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Preface

It is the 10th anniversary of the death of Prof. Zdzisław Pawlak, the father of rough
set theory, in 2016. He set up the rough set theory in 1982, which has become one
of the major theories for processing uncertain information.

As Prof. Lotfi A. Zadeh said, Prof. Pawlak was a great scientist and a great
human being. He entered science history as not only the father of rough set theory,
but also as the designer of the first grammar of DNA, the precursor of mosaic and
picture grammars, the inventor of the digital computer based on -2 system and a
random numbers generator. Besides these great scientific achievements, he was a
very warm, cordial man, demanding but fair, and a man of many talents and
interests, a painter, a poet, an ardent tourist, a craftsman, a truly renaissance man.

In observance of the 10th anniversary of his departure, the International Rough
Set Society (IRSS) organized two special memorial sessions commemorating him
in 2016, that is, the plenary panel on the legacy of Prof. Zdzisław Pawlak at
FedCSIS’16, September 11–14, 2016, and the special memorial session for Prof.
Pawlak at IJCRS2016, October 7–11, 2016. Polish Information Processing Society
under the auspices of the Institute of Computer Science at Warsaw University of
Technology organized a special session celebrating the 90th anniversary of birth of
Prof. Zdzisław Pawlak on December 6, 2016. Moreover, a special plenary session
celebrating the 35th anniversary of the pioneering work on rough sets by Prof.
Zdzisław Pawlak will be held at IJCRS’17, in Olsztyn, Poland, July 3–7, 2017.

In addition to these special sessions, IRSS is going to publish this special
memorial book entitled “Thriving Rough Sets: 10th Anniversary—Honoring Pro-
fessor Zdzisław Pawlak’s Life and Legacy & 35 years of Rough Sets”, in 2017.

This book includes 20 chapters. They are divided into four sections, that is,
historical review of Prof. Zdzisław Pawlak and rough set, review of rough set
research, rough set theory, and rough set-based data mining.

The first part of this book is about the historical review of Prof. Zdzisław Pawlak
and rough set. In Chapter “The Born and Growing of Chinese Rough Set
Community with Help of Professor Zdzisław Pawlak”, Prof. Guoyin Wang intro-
duces the history of the born and quick growing of Chinese rough set community
with the help of Prof. Pawlak. China is becoming a very active country in the field
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of rough set theory. In Chapter “Zdzisław Pawlak as I Saw Him and Remember
Him Now”, Prof. Lech Polkowski sums up his experiences of working and living
with Prof. Pawlak, shares what he knows about him, and introduces some less
known achievements of him. In Chapter “Recent Development of Rough
Computing: A Scientometrics View” by JingTao Yao and Adeniyi Onasanya, the
authors use scientometrics approach to quantitatively analyze the contents and
citations of rough set publications. They find some interesting results in key indi-
cators between 2013 and 2016 results. Their study results indicate that rough sets as
a research domain is attracting more researchers and growing healthily in recent
years.

The second part of this book is about the review of rough set research. In
Chapter “Rough Sets, Rough Mereology and Uncertainty”, Prof. Lech Polkowski
reviews the rough set research in many realms like morphology, intelligent agents,
linguistics, behavioral robotics, mereology, and granular computing. He sums up
his personal experience and results, and in a sense to unify them into a coherent
conceptual scheme following the main themes of rough set theory: to understand
uncertainty and to cope with it in data. In Chapter “Rough Sets in Machine
Learning: A Review” by Rafael Bello and Rafael Falcon, the authors survey the
existing literature and report the most relevant theoretical developments and
applications of rough set theory in a broad field of machine learning. Chapter
“Application of Tolerance Rough Sets in Structured and Unstructured Text
Categorization: A Survey” by Sheela Ramanna, James Francis Peters, and Cenker
Sengoz, presents a survey of literature, where tolerance rough set model is used as a
text categorization and learning model. It demonstrates the versatility of the tol-
erance form of rough sets and its successful application in text categorization and
labeling. In Chapter “Medical Diagnosis: Rough Set View”, Prof. Shusaku Tsu-
moto discusses the formalization of medical diagnosis from the viewpoint of rule
reasoning based on rough sets. In Chapter “Rough Set Analysis of Imprecise
Classes”, Prof. Masahiro Inuiguchi proposes to use the lower approximations of
unions of k decision classes to enrich the applicability of rough set approaches
instead of the lower approximations of single classes in the classical rough set
approaches. In Chapter “Pawlak’s Many Valued Information System, Non-
deterministic Information System, and a Proposal of New Topics on Information
Incompleteness Toward the Actual Application” by Hiroshi Sakai, Michinori
Nakata, and Yiyu Yao, the authors discuss Pawlak’s many valued information
systems (MVISs), non-deterministic information systems (NISs), and related new
topics on information incompleteness toward the actual application. They survey
their previous research and propose new topics toward the actual application of
NIS, namely data mining under various types of uncertainty, rough set-based
estimation of an actual value, machine learning by rule generation, information
dilution, and privacy-preserving issue, in NISs.

The third part is about recent achievements of the study of rough set theory. In
Chapter “From Information Systems to Interactive Information Systems” by
Andrzej Skowron and Soma Dutta, the authors propose a departure from classical
notion of information systems, and bring in the background of agent’s interaction
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with physical reality in arriving at a specific information system. They propose to
generalize the notion of information systems from two aspects. In Chapter “Back to
the Beginnings: Pawlak's Definitions of the Terms Information System and Rough
Set”, Prof. Davide Ciucci discusses two basic notions and terms, rough set and
information system, which have no crystal clear definitions in rough set theory. In
Chapter “Knowledge and Consequence in AC Semantics for General Rough Sets”,
Prof. A. Mani introduces an antichain based semantics for general rough sets. She
develops two different semantics, one for general rough sets and another for general
approximation spaces over quasi-equivalence relations, and studies the epistemo-
logical aspects of the semantics. Chapter “Measuring Soft Roughness of Soft
Rough Sets Induced by Covering” by Amr Zakaria studies some important prop-
erties of soft rough sets induced by soft covering. A measure of soft roughness is
introduced via soft covering approximation. A new approach of soft rough
approximation space is presented via a measure of soft roughness. Chapter “Rough
Search of Vague Knowledge” by Edward Bryniarski and Anna Bryniarska dis-
cusses the theoretical basis of the vague knowledge search, introduces some data
granulation methods in semantic networks. In Chapter “Vagueness and Uncertainty:
An F-Rough Set Perspective” by Dayong Deng and Houkuan Huang, the authors
investigate vagueness and uncertainty from the viewpoints of F-rough sets. Some
indexes, including two types of F-roughness, two types of F-membership-degree
and F-dependence degree etc., are defined. In Chapter “Directions of Use of the
Pawlak's Approach to Conflict Analysis”, Prof. Malgorzata Przybyla-Kasperek
applies the Pawlak's model to analyze the conflicts that arise between classifiers in
decision making. Chapter “Lattice Structure of Variable Precision Rough Sets” by
Sumita Basu studies the algebraic properties of set of variable precision rough sets
for a particular imprecise set.

The fourth part of this book is about the application of rough set in data mining.
In Chapter “Mining for Actionable Knowledge in Tinnitus Datasets” by
Katarzyna A. Tarnowska, Zbigniew W. Ras, and Pawel J. Jastreboff, the authors
verify the possibility of applying theory of traditional machine learning techniques,
such as classification and association rules, as well as novel data mining methods,
including action rules and meta actions, to a practical decision problem in the area
of medicine. Knowledge discovery approaches with an ultimate goal of building
rule-based recommender system for tinnitus treatment and diagnosis are investi-
gated. Chapter “Rough-Granular Computing for Relational Data” by Piotr Honko
introduces three rough-granular approaches dedicated to handle complex data such
as relational one. The three approaches are also compared in terms of construction
of information systems, information granules, and approximation spaces. In
Chapter “The Boosting and Bootstrap Ensembles for the Pair Classifier Based on
the Dual Indiscernibility Matrix” by Piotr Artiemjew, Lech Polkowski, Bartosz
Nowak, and Przemysław Gorecki, the authors examine selected methods for sta-
bilization of the pair classifier like bootstrap ensemble, arcing based bootstrap,
Ada-Boost with Monte Carlo split.

Many distinguished researchers helped to review papers for this book. We
express our gratefulness to Profs. Jerzy W. Grzymała-Busse, Mihir K. Chakraborty,
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Davide Ciucci, Chris Cornelis, Salvatore Greco, Qinghua Hu, Huaxiong Li, Pawan
Lingras, Dun Liu, Jusheng Mi, Duoqian Miao, Yuhua Qian, Sheela Ramanna,
Hiroshi Sakai, Shusaku Tsumoto, Jingtao Yao, Zhiwen Yu, Xianzhong Zhou, and
Wojciech Ziarko, for serving as reviewers. We are thankful to Dr Xin Deng and Dr
Zhixing Li for their help to edit the book.

We are also thankful to Prof. Janusz Kacprzyk, Series Editor of “Studies in
Computational Intelligence” for Springer, Dr. Thomas Ditzinger, Executive Editor
of Springer, Interdisciplinary and Applied Sciences & Engineering, and Mr.
Ramamoorthy Rajangam, Project Coordinator of Books Production at Springer, for
their support and cooperation to publish the book.

Chongqing, China Guoyin Wang
Warsaw, Poland Andrzej Skowron
Regina, Canada Yiyu Yao
Warsaw, Poland Dominik Ślęzak
Warsaw/Olsztyn, Poland Lech Polkowski
December 2016
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The Born and Growing of Chinese Rough
Set Community with Help of Professor
Zdzisław Pawlak

Guoyin Wang

Abstract Rough Set is a mathematical theory for processing uncertain data and
information, which was first described by Professor Pawlak in 1982. The rough set
research in China is growing very quickly in recent years. Professor Pawlak helped
the development of Chinese rough set community a lot. It is the 10th anniversary of
Professor Pawlak’s death this year. This paper is a record of the history of the born
and growing of Chinese rough set community and a commemoration of Professor
Pawlak, our old friend.

Keywords Rough Set ⋅ China ⋅ Professor Zdzisław Pawlak

1 The Born of Chinese Rough Set Community

Rough Set is a mathematical theory for processing uncertain data and information,
which was first described by Professor Zdzisław Pawlak in 1982 [1]. As the father
of rough set theory, Professor Pawlak had great contribution to its growing and
developing in the whole world [2, 3], including China.

The rough set study in China was started in 1990s. The Chinese Rough Set and
Soft Computing Society (CRSSC) became a branch of the Chinese Association of
Artificial Intelligence (CAAI) in 2003. It has about 800 members now. It becomes
the largest national rough set society in the whole world.

I am writing this article to record the history of the born and growing of rough
set community in China in the past 20 years, and introduce the great help and
support of Professor Pawlak for the born and quick growing of the rough set in
China to commemorate the 10 anniversary of his death.

G. Wang (✉)
Chongqing Key Laboratory of Computational Intelligence, Chongqing
University of Posts and Telecommunications, 400065 Nan’an District,
Chongqing, People’s Republic of China
e-mail: wanggy@ieee.org

© Springer International Publishing AG 2017
G. Wang et al. (eds.), Thriving Rough Sets, Studies in Computational
Intelligence 708, DOI 10.1007/978-3-319-54966-8_1
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After graduating from the Xi’an Jiaotong University at the end of 1996, I joined
the Chongqing University of Posts and Telecommunications. I read some rough set
papers and start to learn and study rough set based knowledge acquisition from
1997. This is my first time to know the name of rough set theory and Professor
Pawlak. I got my 1st NSFC research grant “Rough Set Based Automatic Knowl-
edge Acquisition Technology and Its Application” in 1998, and visited Professor
Yiyu Yao at University of Regina for about 1 month in 1999. Professor Yiyu Yao
introduced a lot about rough set theory and Professor Pawlak to me when I was in
Regina. After coming back at Chongqing, I started to set up a Chinese rough set
society and initialize a Chinese rough set workshop/conference. Professor Qing Liu,
a key senior rough set researcher in China, planed it together with me. We sent an
email to Professor Pawlak to invite him to visit Chongqing, attend the 1st Chinese
Conference on Rough Sets and Soft Computing (CRSSC2001) and give a keynote
talk. We received his positive response immediately.

The First Chinese Conference on Rough Set and Soft Computing (CRSSC2001)
[4] was held in Chongqing University of Posts and Telecommunications May 25–
27, 2001. 86 attendees joined this conference. Professor Pawlak gave a keynote talk
“Applications of Rough Set Theory to Drawing Conclusions from Data”. Professor
Pawlak is at the 8th of the first line of the group picture of CRSSC2001 shown in
Fig. 1. Figure 2 is the CRSSC2001 proceeding which is published as a special issue
of the Journal of Computer Science. The Chongqing city government thought
highly of the conference and supported it very much. Some high-ranking officials of
the Chongqing government such as Professor Ruihua Dou, the vice Chairman of the

Fig. 1 Group picture of
CRSSC2001

Fig. 2 Proceedings of
CRSSC2001

4 G. Wang



Chongqing Political Consultation Committee and the former vice mayor of
Chongqing, Professor Chunlin Zhai, the vice President of the Chongqing Associ-
ation for Science and Technology, Professor Yuhui Qiu, the President of Southwest
Normal University and the Chairman of Chongqing Computer Society, and Pro-
fessor Neng Nie, the President of Chongqing University of Posts and Telecom-
munications, attended the conference. During this conference, I proposed a plan for
setting up a Chinese rough set society. Many CRSSC2001 attendees expressed their
interests of joining the society. Professor Pawlak stayed in Chongqing 4 days. He
discussed with Chinese researchers about rough set related researches and intro-
duced the development of rough set theory. He expressed his desire to support the
development of rough set theory in China. Thus, we can say that Professor Pawlak
witnessed and contributed to the born of Chinese rough set community.

2 Rough Set Conferences Organized in China

Since 2001, the Chinese conference on rough set and soft computing (CRSSC) is
held every year. It is held together with the Chinese conference on web intelligence
(CWI) and Chinese conference on granular computing (CGrC) every year since
2007. Until now, it has been held 15 times in many different cities in China. Table 1
is a list of the national rough set conferences in China. These conferences pushed
the quick development of rough set research in China.

Professor Pawlak also helped Chinese researchers to join the international rough
set community. With his help and support, the 9th International Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC2003)
[5] was held in Chongqing, China. It was the 1st time to organize an international
rough set conference in China. It was originally planned in May, 2003. Professor
Pawlak prepared his keynote talk “Flow Graphs and Decision Algorithms” [6] and
booked his ticket for attending the conference. Unfortunately, SARS happened in
the whole world in 2003. RSFDGrC2003 had to be postponed to October, 2003.
Professor Pawlak changed his trip plan and failed to attend the conference in
October due to his health reasons at last.

