parameters have to be considered (proto-
col FSM, sharing set management, network topology, traffic shape, etc.), neither
analytical models –too complex– nor cycle accurate simulation –too lengthy– are
appropriate.

Our goal in this paper is to propose a high level cache coherence protocols
simulation method to specifically evaluate sharing set management strategies.
This method replays a unique trace captured at the output of the L1 caches on
a model that is aware of the topology of the memory hierarchy.

The remainder of the paper is organized as follows. Section 2 presents the
related work. Our method to rank sharing set management is described Sect. 3.
Section 4 presents the results and compares them to previously published ones.
Finally, Sect. 5 summarizes the results and concludes the paper.

2 Related Work

Fully detailed cache coherence protocol evaluation requires CPU, cache and net-
work implementation. As manycore RTL simulations are very slow, there is a
need for models at a higher level of abstraction.

An approach advocated for small scale multiprocessors is to use cycle accu-
rate simulation. The work of [14] focuses on the power evaluation of snoop pro-
tocols on a single bus based multiprocessor architecture. The evaluations target

A Method for Fast Evaluation of Sharing Set Management Strategies 113

L1 cache coherence comparing several high level automata using 5 small kernels,
among which 2 are not synthetic ones (FFT and LU from SPLASH2 [25]). Unfor-
tunately, neither the number of processors used in the simulation nor the runtime
necessary for these evaluations are reported. In [16], the authors compare the
write policy impact on NoC based multiprocessors, and report results for up to
64 cores. However, their experiments include only two applications (Ocean and
Water from SPLASH2), and do not report the run times of the simulations to
obtain their results. The question of the accuracy that can be reached by cycle
accurate simulation when simulating memory hierarchy is addressed by [5]. The
authors show that the gem5 simulator [3] can be very accurate, but in order to
be so, the cache coherence protocol modeling requires the ruby mode. Unfortu-
nately, this mode makes the simulation multiple times slower than the default
gem5 configuration. Finally, we also refer to [17] which targets the simulation
of directory protocols for up to 128 cores, in which the authors explicitly state
that they limit themselves to three applications because of low simulation speed,
despite the fact that they were using a parallel simulator on 32 cores. They also
report their results solely in terms of number of invalidation messages, because
there is no model of the topology, link capacity, etc. To conclude, even though
cycle accuracy is precious, it is hardly usable for running the hundreds or thou-
sands of simulation necessary for design space exploration.

Therefore, other works observed that the actual program behavior is of no
importance as long as the memory accesses are well modeled. To that end, they
suggest that using traffic generators and modeling only the caches and net-
work can be a solution. These generator can produce either synthetic traffic
(random or statistically characterized [21]), or real traffic obtained by accu-
rate CPU/manycore models [24]. This last solution requires clearly at least one
lengthy simulation to obtain the cache miss requests, but provides actual bench-
marks memory references. By injecting this traffic into a different high level
model of the memory hierarchy, it is possible firstly to rapidly evaluate cache
coherence protocols performance, and secondly to quantify the error by compar-
ing the results with the one obtained at RTL or cycle accurate level. Indeed,
cache coherence protocol implementation is complex, specifically in handling
race conditions through transient states, while not required to get an approx-
imation of average access latency and bandwidth usage [1]. These approaches
are known as trace driven simulation [23], and are still the subject of a large
body of research. However, to the best of our knowledge it has never been used
specifically to evaluate sharing set management in coherent memory hierarchy.

3 Protocols Ranking Method

The solution we propose requires: (1) traffic extraction, done once for a given
benchmark; (2) the replay of these traces through a network on a high-level cache
model which includes sharing set management, and gathers statistics during
execution. This second step can be done as many times as required with different
models, and constitutes the core of this work.

114 J. Dumas et al.

3.1 Traffic Extraction

We produce the traces using a loosely-timed or cycle-accurate simulator (gem5
in this case). However, to avoid the generation of huge dumps, we store only the
events related to L1 misses and L1 evictions (L1 caches are write-back). This has
the nice property of filtering out a lot of memory accesses, thanks to the low miss
rates of the caches, and thus reduces both the data set size and the simulation
time of the high-level cache models. Even though these collected data seem to be
exactly the necessary information, this is an approximation because the content
of the sharing set will change depending on the strategy under evaluation, and
thus future misses would be different. This difference is evaluated in Sect. 4.3 to
show that the approximation is acceptable.

The benchmarks producing the traffic (PARSEC [2] and SPLASH2 [25] appli-
cations) run under Linux, whose boot phase may disturb the analysis. To focus
on the region of interest (ROI), we add simulator specific instructions at the
beginning of the ROI to create a checkpoint, and at the end of the ROI to exit
the simulator. We choose to restart simulation after the checkpoint to extract
traffic that belongs only to the ROI, and to start with cold caches.

3.2 High-Level Cache Modeling

The extracted traffic is injected in a high-level cache model composed of the
L1-copy list, L2 caches, L2 meta-data (see Sect. 3.4) and network (see Sect. 3.5).
L1 caches are not modeled as we use trace-driven simulation with L1 output
traffic. L1-copy list contains identifiers of L1 accessing a given cache block. This
list is used to model the response tracking even when the sharing set strategy
only offers a limited view of the sharers list (e.g. snoop). The L2 caches are set
associative and parameters like block size, set number and way number can be
configured. The L2 are inclusive but the most updated data is on L1. Although
the block replacement policy is configurable, we actually use a pseudo-random
policy as it gives good results for big caches [10]. The L2 meta-data has two parts.
The first is specific to each sharing set strategy, as described in Sect. 3.3 and the
second includes the tag and the MOESI automaton state. The automaton is the
high level protocol FSM, and there is no need for modeling transient states, since
we focus on the sharing set strategy evaluation. This simplification is possible
because we do not care about data values. Cache block states are thus Invalid
–copy is not in the L2, Valid –the only copy is in the L2, Shared/Owned –one or
several L1 have a copy, Exclusive –a L1 has the copy and can modify the data.

High-level cache models can be instrumented for different metrics such as
latency, traffic, power, etc. We focus on latency and traffic, as we will then be
able to compare our results to the ones of the literature. We measure latency as
the total time taken by the initial read request, the induced coherence requests
and the responses to traverse the NoC. In case of a L2 miss, a fixed roundtrip
latency of 100 clock cycles is used to model external memory accesses. Purposedly
we omit the time taken to process requests in caches as we suppose it constant
for all sharing set strategies. The traffic is measured as the number of flits going

A Method for Fast Evaluation of Sharing Set Management Strategies 115

through each NoC router. In addition to latency and bandwidth, our models
track additional metrics: sharing level, cache block lifetime, hit and miss ratio.
This last information does not depend on the sharing set strategy but it is useful
to characterize benchmarks and specially memory/cache accesses.

3.3 Sharing Set Management Strategies

Among all sharing set management strategies that have been devised, we focus
on well known ones for which results are available and cross-checked:

Snoop [20]: Snooping on NoC means broadcasting, i.e. each L1 cache request
is forwarded to all caches. This solution generates a lot of transactions, but
hardware-wise, the meta-data size is small.

Full bit-vector [20]: It uses a directory with a full bit-vector to keep track of
all potential sharers of a cache block. This solution allows to multicast the
messages only to the caches that need it. From a hardware point of view, it
is costly as each block must have one bit per cache in the system.

ACKwise [12]: This protocol uses a limited sharing set organized as a list of k
cache identifiers in the directory. When a block has more than k sharers, the
coherence messages are broadcasted. In this solution, the hardware overhead
due to the directory can be chosen at will, but it generates more messages
than the full bit-vector solution when a block is shared by more than k cores.
To compare this work with the literature, the threshold is fixed to 5.

3.4 Sharing Set Behavior

In the snoop implementation, the L1 requester sends a message to the L2, which
in turn sends a broadcast to all L1s. The L2 waits for the first L1 response and
transfers it to the requester. Therefore, the latency corresponds to the latency
to the closest L1 that has this copy. If the only valid copy is in the L2, the L2
awaits the responses from all L1s, so the latency is at its maximum. If the cache
hierarchy does not hold the data, the L2 sends a refill request to the memory.

In the full bit-vector sharing set approach, a presence bit P exists per cache.
It is thus easy to track all sharers, by setting their presence bit to 1. In our
implementation, a L1 miss generates a message from the L1 cache requester to
the L2. This L2 transfers the message to the exclusive L1 or to the L1 copy
which minimizes the latency between L2, L1 copy and requester.

In Ackwise, the sharing list size is a configuration parameter. When this list
overflows, a global bit G is set to 1 to indicate that we do not store the exact
list of sharers anymore as only a counter of sharers is recorded. Furthermore,
a single cache that contains an up to date version of the block (exclusively or
shared) is identified as the keeper. When there is a L1 read request, this request
is forwarded by the L2 to the keeper which sends the response to the requester.
For an exclusive request, if G = 0, the L2 sends a message to all the sharers to
invalidate their data. If G = 1, the L2 sends a broadcast to invalidate all caches.
In this mode, only L1 that have a copy send an acknowledgement because the
directory knows the number of copies and waits until this number is reached.

116 J. Dumas et al.

3.5 Network Modeling

We implement a state of the art 2D-mesh network using the X-first routing algo-
rithm. The topology can be easily changed, and so does the routing algorithm,
as long as it is deterministic. The L2 memory mapping is configurable: an inter-
leaving mode based on select bits of the address; and a first touch mode where
the cache block is allocated in the nearest L2 at the first access. In the rest of
the paper, we use an interleaving mapping based on the least significant bits of
the address.

In this network, two physical channels are modeled: one for requests, another
for responses. The message types on the network are the following: request,
response, broadcast waiting for responses from all caches and broadcast waiting
for a given number of responses. The broadcast type depends on the evaluated
sharing set management strategy. The NoC has hardware support for broadcast
messages: the L2 sends a single flit request which is replicated by the network to
all L1 caches. All responses are forwarded to the requester and our model takes
into account arbitration so that a single response is received at each clock cycle.

Finally, the latency is computed as the number of NoC routers traversed
by the message, multiplied by a constant hop latency (fixed to 1 clock cycle in
the rest of the paper). This formula heavily relies on the fact that under low
traffic load, a NoC presents a constant hop latency. We will verify that we can
make this hypothesis in Sect. 4. The NoC also records the traffic, that is the flits
number, for each router on 10,000 cycles time windows.

4 Experimentations and Results Analysis

4.1 The gem5 Platform and Benchmarks

To produce traces, gem5 simulator with classical memory is used, the main
parameters used are given Table 1. This simulator comes with the PARSEC [2]
and SPLASH2 [25] benchmarks. To keep cycle accurate simulation time under
control while still producing a significant number of events, the PARSEC bench-
mark uses simmedium inputs.

Table 1. gem5 parameters

CPU 64 cores Alpha 2 GHz

L1 instructions 32 kB, 2 way set associative

L1 data 64 kB, 2 way set associative

Shared L2 256 kB × 64, 8 way set associative

Block size 64B

We insert monitors between the L1 and the interconnect on which L2 are
plugged. There is one monitor per L1-data and one per L1-instruction, thus in

A Method for Fast Evaluation of Sharing Set Management Strategies 117

this system there is a total of 128 monitors. With the base line memory system
available in gem5, the L1 and L2 are connected to a crossbar so the architecture
is fully SMP (Symmetric multiprocessing) and not NUMA. The cache coherence
protocol in this system is MOESI. The simulator is used in its full system version,
in which applications are run upon a complete Linux environment.

Our cache modeling differs from gem5’s one in several ways. Firstly, gem5
L2 is not inclusive, while ours is. So we had to modify gem5 to produce messages
in case of L1 cache block eviction to maintain the sharing set coherent. Another
difference is the L2 cache replacement policy. Gem5 L2 can select a different
cache block for eviction than ours, or worse the behavior could be completely
different in case of differing cache sizes. To check that we do not move away
from gem5 reference behavior, we introduce several sanity checks (see Sect. 4.3).
Indeed, we measure the percentage of the L1 read requests for which the L1 is
already present in the sharing list, and for a read exclusive when this L1 already
exclusively owns this block. We called this read already present and this is a first
indication that we are moving away from gem5. We also measure discrepancies
in L1 eviction messages: a L2 receives an eviction on a not cached block, or a
L2 receives an eviction from a L1 which is not in its sharing set.

4.2 Measurements

Latency: The main metric to evaluate the quality of a cache coherence protocol
is the average latency, because lower average memory access time is expected to
lead to reduced execution time.

Figure 1 reports the mean latency for each program. We can see that for
all programs, the ranking among the sharing set strategies is the same: snoop
has always the highest latency while Ackwise 5 and bit-vector are better and
have performances that are close to one another. On average, with respect to
bit-vector, Ackwise 5 and snoop have a 2% and 44% higher latency. The higher
snoop latency is easily explained by the numerous broadcast messages and the
need to wait for all responses. Moreover, the traffic induced by the snoop proto-
col is so high (see Fig. 1) that it should further increase the latency of coherent
requests. So, the snoop protocol latency is underestimated and it should perform
much worse than Ackwise and bit-vector. In the case of dedup and freqmine
benchmarks, Ackwise performs better than full bit-vector which is counterintu-
itive as the bit-vector sharing set is exact. This result can be explained by a
read exclusive ratio more important (around 50%) than in other benchmarks as
shown Fig. 2. Indeed, in case of read exclusive, Ackwise relies on hardware broad-
cast (when G = 1) for invalidation while full bit-vector uses multicast. Hardware
broadcast, while inducing a higher load on the network, is more efficient from a
latency point of view, explaining this counterintuitive result.

Irrespectively of the sharing set implementation, the average latency shown
Fig. 1 is also strongly coupled to the hit rate shown Fig. 3, due to the high
roundtrip latency of 100 clock cycles for L2 refills. Indeed, Fig. 3 shows the hit
and miss breakdown for each benchmark. Two benchmarks seem to be apart
from the rest. First, fft has a hit rate lower than 40%, with around 60% of

118 J. Dumas et al.

Fig. 1. Mean latency in cycles for each
protocol and each program

Fig. 2. Read and read exclusive
requests distribution

the requests being capacity or conflict misses. Thus many requests have to go
to memory, leading to a higher average latency. On the contrary, blackscholes
has not many requests, so compulsory miss (first access) are more important
than in other programs. The correlation between latency and hit rate is further
demonstrated by Fig. 4, which presents the latency distribution averaged over all
benchmarks. There are two groups: a first peak is located above 100 clock cycles
for read miss requests and another peak is located between 0 and 60 clock cycles
depending on the sharing set. We can see that almost 70% of the requests have a
round-trip latency under 20 hops for bit-vector and Ackwise. In contrast, snoop
latency distribution shows a latency peak shifted toward 25 clock cycles, clearly
demonstrating the higher latency induced by broadcast requests. Similarly to
Fig. 1, we see that bit-vector has a slightly lower latency than Ackwise. It can
be explained by the home selection algorithm. Indeed, when the L2 processes a
read request, it must choose which L1 will answer the request, as the L2 does
not necessarily have the most up-to-date data. In case of the bit-vector, we
select the ideal L1 from a latency point of view, while for Ackwise the keeper is
always selected. Our latency measures are consistent with published results (see
Sect. 4.3).

Traffic: Network traffic is an important metric for two reasons: first, it impacts
power consumption of the system; second, it helps validating our latency mea-
sures, as we do not model contention in the network which is a strong hypothesis.
Figure 5 (note the log scale on the y-axis) presents the mean traffic for the request
channel, the quartile interval and the maximum values over a 10,000 clock cycles
window. Figure 6 does the same for the response channel. One more time, snoop
performs worse than Ackwise 5 and full bit-vector. Its traffic is around one order

A Method for Fast Evaluation of Sharing Set Management Strategies 119

Fig. 3. L2 hit/miss distribution Fig. 4. Latency distribution normal-
ized for all programs

of magnitude higher for request channel and two order of magnitude higher for
response channel than the Ackwise and bit-vector traffic. The traffic is asymet-
ric between the two channels for snoop because broadcast messages generates
a lot more responses than requests due to the hardware support for broadcast
forwarding in the NoC. Moreover, these broadcast messages induces such a high
load that our hypothesis of a contention-free network is no longer valid. Indeed,
it has been demonstrated in several works, e.g. [9,18], that the load-induced
latency can be neglected when the load stays below 10%. While this hypothesis
is mostly valid for Ackwise and bit-vector, it is clearly not the case for snoop.

Figures 5 and 6 also show that Ackwise induces a higher load than bit-vector
for all benchmarks on both channels: 17% more traffic on request channel and
16% more on response channel. It is coherent with results found in the literature.

Hardware Cost: We have compared performances of 3 sharing set strategies
for several benchmarks. To complete the comparison another criterion must be
taken into account: hardware cost of these strategies. We define the hardware
cost as the number of bits necessary to store the meta-data in the L2. We can
easily evaluate this cost analytically in function of the number of L2 entries N
and the number of L1 caches n. The bit-vector strategy has to save the state
(2-bit) and the sharing set (n-bit). The meta-data for Ackwise are the state (2-
bit), multicast or broadcast mode (1-bit), keeper ID (log2 n-bit) and the sharing
set (k log2 n-bit) where k is the sharing list size (threshold). Snoop only needs
to save the state (2-bit). Therefore, bit-vector hardware cost is (2 + n)×N -bit,
Ackwise cost is (3 + log2 n + k × log2n) × N -bit and snoop cost is 2 × N -bit.
With our example architecture, the full bit-vector entry hardware cost is 66-bit,
Ackwise is 39-bit (with k = 5) and snoop is 2-bit.

120 J. Dumas et al.

Fig. 5. Mean traffic with 1st, 3rd quar-
tile and max on request channel for
each protocol

Fig. 6. Mean traffic with 1st, 3rd quar-
tile and max on response channel for
each protocol

4.3 High-Level Cache Modeling Validation

Sanity Checks: As presented in Sect. 4.1, we use several counters to measure
the discrepancy between our modeling and gem5 execution. On average on all
programs, our model presents only 0.14% of read already present per read/read
exclusive request. This value is the same for all our sharing set strategy imple-
mentations. Furthermore, we count only 2.08% of evictions where the data was
not present in the cache and only 0.51% of evictions where the data was present
but the L1 requester was not in the sharing set. This measure is also consistent
across all the sharing set strategies. So it shows our modeling does not diverge
notably from gem5 execution flow.

Complexity of Our Approach: Our high-level model has been designed
specifically to be fast. To verify this, we compare the execution time of three
models on the whole set of programs. First, gem5 with its classical system mem-
ory takes around 4 h per program, but this version does not allow to evaluate
different cache coherence protocols. For this evaluation, we have to use ruby
which takes 2+ days per program execution. Our model, developed in python,
runs in 6 h for 13 programs with 3 different sharing set strategies with 8 par-
allel threads. The execution time depends on the number of cache coherence
requests, for example, streamcluster takes 4 h and blackscholes only 30 s.
We measure the number of L1 read/read exclusive transactions processed by
second for blackscholes on an Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50 GHz,
8 cores (HT) with 32 GB of RAM. Evaluating one protocol, we process in aver-
age 110,000 transactions per second for our model with the Pypy JIT Python
interpreter [19], versus 290 transactions per second for gem5 with ruby. Using

A Method for Fast Evaluation of Sharing Set Management Strategies 121

the classical memory system of gem5, we have got 2,750 transactions per sec-
ond. Therefore, our method is x380 and x40 faster than gem5 with ruby and
classical memory systems, respectively.

We also compare code lines count of this model. In gem5, the ruby cache
model needs approx. 2,800 lines of c++ and approx. 4,000 lines of slicc for MESI
Two level. Our model needs around 150 lines of Python for the cache model
itself, 120 lines for the network, plus 150 lines per sharing set strategy.

Comparison to Accurate Models: To assess the validity of the approach,
we compare our results to the accurate models of Xu et al. [26]. This paper
uses Noxim [8], a cycle-accurate simulator based on SystemC. They use the
same programs from PARSEC and evaluate network latency, execution time,
broadcast overhead and energy consumption. In average, the ranking of the 3
sharing set strategies is the same as what we obtained in Sect. 4.2. However,
they observe much higher latency results for protocol than us. It can first be
explained by the fact that they simulate 1024 cores instead of 64, thus worsening
the impact of broadcasting. Another explanation is our underestimate of load-
induced latency for snoop as shown in Sect. 4.2.

We tested different Ackwise threshold and compare our results with Kurian
et al. [12]. We have one program in common (Ocean C) and the same 2D mesh
topology (Emesh in [12]). We get the same results: better performances for higher
values of the threshold k and smaller improvements when k > 5.

5 Conclusions

In this paper, we propose a method for fast ranking of sharing set management
strategies. We use the gem5 simulator to extract traffic produced by the L1
towards the L2. This traffic is then injected in a high-level model of a distributed
L2 cache and its NoC to extract latency and traffic metrics during the execution
of multiprocessor benchmarks. We evaluate our method by implementing three
sharing set strategies: snoop, full bit-vector and Ackwise. Our method produces
results several orders of magnitude faster than cycle-accurate simulation, and
the models are much easier to implement than the register transfer level or cycle
accurate ones. Even though we do several approximations, the figures of merit
we obtain are in line with the one obtained using cycle accurate models. Thus,
we believe this method is precious to evaluate new sharing set management
approaches before their implementation.

References

1. Archibald, J., Baer, J.L.: Cache coherence protocols: evaluation using a multi-
processor simulation model. ACM Trans. Comput. Syst. 4(4), 273–298 (1986)

2. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: charac-
terization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques. ACM (2008)

122 J. Dumas et al.

3. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM
SIGARCH Comput. Archit. News 39(2), 1–7 (2011)

4. Bolosky, W.J., Scott, M.L., Fitzgerald, R.P., Fowler, R.J., Cox, A.L.: NUMA poli-
cies and their relation to memory architecture. ACM SIGARCH Comput. Archit.
News 19, 212–221 (1991). ACM

5. Butko, A., Garibotti, R., Ost, L., Sassatelli, G.: Accuracy evaluation of GEM5 sim-
ulator system. In: 7th International Workshop on Reconfigurable Communication-
Centric Systems-on-Chip, pp. 1–7. IEEE (2012)

6. Censier, L.M., Feautrier, P.: A new solution to coherence problems in multicache
systems. IEEE Trans. Comput. c-20(12), 1112–1118 (1978)

7. Dally, W.J.: Computer architecture in the many-core era. In: 24th International
Conference on Computer Design (2006). Keynote speech

8. Fazzino, F., Palesi, M., Patti, D.: Noxim: network-on-chip simulator (2008). http://
sourceforge.net/projects/noxim

9. Foroutan, S., Thonnart, Y., Petrot, F.: An iterative computational technique for
performance evaluation of networks-on-chip. IEEE Trans. Comput. 62(8), 1641–
1655 (2013)

10. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach. Morgan Kaufmann Publishers Inc., San Francisco (2011)

11. James, D.V., Laundrie, A.T., Gjessing, S., Sohi, G.S.: Distributed-directory
scheme: scalable coherent interface. Computer 23(6), 74–77 (1990)

12. Kurian, G., Miller, J.E., Psota, J., Eastep, J., Liu, J., Michel, J., Kimerling, L.C.,
Agarwal, A.: ATAC: a 1000-core cache-coherent processor with on-chip optical
network. In: Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques, pp. 477–488. ACM (2010)

13. Liu, H., Devigne, C., Garcia, L., Meunier, Q., Wajsburt, F., Greiner, A.: RWT:
suppressing write-through cost when coherence is not needed. In: IEEE Computer
Society Annual Symposium on VLSI, pp. 434–439. IEEE (2015)

14. Loghi, M., Poncino, M., Benini, L.: Cache coherence tradeoffs in shared-memory
MPSoCs. ACM Trans. Embedded Comput. Syst. 5(2), 383–407 (2006)

15. Martin, M.M., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to stay.
Commun. ACM 55(7), 78–89 (2012)

16. Guironnet de Massas, P., Pétrot, F.: Comparison of memory write policies for
NoC based multicore cache coherent systems. In: Design, Automation and Test in
Europe, pp. 997–1002 (2008)

17. Mukherjee, S.S., Hill, M.D.: An evaluation of directory protocols for medium-scale
shared-memory multiprocessors. In: Proceedings of the 8th International Confer-
ence on Supercomputing, pp. 64–74 (1994)

18. Ogras, U.Y., Bogdan, P., Marculescu, R.: An analytical approach for network-on-
chip performance analysis. IEEE Trans. CAD 29(12), 2001–2013 (2010)

19. Pypy Team (2016). http://pypy.org/. pypy Python interpreter website
20. Sorin, D., Hill, M., Wood, D.: A Primer on Memory Consistency and Cache Coher-

ence. Synthesis Lectures on Computer Architecture, vol. 16 (2011)
21. Soteriou, V., Wang, H., Peh, L.S.: A statistical traffic model for on-chip intercon-

nection networks. In: 14th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems. IEEE (2006)

22. Thapar, M., Delagi, B., Flynn, M.J.: Linked list cache coherence for scalable shared
memory multiprocessors. In: Proceedings of Seventh International Parallel Process-
ing Symposium, pp. 34–43. IEEE (1993)

http://sourceforge.net/projects/noxim
http://sourceforge.net/projects/noxim
http://pypy.org/

A Method for Fast Evaluation of Sharing Set Management Strategies 123

23. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: a survey. ACM Com-
put. Surv. 29(2), 128–170 (1997)

24. Wilson Jr., A.W.: Multiprocessor cache simulation using hardware collected
address traces. In: Proceedings of the Twenty-Third Annual Hawaii International
Conference on System Sciences, pp. 252–260 (1990)

25. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs:
characterization and methodological considerations. ACM SIGARCH Comput.
Archit. News 23, 24–36 (1995). ACM

26. Xu, Y., Du, Y., Zhang, Y., Yang, J.: A composite and scalable cache coherence
protocol for large scale CMPs. In: Proceedings of the International Conference on
Supercomputing, pp. 285–294. ACM (2011)

HBM-Resident Prefetching for Heterogeneous
Memory System

Mahzabeen Islam1(B), Krishna M. Kavi1(B), Mitesh Meswani2,
Soumik Banerjee3, and Nuwan Jayasena3

1 University of North Texas, Denton, USA
mahzabeenislam@my.unt.edu, krishna.kavi@unt.edu

2 ARM, Austin, USA
mitesh.meswani@gmail.com

3 Advanced Micro Devices, Inc., Austin, USA
{Soumik.Banerjee,nuwan.jayasena}@amd.com

Abstract. To meet the increasing demands for very large memory
capacities, bandwidth and energy efficiency, researchers are exploring the
use of heterogeneous memory systems that combine faster 3D-DRAMs,
DDRx DRAM and non-volatile memories (NVMs). In this paper we eval-
uate prefetching in a flat-addressable heterogeneous memory comprising
High Bandwidth Memory (HBM) and phase change memory (PCM). We
find that large prefetch buffers (64 MB) can outperform smaller buffer
sizes (2 MB), however it is not feasible to place such large buffers on the
processor die. Hence, in this paper we evaluate an HBM-resident prefetch
buffer that provides larger capacity and takes advantage of HBM’s higher
memory bandwidth. We also present new prefetching policies that accom-
modate the differences in data path as compared to traditional prefetch-
ers. We show that, reserving a small fraction (1/16th) of HBM memory
to host a hardware prefetch buffer can improve IPC for a set of SPEC
CPU2006 and HPC benchmarks by an average of 34% and a maximum
of 98% over a baseline system with no-prefetching. Prefetching reduces
total PCM traffic by 10% on average, which results in more memory
traffic to the faster HBM, providing overall performance improvement.
We found that such prfetching outperforms CAMEO and Alloy cache
schemes on average by 60% and 10%, respectively.

Keywords: Prefetching · Heterogeneous memory · HBM · PCM

1 Introduction

Demand for memory performance has been on the rise, especially for data-
intensive applications such as HPC, big data analytics, cloud computing and
in-memory databases. These applications need memory systems with very large
capacities (100s of GBs to TBs), high bandwidth and energy efficiency. For exam-
ple, SAP HANA in-memory database system requires 256 GB to 2 TB memory

M. Meswani—The author did the work while employed at AMD.

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 124–136, 2017.
DOI: 10.1007/978-3-319-54999-6 10

HBM-Resident Prefetching for Heterogeneous Memory System 125

per host [1]. Conventional DRAM cannot satisfy such capacity and performance
demands due power and scaling challenges [2]. Recent 3D-stacked DRAM (3D-
DRAM) such as HBM [12] and Hybrid Memory Cube (HMC) [20] provide much
higher bandwidth (up to 256 GB/s HBM [12] and up to 320 GB/s HMC [20])
and consume ∼70% [21] less energy than conventional DRAM. There are eight
independent channels per HBM stack [12]. However, 3D-DRAM is not likely
to meet the capacity requirements of data-intensive applications [3]. Emerging
NVM technologies, on the other hand, are much denser, consume low static
power and are scalable to provide sufficient capacity [4–8]. PCM is one type
of NVM that relies on the state or phase of material to store one bit or mul-
tiple bits. Hence it can be much denser than traditional DRAM and provides
lower cost-per-bit [22]. Also, PCM consumes less idle state power [13]. PCM may
exhibit higher access latency (∼2x for reads and 4x–32x for writes) and higher
read (2x) and write energies (4x–140x) than DDRx DRAM [13,22]. It has lim-
ited write endurance of 106 to 109 cycles [4,22]. Addressing PCM limitations
is an active research area [4–6,22,23] and it is believed to be one of the most
promising NVMs that can be used as main memory in the near future [2,4].

As no single memory technology can provide both large capacity and high
bandwidth, it is natural to explore heterogeneous memory systems that employ
disparate memory technologies together [3,6,9–11,14,15]. Heterogeneous mem-
ory systems introduce their own challenges due to the differences in the char-
acteristics of constituent memory technologies (e.g., storage capacity, access
latency, bandwidth, endurance). Recent research has been investigating solu-
tions to these challenges, either employing fast 3D-DRAM memory as a cache
for slow memory [6,10,14,15] or employing both fast and slow memories as part
of a single physical address space (“flat-address-memory”) [3,6,9,11]. Generally,
cache-based organizations do not need software changes, but they need to man-
age large tag space [14,15]. In cache-based organizations the 3D-DRAM capacity
is not included as main memory capacity, which may lead to higher numbers of
page faults than flat-address-memory organizations which expose the 3D-DRAM
capacity as part of main memory [11]. However, flat-address-memory systems
need to employ techniques to efficiently place/migrate frequently accessed data
into the faster memory.

Since we are interested in designing large memory systems, in this research,
we study a flat-address-memory system consisting in faster 3D-DRAM (HBM)
and slower NVM (PCM). We propose to use prefetching methods for bridging
the performance gap between 3D-DRAM and NVM. Conventional memory-to-
processor prefetching brings data from slower memories (farther from core) to an
on-chip buffer (nearer to core). Prefetching can continue to improve performance
with larger buffer capacities [10,16]. For example, in our study of SPEC and HPC
workloads (workload details provided in Sect. 4), we find that prefetch buffer
sizes of 32 MB, 64 MB, and 128 MB can improve instruction per cycle (IPC) by
27%, 34% and 40% respectively, whereas a 2 MB buffer can improve IPC by only
19% over no-prefetching. However, placing such large buffers inside a processor
is infeasible due to area and power limitations; processor-chip resident prefetch

126 M. Islam et al.

buffer capacity is typically limited to 1 MB to 2 MB of SRAM [17]. Hence, in
this paper, we propose “HBM-resident” prefetching by setting aside a portion
of faster HBM as a large prefetch buffer and employing customized prefetch
policies. The prefetch buffer is split over eight HBM channels, allowing high
memory level parallelism (MLP). Conventional DRAM provides only a limited
number of channels, therefore we choose HBM to host our prefetch buffer. We
prefetch data from slower PCM into a buffer space in faster HBM (by storing a
copy) and service last level cache (LLC) misses from the buffer on a hit. In case
of write-backs from LLC to PCM, if a hit is found in the prefetch buffer, the
write is also buffered there. The advantages are that, it provides faster access
to data (than accessing it from PCM) while avoiding costly updates to page
tables and TLBs (that is generally required in page migration techniques) and
reducing write-backs to PCM. The location changes resulting from prefetching
is tracked using a hardware-based address remapping table. Another advantage
of prefetching is that it might be able to hide PCM access latency even for
“cold” misses, as it can predict unseen future addresses. Neither a straight-
forward demand cache nor a hotness-based page migration scheme can avoid
cold misses, as they rely on demand or past history of accesses.

We first evaluate a prefetching scheme that relies entirely on predictability,
which is generally known as distance prefetching [18]. Next we present a temporal
locality based prefetching technique that relies on access counts to data blocks.
We also introduce a simple open-page prefetching policy which can be seen as a
relaxed caching policy. The main contributions of this paper are:

1. Novel “HBM-resident” prefetching hosted in the faster memory to buffer
pages of the slower memory.

2. A buffer architecture that is designed to take advantage of memory-level
parallelism afforded by the higher number of channels in HBM.

3. Prefetching policies that are designed to take into account the data transfer
path and characteristics of emerging memory technologies.

Our studies show IPC improvements of 33% on average (max. 70%) for a set
of SPEC CPU2006 workloads and 40% on average (98% max.) for a set of HPC
workloads over a baseline system without prefetching. Stand-alone 3D-DRAM-
resident prefetching provides an average performance improvement of 60% over
a state of the art page migration policy, CAMEO [11], and 10% over Alloy
caching [14], which is one of the leading 3D-DRAM based caching techniques.

2 Motivation for a New Prefetch Architecture

In conventional prefetching, data from lower level memories (farther from core)
are fetched into higher levels (nearer to core) before it is requested by the proces-
sor. Some basic hardware prefetching techniques are stride prefetching [24],
stream buffers [16], Markov prefetching [25], and Distance prefetching [18].

For emerging memory technologies, different hardware prefetching policies
have been explored. Ahn et al. [26] proposed to prefetch data from HMC mem-
ory layers into a small SRAM buffer residing in the logic layer of HMC using

HBM-Resident Prefetching for Heterogeneous Memory System 127

stream prefetching [16] at cache line (64 B) granularity. However workloads with
good spatial locality can benefit if more cache lines are fetched. In a study
by Oskin et al. [10], HBM is employed as an operating system (OS) page cache
for conventional DRAM memory, and they employ stride prefetching at OS page
(4 KB) granularity. Yoon et al. [27] proposed caching PCM row buffers with high
access and conflict counts into conventional DRAM to avoid repeated opening
of the same row in PCM. However, memories with high MLP distribute their
cache blocks from the same physical page to a number of channels and, as such,
tracking row buffer conflicts may no longer be beneficial since the locality is now
spread over channels and they may not conflict. In our evaluation we configure
each type of memory with cache-line-level address interleaving to make most of
the MLP. Previously we proposed to use a customized distance prefetching pol-
icy to prefetch from slower PCM to a processor-chip-resident small SRAM buffer
(2 MB) [19]. Here, unlike the processor-resident prefetch buffer, we propose to
host a much larger (32x) prefetch buffer in HBM using only 1/16th of the total
HBM capacity. This approach not only eliminates the capacity constraints, but
also allows high bandwidth utilization through MLP since the prefetch buffer is
split over multiple channels of HBM.

3 HBM-Resident Prefetching

3.1 Architecting a HBM-Resident Buffer

Figure 1(a) provides a comparison of high level organizations for processor-
resident and HBM-resident prefetch buffers for a flat-address memory system
comprising the HBM and PCM used in our evaluations. While designing our
prefetch architecture we addressed four design parameters: (i) prefetch buffer
location, (ii) prefetch granularity, (iii) prefetch initiation and (iv)
prefetch policies.

Prefetch buffer location dictates where to host the prefetch buffer and
its associated data path for copying data to the buffer, which directly influ-
ences the cost/time for completing the prefetch operation. In our design, we

H0 PCM

Processor

1

8 HBM channels

(i) Processor resident
prefetching

H1 H7

Prefetch Buffer
1 Data path from memory to processor
2 Data path from processor to memory

H0 PCM

Processor

(ii) Memory resident
prefetching

H1 H7

1

8 HBM channels

22 2

(a)

Multi-core
processor chipLLC

Prefetch Policy
Engine

HBM
channel 0

HBM
MC 0R

D
Q

W
R
Q

Swap Buffer

PCM
channel 0

PCM
MC 0R

D
Q

W
R
Q

Pr
ef.
Q

Prefetch Buffer
Mapping Table

HRPB

Global Prefetch
Controller

34

1

2

3

54 2

(b)

Fig. 1. (a) Different prefetching organizations, (b) Proposed system organization.

128 M. Islam et al.

host the prefetch buffer in the HBM and call it HBM-resident prefetch buffer
(HRPB). We compare our design with processor-chip-resident SRAM prefetch
buffer, referred to as on-chip prefetch buffer (OCPB), as proposed in [19]. HRPB
necessitates a different data path for bringing data to the buffer as shown in
Fig. 1(a). For OCPB, data travels one-way from memory to the processor buffer
but, for HRPB, data travels first from slower memory to a temporary swap buffer
in processor (not shown in the figure) and from there to the memory buffer. This
is because there is currently no direct data path from PCM to HBM. Prefetch
granularity influences the cost for storing and accessing tags for prefetched
data. Since the HRPB is large, the tag array size can grow very large when
prefetching at finer granularity. Therefore, we use a coarser block (2 KB) gran-
ularity. Prefetch initiation dictates when to issue a prefetch request; we take
an “opportunistic” approach and only prefetch (read) from the PCM when it
is not busy serving demand read requests. Finally, we have to design prefetch
policies to amortize the cost of the longer data path and the difference in buffer
storage technology. Details on the polices are described in Sect. 3.3.

3.2 System Organization

Figure 1(b) shows the system organization of our prefetching technique. The
multi-core processor chip has a shared LLC and a set of memory controllers
(MCs). We use 8 HBM and 2 PCM channels with one MC per channel.
Figure 1(b) shows details of one HBM MC and one PCM MC to keep the figure
readable. Each MC contains a read queue (RD Q) and write queue (WR Q),
and the PCM MC also contains a Prefetch queue (Pref. Q). We reserve a small
fraction of the HBM as HRPB (e.g., 64 MB of 1 GB HBM), which is not visible to
the OS and hence non-allocable. The hardware-based global prefetch controller
is located on the processor chip. The HRPB address range is only visible to the
prefetch controller. We have assumed that the OS-visible physical address range
is statically partitioned over HBM (excluding the HRPB portion) and PCM.

We prefetch (copy) at 2 KB block granularity from the PCM to the HRPB.
The original block is still kept in PCM so no page remapping is required. We
store the HRPB tag array inside the global prefetch controller. The tag array
also serves as the prefetch buffer mapping table. The HRPB is a 4-way set
associative, write-back buffer with least recently used (LRU) eviction policy. In
the mapping table, with each 37 bit address tag (which is the original PCM
physical address of that 2 KB block) we store 1 valid bit, 1 dirty bit and a 32 bit
vector for tracking dirty cache lines in the prefetched block. Hence, for a 64 MB
HRPB, the mapping table size will be 288 KB (32,768 entries, each 9 B), which
is feasible to place on the processor chip. Since each entry in the mapping table
corresponds to a fixed physical address in the HRPB, on a hit in the mapping
table, the HRPB physical address can be dynamically generated. While evicting
a block from the HRPB, only the dirty cache lines are written back to the PCM.
The prefetch policy engine implements the policies.

HBM-Resident Prefetching for Heterogeneous Memory System 129

How to access prefetched data in HRPB: On every LLC miss, the address
is redirected to the prefetch controller. The controller first checks the missed
address to see if it is a PCM address (we assumed that the physical address range
is statically partitioned between HBM and PCM) and, if it is, then the controller
looks up the mapping table. If a match found, then the new destination address
inside the HRPB is also known, and the request is directed to HRPB. The solid
path with numbers 1, 2, and 3 in Fig. 1(b) shows this path. Unlike traditional
migration techniques, the missing data is not moved to the OS-visible memory
space of the HBM (hence avoiding costly page table remappings), but kept in the
prefetch buffer. If no match is found in the mapping table, the LLC miss request
is serviced by the PCM (in Fig. 1(b) solid path 4 and 5). The delay overhead
for every miss in the mapping table is fairly small: the time to access a 288 KB
on-chip SRAM array for a 64 MB HRPB.

How to prefetch data from PCM to HRPB: For every LLC miss to PCM,
the policy engine will generate the next address to prefetch depending on the
prefetching policy. The prefetch controller first checks if the generated address is
already present in the HRPB. Otherwise, it generates prefetch read requests to
the PCM and reads that block into a swap buffer located inside the prefetch con-
troller. The swap buffer holds one block of prefetched data (2 KB). The prefetch
controller then finds a destination location in the HRPB by checking the map-
ping table (if needed, write-back of the evicted entry takes place first). After
successful writes to HRPB, the mapping table entry is updated with the new
block’s address tag and the valid bit is set. This flow is shown in Fig. 1(b) by
dotted paths numbered 2, 3, and 4.

3.3 Prefetching Policies

Distance prefetching is a generalization of Markov prefetching that relies on
correlating deltas (differences) between addresses [18]. Similar to [19], we choose
to use the global history buffer (GHB) structure to implement the distance
prefetcher as presented by Nesbit et al. [28]. Storage overhead for implementing
GHB for distance prefetching is only 8 KB [28]. Distance prefetching width degree
determines how many different prefetching paths and depth degree determines
how far into the future we want to explore. We found width degree 1 and depth
degree 4 as optimal for us.

