
EasyTest: An Approach for Automatic Test
Cases Generation from UML Activity Diagrams 54
Fernando Augusto Diniz Teixeira and Glaucia Braga e Silva

Abstract

The test cases generation is one of the great challenges for the Software Test Community

because of the development efforts and costs to create, validate and test a large number of

test cases. The automation of this process increases testing productivity and reduce labor

hours. One technique that has been adopted to automate test cases generation is Model

Based Testing (MBT). This paper proposes the EasyTest approach to generate test cases

from UML Activity Diagrams aiming to integrate Modeling, Coding and Test stages in a

software process and to reduce costs and development efforts. The proposed approach

suggests an early detection of defects even in the modeling stage to prevent that unidenti-

fied defects are embedded in the coding stage. The work also presents the use of the

generated test cases before and after the coding stage. To verify the proposed approach, this

work also presents the EasyTest Tool to provide interoperability with the JUnit framework.

Keywords

Test Automation � Model Based Testing � Gray- Box Testing � JUnit � TDD

54.1 Introduction

Empirical studies show that the test activity consumes a

significant part of costs and development efforts and this

expense becomes often cost-time prohibitive. The test cases

generation represents a complex task in the test process

because of the development effort and cost to create, vali-

date and test a large number of test cases. To deal with this

complexity some tools automate the generation of test cases

from produced source code. Despite the benefits with auto-

mation, this technique still has problems to verify all system

functionalities scenarios [1]. Furthermore, once a software

defect is found the code must be fixed and verified again.

This process causes rework, delays and increases the devel-

opment costs.

Assuming that the earlier a defect is found the cheaper it

is to fix it, the Model-Based Testing (MBT) technique

appears to be promising. MBT consists of using various

types of formal models to derive a set of test cases. MBT

has a better performance than code-based approaches

because it is a mixed approach of source code and

requirements specification for testing the software [2].

Furthermore, MBT is more promising in terms of cost

because the generated test cases can be used as starting

point for the construction of a defect-free code. Unified

Modeling Language (UML) models have long been used

with the MBT technique because they have a lot of relevant

information about system specification for test case

design [3].

We propose an approach called “EasyTest” to generate

test cases from UML activity diagrams aiming to integrate

Modeling, Coding and Test stages in a software process and

to reduce costs and development efforts. The EasyTest

approach suggests an early detection of defects even in the

modeling stage to prevent that unidentified defects are

F.A.D. Teixeira (*) � G. Braga e Silva
Institute of Technologics and Exact Sciences Federal, University

of Vicosa – UFV, Florestal, Minas Gerais, Brazil

e-mail: fernando.augusto@ufv.br; glaucia@ufv.br

Springer International Publishing AG 2018

S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent

Systems and Computing 558, DOI 10.1007/978-3-319-54978-1_54

411

mailto:fernando.augusto@ufv.br
mailto:glaucia@ufv.br

embedded in the coding stage. The generated test cases can

be used in two scenarios: before and after the coding stage.

If no code was produced, the test cases generated from the

UML activity diagrams can be used by developers to pro-

duce defect-free code with Test Driven Development

(TDD). Otherwise, after the coding stage, the generated

test cases can be executed to verify (according to model

specifications) and validate (expected behavior of an opera-

tion) the produced code in a test execution tool. To verify

and to automate the proposed approach this work also

presents the EasyTest Tool that provides interoperability

with the JUnit frame-work.

The paper is organized as follows: In Sect. 54.2, some

related works are discussed. The EasyTest approach is

presented in Sect. 54.3. Section 54.4 addresses the EasyTest

tool. Finally, in Sect. 54.5, we discuss some conclusion and

future works.

54.2 Related Works

There are different techniques and tools proposed for the

automated generation of test cases. Some tools generate test

cases from source code, but as mentioned by Shamshiri et al.

[1] some tools did not present good test results for all the

required functionalities.

Several studies address the use of MBT technique to

generate test cases from different types of design and speci-

fication models. Nebut et al. [4] propose a test case genera-

tion approach from UML Use Case models and emphasize

problems with interpretation caused by the use of natural

language. Some researches address the generation of test

cases from UML Class models and Object Constraint Lan-

guage (OCL) specifications [5, 6].

Some works present techniques for transforming UML

activity diagrams into graphs to generate test cases [7, 8] and

provide tools to validate their proposals. However, these

studies did not show a way to integrate the technique with

other stages of a software process.

