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Abstract This chapter emphasizes on the role played by rough set theory (RST)

within the broad field of Machine Learning (ML). As a sound data analysis and

knowledge discovery paradigm, RST has much to offer to the ML community. We

surveyed the existing literature and reported on the most relevant RST theoretical

developments and applications in this area. The review starts with RST in the con-

text of data preprocessing (discretization, feature selection, instance selection and

meta-learning) as well as the generation of both descriptive and predictive knowledge
via decision rule induction, association rule mining and clustering. Afterward, we

examined several special ML scenarios in which RST has been recently introduced,

such as imbalanced classification, multi-label classification, dynamic/incremental

learning, Big Data analysis and cost-sensitive learning.

1 Introduction

Information granulation is the process by which a collection of information gran-
ules are synthesized, with a granule being a collection of values (in the data space)

which are drawn towards the center object(s) (in the object space) by an underlying

indistinguishability, similarity or functionality mechanism. Note that the data and

object spaces can actually coincide [141]. The Granular Computing (GrC) paradigm
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[7, 183] encompasses several computational models based on fuzzy logic, Comput-

ing With Words, interval computing, rough sets, shadowed sets, near sets, etc.

The main purpose behind Granular Computing is to find a novel way to synthesize

knowledge in a more human-centric fashion and from vast, unstructured, possibly

high-dimensional raw data sources. Not surprisingly, Granular Computing (GrC) is

closely related to Machine Learning [83, 95, 257]. The aim of a learning process is

to derive a certain rule or system for either the automatic classification of the system

objects or the prediction of the values of the system control variables. The key chal-

lenge with prediction lies in modeling the relationships among the system variables

in such a way that it allows inferring the value of the control (target) variable.

Rough set theory (RST) [1] was developed by Zdzisław Pawlak in the early 1980s

[179] as a mathematical approach to intelligent data analysis and data mining [180].

This methodology is based on the premise that lowering the degree of precision in

the data makes the data pattern more visible, i.e., the rough set approach can be

formally considered as a framework for pattern discovery from imperfect data [220].

Several reasons are given in [34] to employ RST in knowledge discovery, including:

∙ It does not require any preliminary or additional information about the data

∙ It provides a valuable analysis even in presence of incomplete data

∙ It allows the interpretation of large amounts of both quantitative and qualitative

data

∙ It can model highly nonlinear or discontinuous functional relations to provide

complex characterizations of data

∙ It can discover important facts hidden in the data and represent them in the form

of decision rules, and

∙ At the same time, the decision rules derived from rough set models are based on

facts, because every decision rule is supported by a set of examples.

Mert Bal [3] brought up other RST advantages, such as: (a) it performs a clear

interpretation of the results and evaluation of the meaningfulness of data; (b) it can

identify and characterize uncertain systems and (c) the patterns discovered using

rough sets are concise, strong and sturdy.

Among the main components of the knowledge discovery process we can men-

tion:

∙ PREPROCESSING

– Discretization

– Training set edition (instance selection)

– Feature selection

– Characterization of the learning problem (data complexity, metalearning)

∙ KNOWLEDGE DISCOVERY

– Symbolic inductive learning methods

– Symbolic implicit learning methods (a.k.a. lazy learning)
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∙ KNOWLEDGE EVALUATION

– Evaluation of the discovered knowledge

All of the above stages have witnessed the involvement of rough sets in their

algorithmic developments. Some of the RST applications are as follows:

∙ Analysis of the attributes to consider

– Feature selection

– Inter-attribute dependency characterization

– Feature reduction

– Feature weighting

– Feature discretization

– Feature removal

∙ Formulation of the discovered knowledge

– Discovery of decision rules

– Quantification of the uncertainty in the decision rules.

RST’s main components are an information system and an indiscernibility rela-
tion. An information system is formally defined as follows. Let A = {A1,A2,… ,An}
be a set of attributes characterizing each example (object, entity, situation, state, etc.)

in non-empty setU called the universe of discourse. The pair (U,A) is called an infor-
mation system. If there exists an attribute d ∉ A, called the decision attribute, that

represents the decision associated with each example in U, then a decision system
(U, A ∪ {d}) is obtained.

The fact that RST relies on the existence of an information system allows estab-

lishing a close relationship with data-driven knowledge discovery processes given

that these information or decision systems can be employed as training sets for unsu-

pervised or supervised learning models, respectively.

A binary indiscernibility relation IB is associated with each subset of attributes

B ⊆ A. This relation contains the pairs of objects that are inseparable from each other

given the information expressed in the attributes in B, as shown in Eq. (1).

IB = {(x, y) ∈ U × U ∶ f (x,Ai) = f (y,Ai) ∀Ai ∈ B}. (1)

where f (x,Ai) returns the value of the i-th attribute in object x ∈ U.