In Hotness-based prefetching, we use the “hotness” metric (a count of the
number of accesses to a block) [3,6] in deciding whether to prefetch a block
into HRPB. Whenever a block is accessed more than a certain number of times
(e.g., 4) we immediately generate a prefetch request for that block. Such temporal
locality based prefetching may provide higher confidence that the prefetched data
will be useful. We use a hotness count cache with only 16 K (16,384) entries to
hold the hotness count of recently accessed blocks, it works in similar manner as
filter cache presented in the CHOP study [29]. Each entry of the hotness count
cache is 6 B (37b address tag and the rest to keep hotness count), hence the size

130 M. Islam et al.

of the hotness count cache is only 96KB, which can be stored on the processor
chip and accessed with small delay overhead in the prefetching path.

In Open-page prefetching, to benefit from row buffer locality, we change our
physical memory address interleaving from cache line level to memory page (e.g.,
row with size 2 KB) level granularity so that each 2 KB sized block falls to the
same row. To minimize opening the same row in PCM repeatedly, we employ a
simple prefetching policy that attempts to prefetch any row buffer that is open.
This can be seen as a relaxed caching policy, exploiting spatial locality.

4 Experimental Setup

We assume a 16-core system with main memory comprising 1 GB HBM and
16 GB PCM in a flat-address model. Each of the cores is 4-wide out-of-order
issue with 128 entry ROB and operates at 3.2 GHz. Each core has private L1 I
(32 KB) and D (16 KB) caches, and all 16 cores share an L2 LLC (16 MB). For
HBM and PCM timing parameters we primarily follow [30] and [31] respectively;
we list them in Table 1. As a baseline, we used above mentioned memory system
without any prefetching or data migration.

We use Ramulator [30] in trace-driven mode with a CPU model to estimate
IPC. To generate the traces, we first use PinPlay kit [32] to identify region of
interest (ROI) of one billion instructions for each of the benchmarks in Table 2.
We have used 17 memory-intensive benchmarks from the SPEC CPU2006
suite [34], and four representative HPC benchmarks from the US Department of
Energy: XSBench [35], LULESH [36], CoMD [37] and miniFE [38]. As listed in
Table 2, we generate memory access traces for twenty multi-programmed work-
loads by running 16 copies of ROI traces of one benchmark or ROI traces from
different random benchmarks in a 16-core Moola cache simulator [33].

Table 1. Baseline configuration

Parameter HBM PCM

Channels, capacity 8, 1GB (8× 128 MB) 2, 16 GB (2× 8GB)

Memory Controller (MC) 1 per channel 1 per channel

Row buffer size 2KB 2 KB

Queue size/MC RD 32, WR 32 entries RD 64, WR 256, and
prefetch 32 entries

Latency tCAS-tRCD-tRP-tRAS
14ns-14ns-14ns-34ns

Read 80ns (7.5ns tPRE +
62.5ns tSENSE + 10ns
tBUS) Write 250ns tCWL

Bus (per channel) 128-bit, 500 MHz 64-bit, 400MHz

HBM-Resident Prefetching for Heterogeneous Memory System 131

Table 2. Evaluated workloads (WL); footprint (FP) is provided in GB

No. WL Benchmarks MPKI FP No. WL Benchmarks MPKI FP

1 mcf 16x mcf 65.04 16 8 bwav 16x bwaves 6.90 6.82

2 lbm 16x lbm 44.21 6.30 9 cactus 16x cactusADM 3.70 2.31

3 milc 16x milc 23.05 9.05 10 xbmk 16x xalancbmk 4.50 2.89

4 omntp 16x omnetpp 18.96 2.06 11 xsb 16x XSBench 22.01 14.68

5 astar 16x astar 16.80 2.63 12 lul 16x LULESH 13.51 6.80

6 gems 16x GemsFDTD 9.59 10.59 13 mini 16x miniFE 6.72 10.66

7 zmp 16x zeusmp 8.14 3.32 14 comd 16x CoMD 1.41 2.30

No. WL Benchmarks MPKI FP

15 mix1 3x mcf, sph., 2x ast., 2x lbm, gcc, 2x sop., lib., 2x milc, omn., libq. 29.36 5.64

16 mix2 3x lbm, 2x mcf, 3x deal., 3x sop., bzi., 2x cac., 2x Gem. 20.47 5.08

17 mix3 2x Gem., lib., 2x milc, deal., 2x sph., 2x les., 2x cac., 2x gcc, bzi., ast. 10.99 3.34

18 mix4 mcf, 3x lib., 3x sop., Gems., milc, les., lbm, gcc, 2x bzi., cac., deal. 18.27 3.60

19 mix5 5x mcf, 6x lbm, 5x sop. 42.51 7.61

20 mix6 4x lib., 3x omn., 3x gcc, 3x sph., 2x milc, ast. 19.64 2.11

5 Evaluation

5.1 Performance Analysis

We first present the IPC performance improvements of the three prefetching
policies, namely Distance (delta), Hotness-based (hot) and Open-page (open)
implemented with HRPB as well as delta with OCPB [19]. The OCPB can
be seen as an LLC prefetcher which uses a separate on-chip buffer area for
prefetching to avoid the risk of polluting the LLC. Details of the prefetching
configurations are provided in Tables 3 and 4. For the Figs. 2, 3 and 4, the positive
y-axis shows IPC percentage improvement whereas the negative y-axis shows
IPC degradation with respect to a baseline system without any prefetching or
migration. We categorize the workloads 1 to 10 as listed in Table 2 as SPEC
homogeneous (SPEC HOM), 11 to 14 as HPC homogeneous (HPC HOM), and
15 to 20 as SPEC heterogeneous (SPEC HET).

Figure 2 shows the IPC improvements for different prefetching policies over
the baseline. For our basic set of experiments we have chosen the HRPB size
as 64 MB and hot policy threshold as 4 after performing capacity and threshold
sensitivity analyses (not presented here due to space limitations). The HR hot

Table 3. Buffer configuration

Legends Details

HRPB 64MB, 4-way, write-back,

LRU eviction

OCPB 2MB, 16-way, write-back,

LRU eviction

Table 4. Policy configuration

Legends Details

OC delta OCPB with Distance policy, width = 1, depth = 4

HR delta HRPB with Distance policy, width = 1, depth = 4

HR hot HRPB with Hotness-based policy, threshold 4

HR open HRPB with Open-page policy

132 M. Islam et al.

-40

0

40

80

120

m
cf

lb
m

m
ilc

om
tp

as
ta

r

ge
m

s

zm
p

bw
av

ca
ct

us

xb
m

k

A
V

G

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

A
V

G

xs
b lu
l

m
in

i

co
m

d

A
V

G

IP
C

im
pr

ov
em

en
t

(%
) OC_delta HR_delta HR_hot HR_open

SPEC_HOM SPEC_HET HPC_HOM

Fig. 2. IPC improvement (%) of different prefetching policies over baseline (negative
y-axis shows degradation)

0

20

40

60

80

100

-120

-80

-40

0

40

80

120

m
cf

lb
m

m
ilc

om
tp

as
ta

r

ge
m

s

zm
p

bw
av

ca
ct

us

xb
m

k

A
V

G

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

A
V

G

xs
b lu
l

m
in

i

co
m

d

A
V

G H
B

M
 h

it
 r

at
e

(%
)

IP
C

 im
pr

ov
em

en
t

(%
)

HR_hot CAMEO Alloy CAMEO_HBM_hit_rate Alloy_HBM_hit_rate

SPEC_HOM SPEC_HET HPC_HOM

Fig. 3. IPC improvement (%) of HR hot prefetching, stand-alone CAMEO, and stand-
alone Alloy cache over baseline system

scheme provides the best average result over all other policies for all three cate-
gories of workloads SPEC HOM, SPEC HET and HPC HOM with average IPC
improvements of 27%, 43% and 40% respectively. HR hot generally works well
as usually a block with frequent accesses is a good predictor of that same block
being accessed in the future. We find that HR hot performs the best for 1/2 of
the workloads. For most of these cases HR hot policy’s prefetch accuracy and
repeated hit to the same block is much higher than the other policies.

The prediction-based delta policy works well when the workloads have pre-
dictable sequences which happens when there are repeating sequence of address
strides. OC delta [19] follows a similar trend as HR delta but since OCPB is
much smaller in size (only 1/32th of HRPB), we observe on average smaller
improvement for OC delta. For 1/3rd of the workloads, OC delta provides per-
formance close to or better than HR delta. We found that these workloads have
diminishing reuse of data with time, hence storing many prefetched blocks for
prolonged periods of time does not help improve the performance.

In case of simpler HR open policy, we have changed the memory address
interleaving from cache-line-level to block-level to achieve more row buffer hits.
This decreases the MLP and hence we see smaller performance improvement
for most of the cases. However, for mcf and cactus our analysis shows that the
majority of the blocks have low reuse distance and the HR open policy is the
quickest to initiate a prefetch request since it simply tries to prefetch the most
recently accessed row buffer and hence it outperforms the HR hot policy.

HBM-Resident Prefetching for Heterogeneous Memory System 133

With HBM-resident prefetching, on average, total PCM traffic is decreased
by 10%, compared to the no-prefetching baseline. Fewer accesses to PCM leads
to better average access latencies and reduced energy consumption.

Comparison with CAMEO and Alloy: Here, we compare our best prefetch-
ing policy, HR hot, with CAMEO page migration technique [11] and Alloy
caching [14]. Chou et al. proposed CAMEO (CAche-like MEmory Organization)
for a two level memory system comprising 3D-DRAM and DDR DRAM [11]. The
3D-DRAM stores recently accessed data by employing a “cache-like” migration
policy, but it is visible to the OS. On a 3D-DRAM demand miss, the requested
line (64 B) is filled from DDR DRAM. To make room for the requested line, an
older line needs be written back to DDR DRAM (even if it is not dirty) since
there is no other copy of this line in memory. We use CAMEO model with HBM
and PCM, with a capacity ratio of 1:16. In Alloy cache, faster 3D-DRAM is
employed as a large LLC to slower conventional DRAM memory [14]. The 3D-
DRAM is employed as a direct-mapped cache with 64 B line granularity. Here
both tag and data are kept together. In our implementation we use HBM as
Alloy cache to slower PCM memory. In CAMEO, we have total 17 GB of main
memory, whereas in Alloy chaching we have 16 GB of main memory. Since each
of our workload’s memory footprint is below 16 GB, we cannot see the larger
capacity benefit of CAMEO over Alloy caching.

In Fig. 3, right y-axis shows the HBM hit rate (%) and the hit rate lines
correspond to it. On average CAMEO degrades IPC by 1%, Alloy cache improves
IPC by 29% and HR hot improves by 34%. In case of CAMEO, every HBM
miss results in a write back to PCM and, as a result, HBM hit rate plays an
important role in CAMEO’s performance. Generally for workloads with HBM hit
rate under 74% we see performance degradation with CAMEO. Though writes
are not in the critical path of execution, when the write queues are almost full,
memory controllers must prioritize write queues over read queues and hence the
overall execution time can be slowed down. Here, we have used different memory
technology and capacity ratios than proposed in the original CAMEO work [11],
and thus due to the high memory pressure in 3D-DRAM and slow writes of
PCM, we observe very little performance improvement by CAMEO. In case of
Alloy cache, only dirty cache lines are written back to PCM, hence Alloy cache
with similar HBM hit rate provides better performance than CAMEO.

5.2 PCM Timing Analysis

Figure 4 shows how sensitive our proposed HBM-resident Hotness-based
prefetching is to the PCM timing (due to space limitation we do not include the
results for other two prefetching policies; in general they follow a similar trend).
In one extreme we have replaced PCM with conventional DRAM (DDR3). Also,
we evaluate a 2x faster fast PCM and a 2x slower slow PCM taking the PCM
timing mentioned in Table 1 as standard. In Fig. 4 the IPC improvements for
each timing configuration are compared to the baselines with identical timing.

134 M. Islam et al.

-40

0

40

80

120

m
cf

lb
m

m
ilc

om
tp

as
ta

r

ge
m

s

zm
p

bw
av

ca
ct

us

xb
m

k

A
V

G

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

A
V

G

xs
b lu
l

m
in

i

co
m

d

A
V

G

IP
C

 im
pr

ov
em

en
t

(%
) DDR3_timing fast_PCM_timing standard_PCM_timing slow_PCM_timing

SPEC_HOM SPEC_HET HPC_HOM

Fig. 4. PCM timing sensitivity for Hotness-based prefetching policy

When we prefetch from DDR DRAM to HBM buffers, we do not see sig-
nificant benefits because both memories have similar access latencies. However,
HBM has more channels and can provide more MLP than conventional DRAM.
Hence, in this case we are paying the prefetching cost only to get the higher
bandwidth benefit of HBM. From Fig. 4 we can see that for ∼2/3rd of the work-
loads we achieve negligible IPC improvements or degradations and for the rest
we achieve IPC improvements from 8% to 21%. With fast PCM, the amount
of time we save on a hit in the HRPB is smaller than the case when we have
standard PCM. Hence with fast PCM, we achieve smaller performance improve-
ments. On the other hand, with the slow PCM, we have fewer opportunities to
prefetch since PCM is mostly busy responding to demand requests.

6 Conclusion and Future Work

We presented a novel HBM-resident hardware-based prefetching mechanism for
heterogeneous flat-address-memory comprising HBM and PCM. We evaluated
three different prefetching policies and show that they perform better than a
system with no prefetching. In the future, we will explore composite schemes by
augmenting such prefetching policies with data migration and caching organi-
zations for heterogeneous memories. Further, HBM-resident prefetch buffer can
be employed as a staging area to make the final migration decision of the page
to the faster memory. Hence we believe this research opens new opportunities
involving prefetching in the context of heterogeneous memory.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names are used for identification
purposes only and may be trademarks of their respective companies.

References

1. HANA Memory Usage. http://saphanatutorial.com/sap-hana-memory-usage-
explained/

2. Mutlu, O.: Memory scaling: a systems architecture perspective. In: International
Memory Workshop. IEEE (2013)

http://saphanatutorial.com/sap-hana-memory-usage-explained/
http://saphanatutorial.com/sap-hana-memory-usage-explained/

HBM-Resident Prefetching for Heterogeneous Memory System 135

3. Meswani, M.R., et al.: Heterogeneous memory architectures: a HW/SW approach
for mixing die-stacked and off-package memories. In: HPCA, pp. 126–136. IEEE
(2015)

4. Qureshi, M.K., et al.: Phase change memory: from devices to systems. Synth. Lect.
Comput. Archit. 6(4), 1–134 (2011)

5. Qureshi, M.K., et al.: Scalable high performance main memory system using phase-
change memory technology. ACM SIGARCH Comput. Archit. News 37(3), 24–33
(2009)

6. Su, C., et al.: HPMC: an energy-aware management system of multi-level memory
architectures. In: MEMSYS, pp. 167–178. ACM (2015)

7. Micron NVDIMM. https://www.micron.com/products/dram-modules/nvdimm#/
8. 3D-XPoint. http://www.intel.com/newsroom/kits/nvm/3dxpoint/pdfs/Launch

Keynote.pdf
9. Sim, J., et al.: Transparent hardware management of stacked dram as part of

memory. In: MICRO, pp. 13–24. IEEE (2014).
10. Oskin, M., Loh, G.H.: A software-managed approach to die-stacked DRAM. In:

PACT, pp. 188–200. IEEE (2015)
11. Chou, C., et al.: CAMEO: a two-level memory organization with capacity of main

memory and flexibility of hardware-managed cache. In: MICRO, pp. 1–12. IEEE
Computer Society (2014)

12. 3D-ICs. https://www.jedec.org/category/technology-focus-area/3d-ics
13. Numonyx: PCM. http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
14. Qureshi, M.K., Loh, G.H.: Fundamental latency trade-off in architecting DRAM

caches: outperforming impractical SRAM-Tags with a simple and practical design.
In: MICRO, pp. 235–246. IEEE Computer Society (2012)

15. Jevdjic, D., et al.: Unison cache: a scalable and effective die-stacked dram cache.
In: MICRO, pp. 25–37. IEEE (2014)

16. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: ISCA, pp. 364–373. IEEE
(1990)

17. Beckmann, N., Sanchez, D.: Meeting midway: improving CMP performance with
memory-side prefetching. In: PACT, pp. 289–298. IEEE (2013)

18. Kandiraju, G.B., Sivasubramaniam, A.: Going the distance for TLB prefetching:
an application-driven study. In: IEEE Computer Society, vol. 30 (2002)

19. Islam, M., et al.: Prefetching as a potentially effective technique for hybrid memory
optimization. In: MEMSYS. ACM (2016)

20. Hybrid Memory Cube Consortium. http://www.hybridmemorycube.org/
21. Kim, J., Kim, Y.: HBM: memory solution for bandwidth-hungry processors. In:

Hot Chips: A Symposium on High Performance Chips (2014)
22. Yoon, H., et al.: Efficient data mapping and buffering techniques for multilevel cell

phase-change memories. TACO 11(4), 40 (2015). ACM
23. Wang, H., et al.: Duang: fast and lightweight page migration in asymmetric memory

systems. In: HPCA, pp. 481–493. IEEE (2016)
24. Fu, J.W., et al.: Stride directed prefetching in scalar processors. ACM SIGMICRO

Newslett. 23(1–2), 102–110 (1992)
25. Joseph, D., Grunwald, D.: Prefetching using Markov predictors. In: ACM

SIGARCH Computer Architecture News, vol. 25, pp. 252–263. ACM (1997)
26. Ahn, J., et al.: Low-power hybrid memory cubes with link power management and

two-level prefetching. Trans. VLSI Syst. 24(2), 453–464 (2016). IEEE
27. Yoon, H., et al.: Row buffer locality aware caching policies for hybrid memories.

In: International Conference on Computer Design, pp. 337–344. IEEE (2012).

https://www.micron.com/products/dram-modules/nvdimm#/
http://www.intel.com/newsroom/kits/nvm/3dxpoint/pdfs/Launch_Keynote.pdf
http://www.intel.com/newsroom/kits/nvm/3dxpoint/pdfs/Launch_Keynote.pdf
https://www.jedec.org/category/technology-focus-area/3d-ics
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.hybridmemorycube.org/

136 M. Islam et al.

28. Nesbit, K.J., Smith, J.E.: Data cache prefetching using a global history buffer. In:
IEE Proceedings Software, p. 96. IEEE (2004)

29. Jiang, X., et al.: Chop: adaptive filter-based dram caching for CMP server plat-
forms. In: HPCA, pp. 1–12. IEEE (2010)

30. Kim, Y., et al.: Ramulator: a fast and extensible dram simulator. In: Computer
Architecture Letters (2015)

31. Nair, P.J., et al.: Reducing read latency of phase change memory via early read
and turbo read. In: HPCA, pp. 309–319. IEEE (2015).

32. Intel PinPlay. https://software.intel.com/en-us/articles/program-recordreplay-
toolkit

33. Shelor, C.F., Kavi, K.M.: Moola: multicore cache simulator. In: International Con-
ference on Computers and Their Applications (2015)

34. SPEC CPU 2006. https://www.spec.org/cpu2006/
35. Proxy-Apps forNeutronics. https://cesar.mcs.anl.gov/content/software/neutronics
36. Lawrence Livermore National Laboratory: Hydrodynamics challenge problem. In:

Technical report LLNL-TR-490254
37. Mohd-Yusof, J., et al.: Co-design for molecular dynamics: an exascale proxy appli-

cation (2013)
38. Heroux, M., Hammond, S.: MiniFE: finite element solver. https://portal.nersc.gov/

project/CAL/designforward.htm#MiniFE

https://software.intel.com/en-us/articles/program-recordreplay-toolkit
https://software.intel.com/en-us/articles/program-recordreplay-toolkit
https://www.spec.org/cpu2006/
https://cesar.mcs.anl.gov/content/software/neutronics
https://portal.nersc.gov/project/CAL/designforward.htm#MiniFE
https://portal.nersc.gov/project/CAL/designforward.htm#MiniFE

Parallelism and Many-Core Systems

Reduced Complexity Many-Core:
Timing Predictability Due to Message-Passing

Jörg Mische(B), Martin Frieb, Alexander Stegmeier, and Theo Ungerer

Institute of Computer Science University of Augsburg, 86159 Augsburg, Germany
{mische,martin.frieb,alexander.stegmeier,

ungerer}@informatik.uni-augsburg.de

Abstract. The Reduced Complexity Many-Core architecture (RC/MC)
targets to simplify timing analysis by increasing the predictability of
all components. Since shared memory interference is a major source of
pessimism in many-core systems, fine-grained message passing between
small cores with private memories is used instead of a global shared
memory.

In this paper, the RC/MC architecture is presented and evaluated by
three models: a VHDL model that can be used to synthesise prototypes
with up to 6 × 6 cores on an FPGA; a simulation model written in C
that can be used for cycle-accurate simulation of more than 4096 cores;
and a timing model for static timing analysis.

1 Introduction

Applications with a computational complexity that only can be satisfied by
multicore architectures have reached the embedded systems domain. Computer
vision for autonomic driving, physical simulation to optimise combustion or
machine learning to improve machine-human interaction are only a few exam-
ples. So far these applications do not need to pass a timing analysis. Sooner or
later, they will reach safety critical domains and timing analysis will be unavoid-
able. But timing analysis of recent shared memory multicores is difficult. While
single threaded execution on one core is already hard to analyse, the interference
of cores via shared memory further complicates the timing model [27].

Speculative features like dynamic branch prediction, out-of-order execution
and caches reduce average execution times significantly. However, for timing
analysis the (probably extremely exotic) worst case has to be considered and
not every detail can be modelled exactly, resulting in pessimistic worst case
execution time (WCET) estimates for single threaded execution, possibly far off
the average execution time. Additionally, memory accesses from different cores
compete for the bus, interconnect, shared cache or memory controller and again,
worst case scenarios can be constructed that are very unlikely, but increase the
overall WCET of a parallel application.

To overcome the problems of multicore timing analysis, we propose to use a
completely different architecture that is optimised for predictability and static
timing analysis. It is strongly influenced by the recommendations of Wilhelm
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 139–151, 2017.
DOI: 10.1007/978-3-319-54999-6 11

140 J. Mische et al.

fetch decode exec mem write
back

Router

FI
FO

bu
ffe

r
send

recv

congest

probe/any

Fig. 1. Core architecture: the message
interface is directly integrated into a
classic five stage RISC pipeline.

Fig. 2. The PaterNoster router consists
of only one FIFO and 4 multiplexers
that connect 3 input ports with 3 out-
put ports.

et al. for future architectures in time-critical systems [27], but we go one step
further and replace shared memory communication by message passing [17].

Each core consists of a simple in-order pipeline and private memory. A core
cannot access any other memory than its own memory, the only way to commu-
nicate with other cores is to send messages via the predictable network on chip
(NoC) that connects all cores. In contrast to other message passing architectures,
solely small messages of 64 bit can be sent, which simplifies router design and
increases predictability. Since all components (pipeline, memory hierarchy, net-
work interface, router and message size) are minimised, we call this architecture
Reduced Complexity Many-Core (RC/MC).

The basic idea of using message passing and private memories to increase
many-core predictability was already presented in [17], but now these recommen-
dations were applied to design the RC/MC architecture. Further contributions
of this paper are three concrete models of the RC/MC architecture: a VHDL
model to evaluate the hardware costs, a cycle-accurate simulator for performance
measurements and a timing model for static timing analysis.

In the next section, the architecture is described in detail, while in Sect. 3
the timing analysis on the RC/MC platform is presented. Section 4 provides
guidance, how to deal with the local memory restriction. Related many-core
architectures are discussed in Sect. 5, in particular the difference to other mes-
sage passing architectures that use direct memory accesses to transport mes-
sages. Finally, the hardware costs are evaluated and a case study on the WCET
computation for RC/MC is presented in Sect. 6. Section 7 concludes the paper.

2 RC/MC Architecture

To avoid shared memory interference, each RC/MC core has its own private
memory. The processor core consists of a classic in-order RISC pipeline with five

Reduced Complexity Many-Core 141

Table 1. Instruction set extension for fine-grained message passing

Mnemonic Dest.
register

Source
register 1

Source
register2

Function

send coreid message send a 64 bit message to core

recv message coreid receive a 64 bit message from core

congest flag check if send buffer is full

probe flag coreid check if a message from core has arrived

any coreid check if any message has arrived and
return the sender’s coreid, otherwise −1

stages (see Fig. 1), a pipeline design that is well suited for timing analysis [4].
The instruction set follows the 64 bit RISC-V specification [26]. However, we
extended it by some instructions to support message passing at processor word
granularity. Table 1 lists the new instructions.

The send instruction is used to send a 64 bit message to another core, speci-
fied by its unique core id. If the message cannot be sent (due to congestion in the
interconnect), the pipeline is stalled. To receive a 64 bit message from a specific
core, recv is used. Again, the pipeline is stalled if the node has not received a
message from the specified core yet.

To support non-blocking communication, the remaining three instructions
can be used to check the state of the network interface. congest returns 0 if a
message can be sent or 1 if sending is blocked. To check if there is a message from
a specific core, probe is used. The instruction any tests if a message from any
core has arrived and returns the core id from the sender of the oldest available
message.

The send instruction puts messages in the send buffer, which is a simple first-
in first-out (FIFO) buffer. The network router reads these messages from the
FIFO. When messages arrive at the target node, the network router writes the
message into the receive buffer, where the recv instruction can fetch it. However,
the receive buffer is more complex than the send buffer, because the pipeline
does not necessarily process the messages in the same order as they arrive at the
buffer. The reason for that is that recv fetches a message from a specific core,
which need not be the oldest message in the receive buffer. This feature increases
the hardware costs, but simplifies programming, since disruptive messages that
arrive ahead of time from other cores stay in the buffer and can be temporarily
ignored by the software.

Via the send and receive buffers, each core is connected to its private router
(Fig. 2). The routers are connected to their neighbours and form a NoC that
implements PaterNoster [18] routing. The PaterNoster NoC has an unidirectional
two-dimensional torus topology (Fig. 3) and is optimised to send small messages
of constant length with minimal hardware costs. To avoid the long wrap-around
links, a torus can be folded (Fig. 4). There are two routing modes: guaranteed
service (GS) [16] and best effort (BE) [18].

142 J. Mische et al.

Fig. 3. Torus with wrap-around links. Fig. 4. Folded torus with uniform links.

In GS mode, time division multiplexing (TDM) is used to guarantee a maxi-
mum latency and minimum bandwidth for each message transfer. Depending on
the core id of the target core, a message is sent only at a specific point of time
within a fixed time interval. By fixing the time, when a message can be send,
any collisions of messages within the NoC are avoided and the transfer time is
not influenced by other messages. If no real-time guarantees are necessary, BE
mode can be used to achieve a higher throughput. In BE mode, messages can
be injected into the NoC, as long as it is not congested by other messages.

Apart from the injection time, both modes use the same x-y-routing algo-
rithm: it is quite simple, since there are only two input and two output ports
in a two dimensional unidirectional torus. During horizontal or vertical trans-
portation, a message is not buffered but constantly forwarded to the next node.
Only when the message has to be switched from west to north, it is buffered in
the so-called corner buffer. In GS mode, the TDM schedule restricts the message
injection and ensures that the corner buffer cannot overflow, but in BE mode
messages have to take an extra trip around the horizontal ring if the corner
buffer is full. Nevertheless, the order of messages forwarded between two cores is
always preserved, providing a simple way to send messages that are longer than
64 bits.

An important feature of the GS mode is that the timing guarantees are inde-
pendent of the placement within the NoC [16]: the threads of an application
can be mapped arbitrarily to any nodes without affecting the worst case tra-
versal time. Additionally, the communication between a group of nodes is not
influenced by the communication in another group of nodes, as long as there is
no communication between the two groups. Conseqently, several multithreaded
applications can be mapped simultaneously to the same NoC and a single appli-
cation can be stopped and replaced by another multithreaded application while
other applications on the remaining nodes continue execution.

All components – pipeline, network interface and router – were designed for
maximum timing predictability at minimal hardware costs. The small size of the
nodes permits to put a large number of nodes on one chip. Consequently, high
performance can be achieved by massive parallelism. Single core performance is
only a subordinate design goal, which is not as important as predictability.

Reduced Complexity Many-Core 143

3 Timing Analysis of the RC/MC

Because of the isolation of cores in RC/MC, sequential computations on one core
can be easily analysed by standard static timing analysis tools for single threaded
programs. Additionally, the parallel interaction between sequential code parts
must be modelled to get a full timing analysis of a parallel application.

To analyse the timing of a parallel application, we separate sequential parts
from parallel operations which connect the sequential parts. In the sequential
code parts, a core performs some computation on its own in its local memory,
without any interference with other cores. The parallel operations are responsible
for communication and synchronisation between cores. From a WCET-centric
view, the parallel operations are rules, how the WCETs of sequential code parts
have to be combined to get an overall WCET of a parallel program.

To provide a widely accepted programming interface, a subset of the Mes-
sage Passing Interface (MPI) [15] was ported to the RC/MC architecture. The
network traffic generated by these functions and the code of the functions itself
is highly predictable to provide tight WCET bounds for the functions that only
depend on the number of participating cores and data size [23]. Using this pre-
dictable MPI library, parallel applications with a tight WCET can be written [9].

The MPI programming model is ideal for timing analysis: each process exe-
cutes the same program (single program multiple data, SPMD) and communi-
cation between processes is restricted to MPI function calls. As long as only
barriers and collective operations (gather, scatter, reduce, broadcast, all-to-all
and their variants) are used, timing analysis is straight forward [9], provided
that the hardware and the MPI implementation are predictable.

The parallel operations and their dependencies define the structure of the
parallel application, in particular which code sequences are executed in parallel.
This parallel execution graph given by the parallel operations is complemented
by the WCETs of the sequential code sequences and the WCETs of the concrete
instantiations of the parallel operations. The latter only depend on the number
of participating cores and the transferred data size.

A large number of MPI programs require no more than the afore mentioned
predictable MPI subset, but there are also more sophisticated applications that
use load balancing between cores to reduce the overall execution time. Dynamic
load balancing is good for average performance, but bad for timing analysis. The
effects on timing analysis of dynamic load balancing are similar to the effects
of out of order execution: both techniques schedule threads/instructions accord-
ing to their dependencies, for maximum exploitation of thread/instruction level
parallelism. Consequently, dynamic load balancing can induce large overestima-
tion or even timing anomalies that inhibit the calculation of an upper timing
bound. For a tight timing analysis of applications with load balancing, appropri-
ate WCET-aware load balancing algorithms must be used that provide a tight
timing model. The RC/MC architecture provides the hardware platform for such
a timing model, but specialists have to develop predictable load balancing algo-
rithms and their timing models.

144 J. Mische et al.

MPI programs that use send and receive instead of collective operations
are another class of MPI programs that cannot be analysed so far. However,
pairwise communication can usually be replaced by collective communication
and its application has some more advantages apart from predictability [11].

4 Private Memory Restriction

RC/MC is intended to be a minimal starting platform and baseline for further
research on predictable many-core architectures with distributed memory and
message passing. The main inconvenience when programming RC/MC is the
small amount of available memory. More memory can be emulated by using
messages to swap memory to another core which exclusively acts as memory
controller for its private memory. However, such software memory paging is slow
and should be avoided. Programs and algorithms must be adapted to the new
constraint instead: computation is cheaper than memory space, thus compact
(potentially compressed) data structures should be used and re-computation
might be faster than storing an intermediate result.

The memory restriction in combination with the message passing paradigm
demands a tremendous change of the programming model. However, the advent
of GPGPUs shows, that a completely different and complicated programming
model will be accepted, if in return the gain is big enough. This paper presents
early hints, that the gains of a distributed memory model in terms of timing
predictability might outweigh the costs of changing algorithms and program-
ming models. Compared to the SIMT programming model with instruction
set, scheduling and register usage restrictions, the memory and communication
restrictions in RC/MC seem acceptable.

Nevertheless, weaker memory restrictions can simplify programming and
porting legacy software. To minimise the influence on timing predictability, a
partitioned shared memory could be added: Each core gets a distinct part of the
shared memory to store its private memory. No two cores are allowed to access
the same memory region, therefore the shared memory cannot be used to trans-
fer data between cores. Transfers are still restricted to messages between cores.
This way, private, isolated memory accesses are clearly separated from synchro-
nisation or communication that might interfere with other cores. Consequently,
the timing analysis of accesses to the partitioned memory is independent from
the other cores. Strictly speaking, there is still some interference on the intercon-
nect between core and memory and the arbitration between cores at the memory
controller, but for this problem tight timing models do exist [24].

With partitioned memory, caches can replace the local memories, as long as
they are not shared between cores. A tight timing analysis is possible, because
each core - cache - memory partition triplet is isolated and well-studied cache
models from single core processors [20] can be applied. Since the caches and their
address ranges are completely separated, no cache coherence is necessary. In
other words, cache coherence in a shared memory system is replaced by message
passing in a partitioned memory system.

Reduced Complexity Many-Core 145

5 Related Work

A widely used many-core architecture is shared memory with multiple mem-
ory controllers and individual L1 and L2 caches per core. The timing analysis
depends on the predictability of the interconnection network. While the Intel
Xeon Phi [12] uses three rings to connect 61 cores, the Tilera TILEPro64 [3] has
five meshes and the Godson-T [8] two meshes. All NoCs are very dynamic and
highly optimised for maximum throughput and their timing details are confi-
dential.

However, there are some similarities with the RC/MC architecture: all three
architectures are based on simple in-order cores and the TILEPro64 uses only
three of the meshes for memory data transfers and cache coherence, the other
two can be used by the software for explicit message passing. In the Godson-
T, the L2 cache is shared between the cores, but the L1 cache can partly be
reconfigured to be used as scratchpad memory.

In the parMERASA project [25], a timing predictable shared memory many-
core was developed. The memory model is clustered: several cores build a cluster
and share one memory that can either be on-chip or off-chip. The processor con-
sists of multiple clusters. Inter-cluster communication is implemented by direct
accesses to special regions of the other cluster’s memories. Both inter- and intra-
cluster connections are real-time capable and provide a predictable latency, but
message passing is not supported.

Each of the 48 cores of the Intel Single-chip Cloud Computer (SCC) [14]
has exclusive access to a single part of the global memory. These accesses are
accelerated by private L1 and L2 caches, but accesses to the memory area of other
cores are not allowed. The only way to communicate between cores are small
private scratchpad memories called Message Passing Buffers (MPBs). Therefore,
the SCC is a message passing many-core with isolated memories like the RC/MC,
but its DMA-based message passing is completely different from the fine-grained
message passing of RC/MC:

To send a message from core A to core B, the DMA (direct memory access)
controller is programmed to copy the message from the private memory of core
A to the MPB of core B. The DMA controller uses the NoC to transfer the
data from core A to core B. When the transfer is finished, a flag in the MPB
of B is set. Core B waits until the flag is set and then copies the message to its
private memory to free the MPB for the next message. This message passing
variant comprises a lot of overhead, demanding long messages for efficient com-
munication. The pipeline integrated message passing of RC/MC is much more
lightweight.

The SCC NoC does not provide any timing guarantees [5], therefore it is not
real-time capable. However, the T-CREST architecture [22] uses the same DMA-
based message passing in connection with a TDM controlled NoC. A second NoC
that connects the cores with the shared memory is also timing predictable due to
TDM scheduling. Hence, T-CREST unifies shared memory and message passing
in a timing predictable way. The per-core memory architecture is also hybrid:
private scratchpad memory is combined with predictable caches for instructions

146 J. Mische et al.

cores ALMs registers memory bits

2x2 20 586 20 946 2 099 264
3x3 46 776 48 211 4 723 488
4x4 82 945 85 721 8 397 312
5x5 133 034 136 639 13 121 200
6x6 191 009 196 555 18 894 528 4 9 16 25 36

0

0.5

1

1.5

2
·105

cores

A
L
M

s

Fig. 5. Synthesis results for RC/MC processors depending on the number of cores

and data. DMA-based message passing is also used by CompSOC [10]. Due to
its strong emphasis on predictability and isolating cores it is the architecture
with the most similarities with RC/MC.

Anyway, in T-CREST and CompSOC message passing is only an additional
feature to the dominating shared memory architecture. Both architectures offer
a plethora of mechanisms, paradigms and programming models to enable pre-
dictable parallel programming, while RC/MC concentrates on the thorough
examination of one alternative programming model.

Scaling down supercomputer architectures inspired the design of the Kalray
MPPA-256 processor [6]. 16 compute cores, a resource managing core and 2
MiB of shared memory build a cluster. 16 clusters and 4 I/O subsystems are
connected by a rate controlling NoC with torus topology. The shared memory
inside the clusters can be partitioned to provide 128 KiB of private memory for
every core. However, messages are passed only between clusters, within clusters
the shared memory must be used for communication.

The Epiphany architecture [19] is a true distributed memory many-core with
up to 1024 cores. Each core has up to 64 KiB of fast local memory, but can
access the local memory of every other core via a mesh interconnection. It is
designed for high floating point performance and has a timing predictable NoC.
Hence, this architecture closely resembles the RC/MC architecture, but there is
no possibility for explicit messages.

6 Evaluation

A prototype of the RC/MC architecture was written in VHDL. For design space
exploration with a larger number of cores, a cycle-accurate in-house simulator
was written in C. Its accuracy was tested against the VHDL model for up to
4 × 4 cores with several parallel benchmark programs that run up to 5 million
cycles. In every single cycle the register contents in the VHDL and the C model
were identical.

6.1 FPGA Prototype

We used Altera Quartus Prime 16.0 for an Altera Stratix V E FPGA to synthe-
sise RC/MC prototypes with different numbers of cores. Only the integer ISA

Reduced Complexity Many-Core 147

Table 2. Approximate size of the components of a RC/MC core

Component ALMs Registers Memory bits

Pipeline (incl. send buffer) 1800 1600 0

Receive buffer 2500 2300 0

Router 800 1400 0

Memory 100 8 512Ki

subset (RV64I) is supported and every core has 64 KiByte of local memory. As
Fig. 5 shows, the architecture scales very well. Area in terms of ALMs1 scales
linearly with the number of cores, hence the size of each core is fixed within
the usual statistical fluctuations. Thus it is possible to estimate the sizes of the
components, shown in Table 2.

While the send buffer is so small, that it can only hardly be separated from
the pipeline logic, the size of the receive buffer is large. The reason for its size
is that messages can not only be removed in total temporal order, but also on
a per-sender basis (see Sect. 2). Therefore, a FIFO is used for storing incoming
messages, but additional hardware is used to search a specific sender core id in
the FIFO and remove the message, when the recv instruction is executed.

Since the costs of the receive buffer are so high, we are planning to replace it
by a simple FIFO like the send buffer. However, in this case, other instructions
must be defined, the MPI interface must be rewritten to buffer messages from
other cores and last but not least, the additional branches and loops for buffering
messages must undergo a completely new timing analysis.

6.2 Number of Cores

How many RC/MC cores can be put on a chip? To estimate this number, the
RC/MC architecture is compared to existing many-cores with published hard-
ware costs.

As mentioned in Sect. 5, the Parallela architecture is very similar to the
RC/MC architecture. Local memory, predictable NoC and even the pipeline (64
bit integer and floating point, in-oder issue) are comparable. The tape-out of
a processor with 1024 cores was recently announced [19]. Therefore, 1024 cores
with 64 KiB memory each seem to be achievable on 117 mm2 in 16 nm technology
for the RC/MC architecture, too.

Rocket [13] is a RISC-V implementation with a 64 bit single issue in-order
pipeline from the University of Berkeley. In 45 nm technology, a core with vector
accelerator and 56 KiB of cache fits into 1.46 mm2 at a clock rate of 1.3 GHz.
Assuming that the vector accelerator of Rocket is not larger than the RC/MC

1 Altera uses the term Adaptive Logic Module (ALM) for their elementary logic block,
basically a lookup table with 6 inputs and 2 outputs (6-LUT). One ALM is equivalent
to approximately 2.5 lookup tables with 4 inputs and 1 output (4-LUT).

148 J. Mische et al.

2x2 4x4 8x8 16x16
0

2

4

6

8
·109 8.05 · 109

4.03 · 109

2.03 · 109

1.07 · 109

number of cores

cy
cl

es

Fig. 6. WCET of CG depending on the number of cores

receive buffer and that 64 KiB local memory are not larger than 56 KiB cache,
100 RC/MC cores with 64 KiB memory each fit into 150 mm2. Without the
costly receive buffer and only 16 KiB of RAM, the size of one RC/MC core
should be around 0.39 mm2, the size of a Rocket without accelerator and 16 KiB
of cache in 45 nm technology.

The cores of the Kalray MPPA-256 processor [6] consist of a 5-issue VLIW
pipeline with 7 stages and 16 KiB of cache. Additionally, the 288 cores have
access to 32 MiB of local private memory, about 100 KiB per core. Since the
RC/MC pipeline is of comparable complexity, and the Kalray die comprises a
lot of other logic, 288 cores with 100 KiB each in 28 nm technology would be
realistic for an RC/MC implementation, too.

6.3 Case Study: WCET Estimation

The RC/MC architecture is designed for massively parallel applications. Unfor-
tunately, available real-time benchmarks are still mostly designed for single core
systems or multicore systems with only a few cores. If parallel systems are studied,
often several independent single threaded applications are executed concurrently
to provide a massively parallel workload. However, we believe that in future real-
time systems, massively parallel computations will be required, too. For example,
the object recognition for autonomous driving or physical simulation of aerody-
namics or combustion are scientific applications that might be used in future real-
time systems. An application with a close correlation to the typical computation
and data access patterns of real scientific applications is the CG (conjugate gra-
dient) method for solving linear equation systems [7]. It is used to benchmark the
performance of high performance supercomputers, because its behaviour is less
computation bound than the currently used LINPACK benchmark [7].

Therefore we choose the CG implementation of the NAS parallel benchmark
suite [1] as typical case study for the WCET estimation of a future scientific
real-time application. After porting the program from FORTRAN to C, the cus-
tom implemented collective operations had to be replaced by the official MPI
collective functions. These functions were implemented in a timing predictable

Reduced Complexity Many-Core 149

way, using the One-To-One schedule of PaterNoster for a real-time capable com-
munication. WCET estimates for the sequential code parts resulted from a static
timing analysis with OTAWA [2]. Details on the WCET estimation methodology
can be found in [9].

