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Preface

It is the 10th anniversary of the death of Prof. Zdzisltaw Pawlak, the father of rough
set theory, in 2016. He set up the rough set theory in 1982, which has become one
of the major theories for processing uncertain information.

As Prof. Lotfi A. Zadeh said, Prof. Pawlak was a great scientist and a great
human being. He entered science history as not only the father of rough set theory,
but also as the designer of the first grammar of DNA, the precursor of mosaic and
picture grammars, the inventor of the digital computer based on -2 system and a
random numbers generator. Besides these great scientific achievements, he was a
very warm, cordial man, demanding but fair, and a man of many talents and
interests, a painter, a poet, an ardent tourist, a craftsman, a truly renaissance man.

In observance of the 10th anniversary of his departure, the International Rough
Set Society (IRSS) organized two special memorial sessions commemorating him
in 2016, that is, the plenary panel on the legacy of Prof. Zdzistaw Pawlak at
FedCSIS’ 16, September 11-14, 2016, and the special memorial session for Prof.
Pawlak at IJICRS2016, October 7-11, 2016. Polish Information Processing Society
under the auspices of the Institute of Computer Science at Warsaw University of
Technology organized a special session celebrating the 90th anniversary of birth of
Prof. Zdzistaw Pawlak on December 6, 2016. Moreover, a special plenary session
celebrating the 35th anniversary of the pioneering work on rough sets by Prof.
Zdzistaw Pawlak will be held at IICRS’17, in Olsztyn, Poland, July 3-7, 2017.

In addition to these special sessions, IRSS is going to publish this special
memorial book entitled “Thriving Rough Sets: 10th Anniversary—Honoring Pro-
fessor Zdzistaw Pawlak’s Life and Legacy & 35 years of Rough Sets”, in 2017.

This book includes 20 chapters. They are divided into four sections, that is,
historical review of Prof. Zdzistaw Pawlak and rough set, review of rough set
research, rough set theory, and rough set-based data mining.

The first part of this book is about the historical review of Prof. Zdzistaw Pawlak
and rough set. In Chapter “The Born and Growing of Chinese Rough Set
Community with Help of Professor Zdzistaw Pawlak”, Prof. Guoyin Wang intro-
duces the history of the born and quick growing of Chinese rough set community
with the help of Prof. Pawlak. China is becoming a very active country in the field
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of rough set theory. In Chapter ‘“Zdzistaw Pawlak as I Saw Him and Remember
Him Now”, Prof. Lech Polkowski sums up his experiences of working and living
with Prof. Pawlak, shares what he knows about him, and introduces some less
known achievements of him. In Chapter “Recent Development of Rough
Computing: A Scientometrics View” by JingTao Yao and Adeniyi Onasanya, the
authors use scientometrics approach to quantitatively analyze the contents and
citations of rough set publications. They find some interesting results in key indi-
cators between 2013 and 2016 results. Their study results indicate that rough sets as
a research domain is attracting more researchers and growing healthily in recent
years.

The second part of this book is about the review of rough set research. In
Chapter “Rough Sets, Rough Mereology and Uncertainty”, Prof. Lech Polkowski
reviews the rough set research in many realms like morphology, intelligent agents,
linguistics, behavioral robotics, mereology, and granular computing. He sums up
his personal experience and results, and in a sense to unify them into a coherent
conceptual scheme following the main themes of rough set theory: to understand
uncertainty and to cope with it in data. In Chapter “Rough Sets in Machine
Learning: A Review” by Rafael Bello and Rafael Falcon, the authors survey the
existing literature and report the most relevant theoretical developments and
applications of rough set theory in a broad field of machine learning. Chapter
“Application of Tolerance Rough Sets in Structured and Unstructured Text
Categorization: A Survey” by Sheela Ramanna, James Francis Peters, and Cenker
Sengoz, presents a survey of literature, where tolerance rough set model is used as a
text categorization and learning model. It demonstrates the versatility of the tol-
erance form of rough sets and its successful application in text categorization and
labeling. In Chapter “Medical Diagnosis: Rough Set View”, Prof. Shusaku Tsu-
moto discusses the formalization of medical diagnosis from the viewpoint of rule
reasoning based on rough sets. In Chapter “Rough Set Analysis of Imprecise
Classes”, Prof. Masahiro Inuiguchi proposes to use the lower approximations of
unions of k decision classes to enrich the applicability of rough set approaches
instead of the lower approximations of single classes in the classical rough set
approaches. In Chapter “Pawlak’s Many Valued Information System, Non-
deterministic Information System, and a Proposal of New Topics on Information
Incompleteness Toward the Actual Application” by Hiroshi Sakai, Michinori
Nakata, and Yiyu Yao, the authors discuss Pawlak’s many valued information
systems (MVISs), non-deterministic information systems (NISs), and related new
topics on information incompleteness toward the actual application. They survey
their previous research and propose new topics toward the actual application of
NIS, namely data mining under various types of uncertainty, rough set-based
estimation of an actual value, machine learning by rule generation, information
dilution, and privacy-preserving issue, in NISs.

The third part is about recent achievements of the study of rough set theory. In
Chapter “From Information Systems to Interactive Information Systems” by
Andrzej Skowron and Soma Dutta, the authors propose a departure from classical
notion of information systems, and bring in the background of agent’s interaction
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with physical reality in arriving at a specific information system. They propose to
generalize the notion of information systems from two aspects. In Chapter “Back to
the Beginnings: Pawlak's Definitions of the Terms Information System and Rough
Set”, Prof. Davide Ciucci discusses two basic notions and terms, rough set and
information system, which have no crystal clear definitions in rough set theory. In
Chapter “Knowledge and Consequence in AC Semantics for General Rough Sets”,
Prof. A. Mani introduces an antichain based semantics for general rough sets. She
develops two different semantics, one for general rough sets and another for general
approximation spaces over quasi-equivalence relations, and studies the epistemo-
logical aspects of the semantics. Chapter “Measuring Soft Roughness of Soft
Rough Sets Induced by Covering” by Amr Zakaria studies some important prop-
erties of soft rough sets induced by soft covering. A measure of soft roughness is
introduced via soft covering approximation. A new approach of soft rough
approximation space is presented via a measure of soft roughness. Chapter “Rough
Search of Vague Knowledge” by Edward Bryniarski and Anna Bryniarska dis-
cusses the theoretical basis of the vague knowledge search, introduces some data
granulation methods in semantic networks. In Chapter “Vagueness and Uncertainty:
An F-Rough Set Perspective” by Dayong Deng and Houkuan Huang, the authors
investigate vagueness and uncertainty from the viewpoints of F-rough sets. Some
indexes, including two types of F-roughness, two types of F-membership-degree
and F-dependence degree etc., are defined. In Chapter “Directions of Use of the
Pawlak's Approach to Conflict Analysis”, Prof. Malgorzata Przybyla-Kasperek
applies the Pawlak's model to analyze the conflicts that arise between classifiers in
decision making. Chapter “Lattice Structure of Variable Precision Rough Sets” by
Sumita Basu studies the algebraic properties of set of variable precision rough sets
for a particular imprecise set.

The fourth part of this book is about the application of rough set in data mining.
In Chapter “Mining for Actionable Knowledge in Tinnitus Datasets” by
Katarzyna A. Tarnowska, Zbigniew W. Ras, and Pawel J. Jastreboff, the authors
verify the possibility of applying theory of traditional machine learning techniques,
such as classification and association rules, as well as novel data mining methods,
including action rules and meta actions, to a practical decision problem in the area
of medicine. Knowledge discovery approaches with an ultimate goal of building
rule-based recommender system for tinnitus treatment and diagnosis are investi-
gated. Chapter “Rough-Granular Computing for Relational Data” by Piotr Honko
introduces three rough-granular approaches dedicated to handle complex data such
as relational one. The three approaches are also compared in terms of construction
of information systems, information granules, and approximation spaces. In
Chapter “The Boosting and Bootstrap Ensembles for the Pair Classifier Based on
the Dual Indiscernibility Matrix” by Piotr Artiemjew, Lech Polkowski, Bartosz
Nowak, and Przemystaw Gorecki, the authors examine selected methods for sta-
bilization of the pair classifier like bootstrap ensemble, arcing based bootstrap,
Ada-Boost with Monte Carlo split.

Many distinguished researchers helped to review papers for this book. We
express our gratefulness to Profs. Jerzy W. Grzymata-Busse, Mihir K. Chakraborty,



viii Preface

Davide Ciucci, Chris Cornelis, Salvatore Greco, Qinghua Hu, Huaxiong Li, Pawan
Lingras, Dun Liu, Jusheng Mi, Duogian Miao, Yuhua Qian, Sheela Ramanna,
Hiroshi Sakai, Shusaku Tsumoto, Jingtao Yao, Zhiwen Yu, Xianzhong Zhou, and
Wojciech Ziarko, for serving as reviewers. We are thankful to Dr Xin Deng and Dr
Zhixing Li for their help to edit the book.

We are also thankful to Prof. Janusz Kacprzyk, Series Editor of “Studies in
Computational Intelligence” for Springer, Dr. Thomas Ditzinger, Executive Editor
of Springer, Interdisciplinary and Applied Sciences & Engineering, and Mr.
Ramamoorthy Rajangam, Project Coordinator of Books Production at Springer, for
their support and cooperation to publish the book.

Chongqging, China Guoyin Wang
Warsaw, Poland Andrzej Skowron
Regina, Canada Yiyu Yao
Warsaw, Poland Dominik glczak
Warsaw/Olsztyn, Poland Lech Polkowski

December 2016
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The Born and Growing of Chinese Rough
Set Community with Help of Professor
Zdzistaw Pawlak

Guoyin Wang

Abstract Rough Set is a mathematical theory for processing uncertain data and
information, which was first described by Professor Pawlak in 1982. The rough set
research in China is growing very quickly in recent years. Professor Pawlak helped
the development of Chinese rough set community a lot. It is the 10th anniversary of
Professor Pawlak’s death this year. This paper is a record of the history of the born
and growing of Chinese rough set community and a commemoration of Professor
Pawlak, our old friend.

Keywords Rough Set . China - Professor Zdzistaw Pawlak

1 The Born of Chinese Rough Set Community

Rough Set is a mathematical theory for processing uncertain data and information,
which was first described by Professor Zdzistaw Pawlak in 1982 [1]. As the father
of rough set theory, Professor Pawlak had great contribution to its growing and
developing in the whole world [2, 3], including China.

The rough set study in China was started in 1990s. The Chinese Rough Set and
Soft Computing Society (CRSSC) became a branch of the Chinese Association of
Artificial Intelligence (CAAI) in 2003. It has about 800 members now. It becomes
the largest national rough set society in the whole world.

I am writing this article to record the history of the born and growing of rough
set community in China in the past 20 years, and introduce the great help and
support of Professor Pawlak for the born and quick growing of the rough set in
China to commemorate the 10 anniversary of his death.

G. Wang (=)

Chongqing Key Laboratory of Computational Intelligence, Chongqing
University of Posts and Telecommunications, 400065 Nan’an District,
Chonggqing, People’s Republic of China

e-mail: wanggy @ieee.org

© Springer International Publishing AG 2017 3
G. Wang et al. (eds.), Thriving Rough Sets, Studies in Computational
Intelligence 708, DOI 10.1007/978-3-319-54966-8_1



4 G. Wang

After graduating from the Xi’an Jiaotong University at the end of 1996, I joined
the Chongqing University of Posts and Telecommunications. I read some rough set
papers and start to learn and study rough set based knowledge acquisition from
1997. This is my first time to know the name of rough set theory and Professor
Pawlak. I got my Ist NSFC research grant “Rough Set Based Automatic Knowl-
edge Acquisition Technology and Its Application” in 1998, and visited Professor
Yiyu Yao at University of Regina for about 1 month in 1999. Professor Yiyu Yao
introduced a lot about rough set theory and Professor Pawlak to me when I was in
Regina. After coming back at Chongqing, I started to set up a Chinese rough set
society and initialize a Chinese rough set workshop/conference. Professor Qing Liu,
a key senior rough set researcher in China, planed it together with me. We sent an
email to Professor Pawlak to invite him to visit Chongqing, attend the 1st Chinese
Conference on Rough Sets and Soft Computing (CRSSC2001) and give a keynote
talk. We received his positive response immediately.

The First Chinese Conference on Rough Set and Soft Computing (CRSSC2001)
[4] was held in Chongqing University of Posts and Telecommunications May 25—
27, 2001. 86 attendees joined this conference. Professor Pawlak gave a keynote talk
“Applications of Rough Set Theory to Drawing Conclusions from Data”. Professor
Pawlak is at the 8th of the first line of the group picture of CRSSC2001 shown in
Fig. 1. Figure 2 is the CRSSC2001 proceeding which is published as a special issue
of the Journal of Computer Science. The Chongqing city government thought
highly of the conference and supported it very much. Some high-ranking officials of
the Chongqing government such as Professor Ruihua Dou, the vice Chairman of the

Fig. 1 Group picture of
CRSSC2001

Fig. 2 Proceedings of |
CRSSC2001 + AUt
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Chongqing Political Consultation Committee and the former vice mayor of
Chongqing, Professor Chunlin Zhai, the vice President of the Chongqing Associ-
ation for Science and Technology, Professor Yuhui Qiu, the President of Southwest
Normal University and the Chairman of Chongqing Computer Society, and Pro-
fessor Neng Nie, the President of Chongqing University of Posts and Telecom-
munications, attended the conference. During this conference, I proposed a plan for
setting up a Chinese rough set society. Many CRSSC2001 attendees expressed their
interests of joining the society. Professor Pawlak stayed in Chongqing 4 days. He
discussed with Chinese researchers about rough set related researches and intro-
duced the development of rough set theory. He expressed his desire to support the
development of rough set theory in China. Thus, we can say that Professor Pawlak
witnessed and contributed to the born of Chinese rough set community.

2 Rough Set Conferences Organized in China

Since 2001, the Chinese conference on rough set and soft computing (CRSSC) is
held every year. It is held together with the Chinese conference on web intelligence
(CWI) and Chinese conference on granular computing (CGrC) every year since
2007. Until now, it has been held 15 times in many different cities in China. Table 1
is a list of the national rough set conferences in China. These conferences pushed
the quick development of rough set research in China.

Professor Pawlak also helped Chinese researchers to join the international rough
set community. With his help and support, the 9th International Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC2003)
[5] was held in Chongqing, China. It was the st time to organize an international
rough set conference in China. It was originally planned in May, 2003. Professor
Pawlak prepared his keynote talk “Flow Graphs and Decision Algorithms” [6] and
booked his ticket for attending the conference. Unfortunately, SARS happened in
the whole world in 2003. RSFDGrC2003 had to be postponed to October, 2003.
Professor Pawlak changed his trip plan and failed to attend the conference in
October due to his health reasons at last.

In order to promote the rough set theory in the field of knowledge technology.
A new international conference “Rough Sets and Knowledge Technology (RSKT)”
was initialized in 2006. The Ist international conference on rough sets and
knowledge technology (RSKT2006) [7] was organized in Chongqing, July, 2006.
Professor Pawlak prepared his keynote talk “Conflicts and Negotations” for this
conference [8]. Unfortunately, he passed away on 7 April 2006. Professors James F
Peters and Andrzej Skowrn wrote a commemorative paper “Some Contributions by
Zdzistaw Pawlak™ [3]. It should be the 1st commemorative paper for Professor
Pawlak after his death. The proceeding of RSKT2006 should also be the Ist
commemorative book for Professor Pawlak (Figs. 3 and 4).



Table 1 Chinese national
rough set conferences

Fig. 3 Proceeding of
RSKT2006

G. Wang

Conference name City Number of

attendees
CRSSC2001 Chongqing 86
CRSSC2002 Suzhou About 150
CRSSC2003 Chongging 123
CRSSC2004 Zhoushan Over 100
CRSSC2005 Anshan 98
CRSSC2006 Jinhua 75
CRSSC-CWI-CGrC2007 | Taiyuan 356
CRSSC-CWI-CGrC2008 | Xinxiang 193
CRSSC-CWI-CGrC2009 | Shijiazhuang | 164
CRSSC-CWI-CGrC2010 | Chongqing 123
CRSSC-CWI-CGrC2011 Nanjing 218
CRSSC-CWI-CGrC2012 | Hefei About 180
CRSSC-CWI-CGrC2013 | Zhangzhou 253
CRSSC-CWI-CGrC2014 | Kunming 302
CRSSC-CWI-CGrC2015 Tangshan Over 300
CRSSC-CWI-CGrC2016 | Yantai 378

Note (1) CRSSC is the Chinese conference on rough set and soft
computing

(2) CRSSC-CWI-CGrC the joint conference of Chinese
conference on rough set and soft computing, Chinese
conference on web intelligence, and Chinese conference on
granular computing (CGrC)

G W amg
B ¥, Prinrs
v b
Tigs Ve thin)

Rough Sets

Since 2003, many international rough set events have been organized in China.
It greatly pushed the international academic exchange between Chinese rough set
researchers and oversea rough set researchers. It makes the rough set research grow
quickly. A list of rough set related international conferences held in China is

available in Table 2.
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Fig. 4 Professor Pawlak’s
photograph included in the
proceeding of RSKT2006

st conterences eld in i ~ConIeence name ciy

RSFDGrC2003 Chongging
RSKT2006 Chongqing
IFTGrCRSP2006 Nanchang
IFKT2008 Chongging
RSKT2008 Chengdu
RST2010 Zhoushan
RSKT2010 Beijing
JRS2012 Chengdu
RSKT2014 Shanghai
IJCRS2015 Tianjin

Note RSFDGTC is international conference on rough sets, fuzzy
sets, data mining and granular computing

RSKT is international conference on rough sets and knowledge
technology

IFTGrCRSP is international forum on theory of GrC from rough
set perspective

IFKT is international forum on knowledge technology

RST is international workshop on theoretical rough sets

JRS is joint rough set symposium

IJCRS is international joint conference on rough sets

3 The Growing of Chinese Rough Set Community

In order to push the development of rough set research in China, Chinese Asso-
ciation of Artificial Intelligence (CAAI) set up a rough set and soft computing
branch (CRSSC) in 2003 (http://CS.CQUPT.EDU.CN/CRSSC). Professor Xuyan
Tu, the Honorary President of CAAI, wrote the poem in Fig. 5 to celebrate the
establishment of CRSSC in Guangzhou, 21 November, 2003.

Professor Guoyin Wang at Chongqing University of Posts and Telecommuni-
cations had served as the Chairman of CRSSC from 2003 to 2012. Since 2012,


http://CS.CQUPT.EDU.CN/CRSSC

8 G. Wang

“: f - * 41 Rough sets are .n.ot rough, and one
T 4 LA ﬁ g 5 . moves towards precision. .
§ 5 ;‘ z,LJ*S : ﬁ #. One removes the “unbelievable” so
iii ?'i & 4 % 2 ‘T #. & that what remains is more l.)elit.:val.ale.
TR ‘fé 8 13, ﬁ # # A The soft par.t of compu.tmg is nimble.
e q . Rough sets imply a philosophy rooted
. in China.
a. Original version in Chinese b. Translated version in English
Fig. 5 Poem by Professor Xuyan Tu
Tab!e 3 Rough set papers Year Papers Year Papers Year Papers
published in Chinese journals 1991 ] 2000 107 2009 1192
1992 1 2001 168 2010 1084
1993 1 2002 281 2011 853
1994 3 2003 412 2012 878
1995 1 2004 567 2013 728
1996 4 2005 756 2014 740
1997 10 2006 937 2015 738
1998 26 2007 1070
1999 57 2008 1244

Note 1t is a retrieval result from CNKI [10] on July 14, 2016

Professor Duogian Miao at Tongji University serves as the Chairman. CRSSC
sponsored all the above national and international rough set related events held in
China.

The rough set research in China is growing very quickly. The information of the
research on rough set theory and applications in China before 2008 is available in
[9]. There are about 700-800 rough set related research papers published in Chinese
academic journals in recent years. Detailed information about it is in Table 3.

Now, rough set theory has become one of the key scientific research fields in
computing technology and artificial intelligence technology [11]. CRSSC is also a
very active branch of CAAI, the largest national rough set society in the
world. Chinese Journal of Computers is one of the key journals in the field of
information technology in China. It was started in 1978. The top 15 highly cited
papers published in Chinese Journal of Computers since its 1st issue is listed in
Table 4. It could be found that 4 rough set papers (bold) are in the list. They are the
No. 4, No. 12, No. 13, and No. 15. More and more Chinese rough set researchers
are publishing a lot of high quality papers in international conferences and journals
nowadays. Especially, there are a lot of young Chinese rough set researchers. They
will be the future of rough set theory research.
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Table 4 Top 15 most cited papers published in Chinese journal of computers

No | Author(s) Title Year | Cite
1| £3%, sA1EA, 1E8k4E NG HFRR MRk 2002 | 1201
Liang Wang, Weiming Hu, Tieniu A Survey of Visual Analysis of
Tan Human Motion
2| R, RiIEF, #RItR, KR NB R T SEL7 3R 2002 | 1048
Luhong Liang, Haizhou Ai, A Survey of Human Face
Guangyou Xu, Bo Zhang Detection
3 | SEM, IE, B, R WIMS: TURREIE R % 1999 | 987
Meilin Shi, Guangxin Yang, Yong WIMS: Workflow Management
Xiang, Shangguang Wu System
4 | ZTEH, TH WAE ETXMHEEMONARELE 2002 | 964
Guoyin Wang, Hong Yu, Dachun Decision Table Reduction
Yang Based on Conditional
information Entropy
5 | TH, FRE BFEGEHRRIESRESh | 1998 | 623
Wei Ding, Dongxu Qi R
Digital Image Transformation
and Information Hiding and
Disguising Technology
6 | #&Jtie, BITE, BiHEL TEITE 2003 | 589
Guangyou Xu, Yuanchun Shi, Weikai | Pervasive/Ubiquitous Computing
Xie
7| B EEE, TR, ERE RIAAEHE - PhEX ~ DURERE | 2011 | 586
Shan Wang, Huiju Wang, Xiongpai Architecting Big Data:
Qin, Xuan Zhou Challenges, Studies and
Forecasts
8 | R, R —FPRETIEIHIAANTSPEI | 2001 | 583
Bin Wu, Zhongzhi Shi TECRIRE
An Ant Colony Algorithm Based
Partition Algorithm for TSP
9 | TR, HiEL BERF TCP/IPHREVEFINTSE 2001 | 574
Wanming Luo, Chuang Lin, Baoping | A Survey of Congestion Control
Yan in the Internet
10 | ZERiE, BRsris, iHE, 2K —PETIHGDHEIITLXIE | 2007 | 544
Chengfa Li, Guihai Chen, Mao Ye, Jie | BLZSM0LE IR ER1HIN
Wu An Uneven Cluster-Based
Routing Protocol for Wireless
Sensor Networks
11 | R1E, REAE, T2, BRS¢ ETFTAIKICAELIEXAEME | 2005 | 514
Jian Wu, Zhaohui Wu, Ying Li, BIWebfR 55530
Shuiguang Deng Web Service Discovery Based on
Ontology and Similarity of
Words
12 | XEIA, k—T&, Fit tERESRIEIL 5y R SELRA 2009 | 481

Guoyin Wang, Yiyu Yao, Hong Yu

A survey on Rough Set Theory
and Its Application

(continued)
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Table 4 (continued)
No | Author(s) Title Year | Cite
13 | £3%, FE, BZF%, 3B86A, BUkES, | BT RoughSetIEI0HI“BUfEIR | 1998 | 481
2/, BB T
Jue Wang, Ren Wan, Duogian Data Enriching Based on
Miao, Meng Guo, Yongshao Ruan, | Rough Set Theory
Xiaohong Yuan, Kai Zhao
14 | BAW, IR AT G R RIE - R 3 2002 | 480
Renbin Xiao, Lei Wang I RE
Artificial Immune System:
Principle, Models, Analysis and
Perspectives
15 | XDIE, EIKER, RIK, LEHE, tAZE | RoughR =B IEHIH 5T 2003 | 472
Shaohui Liu, Qiujian Sheng, Bin Research on Efficient
Wu, Zhongzhi Shi, Fei Hu Algorithms for Rough Set
Methods

Note 1t is a search result from CNKI [10] on July 14, 2016

Nowadays, Chinese rough set researchers publish a lot of high quality research
papers in international journals and conferences every year. More and more highly
cited rough set papers are published by Chinese researchers.

4 Conclusions

Professor Pawlak helped the born and development of Chinese rough set com-
munity a lot. With his help, the rough set research in China is growing very quickly.
Chinese rough set society becomes a key academic organization in both China and
worldwide. Chinese rough set society will further push the development of rough
set theory in the future together with other rough set communities.
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dation of China under Grant numbers of 61272060 and 61572091.
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Zdzistaw Pawlak as I Saw Him
and Remember Him Now

Lech Polkowski

No man is an island, Entire of itself, Every man is a piece of the
continent, A part of the main (John Donne)

Abstract Zdzistaw Pawlak made an impression on many people including this
author due to His openness to new ideas, readiness to discuss them and the spirit
of creativity He infused with. In this note, we try to sum up our experiences and also
to share what we know about Him and His career on basis of what He said. We touch
also some less known achievements of Him.

1 Introduction

Zdzistaw was born in 19261in the city of £.6dZ, in the centre of Poland. This city
was founded on the marsh lands in mid-XIX century as the big centre of weaving
and clothing industry, for this reason called the ‘Polish Manchester’. Large fortunes
were made due to the immense russian market to which most of the production
went. The climate of that period is rendered in the movie by Andrzej Wajda ‘The
Promised Land’ (‘Ziemia Obiecana’ in Polish) made after the novel of the same title
by the Nobel laureate Wiadystaw Reymont. Zdzistaw was 13 and finished elementary
school when the second World War broke out. £.6dZ was renamed Litzmannstadt and
incorporated into Reich and Zdzistaw worked in a Siemens factory. After the war He
was able to pass maturity exams and He begun studies. Initially, He studied Sinology
as something far from ordinary (so he said) but finally graduated from Warsaw Uni-
versity of Technology at the Telecommunication Department in 1951. He was lucky
to work in a team building the first computing machine in Poland called GAM-1 and
He had some important results like the random numbers generator (1953). It would
be very difficult to relate all His achievements but it would be sufficient to mention
His positional system for arithmetic with the base of —2, the Pawlak machine—a
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new model of a computing machine, the first model of DNA, and of course the idea
of a rough set. It is instructive to trace these achievements and corresponding with
them scientific interests. The line goes from the first computing machine GAM-1
in early 50-ties, through the work on a computing machine UMC-1 in the Warsaw
University of Technology in the years 1957-1959 based on His arithmetic with the
minus 2 base, which actually went to production and some dozens of it were pro-
duced and worked for about 10 years. This line of activity was crowned in 1963 by a
habilitation thesis ‘Organization of address-less machines’. At that time He became
a professor at the Institute of Mathematics of the Polish Academy of Sciences (PAS),
He became more involved in theory and His research interests shifted toward math-
ematical linguistics, semiotics, and scientific information. Especially the last topic
proved fruitful as the work on information systems led to the idea of a rough set.

2 DNA

A striking testimony to Zdzistaw’s abilities and horizons is His model of DNA,
regarded by Professor Solomon Marcus, an eminent specialist in mathematical lin-
guistics, as the first in the literature model of genomic grammar. At the same time
it is worthy of noticing that this model was published in a relatively little known
at least off Poland series of books, ‘Small Mathematical Library’, published by the
State Publisher of School Publications, intended as a more popular and informal in
style companion to the very professional ‘Mathematical Library’. The book in ques-
tion was titled ‘Matematyka i Gramatyka’ (‘Mathematics and Grammar’) [3] and
one chapter in it was dedicated to a model of DNA, basically as a model of genetic
code which assigns to sequences of nucleic acids sequences of polypeptides. The
wider reception of this model was due to the late Professor Solomon Marcus, our
friend from Roumanian Academy and the University of Bucharest, who presented
this model in English (‘Linguistic structures and generative devices in molecular
genetics’) [1]. The basic facts used in the genetic language of Pawlak are: 1. DNA
is a double helix built of 4 distinct amino-acids: A(denine), T(hymine), G(uanine),
C(cytosine). 2. RNA is a single sequence built of 4 amino-acids: A, G, C, U(racyl).
3. Transcription from DNA to RNA follows the following productions:

A->UT—->AG-C,C—-G.

Transcription leads to RNA sequence shorter then DNA sequence. 4. Some con-
vex subsequences of length 3 of RNA are codons; they code some amino-acids,
hence, a sequence of codons is a code for a sequence of amino-acids—a polypeptide.
5. There are 20 amino-acids genetically valid (though some authors adopt their num-
ber as 22). In view of these facts and the one-to-one correspondence between codons
and amino-acids genetically functional, Zdzistaw Pawlak chose to represent active
codons as equilateral triangles with sides labelled 0, 1, 2, or 3 corresponding to the
sequence U, A, C, G. The rule for labelling was as follows: the left side of the triangle
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is labelled x, the base is labelled y, and the right side is labelled z in such a way that
x <y and z <y. This way of numbering produces 20 distinct codons written down
in the form of a sequence xyz: 010, 011, 020, 021, 022, 10, 121, 122, 030, 031, 032,
033, 130, 13, 132, 133, 230, 231, 232, 233. We can number those codons from 1 to
201n the order they are listed. Codons are concatenated according to the following
rule in terms of their triangle representations: given already formed chain of codons
X we may add to X a new codon b if there is in X a codon a whose side value is equal
to the base value of b and no side of b is either a base or a side of any codon in X. For
instance, if X = 232, then we may add 122. Codons like 020 are terminal because
they cannot be extended; similarly any chain is terminal if it cannot be extended. The
test for being terminal is clearly that each external side of such a chain is valued O.
Terminal chains code proteins i.e. terminal polypeptide chains. The Pawlak grammar
consists of rules corresponding to triangles representing codons:

1. 1-00 2.1-01 3.2-00
4.2-01 5.2-02 6.2-10
7.2-11 8.2-12 9.3-00
10. 3-01 11.3-02 12.3-03
13.3-10 14. 3-11 15.3-12
16.3-13 17.3-20 18. 3-21
19.3-22 20.3-23

We have here some pioneering ideas like tessellations generating grammars, and
graph grammars (it is easy to convert the triangle rules into graph (precisely, tree)
rules). This simple genomic language projecting deep structure (codons) onto sur-
face structure (proteins) can be regarded as an ancestor to recent results in the era
when genomes are being deciphered and reveal extraordinarily complex grammars
of relations between deep and surface structures [2].

3 1 Meet Zdzistaw

Though I knew about His existence and He was in committees for thesis defences of
a few of my acquaintances including my wife Professor Maria Semeniuk-Polkowska,
yet personally I did not meet Him until 1992 on my return from an American univer-
sity. He took me into His group working already for about 10 years on His idea of a
rough set. Prominent there were already Andrzej Skowron, Cecylia Rauszer, work-
ing in the chair of Professor Helena Rasiowa. Zdzistaw proposed to investigate the
problem of giving a topology to rough set spaces—He said that he tried to interest in
this problem some researchers at the Mathematical Institute of the Polish Academy
of Sciences but to no avail. I learned from Him that in a short time of about two
weeks, Roman Stowinski was going to send to Kluwer a collective monograph on
rough sets ‘Handbook of Applications and Advances of Rough Sets’. I succeeded in
preparing and sending to him the first note ‘On convergence of rough sets’ [5]. Later,
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in more quiet conditions, I prepared some works which were published in Bulletin
of the Polish Academy of Sciences (PAS) under a common header of ‘Morphology
of Rough Sets’. In those papers I introduced some metrics in infinite information
systems that gave topology to various spaces of rough sets. In this way, I satisfied
Zdzistaw’s wish for a topology for rough sets.

4 Work on Mereology

Zdzistaw often mentioned that when working at the Mathematical Institute of PAS,
He spent time at the Library, perusing and reading works on foundations of con-
cept and set theories. He also benefitted much from conversations and seminars with
Andrzej Ehrenfeucht, the legendary logician and mathematician. When travelling
once with Zdzistaw to a conference in Alaska, we made a stop at Denver to meet
Andrzej Ehrenfeucht at Boulder so I could see the old spirit of those discussions
reenacted. Zdzistaw mentioned the theory of mereology of Stanistaw Le’sniewski.
Mereology is a theory of parts of the whole, mentioned already by Aristotle (e.g.,
in his treatise ‘De partibus animalium’) and treated by medieval philosophers but
given a formal axiomatic scheme by Le$niewski in his ‘Podstawy Teoryi Zbior6w’
(‘Foundations of Set Theory’) published in Moscow in 1916, where the author was
interned during the first world war. At first glance, mereology is relevant to rough
sets as set inclusion is a particular example of a part relation and basic constructs of
rough set theory, i.e., approximations are defined by means of inclusion of indiscerni-
bility classes. It was the idea of Andrzej Skowron that we consider something like a
degree of containment and I found axioms for this extension called Rough Mereol-
ogy. Further research led to granular computing, new classifier synthesis methods,
applications to robotics and data sets. It is doubtful that all this would be done if
not the creative atmosphere and free spirit which enlivened those close to Zdzistaw
Pawlak.

5 Boundaries

It is evident to all who study rough set idea that the most important notion and most
important things that conform to that notion is the notion of a boundary and bound-
aries of concepts as they witness the uncertainty of the concept. The notion of a
boundary has been the subject of investigation by philosophers, logicians, topolo-
gists. The latter have had an advantage of a point topology and have defined a bound-
ary as the set of points which have the property that each neighborhood of each of
them does intersect the set and its complement, so in a sense, boundary consists of
points ‘infinitely close’ to a concept and its complement, and as a rule, boundary
is disjoint to a concept and to its complement, save the case when the concept is
‘closed’ which means that it does contain its boundary. This is fine when we discuss
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imaginary boundaries in de dicto context. But the problem arises when we speak of
de re boundaries existing in the real world. Typical questions are like the Leonardo
question cf. Varzi [9]: “What (...) divides the atmosphere from the water? It is nec-
essary that there should be a common boundary which is neither air nor water but
is without substance, because a body interposed between two bodies prevents their
contact, and this does not happen in water with air.” We touch here the problem of
impossibility of a precise delineation of the boundary. The response from mathe-
matics could be that in such cases the boundary is a fractal dynamically changing
with time. But is this fractal from water particles or from air particles? One can see
here the soundness of the rough set approach: things in the world are perceived by
means of their descriptions, regardless of the fact that in practical usage, the descrip-
tions are replaced with higher level terms, e.g., ‘Mount Everest’ is a term describ-
ing the highest peak on earth whose description would take many attributes. And,
things having the same relation to any other thing are collected in aggregates called
‘indiscernibility classes’ which among themselves partition the universe of things
into disjoint pairwise aggregates. Any concept over this universe faces a dichotomy:
either it is built of these aggregates or not. In the first case the concept is unam-
biguous, i.e., for each thing in the universe, every one can decide whether it falls
under the concept or not. In the second case, there are aggregates which do intersect
both the concept and its complement and can be ascribed to neither. Such aggre-
gates build the boundary of the concept which is precisely defined and things in it
belong to the concept and to its complement in an unambiguous way being collec-
tively responsible for the ambiguity of the concept. We may say that indiscernibility
aggregates form parts of boundaries of concepts and of their boundary-less approx-
imations. Returning with this picture to the Leonardo question, we may say that the
boundary between water and air is the foam belonging partly to water and partly
to air as particles in it are closer one to another than some very small real number.
One may say that this approach invented by Zdzistaw Pawlak is a specimen of the
pointless topology whose more general rendition is the mereotopology, i.e., topol-
ogy in universa equipped with the ‘part of” relation part(.,.). In the generalization of
Zdzistaw approach, the granular mereotopology seems adequate. We say about it cf.
Polkowski and Semeniuk-Polkowska [6].

5.1 A Granular Mereotopological Model of Boundary
as a Direct Generalization of Zdzistaw Pawlak’s
Approach

Mereology is based on the notion of a part relation, part(x,y) (‘X is a part to y’)
which satisfies over a universe U conditions: M1: For each x € U it is not true that
part(x,x) M2: For each triple x, y, z of things in U if part(x,y) and part(y, z), then
part(x,z). The notion of an element is defined as the relation el(x,y) which holds
true if part(x,y) or x = y. For our purpose in this section, we modify our approach
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to mereology. We introduce a new version of rough mereology whose basic notion
is predicate ‘a part to a degree’, u(x,y,r), (‘x is a part to y to a degree of r at
least’) on a universe U, where r € [0, 1]. Conditions for y are RM1 u(x, x, 1); RM2
There is a partition on U such that u(x,y, 1) and u(y,x, 1) if and only if x and y are
in the same partition class; RM3 If u(x,y, 1) and u(z, x,r) then u(z,y,r); RM4 If
u(x,y,r) and s < r then u(x,y, s). The predicate el(x,y) if u(x,y, 1) defines x as an
element of y. In the case when U is the universe of an information system (U, A)
in the sense of Pawlak, with A the set of attributes, a predicate u can be derived
from Archimedean t-norms, the Lukasiewicz t-norm ¢, (x,y) = max{0,x +y —1}
and the Menger t-norm f,,(x,y) = x - y, which admit a Hilbert-style representation

t(x,y) = g(f(x) + f(v)), by letting u'(x,y, r) if and only if g(%ﬁ’y») > r, where
Dis(x,y) ={a € A : ax) # a(y)}. In particular, the Lukasiewicz rough inclusion
ul(x,y, r) if %ch’y» > r satisfies RM1-RM4 with the corresponding relation
induced on U partitioning the set U into indiscernibility classes, as f(x) =1 —x =
g(x) for the t-norm 7,, where Ind(x,y) = A \ Dis(x,y). The predicate u’ satisfies the
transitivity property: ul(x,y, r) and ul(y, z, s) imply u*(x, z,#,(r, s)). Hence, the cor-
responding element predicate el satisfies properties el(x, x), el(x, y) and el(y, z) imply
el(x, z), el(x,y) and el(y,x) imply x and y are indiscernible. For a predicate u, and
x e U, r €]0,1], we define a new predicate N(x, r)(z) if there exists an s > r such
that u(z,x,s). N(x,r) is the neighborhood granular predicate about x of radius r.
Consider a predicate ¥ on U having a non-empty meaning [¥']. The complement to
¥ is the predicate —¥ such that —% (x) if not ¥ (x). We define the upper extension
of ¥ of radius r, denoted ¥+ by letting ¥ (x) if there exists z such that ¥(z) and
N(x, r)(z). Similarly, we define the lower restriction of ¥ of radius r, denoted ¥~ by
letting ¥~ (x) if not (=¥)*(x). A predicate Open is defined on predicates on U and
a predicate @ on U is open, Open(®) in symbols if @(x) implies the existence of r
such that N(x, r)(z) implies @(z). We observe that S”j(x) and u(x,y, 1) imply Tj(y),
hence for symmetric u (such is for instance u"), the predicate ¥'* is open. By dual-
ity, the complement to an open predicate is closed. Hence, the predicate ¥~ is closed
for symmetric ¢. By symmetry, both predicates are open-closed for a symmetric p.
We say after Barry Smith that a granular neighborhood predicate N(x, r) straddles a
predicate ¥ if there exist y, z such that ¥ (y), (—¥)(2), N(x, r)(y¥), and, N(x, r)(z). We
define the boundary predicate Bd on predicates on U. For a predicate ¥, we define
the boundary of ¥, Bd(¥) by letting Bd(¥)(x) if each granular neighborhood pred-
icate N(x, r) straddles ¥, equivalently, the granular neighborhood predicate N(x, 1)
straddles . Please observe that the boundary of ¥ is the boundary of —¥. Also, for
the predicate u’, the boundary of ¥ is the rough set boundary, as u%(x,y, 1) is sym-
metric and partitions U into indiscernibility classes. Further results on boundaries
and mereology may be found in [7, 8].
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6 A Man of Many Trades

Our tale would be incomplete if we would not mention how many-talented He was.
He was an accomplished tourist, in summer rowing in a kayak on rivers and lakes of
Polish Pomerania and Mazury, in winters on skis in the mountains. Some 13 years
ago my wife has an exhibition of her paintings in the headquarters of the Polish
Tourist Organization, we also exhibited photographs submitted by Zdzistaw from His
trips in the 50-ties. These pictures made a sensation among people present as nobody
expected that in those years such trips were possible. He with some colleagues wan-
dered through Bieszczady montains, at that time completely desolate and wild after
the second world war. He told us how once in winter in Beskidy mountains he got
lost in the blizzard and only by good luck spotted lights of a mountain hostel to be
saved. He was a gifted photographer: His photo ‘The Polish Jungle’ got a distinc-
tion at the Times of London photo conquest in 1950-ties. In later years He started
painting and had exhibitions of his paintings. He painted what He liked most: water,
soil, greenery, and mountains. His paintings are free of human silhouettes, animals,
any form of life, He was it seems interested solely in nature’s symbiosis of elements.
Maybe He posed to Himself the Leonardo question about the boundary between
water and air, He so often painted the two. Or, He rendered the idea of rough set in
painting? With water He was in a special relation; in addition to making kayak trips
and short excursions, He used to swim almost every day. In Warsaw, He used to go
to the Academy of Physical Education located close to His home to the swimming
pool. The same happened in hotels, every morning at six He went to a swimming
pool. But He was also a carpenter, a mason as He renovated His villa in Bielany, a
district of Warsaw, making a fireplace etc. pushing a wheelbarrow with lime, mortar
and bricks. He told us how He went through antique shops and also read advertise-
ments on old furniture sales to find antique furniture which He renovated. His home
was equipped with those pieces of furniture. He was an indestructible voyager; in
any place we were, I observed that He wanted to see everything interesting around
including a perusal of a local telephone directory to find people by name of Pawlak.
Usually He succeeded. He was always full of practical solutions to sudden problems.
Once, when my wife had a painting exhibition at some gallery, He was also supposed
to come to the opening. Unfortunately, shortly before the appointed hour, when we
already were in the gallery, there came a torrential rain so we started without Him
convinced that He would not come. But after some twenty minutes he appeared: He
bought some newspapers and put them under the jacket so He was underneath dry.
There are people who can do almost everything and do it best. He with no doubt
belonged to this class. Speaking a bit on jocular side, if Arthur Conan Doyle lived
in the second half of the XXth century and knew Zdzistaw, He would undoubtedly
model his detective on Zdzistaw. After all both were masters in deduction.
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7 Conclusion

He is not with us of course, but His spirit is I think with those who knew Him. By
creating rough sets and making them accepted by the scientific world He gave new
life to notions of old, useful but lacking a deeper semantic value, and in doing this He
revealed His talent for a clear vision of ideas and ability to represent them in simple
understandable to many ways. The success of His monograph on rough sets [4] is
due not only to the popularity of rough sets but also to an exceptional combination of
theoretical considerations with practical thinking. This seems to be characteristic of
His style, avoiding abstraction and keeping in mind practice of application. This is
why He was so appealing to many readers. He combined in an exceptional degree the
ability to theorize with practical talents and energy to use those abilities and talents.

Acknowledgements To all who knew Zdzistaw and enjoyed His goodwill: thanks for not
forgetting [6].
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Recent Development of Rough Computing:
A Scientometrics View

Jing Tao Yao and Adeniyi Onasanya

Abstract The rough set theory has been gaining popularity among researchers and
scholars since its inception in 1982. We present this research in commemorating the
father of rough sets, Professor Zdzistaw Pawlak, and celebrating the 90th anniver-
sary of his birth. Scientometrics is the science that quantitatively measures and
analyzes sciences. We use scientometrics approach to quantitatively analyze the con-
tents and citation trends of rough set research. The results presented in this chapter
are a follow-up of Yao and Zhang’s work published in 2013. We first identify pro-
lific authors, impact authors, impact research groups, and the most impact papers
based on Web of Science database. We provide comparison with previous results and
analyses of the changes. We further examine features of journal articles and confer-
ence papers in terms of research topics and impacts. The third part of the chapter is to
examine highly cited papers identified by Web of Science as top 1% based on the aca-
demic field and publication year. In the fourth part, we investigate the top journals of
rough set publications. There are some interesting results in key indicators between
2013 and 2016 results, for instance, the number of papers published increased by
35%, the total citations increased by 83%, and the h-index values increased by over
32%, while the average citation per paper increased by about 36%. We also found
that the number of publications in the recent 5 years was about one third of the total
number of rough set publications. This further indicates that rough sets as a research
domain is attracting more researchers and growing healthily.