The indiscernibility relation induces a granulation of the information system. The

classical RST leaned on a particular type of indiscernibility relations called equiv-

alence relations (i.e., those that are simmetric, reflexive and transitive). An equiva-

lence relation induces a granulation of the universe in the form of a partition. This

type of relation works well when there are only nominal attributes and no missing

values in the information system.

Information systems having incomplete, continuous, mixed or heterogeneous data

are in need of a more flexible type of indiscernibility relation. Subsequent RST for-

mulations relaxed the stringent requirement of having an equivalence relation by



90 R. Bello and R. Falcon

considering either a tolerance or a similarity relation [61, 68, 181, 207, 212, 231,

283, 284, 305, 306]; these relations will induce a covering of the system. Another

relaxation avenue is based on the probabilistic approach [65, 182, 210, 259, 264,

267, 307]. A third alternative is the hybridization with fuzzy set theory [54, 55,

172, 258, 280]. These different approaches have contributed to positioning RST as

an important component within Soft Computing [12].

All of the aforementioned RST formulations retain some basic definitions, such

as the lower and upper approximations; however, they defined it in multiple ways.

The canonical RST definition for the lower approximation of a concept X is given

as B∗(X) = {x ∈ U ∶ B(x) ⊆ X} whereas its upper approximation is calculated as

B∗(X) = {x ∈ U ∶ B(x) ∩ X ≠ ∅}. From these approximations we can compute the

positive region POS(X) = B∗(X), the boundary region BND(X) = B∗(X) − B∗(X)
and the negative region NEG(X) = U − B∗(X). These concepts serve as building

blocks for developing many problem-solving approaches, including data-driven

learning.

RST and Machine Learning are also related in that both take care of removing

irrelevant/redundant attributes. This process is termed feature selection and RST

approaches it from the standpoint of calculating the system reducts. Given an infor-

mation system S = (U,A), where U is the universe and A is the set of attributes, a

reduct is a minimum set of attributes B ⊆ A such that IA = IB.

This chapter emphasizes on the role played by RST within the broad field of

Machine Learning (ML). As a sound data analysis and knowledge discovery par-

adigm, RST has much to offer to the ML community. We surveyed the existing lit-

erature and reported on the most relevant RST theoretical developments and appli-

cations in this area. The review starts with RST in the context of data preprocessing
(discretization, feature selection, instance selection and meta-learning) as well as the

generation of both descriptive and predictive knowledge via decision rule induction,

association rule mining and clustering. Afterward, we examined several special ML
scenarios in which RST has been recently introduced, such as imbalanced classifi-

cation, multi-label classification, dynamic/incremental learning, Big Data analysis

and cost-sensitive learning.

The rest of the chapter is structured as follows. Section 2 reviews ML methods and

processes from an RST standpoint, with emphasis on data preprocessing and knowl-

edge discovery. Section 3 unveils special ML scenarios that are being gradually per-

meated by RST-based approaches, including imbalanced classification, multi-label

classification, dynamic/incremental learning, Big Data analysis and cost-sensitive

learning. Section 5 concludes the chapter.

2 Machine Learning Methods and RST

This section briefly goes over reported studies showcasing RST as a tool in data

preprocessing and descriptive/predictive knowledge discovery.
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2.1 Preprocessing

2.1.1 Discretization

As mentioned in [195], discretization is the process of converting a numerical

attribute into a nominal one by applying a set of cuts to the domain of the numer-

ical attribute and treating each interval as a discrete value of the (now nominal)

attribute. Discretization is a mandatory step when processing information systems

with the canonical RST formulation, as there is no provisioning for handling numer-

ical attributes there. Some RST extensions avoid this issue by, for example, using

similarity classes instead of equivalence classes and building a similarity relation

that encompasses both nominal and numerical attributes.

It is very important that any discretization method chosen in the context of RST-

based data analysis preserves the underlying discernibility among the objects. The

level of granularity at which the cuts are performed in the discretization step will

have a direct impact on any ensuing prediction, i.e., generic (wider) intervals (cuts)

will likely avoid overfitting when predicting the class for an unseen object.

Dougherty et al. [53] categorize discretization methods along three axes:

∙ global versus local: indicates whether an approach simultaneously converts all

numerical attributes (global) or is restricted to a single numerical attribute (local).

For instance, the authors in [174] suggest both local and global handling of numer-

ical attributes in large data bases.

∙ supervised versus unsupervised: indicates whether an approach considers values

of other attributes in the discretization process or not. A simple example of an

unsupervised approach is an “equal width” interval method that works by dividing

the range of continuous attributes into k equal intervals, where k is given. A super-

vised discretization method, for example, will consider the correlation between the

numerical attribute and the label (class) attribute when choosing the location of

the cuts.