Figure 6 shows the results for CG with a matrix size of 7000×7000 and 3500
non-zero values. The WCET halves, if 4× the cores are used. Therefore, the
scalability is much better than in shared memory systems, where the WCET
per core can even increase, when more cores are used [21].

7 Conclusion

The RC/MC architecture is composed of simple, predictable cores that are con-
nected by message passing. Thereby, the cores are isolated and a timing analysis
can easily be applied. The programming model is different from shared memory
programming, but fits very well to the demands of timing analysis and therefore
promises tighter WCET estimates.

So far, the RC/MC architecture is simple, but there are a lot of features that
can be added, as long as the predictability is conserved. The FPGA prototype
and the corresponding 100% cycle accurate simulator are a strong foundation
for future research on predictable many-core architectures. Their source code is
available at https://github.com/unia-sik/rcmc/.

References

1. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput.
Appl. 5(3), 63–73 (1991)

2. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: an open toolbox for
adaptive WCET analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T. (eds.)
SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16256-5 6

3. Bell, S., et al.: Tile64-processor: a 64-core soc with mesh interconnect. In: Interna-
tional Solid-State Circuits Conference (ISSCC), pp. 88–598 (2008)

4. Berg, C., Engblom, J., Wilhelm, R.: Requirements for and design of a proces-
sor with predictable timing. In: Perspectives Workshop: Design of Systems with
Predictable Behaviour. No. 03471 in Dagstuhl Seminar Proceedings (2004)

5. d’Ausbourg, B., Boyer, M., Noulard, E., Pagetti, C.: Deterministic execution on
many-core platforms: application to the SCC. In: Many-core Applications Research
Community Symposium (MARC), December 2011

6. de Dinechin, B.D., et al.: A distributed run-time environment for the Kalray
MPPA-256 integrated manycore processor. Procedia Comput. Sci. 18, 1654–1663
(2013)

7. Dongarra, J., Heroux, M.A.: Toward a new metric for ranking high performance
computing systems. Sandia Report, SAND2013-4744 312 (2013)

https://github.com/unia-sik/rcmc/
http://dx.doi.org/10.1007/978-3-642-16256-5_6
http://dx.doi.org/10.1007/978-3-642-16256-5_6

150 J. Mische et al.

8. Fan, D., et al.: Godson-T: an efficient many-core processor exploring thread-level
parallelism. IEEE Micro 32(2), 38–47 (2012)

9. Frieb, M., Stegmeier, A., Mische, J., Ungerer, T.: Employing MPI collectives for
timing analysis on embedded multi-cores. In: 16th International Workshop on
Worst-Case Execution Time Analysis (2016)

10. Goossens, K., et al.: Virtual execution platforms for mixed-time-criticality systems:
the CompSOC architecture and design flow. ACM SIGBED Rev. 10(3), 23–34
(2013)

11. Gorlatch, S.: Send-receive considered harmful: myths and realities of message pass-
ing. ACM Trans. Program. Lang. Syst. (TOPLAS) 26(1), 47–56 (2004)

12. Corporation, I.: Intel Xeon Phi Coprocessor System Software Developers Guide,
2.03 edn., November 2012

13. Lee, Y., et al.: A 45 nm 1.3 GHz 16.7 double-precision GFLOPS/W RISC-V proces-
sor with vector accelerators. In: European Solid State Circuits Conference (ESS-
CIRC), pp. 199–202. IEEE (2014)

14. Mattson, T.G., et al.: The 48-core SCC processor: the programmer’s view. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–11 (2010)

15. Message Passing Interface Forum. University of Tennesse: MPI: a Message-Passing
Interface Standard. Version 3.1, June 2015

16. Mische, J., Ungerer, T.: Guaranteed service independent of the task placement in
NoCs with torus topology. In: Proceedings of the 22nd International Conference
on Real-Time Networks and Systems, p. 151. ACM (2014)

17. Mische, J., Metzlaff, S., Ungerer, T.: Distributed memory on chip - bringing
together low power and real-time. In: Workshop on Reconciling Performance and
Predictability (2014)

18. Mische, J., Ungerer, T.: Low power flitwise routing in an unidirectional torus with
minimal buffering. In: International Workshop on Network on Chip Architectures
(NoCArc), pp. 63–68 (2012)

19. Olofsson, A.: Epiphany-V: a 1024 processor 64-bit RISC system-on-chip. Techni-
cal report, Adapteva Inc. https://www.parallella.org/wp-content/uploads/2016/
10/e5 1024core soc.pdf

20. Reineke, J.: Caches in WCET analysis. Universität des Saarlandes, Saarbrücken,
PhD Thesis (2008)

21. Rochange, C., et al.: WCET analysis of a parallel 3D multigrid solver executed on
the MERASA multi-core. In: OASIcs-OpenAccess Series in Informatics, vol. 15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

22. Schoeberl, M., et al.: T-CREST: time-predictable multi-core architecture for
embedded systems. J. Syst. Archit. 61(9), 449–471 (2015)

23. Stegmeier, A., Frieb, M., Mische, J., Ungerer, T.: WCTT bounds for MPI prim-
itives in the PaterNoster NoC. In: 14th International Workshop on Real-Time
Networks (2016)

24. Ungerer, T., et al.: MERASA: multicore execution of hard real-time applications
supporting analyzability. IEEE Micro 30(5), 66–75 (2010)

25. Ungerer, T., et al.: Parallelizing industrial hard real-time applications for the
parMERASA multicore. ACM Trans. Embed. Comput. Syst. (TECS) 15(3), 53
(2016)

https://www.parallella.org/wp-content/uploads/2016/10/e5_1024core_soc.pdf
https://www.parallella.org/wp-content/uploads/2016/10/e5_1024core_soc.pdf

Reduced Complexity Many-Core 151

26. Waterman, A., Lee, Y., Patterson, D.A., Asanovi, K.: The RISC-V instruction
set manual, volume I: user-level ISA, version 2.1. Technical report UCB/EECS-
2016-118, EECS Department, University of California, Berkeley, May 2016. http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

27. Wilhelm, R., et al.: Memory hierarchies, pipelines, and buses for future architec-
tures in time-critical embedded systems. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 28(7), 966–978 (2009)

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

Parallel Forwarding for Efficient Bandwidth Utilization
in Networks-on-Chip

Elham Momenzadeh1, Mehdi Modarressi2(✉), Abbas Mazloumi2,
and Masoud Daneshtalab3,4

1 School of Computer Science, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran

elham.momenzade@gmail.com
2 Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

{modarressi,a.mazloumi}@ut.ac.ir
3 Mälardalen University (MDH), Västerås, Sweden

4 Royal Institute of Technology (KTH), Stockholm, Sweden
masdan@kth.se

Abstract. Networks-on-chip (NoC) provide a scalable and power-efficient commu‐
nication infrastructure for different computing chips, ranging from fully customized
multi/many-processor systems-on-chip (MPSoCs) to general-purpose chip multi‐
processors (CMPs). A common aspect in almost all NoC workloads is the varying size
of data transmitted by each transaction: while large data blocks are transferred as
multiple-flit packets, a part of the traffic consists of short data segment (control data)
that does not even fill a single flit. In conventional NoCs, switch allocator assigns/
grants a switch output (and the link connected to it) to a single flit at each cycle, even
if the flit is shorter than the link bit-width. In this paper, we propose a novel NoC
architecture that enables routers to simultaneously send two short flits on the same
link, effectively utilizing the link bandwidth that otherwise would be wasted. To this
end, new crossbar, virtual channel (VC), and switch allocator architectures are
presented to support parallel short packet forwarding on NoC links. Simulation
results using synthetic and realistic workloads show that the proposed architecture
improves the NoC performance by up to 24%.

Keywords: Network-on-Chip · Heterogeneous packet size · Bandwidth
utilization

1 Introduction

Networks-on-chip (NoC) are widely known as the most promising solution to handle inter-
core communication in multi- and many-core architectures. NoCs provide a power-effi‐
cient infrastructure with scalable bandwidth for on-chip communication. As the core count
and workload complexity of chip multiprocessors (CMP) and multi/many-processor
systems-on-chip (MPSoC) increase, the rate and complexity of on-chip communication raise
considerably. Consequently, there is always a growing demand for NoCs with higher
throughput and lower latency.

© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 152–163, 2017.
DOI: 10.1007/978-3-319-54999-6_12

NoC bit width (flit size) is a first-order design parameter that highly affects the
maximum network bandwidth and packet latency. This parameter determines the bit-
width of all NoC datapath components (i.e. link, buffer, and crossbar). As a result, in
addition to its impact on performance, bit-width also plays an important role in deter‐
mining the total NoC implementation cost and power consumption.

Performance metrics always favor enlarging bit-width (as long as the cost constraint
allows), because wider links decrease packet serialization overhead, thereby enhance
both the speed and throughput of networks.

Recent NoC designs and commercial implementations use links as wide as 128 [1, 2],
144 [3], 160 [4], 256 [5], and 512 bits [6] to maximize performance with respect to area
constraints. However, the message size, that is the amount of data transmitted at each
network transaction, varies significantly in realistic workloads [7]. For example, in a typical
CMP workload, the traffic consists of long data and short control packets. Data packets
composed of multiple flits to transfer a cache block, while control packets transfer request
and coherency messages that contain a memory/IO address plus a few control bits. Whereas
the former benefits from larger bit widths, the latter cannot even fill half of the bit width at
each transfer [8].

In some recent studies, it has been shown that a considerable portion of traffic in
CMP workload is the short request and coherency packets [7, 9, 10]. For example, it has
been shown that more than 78% of the packets in the PARSEC suite programs [11] are
short control packets (request or coherency), whereas the remaining packets are long
and contain a full 64B cache line [9]. Very different packet sizes (from 8-bit control
packets to data packets with kilobits of data) are also reported for multimedia and tele‐
communication workloads implemented on application-specific NoCs [12]. As
mentioned before, NoCs enlarge bit-width to reduce data serialization overhead of time-
critical data packets, but this results in considerable bandwidth waste and resource
underutilization when sending short packets: A short control flit uses part of the bit-
width, leaving the remaining bits idle and the link underutilized. Buffers are also become
underutilized in conventional NoCs, because those buffer slots that keep control packets
have many bits zero-padded. However, conventional switch allocators allocate the
switch output (and the corresponding downstream link) to a single flit, regardless its bit-
width usage.

In this paper, we propose a novel architecture that enables routers to transfer and store two
short flits through each port in parallel. In this architecture, if two or more short flits request for
an output port, the switch allocator grants the port to two flits: the second flit uses the other‐
wise idle bit-width of the link to go downstream in parallel with the first flit. The input port
also supports receiving and buffering two short flits simultaneously.

These scheme decreases the switch allocation failure rate and hence, part of the
unnecessary short flit blocking latency is eliminated.

As a quantitative motivation on the potential impact of our proposed parallel
forwarding on performance. Table 1 shows the percentage of switch allocations with at
least one loser under two representative workloads: a workload with high injection rate
from the ISPASS GPU benchmark suite [13] and a workload with light traffic load from
the PARSEC CMP suite [14]. The table also shows in what percentage of the total switch
allocation failures a short flit is blocked by another short flit.

Parallel Forwarding for Efficient Bandwidth Utilization 153

Table 1. Switch allocation failure analysis

Workload Total switch allocation
failures (%)

Percentage of total
failures with two short
flits (%)

PARSEC: Ferret (0.08
flit/node/cycle)

16.32 36.12

GPU: BFS (0.3 flit/node/
cycle)

38.08 30.93

As the table shows, the proposed parallel short packet forwarding can potentially
reduce switch allocation failure rate (which is 16% and 38% in Table 1) by up to 36%.
This architecture allows designers to increase bit width in favor of long data packets and
mitigate resource underutilization by parallel short packet transfer/storage.

Since control transfers account for a considerable amount of on-chip traffic in CMP
workloads, many flits can take advantage of the proposed mechanism and so, the
performance and resource utilization of the NoC increases considerably.

Several prior works proposed to use physically separate sub-networks to handle each
traffic class (data and control) appropriately [6] or to reduce power [8].

For example, Intel Xeon Phi uses a 512-bit wide ring for data packets and very
narrower sub-networks for control and address packets [6]. However, multiple sub-
networks have a higher cumulative area than a single network. This can potentially
increase the implementation cost and power consumption of the NoC.

Our mechanism implements different sub-networks into the same NoC fabric. It can
be considered as a polymorphic NoC: long packets see links and buffers as single n-bit
structures, whereas these components act as two n/2-bit parallel structures from the short
packets’ perspective.

In the next sections, we first explore the related work, introduce the proposed NoC
architecture and then show it can reduce NoC latency by up to 24% and throughput by
30%, on average.

2 Related Work

Several hybrid network-on-chip designs can be found in the literature that partition the
NoC into multiple parts and optimize each part for a specific traffic class.

Using physically separated NoCs for data and control packets is also proposed in
many related work. The authors in [15] show the potential benefits of using multiple
physicals sub-networks for control and data packets.

In [16], a NoC is partitioned into two packet-switched and circuit-switched sub-networks
using time-division multiplexing (TDM). The packet-switched sub-network carries request
packets, whereas the circuit-switched part is used to make shortcut paths for data packets. Each
request packet makes circuit for its corresponding data packet while traveling towards the
destination. Proactive Resource Allocation (PRA) NoC exploits the distinct characteristics of
data and control packet to increase performance [17]. In PRA, most short request packets use

154 E. Momenzadeh et al.

conventional packet switching, but multi-flit data packets are provided by pre-allocated paths,
on which they are forwarded with low per-hop latency and power consumption.

Cache Coherent NoC (CCNoC) architecture is another hybrid architecture presented
in [8]. It uses two different sub-networks for control and data to reduce the power
consumption. As cache coherency protocols produce a group of write and read-request
messages, managing cache coherency is done more efficiently by using dedicated sub-
networks, in terms of both performance and power consumption. As control packets are
smaller, lower bit width (64 bits) is applied for the request sub-network. Consequently,
power consumption decreases while performance gets no impact. Response packets
convey several cache blocks and so, require a higher bit width (112 to 128 bits). They
showed that in addition to power-efficiency, using a heterogeneous structure results in
a better performance than a unified NoC. As another insightful study in this field, [7]
investigates the effect of bit width on performance and scalability of NoCs and concludes
that the flit size should be set to the smallest packet type’s size.

The above works focus on different aspects of workloads with mixed packet types.
To the best of our knowledge, our proposed work is the first method that focuses on the
underutilized NoC resources when forwarding short flits and modifies routers to allow
parallel transfer of such short flits.

3 The Proposed NoC Architecture

3.1 NoC Packet Size

As our method targets CMP workloads, we consider two different kinds of packets in
the network: long data and short control packets. Control packets are either memory and
I/O requests or coherency messages that consist of a memory or I/O address along with
a few control flags. Data packets are sent in response to a request and transfer a cache
or memory block to a remote core. As the payload of these packets is a cache block,
which can be as large as 32-128 bytes in a conventional cache (e.g. 64-bytes for Intel
Xeon Phi [6] and ARM Cortex A15 [18]), they are long and should be fragmented into
multiple flits. Carrying a memory address (which is 40-bit wide in ARM Cortex A15
[18], for example), a control packet would fill half of a 128-bit flit (40 bit memory address
as payload, 10 bit destination address for network routing in a 1024-node network, and
the remaining 14 bits for control, routing, and error recovery data), while a data packet
requires five 128-bit flits (4 payload and one header). As an off-chip example, the
HyperTransport protocol, which is implemented in modern AMD processors, also uses
512-bit packet for data and 64-bit packet for control transfer [19]. Therefore, in this
paper, we use 128-bit links (flits), 64-bit control messages (that are sent as a single 128-
bit flit in a conventional NoC with 64 zero-padded bits) and five-flit data packets.

3.2 Proposed Router Architecture

In a conventional architecture, as mentioned, each datapath element handles a single flit
at each cycle. In this work, we propose to transfer and store two short control packet in
parallel to use the idle bit width of the links, crossbar switches, and buffers that otherwise

Parallel Forwarding for Efficient Bandwidth Utilization 155

would be wasted (filled by zero-padded null data). To this end, several router compo‐
nents must be modified: switch allocator to detect short flits and allocate a 128-bit link
to two requesting ones, crossbar switch and links to transfer two short flits in parallel
(in addition to the baseline one long flit), and virtual channels to accept and store two
short flits simultaneously. This architecture is depicted in Fig. 1.

4 bits
N input

N
 o

ut
pu

t

4 bits

4 bits

E-W crosspoint

S
 o

ut
pu

t

E
 o

ut
pu

t

W
 o

ut
pu

t

 Switch Allocator
Crossbar

Input Buffer
2

2

Input Buffer

Input Buffer

Input Buffer
E input

S input

W input

Router Switch Allocator

4 bits

Fig. 1. The proposed router architecture and the internal connections of one crosspoint (East-
West crosspoint) of the crossbar. Bit width is set to 4 for the sake of simplicity

Crossbar. In order to send two short flits simultaneously, the crossbar crosspoints
should be capable to switch half bit width of inputs and outputs independently. For
example, the crossbar should be able to connect the high half (n/2 bit) of input port E to
the low half of output port S and the low half of input port E to the high half of output
port N. However, if a long data packet is traversing the crossbar, the required connection
is established on the full bit-width, just like a conventional NoC.

Figure 1 also shows the internal connections of a crosspoint. The figure shows 4-bit
wide links for simplicity. The switches in the orthogonal positions implement the regular
connections for full bit-width switching.

The other switches are added in our design to allow half bit width switching. As the
figure shows, the new crossbar needs more switches to support half width switching.

Figure 2 shows several sample connections established on the crossbar at a cycle. In
this figure, two control flits that come from input port N are connected to output ports
S and E. A full width data flit that comes from input port E is connected to output port
W. the idle half bit width of output port E is also connected to input port S. The internal
connections of two connection points are also depicted in the figure, where the connected
switches are identified by a circle.

Links. Two short flits should be able to pass a link at the same cycle. However, there
is no need to add any logic to links to manage this parallel transfer, because short flit
concatenation is done by crossbar switch. The two short flits will be directed to the right
VCs assigned to them at the upstream router through the multiplexer at the downstream
input port (Fig. 3). The multiplexers are set by upstream router, just like what a conven‐
tional router does.

156 E. Momenzadeh et al.

N
 o

ut
pu

t

S
ou

tp
ut

E
ou

tp
ut

W
 o

ut
pu

t

N input

E input

S input

W input

Fig. 2. Several full width and half width connections on the proposed crossbar and the internal
connections of two sample switches. The switches identified by a red circle are turned on. (Color
figure online)

de
m

uxInput
To

crossbar

m bits

Data VC

 Control VC

 Control VC

n/2
bits

n/2
bits

n bits

n

n

n

n
n/2

n/2

n/2 n/2

Fig. 3. The structure of the input unit with one data VC and two half width control VCs

Input VCs. NoCs that are used in CMPs often use different VCs for request, data, and
coherency messages. The main advantage of using different VCs for each traffic class
is that we can assign priority to packets based on packet’s VC and order memory trans‐
actions to avoid protocol deadlocks. So, we consider two VCs per port and assign them
to data and control (coherency or request) packets.

In our design, the data VC has m-entry n-bit wide buffer, as in a baseline router. The
control VC consumes the same buffering space, but is horizontally partitioned to get two
m-entry n/2-bit buffers (Fig. 3). Each narrow buffer has its own control logic to load/
store flits simultaneously. As Fig. 3 shows, each input port has a single n-bit line to
crossbar switch input. Switch allocator configures the multiplexers of this line to connect
either one long flit or two short flits to the crossbar based on its allocation decision.

Switch Allocator. This component should distinguish short and long flits and grants
each output link to at most one long or two short packets (if any). It should also allow
a crossbar input to be shared by two short flits by appropriately setting the select line of
the multiplexers between the input units and crossbar (see Fig. 3).

VC Allocator. VC allocator selects one of the control or data VCs for a packet based
on its type. If there are more than one control VCs, a VC is selected for a requesting
packet in a round robin fashion.

Parallel Forwarding for Efficient Bandwidth Utilization 157

Please note that the VC allocation unit considers each narrow half-width VC as an
independent VC. The demultiplexer in front of the input unit is capable to send two half-
width flits to two different half-width control VCs in parallel (apart from its basic func‐
tionality that sends a full-width flit to a data VC).

4 Experimental Results

4.1 Experimental Environment

We use a cycle-accurate NoC simulator, BookSim [20], to simulate our architecture.
We have tested the proposed NoC architecture under the uniform synthetic traffic
pattern, as well as several traffic traces from the ISPASS GPU [13] and PARSEC bench‐
mark suites. PARSEC traffic obtained from the Netrace library [14]. The GPU workload
is the traffic between shader cores and memory modules extracted by GPGPUSim [13].

We use the mesh topology with wormhole-switched routers and 128-bit links (max
flit size = 128). The routers are 3-stage pipelined (look-ahead routing + VC allocation,
switch allocation, crossbar traversal + link traversal) and the routing algorithm is deter‐
ministic XY.

The network has two message classes that is a common configuration for CMPs to
provide different levels of priority for response (data), and control (request and coher‐
ency) messages and resolve memory protocol deadlocks. A single virtual channel is
considered for each message class. The data virtual channel is 128-bit wide and 8-flit
deep. The control virtual channel that keeps short packets is partitioned horizontally and
is arranged as two parallel 64-bit 8-flit buffers.

To evaluate our method, we compare each test-case with a conventional packet-
switched network (referred to as Conventional in the graphs) that features all the above-
mentioned architectural parameters, except that it does not have parallel short packet
forwarding and partitioned control VC.

4.2 Performance Evaluation

Synthetic Traffic. First, we use a uniform traffic pattern to evaluate the network
performance in different injection rates. The traffic is composed of 50% short (one 64-
bit flit) and 50% long (five 128-bit) packets. Figure 4 shows the average packet latency
for different injection rates. We consider 4 × 4 and 8 × 8 mesh networks with two half-
width VCs for control and one full-width 128-bit VC for data packets.

As illustrated in the figure, our approach outperforms the baseline under most of the
traffic injection rates. Furthermore, it pushes the saturation point by 22% for the 4 × 4
and 30% for the 8 × 8 NoCs.

158 E. Momenzadeh et al.

(a)

(b)

Fig. 4. Average packet latency of the proposed and conventional NoCs in (a) 4 × 4 mesh and (b)
8 × 8 mesh

Under low traffic, the arbitration failure rate is low, so few flits benefit from parallel
packet transfer that is used to resolve arbitration failures. Therefore, the latency
approaches to the baseline latency. As the injection rate increases, however, the proba‐
bility of arbitration failure increase that in turn, provides more opportunity for our
proposed parallel packet transfer to improve performance. Consequently, the difference
between the performance of the proposed NoC and the baseline increases under higher
injection rates.

Realistic Workloads. Next, we evaluate the NoCs under four PARSEC and four GPU
workloads. The experiments are done on an 8 × 8 mesh network for PARSEC and 5 × 5
for GPU.

Figure 5 shows the performance comparison results. The request and coherency
packets have one 64-bit flit and data (response) packets have five 128-bit flits. In the
GPU benchmarks some data packets have two 128-bit flits (together with the 5-flit
packets). As the figure shows, performance is improved by 13%, on average for PARSEC
and 24% for GPU. Again, the main source of better performance of our method is its
ability to effectively use idle link bandwidth to remove many unnecessary control packet
blocking situations. The GPU programs have considerably higher traffic loads than
PARSEC, which translates to more efficiency of simultaneous packet forwarding.

Parallel Forwarding for Efficient Bandwidth Utilization 159

Fig. 5. Average packet latency comparison for realistic workloads

Cost Evaluation. The area overhead of the proposed architecture over the baseline is
evaluated by synthesizing the VHDL description of our proposed router by a commercial
synthesis tool in 45 nm technology. The amount of area overhead highly depends on the
number of depth of virtual channels, but for configuration described earlier in this section
the proposed NoC architecture increase the area of a baseline packet-switched NoC by
8%.

The area of control-path components of the proposed router, i.e. switch and VC
allocators, are increased, but their total area has insignificant contribution to the entire
router area (less than 7%). In the data-path side, the area of the buffers in the proposed
router is roughly the same as a baseline conventional router with two VCs. However,
the main source of area overhead in our design includes the extra multiplexers at the
input port and additional crosspoint switches for the crossbar. Please note that the
number of crossbar input and output ports, as well as the bit width of each port, which
determines the crossbar layout and has the first-order effect on its area footprint, is the
same as the baseline, but the crosspoints are doubled. Our synthesis shows that the
modifications increase the crossbar’s area from 22,900 um2 to 24,500 um2 (the total area
of the modified router is 62,000 um2).

Synthesis results in 45 nm technology also show that in the proposed router, the delay
of route computation, switch allocation, VC allocation (two VCs), and crossbar traversal
pipeline stages are 63 ps, 380 ps, 435 ps, and 254 ps, respectively. VC allocator has
often the longest router pipeline latency, but our simple VC allocation scheme, where
the message class determines the VC, leads to a simple and fast VC allocator logic.

As the results show, the latency of all stages is below 500 ps and so, the router can
work at 2 Ghz, which is high enough as the working frequency of a high performance
NoC.

Comparison with CCNoC. We also compare the proposed method with CCNoC [8].
The network parameters are the same as the previous experiments, but CCNoC has two
physically separate sub-networks (128-bit data, 64-bit control) and uses a single VC per
sub-network.

160 E. Momenzadeh et al.

Figure 6 compares the average packet latency of the proposed NoC with CCNoC.
The figure also compares the performance of CCNoC with a scaled-up version of the
proposed NoC that has the same area as CCNoC. Our area analysis shows that by
increasing the bit-width of the proposed NoC to 192 bits, it has a close area (within 5%)
to an equivalent CCNoC. To simulate this bit-width, three short messages can pass a
link simultaneously. Long (5-flit) packets also pass the wider links in four consecutive
cycles (1.5 flits per cycle).

Fig. 6. Average packet latency comparison with CCNoC

Fig. 7. Energy per flit (J) comparison with CCNoC

This configuration (represented by the bars marked as Proposed 192-bit in Fig. 6)
actually shows the performance that the proposed parallel short packet forwarding would
offer if the extra area overhead of CCNoC is invested to increase the bit-width of the
proposed NoC.

As Fig. 6 shows, although the baseline proposed NoC suffers from an average
performance loss of 7.5%, its area-normalized version can improve the performance by
up to 21% over CCNoC.

The traffic load of many CMP applications is somewhat light and places between
the zero load and saturation points. In CCNoC, this light traffic is further divided into

Parallel Forwarding for Efficient Bandwidth Utilization 161

two lighter traffic loads. Consequently, the resources will be left underutilized and the
performance is close to our proposal that utilizes the unused bandwidth of a single
network to manage both control and data traffic.

Figure 7 compares the energy consumption of CCNoC with the proposed NoC. The
results are obtained through the Dsent power library [21] and show that our NoC has
9% less energy usage, on average, mainly due to the less static power it wastes.

5 Conclusion

In this paper, we proposed a method to support parallel transfer and storage of short
control flits in modern NoCs. In these NoCs, a large portion of bandwidth is wasted
because a considerable part of packets consist of short control packets that are by far
narrower than the link and buffer bit width. By the proposed parallel short flit sending
the idle bit width is utilized to effectively reduce unnecessary control packet blocking
latency. We showed that the proposed mechanism can be a more power and area-efficient
alternative of the multiple physical sub-network schemes that has been used in some
recent research and commercial NoC designs. One can consider the proposed NoC a
polymorphic NoC architecture that integrates a wide data and a narrow control NoCs
and has different bit widths from the point of view of different packet classes. The
experimental results under a set of realistic and synthetic benchmarks revealed that this
architecture can significantly reduce packet latency and improve throughput of NoCs.

References

1. Gratz, P., Kim, C., Sankaralingam, K., Hanson, H., Shivakumar, P., Keckler, S.W., Burger,
D.: On-chip interconnection networks of the TRIPS chip. IEEE Micro 27(5), 41–50 (2007)

2. Kumary, A., Kunduz, p., Singhx, A., Pehy, L.S., Jha, N.: A 4.6 Tbits/s 3.6 GHz single-cycle
NoC router with a novel switch allocator in 65 nm CMOS. In: 2007 25th International
Conference on Computer Design, Lake Tahoe, CA, pp. 63–70 (2007)

3. Howard, J., Dighe, S., Vangal, S.R., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V., Konow, M.,
Riepen, M., Gries, M., Droege, G., Lund-Larsen, T., Steibl, S., Borkar, S., De, V.K., Van der
Wijngaart, R.F.: A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and
DVFS for performance and power scaling. IEEE J. Solid State Circ. 46(1), 173–183 (2011)

4. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M., Miao, C.,
Brown III, J.F., Agarwal, A.: On-chip interconnection architecture of the tile processor. IEEE
Micro 27(5), 15–31 (2007)

5. Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D.: Power-management
architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 32(2), 20–27
(2012)

6. Overview of Intel Xeon Phi Coprocessor. https://software.intel.com
7. Lee, J., Nicopoulos, C., Park, S.J., Swaminathan, M., Kim, J.: Do we need wide flits in

networks-on-chip? In: ISVLSI, Natal, pp. 2–7 (2013)
8. Volos, S., Seiculescu, C., Grot, B., Pour, N.K., Falsafi, B., De Micheli, G.: CCNoC:

specializing on-chip interconnects for energy efficiency in cache-coherent servers. In: Sixth
International Symposium on Networks-on-Chip, Copenhagen, pp. 67–74 (2012)

162 E. Momenzadeh et al.

https://software.intel.com

9. Ma, S., Jerger, N.E., Wang, Z.: Whole packet forwarding: efficient design of fully adaptive
routing algorithms for networks-on-chip. In: HPCA, New Orleans, pp. 1–12 (2012)

10. Badr, M., Jerger, N.E.: SynFull: synthetic traffic models capturing cache coherent behavior.
In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
Minneapolis, MN, pp. 109–120 (2014)

11. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization
and architectural implications. In: 17th International Conference on Parallel Architectures and
Compilation Techniques, pp. 72–81. ACM, New York (2008)

12. Modarressi, M., Tavakkol, A., Sarbazi-Azad, H.: Application-aware topology reconfiguration
for on-chip networks. IEEE Trans. Very Large Scale Integr. Circ. 19(11), 2010–2022 (2011)

13. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt T.M.: Analyzing CUDA
workloads using a detailed GPU simulator. In: ISPASS, Boston, MA, pp. 163–174 (2009)

14. Hestness, J., Grot, B., Keckler, S.W.: Netrace: dependency-driven trace-based network-on-
chip simulation. In: The Third International Workshop on Network on Chip Architectures
(NoCArc 2010), pp. 31–36. ACM, New York (2010)

15. Yoon, Y.J., Concer, N., Petracca, M., Carloni, L.P.: Virtual channels and multiple physical
networks: two alternatives to improve NoC performance. IEEE Trans. Comput. Aided Des.
Integr. Circ. Syst. 32(12), 1906–1919 (2013)

16. Mazloumi, A., Modarressi, M.: A hybrid packet/circuit-switched router to accelerate memory
access in NoC-based chip multiprocessors. In: Design, Automation and Test in Europe
Conference (DATE 2015), pp. 908–911 (2015)

17. Lotfi-Kamran, P., Modarressi, M., Sarbazi-Azad, H.: Near ideal network-on-chip for servers.
In: 23rd IEEE Symposium on High Performance Computer Architecture (HPCA 2017), TX,
USA (2017)

18. Cortex-A15 Technical Reference Manual. https://www.arm.com
19. HyperTransport Technology. https://www.amd.com
20. BookSim 2.0. https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Re
21. Sun, C., Chen, C.H.O., Kurian, G., Wei, L., Miller, J., Agarwal, A., Peh, L.S., Stojanovic, V.:

DSENT - a tool connecting emerging photonics with electronics for opto-electronic networks-
on-chip modeling. In: NOCS, Copenhagen, pp. 201–210 (2012)

Parallel Forwarding for Efficient Bandwidth Utilization 163

https://www.arm.com
https://www.amd.com
https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Re

PLSS: A Scheduler for Multi-core
Embedded Systems

Solomon Abera(B), M. Balakrishnan, and Anshul Kumar

Indian Institute of Technology Delhi, New Delhi, India
{solomon,mbala,anshul}@cse.iitd.ac.in

Abstract. In recent years, features and applications of embedded sys-
tems have been increasing rapidly. Chip Multi-Processors (CMPs), have
been used in these systems to meet the higher demand for performance
and energy efficiency. In CMPs, the last level cache (LLC) and the mem-
ory bandwidth are usually shared by the cores. Despite the fact that
CMPs improve performance of embedded systems, competition for the
shared resources makes their performance unpredictable and suboptimal.
In this paper, we propose PLSS: Phase-guided Locality Signature based
Scheduler for arbitrating LLC requests in multi-core embedded proces-
sors. To achieve our goal, we perform phase-wise offline profiling to guide
the runtime task scheduling scheme. Our approach can improve perfor-
mance of dual core system by upto 11% over IPC based scheduler (5% on
average) and 35% over LLC number-of-accesses based approach (6.5%
on average).

Keywords: CMP · LLC · Scheduling

1 Introduction

Modern embedded systems run computationally intensive embedded tasks.
These tasks require massive computational power. Unlike general processing
domain, the demand for high performance comes with power and timing con-
straints. Therefore, all efforts towards meeting the performance demand should
also take these additional issues into account.

Multi-core processors are increasingly being employed in these systems as
they offer a good energy-performance trade-off. Examples of embedded multi-
core processors include the dual-core Freescale MPC8640D [13], the dual-core
Broadcom BCM1255 [14] and the quad-core ARM11 MPcore [15]. High perfor-
mance multi-core processors allow embedded systems to offer more features and
better quality of service. In addition to this, multi-cores can maximize resource
utilization by integrating tasks with different requirements on the same system.

On the other hand, it is clear that different cores in a multi-core system
are not fully independent in their performance (and other metrics) in relation
to a specific task. This is because they share important resources with other
cores. In multi-cores, LLC (last level cache) and main memory bandwidth are
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 164–176, 2017.
DOI: 10.1007/978-3-319-54999-6 13

PLSS: A Scheduler for Multi-core Embedded Systems 165

Fig. 1. Performance degradation encountered by bzip2-SPEC2006 benchmark (first 1B
instructions) co-running with other tasks on dual-core system sharing 256KB L2 cache

shared by individual cores. Sharing the LLC enables cooperating tasks to easily
share data and instructions. In addition to this, sharing reduces the cost of
synchronization and coherency. However, competition for shared cache space
creates runtime interferences between tasks running on different cores leading
to suboptimal performance. Since the inter-task resource conflicts depend on
the behavior of the tasks, it is difficult to predict the potential conflict, making
their performance unpredictable. The level of degradation encountered by a task
depends on the memory behavior of the co-runners, which is determined by the
schedules generated by the scheduler. As we can see in Fig. 1, tasks running
on dual-core system, sharing L2 cache can slow down by upto 50%, completely
degrading the performance improvement achieved by employing multiple cores.
Since embedded systems are designed with size and power constraints, large
shared caches are not used in these systems. This makes the impact of contention
severe. In addition to this, due to the uncertain nature of inter-task conflicts, it
will be difficult to guarantee the worst case execution times for real-time tasks.

In this paper, we propose a cache aware scheduling mechanism for multi-core
embedded processors. In embedded domain, tasks which run on a particular
system are known apriori. In addition to that, tasks can show wildly different
behavior on the course of execution: showing memory bound behavior in one part
of the code while being completely compute bound on the other. We perform
an offline analysis of the tasks, and generate phase-wise cache access locality
signatures for each task. The online task scheduling is guided by these locality
signatures.

Most of the previously proposed techniques dealing with contention aware
scheduling targeted the general purpose computing domain [2–4]. These tech-
niques are based on online periodic sampling, in which monitoring is done peri-
odically and decisions are based on the sampled data. These approaches have
some limitations: the main problem is that the sampled behavior of a task may
not reflect its inherent behavior. Rather, it may be a result of the effect of other
co-executing tasks. The other problem is the fact that predicting the future

166 S. Abera et al.

behavior based on previously sampled data may not be accurate if the task is
having variable phase of execution. A different approach is reported by [6]. They
generated a light weight locality signature for each task. Using this, they try to
guide the mapping of tasks on available cores. They defined sensitiveness and
competitiveness as two metrics to quantify the task’s behavior during sharing.
The limitation of this work is that, it does not consider any phase information
during profiling. It is clear that a single average signature may not be accurate
enough. The other limitation is the way they capture the sensitivness parameter
of the task, where they actually run the task with other tasks and then record
the degradation. The level of degradation might be biased by the behavior of
the co-running task. As we can see in Fig. 1, when bzip2 run with gamess, the
level of degradation is negligible as compared to its run with lbm. In addition to
that, repetitive runs with random co-running tasks is time consuming. In order
to tackle the problems, we propose phase-guided locality profiling to produce
light weight signatures for each phase of a task. We are motivated by the fact
that embedded tasks are known in advance and analyzing the memory behavior
will be helpful to alleviate the problems faced in previous works. Our system
analyzes memory access behavior of the tasks and computes phase-wise local-
ity signatures, rather than average signature, to enhance the accuracy of the
runtime performance prediction. In addition to that, we need only a solo-run
(without any co-runners) to collect these signatures.

The rest of the paper is organized as follows: Sect. 2 describes previous work in
the domain of multi-core task scheduling. Section 3 introduces the PLSS schedul-
ing mechanism, and Sect. 4 discusses the experiment framework and results.
Finally, Sect. 5 concludes the paper.

2 Related Work

Less attention has been given to improve the performance of multi-core embed-
ded systems through scheduling compared to the general purpose systems. How-
ever, there have been many efforts by the research community that address the
shared cache contention issue in general purpose multi-core processors through
intelligent scheduling. In cache aware scheduling, the most challenging part of
the process is finding a parameter to predict the performance outcome of all
potential schedules beforehand. Most of the previous work, one way or another,
used Stack Distance Profiles (SDP) and Miss Rate Curves (MRC) to model the
possible conflict of cache sharing. Chandra et al. [1] used SDP of each task to
accurately predict the additional misses encountered by the sharing tasks. Even
though it can predict the extra misses, it is difficult to employ this technique for
runtime scheduling process because of two reasons. The first is that, it is very
challenging to generate SDP online as it is computationally expensive. The sec-
ond problem is that their model predicts the extra misses for two sharing tasks.
But as the number of tasks increases, the number of possible combinations will
be huge. Clearly, such an approach has scalability issues and is not ideal for a
runtime use. Other recently proposed schedulers [2–4] approximate the quantifi-
cation of contention through simple performance metrics such as the LLC miss

PLSS: A Scheduler for Multi-core Embedded Systems 167

rate and access frequency. Zhuravlev et al. [2] introduced a task classification
scheme based on the “pain” parameter of two co-scheduled tasks in order to
schedule tasks in a way that minimizes contention. Their “pain” parameter is
derived from two metrics: the sensitivity and intensity. They used SDP to char-
acterize the sensitivity of a task to sharing and used number of cache requests
to characterize the intensity of the task. Feliu et al. [3] proposed a scheduling
mechanism that aims to distribute shared cache misses in a way that minimizes
memory bandwidth requirement of the system. Banikazemi et al. [12] approx-
imate the would-be occupancy ratio of each task from their cache access rate.
Based on the predicted occupancy, they predict the miss rate of each.

In the embedded domain, most of the research works target the meeting of
worst-case execution times (WCETs), rather than improving the overall per-
formance of the system. Calandrino et al. [5] used cache working set size based
scheduling to improve the cache performance and meet the real-time constraints.

3 Overview

In this section, we give an overview of the underlying system model as well as the
proposed PLSS task scheduling technique. Figure 2 shows the complete working
mechanism of the PLSS technique.

PLSS consists of the following modules: (A) Phase Detection (PD) module
(B) Locality Signature Generation (LSG) module and (C) Task Scheduler (TS)
module. The PD and LSG modules are offline modules and are used for gener-
ating profile signatures while the TS module is an online module and is used for
runtime scheduling.

In the offline profiling, the PD module detects the phase transition points
and when a phase change is detected, it informs to the LSG module. The LSG
module accumulates the values of various parameters (cycles, No. of L2 misses,
Modified stack distance, ...) required for generating the locality signatures. When
the LSG module gets the phase change signal, it averages the accumulated values
and stores the averaged value of each parameter corresponding to the detected
phase in a lookup table. The stored average values are used to generate phase-
wise locality signatures that guide the runtime task scheduling process.

In CMPs, the task scheduling process has two stages. The first stage is select-
ing (co-scheduling) a group of tasks to run at a particular time slice (time shar-
ing), whereas the second stage is the mapping of tasks to a particular core
(setting the affinity). If there is no partially shared cache in the system, and if
the cores are symmetrical sharing a single LLC (Fig. 2), the task-to-core map-
ping phase brings no performance variation. Our proposal only focuses on task-
selection phase of the scheduling process. The aim of our scheduling algorithm is
to select a set of runnable tasks that have minimum impact on each other. This
goal is achieved by evenly distributing the cache aggressive tasks across different
time slices (refer Algorithm 1).

