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Abstract

Databases and Distributed Systems have a fundamental relevance in Computer Science;

they are usually presented in courses where the high-level of abstraction characterizes the

teaching and learning processes. Consequently, the teaching method needs to evolve to

fulfill the present requirements. Therefore, grounded in these concepts, the main goal of this

paper is to introduce a teaching methodology via benchmark tests. Our methodology was

conducted using the Hadoop framework, and it is innovative and proved effective. Our

methods allow students to be exposed to complex data, system architecture, network

infrastructure, trending technologies and algorithms. During the courses, students analyzed

the performance of some computational architectures through benchmark tests on local and

on the cloud. Along with this scenario, they evaluate the processing time of each architec-

ture. As a result, our methodology proved to be a support learning method, which allows

students to have contact with trending tools.

Keywords

Learning methodology � Distributed systems � Hadoop � Student-centered learning

48.1 Introduction

The Big Data concept emerged from data scalability

problems. Such term describes methods and paradigms of

data generation, collection, and analysis in a methodological

framework. Which is responsible for dealing with high

scalability, reliability and fault tolerance on data [1]. Big

Data is still challenged by network infrastructure and data

collection. Its frameworks are supported by tools as Hadoop

MapReduce and Hadoop Distributed File System (HDFS),

that appears either in commercial solutions and in

researches [2]. The MapReduce provides support to the

analytical processing of the data while the HDFS performs

a distributed file-block storage [3].

An examination of the factors that affect the distribution

of the data is warranted. In this sense, Khalid, Afzal, and

Aftab [4] and Souza et al. [5] formalized some of these

arguments, but none of them focused on computational

models as a student-centered teaching methodology. As a

consequence, this paper introduces a teaching and learning

methodology that focuses on assisting students in the under-

standing of Databases, Distributed Systems, and other

related topics. Our approach has the aim of clarifying theo-

retical concepts. It was conducted using the Hadoop frame-

work as a learning tool; and, though it, students are exposed

to complex data, system architectures, network infrastruc-

ture, trending technologies and algorithms.

Our results are based on explaining the structure of our

course as well as the description of our methods. In order to

validate such methods, we show a case study, where one of

our students performed a series of tests with the purpose of
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building a cluster. We address this methodology to under-

stand how much the incomprehension of basic concepts can

negatively influence students that are exposed to trending

technologies and its abstractions.

Accordingly, this paper is organized as follows:

Sect. 48.2 presents some related works; Sect. 48.3 presents

the course architecture, a brief description of relevant server

layouts, and an overview of Hadoop; Sect. 48.4 presents our

methodology and a case study that shows how it behaves in a

real scenario; at last, conclusions come in Sect. 48.5.

48.2 Related Works

From the usage of Hadoop as a learning tool, we can derive

two approaches to engaging it in the learning process. The

first one describes the search for meaning to the data, in other

words, data mining processes. The other one focus on the

architecture that describes the hardware where Big Data

tools are employed; through it, students are encouraged to

search for better configurations in the framework, as well as

to improve its architecture while seeking for better perfor-

mance. Given these approaches, our assumption is that these

two can turn Hadoop into a learning tool.

The literature introduces former works, which focused on

teaching-learning methodologies for different types com-

puter science courses. This is the case of Souza et al. [6]

which introduces a novel methodology for courses of Formal

Languages and Automata Theory, while Souza et al. [7]

introduced a continuous methodology that covers all the

Theoretical Computing courses. Also, there is Correia

et al. [8] which focused on new approaches for teaching

data structures and algorithms for undergraduate students.

However, when comes to methods for introducing trending

technologies like Hadoop, there is a lack of a clear and

precise methodology.

Consequently, the aimed result of our method is to teach

how to introduce the process of evaluating the performance

of a system, by guiding students in choosing the most suit-

able model for each particular cluster-planning case. In this

sense, the first challenge is to transform Hadoop into a

learning tool, which will enable the students’ formation as

better and up-to-date professionals.

48.3 Course Architecture

The relevance of Big Data led us to suit our course in a

teaching model that can introduce trending topics to

students. As it is known, there are a variety of computational

models, from centralized to distributed. Many of them can

be used to deploy the Hadoop tool. Consequently, it is

important to review the literature and understand how each

one contrasts the others. Thus, we divided our course into

topics of: Scale-up architecture; Scale-out architecture;
Client–Server model; Client–Server with Master-Slave

model; and Hadoop server-roles. In the following, we pres-

ent a summarized view of our course.