1 Introduction

This research work is presented in commemorating the father of rough sets, Zdzistaw
Pawlak, and celebrating the 90th anniversary of his birth. In 1982, Pawlak proposed
rough set theory for data analysis [49], which has been traced back to about 35 years
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since its inception. Rough set research and its applications have obtained a signifi-
cant attention among researchers and practitioners. Rough set publications have fea-
tured in many journals, international workshops, seminars and conferences. Rough
set theory is an extension of set theory for the study of intelligent systems that are
characterized by incomplete, vague and imprecise data [53]. The study of rough sets
can be classified into three groups [76], namely,

» Content based approach that focuses on the contents of rough set research,

o Method based approach that focuses on the constructive and algebraic (axiomatic)
methods of rough sets, and

» Scientometrics approach that focuses on quantitatively analyzing the contents and
citations of rough set publications.

This research utilizes scientometrics approach for the analysis of the current trend,
development and relationship of research papers in the rough set research domain.
This is intended to gain more insights in the domain of rough sets. Scientometrics is
concerned with the quantitative analysis of features and characteristics of citations in
academic literature and has played a major role in measuring and evaluating research
performance as well as understanding the processes of citations [46, 75, 76]. We will
investigate two main measures of scientometrics approach, indicators of productivity
and indicators of impact. We will also analyze the current status and recent devel-
opment of rough set research. In addition, we will examine the journals that publish
rough set research especially highly impact research. This article can be considered
as a follow-up to the previous research work by Yao and Zhang in 2013 [76].

The remaining parts of this chapter are organized as follows. Section 2 provides
the methodology and database used for the analysis. Section 3 provides the search,
results and analysis of the study based on productivity and impact of citations. It
also provides the current status of rough sets. Section 4 presents the top 1% highly
cited papers since inception and in recent 5 years. Also included is the list of all
top 1% rough set papers in recent 5 years, and lastly, the comparison of highly cited
papers—inception versus recent. Section 5 discusses various publication venues of
rough set papers or articles based on the most cited and top 1% highly cited papers.

2 Methodology and Database Used

Scientometrics is the science that quantitatively measures and analyses sciences in
academic literature. It is also viewed as a scientific measurement of the work of
scientists or scholars by way of analyzing their publications and citations within them
[46]. We are able to gain more understanding of a research domain by examining its
productivity and number of publications through Scientometrics approach and gain
more understanding of its research impact and number of citations.
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Scientometrics has developed around one main idea, the citation. It has been
stated that the act of citing other researcher’s work provides the necessary linkages
between researchers, ideas, journals, conferences institutions, and countries to con-
stitute an empirical field that can be analyzed quantitatively. Besides, citation also
provides a relationship with respect to time, between the previous publications of
its references and the later appearance of its citations [46]. In recent years, scien-
tometrics has played a major role in the measurement and evaluation of research
performance as well as understanding the processes of citations [46]. It is interest-
ing to state that through this approach, seven out of 50 most cited chemists have
been awarded Noble Prize, prediction of research influences and development has
been made possible, and assessments of scientific contribution has sufficed [76].

In scientometrics analysis or approach, two main bibliometric indicators are being
used, i.e., indicators of productivity and indicators of impact. The indicators of pro-
ductivity are expressed in terms of the number of papers produced by authors or
groups for popularity of research domain while the indicators of impact are described
in terms of number of citations for the influence and quality of research domain.
These indicators are utilized to predict research influence and development as we
examine rough set research related papers in our source of database.

The database utilized in the research work is the Web of Science or WoS for short.
The URL of WoS is https://webofknowledge.com. WoS features more than 10,000
major journals since 1900 with more than 150 scientific disciplines. It is a useful
research database or resource for quantitative analysis of a research area or domain.

WoS is one of the most popular databases for collecting and searching biblio-
graphic information of research articles in high quality journals and selected inter-
national conferences. It also collects citations which reflect the relationships among
research articles. WoS provides two types of searches, bibliographic search and cited
reference search. The bibliographic search aims to find bibliographic information
such as, document types, research areas, authors, group authors, editors, source titles,
book series titles, conference titles, publication years, organizations, funding agen-
cies, languages, countries or territories.

The cited reference search can generate citation report simply by clicking on the
hyperlink Citation Report. This presents charts for published items in each year and
citations in each year. It also generates summary of key parameters such as: Results
found, Sum of the Times Cited; Sum of Times Cited without self-citations, Cit-
ing Articles, Citing Articles without self-citations, Average Citations per item, and
h-index. The h-index, proposed by a physicist Hirsch in 2005, is an index that quan-
tifies an individual’s scientific research output with citation number of ones publi-
cations. A scientist with an h-index of h has at least h papers each of them has been
cited at least h times [16]. The h-index, as a single bibliometric metric, combines both
impact (number of citations) and productivity (number of papers). The use of h-index
has generated interest and attention in literature and academic journals because it has
been largely influential as it quantifies individual’s scientific output [46].

There are two kinds of bibliometric indicators, indicators of productivity and indi-
cators of impact on citations, that will be used in this research. The indicators of
productivity are expressed in terms of the number of papers produced by authors
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or research units. It also includes the number of publications that is produced by
journals and conference proceedings on a particular research domain. Indicators of
impact are described in terms of number of citations for the influence and quality of
research domain. The idea of citations is fundamental for indicators of impact.

3 Search, Results and Analysis

We define rough set papers as those containing phrases “rough sets” or “rough set”
or “rough computing” or “rough computation” in Topic field in Web of Science.
The Topic field is defined as the words or phrases within article titles, keywords, or
abstracts in WoS. The search of rough set papers was performed during the week of
July 24-30, 2016. The latest available or updated data was on July 28, 2016. We used
the two bibliometric indicators or measures of productivity and impact of citation for
our results. It should be noticed that not all rough set publications are included in the
search results. For instance, not all papers published in Transactions on Rough Sets
are recorded in the database. We also missed some rough set papers, e.g., [33-35,
39, 40], by using our search. Additionally, some search results containing rough set
phrases are not considered as rough set papers in this research. For instance, a survey
paper that mentioned a rough set paper is not rough set paper.

The search resulted in 9,570 rough set papers, 76,733 citations, average citations
of 8.02 per paper, and h-index of 106 for the period 1982 to 2016 (July). The numbers
of rough set paper by individual phases are

» Rough set: 7,389 papers

» Rough sets: 5,212 papers

« Rough computing: 18 papers
» Rough computation: 8 papers

3.1 Indicators of Productivity

We consider the following indicators for our initial search. They are, Number of Pub-
lications per Year, Prolific Authors, Top Organizations, Top Country or Territory,
and Top Conferences.

The queried results of rough set publications as depicted in Table 1 and Fig. 1
show the distribution over the period of 1982 to 2016 on a yearly basis. We can
deduce that 1.55% of 9,570 (i.e. 148) papers were published in the first 15 years
(from 1982 to 1996). In contract, 27.01% of 9,570 (i.e. 2,585) papers were published
in the following 10 years (from 1997 to 2006), which is more than 17 times of those
that were published in the first 15 years. In the recent decade, between 2007 and
2016, 71.44% of 9,570 (i.e. 6,837) papers were published. This demonstrates that
the productivity and popularity of rough set research have an unprecedented increase



Recent Development of Rough Computing: A Scientometrics View 25

Table 1 Number of publications per year
Year | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |1992 | 1993
Papers| 1 0 0 4 1 1 2 4 4 11 15 10
Year | 1994 | 1995 1996 | 1997 | 1998 | 1999 | 2000 |2001 |2002 |2003 |2004 |2005
Papers| 20 33 42 46 95 80 122|155 |240 |288 |357 |534
Year |2006 |2007 |[2008 2009 |2010 |[2011 2012 |2013 |2014 |2015 |2016 |Total
Papers| 668 | 766 899 |929 |562 (663 |644 |721 |747 |618 288 |9,570
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Fig. 1 Number of publications per year

in the last decade. The publication number has been doubled compared with the
previous decade.

It is interesting to know that between the period of 1982-2009, rough set papers
have grown exponentially. However, there was a shallow decline in 2010 but a steady
increase thereafter until 2015. The superficial decrease in 2016 is due to the incom-
plete data in 2016 as we have about 6 months of data. The cumulative growth pattern
and cumulative growth charts as presented in Figs. 2 and 3 conclude that there is con-
sistent growth of rough set research. Overall, the number of rough set publications
has grown steadily.

We next identify the most prolific authors as shown in Table 2. It is noted that
the top 35 prolific authors have published at least or a minimum of 44 rough set
papers. It is noticed that the top four authors, Slowinski, Yao, Skowron and Wang,
each published more than 100 rough set papers, remained the same although the
orders changed. Zhu was out of top 20 in 2013 research but now is the fifth. Another
sign of popularity of rough set research is that there are about 1,140 authors who
published at least 5 rough set papers each. The number was doubled comparing with
the previous results in 2013 [76].

The top 35 organizations where the authors are affiliated are shown in Table 3.
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The top 35 countries or territories with authors publishing rough set papers are
shown in Table 4. China maintains the lead with 5,127 rough set research publica-
tions which is about 55% of total publications. The results are consistent with pre-
vious research [76]. The top four countries still retain their positions and India has
over taken Japan and moved to fifth. We observed that the total papers from the top
12 countries accounts for 94% total rough set publications. In fact, the most prolific
authors are from these 12 countries.
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Table 2 The most prolific authors (top 35)

Rank | Author Papers | Rank | Author Papers | Rank | Author Papers
1 Slowinski R | 111 13 Greco S 75 25 Sakai H 49
2 Yao YY 105 14 Chen DG 75 26 Liu D 48
3 Skowron A | 102 15 Zhang WX |71 27 Zhang Y 48
4 Wang GY | 100 16 Qian YH 69 28 Yu DR 48
5 Zhu W 95 17 Slezak D 65 29 Yang XB 48
6 Li TR 95 18 Pal SK 64 30 Tzeng GH |47
7 Wu WZ 93 19 Grzymala- |58 31 Ramana S |47
Busse JW

8 Liang JY 85 20 Pedrycz W |57 32 Ziarko W 46
9 Miao DQ 81 21 Min F 57 33 Suraj Z 44
10 Hu QH 77 22 Lin TY 54 34 Shen Q 44
11 Tsumoto S 76 23 Wang J 54 35 Polkowski L | 44
12 Peters JF 75 24 Jensen R 49

We identified 5 top rough set conferences as shown in Table 5. Based on our search
we found that there were 932 conference series or titles that published rough set
papers. This shows that rough set is a well accepted research and applied in many
domains.

3.2 Indicators of Impact

The second part of the results and analysis is based on the impact of rough set
research. The distribution of the number of citations 1982-2016 is as depicted in
Table 6, while the graphical representation is illustrated in Fig. 4. It is interesting to
know that the number of citations followed the same fashion as shown in Table 1
and Fig. 1. The total numbers of citations in each year are steadily growing with a
slight decrease in 2010. It is necessary to mention that the numbers shown here may
include citations from non-rough set papers.

We will examine the most cited papers and the most impact or influential authors
in the next part. We have identified the top 35 most cited papers as illustrated in
Table 7. In order to study the impact research direction of rough sets, we have clas-
sified those rough set papers in Table 7 into three broad groups as thus:

» Theory Papers: papers about basic rough set theory;
» Hybrid papers: papers combined rough sets with other theories or methods; and
» Application papers: papers about the applications of rough sets.
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Table 3 Top 35 organizations
Rank Organizations Papers | Rank Organizations Papers
1 University of Regina 223 19 Polish-Japenese Inst. of |73
Info Tech
2 Southwest Jiaotong 182 20 University of Catania 72
Univ.
3 Xi’an Jiaotong 179 21 Hebei University 71
University
4 Chinese Academy of 174 22 Hong Kong Polytechnic |70
Sciences Univ.
5 Polish Academy of 168 23 Wuhan University 68
Sciences
6 Warsaw University of 161 24 University of Kansas 68
Tech.
7 North China Electric 157 25 North Eastern 65
Power University University
8 Harbin Institute of 126 26 Huazhong Univ Sci & | 65
Technology Tech
9 Tongji University 122 27 Nanjing Univ. of Sci. & |63
Tech.
10 Zhejiang Ocean 113 28 Poznan University of 61
University Techn.
11 Zhejiang University 105 29 Indian Institutes of 61
Techn.
12 Shanxi University 103 30 Minnan Normal 58
University
13 Indian Statistical 99 31 University of Alberta 57
Institute
14 Chongqing Univ. Posts 95 32 Shandong University 57
& Tel
15 Univ. of Elect. Sci & 94 33 Nanjing University 57
Tech China
16 Shanghai Jiaotong 87 34 Ghent University 55
University
17 University of Warsaw 85 35 Nanjing Univ. of Aero |54
& Astron.
18 University of Manitoba | 77

Based on the above classification, the highly cited papers are grouped as follows:
« Fifteen (15) basic papers: [5, 47, 49, 50, 54-56, 58, 67, 79-82, 96, 98];

 Six (6) hybrid papers: [1, 10, 13, 48, 72, 73]; and
» Fourteen (14) application papers: [14, 20-22, 41, 43, 51-53, 68, 70, 78, 83, 95].
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Table 4 Top 35 countries
Rank | Countries |Papers | Rank | Countries Papers | Rank | Countries | Papers
1 PR. China |5127 |13 Egypt 92 25 Thailand 41
2 Poland 851 |14 Turkey 86 26 Norway 39
3 USA 573 |15 Wales 86 27 Cuba 39
4 Canada 529 |16 Australia 84 28 Netherlands |37
5 India 505 |17 South Korea | 83 29 Czech Rep. |35
6 Japan 440 |18 Belgium 79 30 Brazil 34
7 Taiwan 397 |19 Germany 76 31 Pakistan 27
8 Italy 164 |20 France 68 32 Tunisia 26
9 England 124 |21 Singapore 62 33 Finland 25
10 Spain 110 |22 Sweden 49 34 Mexico 21
11 Malaysia 106 |23 North 47 35 Hungary 21
Ireland
12 Iran 101 |24 Saudi Arabia | 42
Table 5 Top 5 rough set conference series
Rank Conference titles Papers
1 Intl. Conf. on Rough Sets & Knowledge Technology (RSKT) 376
2 Intl. Workshop on RS Fuzzy Sets Data Mining & Granular 288
Computing (RSFDGRC)
3 Intl. Conf. on Rough Sets & Current Trends in Computing 238
(RSCTC)
4 IEEE Intl. Conf. on Granular Computing (GRC) 225
5 Intl. Conf. on Rough Sets and Intelligent Systems Paradigms 52
(RSISP)
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Fig. 4 Number of citations by year
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Table 6 Number of citations per year

Year 1982 1983 |1984 |1985 |1986 |1987 |1988 |1989 |1990 |1991
Citations |0 0 2 7 5 6 5 11 12 22
Papers 1 0 0 4 1 1 2 4 4 11
Cites/Paper |0.00 [0.00 [0.00 |1.75 |5.00 |6.00 |2.50 |[2.75 |3.00 |2.00
Year 1992 1993 1994 |1995 |1996 |1997 |1998 |1999 |2000 |2001

Citations | 47 16 34 48 51 90 121 159 276 443
Papers 15 10 20 33 42 46 95 80 122 155
Cites/Paper |3.13 |1.60 |1.70 |1.45 |1.21 196 127 |199 |[226 |2.86
Year 2002|2003 |2004 |2005 |2006 |2007 |2008 |2009 |2010 |2011
Citations | 661 888 1,312 | 1,972 |2,644 3,864 | 5,075 |5,550 |4,933 |6,259
Papers 240 288 357 534 668 766 899 929 562 663
Cites/Paper | 2.75 |3.08 |3.68 |[3.69 |396 |[504 |565 |[597 |[878 |[9.44

Year 2012|2013 2014 |2015 |2016 All
Citations | 7,035 |8,920 |10,571|9,830 |5,864 76,733
Papers 644 721 747 618 288 9,570
Cites/Paper | 10.92 |12.37 |14.15 | 1591 |20.36 8.02

The number of papers on basic set theory were 43%, hybrid with other theories
17%, and applications of rough sets 40%. In contract to the results in 2013, the num-
bers were 60, 10, and 30%. This shows a shift of research direction from basic rough
set theory to applications and hybrid with other theories.

The most influential or impact authors of rough sets are listed in Table 8. We have
35 most impact authors who received citations of more than 300 while there were
only 10 authors in Yao and Zhang’s results. Twelve of Pawlak’s papers received
citations of 8,733, including his first paper that proposed the concept of rough set
theory. It’s obvious that Pawlak was the top highly cited researcher and his chapter
has a great influence in rough set research.

In comparing the results with that of Yao and Zhang, we observe the following
key changes. There are top 12 authors with more than 1,000 citations while there
were 15 authors in 2013. The number of citations has been increased considerably
for most authors across the board. In fact, an increase in the number of citations per
author shows an increase in the level of influence of rough set research if we use the
impact of citations as an instrumental for evaluating the influence of the authors and
rough set research.
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Table 7 Top 35 cited papers
Rank Paper Year Cites Avg/Year | Main results
1 Pawlak Z [49] 1982 5137 146.77 Theory: Rough sets seminal
work
2 Ziarko W [98] 1993 880 36.67 Theory: Variable precision RS
3 Dubois D and Prade H [10] 1990 846 31.33 Hybrid: Fuzzy sets
4 Pawlak Z and Skowron A [54] 2007 767 76.70 Theory: Survey
5 Greco S et al. [14] 2001 579 36.19 App: Decision analysis
6 Kryszkiewicz M [21] 1998 541 28.47 App: Information systems
7 Pawlak Z and Skowron A [56] 2007 498 49.80 Theory: Rough sets
8 Slowinski R and Vanderpooten | 2000 438 25.76 Theory: Generalized RS with
D [67] similarity
9 Pawlak Z and Skowron A [55] 2007 434 43.40 Theory: Boolean reasoning
10 Yao YY [81] 1998 394 20.74 Theory: Research method of RS
theory
11 Pawlak Z et al. [50] 1995 382 17.36 Theory: Survey
12 Yao YY [80] 1998 379 19.95 Theory: Relational
interpretations
13 Mitra S and Hayashi Y [47] 2000 353 20.76 Theory: Survey
14 Maji PK and Roy AR [41] 2002 342 22.80 App: Decision making problem
15 Swiniarski RW and Skowron A | 2003 329 23.50 App: Feature selection and
[68] recognition
16 Kryszkiewicz M [22] 1999 327 18.17 App: Incomplete information
systems
17 Zhu W and Wang FY [95] 2003 325 23.21 App: covering
18 Wu WZ et al. [72] 2003 310 22.14 Hybrid: Fuzzy rough sets
19 Aktas H and Cagman N [1] 2007 301 30.00 Hybrid: Soft sets and soft groups
20 Pawlak Z [52] 1998 295 15.53 App: Data analysis
21 Yao YY [79] 1996 293 13.95 Theory: Interpretation of RS
22 Pawlak Z [53] 2002 261 17.40 App: Data analysis
23 Wang XY et al. [70] 2007 253 25.30 App: Feature selection
24 Pawlak Z [51] 1997 246 12.3 App: Decision support
25 Jensen R and Shen [20] 2004 243 18.69 App: Feature selection
26 Wu WZ and Zhang WX [73] 2004 240 18.46 Hybrid: Fuzzy approximation
27 Morsi NN and Yakout MM [48] | 1998 237 12.47 HybridL Fuzzy rough sets
28 Yao YY and Wong SKM [78] 1992 227 9.08 App: Decision theoretic rough
sets
29 Bonikowski Z et al. [5] 1998 224 11.79 Theory: Intentions and
extensions
30 Yao YY [82] 2001 221 13.81 Theory: Rough granulation
31 Polkowski L and Skowron A 1996 221 10.52 Theory: Mereology
[58]
32 Zhu W [96] 2007 215 21.50 Theory: Covering
33 MilJS et al. [43] 2004 211 16.23 App: Knowledge reduction
34 Feng Fet al. [13] 2008 211 23.44 Hybrid: Soft sets
35 Yao YY and Zhao Y [83] 2008 206 22.89 App: Attribute reduction in

DTRS
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Table 8 35 most impact or influential authors

Rank Authors Cites | Papers |Rank Authors Cites | Papers
1 Pawlak Z 8733 12 19 Mitra S 660 3
2 Yao YY 2686 8 20 Grzymala-busse, ] | 517 2
3 Slowinski R 2351 8 21 Wang FY 517 2
4 Skowron A 2251 5 22 Chen DG 504 3
5 Ziarko W 1616 4 23 Vanderpooten D 438 1
6 Jensen R 1137 6 24 Xia WJ 437 2
7 Greco S 1128 4 25 Wong, SKM 419 2
8 Matarazzo B 1128 4 26 Yeung DS 371 2
9 Zhang WX 1108 5 27 Tsang ECC 371 2
10 Wu WZ 1037 5 28 Wang XZ 371 2
11 Zhu W 1030 5 29 Hayashi Y 355 1
12 Kryszkiewicz M | 1022 3 30 Maji PK 344 1
13 Shen Q 883 5 31 Roy AR 344 1
14 Dubois D 847 1 32 Swiniarski RW 329 1
15 Prade H 847 1 33 Pal SK 305 2
16 MiJS 846 4 34 Slezak D 303 2
17 Hu QH 685 4 35 Aktas H 301 1
18 YuDR 685 4

3.3 Current Status of Rough Sets

We examine the current development of rough sets in recent 5 years in this section.
Since we only have half of 2016 data (as of July 28, 2016), we focus our analysis on
papers from 2011 to 2015. Table 9 presents the top 35 cited papers in recent 5 years.
Due to the fact that we have 4 papers with 39 citations, we will study 36 papers
instead of 35 papers as we planed. It is observed that many of top papers are from
China. This is consistent with the fact that China is rated the top country in Table 4.

With the 3,393 papers published in recent 5 years, the total citation number was
13,022. The average citations per paper was 3.80. It is also observed that 35.45% of
all rough set publications are from recent 5 years. This indicates that rough sets as a
research domain is attracting more researchers and growing healthily.

Following the same fashion, we classified the top 35 recent papers into 3 impact
research groups,

o Twelve (12) papers are about basic rough set theory: [9, 15, 36, 62, 66, 74, 77,
84-86, 90, 97];

 Eight (8) papers are about the hybrid with other approaches or theories: [2, 11,
12, 28, 31, 60, 63, 92];

« Fifteen (15) papers are about applications of rough sets: [4, 6-8, 18, 19, 24, 25,
30, 37, 38, 42, 44, 59, 91].
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Table 9 Top 36 cited papers in recent 5 years from 2011 to 2015

Rank | Authors Year | Cites Avg/year | Main results

1 Yao YY [84] 2011 134 22.33 Theory: Three-way decisions

2 Feng Fetal. [12] 2011 127 21.17 Hybrid: Soft sets

3 Dubois D and Prade H [11] 2012 107 21.40 Hybrid: Fuzzy sets

4 Yao YY and Yao B [86] 2012 87 17.40 Theory: Covering

5 Min et al. [44] 2011 83 13.83 App: Attribute reduction

6 Liu et al. [36] 2011 73 12.17 Theory: Probabilistic criteria

7 Li H and Zhou X [24] 2011 72 12.00 App: Risk decision making

8 Herbert JP and Yao JT [15] 2011 68 11.33 Theory: Game-Theoretic RS

9 Qian Y et al. [59] 2011 67 11.17 App: Attribute reduction

10 Jia X et al. [18] 2013 64 16.00 App: Decision-theoretic RS

11 Qian Y et al. [62] 2014 63 21.00 Theory: Multigranulation
decision

12 Skowron A et al. [66] 2012 58 11.60 Theory: Approximation
spaces

13 Liu D et al. [37] 2011 57 9.50 App: Three-way decision

14 Zhang et al. [92] 2012 55 11.00 Hybrid: Fuzzy sets

15 Zhang et al. [90] 2012 54 10.80 Theory: Approximations

16 Lin et al. [31] 2012 52 10.40 Hybrid: Neighborhood

17 Ali MI [2] 2011 52 8.67 Hybrid: Soft sets & fuzzy soft
sets

18 Chen et al. [6] 2011 49 8.17 App: Feature selection

19 Yao JT et al. [77] 2013 48 12.00 Theory: Granular computing

20 Blaszczynski J et al. [4] 2011 48 8.00 App: Sequential covering

21 Zhang J et al. [91] 2012 47 9.40 App: Data mining

22 Wu WZ and Leung Y [74] 2011 46 7.67 Theory: Granular computing

23 LiJetal. [25] 2013 42 10.50 App: Decision making

24 Dai J and Xu Q [9] 2012 42 8.40 Theory: Uncertainty measures

25 Zhu W and Wang S [97] 2011 42 7.00 Theory: Generalized RS

26 Qian Y et al. [60] 2011 42 7.00 Hybrid: Fuzzy sets

27 Chen Y et al. [8] 2011 42 7.00 App: Feature selection

28 Liu D et al. [38] 2012 41 8.20 App: Classification in DTRS

29 Chen HL et al. [7] 2011 41 6.83 App: Prediction

30 QianJ et al. [63] 2011 40 6.67 Hybrid: Attribute reduction

31 Yao YY [85] 2011 40 6.67 Theory: Semantic Issues

32 JiaX et al. [19] 2014 39 13.00 App: Optimization

32 Liang D et al. [28] 2011 39 9.75 Hybrid: Fuzzy DTRS

32 Liang J et al. [30] 2012 39 7.80 App: Feature selection

32 Medina J [42] 2012 39 7.80 App: Multi-adjoint lattices

32 LiNetal. [32] 2012 39 7.80 Hybrid: Neighbourhood and
Fault Diagnosis
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The numbers of papers on theory, hybrid, and applications account for 34%, 23%,
and 43% respectively. There are more papers on decision-theoretic rough sets and
three-way decisions which are considered as new directions. The claim on the shift
in research direction towards applications and hybrid still holds.

4 Web of Science Highly Cited Papers—The Top 1% Papers

Web of Science defines highly cited papers as papers that “received enough cita-
tions to place [them] in the top 1% of the academic field based on a highly cited
threshold for the field and publication year”. We refer them as top 1% papers in
this article. The academic field can be in the field of Computer Science, Mathemat-
ics, Economics & Business, or Engineering, for instance. The top 1% papers are
identified and recognized on monthly or quarterly basis. The results in this section
are based on our search conducted in November 2016, however, the data were “as
of July/August 2016 according to Web of Science. On WoS Web site, the top 1%
papers are presented a trophy symbol. In general, most citations to a paper come in
the 2nd, 3rd, or 4th year after publication. The citations of the top 1% papers come in
the year of their publication, therefore, it can be used as a sign of popularity or hot-
ness of the topic. We may use the top 1% papers as a metric to evaluate researchers
and journals.

We examined all the top cited papers presented in Table 7 and found that 8 of
them were identified as the top 1% highly cited papers. They are [1, 13, 54-56, 70,
83, 96].

As the 1% papers represent some kind of research trend, it is meaningful to exam-
ine more recent publications. There are 16 top 1% papers in recent 5 year from 2011
to 2015 as shown in Table 10. In other words, 16 out of 36, or 44%, top cited papers
as shown in Table 9 are highly influential papers in the field of Computer Science.
These top 1% of papers received at least 39 citations.

In further analysis, we noticed that 11 out of 16 top 1% papers are focused on
hybrid and application of rough set theory. This is consistent with the results of top
rough set papers.

The next step is to identify all top 1% rough set papers in recent 5 years. It should
be noted that new papers may have a small number of citations, however, if the cita-
tion numbers outperform citation of other papers it can still be recognized as top 1%
papers. Table 11 lists all top 1% rough set papers. We have 33 top 1% papers from
over 3,520 highly cited papers being ranked the top 1% status in the recent 5 years.
Based on the table, most of the top 1% papers are classified in the field of Computer
Science while the remaining in Engineering.
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Table 10 Top 1% papers amongst top papers in recent years (2011-2015)

Rank | Authors Year |Cites | Avg/year | Main results

1 Yao YY [84] 2011 | 134 22.33 Theory: Three-way
decisions

2 Feng Fetal. [12] 2011 | 127 21.17 Hybrid: Soft sets

3 Dubois D and Prade H [11] |2012 | 107 21.40 Hybrid: Fuzzy sets

4 Yao YY and Yao B [86] 2012 87 17.40 Theory: Covering

5 Min F et al. [44] 2011 83 13.83 App: Attribute reduction

6 Liu D et al. [36] 2011 73 12.17 Theory: Probabilistic
criteria

7 Qian Y et al. [59] 2011 67 11.17 App: Attribute reduction

8 Jia X et al. [18] 2013 64 16.00 App: Decision-theoretic RS

Qian et al. [62] 2014 63 21.00 Theory: Multigranulation

decision

10 Skowron A et al. [66] 2012 58 11.60 Theory: Approximation
spaces

11 Zhang X et al. [92] 2012 55 11.00 Hybrid: Fuzzy sets

12 LinGetal. [31] 2012 52 10.40 Hybrid: Neighborhood

13 Yao JT et al. [77] 2013 48 12.00 Theory: Granular
computing

14 Li et al. [25] 2013 42 10.50 App: Decision making

15 Jia X etal. [19] 2014 39 13.00 App: Optimization

16 Liang D et al. [28] 2013 39 9.75 Hybrid: Fuzzy DTRS

S Analysis of Journals Publishing Rough Set Papers

Aside from the analyses performed with respect to impact of individual papers
and researchers, it necessary to consider the impact of journals in order to assist
authors/researchers in their decisions on which journals to submit their papers. We
will examine journals that publish rough set papers in this section. We use Impact
Factor (IF), h-index, 1% paper, and IF Quartile rankings to evaluate these academic
journals. Journal Impact Factor is an important metric and has been viewed as a pre-
eminent measure or metric for choosing venues to submit ones research papers [46].
Impact Factor of an academic journal is a measure of the frequency with which the
average article in a journal has been cited in a particular year or period [71]. This
metric also measures the relative importance of a journal within its field. In other
words, journals with higher IF are deemed to be more important than those with
lower ones. Web of Science publishes two types of Impact Factor. One is the normal
IF. The recent IF is in 2015, which is the number of citations in 2015 to those papers
published in a journal in 2013 and 2014, divided by the number of such papers. The
other is a 5-year Impact Factor, the average number of times articles from the journal
published in the past five years have been cited in report year.
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Table 11 All top 1% highly cited papers in recent 5 years
Rank Authors Title Year Cites
1 Yao YY [84] Theory: Three-way decisions | 2011 144
2 Feng F et al. [12] Hybrid: Soft sets 2011 132
3 Dubois D & Prade H [11] Hybrid: Fuzzy sets 2012 108
4 Yao YY & Yao B [86] Theory: Covering 2012 95
5 Min F et al. [44] App: Attribute reduction 2011 90
6 Liu D, Li TR & Ruan D [36] Theory: Probabilistic criteria 2011 74
7 Jia XY et al. [18] App: Decision-theoretic RS 2013 69
8 Qian YH et al. [62] Theory: Multigranulation 2014 67
decision
9 Skowron A, Stepaniuk J & Theory: Approximation spaces | 2012 60
Swiniarski R [66]
10 Lin GP, Qian YH & Li JJ [31] Hybrid: Neighborhood 2012 58
11 Yao JT, Vasilakos A & Pedrycz | Theory: Granular Computing | 2013 57
W [77]
12 Zhang XH, Zhou B & Li P [92] | Hybrid: Fuzzy sets 2012 57
13 Liang D et al. [28] Hybrid: DTRS 2013 43
14 LiJH, Mei CL & Lv YJ [25] App: Decision making 2013 43
15 DaiJ & Xu Q [9] Theory: Uncertainty measures | 2012 43
16 Jia XY etal. [19] App: Optimization 2014 42
17 Yu H, Liu Z & Wang G [87] Hybrid: DTRS 2014 39
18 Hu BQ [17] Theory: Three-way decisions 2014 38
19 Liang JY et al. [30] App: Feature selection 2012 38
20 Azam N & Yao JT [3] Hybrd: GTRS 2014 37
21 Pedrycz W [57] App: Optimization 2014 37
22 Wang CZ et al. [69] Theory: Covering 2014 34
23 Min F & Zhu W [45] App: Feature selection 2012 29
24 Zhou B [94] Hybrid: DTRS 2014 29
25 Liang DC et al. [29] Hybrid: DTRS 2015 25
26 Zhang XH, Dai JH & Yu Y et | Theory: Approximation spaces | 2015 25
al. [89]
27 LiJH et al. [26] Hybrid: Granular computing 2015 23
28 Qian J et al. [61] App: Attribute reduction 2015 21
29 Liang D & Liu D [27] Hybrid: Fuzzy DTRS 2014 20
30 Zhao X & Hu BQ [93] Hybrid: Fuzzy probability 2015 17
measure
31 Zhan JM, Liu Q & Davvaz B Theory: Soft hemirings 2015 15
[88]
32 Li WT & Xu WH [23] App: DTRS 2015 13
33 Selechi S, Selamat A & Fujita | Theory: Granular computing 2015 12

H [65]
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Table 12 Most cited papers by journals

Rank Journal Cites Papers

1 Information Sciences 5,215 14

2 International Journal of Computer and | 5,137 1
Information Sciences

3 European Journal of Operational 1,297 4
Research

4 Journal of Computer and System 880 1
Sciences

5 International Journal of General 846 1
Systems

6 IEEE Transactions on Knowledge and | 681 2
Data Engineering
Pattern Recognition Letters 582
International Journal of Approximate 514
Reasoning

9 Communications of the ACM 382 1

10 IEEE Transactions on Neural 353 1
Networks

11 Computers and Mathematics with 342 1
Applications

12 Cybernetics and Systems 295 1

13 Mechanical Systems and Signal 256 1
Processing

14 Fuzzy Sets and Systems 237 1

15 International Journal of Man-Machine 227 1
Studies

16 International Journal of Intelligent 221 1
Systems

WoS categorizes journals into 4 groups according to their IF rankings. IF Quartile
rankings are derived for each journal in each of its subject categories according to
which quartile of the IF distribution the journal occupies for that subject category
[64], where:

» QI denotes the top 25% of the IF distribution,

» Q2 denotes the middle-high position (between top 50% and top 25%),
» Q3 denotes the middle-low position (top 75% to top 50%),

e Q4 denotes the lowest position bottom 25% of the IF distribution.

We will examine journals based on the numbers of top rough set papers and top
1% papers as well. There are 16 journals that published rough set most cited papers
based on Table 7. The results are shown in Table 12.

We further analyse journals that published top 1% rough set papers. The results
are shown in Table 13.
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Table 13 Top 1% highly cited papers by journals
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Rank Journals Cites Papers
1 Information Sciences 2420 6
2 Pattern Recognition Letters 253 1
3 Computers and Mathematics 211 1
with Applications
Table 14 Most cited papers in recent 5 years by journals
Rank Journal Cites Papers
1 Information Sciences 1007 14
2 Intl. Journal of Approximate 356 7
Reasoning
3 Intl. Journal of Computational 138 2
Intelligence Systems
4 Knowledge-Based Systems 130 3
5 Fuzzy Sets and Systems 108 1
6 Applied Soft Computing 97 2
7 Pattern Recognition 73 1
8 Fundamenta Informaticae 73 1
9 IEEE Transactions on Cybernetics 57 1
10 Computers & Mathematics with 57 1
Applications
11 Expert Systems with Applications 54 1
12 IEEE Transactions on Fuzzy 46 1
Systems

Similar analysis was conducted for the top 35 most cited papers and top 1% papers
in recent 5 years. The results are presented in Tables 14 and 15.

It is noted that 40% (14 out of 35) top cited rough set papers and 50% (9 out
of 18) of top 1% rough set papers are published in Information Sciences journal.
Information Sciences constitutes the primary journal where most of the rough set
related and impact papers are published.

The following is a summarization of top 10 journals we identified in Table 16 in
term of IF, h-index, Quartile ranking metrics, as well as top 1% ranking metrics.

o Information Sciences

— IF 3.364, Quartile Q1
— Published 366 rough set papers
— h-index 109, 22 rough set papers amongst top 109 papers

— 166 top 1% papers, 32 of them are rough set papers
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Table 15 Top 1% highly cited papers in recent 5 years by journals
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Rank Journal Cites Papers
1 Information Sciences 763 9
2 Intl. Journal of Approximate 253 5
Reasoning
3 Fuzzy Sets and Systems 108 1
IEEE Transactions on 57 1
Cybernetics
5 Computers & Mathematics 57 1
with Applications
6 Applied Computing 43 1
Table 16 Top 10 rough set journals
Rank h-index IF quartile Journals Papers
1 109 Q1 Information Sciences 366
2 34 Q3 Fundamenta Informaticae 245
3 55 Ql Knowledge Based Systems 171
4 32 Ql Expert Systems with 157
Applications
5 61 Q1 International Journal of 141
Approximate Reasoning
6 25 Q3 Journal of Intelligent & Fuzzy 86
Systems
68 Ql Applied Soft Computing (ASC) | 77
149 Ql Fuzzy Sets and Systems 70
181 Q1 European Journal of 62
Operational Research
10 43 Q2 Soft Computing (SC) 50

o Fundamenta Informaticae

— IF 0.658, Quartile Q3

— Published 245 rough set papers
— h-index 34, 0 rough set papers amongst top 34 papers
— 4 top 1% papers, none is rough set paper

» Knowledge Based Systems

— IF 3.325, Quartile Q1

— Published 171 rough set papers
— h-index 55, 4 are rough set papers amongst to 55 papers
— 55 top 1% papers, 11 of them are rough set papers
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« Expert Systems with Applications

— IF 2.981, Quartile Q1

— Published 157 rough set papers

— h-index 32, 2 rough set papers amongst top 32 papers
— 81 top 1% papers, 2 of them are rough set papers

« International Journal of Approximate Reasoning

— IF 2.696, Quartile Q1

— Published 141 rough set papers

— h-index 61, 11 rough set papers amongst top 61 papers
— 16 top 1% papers, 11 of them are rough set papers

 Journal of Intelligent & Fuzzy Systems

— IF 1.004, Quartile Q3

— Published 86 rough set papers

— h-index 25, 1 rough set paper amongst top 25 papers,
— 15 top 1% papers, 1 of them is rough set paper

« Applied Soft Computing

— IF 2.857, Quartile Q1

— Published 77 rough set papers

— h-index 68, 2 rough set papers amongst top 68 papers
— 67 top 1% papers, 2 of them are rough set papers

» Fuzzy Sets and Systems

— IF 2.098, Quartile Q1

— Published 70 rough set papers

— h-index 149, 1 rough set paper amongst top 149 papers
— 19 top 1% papers, 1 of them is rough set paper

« European Journal of Operational Research

— IF 2.679, Quartile Q1

— Published 62 rough set papers

— h-index 181, 3 rough set papers amongst top 181 papers
— 103 top 1% papers, 3 of them are rough set papers

» Soft Computing

— IF 1.630, Quartile Q2

— Published 50 rough set papers

— h-index 43, 2 rough set papers amongst top 43 papers
— 13 top 1% papers, 2 of them are rough set papers

Once again we noticed that Information Sciences is identified as the main rough
set journal due to the fact that,
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« itisrated Q1 and has third highest h-index of all top 10 journals

« it has the highest top 1% highly cited papers

» 75% of top 1% highly cited papers are from IS (in Table 13)

» Most cited rough set papers are published in Information Science.

6 Conclusion

‘We have presented this research in commemorating the father of rough sets, Zdzistaw
Pawlak, and celebrating the 90th anniversary of his birth by investigating the trend
and development of rough set research by using scientometrics approach. The results
show that Pawlak’s seminal paper has been identified the most cited paper. Pawlak
has been identified as the most influential and impact author.

We have analyzed productivity and impact of rough set research domain. The
top five prolific authors are: Slowinski, Yao, Skowron, Wang, and Zhu. The top five
most influencial authors are: Pawlak, Yao, Slowinski, Skowron, and Ziarko. The top
journal for rough set research has been identified as Information Sciences.

Comparing with the results in 2013, we found that the number of rough sets publi-
cations has increased by 35%, the total citations have increased by over 83%, and the
h-index values increased by over 32%. The average citations per paper is 8.02 while
the average citations per paper was 5.9 in 2013, i.e., an increase of about 36%. The
results also show that about 35% of rough set publications were published in recent
5 years. The results of recent 5 years of rough set publication have demonstrated that
more papers on the applications and hybrid with other theories. Decision-theoretic
rough sets and three-way decisions are new research trends. The results suggest that
rough set research continues growing healthy and attracting more to application ori-
ented research. We will monitor and report the trends and development in this domain
in future research.
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Rough Sets, Rough Mereology
and Uncertainty

Lech Polkowski

Abstract 35 years ago Zdzistaw Pawlak published the article in which He proposed
a novel idea for reasoning about uncertainty. He proposed to present knowledge as
classification ability and in consequence the playground for His theory was proposed
as approximation space, i.e., a set along with an equivalence relation on it, equiva-
lence classes representing categories to which objects in the set were to be assigned.
This point of view was stressed in the monograph ‘Rough Sets. Theoretical Aspects
of Reasoning about Data’ (1992) 25 years ago. The application tint was given to
rough sets by transferring center of gravity of the theory from approximation spaces
to decision/information systems, i.e., data tables in the attribute—value format. In
the same year the first collective monograph appeared accompanying the first work-
shop on rough sets: ‘Intelligent Decision Support. Handbook of Applications and
Advances of Rough Set Theory’ edited by Roman Stowiriski. The effect of those 10
years was emergence of notions like a decision rule, a reduct, a core, of algorithms
for finding certain, minimal and optimal rules, for finding reducts, analyses of rela-
tions between rough sets and other paradigms describing uncertainty and emergence
of hybrid approaches like rough-fuzzy sets etc. Still 10 years elapsed and a mono-
graph on foundations of rough sets was possible (2002): ‘Rough Sets. Mathematical
Foundations’ by this author, and, some other outlines of rough set theory appeared.
Rough set research grew, extending its scope by entering realms of morphology,
intelligent agents theory, linguistics, behavioral robotics, mereology, granular com-
puting, acquiring many applications in diverse fields. In this chapter we try to sum
up our personal experience and results and in a sense to unify them into a coher-
ent conceptual scheme following the main themes of rough set theory: to understand
uncertainty and to cope with it in data. In this work, we use the term ‘thing’ to denote
a being in general, denoted with x,y, z, ... and the term ‘object’ to denote beings in
the universes of information/decision systems, denoted u, v, w, ...; truth values are
denoted with letters 7, s, ....