In order to promote the rough set theory in the field of knowledge technology.
A new international conference “Rough Sets and Knowledge Technology (RSKT)”
was initialized in 2006. The 1st international conference on rough sets and
knowledge technology (RSKT2006) [7] was organized in Chongqing, July, 2006.
Professor Pawlak prepared his keynote talk “Conflicts and Negotations” for this
conference [8]. Unfortunately, he passed away on 7 April 2006. Professors James F
Peters and Andrzej Skowrn wrote a commemorative paper “Some Contributions by
Zdzisław Pawlak” [3]. It should be the 1st commemorative paper for Professor
Pawlak after his death. The proceeding of RSKT2006 should also be the 1st
commemorative book for Professor Pawlak (Figs. 3 and 4).

The Born and Growing of Chinese Rough Set Community … 5



Since 2003, many international rough set events have been organized in China.
It greatly pushed the international academic exchange between Chinese rough set
researchers and oversea rough set researchers. It makes the rough set research grow
quickly. A list of rough set related international conferences held in China is
available in Table 2.

Fig. 3 Proceeding of
RSKT2006

Table 1 Chinese national
rough set conferences

Conference name City Number of
attendees

CRSSC2001 Chongqing 86
CRSSC2002 Suzhou About 150
CRSSC2003 Chongqing 123
CRSSC2004 Zhoushan Over 100
CRSSC2005 Anshan 98
CRSSC2006 Jinhua 75
CRSSC-CWI-CGrC2007 Taiyuan 356
CRSSC-CWI-CGrC2008 Xinxiang 193
CRSSC-CWI-CGrC2009 Shijiazhuang 164
CRSSC-CWI-CGrC2010 Chongqing 123
CRSSC-CWI-CGrC2011 Nanjing 218
CRSSC-CWI-CGrC2012 Hefei About 180
CRSSC-CWI-CGrC2013 Zhangzhou 253
CRSSC-CWI-CGrC2014 Kunming 302
CRSSC-CWI-CGrC2015 Tangshan Over 300
CRSSC-CWI-CGrC2016 Yantai 378
Note (1) CRSSC is the Chinese conference on rough set and soft
computing
(2) CRSSC-CWI-CGrC the joint conference of Chinese
conference on rough set and soft computing, Chinese
conference on web intelligence, and Chinese conference on
granular computing (CGrC)

6 G. Wang



3 The Growing of Chinese Rough Set Community

In order to push the development of rough set research in China, Chinese Asso-
ciation of Artificial Intelligence (CAAI) set up a rough set and soft computing
branch (CRSSC) in 2003 (http://CS.CQUPT.EDU.CN/CRSSC). Professor Xuyan
Tu, the Honorary President of CAAI, wrote the poem in Fig. 5 to celebrate the
establishment of CRSSC in Guangzhou, 21 November, 2003.

Professor Guoyin Wang at Chongqing University of Posts and Telecommuni-
cations had served as the Chairman of CRSSC from 2003 to 2012. Since 2012,

Fig. 4 Professor Pawlak’s
photograph included in the
proceeding of RSKT2006

Table 2 International rough
set conferences held in China

Conference name City

RSFDGrC2003 Chongqing
RSKT2006 Chongqing
IFTGrCRSP2006 Nanchang
IFKT2008 Chongqing
RSKT2008 Chengdu
RST2010 Zhoushan
RSKT2010 Beijing
JRS2012 Chengdu
RSKT2014 Shanghai
IJCRS2015 Tianjin
Note RSFDGrC is international conference on rough sets, fuzzy
sets, data mining and granular computing
RSKT is international conference on rough sets and knowledge
technology
IFTGrCRSP is international forum on theory of GrC from rough
set perspective
IFKT is international forum on knowledge technology
RST is international workshop on theoretical rough sets
JRS is joint rough set symposium
IJCRS is international joint conference on rough sets

The Born and Growing of Chinese Rough Set Community … 7
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Professor Duoqian Miao at Tongji University serves as the Chairman. CRSSC
sponsored all the above national and international rough set related events held in
China.

The rough set research in China is growing very quickly. The information of the
research on rough set theory and applications in China before 2008 is available in
[9]. There are about 700–800 rough set related research papers published in Chinese
academic journals in recent years. Detailed information about it is in Table 3.

Now, rough set theory has become one of the key scientific research fields in
computing technology and artificial intelligence technology [11]. CRSSC is also a
very active branch of CAAI, the largest national rough set society in the
world. Chinese Journal of Computers is one of the key journals in the field of
information technology in China. It was started in 1978. The top 15 highly cited
papers published in Chinese Journal of Computers since its 1st issue is listed in
Table 4. It could be found that 4 rough set papers (bold) are in the list. They are the
No. 4, No. 12, No. 13, and No. 15. More and more Chinese rough set researchers
are publishing a lot of high quality papers in international conferences and journals
nowadays. Especially, there are a lot of young Chinese rough set researchers. They
will be the future of rough set theory research.

Rough sets are not rough, and one 
moves towards precision.

One removes the “unbelievable” so 
that what remains is more believable.

The soft part of computing is nimble.
Rough sets imply a philosophy rooted 

in China.

a. Original version in Chinese b.   Translated version in English

Fig. 5 Poem by Professor Xuyan Tu

Table 3 Rough set papers
published in Chinese journals

Year Papers Year Papers Year Papers

1991 1 2000 107 2009 1192
1992 1 2001 168 2010 1084
1993 1 2002 281 2011 853
1994 3 2003 412 2012 878
1995 1 2004 567 2013 728
1996 4 2005 756 2014 740
1997 10 2006 937 2015 738
1998 26 2007 1070
1999 57 2008 1244
Note It is a retrieval result from CNKI [10] on July 14, 2016

8 G. Wang



Table 4 Top 15 most cited papers published in Chinese journal of computers

No Author(s) Title Year Cite

1 王亮, 胡卫明, 谭铁牛

Liang Wang, Weiming Hu, Tieniu
Tan

人运动的视觉分析综述
A Survey of Visual Analysis of
Human Motion

2002 1201

2 梁路宏, 艾海舟, 徐光祐, 张钹

Luhong Liang, Haizhou Ai,
Guangyou Xu, Bo Zhang

人脸检测研究综述
A Survey of Human Face
Detection

2002 1048

3 史美林, 杨光信, 向勇, 伍尚广

Meilin Shi, Guangxin Yang, Yong
Xiang, Shangguang Wu

WfMS:工作流管理系统
WfMS: Workflow Management
System

1999 987

4 王国胤, 于洪, 杨大春

Guoyin Wang, Hong Yu, Dachun
Yang

基于条件信息熵的决策表约简
Decision Table Reduction
Based on Conditional
information Entropy

2002 964

5 丁玮, 齐东旭

Wei Ding, Dongxu Qi
数字图像变换及信息隐藏与伪

装技术

Digital Image Transformation
and Information Hiding and
Disguising Technology

1998 623

6 徐光祐, 史元春, 谢伟凯
Guangyou Xu, Yuanchun Shi, Weikai
Xie

普适计算
Pervasive/Ubiquitous Computing

2003 589

7 王珊, 王会举, 覃雄派, 周烜

Shan Wang, Huiju Wang, Xiongpai
Qin, Xuan Zhou

架构大数据:挑战、现状与展望

Architecting Big Data:
Challenges, Studies and
Forecasts

2011 586

8 吴斌, 史忠植
Bin Wu, Zhongzhi Shi

一种基于蚁群算法的TSP问题

分段求解算法

An Ant Colony Algorithm Based
Partition Algorithm for TSP

2001 583

9 罗万明, 林闯, 阎保平

Wanming Luo, Chuang Lin, Baoping
Yan

TCP/IP拥塞控制研究

A Survey of Congestion Control
in the Internet

2001 574

10 李成法, 陈贵海, 叶懋, 吴杰

Chengfa Li, Guihai Chen, Mao Ye, Jie
Wu

一种基于非均匀分簇的无线传

感器网络路由协议
An Uneven Cluster-Based
Routing Protocol for Wireless
Sensor Networks

2007 544

11 吴健, 吴朝晖, 李莹, 邓水光
Jian Wu, Zhaohui Wu, Ying Li,
Shuiguang Deng

基于本体论和词汇语义相似度

的Web服务发现

Web Service Discovery Based on
Ontology and Similarity of
Words

2005 514

12 王国胤, 姚一豫, 于洪

Guoyin Wang, Yiyu Yao, Hong Yu
粗糙集理论与应用研究综述
A survey on Rough Set Theory
and Its Application

2009 481

(continued)
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Nowadays, Chinese rough set researchers publish a lot of high quality research
papers in international journals and conferences every year. More and more highly
cited rough set papers are published by Chinese researchers.

4 Conclusions

Professor Pawlak helped the born and development of Chinese rough set com-
munity a lot. With his help, the rough set research in China is growing very quickly.
Chinese rough set society becomes a key academic organization in both China and
worldwide. Chinese rough set society will further push the development of rough
set theory in the future together with other rough set communities.
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Zdzisław Pawlak as I Saw Him
and Remember Him Now

Lech Polkowski

No man is an island, Entire of itself, Every man is a piece of the
continent, A part of the main (John Donne)

Abstract Zdzisław Pawlak made an impression on many people including this

author due to His openness to new ideas, readiness to discuss them and the spirit

of creativity He infused with. In this note, we try to sum up our experiences and also

to share what we know about Him and His career on basis of what He said. We touch

also some less known achievements of Him.

1 Introduction

Zdzisław was born in 1926 in the city of Łódź, in the centre of Poland. This city

was founded on the marsh lands in mid-XIX century as the big centre of weaving

and clothing industry, for this reason called the ‘Polish Manchester’. Large fortunes

were made due to the immense russian market to which most of the production

went. The climate of that period is rendered in the movie by Andrzej Wajda ‘The

Promised Land’ (‘Ziemia Obiecana’ in Polish) made after the novel of the same title

by the Nobel laureate Władysław Reymont. Zdzisław was 13 and finished elementary

school when the second World War broke out. Łódź was renamed Litzmannstadt and

incorporated into Reich and Zdzisław worked in a Siemens factory. After the war He

was able to pass maturity exams and He begun studies. Initially, He studied Sinology

as something far from ordinary (so he said) but finally graduated from Warsaw Uni-

versity of Technology at the Telecommunication Department in 1951. He was lucky

to work in a team building the first computing machine in Poland called GAM-1 and

He had some important results like the random numbers generator (1953). It would

be very difficult to relate all His achievements but it would be sufficient to mention

His positional system for arithmetic with the base of −2, the Pawlak machine—a
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new model of a computing machine, the first model of DNA, and of course the idea

of a rough set. It is instructive to trace these achievements and corresponding with

them scientific interests. The line goes from the first computing machine GAM-1

in early 50-ties, through the work on a computing machine UMC-1 in the Warsaw

University of Technology in the years 1957–1959 based on His arithmetic with the

minus 2 base, which actually went to production and some dozens of it were pro-

duced and worked for about 10 years. This line of activity was crowned in 1963 by a

habilitation thesis ‘Organization of address-less machines’. At that time He became

a professor at the Institute of Mathematics of the Polish Academy of Sciences (PAS),

He became more involved in theory and His research interests shifted toward math-

ematical linguistics, semiotics, and scientific information. Especially the last topic

proved fruitful as the work on information systems led to the idea of a rough set.

2 DNA

A striking testimony to Zdzisław’s abilities and horizons is His model of DNA,

regarded by Professor Solomon Marcus, an eminent specialist in mathematical lin-

guistics, as the first in the literature model of genomic grammar. At the same time

it is worthy of noticing that this model was published in a relatively little known

at least off Poland series of books, ‘Small Mathematical Library’, published by the

State Publisher of School Publications, intended as a more popular and informal in

style companion to the very professional ‘Mathematical Library’. The book in ques-

tion was titled ‘Matematyka i Gramatyka’ (‘Mathematics and Grammar’) [3] and

one chapter in it was dedicated to a model of DNA, basically as a model of genetic

code which assigns to sequences of nucleic acids sequences of polypeptides. The

wider reception of this model was due to the late Professor Solomon Marcus, our

friend from Roumanian Academy and the University of Bucharest, who presented

this model in English (‘Linguistic structures and generative devices in molecular

genetics’) [1]. The basic facts used in the genetic language of Pawlak are: 1. DNA

is a double helix built of 4 distinct amino-acids: A(denine), T(hymine), G(uanine),

C(cytosine). 2. RNA is a single sequence built of 4 amino-acids: A, G, C, U(racyl).

3. Transcription from DNA to RNA follows the following productions:

A → U,T → A,G → C,C → G.

Transcription leads to RNA sequence shorter then DNA sequence. 4. Some con-

vex subsequences of length 3 of RNA are codons; they code some amino-acids,

hence, a sequence of codons is a code for a sequence of amino-acids—a polypeptide.

5. There are 20 amino-acids genetically valid (though some authors adopt their num-

ber as 22). In view of these facts and the one-to-one correspondence between codons

and amino-acids genetically functional, Zdzisław Pawlak chose to represent active

codons as equilateral triangles with sides labelled 0, 1, 2, or 3 corresponding to the

sequence U, A, C, G. The rule for labelling was as follows: the left side of the triangle
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is labelled x, the base is labelled y, and the right side is labelled z in such a way that

x < y and z ≤ y. This way of numbering produces 20 distinct codons written down

in the form of a sequence xyz: 010, 011, 020, 021, 022, 10, 121, 122, 030, 031, 032,

033, 130, 13, 132, 133, 230, 231, 232, 233. We can number those codons from 1 to

20 in the order they are listed. Codons are concatenated according to the following

rule in terms of their triangle representations: given already formed chain of codons

X we may add to X a new codon b if there is in X a codon a whose side value is equal

to the base value of b and no side of b is either a base or a side of any codon in X. For

instance, if X = 232, then we may add 122. Codons like 020 are terminal because

they cannot be extended; similarly any chain is terminal if it cannot be extended. The

test for being terminal is clearly that each external side of such a chain is valued 0.

Terminal chains code proteins i.e. terminal polypeptide chains. The Pawlak grammar

consists of rules corresponding to triangles representing codons:

1. 1-00 2. 1-01 3. 2-00

4. 2-01 5. 2-02 6. 2-10

7. 2-11 8. 2-12 9. 3-00

10. 3-01 11. 3-02 12. 3-03

13. 3-10 14. 3-11 15. 3-12

16. 3-13 17. 3-20 18. 3-21

19. 3-22 20. 3-23

We have here some pioneering ideas like tessellations generating grammars, and

graph grammars (it is easy to convert the triangle rules into graph (precisely, tree)

rules). This simple genomic language projecting deep structure (codons) onto sur-

face structure (proteins) can be regarded as an ancestor to recent results in the era

when genomes are being deciphered and reveal extraordinarily complex grammars

of relations between deep and surface structures [2].