48.3.1 Course Topics

Coulouris et al. [9] defined a distributed system as the one

where computers are independent, but they work for a

common result; such computers are attached to a network

where each one communicates with each other, coordinating

actions by exchanging messages. Contrariwise, centralized

computing is not divided at all, and every resource is located

on a single server, which can be a server or a client to others.

The centralized model does not face any network problems

like latency and delayed packages because they do not need

to be connected to a network to complete a task. Given these

concepts, models, and architectures, Big Data can be

generalized on scale-up and scale-out, which are stated in

the following according to Henrique and Kaster [10].

48.3.1.1 Scale-Up Architecture
This architecture describes the server that centralizes

hardware, which increases the processing performance,

memory capability, and storage management. Specifically,

scale-up servers make use of high throughput, avoiding

latency and network delays. Such architecture implies in a

limit where a single server cannot centralize and manage all

resources. The closer to its limit higher is the monetary cost,

and at this point, the distribution is the answer to improve the

performance [4].

48.3.1.2 Scale-Out Architecture
The scale-out architecture focuses on model expansion,

performing a distributed processing and loading balance. In

this architecture, each computer manages their memory,

clock, and storage. However, they work for a single purpose,

and they can share their resources to solve common

problems. That is because of the distribution, which makes

the processing capacity higher. Most of the Big Data

frameworks, such as Hadoop, are deployed through this

architecture. The meaning is the fault tolerance factor is

increased by the high availability of the data. Before

introducing Hadoop and its roles, we introduce to students

two models derived from the scale-out one. The first one is

the Client-Server and the other one Client-Server with

Master-Slave. These concepts enable the understanding of

how works the interaction of the computers within a given

architecture.
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Client–Server Model

A server is a software on looping that is running on a

computer. Such software is waiting to share their resources.

A client, on the other hand, is an intermittent process that

needs to be intentionally started on a host computer. This

architecture is depicted by Fig. 48.1.

Client–Server with Master-Slave Model

As well as the previous model, the idea of servers and clients

are the same. The difference between them is how the

processes communicate with each other and how they are

distributed. This model is unidirectional, and it usually has

more slaves than masters. The master is the only process that

receives requests from clients; slaves share information nei-

ther to external clients nor to each other. The slave works as

a server process, but it just replies the master’s requests, and
the master works as a client and as a server at the same time.

As a client, the master makes job requests to the slaves, and

as a server, the master receives external requests and coordi-

nate all slaves. This architecture is depicted by Fig. 48.2.

48.3.2 Hadoop Framework

Hadoop is a framework that focuses on processing a large

amount of data. It was designed to solve problems of data

scalability and complex analysis, which depends on a stable

model for significant processing tasks that cannot be entirely

performed on database systems [10]. When Hadoop is

deployed on a grid or cluster, its information has more than

one copy stored on different servers, increasing the data

availability. In this scenario, when a server is down, the

first server that has the requested information reply to the

master’s request. Its architecture was planned to be indepen-
dent and to solve their integrity and scalability problems.

The idea behind it focuses on the problem solution and not

on the environment planning.

Each computer on a cluster/grid hosts a standalone frame-

work that is managed by the master, and each one controls a

distinct group of assigned roles. That is, the master hosts the

NameNode and the JobTracker/MapReduce, as well as the

slaves host the DataNode/HDFS and the TaskTracker/

MapReduce. Hadoop can work with more then one

DataNode and TaskTracker on different slaves, as well as

SecondaryNameNode, but just one NameNode and

JobTracker on the master server. These roles are briefly

described in the following:

(A) JobTracker – divide and distribute problems;

(B) TaskTracker – solves small problems;

(C) DataNode – stores the file blocks;

(D) Secondary NameNode – perform assistance;

(E) NameNode – manage connections and requests, stores

the file block list that contains the paths for each

stored file.

Following, we introduce our methodology, presenting the

most important points that should be considered by teachers

in order to obtain good results.

Fig. 48.1 Representation of the Client-Server model

Fig. 48.2 Representation of the Client-Server with Master-Slave

model
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48.4 Proposed Methodology

Our methodology consists of allowing the students to

acquire the practical knowledge from the theoretical one.

Such practical knowledge is defined as an approach to

identify a better deployment model to Hadoop via bench-

mark. The benchmark has the aim to enhance the system

performance, and on our methodology, we used it as a way to

demonstrate to students the difference between computa-

tional architectures. The motivation of our work is the

trending topics, which are not entirely explored by the

students. Consequently, with this approach, we can present

a single topic with new teaching strategies, contributing to

the robustness of knowledge.