Pakinam et al. [3] extend the work of Linzhang et al. [7]

to provide an architecture for automated generation of test

cases from UML Activity Diagrams although they don’t
present an implementation of the proposal. Jena et al. [2]

propose an approach similar to the work of Pakinam et al. [3]

which uses a genetic algorithm to reduce the number of test

cases while keeping the same coverage.

Test case generation techniques are commonly evaluated

regarding the coverage criterion [9–11]. This criterion is one

of the key metrics for evaluating the techniques perfor-

mance. Other metrics such as time, cost, effort and genera-

tion complexity are also considered in the quality evaluation

of the generated test cases [12].

The set of generated test cases can be used before the

coding stage to produce defect-free code using the Test-

Driven Development (TDD) strategy. These test cases pro-

vide a meaningful representation of alternative flows and

branch conditions, enabling an easier application of the

TDD for programmers. Latorre [13] shows how Unit Test-

Driven Development (UTDD), a TDD subcategory, has a

good performance in learning and application with

programmers of different skill levels. Janzen and Saiedian

[14] highlight how automated tools for unit tests have

assisted improvements of TDD itself.

Based on the work of Linzhang et al. [7], the proposed

approach consists of a gray-box test technique. This tech-

nique deals with problems which used to be ignored by both

black-box and white-box techniques. It extends the logical

coverage criteria of white box technique and finds all the

possible paths from the model which describes the expected

behavior of an operation. Then it generates test cases which

can satisfy the path conditions expected by black-box

technique.

54.3 EasyTest Approach

This section presents an automatic approach to generate test

cases from UML activity diagrams using gray-box tech-

nique. The EasyTest approach comprises three phases, as

shown in Fig. 54.1: (1) importing activity diagrams in XMI;

(2) test cases generation; and (3) applying test cases.

54.3.1 Phase 1: Importing Activity Diagrams
in XMI

Phase 1 aims to obtain and extract relevant information,

about test case generation process, from XMI activity

diagrams and then provide it to Phase 2. These information

comprise properties of activities (vertices) and flows

(edges). XMI (XML metadata Interchange) standard is

defined by OMG (Object Management Group) and is widely

used for exchanging metadata between UML modeling

tools. Phase 1 uses activity diagrams drawn in different

UML modeling tools as long as they have been exported to

XMI according to OMG specification.

The EasyTest approach proposes interoperability with

different types of UML modeling tools, importing XMI

files in order to reuse activity diagrams previously drawn

to avoid rework. This strategy is cheaper in terms of effort

and time than those applied in other works that require the

manual design of activity diagrams in their tools [7, 8].

To illustrate the use of EasyTest approach in a real case of

development process, we adopt a case study based on a

Control System for Aedes Aegypti that is being developed

412 F.A.D. Teixeira and G. Braga e Silva

in an academic interdisciplinary project at Federal Univer-

sity of Vic¸ osa – campus Florestal. For Phase 1, an Activity

Diagram was produced to represent an use case from this

system that refers to an operation called “Create Complaint”
used by citizens to report an occurrence of Aedes Aegypti

vector in an infested area.

The activity diagram mentioned above is illustrated in

Fig. 54.2. This diagram was produced in Oracle JDeveloper

12c tool (version 12.1.3.0.0) and exported to XMI format.

It is important to note that some edges in the diagram

contain labels with textual stereotypes representing data flow

for that edge. For example, the edge “String:Reference

Point” contains the variable name “Reference Point” of the

type “String” from the activity “Get Reference Point” to

“Get Description”. Values like that are relevant for the

successful generation of test cases in Phase 2.

54.3.2 Phase 2: Test Cases Generation

Phase 2 is responsible for processing the XMI Activity

Diagram to find Test Paths and then generate the final test

cases. This phase was based on some techniques proposed by

[2, 3, 15].

The development of this phase is comprised by four steps

that are presented below as well as the applied improvements

proposed in this work.

Fig. 54.1 EasyTest Approach

Fig. 54.2 Activity diagram for

the operation “Create Complaint”

54 EasyTest: An Approach for Automatic Test Cases Generation from UML Activity Diagrams 413

54.3.2.1 Activity Dependency Table (ADT)
Generation

The first step of this phase is the ADT generation to present

inputs, outputs and dependencies of all activity diagram

elements. Figure 54.3 shows the generated ADT for the

Activity Diagram (Fig. 54.2). The elements are described

at each row of the table. The table columns present informa-

tion about element name, inputs, expected outputs,

dependencies relationships between elements and edges

values in some cases. The elements containing the term.

