
Testing Cloud Services Using
the TestCast Tool 101
Stelios Sotiriadis, Andrus Lehmets, Euripides G.M. Petrakis,
and Nik Bessis

Abstract

This work presents the testing requirements for cloud services including unit and integra-

tion testing by identifying services that could communicate with each other according to

their APIs. We also present the Elvior TestCast T3 (TTCN-3) testing tool that provides an

efficient and easy to use solution for automating functional tests. This allows incremental

development where users can test specific systems and features separately as well as the

entire system as a whole. We finally demonstrate the empirical results as lessons learned

from our experiences when apploying such solution in testing real world cloud health

services.

Keywords

Cloud computing � Cloud services � Cloud service testing � TestCast � TTCN-3

101.1 Introduction

Cloud computing offers on demand services over the Inter-

net to users and developers that combine easy access to

computing resources with remote data management, elastic-

ity, self service provisioning (allowing users to set-up and

launch applications as services) and certain economic

benefits. It supports different models to cover a variety of

cloud users’, such as the Infrastructure, Platform and Soft-

ware as a Service (IaaS, PaaS and SaaS). The evolution of

these, characterizes the so-called Future Internet

(FI) concept [1] and allows development of innovative

applications from modular services referred to as cloud

enablers. In particular, developers build applications by

utilizing on-the-self services encapsulating common

functionalities (e.g. user authentication, data storage, context

data management etc.), instead of re-engineering and

implementing services from scratch.

Another important aspect of these services is the

modularity that in cloud computing is enabled by deploying

SaaS whose specifications are open and are available for

utilization using APIs (i.e. as RESTFul interfaces [2]).

While these services highlight innovation and promotion of

a new easy-going development method, software engineer-

ing processes are becoming more and more complex. This is

because such enablers have distinct features that impact

several different research fields, including software testing

[3]. These include execution over virtualized resources [5]

that can be highly scalable and elastic, for instance, the users

can increase their computational capacities and share

S. Sotiriadis (*)

Computer Engineering Research Group, University of Toronto,

Toronto, Canada

School of Electronic and Computer Engineering, Technical University

of Crete, Chania, Greece

e-mail: s.sotiriadis@utoronto.ca

A. Lehmets

Elvior, Tallinn, Estonia

e-mail: andrus.lehtmets@elvior.ee

E.G.M. Petrakis

School of Electronic and Computer Engineering, Technical University

of Crete, Chania, Greece

e-mail: petrakis@intelligence.tuc.grl

N. Bessis

Edge Hill Univerity, Ormskirk, UK

e-mail: Nik.Bessis@edgehill.ac.uk

Springer International Publishing AG 2018

S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent

Systems and Computing 558, DOI 10.1007/978-3-319-54978-1_101

819

mailto:s.sotiriadis@utoronto.ca
mailto:andrus.lehtmets@elvior.ee
mailto:petrakis@intelligence.tuc.grl
mailto:Nik.Bessis@edgehill.ac.uk

common physical resources with other cloud applications or

services, thus supporting multi-tenancy. Also such services

provide interfaces using APIs that allow their combination

to form composite services (e.g. services developed by

extending or combining others).

Cloud services’ testing introduces a new set of challenges

and requirements [4] that have a direct impact on system

engineering processes. The testing methodology involves

not only validation of a software processes, but also valida-

tion of services APIs and of their interactions with other

services. This involves testing of the actual service

interactions based on their input and output interfaces. The

complexity factor is also increased due to the fact that

software engineers base their design on abstract and high-

level use case models. Thus it becomes a hurdle to design

test cases that are based (a) on the application requirements

e.g. expecting behaviour of the services according to a use

cases and (b) on the services it self (that is related with the

functionalities of the cloud enablers).

In this work we present a testing methodology for testing

cloud services utilizing the TestCast TTCN3 by Elvior.1 The

tool provides a programming language for testing communi-

cation protocols and Web services in an easy and efficient

way. Based on this, Sect. 101.2 presents the motivation and

background for this work, Sect. 101.3 the proposed testing

methodology of cloud services, Sect. 101.4 the analysis of

the tool, Sect. 101.5 the lessons learned by applying the tool

in real world use cases and in Sect. 101.6 the conclusions and

future research directions.