There is no uncertain language in which to discuss uncertainty (Zdzistaw Pawlak)
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1 The Phenomenon of Uncertainty

Uncertainty can be defined as inability to choose one optimal object in the given
context from a set of more than one optional objects. A usually invoked exam-
ple of uncertainty is The Uncertainty Principle of Heisenberg [22], i.e., the the-
sis that the precise values of position and energy of an electron cannot be known
simultaneously—this is uncertainty inscribed into nature; uncertainty immanent to
human thinking was revealed by Godel, see [64]: for each formal system which con-
tains arithmetic of natural numbers, there can be formulated statements formally
correct about which one cannot decide whether they are true or false, this is uncer-
tainty imbued into abstract thinking. There are ordinary cases for uncertainty like
making decision at crossroads, investing on the stock market, forecasting a political
issue, due to the lack of adequate knowledge. Due to the omnipresence of uncer-
tainty in all venues of life, the problem of catching the essence of uncertainty and
attempts at formal reasoning schemes taking uncertainty into consideration were
subject of interest to many scientists. Logicians beginning from Aristotle were fully
aware of difficulties with uncertain knowledge, witness the famous example in Aris-
totle ‘De Interpretatione’ [3] ‘there will be sea battle tomorrow’, cf., a discussion in
[43], yet the logical systems up to beginning of 20th century dealt solely with definite
binary—valued statements, either true or false. In 1918, Jan Lukasiewicz [32], [69],
introduced the 3—valued logic with the value of 2 for statements uncertain as to their
truth value, which may be labelled ‘don’t know’ (later the value of 2 was replaced by
more convenient computationally value of 1/2). The Lukasiewicz 3—valued system
was defined by formulas, where r,s € {0,1,1/2},

r=s=min{l,1 —r+s} (D)

for implication and
r=1-r 2)

for negation. It was recognized immediately that Lukasiewicz formulas extend to
n—valued logics as well as to logics with truth values rational in the unit interval
or simply real values in the unit interval, hence, the Lukasiewicz systems allow for
expressing any degree of uncertainty. Calculus of uncertain notions became possible
when Lotfi Asker Zadeh [81] introduced the idea of a fuzzy set. This notion does
extend the classical notion of a set characterized by the function

yx)=1x€ Aelse0 3
where A is a subset of the universal set U, by introducing the fuzzy membership

function
wy 2 U= 10,1] “4)
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with the interpretation that 4, (x) = 1 means that x € A is the true statement, i, (x) =
0 means that the statement x € A is false and the value of y, (x) in (0, 1) indicates the
degree of uncertainty whether x is in A. Applying to notions so fuzzified the logical
scheme of Lukasiewicz, we can assign uncertainty degrees to complex statements
about commonly used notions, e.g., the implication ‘Ifx is high to degree of 0.8 then x
will play on university basketball team with chance to degree of 0.6’ has the degree of
truth of 1 — 0.8 + 0.6 = 0.8. Topology entered the world of scientific paradigms much
earlier, in the midst of XIX century, see [33] and from its beginnings it formalized
uncertainty of location in the notion of the boundary of a set. Given a collection of
open sets G in the universal set U and a set A a subset of the universal set U, the
boundary Bd;A of A with respect to G is defined as the set of points x € U with the
property bound, defined as

bound,(x) if and only if N N A # @ and not N C A for each nbhd N € G of x. (5)

An original approach to formalization of uncertainty was proposed by Karl Menger
[36-38], who considered metric spaces with the distance function known up to prob-
ability only. An upshot from his work was emergence of functions known as t—
norms, each t-norm T : [0, 1]> = [0, 1] satisfying properties (1) T(x,y) = T(y, x);
() T(x, T(y,2)) = T(T(x,¥),2); (3) If x > ¥’ then T(x,y) > T(x',y); ()T (x,0) =0,
T(x,1) = x. Additional properties are: (5) T is continuous; (6) T(x,x) < x for x €
(0, 1). T-norms satisfying (5,6) satisfy the functional equation [30]:

T(x,y) = g(f(x) +f(¥), (6)

where f : [0, 1] — [0, 1] is a continuous decreasing function with f(0) = 1, and g

is the pseudo—inverse to f. Each t-norm T gives rise to the function =: [0, 1]*> —
[0, 1] called the residuum and defined by means of the equivalence:

x=>py2>rifandonly if T(x,r) <y. @)

In particular, the Lukasiewicz implication (1) is the residuum of the Lukasiewicz

t—norm L(x,y) = max{0,x + y — 1}; the other t-norm P(x,y) = x - y, the product t—
norm, induces the Goguen implication:

x=>Py=Xifx>yelsel. ®)
X
The third classical t-norm M(x, y) = min{x,y} induces the G odel implication:
x=>yy=yifx > yelsel. )

Each of those logics combined with fuzzified notions gives a calculus of uncertain
notions.
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2 The Pawlak Approach to Uncertainty

Zdzistaw Pawlak [44, 45] approached knowledge as ability to classify given objects
into given categories; in this, he became close to definition of knowledge due to Inno-
centy Maria Bocheriski [13]: ‘knowledge is a set of relations among things, and,
properties of things’. The realization of this definition in Pawlak’s approach con-
sisted in establishing relations between things and categories of things of the form
‘the thing x belongs in the category C’. Hence, uncertain knowledge meant inability
to classify certain objects into categories in a deterministic way. The simple model
of this notion of knowledge was a set of objects along with a partition of this set into
categories, so—called approximation space. Elements of the partition were decidable:
for each object it was true that it belongs in the category or not and the same was
true for unions of categories. Unions of categories were called exact sets. Other sets
were declared rough, i.e., not decidable. It is manifest that this approach was a topo-
logical one: categories were basic open sets, their unions were open sets and due to
the disjointness of categories open sets were also closed sets. Moreover, each inter-
section of a family of open sets was open, a peculiar property of topologies induced
by partitions. Pawlak addressed also the problem of non-deterministic concepts, i.e.,
of uncertain knowledge: for a set X not exact, i.e., not open, he introduced approxi-
mations, the lower and the upper as, respectively, the interior and the closure in the
partition topology:

l(X):U{CeCat: CCX}, u(X):U{CeCat:CnX;éﬂ}. (10)

A specific implementation of this idea was using the notions of an information sys-
tem and a decision system. An information system (U, A, V), denoted by various
authors in some distinct ways, consists of a set of objects U, a set of attributes (fea-
tures) A on U and a set of attribute values V so for each pair (a,u) € A X U (so we
assume for now that those systems are complete, i.e., with no missing values) a value
a(u) € V is defined; a decision system (U, A, V,d) is augmented by an additional
attribute, the decision d. In case of information or decision systems, we will use the
generic symbols u, v, w, ... to denote objects in the set U. For an attributeg € A U {d},
the indiscernibility relation Ind, is a partition of the set U into categories of the
form Ind,(u) = {v € U : q(u) = q(v)}. For a set B of attributes, the category Indp
is defined as the intersection ﬂ 4B Indq. In this notation, relations, called decision
rules, constituting knowledge represented by the decision system (U, A, V, d) are of
the form:

B = d = {Indg(u) = Ind;(u) : u e U}. (1n

To obtain the extended form of arelation Indy(u) — Ind,(u), one lets B = {at,»l . }
and represents Indy as the meaning of the formula

k
(a; () = vy) = (d(u) = v), (12)
i=1

J
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where the meaning [¢];, of a predicate formula ¢ is

[@ly={ueU:uk ¢} 13)

Hence, knowledge expressed by means of a set of decision rules can be presented
in logical or set-theoretical formalism. A great merit of Pawlak’s approach lies in
reviving some of old notions of classical logic and mathematics in the new context
of knowledge engineering.

3 Rough Set Spaces

Zdzistaw Pawlak was a theoretician by temperament and mental constitution, as wit-
nesssed by his many achievements. He was very interested in giving his rough sets as
many formal structures as was possible, in particular he asked for topological rough
set spaces. The author of this chapter was able to fulfill his desire by producing some
topologies on rough sets, see [47] for summary of results, proofs and bibliography
of original works. Of course, those topologies, being desirably distinct from already
well known partition topologies, were to be induced from a more complex settings,
viz., from infinite information systems. This approach corresponded with a well—
known advice by Stan Ulam: ‘if you want to discuss a finite case, go first to the infinite
one’. Let us recall the essential results, which of course have had a purely intellectual
valor, as being on the side of esoteric they are not commonly known, albeit see para-
graph on collage theorem. We assume given a set (a universe) U of objects along with
asequence A = {a, : n=1,2,...} of attributes where without loss of generality we
may assume that Ind, ., C Ind, for each n. Letting Ind = (), Ind,, we may assume
that the family {Ind, : n = 1,2, ...} separates objects, i.e., for each pair u # v, there
isaclass P € U/Ind, for some n such thatu € P,v & P, otherwise we would pass to
the quotient universe U/Ind. This implies that the set U is of power of continuum.
We endow U with some topologies.

3.1 Topologies I1,, the Topology 11, and Exact
and Rough Sets

For each n, the topology I1, is defined as the partition topology obtained by taking
as open sets unions of families of classes of the relation Ind,. The topology I is
the union of topologies 11, forn = 1,2, .... We apply the topology 11, to the task of
discerning among subsets of the universe U (CI, is the closure operator and Int, is
the interior operator with respect to a topology 7):

AsetZ C Uis I, —exactif Cly Z = Intp Z else Z is I1,-rough. (14)
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3.2 The Space of I1,-rough Sets Is Metrizable

Each I1-rough set can be represented as a pair (Q, T) where Q = CI n,X. T=U \
Intp; X for some X C U. The pair (Q, T) has to satisfy the conditions: 1. U = QUT.
2.0NT #@. 3. If {x} is a II,-open singleton then x & O N T. We define a metric
d, as ([u], is the Ind, -class of u):

d,(u,v) =1 incase [u], # [v], else d,(u,v) = 0. (15)

and the metric d:
d(u,v) = Z 107" - d, (u, v). (16)

Theorem 1 Metric topology of d is 11,

We employ the notion of the Hausdorff metric and apply it to pairs (Q, T) satisfying
1-3 above, i.e., representing I1-rough sets. For pairs (Q,,T}), (Q,,T,), we let

D((Qy, 1)), (05, T,)) = max{dy(Q,, Q) dy(T},T)} a7

and

D*((Ql > T]), (QZ’ Tz)) = max{dH(Ql, Q2)7 dH(Tl’ T2)7dH(Q] N QZ’ T n Tz)}7 (18)

where dy (A, B) = max{max,c,dist(x, B), max,cpdisi(y,A)} is the Hausdorff metric
on closed sets and dist(x, A) = minye,d(x, y). The main result is

Theorem 2 If each descending sequence {[u,], : n=1,2,...} of classes of rela-
tions Ind, has a non—empty intersection, then each D*—fundamental sequence of
II,—rough sets converges in the metric D to a Ily—rough set. If, in addition, each
relation Ind,, has a finite number of classes, then the space of I1—rough sets is com-
pact in the metric D.

3.3 The Space of Almost 11 -rough Sets Is Metric Complete

In notation of preceding sections, it may happen that a set X is I7,-rough for each n
but it is I1-exact. We call such sets almost rough sets. We denote those sets as IT -
rough. Each set X of them, is represented in the form of a sequence of pairs (Q,,, T,,) :
n=1,2,...suchthatforeachn,1.Q, =Cl; X, T, =U\Int; X.2.0,nT, #@.3.
0,UT,=U.4. 0,nT, contains no singletén {x} with {x} Hnn-open. To introduce
a metric into the space of IT,-rough sets, we apply again the Hausdorff metric but in
a modified way: for each n, we let dy , to be the Hausdorff metric on I, -closed sets,
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and for representations (Q,, T,,) and (Q;,T), of I ,-rough sets X, Y, respectively,
we define the metric D' as:

D'(X.Y)= Y 107" max{dy; ,(Q,. O}).dy (T,. T:)}. (19)

It turns out that

Theorem 3 The space of I ,-rough sets endowed with the metric D' is complete,
i.e., each D'-fundamental sequence of I ,-rough sets converges to a II ,-rough set.

Theoretical as are these results, yet there was an applicational tint in them.

3.4 Approximate Collage Theorem

Consider an Euclidean space E" along with an information system (E",A = {aq, :

k=1,2,...}), each attribute a, inducing the partition P, of E" into cubes of the form
1

H:’zl[mi + é—k m; + %), where m; runs over integers and j; € [0,2% — 1] is an inte-
ger. Hence, P, C P,, each k. We consider fractal objects, i.e., systems of the form
[(C},Cs, ... ,Cp), [ cl, where each C; is a compact set and f is an affine contracting
mapping on E" with a contraction coefficient ¢ € (0, 1). The resulting fractal is the
limit of the sequence (F), of compacta, where 1. Fy = Ule C.2.F,,=fF,).In
this context, fractals are classical examples of I1,-rough sets. Assume we perceive
fractals through their approximations by consecutive grids P, so each F is viewed
on as its upper approximation, see (10), a:Fn for each k. As diam(P,) —,_,, 0, itis
evident that the symmetric difference F /\ F, becomes arbitrarily close to the sym-
metric difference a:F JAN a,:rF,,. Hence, in order to approximate F' with F,, it suffices
to approximate a:F with a:Fn. The question poses itself: what is the least k which
guarantees for a given e, that if a:Fn = a:F then dy(F, F,) < €. We consider the
metric D on fractals and their approximations. We had proposed a counterpart to
Collage Theorem, by replacing fractals F, by their grid approximations.

Theorem 4 (Approximate Collage Theorem [46]) Assume a fractal F generated by
the system (F, = le C..f,c) in the space of I1,-rough sets with the metric D. In
order to satisfy the requirement dy(F, F,) < €, it is sufficient to satisfy the require-

1
logzlz_ko—ﬁ‘rl'(l_c)]] where K =

o AR ; =l
ment a F, = al F with ky = [5 — log)e] andn > [ Togoc

dy(Fy, F)).
This ends the topological chapter in rough set theory and we pass to the second large

area in which the research was also in a sense provoked by Zdzistaw Pawlak, i.e. to
theory of rough mereology.
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4 Mereology

Zdzistaw Pawlak was by his education an engineer—he graduated from Department
of Electrical Engineering in Warsaw Polytechnical, but by intellectual composition
he was close to theory in particular to mathematics and logic. He spent his pro-
fessional time in the fifties and sixties in the Mathematical Institute of the Polish
Academy of Sciences (PAS) where he met first class mathematicians, in particu-
lar he often remembered seminars with Andrzej Ehrenfeucht, the world renowned
logician. Much later, around 2000, when travelling with Zdzistaw to a conference in
Alaska, we made a stop-over at Denver and we visited Andrzej Ehrenfeucht and Jan
Mycielski in Boulder where they worked. Present at the reunion, I experienced the
climate of those for long passed days. So, Zdzistaw was justly interested in mere-
ology as a theory of parts; the notion of a proper subset is a particular case of the
notion of a part, and, any rough set is sandwiched as a proper part between its exact
approximations. Hence, basically, mereology can have the claim for being a formal
base for rough set theory. In addition to this, mereology as a formal theory was first
constructed by Stanislaw Le$niewski, in the years 1918—1939 professor at Warsaw
University and Zdzistaw also metioned that he saw in the Library of the Institute
some manuscripts by him (the whole archive of Le$niewski was burned down dur-
ing the Warsaw Uprising in August-September 1944, so those manuscripts could be
some works submitted to Fundamenta Mathematicae). So it was our resolution to
investigate the subject. Let us say a few words about it.

4.1 Classical Mereology

Mereology due to Lesniewski arose from attempts at reconciling antinomies of naive
set theory, see Lesniewski [26], [27], [29], Srzednicki et al. [73], Sobocinski [71],
[72]. Le$niewski [26] was the first presentation of the foundations of his theory as
well as the first formally complete exposition of mereology. The primitive notion of
mereology in this formalism is the notion of a part, mentioned already by Aristotle
[4]. Given some category of things, a relation of a part is a binary relation z which
is required to be

M1 Irreflexive: For each thing x, it is not true that z(x, x).

M2 Transitive: For each triple x,y,z of things, if n(x,y) and n(y, 2), then n(x, 7).

Remark In the original scheme of Les$niewski, the relation of parts is applied to
individual things as defined in Ontology of Le$niewski, see Le$niewski [28], Iwanu$§
[24]. The relation of part induces the relation of an ingredient (the term is due to T.
Kotarbiriski), ingr, defined as

ingr(x,y) © z(x,y) Vx=y 20)



Rough Sets, Rough Mereology and Uncertainty 57

The relation of ingredient is a partial order on things, i.e.,

1. ingr(x,x).
2. ingr(x,y) A ingr(y,x) = (x =y).
3. ingr(x,y) Aingr(y,z) = ingr(x,2).

We formulate the third axiom with a help from the notion of an ingredient.

M3 (Inference) For each pair of things x, y, if the property

I(x,y): For each t, if ingr(t, x), then there exist w, z such that ingr(w, t), ingr(w, z),
ingr(z,y) hold, is satisfied, then ingr(x, y).

The predicate of overlap, Ov in symbols, is defined by means of

Ov(x,y) < 3Fz.ingr(z,x) A ingr(z,y). 21

Using the overlap predicate, one can write /(x, y) down in the form

1,,(x,y) © For each t if ingr(t,x), then there exists z such that ingr(z,y) and
ov(t, 2).

The notion of a mereological class follows; for a non—vacuous property @ of
things, the class of @, denoted Cls® is defined by the conditions

Cl1 If @(x), then ingr(x, Cls®).

C2 If ingr(x, Cls®), then there exists z such that @(z) and I, (x, z).

In plain language, the class of @ collects in an individual thing all things satisfying
the property @. The existence of classes is guaranteed by an axiom.

M4 For each non—vacuous property @ there exists a class Cls®.

The uniqueness of the class follows by M3. M3 implies also that, for the non—
vacuous property @, if for each thing z such that @(z) it holds that ingr(z, x),
then ingr(Cls®, x). The notion of an overlap allows for a succinct characteriza-
tion of a class: for each non—vacuous property @ and each thing x, it happens that
ingr(x, Cls®) if and only if for each ingredient w of x, there exists a thing z such that
Ov(w, z) and @(z).

Remark Uniqueness of the class along with its existence is an axiom in the
LeSniewski [26] scheme, from which M3 is derived. Similarly, it is an axiom in the
Tarski [74-76] scheme. Please consider two examples.

1. The strict inclusion C on sets is a part relation. The corresponding ingredient
relation is the inclusion C. The overlap relation is the non—empty intersection.
For a non—vacuous family F of sets, the class CIsF is the union U F.

2. For reals in the interval [0, 1], the strict order < is a part relation and the corre-
sponding ingredient relation is the weak order <. Any two reals overlap; for a set
F C [0, 1], the class of F is supF.

The notion of an element is defined as follows

ellx,y) © Ad.y = Cls® A DP(x). 22)
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In plain words, el(x, y) means that y is a class of some property and x responds to that
property. To establish some properties of the notion of an element, we begin with the
property INGR(x) = {y : ingr(y,x)}, for which the identity x = CIsINGR(x) holds by
M3. Hence, el(x, y) is equivalent to ingr(x, y). Thus, each thing x is its own element.
This is one of means of expressing the impossibility of the Russell paradox within
the mereology, cf., Lesniewski [26], Thms. XX VI, XXVII, see also Sobociriski [71].
We observe the extensionality of overlap: For each pair x,y of things, x =y if and
only if for each thing z, the equivalence Ov(z,x) < Ov(z,y) holds. Indeed, assume
the equivalence Ov(z, x) < Ov(z,y) to hold for each z. If ingr(t, x) then Ov(¢, x) and
Ov(t,y) hence by axiom M3 ingr(t, y) and with ¢ = x we get ingr(x, y). By symmetry,
ingr(y, x), hence x = y. The notion of a subset follows:

sub(x,y) & Vz.[ingr(z,x) = ingr(z,y)]. 23)

It is manifest that for each pair x, y of things, sub(x,y) holds if and only if el(x,y)
holds if and only if ingr(x, y) holds. For the property Ind(x) < ingr(x,x), one calls
the class ClsInd, the universe, in symbols V. It follows that 1. The universe is unique.
2. ingr(x, V) holds for each thing x. 3. For each non—vacuous property @, it is true
that ingr(Cls®, V). The notion of an exterior thing x to a thing y, extr(x,y), is the
following:

extr(x,y) © —0v(x,y). 24)

In plain words, x is exterior to y when no thing is an ingredient both to x and y.
Clearly, the operator of exterior has properties 1. No thing is exterior to itself. 2.
extr(x,y) implies extr(y, x). 3. If for a non—vacuous property @, a thing x is exterior
to every thing z such that @(z) holds, then extr(x, Cls®). The notion of a comple-
ment to a thing, with respect to another thing, is rendered as a ternary predicate
comp(x,y,7), cf., LeSniewski, [26], par. 14, Def. IX, to be read: ‘x is the comple-
ment to y with respect to z’, and it is defined by means of the following require-
ments 1. x = CIsEXTR(y, z). 2. ingr(y, z), where EXTR(y, z) is the property which
holds for an thing ¢ if and only if ingr(t, z) and extr(¢, y) hold. This definition implies
that the notion of a complement is valid only when there exists an ingredient of
z exterior to y. Following are basic properties of complement 1. If comp(x,y, 2),
then extr(x,y) and z(x, z). 2. If comp(x,y, z), then comp(y, x,z). We let for a thing
x, —x = CISEXTR(x, V). It follows that 1. —(—x) = x for each thing x. 2. —V does not
exist. We conclude this paragraph with two properties of classes useful in the sequel:

If @ = ¥ then ingr(Cls®, CIs¥). 25)

and a corollary
If @ © ¥ then Cls® = CIs¥P. (26)

Classical mereology establishes on a given universe of objects an exact hierarchy of
parts and wholes suitable for exact concepts; to account for rough concepts, we need
the approximate mereology (rough mereology) in which the notion of a part would
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loose its objective character and would undergo a subjective evaluation. Hence,
rough mereology was proposed by us. Let us mention that a parallel scheme for
mereology going back to informal ideas of Alfred North Whitehead [79], [80] was
established in Clarke [20] as the Calculus of Connections, based on the preducate
C of ‘being connected’ demanded to be reflexive and symmetric plus eventually the
property of extensionality.

5 Rough Mereology

A scheme of mereology, introduced into a collection of things, sets an exact hierar-
chy of things of which some are (exact) parts of others; to ascertain whether a thing
is an exact part of some other thing is in practical cases often difficult if possible
at all, e.g., a robot sensing the environment by means of a camera or a laser range
sensor, cannot exactly perceive obstacles or navigation beacons. Such evaluation can
be done approximately only and one can discuss such situations up to a degree of
certainty only. Thus, one departs from the exact reasoning scheme given by decom-
position into parts to a scheme which approximates the exact scheme but does not
observe it exactly. Such a scheme, albeit its conclusions are expressed in an approxi-
mate language, can be more reliable, as its users are aware of uncertainty of its state-
ments and can take appropriate measures to fend off possible consequences. Imagine
two robots using the language of connection mereology for describing mutual rela-
tions; when endowed with touch sensors, they can ascertain the moment when they
are connected; when a robot has as a goal to enter a certain area, it can ascertain
that it connected to the area or overlapped with it, or it is a part of the area, and
it has no means to describe its position more precisely. Introducing some measures
of overlapping, in other words, the extent to which one thing is a part to the other,
would allow for a more precise description of relative position, and would add an
expressional power to the language of mereology. Rough mereology answers these
demands by introducing the notion of a part to a degree with the degree expressed
as a real number in the interval [0, 1]. Any notion of a part by necessity relates to
the general idea of containment, and thus the notion of a part to a degree is related
to the idea of partial containment and it should preserve the essential intuitive pos-
tulates about the latter. The predicate of a part to a degree stems ideologically from
and has as one of motivations the predicate of an element to a degree introduced by
Lotfi Asker Zadeh as a basis for fuzzy set theory [81]; in this sense, rough mereol-
ogy is to mereology as the fuzzy set theory is to the naive set theory. To the rough
set theory, owes rough mereology the interest in concepts as things of analysis. The
primitive notion of rough mereology is the notion of a rough inclusion which is a
ternary predicate u(x,y,r) where x,y are things and r € [0, 1], read ‘the thing x is
a part to degree at least of r of the thing y’. Any rough inclusion is associated with
a mereological scheme based on the notion of a part by postulating that u(x,y, 1)
is equivalent to ingr(x,y), where the ingredient relation is defined by the adopted
mereological scheme. Other postulates about rough inclusions stem from intuitions
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about the nature of partial containment; these intuitions can be manifold, a fortiori,
postulates about rough inclusions may vary. In our scheme for rough mereology, we
begin with some basic postulates which would provide a most general framework.
When needed, other postulates, narrowing the variety of possible models, can be
introduced.

5.1 Rough Inclusions

We have already stated that a rough inclusion is a ternary predicate u(x,y,r). We
assume that a collection of things is given, on which a part relation z is introduced
with the associated ingredient relation ingr. We thus apply inference schemes of
mereology due to Le$niewski, presented above. Predicates u(x, y, ) were introduced
in Polkowski and Skowron [62], [63]; when a predicate u(x, y, r) is interpreted in a set
of objects U, and regarded as a relation, then it does satisfy the following postulates,
relative to a given part relation # on the set U and the induced by = relation ingr of
an ingredient:

RINCI u(x,y, 1) < ingr(x,y). This postulate asserts that parts to degree of 1 are
ingredients.

RINC2 u(x,y, 1) = Vz[u(z,x,r) = u(z,y,r)]. This postulate does express a fea-
ture of partial containment that a ‘bigger’ thing contains a given thing ‘more’ than a
‘smaller’ thing. It can be called a monotonicity condition for rough inclusions.

RINC3 u(x,y,r) As < r = u(x,y,s). This postulate specifies the meaning of the
phrase ‘a part to a degree at least of r’. From postulates RINC1-RINC3, and known
properties of ingredients some consequences follow

1. ulx,x,1).

2. ux,y, ) Au@,z,1) = ulx,z,1).
30wy, ) Au@y,x, 1) & x=y.

4. x#y=>ulx,y, ) V-au(y,x1).

5. VoVriu(z, x,r) © u(z,y,r)] = x =y.

Property 5 may be regarded as an extensionality postulate for rough mereology. By
a model for rough mereology, we mean a quadruple

M = (VM9 ”M? inng9 MM)

where V), is a set with a part relation x,, C V,, X V,,, the associated ingredient
relation ingry, C V,, X V,,, and a relation p,, C V;, XV, X [0, 1] which satisfies
RINCI-RINC3. We now describe some models for rough mereology which at the
same time give us methods by which we can define rough inclusions, see Polkowski
[47, 48, 50-52], a detailed discussion may be found in Polkowski [53].
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5.2 Rough Inclusions from T-norms

We resort to continuous t—norms which are continuous functions T : [0, 11* — [0, 1]
which are 1. symmetric. 2. associative. 3. increasing in each coordinate. 4. satisfying
boundary conditions 7'(x,0) = 0, T(x, 1) = x, cf., Polkowski [53], Chaps. 4 and 6,
Hajek [21], Chap. 2. Classical examples of continuous t—norms are:

1. L(x,y) = max{0,x +y — 1} (the Lukasiewicz t—norm).
2. P(x,y) = x -y (the product t-norm).
3. M(x,y) = min{x,y} (the minimum t—norm).

The residual implication = induced by a continuous t-norm 7 is defined as:
x=>rpy=max{z : T(x,z) < y}. 27
One proves that a ternary relation y; defined as:
urx,y,r) x>y >r (28)

is a rough inclusion; particular cases are

1.y (x,y,r) & min{l,1 —x+y > r} (the Lukasiewicz implication).
2. pp(x,y,r) & )XC > rwhenx > 0, up(x,y, 1) when x = 0 (the Goguen implication).
3. py(x,y,r) &y >rwhenx > 0, uy,(x,y, 1) when x = 0 (the Godel implication).

A particular case constitute continuous t-norms which satisfy the inequality 7'(x, x)
< x for each x € (0, 1). It is well-known, see Ling [30], that each of those t-norms
T admits a representation:

T(x,y) = gr(fr(0) + fr (), (29)
where the function f; : [0, 1] — Ris continuous decreasing with f;-(1) = 0, and g; :
R — [0, 1]is the pseudo—inverse to f7, 1.e., gof = id.Itis known, cf., e.g., Hajek [21],

that up to an isomorphism there are two t-norms which satisfy conditions (5) and
(6): L and P. Their representations are

L) =1-x 8,0 =1-y, (30)

and,
Jp(x) = exp(—x); gp(y) = —Iny. 31

For a t-norm T which satisfies conditions (5) and (6), we define the rough inclusion
u” on the interval [0, 1] by means of

(ari) " (x,y,r) & gr(lx—y) > r, (32)

equivalently,
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u Gy, r) & |x =yl < fr). (33)

It follows from (33), that u” satisfies conditions RINC1-RINC3 with ingr as identity
=. To give a hint of proof: for RINCI: u”(x,y, 1) if and only if |x — y| < fr(1) =0,
hence, if and only if x = y. This implies RINC2. In case s < r, and |x — y| < f7(r),
one has f;(r) < f7(s) and |x — y| < f(s). Specific recipes are:

phy,r) e lx—y < 1-r, (34)

and,
Py, r) & lx—yl < —Inr. (35)

Both residual and induced by L and P rough inclusions satisfy the transitivity con-
dition

(Trans) If u(x,y,r) and u(y,z,s), then u(x,z, T(r,s)). / In the way of a proof,
assume, e.g., u! (x,y,r) and u (y,z, ), i.e., |[x — y| < fr(r) and |y — z| < f;(s). Hence,
|x—z| < lx =yl + |y —z| <fr(r) +f(s), hence, gr(|x —z|) > gr(fr(r) +fr(s) =
T(r,s), ie., u'(x,z, T(r,s)). Other cases go on same lines. Let us observe that rough
inclusions of the form (ari) are also symmetric.

5.3 Rough Inclusions in Information Systems (Data Tables)

An important domain where rough inclusions will play a dominant role in our analy-
sis of reasoning by means of parts is the realm of information systems of Pawlak [45],
cf., Polkowski [53], Chap. 6. We will define information rough inclusions denoted
with a generic symbol u!. We recall that an information system (a data table) is
represented as a tuple (U, A, V), where U is a finite set of things and A is a finite
set of attributes; each attribute a : U — V maps the set U into the value set V. For
an attribute a and an object u € U, a(u) is the value of a on u. For objects u, v the
discernibility set DIS(u, v) is defined as:

DIS(u,v) ={a €A : a(u) # a(v)}. 36)
For an (ari) py, we define a rough inclusion ,uIT by means of

(airi) pk(u, v, r) < gﬂ%) > 7. 37)

Then, y’T is a rough inclusion with the associated ingredient relation of identity and
the part relation empty. For the Lukasiewicz t—norm, the airi ,ui is given by means
of the formula:

|DIS(u, v)|

_ >

I
u,(u,v,r) e 1 — >r.
L |A]

(38)
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We introduce the set IND(u, v) = A \ DIS(u, v). With its help, we obtain a new form
of (38):
|[IND(u, v)|

A >r. (39)

Hy (u,v,r) &

The formula (39) witnesses that the reasoning based on the rough inclusion ,ui is
the probabilistic one which goes back to Lukasiewicz [31]. Each (airi)—type rough
inclusion y’T satisfies the transitivity condition (Trans) and is symmetric.

5.4 Rough Inclusions on Finite Sets and Measurable Sets

Formula (39) can be abstracted to set and geometric domains. For finite sets A, B, we
let:

|A N B|
Z r7
Al

where |X| denotes the cardinality of X, defines a rough inclusion v, going back to
the Lukasiewicz idea of partial truth values. The rough inclusion v; is defined as

Vi(A,B,r) & (40)

V(A,B,1) if ACB
VA B.1)if AnB #@and (A\ B)U (B\ A) # § 1)
V(A,B,0) if ANB =0

For bounded measurable sets X, Y in an Euclidean space E", we have:

[IANB|

G
u@A,B,r) & >,
[1A]l

(42)

where ||A|| denotes the area (the Lebesgue measure) of the region A, defines a rough
inclusion . Both u5, u© are symmetric but not transitive.

6 Mereology in Engineering: Artifacts, Design
and Assembling

Zdzistaw Pawlak suggested to us the direction but then we were travelling on our own
finding some applications for the developed schemes. In a wider sense, this is also
Zdzistaw’s heritage. We select here applications of mereology to artefact making,
design and assembling. Mereology plays a fundamental role in problems of design
and assembling as basic ingredients in those processes are parts of complex things.
The process of synthesis involves sequencing of operations of fusion of parts into
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more complex parts until the final product—artifact. We propose a scheme for assem-
bling and a parallel scheme for design; the difference is in the fact that design operates
on abstracta, i.e. categories of things whereas assembling deals with concreta, i.e.,
with real things. The interplay between abstracta and concreta will be described as
a result of our analysis. The term artifact means, etymologically, a thing made by
art, which covers a wide specter of things from man—made things of everyday usage
to abstract pieces of mathematical proofs, software modules or sonnets, or concer-
tos. All those distinct things are unified in a scheme dependent on some common
ingredients in their making, cf., e.g., a concise discussion in SEP [67]. We cannot
include here a discussion of vast literature on ontological, philosophical and techno-
logical aspects of this notion, see, e.g., Baker [9], Hilpinen [23], Margolis and Lau-
rence [34], we point only to a thorough analysis of ontological aspects of artifacts
in Borgo and Vieu [16] in which authors propose also a scheme defining artifacts. It
follows from discussion by many authors that important in analysis of artifacts are
such aspects as: authorship, intended functionality, parthood relations. Analysis of
artifacts is closely tied to design and assembly, cf., Boothroyd [14] and Boothroyd,
Dewhurst and Knight [15] as well as Salustri [65] and Seibt [66]. A discussion of
mereology with respect to its role in domain science and engineering and computer
science can be found in Bjorner and Eir [12]. The present discussion comes from
[61]. We attempt at a definition of an artifact as a thing obtained over a collection of
things as a most complex thing in the sense of not being a part of any thing in the
collection; to aspects of authorship (operator) and functionality, we add a temporal
aspect, which allows for well-foundedness of the universe of parts, and seems to be
a natural aspect of the assembling or design process. We regard processes leading to
artifacts as fusion processes in which a by—product is obtained from a finite number
of substrats. Though processes, e.g., of assembling a bike from its parts or a chemical
reaction leading to a product obtained from a mixture of substances are very distinct
to the observer, yet the formal description is identical for the two; it does require a
category of operators P, a category of functionalities F, a linear time T with the
time origin 0. The domain of things is a category Things(P, F, =) of things endowed
with a part relation z. The assignment operator S acts as a partial mapping on the
Cartesian product P X F X Things(P, F, =) with values in the category Tree of rooted
trees. The act of assembling is expressed by means of a predicate

Art(p(u), < vi(m), -, vi(u) >, u, f(u), t(uw), T(w)),

which reads: an operator p(u) assembles at time t(u) a thing u with functionality f(u)
according to the assembling scheme T(u) organized by p(u) which is a tree with the
root u, from things v,(u), ---,v;(u) which are leaves of T(u). The thing v,(u) enters
in the position i the assembling process for u. The predicate ART is subject to the
following requirements.

ARTL. If Art(p(u), <v, (), - , vi(u)>, u, f (1), t(u), T(u)) and for any iin {1, ..., k},
it holds that

Art(p(v(w)), < v (v;(), -+, vy (v;()) >, v;(w), f(vi(w)), 1(v;()), T(v;(w))),
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then #(v;(u)) < t(u), f(u) C f(v;,(w)), p(v;(w)) € p(u), and T(v;(u)) attached to T'(u) at
the leaf v;(u) yields a tree, called an unfolding of T(u) via the assembling tree for
v;(u).

The meaning of ART1 is that for each substrate v entering the assembly process
for u, v is assembled at time earlier than time for u, functionality of u is lesser than
that of v, the operator for u has a greater operating scope than that of v, and the
assembly tree for u can be expanded at the leaf v by the assembly tree for

ART?2. Art(p(u), < vi(W), -+, vi(u) >, u,f(u), t(u), T(w)) = n(v,(u), u)
for each v;(u).

Meaning that each thing can be assembled only from its parts. We introduce an
auxiliary predicate App(v, i(v), u, t(1)) meaning: v enters in the position i the design
process for u at time #(u).

ART3. z(v,u) = Iw,(v,u),

Tt Wk(v’ I/l), t(WZ(V’ l/t)), "t t(Wk(v’ I/l)), i(Wl(V, l/t)), Tt i(Wk(v,u)—l))

such that v = w (v, u), t(w,(v, u)) < -+ < t(w (v, u), w,(v,u)) = u,
APP(WJ(V’ l/t)), l(W](V, M))’ Wj+l (V’ M), [(Wj-{-] (Vv I/l))

forj=1,2,k(v,u)— 1.

This means that each thing which is a part of the other thing will enter the assem-
bly tree of the thing.

ART4. Each thing used in assembling of some other thing can be used in only
one such thing in only one position at only one time.

This requirement will be referred to as the uniqueness requirement.

Art5. Values #(u) belong in the set T = {0, 1,2, ...} of time moments

Corollary 1 By ARTI, ART2, ARTS5: The universe of assembly things is well—
founded, i.e., there is no infinite sequence {x; . i = 1,2, ...} of things with m(x;,,x;)
for each i.

From this Corollary, it follows that our notion of identity of artifacts (EA) is equiv-
alent to extensionality notions (EP), (EC), (UC) discussed in Varzi [78].

For a tree T(u), the ART-unfolding of T(u) is the tree T(u, 1) in which leaves
vi(w), vy(u), ..., v, (u) are expanded by attaching those trees T(v,(«)), ..., T(v;(«))
which are distinct from their roots. For a tree T(u), the maximal ART-unfolding
T (u, max) is the tree obtained from T'(«) by repeating the operation of ART—unfolding
until no further ART—unfolding is possible.

Corollary 2 Each leaf of the tree T(u, max) is an atom.

We now define an artifact: an artifact over the category Things(P, F, r) of assem-
bly things is a thing u such that z(u, v) holds for no thing v in Things(P, F, x). Thus
artifacts are ‘final things’ in a sense. We define the notion of identity for artifacts:
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Theorem 5 (Extensionality of artifacts (EA)) Artifacts a, b are identical if and only
if trees Tree(a, max), Tree(b, max) are isomorphic and have identical things at cor-
responding under the isomorphism nodes.

6.1 Design Artifacts

We regard the process of design as analogous to the assembly process; the only dif-
ference between the two which we introduce is that in design, the designer works
with not the things but with classes of equivalent things. Thus, to begin with, we
introduce an equivalence relation on things. To this end, we let:

u ~ v if and only if [z (u, f) if and only if z(v,t)] for each thing ¢ 43)

and
Cat(u) = Cat(v) if and only if u ~ v. 44)

Things in the same category Cat are ‘universally replaceable’. It is manifest that
the part relation 7z can be factored through categories, to the relation I of part on
categories,

IT(Cat(u), Cat(v)) if and only if z(u, v). 45)

In our formalism, design will imitate assembling with things replaced with cate-
gories of things and the part relation z replaced with the factorization I7. We need
only to repeat the procedure with necessary replacements. We use the designer set
D, the functionality set F, and the time set 7 as above. The act of design is expressed
by means of a predicate,

Des(d, < Caty, -+, Cat, >, Cat,f(Cat), t(Cat), T(Cat))

which reads: a designer d designs at time 7 a category of things Cat with functionality
f(Cat) according to the design scheme 7' (Cat) organized by d which is a tree with the
root Cat, from categories Cat,, ..., Cat, which are leaves of T(Cat). The category
Cat; enters in the position i the design process for Cat. The predicate Des is subject
to the following requirements.

DESI. If Des(d, < Cat(v,(w)), ---, Cat(v(w)) >, Cat(u), f(u), t(u), T(«)) and for
any i in {1, ---, k}, it holds that

Des(p(Cat(v(w))), < Car(v; (v;(w))), -+, Cat(v; (vi(w)))) >,

Car(vi(w)).f (vi(u)), 1(v;()), T(v;(w))),
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then #(v;(u)) < t(u), f(u) C f(v;,(w)), p(v;(w)) € p(u), and T(v;(u)) attached to T'(u) at
the leaf Cat(v,(u)) yields a tree, called the unfolding of T(u) via the design tree for
Cat(v;(u)).

DES2.
Des(d, < Cat(v,(w)), -+, Cat(vi(w)) >, Cat(u),f (), t(w), T(u)) =
I (Cat(v;(u)), Cat(u))

for each v;(u).

Meaning that each thing can be designed only from its parts.

We introduce an auxiliary predicate App(v, i(v), u, t()) meaning: Cat(v) enters in
the position i the design process for Cat(u) at time #(us).

DES3. II(Cat(v), Cat(u)) = ACat(w (v, u)), ..., Cat(w,(v,u)), and,

tw,(v, u)), ..., t(wi (v, ), i(w, (v, u)), -+, i(wk(v,u)_1 )

such that v = w (v, u), t(w,(v, u)) < -+ < t(w (v, u), w,(v,u)) = u,

APP(W,(V’ I/t)), l(Wj(V9 M)), Wj+l (V7 M), t(wj+l (V’ I/t))

forj=1,2,...,k(v,u) — 1.

This means that for each thing which is a part of the other thing the category of
the former will enter the design tree for the category of the latter.

For ART4, we may not have the counterpart in terms of DES: clearly, things of
the same category may be used in many positions and at many design stages of some
other category. We may only repeat our assumption about timing.

DES4. Values t(u) belong in the set T = {0, 1,2, ...} of time moments.

Corollary 3 The universe of categories is well-founded.

We define a design artifact as a category Cat(u) such that IT(Cat(u), Cat(v)) is true
for no v. We are approaching the notion of identity for design artifacts. To begin with,
for a design artifact a, denote by the symbol arz(a) the artifact obtained by filling in
the design tree for a all positions Cat(v) with things v for some choices of v. We state
the identity condition for design artifacts.

Theorem 6 (Extensionality for design artifacts (ED)) Design artifacts a, b are iden-
tical if and only if there exist artifacts art(a), art(b) which are identical.

From the principle of identity for artifacts, a corollary follows.

Corollary 4 If design artifacts a, b are identical then a,b have isomorphic design
trees and categories at corresponding nodes are identical.

Corollary 5 If design artifacts a, b have isomorphic design trees and categories at
corresponding nodes are identical, then a, b are identical.
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Indeed, consider two design artifacts a, b which satisfy the condition in the corollary.
There is at least one category Cat(v) in the same position in design trees of a and
b. Choose a thing x in Cat(v) and let a(x), b(x) be artifacts assembled according to
a, b, respectively. Having a thing in common, a(x), b(x) are identical hence a, b are
identical.

6.2 Action of Things on Design Abstracta

The interplay between concreta and abstracta in design and assembly can be exhib-
ited by action of things on design artifacts. We define a partial mapping 1 on the
product Things(P, F, r) X Design_Artifacts into Artifacts: for a thing v and a design
artifact a, we define the value 1(v,a) as NIL in case category Cat(v) is not any
node in the design tree for a, and, the unique artifact a(v) in the contrary case. The
inverse 1~(1(v, a)) is the set {(u,b) : b € Design_Artifacts, Cat(u) a node in b};
thus, abstracta are equivalent in this sense to collections of concreta.

7 Mereology in Spatial Reasoning: Mereological
Theory of Shape and Orientation

Spatial orientation of a thing depends on the real world in which things are immersed,
hence, to, e.g., discern among sides of a thing, one needs additional knowledge and
structures. An example of this approach is found, e.g., in Aurnague, Vieu and Borillo
[8], where it is proposed to exploit in determining orientation, e.g., the direction of
gravity (‘haut—grav’, ‘bas—grav’) or peculiar features of things (like the neck of a
bottle) suggesting direction, and usage of geometric predicates like equidistance in
definitions of, e.g., orthogonal directions. It is manifest that mereology is amorphous
in the sense that decomposition of a thing into parts does not depend of orientation,
isometric transformations etc. Hence, to exhibit in things additional features like
shape, side, one needs augmented mereology [54]. We mean by this adding to the
Lesniewski mereology the predicate C of being connected, see Clarke [20]. Of C we
require:

Cl1 C(x, x).

C2 If C(x,y), then C(y, x).

C3 For each z: if C(z, x) if and only if C(z,y), then (x = y).

C does induce predicates:

1. P(x,y) if for each z: C(z, x) implies C(z, y).

2. PP(x,y) if P(x,y) and not x = y.

3. Ov(x,y) if there is z such that P(z,x) and P(z, y).

4. EC(z,x) if C(z, x) and not Ov(z, x).

5. TP(x,y) if there is z such that P(x,y), EC(z,y) and C(z, x).

6. NTP(x,y) if not TP(x, y).
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P means ‘part’, PP means ‘proper part’, Ov means ‘overlap’, EC means ‘externally
connected’, TP means ‘tangential part’, and, NTP means ‘non-tangential part’. By
means of those new predicates we may express spatial relationships.

Particular features of shape like existence of ‘dents’ or ‘holes’ in a thing resulting
from removal of other things can be accounted for within mereology.

We define the predicate hole(x, y) reading a thing x constitutes a hole in a thing y
as follows:

hole(x,y) & Jz.NTP(x, z) A comp(y, x, 2), 46)

i.e., x is a non—tangential thing in z and y complements x in z.
The predicate dent(x, y), reading a thing x constitutes a dent in a thing y is defined
as
dent(x,y) < 3z.TP(x, z) A comp(y, X, 2), @7
i.e., x is a tangential thing in z and y complements x in z. The notion of a dent may
be useful in characterizing things that ‘fit into a thing’: the predicate fits_into(x, y)
may be defined as

fits_into(x,y) < Jz.dent(z,y) A ingr(x, z), 48)

i.e., x is an ingredient of a thing which is a dent in y. A particular case of fitting is
“filling’ i.e., a complete fitting of a dent. We offer a predicate fills(x, y)

fills(x,y) © Jz.dent(z,y)) Nz=x"-y, (49)

i.e., dent—making z is the product of x and y. Following this, the notion of a join can
be defined as

joins(x,y,2) © Iww = x +y + z A fills(x, y) A fills(x, z), (50)

i.e., x joins y and z when there is a thing x + y + z and x fills both y and z. This
predicate can be inductively raised to

JOI(M)(X 1, Xp, coes X3 V15 Y2 os Yo Y1)

via
join(1)(xy;y1,y,) © join(xy, y1,¥,)

and
Join(k 4+ 1)(x1, Xy oy Xg 13 V15 Yo ooos Yiew 1> Yig2) ©

JOIN(Xy 4 1> JOINK) X 15 X9 ev0s X5 V15 Voo voo Vig 1)s Yiy2)
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in which we express sequentially a possibly parallel processing. In case x joins
y and z, possibility of assembling arises which may be expressed by means of
modal operator ¢ of ‘possibility’, with an extended operator Asmbl to the form
Asmbl(x,1,y,j,..w,p,f,t) meaning that w can be assembled from x in position i,
y in position j,... by an operator p with functionality f at time ¢,

join(x,y,z) = O3Iw,p,f,t,1,j, kAsmbl(x,i,y,j,z,k;w,p,f, 1). (&29)]

Assuming our mereology is augmented with environment endowed with directions
N, S, E, W, we may represent these directions by means of mobile agents endowed
with laser or infrared beams of specified width; at the moment when the beam range
reaches the thing x, it marks on its boundary a region which we denote as fop in case
of N, bottom in case of S, left-side in case of W, and right-side in case of E. Thus
we have rop(x), bottom(x), left — side(x), right — side(x) as areas of the boundary of
x; these are not parts of x. To express relations among sides of things we need a
distinct language; for the sake of this example let us adopt the language of set theory
regarding sides as sets. Then we can say that the thing y

1. is on the thing x in case bottom(y) is contained in top(x).