“Validate” in the ADT correspond to the Decision Nodes

of the Activity Diagram.

54.3.2.2 Activity Dependency Graph (ADG)
Generation

After the ADT generation the next step is the ADG genera-

tion. The symbols in ADT become vertices in ADG and

dependencies of each symbol become edges between the

corresponding vertices. The ADG generation is a significant

part of the EasyTest approach to gather test paths

corresponding to the activity diagram.

Figure 54.4 shows the generated ADG for the ADT

(Fig. 54.3).

54.3.2.3 Test Paths Generation
For the generation of Test Paths from the ADG generated

previously, we developed an algorithm based on the depth-

first search for graphs. The final set of Test Cases are defined

from the resulting test paths.

The strategy used to generate these Test Paths impacts

directly the test cases quality. The algorithm was built

aiming to satisfy the criterion “Transition Coverage”. As
defined in [9, 16], Transition Coverage intends to verify all

transitions in the activity diagram. The transition coverage

result is a ratio between the verified transitions and all

Activity Diagram transitions. This criterion guarantees that

ID

0 Initial Node

Get Address 0

2 Valid
Address(false)

Valid Address(false)

Valid
Address(true)

Valid Address(true)

Existing
Complaint(true)

Existing
Complaint(true)

Existing
Complaint(false)

Existing
Complaint(false)

Endorse
Complaint(true)

Endorse
Complaint(true)

Address

Address
Address

Address

Reference Point

Reference Point

Endorse Option

Endorse
Complaint(false)

Endorse
Complaint(false)

Endorse Option

Endorse Option

Description

Description

ID Complaint
ID Complaint

ID Complaint

ID Complaint

Comment
Comment

1

1
2

3

3

4

4

5
6

7

7

8

9

9
12

14
10

11

Validate Address

Get Existing Addresses

Get Reference Point

Get comment

Activity Final Node

Get Endorse Option

Get Description

Validate Existing
Addresses

Show Existing
Complaints

Validate Endorse
Option

Make New
Complaint

Increase Complaint
Priority

Update existing
complaint

1

2

3

4

5

6

7

8
9

10

11

12

13

14

Element Name Input Expected OutputDepen
dency

Fig. 54.3 Generated ADT

414 F.A.D. Teixeira and G. Braga e Silva

each loop condition is checked and an iteration is executed at

least one time. By this way, we also guarantee that other

coverage criteria as “Activity Coverage” and “Branch Cov-

erage” are satisfied. The “Activity Coverage” intends to

verify all Activity States in the Activity Diagram. The

“Branch Coverage” intends to verify all conditions branches
in the Activity Diagram so that all edges are checked.

Based on the “Transition Coverage” and using the

generated ADG (Fig. 54.4) the following Test Paths were

obtained:

Test Path 1: 0, 1, 2, 3, 4, 5, 7, 9, 11, 14, 13

Test Path 2: 0, 1, 2, 3, 4, 5, 7, 9, 12, 11, 14, 13

Test Path 3: 0, 1, 2, 3, 4, 6, 8, 10, 13

Test Path 4: 0, 1, 2, 1, 2, 3, 4, 5, 7, 9, 11, 14, 13

Another criterion that could be considered is “All Activ-

ity Path Coverage”. This criterion intends to verify all dif-

ferent activity sequences from the Initial Node to the Final

Node. Considering this criterion for the ADG shown in

Fig. 54.4 we would get six Test Paths. The choice of the

“Transition Coverage” was based on the fact that if the loop

is executed at least one time and a Final Node is reached,

other tests for the same loop condition are not required.

Thereby, the “Transition Coverage” can provide the same

coverage with fewer test cases.

54.3.2.4 Test Cases Generation
The last step of Phase 2 is the test cases generation from the

ADT and Test Paths. According to the number of Test Paths,

this step generated four Test Cases for the given Example.

Figure 54.5 shows one of these generated test cases in Phase

2 of the EasyTest approach. It can be observed that all input

and output values of each path vertice are detailed as well as

the input and output values of the test case.

0 1

2

3

4 5

7

9

6

8

10

13
14

11
12

Fig. 54.4 Generated ADG

Fig. 54.5 Example of a

generated test case

54 EasyTest: An Approach for Automatic Test Cases Generation from UML Activity Diagrams 415

54.3.3 Phase 3: Applying Test Cases

Phase 3 has the purpose of applying the generated test cases

in the test execution and coding stages. In the EasyTest

approach, the resulting test cases can be used to verify or

produce code in any programming languages. Different Test

Cases Execution tools can be used in this approach as long as

a mapping has been designed to adapt the test cases for the

code structure used in the selected tool.