101.2 Motivation and Background

This work is based on the Future Internet Social and Tech-

nological Alignment Research (FI-STAR)2 FP7 project that

attempted to establish early trials in the health domain and in

the context of FI-PPP EU initiative.3 FI-STAR purpose was

to prepare industry take-up of the developed cloud technol-

ogy. It also build upon cloud services called Generic

Enablers (GEs) provided by FIWARE.4 GEs are software

modules that offer various functionalities along with

protocols and interfaces for operation and communication.

These include the cloud management for supervision of the

underlying infrastructure, the utilization of various IoT

devices for data collection, tools for data analytics and

communication interfaces for gateways and end-users. All

FIWARE GEs are stored in a public catalogue, thus

developers could easily browse and select appropriate APIs

to use. As a side-result, FI-STAR aims to create a framework

(a software to data approach) to allow GEs to be delivered to

different physical locations.

Today, there are new requirements related to the software

engineering processes of cloud enablers since there are sig-

nificant changes taking place as to how to test the new

software running on the latest cloud platforms. Especially

in the case of software testing, this refers to the gap between

software developers and software test engineers. There are

three key differentiations among traditional and cloud

enablers testing and these are related with (a) scalability of

virtual resources, (b) multi-tenancy efficiency that refers

concurrent users and (c) dynamic reconfiguration of

services. As a result, the cloud testing models have to sup-

port different kinds of requirements [14], thus, tend to

become more and more complex. In more detail, traditional

applications are firstly designed and then tested. This work is

motivated by work of [15, 16] where authors suggest that

there is a lack of research papers addressing new issues,

challenges, and needs in SaaS testing. In [16] we present

the details of the unit and integration testing methodology

for future Internet cloud services. We focus on cloud

services testing and we propose a methodology enabling

efficient unit and integration testing of modular services.

101.3 Testing Methodology of Cloud Services

The methodology includes the testing requirements analysis

and the test cases analysis of cloud enablers. The testing

preparation strategy defines the testing schedule and plan for

black box testing of cloud enablers including conceptualiza-

tion for unit and integration testing. Firstly, the unit testing

allows cloud services’ testers to execute various tests with

different input parameters to the operations and interfaces

defined in service specification documents and manuals. The

modules together with associated control data, usage

procedures, and operating procedures, are tested to deter-

mine whether they are properly developed. The integration

testing will allow combination and test execution of linked

cloud enablers in order to test key functionalities derived by

application use-cases.

The testing starts with the unit testing preparation activity

where each cloud enabler tester defines the unit test and unit

test cases so the unit test defect management process will

allow bug tracking and fixing. Then the integration testing

includes preparation, execution and defection management

process regarding the inter-dependencies of enablers. At this

stage, the aim is to exploit the building blocks of the appli-

cation that map to the key functionalities. In more detail, the

unit testing includes the testing activity of the cloud enablers

by focusing on the evaluating of their interfaces. Integration

1 http://www.elvior.com/testcast/ttcn-3.
2 https://www.fi-star.eu.
3 https://www.fi-ppp.eu.
4 https://www.fiware.org.

820 S. Sotiriadis et al.

http://www.elvior.com/testcast/ttcn-3
https://www.fi-star.eu
https://www.fi-ppp.eu
https://www.fiware.org

testing includes exploration of the interactions between the

services, such as their commincation and their input-output

bonds. Next we focus on the TestCast TTCN-3 tool.

101.4 General overview of the TestCast
TTCN-3 Tool

The Elvior TestCast is a full featured TTCN-3 tool

(a programming language for testing of communication

protocols and Web services) for automated testing of cloud

systems. TestCast is ideal for incremental development where

users can test specific systems and features separately as well

as the entire system as a whole. Figure 101.1 demonstrates the

Principal architecture of TTCN-3 test environment.