2. is under the thing x when top(y) is contained in bottom(x).

3. touches x on the left when right-side(y) is contained in left-side(x)

4. touches x on the right when (left-side(y) is contained in right-side(x)).

This modus of orientation can be merged with mereological shape theory: one can
say that a thing x constitutes a dent on top/under/ on the left/on the right of the thing
y when, respectively,

1. dent,,,(x,y) < 3z.TP(x,z) A top(x) C top(z) A comp(y,x,z).

2. denty, ., (x,y) © Jz.TP(x,z) A bottom(x) C bottom(z) A comp(y,x, 2).

3. denthf-,(x, y) © Jz.TP(x,2) A left — side(x) C left — side(z) A comp(y,x, 7).

4. dent,;y, (x,y) © 2. TP(x,2) A right —side(x) C  right — side(z) A comp

O, x,2).
These notions in turn allow for more precise definitions of fitting and filling; we
restrict ourselves to filling as fitting is processed along same lines: we say that a
thing x fills a thing y on top/bottom/on the left-side/on the right-side,
fills,(x,y) & Jzdent (z,y) Az=x"Y

where « is, respectively, top, bottom, left, right. This bears on the notion of a join
which can be made more precise: we say that a thing x (a, f)—joins things y and z

joins 4 5(x,y,2) & Iww = x +y + z Afills, (x,y) A fills(x, z)

where a, f=top, bottom, left, right. A very extensive discussion of those aspects is
given in Casati and Varzi [19]. Applications are discussed in Kim et al. [25].
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8 Applications of Rough Mereology: Betweenness
in Spatial Problems and in Data Sets

We address geometry induced from rough mereology applying it in two areas: spatial
reasoning for teams of intelligent agents and partitioning information/decision sys-
tems into specific subsystems. In either case the tool is the betweenness relation. This
section introduces mereogeometry modeled on classical axiomatization of geometry
by Tarski [77]. It will serve us in the sequel in building tools for defining and nav-
igating formations of intelligent agents (robots). Elementary geometry was defined
by Alfred Tarski in His Warsaw University lectures in the years 192627 as a part of
Euclidean geometry which can be described by means of the 1st order logic. There
are two main aspects in formalization of geometry: one is metric aspect dealing with
the distance underlying the space of points which carries geometry and the other is
affine aspect taking into account the linear structure. In Tarski axiomatization, Tarski
[77], the metric aspect is expressed as a relation of equidistance (congruence) and
the affine aspect is expressed by means of the betweenness relation. The only logical
predicate required is the identity =. Equidistance relation denoted Eq(x, y, u, z) (or,
as a congruence: xy = uz) means that the distance from x to y is equal to the dis-
tance from u to z (pairs x, y and u, z are equidistant). Betweenness relation is denoted
B(x,y,7), (xis between y and z). Johan Van Benthem [11] took up the subject propos-
ing a version of betweenness predicate based on the nearness predicate and suited,
hypothetically, for Euclidean spaces. We are interested in introducing into the mereo-
logical world defined by u of a geometry in whose terms it will be possible to express
spatial relations among things. We first introduce a notion of a distance «, induced
by a rough inclusion u:

k(x,y) = min{max r,max s : u(x,y,r), u(y,x,s)}. (52)
Observe that the mereological distance differs essentially from the standard distance:
the closer are things, the greater is the value of x: x(x,y) = 1 means x = y whereas
k(x,y) = 0 means that x, y are either externally connected or disjoint, no matter what
is the Euclidean distance between them. The notion of betweenness in the Tarski
sense B(z,x,y) in terms of k is defined as:

B(z,x,y) < for each thing w, k(z, w) € [x(x,w), x(y, w)]. (53)

Here, [a, b] means the non—oriented interval with endpoints a, b. We use k to define
in our context the relation N of nearness proposed in Van Benthem [11]

N(x.y,z) < k(x,y) 2 k(z,). (54)
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Here, N(x, y, z) means that x is closer to y than z is to y. We introduce a betweenness
relation in the sense of Van Benthem 7 modeled on betweenness proposed in Van
Benthem [11]

Ty(z,x,y) < [foreacht (z=1t)or N(z,x,t) or N(z,y,1)]. (55)

8.1 Betweenness in Spatial Reasoning: Autonomous Robot
Navigation

Robot navigation is a main topic in behavioral robotics as an archetypical example
of navigation by intelligent agents, especially in groups, see, e.g., [1, 2, 5, 10, 17,
18, 35]. The principal context bearing on our approach to robot control [39—42,

58, 59], deals with rectangles in 2D space regularly positioned, i.e., having edges
parallel to coordinate axes. We model robots (which are represented in the plane as
discs of the same radii in 2D space) by means of their safety regions about robots;
those regions are modeled as squares circumscribed on robots. One of advantages
of this representation is that safety regions can be always implemented as regularly
positioned rectangles. Given two robots a, b as discs of the same radii, and their
safety regions as circumscribed regularly positioned rectangles A, B, we search for a
proper choice of a region X containing A, and B with the Taking the rough inclusion
uC defined in (42), for two disjoint rectangles A, B, we define the extent, ext(A, B)
of A and B as the smallest rectangle containing the union A U B. Then we have the
claim.

Proposition 1 Given two disjoint rectangles C, D, the only thing between C and D
in the sense of the predicate Ty is the extent ext(C, D) of C, D.

For a proof, as linear stretching or contracting along an axis does not change the area
relations, it is sufficient to consider two unit squares A, B of which A has (0,0) as one
of vertices whereas B has (a,b) with a, b > 1 as the lower left vertex (both squares are
regularly positioned). Then the distance k between the extent ex?(A, B) and either of
A,Bis For a rectangle R : [0,x] X [0,y] withx € (a,a+ 1),y € (b,b + 1),

(a+)(b+1)"
we have that )
Kk(R,A) = w = x(R,B). (56)
Xy

For ¢(x,y) = “=22=2, we find that
0
¥_4a-bso (57)
ox  x2 y

and, similarly, ‘;—"5 > 0, i.e., ¢ is increasing in x, y reaching the maximum when R
y
becomes the extent of A, B. An analogous reasoning takes care of the case when R
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Fig. 1 Trails of robots in B Edt Yew Cock b
the restored cross formation
in the free workspace after

passing through the passage

3L

Timw. 001927000  (wenreal097)  subs 10 | Stagev2 1l

has some (c,d) with ¢,d > 0 as the lower left vertex. We say henceforth that a robot
C is between robots A, B if C is contained in the extent ext(A, B). Further usage of the
betweenness predicate is suggested by the Tarski [77] axiom of B, Eg—upper dimen-
sion, which implies collinearity of x, y, z. Thus,a line segment may be defined via the
auxiliary notion of a pattern; we introduce this notion as a relation Pt(u, v, z) which
is true if and only if Ty(z, u, v) or Ty(u, z,v) or Ty(v,u,z). We will say that a finite
Sequence uj, iy, ..., u,, of things belong in a line segment whenever Pt(u;, u;,,U;,,)
fori =1,...,n — 2; formally, we introduce the functor Line of finite arity defined by
means of

Line(u,, u,, ...,u,) if and only if Pt(u;, u;, 1, u;,,) fori <n—1.

For instance, any two disjoint rectangles A, B and their extent ext(A, B) form a line
segment. This notion was applied to navigation of intelligent agents, e.g., mobile
robots. For a team of agents F' and a rough inclusion y among them, we call a y-
formation F(u) the team F along with the u-betweenness relation on it. Figure 1
shows a screenshot of a cross formation of robots navigating a narrow passage in
line formation and then restoring itself to the cross formation.

8.2 Betweenness in Data Sets

Given an information/decision system with the universe U and the attribute set A,
we apply to objects in U the Lukasiewicz rough inclusion (39). Given objects u, v in
U, for a choice of y € [0, 1], we form objects which have y X |A]| attribute values in
common with u and (1— y) X |A] attribute values in common with v. We represent
this class of things as the vector y in the Euclidean plane. In this representation, u
is represented as [0,1] and v is represented as [0,1], so ¥ is a convex combination
of [0,1] and [0,1]. It was proved [55] that for each choice of y € [0, 1], the class of
things represented as ¥ is between u and v in the sense of betweenness relation 7
induced by the Lukasiewicz rough inclusion (39). This suggests a generalization.
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We introduce a more general betweenness relation GB(u, v, v,, ..., v,) (read as ‘u
is between vy, v,,...,v,’), see [55], which holds true if and only if for each object
w € U,w # u, the object u is closer than w to some v, in the mereological sense, in
formal terms

GB(u,v,,v,,...,v,) if and only if for each w # u there is v; such that (58)
K(u,v;) = k(w,v)).

We consider a set V = {v,,v,,...,v,} of objects in U. For a choice of y,7,,...,¥, €
[0, 1] with }’,7; = 1, which we summarily denote by the vector 7, we denote as (V,7)
the class of objects which have the fraction y; of attribute values in common with the
object v;. Formally,

n C
ue V,y) ifInf(u) = U C; C; CInf(v) % =y fori=12,...n 59
i=1

One proves

Proposition 2 Each object u in the class (V,y) satisfies the relation GB(u,v,,
Vo, ..., v,). Conversely, each u satisfying the relation GB(u, v, v,, ...,v,) belongs in
a class (V,y) for some vectory.

We call a maximal set of things K with the property that for each u € K there exist
k and v, v,,...,v; € K\ {u} such that GB(u,v{,v,,...,v;) holds, a kernel. We call
the set {v,, vy, ..., v, } a set of neighbors of u, denoted with the generic symbol N(u).
In order to disambiguate the notion of a neighborhood, we introduce the following
structure for neighborhoods:

<O, C SInf(v),qv)), ..., (v, C, S Inf(vy), g(vy)) >, (60)
with neighbors v, v,, ..., v, ordered in the descending order of the factor g, g(v;) =
_ Gl
=

8.3 Computing the Kernel: Dual Indiscernibility Matrix
(DIM)

In order to compute the kernel of the data set [55], we introduce a matrix dual in a
sense to the well-known Skowron—Rauszer Discernibility Matrix [70], whose entries
consist of objects instead of attributes, which fact justifies the adjective ‘dual’. The
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dual indiscernibility matrix for an information system IS = (U, A, V), is the matrix
DIM(1S) = [¢,yu)jajx|v|» Where the entry for a givena € A, val € V is:

Covar = (€ U @ a(u) = val}. 61)

ALGORITHM: COMPUTING KERNEL BY DUAL INDISCERNIBILITY
MATRIX

Input: Information system IS = (U, A, V, val);

set R initialized as empty, set K initialized as U;

1. Form DIM;

2. Scan DIM row by row from left to right;

3. Foreachcell ¢, if ¢, = {u} for some u € U
4. thenR <« RuU {u}, K « K\ {u};

5. Return K;

6. Return R.

The set K is the kernel and the set R is said to be the residuum of the data set. In
the kernel, each object is a convex combination of some other objects in the kernel
whereas in the residuum each object is an outlier, having at least one attribute value
not taken on any other object in the universe.

8.4 Kernel and Residuum in the Task of Classification

It is interesting to see how the kernel and the residuum, being on the opposite poles
of betweenness, behave in tasks of classification. We recall the results from [57] in
Table 1.

It follows from Table 1 that both kernel and residuum are satisfactory represen-
tatives of the whole data set as classification into decision classes is concerned as
they split between themselves the data set approximately in halves with accuracy of
classification not diminished.

8.5 Classifiers Based on Partial Approximation by Neighbors

The notion of a neighborhood suggests usage of neighbors in approximation of a
given test object by best training neighbors [7]: for a given decision system D split
into the training Trn and test Tt parts and for a given test object u"’, we select the
object V{7’ € trn such that

Vi = argmax, e, | Inf ™) 0 Inf ()], (62)
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Table 1 Classification results

L. Polkowski

Database Set tested Accuracy of Accuracy of Number of
C4.5 k-NN samples
Adult Whole set 0.857 +0.003 0.837 +0.003 39074.0
Ker, 0.853 £ 0.004 0.835 +0.003 22366.0
Res, 0.849 +0.003 0.833 +0.003 16708.0
PID Whole set 0.733 +0.027 0.723 £0.021 614.4
Ker, 0.704 £ 0.037 0.711 £0.032 212.9
Res, 0.724 + 0.035 0.745 +0.030 401.5
Fertility diagnosis | Whole set 0.852 £0.073 0.866 + 0.060 80.0
Ker, 0.846 + 0.075 0.880 = 0.064 71.6
Res, 0.852 +0.068 0.880 + 0.064 8.4
German credit Whole set 0.713 +0.023 0.732 + 0.025 800.0
Ker, 0.671 £0.045 0.714 £0.038 98.9
Res, 0.712 +0.023 0.726 + 0.030 701.1
Heart disease Whole set 0.750 + 0.054 0.825 +0.048 216.0
Ker, 0.742 £ 0.061 0.822 +0.051 109.2
Res, 0.767 + 0.054 0.827 +£0.041 106.8

i.e., the object v/
irn.
viT:

10

rn <

trn
v

covers’ u"' best. Then, we select the next best covering u

11 = argmax e, (ym [Inf ™"y N Inf(v)].

T object

(63)

The pair (V/'", V™) is said to be the pair of level LO. We remove objects v/ , /"

10° "11

110> 11

from the set rn and we repeat the process of covering by pairs from the set trn \
{(",v'"™), obtaining the pair of level L1 and so on. The process is repeated up to

10 711

Table 2 Pair classifier

Database kNN Bayes Pair—best Pair-0
Adult 0.841 0.864 0.853L1 0.823
Australian 0.855 0.843 0.859L4, 5 0.859
Diabetes 0.631 0.652 0.721L0 0.710
German credit 0.730 0.704 0.722L1 0.721
Heart disease 0.837 0.829 0.822L1 0.800
Hepatitis 0.890 0.845 0.892L0 0.831
Congressional voting | 0.938 0.927 0.928L0 0.928
Mushroom 1.0 0.910 1.0LO 1.0

Nursery 0.578 0.869 0.845L0 0.845
Soybean large 0.928 0.690 0.910L0 0.910
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the apriori assumed level maxLevel. All decision values are pooled into a common
set and Majority Voting is applied to select the final decision value assigned to u™'.
Table 2 shows results of a comparison among Pair Classifier using the best approx-
imating pair, and k-NN and Bayes classifiers. The symbol Lx denotes the level of
covering, Pair-0 is the simple pair classifier with approximations by pairs and Pair—
best denotes the best result over levels studied. Those results show that Pair classifier
gives satisfactory results in classification problems at least for medium size data sets
mentioned above.

9 Rough Mereology in Granular Computing

Assume a rough inclusion u on the universe U of an information system (U, A, V).
For an object u € U and r € [0, 1], we call the mereological class of the property:

¥ (v) if and only if u(v, u, r), (64)
the granule g(u, r, ) of radius r about i, i.e.,
g(u, r, ) is CIs¥. (65)

For symmetric transitive rough inclusions, g(u,r, u) is simply the set {ve U :
u(v,u,r)} and we will define in what follows granules as such sets.

9.1 Granular Mereotopology

Granules serve as quasi—open sets from which topologies are built [53]. The follow-
ing constitute a set of basic properties of rough mereological granules:

L. If ingr(y,x) then ingr(y, g,(x, r));

2. If ingr(y, g,(x,r)) and ingr(z,y) then ingr(z, g ,(x, 1));
3. If u(y,x,r) then ingr(y, g,(x, r));

4. If s < r then ingr(g,(x,r), g,(x,5)),

which follow straightforwardly from properties RINC1-RINC3 of rough inclusions
and the fact that ingr is a partial order, in particular it is transitive, regardless of the
type of the rough inclusion u. For T—transitive rough inclusions, we can be more
specific, and prove

Proposition 3 For each T-transitive rough inclusion p,

1. Ifingr(y, g,(x, 1) then ingr(g,(y, ), 8,(x, T(r, 5));
2. If u(y,x,s) with 1 > s > r, then there exists a < 1 with the property that ingr

(8,0, @), 8,(x,1).
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Proof Property 1 follows by transitivity of y with the t—-norm 7. Property 2 results
from the fact that the inequality 7'(s, @) > r has a solutionin a, e.g.,forT = P, a > 1;,
and, forT=L,a>1—s+r. ‘

It is natural to regard granule system {g'(x) : x € U, r € (0, 1)} as a neighborhood
system for a topology on U that may be called the granular topology. In order to
make this idea explicit, we define classes of the form:

N'(x,r) = Cls(y}D), (66)

where
ll/r’f;(y) < s > roup(y, x, 5). 67)

We declare the system {N7(x,7) : x € U;r € (0,1)} to be a neighborhood basis for
a topology 6. This is justified by the following

Proposition 4 Properties of the system {N'(x,r) : x € U;r € (0,1)} are as fol-
lows:

1. yingr NT(x,r) = 36 > O.NT(y, 8) ingr NT(x, r);

2. s>r= Nl(x,s)ingr N'(x,r);

3. 7z ingr NT(x,r)Az ingr N'(y,s)=>36>0 N'(z,6) ingr NT(x,r) ANT
(z,8) ingr NT(y, s).

Proof For Property 1, y ingr N'(x,r) implies that there exists an s > r such that
1, (y,x,5). Let 6 < 1 be such that #(u,s) > r whenever u > §; 6 exists by continu-
ity of ¢ and the identity #(1, s) = s. Thus, if z ingr N'(y, 6), then u,(z,y,n) withn > 6
and p,(z, x, 1(n, 5)) hence z ingr N'(x, r). Property 2 follows by RINC3 and Property
3 is a corollary to properties 1 and 2. This concludes the argument.

9.2 Granular Rough Mereological Logics

We assume that an information/decision system (U, A, V,d) is given, along with a
rough inclusion v; of the form (41) or the rough inclusion v; (40) on the subsets of
the universe U; for a collection of unary predicates Pr, interpreted in the universe
U (meaning that for each predicate ¢ € Pr the meaning [[¢]] is a subset of U), we
define the intensional logic GRM,, cf. [60], by assigning to each predicate ¢ in Pr
its intension /,(¢) defined by its extension IY(g) at each particular granule g as

I'(e)(¢) = r < v(g. [[P]].7). (68)
With respect to the rough inclusion v; (40), the formula (68) becomes

gn (gl |

> r. (69)
2l

L@@ 2r
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The counterpart for the rough inclusion v; (41) comes down to:

gCll¢llandr=1
L@@ 2r < gnllgll #Pandr>

>3 (70)
gnll¢ll=Fandr=0

We say that a formula ¢ interpreted in the universe U of an information system
(U,A,V) is true at a granule g with respect to a rough inclusion v if and only if
1Y (g)(¢) = 1. Both (40) and (41) are regular, i.e., their value on a pair A, B is 1 if
and only if A C B. Hence, for every regular rough inclusion v, a formula ¢ interpreted
in the universe U, with the meaning [[¢]] = {u € U : u F ¢}, is true at a granule g
with respect to v if and only if g C [[¢]]. In particular, for a decisionrule r : p = ¢,
the rule r is true at a granule g with respect to a regular rough inclusion v if and only
if g N [[p]] C [[g]].- We state these facts in the following

Proposition 5 For every regular rough inclusion v, a formula ¢ interpreted in the
universe U, with the meaning [[@]], is true at a granule g with respect to v if and
only if g C [[@p]]. In particular, for a decision rule r . p = q, the rule r is true at a
granule g with respect to a regular rough inclusion v if and only if g N [[p]] C [[q]].

Proof Indeed, truth of ¢ at g means that v(g, [[¢]], 1) which in turn, by regularity of
v is equivalent to the inclusion g C [[¢]].

We will say that a formula ¢ is a tautology of our intensional logic if and only if ¢
is true at every world g. The preceding proposition implies that,

Proposition 6 For every regular rough inclusion v, a formula ¢ is a tautology if and
only if Cls(G) C [¢], where G is the property of being a granule; in the case when
granules considered cover the universe U this condition simplifies to [[¢]] = U. This
means for a decision rule p = q that it is a tautology if and only if [[p]] C [[g]].

Hence, the condition for truth of decision rules in the logic GRM,, is the same as
the truth of an implication in descriptor logic, see [43], under caveat that granules
considered cover the universe U of objects.

9.3 Granular Computing in Decision Making

Rough mereological granules were proposed as objects in granular decision sys-
tems induced from given information/data systems [48], [49]. For a decision system
(U,A, V,d),and a rough inclusion yx on U, for a radius of granulation r, we form the
collection I'(r) of granules of radii of r about objects in U. From the set I", we select
a covering A of the set U, so each object in U belongs in at least one granule in A.
For each granule g € A, we factor through g attributes in A U {d}; typically we use
the Majority Voting MV so we let for an attribute @, and a granule g:
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MV(a)(g) =MV{a(u) : u € g}. 71

The decision system (A, {MV(a) : a € A}, V,MV(d)) is the granular reflexion of the
decision system (U, A, V,d). An interesting variant of granulation is the concept-
dependent granulation in which granules are computed within decision classes [6],
[56]. To the granular reflections one applies a classifier as to any decision system.
Results are very good and show not less accuracy at much smaller usually universe
and much smaller number of rules. Table 3 shows classification results for the Ger-
man Credit data set from Univ. California at Irvine Data Mining Repository for four
variants of Bayes Classifier, see [56], Chap. 7, for details. Table 4 shows size of gran-
ule set for four variants of Bayes classifier.

Table3 5 x CV-5; The result of experiments for four variants of Bayes classifier; German Credit;
Concept dependent granulation; r,,,,, = Granulation radius; nil = result for data without missing
values; Acc = Accuracy of classification; AccBias = Accuracy bias; GranSize = The size of data

set after granulation in the fixed r

T eran Acc AccBias
Vi V2 V3 V4 Vi V2 V3 V4

0 0.627 0.619 0.625 0.625 0.024 0.038 0.024 0.021
0.05 0.627 0.616 0.625 0.625 0.024 0.041 0.024 0.021
0.1 0.624 0.613 0.625 0.635 0.027 0.044 0.025 0.039
0.15 0.605 0.583 0.612 0.624 0.005 0.08 0.026 0.038
0.2 0.621 0.588 0.613 0.616 0.029 0.074 0.033 0.038
0.25 0.61 0.554 0.574 0.598 0.015 0.094 0.063 0.05
0.3 0.626 0.614 0.469 0.538 0.007 0.058 0.04 0.11
0.35 0.641 0.646 0.468 0.458 0.013 0.054 0.096 0.058
0.4 0.635 0.684 0.488 0.514 0.016 0.032 0.057 0.019
0.45 0.646 0.69 0.56 0.554 0.01 0.012 0.046 0.031
0.5 0.649 0.703 0.56 0.588 0.02 0.006 0.046 0.034
0.55 0.686 0.701 0.586 0.594 0.008 0.001 0.02 0.039
0.6 0.698 0.7 0.609 0.625 0.005 0 0.016 0.013
0.65 0.706 0.7 0.636 0.667 0.022 0 0.012 0.021
0.7 0.69 0.7 0.652 0.687 0.008 0 0.019 0.018
0.75 0.677 0.7 0.666 0.7 0.007 0 0.016 0.01
0.8 0.669 0.7 0.67 0.699 0.011 0 0.005 0.012
0.85 0.679 0.7 0.67 0.703 0.005 0 0.017 0.006
0.9 0.678 0.7 0.67 0.704 0.006 0 0.014 0.01
0.95 0.679 0.7 0.671 0.705 0.005 0 0.014 0.006
1 0.677 0.7 0.671 0.704 0.005 0 0.015 0.009
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Table 4 Size of the granular set for granulation radii and four variants of Bayes classifier
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T oran GranSize

Vi V2 V3 V4
0 2 2 2 2
0.05 2 2 2 2
0.1 2 2.16 2 2.08
0.15 2.52 2.44 2.56 2.44
0.2 3.64 3.32 3.72 3.52
0.25 4.92 4.72 4.84 5.24
0.3 7.44 6.76 7.16 7.4
0.35 11.16 11.08 11.32 11.28
0.4 18.76 19.36 19.64 18.2
0.45 33.88 32.72 32.84 3252
0.5 59.32 56.12 584 58.12
0.55 105.32 104.52 102.76 105.72
0.6 187.28 187.28 188.32 186.84
0.65 318.72 321.6 317.96 319.28
0.7 486.28 486 485.6 487.28
0.75 650 647.92 648.96 650.72
0.8 751.28 750.92 751.32 751.12
0.85 789.56 789.68 789.8 789.56
0.9 796.48 796.44 796.64 796.44
0.95 798.68 798.72 798.72 798.76
1 800 800 800 800

10 Conclusion

Zdzistaw Pawlak left his trace on many topics, from random number generation,
through architecture of computing machines, semiotics, linguistics, information sys-
tems, scientific information theory, and then reached for his greatest achievement -
theory of uncertain knowledge expressed as the theory of rough sets. This author
entered the inner circle of rough set devotees 10 years after rough sets were born,
and he, along with others involved, rode on the crest of the vawe which carried rough
set theory into the world arena of science. This growth also in management aspects
was in great part thanks to Zdzistaw Pawlak’s energy and devotion. He was going
to numerous conferences, attracted new scientists, provided funds, doing everything
necessary to secure the growth of the milieu of rough sets. Due to this involvement,
it was possible to organize in 1998 in Warsaw the conference RSCTC’98. From
that point on, rough sets gained impetus reflected in many conferences, a number



82 L. Polkowski

of monographs, thousands of research contributions. Rough sets constantly grow in
scope and results and methods, and, this phenomenon is the Zdzistaw Pawlak Her-
itage left us all.
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Rough Sets in Machine Learning: A Review

Rafael Bello and Rafael Falcon

Abstract This chapter emphasizes on the role played by rough set theory (RST)
within the broad field of Machine Learning (ML). As a sound data analysis and
knowledge discovery paradigm, RST has much to offer to the ML community. We
surveyed the existing literature and reported on the most relevant RST theoretical
developments and applications in this area. The review starts with RST in the con-
text of data preprocessing (discretization, feature selection, instance selection and
meta-learning) as well as the generation of both descriptive and predictive knowledge
via decision rule induction, association rule mining and clustering. Afterward, we
examined several special ML scenarios in which RST has been recently introduced,
such as imbalanced classification, multi-label classification, dynamic/incremental
learning, Big Data analysis and cost-sensitive learning.

1 Introduction

Information granulation is the process by which a collection of information gran-
ules are synthesized, with a granule being a collection of values (in the data space)
which are drawn towards the center object(s) (in the object space) by an underlying
indistinguishability, similarity or functionality mechanism. Note that the data and
object spaces can actually coincide [141]. The Granular Computing (GrC) paradigm
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[7, 183] encompasses several computational models based on fuzzy logic, Comput-
ing With Words, interval computing, rough sets, shadowed sets, near sets, etc.

The main purpose behind Granular Computing is to find a novel way to synthesize
knowledge in a more human-centric fashion and from vast, unstructured, possibly
high-dimensional raw data sources. Not surprisingly, Granular Computing (GrC) is
closely related to Machine Learning [83, 95, 257]. The aim of a learning process is
to derive a certain rule or system for either the automatic classification of the system
objects or the prediction of the values of the system control variables. The key chal-
lenge with prediction lies in modeling the relationships among the system variables
in such a way that it allows inferring the value of the control (target) variable.

Rough set theory (RST) [1] was developed by Zdzistaw Pawlak in the early 1980s
[179] as a mathematical approach to intelligent data analysis and data mining [180].
This methodology is based on the premise that lowering the degree of precision in
the data makes the data pattern more visible, i.e., the rough set approach can be
formally considered as a framework for pattern discovery from imperfect data [220].
Several reasons are given in [34] to employ RST in knowledge discovery, including:

« It does not require any preliminary or additional information about the data

« It provides a valuable analysis even in presence of incomplete data

« It allows the interpretation of large amounts of both quantitative and qualitative
data

« It can model highly nonlinear or discontinuous functional relations to provide
complex characterizations of data

« It can discover important facts hidden in the data and represent them in the form
of decision rules, and

« At the same time, the decision rules derived from rough set models are based on
facts, because every decision rule is supported by a set of examples.

Mert Bal [3] brought up other RST advantages, such as: (a) it performs a clear
interpretation of the results and evaluation of the meaningfulness of data; (b) it can
identify and characterize uncertain systems and (c) the patterns discovered using
rough sets are concise, strong and sturdy.

Among the main components of the knowledge discovery process we can men-
tion:

« PREPROCESSING

— Discretization

— Training set edition (instance selection)

— Feature selection

— Characterization of the learning problem (data complexity, metalearning)

« KNOWLEDGE DISCOVERY

— Symbolic inductive learning methods
— Symbolic implicit learning methods (a.k.a. lazy learning)
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« KNOWLEDGE EVALUATION
— Evaluation of the discovered knowledge

All of the above stages have witnessed the involvement of rough sets in their
algorithmic developments. Some of the RST applications are as follows:

 Analysis of the attributes to consider

— Feature selection

— Inter-attribute dependency characterization
— Feature reduction

— Feature weighting

— Feature discretization

— Feature removal

» Formulation of the discovered knowledge

— Discovery of decision rules
— Quantification of the uncertainty in the decision rules.

RST’s main components are an information system and an indiscernibility rela-
tion. An information system is formally defined as follows. Let A = {A4,,A,, ... A, }
be a set of attributes characterizing each example (object, entity, situation, state, etc.)
in non-empty set U called the universe of discourse. The pair (U, A) is called an infor-
mation system. If there exists an attribute d & A, called the decision attribute, that
represents the decision associated with each example in U, then a decision system
(U, AU {d}) is obtained.

The fact that RST relies on the existence of an information system allows estab-
lishing a close relationship with data-driven knowledge discovery processes given
that these information or decision systems can be employed as training sets for unsu-
pervised or supervised learning models, respectively.

A binary indiscernibility relation Iy is associated with each subset of attributes
B C A. This relation contains the pairs of objects that are inseparable from each other
given the information expressed in the attributes in B, as shown in Eq. (1).

Iy ={(x,y) € UXU : f(x,A)) = f(y,A;) VA; € B}. D

where f(x, A;) returns the value of the i-th attribute in object x € U.

The indiscernibility relation induces a granulation of the information system. The
classical RST leaned on a particular type of indiscernibility relations called equiv-
alence relations (i.e., those that are simmetric, reflexive and transitive). An equiva-
lence relation induces a granulation of the universe in the form of a partition. This
type of relation works well when there are only nominal attributes and no missing
values in the information system.

Information systems having incomplete, continuous, mixed or heterogeneous data
are in need of a more flexible type of indiscernibility relation. Subsequent RST for-
mulations relaxed the stringent requirement of having an equivalence relation by



90 R. Bello and R. Falcon

considering either a tolerance or a similarity relation [61, 68, 181, 207, 212, 231,
283, 284, 305, 306]; these relations will induce a covering of the system. Another
relaxation avenue is based on the probabilistic approach [65, 182, 210, 259, 264,
267, 307]. A third alternative is the hybridization with fuzzy set theory [54, 55,
172, 258, 280]. These different approaches have contributed to positioning RST as
an important component within Soft Computing [12].

All of the aforementioned RST formulations retain some basic definitions, such
as the lower and upper approximations; however, they defined it in multiple ways.
The canonical RST definition for the lower approximation of a concept X is given
as B,(X) = {x € U : B(x) C X} whereas its upper approximation is calculated as
B*(X)={x € U : B(x)n X # (}. From these approximations we can compute the
positive region POS(X) = B,(X), the boundary region BND(X) = B*(X) — B, (X)
and the negative region NEG(X) = U — B*(X). These concepts serve as building
blocks for developing many problem-solving approaches, including data-driven
learning.

RST and Machine Learning are also related in that both take care of removing
irrelevant/redundant attributes. This process is termed feature selection and RST
approaches it from the standpoint of calculating the system reducts. Given an infor-
mation system S = (U, A), where U is the universe and A is the set of attributes, a
reduct is a minimum set of attributes B C A such that I, = Ij.

This chapter emphasizes on the role played by RST within the broad field of
Machine Learning (ML). As a sound data analysis and knowledge discovery par-
adigm, RST has much to offer to the ML community. We surveyed the existing lit-
erature and reported on the most relevant RST theoretical developments and appli-
cations in this area. The review starts with RST in the context of data preprocessing
(discretization, feature selection, instance selection and meta-learning) as well as the
generation of both descriptive and predictive knowledge via decision rule induction,
association rule mining and clustering. Afterward, we examined several special ML
scenarios in which RST has been recently introduced, such as imbalanced classifi-
cation, multi-label classification, dynamic/incremental learning, Big Data analysis
and cost-sensitive learning.

The rest of the chapter is structured as follows. Section 2 reviews ML methods and
processes from an RST standpoint, with emphasis on data preprocessing and knowl-
edge discovery. Section 3 unveils special ML scenarios that are being gradually per-
meated by RST-based approaches, including imbalanced classification, multi-label
classification, dynamic/incremental learning, Big Data analysis and cost-sensitive
learning. Section 5 concludes the chapter.

2 Machine Learning Methods and RST

This section briefly goes over reported studies showcasing RST as a tool in data
preprocessing and descriptive/predictive knowledge discovery.
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2.1 Preprocessing

2.1.1 Discretization

As mentioned in [195], discretization is the process of converting a numerical
attribute into a nominal one by applying a set of cuts to the domain of the numer-
ical attribute and treating each interval as a discrete value of the (now nominal)
attribute. Discretization is a mandatory step when processing information systems
with the canonical RST formulation, as there is no provisioning for handling numer-
ical attributes there. Some RST extensions avoid this issue by, for example, using
similarity classes instead of equivalence classes and building a similarity relation
that encompasses both nominal and numerical attributes.

It is very important that any discretization method chosen in the context of RST-
based data analysis preserves the underlying discernibility among the objects. The
level of granularity at which the cuts are performed in the discretization step will
have a direct impact on any ensuing prediction, i.e., generic (wider) intervals (cuts)
will likely avoid overfitting when predicting the class for an unseen object.

Dougherty et al. [53] categorize discretization methods along three axes:

e global versus local: indicates whether an approach simultaneously converts all
numerical attributes (global) or is restricted to a single numerical attribute (local).
For instance, the authors in [174] suggest both local and global handling of numer-
ical attributes in large data bases.

 supervised versus unsupervised: indicates whether an approach considers values
of other attributes in the discretization process or not. A simple example of an
unsupervised approach is an “equal width” interval method that works by dividing
the range of continuous attributes into k equal intervals, where k is given. A super-
vised discretization method, for example, will consider the correlation between the
numerical attribute and the label (class) attribute when choosing the location of
the cuts.

« static versus dynamic: indicates whether an approach requires a parameter to deter-
mine the number of cut values or not. Dynamic approaches automatically generate
this number along the discretization process whereas static methods require an a
priori specification of this parameter.

Lenarcik and Piasta [128] introduced an RST-based discretization method that
leans on the concepts of a random information system and of an expected value
of classification quality. The method of finding suboptimal discretizations based on
these concepts is presented and is illustrated with data from concretes’ frost resis-
tance investigations.

Nguyen [173] considers the problem of searching for a minimal set of cuts that
preserves the discernibility between objects with respect to any subset of s attributes,
where s is a user-defined parameter. It was shown that this problem is NP-hard and
its heuristic solution is more complicated than that for the problem of searching for
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an optimal, consistent set of cuts. The author proposed a scheme based on Boolean
reasoning to solve this problem.

Bazan [5] put forth a method to search for an irreducible sets of cuts of an infor-
mation system. The method is based on the notion of dynamic reduct. These reducts
are calculated for the information system and the one with the best stability coeffi-
cient is chosen. Next, as an irreducible set of cuts, the author selected cuts belonging
to the chosen dynamic reduct.

Bazan et al. [6] proposed a discretization technique named maximal discernibility
(MD), which is based on rough sets and Boolean reasoning. MD is a greedy heuristic
that searches for cuts along the domains of all numerical attributes that discern the
largest number of object pairs in the dataset. These object pairs are removed from
the information system before the next cut is sought. The set of cuts obtained that
way is optimal in terms of object indiscernibility; however this procedure is not fea-
sible since computing one cut requires O(|A| - |U|?). Locally optimal cuts [6] are
computed in O(JA| - |U]) steps using only O(|A| - |U|) space.

Dai and Li [46] improved Nguyen’s discretization techniques by reducing the time
and space complexity required to arrive at the set of candidate cuts. They proved that
all bound cuts can discern the same object pairs as the entire set of initial cuts. A
strategy to select candidate cuts was proposed based on that proof. They obtained
identical results to Nguyen’s with a lower computational overhead.

Chen et al. [26] employ a genetic algorithm (GA) to derive the minimal cut set
in a numerical attribute. Each gene in a binary chromosome represents a particular
cut value. Enabling this gene means the corresponding cut value has been selected
as a member of the minimal cut set. Some optimization strategies such as elitist
selection and father-offspring combined selection helped the GA converge faster.
The experimental evidence showed that the GA-based scheme is more efficient than
Nguyen’s basic heuristic based on rough sets and Boolean reasoning.

Xie et al. [249] defined an information entropy value for every candidate cut point
in their RST-based discretization algorithm. The final cut points are selected based on
this metric and some RST properties. The authors report that their approach outper-
forms other discretization techniques and scales well with the number of cut points.

Su and Hsu [219] extended the modified Chi2 discretizer by learning the pre-
defined misclassification rate (input parameter) from data. The authors additionally
considered the effect of variance in the two adjacent intervals. In the modified Chi2,
the inconsistency check in the original Chi2 is replaced with the “quality of approxi-
mation” measure from RST. The result is a more robust, parameterless discretization
method.

Singh and Minz [205] designed a hybrid clustering-RST-based discretizer. The
values of each numerical attribute are grouped using density-based clustering algo-
rithms. This produces a set of (possibly overlapping) intervals that naturally reflect
the data distribution. Then, the rough membership function in RST is employed
to refine these intervals in a way that maximizes class separability. The proposed
scheme yielded promising results when compared to seven other discretizers.
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Jun and Zhou [116] enhanced existing RST-based discretizers by (i) computing
the candidate cuts with an awareness of the decision class information; in this way,
the scales of candidate cuts can be remarkably reduced, thus considerably saving
time and space and (ii) introducing a notion of cut selection probability that is defined
to measure cut significance in a more reasonable manner. Theoretical analyses and
simulation experiments show that the proposed approaches can solve the problem of
data discretization more efficiently and effectively.

2.1.2 Feature Selection

The purpose behind feature selection is to discard irrelevant features that are gener-
ally detrimental to the classifier’s performance, generate noise, increase the amount
of information to be stored and the computational cost of the classification process
[222, 302]. Feature selection is a computationally expensive problem that requires
searching for a subset of the n original features in a space of 2" — 1 candidate sub-
sets according to a predefined evaluation criterion. The main components of a feature
selection algorithm are: (1) an evaluation function (EF), used to calculate the fitness
of a feature subset and (2) a generation procedure that is responsible for generating
different subsets of candidate features.

Different feature selection schemes that integrate RST into the feature subset eval-
uation function have been developed. The quality of the classification y is the most
frequently used RST metric to judge the suitability of a candidate feature subset, as
shown in [9-11, 64] etc. Other indicators are conditional independence [208] and
approximate entropy [209].

The concept of reduct is the basis for these results. Essentially, a reduct is a min-
imal subset of features that generates the same granulation of the universe as that
induced by all features. Among these works we can list [37, 38, 85, 89, 111, 136,
168, 196, 221, 223, 239, 247, 248, 255, 270, 302]. One of the pioneer methods
is the QuickReduct algorithm, which is typical of those algorithms that resort to a
greedy search strategy to find a relative reduct [136, 202, 247]. Generally speak-
ing, feature selection algorithms are based on heuristic search [97, 164, 302]. Other
RST-based methods for reduct calculation are [98, 209].

More advanced methods employ metaheuristic algorithms (such as Genetic Algo-
rithms, Ant Colony Optimization or Particle Swarm Optimization) as the underlying
feature subset generation engine [8—11, 15, 64, 102, 119, 241, 242, 245, 246, 268,
274, 297]. Feature selection methods based on the hybridization between fuzzy and
rough sets have been proposed in [13, 28, 42-44, 51, 75, 87, 90, 92, 101, 103-105,
125, 193, 197, 203, 225, 299]. Some studies aim at calculating all possible reducts
of a decision system [27, 28, 206, 225, 299].

Feature selection is arguably the Machine Learning (ML) area that has witnessed
the most influx of rough-set-based methods. Other RST contributions to ML are
concerned with providing metrics to calculate the inter-attribute dependence and the
importance (weight) of any attribute [120, 222].
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2.1.3 Instance Selection

Another important data preprocessing task is the editing of the training sets, also
referred to as instance selection. The aim is to reduce the number of examples in
order to bring down the size of the training set while maintaining the system effi-
ciency. By doing that, a new training set is obtained that will bring forth a higher
efficiency usually also produces a reduction of the data.

Some training set edition approaches using rough sets have been published in
[16, 19]. The simplest idea is to remove all examples in the training set that are not
contained in the lower approximation of any of the decision classes. A more thorough
investigation also considers those examples that lie in the boundary region of any of
the decision classes. Fuzzy rough sets have been also applied to the instance selection
problem in [99, 232, 233].

2.1.4 Meta-Learning

An important area within knowledge discovery is that of meta-learning, whose
objective is to learn about the underlying learning processes in order to make them
more efficient or effective [234]. These methods may consider measures related to
the complexity of the data [79]. The study in [18] explores the use of RST-based
metrics to estimate the quality of a data set. The relationship between the “quality
of approximation” measure and the performance of some classifiers is investigated
in [17]. This measure describe the inexactness of the rough-set-based classification
and denotes the percentage of examples that were correctly classified employing the
attributes included in the indiscernibility relationship [224]. The authors in [251]
analyze the inclusion degree as a perspective on measures for rough set data analysis
(RSDA). Other RSDA measures are the “accuracy of the approximation” and the
rough membership function [120]; for example, in [108, 109], the rough member-
ship function and other RST-based measures are employed to detect outliers (i.e.,
examples that behave in an unexpected way or have abnormal properties).

2.2 Descriptive and Predictive Knowledge Discovery

2.2.1 Decision Rule Induction

The knowledge uncovered by the different data analysis techniques can be either
descriptive or predictive. The former characterizes the general properties of the data
in the data set (e.g., association rules) while the latter allows performing inferences
from the available data (e.g., decision rules). A decision rule summarizes the rela-
tionship between the properties (features) and describes a causal relationship among
them. For example, IF Headache = Yes AND Weakness = YES THEN Influenza =
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YES. The most common rule induction task is to generate a rule base R that is both
consistent and complete.

According to [161], RST-based rule induction methods provide the following ben-
efits:

 Better explanation capabilities

» Generate a simple and useful set of rules.

o Work with sparse training sets.

» Work even when the underlying data distribution significantly deviates from the
normal distribution.

» Work with incomplete, inaccurate, and heterogeneous data.

» Usually faster execution time to generate the rule base compared to other methods.

« No assumptions made on the size or distribution of the training data.

Among the most popular RST-based rule induction methods we can cite LERS
[67, 215], which includes the LEM1 (Learn from examples model v1) and LEM2
methods (Learn from examples model v2); the goal is to extract a minimum set of
rules to cover the examples by exploring the attribute-value pairs search space of
while taking into account possible data inconsistency issues. MODLEM [214, 215]
is based on sequentially building coverings of the training data and generating min-
imal decision rule sets for each decision class. Each of these sets aims at covering
all positive examples that belong to a concept and none from any other concept.
The EXPLORE algorithm [216] extracts from data all the decision rules satisfy-
ing certain requirements. It can be adapted to handle inconsistent examples. The
LEM?2, EXPLORE and MODLEM algorithms rule induction algorithms are imple-
mented in the ROSE?2 software [3]. Filiberto et al. proposed the IRBASIR method
[62], which generates decision rules using an RST extension rooted on similarity
relations; another technique is put forth in [121] to discover rules using similarity
relations for incomplete data sets. This learning problem in presence of missing data
is also addressed in [80].

Other RST-based rule induction algorithms available in the literature using
rough sets are [3, 14, 63, 110, 118, 129, 154, 179, 228, 229]. The use of hybrid
models based on rough sets and fuzzy sets for rule induction and other knowledge
discovery methods is illustrated in [2, 24, 41, 100, 123, 159, 201, 298, 300], which
includes working with the so called “fuzzy decision information systems” [2].