Phase 3 comprises two usage scenarios within the soft-

ware development process: before and after the coding

stage. The possibility of application in different scenarios

allows a better adherence of the testing activity in the soft-

ware development process. The two different scenarios are

discussed below.

54.3.3.1 Before Coding Stage: Test Driven
Development (TDD)

In this scenario, TDD is applied to build defect-free code.

Once the test cases have been generated, in addition to a

meaningful representa-tion of alternative flows and branch

conditions, the process of developing code becomes much

simpler because the code structure will be guided by these

resources. As shown by [13], When test driven development

is applied with unit tests, we have a good performance in

learning and application with programmers of different skill

levels.

Although in the TDD context models are not usually

created, the EasyTest approach can provide advantages in

terms of time and effort because of the automatic generation

of test cases. In addition, the approach can help

programmers to produce defect-free code from the begin-

ning of the development software process because they can

use test cases to verify all functionalities and their flows,

thus compensating for the time required to develop the

activity diagrams.

To verify this scenario, the authors made a quick single

experiment to develop a defect-free code applying TDD for

the operation “Create Complaint”. For the experiment, the

code was produced based on test cases generated by the

approach and the activity diagram (Fig. 54.2). From these

resources, it was possible to quickly identify conditional and

iterative blocks as well as the possible values for each flow.

For the experiment, we used EClEmma, a free Java code

coverage tool. This tool was used to evaluate the line cover-

age of the produced code and a coverage of nearly 92% was

achieved. This result highlights the quality of the generated

test cases and how much the code is compatible with the

activity diagram. However, other experiments will be made

to check the results for different contexts.

54.3.3.2 After Coding Stage: Exporting Generated
Test Cases

In this scenario, we have an activity diagram and a code

made for it. The source code is used to verify if it matches

with the results of the test cases execution, that is, if the code

execution logic is consistent with the activity diagram

expected behavior. Otherwise, it is necessary to evaluate

the changes required in the code to satisfy the modeling

specifications. As long as the code is compatible with the

model we have a valid test for all code functionalities and

flows.

Also, we have an automatic generation of test code that

comprises the generated test cases for execution in any Test

Execution Tool. To achieve this, it is required a mapping

between the generated test cases and the technical structure

of the selected tool.

Once the activity diagram is source code independent, we

assign generic names to classes and operations which will

later be adjusted by testers/programmers.

54.4 EasyTest Tool

To verify the EasyTest approach, we developed a Java tool

called “EasyTest tool” that provides automatic support for

the Phases 2 and 3. According to the Phase 1 of the approach,

EasyTest Tool uses activity Diagrams represented in XMI

files.This tool version provides, in step “Adapting Test

Cases”, test cases for Java through a mapping for integration

with the JUnit framework.

The EasyTest tool provides an interface where for each

generated test cases, specific instructions and fields are

displayed so the tester/programmer can insert the required

test data. In addition, the interface displays a dynamic graph

highlighting corresponding Test Paths for each Test Case to

support the filling of fields by the user. With these resources

the tool can generate a code for JUnit capable to test all

functionalities and flows, reducing efforts and time of creat-

ing test cases and increasing quality of test cases in spite

programmers of different skill levels.

54.5 Conclusion and Future Work

This work presented the EasyTest approach of automatic test

cases generation from UML activity diagrams and addressed

the use of these test cases in two scenarios: before and after

the coding stage. For the first scenario, the approach supplies

TDD programmers with relevant information about the func-

tionality logic in order to ease the process of developing a

416 F.A.D. Teixeira and G. Braga e Silva

defect-free code. For the second scenario, the approach

proposes an automatic generation of test code that comprises

the test cases to execute them in any Test Execution Tool. To

verify this scenario, the EasyTest tool was developed to

provide interoperability with JUnit.

The EasyTest is based on gray-box technique, allowing

the identification of problems which used to be ignored by

both black-box and white-box techniques as it extends the

logical coverage criteria and finds all the paths from the

designed model, which describes the expected behavior of

an operation.

Based on some experiments and observations, the

EasyTest approach can provide some gains in terms of

cost, effort and time. This gains can be observed in contexts

such as: reuse of activity diagrams previously designed;

earlier detection of defects before coding stage; support for

the defect-free code development; and increase in the test

case quality because the use of a gray-box technique.

For future works, we intend to make more experiments

for the two scenarios of the EasyTest Phase 3, involving a set

of senior testers/programmers to evaluate and refine the

EasyTest approach.