In detail, the System Adapter (SA) is used for communica-

tion of test tool (test executable) with System Under Test

(SUT). The interface between test tool and SA is standardized

and called TRI (TTCN-3 Runtime Interface) – SA is usually a

piece of software that can be written in different languages

such as C, C++, C#, Java, mainly depending on test tool. The

other important interface is TCI (TTCN-3 Control Interface)

is essential part of TTCN-3 test environments because its type

system is not bind to any binary representation. It is entirely

up to the test tool and its codecs to ensure encoding and

decoding of data in appropriate format.

The characteristics of the Elvior TTCN-3 tool are as

follows. The tool is developed in C# and could be run in

Microsoft Windows and Linux platforms. Also, it has a user-

friendly graphical interface for test development and man-

agement. It has a native compiler that supports all TTCN-3

standards (up to TTCN-3:2015) and includes a native

TTCN-3 debugger. The tool supports TTCN-3 test execution

and XSD import. It has built in codecs such as textual,

binary, XML (via XSD schemas), TCI XML, ASN.1 and

supports TRI and TCI mapping for C, C++, C# and Java.

Finally, it offers a rich TTCN-3 editor and test suite viewer

and a enriched logging (textual and graphical views) and

logs analyzing capabilities. The tool provides a test environ-

ment for RESTful interfaces testing. The TTCN-3 based test

environment architecture for functional Black-Box testing

(BBT) includes an HTTP System Adapter, XML and JSON

codecs and SUT (implementation using RESTful API). The

roles of actors shown in Fig. 101.2 in the TestCast Tool

testing environment are presented bellow.

(a) System Under Test (SUT): The implementation using

the RESTful API.

(b) TestCast T3 test tool for TTCN-3 test development and

execution (it is responsible for execution of TTCN-3 test

scripts).

(c) HTTP SA (developed in C#): It completes communica-

tion between SUT and test tool. It acts as a server or

client depending on test case needs and is controlled by

TTCN-3 test script.

(d) XML TestCast T3 built in codec and the external JSON

codec: Codecs are responsible for encoding and

decoding messages sent/received to/from SUT.

In particular, for RESTful interfaces a generic TTCN-3

framework for sending and receiving HTTP messages was

created. The scripts are written and executed in TestCast T3,

Fig. 101.1 Principal

architecture of TTCN-3 test

environment

101 Testing Cloud Services Using the TestCast Tool 821

which sends messages to the HTTP adapter. The System

Adapter creates HTTP messages based on the received infor-

mation from TestCast and sends each of which to the SUT.

In practice, the following actions are executed: i) message

(hex sequence) is received from the SUT via SA to TestCast,

ii) TestCast (TTCN-3 test executable) reads this hex

sequence from TTCN-3 port and iii) the message is decoded

by TestCast and can be used in TTCN-3 script.

It should be mentioned that TTCN-3 libraries include

common types and templates for forming messages for

RESTFul APIs. These common types and templates are

used for creating implementation specific messages and

respective test cases.

101.5 Lessons Learned

This section presents the experiences regarding the “lessons

learned” from the unit and integration testing of cloud

enablers when applied in the FI-STAR project. During this

work we focused on the following research contributions.

(a) How to perform testing (regarding unit and integration) of

cloud enablers? We presented a methodology that

encompasses unit (white and black box) and integration

testing (top down and bottom up) of cloud enablers. The

cloud enablers tested are decentralized and composed by

3rd party services based on the real world case of FI-STAR.

(b) How to provision decision support to the cloud applica-

tion developers during the testing process? We provided

an integration testing strategy to characterize the func-

tional building blocks of FI applications. In addition the

integration testing matrices will assist on testing process

management.

(c) How testing can assure standard conformance and auto-

mation to ensure extensive testing coverage?We utilized

the Elvior TestCast T3 tool to automatize unit testing

and to ensure standards adoption. We presented an

example case of NGSI9/10 interfaces testing.