In this work, we consider the underlying CMP architecture to be a multi-
core architecture consisting of multiple symmetric cores, where all the cores share

168 S. Abera et al.

LGS Module

Tasks

Offline

PD ModulePD Module

Tasks

Offline

PD Module

TS Modue Locality
signatures

RunƟme

Selected
Tasks

Runnable Tasks

TS Modue Locality
signatures

RunƟme

Selected
Tasks

Runnable Tasks

L2L2

Core 3

L1 I1

Core 3

L1 I1

Core 0

L1 I1

Core 0

L1 I1

Core 1

L1 I1

Core 1

L1 I1

Core 2

L1 I1

Core 2

L1 I1

Core 3

L1 I1

Core 0

L1 I1

Core 1

L1 I1

Core 2

L1 I1

Core 3

L1 I1

Core 0

L1 I1

Core 1

L1 I1

Core 2

L1 I1

L2

Core 3

L1 I1

Core 0

L1 I1

Core 1

L1 I1

Core 2

L1 I1

L2

Core 3

L1 I1

Core 0

L1 I1

Core 1

L1 I1

Core 2

L1 I1

Fig. 2. Overview of PLSS

the LLC. We also consider the tasks to be single threaded, with no data sharing
among them.

We prefer phase-wise profiling over average profiling to improve the accuracy
of the generated signature. It is often thought that phase-wise analysis adds
significant overhead. However, in SPEC2006 benchmark suite which we consider
in this work, all the benchmarks have a small number of phases. On an average,
the number of detected phases to cover 90% and 80% of the SPEC2006 execution
is 8.5 and 5.9 respectively [7]. In addition to this, we only consider long lived
phases(in our experiment we considered phases which lasts for a minimum of 50
million instructions, otherwise we average out the statistics for that part of the
program).

3.1 Phase Detection Mechanism

As programs run, they exhibit phases of execution where their performance
vary significantly from one phase to the other [8]. Within a phase, the program
shows stable performance characteristics. The resource requirements of a pro-
gram vary from one phase to another leading to under- or over-utilization of the
system resources. As a result, tracking and detecting program phases is essential
to exploit the opportunities for performance optimization and resource manage-
ment. A lot of prior work have explored different phase detection and classifica-
tion techniques. Sherwood et al. [8] tried to identify the periodic behavior and
representative simulation points in applications using basic block analysis. In an
extension to this previous work, Sherwood et al. [9] randomly chose basic blocks
to characterize program phases from a pool of static basic blocks existing in a
program. Dhodapkar et al. [10] used instruction working set analysis to detect

PLSS: A Scheduler for Multi-core Embedded Systems 169

phase changes. In our work, we utilize this instruction working set based phase
detection technique to keep track of the task’s time varying behavior.

A working set W (ti, τ) for i = 1, 2, 3..., is a set of distinct segments (of
instruction addresses) s1, s2, .., sω touched over the ith window of size τ [10].
A working set representing a range of instruction addresses is captured in each
interval. A change in the working is observed when a program executes different
sections of the code. Once the relative working set distance δ between two con-
secutive working sets W (ti, τ) and W (ti+1, τ) (see Eq. 1) exceeds a threshold, a
phase change is detected.

δ =
|W (ti, τ) ∪ W (ti+1, τ)| − |W (ti, τ) ∩ W (ti+1, τ)|

|W (ti, τ) ∪ W (ti+1, τ)| , (1)

3.2 Locality Signature Generation Mechanism

The LSG module generates two signatures to guide the online scheduling. These
signatures assist the scheduler in predicting the potential performance out-
come of the tasks. In this work, we use Aggressiveness Score (A Score) and
Sensitivity Score (S Score) metrics as the locality signatures. The A Score
metric models how much a task affects the co-runner task by evicting its cache
blocks. The S Score of a task characterizes the expected degradation it faces
when it shares LLC with other tasks.

A Score. In order to characterize how aggressively a task competes for a cache
space, we use the A Score metric. In prior work, the researchers have tried to
measure the competitiveness of a task for the shared cache space with several
performance metrics such as miss-rate, number of accesses [2], IPC (memory
bound tasks have lower IPC than compute bound tasks and their competitive-
ness also varies accordingly) [4]. In this work, we are using miss-frequency as
A Score. We show that the contention prediction accuracy of this metric is much
higher than the others: IPC and L2 number-of-access (L2A) based strategies
(Sect. 4.3).

miss-frequency =
number of misses (current phase)

number of cycles
(2)

S Score. In a set-associative cache with LRU replacement policy, the temporal
reuse behavior of a task can be captured by its stack distance profile [11]. The
stack distance represents the number of distinct addresses referred between two
references to the same address. We can capture this reuse behavior of n-way set
associative cache using n + 1 counters [1] (where n is the associativity of the
cache): C0, C1, ..., Cn−1 for the cache hits and counter Cn for the cache misses.
The stack distance is the depth of a cache block in the LRU stack from which it
is found and accessed. If the access is to the ith position of the LRU stack, Ci

will be incremented.
Tasks, with most of their solo-run cache hits occur around the most recently

used (MRU) position, do not suffer much during sharing, while tasks with most of

170 S. Abera et al.

their cache hits concentrated around the least recently used (LRU) position suffer
more from sharing. Obviously, a stack distance profile captures many aspects of
temporal reuse behavior of a task. What is missing in the SDP is a metric that
conveys information about the time interval taken to complete a single cache hit
by a task. Two instances of cache hits with same stack distance (say 4), may have
different time periods (time taken between the previous and current accesses of
that block) say 100 cycles and 600 cycles. Hence, the likelihood of a cache hit
turning into a miss during a co-run also differs significantly. This phenomena
is not captured by the original SDP. Stack distance entries with large duration
(time period) have higher chance of turning into a miss during a co-run, than
the ones with short period.

In order to solve this problem, we propose a stack distance profile with
time (SDT). We record not only the stack distance of each cache hit but also
the time period between the previous and the current accesses. Let us assume it
took 100 cycles between the previous and current access to the cache block which
happened at stack distance of 4. Therefore, the stack distance entry is described
with its time period as (stack distance(SD), time period(TP)) : SDT (4, 100).
In our work, we try to include this information into the S Score metric. We
accomplish the computation of S Score using the following steps:

– Step 1: First we collect the SDT entries to generate the distribution of
SDT (SD, TP). After obtaining the SDT entries, we cluster them into dif-
ferent groups based on the SD values which runs 0 to n − 1 (associativity):
SDT (0, ∗), SDT (1, ∗), ..., SDT (n − 1, ∗). Each group will have a range of TP
values.

– Step 2: Now we sort each group’s TP values. Once we sorted it, we rep-
resent each group along with its median of TP values as: SDT (0, TP 0),
SDT (1, TP 1), ..., SDT (n − 1, TPn−1).

– Step 3: We calculate the S Score of the task as:

Total hits =
i=n−1∑

i=0

|SDT (i, TP i)|, (3)

where |SDT (i, TP i)| represents the number of elements (SDT entries) in cluster
i, for i in 0, 1, ..., n − 1

S Score =
i=n−1∑

i=0

|SDT (i, TP i)|
Total hits

× TP i (4)

When a cache hit occurs at the MRU position, SDT (0, ∗) increases by one.
The time period, TP , for such kind of hits will be small. When a cache hit occurs
at the LRU position SDT (n − 1, ∗) increments by one. The time period, TP , of
such hits will be larger. Therefore, if one task has most of its cache hits at the
MRU position, and with a small TP , its S Score will be small and vice versa.
The implication is that a task with a lower S Score will be affected less during
sharing than the one with a higher S Score.

PLSS: A Scheduler for Multi-core Embedded Systems 171

3.3 PLSS: Algorithm

Table 1 lists the notations used in defining the PLSS algorithm, given in
Algorithm 1.

Table 1. List of symbols and notations used to describe the PLSS algorithm

m : number of tasks

T : set of m runnable tasks {T1, T2, ..., Tm−1 }
n : number of cores

A Scorei : a vector containing the A Scores of each phase of Ti

S Scorei : a vector containing the S Scores of each phase of Ti

A Score Curi : the A Score value of Ti in its current phase of execution

S Score Curi : the S Score value of Ti in its current phase of execution

[] : operator used to index a sorted list

The main goal of our PLSS algorithm is to select co-runner tasks with com-
plementing contention behavior. This is achieved by ensuring that the aggressive
tasks are not scheduled together. To implement this, we divide the tasks into
high- and low-aggressive task groups and schedule the most aggressive task from
high-aggressive group with the least sensitive task from the low-aggressive group
and vice-versa. In each iteration of the algorithm, every task gets exactly one
quantum of execution time, after which A Score Cur and S Score Cur for each
task are updated.

Algorithm 1. PLSS
Input : m; T; A Scorei, S Scorei for i ∈ (0,m − 1); n
Output: schedule of T on the n cores

1 repeat
2 Update A Score Curi, S Score Curi for i ∈ (0,m − 1) ;
3 Generate ST by sorting T in descending order of A Score Curi ;
4 Generate task groups G0, G1,..,Gn−1, where Gi contains ST[(m/n) × i] to

ST[(m/n) × (i + 1) − 1] ;
5 Sort the tasks in the last n/2 groups (that is, Gn/2, Gn/2+1, ..., Gn−1) in

ascending order of their S Score Curi;
6 for cur quantum ∈ (0,m/n − 1) do
7 for i ∈ (0, n − 1) do

8 Assign Gi[cur quantum] to the ith core
9 end

10 end

11 until all tasks finish;

172 S. Abera et al.

4 Evaluation

In this section, we first briefly describe the experimental setup, and report
the results of various experiments (Phase Detection, Contention Metric
accuracy and Scheduling experiments).

4.1 Evaluation Setup

We use sniper 6.0 multi-core simulator [16] to validate the proposed methodology.
Table 2 shows the processor configuration used for all of our experiments. We
modify the simulator to support the offline phase detection and locality signature
generation. We also implement a scheduler that checks the S Score and A Score
values of each task during task selection phase. The scheduler selects tasks based
on the contention metrics as shown in Algorithm 1. We use different benchmarks
from the SPEC2006 suite in our evaluation. In the scheduling experiments, we
compare PLSS with IPC [4], and L2A [2,3] contention metrics based approaches.
In order to show the significance of the sensitivity metric, we also evaluate the
PLSS-A (PLSS with only the A Score metric and not the S Score metric). For
the IPC and L2A based scheduling, we schedule high-IPC (high-L2A) tasks with
low-IPC (low-L2A) tasks. We achieve this in a manner similar to PLSS. We sort
the tasks based on their IPC (L2A), and divide the sorted list into n groups,
where n is the number of cores. The scheduler then selects one element from
each group iteratively.

Table 2. System configuration

Parameter Value Caches

Parameter L1-D L1-I L2 (dual-core) L2 (quad-core)

Cores 2, 4 Size 8 KB 8 KB 256 KB 512KB

Block size 64 64 64 64

Frequency 1 GHz Write policy WB WB WB WB

Associativity 4 4 8 8

Latency (cycles) 3 3 24 24

4.2 Phase Detection Validation

We collect the instruction working set for every epoch of one million instructions,
and compare each working set with that of the previous epoch as discussed in
Sect. 3.1. In the experiments, we set the threshold δth to be 0.75. Since we are
interested only in long range phases, we average out phases which are less than
50 million instructions. We validate the technique by simulating one Billion
instructions of SPEC2006 benchmarks, and correlate the temporal variations
in various fundamental metrics of a processor’s behavior against the computed
phase change points. An example correlation for the lbm benchmark is shown in
Fig. 3.

PLSS: A Scheduler for Multi-core Embedded Systems 173

Fig. 3. lbm, one Billion instruction simulation; top-to-bottom: Cache hit-rate for vari-
ous cache sizes (1K to 128 K), IPC, L1-D hit frequency, Number of L1 accesses (10 K)
and instruction distance (phase detector)

4.3 Contention Metric Accuracy

This experiment serves to validate the choice of miss-frequency as the A Score
metric. Each dual-core experiment takes 13 SPEC benchmarks while the quad-
core experiment takes 10 SPEC benchmarks. In the dual-core experiment, all
13C2 = 78 pairs are co-run on the aforementioned dual-core processor. For the
quad core, all 10C4 = 210 combinations are co-run. We run each task for one
Billion slice of instructions, if one of the co-runner finishes before the other,
we restart and run the fast co-runner till the slow finishes. We study the cor-
relation between the observed slowdown of the benchmarks against different
aggressiveness metrics. Let us assume we have two co-running tasks X and Y ,
and IPCsolo and IPCco represent solo-run and co-run instructions per cycle of
the tasks respectively. We computed the slowdown as specified in Eq. 5.

slowdown =
(IPCsolo(X) + IPCsolo(Y)) − (IPCco(X) + IPCco(Y))

IPCsolo(X) + IPCsolo(Y)
× 100,

(5)
We then studied what parameters of the tasks X and Y present a high correlation
with the observed slowdown. We consider three options: the solo-run IPC, L2A
and miss-frequency (misses per 1 K cycles). We also studied two methods of
aggregating the parameters of the tasks X and Y : sum and product. Table 3
presents the correlation between the six different candidates for the A score
metric and the actual slowdown.

Both the IPC based contention metrics show negative correlation with the
slowdown, as high aggregate IPC implies lower contention, resulting in lower
slowdown. Aggregated IPC based on summation (IPC1) shows better correla-
tion (−0.6381) than product based aggregation (IPC2). The L2A based parame-
ters are the least correlated with correlation indexes of 0.3412 and 0.2788. The

174 S. Abera et al.

Table 3. Correlation between aggressiveness strategies and slowdown

Parameter Aggregation Correl. with slowdown

IPC1 IPCsolo(X) + IPCsolo(Y) –0.6381

IPC2 IPCsolo(X) ∗ IPCsolo(Y) –0.4315

L2A1 L2Asolo(X) + L2Asolo(Y) 0.3412

L2A2 L2Asolo(X) ∗ L2Asolo(X) 0.2788

miss freq1 miss fsolo(X) + miss fsolo(Y) 0.8518

miss freq2 miss fsolo(X) ∗ miss fsolo(Y) 0.9551

(a) 78 combinations of two SPEC2006
benchmarks on dual-core

(b) 210 combinations of four SPEC2006
benchmarks on quad-core

Fig. 4. Correlation between miss-frequency based A Scores and Slowdown

best correlation was observed with the miss-frequency based metrics, showing
correlation indices of 0.8518 and 0.9551. Therefore, in PLSS we use miss freq2
as aggressiveness metric as it shows good slowdown prediction.

We also show the correlation between the miss-frequency based contention
metric and slowdown with scatter plot. Along with the scatter plots, we also
include the linear and quadratic regression fit graphs. In the dual-core exper-
iment, we observe high coefficients of determination (R2) for both linear and
quadratic regression: 0.91 and 0.96 respectively (as shown in Fig. 4). In the quad-
core experiment, the coefficients of determination are 0.86 and 0.87 for the linear
and quadratic regressions respectively.

Our choice of contention metrics, and the proposed technique to compute
them, ensure scalability as each application in the workload needs to be profiled
only once, in a solo stand-alone fashion.

4.4 Scheduling Experiments

In the experiments, we run ten benchmarks from SPEC 2006 on a dual-core
system. The overall simulation time is 2 Billion ns and the context quantum is
set to 1000000 ns. If a benchmark finishes within this time, it will be replaced
by the next task from same group. We schedule the given bag-of-tasks using the
four different schedulers and record the results.

PLSS: A Scheduler for Multi-core Embedded Systems 175

Fig. 5. Slowdown encountered by 10 SPEC2006 benchmarks running on dual-core

As we can see from Fig. 5, PLSS performs the best with an average slowdown
of 2.99%. The maximum slowdown experienced by any task is only 7.02%.
Whereas L2A based approach performs the worst with 42% maximum and 9.6%
average slowdowns. The IPC based scheduler performs better than the L2A app-
roach with maximum and average slowdowns 18.9% and 7.94% respectively.
We also observe the PLSS-A performs well with 9.44% maximum and 3.91%
indicating the scheduling priority should be dispersing aggressive tasks across
time slices using A Score. The S Score metric further helps to reduce the slow-
down, after the aggressive tasks have been distributed.

5 Conclusion and Future Work

Multi-cores are being increasingly used in embedded domain to achieve higher
performance with energy efficiency. However, due to shared resources, tasks affect
each other and degrade performance. Our proposal PLSS greatly reduces such
degradation through intelligent scheduling. The scheduling is based on knowledge
gained regarding the tasks through offline analysis. This knowledge is in terms
of a novel combination of two metrics: aggressiveness and sensitivity. Unlike
previous work, we perform phase-wise profiling and need only a single solo-run
to collect these signatures. Through extensive experimentation, we demonstrate
that PLSS improves overall system performance and outperforms IPC and L2A
based techniques.

Multi-core embedded systems can co-host various embedded tasks with dif-
ferent time constraints. For real-time tasks, the optimization goal is to meet
the deadline while for the others the goal is to improve performance. PLSS
improves the worst-case performance of tasks, while improving overall system
performance. However, it does not guarantee WCETs of real time tasks. In
future work, we would like to extend PLSS with dynamic cache partitioning in
order to provide isolation for time-constrained tasks while improving the quality
of service for others. Additionally, our approach relies on the application’s inputs
being well known at profile time. If this is not the case, the contention metrics

176 S. Abera et al.

computed may not accurately reflect the application’s behavior at run time. We
would like to pursue alternative approaches to handle such scenarios.

References

1. Chandra, D., Guo, F., Kim, S. and Solihin, Y.: Predicting inter-thread cache con-
tention on a chip multi-processor architecture. In: HPCA (2005)

2. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ASPLOS (2010)

3. Feliu, J. Petit, S., Sahuquillo, J., Duato, J.: Cache-hierarchy contention aware
scheduling in CMPS. In: TPDS (2013)

4. Zhang, X., Dwarkadas, S., Folkmanis, G., Shen, K.: Processor hardware counter
statistics as a first-class system resource. In: HotOS (2007)

5. Calandrino, J.M., Anderson, J.H.: Cache-aware real-time scheduling on multicore
platforms: heuristics and a case study. In: ECRTS (2008)

6. Jiang, Y., Tian, K., Shen, X.: Combining locality analysis with online proactive job
co-scheduling in chip multiprocessors. In: Patt, Y.N., Foglia, P., Duesterwald, E.,
Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp. 201–215.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-11515-8 16

7. Sembrant, A., Black-Schaffer, D., Hagersten, E.: Phase behavior in serial and par-
allel applications. In: IISWC (2012)

8. Sherwood, T., Perlman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: PACT (2001)

9. Sherwood, T., Sair, S., Calder, B.: Phase tracking and prediction. In: ISCA (2003)
10. Dhodapkar, A.S., Smith, J.E.: Managing multi-configuration hardware via dynamic

working set analysis. In: ISCA (2002)
11. Mattson, R.L., Gecsei, J., Slutz, D., Traiger. I.: Evaluation techniques for storage

hierarchies (1970)
12. Banikazemi, M., Poff, D., Abali, B.: PAM: a novel performance/power aware meta-

scheduler for multi-core systems. In: SC (2008)
13. Freescale MPC8640D. http://www.nxp.com/files/32bit/doc/data sheet/

MPC8640DEC.pdf
14. Broadcom. http://www.broadcom.com/products/Enterprise-Networking/

Communications-Processors/BCM1255
15. ARM11MPCore. https://www.arm.com/products/processors/classic/arm11/

arm11-mpcore.php
16. Sniper Multicore Simulator. http://snipersim.org

http://dx.doi.org/10.1007/978-3-642-11515-8_16
http://www.nxp.com/files/32bit/doc/data_sheet/MPC8640DEC.pdf
http://www.nxp.com/files/32bit/doc/data_sheet/MPC8640DEC.pdf
http://www.broadcom.com/products/Enterprise-Networking/Communications-Processors/BCM1255
http://www.broadcom.com/products/Enterprise-Networking/Communications-Processors/BCM1255
https://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
https://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
http://snipersim.org

Exploring ILP and TLP on a Polymorphic
VLIW Processor

Anthony Brandon(B), Joost Hoozemans,
Jeroen van Straten, and Stephan Wong

Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands
{a.a.c.brandon,j.j.hoozemans,j.vanstraten-1,j.s.s.m.wong}@tudelft.nl

Abstract. In today’s computing environments, the concurrent execu-
tion of multiple applications/threads is common and multi-cores are very
well-suited to handle such workloads. However, they suffer from the fact
that any mismatch between the application’s inherent instruction-level
parallelism (ILP) and the core’s parallelism leads to unused resources or
loss in performance. An accepted solution is to include several types of
cores and match them dynamically depending on the performance needs
of the application. This approach becomes less efficient when the num-
ber of cores does not match the number of parallel threads. Furthermore,
the heterogeneity of (fixed) cores cannot be increased indefinitely as it
would result in even higher degrees of mismatching and increased move-
ment of instruction and data streams. In this paper, we are proposing
a polymorphic processor, based on VLIW architectures, that can adapt
its issue-width during runtime. By design, the processor can be per-
ceived as a single wide core (8-issue VLIW) or two medium-wide cores
(4-issue) or four small cores (2-issue) that can run high-ILP/low DLP,
medium-ILP/medium DLP, and low-ILP/high-DLP applications, respec-
tively. Furthermore, we are executing one single generic binary while per-
forming these reconfigurations. In order to show the effectiveness of our
approach, we synthesized different versions of the core to represent fixed
heterogeneous cores and compared them to the dynamic implementation
of the core. Our experiments show that the dynamically adaptive solu-
tion performs on average 7% faster and uses 5% less area than a platform
which consists of fixed cores with 1.5× as many datapaths.

1 Introduction

Modern embedded systems (including smartphone SoCs and other low-power,
high-performance systems) are faced with dynamic workloads [1]. Workloads can
be dynamic in several characteristics, e.g., performance requirements of tasks,
instruction-level parallelism (ILP), data-level parallelism (DLP), or task-level
parallelism (TLP). The state-of-the-art in technology in the embedded low-
power high-performance domain addresses these workloads using heterogeneous
multi-core processing systems, e.g., Exynos that adopts the big.LITTLE app-
roach [2]. These allow different types of tasks to be mapped to a processing
unit that most closely matches their characteristics and/or requirements. As the
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 177–189, 2017.
DOI: 10.1007/978-3-319-54999-6 14

178 A. Brandon et al.

processing elements of a heterogeneous system are fixed, the performance of the
system depends on the extent to which the workload can be mapped to the
hardware (called performance fragility by [3]). Previous research [3–8] presented
polymorphic architectures as a way to address this problem. A dynamic hard-
ware platform, that is able to change its characteristics at runtime, can provide
high performance for single-threaded applications by exploiting ILP and high
throughput for multi-threaded applications by exploiting TLP [9].

Until now, no-one has quantified the potential benefits of a dynamic hardware
platform over fixed platforms. We pose the following question: given the same
number of transistors, what is the best possible use of them to provide maximum
performance under workloads with varying amounts of ILP and TLP exhibited
by modern multi-threaded programs?

In this paper, we introduce and evaluate our proof-of-concept for a dynamic
approach to run these dynamic workloads in the high-performance embedded
domain. We apply polymorphism, that has been applied previously to high-
performance general-purpose designs, to a Very Long Instruction Word (VLIW)
processor that is more suitable for low-power systems. The result is a dynamic
system that can adapt its processor and cache to the running applications. Note
that our “dynamic” approach does not rely on (partial) FPGA reconfiguration.
Our designs are written in synthesizable VHDL and prototyped on FPGAs, but
are also suitable for implementation on ASIC.

We show that our dynamic approach is able to achieve a more efficient uti-
lization of the available hardware resources. We are able to achieve on average
7% better performance using a dynamically reconfigurable processor when com-
pared to a static system that is roughly 10% larger in area and has 1.5× as many
datapaths.

2 Related Work

There are several existing attempts at making reconfigurable processors in order
to exploit both TLP and ILP. Some, such as Core Fusion [5], Trips [3], and
MorphCore [4] combine multiple small cores into large superscalar (possibly
Out-of-Order) cores to exploit the parallelism available at runtime. While these
approaches have binary compatibility between the different configurations, they
require expensive and power-hungry hardware to extract ILP from the (sequen-
tial) code at runtime. Moreover, most of these approaches were only simulated,
whereas we have a working prototype on an FPGA.

Other attempts such as Voltron [6] and Smart Memories [7] are based on
VLIW architectures, where smaller cores are combined to form a wide issue
VLIW. MT-ADRES [10] is a Course Grain Reconfigurable Array (CGRA) which
is similar to a VLIW, which can also be configured as either a single wide issue
core, or multiple smaller cores. This is similar to our approach, however these do
not have binary compatibility between the different configurations. This means
that it is determined at compile time which parts of the program will operate in
which configuration, giving less flexibility at runtime. Our approach does have

Exploring ILP and TLP on a Polymorphic VLIW Processor 179

this flexibility, which allows the core to be interrupted at any point in time,
reconfigure to a different issue-width (in only several clock cycles), and resume
execution. Our design also achieves this without any need for state saving and/or
context switching.

VLIW processors are an alternative to superscalar processors [11] with the
goal of reducing power consumption by moving dependency checking to the com-
piler, thus simplifying the hardware (and in turn consuming much less power).
One downside of fixed issue-width VLIW processors is that resources will go
unused if the issue-width is greater than the ILP available in the program. On
the other hand, if the issue-width is too low, potential performance gains are
lost. Making the issue-width runtime reconfigurable addresses this problem.

The processor we target in this paper is a reconfigurable issue-width VLIW
processor [12] based on ρ-VEX [13], a parameterized VLIW processor. The
processor can be configured at design time to have an issue-width of 2, 4, or 8 and
can be reconfigured at runtime to split into smaller processors with issue-widths
of 2 or 4. We explore the platform’s performance under different workloads with
varying amounts of TLP in order to quantify the benefits of reconfigurability.

3 Approach

Our approach to increase the utilization of execution datapaths in a processor
allows for on-the-fly composition of cores—the reconfiguration time is expressed
in clock cycles as demonstrated in our FPGA prototype (see Sect. 4). Cores
can be merged to “construct” wider cores for applications needing performance
(with enough available parallelism). When this is not required, multiple appli-
cations can be executed in parallel. In addition, (low-priority) applications can
be “forced” to execute on a smaller core allowing other applications to execute
in parallel. Such a scenario is impossible for fixed processors when a second
free processor is not available, or would require costly context-switching, effec-
tively stalling the first application. Our approach is also different from reorga-
nizing datapaths from RISC cores into multiple cores as such approaches would
still require (several) power-hungry instruction decoders. Starting from a VLIW
architecture, the need for such decoders can be omitted and the reconfiguration
can be achieved by simply reassigning the datapaths and register file ports.

The versatility of our core design is achieved by separating the program con-
texts and the execution datapaths (pipelanes) and controlling their connections
via a reconfiguration controller (as depicted in Fig. 1):

– Pipelanes & lane-groups: functional units, instruction fetch and decode, etc.
– Contexts: the register file, and all state related registers, such as program

counter, control registers, etc.

The VLIW core comprises multiple execution pipelines, also called pipelanes.
For instance, an 8-issue ρ-VEX has 8 pipelanes. Subsequently, we divide these
pipelanes into lane-groups. For instance pipelanes 0 and 1 form lane-group 0,
and pipelanes 2 and 3 form lane-group 1, and so on. When two lane-groups are

180 A. Brandon et al.

joined, the processor functions as a 4-issue VLIW. When they are separate, they
function as two independent 2-issue VLIWs.

The contexts contain the state of programs and since we can execute 4 pro-
grams in parallel at least 4 contexts are needed. Each lane-group can access each
context and which context it accesses depends on the current configuration of
the core. In this way, we can reconfigure the core by assigning contexts to lane-
groups. The contexts are connected to lane-groups through a switch network
which allows each lane to access each context. The register file is described in
more detail in [14]. When combining lane-groups, wider-issue VLIW cores can
be composed and they benefit from the same flexibility in choosing which con-
text to execute. The added benefit of this approach is that multiple contexts
are maintained and context switching among them can be achieved in just a
few cycles—basically, flushing the associated pipelanes. In addition, “moving”
a context to be executed on a differently-sized core (similar to moving a pro-
gram from a low-performance core to a high-performance core or vice versa)
requires only a reconfiguration of our core. Moreover, the I-caches in our design
follow the reconfiguration of the core; therefore, their content is also maintained,
thereby removing the need for code movement or a cold start of the I-cache when
physically moving a program to another core.

Context 0

Pipelane 0

Pipelane 1

Reconfiguration
Controller

Lane-group0

Pipelane 2

Pipelane 3

Lane-group1

Pipelane 4

Pipelane 5

Lane-group2

Pipelane 6

Pipelane 7

Lane-group 3

Context 1 Context 2 Context 3

Fig. 1. Interconnect between register contexts and processor pipelines controlled by
Reconfiguration Controller.

Because we are dynamically reconfiguring the core, we have to deal in more
detail with control flow and interrupts. Each lane-group has its own branch
unit and after merging all but one of them is disabled in order to simplify the
instruction fetch hardware. When handling interrupts (including exceptions and
traps), they must be handled differently depending on the configuration as they
are tied to contexts. We designed the core to correctly stall the right context,
invalidate any remaining load/store operations in case of a bus-fault, and flush
the associated pipelanes before jumping to the trap handler.

Another important aspect of our approach is to maintain binary compati-
bility of the VLIW instructions when executing them on different issue-width

Exploring ILP and TLP on a Polymorphic VLIW Processor 181

cores. For this purpose, we use generic binaries [15] (reporting a performance hit
between 10% and 30%) and employed techniques described in [16] to reduce the
performance hit to on average around 5%.

4 Implementation

In Sect. 3, we described the requirements of the reconfigurable processor. In this
section we explain how we implemented the reconfigurability in hardware. The
design is implemented in VHDL and is completely parameterized using generics,
so that it is possible to statically change the number and size of lane-groups
that will be available at runtime. For example, instead of having an 8-issue
ρ-VEX that can split into four 2-issue, or two 4-issue cores, we could have a
4-issue core that can split into two 2-issue cores. The number of contexts is also
parameterized, making it possible to have more contexts than the maximum
number of cores.

In Fig. 2, we depict the pipeline stages of a single datapath of the processor.
The processor consists of a (design time) configurable number of these data-
paths, which are connected through the forwarding logic and the register files
as depicted in Fig. 1. Each datapath can be configured to have an ALU, branch
unit, load/store unit, and multiplier.

As described in the previous section, the ρ-VEX can be reconfigured at run-
time by assigning lane-groups to contexts. This is done by writing to the con-
figuration control register. The control registers are part of a memory mapped
address space, so this can be accomplished through a standard store instruction
to the right address. Once a new value has been written to the context control
register, the reconfiguration controller will check that the requested configura-
tion is valid. For instance, in an 8-issue reconfigurable ρ-VEX, it is not possible
for the center two lane-groups to be merged into a single core. Similarly, it is
impossible to assign multiple non-adjacent lane-groups to the same context.

Once the requested configuration has been determined to be valid by the
reconfiguration controller, the ρ-VEX will stop fetching new instructions and

Fetch

PC+1 Br. tgt.

Stop

bit

Decode Read br/l

Read gp.

Op.
mux ALU

Memory

Multiplier

Write gp.

Write br/l

WBEX1EX0IF

General purpose forwarding

Branch/link forwarding

Branch unit

(WB+1)

Breakpt.

Fig. 2. Schematic of a single datapath of the processor.

182 A. Brandon et al.

will finish executing any in-flight instructions. Once the pipelanes are empty,
the actual configuration takes place and each context continues execution where
it was last stopped. Note that because all instructions in the pipeline must finish
execution before reconfiguration completes, reconfiguration can take a variable
number of cycles depending on the exact instructions being executed. The min-
imum number of cycles for a reconfiguration to take place is five cycles, while
the maximum is the same as for a load instruction that causes a cache miss.

5 Experimental Results

In order to demonstrate the benefits of our approach we wanted to show its
performance when executing multiple tasks with different performance charac-
teristics on different configurations of the core. By reconfiguring the core at run-
time we can adapt to the current workload and in doing so utilize our hardware
resources more efficiently.

5.1 Workload Definition

For our experiments we use workloads consisting of Mibench applications [17].
First, we characterized the individual applications in terms of available ILP
and execution time. Figure 3 shows the speedup between executions on 2-issue
and 4-issue, and between executions on 4-issue and 8-issue. From this figure we
can observe that most applications have relatively little ILP, while a handful
have high ILP. The reason that FFT can achieve a greater speedup than 2, is
because the cache of the 4-issue processor is larger. We also notice that none of
the benchmarks have a very large speedup when switching to 8-issue. For this
reason, we decided to focus on 4-issue and 2-issue configurations of the ρ-VEX
in the remainder of this paper. We do this because implementing a large 8-issue
VLIW incurs a large overhead in terms of area, which cannot be justified for
these applications.

Fig. 3. The speedup for each benchmark from two to four issue, and from four to eight
issue.

Exploring ILP and TLP on a Polymorphic VLIW Processor 183

Fig. 4. Execution time for each benchmark.

In Fig. 4, we depict the execution time of each benchmark in cycles. From this
figure we can observe that two of the benchmarks are especially long compared
to the others. Since we are interested in the performance of multiple threads
running on the cores simultaneously, this is undesirable. If we select one of these
extremely long benchmarks to run together with shorter benchmarks, the results
will be dominated by the performance of a single application running most of
the time. In order to mitigate this effect we normalized the execution times for
each benchmark to the execution time. This means that we are only comparing
the relative improvement from 2-, to 4-, to 8-issue.

In modern embedded devices it is usually not possible to know at design
time the exact characteristics of the workload it will be running. For example,
a smartphone might be running a single or multiple applications depending on
what the user is doing. In order to understand how platforms consisting of vari-
ous numbers of processor cores will perform under these different conditions we
must construct workloads of varying numbers of applications to run simulta-
neously. Therefore, we randomly choose 1 to 22 different applications from the
list of all our Mibench applications and run these simultaneously on all of the
platforms. We then measure the time required to finish the entire workload. For
each workload size (1 – 22) we created 100 random workloads (2200 total).

In addition to using these real world benchmarks, we also estimated the
performance of each platform for a set of idealized synthetic benchmarks which
allows us to analyze the performance of the platforms under simplified conditions.
These benchmarks exhibit ideal ILP which makes it easier to reason about how
the system will perform.

5.2 Resource Utilization

We used Synopsis Design Vision to obtain area results for ρ-VEX on a 65 nm
library, and CACTI [18] to obtain area estimates for caches for the different
cores. Table 1 shows the parameters used to estimate area for the instruction
caches. In this table, we have assumed that for a 4-issue core we will use a cache

184 A. Brandon et al.

Table 1. Instruction cache parame-
ters

4r 2 4

Cache Size (KiB) 8 8 16

Line Size (B) 16 8 16

Nr. of Banks 1 1 1

Associativity 1 1 1

Size (mm2) 0.215× 2 0.146 0.242

Table 2. Area results on 65 nm (mm2).

4r 2 4

Core 0.263 0.114 0.175

I-Cache 0.432 0.146 0.242

D-Cache 0.292 0.146 0.270

Total 0.987 0.407 0.688

twice as large as for a 2-issue core. In order to represent the reconfigurability of
the cache for the reconfigurable core we estimate the area as twice the size of
a cache with a wider line size. Table 2 shows the area of the 2-, 4- and 4-issue
reconfigurable cores, along with instruction and data caches. This table shows
that the caches make up a significant amount of the area. Using these numbers
we determine several multi-core platforms that fit in similar area.

5.3 Experimental Setup

In order to evaluate our approach, we compared our platform consisting of 2
reconfigurable 4-issue processors to other platforms consisting of multiple static
processors of equivalent total area. This resulted in the following platforms:

– 44r (1.974mm2): The dynamic platform consists of two 4-issue reconfigurable
cores. This means that this platform can execute two tasks in parallel on the
4-issue cores, or three tasks in parallel with one on a 4-issue, and two on 2-issue
cores, or it can execute four tasks in parallel on 2-issue cores.

– 444 (2.065mm2): This configuration consisting of three static 4-issue cores is
the largest in terms of computational resources that fits in roughly the same
area as two 4-issue reconfigurable cores.

– 2222 (1.623mm2): This platform can achieve the same maximum TLP as the
dynamic platform, namely four threads at once, which makes for a more inter-
esting comparison.

– 442 (1.784mm2): We use this configuration to represent a heterogeneous sys-
tem similar to big.LITTLE with a mix of cores of different issue-widths. This
would allow for efficient mapping of tasks to cores when dealing with a mix of
tasks with high and low ILP.

In each of these platforms, the 2-issue cores have an instruction and data
cache size of 32 KiB while the 4-issue cores have cache sizes of 64 KiB. The
reconfigurable cores have 64 KiB caches each when operating in 4-issue mode,
or 32 KiB caches for each core when operating in 2-issue mode.

In order to obtain execution times these platforms were all synthesized for the
Xilinx Virtex 6 FPGA running at 37.5 MHz. We use GRLIB [19] for peripherals
such as UART output, interfaces to DDR memory, and the interrupt controller.

Exploring ILP and TLP on a Polymorphic VLIW Processor 185

Listing 1.1. Scheduler for static platforms.
inputs :
r e ad y l i s t : l i s t of a l l t a sks sor ted by
descending ILP
cores : l i s t of processor cores sorted by
descending issue−width
while l en (r e a d y l i s t) > 0 :

while l en (running) < l en (co r e s) :
running . append (r e a d y l i s t . pop ())

running . s o r t ()
for i in l en (running) :

c o r e s [i] . task = running [i]
wait ()

Listing 1.2. Scheduler for reconfigurable platforms.
inputs :
r e ad y l i s t : l i s t of a l l t a sks sor ted by
descending ILP
while l en (r e a d y l i s t) > 0 :

while l en (running) < 4 :
running . append (r e a d y l i s t . pop ())

running . s o r t ()
i f l en (running) == 4 :

co r e s . c on f i g = [2 , 2 , 2 , 2]
e l i f l en (running) == 3 :

co r e s . c on f i g = [4 , 2 , 2]
e l i f l en (running) == 2 :

co r e s . c on f i g = [4 , 4]
else :

c o r e s . c on f i g = [4]
for i in l en (running) :

c o r e s [i] . task = running [i]
wait ()

In order to run the various workloads as defined in Sect. 5.1 we implemented
a simple task scheduler, which runs on the processor. It decides which task to run
on which core, and in the case of the dynamic core, in which configuration. The
scheduler for the fixed platforms, shown in Listing 1.1, uses a greedy approach
to run as many tasks in parallel as possible. The input for this scheduler is the
list of tasks which have to be executed, and the issue-width of each available
core. The list of tasks is ordered by descending ILP to ensure that tasks with
high ILP will be scheduled on the cores with the highest issue-width. If a task
is running on a 2-issue core and a 4-issue core becomes available, the scheduler
will migrate that task to a larger core. After the tasks are assigned to cores
the scheduler waits for one of the tasks to complete, at which point it will run
again to schedule any remaining tasks. This continues until all the tasks have
finished.

The scheduler for the dynamic platform, shown in Listing 1.2, is slightly
different because it not only has to distribute the tasks to the cores, but also
determine the desired configuration. The scheduler first selects the maximum
number of tasks to run, under the assumption that it is, in most cases, more
efficient to run multiple tasks than it is to run a single task on a high issue-
with. Next, depending on the number of tasks, the scheduler chooses one of the
possible configurations. For example, if there are three tasks to run, it will choose
the 422 configuration. It then schedules the task with the highest ILP on the
largest core than can be formed.

186 A. Brandon et al.

These two schedulers assume that the average ILP of each task is known
beforehand in order to make comparisons in performance assuming the best
possible schedules. Techniques for scheduling based on measuring ILP at runtime
are out of scope, and are discussed in other work [20].

5.4 Performance of Synthetic Workloads

We will now examine the performance of each of the chosen platforms using
artificial workloads tailored to each specific platform. The workloads consist of
as many tasks as there are cores in the system, with the ideal ILP for that
particular mix of cores. Figure 5 shows how these synthetic workloads could be
scheduled on each platforms. Each color represents a task and the height of a
block represents execution time, while the width represents the issue-width it is
executed on. For a platform with four 2-issue cores we use four tasks, each with
an ILP of 2. On the platforms with fewer than four cores the fourth task has to
be executed after the other tasks, resulting in longer total execution time. For
the 444 platform the workload consists of three tasks with an ILP of 4. As shown
in Fig. 5, when this workload is executed on the 44r platform, the three tasks are
executed in parallel, and when one is done, the remaining two are switched to
run in 4-issue mode. Our goal in using these synthetic benchmarks was to show
that while the reconfigurable platform might not be the best in every single case,
it is not bad either, and for the average case performs well.

4

t

t

t

t

t

t

t

t

t

t

t

t

Workload 1

Ideal for 2222

Workload 2

Ideal for 442

Workload 3

Ideal for 444

issue-width
4 222 2 2 4 4 4 4 4

Fig. 5. Three synthetic workloads scheduled onto the four platforms being compared.
Each color represents a task, while height represents execution time and width repre-
sents the issue-width of the processor executing that task.

The synthetic results in Table 3 show that the average execution time of the
444 platform is the same as for the 44r platform. The 444 platform performs well
for all cases where there are three or less threads, however when there are four
or more threads the 44r platform performs better. The 44r platform performs
worse when there are three high ILP tasks, however, since it can run three tasks
in parallel it will only run 50% longer in the worst case. Real world applications
do not exhibit this kind of difference between 2- and 4-issue, as depicted in Fig. 3,
which means that usually the reconfigurable platform would take less than 50%
longer for a workload of three high ILP tasks.

Exploring ILP and TLP on a Polymorphic VLIW Processor 187

Table 3. Synthetic work-
load execution times.

44r 442 444 2222

Workload 1 1 2 2 1

Workload 2 1.5 1 1 2

Workload 3 1.5 1.5 1 2

Table 4. Average execution times and standard
deviation of all Mibench workloads.

