
Rate Adjustment Mechanism for Controlling
Incast Congestion in Data Center Networks 13
Prasanthi Sreekumari

Abstract

Data Center Transmission Control Protocol (DCTCP) gained more popularity in academic

as well as industry areas due to its performance in terms of high throughput and low latency

and is widely deployed at data centers nowadays. According to recent research about the

performance of DCTCP, the authors found that most of the times the sender’s congestion
window reduces to one segment which results in timeouts. To address this problem, we

modified the calculation of sender’s congestion window size for improving the throughput

of TCP in data center networks. The results of a series of simulations in a typical data center

network topology using Qualnet, the most widely used network simulator demonstrates that

the proposed solution can significantly reduce the timeouts and noticeably improves the

throughput by more than 10% compare to DCTCP under various network conditions.

Keywords

TCP � Data Centers � Timeouts

13.1 Introduction

In recent years, modern data centers host a variety of

services and applications such as web search, social

networks and scientific computing for various private,

non-profit and government systems [1]. Figure 13.1 shows

the conventional Data Center Network (DCN) architecture

for data centers adapted from Cisco [2]. The typical data

center consists of core, aggregation and access layers.

Among that, core layer provides the high-speed packet

switching for all incoming and outgoing flows of the data

center. In addition, it provides connectivity to multiple

aggregation modules and serves as the gateway to the cam-

pus core. The aggregation layer defines the Layer 2 domain

size and has the responsibility of aggregating the thousands

of sessions leaving and entering the data center [3].It also

provides value added services such as load balancing,

firewalling, offloading to the servers across the access layer

switches [3]. The aggregation layer connects to the core

layer using Layer-3 10 Gigabit Ethernet links. The traffic

in the aggregation layer primarily consists of core layer to

access layer and access layer to access layer. Furthermore,

the access layer operates in Layer 2 or Layer 3 modes and

provides the physical level attachment to the server

resources.

For communication between nodes, the vast majority data

centers use Transmission Control Protocol (TCP) [4]. How-

ever, recent research has shown that the TCP does not work

well in the unique data center environment [5]. One of the

main reasons for the TCP throughput collapse in DCN is

TCP Incast congestion. Incast congestion is a catastrophic

loss in throughput that occurs when the number of senders

communicates with a single receiver by sending data

increases beyond the ability of an Ethernet switch to buffer

packets. It leads to severe packet loss and consequently

frequent TCP timeouts and thereby reduces the performance

of TCP.

P. Sreekumari (*)

Department of Computer Science, Grambling State University,

Grambling, LA, USA

e-mail: s.prasanthy@gmail.com

Springer International Publishing AG 2018

S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent

Systems and Computing 558, DOI 10.1007/978-3-319-54978-1_13

95

mailto:s.prasanthy@gmail.com

Recently, few attempts have been made to increase the

TCP performance in DCN, but still the problem is not

completely solved. Among the existing solutions, DCTCP

gained more popularity in academic as well as industry areas

due to its better performance in terms of throughput and

latency. DCTCP uses very small buffer space compared to

other existing solutions. As a result, the sender’s congestion
window size of DCTCP remains very small which leads to

TCP timeouts. In this paper, by considering the limitation of

DCTCP, we modified the congestion window adjustment

scheme of DCTCP and proposed an efficient rate adjustment

method which is capable to control Incast congestion and

thereby increase the throughput of TCP. The results of a

series of simulations in a typical data center network topol-

ogy using Qualnet demonstrates that the proposed solution

can significantly reduce the timeouts and noticeably

improves the performance compare to DCTCP in terms of

throughput under various network conditions.

The remainder of the paper is organized as follows. In

Sect. 13.2, we present the related work. Section 13.3

describes the details of proposed algorithm. In Sect. 13.4,

we describe our experimental methodology and present our

results. Finally, Sect. 13.5 concludes our work.

13.2 Related Work

The performance degradation of TCP in data center

networks mainly due to Incast congestion. This issue has

already attracted the attention of many researchers in our

research community. In this section, we survey the solutions

proposed recently for controlling TCP Incast congestion in

data center networks.

Data Center TCP (DCTCP) [6], a variant of TCP

designed to operate with very small queue occupancies,

without loss of throughput. DCTCP achieves the goals

namely high burst tolerance, low latency and high through-

put primarily by reacting to congestion in proportion to the

extent of congestion. DCTCP propose a simple marking

scheme by modifying the Explicit Congestion Notification

[ECN] that helps the sources react to network congestion.

TCP Fast [7] is a delay based congestion control algorithm

proposed for controlling Incast congestion. This main aim of

TCP Fast is to maintain a certain queue length at the switch

buffer for each flow and keeps the total queue length below

the buffer size. In that way, TCP Fast can avoids the

droptails over switch buffer and thereby controls the TCP

Incast congestion problem.