∙ static versus dynamic: indicates whether an approach requires a parameter to deter-

mine the number of cut values or not. Dynamic approaches automatically generate

this number along the discretization process whereas static methods require an a

priori specification of this parameter.

Lenarcik and Piasta [128] introduced an RST-based discretization method that

leans on the concepts of a random information system and of an expected value

of classification quality. The method of finding suboptimal discretizations based on

these concepts is presented and is illustrated with data from concretes’ frost resis-

tance investigations.

Nguyen [173] considers the problem of searching for a minimal set of cuts that

preserves the discernibility between objects with respect to any subset of s attributes,

where s is a user-defined parameter. It was shown that this problem is NP-hard and

its heuristic solution is more complicated than that for the problem of searching for
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an optimal, consistent set of cuts. The author proposed a scheme based on Boolean

reasoning to solve this problem.

Bazan [5] put forth a method to search for an irreducible sets of cuts of an infor-

mation system. The method is based on the notion of dynamic reduct. These reducts

are calculated for the information system and the one with the best stability coeffi-

cient is chosen. Next, as an irreducible set of cuts, the author selected cuts belonging

to the chosen dynamic reduct.

Bazan et al. [6] proposed a discretization technique named maximal discernibility
(MD), which is based on rough sets and Boolean reasoning. MD is a greedy heuristic

that searches for cuts along the domains of all numerical attributes that discern the

largest number of object pairs in the dataset. These object pairs are removed from

the information system before the next cut is sought. The set of cuts obtained that

way is optimal in terms of object indiscernibility; however this procedure is not fea-

sible since computing one cut requires O(|A| ⋅ |U|3). Locally optimal cuts [6] are

computed in O(|A| ⋅ |U|) steps using only O(|A| ⋅ |U|) space.

Dai and Li [46] improved Nguyen’s discretization techniques by reducing the time

and space complexity required to arrive at the set of candidate cuts. They proved that

all bound cuts can discern the same object pairs as the entire set of initial cuts. A

strategy to select candidate cuts was proposed based on that proof. They obtained

identical results to Nguyen’s with a lower computational overhead.

Chen et al. [26] employ a genetic algorithm (GA) to derive the minimal cut set

in a numerical attribute. Each gene in a binary chromosome represents a particular

cut value. Enabling this gene means the corresponding cut value has been selected

as a member of the minimal cut set. Some optimization strategies such as elitist

selection and father-offspring combined selection helped the GA converge faster.

The experimental evidence showed that the GA-based scheme is more efficient than

Nguyen’s basic heuristic based on rough sets and Boolean reasoning.

Xie et al. [249] defined an information entropy value for every candidate cut point

in their RST-based discretization algorithm. The final cut points are selected based on

this metric and some RST properties. The authors report that their approach outper-

forms other discretization techniques and scales well with the number of cut points.

Su and Hsu [219] extended the modified Chi2 discretizer by learning the pre-

defined misclassification rate (input parameter) from data. The authors additionally

considered the effect of variance in the two adjacent intervals. In the modified Chi2,

the inconsistency check in the original Chi2 is replaced with the “quality of approxi-

mation” measure from RST. The result is a more robust, parameterless discretization

method.

Singh and Minz [205] designed a hybrid clustering-RST-based discretizer. The

values of each numerical attribute are grouped using density-based clustering algo-

rithms. This produces a set of (possibly overlapping) intervals that naturally reflect

the data distribution. Then, the rough membership function in RST is employed

to refine these intervals in a way that maximizes class separability. The proposed

scheme yielded promising results when compared to seven other discretizers.
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Jun and Zhou [116] enhanced existing RST-based discretizers by (i) computing

the candidate cuts with an awareness of the decision class information; in this way,

the scales of candidate cuts can be remarkably reduced, thus considerably saving

time and space and (ii) introducing a notion of cut selection probability that is defined

to measure cut significance in a more reasonable manner. Theoretical analyses and

simulation experiments show that the proposed approaches can solve the problem of

data discretization more efficiently and effectively.

2.1.2 Feature Selection

The purpose behind feature selection is to discard irrelevant features that are gener-

ally detrimental to the classifier’s performance, generate noise, increase the amount

of information to be stored and the computational cost of the classification process

[222, 302]. Feature selection is a computationally expensive problem that requires

searching for a subset of the n original features in a space of 2n − 1 candidate sub-

sets according to a predefined evaluation criterion. The main components of a feature

selection algorithm are: (1) an evaluation function (EF), used to calculate the fitness

of a feature subset and (2) a generation procedure that is responsible for generating

different subsets of candidate features.

Different feature selection schemes that integrate RST into the feature subset eval-

uation function have been developed. The quality of the classification 𝛾 is the most

frequently used RST metric to judge the suitability of a candidate feature subset, as

shown in [9–11, 64] etc. Other indicators are conditional independence [208] and

approximate entropy [209].