44r 442 444 2222

Relative execution time (mean) 1.0 1.11 1.07 1.09

Standard deviation 0.03 0.06 0.06 0.0

5.5 Performance of Mibench Workloads

We also performed experiments with actual applications as explained in Sect. 5.1.
The results, depicted in Fig. 6, show that the reconfigurable platform is always
at least as good as the 2222 platform, as expected. Remember that the 2222
platform is larger than the reconfigurable platform. When comparing with the
444 platform we can observe that there are some situations where the reconfig-
urable platform is better, and some cases where it is worse. However, note that
there are fewer cases where the reconfigurable platform is slower, and that the
difference in performance is not as high as in the cases where the 44r platform is
faster. The 444 platform is also roughly 5% larger than the reconfigurable plat-
form. The average execution times and standard deviation in execution time are
summarized in Table 4. We can observe that the reconfigurable platform is on
average 7% faster than the static 444 platform. Additionally, we notice that the
standard deviation is smaller for the dynamic platform. This means that the dif-
ference between workloads that perform well and workloads that perform poorly
are larger on the static platform. We also observe that the 2222 platform has
barely any deviation, however this means it has consistently poor performance.
These results show that although the 444 platform has more total computational
resources, and more available total cache, it cannot always make optimal use of

Fig. 6. Results of executing Mibench on different platforms with execution times nor-
malized to 2-issue.

188 A. Brandon et al.

the available hardware, because it cannot make the trade off between thread
level parallelism and instruction level parallelism.

6 Conclusion

In this paper, we compared the performance of heterogeneous multi-core plat-
forms to that of a dynamically reconfigurable platform. We did so using ρ-VEX,
a reconfigurable VLIW processor with a reconfigurable cache, which is capable of
reconfiguring at runtime to exploit either task-level parallelism, or instruction-
level parallelism. We demonstrated that, while for a single workload a particular
static configuration might be optimal, the reconfigurable platform can adapt to
the workload and on average can more efficiently exploit the available hardware.
Our results show that the reconfigurable platform is on average 7% faster than a
static platform with 1.5× as many datapaths, and 5% larger area. Furthermore,
in terms of performance the reconfigurable platform has more stable performance
(less deviation) than other platforms for a wide variety of workloads.

References

1. van Berkel, C.H.: Multi-core for mobile phones. In: 2009 Design, Automation Test
in Europe Conference Exhibition, pp. 1260–1265, April 2009

2. Greenhalgh, P.: big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7,
ARM White paper, pp. 1–8 (2011)

3. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D.,
Keckler, S., Moore, C.: Exploiting ILP, TLP, and DLP with the polymorphous
trips architecture. IEEE Micro 23, 46–51 (2003)

4. Khubaib, K., Suleman, M.A., Hashemi, M., Wilkerson, C., Patt, Y.N.: Morphcore:
an energy-efficient microarchitecture for high performance ILP and high through-
put TLP. In: 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pp. 305–316. IEEE (2012)

5. Ipek, E., Kirman, M., Kirman, N., Martinez, J.F.: Core fusion: accommodating
software diversity in chip multiprocessors. In: Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture, ISCA 2007, New York, NY, USA,
pp. 186–197. ACM (2007)

6. Zhong, H., Lieberman, S., Mahlke, S.: Extending multicore architectures to exploit
hybrid parallelism in single-thread applications. In: 13th International Symposium
on High Performance Computer Architecture, HPCA 2007, pp. 25–36. IEEE, Feb-
ruary 2007

7. Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W., Horowitz, M.: Smart mem-
ories: a modular reconfigurable architecture. In: Proceedings of the 27th Interna-
tional Symposium on Computer Architecture, pp. 161–171, June 2000

8. Rodrigues, R., Annamalai, A., Koren, I., Kundu, S.: Improving performance per
Watt of asymmetric multi-core processors via online program phase classification
and adaptive core morphing. ACM Trans. Des. Autom. Electron. Syst. 18, 5:1–5:23
(2013)

9. Balakrishnan, S., Rajwar, R., Upton, M., Lai, K.: The impact of performance
asymmetry in emerging multicore architectures. SIGARCH Comput. Archit. News
33, 506–517 (2005)

Exploring ILP and TLP on a Polymorphic VLIW Processor 189

10. Wu, K., Kanstein, A., Madsen, J., Berekovic, M.: MT-ADRES: multithreading on
coarse-grained reconfigurable architecture. In: Diniz, P.C., Marques, E., Bertels,
K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARC 2007. LNCS, vol. 4419, pp.
26–38. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71431-6 3

11. Rau, B.R., Fisher, J.A.: Instruction-level parallel processing: history, overview, and
perspective. J. Supercomputing 7(1), 9–50 (1993)

12. Anjam, F., Nadeem, M., Wong, S.: Targeting code diversity with run-time
adjustable issue-slots in a chip multiprocessor. In: Proceeding Design, Automa-
tion and Test in Europe, Grenoble, France, March 2011

13. Wong, S., Anjam, F.: The Delft reconfigurable VLIW processor. In: Proceed-
ing 17th International Conference on Advanced Computing and Communications,
Bangalore, India, pp. 244–251, December 2009

14. Hoozemans, J., Johansen, J., Straten, J.V., Brandon, A., Wong, S.: Multiple con-
texts in a multi-ported VLIW register file implementation. In: Proceeding 2015 Inter-
national Conference on ReConFigurable Computing and FPGAs, Mayan Riviera,
Mexico, December 2015

15. Brandon, A., Wong, S.: Support for dynamic issue width in VLIW processors using
generic binaries. In: Proceeding Design, Automation & Test in Europe Conference
& Exhibition, Grenoble, France, pp. 827–832, March 2013

16. Brandon, A., Hoozemans, J., Straten, J.V., Lorenzon, A.F., Sartor, A.L., Beck, A.,
Wong, S.: A sparse VLIW instruction encoding scheme compatible with generic
binaries. In: Proceeding 2015 International Conference on ReConFigurable Com-
puting and FPGAs, Mayan Riviera, Mexico, December 2015

17. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: a free, commercially representative embedded benchmark suite.
In: IEEE International Workshop on Workload Characterization, WWC-4, pp. 3–
14. IEEE (2001)

18. Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: Cacti 5.1, HP Labo-
ratories (2008)

19. LEON/GRLIB. http://www.gaisler.com/index.php/downloads/leongrlib. Acce-
ssed 7 Sept 2016

20. Guo, Q., Sartor, A.L., Brandon, A., Beck, A., Zhou, X., Wong, S.: Run-time phase
prediction for a reconfigurable VLIW processor. In: Proceeding Design, Automa-
tion and Test in Europe, Dresden, Germany, pp. 1634–1639, March 2016

http://dx.doi.org/10.1007/978-3-540-71431-6_3
http://www.gaisler.com/index.php/downloads/leongrlib

Scheduling

Scheduling of Datacompression on Distributed
Systems with Time- and Event-Triggered

Messages

Damian Ludwig(B) and Roman Obermaisser

Embedded Systems Group, University of Siegen, Siegen, Germany
{damian.ludwig,roman.obermaisser}@uni-siegen.de

Abstract. The compression of messages can improve schedulability by
decreasing network latencies and contention at the cost of computational
overhead for compression and decompression. Existing scheduling mod-
els do not consider compression as required for the deployment in dis-
tributed real-time systems. This paper presents an MILP model with
decision variables, constraints and an objective function for selectively
compressing messages as required for minimizing the system’s makespan,
thereby optimizing the trade-off between communication time and com-
putational overhead. We consider multi-hop communication in systems
with multiple routers and computational nodes. The algorithm is evalu-
ated using example scenarios and the results are compared to previous
work without compression support.

Keywords: Scheduling · Distributed systems · Network on chip · Time-
triggered services · Real-time systems · Data compression · MILP ·
Optimization

1 Introduction

The correctness of distributed embedded real-time systems depends on the com-
pletion of computational and communication activities within predictable time.
Scheduling and allocation problems must be solved in order to allocate computa-
tional jobs to nodes, assign messages to network links, and decide on the ordering
and timing of job executions and message transmissions. Scheduling algorithms
need to consider the available computational and communication resources, while
ensuring the application’s deadlines and considering the precedence constraints.
Numerous scheduling algorithms are available in the state-of-the-art including
mathematical techniques (e.g., bin packing, Mixed-Integer Linear Programming
(MILP) [12]), scheduling heuristics (e.g., list scheduling and clustering [10]),
meta-heuristics and search algorithms (e.g., tabu search, genetic algorithms [3]).

Scheduling algorithms also need to address complex topologies of today’s
network infrastructures (e.g., in-vehicle networks, avionics networks [14], fac-
tory automations networks) with numerous routers and computational nodes

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 193–204, 2017.
DOI: 10.1007/978-3-319-54999-6 15

194 D. Ludwig and R. Obermaisser

interconnected in different topologies. These systems require multiple-hop com-
munication along several routers in order to deliver a message from a producer
job to a consumer job. At the same time, different timing models need to be
supported such as time-triggered and event-triggered communication [9].

In many of today’s systems the trade-off between communication and com-
putational resources is not adequately addressed by the scheduling algorithms.
Compressing messages can significantly decrease the amount of data on the net-
works, thereby decreasing latencies and mitigating network contention. However,
the scheduling algorithms need to consider the compression overhead that con-
tributes to the Worst-Case Execution Time (WCET) of jobs.

There are some well known compression techniques and algorithms, like
Huffman coding [6], arithmetic coding [11] and the adaptive dictionary meth-
ods by Ziv and Lempel [13]. In this paper no specific compression algorithm is
used. Instead, compression rates and costs are passed as parameters. In [5] the
authors propose methods for optimizing performance and power consumption of
NoC, by using storage- and communication-compression [2]. However, they take
compression not as a part of an optimization problem but apply it to all data.
A model for scheduling of datacompression is presented in [4], where compression
costs and total flow time are minimized on unrelated parallel machines.

This paper extends previous work on scheduling time-triggered and event-
triggered communication and computations in distributed systems with multiple
routers and computational nodes. The decision variables, constraints and the
objective function of the MILP model are extended to support the scheduling
of data compression. For each message, the decision whether compression shall
be enabled becomes part of an optimization problem and significantly influences
the other scheduling and allocation decisions.

The remainder of the paper is structured as follows: In Sect. 2 we present an
MILP model based on the work done in [7]. Then we illustrate the results by some
examples in Sect. 3 and discuss how compression can improve schedulability.

2 Scheduling Model

In [7] the authors present an MILP-based scheduling model for multi-core proces-
sors with NoCs supporting time- and event-triggered services. The model handles
dependencies between services as well as collision avoidence for time-triggered
messages and bandwidth constraints.

The scheduling model consists of a logical model given by a directed acyclic
graph and a physical model given by an undirected graph representing a network
of compute-nodes and routers. Routers are not capable of running jobs, thus they
are marked as non-allocable. The nodes of the DAG are computational jobs with
a given WCET. Nodes are connected by edges, where each edge represents a
message-based service (Fig. 1). Each service has a maximum hop transmission-
time, a minimum interarrival time or period and is either time-triggered or event-
triggered. The hop transmission-time is the delay for relaying a message between
two routers or for relaying a message between a compute-node and a directly

Scheduling of Datacompression on Distributed Systems 195

Table 1. Summary of symbols introduced in underlying work

Symbol Meaning

Constants m ∈ N Number of messages

n ∈ N Number of nodes

j ∈ N Number of jobs

U ∈ N
m Hop-time for each message

E ∈ N
j WCET of the jobs

S ∈ N
m si is the job sending message i

D ∈ {0, 1}j×m di,l = 1 ⇔ job i receives message l

M ∈ N
m Minimum interarrival time

MaxH ∈ N Maximum possible number of hops

Variables O ∈ {0, 1}m×n oi,l = 1 ⇔ message i passes node l

H ∈ N
m Amount of hops per message

I ∈ N
m
0 Injection time of the messages

AM ∈ {0, 1}j×n ami,l ⇔ job i is allocated to node l

P ∈ N
m×n pi is the path of message i

connected router. It depends on the size of the message and the bandwidth of
the network. When the DAG is fully produced, it will possibly run again. The
different runs share a schedule to control job execution and message passing.

We formulated an MILP problem with additional constants, decision vari-
ables and constraints for supporting compression and implemented it using the
IBM CPLEX optimizer. Table 1 shows the most important constants and vari-
ables already introduced in [7]. The constant n is the number of nodes in the
physical model, whereas m and j describe the number of messages and jobs in
the logical model. The vector U describes the hop transmission-times for all mes-
sages and E is the WCET of the jobs. The source and destination of a message
can be determined from S and D. The matrix O denotes if a message passes a
specific node. The number of hops a message has to take to get from its source
node to the destination node is expressed in H. I is the point in time a message
is injected into the network. The matrix P is used to describe the path of a
message. Each item pi,l = a means message i passes node a at hop l. Further,
we define the following sets: MSG = {0, . . . ,m − 1}, NODES = {0, . . . , n − 1}
and JOBS = {0, . . . , j − 1}.

2.1 Constants

In addition to the already defined constants, we need a model for the compression
itself. As we are dealing with real-time communication, we need to know an upper
bound of the compression rate for each message. One could argue that in the
worst-case a compression rate is always 1.0, e.g. for random input. Therefore
bounds are used that are not exeeded within a given probability. We call such a

196 D. Ludwig and R. Obermaisser

Fig. 1. Allocation of logical model (left) to physical model (right)

bound the probabilistic Worst Case Compression Rate (pWCCR), in analogy to
the probabilistic worst-case execution time (pWCET), which is a known concept
in probabilistic timing analysis (PTA). PTA provides a worst-case execution
time with an associated probability of exceedence by deriving the distribution of
the execution time and calculating the probabiliy of exceeding a given execution
time using a probability distribution [1,8]. Transfered to the pWCCR estimation
problem the goal is to obtain pWCCR estimates with given probabilies, so that
the estimated pWCCR is exceeded only in very rare cases (e.g. in the region of
10−9). For a message m (edge connecting two jobs) this means that the size of
the exchanged data is not larger than the product of the original message-size
with its pWCCR by a certain probability. It is beyond the scope of this paper
to provide methods for establishing the pWCCR of input data, but in general
this could be done by observing actual compression rates in experiments and
match them to a probability distribution. In the following, it is assumed that
the pWCCR is already available.

Definition 1 (probabilistic Worst-Case Compression Rate). Let R ∈
(0, 1]m and i ∈ MSG. Then, ri is called the probabilistic Worst Case Com-
pression Rate (pWCCR) of message i, iff the estimated compression rate is not
exceeded by a certain probability.

We also have to consider the costs of compressing messages. Therefore, the
WCET of the corresponding operations has to be known. It is assumed that
compressing and decompressing both come at equal costs.

Definition 2 (Compression Overhead). Let W ∈ N
m and i ∈ MSG. Then,

wi is called the worst-case execution time (WCET) of the compression operation
of message i. The total overhead produced by the compression and decompression
of a message i is 2 · wi.

Scheduling of Datacompression on Distributed Systems 197

2.2 Decision Variables

For each message we have to track its compression status. This is done in a
boolean decision variable.

Definition 3. Let C ∈ {0, 1}m and i ∈ MSG. The item ci decides whether
message i gets compressed and is defined as follows:

∀i ∈ MSG : ci =

{
1, compress message i
0, leave uncompressed

(1)

As compression reduces the size of a message, the hop-time of the compressed
messages is reduced at least by factor of the given pWCCR. The decision vector
U̇ holds the hop-time of each message. For uncompressed messages the values of
U apply.

Definition 4. Let U̇ ∈ R
m and i ∈ MSG. Then, u̇i is the actual hop-time of

message i depending on the messages compression status and is defined as:

∀i ∈ MSG : u̇i = ri · ui · ci + ui · (1 − ci) (2)

Based on the hop transmission-time and the amount of hops H made by a
message, the total communication time for each message can be calculated. For
this calculation another decision variable is needed, because the product of the
two non-binary decision variables U̇ and H is not linear and thus cannot be
expressed as MILP.

Definition 5. Let K ∈ R
m
+ and i ∈ MSG. Then, ki is the (end-to-end) commu-

nication time needed by message i to travel from its source node to the destina-
tion node.

∀i ∈ MSG : (ci = 1) → (ki = hi · ri · ui) ∧ (ci = 0) → (ki = hi · ui) (3)

Finally, we need to take into account the overhead, which arises on jobs that
deal with compressed messages. For each job the overhead is given by the sum
of the overhead produced by incoming compressed messages.

Definition 6. Let Ė ∈ N
j
0 and i ∈ JOBS. Then, ėi is the overhead arising on

job i by decompressing incoming messages.

∀i ∈ JOBS : ėi =
∑

m∈MSG

wm · cm · di,m (4)

The above variable considers incoming messages needed as dependencies for
executing the actual job. The overhead for outgoing compressed messages is
handled by a constraint for the injection-time of a message. This enables us to
hide latency in case multiple outgoing messages are compressed so we can exploit
parallelism on the node.

198 D. Ludwig and R. Obermaisser

2.3 Objective Function

The main goal of the scheduling task is to minimize the makespan of the logical
model, which is the arrival time of the last message.

Definition 7 (Arrival Time). Let A ∈ N
m. Then, ai is the point in time

message i arrives at its destination.

In [7] that time was given by ai = ii + hi · ui. Assuming that compression
is done before injecting a message (which means ii is already delayed by wi),
the new arrival time is given by ai = ii + ki + wi · ci, where ii is the injection-
time and ki the communication-time. wi · ci is the overhead to be applied if
the message needs to be decompressed. The objective function is then given by:
min(max(a0, . . . , am−1)).

2.4 Contraints for Compression

In [7], it was allowed for messages to be injected at t = 0. This is still fine, but we
have to make sure compressed messages will be injected after the compression
operation finished.

Constraint 8 (Injection Time). Messages should be injected after the time
needed for compression and before the minimum interarrival time is reached.

∀j ∈ MSG : ij ≥ wj · cj ∧ ij ≤ mj (5)

Incoming messages are dependencies for running a job and thus also for
outgoing messages. The injection of a message must be done after the arrival of
all incoming messages and the completion of the corresponding job.

Constraint 9 (Dependency Satisfaction). Let m1 and m2 be messages and
dsm2 ,m1 = 1, where sm2 is the sender of message m2. Then, m2 depends on m1.

∀m1,m2 ∈ MSG : dsm2 ,m1 → im2 ≥ im1 + km1 + ėsm2
+ esm2

+ wm2 · cm2 (6)

The constraint for the dependency satisfaction enables us to hide latency
because m2 can be injected directly after its compression has finished without
having to wait for the completion of other compression operations on job sm2 .
Also, time-triggered messages should not collide and must not be at the same
link at the same time.

Constraint 10 (Collision Avoidence). Time-triggered messages should not
collide on their way. Any two messages must not be at the same router at the
same time.

∀m1,m2 ∈ MSGTT ,∀r1, r2 ∈ {0, . . . ,MaxH} : pm1,r1 �= pm2,r2

∨ pm1,r1+1 �= pm2,r2+1 ∨ r1 + 1 > hm1 ∨ r2 + 1 > hm2

∨ im1 + (r1 + 1) · u̇m1 < im2 + r2 · u̇m2

∨ im2 + (r2 + 1) · u̇m2 < im1 + r1 · u̇m1

(7)

Scheduling of Datacompression on Distributed Systems 199

Since the buffer capacity on the routers and the bandwidth on the links is
limited, discarding of messages has to be avoided. As in [7], the ratio of transmis-
sion time and minimum interarrival time is used to determine the capacity used
by a time-triggered or event-triggered message. The utilization of the bandwidth
on a node is then given by summing up the used bandwidth of all messages pass-
ing this node. This is the worst-case scenario since the point in time a message
passes the node is not taken into account.

Constraint 11 (Bandwidth utilization). The bandwidth at each node is
given by summing up the ratio of the transmission time and the minimum inter-
arrival time for messages passing the node.

∀n ∈ NODES :
∑

m∈MSG

om,n · um

mm
· (cm · (rm − 1) + 1) ≤ 1 (8)

The direct multiplication of om,n and cm is possible, because both decision
variables are binary. Every part of the sum can only result in three different
values um

mm
, rm·um

mm
and 0.

2.5 Other Constraints

This section describes constraints that do not deal with compression but are
important for other parts of the scheduling problem like allocation and finding
paths.

Constraint 12 (Connectivity). This constraint considers the path topology
of the network. If there is no direct connection between two nodes n1 and n2

any message must not travel from n1 to n2 within one hop.

Constraint 13 (Progress). Each message must reach the destination node
with at most the maximum amount of hops MaxH and must start on the node
where its sending job is located at. Since loops should be avoided, a message
must not visit a node more than once.

Constraint 14 (Job Assignment). Each job is assigned to exactly one node,
therefore the sum of each row in AM must be equal to 1. Additionally, only
compute nodes can run jobs. For routers the sum of the corresponding column
in AM has to be 0.

Constraint 15 (Visit). Beside P the boolean matrix O indicates if a message
m passes a node a.

∀m ∈ MSG,∀a ∈ NODES : (∃r ≤ MaxH : pm,r = a) ⇔ om,a = 1 (9)

200 D. Ludwig and R. Obermaisser

3 Results and Examples

We implemented the extended model in IBM CPLEX and ran it on examples
used in [7] to compare the compression-aware scheduling with previous results.
Table 2 shows the reference values gathered from experiments without compres-
sion, using the implementation from [7].

The execution time was measured as the average computation time of 10 runs
on one node of the university’s high-performance cluster HorUS1 with 12 cores
and 48 GB memory per node and CPLEX using 12 threads. We then compared
these results to the ones gathered by the modified model and compression turned
off, as shown in Table 3. Although the number of constraints is higher, for most
of the examples less time is needed to solve them and CPLEX was able to find a
solution for example 1. Generally, the model terminates with an optimal solution
for all solvable problems. Nevertheless, CPLEX offers to search for non-optimal
solutions, which can provide feasible solutions for problems that could not be
solved optimally. If the model terminates without any solution, the most obvious
reason is a lack of planned resources (too few compute-nodes, too many messages,
etc.) in your physical or logical model.

Table 2. Reference values measured with code from [7]

Example ID #Jobs #Message #Nodes Solution #Constraints Time

1 4 4 8 – – 3,01 s

2 5 4 7 14 408 2,12 s

3 5 5 7 14 498 4,08 s

4 5 5 8 25 616 6,6 s

5 5 6 7 25 590 6,62 s

6 5 7 7 33 681 9,79 s

7 5 8 7 33 770 12,41 s

Table 3. Compression turned off

Example ID pWCCR Overhead Solution #Constraints Time

1 1,0 – 40 854 4,94 s

2 1,0 – 14 425 2,60 s

3 1,0 – 14 518 3,85 s

4 1,0 – 25 636 5,87 s

5 1,0 – 25 613 6,45 s

6 1,0 – 33 707 8,66 s

7 1,0 – 33 799 10,92 s

1 http://www.uni-siegen.de/cluster/hardware.html.

http://www.uni-siegen.de/cluster/hardware.html

Scheduling of Datacompression on Distributed Systems 201

Table 4. Results for different compression rates and overheads

Example ID pWCCR Overhead Solution #Constraints Time

1 0,5 1 29 854 22,11 s

2 0,5 1 12 425 4,42 s

3 0,5 1 12 518 5,61 s

4 0,5 1 20,5 636 42,81 s

5 0,5 1 20,5 613 16,26 s

6 0,5 1 28 707 17,88 s

7 0,5 1 28 799 21,92 s

1 0,5 2 34 854 29,20 s

2 0,5 2 13 425 6,09 s

3 0,5 2 13 518 6,34 s

4 0,5 2 22,5 636 25,29 s

5 0,5 2 22,5 613 13,57 s

6 0,5 2 32 707 17,10 s

7 0,5 2 32 799 33,43 s

1 0,5 3 36 854 71,33 s

2 0,5 3 14 425 3,69 s

3 0,5 3 14 518 7,58 s

4 0,5 3 23,5 636 36,46 s

5 0,5 3 23,5 613 15,09 s

6 0,5 3 33 707 21,04 s

7 0,5 3 33 799 16,69 s

1 0,6 1 32,8 854 41,69 s

2 0,6 1 12,6 425 6,34 s

3 0,6 1 12,6 518 5,31 s

4 0,6 1 22,4 636 27,84 s

5 0,6 1 22,4 613 17,96 s

6 0,6 1 30,6 707 25,02 s

7 0,6 1 30,6 799 27,73 s

With compression turned on, CPLEX was able to find better solutions for
most of the examples in trade of a higher computation time, depending on the
parameters for compression. Table 4 shows the results for different compression
rates and different overhead. In comparison with Table 3 the number of addi-
tional constraints can be ruled out as a reason for the increased computational
time. Instead, the computational time is influenced by the parameters describing
the available compression algorithm, as those parameters have an impact on the
size of the solution space.

202 D. Ludwig and R. Obermaisser

N0

SW7

N1

N2N3

SW4SW5SW6

(a) Network (physical model)

J0

J1m0

J2

m1
m2

J3
m3

(b) Jobs and messages

Fig. 2. Exemplary dependency graph and network

The directed acyclic graph shown in Fig. 2b represents an examplary logical
model which should be scheduled to the network shown in Fig. 2a. This physical
model consists of 8 nodes from which N0-N3 are compute nodes and SW4-SW7
are routers and thus not able to execute jobs. The logical model consists of four
jobs exchanging four messages. All messages but m2 are time-triggered. In this
example we assume a transmission time of 4 clock ticks for each message and a
job execution time of 2 ticks. The minimum interarrival time of the event-triggerd
messages and the period of time-triggered messages is 40 ticks.

Table 5. Solution for 1st example with compression rate of 0.5 and overhead 1

Job Node Message Compressed? Hops Path Injection Arrival

j0 n0 m0 Yes 2 n0, n7, n3 1 6

m1 Yes 5 n0, n7, n6, n5, n4, n1 3 14

j1 n3 m2 Yes 5 n3, n7, n6, n5, n4, n1 9 20

j2 n1 m3 Yes 2 n1, n4, n2 24 29

j3 n2 – – – – – –

Table 5 depicts a solution for the example presented in Figs. 2b and 2a by
showing the values of the most important decision variables. Job j0 is allocated
on node n0 and sends time-triggered messages m0 and m1. Message m0 is com-
pressed and takes two hops, whereas m1 makes five hops. The arrival time of the
last time-triggered message is at tick 29, which is also the solution of the objec-
tive function. Arrival times include decompression overhead. The column Path
shows the nodes a message visits to reach from the producer to the consumer in
the sequence of passing.

The Gantt chart presented in Fig. 3 shows allocation and message passing
for this example. Message m0 is injected on node n0 at tick 1, directly after job
j0 has finished the compression of this message. The compression of message m1

is started by j0 at tick 1, but it is injected to the network at tick 3 to avoid a

Scheduling of Datacompression on Distributed Systems 203

Fig. 3. Gantt chart for example 1

collision with prior sent message m0. The execution times of jobs j1 and j2 are
the sum of their WCETs (e.g. two ticks) and the overhead for compressing and
decompressing messages (e.g. one tick per operation). Therefore message m2 can
be injected at tick 9, four ticks after the arrival of m0 at node n3. Ten ticks later,
the message arrives at node n1 after five hops and can be processed by job j2.
Job j2 runs five ticks as it has to decompress two incoming messages (two ticks)
and one outgoing message (one tick). Note, that waiting for message m2 cannot
be hidden by decompressing message m1 earlier, as it is not yet supported by
the model. The execution time of the task itself is two ticks. Then, message m3

can be injected to the network at tick 24 and arrives at node n2 four ticks later.
After decompression, this last message is available for normal processing after a
total of 29 ticks.

4 Conclusion

The contribution of this paper is an MILP-based scheduling model for time-
triggered and event-triggered services with support for data compression while
preserving real-time guarantees and avoiding collisions between time-triggered
messages. Decreased bandwidth utilization is also considered. Any compression
algorithm can be used with the proposed model, as long as you can provide
an (probabilistic) upper bound for compression ratio and overhead. The gained
results are promising and should lead to further investigation whether compres-
sion using known algorithms is useful in real-world applications of distributed
embedded systems. Future work may also include new or enhanced compres-
sion algorithms to address the needs of real-time systems as well as methods
for providing pWCCR estimates for different compression methods based on
application-specific input data.

Acknowledgements. This work has been supported by the DFG project DAKODIS
under the Grant Agreement No. 275601549 and the European project DREAMS under
the Grant Agreement No. 610640.

204 D. Ludwig and R. Obermaisser

References

1. Abella, J., Hardy, D., Puaut, I., Quiñones, E., Cazorla, F.J.: On the compari-
son of deterministic and probabilistic WCET estimation techniques. In: 2014 26th
Euromicro Conference on Real-Time Systems, pp. 266–275. IEEE (2014)

2. Benini, L., Bruni, D., Macii, A., Macii, E.: Hardware-assisted data compression
for energy minimization in systems with embedded processors. In: Proceedings of
the conference on Design, automation and test in Europe, p. 449. IEEE Computer
Society (2002)

3. Burke, E.K., Kendall, G. (eds.): Search Methodologies. Springer, New York (2005)
4. Cheng, T., Chen, Z., Li, C.L.: Parallel-machine scheduling with controllable

processing times. IIE Trans. 28(2), 177–180 (1996)
5. Das, R., Mishra, A.K., Nicopoulos, C., Park, D., Narayanan, V., Iyer, R., Yousif,

M.S., Das, C.R.: Performance and power optimization through data compression
in network-on-chip architectures. In: 2008 IEEE 14th International Symposium on
High Performance Computer Architecture, pp. 215–225. IEEE (2008)

6. Huffman, D.A., et al.: A method for the construction of minimum-redundancy
codes. Proc. IRE 40(9), 1098–1101 (1952)

7. Murshed, A., Obermaisser, R., Ahmadian, H., Khalifeh, A.: Scheduling and allo-
cation of time-triggered and event-triggered services for multi-core processors with
networks-on-a-chip. In: 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), pp. 1424–1431. IEEE (2015)

8. Nélis, V., Yomsi, P.M., Pinho, L.M., Bernat, G.: Another look at the pWCET
estimation problem

9. Obermaisser, R.: Event-Triggered and Time-Triggered Control Paradigms, vol. 22.
Springer, New York (2005)

10. Sinnen, O.: Task Scheduling for Parallel Systems, vol. 60. Wiley, Hoboken (2007)
11. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.

Commun. ACM 30(6), 520–540 (1987)
12. Zeng, H., Zheng, W., Di Natale, M., Ghosal, A., Giusto, P., Sangiovanni-

Vincentelli, A.: Scheduling the flexray bus using optimization techniques. In: 46th
ACM/IEEE Design Automation Conference, DAC 2009, pp. 874–877. IEEE (2009)

13. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

14. Zurawski, R.: Industrial Communication Technology Handbook. CRC Press, Boca
Raton (2014)

Semi-partitioned Mixed-Criticality Scheduling

Muhammad Ali Awan1,2, Konstantinos Bletsas1,2(B), Pedro F. Souto1,3,
and Eduardo Tovar1,2

1 CISTER/INESC-TEC Research Centre, Porto, Portugal
2 ISEP/IPP, Porto, Portugal

{muaan,ksbs,emt}@isep.ipp.pt
3 Faculty of Engineering, University of Porto, Porto, Portugal

pfs@fe.up.pt

Abstract. Scheduling isolation in mixed-criticality systems is challeng-
ing without sacrificing performance. In response, we propose a schedul-
ing approach that combines server-based semi-partitioning and deadline-
scaling. Semi-partitioning (whereby only some tasks migrate, in a care-
fully managed manner), hitherto used in single criticality systems, offers
good performance with low overheads. Deadline-scaling selectively pri-
oritise high-criticality tasks in parts of the schedule to ensure their dead-
lines are met even in rares case of execution time overrun. Our new algo-
rithm NPS-F-MC brings semi-partitioning to mixed-criticality schedul-
ing and uses Ekberg and Yi’s state-of-the-art deadline scaling approach.
It ensures scheduling isolation among different-criticality tasks and only
allows low-criticality task migration. We also explore variants that disal-
low migration entirely or relax the isolation between different criticalities
(SP-EKB) in order to evaluate the performance tradeoffs associated with
more flexible or rigid safety and isolation requirements.

1 Introduction

Many real-time embedded systems (automotive, avionics, aerospace) host func-
tions of different criticalities. A deadline miss by a high-criticality function can
be disastrous, but losing a low-criticality function only moderately affects the
quality of service. Scalability and cost concerns favor mixed-criticality (MC) sys-
tems, whereby tasks of different criticalities are scheduled on the same processors
but this brings challenges: Lower-criticality tasks interfering unpredictably with
higher-criticality tasks can be catastrophic. Conversely, rigidly prioritisation by
criticality leads to inefficient processor usage. Therefore, we seek (i) efficient use
of processing capacity and (ii) schedulability guarantees for all tasks under typ-
ical conditions subject to (iii) ensured schedulability of high-criticality tasks in
all cases. Most related works [1] use Vestal’s model [2], which views the system
operation as different modes (low- and high-criticality) and associates different
worst-case task execution times (WCETs) in each mode with a corresponding
degree of confidence. This is because the cost of provably safe WCET estimation
(and the associated pessimism) is justified only for high-criticality tasks. Other
tasks have less rigorous WCET estimates, which might be exceeded, very rarely.
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 205–218, 2017.
DOI: 10.1007/978-3-319-54999-6 16

206 M.A. Awan et al.

We also adopt Vestal’s model, with two criticality levels. Our main contribu-
tion is NPS-F-MC, an extension of the semi-partitioned scheduling algorithm
NPS-F [3] to mixed criticalities. NPS-F is server-based, which helps provide both
fairness to low-criticality tasks and strict temporal isolation between high- and
low-criticality tasks. The new algorithm employs the per-task deadline scaling
scheduling technique by Ekberg and Yi [4], an extension of EDF-VD [5]. NPS-F-
MC allows migration among processors only for servers for low-criticality tasks,
with less severe safety considerations. However, given the conservative stance of
certification authorities [6] towards task migrations, we formulate as another con-
tribution a fully partitioned variant (NPS-F-IMA) and explore the performance
gap from disallowing migrations entirely. As third contribution we explore the
performance penalty from the strict temporal isolation by NPS-F-MC by formu-
lating new partitioned (P-EKB) and semi-partitioned (SP-EKB) extensions of
the (uniprocessor) algorithm of Ekberg and Yi, and comparing with those.

2 Overview

Task Model [2]. The system can be in either low- or high-criticality mode
(L-mode or H-mode). A task is of either low or high criticality (L-task or H-
task). Each H-task has two different WCET estimates: the one for the L-mode
of operation (L-WCET), is deemed safe but lacks proof, whereas the one for the
H-mode (H-WCET) is provably safe but usually much greater. Each L-task only
has an L-WCET. The default system mode is L, but if any task exceeds its L-
WCET, the system immediately switches into H-mode: all L-tasks are abandoned
and only H-tasks remain. In H-mode, all H-tasks (incl. instances present at the
time of the mode switch) are pessimistically assumed to execute for up to their
H-WCET. Even so, it must be provable that no H-task deadlines can be missed.

MC Scheduling with Scaled Deadlines. Deadline-scaling for mixed-
criticality systems originates with EDF-VD (“Earliest Deadline First - with Vir-
tual Deadlines”) [5]. EDF-VD uses standard EDF scheduling rules but, instead
of reporting the real deadlines to the EDF scheduler for scheduling decisions,
it reports shorter deadlines (if needed) for H-tasks during L-mode operation.
This helps with the schedulability of H-tasks in the case of a switch to H-mode,
because it prioritises H-tasks more than conventional EDF would, over parts of
the schedule. This allows them to be sufficiently “ahead of schedule” and catch
up with their true deadlines if any task overruns its L-WCET. While in H-mode,
the true H-task deadlines are used for scheduling and L-tasks are dropped. EDF-
VD proportionately shortens the H-task deadlines according to a single common
scale factor and its schedulability test considers the task utilisations in both
modes.

Ekberg and Yi [4] improved upon EDF-VD by enabling and calculating dis-
tinct scale factors for different H-tasks and using a more precise demand bound
function (dbf) based schedulability test [7]. This improves performance. The
calculation of the scale factors is an iterative task-by-task process. For details,

Semi-partitioned Mixed-Criticality Scheduling 207

see [4,8]. Recently, Masrur et al. [9] proposed using just two scale factors, to
balance scheduling performance and computational complexity. A higher scale
factor is used for tasks with an H-WCET/L-WCET ratio above some threshold.
Meanwhile, Easwaran developed a test [10] that dominates [4]. In this work we
innovatively combine the deadline-scaling technique by Ekberg and Yi [4] with
the existing NPS-F semi-partitioned scheduling algorithm.

Semi-partitioning and NPS-F. Under semi-partitioned scheduling, most
tasks are partitioned; the rest may migrate, in a carefully managed manner. This
allows for efficiently utilising a multicore, without many preemptions, migrations
and overheads, under strong schedulability guarantees. Semi-partitioned mixed-
criticality scheduling was first proposed in [11]. Here, we conclude that work and
adapt the NPS-F algorithm [3] (originally, for single-criticality systems).

Classic NPS-F assigns tasks via bin-packing, not directly to processors but to
periodic fixed-budget servers using EDF as their internal scheduling policy. The
servers are mapped to the available processors in a form of cyclic executive with
a periodicity of S – the “timeslot length”. Each server is either implemented
as either one periodic “reserve” (fixed-length contiguous time window) on one
processor or as multiple periodic reserves on different processors. A given server’s
tasks can only execute within its reserves, which in turn are exclusively used by
those tasks. A server (its reserves) is appropriately sized, to ensure that its tasks
meet all their deadlines at run-time. Additionally, the reserves of a server mapped
to multiple processors must never overlap in time.

3 System Model

We assume a set of n sporadic tasks τ
def= {τ1, τ2, . . . , τn}. Each task τi has a

minimum inter-arrival time Ti, a relative deadline Di≤Ti, a criticality level κi ∈
{L,H} (low or high, respectively) and two WCET estimates, CL

i and CH
i , one for

each mode. The subsets of L-tasks and H-tasks in τ are τ(L) def= {τi ∈ τ |κi ∈ L}
and τ(H) def= {τi ∈ τ |κi ∈ H}. It is assumed that ∀τi ∈ τ(H), CL

i ≤ CH
i and

∀τi ∈ τ(L), CH
i = 0. Tasks in τ(H) are not allowed to migrate among processors.

The utilisation of τi is UL
i

def= CL
i

Ti
and UH

i
def= CH

i

Ti
respectively in each mode. The

system utilisation in each mode is UH def=
∑

τi∈τ(H) UH
i and UL def=

∑
τi∈τ UL

i .

Our platform P
def= {P1, P2, . . . , Pm} has m identical processors. We assume a

set P̃ of m
′′

servers, indexed P̃1 to P̃m′′ , with m
′′

not a priori defined.
During task assignment, the processing capacity of each server is equivalent

to that of a physical processor. The set of tasks assigned to server P̃k is denoted
as τ(P̃k). Each server is only assigned tasks of the same criticality as each other.
A server that contains only H-tasks is termed a H-server. Similarly, an L-server
contains only L-tasks. The budget of a P̃k is denoted by X

˜Pk
.

208 M.A. Awan et al.

4 Task Assignment, Scheduling Model and Timing
Analysis

Overview. NPS-F-MC partitions the set of H-tasks (τ(H)) over m
′′
H non-

migrating H-servers. Each H-server will be assigned to a different corresponding
processor, so it must hold that m

′′
H ≤ m or the algorithm will declare failure.

The set of L-tasks (τ(L)) is partitioned over a separate set of L-servers. The
“leftover” parts of the timeslots, that remain on the m processors, after the
assignment and sizing of the non-migrating H-servers, are reclaimed from the
processors for the mapping of the L-servers.

During L-mode operation, all tasks are scheduled within the respective
servers under EDF. But if a task τi overruns its CL

i (which triggers a mode
switch), then all L-tasks are immediately dropped along with the server arrange-
ment altogether, and the system switches to pure partitioned EDF scheduling
of the H-tasks. This raises the question of how to specify the server budgets:

A naive approach would (i) partition the H-tasks to the H-servers using a
uniprocessor EDF schedulability test that considers the overly conservative esti-
mates CH

i , to meet deadlines in H-mode, and (ii) assign budgets to the respective
servers so that the H-tasks provably meet their deadlines in L-mode, as long as
they all execute for up to their respective CL

i . However, this may lead to missed
deadlines during the mode transition.

A conservative approach would instead consider the CH
i estimates, when

sizing the H-servers for operation in L-mode. However, this approach decreases
the processing capacity available for L-tasks and is inefficient.

Ideally, one should therefore set the server budgets to the optimal interme-
diate value that minimises the processing capacity used for H-servers (i.e., max-
imises the capacity available for L-servers) in L-mode without jeopardising the
schedulability of the H-tasks at any point in time (even when a mode transition
occurs). As part of this work, we identify how to compute these optimal H-server
budgets, using the analysis of Ekberg and Yi [4].

In summary, a processor Pp with an H-server assigned to it is equivalently
modelled as a separate uniprocessor system, whereupon a transformed task sub-
set runs under EDF with deadline scaling. This consists of all H-tasks assigned
to the single H-server P̃p mapped to Pp plus a single “fake” L-task with para-

meters (Cfake,Dfake, Tfake)
def= (S −X

˜Pp
, S −X

˜Pp
, S), where X

˜Pp
is the budget of

P̃p. This zero-laxity fake task equivalently represents the periodic unavailability
of the processor, for the tasks of P̃p to execute on. The budget X

˜Pp
is then set

to the minimum value for which the transformed MC task subset is schedulable
on a uniprocessor, using the deadline-scaling by Ekberg and Yi.

In Detail. The proposed approach (outlined in pseudocode as Algorithm 1), is
divided into three offline stages, (i) task-to-server assignment, (ii) sizing servers
(“inflating”, in NPS-F jargon) and (iii) mapping servers to processors.