3 I Meet Zdzisław

Though I knew about His existence and He was in committees for thesis defences of

a few of my acquaintances including my wife Professor Maria Semeniuk-Polkowska,

yet personally I did not meet Him until 1992 on my return from an American univer-

sity. He took me into His group working already for about 10 years on His idea of a

rough set. Prominent there were already Andrzej Skowron, Cecylia Rauszer, work-

ing in the chair of Professor Helena Rasiowa. Zdzisław proposed to investigate the

problem of giving a topology to rough set spaces—He said that he tried to interest in

this problem some researchers at the Mathematical Institute of the Polish Academy

of Sciences but to no avail. I learned from Him that in a short time of about two

weeks, Roman Słowiński was going to send to Kluwer a collective monograph on

rough sets ‘Handbook of Applications and Advances of Rough Sets’. I succeeded in

preparing and sending to him the first note ‘On convergence of rough sets’ [5]. Later,
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in more quiet conditions, I prepared some works which were published in Bulletin

of the Polish Academy of Sciences (PAS) under a common header of ‘Morphology

of Rough Sets’. In those papers I introduced some metrics in infinite information

systems that gave topology to various spaces of rough sets. In this way, I satisfied

Zdzisław’s wish for a topology for rough sets.

4 Work on Mereology

Zdzisław often mentioned that when working at the Mathematical Institute of PAS,

He spent time at the Library, perusing and reading works on foundations of con-

cept and set theories. He also benefitted much from conversations and seminars with

Andrzej Ehrenfeucht, the legendary logician and mathematician. When travelling

once with Zdzisław to a conference in Alaska, we made a stop at Denver to meet

Andrzej Ehrenfeucht at Boulder so I could see the old spirit of those discussions

reenacted. Zdzisław mentioned the theory of mereology of Stanisław Le’sniewski.

Mereology is a theory of parts of the whole, mentioned already by Aristotle (e.g.,

in his treatise ‘De partibus animalium’) and treated by medieval philosophers but

given a formal axiomatic scheme by Leśniewski in his ‘Podstawy Teoryi Zbiorów’

(‘Foundations of Set Theory’) published in Moscow in 1916, where the author was

interned during the first world war. At first glance, mereology is relevant to rough

sets as set inclusion is a particular example of a part relation and basic constructs of

rough set theory, i.e., approximations are defined by means of inclusion of indiscerni-

bility classes. It was the idea of Andrzej Skowron that we consider something like a

degree of containment and I found axioms for this extension called Rough Mereol-

ogy. Further research led to granular computing, new classifier synthesis methods,

applications to robotics and data sets. It is doubtful that all this would be done if

not the creative atmosphere and free spirit which enlivened those close to Zdzisław

Pawlak.

5 Boundaries

It is evident to all who study rough set idea that the most important notion and most

important things that conform to that notion is the notion of a boundary and bound-

aries of concepts as they witness the uncertainty of the concept. The notion of a

boundary has been the subject of investigation by philosophers, logicians, topolo-

gists. The latter have had an advantage of a point topology and have defined a bound-

ary as the set of points which have the property that each neighborhood of each of

them does intersect the set and its complement, so in a sense, boundary consists of

points ‘infinitely close’ to a concept and its complement, and as a rule, boundary

is disjoint to a concept and to its complement, save the case when the concept is

‘closed’ which means that it does contain its boundary. This is fine when we discuss
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imaginary boundaries in de dicto context. But the problem arises when we speak of

de re boundaries existing in the real world. Typical questions are like the Leonardo

question cf. Varzi [9]: ‘What (...) divides the atmosphere from the water? It is nec-

essary that there should be a common boundary which is neither air nor water but

is without substance, because a body interposed between two bodies prevents their

contact, and this does not happen in water with air.’ We touch here the problem of

impossibility of a precise delineation of the boundary. The response from mathe-

matics could be that in such cases the boundary is a fractal dynamically changing

with time. But is this fractal from water particles or from air particles? One can see

here the soundness of the rough set approach: things in the world are perceived by

means of their descriptions, regardless of the fact that in practical usage, the descrip-

tions are replaced with higher level terms, e.g., ‘Mount Everest’ is a term describ-

ing the highest peak on earth whose description would take many attributes. And,

things having the same relation to any other thing are collected in aggregates called

‘indiscernibility classes’ which among themselves partition the universe of things

into disjoint pairwise aggregates. Any concept over this universe faces a dichotomy:

either it is built of these aggregates or not. In the first case the concept is unam-

biguous, i.e., for each thing in the universe, every one can decide whether it falls

under the concept or not. In the second case, there are aggregates which do intersect

both the concept and its complement and can be ascribed to neither. Such aggre-

gates build the boundary of the concept which is precisely defined and things in it

belong to the concept and to its complement in an unambiguous way being collec-

tively responsible for the ambiguity of the concept. We may say that indiscernibility

aggregates form parts of boundaries of concepts and of their boundary-less approx-

imations. Returning with this picture to the Leonardo question, we may say that the

boundary between water and air is the foam belonging partly to water and partly

to air as particles in it are closer one to another than some very small real number.

One may say that this approach invented by Zdzisław Pawlak is a specimen of the

pointless topology whose more general rendition is the mereotopology, i.e., topol-

ogy in universa equipped with the ‘part of’ relation part(.,.). In the generalization of

Zdzisław approach, the granular mereotopology seems adequate. We say about it cf.

Polkowski and Semeniuk-Polkowska [6].

5.1 A Granular Mereotopological Model of Boundary
as a Direct Generalization of Zdzisław Pawlak’s
Approach

Mereology is based on the notion of a part relation, part(x, y) (‘x is a part to y’)

which satisfies over a universe U conditions: M1: For each x ∈ U it is not true that

part(x, x) M2: For each triple x, y, z of things in U if part(x, y) and part(y, z), then

part(x, z). The notion of an element is defined as the relation el(x, y) which holds

true if part(x, y) or x = y. For our purpose in this section, we modify our approach
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to mereology. We introduce a new version of rough mereology whose basic notion

is predicate ‘a part to a degree’, 𝜇(x, y, r), (‘x is a part to y to a degree of r at

least’) on a universe U, where r ∈ [0, 1]. Conditions for 𝜇 are RM1 𝜇(x, x, 1); RM2

There is a partition on U such that 𝜇(x, y, 1) and 𝜇(y, x, 1) if and only if x and y are

in the same partition class; RM3 If 𝜇(x, y, 1) and 𝜇(z, x, r) then 𝜇(z, y, r); RM4 If

𝜇(x, y, r) and s < r then 𝜇(x, y, s). The predicate el(x, y) if 𝜇(x, y, 1) defines x as an

element of y. In the case when U is the universe of an information system (U,A)
in the sense of Pawlak, with A the set of attributes, a predicate 𝜇 can be derived

from Archimedean t-norms, the Łukasiewicz t-norm tL(x, y) = max{0, x + y − 1}
and the Menger t-norm tM(x, y) = x ⋅ y, which admit a Hilbert-style representation

t(x, y) = g(f (x) + f (y)), by letting 𝜇

t(x, y, r) if and only if g( card(Dis(x,y))
card(A)

) ≥ r, where

Dis(x, y) = {a ∈ A ∶ a(x) ≠ a(y)}. In particular, the Łukasiewicz rough inclusion
𝜇

L(x, y, r) if
card(Ind(x,y))

card)A)
≥ r satisfies RM1–RM4 with the corresponding relation

induced on U partitioning the set U into indiscernibility classes, as f (x) = 1 − x =
g(x) for the t-norm tL, where Ind(x, y) = A ⧵ Dis(x, y). The predicate 𝜇

L
satisfies the

transitivity property: 𝜇
L(x, y, r) and 𝜇

L(y, z, s) imply 𝜇

L(x, z, tL(r, s)). Hence, the cor-

responding element predicate el satisfies properties el(x, x), el(x, y) and el(y, z) imply

el(x, z), el(x, y) and el(y, x) imply x and y are indiscernible. For a predicate 𝜇, and

x ∈ U, r ∈ [0, 1], we define a new predicate N(x, r)(z) if there exists an s ≥ r such

that 𝜇(z, x, s). N(x, r) is the neighborhood granular predicate about x of radius r.
Consider a predicate 𝛹 on U having a non-empty meaning [𝛹 ]. The complement to
𝛹 is the predicate −𝛹 such that −𝛹 (x) if not 𝛹 (x). We define the upper extension
of 𝛹 of radius r, denoted 𝛹

+
r by letting 𝛹

+
r (x) if there exists z such that 𝛹 (z) and

N(x, r)(z). Similarly, we define the lower restriction of 𝛹 of radius r, denoted 𝛹

−
r by

letting 𝛹

−
r (x) if not (−𝛹 )+r (x). A predicate Open is defined on predicates on U and

a predicate 𝛷 on U is open, Open(𝛷) in symbols if 𝛷(x) implies the existence of r
such that N(x, r)(z) implies 𝛷(z). We observe that 𝛹

+
r (x) and 𝜇(x, y, 1) imply 𝛹

+
r (y),

hence for symmetric 𝜇 (such is for instance 𝜇

L
), the predicate 𝛹

+
r is open. By dual-

ity, the complement to an open predicate is closed. Hence, the predicate 𝛹
−
r is closed

for symmetric 𝜇. By symmetry, both predicates are open-closed for a symmetric 𝜇.

We say after Barry Smith that a granular neighborhood predicate N(x, r) straddles a

predicate 𝛹 if there exist y, z such that 𝛹 (y), (−𝛹 )(z), N(x, r)(y), and, N(x, r)(z). We

define the boundary predicate Bd on predicates on U. For a predicate 𝛹 , we define

the boundary of 𝛹 , Bd(𝛹 ) by letting Bd(𝛹 )(x) if each granular neighborhood pred-

icate N(x, r) straddles 𝛹 , equivalently, the granular neighborhood predicate N(x, 1)
straddles 𝛹 . Please observe that the boundary of 𝛹 is the boundary of −𝛹 . Also, for

the predicate 𝜇

L
, the boundary of 𝛹 is the rough set boundary, as 𝜇

L(x, y, 1) is sym-

metric and partitions U into indiscernibility classes. Further results on boundaries

and mereology may be found in [7, 8].
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6 A Man of Many Trades

Our tale would be incomplete if we would not mention how many-talented He was.

He was an accomplished tourist, in summer rowing in a kayak on rivers and lakes of

Polish Pomerania and Mazury, in winters on skis in the mountains. Some 13 years

ago my wife has an exhibition of her paintings in the headquarters of the Polish

Tourist Organization, we also exhibited photographs submitted by Zdzisław from His

trips in the 50-ties. These pictures made a sensation among people present as nobody

expected that in those years such trips were possible. He with some colleagues wan-

dered through Bieszczady montains, at that time completely desolate and wild after

the second world war. He told us how once in winter in Beskidy mountains he got

lost in the blizzard and only by good luck spotted lights of a mountain hostel to be

saved. He was a gifted photographer: His photo ‘The Polish Jungle’ got a distinc-

tion at the Times of London photo conquest in 1950-ties. In later years He started

painting and had exhibitions of his paintings. He painted what He liked most: water,

soil, greenery, and mountains. His paintings are free of human silhouettes, animals,

any form of life, He was it seems interested solely in nature’s symbiosis of elements.

Maybe He posed to Himself the Leonardo question about the boundary between

water and air, He so often painted the two. Or, He rendered the idea of rough set in

painting? With water He was in a special relation; in addition to making kayak trips

and short excursions, He used to swim almost every day. In Warsaw, He used to go

to the Academy of Physical Education located close to His home to the swimming

pool. The same happened in hotels, every morning at six He went to a swimming

pool. But He was also a carpenter, a mason as He renovated His villa in Bielany, a

district of Warsaw, making a fireplace etc. pushing a wheelbarrow with lime, mortar

and bricks. He told us how He went through antique shops and also read advertise-

ments on old furniture sales to find antique furniture which He renovated. His home

was equipped with those pieces of furniture. He was an indestructible voyager; in

any place we were, I observed that He wanted to see everything interesting around

including a perusal of a local telephone directory to find people by name of Pawlak.

Usually He succeeded. He was always full of practical solutions to sudden problems.

Once, when my wife had a painting exhibition at some gallery, He was also supposed

to come to the opening. Unfortunately, shortly before the appointed hour, when we

already were in the gallery, there came a torrential rain so we started without Him

convinced that He would not come. But after some twenty minutes he appeared: He

bought some newspapers and put them under the jacket so He was underneath dry.

There are people who can do almost everything and do it best. He with no doubt

belonged to this class. Speaking a bit on jocular side, if Arthur Conan Doyle lived

in the second half of the XXth century and knew Zdzisław, He would undoubtedly

model his detective on Zdzisław. After all both were masters in deduction.
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7 Conclusion

He is not with us of course, but His spirit is I think with those who knew Him. By

creating rough sets and making them accepted by the scientific world He gave new

life to notions of old, useful but lacking a deeper semantic value, and in doing this He

revealed His talent for a clear vision of ideas and ability to represent them in simple

understandable to many ways. The success of His monograph on rough sets [4] is

due not only to the popularity of rough sets but also to an exceptional combination of

theoretical considerations with practical thinking. This seems to be characteristic of

His style, avoiding abstraction and keeping in mind practice of application. This is

why He was so appealing to many readers. He combined in an exceptional degree the

ability to theorize with practical talents and energy to use those abilities and talents.

Acknowledgements To all who knew Zdzisław and enjoyed His goodwill: thanks for not

forgetting [6].
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Recent Development of Rough Computing:
A Scientometrics View

Jing Tao Yao and Adeniyi Onasanya

Abstract The rough set theory has been gaining popularity among researchers and

scholars since its inception in 1982. We present this research in commemorating the

father of rough sets, Professor Zdzisław Pawlak, and celebrating the 90th anniver-

sary of his birth. Scientometrics is the science that quantitatively measures and

analyzes sciences. We use scientometrics approach to quantitatively analyze the con-

tents and citation trends of rough set research. The results presented in this chapter

are a follow-up of Yao and Zhang’s work published in 2013. We first identify pro-

lific authors, impact authors, impact research groups, and the most impact papers

based on Web of Science database. We provide comparison with previous results and

analyses of the changes. We further examine features of journal articles and confer-

ence papers in terms of research topics and impacts. The third part of the chapter is to

examine highly cited papers identified by Web of Science as top 1% based on the aca-

demic field and publication year. In the fourth part, we investigate the top journals of

rough set publications. There are some interesting results in key indicators between

2013 and 2016 results, for instance, the number of papers published increased by

35%, the total citations increased by 83%, and the h-index values increased by over

32%, while the average citation per paper increased by about 36%. We also found

that the number of publications in the recent 5 years was about one third of the total

number of rough set publications. This further indicates that rough sets as a research

domain is attracting more researchers and growing healthily.

1 Introduction

This research work is presented in commemorating the father of rough sets, Zdzisław

Pawlak, and celebrating the 90th anniversary of his birth. In 1982, Pawlak proposed

rough set theory for data analysis [49], which has been traced back to about 35 years
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since its inception. Rough set research and its applications have obtained a signifi-

cant attention among researchers and practitioners. Rough set publications have fea-

tured in many journals, international workshops, seminars and conferences. Rough

set theory is an extension of set theory for the study of intelligent systems that are

characterized by incomplete, vague and imprecise data [53]. The study of rough sets

can be classified into three groups [76], namely,

∙ Content based approach that focuses on the contents of rough set research,

∙ Method based approach that focuses on the constructive and algebraic (axiomatic)

methods of rough sets, and

∙ Scientometrics approach that focuses on quantitatively analyzing the contents and

citations of rough set publications.