The concept of reduct is the basis for these results. Essentially, a reduct is a min-

imal subset of features that generates the same granulation of the universe as that

induced by all features. Among these works we can list [37, 38, 85, 89, 111, 136,

168, 196, 221, 223, 239, 247, 248, 255, 270, 302]. One of the pioneer methods

is the QuickReduct algorithm, which is typical of those algorithms that resort to a

greedy search strategy to find a relative reduct [136, 202, 247]. Generally speak-

ing, feature selection algorithms are based on heuristic search [97, 164, 302]. Other

RST-based methods for reduct calculation are [98, 209].

More advanced methods employ metaheuristic algorithms (such as Genetic Algo-

rithms, Ant Colony Optimization or Particle Swarm Optimization) as the underlying

feature subset generation engine [8–11, 15, 64, 102, 119, 241, 242, 245, 246, 268,

274, 297]. Feature selection methods based on the hybridization between fuzzy and

rough sets have been proposed in [13, 28, 42–44, 51, 75, 87, 90, 92, 101, 103–105,

125, 193, 197, 203, 225, 299]. Some studies aim at calculating all possible reducts

of a decision system [27, 28, 206, 225, 299].

Feature selection is arguably the Machine Learning (ML) area that has witnessed

the most influx of rough-set-based methods. Other RST contributions to ML are

concerned with providing metrics to calculate the inter-attribute dependence and the

importance (weight) of any attribute [120, 222].
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2.1.3 Instance Selection

Another important data preprocessing task is the editing of the training sets, also

referred to as instance selection. The aim is to reduce the number of examples in

order to bring down the size of the training set while maintaining the system effi-

ciency. By doing that, a new training set is obtained that will bring forth a higher

efficiency usually also produces a reduction of the data.

Some training set edition approaches using rough sets have been published in

[16, 19]. The simplest idea is to remove all examples in the training set that are not

contained in the lower approximation of any of the decision classes. A more thorough

investigation also considers those examples that lie in the boundary region of any of

the decision classes. Fuzzy rough sets have been also applied to the instance selection

problem in [99, 232, 233].

2.1.4 Meta-Learning

An important area within knowledge discovery is that of meta-learning, whose

objective is to learn about the underlying learning processes in order to make them

more efficient or effective [234]. These methods may consider measures related to

the complexity of the data [79]. The study in [18] explores the use of RST-based

metrics to estimate the quality of a data set. The relationship between the “quality

of approximation” measure and the performance of some classifiers is investigated

in [17]. This measure describe the inexactness of the rough-set-based classification

and denotes the percentage of examples that were correctly classified employing the

attributes included in the indiscernibility relationship [224]. The authors in [251]

analyze the inclusion degree as a perspective on measures for rough set data analysis

(RSDA). Other RSDA measures are the “accuracy of the approximation” and the

rough membership function [120]; for example, in [108, 109], the rough member-

ship function and other RST-based measures are employed to detect outliers (i.e.,

examples that behave in an unexpected way or have abnormal properties).

2.2 Descriptive and Predictive Knowledge Discovery

2.2.1 Decision Rule Induction

The knowledge uncovered by the different data analysis techniques can be either

descriptive or predictive. The former characterizes the general properties of the data

in the data set (e.g., association rules) while the latter allows performing inferences

from the available data (e.g., decision rules). A decision rule summarizes the rela-

tionship between the properties (features) and describes a causal relationship among

them. For example, IF Headache = Yes AND Weakness = YES THEN Influenza =
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YES. The most common rule induction task is to generate a rule base R that is both

consistent and complete.

According to [161], RST-based rule induction methods provide the following ben-

efits:

∙ Better explanation capabilities

∙ Generate a simple and useful set of rules.

∙ Work with sparse training sets.

∙ Work even when the underlying data distribution significantly deviates from the

normal distribution.

∙ Work with incomplete, inaccurate, and heterogeneous data.

∙ Usually faster execution time to generate the rule base compared to other methods.

∙ No assumptions made on the size or distribution of the training data.

Among the most popular RST-based rule induction methods we can cite LERS

[67, 215], which includes the LEM1 (Learn from examples model v1) and LEM2

methods (Learn from examples model v2); the goal is to extract a minimum set of

rules to cover the examples by exploring the attribute-value pairs search space of

while taking into account possible data inconsistency issues. MODLEM [214, 215]

is based on sequentially building coverings of the training data and generating min-

imal decision rule sets for each decision class. Each of these sets aims at covering

all positive examples that belong to a concept and none from any other concept.

The EXPLORE algorithm [216] extracts from data all the decision rules satisfy-

ing certain requirements. It can be adapted to handle inconsistent examples. The

LEM2, EXPLORE and MODLEM algorithms rule induction algorithms are imple-

mented in the ROSE2 software [3]. Filiberto et al. proposed the IRBASIR method

[62], which generates decision rules using an RST extension rooted on similarity

relations; another technique is put forth in [121] to discover rules using similarity

relations for incomplete data sets. This learning problem in presence of missing data

is also addressed in [80].