One of the most popular rule induction methods based on rough sets is the
so-called three-way decisions model [81, 260-263]. This methodology is strongly
related to decision making. Essentially, for each decision alternative, this method
defines three rules based on the RST’s positive, negative and boundary regions. They
respectively indicate acceptance, rejection or abstention (non-commitment, denotes
weak or insufficient evidence).

This type of rules, derived from the basic RST concepts, is a suitable knowledge
representation vehicle in a plethora of application domains. Hence, it has been inte-
grated into common machine learning tasks to facilitate the knowledge engineering
process required for a successful modeling of the domain under consideration. The
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three-way decisions model has been adopted in feature selection [106, 107, 133,
163, 265, 293], classification [273, 281, 282, 293], clustering [276, 277] and face
recognition [132, 289].

2.2.2 Association Rule Mining

The discovery of association rules is one of the classical data mining tasks. Its goal
is to uncover relationships among attributes that frequently appear together; i.e., the
presence of one implies the presence of the other. One of the typical examples is the
purchase of beer and diapers during the weekends. Association rules are representa-
tive of descriptive knowledge. A particular case are the so called “class association
rules”, which are used to build classifiers. Several methods have been developed for
discovering association rules using rough sets, including [49, 70, 94, 111, 127, 134,
211, 266].

2.2.3 Clustering

The clustering problem is another learning task that has been approached from
a rough set perspective. Clustering is a landmark unsupervised learning problem
whose main objective is to group similar objects in the same cluster and separate
objects that are different from each other by assigning them to different clusters [96,
167]. The objects are grouped in such a way that those in the same group exhibit a
high degree of association among them whereas those in different groups show a low
degree of association. Clustering algorithms map the original N-dimensional feature
space to a 1-dimensional space describing the cluster each object belongs to. This is
why clustering is considered both an important dimensionality reduction technique
and also one of the most prevalent Granular Computing [183] manifestations.

One of the most popular and efficient clustering algorithms for conventional appli-
cations is K-means clustering [71]. In the K-means approach, randomly selected
objects serve as initial cluster centroids. The objects are then assigned to different
clusters based on their distance to the centroids. In particular, an object gets assigned
to the cluster with the nearest centroid. The newly modified clusters then employ
this information to determine new centroids. The process continues iteratively until
the cluster centroids are stabilized. K-means is a very simple clustering algorithm,
easy to understand and implement. The underlying alternate optimization approach
iteratively converges but might get trapped into a local minimum of the objective
function. K-means’ best performance is attained in those applications where clusters
are well separated and a crisp (bivalent) object-to-cluster decision is required. Its
disadvantages include the sensitivity to outliers and the initial cluster centroids as
well as the a priori specification of the desired number of clusters k.

Pawan Lingras [142, 145] found that the K-means algorithm often yields cluster-
ing results with unclear, vague boundaries. He pointed out that the “hard partition-
ing” performed by K-means does not meet the needs of grouping vague data. Lingras
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then proposed to combine K-means with RST and in the so-called “Rough K-means”
approach. In this technique, each cluster is modeled as a rough set and each object
belongs either to the lower approximation of a cluster or to the upper approximation
of multiple clusters. Instead of building each cluster, its lower and upper approxi-
mations are defined based on the available data. The basic properties of the Rough
K-means method are: (i) an object can be a member of at most a lower approxima-
tion; (ii) an object that is a member of the lower approximation of a cluster is also
a member of its upper approximation and (iii) an object that does not belong to the
lower approximation of any cluster is a member of at least the upper approximation
of two clusters. Other pioneering works on rough clustering methods are put forth
in [78, 192, 235, 236].

Rough K-means has been the subject of several subsequent studies aimed at
improving its clustering capabilities. Georg Peters [187] concludes that rough clus-
tering offers the possibility of reducing the number of incorrectly clustered objects,
which is relevant to many real-world applications where minimizing the number
of wrongly grouped objects is more important than maximizing the number of
correctly grouped objects. Hence in these scenarios, Rough K-means arises as a pow-
erful and stronger alternative to K-means. The same author proposes some improve-
ments to the method regarding the calculation of the centroids, thus aiming to make
the method more stable and robust to outliers [184, 185]. The authors in [291] pro-
posed a Rough K-means improvement based on a variable weighted distance mea-
sure. Another enhancement brought forward in [186] suggested that well-defined
objects must have a greater impact on the cluster centroid calculation rather than hav-
ing this impact be governed by the number of cluster boundaries an object belongs
to, as proposed in the original method. An extension to Rough K-means based on
the decision-theoretic rough sets model was developed in [130]. An evolutionary
approach for rough partitive clustering was designed in [168, 189] while [45, 190]
elaborate on dynamic rough clustering approaches.

Other works that tackle the clustering problem using rough sets are [35, 72, 76,
77,122, 124, 135, 143, 144, 162, 177, 178, 213, 271, 272, 275, 292]. These meth-
ods handle more specific scenarios (such as sequential, imbalanced, categorical and
ordinal data), as well as applications of this clustering approach to different domains.
The rough-fuzzy K-means method is put forward in [88, 170] whereas the fuzzy-
rough K-means is unveiled in [169, 188]. Both approaches amalgamate the main
features of Rough K-means and Fuzzy C-means by using the fuzzy membership of
the objects to the rough clusters. Other variants of fuzzy and rough set hybridization
for the clustering problem are presented in [56, 126, 160, 171].

3 Special Learning Cases Based on RST

This section elaborates on more recent ML scenarios tackled by RST-based
approaches. In particular, we review the cases of imbalanced classification, multi-
label classification, dynamic/incremental learning and Big Data analysis.
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3.1 Imbalanced Classification

The traditional knowledge discovery methods presented in the previous section have
to be adapted if we are dealing with an imbalanced dataset [21]. A dataset is bal-
anced if it has an approximately equal percentage of positive and negative examples
(i-e., those belonging to the concept to be classified and those belonging to other con-
cepts, respectively). However, there are many application domains where we find an
imbalanced dataset; for instance, in healthcare scenarios there are usually a plethora
of patients that do not have a particularly rare disease. When learning a normalcy
model for a certain environment, the number of labeled anomalous events is often
scarce as most of the data corresponds to normal behaviour. The problem with imbal-
anced classes is that the classification algorithms have a tendency towards favoring
the majority class. This occurs because the classifier attempts to reduce the overall
error, hence the classification error does not take into account the underlying data
distribution [23].

Several solutions have been researched to deal with this kind of situations. Two of
the most popular avenues are either resampling the training data (i.e., oversampling
the minority class or undersampling the majority class) or modifying the learning
method [153]. One of the classical methods for learning with imbalanced data is
SMOTE (synthetic minority oversampling technique) [22]. Different learning meth-
ods for imbalanced classification have been developed from an RST-based stand-
point. For instance, Hu et al. [91] proposed models based on probabilistic rough sets
where each example has an associated probability p(x) instead of the default 1/n. Ma
et al. [158] introduced weights in the variable-precision rough set model (VPRS) to
denote the importance of each example. Liu et al. [153] bring about some weights
in the RST formulation to balance the class distribution and develop a method based
on weighted rough sets to solve the imbalanced class learning problem. Ramentol et
al. [194] proposed a method that integrates SMOTE with RST.

Stefanowski et al. [217] introduced filtering techniques to process inconsistent
examples of the majority class (i.e., those lying in the boundary region), thereby
adapting the MODLEM rule extraction method for coping with imbalanced learning
problems. Other RST-based rule induction methods in the context of imbalanced
data are also presented in [152, 243]. The authors in [218] proposed the EXPLORE
method that generates rules for the minority class with a minimum coverage equal
to a user-specified threshold.

3.2 Multi-label Classification

Normally, in a typical classification problem, a class (label) ¢; from a set C =
{cy, ..., ¢y} s assigned to each example. However, in multi-label classification, a
subset S C Cis assigned to each example, which means that an example could belong
to multiple classes. Some applications of this type of learning emerge from text clas-
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sification and functional genomics, namely, assigning functions to genes [226]. This
gives rise to the so-called multi-label learning problem. The two avenues envisioned
for solving this new class of learning problems have considered either converting
the multi-label scenario to a single-label (classical) scenario or adapting the learn-
ing methods. Examples of the latter trend are the schemes proposed in [47, 198,
227, 290]. Similar approaches have been proposed for multi-label learning using
rough sets. A first alternative is to transform the multi-label problem into a tradi-
tional single-label case and use classical RST-based learning methods to derive the
rules (or any other knowledge); the other option is to adapt the RST-based learning
methods, as shown in [240, 278, 279, 288].

In the first case, a decision system can be generated where some instances could
belong to multiple classes. Multi-label classification can be regarded as an incon-
sistent decision problem, in which two objects having the same predictive attribute
values do not share the same decision class. This leads to the modification of the
definition of the lower/upper approximations through a probabilistic approach that
facilitates modeling the uncertainty generated by the inconsistent system. This idea
gives rise to the so-called multi-label rough set model, which incorporates a prob-
abilistic approach such as the decision-theoretic rough set model. Some RST-based
feature selection methods in multi-label learning scenarios have been enunciated
[131], where the reduct concept was reformulated for the multi-label case.

3.3 Dynamic/Incremental Learning

Data are continuously being updated in nowadays’ information systems. New data
are added and obsolete data are purged over time. Traditional batch-learning methods
lean on the principle of running these algorithms on all data when the information
is updated, which obviously affects the system efficiency while ignoring any previ-
ous learning. Instead, learning should occur as new information arrives. Managing
this learning while adapting the previous knowledge learned is the essence behind
incremental learning. This term refers to an efficient strategy for the analysis of data
in dynamic environments that allows acquiring additional knowledge from an unin-
terrupted information flow. The advantage of incremental learning is not to have to
analyze the data from scratch but to utilize the learning process’ previous outcomes
as much as possible [57, 73, 112, 176, 200]. The continuous and massive acquisi-
tion of data becomes a challenge for the discovery of knowledge; especially in the
context of Big Data, it becomes very necessary to develop capacities to assimilate
the continuous data streams [29].

As an information-based methodology, RST is not exempt from being scrutinized
in the context of dynamic data. The fundamental RST concepts and the knowledge
discovery methods ensuing from them are geared towards the analysis of static data;
hence, they need to be thoroughly revised in light of the requirements posed by
data stream mining systems [151]. The purpose of the incremental learning strat-
egy in rough sets is the development of incremental algorithms to quickly update
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the concept approximations, the reduct calculation or the discovered decision rules
[40, 284]. The direct precursor of these studies can be found in [175]. According to
[149], in recent years RST-based incremental learning approaches have become “hot
topics” in knowledge extraction from dynamic data given their proven data analysis
efficiency.

The study of RST in the context of learning with dynamic data can be approached
from two different angles: what kind of information is considered to be dynamic
and what type of learning task must be carried out. In the first case, the RST-based
incremental updating approach could be further subdivided into three alternatives:
(1) object variation (insertion or deletion of objects in the universe), (ii) attribute
variation (insertion/removal of attributes) and (iii) attribute value variation (inser-
tion/deletion of attribute values). In the second case, we can mention (i) incremen-
tal learning of the concept approximations [33, 139]; (ii) incremental learning of
attribute reduction [52, 140, 237, 238, 250] and (iii) incremental learning of deci-
sion rules [59, 66, 148, 301].

Object variations include so-called object immigration and emigration [148].
Variations of the attributes include feature insertion or deletion [138, 287]. Vari-
ations in attribute values are primarily manifested via the refinement or scaling of
the attribute values [32, 146]. Other works that propose modifications to RST-based
methods for the case of dynamic data are [147, 149, 157].

The following studies deal with dynamic object variation:

« The update of the lower and upper approximations of the target concept is analyzed
in [33, 137, 156].

o The update in the reduction of attributes is studied in [82, 250].

o The update of the decision rule induction mechanism is discussed in [4, 40, 59,
93, 148, 199, 230, 244, 269, 301].

If the variation occurs in the set of attributes, its effects have been studied with
respect to these aspects:

» The update of the lower and upper approximations of the target concept is analyzed
in [20, 36, 138, 139, 150, 287].
o The update of the decision rule induction mechanism is discussed in [39].

The effect of the variations in the attribute values (namely, via refinement or
extension of the attribute domains) with respect to the update of the lower and upper
approximations of the target concept is analyzed in [30-32, 50, 237, 308].

The calculation of reducts for dynamic data has also been investigated. The effect
when the set of attributes varies is studied in [39]. The case of varying the attribute
values is explored in [50, 69] whereas the case of dynamic object update is dissected
in [199, 244]. Other studies on how dynamic data affect the calculation of reducts
appear in [140, 204, 237, 238].
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3.4 Rough Sets and Big Data

On the other hand, the accelerated pace of technology has led to an exponential
growth in the generation and collection of digital information. This growth is not
only limited to the amount of data available but to the plethora of diverse sources
that emit these data streams. It becomes paramount then to efficiently analyze and
extract knowledge from many dissimilar information sources within a certain appli-
cation domain. This has led to the emergence of the Big Data era [25], which has
a direct impact on the development of RST and its applications. Granular Comput-
ing, our starting point in this chapter, has a strong relation to Big Data [25], as its
inherent ability to process information at multiple levels of abstraction and interpret
information from different perspectives greatly facilitates the efficient management
of large data volumes.

Simply put, Big Data can be envisioned as a large and complex data collection.
These data are very difficult to analyze through traditional data management and
processing tools. Big Data scenarios require new architectures, techniques, algo-
rithms and processes to manage and extract value and knowledge hidden in the
data streams. Big Data is often characterized by the 5 V’s vector: Volume, Veloc-
ity, Variety, Veracity and Value. Big Data includes both structured and unstructured
data, including images, videos, textual reports, etc. Big Data frameworks such as
MapReduce and Spark have been recently developed and constitute indispensable
tools for the accurate and seamless knowledge extraction from an array of disparate
data sources. For more information on the Big Data paradigm, the reader is referred
to the following articles: [25, 48, 60, 117].

As a data analysis and information extraction methodology, RST needs to adapt
and evolve in order to cope with this new phenomenon. A major motivation to do
so lies in the fact that the sizes of nowadays’ decision systems are already extremely
large. This poses a significant challenge to the efficient calculation of the underlying
RST concepts and the knowledge discovery methods that emanate from them. Recall
that the computational complexity of computing the target concept’s approximations
is O(Im?), the computational cost of finding a reduct is bounded by O(?>m?) and the
time complexity to find all reducts is O(2'J), where [ is the number of attributes
characterizing the objects, m is the number of objects in the universe and J is the
computational cost required to calculate a reduct.

Some researchers have proposed RST-based solutions to the Big Data challenge
[191, 286]. These methods are concerned with the design of parallel algorithms
to compute equivalence classes, decision classes, associations between equivalence
classes and decision classes, approximations, and so on. They are based on partition-
ing the universe, concurrently processing those information subsystems and then
integrating the results. In other words, given the decision system S = (U, C U D),
generate the subsystems {S,,S,,...,S,,}, where S, = (U,,CuUD) and U =] U,,
then process each subsystem S;, i € {1,2,...,m}, U;/B,B C C. Afterwards, the
results are amalgamated. This MapReduce-compliant workflow is supported by sev-
eral theorems stating that (a) equivalence classes can be independently computed
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for each subsystem and (b) the equivalence classes from different subsystems can be
merged if they are based on the same underlying attribute set. These results enable
the parallel computation of the equivalence classes of the decision system S. Zhang
et al. [286] developed the PACRSEC algorithm to that end.

Analogously, RST-based knowledge discovery methods, including reduct calcu-
lation and decision rule induction, have been investigated in in the context of Big
Data [58, 256, 285].

3.5 Cost-Sensitive Learning

Costis an important property inherent to real-world data. Cost sensitivity is an impor-
tant problem which has been addressed from different angles. Cost-sensitive learn-
ing [252, 294, 303, 304] emerged when an awareness of the learning context was
brought into Machine Learning. This is one of the most difficult ML problems and
was listed as one of the top ten challenges in the Data Mining/ML domain [296].

Two types of learning costs have been addressed through RST: misclassification
cost and test cost [253]. Test cost has been studied by Min et al. [163, 165, 166,
295] using the classical rough set approach, i.e., using a single granulation; a test-
cost-sensitive multigranulation rough set model is presented in [253]. Multigranu-
lation rough set is an extension of the classical RST that leans on multiple granular
structures.

A recent cost-sensitive rough set approach was put forward in [115]. The crux of
this method is that the information granules are sensitive to test costs while approx-
imations are sensitive to decision costs, respectively; in this way, the construction
of the rough set model takes into account both the test cost and the decision cost
simultaneously. This new model is called cost-sensitive rough set and is based on
decision-theoretic rough sets. In [132], the authors combine sequential three-way
decisions and cost-sensitive learning to solve the face recognition problem; this is
particularly interesting since in real-world face recognition scenarios, different kinds
of misclassifications will lead to different costs [155, 294].

Other studies focused on the cost-sensitive learning problem from an RST per-
spective are presented in [84, 113, 253, 254]; these works have considered both the
test cost and the decision cost. Attribute reduction based on test-cost-sensitivity has
been quite well investigated [74, 86, 106, 114, 115, 133, 163, 164, 166, 296].

4 Reference Categorization

Table 1 lists the different RST studies according to the ML tasks they perform.
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5 Conclusions

We have reported on hundreds of successful attempts to tackle different ML problems
using RST. These approaches touch all components of the knowledge discovery
process, ranging from data preprocessing to descriptive and predictive knowledge
induction. Aside from the well-known RST strengths in identifying inconsistent
information systems, calculating reducts to reduce the dimensionality of the feature
space or generating an interpretable rule base, we have walked the reader through
more recent examples that show the redefinition of some of the RST’s building blocks
to make it a suitable approach for handling special ML scenarios characterized by an
imbalance in the available class data, the requirement to classify a pattern into one or
more predefined labels, the dynamic processing of data streams, the need to manage
large volumes of static data or the management of misclassification/test costs. All of
these efforts bear witness to the resiliency and adaptability of the rough set approach,
thus making it an appealing choice for solving non-conventional ML problems.
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Application of Tolerance Rough Sets
in Structured and Unstructured Text
Categorization: A Survey

Sheela Ramanna, James Francis Peters and Cenker Sengoz

Abstract Text categorization or labelling methods assign unseen documents or
unknown linguistic entities to pre-defined categories or labels. This is an essential
preprocessing step in web mining. Text categorization is popularly referred to as
document classification/clustering. In this chapter, we present a survey of literature,
where tolerance rough set model (TRSM) is used as a text categorization and learning
model. The approach taken is to consider tolerance relations instead of equivalence
relations where the binary relation is both symmetric and reflexive but not transitive.
A very brief overview of the history of tolerance rough sets from an axiomatic point
of view is also presented. Various approaches to text categorization of both struc-
tured information such as documents as well as unstructured information such as
nouns and relations based on TRSM are presented. This survey is meant to demon-
strate the versatility of the tolerance form of rough sets and its successful application
in text categorization and labelling.

1 Introduction

Rough Set theory was introduced by Zdzistaw Pawlak during the early 1980s [1]
(elaborated in [2-6]) as a mathematical framework for reasoning about ill-defined
objects. It is of fundamental importance to artificial intelligence (AI) and cognitive
sciences, especially in the areas of machine learning, knowledge acquisition, deci-
sion analysis, knowledge discovery from databases, expert systems, decision support
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systems, inductive reasoning, and pattern recognition [5]. Considerable work has
been done on combining rough sets and tolerance relations [7] to obtain a realis-
tic model (see for ex: [8—11]) leading to the tolerance rough sets model (TRSM).
Tolerance relations provide the most general tool for studying indiscernibility phe-
nomena [10]. The idea of tolerance first appeared in Poincaré’s work in 1905 [12]
and can be traced back to his work on the similarity of sensations [13]. Subsequently,
tolerance relations were considered by Zeeman [14] in his study of the topology of
the brain where he was concerned with different cells of the brain which, when they
are very near, are perceived as identical or indistinguishable. Tolerance spaces as a
framework for studying the concept of resemblance was presented in [15] and in [13].

Text categorization with classical rough sets where the concept of indiscernibil-
ity (similarity) formed by an equivalence relation is plausible but too restrictive.
The approach taken is to consider tolerance relations instead of equivalence rela-
tions where the binary relation is both symmetric and reflexive but not transitive.
We use the broader term of text categorization in this work to admit both structured
(documents) and unstructured (nouns and relations) information from web sources.
Applications of TRSM can be found in (i) document clustering [16—19], (ii) docu-
ment retrieval [20], an, (iii) unstructured text labelling [21].

The challenges with using TRSM for information representation and its subse-
quent use in information retrieval are multi-fold. Firstly, a thesaurus (which is a col-
lection of documents) must be constructed using some tolerance value &, since this
forms the very basis for queries used to retrieve related documents. So the challenge
is to determine the optimal value of €. With unstructured text, a thesaurus (for nouns
and relations) must be created. Specifically, in a semi-supervised setting, seed val-
ues for nouns (relations) are promoted based on some tolerance value . The second
challenge is the optimization of a thesaurus with co-occurrence information between
elements of the thesaurus. In this context, it means constructing some form of tol-
erance matrix. This phase involves the use of approximation (upper) operator which
forms a basis of a weighting scheme (see Sect. 4). The third challenge is to employ
appropriate retrieval methods such as clustering or semi-supervised algorithms. In
this survey, we restrict our discussion to text categorization rather than information
retrieval in general. The contribution of the chapter is to present both the founda-
tions and applications of tolerance rough sets in text categorization in an attempt to
interest the readers to the tolerance form of rough sets as a useful tool in mining
both structured text such as documents as well as unstructured text such as nouns
and relations.

The chapter is organized as follows: In Sect.2, we first start with an informal
presentation of classical and tolerance forms of rough sets followed by the formal
definitions of rough and tolerance rough sets. In Sect. 4, TRSM as a document rep-
resentation model is discussed. Section 5 presents various approaches to document
clustering using TRSM. Section 6 presents a detailed discussion of TRSM as an
unstructured information representation model.
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2 Rough Sets

In classical rough sets theory, a universe of objects is partitioned into indiscernible
classes (i.e. granules) by means of an indiscernibility relation. Indiscernible classes
form basic granules of knowledge about the universe. Given a concept that is deter-
mined to be vague (not precise), this theory makes it possible to express the vague
concept by a pair of precise concepts called the lower and the upper approximation.
A vague concept is defined as a class (or decision) that cannot be properly classi-
fied. The difference between the upper and the lower approximation constitutes the
boundary region of the vague concept. Hence, rough set theory expresses vague-
ness not by means of membership, but by employing a boundary region [5]. Figure 1
shows the regions that emerge with set approximation. The regions are depicted as
squares only for the sake of illustration, but they can be of arbitrary shape. We should
note that each granule can contain an arbitrary number of objects or may be empty.

However, there are some cases where the disjoint granules are not desired. Partic-
ularly, when it comes to natural language processing and information retrieval, over-
lapping classes would better fit to describe this universe and the desired outcome is
shown in Fig. 2 first presented by Ho and Nguyen [18]. Consider the universe U of
words {account, agency, antecedent, backbone, backing, bottom, basis, cause, cen-
ter, derivation, motive, root} excerpted from Roget’s thesaurus. Assume we would
like to define an indiscernibility (equivalence) relation R over those words based on
their semantic affinity. Each of those words seem to share a meaning with one or
more of the concepts Root, Cause and Basis and their meanings are not transitive.

Since classical rough set theory relies on an equivalence relation R C U X U to
approximate a target concept, R has the following 3 properties:

o Reflexivity: (x,x) € R,Vx € U.
e Symmetry: (x,y) € R = (y,x) € R,Vx,y € U.
o Transitivity: (x,y) ERA(y,2) ER = (x,2) € R,Vx,y,z € U.

In practice, R partitions the universe into disjoint (non-overlapping) equivalence
classes which are regarded as information granules. Particularly, when it comes to
text categorization or document clustering, a non-transitive binary relation that is
reflexive and symmetric is necessary.

Fig. 1 Rough sets and set

approximation Universe | Knowledge
“ Granule

|_Target
Concept X

Upper Lower
Appx. ] \ Appx.

Up(X) La(X)




122 S. Ramanna et al.

Fig.2 Overlapping classes
of words [18]

2.1 Formal Framework for Rough Sets

Let U be a finite, non-empty universe of objects and let R C U X U denote a binary
relation on the universe U. R is called an indiscernibility relation and for rough sets, it
has to be an equivalence relation. The pair (U, R) = A constitutes an approximation
space A. Assume we have X C U as a target concept in this universe. Then the task is
to create an approximated representation for X in U with the help of R. Let [x] denote
the indiscernibility class of xi.e. y € [x], <= (x,y) € R. Then, every equivalence
class forms a granule or partition which, as the name implies, contains objects that
are indiscernible for this approximation space .A. Therefore, every single item in a
granule is considered identical and inseparable. These granules are approximated by
the following means:

» Lower approximation. Intuitively, these are the objects which certainly belong
to X with respect to A.

L,X)={xeU: [x]g € X}
« Upper approximation. Intuitively, these are the objects which may belong to X
with respect to A.

Uy,X)={xeU: [xlgnX +#0@}.

These two approximations will also form the following two regions:

« Boundary region. These are the objects occurring in the upper approximation but
not in lower approximation of X.

B,X)=U,(X) - L 4X).
» Negative region. These are the objects that certainly don’t belong to X.

U-TU,X).



Application of Tolerance Rough Sets in Structured and Unstructured ... 123

with this framework, we end up with two different types of sets: a set X is called
a crisp set if and only if B (X) = @. Otherwise, it is called a rough set. The pair
(U 4(X), L 4(X)) forms the rough approximation for X.

3 Tolerance Rough Sets

What follows is a very brief overview of the history of tolerance rough sets from an
axiomatic point of view leading upto the TRSM model that is currently used in text
categorization.

3.1 History of Tolerance Rough Sets: An Axiomatic View

Nieminen [8] introduce what are known as folerance black boxes where a tolerance
box is defined as B = (I, O, f) with I as a finite non-empty set of inputs and O as
a finite non-empty set of outputs and f : P(/) —» O. A black box B is a folerance
black box if there is a similarity relation ~ on O such that 0, ~ 0, < o0, and 0,
are approximately the same [8, §3, p. 295]. From a practical point of view, most real
control systems are tolerance blackboxes. The authors give conditions for tolerance
admissibility and goodness for tolerance black boxes similar to rough black boxes
given in [9].

Polkowski et al. [10, §3, pp. 56-57] introduce a tolerance information and deci-
sion system as well as a theoretical adaptive decision algorithm to discover rules.
In general, a tolerance information system denoted by A = (U, A, ) where 7 is a
tolerance relation on information function Infz(x) = {(a,a(x) : a € B} withx € U
and B C A. In particular, a tolerance information system can be realized as a pair
(A, D) where D is a discernibility relation which also satisfies the conditions for
a tolerance relation (see [13] for the details). Formally, D = (Dg) with B C A and
Dy C INF(B) X INF(B). The decision algorithm is termed adaptive, since a choice
of tolerance 7 (measure of degree of similarity) as well as information function Infy
has a bearing on the performance of the algorithm, which can be tuned.

Marcus [11, §4, p. 475] introduce a tolerance form of rough sets where the empha-
sis is on attributes with unsharp borders (including real-valued attributes) which
admits different degrees of indiscernibility. A tolerance rough set is defined as an
ordered pair (T*(A), T,(A)), where (X, 7) is a tolerance space and X is endowed with
atolerance relation 7. Let A C X. For any x € A, 7(x) is its tolerance class. Here, toler-
ance rough sets are presented in the language of Cech topology. This characterization
leads to an hierarchical interval of approximations and permits a learning process.
Readers may refer to this chapter for an extensive bibliography dealing with early
work on topology and the two forms of rough sets equivalence and tolerance [11,
§12, pp. 483-486].
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Skowron and Stepaniuk [22, §2, p. 3] generalize the notion of approximation
space to tolerance approximation spaces and introduce a tolerance relation defined
by an uncertainty function for attribute reduction with Boolean reasoning. Specif-
ically, the authors generalize the rough membership function by introducing three
functions: (i) vague inclusion function (u), (ii) uncertainty function (), (iii) and a
structurality function (P). Formally a tolerance approximation space is defined as
A = (U,I, u, P) and the attribute reduction process leads to tolerance reducts and
relative tolerance reducts useful in decision-making.

3.2 Formal Framework for Tolerance Rough Sets

In order to define overlapping classes or granules, we need folerance relations. Tol-
erance relations are reflexive and symmetric but they are not necessarily transitive
so the classes induced by such relations can overlap. Let U be a finite, non-empty
universe of objects, P(U) be the power set of U, and let 7 : U — P(U) be a binary
relation such that x7y < y € T (x) holds for any x,y € U. T implicitly defines a
tolerance relation and 7 (x) defines a tolerance class of x. Then a tolerance member-
ship function (also known as vague inclusion function) v : P(U) x P(U) — [0, 1]
is defined as v(X, Y) = X% The lower and upper approximations of set X can be

1X]
defined as

_ T nX|
LX) ={xeU: ool =1},
_ TN X
U.A(X)—{XEU. W>O},

where A defines a simplified form of tolerance approximation space A = (U, T, V)
[22]. More recently, tolerance rough sets have been applied for pattern classification
in classical machine learning data sets [23].

4 Structured Information Representation with TRSM

Structured information such as documents were first modeled using the tolerance
form of rough sets by Kawasaki in 2000. In [16, 18, 19], the authors used TRSM for
text clustering and document clustering/classification and to model relations between
terms and documents. Briefly, TRSM introduces a vectorial representation of doc-
uments where each vector dimension corresponds to a term weight that is to be
enhanced by means of rough sets and tolerance approximation, by relating terms
across documents. This is useful particularly when each document is characterized
by only a small number of terms along with many zero-valued entries in a high
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dimensional term vector space. So TRSM promises a richer representation for doc-
uments to be clustered.

Definition 1 Let D = {d,,d,, ...,d)} be a set of documents and let T = {1, 1,,
.1y} be a universe of index terms that occur in those documents. Let each doc-
ument dj be represented as a weight vector of its terms 07]» = {(t;, W, j), (t,, wzj), e,
(ty, wNj)) where w; € [0, 1] shows the significance of term i in document j.
Let a query Q be a cluster representative in the form of Q = (g1, w, ) (@2, Wap),
» (g5, Wy,)) where g; € T and w;, € [0, 1],

The task in hand is to find ordered documents d; € D that are relevant to O [18].
The tolerance approximation space A = (U, 1, v, P) for documents is reconstituted
as follows:

o The universe is the set of index terms: U =T = {t|,1,, ..., ty}.

o The uncertainty function I C T X T aims to capture the affinity amongst the terms
and defines the tolerance class for each index term. It is based on a tolerance rela-
tion that binds two terms if they co-occur frequently across documents. So the
function becomes

Io(t) = {4lfp(, 1) = 6} U {1;}.

It is parametrized over a threshold value § where f,,(¢;, i ) denotes the number of
terms in which 7; and #; co-occur. Note that 7; € Ip(1;) < 1;1yt; and that Iy is
reflexive (7, € 19(t ) and symmetric (7; € Ie(t) = 1, €lyt)) forall 1,1, €T,
satisfying the tolerance relation requirements.

o The vague inclusion functionis v(X,Y) = 'T;lyl It is monotonous w.r.t the second
argument, as required. It can now be regarded as the membership function u for
term #; € T to target concept X C T

[Z,(t;) N X]|

H(t;, X) = v(ly(1), X) = ol

provided that T is a closed set and Q consists exclusively of terms from 7', the
structurality function is simply P = 1 for TRSM.

The lower and upper approximations of X are defined as follows:

_ @) nX|
_ @) N X|
U.A(X)— {tIET . W >0}

Weight Adjustment via TF-IDF scheme:
Tolerance approximation is used to enhance the document representation by adjust-
ing the term weights. In the absence of such enhancement, term weights are assigned
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by using the term frequency-inverse document frequency (tf-idf) scheme

ar (1 + log(f,; (1;))) X log-XL if t, €d,
W‘ = J Io()

! 0, if 1; & (d)),

where fd; (#;) denotes the number of times #; occurs in d; (term frequency) and
Jp(t;) denotes the number of documents in D that accommodates #; (document fre-
quency) [18]. In such a model, a term 7; acquires a nonzero weight for d; if and only
if, it directly occurs in the document d;.

Weight Adjustment via Tolerance Rough Sets:

TRSM uses the following weighting scheme which also takes boundary terms into
account and assigns non-zero weights. Note that the upper approximation of a doc-
ument U, (dj) covers the folerant terms for all of its own terms as well, creating the
enriched representation.

(1 + log(fy, (1:)) % log%, ifr, e d,
o _ . logM/fpt)) -
wij = mm,hedjwhj X W/Dfn(ti)), if L€ UA(d])\dv
0, if 1, & U y(d)).

Weight Adjustment via Tolerance Rough Sets with linear neurons:
In this work [24, §3, p. 389], weights wg‘ for 1 € Uy (d;) are determined using a
neural network (training a set of linear neurons) with the assumption that f;; > 0.

N
Wit = D% 80, K By
k=1

where

1, fort, € d; A t; € Iy(ty),
0, otherwise,

6(i.j, k) = {

which is rewritten as
N
In _ o . o,
wy = Z o(i, J, k)e"iw;.
=1

The problem is framed as one of determining weights a;; resulting ina TRSM-WL
model.
Similarity Measure
Once the weights are adjusted within the framework of tolerance rough sets, one can
measure the similarity between a query vector Q where O = ((@1sw19)s (@2 Wap)s - s
(4> wy,)) and a document vector d; by using the following formula
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N
2% Y (W X wy)
N b N 2’
e Wig T pI Wi
and ultimately, cluster documents that are similar. A query vector may represent an

actual query in the context of information retrieval or a class of documents in the
context of document classification.

Similarity(Q, d;) =

5 Structured Information Categorization with TRSM

TRSM has been gaining popularity in one form of text categorization method which
is document clustering. In this section, we discuss the popular TRSM-based work
for document clustering.

5.1 Hierarchical Document Clustering

The earliest known work on the application of TRSM as a document representation
model was proposed by Kawasaki et al. They introduced a TRSM-based hierarchical
document clustering that is an extension of the hierarchical agglomerative (bottom-
up) clustering algorithm [16]. In this model, every document is represented as a
weight vector of its terms and the upper approximation calculated by using a toler-
ance relation over the terms, as described by the TRSM framework by wf.j"". As before,
it aims to minimize the number of zero-valued coefficients in document vectors as
well as to increase the degree of similarity between documents with few common
terms. Once the representation is established, the clustering algorithm takes place. It
first assigns each document to a different cluster and defines cluster representatives
as supersets of popular terms of the constituting documents’. Subsequently, it finds
the most similar pair of clusters (by using a similarity method such as Dice, Jaccard
or Cosine) and merges them in an iterative fashion, until all the clusters are merged
into an ultimate single cluster. The advantage of using a hierarchy is that it allows the
use of document cluster representatives to calculate the similarity between clusters
instead of averaging similarities of all document pairs included in clusters, which
aids the execution time [16]. The results of validation and evaluation of this method
suggest that this clustering algorithm can be well adapted to text mining.

5.2 Non-hierarchical Document Clustering

Soon after, Ho et al. introduced a non-hierarchical document clustering method using
TRSM [18]. The authors pointed out that hierarchical methods become unsuitable
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for large document corpora, due to exploding time and space requirements of the
underlying algorithms. This model also uses the TRSM framework described in
Sect.4 and forms a pre-specified number of possibly overlapping document clus-
ters. First, the TRSM-based document representation is established (documents are
approximated using the upper approximation operator, term weights are adjusted
using wi*). Then, the cluster representatives Ry are formed by randomly assigning a
document to each cluster. Similar to the hierarchical approach, this is done by using
the popular terms of the constituting documents. Next, the similarity between each
cluster representative and the upper approximation of each document is calculated
using Similarity (Q, d;) given in Sect. 4. If the similarity is above a given threshold,
the document is assigned to that cluster, and the cluster representative is recalcu-
lated. The authors use a normalized Dice coefficient which is applied to the upper
approximation of cluster representative [18, §3.22, p. 206]. This process continues
until there is no more change in the clusters. The algorithm has been evaluated and
validated by experiments on test collections.

5.3 Lexicon-Based Document Clustering

More recently, a new method for document clustering, named a lexicon-based doc-
ument representation (LBDR) was introduced by Virginia et al. [20]. This model
uses TRSM in the form of a lexicon with the intention of creating an enhanced and
compact document representation. First of all, LBDR creates a term weight vector
for each document and then enhances the representation by means of TRSM, just
like the hierarchical [16] and non-hierarchical [18] methods. Next, the terms are
mapped to a lexicon and the ones which do not occur in the lexicon (i.e. irrelevant,
non-informative terms) are filtered out reducing the number of dimensions in the
vectors, creating a compact but yet enhanced representation. The intuition behind
this approach can be demonstrated via Fig. 3 [20, §1, p. 29]. In Fig. 3a, we can see
how document d; and the lexicon overlap. The intersection is compact, but limited.
In Fig. 3b, the dashed line shows the upper approximated TRSM representation of
d,. LBDR combines the two and creates the dense and enhanced representation of d;
in lower dimensional space, as shown in the dark shaded area in Fig. 3c. Eventually,

(a) (b) (c)

Fig. 3 Lexicon-based document representation [20]
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the authors conclude that the effectiveness of lexicon-representation is comparable
with TRSM-representation while the efficiency of lexicon-representation should be
better than the existing TRSM-representation.

5.4 K-Means Based Tolerance Rough Set Clustering

Ngo and Nguyen [19] focused on a more specific type of document clustering. They
proposed a web search results clustering method which is based on tolerance rough
sets model. Their goals were the same as in [18] and [16], creating an enriched rep-
resentation for the web documents in order to reveal the subtle inter-document sim-
ilarities and to boost the clustering quality. They proposed a Tolerance Rough set
Clustering (TRC) algorithm [19, §5.3, p. 42], which is based on k-means clustering.
First, each document is pre-processed to create an index term-based vectorial rep-
resentation. After that, those vectors are combined and a term-document matrix is
formed. Then, they enhance the term weights of the documents by using TRSM and
upper approximation. Ultimately, TRC clusters the search results and labels them on
a given query. Their experiments have shown that tolerance rough sets and upper
approximation it offers can indeed improve the representations, with positive effects
on the clustering quality.

5.5 Two-Class Document Classification with Ensemble
Learning

Shi et al. [25] proposed a tolerance-based semi-supervised two-class ensemble clas-
sifier for documents with only positive and unlabeled examples i.e. in the absence
of labeled negative examples. TRSM model (discussed in Sect. 4) is used as the for-
mal model. The term weighting is done with a popular TF * IDF (term frequency
times inverse document frequency) weighting scheme w;ﬁdf to assign weight values
for a document vector. The methodology for generating a reliable negative set of
examples can be found in [25, §4.2, p. 6303]. There are four key steps: (i) select-
ing a positive feature set (from positive and unlabeled examples) based on a fre-
quency threshold, (ii) generating tolerance classes for terms from the unlabeled set,
(iii) expanding the positive feature set with the aid of tolerance classes and, (iv) gen-
erating a reliable negative set by filtering out possible positive documents from the
unlabeled set whose upper approximation does not have any positive feature in pos-
itive feature set. Support Vector Machines, Rocchio and Naive Bayes algorithms are
used as base classifiers to construct an ensemble classifier, which runs iteratively
and exploits margins between positive and negative data to progressively improve
the approximation of negative data. Experimental results indicate that the proposed
method achieves significant performance improvement.
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5.6 Indonesian Text Retrieval with TRSM

Virginia and Nguyen propose a framework for efficient retrieval of text specific to
the Indonesian language based on TRSM [26]. They propose an alternative to the
classical document representation by mapping index terms to terms in the lexicon
(termed LEX-representation) thus resulting in a compact representation and yield-
ing better retrieval results. This chapter by far, gives the most in depth discussion
of the challenges of employing TRSM for information retrieval. Three challenges
are addressed: creation of the thesaurus, optimization the thesaurus and finally the
retrieval process. A classical vector model is used where document and query are
represented as vectors in a high-dimensional space and each vector corresponds to a
term in the vocabulary of the collection. The framework includes a high-dimensional
vectorial space with standard linear algebra operations on vectors. The association
degree of documents with regard to the query is quantified by the cosine of the angle
between these two vectors.

In the discussion thus far, documents were the target entities and the index terms
were the features describing the documents. In Sect. 6, the focus is on text catego-
rization where the text consists of categorical noun phrases and relation instances.
Instead of documents, the target entities are the noun phrases and instead of index
terms, the features are the contextual patterns. In other words, this model grew out
of the observation that there is a natural affinity between the document clustering
problem and the context-based noun phrase clustering problem.

6 Unstructured Information Representation with TRSM

In this section, we discuss the problem of representation and categorization of
unstructured information typically gleaned from the web. The representation includes
definition of approximation spaces to provide the framework for the categorical and
relational information extraction, respectively. The categorization involves employ-
ing semi-supervised learning algorithms.

6.1 Unstructured Web Information

Figure 4 illustrates a typical unstructured information categorization problem where
the information needs to be categorized into noun and relational phrases. This cate-
gorization is typically accomplished using a co-occurrence matrix.

The structured information resulting from this process is represented as:

« categorical noun phrase instances
Sport(Ice Hockey), Country(Canada)
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—}  Webtext Co-occurrence Data Structured Information
Sport
Inviting U.S. President to India‘s Basketball
Republic Day celebrations ... Ice Hockey
= orime N Cricket
Prime Minister of India attends national | minister | "2tonal | .
the opening session of 18t anthem | of | -'°%8Y¢
ia’s Natic India 716 9532 Country
India’s National anthem is... United States
) Toe Canada
In 1969, a national cricket Hockey 825 —_— India
league was »
Session
Know the History of Cricket in
band reasons why is cricket so
lor in indi Canada | 954 12457 Popular-Sport-Of
popular in India (Canada, Ice Hockey)
) (USA, Baseball)
Read latest cricket news & Cricket 2456 \ (India, Cricket)
live cricket headines (United States,
Irom India. Basketball)

Fig. 4 Web information labelling

« relational noun phrase pairs
Popular-Sport-Of(Canada, Ice Hockey)

In other words, the noun phrase Ice Hockey belongs to the category of Sport. On
the other hand, a relational phrase “Canada, Ice-hockey” belongs to the category
of Popular-Sport-Of. A relational phrase is composed two noun phrases. In keeping
with the terminology used in current literature, we will refer to these as categorical
instances and relational instances respectively [27]. An illustration of the contextual
patterns and co-occurrence statistics are given as follows:

« contextual extraction patterns

¢ ¢ “« ”»

e.g. “_league”, “_ and other sports”, “_is popular in _

e co-occurrence statistics

e.g. f(“Ice Hockey”, “_league”) =n
e.g. f(“Ice Hockey”, “Canada”, “_is popularin _”)=n

6.2 TRSM for Noun Phrases

A tolerance form of rough sets model that labels categorical noun phrase instances
from a given corpus representing unstructured web pages was proposed in [28].

o N ={ny,n,,...,ny} is the universe of noun phrases. This set will accommodate
every single noun phrase to be parsed from the source web documents.

e C={c,cy,...,cp} is the universe of categorical (unary) contextual patterns.
These contexts are to yield the individual noun phrases to be extracted as cate-
gory instances.

* R={ry,ry...,rg} is the universe of relational (binary) contextual patterns.
These contexts are to yield the noun phrase pairs to be extracted for relations.
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o T ={t;=,n) € N*: 3r, € R|fr(ty,r;) >0} is the universe of co-
occurring noun phrase pairs (i.e. tuples) described via the relational co-occurrence
function f7(7;, ;) = {k € N : 1; occurs k times within the context r; }

Definition 2 A categorical noun-context tolerance model [28] is described by the
tolerance approximation space A = (C, N, I, ®,v) where N and C are as defined
previously. I = I, is the parametrized uncertainty function describing the tolerance
classes for the contexts, in terms of contextual overlaps:

I(e) = {¢; : @(N(e,).N(c) > ).

Here, 0 is the tolerance threshold and w is the overlap index which is the Sorensen-
Dice index [29]:

2|A N B|
w(A,B) = ——.
|Al + |B|
The degree of inclusion is measured by v : P(C) X P(C) — [0, 1] and is defined as
v(X,Y) = I?T;YI. Within the framework of A, a context-described noun phrase can
now be approximated using the lower approximation:

L) = {c; € C: vly(cy,Cny)) = 1},

giving us its closely related contexts; or else it can be approximated with the upper
approximation to its somewhat related contexts:

V() = {¢; € C : vly(cp). C(ny)) > 0}.