Fig. 13.1 Conventional data

center architecture [2]

96 P. Sreekumari

Incast Congestion Control for TCP (ICTCP) [8] a system-

atically designed protocol to perform congestion control at

the receiver side by adjusting the receive window proac-

tively before packet loss occurs. To perform congestion

control at the receiver side since it knows the throughput

of all TCP connections and the available bandwidth, ICTCP

uses the available bandwidth on the network interface as a

quota to co-ordinate the receive window increase of all

incoming connections. In addition, ICTCP use the per-flow

state to finely tune the receiver window of each connection

on the receiver side.

Another protocol proposed for solving the TCP Incast

problem is the Incast Avoidance TCP (IA-TCP). IA-TCP is

a rate-based congestion control algorithm that controls the

total number of packets injected into the network pipe to

meet the bandwidth-delay product [9]. IA-TCP was designed

to operate at the receive side like ICTCP, which controls

both the window size of workers and the delay of ACKs. To

control the sending rate of packets, IA-TCP used the mea-

surement of link capacity i.e., the link rate of the interface

connected to the top of the rack switch, and it is obtained

from the transport layer. In addition, to control the window

size of each worker that employs the standard TCP, the

receiver exploits the advertisement field in the ACK header.

TCP-FITDC [10] is a delay-based TCP congestion con-

trol algorithm proposed for reacting to congestion states of

conventional TCP more accurately. TCP-FITDC utilized the

modified Congestion Experienced (CE) codepoint of packets

defined in DCTCP to categorize the acknowledgments

(Acks) into two classes, marked Acks and Unmarked Acks.

By analyzing the differences between these two Acks,

TCP-FITDC can estimate the network condition more accu-

rately. The main goal of TCP-FITDC is to achieve low

latency, high throughput and fast adjustment for TCP when

applied to data center networks.

In [11], the authors introduced a new transport protocol

which provides Bandwidth Sharing by Allocating Switch

Buffer (SAB) to determine the congestion window of each

flow. SAB has two main advantages. First, it converges fast.

Second, SAB rarely loses packets. This feature can solve the

goodput collapse of TCP Incast as well as the unfairness of

TCP Outcast since they are both caused by large numbers of

packet losses. SAB modifies the sender, switch and the

receiver. In addition, SAB proposes a mechanism for

adjusting the size of sender’s congestion window value

which is less than one. Although these algorithms can miti-

gate the problem of TCP Incast issue, DCTCP gained more

popularity in academic as well as industry areas. However, in

DCTCP, the size of congestion window reduced to one

frequently which leads to delayed Ack timeouts. For

addressing this issue of DCTCP, we propose a new algorithm

by adjusting the size of sender’s congestion window and

thereby control the TCP Incast congestion in data center

networks.

13.3 Proposed Algorithm

Sending rate adjustment is an important factor for

controlling TCP Incast congestion and thereby improving

the performance of TCP in data center networks. In data

center networks, the queue length will increase rapidly in a

short time due to the concurrent arrival of burst of flows from

multiple senders to a single receiver [12]. As a result, switch

marks the packets continuously which leads to reduce the

sender’s congestion window into half of its current size.

In ECN enabled TCP, whenever the sender receives an

ECN marked Ack packet, it reduces the size of congestion

window into half even if the network is less congested (in the

case of single ECN marked Ack packet). This will degrade

the performance of TCP. For avoiding the above degrada-

tion, DCTCP propose a fine grained reduction function for

reducing the size of congestion window based on the value

of α. Whenever the sender receives an Ack with congestion

experienced code point, the DCTCP sender reduces the size

of congestion window using the Eq. (13.1),

cwnd cwnd � 1� α=2ð Þ ð13:1Þ

where cwnd is the size of congestion window and the value

of α is calculated from the fraction of marked packets

(F) and weight factor (g) according to the Eq. (13.2)

α ¼ 1� gð Þ αþ g� F ð13:2Þ

If the value of α is near zero, it indicates that the network

is congested lightly. In this case DCTCP reduces the size of

congestion window according to Eq. (13.1). However, if the

value of α is equal to one, it indicates that the network is

highly congested. As a result, DCTCP reduces the sender’s
congestion window like normal TCP. The above adjustment

of congestion window improves the DCTCP sender to con-

trol the buffer occupancy at the switch and thereby increases

the throughput of data center networks. Recent study [13]

shows that one of the main problems in the congestion

window estimation of DCTCP is in the choice of α
initialization value. If we set zero to α, the sender may

suffers from frequent packet losses and retransmission

timeouts. On the other hand, if we set one to α, the sender

13 Rate Adjustment Mechanism for Controlling Incast Congestion in Data Center Networks 97

can minimize the queuing delay but the amount of packets to

be transferred is much smaller. As a result, the throughput of

DCTCP will be reduced.