Other RST-based rule induction algorithms available in the literature using

rough sets are [3, 14, 63, 110, 118, 129, 154, 179, 228, 229]. The use of hybrid

models based on rough sets and fuzzy sets for rule induction and other knowledge

discovery methods is illustrated in [2, 24, 41, 100, 123, 159, 201, 298, 300], which

includes working with the so called “fuzzy decision information systems” [2].

One of the most popular rule induction methods based on rough sets is the

so-called three-way decisions model [81, 260–263]. This methodology is strongly

related to decision making. Essentially, for each decision alternative, this method

defines three rules based on the RST’s positive, negative and boundary regions. They

respectively indicate acceptance, rejection or abstention (non-commitment, denotes

weak or insufficient evidence).

This type of rules, derived from the basic RST concepts, is a suitable knowledge

representation vehicle in a plethora of application domains. Hence, it has been inte-

grated into common machine learning tasks to facilitate the knowledge engineering

process required for a successful modeling of the domain under consideration. The
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three-way decisions model has been adopted in feature selection [106, 107, 133,

163, 265, 293], classification [273, 281, 282, 293], clustering [276, 277] and face

recognition [132, 289].

2.2.2 Association Rule Mining

The discovery of association rules is one of the classical data mining tasks. Its goal

is to uncover relationships among attributes that frequently appear together; i.e., the

presence of one implies the presence of the other. One of the typical examples is the

purchase of beer and diapers during the weekends. Association rules are representa-

tive of descriptive knowledge. A particular case are the so called “class association

rules”, which are used to build classifiers. Several methods have been developed for

discovering association rules using rough sets, including [49, 70, 94, 111, 127, 134,

211, 266].

2.2.3 Clustering

The clustering problem is another learning task that has been approached from

a rough set perspective. Clustering is a landmark unsupervised learning problem

whose main objective is to group similar objects in the same cluster and separate

objects that are different from each other by assigning them to different clusters [96,

167]. The objects are grouped in such a way that those in the same group exhibit a

high degree of association among them whereas those in different groups show a low

degree of association. Clustering algorithms map the original N-dimensional feature

space to a 1-dimensional space describing the cluster each object belongs to. This is

why clustering is considered both an important dimensionality reduction technique

and also one of the most prevalent Granular Computing [183] manifestations.

One of the most popular and efficient clustering algorithms for conventional appli-

cations is K-means clustering [71]. In the K-means approach, randomly selected

objects serve as initial cluster centroids. The objects are then assigned to different

clusters based on their distance to the centroids. In particular, an object gets assigned

to the cluster with the nearest centroid. The newly modified clusters then employ

this information to determine new centroids. The process continues iteratively until

the cluster centroids are stabilized. K-means is a very simple clustering algorithm,

easy to understand and implement. The underlying alternate optimization approach

iteratively converges but might get trapped into a local minimum of the objective

function. K-means’ best performance is attained in those applications where clusters

are well separated and a crisp (bivalent) object-to-cluster decision is required. Its

disadvantages include the sensitivity to outliers and the initial cluster centroids as

well as the a priori specification of the desired number of clusters k.

Pawan Lingras [142, 145] found that the K-means algorithm often yields cluster-

ing results with unclear, vague boundaries. He pointed out that the “hard partition-

ing” performed by K-means does not meet the needs of grouping vague data. Lingras
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then proposed to combine K-means with RST and in the so-called “Rough K-means”

approach. In this technique, each cluster is modeled as a rough set and each object

belongs either to the lower approximation of a cluster or to the upper approximation

of multiple clusters. Instead of building each cluster, its lower and upper approxi-

mations are defined based on the available data. The basic properties of the Rough

K-means method are: (i) an object can be a member of at most a lower approxima-

tion; (ii) an object that is a member of the lower approximation of a cluster is also

a member of its upper approximation and (iii) an object that does not belong to the

lower approximation of any cluster is a member of at least the upper approximation

of two clusters. Other pioneering works on rough clustering methods are put forth

in [78, 192, 235, 236].

Rough K-means has been the subject of several subsequent studies aimed at

improving its clustering capabilities. Georg Peters [187] concludes that rough clus-

tering offers the possibility of reducing the number of incorrectly clustered objects,

which is relevant to many real-world applications where minimizing the number

of wrongly grouped objects is more important than maximizing the number of

correctly grouped objects. Hence in these scenarios, Rough K-means arises as a pow-

erful and stronger alternative to K-means. The same author proposes some improve-

ments to the method regarding the calculation of the centroids, thus aiming to make

the method more stable and robust to outliers [184, 185]. The authors in [291] pro-

posed a Rough K-means improvement based on a variable weighted distance mea-

sure. Another enhancement brought forward in [186] suggested that well-defined

objects must have a greater impact on the cluster centroid calculation rather than hav-

ing this impact be governed by the number of cluster boundaries an object belongs

to, as proposed in the original method. An extension to Rough K-means based on

the decision-theoretic rough sets model was developed in [130]. An evolutionary

approach for rough partitive clustering was designed in [168, 189] while [45, 190]

elaborate on dynamic rough clustering approaches.