This research utilizes scientometrics approach for the analysis of the current trend,

development and relationship of research papers in the rough set research domain.

This is intended to gain more insights in the domain of rough sets. Scientometrics is

concerned with the quantitative analysis of features and characteristics of citations in

academic literature and has played a major role in measuring and evaluating research

performance as well as understanding the processes of citations [46, 75, 76]. We will

investigate two main measures of scientometrics approach, indicators of productivity

and indicators of impact. We will also analyze the current status and recent devel-

opment of rough set research. In addition, we will examine the journals that publish

rough set research especially highly impact research. This article can be considered

as a follow-up to the previous research work by Yao and Zhang in 2013 [76].

The remaining parts of this chapter are organized as follows. Section 2 provides

the methodology and database used for the analysis. Section 3 provides the search,

results and analysis of the study based on productivity and impact of citations. It

also provides the current status of rough sets. Section 4 presents the top 1% highly

cited papers since inception and in recent 5 years. Also included is the list of all

top 1% rough set papers in recent 5 years, and lastly, the comparison of highly cited

papers—inception versus recent. Section 5 discusses various publication venues of

rough set papers or articles based on the most cited and top 1% highly cited papers.

2 Methodology and Database Used

Scientometrics is the science that quantitatively measures and analyses sciences in

academic literature. It is also viewed as a scientific measurement of the work of

scientists or scholars by way of analyzing their publications and citations within them

[46]. We are able to gain more understanding of a research domain by examining its

productivity and number of publications through Scientometrics approach and gain

more understanding of its research impact and number of citations.
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Scientometrics has developed around one main idea, the citation. It has been

stated that the act of citing other researcher’s work provides the necessary linkages

between researchers, ideas, journals, conferences institutions, and countries to con-

stitute an empirical field that can be analyzed quantitatively. Besides, citation also

provides a relationship with respect to time, between the previous publications of

its references and the later appearance of its citations [46]. In recent years, scien-

tometrics has played a major role in the measurement and evaluation of research

performance as well as understanding the processes of citations [46]. It is interest-

ing to state that through this approach, seven out of 50 most cited chemists have

been awarded Noble Prize, prediction of research influences and development has

been made possible, and assessments of scientific contribution has sufficed [76].

In scientometrics analysis or approach, two main bibliometric indicators are being

used, i.e., indicators of productivity and indicators of impact. The indicators of pro-

ductivity are expressed in terms of the number of papers produced by authors or

groups for popularity of research domain while the indicators of impact are described

in terms of number of citations for the influence and quality of research domain.

These indicators are utilized to predict research influence and development as we

examine rough set research related papers in our source of database.

The database utilized in the research work is the Web of Science or WoS for short.

The URL of WoS is https://webofknowledge.com. WoS features more than 10,000

major journals since 1900 with more than 150 scientific disciplines. It is a useful

research database or resource for quantitative analysis of a research area or domain.

WoS is one of the most popular databases for collecting and searching biblio-

graphic information of research articles in high quality journals and selected inter-

national conferences. It also collects citations which reflect the relationships among

research articles. WoS provides two types of searches, bibliographic search and cited

reference search. The bibliographic search aims to find bibliographic information

such as, document types, research areas, authors, group authors, editors, source titles,

book series titles, conference titles, publication years, organizations, funding agen-

cies, languages, countries or territories.

The cited reference search can generate citation report simply by clicking on the

hyperlink Citation Report. This presents charts for published items in each year and

citations in each year. It also generates summary of key parameters such as: Results

found, Sum of the Times Cited; Sum of Times Cited without self-citations, Cit-

ing Articles, Citing Articles without self-citations, Average Citations per item, and

h-index. The h-index, proposed by a physicist Hirsch in 2005, is an index that quan-

tifies an individual’s scientific research output with citation number of ones publi-

cations. A scientist with an h-index of h has at least h papers each of them has been

cited at least h times [16]. The h-index, as a single bibliometric metric, combines both

impact (number of citations) and productivity (number of papers). The use of h-index

has generated interest and attention in literature and academic journals because it has

been largely influential as it quantifies individual’s scientific output [46].

There are two kinds of bibliometric indicators, indicators of productivity and indi-

cators of impact on citations, that will be used in this research. The indicators of

productivity are expressed in terms of the number of papers produced by authors

https://webofknowledge.com
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or research units. It also includes the number of publications that is produced by

journals and conference proceedings on a particular research domain. Indicators of

impact are described in terms of number of citations for the influence and quality of

research domain. The idea of citations is fundamental for indicators of impact.

3 Search, Results and Analysis

We define rough set papers as those containing phrases “rough sets” or “rough set”

or “rough computing” or “rough computation” in Topic field in Web of Science.

The Topic field is defined as the words or phrases within article titles, keywords, or

abstracts in WoS. The search of rough set papers was performed during the week of

July 24–30, 2016. The latest available or updated data was on July 28, 2016. We used

the two bibliometric indicators or measures of productivity and impact of citation for

our results. It should be noticed that not all rough set publications are included in the

search results. For instance, not all papers published in Transactions on Rough Sets

are recorded in the database. We also missed some rough set papers, e.g., [33–35,

39, 40], by using our search. Additionally, some search results containing rough set

phrases are not considered as rough set papers in this research. For instance, a survey

paper that mentioned a rough set paper is not rough set paper.

The search resulted in 9,570 rough set papers, 76,733 citations, average citations

of 8.02 per paper, and h-index of 106 for the period 1982 to 2016 (July). The numbers

of rough set paper by individual phases are

∙ Rough set: 7,389 papers

∙ Rough sets: 5,212 papers

∙ Rough computing: 18 papers

∙ Rough computation: 8 papers

3.1 Indicators of Productivity

We consider the following indicators for our initial search. They are, Number of Pub-

lications per Year, Prolific Authors, Top Organizations, Top Country or Territory,

and Top Conferences.

The queried results of rough set publications as depicted in Table 1 and Fig. 1

show the distribution over the period of 1982 to 2016 on a yearly basis. We can

deduce that 1.55% of 9,570 (i.e. 148) papers were published in the first 15 years

(from 1982 to 1996). In contract, 27.01% of 9,570 (i.e. 2,585) papers were published

in the following 10 years (from 1997 to 2006), which is more than 17 times of those

that were published in the first 15 years. In the recent decade, between 2007 and

2016, 71.44% of 9,570 (i.e. 6,837) papers were published. This demonstrates that

the productivity and popularity of rough set research have an unprecedented increase
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Table 1 Number of publications per year

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Papers 1 0 0 4 1 1 2 4 4 11 15 10

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Papers 20 33 42 46 95 80 122 155 240 288 357 534

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total
Papers 668 766 899 929 562 663 644 721 747 618 288 9,570

Fig. 1 Number of publications per year

in the last decade. The publication number has been doubled compared with the

previous decade.

It is interesting to know that between the period of 1982–2009, rough set papers

have grown exponentially. However, there was a shallow decline in 2010 but a steady

increase thereafter until 2015. The superficial decrease in 2016 is due to the incom-

plete data in 2016 as we have about 6 months of data. The cumulative growth pattern

and cumulative growth charts as presented in Figs. 2 and 3 conclude that there is con-

sistent growth of rough set research. Overall, the number of rough set publications

has grown steadily.

We next identify the most prolific authors as shown in Table 2. It is noted that

the top 35 prolific authors have published at least or a minimum of 44 rough set

papers. It is noticed that the top four authors, Slowinski, Yao, Skowron and Wang,

each published more than 100 rough set papers, remained the same although the

orders changed. Zhu was out of top 20 in 2013 research but now is the fifth. Another

sign of popularity of rough set research is that there are about 1,140 authors who

published at least 5 rough set papers each. The number was doubled comparing with

the previous results in 2013 [76].

The top 35 organizations where the authors are affiliated are shown in Table 3.
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Fig. 2 Cumulative growth pattern of number of publications per year

Fig. 3 Cumulative growth of number of publications per year

The top 35 countries or territories with authors publishing rough set papers are

shown in Table 4. China maintains the lead with 5,127 rough set research publica-

tions which is about 55% of total publications. The results are consistent with pre-

vious research [76]. The top four countries still retain their positions and India has

over taken Japan and moved to fifth. We observed that the total papers from the top

12 countries accounts for 94% total rough set publications. In fact, the most prolific

authors are from these 12 countries.
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Table 2 The most prolific authors (top 35)

Rank Author Papers Rank Author Papers Rank Author Papers

1 Slowinski R 111 13 Greco S 75 25 Sakai H 49

2 Yao YY 105 14 Chen DG 75 26 Liu D 48

3 Skowron A 102 15 Zhang WX 71 27 Zhang Y 48

4 Wang GY 100 16 Qian YH 69 28 Yu DR 48

5 Zhu W 95 17 Slezak D 65 29 Yang XB 48

6 Li TR 95 18 Pal SK 64 30 Tzeng GH 47

7 Wu WZ 93 19 Grzymala-

Busse JW

58 31 Ramana S 47

8 Liang JY 85 20 Pedrycz W 57 32 Ziarko W 46

9 Miao DQ 81 21 Min F 57 33 Suraj Z 44

10 Hu QH 77 22 Lin TY 54 34 Shen Q 44

11 Tsumoto S 76 23 Wang J 54 35 Polkowski L 44

12 Peters JF 75 24 Jensen R 49

We identified 5 top rough set conferences as shown in Table 5. Based on our search

we found that there were 932 conference series or titles that published rough set

papers. This shows that rough set is a well accepted research and applied in many

domains.

3.2 Indicators of Impact

The second part of the results and analysis is based on the impact of rough set

research. The distribution of the number of citations 1982–2016 is as depicted in

Table 6, while the graphical representation is illustrated in Fig. 4. It is interesting to

know that the number of citations followed the same fashion as shown in Table 1

and Fig. 1. The total numbers of citations in each year are steadily growing with a

slight decrease in 2010. It is necessary to mention that the numbers shown here may

include citations from non-rough set papers.

We will examine the most cited papers and the most impact or influential authors

in the next part. We have identified the top 35 most cited papers as illustrated in

Table 7. In order to study the impact research direction of rough sets, we have clas-

sified those rough set papers in Table 7 into three broad groups as thus:

∙ Theory Papers: papers about basic rough set theory;

∙ Hybrid papers: papers combined rough sets with other theories or methods; and

∙ Application papers: papers about the applications of rough sets.
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Table 3 Top 35 organizations

Rank Organizations Papers Rank Organizations Papers

1 University of Regina 223 19 Polish-Japenese Inst. of

Info Tech

73

2 Southwest Jiaotong

Univ.

182 20 University of Catania 72

3 Xi’an Jiaotong

University

179 21 Hebei University 71

4 Chinese Academy of

Sciences

174 22 Hong Kong Polytechnic

Univ.

70

5 Polish Academy of

Sciences

168 23 Wuhan University 68

6 Warsaw University of

Tech.

161 24 University of Kansas 68

7 North China Electric

Power University

157 25 North Eastern

University

65

8 Harbin Institute of

Technology

126 26 Huazhong Univ Sci &

Tech

65

9 Tongji University 122 27 Nanjing Univ. of Sci. &

Tech.

63

10 Zhejiang Ocean

University

113 28 Poznan University of

Techn.

61

11 Zhejiang University 105 29 Indian Institutes of

Techn.

61

12 Shanxi University 103 30 Minnan Normal

University

58

13 Indian Statistical

Institute

99 31 University of Alberta 57

14 Chongqing Univ. Posts

& Tel

95 32 Shandong University 57

15 Univ. of Elect. Sci &

Tech China

94 33 Nanjing University 57

16 Shanghai Jiaotong

University

87 34 Ghent University 55

17 University of Warsaw 85 35 Nanjing Univ. of Aero

& Astron.

54

18 University of Manitoba 77

Based on the above classification, the highly cited papers are grouped as follows:

∙ Fifteen (15) basic papers: [5, 47, 49, 50, 54–56, 58, 67, 79–82, 96, 98];

∙ Six (6) hybrid papers: [1, 10, 13, 48, 72, 73]; and

∙ Fourteen (14) application papers: [14, 20–22, 41, 43, 51–53, 68, 70, 78, 83, 95].
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Table 4 Top 35 countries

Rank Countries Papers Rank Countries Papers Rank Countries Papers

1 P.R. China 5127 13 Egypt 92 25 Thailand 41

2 Poland 851 14 Turkey 86 26 Norway 39

3 USA 573 15 Wales 86 27 Cuba 39

4 Canada 529 16 Australia 84 28 Netherlands 37

5 India 505 17 South Korea 83 29 Czech Rep. 35

6 Japan 440 18 Belgium 79 30 Brazil 34

7 Taiwan 397 19 Germany 76 31 Pakistan 27

8 Italy 164 20 France 68 32 Tunisia 26

9 England 124 21 Singapore 62 33 Finland 25

10 Spain 110 22 Sweden 49 34 Mexico 21

11 Malaysia 106 23 North

Ireland

47 35 Hungary 21

12 Iran 101 24 Saudi Arabia 42

Table 5 Top 5 rough set conference series

Rank Conference titles Papers

1 Intl. Conf. on Rough Sets & Knowledge Technology (RSKT) 376

2 Intl. Workshop on RS Fuzzy Sets Data Mining & Granular

Computing (RSFDGRC)

288

3 Intl. Conf. on Rough Sets & Current Trends in Computing

(RSCTC)

238

4 IEEE Intl. Conf. on Granular Computing (GRC) 225

5 Intl. Conf. on Rough Sets and Intelligent Systems Paradigms

(RSISP)

52

Fig. 4 Number of citations by year
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Table 6 Number of citations per year

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Citations 0 0 2 7 5 6 5 11 12 22

Papers 1 0 0 4 1 1 2 4 4 11

Cites/Paper 0.00 0.00 0.00 1.75 5.00 6.00 2.50 2.75 3.00 2.00

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Citations 47 16 34 48 51 90 121 159 276 443

Papers 15 10 20 33 42 46 95 80 122 155

Cites/Paper 3.13 1.60 1.70 1.45 1.21 1.96 1.27 1.99 2.26 2.86

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Citations 661 888 1,312 1,972 2,644 3,864 5,075 5,550 4,933 6,259

Papers 240 288 357 534 668 766 899 929 562 663

Cites/Paper 2.75 3.08 3.68 3.69 3.96 5.04 5.65 5.97 8.78 9.44

Year 2012 2013 2014 2015 2016 All
Citations 7,035 8,920 10,571 9,830 5,864 76,733
Papers 644 721 747 618 288 9,570
Cites/Paper 10.92 12.37 14.15 15.91 20.36 8.02

The number of papers on basic set theory were 43%, hybrid with other theories

17%, and applications of rough sets 40%. In contract to the results in 2013, the num-

bers were 60, 10, and 30%. This shows a shift of research direction from basic rough

set theory to applications and hybrid with other theories.