By considering the above limitations of DCTCP, we

modified the DCTCP algorithm particularly the adjustment

of sender’s congestion window and propose a rate adjust-

ment mechanism for controlling the TCP Incast congestion.

When the sender receives the Ack with congestion notifica-

tion, the sender checks the current network condition based

on the outstanding packets and adjust the size of congestion

window according to the Eq. (13.3),

CWstart ¼ α CWmax-CWminð Þ
� Cwcurrent ð13:3Þ

where α is the number of outstanding packets in the network,

CWcurrent is the current size of congestion window at the

time of receiving the ack packets with congestion notificatio,

CWmax and CWmin are the maximum and minimum size of

congestion window adjusted before receiving the congestion

notification. When the sender receives the Ack of all out-

standing packets, sender adjust the sending rate according to

Eq. (13.4),

CWend ¼ CWcurrentþ β CWmax-CWminð Þ ð13:4Þ

where the value of β is 02. CWstart and CWend are the

starting and ending points of congestion.

13.4 Working Rationale of Proposed
Algorithm

We used the DCTCP slow start, fast retransmission and

retransmission timeout algorithms. However, we modified

only the sending rate when the sender receives the

congestion notification via explicit congestion notification

algorithm. When the sender receives the congestion notifi-

cation through the Ack packets with ECE ¼ 1, the sender

starts the congestion point and reduces the size of

congestion window according to Eq. (13.3). Once the

sender receives all the outstanding packets in the network,

the sender changed the window size based on Eq. (13.4).

Instead of reducing the congestion window into half of the

current size, our proposed rate adjustment can utilize the

buffer space efficiently.

13.5 Performance Evaluation

In this section, we present the performance of our proposed

protocol through comprehensive simulations using Qualnet

simulator [14]. We compare the performance of our algo-

rithm with DCTCP as it is the most popular data center

transport protocol. We implemented DCTCP in Qualnet

using the source code we got from [15]. Our main goal of

this work is to increase the performance of TCP by

controlling the Incast congestion in data center networks.

For achieving our goal, we evaluate the performance of our

algorithm in a typical network topology for Partition/Aggre-

gate cloud applications as shown in [16].

As we did in our previous work [16], to simulate the

Incast scenario, we used 10 servers connected to a single

client via a switch. The link capacity is set to 1 Gbps and link

delay is set to 25 μs, RTT 100 μs and RTO min which is

equal to 10 ms. The buffer size is set to 64 KB and 256 KB.

We vary the SRU size from 10 KB to 128 KB. The marking

threshold value ‘K’ is set according to [6, 17] for 1 Gbps link
capacity. The value of the weighted averaging factor ‘g’ for
DCTCP is set to 0.0625 for buffer size 256 KB and 0.15 for

64 KB. An FTP-generic application is run on each source for

sending the packets as quickly as possible. We repeated the

experiments for 100 times.

To evaluate the performance of our algorithm with

DCTCP, we use three important performance metrics

namely, goodput, fast retransmissions and flow completion

time. First, we calculated the goodput as the ratio of the total

data transferred by all the servers to the client and the time

required to complete the data transfer. Second, we evaluated

the total number of fast retransmission occurred in DCTCP

and proposed algorithm and finally we evaluated the flow

completion time of both algorithms. We present the results

of our evaluation of proposed algorithm with DCTCP in

terms of goodput, flow completion time, and fast

retransmissions using a single bottleneck TCP Incast sce-

nario. Figure 13.2 shows the performance of our algorithm

compared with DCTCP in terms of goodput. The buffer size

we set for this simulation is 64 KB with SRU sizes 64 KB

and 128 KB. From the result, we observe that even we used a

smaller buffer size, the performance of proposed algorithm

achieved higher throughput compared to DCTCP.

Figure 13.3 presents the comparison of fast retransmissions

of 50 senders. From the result, we observed that DCTCP has

higher retransmissions than proposed algorithm. One of the

main reason of our algorithm gains less fast retransmission

is, the efficient utilization of buffer which leads to reduce the

98 P. Sreekumari

overflow of queue length and thereby reduce the loss of

packets from the network.

Figure 13.4 depicts the query completion time of pro-

posed algorithm compared to DCTCP. As we expected, our

algorithm has less query completion time due to the efficient

sending rate adjustment mechanism.