The testing starts at the module level and works outward

the integration of the cloud application. Based on the empir-

ical analysis the testing techniques presented could be used

at different points of the overall cloud enabler engineering

process. The cloud application developer could take advan-

tage of the testing activities of the modular parts in order to

conduct testing for the larger group and ensure verification

(application works as expected) and validation (compliance

to the requirements). In addition, we propose the use of an

independent tester in order to remove the conflict of interest

that is characteristic when the developer tests its own

product.

In general the test execution of cloud enablers could be

difficult since it involves a number of actors such as (a) the

enabler and (b) the use case application developer. Based on

the methodology we executed various test cases from the

perspective of both actors. Another vital requirement is the

correct depiction of the use case application requirements,

since these will play an important role to the identification of

the test cases. Here, the assumption is that the tester will

have access to the functional building blocks of the applica-

tion and the chains of enablers’ dependencies.
The top down and bottom up approaches will warranty

that in integration testing (a) the cloud enabler will be tested

according to its specification and (b) according to the

requirements of the use case application. We encourage its

usage since it provides ready-made unit tests for cloud

enablers ensuring adoption of standards. An example was

the test cases of the FI-STAR Event Service that

demonstrated an error regarding the expected output of a

test (that was not NGSI9/10 compliance). This test has

revealed a hidden error that the SE owner did not identify

at the beginning. Finally, the SE owner considered the

results and made appropriate corrections to the beta version

Fig. 101.2 Architecture of BBT environment for RESTful APIs

822 S. Sotiriadis et al.

of the software. It should be mentioned that test cases, test

assets, and test features could be accessible could be open to

everyone.

The following is a summary of the innovative features of

this work.

(a) We focused on the research gap created, regarding cloud

enablers testing, in the area of FI services. Thus we

present a methodology to allow efficient testing of

cloud enablers belonging to different owners, deployed

to various cloud platforms and utilized by different cloud

applications.

(b) We presented a methodology that incorporates strategies

for unit testing (white and black box approaches) and

integration testing (bottom up and top down

approaches). The correlation of these will ensure an

increased coverage of cloud enablers testing.

(c) We presented the FI-STAR and FIWARE projects as use

case scenarios of our methodology by including example

cases of real world cloud enablers.

(d) We detailed unit and integration testing matrices to

allow efficient capturing of testing requirements. In

many instances various FI-STAR SE testers with suc-

cess have utilized the proposed matrices.

(e) We demonstrated the TestCast tool, an advanced solu-

tion for testing according to standards such as compli-

ance with ETSI, OMA, TTCN-3, and NGSI9/10. In

many instances the tool surfaced failures and issues

that did not identified by the white box testing process.

101.6 Conclusions

In this work we presented the Elvior TestCast T3 tool that

includes FIWARE compliance. The proposed solution

assists cloud enabler testers to rapidly isolate errors and

failures based on the virtualization of services so to identify

dependencies with other components. Different from other

solutions, the approach provides a complete end-to-end

transaction that integrates chains of Applications, SEs and

GEs. To demonstrate effectiveness, we presented the real

world case scenario of FIWARE and FI-STAR projects. We

emphasized the adaption of the proposed methodology and

tools to the production of test cases; analysis of data and

automation of processes based on real world use case

requirements for cloud-based healthcare applications. The

environment is highly complex with multi-tenancy, diversity

of requirements security and off-premises cloud services that

are decentralized in terms of ownership. We anticipate that

the methodology will serve cloud testers to ensure proper

functionality and test coverage and application developers

could utilize results as a reference model for building

innovating systems.

References

1. Sotiriadis, S., Zampognaro, P., Petrakis, E., & Bessis, N. (2015).

Automatic deployment of cloud services for healthcare application

development in FI-STAR FP7. The 30th IEEE international con-
ference on advanced information networking and applications
(AINA-2016), Le Régent Congress Centre, Crans-Montana,

Switzerland, March 23–25, 2016.