Other works that tackle the clustering problem using rough sets are [35, 72, 76,

77, 122, 124, 135, 143, 144, 162, 177, 178, 213, 271, 272, 275, 292]. These meth-

ods handle more specific scenarios (such as sequential, imbalanced, categorical and

ordinal data), as well as applications of this clustering approach to different domains.

The rough-fuzzy K-means method is put forward in [88, 170] whereas the fuzzy-

rough K-means is unveiled in [169, 188]. Both approaches amalgamate the main

features of Rough K-means and Fuzzy C-means by using the fuzzy membership of

the objects to the rough clusters. Other variants of fuzzy and rough set hybridization

for the clustering problem are presented in [56, 126, 160, 171].

3 Special Learning Cases Based on RST

This section elaborates on more recent ML scenarios tackled by RST-based

approaches. In particular, we review the cases of imbalanced classification, multi-

label classification, dynamic/incremental learning and Big Data analysis.
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3.1 Imbalanced Classification

The traditional knowledge discovery methods presented in the previous section have

to be adapted if we are dealing with an imbalanced dataset [21]. A dataset is bal-

anced if it has an approximately equal percentage of positive and negative examples

(i.e., those belonging to the concept to be classified and those belonging to other con-

cepts, respectively). However, there are many application domains where we find an

imbalanced dataset; for instance, in healthcare scenarios there are usually a plethora

of patients that do not have a particularly rare disease. When learning a normalcy

model for a certain environment, the number of labeled anomalous events is often

scarce as most of the data corresponds to normal behaviour. The problem with imbal-

anced classes is that the classification algorithms have a tendency towards favoring

the majority class. This occurs because the classifier attempts to reduce the overall

error, hence the classification error does not take into account the underlying data

distribution [23].

Several solutions have been researched to deal with this kind of situations. Two of

the most popular avenues are either resampling the training data (i.e., oversampling

the minority class or undersampling the majority class) or modifying the learning

method [153]. One of the classical methods for learning with imbalanced data is

SMOTE (synthetic minority oversampling technique) [22]. Different learning meth-

ods for imbalanced classification have been developed from an RST-based stand-

point. For instance, Hu et al. [91] proposed models based on probabilistic rough sets

where each example has an associated probability p(x) instead of the default 1/n. Ma

et al. [158] introduced weights in the variable-precision rough set model (VPRS) to

denote the importance of each example. Liu et al. [153] bring about some weights

in the RST formulation to balance the class distribution and develop a method based

on weighted rough sets to solve the imbalanced class learning problem. Ramentol et

al. [194] proposed a method that integrates SMOTE with RST.

Stefanowski et al. [217] introduced filtering techniques to process inconsistent

examples of the majority class (i.e., those lying in the boundary region), thereby

adapting the MODLEM rule extraction method for coping with imbalanced learning

problems. Other RST-based rule induction methods in the context of imbalanced

data are also presented in [152, 243]. The authors in [218] proposed the EXPLORE

method that generates rules for the minority class with a minimum coverage equal

to a user-specified threshold.

3.2 Multi-label Classification

Normally, in a typical classification problem, a class (label) ci from a set C =
{c1,… , ck} is assigned to each example. However, in multi-label classification, a

subset S ⊆ C is assigned to each example, which means that an example could belong

to multiple classes. Some applications of this type of learning emerge from text clas-
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sification and functional genomics, namely, assigning functions to genes [226]. This

gives rise to the so-called multi-label learning problem. The two avenues envisioned

for solving this new class of learning problems have considered either converting

the multi-label scenario to a single-label (classical) scenario or adapting the learn-

ing methods. Examples of the latter trend are the schemes proposed in [47, 198,

227, 290]. Similar approaches have been proposed for multi-label learning using

rough sets. A first alternative is to transform the multi-label problem into a tradi-

tional single-label case and use classical RST-based learning methods to derive the

rules (or any other knowledge); the other option is to adapt the RST-based learning

methods, as shown in [240, 278, 279, 288].

In the first case, a decision system can be generated where some instances could

belong to multiple classes. Multi-label classification can be regarded as an incon-

sistent decision problem, in which two objects having the same predictive attribute

values do not share the same decision class. This leads to the modification of the

definition of the lower/upper approximations through a probabilistic approach that

facilitates modeling the uncertainty generated by the inconsistent system. This idea

gives rise to the so-called multi-label rough set model, which incorporates a prob-

abilistic approach such as the decision-theoretic rough set model. Some RST-based

feature selection methods in multi-label learning scenarios have been enunciated

[131], where the reduct concept was reformulated for the multi-label case.