The most influential or impact authors of rough sets are listed in Table 8. We have

35 most impact authors who received citations of more than 300 while there were

only 10 authors in Yao and Zhang’s results. Twelve of Pawlak’s papers received

citations of 8,733, including his first paper that proposed the concept of rough set

theory. It’s obvious that Pawlak was the top highly cited researcher and his chapter

has a great influence in rough set research.

In comparing the results with that of Yao and Zhang, we observe the following

key changes. There are top 12 authors with more than 1,000 citations while there

were 15 authors in 2013. The number of citations has been increased considerably

for most authors across the board. In fact, an increase in the number of citations per

author shows an increase in the level of influence of rough set research if we use the

impact of citations as an instrumental for evaluating the influence of the authors and

rough set research.
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Table 7 Top 35 cited papers

Rank Paper Year Cites Avg/Year Main results

1 Pawlak Z [49] 1982 5137 146.77 Theory: Rough sets seminal

work

2 Ziarko W [98] 1993 880 36.67 Theory: Variable precision RS

3 Dubois D and Prade H [10] 1990 846 31.33 Hybrid: Fuzzy sets

4 Pawlak Z and Skowron A [54] 2007 767 76.70 Theory: Survey

5 Greco S et al. [14] 2001 579 36.19 App: Decision analysis

6 Kryszkiewicz M [21] 1998 541 28.47 App: Information systems

7 Pawlak Z and Skowron A [56] 2007 498 49.80 Theory: Rough sets

8 Slowinski R and Vanderpooten

D [67]

2000 438 25.76 Theory: Generalized RS with

similarity

9 Pawlak Z and Skowron A [55] 2007 434 43.40 Theory: Boolean reasoning

10 Yao YY [81] 1998 394 20.74 Theory: Research method of RS

theory

11 Pawlak Z et al. [50] 1995 382 17.36 Theory: Survey

12 Yao YY [80] 1998 379 19.95 Theory: Relational

interpretations

13 Mitra S and Hayashi Y [47] 2000 353 20.76 Theory: Survey

14 Maji PK and Roy AR [41] 2002 342 22.80 App: Decision making problem

15 Swiniarski RW and Skowron A

[68]

2003 329 23.50 App: Feature selection and

recognition

16 Kryszkiewicz M [22] 1999 327 18.17 App: Incomplete information

systems

17 Zhu W and Wang FY [95] 2003 325 23.21 App: covering

18 Wu WZ et al. [72] 2003 310 22.14 Hybrid: Fuzzy rough sets

19 Aktas H and Cagman N [1] 2007 301 30.00 Hybrid: Soft sets and soft groups

20 Pawlak Z [52] 1998 295 15.53 App: Data analysis

21 Yao YY [79] 1996 293 13.95 Theory: Interpretation of RS

22 Pawlak Z [53] 2002 261 17.40 App: Data analysis

23 Wang XY et al. [70] 2007 253 25.30 App: Feature selection

24 Pawlak Z [51] 1997 246 12.3 App: Decision support

25 Jensen R and Shen [20] 2004 243 18.69 App: Feature selection

26 Wu WZ and Zhang WX [73] 2004 240 18.46 Hybrid: Fuzzy approximation

27 Morsi NN and Yakout MM [48] 1998 237 12.47 HybridL Fuzzy rough sets

28 Yao YY and Wong SKM [78] 1992 227 9.08 App: Decision theoretic rough

sets

29 Bonikowski Z et al. [5] 1998 224 11.79 Theory: Intentions and

extensions

30 Yao YY [82] 2001 221 13.81 Theory: Rough granulation

31 Polkowski L and Skowron A

[58]

1996 221 10.52 Theory: Mereology

32 Zhu W [96] 2007 215 21.50 Theory: Covering

33 Mi JS et al. [43] 2004 211 16.23 App: Knowledge reduction

34 Feng F et al. [13] 2008 211 23.44 Hybrid: Soft sets

35 Yao YY and Zhao Y [83] 2008 206 22.89 App: Attribute reduction in

DTRS



32 J.T. Yao and A. Onasanya

Table 8 35 most impact or influential authors

Rank Authors Cites Papers Rank Authors Cites Papers

1 Pawlak Z 8733 12 19 Mitra S 660 3

2 Yao YY 2686 8 20 Grzymala-busse, J 517 2

3 Slowinski R 2351 8 21 Wang FY 517 2

4 Skowron A 2251 5 22 Chen DG 504 3

5 Ziarko W 1616 4 23 Vanderpooten D 438 1

6 Jensen R 1137 6 24 Xia WJ 437 2

7 Greco S 1128 4 25 Wong, SKM 419 2

8 Matarazzo B 1128 4 26 Yeung DS 371 2

9 Zhang WX 1108 5 27 Tsang ECC 371 2

10 Wu WZ 1037 5 28 Wang XZ 371 2

11 Zhu W 1030 5 29 Hayashi Y 355 1

12 Kryszkiewicz M 1022 3 30 Maji PK 344 1

13 Shen Q 883 5 31 Roy AR 344 1

14 Dubois D 847 1 32 Swiniarski RW 329 1

15 Prade H 847 1 33 Pal SK 305 2

16 Mi JS 846 4 34 Slezak D 303 2

17 Hu QH 685 4 35 Aktas H 301 1

18 Yu DR 685 4

3.3 Current Status of Rough Sets

We examine the current development of rough sets in recent 5 years in this section.

Since we only have half of 2016 data (as of July 28, 2016), we focus our analysis on

papers from 2011 to 2015. Table 9 presents the top 35 cited papers in recent 5 years.

Due to the fact that we have 4 papers with 39 citations, we will study 36 papers

instead of 35 papers as we planed. It is observed that many of top papers are from

China. This is consistent with the fact that China is rated the top country in Table 4.

With the 3,393 papers published in recent 5 years, the total citation number was

13,022. The average citations per paper was 3.80. It is also observed that 35.45% of

all rough set publications are from recent 5 years. This indicates that rough sets as a

research domain is attracting more researchers and growing healthily.

Following the same fashion, we classified the top 35 recent papers into 3 impact

research groups,

∙ Twelve (12) papers are about basic rough set theory: [9, 15, 36, 62, 66, 74, 77,

84–86, 90, 97];

∙ Eight (8) papers are about the hybrid with other approaches or theories: [2, 11,

12, 28, 31, 60, 63, 92];

∙ Fifteen (15) papers are about applications of rough sets: [4, 6–8, 18, 19, 24, 25,

30, 37, 38, 42, 44, 59, 91].
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Table 9 Top 36 cited papers in recent 5 years from 2011 to 2015

Rank Authors Year Cites Avg/year Main results

1 Yao YY [84] 2011 134 22.33 Theory: Three-way decisions

2 Feng F et al. [12] 2011 127 21.17 Hybrid: Soft sets

3 Dubois D and Prade H [11] 2012 107 21.40 Hybrid: Fuzzy sets

4 Yao YY and Yao B [86] 2012 87 17.40 Theory: Covering

5 Min et al. [44] 2011 83 13.83 App: Attribute reduction

6 Liu et al. [36] 2011 73 12.17 Theory: Probabilistic criteria

7 Li H and Zhou X [24] 2011 72 12.00 App: Risk decision making

8 Herbert JP and Yao JT [15] 2011 68 11.33 Theory: Game-Theoretic RS

9 Qian Y et al. [59] 2011 67 11.17 App: Attribute reduction

10 Jia X et al. [18] 2013 64 16.00 App: Decision-theoretic RS

11 Qian Y et al. [62] 2014 63 21.00 Theory: Multigranulation

decision

12 Skowron A et al. [66] 2012 58 11.60 Theory: Approximation

spaces

13 Liu D et al. [37] 2011 57 9.50 App: Three-way decision

14 Zhang et al. [92] 2012 55 11.00 Hybrid: Fuzzy sets

15 Zhang et al. [90] 2012 54 10.80 Theory: Approximations

16 Lin et al. [31] 2012 52 10.40 Hybrid: Neighborhood

17 Ali MI [2] 2011 52 8.67 Hybrid: Soft sets & fuzzy soft

sets

18 Chen et al. [6] 2011 49 8.17 App: Feature selection

19 Yao JT et al. [77] 2013 48 12.00 Theory: Granular computing

20 Blaszczynski J et al. [4] 2011 48 8.00 App: Sequential covering

21 Zhang J et al. [91] 2012 47 9.40 App: Data mining

22 Wu WZ and Leung Y [74] 2011 46 7.67 Theory: Granular computing

23 Li J et al. [25] 2013 42 10.50 App: Decision making

24 Dai J and Xu Q [9] 2012 42 8.40 Theory: Uncertainty measures

25 Zhu W and Wang S [97] 2011 42 7.00 Theory: Generalized RS

26 Qian Y et al. [60] 2011 42 7.00 Hybrid: Fuzzy sets

27 Chen Y et al. [8] 2011 42 7.00 App: Feature selection

28 Liu D et al. [38] 2012 41 8.20 App: Classification in DTRS

29 Chen HL et al. [7] 2011 41 6.83 App: Prediction

30 Qian J et al. [63] 2011 40 6.67 Hybrid: Attribute reduction

31 Yao YY [85] 2011 40 6.67 Theory: Semantic Issues

32 Jia X et al. [19] 2014 39 13.00 App: Optimization

32 Liang D et al. [28] 2011 39 9.75 Hybrid: Fuzzy DTRS

32 Liang J et al. [30] 2012 39 7.80 App: Feature selection

32 Medina J [42] 2012 39 7.80 App: Multi-adjoint lattices

32 Li N et al. [32] 2012 39 7.80 Hybrid: Neighbourhood and

Fault Diagnosis
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The numbers of papers on theory, hybrid, and applications account for 34%, 23%,

and 43% respectively. There are more papers on decision-theoretic rough sets and

three-way decisions which are considered as new directions. The claim on the shift

in research direction towards applications and hybrid still holds.

4 Web of Science Highly Cited Papers—The Top 1% Papers

Web of Science defines highly cited papers as papers that “received enough cita-

tions to place [them] in the top 1% of the academic field based on a highly cited

threshold for the field and publication year”. We refer them as top 1% papers in

this article. The academic field can be in the field of Computer Science, Mathemat-

ics, Economics & Business, or Engineering, for instance. The top 1% papers are

identified and recognized on monthly or quarterly basis. The results in this section

are based on our search conducted in November 2016, however, the data were “as

of July/August 2016” according to Web of Science. On WoS Web site, the top 1%

papers are presented a trophy symbol. In general, most citations to a paper come in

the 2nd, 3rd, or 4th year after publication. The citations of the top 1% papers come in

the year of their publication, therefore, it can be used as a sign of popularity or hot-

ness of the topic. We may use the top 1% papers as a metric to evaluate researchers

and journals.

We examined all the top cited papers presented in Table 7 and found that 8 of

them were identified as the top 1% highly cited papers. They are [1, 13, 54–56, 70,

83, 96].

As the 1% papers represent some kind of research trend, it is meaningful to exam-

ine more recent publications. There are 16 top 1% papers in recent 5 year from 2011

to 2015 as shown in Table 10. In other words, 16 out of 36, or 44%, top cited papers

as shown in Table 9 are highly influential papers in the field of Computer Science.

These top 1% of papers received at least 39 citations.

In further analysis, we noticed that 11 out of 16 top 1% papers are focused on

hybrid and application of rough set theory. This is consistent with the results of top

rough set papers.

The next step is to identify all top 1% rough set papers in recent 5 years. It should

be noted that new papers may have a small number of citations, however, if the cita-

tion numbers outperform citation of other papers it can still be recognized as top 1%

papers. Table 11 lists all top 1% rough set papers. We have 33 top 1% papers from

over 3,520 highly cited papers being ranked the top 1% status in the recent 5 years.

Based on the table, most of the top 1% papers are classified in the field of Computer

Science while the remaining in Engineering.
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Table 10 Top 1% papers amongst top papers in recent years (2011–2015)

Rank Authors Year Cites Avg/year Main results

1 Yao YY [84] 2011 134 22.33 Theory: Three-way

decisions

2 Feng F et al. [12] 2011 127 21.17 Hybrid: Soft sets

3 Dubois D and Prade H [11] 2012 107 21.40 Hybrid: Fuzzy sets

4 Yao YY and Yao B [86] 2012 87 17.40 Theory: Covering

5 Min F et al. [44] 2011 83 13.83 App: Attribute reduction

6 Liu D et al. [36] 2011 73 12.17 Theory: Probabilistic

criteria

7 Qian Y et al. [59] 2011 67 11.17 App: Attribute reduction

8 Jia X et al. [18] 2013 64 16.00 App: Decision-theoretic RS

9 Qian et al. [62] 2014 63 21.00 Theory: Multigranulation

decision

10 Skowron A et al. [66] 2012 58 11.60 Theory: Approximation

spaces

11 Zhang X et al. [92] 2012 55 11.00 Hybrid: Fuzzy sets

12 Lin G et al. [31] 2012 52 10.40 Hybrid: Neighborhood

13 Yao JT et al. [77] 2013 48 12.00 Theory: Granular

computing

14 Li et al. [25] 2013 42 10.50 App: Decision making

15 Jia X et al. [19] 2014 39 13.00 App: Optimization

16 Liang D et al. [28] 2013 39 9.75 Hybrid: Fuzzy DTRS

5 Analysis of Journals Publishing Rough Set Papers

Aside from the analyses performed with respect to impact of individual papers

and researchers, it necessary to consider the impact of journals in order to assist

authors/researchers in their decisions on which journals to submit their papers. We

will examine journals that publish rough set papers in this section. We use Impact

Factor (IF), h-index, 1% paper, and IF Quartile rankings to evaluate these academic

journals. Journal Impact Factor is an important metric and has been viewed as a pre-

eminent measure or metric for choosing venues to submit ones research papers [46].