2. Seijas, P. L., Li, H., & Thompson, S.. (2013). Towards property-

based testing of RESTful web services. Proceedings of the twelfth
ACM SIGPLAN workshop on Erlang (pp. 77, 78).

3. Incki, K., Ari, I., & Sozer, H.. (2012). A survey of software testing

in the cloud. In Proceedings of the 2012 I.E. sixth international
conference on software security and reliability companion (SERE-
C ’12). IEEE Computer Society, Washington, DC (pp. 18–23).

4. Lima Neto, C. R., & Garcia V. C. (2013). Cloud testing framework.

In Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering (EASE ’13). ACM,

New York (pp.252, 255).

5. Vakanas, L., Sotiriadis, S., & Petrakis, E. (2015). Implementing the

cloud software to data approach for OpenStack environments,

adaptive resource management and scheduling for cloud comput-

ing, held in conjunction with PODC-2015, Donostia-San Sebastián,

Spain, on 20 July 2015.

6. Ciortea, L., Zamfir, C., Bucur, S., Chipounov, V., & Candea,

G. (2010). Cloud9: a software testing service. ACM SIGOPS
Operating Systems Review Archive, 43(4), 5, 10.

7. Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T., Hanawa, T., &

Sato, M. (2010). D-Cloud: Design of a software testing environ-

ment for reliable distributed systems using cloud computing tech-

nology. Proceedings of 10th IEEE/ACM international conference
on cluster, cloud and grid computing, 2010 (pp. 631, 636).

Heraklion.

8. Mathew, R., & Spraetz, R. (2009). Test automation on a SaaS

platform. Proceedings of international conference on software test-
ing verification and validation, 2009 (pp. 317, 325). Seoul, Repub-

lic of Korea.

9. Wickremasinghe, B, Calheiros, R. N., & Buyya, R. (2010).

CloudAnalyst: a CloudSim-based visual modeller for analysing

cloud computing environments and applications. 24th IEEE inter-
national conference on advanced information networking and
applications (AINA), 2010. Bethlehem.

10. Sotiriadis, S., Bessis, N., Antonopoulos, N.,& Anjum, A. (2013).

SimIC: designing a new inter-cloud simulation platform for

integrating large-scale resource management. 27th IEEE interna-
tional conference on advanced information networking and
applications (AINA-2013), March 25–28, Barcelona, IEEE Com-

puter Society, Washington, DC (pp. 90–97).

11. Oriol, M., & Ullah, F. (2010). YETI on the cloud, software testing,

verification, and validation workshops (ICSTW). 2010 third
international conference on , vol., no., pp.434, 437, 6–10 April

2010. Madrid.

12. Vilkomir, S. (2012). Cloud Testing: A state-of-the-art review.

Information and Security. An international journal, 28(2), 213, 222.

101 Testing Cloud Services Using the TestCast Tool 823

13. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A.,

& Willcock, C. (2003). An introduction to the testing and test

control notation (TTCN-3). Computer Networks, 42(3), 375, 403.
14. Heckel, R., & Lohmann, M. (2005). Towards contract-based testing

of web services. Electronic Notes in Theoretical Computer Science,
116(2005), 145–156.

15. Wang, J., & Meng, F.. (2011). Software testing based on cloud

computing. In Proceedings of the 2011 international conference on

internet computing and information services (ICICIS ’11). IEEE
Computer Society, Washington, DC (pp.176, 178).

16. Sotiriadis, S., Lehmets, A., Petrakis, E., & Bessis, N. (2016). Unit

and integration testing of future internet cloud services. The 31st
IEEE international conference on advanced information network-
ing and applications (AINA-2017), Tamkang University, Taipei,

Taiwan, March 27–29, 2017.

824 S. Sotiriadis et al.

	Chapter 101: Testing Cloud Services Using the TestCast Tool
	101.1 Introduction
	101.2 Motivation and Background
	101.3 Testing Methodology of Cloud Services
	101.4 General overview of the TestCast TTCN-3 Tool
	101.5 Lessons Learned
	101.6 Conclusions
	References