13.6 Conclusion

In this paper, we have developed a modified DCTCP proto-

col for improving the performance of TCP by controlling

Incast congestion in data center networks. We proposed a

750

700

650

600

550

500

450

go
od

pu
t

400
0 10 20

#senders

30 40 50 60

DCTCP

Proposed Algorithm

Fig. 13.2 Goodput performance

Fig. 13.3 Comparison of fast

retransmissions

13 Rate Adjustment Mechanism for Controlling Incast Congestion in Data Center Networks 99

new sending rate adjustment mechanism for avoiding the

frequent retransmission timeouts and thereby utilize the

buffer space efficiently. We conducted extensive simulation

using Qualnet to validate the performance and effectiveness

of our algorithm compared to DCTCP in terms of goodput,

flow completion time and fast retransmissions. Our experi-

mental results using the typical TCP Incast scenario shows

that the proposed algorithm achieves significant improve-

ment in goodput by reducing the number of fast

retransmissions as well as query completion time.

References

1. Zhang, Y., & Ansari, N. (First Quarter 2013). On architecture

design, congestion notification, TCP incast and power consumption

in data centers. IEEE Communications Surveys and Tutorials, 15
(1), 39–64.

2. Cisco Data Center Infrastructure 2.5 Design Guide. http://www.

cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_

Infra2_5/DCI_SRND_2_5a_book.pdf.

3. http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_

Center/DC_Infra2_5/DCInfra_1.html.

4. Chen, Y., Griffith, R., Liu, J., Katz, R. H., & Joseph, A. D. (2009).

Understanding TCP incast throughput collapse in datacenter

networks. In Proceedings of the 1st ACM workshop on Research
on enterprise networking (WREN ’09) (pp. 73–82). New York:

ACM.

5. Kant, K. (2009). Data center evolution: A tutorial on state of the art,

issues, and challenges. Computer Networks, 53(17), 2939–2965.
ISSN 1389-1286.

6. Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel, P.,

Prabhakar, B., Sengupta, S., Sridharan, M. (2010). Data center

TCP (DCTCP). In Proceedings of the SIGCOMM, New Delhi,

(pp. 63–74).

7. Hwang, J., & Yoo, J. (2014). FaST: Fine-grained and scalable TCP

for cloud data center networks. KSII Transactions on Internet and
Information Systems, 8(3), 762–777. doi:10.3837/tiis.2014.03.003.

8. Wu, H., Feng, Z., Guo, C., Zhang, Y. (2010). ICTCP: Incast

Congestion Control for TCP in data center networks. In

Proceedings of ACM CoNEXT, Philadelphia.
9. Hwang, J., Yoo, J., Choi, N. (2012). IA-TCP: A rate based incast-

avoidance algorithm for TCP in data center networks. In

Proceedings of the IEEE ICC, Ottawa.
10. Zhang, J.,Wen, J.,Wang, J., Zhao, W. (2013). TCP-FITDC: An

adaptive approach to TCP incast avoidance for data center

applications. International Conference on Computing, Networking
and Communications (ICNC), San Diego, (pp. 1048–1052).

11. Zhang, J., Ren, F., Yue, X., Shu, R., & Lin, C. (2014). Sharing

bandwidth by allocating switch buffer in data center networks.

IEEE Journal on Selected Areas in Communications, 32(1), 39–51.
12. Wu, W., & Crawford, M. (2007). Potential performance bottleneck

in Linux TCP. International Journal of Communication Systems,
20, 1263–1283. doi:10.1002/dac.872.

13. https://eggert.org/students/kato-thesis.pdf.

14. http://web.scalable-networks.com/content/qualnet.

15. http://dev.pyra-handheld.com/index.php.

16. Sreekumari, P., Jung, J., Lee, M. (2015). An early congestion

feedback and rate adjustment schemes for many-to-one communi-

cation in cloud-based data center networks. Photonic Network
Communications, 31(1), 23–35.

17. Jiang, C., Li, D., & Xu, M. (2014). LTTP: An LT-code based

transport protocol for many-to-one communication in data

centers. IEEE Journal on Selected Areas in Communications, 32
(1), 52–64.

Fig. 13.4 Comparison of query

completion time

100 P. Sreekumari

http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.pdf
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.pdf
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.pdf
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
http://dx.doi.org/10.3837/tiis.2014.03.003
http://dx.doi.org/10.1002/dac.872
https://eggert.org/students/kato-thesis.pdf
http://web.scalable-networks.com/content/qualnet
http://dev.pyra-handheld.com/index.php

	Chapter 13: Rate Adjustment Mechanism for Controlling Incast Congestion in Data Center Networks
	13.1 Introduction
	13.2 Related Work
	13.3 Proposed Algorithm
	13.4 Working Rationale of Proposed Algorithm
	13.5 Performance Evaluation
	13.6 Conclusion
	References