3.3 Dynamic/Incremental Learning

Data are continuously being updated in nowadays’ information systems. New data

are added and obsolete data are purged over time. Traditional batch-learning methods

lean on the principle of running these algorithms on all data when the information

is updated, which obviously affects the system efficiency while ignoring any previ-

ous learning. Instead, learning should occur as new information arrives. Managing

this learning while adapting the previous knowledge learned is the essence behind

incremental learning. This term refers to an efficient strategy for the analysis of data

in dynamic environments that allows acquiring additional knowledge from an unin-

terrupted information flow. The advantage of incremental learning is not to have to

analyze the data from scratch but to utilize the learning process’ previous outcomes

as much as possible [57, 73, 112, 176, 200]. The continuous and massive acquisi-

tion of data becomes a challenge for the discovery of knowledge; especially in the

context of Big Data, it becomes very necessary to develop capacities to assimilate

the continuous data streams [29].

As an information-based methodology, RST is not exempt from being scrutinized

in the context of dynamic data. The fundamental RST concepts and the knowledge

discovery methods ensuing from them are geared towards the analysis of static data;

hence, they need to be thoroughly revised in light of the requirements posed by

data stream mining systems [151]. The purpose of the incremental learning strat-

egy in rough sets is the development of incremental algorithms to quickly update
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the concept approximations, the reduct calculation or the discovered decision rules

[40, 284]. The direct precursor of these studies can be found in [175]. According to

[149], in recent years RST-based incremental learning approaches have become “hot

topics” in knowledge extraction from dynamic data given their proven data analysis

efficiency.

The study of RST in the context of learning with dynamic data can be approached

from two different angles: what kind of information is considered to be dynamic

and what type of learning task must be carried out. In the first case, the RST-based

incremental updating approach could be further subdivided into three alternatives:

(i) object variation (insertion or deletion of objects in the universe), (ii) attribute

variation (insertion/removal of attributes) and (iii) attribute value variation (inser-

tion/deletion of attribute values). In the second case, we can mention (i) incremen-

tal learning of the concept approximations [33, 139]; (ii) incremental learning of

attribute reduction [52, 140, 237, 238, 250] and (iii) incremental learning of deci-

sion rules [59, 66, 148, 301].

Object variations include so-called object immigration and emigration [148].

Variations of the attributes include feature insertion or deletion [138, 287]. Vari-

ations in attribute values are primarily manifested via the refinement or scaling of

the attribute values [32, 146]. Other works that propose modifications to RST-based

methods for the case of dynamic data are [147, 149, 157].

The following studies deal with dynamic object variation:

∙ The update of the lower and upper approximations of the target concept is analyzed

in [33, 137, 156].

∙ The update in the reduction of attributes is studied in [82, 250].

∙ The update of the decision rule induction mechanism is discussed in [4, 40, 59,

93, 148, 199, 230, 244, 269, 301].

If the variation occurs in the set of attributes, its effects have been studied with

respect to these aspects:

∙ The update of the lower and upper approximations of the target concept is analyzed

in [20, 36, 138, 139, 150, 287].

∙ The update of the decision rule induction mechanism is discussed in [39].

The effect of the variations in the attribute values (namely, via refinement or

extension of the attribute domains) with respect to the update of the lower and upper

approximations of the target concept is analyzed in [30–32, 50, 237, 308].

The calculation of reducts for dynamic data has also been investigated. The effect

when the set of attributes varies is studied in [39]. The case of varying the attribute

values is explored in [50, 69] whereas the case of dynamic object update is dissected

in [199, 244]. Other studies on how dynamic data affect the calculation of reducts

appear in [140, 204, 237, 238].
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3.4 Rough Sets and Big Data

On the other hand, the accelerated pace of technology has led to an exponential

growth in the generation and collection of digital information. This growth is not

only limited to the amount of data available but to the plethora of diverse sources

that emit these data streams. It becomes paramount then to efficiently analyze and

extract knowledge from many dissimilar information sources within a certain appli-

cation domain. This has led to the emergence of the Big Data era [25], which has

a direct impact on the development of RST and its applications. Granular Comput-

ing, our starting point in this chapter, has a strong relation to Big Data [25], as its

inherent ability to process information at multiple levels of abstraction and interpret

information from different perspectives greatly facilitates the efficient management

of large data volumes.

Simply put, Big Data can be envisioned as a large and complex data collection.