There are several conditions to be considered before

choosing the cluster architecture. To this end, there is the

need to evaluate the performance of each possible scenario

before making a choice. As a consequence, we need to cause

the same load and stress in each architecture and perform

metrical analysis though benchmarks.

As a first step, we instruct our students to dismantle all the

available computers and to build groups of computers with

similar hardware. In the face of more than one similar group,

they evaluated each one singularly. Subsequently, for each

group, we instructed them to perform a stress test, seeking

for information about overheat and overhead of the proces-

sor. To this end, we used TeraSort method. Such method

allows us to take advantage of all cores of the processors in

the task of sorting a terabyte file of numbers.

The students were encouraged to remove from the cluster,

machines with less than two terabytes of storage space or

without gigabyte Ethernet driver. This step is particular to

each case, but it is an important one; without it, a cluster

could have an inferior performance when the computers try

to balance its hardware to match an inferior computer.

When the stress test is complete, it is important to retest

different distributions. The students used Open Source,

Enterprise, and Professional ones. At this point, it is impor-

tant to have a group discussion with the students to analyze

each group of machines. Once they have selected the ones

that will be in the cluster, they worked to guarantee the

lowest CPU time, which are the ones that may achieve a

better platform for data analysis. In this sense, they tested

different computing architectures among scale-up, scale-out

and geographically distributed server.

The others distributions were tested the same as the first,

using a benchmark. Once we already tested processing time,

core capability and the hard drives, the students checked the

processing time considering the network impact. For that,

they made network attacks to the cluster computers using

Distributed Denial of Service – DDoS, making some of them

fail in the middle of the test. With the computers failing, the

Hadoop should reach the next computer, with the requested

information, and that will influence in the processing time by

causing the abortion of the job.

At the end of the test, there should be sufficient informa-

tion to make a choice about the machines to be used, the

distribution of Hadoop and its computing architecture. To

validate the obtained results, the collected information

should be compared to other clusters of similar hardware.

To illustrate the usage of our methodology and its steps,

we demonstrate at next it appliance and the decisions made

by a student that with our guidance was able to build a

cluster.

48.4.1 Case Study

To perform this case study, it was used 30 tower computers.

The hardware that was available were not uniform, and this

was the first problem faced. To overcome it, the computers

were disassembled in order to separate the common hard-

ware and to allocate it to new machines. As a result, it was

achieved different processing architectures, half AMD, and

the other half Intel. By using a stress test, more specifically

the TeraSort, it was decided to use the Intel architecture.

That was because the Intel hardware does not overheat as

easily as the AMD one.

Subsequently, it was proceeded with investigations about

the distribution of Cloudera,1 Hortonworks2 and MapR3 of

the Hadoop. In this sense, it was required to differentiate

each one from each other by testing them. Such test was

made by using Pi Estimator. This method requires two input,

the number of mappings and another one for the samples.

For each hundred looping, it was increased the exponential

factor until it reaches five hundred and twelve mappings and

one billion of samples.

The test was estimated to be completed in 36 hours for

each distribution. For each one, the output was not consid-

ered. This is because the tests focused just on the processing

time. Also, time is crucial to fit performance to the cluster.

As so, the first test was on the Hortonworks; the test took

34 hours and did not present any error. The second test was

on the MapR. The test took 53 hours and returned one error

message, omitted almost 24 results, kept on looping on two

experiments and aborted the Pi Estimator at the last step of

the test. The last test was on Cloudera where the test took

36 hours and did not present any error. The benchmark

results were divided by collection cycle, and they are

depicted in Fig. 48.3a, b, c.

1 www.cloudera.com
2www.hortonworks.com
3www.mapr.com
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For a complete analysis, it was performed the same test in

the Apache Hadoop, which results are detailed in the

Table 48.1. Analyzing the results, it was concluded that

among the different platforms of data management, the

usage of Apache Hadoop was faster than others. That is

because it took less than 30 hours to complete the tasks

without a single error. In a superficial analysis, it is possible

to list some possibilities of why this happened: the network,

task starvation, deadlock, and others.

Lastly, to quantify the cloud server performance on

benchmark tests, it was deployed a few servers on a VPS

to compare them together with a geographically distributed

one. It is important to note that most of the cloud servers are

centralized on different datacenters. Consequently,

computers might be faster and the results not straightly

comparable.