Semi-partitioned Mixed-Criticality Scheduling 209

The first stage assigns H-tasks to servers via First-Fit (FF) bin-packing,
subject to an exact uniprocessor EDF schedulability test, from classic (criticality-
oblivious) EDF theory [7] that uses the respective H-WCETs as input. The L-
tasks are assigned to a different set of servers via First-Fit, using the same test,
but using their L-WCETs as inputs.

The “inflated utilisation” U infl. def=
X
˜Pp

S
of each server is computed in the

second stage. The sum of inflated utilisations of all servers corresponds to the
total processing capacity (informally, the number of processors) required for
successfully scheduling the given task set under the proposed approach. Finally,
in the third stage, servers are mapped to physical processors and their periodic
reserves are arranged to avoid time-overlaps of reserves belonging to same server.

(i) Task-to-server mapping: Initially (Algorithm 1, lines 1–5), the H-tasks
are assigned to servers (as many as needed) using First-Fit, assuming their CH

i

WCET estimate and according to an exact uniprocessor (single-criticality) EDF
schedulability test. The m

′′
H servers P̃1 to P̃m

′′
H

thus formed, are all H-servers.
Algorithm 2 presents the First-Fit bin-packing routine that assigns tasks to

servers. The exact uniprocessor EDF schedulability test employed therein makes
use of the demand bound function [7]. It is an abstraction of the computational
requirements of the tasks. The demand of an arbitrary-deadline task τi over any
possible time interval of length t, denoted by DBF(τi, t, κ), is a tight (i.e., exact
and least) upper bound on the maximum cumulative execution requirement of
jobs by τi over a time interval of length t; the additional argument κ ∈ L,H
denotes whether the WCET assumed for those jobs is CL

i or CH
i (see Eq. 1).

The DBF for a set of tasks and the corresponding schedulability condition are
given by Eqs. 2 and 3, respectively.

∀t ≥ 0, DBF(τi, t, κ) def= max
(

0,

⌊
t − Di

Ti

⌋
+ 1

)
· Cκ

i (1)

DBF(τ, t, κ) =
∑

τi∈τ

DBF(τi, t, κ) (2)

∀t ≥ 0, DBF(τ, t, κ) ≤ t (3)

210 M.A. Awan et al.

The schedulability of a server is tested with the following expression: ∀t >
0, DBF(τ(P̃k), t, κ) ≤ t. If the test succeeds, a provisional assignment is made
permanent. The task-to-server assignment procedure per se always succeeds,
because we are not a priori bounded to any particular number of servers; we
can create/populate as many servers as needed (and, at worst, a task will be the
first task assigned to a newly populated server). As mentioned, when assigning
H-tasks, we assume κ = H. To speed up the computation, we use the improved
Quick Processor Demand analysis (QPA∗) by Zhang and Burns [12].

After all H-tasks are assigned to H-servers, if the number of H-servers (m
′′
H)

exceeds the number of processors (m), then NPS-F-MC declares failure (see lines
6-8 in Algorithm 1). This reflects the real-world requirement that each H-server
be mapped to only one processor and not allowed to migrate at run-time, because
those tasks are critical and their scheduling should be as predictable as possible.

Afterwards, the L-tasks are assigned to the L-servers, indexed P̃m
′′
H+1 and

upwards, by the same bin-packing procedure, but using their CL
i WCET esti-

mates for the schedulability test guiding the assignments (Algorithm 1, lines 9-
13). Once this is done, m

′′
servers have been created and populated with tasks:

of these, servers P̃1 to P̃m
′′
H

are H-servers and P̃m
′′
H+1 to P̃m′′ are L-servers.

(ii) Sizing servers: The second step of the offline phase performs the server
sizing (see Algorithm 1, lines 14-21). The timeslot length S (i.e., the period of
all servers) is defined as S

def= DTmin/δ where DTmin is the shortest inter-arrival

Semi-partitioned Mixed-Criticality Scheduling 211

time or relative deadline of all tasks and δ is a positive integer (usually δ = 1)1.
Let X

˜Pk
denote the fixed time budget of server P̃k. Then, the system utilisation

consumed by the server (i.e., its “inflated utilisation”, in NPS-F jargon) is:

U infl
˜Pk

def=
X
˜Pk

S
(4)

The value of X
˜Pk

is computed for each server by the function presented in
Algorithm 3. Assume that a contiguous time window X ≤ S denotes the time
that server P̃k is active within a given timeslot of length S. The remaining
fraction of the timeslot, consisting of a time window of length S −X wherein P̃k

is inactive, is modelled as an interfering periodic zero-laxity fake L-task with the
following attributes: τfake

def= 〈Tfake = S,Dfake = S − X,Cfake = S − X,L〉. This
standard task set transformation technique, for analytical convenience, was first
used (for single-criticality workloads) for NSP-F server sizing by Souza et al. and
is explained in [13], p. 702. This conceptual fake task along with the real tasks
mapped to server P̃k, i.e., τ(P̃k) ∪ {τfake} are tested with the mixed-criticality
schedulability uniprocessor analysis of Ekberg and Yi [4]. This analysis scales
the deadlines of H-tasks (if needed) to make the task set schedulable in both H-
and L-mode. If the analysis succeeds, the scaled H-task deadlines are output.

Computing X
˜Pk

is an iterative process whose objective is to minimise the
value of X (duration of periodic reserve allocated to P̃k). This minimum value
of X that works corresponds to the optimal value for X

˜Pk
. To obtain it we

iteratively sample the interval X ∈ [0, S] using binary search and applying the
test of Ekberg and Yi at each iteration, until the desired level of precision.
Note that for each feasible value of X, Ekberg and Yi’s algorithm could output
different task deadline scale factors, in the general case.

Similarly, we compute the server budget X
˜Pk

for each L-server P̃k. This is
a simpler procedure because L-servers are only active in L-mode. So, there is
no need to use the mixed-criticality schedulability test of Ekberg an Yi; the
standard (single-criticality) optimal server sizing method for NPS-F is used [13]
instead. Again, the attributes of a fake task are computed in a similar way,
i.e., τfake

def= 〈Tfake = S,Dfake = S − X,Cfake = S − X,L〉. The total demand of
an L-server P̃k along with the fake task τfake is given as follows:

DBF(τ(P̃k) ∪ {τfake}, t, L) = DBF(τ(P̃k), t, L) + DBF(τfake, t, L).

If ∀t > 0, DBF(τ(P̃k)∪{τfake}, t, L) ≤ t, then this server is schedulable with
a budget of X. As in the case of H-servers discussed previously, Algorithm 3
minimises the value of X. The process of computing ∀t > 0, DBF(τ(P̃k) ∪
{τfake}, t, L) ≤ t can be sped up with the QPA∗ algorithm.

1 Setting S to an integral fraction of DTmin was handy for proving a utilisation bound
for NPS-F in [3], but in fact the DBF-based server-sizing by Sousa et al. [13] allows
for dropping this constraint. In this paper, we just stick to tradition.

212 M.A. Awan et al.

Fig. 1. Mapping of m
′′

= 4 servers to m = 3 processors. Three servers (P̃1 to P̃3) never
migrate and the remaining timeslot portions on each processor are re-used for mapping
P̃4. The timeslot boundaries on different processors are shifted accordingly, such that
the reserves of the migrating server never overlap in time. NPS-F-MC assigns H-tasks
to non-migrating servers.

If the L-servers are allowed to migrate among different processors then the
task set is schedulable if the sum of inflated utilisations of all servers does not
exceed m, the number of processors in the platform.

(iii) Server-to-processor mapping: We employ the so-called “semi-
partitioned” mapping from the original NPS-F. This ensures that at least m
servers never migrate; in our case, it is the H-servers that do not migrate and there
can be at most m of those. Figure 1 is an example of this mapping arrangement.

5 Other Derivative Approaches

We now formulate other MC scheduling algorithm variants drawing from NPS-
F and the scheduling with deadline-scaling by Ekberg and Yi: NPS-F-IMA, a
strictly partitioned variant of NPS-F-MC, and SP-EKB which differs from NPS-
F-MC mainly in that tasks of mixed criticalities can be scheduled together in
the same server (potentially leading to migration of H-tasks). For comparison,
we also formulate cNPS-F, which foregoes deadline scaling but instead sizes
H-servers only considering the H-WCETs (i.e., the “conservative approach” of
Sect. 4). Finally P-EKB is the partitioned multiprocessor version of Ekberg and
Yi’s algorithm. Studying these variants helps understand the performance trade-
offs of different scheduling arrangements and safety requirements.

IMA-mindful Variant (NPS-F-IMA). The Integrated Modular Avionics
(IMA) standard ARINC 653 enforces spatial and temporal partitioning to
ensure safety aspects and enable incremental development and certification.
However, NPS-F-MC allows L-servers to migrate among different processors.

Semi-partitioned Mixed-Criticality Scheduling 213

For a scheduling arrangement more inline with IMA standards, we propose a
variant (NPS-F-IMA) that disallows the migration of L-servers and sizes their
budgets accordingly.

The pseudocode for NPS-F-IMA is derived by adding a few lines of
pseudocode to Algorithm 1, as described in Algorithm 3. As we know, each
H-server is mapped to one processor. The leftover portion of the timeslot on
such a processor can be turned into an L-server. Assume that m

′′
H is the number

of H-servers. Then up to m
′′
H L-servers each share a processor with an H-server.

Assume that H-server P̃q and L-server P̃r share a processor Pm. Let X
˜Pq

be the

size of periodic reserve allocated to P̃q. Then P̃r should be filled with L-tasks
such that its periodic reserve size never exceeds S −X

˜Pr
. In order to ensure this

requirement, we add to P̃r a fake task τfake = 〈Tfake = S,Dfake = X
˜Pq

, Cfake =

X
˜Pq

, L〉, that corresponds to the workload of P̃q, before adding any real task into
it. The method ensures that, after the task-to-server assignment completes, the
size of the periodic reserve for P̃r (which is computed based on the computational
requirements of the real tasks assigned to it), never exceeds S − X

˜Pq
.

This procedure is repeated for all servers indexed m
′′
H + 1 to 2 · m

′′
H . The

pseudocode of this additional code that adds fake tasks to L-servers is presented
in Algorithm 4 (lines 1 to 6). An L-server that does not share the processor with
an H-server is not subject to this and can therefore use the full timeslot if needed.
The NPS-F-IMA algorithm declares failure, if the number of L-servers exceeds
the number of processors (see lines 7 to 8 in Algorithm 4). Once, L-servers are
instantiated, these “placeholder” fake tasks are removed (see lines 9 to 11 in
Algorithm 4). The inflated utilisation of all the servers is then computed. In the
server-to-processor mapping phase, each H-server P̃k is mapped to processor Pk

with the same index. An L-server P̃k, whose index lies in the range m
′′
H + 1 to

m
′′

is mapped to processor Pk−m
′′
H

.

Non-deadline-scaled cNPS-F. To assess the benefits from deadline-scaling
in semi-partitioned scheduling, we define cNPS-F, a variant not using deadline-
scaling. It uses the same bin-packing but (i) bases scheduling decisions on the
real deadlines also in L-mode and (ii) uses only the H-WCETs for H-server sizing.

214 M.A. Awan et al.

P-EKB and SP-EKB. Ekberg and Yi’s approach, formulated for uniproces-
sors, can be used for multiprocessor scheduling with processor partitioning. We
call this approach P-EKB. Tasks are assigned to the m processors via bin-packing
(we assume First-Fit). On each processor, to test the feasibility of each assign-
ment, the deadline scaling algorithm is used, as a schedulability test. Each time
that a new task is assigned, the deadline scale factors of already assigned tasks
are computed anew. This arrangement is migration-free but L-tasks and H-tasks
are scheduled together on each processor, without strict isolation.

Similarly, for a semi-partitioned approach that borrows from NPS-F but with-
out the server-level isolation of H-tasks and L-tasks, one could perform this bin-
packing over m

′′
bins (as many as needed; not necessarily bound to m) and

then create mixed-criticality servers out of those, which are mapped to the m
processors as in NPS-F. We call this arrangement SP-EKB. One thing to note is
that, for the purpose of sizing servers under SP-EKB, the “fake task” modelling
the periodic unavaibility of the processor to the server has to be modelled as an
H-task – unlike what was the case for MC-NPS-F. The reason for this is that, in
the general case, neighboring servers may have both H-tasks and L-tasks mean-
ing that it would not be possible in the H-mode to drop the server arrangement
and collapse to pure partitioning/use of an entire processor’s full capacity for a
server’s H-tasks. This means that, all other things being equal, a server would
have greater inflated utilisation under SP-EKB than under MC-NPS-F.

Although SP-EKB dominates P-EKB (if the same task ordering is used for
both algorithms), it allows the migration of high-criticality tasks, which may be
undesirable for in practice. Table 1 summarises the different design aspects.

Table 1. Comparison of scheduling approaches

Algorithm Scheduling
class

Deadline
scaling

Server-
based

H-task/L-task
isol.

H-task
migration

NPS-F-MC semi-part. YES YES YES NO

NPS-F-IMA part. YES YES YES NO

cNPS-F semi-part. NO YES YES NO

P-EKB part. YES NO NO NO

SP-EKB semi-part. YES NO NO YES

6 Evaluation

Experimental Setup. To evaluate the theoretical scheduling effectiveness of
the approaches presented, we apply the respective offline schedulability tests to
synthetic task sets, whose generation is controlled with the following parameters:

– L-mode utilisations (UL
i): Generated using the UUnifast-discard algorithm [14]

for unbiased distribution. CL
i is derived as UL

i · Ti.

Semi-partitioned Mixed-Criticality Scheduling 215

2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1

U
i

H
 transfer function gain (k)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT

NPS−F−MC

NPS−F−IMA

cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U

SP−EKB−U

Fig. 2. n=12, m=4, 40% H-tasks

4 8 12
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of processors (m)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT

NPS−F−MC

NPS−F−IMA

cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U

SP−EKB−U

Fig. 3. n=16, 40% H-tasks, k=2

0.2 0.3 0.4 0.5 0.6
0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of high−criticality tasks

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT

NPS−F−MC

NPS−F−IMA

cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U

SP−EKB−U

Fig. 4. n=12, m=4, k=2

6 8 10 12 16 24
0.4

0.5

0.6

0.7

0.8

0.9

1

Task set size (n)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

VT

NPS−F−MC

NPS−F−IMA

cNPS−F

P−EKB−κU

SP−EKB−κU

P−EKB−U

SP−EKB−U

Fig. 5. m=4, 40% H-tasks, k=2

– Task period (Ti): Generated with a log-uniform distribution, in the range of
10 ms to 100 ms, i.e., Ti = 10x : x ∈ [log1010, log10100].

– Task deadline (Di): The scheduling approaches discussed work for constrained
deadlines (Di≤Ti) but this evaluation assumes implicit deadlines (Di=Ti).

– Distribution of high and low criticality tasks: The fraction of H-tasks in the
task set is configurable. (For an integer number of H-tasks, we round up.)

– H-mode utilisation (UH
i): Derived from UL

i via a transfer function f(UL
i , k)

with a parameter k. For small values of UL
i , f(UL

i , k) ≈ k · UL
i but for greater

values the gain is progressively smaller, so that UL
i ≤ f(UL

i , k) ≤ 1, ∀ UL
i ∈

[0, 1]. For details, see the Appendix of our TR [15]. CH
i is computed as Ti ·UH

i .

The resolution is microsecond. Each task set is generated for a given target
utilisation U∗ = x ∗ m : x ∈ (0, 1], where m is the number of processors. For
each combination of input parameters explored we generate 1000 task sets.

We compare the scheduling approaches listed in Table 1. To keep the number
of plots in check, in each experiment we vary one parameter with the others
fixed. We also plot a “validity test” (VT), namely: (UL ≤ m) ∧ (UH ≤ m). This
test (a necessary but not sufficient condition for schedulability) rejects trivially
infeasible tasks sets. Its curve over-approximates the feasible task sets.

216 M.A. Awan et al.

Due to lack of space instead of providing plots comparing the algorithms in
terms of scheduling success ratio (i.e., the fraction of task sets deemed schedu-
lable under the respective schedulability test), we condense this information by
providing plots of weighted schedulability.2 This performance metric is adopted
from [16] and allows condensing what would have been three-dimensional plots
into two dimensions. It is a weighted average, in which more weight is given
to task-sets with higher utilisation, i.e., task-sets that are supposedly harder to
schedule. Specifically, using the notation from [17]:

Let Sy(τ, p) represent the binary result (0 or 1) of the schedulability test y
for a given task-set τ with an input parameter p. Then Wy(p), the weighted
schedulability for some schedulability test y as a function of parameter p, is:

Wy(p) =

∑

∀τ

(
ŪL(τ) · Sy(τ, p)

)

∑

∀τ

ŪL(τ)
(5)

In the above equation (adapted from [17]), ŪL(τ) def= UL(τ)
m is the system

utilisation in L-mode, normalised by the number of processors m.

Results. For P-EKB and SP-EKB, we used two different configurations: “-κU”
means that tasks are indexed with H-tasks preceding L-tasks and in order of
non-increasing UL

i , for same-criticality tasks. “-U” means that tasks are simply
indexed by non-increasing UL

i . The corresponding variants with ordering by Di,
instead of UL

i , almost always performed worse, so we don’t include them.
For all four parameters varied (transfer function gain k, number of processors

m, fraction of H-tasks, number of tasks n), most of the time3 SP-EKB outper-
forms P-EKB. In turn, P-EKB usually outperforms NPS-F-MC and, by a larger
margin, cNPS-F. Figure 3 is an exception, with P-EKB dropping in performance,
as m rises, contrary to the other algorithms, and being overtaken by NPS-F-MC
and NPS-F-IMA. This is because, when both the system utilisation (normalised
by m) and the number of processors are kept the same during task generation but
m increases, the average UL

i also increases. This implies increased bin-packing
fragmentation for non-server-based partitioned approaches.

Some conclusions drawn from these experiments:

– Semi-partitioning helps moderately but noticeably with performance. (Com-
pare NPS-F-MC to NPS-F-IMA and SP-EKB to P-EKB).

– For SP-EKB and P-EKB, the choice of task ordering for the bin-packing mat-
ters a lot.

2 The plots of (non-weighted) schedulability can still be found in the Appendix of our
TR [15].

3 Recall that, for the same configuration, SP-EKB strictly dominates P-EKB. How-
ever, some task sets schedulable by SP-EKB-κU are unschedulable by P-EKB-U
(and vice versa) and some tasks schedulable by SP-EKB-U are unschedulable by
P-EKB-κU (and vice versa).

Semi-partitioned Mixed-Criticality Scheduling 217

– The isolation of H-tasks from L-tasks, through separate servers for the two task
categories, sharply penalises performance. (Compare NPS-F-MC to SP-EKB.)
By comparison, the performance hit from disallowing L-server migration is
smaller. (Compare NPS-F-MC with NPS-F-IMA.)

Ultimately, the choice of scheme will depend on the kind of scheduling guar-
antees and isolation the particular application scenario requires, but our exper-
iments explore the performance ceilings associated with each arrangement.

7 Conclusions and Future Work

This work brought together server-based semi-partitioning and deadline-scaling
techniques for mixed-criticality scheduling. Our main contribution, the schedul-
ing algorithm NPS-F-MC, offers isolation between tasks of different criticalities
but allows low-criticality tasks to migration, for better system utilisation. Our
experiments show that deadline scaling also works well in a semi-partitioned
context. However, enforcing complete scheduling isolation, can be expensive. In
practice, different application requirements might mean that any task migration
is to be avoided or, conversely, that complete scheduling isolation between task
of different criticalities is not a requirement, as long as schedulability is ensured
even in the case of mode change. For these cases, we therefore formulate the
related scheduling algorithms NPS-F-IMA and SP-EKB, respectively. Our exper-
imental results of theoretical schedulability offer some preliminary exploration of
the performance tradeoffs when considering different scheduling arrangements:
partitioning vs semi-partitioning, scheduling isolation for tasks of different criti-
calities by use of separate servers vs mixed-criticality scheduling within the same
server, use of deadline scaling in the context of a semi-partitioned approach.

As future work, we intend to also incorporate the effects of task contention
over cache and memory into the schedulability tests.

Acknowledgments. We would like to thank Pontus Ekberg for clarifying to us some
aspects of his algorithm.

This work was partially supported by National Funds through FCT/MEC
(Portuguese Foundation for Science and Technology) and co-financed by ERDF (Euro-
pean Regional Development Fund) under the PT2020 Partnership, within the CISTER
Research Unit (CEC/04234); also by FCT/MEC and the EU ARTEMIS JU within
project ARTEMIS/0001/2013- JU grant nr. 621429 (EMC2).

References

1. Burns, A., Davis, R.: Mixed criticality systems: A review, TR. Computer Science,
U. of York, UK (2013)

2. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the RTSS, pp. 239–243 (2007)

3. Bletsas, K., Andersson, B.: Preemption-light multiprocessor scheduling of sporadic
tasks with high utilisation bound. In: Proceedings of the RTSS (2009)

218 M.A. Awan et al.

4. Ekberg, P., Yi, W.: Bounding and shaping the demand of mixed-criticality sporadic
tasks. In: Proceedings of the ECRTS, pp. 135–144 (2012)

5. Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A.,
van der Ster, S., Stougie, L.: The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems. In: Proceedings of the ECRTS,
pp. 145–154 (2012)

6. Federal Aviation Authority, CAST-32: Multi-core Processors (2014). https://www.
faa.gov/

7. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the RTSS, pp. 182–190 (1990)

8. Ekberg, P., Yi, W.: Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems. Real-Time Syst. 50(1), 48–86 (2014)

9. Masrur, A., Müller, D., Werner, M.: Bi-level deadline scaling for admission control
in mixed- criticality systems. In: RTCSA, pp. 100–109 (2015)

10. Easwaran, A.: Demand-based scheduling of mixed-criticality sporadic tasks on one
processor. In: Proceedings of the RTSS (2013)

11. Bletsas, K., Petters, S.M.: Using NPS-F for mixed-criticality multicore systems.
In: Proceedings of the RTSS WiP (2012)

12. Zhang, F., Burns, A.: Improvement to quick processor-demand analysis for EDF-
scheduled real-time systems. In: Proceedings of the ECRTS, pp. 76–86 (2009)

13. Sousa, P.B., Bletsas, K., Tovar, E., Souto, P.F., Åkesson, B.: Unified overhead-
aware schedulability analysis for slot-based task-splitting. Real-Time Syst. 50(5–
6), 680–735 (2014)

14. Bini, E., Buttazzo, G.: Measuring the performance of schedulability tests. Real-
Time Syst. 30(1–2), 129–154 (2009)

15. Awan, M.A., Bletsas, K., Souto, P.F., Tovar, E.: Semi-partitioned mixed-
criticality scheduling, TR. CISTER/ISEP (2016). http://www.cister.isep.ipp.pt/
docs/CISTER-TR-161102

16. Bastoni, A., Brandenburg, B., Anderson, J.: Cache-related preemption and migra-
tion delays: empirical approximation and impact on schedulability. In: Proceedings
of the OSPERT, pp. 33–44 (2010)

17. Burns, A., Davis, R.: Adaptive mixed criticality scheduling with deferred preemp-
tion. In: Proceedings of the RTSS, pp. 21–30 (2014)

https://www.faa.gov/
https://www.faa.gov/
http://www.cister.isep.ipp.pt/docs/CISTER-TR-161102
http://www.cister.isep.ipp.pt/docs/CISTER-TR-161102

Power and Energy

DVFS Space Exploration in Power Constrained
Processing-in-Memory Systems

Marko Scrbak1(B), Joseph L. Greathouse2, Nuwan Jayasena2,
and Krishna Kavi1

1 University of North Texas, Denton, TX, USA
markoscrbak@my.unt.edu, krishna.kavi@unt.edu

2 Advanced Micro Devices, Inc. (AMD), Sunnyvale, CA, USA
{joseph.greathouse,nuwan.jayasena}@amd.com

Abstract. In order to deliver high performance under stringent power
constraints, future systems may include die-stacked memories with pro-
cessing-in-memory (PIM) cores. Because of their proximity to the mem-
ory, PIMs are expected to target applications which require high band-
width, implying that PIMs do not need the same computational capa-
bilities as traditional host processor and can therefore be implemented
using slower, low-leakage transistors to increase energy efficiency. Such
systems must carefully balance design-time choices, such as the circuits
used to build the devices, and run-time choices, such as DVFS states and
the preferred hardware platform on which to run the application. This
paper explores these parameters in a GPGPU PIM system with a large
compute-optimized host and a collection of bandwidth-optimized PIMs.
We develop high-level performance and power models and use them to
find optimal DVFS and kernel placement decisions for a series of GPGPU
applications targeting maximum energy efficiency. We find, for instance,
that the energy efficiency of PIM systems is greatly affected by DVFS;
simply selecting the optimum hardware (host/PIM) results in 7× higher
ED2 than migrating work in conjunction with DVFS.

Keywords: Processing-in-Memory · DVFS · GPGPU · High per-
formance computing · Energy efficiency · Computer architecture ·
3D-DRAM

1 Introduction

With the breakdown of Dennard scaling, architects rely on increasingly sophisti-
cated dynamic voltage and frequency scaling (DVFS) controls to optimize perfor-
mance while meeting stringent power, energy, and thermal targets [2,5,15,19].
For related reasons, modern processors are increasingly adding heterogeneous
accelerators, most commonly GPUs [10,20]. As techniques such as DVFS and
heterogeneous processing increase the computational efficiency of processors, the
memory system is becoming a growing performance and energy bottleneck [4].
Recent stacked memory technologies, such as Hybrid Memory Cube (HMC) [16]
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 221–233, 2017.
DOI: 10.1007/978-3-319-54999-6 17

222 M. Scrbak et al.

and High Bandwidth Memory (HBM) [9], can provide higher bandwidth and
reduced access energy compared to traditional technologies such as DDR4. Some
researchers propose to use 3D die stacking to place cores in a logic layer under the
memory dies and migrate some computation closer to memory, a configuration
referred to as processing-in-memory (PIM) [1,7,13,17,21,23]. In these studies,
a collection of PIM devices are used along with a traditional “host” processor
[17,18,21,23]. The host can be optimized for traditional compute-heavy work-
loads and can be implemented using high-performance transistors. In contrast,
PIMs can be optimized for bandwidth-intensive workloads, can be implemented
using lower-power circuits, and can be smaller and run at lower frequencies. This
can significantly increase energy efficiency and reduce difficulties from tight PIM
thermal constraints [6].

In this paper, we evaluate the effects of DVFS on the power and performance
of a PIM-enabled system while taking into account the architectural and process
differences between a compute-focused host and PIMs optimized for memory
bandwidth. We develop power and performance models which capture the key
differences between these devices and use them to study the design space. Our
findings show that running some compute-intensive kernels on low-frequency
host cores decreases ED2 by 2×, while others see up to 4.5× benefit from the
lower-powered PIMs. Memory-intensive applications can reduce ED2 10× com-
pared to the host when the PIMs can run at lower frequencies. Compared to
simply migrating workloads, making DVFS decisions in conjunction with migra-
tion decisions can result in a 7× reduction in ED2. In addition, a mix of DVFS
and workload migration can allow applications to achieve higher performance
under tight power caps. To the best of our knowledge, we are the first to explore
the impact of DVFS on power and performance of GPU-based PIM systems.
The key contributions of this paper are:

• An analytical power model which captures the differences in leakage and
dynamic power of host and PIM devices.

• An evaluation of optimal hardware platform (host vs. PIM) for OpenCLTM

kernels in order to achieve maximum energy efficiency.
• Evaluation of maximum achievable performance under different power con-

straints.

The rest of the paper is organized as follows. In Sect. 2, we explain the system
organization. Section 3 describes the performance and power models. Section 4
describes the details of our methodology and experimental setup. In Sect. 5, we
present our results and discuss the findings. Section 6 covers the related work
and Sect. 7 concludes the paper.

2 Baseline System Organization

Figure 1(a) shows an illustration of the system we study. At the heart of the node
is a heterogeneous chip containing both a CPU and GPU. This design is also
equipped with 3D-stacked DRAM [9,16], which can deliver the high bandwidth

DVFS Space Exploration in Power Constrained PIM Systems 223

Fig. 1. Baseline system (a) and kernel performance scaling on GPUs (b)

necessary for the on-chip GPU. 3D die stacking allows for tight integration of
optimized DRAM and logic dies. As such, it allows near-data computing in the
form of PIM, where computation devices embedded on the logic layer can utilize
the high in-stack bandwidth to improve the performance of memory-intensive
applications [1,17,21,23]. A multitude of PIM designs have been explored, such
as PIMs built from low-power CPU cores [17,21], GPGPUs [23], and recon-
figurable logic [7]. While low-power CPU PIMs were shown to be very energy
efficient, they were able to utilize only a fraction of the available in-stack mem-
ory bandwidth [8]. A multitude of CPU cores could push more bandwidth but
would exceed the power and thermal envelope of the memory stack. Zhang et al.
proposed a PIM architecture based on GPU accelerators (GPGPUs) [23]. These
highly multi-threaded vector processors are suitable for running highly-parallel
application kernels and provide high computational and memory throughput. At
the same time, the GPU compute units are simple in-order cores, which makes
the architecture energy efficient and provides opportunity for embedding them in
the logic layer of 3D-stacked DRAM. Furthermore, mature programming models
(e.g., OpenCLTM) ease the programmability of such devices. In this study, we
focus on GPUs as PIMs and compare their power and performance to the host
on-chip GPUs. In a heterogeneous PIM system, GPU PIM compute units will be
aimed at improving the energy efficiency and performance of memory-intensive
code. The host GPU will primarily be used for compute-intensive code, since it
has less memory bandwidth and more compute resources than the PIMs.

3 Performance and Power Models

3.1 Performance Model

In order to assess the performance for our target hardware configurations, we
rely on an analytical GPU performance modeling framework [22]. Such models

224 M. Scrbak et al.

Fig. 2. V/f characteristics and relative leakage power for different types of devices.

are more effective for large design space explorations than cycle-level simula-
tors, and they capture enough detail to reasonably estimate future hardware
performance [14].

The model described in [22] has between 10% and 30% error, which is com-
parable to state-of-the-art system simulators [3]. The idea is to run a series of
GPU kernels on native hardware and collect performance statistics for each ker-
nel invocation for different hardware configurations. This allows us to obtain
knowledge about how each kernel’s performance scales with hardware resources
such as frequency, memory bandwidth and compute units. An example of kernel
scaling characteristic is shown in Fig. 1(b).

Our model was built from over 200 kernels at 720 different hardware config-
urations across various frequencies, memory bandwidths and number of active
compute units on an AMD FireProTM W9100 GPU. The gathered scaling sta-
tistics are clustered into groups with similar scaling characteristics. A machine
learning model is then trained which is later used to classify previously unseen
kernels into one of the scaling groups. We finally use the kernel scaling charac-
teristic to extrapolate kernel performance from a native hardware configuration
to a desired target hardware configuration (host/PIM).

3.2 Power Model

The total power for host/PIM devices is calculated as the sum of chip dynamic
power and leakage power. We modeled dynamic and leakage power in a way
that they capture host and PIM architectural differences (number of CUs, fre-
quency) and differences in process technology (host - high performance process,
PIM - low power process). The difference in process technology affects the volt-
age/frequency (V/f) characteristics of the devices which, in turn, affects dynamic
and leakage power. Our models assume a feature size of 14 nm.

DVFS Characteristics. Modern computer chips are designed using multiple
types of transistors, i.e. a mixture of low-, medium-, and high-threshold transis-
tors, to target different design tradeoffs, e.g. high-performance vs. low power.

DVFS Space Exploration in Power Constrained PIM Systems 225

Fig. 3. Leakage power values for host and PIM with different Vt distributions. A low-
power PIM with minimal leakage power (such as PIM-95/5) would be desirable in order
to minimize total PIM power consumption.

Low-threshold voltage (Low-Vt) devices are used in timing-critical paths,
but have high leakage power. High-threshold voltage (High-Vt) devices have
low leakage power but are slower, and are typically used in circuits that are
off the timing-critical paths. Medium-threshold voltage (Mid-Vt) devices offer a
tradeoff between High-Vt and Low-Vt devices by having medium power require-
ments and medium delay. In general, low power chips are designed using a larger
percentage of High-Vt devices and high-performance chips with a larger percent-
age of Mid-Vt and Low-Vt devices. The host processor is assumed to execute
compute-intensive code and will therefore be a high-performance device. PIMs
are assumed to be an equivalent of a low-power device, and will have significantly
lower leakage power than the host and run on lower frequencies and consume
less dynamic power.

Figure 2(a) shows V/f characteristics of three different types of devices for
a 14 nm process. Instead of modelling a V/f characteristic of a design with a
specific Vt distribution, we chose the V/f characteristics of both the host and
the PIMs to be equivalent to that of Mid-Vt devices and limit the operating
frequency ranges for host and PIM. We used this method because the Vt ratios
change based on the process maturity and process variation and thus it would be
impractical to model specific V/f curves for host/PIM. We choose the operating
frequency range for host to be 600 MHz–1000 Mhz and that of PIM 400 MHz–
600 MHz. We also study the impact on leakage power if the frequency ranges
require a different mix than the nominal one we picked.

Leakage Power. Leakage power depends on operating voltage, temperature,
and the ratios of devices used in a chip design. We pick the ratios for host to be
representative of a high performance GPU with a 50/50 High-Vt/Mid-Vt dis-
tribution. We performed a parameter sweep of three different device ratios for
the PIMs and observed their impact on leakage power. High-Vt/Mid-Vt ratios
included in the model are 60/40, 75/25, and 95/5 respectively. We model the
leakage power by estimating the leakage power value of host at the highest
voltage-frequency (V/f) point and then scale it to other V/f points using rela-
tive leakage values between host and PIM. The relative leakage values between

226 M. Scrbak et al.

different ratios are obtained from a circuit design tool. Figure 2(b) shows the
relative leakage values for four different Vt distributions studied. Derived leak-
age power numbers are shown in Fig. 3. At identical frequencies (600 MHz) PIM
devices will have up to 3× lower leakage than the host.

It is important to target low-leakage PIM designs for several reasons. First,
the power dissipation needs to be minimal so as to not exceed the 3d memory
stacks’ power and thermal limitations. Second, a higher power dissipation would
increase the stack temperature and the DRAM refresh rate. Third, most of
the applications executed on PIM will have lower dynamic power and therefore
leakage power will take up a significant portion in PIM total power. For the rest
of the paper we assume a 95/5 High-Vt/Mid-Vt distribution for the PIMs.

Dynamic Power. The dynamic power of the host and PIM devices is a func-
tion of the target hardware configuration (frequency, voltage, number of CUs) as
well as the running kernels switching activity. We calculate the dynamic power
of host/PIM devices by scaling the dynamic power of a base hardware config-
uration such as an AMD FireProTM W9100 GPU to a desired target hardware
configuration (host/PIM - Table 1) using the following equation:

Pdynamic = MAXDP ∗ CUtarget

CUbase
∗ ftarget

fbase
∗ V 2

target

V 2
base

∗ CAC ∗ Cscaled (1)

The idea is to scale a known maximum dynamic power (MAXDP) consumed by
a high-end GPU (such as the AMD FirePro W9100 GPU) at a given frequency,
voltage, and number of compute units, to a target hardware configuration
(f, V, CUs). The assumption is that the PIM and host CUs will be architec-
turally similar to present high-end GPUs, and therefore the maximum dynamic
power consumed per each CU will be roughly the same for the same feature size,
frequency and voltage. This way we can estimate the maximum dynamic power
consumed by the target hardware, i.e. at 100% switching activity. The actual
dynamic power consumed by a GPU kernel will depend on the chip switching
activity (shown as CAC in Eq. 1) during kernel execution. The total dynamic
power will therefore be a fraction of the target maximum dynamic power. Tar-
get capacitance (as compared to the base GPU capacitance) will also be lower
and ultimately will lower the target dynamic power. We factor this in as the last
element of the equation Cscaled.

4 Methodology and Experimental Setup

4.1 Target Hardware Baseline

We assume the target node, as depicted in Fig. 1, will have a high-performance
host APU and eight 3D DRAM stacks with low-power GPU PIM cores. Details
of the target system are listed in Table 1. We set the PIMs’ aggregate mem-
ory bandwidth to be 2× higher than the host’s, assuming that only 50% of the

DVFS Space Exploration in Power Constrained PIM Systems 227

Table 1. Target system parameters

host PIM

of CUs 256 192 (8× 24)

Mem. bandwidth 1 TB/s 2 TB/s

Frequency (MHz) 600–1000 400–600

Tech. node 14 nm FinFET 14 nm FinFET

Process High-performance Low-power

possible in-stack bandwidth will be available to the host due to the high power
consumption of the active links needed to support high off-chip memory band-
width. Each of the eight PIM stacks is assumed to have 24 embedded low-power
GPU CUs, for a total of 192 PIMs. The host APU is assumed to have 256 GPU
Compute Units (CUs) and has more compute power than the eight PIM stacks.
Such a high number of CUs is an optimistic assumption, however it will be
achievable with future technology scaling.

4.2 Benchmark Selection

We selected 15 applications from a wide range of publicly available GPU bench-
mark suites. These benchmarks tend to exhibit enough parallelism to utilize,
and are expected to scale to, the target hardware configurations. In addition,
the benchmarks selected rely on algorithms for which we can easily split data
and tasks such that the PIMs primarily access their local DRAM stacks. The 15
selected applications are categorized based on their performance scaling charac-
teristics [12]. Compute bound benchmarks - lavaMD, NBody, MonteCarloAsian,
MaxFlops, CoMD - contain mostly kernels which scale with compute resources.
Memory bound benchmarks - kmeans, MatrixTranspose, miniFE, DeviceMemory
- contain mostly kernels which scale with memory bandwidth. Balanced bench-
marks - b+tree, MatrixMultiplication exhibit different scaling behavior for dif-
ferent compute/bandwidth ratios. We also select benchmarks which have a mix
of compute/memory/balanced kernels - backprop, GEMM, BoxFilter, XSbench
to show the impact of kernel placement on total runtime/power consumption
when kernels have different scaling characteristics.

4.3 Experiments

We collected performance counters for each kernel invocation of the 15 bench-
marks and estimate their power/performance using previously described power
and performance models. We also include the energy spent on memory accesses.
We evaluated the optimal hardware choices to run the kernels when using DVFS
and compared them to cases where all benchmark kernels run on either the host
or PIM devices, while targeting maximum energy efficiency (minimum ED2).
Figure 4 shows the motivation of the potential tradeoffs. We also evaluated the

228 M. Scrbak et al.

Fig. 4. miniFE kernels runtime (a) and power consumption (b) for host 600 MHz–
1000 MHz and PIM 400 MHz–600 MHz

maximum performance under power constraints and show how optimal hardware
choice shifts to PIMs, which consume significantly less power. It is assumed that
once a kernel is running on the host/PIM it will remain there (i.e., it will not
migrate between devices) for all invocations of that kernel.

5 Results and Analysis

For the purpose of analyzing the energy efficiency we evaluated the energy-delay2

metric because it represents a tradeoff between energy and performance. Figure 5
compares the ED2 value for ED2 optimal placement with ED2 of host-only and
PIM-only placement. We observe that for highly compute intensive benchmarks
like MaxFlops and NBody, the host has significantly better ED2 and is the opti-
mal choice. Interestingly, these two applications achieve minimum ED2 when
running at the highest DVFS points. This implies that PIMs aren’t necessarily
the most energy-efficient choice for computation. Other benchmarks have bet-
ter ED2 when all kernels run on the PIMs, except CoMD where 2 kernels have
better ED2 when running on the PIMs while the others are best on the host.
Figure 5 shows how PIMs are an optimal choice in many cases when targeting

Fig. 5. ED2 comparison when trying to optimize for minimum ED2. Very high compute
intensive applications achieve minimum ED2 while running on host. This means that
host will be more energy efficient for such applications than PIM regardless of the
higher power consumption.

DVFS Space Exploration in Power Constrained PIM Systems 229

Fig. 6. Maximum performance under power constraints

energy efficiency. This shows that the addition of PIMs to a heterogeneous node
architecture can yield high throughput and high energy efficiency even when
compared to host running at lower DVFS states. In many cases, including appli-
cations that are somewhat compute-bound, the work would move to PIM, which
significantly reduces power at the expense of small performance loss. Exceptions
are highly compute intensive applications like b+tree, MaxFlops, and NBody.

5.1 Maximum Performance Under Power Constraints

The host can deliver higher performance for applications that are very com-
pute intensive. The question remains whether this will remain true under power
constraints, and at which point the PIMs will deliver better performance than
the host. To confirm that PIMs are in many cases indeed a better choice, even
when host is running at a lower DVFS state, we evaluated what is the maxi-
mum performance we can get from a benchmark when each kernel consumes less
power than a specified power constraint. There will be a performance optimal
hardware choice for each kernel, and this will change depending on the power
limit. Figure 6 compares the maximum performance under different power caps
for 3 benchmarks. We show a subset of all benchmarks because others show sim-
ilar behavior and same conclusions can be made. We see that the host always
consumes at least 100 W (at the lowest DVFS state) and cannot perform under
power constraints lower than 100 W. PIMs can on the other hand deliver good
performance even under tight power budgets due to their low power consump-
tion. In cases of memory bound benchmarks like XSBench, PIMs always deliver
significantly higher performance due to higher memory bandwidth. An interest-
ing case is lavaMD, where the PIM outperforms the host at some intermediate
DVFS state. This is because the application can compensate the lower perfor-
mance of lower DVFS state by exploiting higher memory bandwidth.