Impact Factor of an academic journal is a measure of the frequency with which the

average article in a journal has been cited in a particular year or period [71]. This

metric also measures the relative importance of a journal within its field. In other

words, journals with higher IF are deemed to be more important than those with

lower ones. Web of Science publishes two types of Impact Factor. One is the normal

IF. The recent IF is in 2015, which is the number of citations in 2015 to those papers

published in a journal in 2013 and 2014, divided by the number of such papers. The

other is a 5-year Impact Factor, the average number of times articles from the journal

published in the past five years have been cited in report year.
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Table 11 All top 1% highly cited papers in recent 5 years

Rank Authors Title Year Cites

1 Yao YY [84] Theory: Three-way decisions 2011 144

2 Feng F et al. [12] Hybrid: Soft sets 2011 132

3 Dubois D & Prade H [11] Hybrid: Fuzzy sets 2012 108

4 Yao YY & Yao B [86] Theory: Covering 2012 95

5 Min F et al. [44] App: Attribute reduction 2011 90

6 Liu D, Li TR & Ruan D [36] Theory: Probabilistic criteria 2011 74

7 Jia XY et al. [18] App: Decision-theoretic RS 2013 69

8 Qian YH et al. [62] Theory: Multigranulation

decision

2014 67

9 Skowron A, Stepaniuk J &

Swiniarski R [66]

Theory: Approximation spaces 2012 60

10 Lin GP, Qian YH & Li JJ [31] Hybrid: Neighborhood 2012 58

11 Yao JT, Vasilakos A & Pedrycz

W [77]

Theory: Granular Computing 2013 57

12 Zhang XH, Zhou B & Li P [92] Hybrid: Fuzzy sets 2012 57

13 Liang D et al. [28] Hybrid: DTRS 2013 43

14 Li JH, Mei CL & Lv YJ [25] App: Decision making 2013 43

15 Dai J & Xu Q [9] Theory: Uncertainty measures 2012 43

16 Jia XY et al. [19] App: Optimization 2014 42

17 Yu H, Liu Z & Wang G [87] Hybrid: DTRS 2014 39

18 Hu BQ [17] Theory: Three-way decisions 2014 38

19 Liang JY et al. [30] App: Feature selection 2012 38

20 Azam N & Yao JT [3] Hybrd: GTRS 2014 37

21 Pedrycz W [57] App: Optimization 2014 37

22 Wang CZ et al. [69] Theory: Covering 2014 34

23 Min F & Zhu W [45] App: Feature selection 2012 29

24 Zhou B [94] Hybrid: DTRS 2014 29

25 Liang DC et al. [29] Hybrid: DTRS 2015 25

26 Zhang XH, Dai JH & Yu Y et

al. [89]

Theory: Approximation spaces 2015 25

27 Li JH et al. [26] Hybrid: Granular computing 2015 23

28 Qian J et al. [61] App: Attribute reduction 2015 21

29 Liang D & Liu D [27] Hybrid: Fuzzy DTRS 2014 20

30 Zhao X & Hu BQ [93] Hybrid: Fuzzy probability

measure

2015 17

31 Zhan JM, Liu Q & Davvaz B

[88]

Theory: Soft hemirings 2015 15

32 Li WT & Xu WH [23] App: DTRS 2015 13

33 Selechi S, Selamat A & Fujita

H [65]

Theory: Granular computing 2015 12
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Table 12 Most cited papers by journals

Rank Journal Cites Papers

1 Information Sciences 5,215 14

2 International Journal of Computer and

Information Sciences

5,137 1

3 European Journal of Operational

Research

1,297 4

4 Journal of Computer and System

Sciences

880 1

5 International Journal of General

Systems

846 1

6 IEEE Transactions on Knowledge and

Data Engineering

681 2

7 Pattern Recognition Letters 582 2

8 International Journal of Approximate

Reasoning

514 2

9 Communications of the ACM 382 1

10 IEEE Transactions on Neural

Networks

353 1

11 Computers and Mathematics with

Applications

342 1

12 Cybernetics and Systems 295 1

13 Mechanical Systems and Signal

Processing

256 1

14 Fuzzy Sets and Systems 237 1

15 International Journal of Man-Machine

Studies

227 1

16 International Journal of Intelligent

Systems

221 1

WoS categorizes journals into 4 groups according to their IF rankings. IF Quartile

rankings are derived for each journal in each of its subject categories according to

which quartile of the IF distribution the journal occupies for that subject category

[64], where:

∙ Q1 denotes the top 25% of the IF distribution,

∙ Q2 denotes the middle-high position (between top 50% and top 25%),

∙ Q3 denotes the middle-low position (top 75% to top 50%),

∙ Q4 denotes the lowest position bottom 25% of the IF distribution.

We will examine journals based on the numbers of top rough set papers and top

1% papers as well. There are 16 journals that published rough set most cited papers

based on Table 7. The results are shown in Table 12.

We further analyse journals that published top 1% rough set papers. The results

are shown in Table 13.
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Table 13 Top 1% highly cited papers by journals

Rank Journals Cites Papers

1 Information Sciences 2420 6

2 Pattern Recognition Letters 253 1

3 Computers and Mathematics

with Applications

211 1

Table 14 Most cited papers in recent 5 years by journals

Rank Journal Cites Papers

1 Information Sciences 1007 14

2 Intl. Journal of Approximate

Reasoning

356 7

3 Intl. Journal of Computational

Intelligence Systems

138 2

4 Knowledge-Based Systems 130 3

5 Fuzzy Sets and Systems 108 1

6 Applied Soft Computing 97 2

7 Pattern Recognition 73 1

8 Fundamenta Informaticae 73 1

9 IEEE Transactions on Cybernetics 57 1

10 Computers & Mathematics with

Applications

57 1

11 Expert Systems with Applications 54 1

12 IEEE Transactions on Fuzzy

Systems

46 1

Similar analysis was conducted for the top 35 most cited papers and top 1% papers

in recent 5 years. The results are presented in Tables 14 and 15.

It is noted that 40% (14 out of 35) top cited rough set papers and 50% (9 out

of 18) of top 1% rough set papers are published in Information Sciences journal.

Information Sciences constitutes the primary journal where most of the rough set

related and impact papers are published.

The following is a summarization of top 10 journals we identified in Table 16 in

term of IF, h-index, Quartile ranking metrics, as well as top 1% ranking metrics.

∙ Information Sciences

– IF 3.364, Quartile Q1

– Published 366 rough set papers

– h-index 109, 22 rough set papers amongst top 109 papers

– 166 top 1% papers, 32 of them are rough set papers
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Table 15 Top 1% highly cited papers in recent 5 years by journals

Rank Journal Cites Papers

1 Information Sciences 763 9

2 Intl. Journal of Approximate

Reasoning

253 5

3 Fuzzy Sets and Systems 108 1

4 IEEE Transactions on

Cybernetics

57 1

5 Computers & Mathematics

with Applications

57 1

6 Applied Computing 43 1

Table 16 Top 10 rough set journals

Rank h-index IF quartile Journals Papers

1 109 Q1 Information Sciences 366

2 34 Q3 Fundamenta Informaticae 245

3 55 Q1 Knowledge Based Systems 171

4 32 Q1 Expert Systems with

Applications

157

5 61 Q1 International Journal of

Approximate Reasoning

141

6 25 Q3 Journal of Intelligent & Fuzzy

Systems

86

7 68 Q1 Applied Soft Computing (ASC) 77

8 149 Q1 Fuzzy Sets and Systems 70

9 181 Q1 European Journal of

Operational Research

62

10 43 Q2 Soft Computing (SC) 50

∙ Fundamenta Informaticae

– IF 0.658, Quartile Q3

– Published 245 rough set papers

– h-index 34, 0 rough set papers amongst top 34 papers

– 4 top 1% papers, none is rough set paper

∙ Knowledge Based Systems

– IF 3.325, Quartile Q1

– Published 171 rough set papers

– h-index 55, 4 are rough set papers amongst to 55 papers

– 55 top 1% papers, 11 of them are rough set papers
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∙ Expert Systems with Applications

– IF 2.981, Quartile Q1

– Published 157 rough set papers

– h-index 32, 2 rough set papers amongst top 32 papers

– 81 top 1% papers, 2 of them are rough set papers

∙ International Journal of Approximate Reasoning

– IF 2.696, Quartile Q1

– Published 141 rough set papers

– h-index 61, 11 rough set papers amongst top 61 papers

– 16 top 1% papers, 11 of them are rough set papers

∙ Journal of Intelligent & Fuzzy Systems

– IF 1.004, Quartile Q3

– Published 86 rough set papers

– h-index 25, 1 rough set paper amongst top 25 papers,

– 15 top 1% papers, 1 of them is rough set paper

∙ Applied Soft Computing

– IF 2.857, Quartile Q1

– Published 77 rough set papers

– h-index 68, 2 rough set papers amongst top 68 papers

– 67 top 1% papers, 2 of them are rough set papers

∙ Fuzzy Sets and Systems

– IF 2.098, Quartile Q1

– Published 70 rough set papers

– h-index 149, 1 rough set paper amongst top 149 papers

– 19 top 1% papers, 1 of them is rough set paper

∙ European Journal of Operational Research

– IF 2.679, Quartile Q1

– Published 62 rough set papers

– h-index 181, 3 rough set papers amongst top 181 papers

– 103 top 1% papers, 3 of them are rough set papers

∙ Soft Computing

– IF 1.630, Quartile Q2

– Published 50 rough set papers

– h-index 43, 2 rough set papers amongst top 43 papers

– 13 top 1% papers, 2 of them are rough set papers

Once again we noticed that Information Sciences is identified as the main rough

set journal due to the fact that,
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∙ it is rated Q1 and has third highest h-index of all top 10 journals

∙ it has the highest top 1% highly cited papers

∙ 75% of top 1% highly cited papers are from IS (in Table 13)

∙ Most cited rough set papers are published in Information Science.

6 Conclusion

We have presented this research in commemorating the father of rough sets, Zdzisław

Pawlak, and celebrating the 90th anniversary of his birth by investigating the trend

and development of rough set research by using scientometrics approach. The results

show that Pawlak’s seminal paper has been identified the most cited paper. Pawlak

has been identified as the most influential and impact author.

We have analyzed productivity and impact of rough set research domain. The

top five prolific authors are: Slowinski, Yao, Skowron, Wang, and Zhu. The top five

most influencial authors are: Pawlak, Yao, Slowinski, Skowron, and Ziarko. The top

journal for rough set research has been identified as Information Sciences.

Comparing with the results in 2013, we found that the number of rough sets publi-

cations has increased by 35%, the total citations have increased by over 83%, and the

h-index values increased by over 32%. The average citations per paper is 8.02 while

the average citations per paper was 5.9 in 2013, i.e., an increase of about 36%. The

results also show that about 35% of rough set publications were published in recent

5 years. The results of recent 5 years of rough set publication have demonstrated that

more papers on the applications and hybrid with other theories. Decision-theoretic

rough sets and three-way decisions are new research trends. The results suggest that

rough set research continues growing healthy and attracting more to application ori-

ented research. We will monitor and report the trends and development in this domain

in future research.
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Rough Sets, Rough Mereology
and Uncertainty

Lech Polkowski

Abstract 35 years ago Zdzisław Pawlak published the article in which He proposed

a novel idea for reasoning about uncertainty. He proposed to present knowledge as

classification ability and in consequence the playground for His theory was proposed

as approximation space, i.e., a set along with an equivalence relation on it, equiva-

lence classes representing categories to which objects in the set were to be assigned.

This point of view was stressed in the monograph ‘Rough Sets. Theoretical Aspects

of Reasoning about Data’ (1992) 25 years ago. The application tint was given to

rough sets by transferring center of gravity of the theory from approximation spaces

to decision/information systems, i.e., data tables in the attribute—value format. In

the same year the first collective monograph appeared accompanying the first work-

shop on rough sets: ‘Intelligent Decision Support. Handbook of Applications and

Advances of Rough Set Theory’ edited by Roman Słowiński. The effect of those 10

years was emergence of notions like a decision rule, a reduct, a core, of algorithms

for finding certain, minimal and optimal rules, for finding reducts, analyses of rela-

tions between rough sets and other paradigms describing uncertainty and emergence

of hybrid approaches like rough-fuzzy sets etc. Still 10 years elapsed and a mono-

graph on foundations of rough sets was possible (2002): ‘Rough Sets. Mathematical

Foundations’ by this author, and, some other outlines of rough set theory appeared.

Rough set research grew, extending its scope by entering realms of morphology,

intelligent agents theory, linguistics, behavioral robotics, mereology, granular com-

puting, acquiring many applications in diverse fields. In this chapter we try to sum

up our personal experience and results and in a sense to unify them into a coher-

ent conceptual scheme following the main themes of rough set theory: to understand

uncertainty and to cope with it in data. In this work, we use the term ‘thing’ to denote

a being in general, denoted with x, y, z, ... and the term ‘object’ to denote beings in

the universes of information/decision systems, denoted u, v,w, ...; truth values are

denoted with letters r, s, ....

There is no uncertain language in which to discuss uncertainty (Zdzisław Pawlak)
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1 The Phenomenon of Uncertainty

Uncertainty can be defined as inability to choose one optimal object in the given

context from a set of more than one optional objects. A usually invoked exam-

ple of uncertainty is The Uncertainty Principle of Heisenberg [22], i.e., the the-

sis that the precise values of position and energy of an electron cannot be known

simultaneously—this is uncertainty inscribed into nature; uncertainty immanent to

human thinking was revealed by Gödel, see [64]: for each formal system which con-

tains arithmetic of natural numbers, there can be formulated statements formally

correct about which one cannot decide whether they are true or false, this is uncer-

tainty imbued into abstract thinking. There are ordinary cases for uncertainty like

making decision at crossroads, investing on the stock market, forecasting a political

issue, due to the lack of adequate knowledge. Due to the omnipresence of uncer-

tainty in all venues of life, the problem of catching the essence of uncertainty and

attempts at formal reasoning schemes taking uncertainty into consideration were

subject of interest to many scientists. Logicians beginning from Aristotle were fully

aware of difficulties with uncertain knowledge, witness the famous example in Aris-

totle ‘De Interpretatione’ [3] ‘there will be sea battle tomorrow’, cf., a discussion in

[43], yet the logical systems up to beginning of 20th century dealt solely with definite

binary–valued statements, either true or false. In 1918, Jan Łukasiewicz [32], [69],

introduced the 3–valued logic with the value of 2 for statements uncertain as to their

truth value, which may be labelled ‘don’t know’ (later the value of 2 was replaced by

more convenient computationally value of 1/2). The Łukasiewicz 3–valued system

was defined by formulas, where r, s ∈ {0, 1, 1∕2},

r ⇒ s = min{1, 1 − r + s} (1)

for implication and

¬r = 1 − r (2)

for negation. It was recognized immediately that Łukasiewicz formulas extend to

n–valued logics as well as to logics with truth values rational in the unit interval

or simply real values in the unit interval, hence, the Łukasiewicz systems allow for

expressing any degree of uncertainty. Calculus of uncertain notions became possible

when Lotfi Asker Zadeh [81] introduced the idea of a fuzzy set. This notion does

extend the classical notion of a set characterized by the function

𝜒(x) = 1 x ∈ A else 0 (3)

where A is a subset of the universal set U, by introducing the fuzzy membership

function

𝜇A ∶ U → [0, 1] (4)
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with the interpretation that 𝜇A(x) = 1 means that x ∈ A is the true statement, 𝜇A(x) =
0 means that the statement x ∈ A is false and the value of 𝜇A(x) in (0, 1) indicates the

degree of uncertainty whether x is in A. Applying to notions so fuzzified the logical

scheme of Łukasiewicz, we can assign uncertainty degrees to complex statements

about commonly used notions, e.g., the implication ‘If x is high to degree of 0.8 then x
will play on university basketball team with chance to degree of 0.6’ has the degree of

truth of 1 – 0.8 + 0.6 = 0.8. Topology entered the world of scientific paradigms much

earlier, in the midst of XIX century, see [33] and from its beginnings it formalized

uncertainty of location in the notion of the boundary of a set. Given a collection of

open sets G in the universal set U and a set A a subset of the universal set U, the

boundary BdGA of A with respect to G is defined as the set of points x ∈ U with the

property boundA defined as

boundA(x) if and only if N ∩ A ≠ ∅ and not N ⊆ A for each nbhd N ∈ G of x. (5)