6.3 TRSM for Relational Phrases

A tolerance form of rough sets model that labels relational phrase instances from a
given corpus representing unstructured web pages was proposed in [30]. The follow-
ing cross-mapping functions to represent every noun phrase (and noun phrase pair)
by means of their contexts, and vice versa [28, 30] is defined as:

o C: N — P(C) maps each noun phrase to its set of co-occurring categorical con-
texts: C(n;) = {cj :fN(ni,cj) > 0} where f)(n;, cj) = {k € N ! n; occurs k times
within context ¢; }

e N :C — P(N) maps each categorical context to its set of co-occurring noun
phrases: N(c;) = {n; : fy(n;,¢;) > 0}

e R: T — P(R) maps each noun phrase pair to its set of co-occurring relational
contexts: R(7;) = {ry = fr(t;,r,) > 0}

o T : R — P(T) maps each relational context to its set of co-occurring noun phrase
pairs: T'(r) = {t; : fr(t;, 1) > 0}
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Definition 3 A relational noun-context tolerance model [21] is the analogous model
to extract related pairs. It is described by the approximation space A = (R, 7T, 1, w, v)
where 7, R, w and v are defined as previously. /, is again the uncertainty function
with the tolerance threshold 6:

Iyr) = {r; : &(T(r), T(r)) 2 6).

Within the framework of A, a context-described noun phrase pair can now be lower
approximated to its closely related contexts:

L4(t;) = {ry € R 2 vly(rp), R(ty) = 1},
or else it can be upper approximated to its somewhat related contexts:

U (ty) = {1, € R 2 vly(r). R(t)) > 0}.

7 Semi-supervised Text Categorization Algorithms

In this section, we give a brief overview of the semi-supervised text categorization
(TPL) algorithms. The categorical extractor and relational extractor algorithms are
based on the two TRSM models discussed in Sects. 6.2 and 6.3 for noun and rela-
tion phrase labelling. The algorithm(s) were experimentally compared with Cou-
pled Bayesian Sets (CBS) [31] and Coupled Pattern Learner (CPL) algorithms [27]
respectively. TPL (tolerant pattern learner) does not use a vector-space model since it
describes noun phrases as sets of co-occurring contexts, instead of vectors. In accor-
dance, every trusted instance n; of a given category cat is associated with the fol-
lowing three descriptor sets: C(n;), U4 (n;) and L ,(n;). These sets are employed to
calculate a micro-score for the candidate noun phrase n;, against the trusted instance
n; of the category cat:

micro(n;,n;) = o(C(n), C(ny)a + (VU 4(n;), C(n))B + (L 4(n;), C(n)))y.

An overlap index function @ given in Definition 1 is used for this calculation. a, f and
y are the contributing factors of the scoring components and they may be adjusted
for the particular application domain.

The intuition behind this approach is illustrated in Fig.5. A trusted instance #;
has the universe of contexts partitioned by its descriptors L 4(n;), C(n;) and U4 (n;)
into four zones of recognition. For a candidate n;, each zone will represent a differ-
ent degree of similarity. When calculating the micro-score, the candidate’s contexts
falling in zone 1 (lower approximation) will be covered by all three descriptors and
will thus make a high contribution to its score. Contexts in zone 2 will be covered by
C(n;) and U4 (n;) so they will make medium contribution. Zone 3 contexts will only
be covered by U, (n;) and they will make low contribution. Contexts in zone 4 will
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Trusted instance n;

Candidate instance n;

For category cat

Fig. 5 Four zones of recognition for contexts emerging from approximations of #;

not to contribute at all since they suggest no resemblance between n; and n;. An anal-
ogous scoring mechanism is also employed for learning relations. These descriptors
are used to calculate a micro-score for a candidate pair 7, by the trusted pair 7;;:

micro(ty, tyy) = o(C(t), C(t))a + (U (1), C5;))B + o (L 4(t;), Cty))y -

Algorithm 1 outlines the semi-supervised mechanism for learning categories. The
input for the categorical extractor is an ontology which is formed by a set of cat-
egories (e.g. City) and a handful of seed noun phrases (e.g. Winnipeg, New Delhi,
Ankara). Furthermore, it expects a large co-occurrence matrix representing the noun
phrases and the contextual patterns cropped from the world wide web. The output
consists of trusted instances assigned to their respective categories within the ontol-
ogy. TPL employs a score-based ranking and the scoring mechanism uses tolerance
approximation spaces. For a given category cat, a macro-score (i.e. an accumulated
micro-score of proxies) for the candidate n; is maintained:

n

macro.,,(n;) = Z micro(n;, n;).
Vn;ETrusted,.,

After calculating the score for every candidate of cat, the candidates are ranked by
their macro-scores (normalized by the number of trusted instances of cat). Eventu-
ally, the top new candidates are promoted as trusted instances. Overall, TPL managed
to achieve a comparable performance with CBS, by means of the precision metric
as shown in Table 1. A detailed discussion of the experiment can be found in [28].
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Algorithm 1: Tolerant Pattern Learner for Categories

Input : An ontology O defining categories and a small set of seed examples; a large
corpus U

Output: Trusted instances for each category

1 forr=1- o do

2 for each category cat do

3 for each new trusted noun phrase #n; of cat do

4 Calculate the approximations U, (n;) and L, (n,);

5

6

for each candidate noun phrase n; do
L Calculate micro(n;, n;);

7 for each candidate noun phrase n; do
8 macroq,(n;) = Y micro(n;, n;);
Vn;Ecat
9 Rank instances by macro,,, /|cat|;
10 Promote top instances as trusted;

Table 1 Precision@30 of TPL and CBS per category. CBS results are as seen in [31]

Categories Iteration 5 Iteration 10
TPL (%) CBS (%) TPL (%) CBS (%)

Company 100 100 100 100
Disease 100 100 100 100
Kitchenltem 100 94 100 94
Person 100 100 100 100
PhysicsTerm 93 100 90 100
Plant 100 100 97 100
Profession 100 100 100 87
Sociopolitics 100 48 100 34
Sport 97 97 100 100
Website 90 94 90 90
Vegetable 93 83 63 48
Average 97.5 92 94.5 87

Similarly, the input for the relational extractor (algorithm given in [21]) an ontol-
ogy formed by a set of relations (e.g. City-Country) as well as a few seed noun phrase
pairs per relation (e.g. (Winnipeg, Canada), (New Delhi, India), (Ankara, Turkey)).
It also expects a large co-occurrence matrix representing the noun phrase pairs, and
the contextual patterns. The output are trusted relation instances, in forms of ordered
noun phrase pairs, assigned to their respective relations.

As shown in Table 2, for most relations, TPL maintained high quality extractions
and high precision values throughout the iterations, steering clear from the concept
drift problem. Overall, TPL is able to demonstrate comparable performance with
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Table 2 Precision@30 results of TPL and CPL as seen in [27] (%)

Evaluation Ranking-based Promotion-based
Iterations TPL TPL CPL
1 5 10 1 E 10 10
Relations
Athlete-Team 100 90 87 100 96 87 100
CEO-Company 100 100 100 100 100 100 100
City-Country 100 100 100 100 100 100 93
City-State 100 100 100 100 100 100 100
Coach-Team 93 93 93 100 100 93 100
Company-City 83 90 93 40 84 97 50
Stadium-City 97 93 80 80 92 70 100
State-Capital 100 97 73 100 100 63 60
State-Country 100 100 100 100 100 100 97
Team-versus-Team |93 83 80 100 84 80 100
Average 96.6 94.6 90.6 92.0 95.6 89.0 90.0

CBS and CPL in terms of precision [21]. Experimental details can be found in [30]
and can be downloaded from.!

8 Concluding Remarks

In this chapter, we present a survey of the literature where the tolerance rough set
model serves as a text categorization and learning model. Particularly when it comes
to natural language processing and information retrieval tasks such as text catego-
rization or document clustering, a non-transitive binary relation that is reflexive and
symmetric is necessary. A brief overview of the history of tolerance rough sets that
led to the model that is widely used in document classification is presented. The four
representative papers are also an ideal source of broader related works dealing with
the theoretical aspects of tolerance form of rough sets. Document clustering appears
to be a more popular form of text categorization with the tolerance form of rough
sets. However, the more recent work on categorizing unstructured text in a semi-
supervised learning environment with tolerance form of rough sets points to another
fruitful area of application of TRSM. Future work includes categorizing unstruc-
tured text on a large dataset as well as comparison with rough-fuzzy models. This
survey is meant to demonstrate the versatility of the tolerance form of rough sets and
its successful application in structured and unstructured text categorization.

Thttp://winnspace.uwinnipeg.ca/handle/10680/821.
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Medical Diagnosis: Rough Set View

Shusaku Tsumoto

Abstract This chapter dicusses formalization of medical diagnosis from the view-
point of rule reasoning based on rough sets. Medical diagnosis consists of the fol-
lowing three procedures. First, screening process selects the diagnostic candidates,
where rules from upper approximations are used. Then, from the selected candidates,
differential diagnosis is evoked, in which rules from lower approximations are used.
Finally, consistency of the diagnosis will be checked with all the inputs: inconsis-
tent symptoms suggest the existence of complications of other diseases. The final
process can be viewed as complex relations between rules. The proposed framework
successfully formalizes the representation of three types of reasoning styles.

1 Introduction

Classical medical diagnosis of a disease assumes that a disease is defined as a set of
symptoms, in which the basic idea is symptomatology. Symptomatology had been
a major diagnostic rules before laboratory and radiological examinations. Although
the power of symptomatology for differential diagnosis is now lower, it is true that
change of symptoms are very important to evaluate the status of chronic status. Even
when laboratory examinations cannot detect the change of patient status, the set of
symptoms may give important information to doctors.

Symptomatological diagnostic reasoning is conducted as follows. First, doctors
make physical examinations to a patient and collect the observed symptoms. If symp-
toms are observed enough, a set of symptoms give some confidence to diagnosis of
a corresponding disease. Thus, correspondence between a set of manifestations and
a disease will be useful for differential diagnosis. Moreover, similarity of diseases
will be infered by sets of symptoms.

The author has been discussed modeling of symptomatological diagnostic reason-
ing by using the core ideas of rough sets since [16]: selection of candidates (screen-
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ing) and differential diagnosis are closely related with diagnostic rules obtained by
upper and lower approximations of a given concept. Thus, this chapter dicusses for-
malization of medical diagnostic rules which is closely related with rough set rule
model. The important point is that medical diagnostic reasoning is characterized by
focusing mechanism, composed of screening and differential diagnosis, which corre-
sponds to upper approximation and lower approximation of a target concept. Furthre-
more, this chapter focuses on detection of complications, which can be viewed as
relations between rules of different diseases.

The chapter is organized as follows. Section2 shows charateristics of medical
diagnostic process. Section 3 introduces rough sets and basic definition of probabilis-
tic rules. Section 4 gives two style of formalization of medical diagnostic rules. The
first one is a deterministic model, which correspond to Pawlak’s rough set model.
And the other one gives an extention of the above ideas in probabilistic domain,
which can be viewed as application of variable precision rough set model [18].
Section 5 proposes a new rule induction model, which includes formalization of rules
for detection of complications. Section 6 shows how to induce the above formalized
rules from data. Section 7 discussed what has not been achieved yet. Finally, Sect. 8
concludes this chapter.

2 Background: Medical Diagnostic Process

This section focuses on medical diagnostic process as rule-based reasoning. The
fundamental discussion of medical diagnostic reasoning related with rough sets is
given in [11].

2.1 RHINOS

RHINOS is an expert system which diagnoses clinical cases on headache or facial
pain from manifestations. In this system, a diagnostic model proposed by Matsumura
[1] is applied to the domain, which consists of the following three kinds of reasoning
processes: exclusive reasoning, inclusive reasoning, and reasoning about complica-
tions.

First, exclusive reasoning excludes a disease from candidates when a patient does
not have a symptom which is necessary to diagnose that disease. Secondly, inclusive
reasoning suspects a disease in the output of the exclusive process when a patient
has symptoms specific to a disease. Finally, reasoning about complications suspects
complications of other diseases when some symptoms which cannot be explained by
the diagnostic conclusion are obtained.

Each reasoning is rule-based and all the rules needed for diagnostic processes are
acquired from medical experts in the following way.



Medical Diagnosis: Rough Set View 141
2.1.1 Exclusive Rules

These rule correspond to exclusive reasoning. In other words, the premise of this
rule is equivalent to the necessity condition of a diagnostic conclusion. From the
discussion with medical experts, the following six basic attributes are selected which
are minimally indispensable for defining the necessity condition: . Age, 2. Pain
location, 3. Nature of the pain, 4. Severity of the pain, 5. History since onset, 6.
Existence of jolt headache. For example, the exclusive rule of common migraine is
defined as:

In order to suspect common migraine,
the following symptoms are required:
pain location: not eyes,

nature :throbbing or persistent

or radiating,

history: paroxysmal or sudden and
jolt headache: positive.

One of the reasons why the six attributes are selected is to solve an interface
problem of expert systems: if all attributes are considered, all the symptoms should
be input, including symptoms which are not needed for diagnosis. To make exclusive
reasoning compact, we chose the minimal requirements only. It is notable that this
kind of selection can be viewed as the ordering of given attributes, which is expected
to be induced from databases. This issue is discussed later in Sect. 6.

2.1.2 Inclusive Rules

The premises of inclusive rules are composed of a set of manifestations specific to a
disease to be included. If a patient satisfies one set, this disease should be suspected
with some probability. This rule is derived by asking the medical experts about the
following items for each disease: I. a set of manifestations by which we strongly
suspect a disease. 2. the probability that a patient has the disease with this set of
manifestations: SI (Satisfactory Index) 3. the ratio of the patients who satisfy the set
to all the patients of this disease: CI (Covering Index) 4. If the total sum of the derived
CI (tCl) is equal to 1.0 then end. Otherwise, goto 5. 5. For the patients with this
disease who do not satisfy all the collected set of manifestations, goto 1. Therefore a
positive rule is described by a set of manifestations, its satisfactory index (SI), which
corresponds to accuracy measure, and its covering index (CI), which corresponds to
total positive rate. Note that SI and CI are given empirically by medical experts.
For example, one of three positive rules for common migraine is given as follows.

If history: paroxysmal,
jolt headache: vyes,
nature: throbbing or persistent,
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prodrome: no, intermittent symptom: no,
persistent time: more than 6 hours,

and location: not eye,

then common migraine is suspected with
accuracy 0.9 (SI=0.9) and

this rule covers

60 percent of the total cases (CI=0.6).

2.1.3 Disease Image: Complications Detection

This rule is used to detect complications of multiple diseases, acquired by all the
possible manifestations of the disease. By the use of this rule, the manifestations
which cannot be explained by the conclusions will be checked, which suggest com-
plications of other diseases. For example, the disease image of common migraine
is:

The following symptoms can be
explained by common migraine:
pain location: any or depressing:
not or jolt headache: yes or

Therefore, when a patient who suffers from common migraine is depressing, it is
suspected that he or she may also have other disease.

2.2 Focusing Mechanism

The most important process in medical differential diagnosis shown above is called
a focusing mechanism [7, 17]. Even in differential diagnosis of headache, medical
experts should check possibilities of more than 100 candidates, though frequent dis-
eases are 5 or 6. These candidates will be checked by past and present history, physi-
cal examinations, and laboratory examinations. In diagnostic procedures, a candidate
is excluded one by one if symptoms necessary for diagnosis are not observed.
Focusing mechanism consists of the following two styles: exclusive reasoning
and inclusive reasoning. Relations of this diagnostic model with another diagnostic
model are discussed in [5, 11], which is summarized in Fig. 1: First, exclusive rea-
soning excludes a disease from candidates when a patient does not have symptoms
that is necessary to diagnose that disease. Second, inclusive reasoning suspects a dis-
ease in the output of the exclusive process when a patient has symptoms specific to
a disease. Based on the discussion with medical experts, these reasoning processes
are modeled as two kinds of rules, negative rules (or exclusive rules) and positive
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Focusing Mechanism Screening

. . (Exclusive Rules)
(Selection of Candidates) Upper approximation
Diagnosis

Differential Diagnosis (Inclusive Rules)
Lower approximation

v

Consistency Checking
Detection of Complications (Disease Image)
Complex Rule Relations

Fig. 1 Focusing mechanism

rules; the former corresponds to exclusive reasoning, the latter to inclusive reason-
ing [1].!

2.3 Medical Diagnosis = Set Classification?

Most of the conventional rule learning scheme assumes that medical diagnosis is
based on conventional set classification scheme. That is, it is assumed that once the
final conclusion is given, its classification is mutual exclusive. However, it is not a
correct assumption if the etiologies of complicated diseases is different. For example,
in the case of differential diagnosis of headache, differentiation of muscle tention
headache and vascular headache is very important since the corresponding therapy
is completely different. However, complication of both type of headache is possible,
since one is due to muscle pain and the other is due to the problems with arteries and
the etiologies are completely different.

Then, is it “fuzzy classification”? The author says that it may be under some spe-
cific condition. If the diagnostic time is fixed, we can think its fuzzy classification,
because the degree can be easily quantified: which type of headache is dominant or
not. Both diseases should be treated and the order of the treatment may depend on the
applied situation. In some contexts, preference should be considered. For example,
the status of one disease is in emergency, then this disease should be treated imme-
diately. In other contexts, the disease which is easy to treat may be selected at first.
Thus, preference depends on a given clinical context, which may not be included in
datasets.

Thus, we should think in the following way. Here we assume that there are many
binary decision attributes. That is, each diagnostic candidate corresponds to one

Tmplementation of detection of complications is not discussed here because it is derived after main
two process, exclusive and inclusive reasoning. The way to deal with detection of complications is
discussed in Sect. 5.
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decision attribute, and we will think about decision rules for each. For each deci-
sion attribute, set-classification based scheme can be applied. We do no think about
the preference of decisions or the degree of decisions because choice of decisions
may not be needed in general.

For this task, we may have to convert ordinary datasets, but we do not get into
the details of data preprocessing. Here we only focus on representations of rules for
such multiple decision attributes and their rule induction algorithms.

3 Basics of Rule Definitions

3.1 Rough Sets

In the following sections, we use the following notation introduced by Grzymala-
Busse and Skowron [4], based on rough set theory [2]. Let U denote a nonempty finite
set called the universe and A denote a nonempty, finite set of attributes, i.e.,a : U —
V, fora € A, where V,, is called the domain of a, respectively. Then a decision table
is defined as an information system, A = (U,A U {d}). The atomic formulas over
B C AU {d} and V are expressions of the form [a = v], called descriptors over B,
wherea € Bandv € V,,. The set F(B, V) of formulas over B is the least set containing
all atomic formulas over B and closed with respect to disjunction, conjunction, and
negation.

For each f € F(B, V), f, denotes the meaning of f in A, i.e., the set of all objects
in U with property f, defined inductively as follows:

1. Iff is of the form [a = v], then f;, = {s € Ula(s) = v}.
20N =lan8a VA= V8 () =U—J,

3.2 Classification Accuracy and Coverage

3.2.1 Definition of Accuracy and Coverage

By use of the preceding framework, classification accuracy and coverage, or true
positive rate are defined as follows.

Definition 1 Let R and D denote a formulain (B, V) and a set of objects that belong
to a decision d. Classification accuracy and coverage(true positive rate) for R — d is
defined as:

IR, 0 D
ax(D) = —A (= P(DIR)), )
IRA]
IR, N D
(D) = (= PRID)), )

1D
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where |S|, ax(D), kx(D), and P(S) denote the cardinality of a set S, a classification
accuracy of R as to classification of D, and coverage (a true positive rate of R to D),
and probability of S, respectively.

It is notable that az(D) measures the degree of the sufficiency of a proposition,
R — D, and that k(D) measures the degree of its necessity. For example, if ay(D)
is equal to 1.0, then R — D is true. On the other hand, if k(D) is equal to 1.0, then
D — R is true. Thus, if both measures are 1.0, then R < D.

3.3 Probabilistic Rules
By use of accuracy and coverage, a probabilistic rule is defined as:

RZd st.R=Ala;=v],ayD) 6, and k(D) 5, 3)

where D denotes a set of samples that belong to a class d. If the thresholds for
accuracy and coverage are set to high values, the meaning of the conditional part of
probabilistic rules corresponds to the highly overlapped region. This rule is a kind
of probabilistic proposition with two statistical measures, which is an extension of
Ziarko’s variable precision model (VPRS) [18].2

It is also notable that both a positive rule and a negative rule are defined as special
cases of this rule, as shown in the next sections.

4 Formalization of Medical Diagnostic Rules

4.1 Deterministic Model

4.1.1 Positive Rules

A positive rule is defined as a rule supported by only positive examples. Thus, the
accuracy of its conditional part to a disease is equal to 1.0. Each disease may have
many positive rules. If we focus on the supporting set of a rule, it corresponds to a
subset of the lower approximation of a target concept, which is introduced in rough
sets [2]. Thus, a positive rule is defined as:

R—d st R=ala=v] aD) =10 4)

where D denotes a set of samples that belong to a class d.

2This probabilistic rule is also a kind of rough modus ponens [3].
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This positive rule is often called a deterministic rule. However, we use the term,
positive (deterministic) rules, because a deterministic rule supported only by nega-
tive examples, called a negative rule, is introduced below.

4.1.2 Negative Rules

The important point is that a negative rule can be represented as the contrapositive
of an exclusive rule [17]. An exclusive rule is defined as a rule whose supporting set
covers all the positive examples. That is, the coverage of the rule to a disease is equal
to 1.0. That is, an exclusive rule represents the necessity condition of a decision. The
supporting set of an exclusive rule corresponds to the upper approximation of a target
concept, which is introduced in rough sets [2]. Thus, an exclusive rule is defined as:

R—-d st R=vVla;=v], xx(D)=10, ®)

where D denotes a set of samples that belong to a class d.
Next, let us consider the corresponding negative rules in the following way. An
exclusive rule should be described as:

d— Vj[aj =v],

because the condition of an exclusive rule corresponds to the necessity condition of
conclusion d. Since a negative rule is equivalent to the contrapositive of an exclusive
rule, it is obtained as:

/\j—|[aj =] — d,

which means that if a case does not satisfy any attribute value pairs in the condition
of a negative rule, then we can exclude a decision d from candidates.
Thus, a negative rule is represented as:

Aj -|[aj =v]—-d st V[aj = Vk]’([a_,:vk](D) = 1.0, (6)

where D denotes a set of samples that belong to a class d.

Negative rules should also be included in a category of deterministic rules,
because their coverage, a measure of negative concepts, is equal to 1.0. It is also
notable that the set supporting a negative rule corresponds to a subset of negative
region, which is introduced in rough sets [2].

In summary, positive and negative rules correspond to positive and negative
regions defined in rough sets. Figure 2 shows the Venn diagram of those rules.
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Fig.2 Venn diagram of Exclusive
exclusive and positive rules Rules
Inclusive Rules

4.2 Probabilistic Model

Although the above deterministic model exactly corresponds to original Pawlak
rough set model, rules for differential diagnosis is strict for clinical setting, because
clinical diagnosis may include elements of uncertainty.> Tsumoto [5] relaxes the
condition of positive rules and defines an inclusive rules, which models the inclu-
sive rules of RHINOS model. The definition is almost the same as probabilistic rules
defined in Sect. 3, except for the constraints for accuracy: the threshold for accuracy
is sufficiently high. Thus, the definitions of rules are summarized as follows.

4.2.1 Exclusive Rules

R—d s.t. R=Vla; = v], @)
(s.t. Ka; = viJ(D) > 6,)
kg(D) = 1.0.

4.2.2 Inclusive Rules

RE 4 st R = Ajla; = v, (8)
ag(D) > 8, and kp(D) > §,.

3However, deterministic rule induction model is still powerful in knowledge discovery context as
shown in [8].
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Fig.3 Venn diagram of Exclusive
exclusive and inclusive rules Rules

Inclusive Rules

In summary, positive and negative rules correspond to positive and negative
regions defined in variable rough set model [18]. Figure 3 shows the Venn diagram
of those rules.

Tsumoto introduces an algorithm for induction of exclusive and inclusive rules as
PRIMEROSE-REX and conducted experimental validation and compared induced
results with rules manually acquired from medical experts [5]. The results show that
the rules do not include components of hierarchical diagnostic reasoning. Medical
experts classify a set of diseases into groups of similar diseases and their diagnostic
reasoning is multi-staged: first, different groups of diseases are checked, then final
differential diagnosis is performed with the selected group of diseases. In order to
extend the method into induction of hierarchical diagnostic rules, one of the authors
proposes several approach to mining taxonomy from a dataset in [6, 9, 10].

5 New Rule Induction Model

The former rule induction models do not include reasoning about detection of com-
plications, which is introduced as disease image as shown in Sect. 1. The core idea
is that medical experts detect the symptoms which cannot be frequently occurred in
the final diagnostic candidates. For example, let us assume that a patient suffering
from muscle contraction headache, who usually complains of persistent pain, also
complains of paroxysmal pain, say he/she feels a strong pain every 1 month. The
situation is unusual and since paroxysmal pain is frequently observed by migraine,
medical experts suspect that he/she suffers from muscle contraction headache and
common migraine. Thus, a set of symptoms which are not useful for diagnosis of a
disease may be important if they belong to the set of symptoms frequently manifested
in other diseases. In other means, such set of symptoms will be elements of detection
of complications. Based on these observations, complications detection rules can be
defined as follows.
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Fig. 4 Venn diagram of Exclusive
exclusive, inclusive and Rules
complications detection
rules. Type 1

Inclusive Rules

Complications

5.1 Complications Detection Rules

Complications detection rule of a diseases are defined as a set of rules each of which
is included into inclusive rules of other diseases.*

{R—d st R=[a;=v],0 < ag(D)<6,,0<kg(D) <6,
AD, ax(D') > 8, kx(D") > 5.}
)

Figures 4 and 5 depict the relations between exclusive, inclusive and complications
detection rules. The first type shows when a symptom for complicated disease can
be observed in the main diagnosis. On the other hand, in the second type, a symptom
will not be observed in the main diagnosis. Compared with the first case, the second
one may be more difficult, because complicated diseases may be filtered out from
diagnostic candidates.

The relations between three types of rules can be visualized in a two dimen-
sional plane, called (a, x)-plane, as shown in Fig. 6. The vertical and horizontal axis
denotes the values of accuracy and coverage, respectively. Then, each rule can be
plotted in the plane with its accuracy and coverage values. The region for inclusive
rules is shown in upper right, whereas the region for candidates of detection of com-
plications is in lower left. When a rule of that region belongs to an inclusive rule of
other disease, it is included into complications detection rule of the target diseases.

Figure 7 shows the relations of rules for complications of disease D and D2. Two
(a, x)-plane should be considered in this case, but the regions for both sides are
complimentary.

4The first term R = [a; = v;] may not be needed theoretically. However, since deriving conjunction
in an exhaustive way is sometimes computationally expensive, here this constraint is imposed for
computational efficiency.
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Exclusive
Rules

Inclusive Rules

Complications

Fig. 5 Venn diagram of exclusive, inclusive and complications detection rules. Type 2
(o, x)-plane

A 5 Region of
@ Rules for Diagnostic Rules
ar(D) > 6,
kr(D) > 6,

Region for
Rules for Screening

Kr(D) > &,

1)
D) > §, K
Region for (D) > &y

Rules for Complications

0< aR(D) < 6&
0 < Kkp(D) < &

Fig. 6 Two dimensional plot: (a, k)-plane

6 Rule Induction Algorithm

From Egs. 8 to 9, rule induction algorithms can be described as search algorithms
using the inequalities of accuracy and coverage as follows.

Algorithm 1 classifies a formula R in terms of a given decision D in which a
parameter Level denotes the number of attribute-value pairs in R. First, calculate
accuracy ax(D) and coverage k(D) from Eqgs. (1) and (2). Then, if both of the values
are larger than given thresholds, the formula R will be included into the list of the
candidates for rules, denoted by List,,,(Level).

Algorithm 2 is a main routine of induction of inclusive rules. First, a set of ele-
mentary formula, that is, a formula which has only a single attribute-value pair is



Medical Diagnosis: Rough Set View 151

(o, x)-plane for D

3 é‘
K a
ag(D) > 64
kp(D) > &,
(a,,x)-plane for D2 Kkg(D) > &,
o)
A K
K ag(D2) > § % | | Region for “&(D) > &
Kp(D2) > 5: - Rules for Complicationis
[~
0< (ZR(D) < (Sa
0< K.'R(D) < 5!{
kr(D2) > &, >
4a(D2) > 5, Ok a
0 < ap(D2) < 6,
8 < kp(D2) < 6, P

>

Fig. 7 Two dimensional plot: (a, k)-plane for disease image

given. For each formula in a given Level, select one formula from a elementary
formula set, say [a = v] and make conjunction of R and [a = v]. For example, if
Level = 2, Ris of form [a; = v,] A [a, = v,], and if a selected elementary formula is
[a; = vs], then a new conjunctive formula will be [a; = v,]1 A [a, = v,] A [a; = v3].
Then, accuracy and coverage of the formula will be checked whether it satisfies the
condition for inclusive rules. After all the conjunctive procedures are finished, a
member of List,,;,(Level) is used for a conditional part of a rule. Algorithm 3 shows
how to induce exclusive rules. A set of elementary formula and a decision D is given,
for each member of a set, accuracy and coverage will be calculated. If the value of a
coverage is larger than a threshold, it is included into an output list and calculate the
total coverage. If the total is equal to 1.0, then the list of R will be outputed.
Algorithm 4 shows how to induce disease image. First, select one elementary
formula and calculate accuracy and coverage. Then, if both of the values satisfies
the inequalities, the algorithm checks whether this formula may have high values of
accuracy and coverage for another disease. If so, the formula is included into a list
of disease image. Since there are described as a heuristic search algorithm with the
constraints of accuracy and coverage, it is easy to extend them into incremental rule
induction as shown in [14]. Algorithms 5 and 6 shows how to induce probabilistic
rules incrementally. Algorithm 5 can be viewed as an extension of Algorithm 1.
Here, a formula R will be classified into three parts: first, regular candidates for
probabilistic rules, an element of List, ;,(Level). Secondly, a member of subrule layer

rule
out, List,, ,,, which may be deleted from the candidate if a unsupportive case is
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appended. Finally, a member of subrule layer in List, ,,, whose element may be
included into the candidate if a supportive case is appended.

Algorithm 6 is a main part of incremental rule induction, an extension of Algo-
rithm 2. Here, based on the classification obtained by Algorithm 5, a set of formula
is classified into rule layers and two subrule layers.

Algorithm 1 Checking inequalities for Probabilistic Rules

procedure CLASSIFICATION OF FORMULA (R:formula, D:decision,Level)
Level < Number of attribute-value pairs in R
Calculate agx(D) and kx(D)
if ap(D) > 6, kz(D) > 6, then
List,,(Level) < List,, (Level) + {R}
end if
end procedure

Algorithm 2 Induction of Probabilistic Rules
procedure RULE INDUCTION(List,,;,(0): A Set of Elementary Formula, D:decision)
for Level = 1 to Number of Attributes do
for all R € List,,,,(Level — 1) do

rule

> List,;,(0) = 1: [x];, = U
for all [a = v] € List,,;, (1) do
R, <~ RA[a=V]
Execute Procedure
Classification_of_Formula(R,,D,Level)
end for
end for
for all R € List,,;,(Level) do
Register R — D as a Rule
end for
end for
end procedure

7 Discussion: What Has Not Been Achieved?

In [11], one of the authors discusses the characteristics of differential diagnosis of
headache as follows: (a) Hierarchical classification is used. (b) A set of symptoms is
used to describe each disease. (c) Description is based on specificity weighted over
sensitivity, which shows that reasoning about frequency is implicitly included. (d)
For coverage, exceptions are described. (e) Diagnostic criteria gives temporal infor-
mation about episodes of headache. In the previous studies, automated extraction of
knowledge with respect to (a), (b), (c) has been solved.
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Algorithm 3 Induction of Exclusive Rule

procedure EXCLUSIVE RULE INDUCTION(List
D:decision)
List,,(exclusive,0) < {}
for all R in A Set of Elementary Formula do
Calculate ax(D) and kx(D)
if k(D) > 6, then
List,,(exclusive,0) < List,,,(exclusive,0) + {R}
Calculate KListUm(exzrlusiveA,O) (D)
if KLISI,_,M (exclusive,0) (D) = 1.0 then
quit
end if
end if
end for
Output List,, (exclusive, 0)
end procedure

uelexclusive, 0), A Set of Elementary Formula,

Algorithm 4 Induction of Disease Image

procedure DISEASE IMAGE INDUCTION(List,
List(D): List of Diseases)
List,,(image,0) < {}
for all R in A Set of Elementary Formula do
Calculate ag(D) and kx(D)
if 0 <agr(D)<6,0 < k(D) <6, then
for all D’ € List(D) do
if agx(D') > 6, kz(D') > 6, then
List,,(image, 0)
« List,,(image,0) + {(R,D)}
end if
end for
end if
end for
Output List,,; jyage(0)
end procedure

(0): A Set of Elementary Formula, D:decision,

rule

However, (d) and (e) still remains. Dealing with exceptions is related with compli-
cations detection, so partially (d) is solved. However, in some cases, exceptions are
used for case-based reasoning by medical experts. Thus, combination of rule-based
and case-based reasoning should be introduced.

Acquisition of temporal knowledge is important because medical experts use tem-
poral reasoning in a flexible way. When one of the author interviewed the domain
expert for RHINOS, he found that temporal reasoning is very important for com-
plicated cases. For example, one patient suffers from both common migraine and
tension headache. According to the diagnostic rules, RHINOS diagnoses the case
as migraine. However, the main complaint came from tension headache. Since the
onset of tension headache is persistent but the severity is mild, the patient focuses
on the symptoms of migraine. If the system can focus on the differences in temporal
natures of headaches, then it can detect the complications of migraine and tension
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Algorithm 5 Construction of Rule Layer

procedure CLASSIFICATION OF FORMULA(R:formula, D:decision,Level)
Level < Number of attribute-value pairs in R
Calculate a,(D) and kx(D)
if az(D) > 6, kz(D) > 6, then

List,,; (Level) < List,, (Level) + {R}

it 5, < ap(D)1) < 54'“"%*” and
5, < Kr(D)(1) < i (""“) then
Listy,, ,.(Level) < Llstmb ou(Level) + {R}

end if
else if 20 < 0 (D)(1) < 5, and

M < k(D)(1) < 6, then
(Level) « List (Level) + {R}

sub_in

LiStsub in
end if
List,,(Level) < List,,(Level) + {R}
end procedure

Algorithm 6 Incremental Rule Induction

procedure INCREMENTAL RULE INDUCTION(7able, D:decision)
List,;,(0) < a Set of Elementary Formula of Table
Execute Procedure Rule Induction(List,,;,(0), D)
List,,;, < U;_List,;, (i)
List,, ;, < Uiy List,, ;,(0)
Lisrsub_uut - Ui:lLiSt‘mh_out(i)
List,,, < U, List,,,(i)
repeat
Read a New Case x
for all R € List,,;,, do
Execute Procedure Classification of Formula(R:formula,
D:decision,Level)
end for
for all R € New_List,;, do
Register R — D as a Rule
end for
for all R € New_List,, ;, do
Delete R — D from a set of Rule
Register R — D as a SubRule (in)
end for
for all R € New_List,,, do
Delete R — D from a set of Rule
Register R — D as a set of SubRule (out)
end for
until Abort
end procedure

rule
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headache. Thus, temporal reasoning is a key to diagnose completed cases especially
when all the symptoms may give a contradict interpretation.

Research on temporal data mining is ongoing, and now the authors show that
temporal data mining is very important for risk management in several fields [12,
13, 15]. It will be our future work to develop methodologies for combination of
rule-based and case-base reasoning and temporal rule mining in clinical data.

8 Conclusion

Formalization of medical diagnostic reasoning based on symptomatology is dis-
cussed. Reasoning consists of three processes, exclusive reasoning, inclusive rea-
soning and complications detection, the former two of which belongs to a focusing
mechanism. In exclusive reasoning, a disease is ruled out from diagnostic candi-
dates when a patient does not have symptoms necessary for diagnosis. The process
corresponds to screening. Second, in inclusive reasoning, a disease out of selected
candidates is suspected when a patient has symptoms specific to a disease, which cor-
responds to differential diagnosis. Finally, if symptoms which are rarely observed in
the final candidate, complication of other diseases will be suspected.

Previous studies are surveyed: one of the author concentrate on the focusing
mechanism. First, in a deterministic version, two steps are modeled as two kinds
of rules obtained from representations of upper and lower approximation of a given
disease. Then, he extends it into probabilistic rule induction, which can be viewed
as an application of VPRS.

Then, the authors formalize complications detection rules in this chapter. The
core idea is that the rules are not simply formalized by the relations between a set
of symptoms and a disease, but by those between a symptoms, a target disease and
other diseases. The next step will be to introduce an efficient algorithm to generate
complication detection rules from data.
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Rough Set Analysis of Imprecise Classes

Masahiro Inuiguchi

Abstract Lower approximations of single decision classes have been mainly treated
in the classical rough set approaches. Attribute reduction and rule induction have
been developed based on the lower approximations of single classes. In this chapter,
we propose to use the lower approximations of unions of k decision classes instead of
the lower approximations of single classes. We first show various kinds of attribute
reduction are obtained by the proposed approach. Then we consider set functions
associated with attribute reduction and demonstrate that the attribute importance
degrees defined from set functions are very different depending on k. Third, we
consider rule induction based on the lower approximations of unions of k decision
classes and show that the classifiers with rules for unions of k decision classes can
perform better than the classifiers with rules for single decision classes. Finally, uti-
lization of rules for unions of k decision classes in privacy protection is proposed.
Throughout this chapter, we demonstrate that the consideration of lower approxima-
tions of unions of k classes enriches the applicability of rough set approaches.

1 Introduction

Rough set theory [25, 26] provides useful tools for reasoning from data. Attribute
reduction and rule induction are well developed techniques based on rough set the-
ory. They are applied to various fields including data analysis, signal processing,
knowledge discovery, machine learning, artificial intelligence, medical informatics,
decision analysis, granular computing, Kansei engineering, and so forth [3, 20, 28].

In rough set approach, the lower approximation (a set of objects whose classi-
fication is consistent in all given data) and upper approximation (a set of possible
members in view of given data) are calculated for a set of objects. Lower and upper
approximations of the classical rough sets [25, 26] are defined based on an equiva-
lence relation called an ‘indiscernibility relation’. They are extended in many ways
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depending on the necessity in applications. For example, the equivalence relation is
replaced with a similarity relation as a natural generalization [33], with a dominance
relation in decision making problems [6, 7], with a tolerance relation for treating
decision tables with missing data [22], with a fuzzy relation for a generalized setting
that a degree of similarity is available [2, 11]. Moreover, using a precision degree
and a consistency degree, the rough sets are generalized to variable precision rough
sets [37] and variable consistency rough sets [1] are proposed. Under those gener-
alized rough sets, various techniques for attribute reduction and rule induction are
developing.

However, the usage of rough sets has not yet investigated considerably. The lower
approximation of each decision class has been majorly used for obtaining attribute
reduction and rule induction, so far, although some studies using upper approxima-
tion of each decision class (see [19, 30]). Other sets of objects have not yet used
actively. In the dominance based rough set approach [6, 7], upward and downward
unions are used because they match well to the dominance relation (in other words,
a single decision class does not work well for obtaining lower and upper approxima-
tion under dominance relations). Inuiguchi et al. [18] proposed to use upward and
downward unions when the decision attribute is ordinal and showed its advantage in
the classification accuracy of the obtained classifier.

Recently, in the classical rough set setting, the authors [10, 12, 14-17] proposed
to use the lower approximations of unions of k decision classes instead of lower
approximations of single decision classes and demonstrated the interesting and use-
ful results. This approach can be seen as a rough set approach to imprecise modeling
because it provides the analysis based on the preservation of imprecise classification,
i.e., correct classification up to k possible decision classes. After a brief introduc-
tion of the classical rough set approaches, we describe the following recent results
obtained by the replacement of the lower approximation of each decision class with
that of each union of k decision classes:

(1) In the first part of Sect. 3, the attribute reduction based on lower approximations
of unions of k decision classes provides an intermediate between two extreme
attribute reductions using lower and upper approximations of single decision
classes. These two extremes are obtained by special parameter settings of k.

(2) In the last part of Sect. 3, it shows that the evaluation of attribute importance
changes drastically by the selection of parameter k. It implies that the attribute
importance cannot be evaluated univocally.

(3) Inthe major part of Sect. 4, the classifier with rules induced for unions of k deci-
sion classes achieves a better performance than the classifier with rules induced
for single decision classes.

(4) In the last part of Sect. 4, we describe the possible utilization of rules for k deci-
sion classes in the protection of data privacy.

Before the main part of this chapter, we briefly introduce the classical rough set
approaches, and after describing (1)—(4) shown above, we conclude this chapter with
giving some remarks for future investigation. In this chapter, as we consider unions
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of k decision classes (k > 2), we assume that a decision table with multiple decision
classes (more than two decision classes) is given.

2 Rough Sets in Decision Tables

The classical rough sets are defined under an equivalence relation which is often
called an indiscernibility relation. In this chapter, we restrict ourselves to discus-
sions of the classical rough sets under decision tables. A decision table is char-
acterized by four-tuple .# = (U,C U {d},V, p), where U is a finite set of objects,
C is a finite set of condition attributes, d is a decision attribute, V = (J,ccyiay Ve
and V, is a domain of the attribute a, and p : U X CU {d} — V is an information
function such that p(x,a) € V, for every a € C U {d}, x € U. A condition attribute
value vector p(u,A) = (p(u,a,), p(u,a,), ..., p(u,a;)) of an object u € U is called
a profile of u in A, where A = {a,,a,,...,a;} € C. The profile of u in C is sim-
ply called the profile of u. Multiple objects can have a common profile. Let ¥ the
set of all profiles appearing in the decision table. Let fr : ¥ XV, - N U {0} be
a function showing the frequency of objects having v € V, in the set of objects
having a profile p € ¥, where N be a set of natural numbers. A set of frequency
vector (fr(p,vy).fr(p,vy), ....fr(p,v,)), p €V is denoted by Fr. When the dis-
tinction between objects having a same profile is not significant, a decision table
& =(U,Cu{d},V,p)canbe rewritten by a table .# = (¥,CuUd, V,fr). An exam-
ple of the decision table and its representation by profiles are shown in Table 1.

Given a set of attributes A C CU {d}, we define an equivalence relation I,
referred to as an indiscernibility relation by I, = {(x,y) € UX U | p(x,a) = p(y, a),
Va € A}. From I, we have an equivalence class, [x], = {y € U | (y,x) € I,}. When
A = {d}, we define

Table 1 Decision table and its representation by profiles

(a) Decision table

Object a, a, as d

u, modern modern round| class 1

Uy modern modern round| class 1 (b) Representation by profiles

Uy modern modern round| class 2 Profile a a, as | fr-vector
Uy modern classic round| class 3 2 modern modern round| (2,1,0)
Us modern classic round| class 1 = P modern classic round| (1,0,1)
Ug modern modern cubed| class 2 P modern modern cubed| (0,3,0)
Uy modern modern cubed| class 2 P4 classic classic round| (0,0,2)
ug modern modern cubed| class 2

U classic classic round| class 3

U classic classic round| class 3
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P =D, j=1.2....p} = ([l | x € U}, D, # D; (i # ). (1)

D; is called a ‘decision class’. There exists a unique v; € V,, such that p(x, d) = v; for
each x € D;, i.e., D; = {x € U | p(x,d) = v;}. Moreover, since D, N D; =@ (i # )
and |J 2 = U hold, 2 forms a partition.

For a set of condition attributes A C C, the lower and upper approximations of an
object set X C U are defined as follows:

A,X) = {x][x], €X}, A"X) = {x| x|, nX # 0} 2

A pair (A,(X),A*(X)) is called a rough set of X. The boundary region of X is defined
by
BN, (X) = A*(X) = A, (X). (3)

Since [x], can be seen as a set of objects indiscernible from x € U in view of condi-
tion attributes in A, A, (X) is interpreted as a collection of objects whose membership
to X is noncontradictive in view of condition attributes in A. BN,(X) is interpreted
as a collection of objects whose membership to X is doubtful in view of condition
attributes in A. A*(X) is interpreted as a collection of possible members. For x € U,
the generalized decision attribute value d, (x) of x with respect to a condition attribute
set A C C is defined as follows (see [27, 30, 31]):

0,(0) = {p(y.d) | y € [x5}- “4)

LetX, Y C U. The following fundamental properties are satisfied with rough sets:

A,X) CX CA'(X), )]
ACB=A,(X)CB,(X), A*(X) 2 B*(X), (6)
A, XNY)=A,X)NA(Y), A*(XUY)=A*X)UA*(Y), (7
A, XUY)DAX)UA(Y), A"(XNY) CA*X)nA*(Y), 3
BN,(X) = A*(X) NA*(U - X), 9)
A, (X) =X = BN,(X), (10)
A*(X)=XUBN,(X)=U-A, U -X), (11)
A,(X)=A*X) - A*(U - X) = U - A*(U - X). (12)

Let X;,i=1,2,...,q forms a partition, i.e., Ui:l,z,...,qu =U,X;nX;=0fori,j€
{1,2,...,q} such that i # j. The following properties show the interpretation among
lower and upper approximations and boundary regions:
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A'(X) = X, UBN,(X), j = 1,2,....q, (13)

BN,(X)) = A*(X)) n UA*(X,.), i=12,....q (14)
ij

A=A X)) - [Jar @, j= 124, (15)
i#f

A(X) =X, —BN,(X)), j=1,2,....q. (16)

Equations (13) and (16) show that upper and lower approximations of X; can be
obtained from the boundary region of X;. Equations (14) and (15) show that the
boundary region and lower approximation of X; can be obtained from upper approx-
imations of X;, i = 1,2, ... ,q.