These data are very difficult to analyze through traditional data management and

processing tools. Big Data scenarios require new architectures, techniques, algo-

rithms and processes to manage and extract value and knowledge hidden in the

data streams. Big Data is often characterized by the 5 V’s vector: Volume, Veloc-

ity, Variety, Veracity and Value. Big Data includes both structured and unstructured

data, including images, videos, textual reports, etc. Big Data frameworks such as

MapReduce and Spark have been recently developed and constitute indispensable

tools for the accurate and seamless knowledge extraction from an array of disparate

data sources. For more information on the Big Data paradigm, the reader is referred

to the following articles: [25, 48, 60, 117].

As a data analysis and information extraction methodology, RST needs to adapt

and evolve in order to cope with this new phenomenon. A major motivation to do

so lies in the fact that the sizes of nowadays’ decision systems are already extremely

large. This poses a significant challenge to the efficient calculation of the underlying

RST concepts and the knowledge discovery methods that emanate from them. Recall

that the computational complexity of computing the target concept’s approximations

is O(lm2
), the computational cost of finding a reduct is bounded by O(l2m2

) and the

time complexity to find all reducts is O(2lJ), where l is the number of attributes

characterizing the objects, m is the number of objects in the universe and J is the

computational cost required to calculate a reduct.

Some researchers have proposed RST-based solutions to the Big Data challenge

[191, 286]. These methods are concerned with the design of parallel algorithms

to compute equivalence classes, decision classes, associations between equivalence

classes and decision classes, approximations, and so on. They are based on partition-

ing the universe, concurrently processing those information subsystems and then

integrating the results. In other words, given the decision system S = (U,C ∪ D),
generate the subsystems {S1, S2,… , Sm}, where Si = (Ui,C ∪ D) and U =

⋃
Ui,

then process each subsystem Si, i ∈ {1, 2,… ,m}, Ui∕B,B ⊆ C. Afterwards, the

results are amalgamated. This MapReduce-compliant workflow is supported by sev-

eral theorems stating that (a) equivalence classes can be independently computed
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for each subsystem and (b) the equivalence classes from different subsystems can be

merged if they are based on the same underlying attribute set. These results enable

the parallel computation of the equivalence classes of the decision system S. Zhang

et al. [286] developed the PACRSEC algorithm to that end.

Analogously, RST-based knowledge discovery methods, including reduct calcu-

lation and decision rule induction, have been investigated in in the context of Big

Data [58, 256, 285].

3.5 Cost-Sensitive Learning

Cost is an important property inherent to real-world data. Cost sensitivity is an impor-

tant problem which has been addressed from different angles. Cost-sensitive learn-
ing [252, 294, 303, 304] emerged when an awareness of the learning context was

brought into Machine Learning. This is one of the most difficult ML problems and

was listed as one of the top ten challenges in the Data Mining/ML domain [296].

Two types of learning costs have been addressed through RST: misclassification
cost and test cost [253]. Test cost has been studied by Min et al. [163, 165, 166,

295] using the classical rough set approach, i.e., using a single granulation; a test-

cost-sensitive multigranulation rough set model is presented in [253]. Multigranu-

lation rough set is an extension of the classical RST that leans on multiple granular

structures.

A recent cost-sensitive rough set approach was put forward in [115]. The crux of

this method is that the information granules are sensitive to test costs while approx-

imations are sensitive to decision costs, respectively; in this way, the construction

of the rough set model takes into account both the test cost and the decision cost

simultaneously. This new model is called cost-sensitive rough set and is based on

decision-theoretic rough sets. In [132], the authors combine sequential three-way

decisions and cost-sensitive learning to solve the face recognition problem; this is

particularly interesting since in real-world face recognition scenarios, different kinds

of misclassifications will lead to different costs [155, 294].

Other studies focused on the cost-sensitive learning problem from an RST per-

spective are presented in [84, 113, 253, 254]; these works have considered both the

test cost and the decision cost. Attribute reduction based on test-cost-sensitivity has

been quite well investigated [74, 86, 106, 114, 115, 133, 163, 164, 166, 296].

4 Reference Categorization

Table 1 lists the different RST studies according to the ML tasks they perform.
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5 Conclusions

We have reported on hundreds of successful attempts to tackle different ML problems

using RST. These approaches touch all components of the knowledge discovery

process, ranging from data preprocessing to descriptive and predictive knowledge

induction. Aside from the well-known RST strengths in identifying inconsistent

information systems, calculating reducts to reduce the dimensionality of the feature

space or generating an interpretable rule base, we have walked the reader through

more recent examples that show the redefinition of some of the RST’s building blocks

to make it a suitable approach for handling special ML scenarios characterized by an

imbalance in the available class data, the requirement to classify a pattern into one or

more predefined labels, the dynamic processing of data streams, the need to manage

large volumes of static data or the management of misclassification/test costs. All of

these efforts bear witness to the resiliency and adaptability of the rough set approach,

thus making it an appealing choice for solving non-conventional ML problems.
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