However, for each cloud benchmark it was plotted the

time spent on each Pi Estimator cycle on dispersion graphs,

which are depicted on Fig. 48.4a, b, c. The cycles of each

analysis showed that the distributed and the centralized

model, obtained similar values, alternating between which

is faster. Further, the geographically distributed model
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(a) Hadoop from Cloudera.
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(b) Hadoop from Hortonworks.
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(c) Hadoop from MapR.

Fig. 48.3 Benchmark of the Hadoop distributions. (a) Hadoop from Cloudera. (b) Hadoop from Hortonworks. (c) Hadoop from MapR
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provided worst times in all cycles. The centralized results

show an almost continuous processing time in eighty

seconds. The distributed one shows an interesting time

difference in all cycles. Taking into account this time varia-

tion, the highest processing time of it is almost half of the

one from the centralized model. Finally, the geographically

distributed model was able to be tested up to cycle number

six (T6). On the other cycles, the exit rate prevented the

execution of the test.

Considering the described process, at the end of tests, it

was collected sufficient data to suppose about investment in

local or cloud server. The described case points to the fact

that the investment could be reverted to a highly scalable

cloud server that could deploy more slaves as needed, not

demanding investment in local infrastructure.

48.5 Conclusions

In this paper, we presented a methodology based on bench-

mark analysis to guide the learning on courses of Distributed

Systems, Data Bases and Computers Network for undergrad-

uate students, by acquiring knowledge of the most suitable

architecture for Hadoop.

We theorize the process of choosing a computational

model, which implements Hadoop as teaching approach,

where we seek for the knowledge construction to allow

students to make the concept concrete. According to our

proposal, for each step of benchmark analysis, the student

needs to define time metrics across a reliable test method,

and they need to collect and analyze statistically all results to

be able to suppose about the best deployment model for each

particular case.

Besides the benchmark result, the student can interact

directly with the system and the hardware, and this is always

important to understand a real system and how it works. The

method helps to connect the student with different

distributions and architecture models of an application,

directly contributing to a decision about local and cloud

investment.

This approach can open possibilities to make questions

about what is the best platform, the best system or software

architecture, encouraging new proposals, like our previous

works [5, 11]. We developed our methodology while

performing two similar studies in different applications,

applying it in all research in development at our research

group. Our evaluation consisted in confronting the results of

each common application in various scaling methods at

local and in the cloud. We decided to perform it as a

learning methodology because it has a strong influence

on past researches made by us and by others in our group.

Table 48.1 Apache benchmark results (values in seconds)

Apache Hadoop benchmark results

Cycle Mean (μ) Standard deviation Variance (σ2)

T0 51.60 1.60 1.70

T1 51.70 1.20 0.90

T2 49.60 0.90 0.80

T3 48.60 1.30 0.30

T4 50.40 1.20 0.00

T5 56.50 1.20 0.00

T6 73.20 2.20 0.60

T7 85.40 0.50 0.20

T8 110.30 2.10 0.08

T9 1098.70 6.30 0.70

Distributed cloud server results

Cycle Mean (μ) Standard deviation (σ) Variance (σ2)

T0 16.86 1.64 2.71

T1 17.57 1.24 1.55

T2 17.58 0.90 0.81

T3 17.94 1.31 1.72

T4 20.88 1.29 1.67

T5 26.82 1.27 1.63

T6 41.97 2.24 5.05

T7 293.73 5.48 30.00

T8 568.81 9.91 98.28

T9 6316.61 97.29 9465.80

Centralized cloud server results

Cycle Mean (μ) Standard deviation (σ) Variance (σ2)

T0 14.49 0.47 0.22

T1 15.46 0.30 0.09

T2 16.46 0.48 0.23

T3 16.47 1.60 2.57

T4 26.50 0.35 0.12

T5 46.54 2.51 6.30

T6 79.68 1.77 3.15

T7 109.20 2.74 7.49

T8 203.97 3.10 9.58

T9 1766.34 16.59 275.25

Geographically distributed cloud server results

Cycle Mean (μ) Standard deviation (σ) Variance (σ2)

T0 39.23 4.93 24.32

T1 291.50 78.44 6152.84

T2 125.43 47.62 2267.97

T3 986.29 434.80 189055.37

T4 601.16 243.69 59389.66

T5 2260.01 790.81 625395.16

T6 4390.56 1070.37 1145706.50
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