An original approach to formalization of uncertainty was proposed by Karl Menger

[36–38], who considered metric spaces with the distance function known up to prob-

ability only. An upshot from his work was emergence of functions known as t–

norms, each t–norm T ∶ [0, 1]2 → [0, 1] satisfying properties (1) T(x, y) = T(y, x);
(2) T(x,T(y, z)) = T(T(x, y), z); (3) If x ≥ x′ then T(x, y) ≥ T(x′, y); (4)T(x, 0) = 0,

T(x, 1) = x. Additional properties are: (5) T is continuous; (6) T(x, x) < x for x ∈
(0, 1). T–norms satisfying (5,6) satisfy the functional equation [30]:

T(x, y) = g(f (x) + f (y)), (6)

where f ∶ [0, 1] → [0, 1] is a continuous decreasing function with f (0) = 1, and g
is the pseudo–inverse to f . Each t–norm T gives rise to the function ⇒T∶ [0, 1]2 →
[0, 1] called the residuum and defined by means of the equivalence:

x ⇒T y ≥ r if and only if T(x, r) ≤ y. (7)

In particular, the Łukasiewicz implication (1) is the residuum of the Łukasiewicz

t–norm L(x, y) = max{0, x + y − 1}; the other t–norm P(x, y) = x ⋅ y, the product t–

norm, induces the Goguen implication:

x ⇒P y =
y
x

if x > y else 1. (8)

The third classical t-norm M(x, y) = min{x, y} induces the G odel implication:

x ⇒M y = y if x > y else 1. (9)

Each of those logics combined with fuzzified notions gives a calculus of uncertain

notions.
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2 The Pawlak Approach to Uncertainty

Zdzisław Pawlak [44, 45] approached knowledge as ability to classify given objects

into given categories; in this, he became close to definition of knowledge due to Inno-

centy Maria Bocheński [13]: ‘knowledge is a set of relations among things, and,
properties of things’. The realization of this definition in Pawlak’s approach con-

sisted in establishing relations between things and categories of things of the form

‘the thing x belongs in the category C’. Hence, uncertain knowledge meant inability

to classify certain objects into categories in a deterministic way. The simple model

of this notion of knowledge was a set of objects along with a partition of this set into

categories, so–called approximation space. Elements of the partition were decidable:

for each object it was true that it belongs in the category or not and the same was

true for unions of categories. Unions of categories were called exact sets. Other sets

were declared rough, i.e., not decidable. It is manifest that this approach was a topo-

logical one: categories were basic open sets, their unions were open sets and due to

the disjointness of categories open sets were also closed sets. Moreover, each inter-

section of a family of open sets was open, a peculiar property of topologies induced

by partitions. Pawlak addressed also the problem of non-deterministic concepts, i.e.,

of uncertain knowledge: for a set X not exact, i.e., not open, he introduced approxi-

mations, the lower and the upper as, respectively, the interior and the closure in the

partition topology:

l(X) =
⋃

{C ∈ Cat ∶ C ⊆ X}, u(X) =
⋃

{C ∈ Cat ∶ C ∩ X ≠ ∅}. (10)

A specific implementation of this idea was using the notions of an information sys-

tem and a decision system. An information system (U,A,V), denoted by various

authors in some distinct ways, consists of a set of objects U, a set of attributes (fea-

tures) A on U and a set of attribute values V so for each pair (a, u) ∈ A × U (so we

assume for now that those systems are complete, i.e., with no missing values) a value

a(u) ∈ V is defined; a decision system (U,A,V , d) is augmented by an additional

attribute, the decision d. In case of information or decision systems, we will use the

generic symbols u, v,w, ... to denote objects in the set U. For an attribute q ∈ A ∪ {d},

the indiscernibility relation Indq is a partition of the set U into categories of the

form Indq(u) = {v ∈ U ∶ q(u) = q(v)}. For a set B of attributes, the category IndB
is defined as the intersection

⋂
q∈B Indq. In this notation, relations, called decision

rules, constituting knowledge represented by the decision system (U,A,V , d) are of

the form:

B → d = {IndB(u) → Indd(u) ∶ u ∈ U}. (11)

To obtain the extended form of a relation IndB(u) → Indd(u), one lets B = {ai1 , ..., aik}
and represents IndB as the meaning of the formula

k⋀

j=1
(aij (u) = vj) → (d(u) = v), (12)
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where the meaning [𝜙]U of a predicate formula 𝜙 is

[𝜙]U = {u ∈ U ∶ u ⊧ 𝜙}. (13)

Hence, knowledge expressed by means of a set of decision rules can be presented

in logical or set–theoretical formalism. A great merit of Pawlak’s approach lies in

reviving some of old notions of classical logic and mathematics in the new context

of knowledge engineering.

3 Rough Set Spaces

Zdzisław Pawlak was a theoretician by temperament and mental constitution, as wit-

nesssed by his many achievements. He was very interested in giving his rough sets as

many formal structures as was possible, in particular he asked for topological rough

set spaces. The author of this chapter was able to fulfill his desire by producing some

topologies on rough sets, see [47] for summary of results, proofs and bibliography

of original works. Of course, those topologies, being desirably distinct from already

well known partition topologies, were to be induced from a more complex settings,

viz., from infinite information systems. This approach corresponded with a well–

known advice by Stan Ulam: ‘if you want to discuss a finite case, go first to the infinite
one’. Let us recall the essential results, which of course have had a purely intellectual

valor, as being on the side of esoteric they are not commonly known, albeit see para-

graph on collage theorem. We assume given a set (a universe) U of objects along with

a sequence A = {an ∶ n = 1, 2,…} of attributes where without loss of generality we

may assume that Indn+1 ⊆ Indn for each n. Letting Ind =
⋂

n Indn, we may assume

that the family {Indn ∶ n = 1, 2,…} separates objects, i.e., for each pair u ≠ v, there

is a class P ∈ U∕Indn for some n such that u ∈ P, v ∉ P, otherwise we would pass to

the quotient universe U∕Ind. This implies that the set U is of power of continuum.

We endow U with some topologies.

3.1 Topologies𝜫n, the Topology 𝜫𝟎 and Exact
and Rough Sets

For each n, the topology 𝛱n is defined as the partition topology obtained by taking

as open sets unions of families of classes of the relation Indn. The topology 𝛱0 is

the union of topologies 𝛱n for n = 1, 2,…. We apply the topology 𝛱0 to the task of

discerning among subsets of the universe U (Cl
𝜏

is the closure operator and Int
𝜏

is

the interior operator with respect to a topology 𝜏):

A set Z ⊆ U is 𝛱0 − exact if Cl
𝛱0

Z = Int
𝛱0

Z else Z is 𝛱0-rough. (14)
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3.2 The Space of 𝜫𝟎-rough Sets Is Metrizable

Each 𝛱0-rough set can be represented as a pair (Q,T) where Q = Cl
𝛱0

X,T = U ⧵
Int

𝛱0
X for some X ⊆ U. The pair (Q,T) has to satisfy the conditions: 1. U = Q ∪ T .

2. Q ∩ T ≠ ∅. 3. If {x} is a 𝛱0-open singleton then x ∉ Q ∩ T . We define a metric

dn as ([u]n is the Indn-class of u):

dn(u, v) = 1 in case [u]n ≠ [v]n else dn(u, v) = 0. (15)

and the metric d:

d(u, v) =
∑

n
10−n ⋅ dn(u, v). (16)

Theorem 1 Metric topology of d is 𝛱0.

We employ the notion of the Hausdorff metric and apply it to pairs (Q,T) satisfying

1–3 above, i.e., representing 𝛱0-rough sets. For pairs (Q1,T1), (Q2,T2), we let

D((Q1,T1), (Q2,T2)) = max{dH(Q1,Q2), dH(T1,T2)} (17)

and

D∗((Q1,T1), (Q2,T2)) = max{dH(Q1,Q2), dH(T1,T2), dH(Q1 ∩ Q2,T1 ∩ T2)}, (18)

where dH(A,B) = max{maxx∈Adist(x,B),maxy∈Bdist(y,A)} is the Hausdorff metric

on closed sets and dist(x,A) = miny∈Ad(x, y). The main result is

Theorem 2 If each descending sequence {[un]n ∶ n = 1, 2,…} of classes of rela-
tions Indn has a non–empty intersection, then each D∗–fundamental sequence of
𝛱0–rough sets converges in the metric D to a 𝛱0–rough set. If, in addition, each
relation Indn has a finite number of classes, then the space of 𝛱0–rough sets is com-
pact in the metric D.

3.3 The Space of Almost𝜫𝟎-rough Sets Is Metric Complete

In notation of preceding sections, it may happen that a set X is 𝛱n-rough for each n
but it is 𝛱0-exact. We call such sets almost rough sets. We denote those sets as 𝛱

𝜔

-

rough. Each set X of them, is represented in the form of a sequence of pairs (Qn,Tn) ∶
n = 1, 2,… such that for each n, 1. Qn = Cl

𝛱n
X,Tn = U ⧵ Int

𝛱n
X. 2. Qn ∩ Tn ≠ ∅. 3.

Qn ∪ Tn = U. 4. Qn ∩ Tn contains no singleton {x} with {x} 𝛱n-open. To introduce

a metric into the space of 𝛱
𝜔

-rough sets, we apply again the Hausdorff metric but in

a modified way: for each n, we let dH,n to be the Hausdorff metric on 𝛱n-closed sets,
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and for representations (Qn,Tn) and (Q∗
n,T

∗
n )n of 𝛱

𝜔

-rough sets X,Y , respectively,

we define the metric D′
as:

D′(X,Y) =
∑

n
10−n ⋅ max{dH,n(Qn,Q∗

n), dH,n(Tn,T∗
n )}. (19)

It turns out that

Theorem 3 The space of 𝛱
𝜔

-rough sets endowed with the metric D′ is complete,
i.e., each D′-fundamental sequence of 𝛱

𝜔

-rough sets converges to a 𝛱
𝜔

-rough set.

Theoretical as are these results, yet there was an applicational tint in them.

3.4 Approximate Collage Theorem

Consider an Euclidean space En
along with an information system (En

,A = {ak ∶
k = 1, 2,…}), each attribute ak inducing the partition Pk of En

into cubes of the form∏n
i=1[mi +

ji
2k ,mi +

ji+1
2k ), where mi runs over integers and ji ∈ [0, 2k − 1] is an inte-

ger. Hence, Pk+1 ⊆ Pk, each k. We consider fractal objects, i.e., systems of the form

[(C1,C2,… ,Cp), f , c], where each Ci is a compact set and f is an affine contracting

mapping on En
with a contraction coefficient c ∈ (0, 1). The resulting fractal is the

limit of the sequence (Fn)n of compacta, where 1. F0 =
⋃p

i=1 Ci. 2. Fn+1 = f (Fn). In

this context, fractals are classical examples of 𝛱0-rough sets. Assume we perceive

fractals through their approximations by consecutive grids Pk, so each Fn is viewed

on as its upper approximation, see (10), a+
k Fn for each k. As diam(Pk) →k→∞ 0, it is

evident that the symmetric difference F △ Fn becomes arbitrarily close to the sym-

metric difference a+
k F △ a+

k Fn. Hence, in order to approximate F with Fn it suffices

to approximate a+
k F with a+

k Fn. The question poses itself: what is the least k which

guarantees for a given 𝜀, that if a+
k Fn = a+

k F then dH(F,Fn) ≤ 𝜀. We consider the

metric D on fractals and their approximations. We had proposed a counterpart to

Collage Theorem, by replacing fractals Fn by their grid approximations.

Theorem 4 (Approximate Collage Theorem [46]) Assume a fractal F generated by
the system (F0 =

⋃p
i=1 Ci, f , c) in the space of 𝛱0-rough sets with the metric D. In

order to satisfy the requirement dH(F,Fn) ≤ 𝜀, it is sufficient to satisfy the require-

ment a+
k0

Fn = a+
k0

F with k0 = ⌈ 1
2
− log2𝜀⌉ and n ≥ ⌈ log2[2

−k0+
1
2 ⋅K−1⋅(1−c)]

log2c
⌉, where K =

dH(F0,F1).

This ends the topological chapter in rough set theory and we pass to the second large

area in which the research was also in a sense provoked by Zdzisław Pawlak, i.e. to

theory of rough mereology.
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4 Mereology

Zdzisław Pawlak was by his education an engineer—he graduated from Department

of Electrical Engineering in Warsaw Polytechnical, but by intellectual composition

he was close to theory in particular to mathematics and logic. He spent his pro-

fessional time in the fifties and sixties in the Mathematical Institute of the Polish

Academy of Sciences (PAS) where he met first class mathematicians, in particu-

lar he often remembered seminars with Andrzej Ehrenfeucht, the world renowned

logician. Much later, around 2000, when travelling with Zdzisław to a conference in

Alaska, we made a stop-over at Denver and we visited Andrzej Ehrenfeucht and Jan

Mycielski in Boulder where they worked. Present at the reunion, I experienced the

climate of those for long passed days. So, Zdzisław was justly interested in mere-

ology as a theory of parts; the notion of a proper subset is a particular case of the

notion of a part, and, any rough set is sandwiched as a proper part between its exact

approximations. Hence, basically, mereology can have the claim for being a formal

base for rough set theory. In addition to this, mereology as a formal theory was first

constructed by Stanislaw Leśniewski, in the years 1918–1939 professor at Warsaw

University and Zdzisław also metioned that he saw in the Library of the Institute

some manuscripts by him (the whole archive of Leśniewski was burned down dur-

ing the Warsaw Uprising in August-September 1944, so those manuscripts could be

some works submitted to Fundamenta Mathematicae). So it was our resolution to

investigate the subject. Let us say a few words about it.

4.1 Classical Mereology

Mereology due to Leśniewski arose from attempts at reconciling antinomies of naïve

set theory, see Leśniewski [26], [27], [29], Srzednicki et al. [73], Sobociński [71],

[72]. Leśniewski [26] was the first presentation of the foundations of his theory as

well as the first formally complete exposition of mereology. The primitive notion of

mereology in this formalism is the notion of a part, mentioned already by Aristotle

[4]. Given some category of things, a relation of a part is a binary relation 𝜋 which

is required to be

M1 Irreflexive: For each thing x, it is not true that 𝜋(x, x).
M2 Transitive: For each triple x, y, z of things, if 𝜋(x, y) and 𝜋(y, z), then 𝜋(x, z).