References

1. Shamshiri, S., Just, R., Rojas, J. M., Fraser, G., McMinn, P., &

Arcuri, A. (2015). Do automatically generated unit tests find real

faults? an empirical study of effectiveness and challenges (t). In

Automated software engineering (ASE), 2015 30th IEEE/ACM
international conference on (pp. 201–211). Lincoln, Nebraska:

IEEE.

2. Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014). A novel

approach for test case generation from uml activity diagram. In

Issues and challenges in intelligent computing techniques (ICICT),
2014 international conference on (pp. 621–629). Ghaziabad: IEEE.

3. Boghdady, P. N., Badr, N. L., Hashem, M., & Tolba, M. F. (2011).

A proposed test case generation technique based on activity

diagrams. International Journal of Engineering & Technology
IJET-IJENS, 11(03), 35–52.

4. Nebut, C., Fleurey, F., Le Traon, Y., & Jezequel, J.-M. (2006).

Automatic test generation: A use case driven approach. IEEE
Transactions on Software Engineering, 32(3), 140–155.

5. Chang, C.-K. & Lin, N.-W. (2015). Utgen: A black-box method-

level unit-test generator for junit test-platform. In Trustworthy
systems and their applications (TSA), 2015 second international
conference on (pp. 1–7). Hualien: IEEE.

6. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N.,

& Utting, M. (2007). A subset of precise uml for model-based

testing. In Proceedings of the 3rd international workshop on
advances in model-based testing (pp. 95–104). London: ACM.

7. Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., &

Z. Guoliang (2004). Generating test cases from uml activity dia-

gram based on gray-box method. In Software engineering confer-
ence, 2004. 11th Asia-Pacific (pp. 284–291). Busan: IEEE.

8. Mingsong, C., Xiaokang, Q., & Xuandong, L. (2006). Automatic

test case generation for uml activity diagrams. In Proceedings of the
2006 international workshop on automation of software test
(pp. 2–8). Shanghai: ACM.

9. Chen, M., Mishra, P., & Kalita, D. (2008). Coverage-driven

automatic test generation for uml activity diagrams. In Proceedings
of the 18th ACM great lakes symposium on VLSI (pp.139–142).
Orlando: ACM.

10. Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., & Li, X. (2009).

Uml activity diagram-based automatic test case generation for java

programs. The Computer Journal, 52(5), 545–556.
11. McQuillan, J. A., & Power, J. F. (2005). A survey of uml-based

coverage criteria for software testing. In Department of computer
science. Kildare: NUI Maynooth Co..

12. Nirpal, P. B., & Kale, K. (2011). A brief overview of software

testing metrics. International Journal on Computer Science and
Engineering (IJCSE), 3(1), 204–211.

13. Latorre, R. (2014). Effects of developer experience on learning and

applying unit test-driven development. IEEE Transactions on Soft-
ware Engineering, 40(4), 381–395.

14. Janzen, D. S., & Saiedian, H. (2005). Test-driven development:

Concepts, taxonomy, and future direction. Computer, 38(9), 43–50.
15. Boghdady, P. N., Badr, N. L., Hashim, M. A., & Tolba, M. F. 2011.

An enhanced test case generation technique based on activity

diagrams. In Computer engineering & systems (ICCES), 2011
international conference on (pp. 289–294). Cairo: IEEE.

16. Swain, R. K., Panthi, V., & Beher, P. K. (2013). Generation of test

cases using activity diagram. International journal of computer
science and informatics, 2(2), 2231–5292.

54 EasyTest: An Approach for Automatic Test Cases Generation from UML Activity Diagrams 417

	Chapter 54: EasyTest: An Approach for Automatic Test Cases Generation from UML Activity Diagrams
	54.1 Introduction
	54.2 Related Works
	54.3 EasyTest Approach
	54.3.1 Phase 1: Importing Activity Diagrams in XMI
	54.3.2 Phase 2: Test Cases Generation
	54.3.2.1 Activity Dependency Table (ADT) Generation
	54.3.2.2 Activity Dependency Graph (ADG) Generation
	54.3.2.3 Test Paths Generation
	54.3.2.4 Test Cases Generation

	54.3.3 Phase 3: Applying Test Cases
	54.3.3.1 Before Coding Stage: Test Driven Development (TDD)
	54.3.3.2 After Coding Stage: Exporting Generated Test Cases

	54.4 EasyTest Tool
	54.5 Conclusion and Future Work
	References