3 Attribute Reduction and Importance

3.1 Attribute Reduction

3.1.1 Conventional Attribute Reduction

A given decision table can include superfluous condition attribute to the decision
attribute. It is significant to find the necessary condition attributes for the determi-
nation of decision attribute values. The selection of necessary condition attributes is
called ‘feature selection’ while the elimination of unnecessary condition attributes
is called ‘attribute reduction’. By utilizing rough sets, we can find sets of minimally
necessary condition attributes to classify objects without the deterioration of classi-
fication accuracy. A set of minimally necessary attributes is called a ‘reduct’. Finding
reducts is one of the major topics in rough set approaches. Finding all reducts reveals
indispensable condition attributes.

In the classical rough set analysis of decision tables, reducts preserving lower
approximations of decision classes D;, j=1,2,...,p are frequently used. The
attribute reduction called a reduct is defined as follows (see [26, 36]).

Definition 1 A set of condition attributes, A C C is called a reduct if and only if it
satisfies

(L1) A,(D)=C,(D),j=1.2,...,p,and
(L2) Va €A, (A~ {a}),(D) # C.(D).j=1,2,....p.

Since we discuss several kinds of reducts, we call this reduct, a ‘reduct preserv-
ing lower approximations’ or an ‘L-reduct’ for short. Let Z" be a set of L-reducts.
Then (| Z" is called the ‘core preserving lower approximation’ or the ‘L-core’.
Attributes in the L-core are important because we cannot preserve all lower approx-
imations of decision classes without any of them. Set A C C satisfying (L1) is called
a ‘superreduct preserving lower approximation’ or an ‘L-superreduct’.
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We can consider reducts preserving upper approximations or equivalently, pre-
serving boundary regions [19, 30].

Definition 2 A set of condition attributes, A C Cis called a ‘reduct preserving upper
approximations’ or a ‘U-reduct’ for short if and only if it satisfies

(Ul) A*(D)) = C*(D,),j = 1,2,....p, and
(U2) Ya €A, (A~ {a)' (D) # C* (D), j = 1,2,....p.

On the other hand, a set of condition attributes, A C C is called a ‘reduct preserving
boundary regions’ or a ‘B-reduct’ for short if and only if it satisfies

(B1) BN,(D,) = BN.(D),j=1,2,....p, and
(B2) Va € A, BNy_4)(D)) # BNe(D)),j = 1,2, ....,p.

For those reducts, we have

(R1) A U-reduct is also a B-reduct and vice versa,
(R2) There exists an L-reduct A for a U-reduct B such that B D A, and
(R3) There exists an L-reduct A for a B-reduct B such that B D A.

Those relations can be proved easily from (13) to (16). Since B-reduct is equivalent to
U-reduct, we describe only U-reduct in what follows. Let ZV be a set of U-reducts.
Then (| %V is called the ‘core preserving upper approximation’ or the ‘U-core’.
Attributes in the U-core are important because we cannot preserve all upper approx-
imations of decision classes without any of them.

To obtain a part or all of reducts, many approaches have been proposed in the
literature [26, 32]. Among them, we mention an approach based on a discernibility
matrix [27, 32]. In this approach, we construct a Boolean function which character-
izes the preservation of the lower approximations to obtain L-reducts. Each L-reduct
is obtained as a prime implicant of the Boolean function. For the detailed discussion
of the discernibility matrix for L-reducts, see references [27, 32].

Remark 1 Reducts preserving generalized decision attribute values, d-(u), Vu € U
is also proposed and called ‘0-reduct’ (see [30]). a set of condition attributes, A C C
is a 0-reduct if and only if it satisfies

(@1) 9,(u) = dp(u), Yu € U, and
(02) Ya € A, dy_ ()W) # (W), Yu € U.

o-reduct is also equivalent to U-reduct as well as to B-reduct. This are understood
from the following equations.

A*(D) = {u|v; € 9,(w)} and 9,(u) = {v; | u € A*(D))}, a7

where we remind you of the definition of D;, i.e., D; = {u € U | p(u,d) = v;}, j =
1,2,....p.
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3.1.2 Refinement of Attribute Reduction

In the previous subsubsection, we find that L-reducts are smaller than U-reduct. It
is interesting to investigate the existence of intermediate reducts between L- and U-
reducts. For such intermediate reducts, we assume that all decision classes are treated
equally. This has been studied by Inuiguchi [14]. We describe the result.

Consideracover 7, = {D; UD; U--UD,; |1<i <i,<- <ig<p}lforke
{1,2,...,p — 1}. We define attribute reduction based on .%#, as follows.

Definition 3 A condition attribute set A is called an .%,-reduct if and only if

(F1(k)) A (F)= C,(F)forall F € %, and

(F2(k)) Vae A,(A—{a}).(F) # C.(F)forall F € .%,.
F,-reducts have the following properties:

(i) From (11) and (12), we know that an .%#,-reduct A is a minimal set such that
ANF)=C*(F)forall F € 7, ,.

(ii) Because for any F € .%,, there exists F|, F, € .%, such that F = F, N F, and
[ < k, from (7), an % -reduct A satisfies (F1(/)) foralll < k,i.e., A, (F) = C.(F),
forall F € #, foralll < k.

(iii) From (i) and (ii), an .%,-reduct A satisfies A*(F) = C*(F) forall F € ﬁp
foralll < k.

(iv) In particular, 7 -reducts are equivalent to L-reducts and .7,_;-reducts are
equivalent to U-reducts.

_;and

From this observation the strong-weak relations among .%#,-reducts for 1 < k <
p — 1 can be depicted as in Fig. 1. The reducts located on the upper side of Fig. 1 are
strong, i.e., the condition to be the upper reduct is stronger than the lower. On the
contrary, the reducts located on the lower side of Fig. 1 are weak, i.e., the condition
to be the lower reduct is weaker than the upper. Therefore, for any reduct A located
on the upper side, there exists a reduct B located on the lower side such that B C A.

Let Z (k) be a set of .Z,-reducts. Then [ Z(k) is called the ‘.%,-core’. Attributes
in the .#,-core are important because we cannot preserve C,(F) for all F € .%, with-
out any of them.

strong T

7
P
weak ¥ F =L

Fig.1 The strong-weak relation among reducts
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As all L-reducts can be calculated using a discernibility matrix [27, 32], all .%,-
reducts for 1 <k < p —1 can be calculated by a discernibility matrix. The (i, j)-
component @i’; of the discernibility matrix Z* for calculating .%,-reducts is obtained
as the following set of attributes:

{a € C | p(-xi’ Cl) ;é p(-xjs a)}7
_@i’]‘. = if 0c(x;) # dc(x;) and min(|dc(x)|, [9c(x)) < &,
C (don’t care), otherwise.

(18)
While the discernibility matrix shown in [14] is asymmetric, Z* defined by (18) is
symmetric. Therefore, we need to know only the upper triangular portion of 7, i.e.,
@l.’j‘. such that i < j.
Then all .%,-reducts are obtained as prime implicants of a Boolean function,

F AV 19

ij: XX €ULI<]

where we regard a € .@ik. as a statement that ‘the reduct includes a’. The computa-
tional complexity is NP-hard as in the classical decision matrix method [32].
Note that .@l’; can be obtained from 91.11. with [ > k by replacing (i, j)-component

such that [dc(x)| > k and |dc(x;)| > k with C (don’t care). Then, once @5_1 is
obtained, the other decision matrices can be obtained easily.

Example I Consider the decision table given in Table 2 with C = {a,,a,,a3,a4}.
The decision table is represented by profiles and the corresponding generalized
decision attribute values are also given. Namely, fr-vector (1,0, 1,0) at the row of
w; implies that there are two objects of profile w, and one of them takes decision
attribute value v, and the other takes decision attribute value v;. Therefore, the gener-
alized decision attribute value becomes {v,, v3}. Similarly, fr-vector (2, 0,0, 0) at the

Table 2 A decision table

Profile a; a, a, a, fr-vector O¢

w 1 1 1 1 (1,0,1,0) | {vy,v3}
W, 1 1 2 2 (1,0,0,1) | {vy,vy}
w3 2 2 3 1 (2,0,0,0) | {v;}

wy 3 3 4 2 0,1,0,0) | {v,}

Ws 4 1 2 2 0,1,1,0) | {vy,v5}
We 2 5 3 2 (1,0,0,0) | {v}

Wy 2 4 4 2 0,0,2,0) |{vs}

wyg 4 1 5 5 O,1,1,1) | {vy,v3,v4}
Wy 4 1 5 4 (1,0,1,1) {(vi,vs, vy}
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Table 3 The upper triangular portion of discernibility matrix 2°
w2 w3 Wy Ws We Wy Wy Wy
{az,a4}| {ay,a;,a5} C {ay,as,a,} Cc Cc {ay, a3, a4} {a,,a3,a4}
I k=) k2 (k>1) (k>2) (k> 1) (k> 1) (k>2) (k>2)
. Cc {ay,a;,a3} {a)} {a),ay,a3}| {ay,a,,a3} C {ay,a3,a,}
2 (k=1 (k> 1) (k>2) (k> 1) (k>1) (k>2) (k>2)
wl _ c c c lay, a3, a4} c c
? (k>1) (k> 1) (k> 1) (k> 1) (k> 1) (k> 1)
{a, a5, a3}| {ay,a5,a3})  {a),a,)} C C
T - - k=1 | *>D | k=D | Gz | *G>D
o o o o la, ay. a3} {ay.a5,03)  {as.a,} {as, a4}
s k2D | k2D | k22 | (22
" . . . . . {ay, a3} c c
6 k=1) k=1) k=1)
C C
T B - - - - k=1 | k21D
{ay}
Ys| T - - - - - - (k> 3)

row of w; implies that there are two objects of profile w; and both of them take deci-
sion attribute value v,. Accordingly, the generalized decision attribute value becomes

{v}.

For this decision table, we calculate all .%, reducts for k = 1,2, 3. We may apply

the discernibility matrix defined by (18) with substitution of w; for ;.

The upper

triangular portion of 9%k =1,2,3 is shown in Table 3. Each entry of Table 3 is
composed of a set of condition attributes and the condition of k. It implies that @l.’j‘.(i <
J) takes the set of condition attributes if k satisfies the condition and C otherwise.

From (19), applying absorption laws, we obtain

1
f = (al Vaz)/\(a2Va3)=a2V(a1 /\a3),

2
ff=a AN, Va))A(a3Vay) =(a; Aay)V(a; Aa, Aay),
fP=a Aay,Vay)) Aa, = (a; Aa, Aay) V (a) Aas Aay).

Therefore, we find .%,-reducts and .%,-core for k = 1,2, 3 as follows:

Freducts 1 {a,}, {a,a3}; F-core: @,
Fy-reducts : {ay,a3},{a;,ay,a4};  F,-core: {a,},

Fa-reducts : {ay,ay,a,},{a;,as,a,}; F,-core: {a;,a,}.

(20)
ey
(22)

As shown above, ., -reducts as well as .#,-cores are different by k € {1,2,3}.
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Remark 2 Given a family ¢4 on U, we can define ¢-reducts as follows: A condition
attribute set A is called an ¢-reduct if and only if

(G1) A,(F) = C,(F)forall F € ¥, and
(G2) Ya €A, (A - {a}),(F)# C,(F)forall FEY.

Let %7 be a set of U-reducts. Then (| %% is called the ‘@-core’. A C C satisfying
(G1) is called a ‘¢-superreduct’.

3.2 Set Functions Associated with Reducts

Consider the following set function uQ:

D 14D

Q) =
H=(A) = U] ,

(23)

where uQ is called a ‘quality of approximation’ of partition & and evaluates to what
extent the set of condition attributes clearly classifies the objects into decision classes
(see [5, 26]). L-reducts can be defined by uQ as follows: A C C is an L-reduct if and
only if A satisfies

LD uA) = p(C), and
(L2) Va € A, p%A — {a}) # u?(O).

Because L-reducts can be defined by using p,, we call it an “associated set func-
tion” with L-reducts. For a kind of reduct, the associated set function is not unique.

For example, #i5(4) = logp =  Xisa, it 102 10,661 ) /117 = 10c )] = 1) s
also the associated set function with L-reducts.

Similarly, associated with U-reducts, the following set functions p*P, ,ua are con-
ceivable (see [14, 19]):

Zf_l |U — A*(D))| _ Zu,.eu (p = l0A(u)l)

w(4) = Hi= - : 2
N PR T G- DIV &9
|UI
. 0 ( i):a ( i)
#a(A) — Zl=1 [ Cll:Jl AU ] ) (25)

where [statement] takes 1 if statement is true and 0 otherwise. 4P shows the degree
of specificity and evaluates to what extent the set of condition attributes decreases the
possible classes of objects. On the other hand, u° shows the ratio of objects u whose
generalized decision attribute value d-(u) with respect to C is preserved in that with
respect to the reduced set A C C. Those are not all of associated set functions with
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U-reducts. U-reducts can be defined by 4*® and p as follows: For y = u*®, u°>, A C C
is a U-reduct if and only if A satisfies

(UD) u(A) = u(C), and
(U2) Va € A, u(A - {a}) # u(C).

Associated set functions with .%-reducts can be also considered. The following
set functions are given by Inuiguchi [12, 14]:

erin [ LifA,(F) = C,(F). VF € Z,,
A { 0, otherwise, (26)
P — 104l
A Des, <k— oxu, )
P(A) = Z;ﬁ = eUp = 1wl /. @7
(k_1>IU| <k—1>|U|
9(4) = Zu,-eUk [9c(uy) = 04(u)] %)
Hy = U] s
where we define
U,={u; € U : |0-(u;)| <k} (29)

w is a characteristic function of Z-superreduct. yzp and ul‘z are the generalizations
of u*? and x°. Indeed, we have u,"(A) = u*P(A) and ylf(A) = u’(A) for all A C C,
but we assume k < p — 1. Even when k=p — 1, we have u;[il(A) = u*P(A) and
y}‘j_l(A) = u%A) — |{x e U | |0-(x)] =p}| /|U| for all A C C, where we note that
|[{x € U | |0c-)| = p}| /U] is independent of A C C. Moreover, we have u,"(A) =
#l(A) = u2(A) forall A C C. Forany A C C, u;°(A), 11, (A) and pf)(A) takes a value
between [0, 1] for k =1,2,...,p — 1. Especially when d,(u) = p for all u € U we
have ,u °A) = ZP(A) = y]f(A) =0,k=1,2,...,p — 1,i.e, set functions ,uk s ,uk and
,uk are ‘grounded’ [4].
Slezak [31] defined the following set functions to define approximate reducts:

A 30

8= 151 2 G o
1 1

ey)(A) = |U| W (€29)

hy&) = U| Z log |9, (), (32)

w,€U
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where the base of a logarithm log is 2. Functions g, and A, are related gini index
and non-specificity measure (Hartley measure), respectively (see [21, 31]). e,;(A)
satisfies the following equation:

IR A*F)| AP
e"(A)_l_ﬁ,;Fék( Ul > Gy

We note that 27 = 22’;: |- %] + 2, i.e., the number of subsets of {D.,j = 1,2, ...,p}.

By modifying those functions to be monotonously increasing and zero-normalized
and introducing the size parameter k of generalized decision class, we consider the
following set functions:

¢ 1 < 1 1)

WA = — — -, (34)
k |U| zg l0,(w)l  p
eqy = L 1

4= 57 2, (gare = 51) 33

1
Hi(A) = 77 2, (ogp —log1d, D). (36)
| u, €U,

We note that yf(A) =(p-DHu2@A)/p, Hi{A) = @~ = D) /277! and /‘?(A) =
(log p)u2(A). Moreover, we have ”5_1(A) = 8,(A) = |Ul/p. m;_ (A) = ¢,(A) —
|UI/277" and u)_ (A) = log p — hy(A).

Those set functions, /4,‘:, a € {re,sp,d, g,s, h} are associated set functions with
F,-reduct, i.e., A C U is a .#;-reduct if and only if

(F1(k)) p(A) = uf(C), and
(F2(k)) Ya € A, u/(A — {a}) # [ (C).

We note that set functions, y,‘j ,a € {re,sp,d, g, s, h} are monotonously increasing
with respect to set-inclusion, i.e.,if A} €A, C C, we have p;/(A) < p/(A;). Such a
zero-normalized set function can be seen as a fuzzy measure [24].

Remark 3 Similar to (33), we have

oo U I < A*(F)|  |A(F)| 1
“k(A)‘m<1‘EZZ< T 0] >_F>' 7

j=1 FeZ,
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3.3 Attribute Importance Based on the Associated Set
Functions

Regarding a fuzzy measure y : 2¢ — R as a characteristic function of cooperative
game theory, the attribute importance and interactions are evaluated by the Shapley
value [29] and Harsanyi dividend (called also, Mobius transform) defined respec-
tively as (see [5, 23])

&L ACT-1Al+ ) A
m,(A) = Y (~D"~Flu(B). (39)
BCA

Shapley index Ii ({a;}) called Shapley value shows the average contribution of
a; in p, i.e., the average importance degree of a; in the sense of u. Shapley index
Ii (A) shows the interaction among condition attributes in A. Let A = {a;, a;}, i # .
Fact Ii({ai, a;}) < 0 implies that condition attributes a; and a; are compensative in .
Fact Ii ({a;,a;}) = 0 implies that condition attributes ¢; and a; are additive in u. Fact
Ii ({a;,a;}) > 0 implies that condition attributes a; and a; are synergic in u. Harsanyi
dividends (Mdbius transform) m , (A) shows the additional contribution of a coalition
Ainitself, i.e., the change of importance degree by a coalition A in itself. Especially,
m ﬂ({ai }) shows the individual contribution of condition attribute g; in itself, i.e., the

individual importance degree of a;. Therefore, we have

uA) =Y m,(B), (40)

BCA

where we define mﬂ(ﬂ) = 0. For Shapley value / ”({ai }), we have

Ldah =Y —-m,@). @1)

A:A3q; |A|

Applying this idea to an associated set function, y,’, a € {re, sp,9, g, s, h}, we can
analyze the degrees of attribute importance and interactions in the sense of 4. In
next example, we calculate the degrees of attribute importance and interactions in
decision table given by Table 2.

Example 2 Consider a decision table shown in Table 2. As shown in Example 1,
we obtained {a,} and {a;,a;} as .%,-reducts, {a,,a;} and {a,a,,a,} as .%,-
reducts, and {a,,a,,a,} and {a;,as,a,} as F;-reducts. We have {a,} as .#,-core
and {a,,a,} as Z;-core. We have no .#|-core, i.e., .# -core is the empty set. Set
functions °, 4" and u as well as their Shapley interaction indices and Harsanyi
dividends are shown in Table 4. Set functions Ml‘f , H; and /41’{’ as well as their Shapley

interaction indices and Harsanyi dividends are shown in Table 5.
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As shown in Tables4 and 5, the attribute importance is very different by k& and
by set function. We observe signs of IS (A) and m,, (A) are similar. From Shapley

indices and Harsanyi dividends of {a,,a }L,i#jin uk, a € {cl,0,g,e,h}, we found
that a, is compensative with other condltlon attributes. Therefore, Shapley value (the
average importance degree) I s ({a2 }) is smaller than Harsanyi dividend (individual

importance degree) m,({a, }) On the other hand, a,; and a, are synergic. When k =
1, except p;°, the behav10rs of set function values u{(A), Shapley interaction indices
and Harsanyi dividends with respect to A C C are similar because those set functions
are proportional to 2.

In what follows, we compare mainly Shapley indices 1 Mz({a,-}), i=1,2,3,4
because it is most understandable. From .#, -reducts, we feel that a, is more impor-
tant than a; because a, itself forms an .#,-reduct although a, does not. However,
considering .%,- and .%;-reducts, we found g, is more important because g, is in .%,-
and .%;-cores although a, is not. These facts are well captured by Shapley indices
of a;, i =1,2,3,4 with respect to y,°, k = 1,2,3 as shown in Table 4. When k = 1,
in Shapley index / qs({a 1, a, is four times more important than a, and a5, and a,
is not important at all. When k = 2, in Shapley index /,({«;}), the average impor-
tance degree of a, is significantly increased because it composes .%,-core by itself.
The average importance degree of a, decreases by 0.5833 while those of a; and
a, increase by 0.0833. As the result, a; becomes the most important attribute, a,
becomes the second and a, as well as a, are the least important attributes. The roles
of a, and a, are same in the sense of x;°. When k = 3, in Shapley index /, re({a b, ay
as well as a; become the most important because {a,, a,} is #;-core. a, and a; take
the smallest average importance degree because a; and a, compose an .%;-reduct
with one of a, and a;. The roles of a; and a, are same and the roles of a, and a; are
also same. However, a, and a, are complementary while a, and a; are substitute.
The attribute importance degree is changed significantly by the required precision
level k of classification.

From the viewpoint of the specificity y/ip of the class estimation, the evaluation of
the attribute importance is a little different because it considers the precision of class
estimation for all objects in U. Namely, the value of MZP(A) is evaluated by the sum of
the scores of objects whose classes are estimated to be one of /(< k) possible classes
by A, i.e., objects x € U such that |d,(x)| < k. The smaller |d,(x)|, the larger the
score of x € U. When k = 1, the value of y?p(A) depends on the number of objects
such that their classes are uniquely determined by A. Because a5 itself determines
uniquely the classes of 16.67% of objects in U which is three times more than a, as
shown in 4" values in Table 4. On the other hand, together with a,, a; improves 4"
value as much as a;. As the result, I”;-p({a3 }) is only 1.7 times bigger than I,f]-p({a1 b.
This fact is very different from the evaluation by x|°. When k = 2, the value of u;p A
becomes larger as |d,(x)| < 2 becomes smaller. Because of this fact, a, still takes
the highest average importance degree among «;, i = 1,2, 3, 4. This is different from
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the evaluation by p;°. When k = 3, as the value of y;p(A) is influenced by scores
of objects x such that |d,(x)| = 3, the Shapley index / sz({az}) of a, becomes the
lowest. The Shapley index decreases in the order of a;, a,, as, a,. Similarly to the
evaluation by y7°, a; and a, are more important than a, and a;.

From the viewpoint of generalized decision class preservation ;4,‘3, the evalua-
tion of the attribute importance is further different. When k = 1, the evaluation of
attribute importance is the same as that by the specificity. When k = 2, g, takes the
highest Shapley index. However, the difference of Shapley indices between a; and a,
are not very big. This is very different from the evaluation by 4°. This is also differ-
ent from the evaluation by y;p which implies that a, takes the highest Shapley index
although the differences of Shapley indices from a; and a; are small. When k = 3,
a, takes the highest Shapley index and the differences from the Shapley indices of
other attributes are significantly big. Those results are obtained from the fact that the
evaluation of “Z does not depend on the size of the preserved generalized decision
class |dc(u)| while others except y,° does.

From the viewpoint of a set function y]f related to gini index, the evaluation of
the attribute importance is different again. When k = 1, the evaluation of attribute
importance is the same as that by the specificity and the generalized decision class
preservation but the values are 0.75 times of values in y?p . In this set function, a,
takes the highest Shapley index Iﬂg({ai })amonga;, i =1,2,3,4forallk € {1,2,3}.
When k > 2, the Shapley value (average importance degree) of a, is much smaller
than those of other condition attributes a;, i = 1,2, 3. Attribute a, contributes to
the preservation of some generalized decision classes whose sizes are 2 and 3. The
preservation of big generalized decision classes does not influence very much to y,f
because it is discounted by the inverse number of the size of generalized decision
class.

The behaviors of the Shapley indices with respect to y; is similar to those with
respect to yf although a, does not take the highest Shapley index when k = 3. The
behavior of the Shapley indices with respect to ' is similar to that with respect to u," .
This can be understood from the fact that both set functions evaluate the specificity of
decision attribute value. However, because the contribution of a, in the preservations
of some generalized decision classes is also discounted by logarithmic function, the
Shapley indices of a, are evaluated relatively small values in MZ.

The results in Example 2 imply the following significant fact: to evaluate the
attribute importance we should determine

(1) the required precision of classification, and
(i) in what sense we evaluate the attribute importance.

(1) means the selection of parameter k and (ii) means the selection of set func-
tion, i.e., reducibility, specificity, generalized decision class preservation, gini-index,
etc.
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4 Rule Induction

4.1 The Conventional Approach

The other major topic in rough set approaches is the minimal rule induction, i.e.,
inducing rules inferring the membership to D; with minimal conditions which can
differ members of C,(D;) from non-members, are investigated well. In this chapter,
we use minimal rule induction algorithms proposed in the field of rough sets, i.e.,
LEM?2 and MLEM2 algorithms [8, 9]. By those algorithms, we obtain minimal set of
rules with minimal conditions which can explain all objects in lower approximations
of X under a given decision table. LEM2 algorithm [8] and MLEM?2 algorithm [9]
are different in their forms of condition parts of rules: by LEM?2 algorithm, we obtain
rules of the form of “if f(u,a,) = v,,f(u,a,) = v,, ... and f(u,a;) = v, thenu € X",
while by MLEM2 algorithm, we obtain rules of the form of “if Vi < f(u,a;) < V¥,
v]2~ <f(u,a,) < Vl;, ... and v < f(u,a;) < VR then u € X”. Namely, MLEM2 algo-
rithm is a generalized version of LEM2 algorithm to cope with numerical/ordinal
condition attributes. For each decision class D; we induce rules inferring the mem-
bership of D;. Using all those rules, we build a classifier system as proposed in
LERS [8, 9]. Namely, The classification of a new object « is made by the follow-
ing two steps:

(1) When the condition attribute values of u match to all conditions of at least one
of the induced rules, for each D;, we calculate

S(D;) = 2 Stren(r) X Spec(r), 42)

matching rules r for D;

where 7 is called a matching rule if the condition part of r is satisfied with u.
Stren(r) is the total number of objects in given decision table correctly classified
by rule r. Spec(r) is the total number of condition attributes in the condition part
of rule r. For convenience, when rules for D; are not matched by the object, we
define S(D;) = 0. Then u is classified into D; with highest S(D,). If D; such that
S(Dj) > 0 exists, class D; with the largest S(D,) is selected. However, if class D;
with the largest S(D;) is not unique, class D; with smallest index i is selected
from them and terminate the procedure.

(2) When the condition attribute values of u do not match totally to the condition
part of any rule composing the classifier system, for each D;, we calculate

M(D,) = 2 Mat_f(r) X Stren(r) X Spec(r), (43)

partially matching rules r for D;

where r is called a partially matching rule if a part of the premise of r is satisfied
with u. Mat_f(r) is the ratio of the number of matched conditions of rule r to
the total number of conditions of rule r. Then class D; with the largest M(D;)
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is selected. If a tie occurs, class D; with smallest index i is selected from tied
classes.

Here we note that D; is regarded not only as a subset of U but also as a conclusion
indicating a member of decision class D;.

4.2 Classification with Imprecise Rules

As described above, in the conventional rough set approaches, rules inferring the
memberships to single decision classes have been induced and used to build the
classifier system. However, rules inferring the memberships to unions of multiple
decision classes can be also induced based on the rough set model. We call rules
inferring the memberships to single decision classes ‘precise rules’ and rules infer-
ring the memberships to unions of multiple decision classes ‘imprecise rules’.

Each of imprecise rules cannot give a conclusion univocally while each of precise
rules can give a conclusion univocally. However, if we have imprecise rules for many
kinds of unions, we can give a univocal conclusion. For example, if we have a rule
for D, U D, and a rule for D; U D5 and if a new object satisfy the conditions of both
rules, we know that the objectis in D; U D, and at the same time in D; U D5, and thus
itis in D,. Therefore, many kinds of imprecise rules can work well for classification
of objects.

From this point of view, Inuiguchi and Hamakawa [10, 15, 16] investigated the
induction of imprecise rules and classifier based on imprecise rules. They induced
rules for every F € .%, under fixed k € {1,2,...,p — 1} and build a classifier using
all induced imprecise rules. Here, we note that F' € .%, is regarded not only as a sub-
set of U but also as a conclusion indicating a member of one of k decision classes
Dl-], ,D,-k. We can induce imprecise rules for F € %, k € {1,2,...,p — 1} in the
same way as the induction method for rules about D; (see [10, 15, 16]). Namely,
LEM2-based algorithms can be applied to the induction of imprecise rules. More-
over, in the same way, we can build a classifier by induced imprecise rules.

Two classifiers under imprecise rules for F' € .%, have been investigated. In the
first classifier Cla,, a new object u is classified by the following procedure:

(1) When u matches to at least one of the conditions of the rule, we calculate

S(D,) = 2 Stren(r) X Spec(r), 44)

matching rule
for F 2 D;

where r is called a matching rule if the condition part of r is satisfied with u.
The strength Stren(r) is the total number of objects in the given dataset correctly
classified by rule r. The specificity Spec(r) is the total number of condition
attributes in the condition part of rule r. F is a variable set such that F' € .%,. For
convenience, when there is no matching rules about F 2 D;, we define 8(D;) =
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0. If there exists D; such that S’(Dj) > 0, the class D; with the largest S(D,) is
selected. If a tie occurs, class D; with smallest index i is selected from tied
classes.

(2) When u does not match totally to any rule, for each D;, we calculate

M(D,) = Z Mat_f(r) X Stren(r) X Spec(r), (45)

partially matching
rules r for F 2 D;

where r is called a partially matching rule if a part of the premise of r is satisfied.
The matching factor Mat_f(r) is the ratio of the number of matched conditions
of rule r to the total number of conditions of rule r. Then the class D; with the
largest M (D;) is selected. If a tie occurs, class D; with smallest index i is selected
from tied classes.

In the other classifier Cla,, a new object u is classified by the following procedure:

(1) Forall F € %, we calculate S(F) of (42). Let W = | J{F € %, | S(F) = 0}. If
W = U, goto (3).

(2) We calculate S(D,) for D, such that D, n W = @. The class D, with the largest
S(D,) is selected. If a tie occurs, class D; with smallest index i is selected from
tied classes.

(3) For each D,, we calculate M(D,). Then the class D; with the largest M(D,) is
selected. If a tie occurs, class D; with smallest index i is selected from tied
classes.

In Cla,, D; C W cannot be a candidate of the decision class for u if W # U (W
includes all decision classes). We note that these classification methods Cla; and
Cla, are reduced to the conventional one when k = 1, because F € .%, becomes a
decision class D,.

4.3 Numerical Experiment

We examined the classification accuracy of classifiers CI; and CI, with imprecise
rules by using eight datasets shown in Table 6. Those datasets are obtained from UCI
machine learning repository [35], and consistent, i.e., U =U, = {u € U | |[0(w)| <
1}. For the evaluation, we apply a 10-fold cross validation method. Namely we divide
the dataset into 10 subsets and 9 subsets are used for training dataset and the remain-
ing subset is used for checking dataset. Changing the combination of 9 subsets, we
obtain 10 different evaluations. We calculate the averages and the standard deviations
in number of obtained rules and classification accuracy. We execute this procedure
10 times with different divisions.

The results are shown in Table 7. In column ‘# rules’, the numbers of rules are
shown. In columns ‘Accuracy (Cla;)’ and ‘Accuracy (Cla,)’, the classification accu-
racy scores (%) of classifiers Cla, and Cla, are shown, respectively. Each entry in
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Table 6 Eight datasets

Dataset |U| |C| p =1Vl Attribute type
car 1,728 6 4 Ordinal
dermatology 358 34 6 Numerical
ecoli 336 7 8 Numerical
glass 214 6 Numerical
hayes-roth 159 4 3 Nominal

iris 150 4 3 Numerical
wine 178 13 3 Numerical
700 101 16 7 Nominal

those columns shows the average ave and the standard deviation dev in the form of
ave + dev. Asterisk * and two asterisks xx imply the significant differences from
the corresponding classification accuracy scores of classifiers with precise rules
(k = 1) in the paired t-test with significance levels @ = 0.05 and @ = 0.01, respec-
tively. Scores with superscript asterisks are significantly bigger than those of classi-
fiers with precise rules (k = 1) while scores with subscripts asterisks are significantly
smaller than those of classifiers with precise rules (k = 1). Underline __ and double
underline __ imply the significant differences between classification accuracy scores

of classifiers Cla, and Cla, with same imprecise rules in the paired t-test with sig-
nificance levels ¢ = 0.05 and @ = 0.01, The better scores are underlined.

As shown in Table7, when p = |V,]| is larger than 2, the classification accu-
racy is improved by using imprecise rules except k = p — 1. In attribute reduction,
Z,_,-reducts preserve the classification ability more than other reducts (% -reducts,
k < p —1). From this fact, we may expect the classifier with imprecise rules for
F e ﬁp_l works well although given datasets are consistent. Namely the obtained
results for k = p — 1 are counter-intuitive.

An important issue is the selection of k. The best performed k can depend on the
given dataset. However we cannot know the best performed k in advance, yet. As
far as the results in Table 7 show, the classifiers with imprecise rules for F € %,
with k = p/2 perform well. As k approaches to p/2, the number of possible combina-
tions of k decision classes, i.e., |.%,|, increases. Accordingly, the number of induced
rules attains the maximum around k = p/2. Since we used consistent datasets in the
numerical experiment, having many rules may be advantageous for the classifier in
making robust estimation.

There is no big difference in the classification ability between classifiers Cla; and
Cla,, as far as in Table 7, Cla, is a bit better.

To sum up, classifiers with imprecise rules work well although the number of
rules is increased significantly. This can be understood, even from imprecise rules,
we can obtain a correct conclusion if you have many of them. The big volume of
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Table 7 Classification accuracy (%)

M. Inuiguchi

Dataset k # rules Accuracy (Cla;) | Accuracy (Cla,)
car 1 5722+ 1.74 98.67 +0.97 98.67 +0.97

2 128.02 +3.16 98.96** +0.75 99.16" +0.76

3 69.55 +1.37 99.68™" +0.49 99.57** +0.54
dermatology 1 12.09 + 1.27 9232 +4.42 9232 +4.42

2 61.32 +4.07 94.58** +£3.59 95.72" +£3.15

3 103.58 +6.11 96.03** +3.26 96.40" +3.14

4 77.28 +4.45 95.58" +3.69 95.78** +3.67

5 23.84 + 1.81 91.87 +4.75 88.83,, +5.73
ecoli 1 35.89 +2.03 7752 +£6.21 77.52 +6.21

2 220.67 + 8.93 83.20"" +5.66 83.42"" +5.56

3 565.67 +21.48 84.66"* + 5.64 84.54" +5.75

4 781.36 +28.42 | 84.87 +£5.71 84.84** +5.65

5 617.06 +£23.06 |83.74* +£6.26 83.53" +6.38

6 269.27 +10.5 82.56"* + 6.26 82.76" +6.27

7 54.09 +2.86 78.38 £ 6.70 77.17 £6.71
glass 1 2538+ 1.5 68.34 + 10.18 68.34 +10.18

2 111.40 +4.33 72.57* + 8.81 73.59" +8.77

3 178.35 +5.41 73.44** +£9.19 74.28" £9.93

4 130.14 +4.96 71.16* £ 9.91 72.71" £9.45

5 39.59 +2.18 65.04 o+ 9.96 63.55,, +10.79
hayes-roth 1 23.17 + 1.41 81.38 +7.95 81.38+7.95

2 39.25+22 72,94 +10.42 | 70.81* +10.5
iris 1 740 +£0.72 92.87 £5.52 92.87+5.52

2 8.52+0.78 92.93 +5.32 94.60"" +4.96
wine 1 4.65+0.5 93.25 +5.87 93.25 +5.87

2 7.31 £0.59 88.83,, +7.15 89.15,, £ 6.75
700 1 9.67 +0.55 95.84 + 6.63 95.84 + 6.63

2 485 +2.1 95.55 +7.15 95.74 +6.33

3 105.37 +4.25 96.74* +5.45 96.74* +5.45

4 113.78 +3.74 96.84* +5.22 96.84* +5.22

5 66.76 + 2.69 97.24* +5.07 97.44** +4.97

6 17.72 £ 0.66 96.05 +6.51 96.05 +6.51
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imprecise rules can affect the interpretability of results as well as the computational
time. The reduction of number of rules is investigated in [10, 16].

4.4 Rule Anonymization

When a classifier with rules is used in public, it may be required to unfold the under-
lying rules. The publication of rules makes the classification fair and impartial. How-
ever, by the publication of rule can invade the privacy of individuals if some of rules
are supported only a few objects. Namely, from such a rule, some sensitive personal
data can be revealed. From this point of view, the concept of K-anonymity [34]" has
been investigated. In the case of a rule, the K-anonymity implies that the rule is sup-
ported by at least K objects. However, if we restrict rule adoption to K-anonymous
rules, we will not obtain a sufficient number of rules to perform good classification.
Inuiguchi et al. [17] proposed to use K-anonymous imprecise rules.

The procedure for K-anonymous rule induction proposed by Inuiguchi et al. [17]
is as follows:

(1) Let Z be the set of K-anonymous rules and initialize Z = @. Let [ = 1.

(2) Induce a set .| of precise rules by MLEM?2 algorithm.

(3) Select rules r € .7 satistying Supp(r) > K and put them in Z.

(4) . —Z# # @andl < n,update ] = [ + 1. Otherwise, terminate this procedure.

(5) Define object set B by objects match r € .7} such that Supp(r) < K.

(6) Induce a set .#, of imprecise rules for each possible union F € .%, by MLEM2
algorithm inputting B N F # @ as a set of objects uncovered by presently induced
rules. Return to (3). We note that we skip F such that BN F = @ in this proce-
dure.

In order to examine the performances of this K-anonymous rule induction pro-
cedure, we apply it to eight datasets in Table 6 and compare classifiers with K-
anonymous rules and the classifier with MLEM2 rules. For classifiers with K-
anonymous rules, we use classifier Cla,. By 10 times run of 10-fold cross valida-
tion method described in the previous subsection, we obtain the results as shown in
Table 8. In Table 8, the average av and the standard deviation sd is shown in the style
of av + sd in each cell of table. The underlined numbers are average scores of clas-
sification accuracy obtained by the classifiers composed of K-anonymous imprecise
rules better than those obtained by the classifiers composed of MLEM?2 precise rules.
Asterisk * shown in the columns of classification accuracy of K-anonymous impre-
cise rules stands for the value is significantly different from the case of MLEM2
precise rules by the paired #-test with significance level a = 0.05.

As shown in Table 8, the numbers of K-anonymous rules are smaller than those
of MLEM2 precise rules for K =5, 10 and 15 in datasets ‘hayes-roth’, ‘iris’ and

'We use capital letter K because we already used lower case letter k to show the number of decision
classes to be combined by union.
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Table 8 MLEM2 precise rules versus K-anonymous imprecise rules (from [17])

Data-set MLEM?2 precise rules 5-anonymous imprecise rules
Number of rules | Accuracy Number of rules | Accuracy
car 5722 +1.74 98.67 + 0.97 58.94 +2.64 98.76 + 0.88
dermatology 12.09 + 1.27 92.32+4.42 13.78 + 5.63 92.38 +4.28
ecoli 35.89 £2.03 77.52 +6.21 1343.84 + 123.08 | 82.88*+5.64
glass 2538+1.5 68.34 +10.18 84.61 + 28.87 66.17 + 10.32
hayes-roth 2317 £ 141 81.38 £7.95 18.01 = 1.40 74.56"+ 9.24
iris 7.40 £0.72 92.87 +£5.52 6.53 +0.90 93.07 £ 5.65
wine 4.65 +0.50 93.25 +5.87 4.46 +0.50 93.25 +5.87
Z00 9.67 +0.55 95.84 + 6.63 138.63 +29.08 | 94.55 + 8.00
Data-set 10-anonymous imprecise rules 15-anonymous imprecise rules
Number of rules | Accuracy Number of rules | Accuracy
car 66.48 + 4.19 98.94*+ 0.85 66.26 + 8.75 98.21*+ 1.34
dermatology 30.69 + 18.06 91.73 + 4.80 412 £ 31.14 92.77 +4.74
ecoli 1351.04 + 58.85 |83.68*+ 6.31 1094.66 + 47.43 | 82.48*+ 6.52
glass 25490 £ 17.07 |72.52*+8.76 200.32 + 5.95 70.88 +£9.2
hayes-roth 1425 + 1.44 59.44"+ 16.64 1.90 + 1.46 39.63"+ 12.38
iris 6.87 £ 1.05 93.20 +5.33 5.11+1.03 92.47 £ 6.16
wine 4.09 +0.47 92.92 + 6.06 4.05 £ 0.46 92.92 + 6.06
700 196.08 +14.05 |93.98 + 7.06 198.22 + 9.66 95.17 £ 6.55

‘wine’. This implies that in those datasets, with high probability, no K-anonymous
rules are induced for some of objects in U. Indeed we observed some objects uncov-
ered by induced rules in those datasets. Especially for dataset ‘hayes-roth’, no rule
is induced in some sets of training data when K = 15. We note that any new object
is classified into a default class D, (the decision class of the first decision attribute
value) when no rule is induced. It is very hard to protect the privacy in dataset ‘hayes-
roth’. We also observe that the three datasets ‘hayes-roth’, ‘iris’ and ‘wine’ have only
three classes. This observation can be understood by the following reason. If we
have only a few classes, we obtain a limited number of unions of classes and we
cannot make the unions large enough to have many K-anonymous rules. Although
the classification accuracy scores of K-anonymous imprecise rules are comparable
to those of MLEM?2 precise rules in datasets ‘iris’ and ‘wine’, we find that the pro-
posed approach is not always very efficient in datasets with a few classes. For such
datasets we need a lot of samples to induce a sufficient number of K-anonymous
rules.

On the contrary, the proposed approach works well in dataset ‘ecoli’ having eight
classes. We observe that very many K-anonymous imprecise rules are induced in this
dataset. In datasets ‘car’ and ‘glass’, 10-anonymous imprecise rules perform best. We
observe that the number of rules are most at K = 10 in those datasets. We note that
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the number of rules does not increase monotonously because, as K increases, the
K-anonymity becomes stronger condition while the size of B at (5) of the proposed
method increases. The more the size of B, the more imprecise rules are induced at
(6). Indeed, as k increases, the average number of rules increases in datasets ‘der-
matology’ and ‘zoo’ while it decreases in datasets ‘hayes-roth’, ‘iris’ and ‘wine’.
In other datasets, it attains the largest number at k = 10. In general, except ‘hayes-
roth’, the classifier composed of the rules induced by the proposed method preserves
the classification accuracy of the conventional classification while the induced rules
improve the anonymity.
More investigation of the proposed rule anonymization is found in [17].

5 Concluding Remarks

In this chapter, we described the rough set approaches to decision tables based on
the lower approximations of unions of k decision classes instead of lower approxima-
tions of single decision classes. We demonstrated that significantly different results
are obtained by the selection of k. In attribute reduction and importance, the selec-
tion of k depends on to what extent of imprecision is meaningful/allowable in object
classification. On the other hand, in rule induction, k can be selected about p/2 (a half
of the number of decision classes), because of the classification accuracy of the clas-
sifier. The imprecise rules have applied to privacy protection when the publication
of rules is requested.

In attribute reduction, bigger k preserves more information about classification.
Therefore, we may guess that bigger k is better. On the other hand, in rule induc-
tion, we showed that k around a half of the number of decision classes seems good.
This results are obtained when the proposed approach is applied to consistent deci-
sion tables. Therefore, the analysis of inconsistent decision tables and selection of the
best performed k are conceivable for future topics. Moreover, the proposed imprecise
rule induction method can be improved so as to reduce the number of induced rules
without big deterioration of classification accuracy. The applications and improve-
ments of the proposed approaches as well as the comparison with other multi-class
rule mining methods are other future topics.