5.2 Discussion

When optimizing applications for maximum energy efficiency, benchmarks which
consist of heavily compute intensive kernels achieve 2× lower ED2 when running
on host at highest DVFS states (1000 MHz). However, other compute intensive
kernels achieve lower ED2 when running on PIM (1.5× – 4.5× lower than on
host), while suffering minimum performance losses (20%–50%) over performance

230 M. Scrbak et al.

Fig. 7. Comparison of ED2 values when host and PIM employ DVFS with a case
where host and PIM run only at highest DVFS states (host-1000 MHz, PIM-600 MHz).
By using DVFS in conjunction with PIMs we can on average improve the minimum
achievable ED2 by 7x, and in cases of memory intensive benchmarks by 40x – 100x.

optimal case. While optimal hardware choices play a significant role, the addition
of DVFS to the system proves to be crucial in maximizing the energy efficiency.
Figure 7 compares the minimum achievable ED2 value of a host/PIM system with
DVFS to a host/PIM system without DVFS (running on highest DVFS state).
We can see that by using DVFS to complement the already energy-efficient
system design we can on average improve the energy efficiency by 7×, and in
some cases between 40× – 100×. When optimizing applications for maximum
performance for systems with lower power budgets we can achieve 1.2× – 2.5×
better performance if we pick the right hardware (host/ PIM) and allow for
DVFS. For small power budgets, PIMs can achieve better performance than the
host at a lower DVFS state, while for power budgets lower than 100 W, the host
would exceed the power limit while PIMs would be able to remain operational
and deliver performance comparable to host for a fraction of power consumed.
Our findings strengthen the hypothesis of PIMs being a useful heterogeneous
platform and show the importance of DVFS as a mean to maximize performance
and energy efficiency in HPC systems with PIM. Additionally, our study allows
for future exploration of optimizations when multiple applications are executing
in the system by trading off power and performance of different applications to
achieve combined optimum performance gains.

6 Related Work

Zhang et al. [23] proposed a PIM architecture based on GPGPUs and evaluated
the performance and power benefits of such systems. However, this work only
considered a single operating point for the host and PIMs, and evaluated host and
PIM execution in isolation. We extend this work to include the characterization
of the impact of DVFS and co-optimization of both host and PIM. In addition,
we created power models which can capture the differences between host and
PIM and evaluate the system on application level and not just kernel level.

Schulte et al. [11] investigated the effect of varying engine frequency/voltage,
memory bandwidth and number of compute units on GPU performance and

DVFS Space Exploration in Power Constrained PIM Systems 231

power. The authors explored DVFS for standalone GPUs. We instead consider
the presence and co-optimization of heterogeneous execution engines (i.e., high-
performance host and low-power PIM).

Ščrbak et al. [21] explored a variety of design choices in ARM-based PIM sys-
tems, including caches, frequency/voltage and their effect on the overall energy
efficiency of the system. The research remained focused on ARM-based PIM
architectures and doesn’t explore GPUs as an alternative.

7 Conclusion

In this paper we explored the effects of DVFS on energy efficiency of a GPU PIM
system while accounting for architectural and process differences of the host and
PIM devices. We developed analytical power and performance models to cap-
ture these differences and use them to explore the PIM DVFS design space. Our
findings show that a PIM system with DVFS is more energy-efficient than a
PIM system without DVFS, and results in 7× lower ED2 values on average. By
utilizing DVFS for host we can additionally decrease ED2 by 2× for compute-
intensive applications and by 4.5× when using DVFS with PIMs. Furthermore,
when using DVFS and low-power PIMs and optimizing performance for sys-
tems with tight power budgets, we can achieve 1.2×–2.5× better performance
if we pick the right hardware (host/PIM) and DVFS point. Our study allows
for future exploration of optimizations when multiple applications are simulta-
neously executing in the system. We will evaluate such optimizations in future
work.

AMD, the AMD Arrow logo, AMD FirePro, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple
Inc. used by permission by Khronos. Other names used herein are for identifica-
tion purposes only and may be trademarks of their respective companies.

References

1. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory
accelerator for parallel graph processing. In: Proceedings of the International Sym-
posium on Computer Architecture (ISCA) (2015)

2. Akram, S., Sartor, J.B., Eeckhout, L.: DVFS performance prediction for managed
multithreaded applications. In: International Symposium on Performance Analysis
of Systems and Software (ISPASS) (2016)

3. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A.,
Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. ACM SIGARCH
Comput. Archit. News 39(2), 1–7 (2011)

4. Black, B.: Die stacking is happening. Presented at MICRO (2013)
5. Cochran, R., Hankendi, C., Coskun, A.K., Reda, S.: Pack & Cap: adaptive DVFS

and thread packing under power caps. In: Proceedings of the International Sym-
posiyum on Microarchitecture (MICRO) (2011)

232 M. Scrbak et al.

6. Eckert, Y., Jayasena, N., Loh, G.H.: Thermal feasibility of die-stacked processing
in memory. In: Workshop on Near-Data Processing (WoNDP) (2014)

7. Farmahini-Farahani, A., Ahn, J.H., Morrow, K., Kim, N.S.: NDA: Near-DRAM
acceleration architecture leveraging commodity DRAM devices and standard mem-
ory modules. In: Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA) (2015)

8. Islam, M., Ščrbak, M., Kavi, K.M., Ignatowski, M., Jayasena, N.: Improving
node-level mapreduce performance using processing-in-memory technologies. In:
Proceedings of the International European Conference on Parallel Processing
(EuroPar) (2014)

9. Joint Electron Devices Engineering Council: High Bandwidth Memory (HBM)
DRAM. JEDEC Document JESD235A (2015)

10. Krishnan, G., Bouvier, D., Zhang, L., Dongara, P.: Energy efficient graphics and
multimedia in 28 nm Carrizo APU. Presented at Hot Chips (2015)

11. Lee, J., Sathisha, V., Schulte, M., Compton, K., Kim, N.S.: Improving throughput
of power-constrained GPUs using dynamic voltage/frequency and core scaling. In:
Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT) (2011)

12. Majumdar, A., Wu, G., Dev, K., Greathouse, J.L., Paul, I., Huang, W., Venugopal,
A.K., Piga, L., Freitag, C., Puthoor, S.: A taxonomy of GPGPU performance scal-
ing. In: Proceedings of the IEEE International Symposium on Workload Charac-
terization (IISWC) (2015)

13. Nair, R., Antao, S.F., Bertolli, C., Bose, P., Brunheroto, J.R.: Active memory
cube: a processing-in-memory architecture for exascale systems. IBM J. Res. Dev.
59(2/3), 17:1–17:14 (2015)

14. Nowatzki, T., Menon, J., Ho, C.H., Sankaralingam, K.: gem5, GPGPUSim,
McPAT, GPUWattch, “Your favorite simulator here” considered harmful. In:
Workshop on Duplicating, Deconstructing, and Debunking (2014)

15. Paul, I., Manne, S., Arora, M., Bircher, W.L., Yalamanchili, S.: Cooperative boost-
ing: needy versus greedy power management. In: Proceedings of the International
Symposium on Computer Architecture (ISCA) (2013)

16. Pawlowski, J.T.: Hybrid Memory Cube (HMC). Presented at Hot Chips (2011)
17. Pugsley, S.H., Jestes, J., Zhang, H., Balasubramonian, R., Srinivasan, V.,

Buyuktosunoglu, A., Davis, A., Li, F.: NDC: analyzing the impact of 3D-stacked
memory+logic devices on mapreduce workloads. In: Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS) (2014)

18. Schulte, M.J., Ignatowski, M., Loh, G.H., Beckmann, B.M., Brantley, W.C.,
Gurumurthi, S., Jayasena, N., Paul, I., Reinhardt, S.K., Rodgers, G.: Achieving
exascale capabilities through heterogeneous computing. IEEE Micro 35(4), 26–36
(2015)

19. Su, B., Gu, J., Shen, L., Huang, W., Greathouse, J.L., Wang, Z.: PPEP: online per-
formance, power, and energy prediction framework and DVFS space exploration.
In: Proceedings of the International Symposium on Microarchitecture (MICRO)
(2014)

20. TOP 500 List: Titan - Cray XK7. https://www.top500.org/system/177975 (2012).
Accessed 31 July 2016

21. Scrbak, M., Islam, M., Kavi, K.M., Ignatowski, M., Jayasena, N.: Processing-
in-memory: exploring the design space. In: Pinho, L.M.P., Karl, W., Cohen, A.,
Brinkschulte, U. (eds.) ARCS 2015. LNCS, vol. 9017, pp. 43–54. Springer, Cham
(2015). doi:10.1007/978-3-319-16086-3 4

https://www.top500.org/system/177975
http://dx.doi.org/10.1007/978-3-319-16086-3_4

DVFS Space Exploration in Power Constrained PIM Systems 233

22. Wu, G., Greathouse, J.L., Lyashevsky, A., Jayasena, N., Chiou, D.: GPGPU per-
formance and power estimation using machine learning. In: Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA)
(2015)

23. Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J.L., Xu, L., Ignatowski, M.:
TOP-PIM: throughput-oriented programmable processing in memory. In: Proceed-
ings of the International Symposium on High-performance Parallel and Distributed
Computing (HPDC) (2014)

Reducing Data Center Resource
Over-Provisioning Through Dynamic Load

Management for Virtualized Network Functions

Andreas Oeldemann(B), Thomas Wild, and Andreas Herkersdorf

Chair for Integrated Systems, Technical University of Munich,
Arcisstr. 21, 80333 Munich, Germany

{andreas.oeldemann,thomas.wild,herkersdorf}@tum.de

Abstract. Network Function Virtualization aims at replacing special-
ized hardware network appliances by commodity servers. In this paper,
we address sub-second variations in data center network workloads,
which place highly volatile processing demands on the servers. This
makes an efficient dimensioning of the hardware resources dedicated to
network function execution challenging. Based on the observation that
short-term peak workloads typically do not hit all machines at exactly
the same time, we propose to enable the servers to reuse under-utilized
resources of their peers by selectively redirecting packets when local
resources are exhausted. To satisfy line rate performance demands, we
present a hardware load management layer, which is located in the ingress
path of each server. Our simulative evaluation shows that the load man-
agement layer can reduce the hardware resources required for network
function execution by up to 24% while maintaining network throughput
and latency performance. Especially in large data centers, these resource
savings can significantly reduce network expenses.

1 Introduction

Today’s telco and data center networks provide many services, which go far
beyond offering connectivity among end-hosts. Intrusion detection systems scan
traffic for security threats, firewalls filter packets based on access rules, and
virtual private networks establish encrypted connections between remote net-
works. Due to compute-intense operations and stringent performance require-
ments, these network functions (NFs) are traditionally executed by specialized
hardware appliances, so-called middleboxes. In the presence of volatile network
workloads, dimensioning the capacity of these middleboxes is challenging. Typi-
cally, operators over-provision network resources to prevent performance degra-
dation when peak workloads hit [6]. Due to their custom-tailored hardware
design, middleboxes cannot be reused for other data center services in off-peak
times [11] and thus leave valuable processing resources idle. With the introduc-
tion of Network Function Virtualization (NFV) to the data center, operators aim
to reduce network costs through an increased deployment flexibility of network
functions. By decoupling the NF functionality from the underlying hardware
c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 234–247, 2017.
DOI: 10.1007/978-3-319-54999-6 18

Reducing Data Center Resource Over-Provisioning 235

platform and multiplexing multiple NFs on a single commodity server (further
referred to as network node), operators obtain the flexibility to reassign con-
solidated infrastructure resources among NFs and other data center services as
workload demands vary [11]. Centralized NFV orchestrators monitor network
node utilization and adapt the allocation of resources in response to changes in
processing demand. However, due to control latencies resulting from the spa-
tial separation between the network nodes and the centralized control instance,
as well as the time it takes to reassign resources and adapt network routing,
reassignment of resources is primarily applied to workload fluctuations, which
occur sufficiently slow (i.e. on timescales of hours, days and larger) and are
well-predictable [15].

In this paper, we address resource dimensioning inefficiencies arising due to
the fact that network workloads also vary on smaller, sub-second timescales,
where centralized network control is unable to respond by reassigning process-
ing resources in time. These fluctuations are partly caused by volatile network
data rates [1], and partly by diverse per-packet processing demands among
different NFs sharing the virtualized hardware resources of the same network
node. Dimensioning the resources dedicated to processing such dynamic net-
work workloads comes with a trade-off between utilization efficiency and Quality-
of-Service (QoS). At one extreme, an over-provisioned dimensioning for maxi-
mum link load and the pessimistic assumption that all packets require the most
compute-intensive processing guarantees that all packets are handled on the fly,
but yields low hardware utilization and thus is not cost-efficient. At the other
extreme, dimensioning for average link load and average computational com-
plexity requires fewer hardware resources, but can lead to long packet queues,
excess latency and eventually packet loss. Depending on the amount of tolera-
ble queuing delays, operators typically opt for an economical over-provisioning
sweet-spot between average and worst-case dimensioning.

We propose to increase the resource dimensioning efficiency by enabling net-
work nodes to offload excess workloads by selectively redirecting packets to peers
within their neighborhood. We exploit the fact that when multiple network nodes
executing the same set of NFs are grouped in clusters, the probability that all
network nodes are fully utilized at the same time is decreasing with a grow-
ing cluster size. By enabling network nodes to reuse under-utilized resources of
their peers, we are able to reduce resource over-provisioning without incurring
QoS drawbacks. To implement the offload of excess workloads, we extend each
network node by a load management layer. In contrast to conventional load bal-
ancers, our load management layer is distributed to the ingress paths of the
network nodes. This has the advantage that it can closely monitor the local
resource utilization at high time-resolution and take offload decisions as soon
as they become necessary. Since determining whether data should be processed
locally or forwarded to another network node must occur on a packet-by-packet
basis at line rate without negatively impacting network function performance,
we propose and outline a hardware implementation of our load management
layer to be integrated into the network interface card.

236 A. Oeldemann et al.

The paper is structured as follows: After surveying related work in Sect. 2,
Sect. 3 will motivate our work by providing background information on network
workload fluctuations. We will detail the key design ideas of the load manage-
ment layer in Sect. 4, before evaluating its effectiveness in Sect. 5. Section 6 will
conclude the paper.

2 Related Work

Efficient dimensioning and utilization of network resources has been the goal of
many research endeavors in the past. In the field of traffic engineering, dynamic
load balancing aims at distributing an incoming packet stream to a set of net-
work links, such that the maximum utilization of the network is minimized under
varying load conditions [8,17]. However, these approaches focus on the lowest
level of the network infrastructure (i.e. the links and routers), where all packets
come with equal transmission and routing cost. In contrast, our load manage-
ment layer aims at distributing the processing load placed on the hardware
resources executing higher layer network functions, where the processing actions
and resource demands vary significantly among packets.

In-network load balancing does not balance the utilization of the network
infrastructure itself, but rather aims at balancing incoming application requests
to the application servers attached to the network. Google’s Maglev [4] and
Microsoft’s Ananta [12] are examples for software-based in-network load bal-
ancers applied in large scale data centers. Both approaches rely on a multi-
tier implementation hierarchy for scalability, but eventually distribute incoming
requests to back-end servers by simply hashing the packet header without taking
application processing demands into consideration. In contrast, our work does
not aim at evenly distributing the number of packets processed by each network
node, but rather targets a distribution of workload caused by diverse per-packet
processing demands.

The authors of [2] aim at a resource-efficient execution of softwarized net-
work monitoring systems that rely on deep-packet-inspection. Rather than scal-
ing the amount of hardware resources dedicated to network function processing
in response to varying workloads, the proposed system dynamically controls the
processing requirements by adaptively changing the number of packets that are
inspected for each network flow. Unfortunately, the approach is limited to net-
work monitoring and fails to generalize for other network functions.

NFV-Vital [3] addresses the problem that the performance of network func-
tions is strongly influenced by the network node configuration (e.g. different IO
technologies, CPU pinning, power saving states), as well as the configuration
parameters of the network functions. NFV-Vital presents a profiling framework
that enables operators to characterize NF resource demands in different envi-
ronments. Although the results potentially enable network operators to better
understand the amount of resources required to achieve momentary performance
goals, they do not provide a mechanism to actively react on volatile workloads.

Reducing Data Center Resource Over-Provisioning 237

3 Short-Term Processing Demand Variations

Data center network workloads fluctuate on a wide range of timescales. Our
work targets variations on short, sub-second timescales. These fluctuations are
caused by highly volatile network data rates [1] and diverse per-packet processing
demands among network functions executed on the same network node.

For general-purpose platforms, the processing complexity of a network func-
tion is often expressed as the number of CPU instructions required to process
each arriving packet. Table 1 [13] quantifies the number of instructions per packet
(IPP) for a set of different network functions. While the IPP for NFs that solely
operate on the packet header does not depend on the packet length, the process-
ing complexity of NFs operating on the packet payload typically increases with
larger packet length. Considering average data center packet lengths around
850 bytes [1], it is evident that the processing complexity of different NFs varies
by multiple orders of magnitude.

In order to quantify real-world variations in processing demand caused by
both volatile data rates and different per-packet processing requirements, we ana-
lyzed a set of network packet traces captured on a 10 Gbps data center backbone
link. These traces are available in the CAIDA Anonymized Internet Traces 2015
data set [14]. Unfortunately, network traces alone do not allow us to draw con-
clusions on the processing demand, because they lack information about which
NFs are executed on the trace data. To exemplify the impact of varying per-
packet processing requirements, we therefore randomly assign each packet of
a chosen trace excerpt1 to one of three NFs under the following assumption:
30% of all processing should be allotted to an NF executing Fingerprinting, 30%
to String matching and 40% to IPSec-AES encryption (we will elaborate our
mapping methodology in Sect. 5). For such a mapping, Fig. 1 shows the result-
ing processing demand on a 10 millisecond timescale. It is clearly visible that
peak processing demands significantly exceed the long-term 10 second average.
Although packet buffering can absorb the processing peaks to a certain extent,

Table 1. Number of CPU instructions per
packet and payload byte for different net-
work functions [13]

Network function Type Instructions per

packet payl. byte

IPv4 radix Header 4,493 0

Flow classification Header 153 0

IPSec-AES Payload 1,272 61

String matching Payload 433 11

Fingerprinting Payload 52 78

10 s average

0 2 4 6 8 10
0

5

10

15

Time (s)

P
ro

c
e
ss

in
g

d
e
m

a
n
d

(B
il
li
o
n

In
st

ru
c
ti

o
n
s/

s)

Fig. 1. Varying processing demand based
on arrival pattern of packets bound for
different NFs

1 CAIDA trace: Equinix Chicago data center (dirA), 15/02/19 13:00:00-13:00:10 UTC.

238 A. Oeldemann et al.

we will show in Sect. 5 that a significant amount of resource over-provisioning is
required to limit queuing latencies to reasonable ranges.

4 Load Management Layer

In order to allow network operators to dimension the processing resources dedi-
cated to network function execution more cost-efficiently, we propose to enable
network nodes to offload short-term excess workloads to peers within their neigh-
borhood. Our proposal is motivated by an intuitive observation: we consider a
cluster of multiple network nodes, where each node is serving incoming network
traffic with short-term processing demand variations. When reducing the amount
of over-provisioned resources required to fulfill a given latency requirement, the
probability of each individual network node violating this requirement when
excess loads hit increases. However, with growing cluster size it becomes less
likely that all network nodes of the cluster fully utilize their processing resources
at exactly the same time. Thus, instead of queuing packets until resources become
available, we allow network nodes to offload processing by redirecting excess traf-
fic to those nodes in the cluster that currently have under-utilized resources.

Fig. 2. Three network nodes equipped with the Load Management Layer

To enable the offload of excess workloads, we place a Load Management Layer
(LML) in the ingress path of each network node. Figure 2 shows a cluster of three
network nodes, all equipped with the LML. Typically, the NFV infrastructure’s
commodity servers are mounted in server racks and receive incoming data from
so-called Top-of-Rack (ToR) switches. In our current design, each network node
is additionally connected to two of its cluster peers to form a ring topology.
When packets arrive at the network node, the load management layer acts as
an ingress bouncer. If sufficient CPU capacity is available for local processing,
packets are admitted to continue through the standard NFV processing chain:
they are passed to a software switch for classification and then forwarded to
the target network function. If the LML becomes aware of a local processing

Reducing Data Center Resource Over-Provisioning 239

bottleneck, it instead redirects the packets to its neighbor peer where the next
LML repeats the process. Packets continue to traverse the ring until the LML
of one network node decides that sufficient resource capacity is available for
local processing. To prevent packets from looping the ring multiple times when
all nodes are temporarily overloaded, the network node that initially received a
packet from the ToR switch must admit it for local processing when an entire
circulation has been completed. A circulation is detected when the destination
MAC address of the unaltered Ethernet frame arriving from a ring neighbor
matches the MAC address of the network interface connected to the ToR switch.

In some cases, operators may decide to share a server’s processing resources
among network functions and other applications. To ensure that packets bound
for the applications can always reach their destination, we exclude these pack-
ets from being offloaded. The LML maintains an application endpoint database,
which contains a list of IP addresses assigned to the executed applications, and
always delivers packets bound for one of these addresses locally.

Since all incoming network traffic traverses the LML before network function
execution takes over (possibly multiple times in different network nodes after
offloading), the latency induced by the LML must be kept to a minimum. Also,
the goal of an increased resource provisioning efficiency can only be achieved if
the LML does not put a significant processing load on the CPU of the network
nodes. Transferring every packet from the network interface card to main mem-
ory and taking the offload decision in software would neither satisfy latency, nor
CPU load demands. However, these issues can be overcome by implementing the
load management layer in hardware and directly integrating it into the network
interface card (NIC). Such a hardware implementation has two major advan-
tages: it guarantees that the latency added to each packet is kept small and the
packets chosen to be offloaded never reach the CPU of the local network node.

4.1 Offload Granularity

In the initial design phase, we identified three primary requirements, which the
hardware load management layer must fulfill:

1. Agility: The time it takes to resolve overload situations must be on a par
with the timescales on which fluctuations in processing demand occur. To
allow for the reduction of over-provisioned resources, it is crucial that the
time, which passes from overload detection until a sufficiently large number
of packets is redirected to other network nodes, is minimal.

2. Avoid packet reordering: The LML must not negatively impact end-to-
end network performance. We identified packet reordering as a possible per-
formance issue when the path that packets traverse through the network
dynamically changes during run-time.

3. Performance: The LML inspects every packet arriving at the network node
to determine whether it shall be offloaded or processed locally. The LML shall
operate at line rates of at least 10 Gbps.

240 A. Oeldemann et al.

We found that fulfilling these requirements reduces to the question: at which
data granularity should the LML take decisions on whether to process an arriv-
ing packet locally or offload it to another network node? Initially we consid-
ered two options: decisions on a per-packet and on a per-flow basis. In terms
of offload agility, per-packet decisions are ideal, because arriving packets can be
redirected immediately when a local bottleneck is detected. However, since choos-
ing the path through the network for each packet individually can cause packet
reordering, we considered this approach to be unsuitable. Offload decisions on
the flow-level avoid packet reordering, because all packets belonging to the same
flow follow the same path through the network. Unfortunately, keeping track of
the offload decisions taken for all active flows requires large lookup tables. To
achieve low-latency and line rate performance, such lookup tables are typically
implemented by Content Addressable Memories (CAMs) with high power con-
sumption. Furthermore, offload agility is decreased, because active, long-lasting
flows cannot be redirected and thus prevent in-time overload resolution.

To overcome these issues, we opted for an intermediate offload granularity
level: flowlets. Flowlets are bursts of packets belonging to the same network flow.
Each flowlet groups a set of subsequent packets, whose inter-arrival-gap does not
exceed a flowlet timeout δflowlet. Originally, Kandula et al. [9] propose flowlet
switching as a technique to balance network traffic on a set of network paths
with different transfer delays. By ensuring that δflowlet is set to a value larger
than the worst-case difference of transfer delays, flowlets may be individually
forwarded on different network paths without packet reordering to occur.

Taking offloading decisions on the granularity level of flowlets allows the LML
to satisfy all three design requirements: (1) Splitting network flows, which often
last multiple seconds or minutes, into smaller flowlets increases offload agility.
With decreasing values of δflowlet, flows are split into an increasing number of
flowlets allowing more frequent offload decisions. Our evaluation in Sect. 5 shows
that the response time of the LML to imminent overload situations is sufficiently
small to allow for the reduction of the provisioned processing resources dedicated
to NF execution by up to 24%. (2) Packet order of all network flows can be fully
ensured by conservatively setting the flowlet timeout δflowlet to the sum of the
worst-case time it takes the network nodes to serve a single packet and the time
it takes a packet to complete one full LML ring circulation. Even though we
choose δflowlet marginally smaller to benefit offload agility, we found that in all
our experiments less than 0.035% of all packets may cause reordering. (3) Finally,
we show in the next section that keeping track of flowlet offloading decisions does
not rely on expensive CAM. Instead, offload decisions are stored in a hash table
located in random access memory. Although we are not in possession of a full
LML hardware implementation at the time of writing, literature documents that
hash calculation in hardware, as well as table lookups and updates, take only a
couple of clock cycles [5] allowing offload decision tracking at data rates beyond
10 Gbps.

Reducing Data Center Resource Over-Provisioning 241

Hash Offload tlast arrival

0 false t0
1 true t1
2 false t2

2N − 1 false t2N −1

tlast arrival ← tnow

if tnow > tlast arrival+δflowlet
flowlet timeout ← true

else
flowlet timeout ← false

end if

set Offload
queue length

if flowlet timeout
if queue length > THRESH

Offload ← true
else

Offload ← false
end if

else
Offload ← Offload

end if

Hash of
Packet
Header

Output

Fig. 3. Load management layer offload decision and tracking logic

4.2 Offload Decision and Tracking

Figure 3 illustrates the offload decision and tracking logic of the hardware load
management layer. The hash-based tracking of flowlet paths and the identifica-
tion of new flowlets has originally been proposed in [9]: For each arriving packet,
a CRC16 hash is calculated based on the packet header five-tuple. By hashing
the header five-tuple, it is ensured that all packets belonging to the same network
flow are always mapped to the same hash value. The calculated hash serves as
an index to a hash table, where each entry stores two pieces of information: (1)
the arrival time tlast arrival of the last packet hitting the entry and (2) whether
the packet was offloaded or not. After both values have been extracted from the
hash table, it is determined if the arriving packet starts a new flowlet and thus
is a candidate for offloading. If a period larger than the flowlet timeout δflowlet

has passed between the hash entry’s last packet arrival time tlast arrival and the
current time tnow, the packet starts a new flowlet and may be offloaded. If the
time difference does not exceed the timeout period, we must assume that the
packet belongs to an active flowlet. Thus, it is no offload candidate and must
follow the output path stored in the hash table entry. After the information has
been evaluated, the hash table entry’s tlast arrival value is updated to the current
time.

To decide whether a new flowlet should be offloaded or not, the load manage-
ment layer must assess if a sufficient amount of processing resources is available
at the local network node. A clear indicator for a CPU bottleneck is an increas-
ing length of the queue holding packets waiting to be processed. Thus, once
a packet has been identified as an offload candidate, the current queue length
is compared to a pre-defined threshold value. If the threshold is exceeded, the
packet is offloaded to the neighbor node in the ring, otherwise it is dispatched
to the standard NFV processing chain of the local network node. In both cases,
the hash table entry is updated with the outcome of the offload decision.

Due to multiple flows hitting the same hash table entry (i.e. hash collisions),
the stored timeout and output information cannot be uniquely associated with
a single flowlet. As a result, the start of a new flowlet may be masked when
a packet belonging to another flowlet resets the tlast arrival value. Therefore, a
new flowlet can only be offloaded when no flowlet hit the hash table entry for a
period larger than δflowlet.

242 A. Oeldemann et al.

4.3 Load Monitor Agent

To assess the resource availability at the local network node, the LML evaluates
the length of the queue of packets waiting to be processed. Assuming that the
LML is a hardware component integrated right into the network interface card,
obtaining the queue length is not trivial. Since modern NICs transfer packets
to main memory via DMA transfers at line rate (typically over a PCIExpress
interconnect), queues build up on the host-side, not on the NIC. In order to
enable the load management layer to decide whether to offload packets or not,
we rely on a software component (running on the host), which monitors the
queue length. Once a pre-configured upper threshold is reached, the software
notifies the hardware LML by sending a control message via the PCIExpress
interconnect. In an analogous manner, a control message is sent when a lower
threshold is passed and hence an imminent overload situation is resolved.

4.4 Relation to Centralized Network Control

Similar to NFV’s centralized orchestration of network function instantiation,
Software Defined Networking (SDN) promotes centralized control of network
forwarding via protocols such as OpenFlow [10]. A centralized SDN controller
configures the forwarding rules of the physical data center switches, as well as the
software switches responsible for dispatching packets within the network nodes
(see Fig. 2). Although our proposal to enable network nodes to decide at which
location in a cluster a flowlet is processed may appear to oppose the trend of
control centralization, we point out that the LML in no way aims at replacing
it. The LML rather acts as a delegate optimizing short-term network opera-
tion on timescales where an external control instance is unable to react in time
(i.e. milli- and microseconds). On larger timescales, centralized network control
remains responsible for assigning an initial amount of processing resources to NF
execution, setting up the forwarding rules of the hard- and software switches,
monitoring the utilization of processing resources and optimizing resource assign-
ment in response to long-term shifts in processing demand.

The LML is designed in such a way that it operates independently of the
forwarding rules configured in the software switch of the network nodes. All new
flowlets are equally considered for offloading. It remains the job of the SDN con-
troller to configure the forwarding rules of the software switches in each network
node of a cluster in such a way that an arriving packet is always forwarded to
the same type of network function, no matter at which location in the LML ring
it is admitted for local processing. Our proposal does not require modifications
of the software network stack or the SDN and NFV control protocols.

4.5 Limitations

Although the proposed load management layer allows network operators to
increase the resource dimensioning efficiency for a wide set of network func-
tions, its applicability is limited in some scenarios. Due to the design decision

Reducing Data Center Resource Over-Provisioning 243

to allow network nodes to offload traffic at the granularity of flowlets, it can
occur that packets belonging to the same flow are processed at two different
network nodes. Although sufficiently large flowlet timeouts ensure that directly
succeeding packets are always directed to the same network node, some stateful
NFs require to see all packets belonging to a flow for correct operation. In some
cases, the network function must not only see the inbound traffic, but also the
return traffic. Currently, our load management layer is unable to ensure this
persistence.

5 Evaluation

We assess the effectiveness of our load management layer based on a simulation
model created on top of the OMNeT++ [16] discrete event simulator. Our model
consists of two components: a trace replay engine, which generates simulation
stimuli based on a prerecorded network trace, and a network node, which includes
a processing resource and the LML. The processing resource is modeled as a
Single-Server Queue, where incoming packets are processed in FIFO order. Its
capacity, given in instructions per seconds, is parameterizable. NFs are executed
in the same process space; we assume no context switching overheads. This is in
line with recent proposals such as [7]. NF execution is abstracted by annotating
the processing time of each packet based on the NF-specific instructions per
packet (IPP) and the resource capacity configuration. Although we are aware
that the model of the processing resource makes several simplifying assumptions
(e.g. we do not consider load balancing across multiple CPU cores), we believe
that the obtained results are a first indicator for the effectiveness of our concept.

Our simulated network consists of eight network nodes executing the same
set of NFs. Unless noted otherwise, LML-enabled network nodes are grouped in
two clusters, each consisting of four network nodes connected by the ring topol-
ogy. Network nodes cannot offload processing load across cluster boundaries.
As pointed out in Sect. 4.1, the flowlet timeout δflowlet affects both the amount
of packet reordering to occur and the response time to imminent overloads. To
balance between minimizing packet reordering and maximizing offload agility,
we set δflowlet to 5 ms after performing an extensive parameter exploration. We
will elaborate the impact of our choice at the end of the evaluation.

5.1 Simulation Stimuli

To allow for reproducibility of our results, the simulation is driven by a set of
publicly available network traces captured on a 10 Gbps data center backbone
link (CAIDA Anonymized Internet Traces 2015 data set [14]). We selected sev-
eral 80 s long trace excerpts2 and cut them into eight 10 s sections; each section
serves as stimulus for one of the network nodes. Based on the observation that

2 CAIDA traces: Equinix Chicago data center (dirA), 15/02/19 (Trace 0), 15/05/21
(Trace 1), 15/09/17 (Trace 2), 15/12/17 (Trace 3) 13:00:00-13:01:20 UTC.

244 A. Oeldemann et al.

variations in processing demand occur on milli- and microsecond timescales,
we consider a simulation time of 10 seconds sufficient. Although the enormous
amount of trace data available in the CAIDA trace set prevented us from exhaus-
tively performing and analyzing simulations for all trace stimuli, we explicitly
selected a subset of trace excerpts that have been recorded in different months
throughout the entire year 2015 to cope for seasonal changes in traffic charac-
teristics. Network traces unfortunately lack information about which network
functions are executed on the recorded packets. The precise assignment of NFs
to network nodes and traffic depends on the use case and, to the best of our
knowledge, no reference model is documented in literature. We thus randomly
assigned each packet of the individual 10 s trace sections to a set of NFs with
the constraint that all packets bound for the same /24 IPv4 or /64 IPv6 subnet
must be assigned to the same NF. We further constrained the assignment by
defining the percentage of processing allotted to each NF in relation to the total
number of instructions required to process the entire trace section. For this eval-
uation, we made the following assumption: 30% of the total number of processing
instructions shall be allotted to an NF executing Fingerprinting, 30% to String
matching and 40% to IPSec-AES encryption (see Table 1 for IPP values). We
repeated the mapping 20 times for statistical significance.

5.2 Resource Over-Provisioning

For each packet-to-NF mapping, we determine the long-term average capacity
required to handle all packets of the trace (i.e. sum of the total number of
packet instructions divided by trace duration). Although this baseline capacity
dimensioning allows the network nodes to process all packet eventually (if no
buffer overflows occur), queuing delays are introduced when workloads exceed
the average. Our simulations aim at determining by how much the baseline
capacity needs to be over-provisioned such that a specified percentage of packets
(target latency probability) does not exceed a specified target latency. We evalu-
ate the effectiveness of the LML by comparing the amount of over-provisioned
resources obtained from simulation runs where the LML is once enabled and
once disabled. To enable a fair comparison between network nodes equipped
with and without the LML, we start the latency measurement when a packet
enters the first network node and stop the measurement when the packet has
been completely processed (i.e. we include packet forwarding latencies in the
LML ring).

Figure 4a shows the average multiplier, by which baseline capacity must be
over-provisioned to reach a latency target in the range of 100 us and 1 ms for
99.5% of all the processed packets for four different trace sets. Results are aver-
aged over 20 runs with different packet-to-NF mappings (we refrain from display-
ing the standard deviation for better readability, but include it when quantifying
the resource savings). As expected, the amount of required processing resources
decreases when target latencies are increased, because packet queuing becomes
increasingly tolerable. It is clearly visible that the LML allows for a reduction of
over-provisioning for all trace sets and target latencies. For the sake of brevity

Reducing Data Center Resource Over-Provisioning 245

0.2 0.4 0.6 0.8 1
1x

2x

3x

4x

Target Latency (ms)

M
e
a
n

o
v
e
r-

p
ro

v
is

io
n
in

g

c
o
m

p
a
re

d
to

b
a
se

li
n
e

d
im

e
n
si

o
n
in

g Target Latency Probability: 99.5%
Hash table size: 8192 entries
Nodes in cluster: 4

No LML LML

Tr. 0

Tr. 1

Tr. 2

Tr. 3

(a) Required over-provisioning

0.2 0.4 0.6 0.8 1
0

10

20

Target Latency (ms)

M
e
a
n

re
so

u
rc

e
sa

v
in

g
s

c
o
m

p
a
re

d
to

d
is

a
b
le

d
L
M

L
(%

) Target Latency Probability: 99.5%
Nodes in cluster: 4, Trace 2

Hash table entries 1024

2048 4096

8192 65536

(b) Savings (diff. hash table sizes)

0.2 0.4 0.6 0.8 1
0

10

20

Target Latency (ms)

M
e
a
n

re
so

u
rc

e
sa

v
in

g
s

c
o
m

p
a
re

d
to

d
is

a
b
le

d
L
M

L
(%

) Target Latency Probability: 99.5%
Hash table size: 8192 entries, Trace 2

Cluster size 2 Nodes

4 Nodes 8 Nodes

(c) Savings (diff. cluster sizes)

0.5 1 1.5 2
0

10

20

Target Latency (ms)

M
e
a
n

re
so

u
rc

e
sa

v
in

g
s

c
o
m

p
a
re

d
to

d
is

a
b
le

d
L
M

L
(%

) Hash table size: 8192 entries
Nodes in cluster: 4, Trace 2

Target Probability

0.995 0.99

0.95 0.9

(d) Savings (diff. target probabilities)

Fig. 4. Over-provisioning demands and savings for several traces and parameters

and visibility, we picked Trace 2 to further evaluate the benefits of the LML in
detail (we will present a summary of the results for the other traces later).

Figure 4b quantifies the average resource savings of the runs where the LML
was enabled compared to the ones where it was disabled. Error bars show the
standard deviation of the runs performed for 20 packet-to-NF mappings. Savings
are plotted for a number of offload tracking hash table sizes. Due to the stringent
target latency probability of 99.5%, we observe the LML to perform particular
well with increasing target latencies. If latencies in the range of a few hundred
microseconds are tolerable, resource dimensioning can be reduced by as much as
21%. Even at stringent latency constraints of 100 us, 10% of resources are saved.
We further observe that resource savings increase with a growing hash table size,
where the probability of multiple active flowlets mapping to the same hash entry
decreases and therefore offload decisions can be taken more frequently.

We next evaluate the impact of the number of network nodes in each LML
cluster. Although Fig. 4c shows that cluster size has no impact on resource sav-
ings at very low target latencies, an increasing cluster size affects resource sav-
ings when target latencies are increased. While doubling the cluster size from

246 A. Oeldemann et al.

two nodes to four nodes comes with benefits in savings, switching from four
nodes to eight nodes barely shows advantages.

For target latencies below 1 ms, the latency of 99.5% of all packets is well
below the flowlet timeout δflowlet of 5 ms. We found that the probability of
a packet latency being larger than 5 ms is less than 0.0018% for all evaluated
traces at a target latency of 100 us. It does not exceed 0.035% for a target
latency of 1 ms. For this small share of packets, reordering can occur if subsequent
flowlets of the same flow are redirected to other network nodes as the result of
an offloading decision. Although an increase of δflowlet would further minimize
the probability of packet reordering, it would decrease offloading agility and thus
resource savings, because hash table entries timeout less frequently. While the
value of 5 ms yields good results in all simulation runs, we plan to investigate in
the future whether it is beneficial to dynamically set δflowlet based on run-time
measurements of packet latencies.

Finally, we address the influence of the target latency probability to observe
how target latency and target latency probability affect each other. Interestingly,
Fig. 4d shows that for stringent latency requirements, the LML is most effective
when the target latency probability is low. At reduced latency constraints, more
resource savings are achieved for higher latency target probabilities.

Before concluding, we point out that the characteristics shown in Fig. 4b–
d can equally be observed for the other traces shown in Fig. 4a. We recorded
maximum savings for Trace 0 at 14%, Trace 1 at 21% and Trace 3 at 24%.

6 Conclusion

We presented the concept and simulative evaluation of a hardware load manage-
ment layer, which allows network nodes to dynamically offload excess workloads
to peers within their neighborhood when peak workloads hit. Our results show
that the amount of resources dedicated to NF execution can be reduced by up to
24%. Especially in large data centers, where tens of thousands of servers are
housed, these resource savings can significantly reduce capital (i.e. device acqui-
sition) expenses. Although the abstraction level of our simulation model hides
several low-level effects, the obtained results show the range in which resource
savings can be expected. After implementing the load management layer in hard-
ware and verifying its applicability in practice, we plan to investigate energy
savings originating from the increased resource dimensioning efficiency.