Acknowledgements This work was partially supported by JSPS KAKENHI Grant Number
26350423. This chapter is the extended version of [13] with new data and discussions.
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Pawlak’s Many Valued Information System,
Non-deterministic Information System,

and a Proposal of New Topics on Information
Incompleteness Toward the Actual
Application

Hiroshi Sakai, Michinori Nakata and Yiyu Yao

Abstract This chapter considers Pawlak’s Many Valued Information System
(MVIS), Non-deterministic Information System (NIS), and related new topics on
information incompleteness toward the actual application. Pawlak proposed rough
sets, which were originally defined in a standard table, however his research in non-
standard tables like MVIS and NIS is also seen. Since rough sets have been known
to many researchers deeply and several software tools have been proposed until now,
it will be necessary to advance from this research on a standard table to research on
MVIS and NIS, especially in regards to NIS. In this chapter, previous research is sur-
veyed and new topics toward the actual application of NIS are proposed, namely data
mining under various types of uncertainty, rough set-based estimation of an actual
value, machine learning by rule generation, information dilution, and an application
to privacy-preserving questionnaire, in NIS. Such new topics will further extend the
role of Pawlak’s rough sets.

1 Introduction

Rough sets proposed by Pawlak have been known to many researchers, and the con-
cept on a discernibility relation is applied to several research areas [5, 9, 12-14,
17, 23, 30, 31, 40, 41, 44, 49, 50]. We briefly survey the history of rough sets and
non-deterministic information at first.
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In the 1970s, a mathematical framework of information retrieval for a standard
table [20] and relational algebra [6] were investigated. Based on research of the past,
a Deterministic Information System (DIS) y is usually considered for specifying a
standard table [26-29, 41]:

w = (OB,AT,{VAL,| A € AT}, f), (1)

where OB is a finite set whose elements are called objects, AT is a finite set whose
elements are called attributes, VAL, is a finite set whose elements are called attribute
values for an attribute A € AT, and f is a mapping below:

f 1 OBXAT = U, VAL, )

At the beginning of the 1980s, rough sets seem to be defined with respect to
question-answering [20] and relational algebra [6], and Pawlak also dealt with
question-answering and relational algebra in non-standard tables like Many Val-
ued Information System (MVIS) and Non-deterministic Information System (NIS).
Tables 1 and 2 are examples of MVIS [27] and NIS [24]. The keyword ‘nondetermin-
istic information’ [24] is used by Ortowska and Pawlak, and many valued information
[27] by Pawlak. The attribute values are enumerated in Table 1.

In MVIS and NIS, each attribute value is given as a set, and this set is mathemat-
ically defined by a mapping g:

g i OB X AT — 2Maear VALY 3)

Table1l An .example.of OB color
many valued information
system [27]. Each possible X1 blue
color value is enumerated X, blue, red

X3 blue

Xy blue, red

X5 blue, red, green

Xg green
Table 2 An. e>.<ar.np1e of . OB a, a,
nondeterministic information
system [24]. Each attribute D, v, v} {ug, uy, us}
value is a set of possible D, {vy,vs} {u)}
values D, {vi,vs, 4} {uy, uy}

D, {v} {uy, uy}

D {vivs} {u)}

Dg {vs} {u;}
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Table 3 An example of Lipski’s incomplete information database [18]. The age of x, is one of 52,
53, 54, 55, and 56 years old, which is non-deterministic information

OB age depti hireyear salary

X [60,70] {1,--,5} {70, ---,75} {10000}
X, [52,56] {2} {72,---,76} (0,20000]
X3 {30} {3} {70,71} (0, 00)

Xy (0, 00) {2,3} {70, ---,74} {22000}
X5 {32} {4} {75} (0, 00)

For example, MVIS handles such information as that Tom can speak both English
and French by g(Tom, Language) = { English, French} [25]. We employ the conjunc-
tive interpretation for this description. On the other hand, NIS seems to be defined in
order to handle information incompleteness in tables, and we employ the disjunctive
interpretation (more correctly the exclusive disjunctive interpretation). For exam-
ple, we see g(Tom,Age) = {24,25,26} that Tom’s age is not certain but his age is
one of 24, 25, and 26. Based on tables with a mapping g, we can formally consider
information incompleteness in DIS.

A framework of Lipski’s incomplete information databases is known well [18,
19]. Table 3 is cited from [18]. In his framework, the purpose is to realize an actual
question-answering system based on possible world semantics [15]. Lipski proposed
a set of axioms for the equivalent query transformation and a normal form query, and
proved the soundness (a transformed query becomes a normal form query) and the
completeness (a normal form query can be transformed from a query by the set of
axioms) of the set of axioms. This set of axioms is equal to the system S4 in modal
logic [18, 19]. By using this transformation, it is possible to handle a normal form
query for any query. This causes the simplification of the query evaluation procedure,
and reduces the execution time.

Generally, if we employ possible world semantics, it will be necessary to consider
some algorithms for reducing the execution time, because there may be a huge num-
ber of possible worlds. In rule generation described in the subsequent section, the
number of possible worlds may exceed 10'%°. We follow Lipski’s way of thinking,
and consider rule generation based on possible world semantics later.

In the 1990s, the research trend seemed to move from question-answering to data
mining, and rough sets seemed to be employed as the mathematical framework on
data mining. Now, we enumerate research on information incompleteness during this
decade. The complexity on incomplete information and the theoretical aspect includ-
ing logic were investigated by Demri and Orlowska [7]. Then, the LERS system
was implemented by Grzymata-Busse [10—12]. We understand that the LERS system
employs a covering method for a target set, and rules are obtained as a side effect
of the covering. Furthermore, rules in incomplete information systems were defined
by Kryszkiewicz, and reduction algorithms were shown [16, 17]. In two interest-
ing pieces of research, missing values are employed instead of non-deterministic
information, and rules are defined based on some assumptions about the missing
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Our opinion: A chart on
non-deterministic information in rough sets (1970 ~)

(A) Relational database and query management, Fuzzy databases PR i
(A-1) RDB, Null value, Relational algebra, Normal form - 1970~ |
{A-2) IR and mathematical foundation N o 7
— ~
(B) Information incompleteness and query management =‘ 1 980"’ :
(B-1) Incomplete information databases L Wt }
(B-2) Nondeterministic information

™~
(D) Incomplete information and rules jomm———— \
(D-1) Logic for incomplete information ¥ 1990~ :
(D-2) LERS system Bttt skt 4
/ (D-3) Rules with incomplete information \
(D-4) Several variations

(F) Non-deterministic information and rules (E) Variations of rough sets : 2000~ H
(F-1) Possible equivalence classes (E-1) Dominance based rough sets St 1
(F-2) Rule generation with NIS-apriori algorithm (E-2) Decision theoretic rough sets
(F-3) Re-definition of rule generation, definition of rules (E-3) Generalized rough approximation
(F-4) Soundness and completeness of NIS-apriori (E-4) Covering based rough sets

(E-5) Several variations | ERAEE R

1 :\2010'- i

-
{G) Software Tools
{G-1) NIS-apriorii in Prolog and C
(G-2) getRNIA in Python
(G-3) NIS-Apriori in SQL

H) Application of non-deterministic information to other area

H-1) Estimation of the actual value, maximum likelihood estimation
H-2) Learning by rule generation

H-3) Inverse reduction for data security, information dilution

L/

Fig. 1 A chart on non-deterministic information in rough sets in our opinion. The blocks with
broken line show our work. This chart is a revised version in [35]

values. However, we think that non-deterministic information describes more gen-
eral information than a missing value does, because it includes every missing value
as a special case. For example non-deterministic information such that ‘“Tom’s age
is one of 24, 25, and 26’ is expressed by g(Tom,Age) = {24,25,26}. On the other
hand, if Tom’s age is missing, we express it by g(Tom,Age)={0,1,2,---,120} by
non-deterministic information. In rule generation in NIS, we face with the problem
that the number of possible worlds becomes very huge, and we recently showed a
solution for this problem [33, 36].

In the 2000s, we have several variations of rough sets, for example dominance-
based rough sets [9], generalized rough approximations [5], covering-based rough
sets [50], etc. We have also coped with NIS, and surveyed about rough sets and non-
deterministic information [35]. Figure 1 shows our opinion. We are investigating the
issues in the blocks with broken lines.

Here, we have to remark that each author has his major part with respect to NIS
and information incompleteness, for example the first and the second authors’ Rough
Non-deterministic Information Analysis (RNIA) [32, 33, 36], the second author’s
information tables containing possibilistic values, Generalized Discernibility Rela-
tion (GDR), and Twofold Rough Approximations [21-23], and the third author’s
Three Way Decision (TWD), Multi-Granular Rough Sets (MGRS), Decision The-
oretic Rough Sets, etc. [31, 46—49]. Basically, RNIA is research toward realizing the
application software tools, and the second and the third authors’ work is research
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for establishing a new mathematical framework on rough sets. Relying on inter-
disciplinary research the authors cooperate to extend the role of Pawlak’s rough
sets in more depth. In this chapter, the application of RNIA is especially focused
on, and new topics on information incompleteness are proposed toward the actual
application.

This chapter is organized as follows: Sect.2 surveys RNIA and some theoreti-
cal frameworks. Section 3 proposes new topics on information incompleteness, and
Sect. 4 concludes this chapter.

2 Background

This section at first simply surveys RNIA toward the actual application, then
describes the theoretical frameworks of GDR, TWD, and MGRS.

2.1 Background of RNIA

1. In RNIA, we handle NIS like Table 2 and Fig.2. We obtain DIS by replacing
each set in NIS with a value in the set. We call such DIS a derived DIS, and we
see there is the actual DIS in all derived DISs. In Fig. 2, there are 24 (=23 x 3)
derived DISs. The definition of derived DISs is coming from the definition of
the extension by Lipski [18, 19]. Lipski introduced modal logic into incom-
plete information databases by using extensions, and axiomatized the equivalent
query transformation for question-answering.

2. A pair [A;, val;] of attribute A; and its attribute value val; is called a descriptor in
a table, like [color, red] and [size, m] in Fig. 2. For a decision attribute Dec, an
implication 7 : A;[A;, val;] = [Dec, val] with an appropriate property is called
a rule in a table. Namely, any rule consists of descriptors in a table.

Fig. 2 NIS and 24 derived AT — —

DISs [36] D5 ) N O ) (D15, )
color _size | color _size | color _size
1| red 3 1| red m 1|green |
2| red s ses 2| red m v 2 red m
3l red m 3l red m 3| blue m
color size
1 | {redgreen} {s.m,}
2 {red} {s.m}
3 {red blue} {m}
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. In rule generation, we employ the usual definition of a rule in DIS [14, 28, 43,

441, and extended it to a certain rule and a possible rule in NIS below [32, 33]:
(Rule in DIS) An implication 7 is a rule, if = satisfies support(r) > a and
accuracy(r) > f in DIS for the given a and f.

(Certain rule in NIS) An implication 7 is a certain rule, if = is a rule in each
derived DIS for the given a and f.

(Possible rule in NIS) An implication 7 is a possible rule, if 7 is arule in at least
one derived DIS for the given a and S.

. If 7 is a certain rule, we can conclude 7 is also a rule in the unknown actual DIS.

This property is also described in Lipski’s incomplete information databases.
Let us consider Fig. 2. For an implication = : [color, red] = [size, m], threshold
values @ =0.3, and f =0.5, support(r) =3/3>0.3 and accuracy(r) =3/3>0.5 in
DIS,. This means 7 is a rule in DIS, and 7 is a possible rule in NIS. However,
support(t) =1/3>0.3 and accuracy(r) =1/3<0.5 in DIS,, so 7 is not a rule in
DIS, . Thus, it is concluded that 7 is not a certain rule in NIS.

. Here, we give an example on non-deterministic information and missing values.

In Tables4 and 5, there is no information incompleteness except Tom’s age.
Since we generally see that ? may become any possible value, so we may have
an implication [age, senior] = [salary, low] from Tom’s tuple. This contradicts
the implication = : [age, senior] = [salary, high] from Mary’s tuple. Therefore,
7 is not a certain rule in Table 4. However in Table 5, there are two derived DISs,
and 7 is consistent in each derived DIS. Therefore, 7 is a certain rule in Table 5.

. The definition of rules in NIS seems to be natural, and it follows possible world

semantics. However, the number of all derived DISs increases exponentially for
the number of non-deterministic values. For example, there are more than 10100
derived DISs for Mammographic data set and Hepatitis data set in UCI machine
learning repository [8]. So, it will be hard to examine whether 7 is a certain
rule or not, if the trivial algorithm is employed (we sequentially pick up every
derived DIS, and examine whether 7 is a rule or not).

. For this computational problem, we proved some mathematical properties [33,

36], and added these properties to the Apriori algorithm [3, 4]. (The Apriori
algorithm originally handles transaction data sets, however we can consider the
Apriori algorithm by identifying each item in the transaction data with a descrip-
tor in a table.) We named this new algorithm the NIS-Apriori algorithm, which
does not depend upon the number of derived DISs. By using this algorithm, we
provided a solution for escaping from the computational problem. The details
of the NIS-Apriori algorithm are in [33, 36, 40].

. This NIS-Apriori algorithm preserves a logical property, namely it is sound and

complete for the defined rules [37]. If we fix a decision attribute, and two thresh-
old values a and f, the whole set of all certain rules and possible rules is fixed.
For this fixed set, the NIS-Apriori algorithm has the next property:
(Soundness) Each implication generated by the NIS-Apriori algorithm is either
a certain rule or a possible rule. Any other implication is not generated.
(Completeness) Each certain rule and possible rule is obtained by the NIS-
Apriori algorithm.
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Table 4 An example of DIS OB

° o age salary
with a missing value
Tom ? low
Mary senior high
Table 5 An example of NIS OB age salary
Tom {young, middle} {low}
Mary {senior} {high}

10.

In logic, this is seen as the most important property, and this property assures
the validity of the NIS-Apriori algorithm. In Lipski’s framework [18, 19], the
axiomatized query transformation system is also sound and complete.

The analysis on the computational complexity of the NIS-Apriori algorithm is
still in progress. This algorithm consists of two parts, the certain rule generation
part and the possible rule generation part, and the Apriori algorithm is applied
to each part. The calculation on the minimum support, the minimum accuracy,
the maximum support, and the maximum accuracy for each implication = does
not depend upon the number of all derived DISs, and we can calculate them in
polynomial time [33, 36]. Therefore, we figure out that the computational com-
plexity of the NIS-Apriori algorithm is more than twice the complexity of the
Apriori algorithm. However, we can escape from the exponential order prob-
lem by using the NIS-Apriori algorithm. We actually obtained certain rules and
possible rules from tables with more than 10'% derived DISs. It will be hard to
obtain them by using the trivial method.

The set of implications obtained by the NIS-Apriori algorithm is equal to the
whole set of all certain rules and possible rules. This means that it is enough for
us to apply NIS-Apriori algorithm for obtaining rules in NIS. We have imple-
mented some software tools by using this algorithm. On the web page [40], the
files for details and the execution log files are uploaded.

2.2 Background of Theoretical Framework on Rough Sets

Now, we refer to our theoretical framework on rough sets. The framework named
Three Way Decision (TWD) [47] is the most common concept on information
incompleteness. For handling information incompleteness, we often depend upon
the modal concept like certainty and possibility, the minimum and the maximum, or

an

optimistic view and a pessimistic view. Certain rules and possible rules in RNIA

also belong to the framework in TWD.

In NIS, we usually have a huge number of possible tables. For example in Fig. 2,

we have 24 derived DISs, and we have different equivalence relations. In Multi-
Granular Rough Sets (MGRS) [31, 49], the property on different equivalence rela-
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Table 6 Anexemplary table with containing possibilistic information by a possibility distribution.
Each attribute value is given as a set of pairs of a value and it possibility

OB P 0
x {(a,1.0)} {(w.1.0),(z,0.6)}
X {(a,1.0),(b,0.8)} {(,0.4), (x,1.0)}
X3 {(,1.0)} {C, D}

tions is clarified, and an optimistic interpretation (causing the best decision) and
a pessimistic interpretation (causing the worst decision) are proposed by the third
author. In rule generation in RNIA, we employ these concepts, namely a certain rule
is defined by an implication 7 satisfying the constraint in the pessimistic interpreta-
tion for 7. A possible rule is defined by an implication 7 satisfying the constraint in
the optimistic interpretation for z.

We are also focusing on a variation of NIS, for example a table containing with
possibilistic information by a possibility distribution in Table 6. The second author
proposes rough sets in such tables, which we simply call research on Generalized
Discernibility Relation (GDR). We need to apply these theoretical results to the
actual application of rough sets.

3 New Topics on Information Incompleteness

In the previous research, we focused on how we obtain certain and possible rules
in NIS. Since we gave a solution for rule generation in NIS, we think that it will be
able to cope with next new topics in Fig. 3, which will extend the role of rough sets
and information incompleteness. We sequentially describe the new topics based on
Fig. 3.

Fig. 3 An overview of new DIS, NIS, Data mining in various types of data, Estimation of
topics the actual value, Machine learning by rule generation,
Information dilution, and Privacy-preserving questionnaire

(2 Estimation of the DIS
actual value, Normal table
(3 Machine learning by = -
rule generation @ Information
dilution
RNIA

Data mining,
Decision support, N IS s
NIS-Aprior, Table with () Privacy-
RNIA in Prolog information preserving
getRNIA in Python incompleteness | | uestionnaire
NIS-Apriori in SQL

() Various types of data
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3.1 Handling Various Types of Uncertain Data

This subsection considers rule generation from various types of uncertain data in
Fig. 3.

In NIS, we employ variations inf([A, val]) and sup([A, val]) of an equivalence
class eq([A, val]) for each descriptor [A, val] below [32, 33]:

(1) inf([A, val]) = {x € OB | g(x,A) = {val}},

2) inf(N[A;, vali]) = 0y inf([A;, val;)),

(3) sup([A,val]) = {x € OB | val € g(x,A)}, @
4) sup(N[A;, val;]) = n; sup([A;, val,]),

Here, g is a mapping in formula (3).

In DIS, inf([A, val]) = sup([A, val]) holds, however inf([A, val]) C sup([A, val]) gen-
erally holds in NIS. For example in Fig.2, inf([color, red]) = {2} and sup([color,
red])={1,2,3} hold. The difference in sup([A, val]) \ inf([A, val]) means a set of
objects which may be changeable.

For an implication 7 : A;[A;, val;] = [Dec,val], we consider sets inf (A;[A;, val;]),
sup(N[A;, val]), inf([Dec, vall]), and sup([Dec, val]). Then, OUTACC in formula (5)
shows a set of objects which may have the same condition of = and different deci-
sions of 7.

OUTACC = [sup(A[A;, val]) \ inf(ANJ[A;, val )] \ inf([Dec, val]) ®))

To reduce the accuracy value, we manipulate each object in OUTACC. On the other
hand, INACC in formula (6) shows a set of an object which may have the same
condition of 7 and the same decision of 7.

INACC = [sup(A[A;, val,]) \ inf (A [A;, val,])] 0 sup([Dec, vall) (6)

For increasing the accuracy value, we manipulate each object in INACC [33, 36]. In
NIS, these sets inf([A, val]) and sup([A, val]) take an important role instead of the
equivalence class eq([A, val]) in DIS.

Referring to Fig. 4, the block with the broken line shows the procedure in the
NIS-Apriori algorithm. For a given NIS @, we obtain descriptors occurring in @
and two sets inf and sup for each descriptor by formula (4). Namely, the descriptors
and two sets inf and sup are essential in rule generation. Therefore, if we define
the descriptors and two sets inf and sup in any type of data sets, we can apply the
NIS-Apriori algorithm to these data sets.

In Fig. 5, if we obtain descriptors and two sets inf and sup, even in the different
tables and plotted data, we are able to consider rules based on the different tables. Let
us consider tables T; and T,. Since the set of objects in T, and the set of objects in
T, may not be the same, we generate rules based on a set OB(T;NT,) of all objects,
which occur in T; and T,. We can also consider a set OB(T,NT, n --- NT,,) for tables
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Fig. 4 Inf and sup
information in NIS-Apriori
algorithm

Fig. 5 Unified
Apriori-based rule
generation for various types
of uncertain data

descriptor
[A,val]

inf([A,val])
sup([A,val])

: NIS-Apriori
. | rule generator

Tables with different

schema
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inf([A.a]) inf([B,b]) '
sup([Aa])

sup((B.b)) |
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Any other data set

- Various types of

: uncertain data sets,
: Different schema,
i Heterogeneous DB

Specification:
; descriptors,
) | resolution, etc.

-~

Rules are expressed by

A table and plotted data

A e
Ao
x| ol | o
Y RS
inf([A,a]) inf([Class,b])
sup([A.a])

| | sup(Class,b])

-

Objects in various types of uncertain data

[A,a]=[B,b], [A,a]=[Class,b] (x: object, primary key)

~

the specified descriptors
. _.’

T,, T,, ---, T,. Each element in OB(T,NT, n --- NT,,) takes the role of the primary
key. In plotted data, probably each cluster center will take the role of a descriptor.
Using this concept, we are able to handle not only table data sets but also any types

of uncertain data.

3.2 Rough Set-Based Estimation of an Actual Value in NIS

This section considers rough set-based estimation of an actual value in NIS. As for
estimation, we know statistical estimation, and we focus on the strategy of the max-
imum likelihood estimation (MLE) [1]. The idea is that ‘A sample value is obtained,
because its probability is high’. In MLE, at first we obtain a set of sample values,
and we estimate some parameters in a distribution function so as to maximize the
probability of the set of sample values.
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Based on MLE, we propose rough set-based estimation. Even though we need
some details for this proposal, we show an example in the next subsection. Thus,
here it will be described in brief. In certain rule z,,,,,, generation, a derived DIS

¥ in (Pmin may not be unique) which causes 7,,,,,;, is implicitly fixed. For z,,,,,i,»
we also obtain aderived DIS¥, ... (¥,  maynotbeunique). In¥, . . .,

is the most reliable rule,
as many as possible.

Teorain 1S Obtained as a possible rule [33, 36]. Since Teortain

we should estimate each attribute value so as to cause 7,4y,

This follows the strategy by MLE. Namely, we estimate ¥,,,, . from NIS based
ON T,,,,n- We name this estimation Rough set-based estimation of actual values.

It will also be possible to consider constraints like the equivalence classes, data
dependency, and consistency. In each constraint, we have a set M, (y: constraint) of
estimated DISs, and we estimate the actual DIS as an element of nyM},. In this case,
the estimation will be dealt with as the constraint satisfaction problem [45].

3.3 Machine Learning by Rule Generation

This subsection extends the estimation concept in the previous subsection to Machine
Learning by Rule Generation (MLRG) as seen in Fig. 6. We have just proposed this
framework [38], and we show an example in this subsection.

Even though Table7 is a toy example, it will be easy to know the framework
of MLRG. In Table 7, there are 144 (=2* x 32) derived DISs. At first, we fix the
thresholds @ to 0.3 and g to 0.6, and the NIS-Apriori algorithm generates every
certain rule 7 satisfying support(r) > 0.3 and accuracy(z) > 0.6 in each of the 144
derived DISs. The following is a part of the log file.

CR(i): A set of certain rules in NIS @i,
PR(i): A set of possible rules in NIS @i,
CR(1)CCR(2)C ::: CCR(k)=PR(k)CPR(k-1)C : : : CPR(1),

DIS y,: Estimated DIS from @1,
CR(k)=PR(k): Learned rules from ®1.

Fig. 6 An overview of machine learning by rule generation [38]
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Table 7 An exemplary NIS

object age dept. smoker salary
x1 {young} {first} {yes} {low}

x2 {young, senior} | {first, second, third} {yes} {low}

x3 {senior} {second} {ves,no} {high}
x4 {young, senior} | {second} {no} {high}
x5 {young} {first, second, third} {yes,no} {high}
x6 {senior} {third} {no} {high}

Table 8 NIS in step 2

object age dept. smoker salary
x1 {young} {first} {yes} {low}
x2 {young} {first, third } {ves} {low}
x3 {senior} {second} {no} {high}
x4 {senior} {second} {no} {high}
x5 {young} {second} {no} {high}
x6 {senior} {third} {no} {high}

File=salary2016.rs Support=0.3, Accuracy=0.6
===== 1st STEP ==========================================
===== Lower System =========================s============
[4] [age, senior]=>[salary,high] (0.333,0.667) Objects:[3,6]
[6] [dept, second]=>[salary,high] (0.333,0.667) Objects:[3,4]
[10] [smoker,nol=>[salary,high] (0.333,1.000) Objects:[4,6]
The Rest Candidates: [[[3,1]1,[4,11]]
(Lower System Terminated)

Based on the execution log, we see a certainrule 7, : [smoker, no] = [salary, high]
is the most reliable implication, because the pair (0.330,1.000) of values is better. In
order to create 7, as many as possible based on the MLE strategy, we estimate no
from both g(x3, smoker) = {yes,no} and g(x5, smoker) = {yes,no}. Then, we con-
sider a certain rule 7, : [age, senior] = [salary, high]. In order to create 7, as many
as possible, we estimate senior from g(x4, age) = {young, senior}. On the other hand,
we estimate young from g(x2, age) = {young, senior} so as not to make a contradic-
tion. Like this we obtain a new NIS in Step 2 (Table 8).

For Table 8, we fix the thresholds a to 0.1 and g to 0.4, and the NIS-Apriori algo-
rithm generates certain rules. The following is a part of the log file.

File=salary2016 (STEP2) .rs Support=0.1, Accuracy=0.4
===== 1lst STEP

===== Lower System ===================sSs==sSssS=S=======s==s
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Table 9 An estimated DIS from NIS

object age dept. smoker salary
x1 young first yes low
x2 young first yes low
x3 senior second no high
x4 senior second no high
x5 young second no high
x6 senior third no high

[1] [age,young]=>[salary,low] (0.333,0.667) Objects:[1,2]
[4] [age, senior]=>[salary,high] (0.500,1.000) Objects:[3,4,6]
[5] [dept, first]=>[salary,low] (0.167,1.000) Objects:[1]
[8] [dept, second]=>[salary,high] (0.500,1.000) Objects:[3,4,5]
[10] [dept, third]=>[salary,high] (0.167,0.500) Objects:[6]
[11] [smoker,yes]=>[salary,low] (0.333,1.000) Objects:[1,2]
[14] [smoker,no]=>[salary,high] (0.667,1.000) Objects:[3,4,5,6]
The Rest Candidates: [[[1,11,[4,2]1]]
(Lower System Terminated)

Based on the execution log, we focus on z5 with (0.167,1.000) and 7,, with
(0.167,0.500). Since 75 has a better minimum accuracy value, we try to fix attribute
values so as to generate 7s; as many as possible. Thus, we estimate first from
g(x2, dept) = {first, third}, and we estimate one DIS in Table 9 from 144 DISs.

In MLRG, NIS recognizes certain rules by itself after rule generation. NIS tries
to create certain rules as many as possible. In this process, non-deterministic infor-
mation is fixed to one value, and NIS repeats this process by reducing the threshold
values a and f sequentially. In order to obtain new certain rules, it will be necessary
to reduce these threshold values. The selection of the threshold values will strongly
cause the result by MLRG, and we need to consider what selection of the threshold
values is proper in MLRG.

We have proposed MLRG, whose concept comes from the maximum likelihood
estimation. Even though it will be impossible to know the actual value for non-
deterministic information [18, 19], we think that MLRG will give us a plausible
estimation.

3.4 Information Dilution

We consider generating NIS from DIS intentionally in Fig. 3. We add noisy infor-
mation to DIS, and generate NIS for hiding the actual information. NIS @ is seen as
a diluted DIS y, and we can hide the actual values in y by using @. We name this
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Reduction
DIS : 1. Wedilute DIS to
(Actual data) \ NIS, keeping the
same rules.
—— 2. NIS does not
Dilution Rules show the actual

data.
/ 3. Applicable to Data
hiding, privacy-
NIS

preserving
(Diluted data) NIS-Apriori

Fig. 7 Formalization of information dilution with constraint cited from [34]

Table 10 An exemplary DIS
4

S

[c-REEN RN NNV RN R S

N =[N W= || W
BN RN = = | = | = =y
D= =N == =0
l\)l\)l\)»—‘v—wv—‘»—‘@

method of hiding Information Dilution by non-deterministic information as seen in
Fig.7. We are going to apply this idea to data hiding and privacy-preserving [2].

Reduction is one of the most important concepts in rough sets, and we remove
any redundant information from each table by reduction. Pawlak’s original reduction
is defined by preserving the consistency of a data set [28], and this is extended to
reduction with the preservation of lower and upper approximations [13], etc. On the
other hand, in dilution we add some noisy information to some attribute values. We
may say that dilution is inverse-reduction, and we consider a constraint that each rule
in DIS is obtained as a possible rule in NIS in Fig. 7.

Here, we consider rules defined by support(z) > 0 and accuracy(z) = 1.0 in DIS
¥. Although we omit the details of the dilution algorithm, the set of rules in ¥
(Table 10) is equal to the set of possible rules in @ (Table 11). Namely, @ is a diluted
NIS from DIS ¥ with preserving the same rules. The details of this example are in
[34]. As for dilution, even though we have shown such examples, further research is
now in progress. Information dilution will also be the next topic in rough sets (Fig. 7).
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OB A B c D
1 (3} (1,2} (1,2} {1}
2 (2} {1 {1} {1}
3 {1.2,3} {1} {1} {2}
4 {1,2,3} {1} (2} {1}
5 {1,2,3} {1,2} {1,2} (1,2}
6 {2} {1.2} {2} {2}
7 {1} {1,2} (1.2} {2}
8 {1,2,3} {2} {1,2} {2}

Rule generation from DIS and NIS

- o Merit: to know the precise rules and tendency
< Respondent Demerit: to employ the privacy-preserving method

Xy ‘\\‘

deterministic

Possible Rules in @

Rules in

Aset of all
[% |— o & derived DISs
1o / non-deterministic
E (proposing questionnaire)
Merit: to ignore the privacy-preserving method
Demerit: to know the vague rules and tendency

Fig. 8 A chart on a privacy-preserving questionnaire

3.5 Application to a Privacy-Preserving Questionnaire

Let us consider rule generation from DIS and NIS in Fig. 8. We have implicitly coped
with the block with the broken lines, namely DIS and NIS are given. For given NIS,
we investigated how we generate rules in order to know the tendency and the property
of a data set.

Now, we consider the application of NIS to the privacy preserving questionnaire,
which consists of three-choice question or multiple-choice question. In question-
naire, we may respond personal information, which the organizer of the question-
naire should deal with safely. However, there are several cases of information leaks,
so it is necessary for the organizer to pay attention to such questionnaire.

If we answer ‘either A or B’ instead of the actual choice A, we intentionally
dilutes our choice. This will be the similar concept on the 2-anonymity [2], and non-
deterministic information will be desirable for preserving each respondent’s informa-
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tion. Since we can generate rules from NIS now, we can consider this new question-
naire in Fig. 8 [39]. In the usual case, the actual table ¥ is obtained, and the organizer
acquires the tendency of all respondents by using rules in ¥'. On the other hand in
our proposal, ¥ is diluted to one DIS in all derived DISs from @&, and the organizer
knows the tendency by using certain and possible rules. For knowing the tendency of
respondents, ¥ will be more suitable than @. However, @ is more suitable than ¥ for
information security. Like this non-deterministic information will take an important
role in information security, and we propose the next questionnaire.

(A privacy-preserving questionnaire) Usually, each respondent answers one choice
from the multiple-choice question. However, each respondent may answer non-
deterministic information like ‘either A or B’ from the multiple choices, if the ques-
tion is inconvenient for him. It is possible to know the tendency of all respondents
by using certain rules and possible rules in @. Even though rules in @ may not be
clearer than rules in ¥, @ is more suitable than ¥ for data security.

4 Concluding Remarks

This chapter surveyed rough sets and non-deterministic information, and consid-
ered the topics related to non-deterministic information toward the actual applica-
tion. Recently, we realized the software tool NIS-Apriori in SQL [40, 42], which is
implemented by the procedures in SQL. The environment for analyzing NIS is get-
ting better, so we will be able to cope with proposing topics on NIS. We think such
topics on NIS will further extend the role of Pawlak’s rough set.
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From Information Systems to Interactive
Information Systems

Andrzej Skowron and Soma Dutta

Abstract In this chapter we propose a departure from classical notion of informa-
tion systems. We propose to bring in the background of agent’s interaction with
physical reality in arriving at a specific information system. The proposals for gen-
eralizing the notion of information systems are made from two aspects. In the first
aspect, we talk about incorporating relational structures over the value sets from
where objects assumes values with respect to a set of attributes. In the second aspect,
we introduce interaction with physical reality within the formal definition of infor-
mation systems, and call them as interactive information systems.

1 Introduction

Professor Zdzistaw Pawlak published several papers [8-14, 16, 18-24, 26, 27] as
well as a book (in Polish) [25] on information systems (see Figs. 1, 2, 3 and 4). The
first definition of information systems, as proposed by him, appeared in [18, 19].

An information system was defined as a tuple consisting of a finite set of objects
and a set of attributes defined over the set of objects with values in attribute value
sets. More formally, an information system is a tuple

IS= WU, Af, - U=V} eor): (1)
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This note contains a simple mathematical
formulation of basic ideas concerning information
retrieval and its computer implementation. The
presented theory is based on the results in [1], [2],
and [3].

1. Descriptive systems
By a descriptive system we mean a triplet

D=<Ay,%,,6,>
(or briefly D=<4,%,5>), where

A —is a (finite or infinite) set; elements of A
are called objects of D,

X - is a finite set of symbols; elements of X
are referred to as elementary descriptors
ofD,

8 cAxX— is a binary relation, called
description relation (or description)inD.
Relation § may be replaced by the function:
(X2
such that: vt
w(x)={acA:5(a,x)}.

Fig. 1 The first papers on information systems by Zdzistaw Pawlak [18, 19]
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where

« U is a finite set of objects,

» o/ is a finite set of attributes,

« any attribute a from &7 can be characterized as a function f, from U to a value set
V, corresponding to a.

In the mentioned papers and in the book, Pawlak investigated different kinds of
information systems such as deterministic, nondeterministic, information systems
with missing values, probabilistic, stochastic as well as distributed. From the point
of view of rough sets, information systems are used for constructive definition of
indiscernibility relation. Then the indiscernibility or similarity classes can be tuned
to relevant ones (in order to get relevant indiscernibility classes, also called elemen-
tary granules), e.g., by selecting or extracting relevant attributes. On the basis of
information systems (as data sets) data models are induced using different methods,
in particular based on rough sets.

In this chapter, we propose some generalizations of information systems.
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First we will consider a bit more general definition of the value sets for attributes.
In particular, together with the value set V,, for any attribute a, we will also consider
a relational structure %, over V,. These %,’s are not restricted to the case of the
relational structure consisting of only the equality relation on V,’s, as it was origi-
nally considered by Pawlak. More general cases can include a linear order over V,, as
well as more complex relations with arity greater than 2 [34]. Together with the rela-
tional structure %, we consider a language .Z, of formulas defining (under a given
interpretation over %,) subsets of V,. It is to be noted, that such formulas can be
obtained from formulas with many free variables by substituting a constant for each
of them except one. Some relevant formulas from this set of formulas become useful
as they can play a role in inducing data models. For example, one can consider an
attribute with real values and formalize a discretization problem. In this case for any
real-valued attribute ¢ we can consider a set of formulas {x € [c,d]}, where X is a
free variable corresponding to the attribute a taking real values and c, d are constants
defining an interval. Then we search for a minimal set of such formulas discerning
in the optimal by decisions labeling the attribute values and defining the partition of
the real numbers [15]. Another example may be related to the dominance rough set
approach (see, e.g., [3, 35]), where linear orders are considered on attribute value
sets.

In this chapter, we also introduce a network of information systems over such
generalized information systems. This is done analogous to the notion of informa-
tion flow approach proposed by Barwise and Seligman [1, 32, 33]. However, first
we consider different kinds of aggregation of relational structures corresponding to
attributes from a given set of attributes A. Then we define a set of formulas .Z which
can be interpreted over such relational structures. In this context, one may introduce
relations with many arguments. Discovery of such kinds of relevant relations, based
on purpose, is the task of relational learning [2].

Our final stage of generalization of information systems concerns of interactions
of information systems with the environment. This issue is strongly related to the dis-
cussed interactive granular computations (see e.g., [4—7, 28-31]), where information
systems are treated as open objects, which are continuously evolving based on the
interactions with the environment. This extension can be used as a basis for develop-
ing Perception Based Computing (PBC) [17, 36] and for developing the foundations
of Interactive Granular Computing (IGrC) [4-7, 28-31].

The chapter is structured as follows. In Sect. 2, we first discuss the roles of rela-
tional structures over the value sets corresponding to attributes of an information sys-
tem. We present different examples to elucidate the fact that aggregation of such rela-
tional structures plays an important role in representation and granulation of data of
an information system, which often contains huge and scattered data. Section 3 intro-
duces the notion of interactive information system as a generalization of the notion
of IS (cf. Eq. (1)) presented at the beginning of this chapter. In the last section, as
concluding remarks, we add some discussion regarding incorporation of some other
finer aspects of interactive information systems.



From Information Systems to Interactive Information Systems 211

2 Role of Relational Structures in Aggregation
of Information Systems

Depending on purpose we need to gather information of different nature, such as
images of some object as well as quantitative values for some features of the same
object, together in order to make an overall understanding about the object. So, values
corresponding to different features as well as the intra-relational structures among
the values become important. The aim of this section is to present different kinds of
aggregation of relational structures, which we need to perform in order to aggregate
information collected from, and for, different perspectives.

The chapter is organized so that, in one aspect we would talk about relations over

the value sets of the attributes of an information system, and in another aspect we
also would like to address the issue of the relational objects lying in the real world,
about which we only able to gather some information through some attributes and
their values. This aspect of real world will be discussed in the next section where
we propose to introduce interaction with physical reality in the process of obtain-
ing an information system. A physical object o, being in a complex relation with
other objects in the real physical world, sometimes cannot be directly accessed. We
sometimes identify the object with some of its images or with some of its parts or
components, and try to gauge information about the object with respect to some
parameters. One possible way of measuring the real state of an object through some
other state is proposed through the notion of complex granule in [4—7, 28-31]. Here
we will address this introducing a notion of infomorphism in the line of [ ], and call
that interaction with physical reality. In this section, we only stick to the relations
among the values of attributes using which we learn about objects in the physical
world. Let us start with some examples in order to make the issue more lucid.
Let <7,,., = {a, b, c} be aset of attributes representing respectively length, breadth,
and angle between two sides of a rectangle. Clearly, a and b are of the same nature
and can assume values from the same set, say V,, = [0, 300] in some unit of length,
and be endowed with the same relation <. Let us call the relational structure over the
values for the attribute a as Z, = (V,, <), which is same as %, too, in this context.
Let V, = [0°,180°] and %, = (V.,=). Now we can construct a language .Z, , (cf.
Table 1).

Table 1 Language %, ,

Variable: x;

Constants: any value from V,

Function symbol: a, b

Relational symbol: <

Terms: (i) Variable and constants are terms (ii) a(x;) and b(x,) are terms
Examples of wifs: b(x;) < a(x,) is an atomic wff
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Table 2 Language .Z.

Variable: x;

Constants: any value from V,

Function symbol: ¢

Relational symbol: =

Terms: (i) Variable and constants are terms (ii) c(x;) is a term
Examples of wifs: c(x;) = 90° is an atomic wff

In particular, we may call b(x,) < a(x,), which represents breadth of x, is less
or equal to the length of x,, as ¢;,(x;). Considering that the variable x, is ranging
over a set of objects, say &, values from %, = (V,, <) can be assigned to a(x,), b(x,),
and thus the semantics of .Z, , can be given over the relational structure %,. In the
similar way we can have the language 7., semantics of which can be given over the
relational structure %, (cf. Table 2).

Before passing on to the next table for .Z,, it is to be noted that, the values of
terms a(x,), b(x,), belonging to V, and V, respectively, are obtained by some agent
ag observing a complex granule (c-granule, for short) [4—7, 28-31] grounded on a
configuration of physical objects. Relations among the parts of the configuration can
be perceived partially by the c-granule through a(x, ), b(x,). Some objects in the con-
figuration have states which may be directly measurable, and those can be encoded
by elements of V, and V,. They can be be treated as values, e.g., a(x,), b(x,) of the
example, under the assumption that they represent states of one distinguished object
o in the configuration. They considered as a current value of x,, identified by some
mean with 0. However, the states of 0 may not be directly measurable. Information
about not directly measurable states may be obtained using relevant interactions with
physical objects pointed by the c-granule, and making it possible to transmit infor-
mation about such states and encode it using measurable states. In this chapter we
represent interactions of agents with the physical reality using infomorphisms [1].

Like previous case, here also we can assume ¢,(x;) as the formula c(x;) = 90°,
which represents angles between two sides of x; is 90°. So, we have two relational
structures, namely Z, = (V,,, <) and Z, = (V,,, =), on which respectively the formulas
¢, (x;) and ¢, (x,) are interpreted with respect to the domain of interpretation of x;,
which can be considered as a set of objects. The value of the term c(x, ) is obtained in
an analogous way as mentioned before for a(x, ), b(x;). Now, the question arises how
can we combine these two relational structures to gather information about whether
an object is rectangle or not. Here, as the attributes a, b, c are relevant for the same
sort of objects, we may simply extend the language combining all the components
of £, , and .Z, together (cf. Table 3).

In %, instead of relational symbols < and =, one can also consider a new three-
place relational symbol rf such that r?(a(xl), b(x,), c(x;)) holds for some object from
the domain of x; if b(x;) < a(x;) (i.e., ¢;,(x))) is true over Z, and c(x,) = 90° (i.e.,
¢1,(x;)) is true over Z,. So, assuming a set of objects as the domain of interpretation
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Table 3 Language .Z),,: combination of .Z, , and .Z,

Variable: x;

Constants: any value from V, U V,

Function symbol: a, b, ¢

Relational symbol: <, =

Terms: (i) Variable and constants are terms (ii) a(x,), b(x,), c(x,) are terms
Examples of wifs: b(x;) < a(x;), c(x;) = 90° are atomic wifs

Table 4 Language .Z,,;: combination of .Z; and .Z,
Variable: x,

Constants: any value from V, UV,

Function symbol: d, e

Relational symbol: <, <

Terms: (i) Variable and constants are terms (ii) d(x,), e(x,) are terms
Examples of wifs: d(x,) = 1, e(x,) = 180° are atomic wifs.

for x,, this new language .Z,,, can be interpreted over the combined relational struc-
ture %,y = (Vperr {<,=1), where V., = V, U V.. We may call rf(a(xl), b(x,), c(x;))
as ¢y3(x)).

Let us consider another context where the attributes are relevant for a triangle-
shaped object. So, we consider <7,; = {d, e}, where d stands for three-sided and e
stands for sum of the angles. Again the relational structures suitable for the values of
the attributes are respectively Z,; = ({0, 1}, <) and Z, = ([0°, 180°], <). It is to be
noted that < is the same relation as that of the real numbers (i.e., <). We use different
symbol in order to emphasize that the values relevant for d and e are of different
types. Now as shown in the previous case, we can construct different languages over
the different relations from %, and %,, and combining them together we can have
the language .Z),; (cf. Table 4).

In this context too, in .Z,;, instead of two relation symbols <, <, one can take
a two-place relation symbol r% such that for some object from the domain of x,,
r?(d(xz), e(x,)) holds if with respect to that object d(x,) =1 and e(x,) = 180° are
true over Z%,,; = (V,;, {<,<}) where V,; = V,U V,. As above, r%(d(xz), e(x,)) may
be called ¢,5(x,), where the values of d(x,) and e(x,) are obtained in an analogous
way as before.

In the above two cases we have obtained the extended relational structures %,
and Z,,; by combining the respective relational structures for each attribute from
2,,., and 7, .. In some context, we need to gather information about objects whose
domain consists of tuples of elements of different natures. As an example we can
consider a situation where we need to collect information about objects which are
prisms with rectangular bases and triangular faces. So, we need to have a language
over o/ = 4, U &, and contrary to the earlier cases of combining languages here

rect Ti?
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Table 5 Language .%,,,,,: aggregation of .Z,, and .Z,;
Variable: x = (v,7)

Constants: any value from V,,., U V,;, x|, X,, and ¢3(x;), ¢3(x,)

Relational symbol: 7, r,;
Terms: (i) Variable and constants are terms
WHES: 71 ((x1, %), @130x1), 721 (X1, X,), Pp3(x,)) are atomic wifs

we need to aggregate information of two different languages .Z,,., and .Z,,; with
different domains of concern focusing on different parts of an object. In this context,
we would construct the language -Z,,,;,, one level above the languages £, and
Z,;» and the variables, constants, and wifs of those languages will be referred to as
constant 