References

1. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic
characteristics. ACM SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010)

2. Braun, L., Diekmann, C., Kammenhuber, N., Carle, G.: Adaptive load-aware sam-
pling for network monitoring on multicore commodity hardware. In: 2013 IFIP
Networking Conference, pp. 1–9. IEEE (2013)

Reducing Data Center Resource Over-Provisioning 247

3. Cao, L., Sharma, P., Fahmy, S., Saxena, V.: Nfv-vital: a framework for character-
izing the performance of virtual network functions. In: 2015 IEEE Conference on
Network Function Virtualization and Software Defined Network (NFV-SDN), pp.
93–99. IEEE (2015)

4. Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C., Kononov, R., Mann-Hielscher, E.,
Cilingiroglu, A., Cheyney, B., Shang, W., Hosein, J.D.: Maglev: a fast and reliable
software network load balancer. In: 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 2016), pp. 523–535. USENIX Association
(2016)

5. Forconesi, M., Sutter, G., López-Buedo, S., de Vergara, J.E.L., Aracil, J.: Bridging
the gap between hardware and software open source network developments. IEEE
Netw. 28(5), 13–19 (2014)

6. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S.,
McKeown, N.: Elastictree: saving energy in data center networks. In: 7th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2010), pp.
249–264. USENIX Association (2010)

7. Jackson, E.J., Walls, M., Panda, A., Pettit, J., Pfaff, B., Rajahalme, J., Koponen, T.,
Shenker, S.: Softflow: a middlebox architecture for open vswitch. In: 2016 USENIX
Annual Technical Conference (USENIX ATC 2016), pp. 15–28. USENIX Association
(2016)

8. Kandula, S., Katabi, D., Davie, B., Charny, A.: Walking the tightrope: responsive
yet stable traffic engineering. ACM SIGCOMM Comput. Commun. Rev. 35(4),
253–264 (2005)

9. Kandula, S., Katabi, D., Sinha, S., Berger, A.: Dynamic load balancing without
packet reordering. ACM SIGCOMM Comput. Commun. Rev. 37(2), 51–62 (2007)

10. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

11. Mijumbi, R., Serrat, J., Gorricho, J.L., Bouten, N., De Turck, F., Boutaba, R.: Net-
work function virtualization: state-of-the-art and research challenges. IEEE Com-
mun. Surv. Tutorials 18(1), 236–262 (2015)

12. Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg, A., Maltz, D.A., Kern,
R., Kumar, H., Zikos, M., Wu, H., Kim, C., Naveen, K.: Ananta: cloud scale load
balancing. ACM SIGCOMM Comput. Commun. Rev. 43(4), 207–218 (2013)

13. Ramaswamy, R., Weng, N., Wolf, T.: Analysis of network processing workloads. J.
Syst. Architect. 55(10), 421–433 (2009)

14. Center for Applied Internet Data Analysis: The CAIDA UCSD Anonymized Inter-
net Traces 2015–15/02/19, 15/05/21, 15/09/17, 15/12/17. http://www.caida.org/
data/passive/passive 2015 dataset.xml

15. ETSI Industry Specification Group: ETSI GS NFV-REL 001 V1.1.1, Network
Functions Virtualisation (NFV) Resiliency Requirements, January 2015

16. Varga, A.: The omnet++ discrete event simulation system. In: Proceedings of the
15th European simulation multiconference (ESM 2001), vol. 9, p. 65 (2001)

17. Wang, H., Xie, H., Qiu, L., Yang, Y.R., Zhang, Y., Greenberg, A.: Cope: traf-
fic engineering in dynamic networks. ACM SIGCOMM Comput. Commun. Rev.
36(4), 99–110 (2006)

http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml

Dynamic Power Management
in a Heterogeneous Processor Architecture

Frehiwot Melak Arega(B), Markus Haehnel(B), and Waltenegus Dargie(B)

Faculty of Computer Science, TU Dresden, 01062 Dresden, Germany
{frehiwot melak.arega,markus.haehnel1,waltenegus.dargie}@tu-dresden.de

Abstract. Emerging mobile platforms integrate heterogeneous, multi-
core processors to efficiently deal with the heterogeneity of data (in mag-
nitude, type, and quality). The main goal is to achieve a high degree of
energy-proportionality which corresponds with the nature and fluctua-
tion of mobile workloads. Most existing power and energy consumption
analyses of these architectures rely on simulation or static benchmarks
neither of which truly reflects the type of workload the processors han-
dle in reality. By contrast, we generate two types of stochastic workloads
and employ four types of dynamic voltage and frequency scaling (DVFS)
policies to investigate the energy proportionality and the dynamic power
consumption characteristics of a heterogeneous processor architecture
when operating in different configurations. The analysis illustrates, both
qualitatively and quantitatively, that knowledge of the statistics of the
incoming workload is critical to determine the appropriate processor
configuration.

Keywords: Dynamic power management · DVFS · Multicore processor ·
Heterogeneous processor architecture · Workload

1 Introduction

The volume of data generated and processed by mobile platforms has shown a
rapid and sustained increment in the recent years, and evidence suggests that
the trend will continue so in the near future. The driving forces behind this
development are the introduction of advanced processor architectures and an
improving communication infrastructure. At the same time, however, the com-
plexity of the applications which run on the mobile platforms, generating and
consuming some of these data, and their corresponding power consumption are
increasing with comparable proportion. The implication is that both to meet
users’ requirements and provide sustainable services, there is a need for efficient
resource management strategies which take the peculiar aspects of emerging
mobile platforms (specifically, processor architectures) into consideration. One
of these resources which should be managed is the energy consumption asso-
ciated with the computation and communication demand of mobile platforms.
Indeed, the research community is endeavouring to improve energy efficiency in

c© Springer International Publishing AG 2017
J. Knoop et al. (Eds.): ARCS 2017, LNCS 10172, pp. 248–260, 2017.
DOI: 10.1007/978-3-319-54999-6 19

Dynamic Power Management in a Heterogeneous Processor Architecture 249

different ways, including noble dynamic voltage and frequency scaling, dynamic
thermal management, workload-aware task scheduling, efficient thread-to-core
mapping, and seamless runtime task migration [1–5]. Complementary to the run-
time adaptation strategies, effort is also being made both by the academia and
the industry to develop energy-efficient and energy-proportional processor archi-
tectures including (1) the efficient integration of multicore and heterogeneous
processors, (2) fast and efficient simultaneous multi-threading, (3) non-uniform
cache architecture, and (4) advanced branch prediction strategies, among others.
The energy-proportionality (the ratio of consumed energy to work done) of these
architectures has in general been improving at each generation, as their power
consumption can be managed at core, processor, socket, and platform levels. The
purpose of this paper is to qualitatively and quantitatively analyse the energy
proportionality of runtime or dynamic power management strategies in emerging
heterogeneous processor architectures. Most existing approaches rely on either
simulation or static benchmarks neither of which truly reflects the type of work-
load these architectures process in reality. In contrast, we make an extensive
and experimental investigation using stochastic workload (video transcoding)
and four types of dynamic voltage and frequency scaling policies. The rest of the
paper is organised as follows: In Sect. 2, we summarise related work; in Sect. 3,
we introduce our experiment setup; in Sect. 4, we present and discuss experiment
results and share the insight we obtained from the experiment results. Finally,
in Sect. 5, we give concluding remarks and outline future work.

2 Related Work

Improving the performance and energy consumption of emerging heteroge-
neous processor architectures is an active research area. Some of the proposed
approaches target one of the following goals: (1) Determining the optimal task-
to-processor assignment strategy, (2) identifying effective and workload sensitive
dynamic voltage and frequency scaling strategy for a specific processor config-
uration, and (3) managing the heat dissipation of processors by adapting oper-
ation frequencies to workload. Julio et al. [6] propose a model for estimating
the execution duration of individual tasks under a specific clock frequency in a
heterogeneous processor architecture without the need for analysing any source
code or hardware specification. The resource consumption characteristics of a
task is analysed at runtime during the first “hyperperiod” of the execution of
a task using performance monitoring counters, computation time, waiting for
memory, and “overlapping time” between computation and memory access. An
overlap time is defined as the time the processor is executing non-dependent
instructions while a memory request is being served. Petrucci et al. [7] propose
a mechanism for (a) the optimal mapping of threads to specific cores in a het-
erogeneous architecture during task allocation and (b) periodic reassignment of
threads with the aim on improving the runtime energy consumption while meet-
ing performance requirements of application threads. The resource consumption
characteristic and the different execution phases of running threads are analysed

250 F.M. Arega et al.

using performance monitoring counters (Instructions Per Cycle (IPC) and Last
Level Cache (LLC) miss rate). Similarly, Liu et al. [8] propose a generic app-
roach to formulate the map of threads to cores in a heterogeneous architecture
using Integer Linear Program (ILP) for any number of threads, cores, and types
of cores. Their main goal is to maximise throughput while keeping total power
under a given budget. The approach first assigns threads to cores such that the
assignment can achieve the highest possible throughput and, then, it performs
virtual swapping of threads between adjacent core types. Pricopi et al. [9] inves-
tigate the relationship between the performance and power consumption of a
heterogeneous architecture by using a large number of performance monitor-
ing counters. Their approach focuses on accounting the way this relationship is
affected when executions are migrated from one type of cores to another within
the same processor architecture. Hanumaiah [2] aims to minimise the effects of
high thermal design power (TDP) by combining different approaches such as
performance-per-watt efficiency as a trade-off between performance and power
consumption, DVFS, thread migration, and active cooling. Maiti et al. [1] inves-
tigate the consequences of configuration mismatch between core frequencies and
core states and propose a framework for core selection, thread-to-core mapping
and DVFS. The aim is to select the best distribution of jobs and the appropriate
DVFS. Unlike the approach in [2], here optimisation serves one of the two pur-
poses: either the energy of a server is minimised under performance constraints
or its performance is maximised under power constraints. Likewise, Singla et al.
[10] and Prakash et al. [11] propose thermal management strategies as a mecha-
nism to minimise the energy consumption and to maximise the performance of
emerging processor architecture. In both cases, the temperature of a processor
is determined as a function of its power consumption and maximum operation
frequency. From this relationship it was possible to determine the maximum
operation frequency which sets the temperature of a processor below a set limit.

Complementary to state-of-the-art, this paper presents a comprehensive
investigation of the power and energy consumption characteristics of different
processor configurations and dynamic voltage and frequency scaling possibilities
in a heterogeneous processor architecture given that the incoming workload of
the processor architecture is of stochastic nature.

3 Experiment Setup

Processor Architecture. We employ the Odroid-XU41 processor architecture
with Ubuntu 14.04 operating system installed for our experiment which consists
of eight “big.LITTLE” cores. Four of these are energy-efficient ARM Cortex-A7
cores which are suitable for executing non-time-critical workloads. So they are
denoted as “LITTLE” cores. The other four, which are high performance ARM
Cortex-A15 cores, are suitable for executing compute intensive and time criti-
cal workloads. They are denoted as “big”. The performance difference between
1 http://www.hardkernel.com/main/products/prdt info.php?

g code=G143452239825.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825

Dynamic Power Management in a Heterogeneous Processor Architecture 251

the two types of cores is a result of their difference in peak operation frequency
(which is 2.0 GHz for the Cortex-A15 whilst it is 1.4 GHz for the Cortex-A7)
as well as in size. We supplied one and the same task (transcoding the same
video) for the two types of cores and let them process the task at different fre-
quencies. On the same Cortex the transcoding duration is more or less inversely
proportional to the frequency. But when we compared the transcoding dura-
tion between processor types for comparable operation frequency, the differ-
ence is considerable. For example, a given transcoding took 33 s on a Cortex-A7
core when it was clocked at 1.4 GHz but it took 20 s with a smaller frequency
(1.2 GHz) on the Cortex-A15. The additional performance improvement comes
from a higher degree of out-of-order execution as well as a larger L2 cache (2 MB
of Cortex-A15 vs. 512 kB of Cortex-A7). The little cores have only one in-order
execution pipeline. In contrast, the big cores have an out-of-order three-way exe-
cution pipeline, so that they can reorder the necessary instructions to utilise the
subsets of logic more efficiently.

Table 1. The transcoding time of a single test video file on different cores with different
frequencies.

Cortex-A7 68 s @ 600MHz 33 s @ 1.4 GHz

Cortex-A15 20 s @ 1.2 GHz 13 s @ 2.0 GHz

The performance gain of the Cortex-A15 cores comes at a price of high power
consumption because of its more complex and larger circuit architecture (pipeline
and caches, for instance). The big cores consume approximately four times more
power than the LITTLE cores. On the other hand, the Cortex-A15 are not four
times faster (as can be seen in Table 1); therefore, they should be used only when
their performance is really needed. Since the Cortex-A7 and Cortex-A15 cores
have a different clocking range and separate phase-locked-loops (PLLs), their
bias voltage and clock frequency can be set independently. Nevertheless, as cores
of the same type share one and the same PLL, they run at the same frequency.
Because an idling core consumes a certain amount of energy, it may be reasonable
to prolong the execution of tasks to minimise idle durations. Alternatively, the
load of an underutilised core can be migrated somewhere in order to switch it
off entirely. But the wake-up latency of a disabled core is significant in case of
load balancing.

Workload. The power consumption characteristic of a processor depends on the
workload characteristic. Most existing power consumption analysis techniques
[9,10] rely on static benchmarks which, in reality, do not reflect the workload of
typical mobile platforms. Since the magnitude of the workload of mobile plat-
forms experiences fluctuation over time, we generated stochastic workloads in
order to reflect this fluctuation.

The process can be described as follows: First of all, using the Python statis-
tical tool, we generated random numbers of predetermined probability density

252 F.M. Arega et al.

functions, means, and variances. Then for each random number belonging to a
given probability density function, we generated a video the size of which corre-
sponds to the random number (hence, the distribution of the video size follows
the distribution of the random numbers). Secondly, we picked up the longest
video from each probability density function and transcoded it using FFmpeg

2

and registered the time a processor core requires to complete the task. A proces-
sor core is 100% utilised when it undertakes a transcoding task and becomes
idle when it completes its task. Thirdly, we divided time into slots. The duration
of a time slot equals the time the processor required to complete the longest
video. Fourthly, at the beginning of each time slot we randomly picked up a
video for each activated core from a known probability density function and
transcoded it. Notice that now the time the processor requires to transcode this
video is random, as the size of the video is random. As a result, the processor
experiences a random idle duration in each slot. Furthermore, the interference
of several tasks within a time slot as a result of the competition for L2 cache
and memory bandwidth is included. The reason is that they run concurrently
on different cores of the same type (L2 cache) as well as different types (memory
bandwidth). An example is illustrated in Fig. 1 where the maximum transcoding
time and, therefore, the slot duration is 30 s. Thus, we produced the following
workload distributions:

– Exponential – E (λ = 15MB): 3.6% of the videos have the maximum video
size, which is 50 MB for all the experiments.

– Uniform – U (0, 30): The size of the videos assigned to a core varies uniformly
between 0 and 30 MB.

Fig. 1. An example of the workload distribution in a given time slot. A request to
transcode videos of different size arrives in the beginning of each time slot; a time slot,
for this example is 30 s.

Dynamic Voltage and Frequency Scaling. Most existing dynamic power
management strategies aim to minimise the idle states of computing resources,
because they consume a significant amount of power even when they are idle. In
general, a computing system enters into an idle state due to two stochastically
independent phenomena: (1) the interval between the arrival of any two com-
pute tasks is a random process, and (2) there is a discrepancy between the time
allocated by a scheduler to process a task (which is usually over-provisioned)
and the time the processor requires to complete this task. The idle state can be
2 https://www.ffmpeg.org/ (version 2.6.2).

https://www.ffmpeg.org/

Dynamic Power Management in a Heterogeneous Processor Architecture 253

minimised by either putting a computing resource into a deep sleep mode (or
by turning it off altogether) whenever it is idle, by deliberately slowing down its
processing speed so that the idle interval is minimised, or by adaptively varying
its execution speed, so that execution speed and task completion deadline can
overlap. Each approach has its own merits and demerits. One of the merits of
the deep-sleep and the slow execution strategies is a significant reduction of idle
time, but for both strategies this comes at a potential cost of increased execution
latency. The adaptive execution frequency strategy foresees the potential change
in the interval between the time a task is completed and the arrival of the next
task and, therefore, is able to estimate the optimal execution frequency, but for
that it requires sufficient task execution and task arrival statistics, as a result of
which the gain in power consumption may not be appreciable. For our investi-
gation we selected four types of DVFS policies, namely, power-save, on-demand,
conservative, and performance policies [12,13]. The power-save policy operates
cores at the lowest frequency while the on-demand and conservative policies
adapt the clock frequency to the change in the workload of the servers. The
last two policies estimate the utilisation of the processor using a moving aver-
age prediction technique, predict its future workload for the next time slot, and
scale-down or scale-up the processor’s speed accordingly. The essential difference
between the two is that the on-demand policy scales up the CPU frequency to
the maximum whenever an increment in the core’s activity is predicted whereas
this is done gradually in the conservative policy. But both strategies scale down
the clock frequency gradually whenever they perceive the future workload as
decreasing. The performance policy operates a core at its maximum clock fre-
quency. The aim is to complete a task as fast as possible and to put the core
into a deep sleep state. On the system side, the frequency of the LITTLE cores
can be varied between 200 MHz and 1.4 GHz in step of 100 MHz whereas the
frequency of the big cores can be varied between 200 MHz and 2 GHz in step
of 100 MHz. Nevertheless, the frequency of an individual core in either group
cannot be managed independently, as all the cores in the same group share the
same phase-locked loop which generates the clock frequency of the group. Con-
sequently, the frequency estimated by a DVFS policy for a particular core and
the frequency assigned to the same core can be different.

Measurement. Our analysis involves three different configurations for the two
groups of processors, four DVFS policies, and two types of stochastic workloads.
Altogether we conducted 24 experiments. We run each experiment for 1 h and
employed Yokogawa WT210 digital power analysers3 to measure the power
consumption of the Odroid-XU4 board at a rate of approximately 10 Hz. To get
statistics pertaining to the CPU utilisation of each core, we used dstat

4.

3 http://tmi.yokogawa.com/.
4 http://dag.wiee.rs/home-made/dstat/.

http://tmi.yokogawa.com/
http://dag.wiee.rs/home-made/dstat/

254 F.M. Arega et al.

4 Evaluation

In order to carry out reproducible experiments, we generated the workloads
based on underlying probability density functions (uniform and exponential).
These workloads are then processed in different configurations: LITTLE, big,
and big.LITTLE configuration. In the LITTLE configuration we deactivated the
A15 cores and transcoded videos only with the LITTLE cores. Likewise, in the
big configuration, we deactivated the A7 cores. In the big.LITTLE configuration,
all cores are activated. In each experiment, a specific DVFS policy determines
at any given time a suitable operation frequency for all cores sharing a single
PLL. For each experiment, we specify time intervals (the duration) which is
determined by (1) the largest video which should be transcoded and (2) the
speed of transcoding this video under the DVFS policy we selected for that
particular experiment. Table 2 shows the time required to transcode the longest
video for the three configurations under the different DVFS policies. This latency
determines the task arrival interval during video transcoding. Except for the
power-save policy, we discovered that the time required to transcode the longest
video in a given processor configuration is almost the same for all the scaling
policies. At the beginning of each interval, each active core is supplied with a
video to transcode. The video is chosen randomly from a pool of videos; hence,
a processor may not spend the entire time slot transcoding a video, in which
case, it may spend some time idling. The idle time statistics is used by a DVFS
policy to estimate the appropriate clock frequency of the core.

Table 2. Transcoding latency (in seconds) to determine task arrival interval.

Configuration Conservative On-demand Performance Power-save

LITTLE 45 45 45 105

big 30 30 30 90

big.LITTLE 45 45 45 -

Since the task arrival time is approximately equal for all the DVFS policies
(excepting the power-save policy) in a specific processor configuration, the num-
ber of videos which should be transcoded within a fixed experiment duration is the
same as well for all the policies. This enables to compare the power consumption
characteristics of the different policies given the same workload statistics. In all
our analysis we employ the cumulative (probability) distribution function which
expresses the probability that the value of a given quantity (x) is equal to or below
a specified value (x): F(x) = P{x ≤ x} = p, where F (x) is the cumulative distri-
bution function(CDF), and p is the probability associated with F (x).

CPU Utilisation vs. Power Consumption. The power vs. CPU utilisation
of the three processor configurations exhibit distinct features. In order to plot
the relationship between the two quantities, we normalised the CPU utilisation

Dynamic Power Management in a Heterogeneous Processor Architecture 255

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ondemand

power/max(power) vs CPU/max(CPU)

C
D

F

CPU utilisation power consumption

Fig. 2. Normalised CPU-Utilisation
vs. Power for the LITTLE cores under
on-demand DVFS policy for an expo-
nential workload.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Conservative

power/max(power) vs CPU/max(CPU)

C
D

F

CPU utilisation power consumption

Fig. 3. Normalised CPU-Utilisation vs.
Power for the big cores under conser-
vative DVFS policy for an exponential
workload.

by the maximum CPU utilisation. Likewise, the overall power consumption is
normalised by the maximum power consumption. This way, both quantities have
values ranging from 0 to 1. Figure 2 displays an example of the CDFs of the nor-
malised power and the normalised CPU utilisation for the LITTLE cores under
the on-demand DVFS policy. As can be seen, the CDF of the power consumption
remains more or less unaffected by the change in the statistics of the CPU utili-
sation. In terms of the diversity of CPU utilisation (following the change in the
statistics of the size of transcoding workload), the conservative and performance
policies show responsiveness whereas the other two policies do not appear to be
responsive, which indicates that the latter are slow to adapt to change. Figure 3
displays the CDFs of the normalised power and the normalised CPU utilisation
under the conservative DVFS policy as an example for the big cores. Unlike
the case with the LITTLE cores, here there is an almost ideal linear relationship
between the two quantities. An exception is observed with the power-save policy
which is not unexpected, as this policy operates the processors with the lowest
frequency all the time. An interesting feature we observed is the pattern of the
relationship. The CDF of the power consumption is always below or on the right-
side of the CDF of the CPU utilisation which indicates that the probability of
consuming more power is always slightly larger than the probability of utilising a
corresponding amount of CPU (which we understand as an indication of energy
disproportionality). The difference in pattern is bigger for the performance pol-
icy; since this policy operates the CPU with the maximum frequency, it is to
be expected that it is not the most adaptive policy. Figure 4 displays an exam-
ple of the CDFs of the normalised power and the normalised CPU utilisation
under conservative DVFS policy for the big.LITTLE configuration. We excluded
the power-save policy for this configuration because the completion time for the
transcoding task becomes too big. The rest demonstrate the features that can be
inherited from both types of cores when the system operates in a hybrid mode.

256 F.M. Arega et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Conservative

power/max(power) vs CPU/max(CPU)
C

D
F

CPU utilisation power consumption

Fig. 4. Normalised CPU-Utilisation vs. Power for the big.LITTLE configuration under
conservative DVFS policy for an exponential workload.

The almost linear relationship between the two quantities is visibly inherited
from the big cores, but the pattern of the relationship is taken from the LIT-
TLE cores, for the CDF of the normalised CPU utilisation is always below or on
the right-side of the CDF of the normalised power (it is the other way round for
the big cores). This indicates that power can be saved in this mode, but it must
be recalled from Table 2 that the performance (in terms of transcoding latency)
of this configuration is comparable to the performance of the LITTLE cores.

Power Consumption vs. Workload. Figures 5, 6 and 7 display the CDFs of
the power consumption of the three configurations under the four DVFS poli-
cies for the two different types of workloads. In Fig. 5 the usefulness of DVFS
is apparent, because the two graphs in the middle show the adaptiveness of
the conservative and on-demand policies to a change in the workload statistics
whereas the two extremes show the cost of operating the processors at fixed fre-
quencies. While the reduced power consumption of power-save is a consequence
of a lower throughput (more time is needed to complete transcoding all the

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Exponential

power (W)

C
D

F

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform

power (W)

C
D

F

conservative ondemand performance powersave

Fig. 5. Comparison of the power consumption of LITTLE cores under different DVFS
policies.

Dynamic Power Management in a Heterogeneous Processor Architecture 257

0 2 4 6 8 12

0
.0

0
.4

0
.8

Exponential

power (W)

C
D

F

0 2 4 6 8 12

0
.0

0
.4

0
.8

Uniform

power (W)
C

D
F

conservative ondemand performance powersave

Fig. 6. Comparison of the power con-
sumption of the big cores when they
processed different workloads under
different DVFS policies.

0 2 4 6 8 12

0
.0

0
.4

0
.8

Exponential

power (W)

C
D

F

0 2 4 6 8 12

0
.0

0
.4

0
.8

Uniform

power (W)

C
D

F

conservative ondemand performance

Fig. 7. Comparison of the power con-
sumption of the big.LITTLE configu-
ration when processing different work-
loads under different DVFS policies.

video files), the higher power consumption of the performance policy is unjustifi-
able, for there is no improved throughput. Both the conservative and on-demand
policies completed transcoding all the video files within the same time period
as the performance policy. For the big configuration, all except the power-save
policy performed comparatively the same for both types of workloads, showing
a broader range of values (from 1.8 W to 12 W) which suggests that they were
comparatively adaptive to the fluctuation in the workloads. For both types of
workloads the conservative policy was the most efficient policy (the gradual scal-
ing up of clock frequencies in response to a perceived workload). The CDFs of
the power consumption of the big.LITTLE configuration (as a trade-off between
increased transcoding latency for reduced power consumption) can be seen in
Fig. 7. For example, in Fig. 6 the probability that the overall power consumption
of the A15 cores is equal to or below 6 W for all workload types and for all
DVFS policies is approximately 0.2 whereas for the heterogeneous configuration
the figure is approximately equal to or even greater than 0.4. Indeed, for the uni-
form workload, the performance policy in this configuration yields a probability
of approximately 0.8.

Power Consumption vs. Processor Configuration. Figures 8 and 9 com-
pare the CDFs of the power consumption of the three configurations for the two
types of workloads using on-demand and conservative DVFS policies as example.
Both figures consistently place the big.LITTLE configuration’s power consump-
tion between the LITTLE and the big configuration, regardless of the type of
DVFS policy which manages the runtime power consumption of the processors.
Moreover, both figures indicate that a wide range of dynamic power can be
achieved in the big and big.LITTLE configurations by DVFS whereas this is not
the case with the LITTLE configuration. This characteristic is more visible with
the exponential workload.

Energy. Except for the power-save policy, the number of videos which can be
transcoded in a specific amount of time for a specific processor configuration is
fixed. Since the workload statistics are the same for all the DVFS policies for a

258 F.M. Arega et al.

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ondemand

power (W)

C
D

F

little_cores big_cores big.LITTLE_cores

Fig. 8. An example of comparison of
the power consumption characteristics
of the three processor configurations
(LITTLE, big, big.LITTLE) when they
process a uniform workload under on-
demand DVFS policy.

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Conservative

power (W)

C
D

F

little−cores big−cores big.LITTLE−cores

Fig. 9. An example of comparison of
the power consumption characteristics
of the three processor configurations
(LITTLE, big, big.LITTLE) when they
process an exponential workload under
conservative DVFS policy.

Table 3. Cores energy consumption (in Watt-hour) under uniform workload with
different DVFS

Configuration Conservative On-demand Performance Power-save

LITTLE 3.01 3.11 4.27 2.15

big 6.89 7.78 8.23 2.41

big.LITTLE 5.92 6.55 4.56 -

Table 4. Cores energy consumption (in Watt-hour) under exponential workload with
different DVFS

Configuration Conservative On-demand Performance Power-save

LITTLE 2.95 3.05 4.21 2.07

big 6.69 7.17 7.31 2.40

big.LITTLE 5.54 6.23 6.63 -

specific configuration, it is possible to make an objective comparison between the
energy consumption of the different policies for a given configuration. Tables 3
and 4 display the energy consumption (energy as the integration of power con-
sumed with respect to time) of the different configurations. Interestingly, the
conservative policy, which gradually scales the clock frequency of the processors
as a function of the perceived change in the workload, performed best for all the
configuration yielding the minimum amount of energy consumption. Exception
to this is the big.LITTLE configuration where the performance policy produces
the minimum energy consumption.

Dynamic Power Management in a Heterogeneous Processor Architecture 259

5 Conclusion

In this paper we experimentally investigated the energy-proportionality and
the variation in the dynamic power of a heterogeneous processor architecture
consisting of two quad-core CPUs. The CPUs are different in capacity as well
as in the range of operation frequencies they support. We generated two sto-
chastic video transcoding workloads (uniformly and exponentially distributed)
and implemented four different types of dynamic voltage and frequency scal-
ing policies. The processor architecture can be configured as LITTLE, big, and
big.LITTLE. In the LITTLE configuration only the smaller and the slower of
the two quad-core processors is active; in the big, only the bigger and the faster
quad-core processor is active, and in the big.LITTLE all the processors can be
active. The experiment results show that the three configurations have distinct
energy-utility characteristics. The LITTLE configuration has the minimum aver-
age power consumption, but the range of its dynamic power is narrow and does
not mirror the variation in the workload. The big configuration, on the other
hand, exhibits a wide variation in its dynamic power and mirrors the variation
in the workload. The dynamic power of the big.LITTLE configuration mirrors
the dynamic power characteristic of the big configuration, but the magnitude of
variation is smaller than the big configuration. When it comes to dynamic scal-
ing of frequency and voltage, the conservative policy, which gradually increases
and decreases the clock frequency of a processor in response to a perceived
change in the workload, consistently produces the best performance in the big
configuration, regardless of the workload type. The same scaling policy was the
best policy for the exponential workload in the big.LITTLE configuration. For
the LITTLE configuration, the conservative and the on-demand policies have
comparable performance whereas in the other two no conspicuous saving or con-
sumption of power can be observed without a corresponding sacrifice or gain in
the job completion time. In general, it can be concluded that the implementation
of a dynamic power management policy makes sense if the processor architecture
has a wide range of dynamic power and the workload statistic is known. The
latter can be estimated by taking samples at runtime. Hence, knowledge of this
statistics can be used by a scheduler to determine both the configuration of the
computing platform and the suitable DVFS policy.

References

1. Maiti, S., Kapadia, N., Pasricha, S.: Process variation aware dynamic power man-
agement in multicore systems with extended range voltage/frequency scaling. In:
MWSCAS, pp. 1–4 (2015)

2. Hanumaiah, V., Vrudhula, S.: Energy-efficient operation of multicore processors
by DVFS, task migration, and active cooling. IEEE Trans. Comput. 63, 349–360
(2014)

3. Möbius, C., Dargie, W., Schill, A.: Power consumption estimation models for
processors, virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25(6),
1600–1614 (2014)

260 F.M. Arega et al.

4. Dargie, W.: A stochastic model for estimating the power consumption of a proces-
sor. IEEE Trans. Comput. 64(5), 1311–1322 (2015)

5. Dargie, W.: Analysis of the power consumption of a multimedia server under dif-
ferent DVFS policies. In: CLOUD, pp. 779–785. IEEE (2012)

6. Sahuquillo, J., Hassan, H., Petit, S., March, J.L., Duato, J.: A dynamic execution
time estimation model to save energy in heterogeneous multicores running periodic
tasks. Future Gener. Comput. Syst. 56, 211–219 (2016)

7. Petrucci, V., Loques, O., Mossé, D., Melhem, R., Gazala, N.A., Gobriel, S.:
Energy-efficient thread assignment optimization for heterogeneous multicore sys-
tems. ACM Trans. Embeded Comput. Syst. 14(1), 15 (2015)

8. Liu, G., Park, J., Marculescu, D.: Dynamic thread mapping for high-performance,
power-efficient heterogeneous many-core systems. In: ICCD, pp. 54–61. IEEE
(2013)

9. Pricopi, M., Muthukaruppan, T.S., Venkataramani, V., Mitra, T., Vishin, S.:
Power-performance modeling on asymmetric multi-cores. In: CASES, September
2013

10. Singla, G., Kaur, G., Unver, A.K., Ogras, U.Y.: Predictive dynamic thermal and
power management for heterogeneous mobile platforms. In: DATE (2015)

11. Prakash, A., Amrouch, H., Shafique, M., Mitra, T., Henkel, J.: Improving mobile
gaming performance through cooperative CPU-GPU thermal management. In:
DAC (2016)

12. Pallipadi, V., Starikovisky, A.: The ondemand governer. In: Proceedings of the
Linux Symposium, vol. 2 (2006)

13. Brihi, A., Dargie, W.: Dynamic voltage and frequency scaling in multimedia
servers. In: AINA, pp. 374–380 (2013)

Author Index

Abera, Solomon 164
Aggarwal, Aneesh 99
Arega, Frehiwot Melak 248
Awan, Muhammad Ali 205

Balakrishnan, M. 164
Banerjee, Soumik 124
Bletsas, Konstantinos 205
Blochwitz, Christopher 47
Borchert, Christoph 3
Brandon, Anthony 177
Breitbart, Jens 73
Bromberger, Michael 33
Brown, Gavin 59

Clarkson, James 59

Daneshtalab, Masoud 152
Dargie, Waltenegus 248
Dietrich, Christian 3
Dimopoulos, Nikitas 85
Dumas, Julie 111

Ehrle, Steffen 33
Erlinghagen, Lukas 33

Frieb, Martin 139
Fuguet Tortolero, César 111

Greathouse, Joseph L. 221
Groppe, Sven 47
Guthmuller, Eric 111

Haas, Florian 16
Haehnel, Markus 248
Heinrich, Dennis 47
Herkersdorf, Andreas 234
Hoffmann, Martin 3
Hoozemans, Joost 177

Islam, Mahzabeen 124

Jayasena, Nuwan 124, 221
Joseph, Jan Moritz 47

Kavi, Krishna M. 124
Kavi, Krishna 221
Khoshbakht, Saman 85
Kotselidis, Christos 59
Kumar, Anshul 164

Lankes, Stefan 73
Lohmann, Daniel 3
Ludwig, Damian 193
Luján, Mikel 59

Mazloumi, Abbas 152
Meswani, Mitesh 124
Mische, Jörg 139
Modarressi, Mehdi 152
Momenzadeh, Elham 152

Obermaisser, Roman 193
Oeldemann, Andreas 234

Pétrot, Frédéric 111
Pickartz, Simon 73
Pionteck, Thilo 47
Pokam, Gilles 16

Rech, Paolo 3

Santini, Thiago 3
Scharrer, Michael 33
Schick, Jens 33
Schirmeier, Horst 3
Scrbak, Marko 221
Souto, Pedro F. 205
Spinczyk, Olaf 3

Stegmeier, Alexander 139
Suri, Tameesh 99

Tovar, Eduardo 205

Ungerer, Theo 16, 139

van Straten, Jeroen 177

Wagner, Flávio Rech 3
Weis, Sebastian 16
Werner, Stefan 47
Wild, Thomas 234
Wolff, Julian 47
Wong, Stephan 177
Wu, Youfeng 16

262 Author Index

	Preface
	Organization
	Contents
	Resilience
	Effectiveness of Software-Based Hardening for Radiation-Induced Soft Errors in Real-Time Operating Systems
	1 Introduction
	2 Background
	2.1 eCos and Software-Implemented Fault Tolerance
	2.2 dOSEK -- A Soft-Error Resilient OS

	3 Experimental Methodology
	3.1 Device Under Test
	3.2 eCos Configuration and Benchmarks
	3.3 dOSEK Configuration and Benchmark
	3.4 Experimental Setup

	4 Experimental Results
	4.1 eCos
	4.2 dOSEK
	4.3 FIT Figures

	5 Final Remarks
	References

	Fault-Tolerant Execution on COTS Multi-core Processors with Hardware Transactional Memory Support
	1 Introduction
	2 Related Work
	3 Error Detection
	3.1 Redundant Execution
	3.2 Signature Generation
	3.3 Signature Exchange
	3.4 Error Recovery and Containment

	4 Hardware Enhancements
	4.1 Signature Generation
	4.2 Hardware Queue
	4.3 Transactional Memory

	5 Evaluation
	5.1 Performance Overhead
	5.2 Impact of Proposed Hardware Enhancements

	6 Limitations and Future Work
	7 Conclusion
	References

	Accelerators
	OpenCL-Based 6D-Vision on Heterogeneous System on Chips
	1 Introduction
	2 Preliminaries
	2.1 Stereo Vision
	2.2 Optical Flow

	3 Related Work
	3.1 6D-Vision
	3.2 Stereo-Vision
	3.3 Optical Flow

	4 FPGA-Based SoC for Supporting 6D-Vision
	4.1 Warp
	4.2 Stereo Matcher
	4.3 Optical Flow Matcher
	4.4 Fusion

	5 Evaluation Setup
	6 Evaluation
	6.1 Performance and Resource Consumption
	6.2 KITTI Benchmark

	7 Conclusion
	References

	Hardware-Accelerated Radix-Tree Based String Sorting for Big Data Applications
	1 Introduction
	2 Related Work
	3 Radix-Tree
	3.1 An Optimized Radix-Tree

	4 Hardware Architecture
	4.1 Xillybus and Packet-Consumer
	4.2 String-Buffer Controller
	4.3 Radix-Tree-Engine
	4.4 Merge-Engine

	5 Evaluation
	5.1 Evaluated Parameter
	5.2 Design Configuration
	5.3 Performance Radix-Tree-Engine
	5.4 Performance Merge-Engine
	5.5 Memory Requirement
	5.6 Utilization

	6 Conclusion
	References

	Boosting Java Performance Using GPGPUs
	1 Introduction
	2 The Jacc Framework
	2.1 Writing Data Parallel Code
	2.2 Current Subset of Java Supported for Execution on GPGPUs

	3 Runtime System
	3.1 JIT Compiler
	3.2 Memory Management

	4 Evaluation
	4.1 Java Multi-threaded Performance
	4.2 Performance and Code Size in Heterogeneous Environment

	5 Related Work
	6 Conclusions
	References

	System and Application Performance
	A Low Noise Unikernel for Extrem-Scale Systems
	1 Introduction
	2 Related Work
	3 KNL
	4 Design of HermitCore
	4.1 Support for Intel's Xeon and Xeon Phi Architectures
	4.2 Building HermitCore Applications

	5 Performance Evaluation
	5.1 Operating System Micro-benchmarks
	5.2 Hourglass Benchmark

	6 Conclusion
	References

	A New Approach to Detecting Execution Phases Using Performance Monitoring Counters
	1 Introduction
	1.1 Related Work

	2 Methodology
	2.1 Collecting PMC Data
	2.2 Data Preparation
	2.3 Execution Phase and Sub-phase Detection
	2.4 Using a Secondary Power Proxy

	3 Experimental Results
	3.1 Coverage Results
	3.2 Power Estimate Validation
	3.3 Phase Power Differentiation
	3.4 Phase Power Consistency
	3.5 Power Management Utilizing Phase Results

	4 Conclusions and Future Works
	References

	Memory Systems
	Adaptive and Scalable Predictive Page Policies for High Core-Count Server CPUs
	Abstract
	1 Introduction
	2 DRAM Organization
	3 Adaptive Page Policy Schemes
	3.1 Page-Hit Counter (PHC)
	3.2 History Based and Thread-Aware Page Predictors

	4 Evaluation Methodology and Results
	4.1 Performance Impact of PHC
	4.2 Performance Impact of History Based and Thread-Aware Schemes
	4.3 Core Scaling
	4.4 Additional Benefits of Adaptive Page-Policies

	5 Related Work
	6 Conclusions
	References

	A Method for Fast Evaluation of Sharing Set Management Strategies in Cache Coherence Protocols
	1 Introduction
	2 Related Work
	3 Protocols Ranking Method
	3.1 Traffic Extraction
	3.2 High-Level Cache Modeling
	3.3 Sharing Set Management Strategies
	3.4 Sharing Set Behavior
	3.5 Network Modeling

	4 Experimentations and Results Analysis
	4.1 The gem5 Platform and Benchmarks
	4.2 Measurements
	4.3 High-Level Cache Modeling Validation

	5 Conclusions
	References

	HBM-Resident Prefetching for Heterogeneous Memory System
	1 Introduction
	2 Motivation for a New Prefetch Architecture
	3 HBM-Resident Prefetching
	3.1 Architecting a HBM-Resident Buffer
	3.2 System Organization
	3.3 Prefetching Policies

	4 Experimental Setup
	5 Evaluation
	5.1 Performance Analysis
	5.2 PCM Timing Analysis

	6 Conclusion and Future Work
	References

	Parallelism and Many-Core Systems
	Reduced Complexity Many-Core: Timing Predictability Due to Message-Passing
	1 Introduction
	2 RC/MC Architecture
	3 Timing Analysis of the RC/MC
	4 Private Memory Restriction
	5 Related Work
	6 Evaluation
	6.1 FPGA Prototype
	6.2 Number of Cores
	6.3 Case Study: WCET Estimation

	7 Conclusion
	References

	Parallel Forwarding for Efficient Bandwidth Utilization in Networks-on-Chip
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed NoC Architecture
	3.1 NoC Packet Size
	3.2 Proposed Router Architecture

	4 Experimental Results
	4.1 Experimental Environment
	4.2 Performance Evaluation

	5 Conclusion
	References

	PLSS: A Scheduler for Multi-core Embedded Systems
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Phase Detection Mechanism
	3.2 Locality Signature Generation Mechanism
	3.3 PLSS: Algorithm

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Phase Detection Validation
	4.3 Contention Metric Accuracy
	4.4 Scheduling Experiments

	5 Conclusion and Future Work
	References

	Exploring ILP and TLP on a Polymorphic VLIW Processor
	1 Introduction
	2 Related Work
	3 Approach
	4 Implementation
	5 Experimental Results
	5.1 Workload Definition
	5.2 Resource Utilization
	5.3 Experimental Setup
	5.4 Performance of Synthetic Workloads
	5.5 Performance of Mibench Workloads

	6 Conclusion
	References

	Scheduling
	Scheduling of Datacompression on Distributed Systems with Time- and Event-Triggered Messages
	1 Introduction
	2 Scheduling Model
	2.1 Constants
	2.2 Decision Variables
	2.3 Objective Function
	2.4 Contraints for Compression
	2.5 Other Constraints

	3 Results and Examples
	4 Conclusion
	References

	Semi-partitioned Mixed-Criticality Scheduling
	1 Introduction
	2 Overview
	3 System Model
	4 Task Assignment, Scheduling Model and Timing Analysis
	5 Other Derivative Approaches
	6 Evaluation
	7 Conclusions and Future Work
	References

	Power and Energy
	DVFS Space Exploration in Power Constrained Processing-in-Memory Systems
	1 Introduction
	2 Baseline System Organization
	3 Performance and Power Models
	3.1 Performance Model
	3.2 Power Model

	4 Methodology and Experimental Setup
	4.1 Target Hardware Baseline
	4.2 Benchmark Selection
	4.3 Experiments

	5 Results and Analysis
	5.1 Maximum Performance Under Power Constraints
	5.2 Discussion

	6 Related Work
	7 Conclusion
	References

	Reducing Data Center Resource Over-Provisioning Through Dynamic Load Management for Virtualized Network Functions
	1 Introduction
	2 Related Work
	3 Short-Term Processing Demand Variations
	4 Load Management Layer
	4.1 Offload Granularity
	4.2 Offload Decision and Tracking
	4.3 Load Monitor Agent
	4.4 Relation to Centralized Network Control
	4.5 Limitations

	5 Evaluation
	5.1 Simulation Stimuli
	5.2 Resource Over-Provisioning

	6 Conclusion
	References

	Dynamic Power Management in a Heterogeneous Processor Architecture
	1 Introduction
	2 Related Work
	3 Experiment Setup
	4 Evaluation
	5 Conclusion
	References

	Author Index