Remark In the original scheme of Leśniewski, the relation of parts is applied to

individual things as defined in Ontology of Leśniewski, see Leśniewski [28], Iwanuś

[24]. The relation of part induces the relation of an ingredient (the term is due to T.

Kotarbiński), ingr, defined as

ingr(x, y) ⇔ 𝜋(x, y) ∨ x = y (20)
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The relation of ingredient is a partial order on things, i.e.,

1. ingr(x, x).
2. ingr(x, y) ∧ ingr(y, x) ⇒ (x = y).
3. ingr(x, y) ∧ ingr(y, z) ⇒ ingr(x, z).

We formulate the third axiom with a help from the notion of an ingredient.

M3 (Inference) For each pair of things x, y, if the property

I(x, y): For each t, if ingr(t, x), then there exist w, z such that ingr(w, t), ingr(w, z),
ingr(z, y) hold, is satisfied, then ingr(x, y).

The predicate of overlap, Ov in symbols, is defined by means of

Ov(x, y) ⇔ ∃z.ingr(z, x) ∧ ingr(z, y). (21)

Using the overlap predicate, one can write I(x, y) down in the form

IOv(x, y) ∶ For each t if ingr(t, x), then there exists z such that ingr(z, y) and
Ov(t, z).

The notion of a mereological class follows; for a non–vacuous property 𝛷 of

things, the class of 𝛷, denoted Cls𝛷 is defined by the conditions

C1 If 𝛷(x), then ingr(x,Cls𝛷).
C2 If ingr(x,Cls𝛷), then there exists z such that 𝛷(z) and IOv(x, z).
In plain language, the class of𝛷 collects in an individual thing all things satisfying

the property 𝛷. The existence of classes is guaranteed by an axiom.

M4 For each non–vacuous property 𝛷 there exists a class Cls𝛷.

The uniqueness of the class follows by M3. M3 implies also that, for the non–

vacuous property 𝛷, if for each thing z such that 𝛷(z) it holds that ingr(z, x),
then ingr(Cls𝛷, x). The notion of an overlap allows for a succinct characteriza-

tion of a class: for each non–vacuous property 𝛷 and each thing x, it happens that

ingr(x,Cls𝛷) if and only if for each ingredient w of x, there exists a thing z such that

Ov(w, z) and 𝛷(z).

Remark Uniqueness of the class along with its existence is an axiom in the

Leśniewski [26] scheme, from which M3 is derived. Similarly, it is an axiom in the

Tarski [74–76] scheme. Please consider two examples.

1. The strict inclusion ⊂ on sets is a part relation. The corresponding ingredient

relation is the inclusion ⊆. The overlap relation is the non–empty intersection.

For a non–vacuous family F of sets, the class ClsF is the union
⋃

F.

2. For reals in the interval [0, 1], the strict order < is a part relation and the corre-

sponding ingredient relation is the weak order ≤. Any two reals overlap; for a set

F ⊆ [0, 1], the class of F is supF.

The notion of an element is defined as follows

el(x, y) ⇔ ∃𝛷.y = Cls𝛷 ∧ 𝛷(x). (22)
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In plain words, el(x, y) means that y is a class of some property and x responds to that

property. To establish some properties of the notion of an element, we begin with the

property INGR(x) = {y ∶ ingr(y, x)}, for which the identity x = ClsINGR(x) holds by

M3. Hence, el(x, y) is equivalent to ingr(x, y). Thus, each thing x is its own element.

This is one of means of expressing the impossibility of the Russell paradox within

the mereology, cf., Leśniewski [26], Thms. XXVI, XXVII, see also Sobociński [71].

We observe the extensionality of overlap: For each pair x, y of things, x = y if and
only if for each thing z, the equivalence Ov(z, x) ⇔ Ov(z, y) holds. Indeed, assume

the equivalence Ov(z, x) ⇔ Ov(z, y) to hold for each z. If ingr(t, x) then Ov(t, x) and

Ov(t, y) hence by axiom M3 ingr(t, y) and with t = x we get ingr(x, y). By symmetry,

ingr(y, x), hence x = y. The notion of a subset follows:

sub(x, y) ⇔ ∀z.[ingr(z, x) ⇒ ingr(z, y)]. (23)

It is manifest that for each pair x, y of things, sub(x, y) holds if and only if el(x, y)
holds if and only if ingr(x, y) holds. For the property Ind(x) ⇔ ingr(x, x), one calls

the class ClsInd, the universe, in symbols V . It follows that 1. The universe is unique.

2. ingr(x,V) holds for each thing x. 3. For each non–vacuous property 𝛷, it is true

that ingr(Cls𝛷,V). The notion of an exterior thing x to a thing y, extr(x, y), is the

following:

extr(x, y) ⇔ ¬Ov(x, y). (24)

In plain words, x is exterior to y when no thing is an ingredient both to x and y.

Clearly, the operator of exterior has properties 1. No thing is exterior to itself. 2.

extr(x, y) implies extr(y, x). 3. If for a non–vacuous property 𝛷, a thing x is exterior

to every thing z such that 𝛷(z) holds, then extr(x,Cls𝛷). The notion of a comple-

ment to a thing, with respect to another thing, is rendered as a ternary predicate

comp(x, y, z), cf., Leśniewski, [26], par. 14, Def. IX, to be read: ‘x is the comple-

ment to y with respect to z’, and it is defined by means of the following require-

ments 1. x = ClsEXTR(y, z). 2. ingr(y, z), where EXTR(y, z) is the property which

holds for an thing t if and only if ingr(t, z) and extr(t, y) hold. This definition implies

that the notion of a complement is valid only when there exists an ingredient of

z exterior to y. Following are basic properties of complement 1. If comp(x, y, z),
then extr(x, y) and 𝜋(x, z). 2. If comp(x, y, z), then comp(y, x, z). We let for a thing

x, −x = ClsEXTR(x,V). It follows that 1. −(−x) = x for each thing x. 2. −V does not
exist. We conclude this paragraph with two properties of classes useful in the sequel:

If 𝛷 ⇒ 𝛹 then ingr(Cls𝛷,Cls𝛹 ). (25)

and a corollary

If 𝛷 ⇔ 𝛹 then Cls𝛷 = Cls𝛹. (26)

Classical mereology establishes on a given universe of objects an exact hierarchy of

parts and wholes suitable for exact concepts; to account for rough concepts, we need

the approximate mereology (rough mereology) in which the notion of a part would



Rough Sets, Rough Mereology and Uncertainty 59

loose its objective character and would undergo a subjective evaluation. Hence,

rough mereology was proposed by us. Let us mention that a parallel scheme for

mereology going back to informal ideas of Alfred North Whitehead [79], [80] was

established in Clarke [20] as the Calculus of Connections, based on the preducate

C of ‘being connected’ demanded to be reflexive and symmetric plus eventually the

property of extensionality.

5 Rough Mereology

A scheme of mereology, introduced into a collection of things, sets an exact hierar-

chy of things of which some are (exact) parts of others; to ascertain whether a thing

is an exact part of some other thing is in practical cases often difficult if possible

at all, e.g., a robot sensing the environment by means of a camera or a laser range

sensor, cannot exactly perceive obstacles or navigation beacons. Such evaluation can

be done approximately only and one can discuss such situations up to a degree of

certainty only. Thus, one departs from the exact reasoning scheme given by decom-

position into parts to a scheme which approximates the exact scheme but does not

observe it exactly. Such a scheme, albeit its conclusions are expressed in an approxi-

mate language, can be more reliable, as its users are aware of uncertainty of its state-

ments and can take appropriate measures to fend off possible consequences. Imagine

two robots using the language of connection mereology for describing mutual rela-

tions; when endowed with touch sensors, they can ascertain the moment when they

are connected; when a robot has as a goal to enter a certain area, it can ascertain

that it connected to the area or overlapped with it, or it is a part of the area, and

it has no means to describe its position more precisely. Introducing some measures

of overlapping, in other words, the extent to which one thing is a part to the other,

would allow for a more precise description of relative position, and would add an

expressional power to the language of mereology. Rough mereology answers these

demands by introducing the notion of a part to a degree with the degree expressed

as a real number in the interval [0, 1]. Any notion of a part by necessity relates to

the general idea of containment, and thus the notion of a part to a degree is related

to the idea of partial containment and it should preserve the essential intuitive pos-

tulates about the latter. The predicate of a part to a degree stems ideologically from

and has as one of motivations the predicate of an element to a degree introduced by

Lotfi Asker Zadeh as a basis for fuzzy set theory [81]; in this sense, rough mereol-

ogy is to mereology as the fuzzy set theory is to the naive set theory. To the rough

set theory, owes rough mereology the interest in concepts as things of analysis. The

primitive notion of rough mereology is the notion of a rough inclusion which is a

ternary predicate 𝜇(x, y, r) where x, y are things and r ∈ [0, 1], read ‘the thing x is
a part to degree at least of r of the thing y’. Any rough inclusion is associated with

a mereological scheme based on the notion of a part by postulating that 𝜇(x, y, 1)
is equivalent to ingr(x, y), where the ingredient relation is defined by the adopted

mereological scheme. Other postulates about rough inclusions stem from intuitions
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about the nature of partial containment; these intuitions can be manifold, a fortiori,

postulates about rough inclusions may vary. In our scheme for rough mereology, we

begin with some basic postulates which would provide a most general framework.

When needed, other postulates, narrowing the variety of possible models, can be

introduced.

5.1 Rough Inclusions

We have already stated that a rough inclusion is a ternary predicate 𝜇(x, y, r). We

assume that a collection of things is given, on which a part relation 𝜋 is introduced

with the associated ingredient relation ingr. We thus apply inference schemes of

mereology due to Leśniewski, presented above. Predicates 𝜇(x, y, r) were introduced

in Polkowski and Skowron [62], [63]; when a predicate 𝜇(x, y, r) is interpreted in a set

of objects U, and regarded as a relation, then it does satisfy the following postulates,

relative to a given part relation 𝜋 on the set U and the induced by 𝜋 relation ingr of

an ingredient:

RINC1 𝜇(x, y, 1) ⇔ ingr(x, y). This postulate asserts that parts to degree of 1 are

ingredients.

RINC2 𝜇(x, y, 1) ⇒ ∀z[𝜇(z, x, r) ⇒ 𝜇(z, y, r)]. This postulate does express a fea-

ture of partial containment that a ‘bigger’ thing contains a given thing ‘more’ than a

‘smaller’ thing. It can be called a monotonicity condition for rough inclusions.

RINC3 𝜇(x, y, r) ∧ s < r ⇒ 𝜇(x, y, s). This postulate specifies the meaning of the

phrase ‘a part to a degree at least of r’. From postulates RINC1–RINC3, and known

properties of ingredients some consequences follow

1. 𝜇(x, x, 1).
2. 𝜇(x, y, 1) ∧ 𝜇(y, z, 1) ⇒ 𝜇(x, z, 1).
3. 𝜇(x, y, 1) ∧ 𝜇(y, x, 1) ⇔ x = y.

4. x ≠ y ⇒ ¬𝜇(x, y, 1) ∨ ¬𝜇(y, x, 1).
5. ∀z∀r[𝜇(z, x, r) ⇔ 𝜇(z, y, r)] ⇒ x = y.

Property 5 may be regarded as an extensionality postulate for rough mereology. By

a model for rough mereology, we mean a quadruple

M = (VM , 𝜋M , ingrM , 𝜇M)

where VM is a set with a part relation 𝜋M ⊆ VM × VM , the associated ingredient

relation ingrM ⊆ VM × VM , and a relation 𝜇M ⊆ VM × VM × [0, 1] which satisfies

RINC1–RINC3. We now describe some models for rough mereology which at the

same time give us methods by which we can define rough inclusions, see Polkowski

[47, 48, 50–52], a detailed discussion may be found in Polkowski [53].
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5.2 Rough Inclusions from T–norms

We resort to continuous t–norms which are continuous functions T ∶ [0, 1]2 → [0, 1]
which are 1. symmetric. 2. associative. 3. increasing in each coordinate. 4. satisfying

boundary conditions T(x, 0) = 0,T(x, 1) = x, cf., Polkowski [53], Chaps. 4 and 6,

Hájek [21], Chap. 2. Classical examples of continuous t–norms are:

1. L(x, y) = max{0, x + y − 1} (the Łukasiewicz t–norm).

2. P(x, y) = x ⋅ y (the product t–norm).

3. M(x, y) = min{x, y} (the minimum t–norm).

The residual implication ⇒T induced by a continuous t–norm T is defined as:

x ⇒T y = max{z ∶ T(x, z) ≤ y}. (27)

One proves that a ternary relation 𝜇T defined as:

𝜇T (x, y, r) ⇔ x ⇒T y ≥ r (28)

is a rough inclusion; particular cases are

1. 𝜇L(x, y, r) ⇔ min{1, 1 − x + y ≥ r} (the Łukasiewicz implication).

2. 𝜇P(x, y, r) ⇔
y
x
≥ r when x > 0, 𝜇P(x, y, 1)when x = 0 (the Goguen implication).

3. 𝜇M(x, y, r) ⇔ y ≥ r when x > 0, 𝜇M(x, y, 1) when x = 0 (the Gödel implication).

A particular case constitute continuous t–norms which satisfy the inequality T(x, x)
< x for each x ∈ (0, 1). It is well–known, see Ling [30], that each of those t–norms

T admits a representation:

T(x, y) = gT (fT (x) + fT (y)), (29)

where the function fT ∶ [0, 1] → R is continuous decreasing with fT (1) = 0, and gT ∶
R → [0, 1] is the pseudo–inverse to fT , i.e., g◦f = id. It is known, cf., e.g., Hájek [21],

that up to an isomorphism there are two t–norms which satisfy conditions (5) and

(6): L and P. Their representations are

fL(x) = 1 − x; gL(y) = 1 − y, (30)

and,

fP(x) = exp(−x); gP(y) = −ln y. (31)

For a t–norm T which satisfies conditions (5) and (6), we define the rough inclusion

𝜇

T
on the interval [0, 1] by means of

(ari) 𝜇T (x, y, r) ⇔ gT (|x − y|) ≥ r, (32)

equivalently,
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𝜇

T (x, y, r) ⇔ |x − y| ≤ fT (r). (33)

It follows from (33), that 𝜇
T

satisfies conditions RINC1–RINC3 with ingr as identity

=. To give a hint of proof: for RINC1: 𝜇
T (x, y, 1) if and only if |x − y| ≤ fT (1) = 0,

hence, if and only if x = y. This implies RINC2. In case s < r, and |x − y| ≤ fT (r),
one has fT (r) ≤ fT (s) and |x − y| ≤ fT (s). Specific recipes are:

𝜇

L(x, y, r) ⇔ |x − y| ≤ 1 − r, (34)

and,

𝜇

P(x, y, r) ⇔ |x − y| ≤ −ln r. (35)

Both residual and induced by L and P rough inclusions satisfy the transitivity con-
dition

(Trans) If 𝜇(x, y, r) and 𝜇(y, z, s), then 𝜇(x, z,T(r, s)). / In the way of a proof,

assume, e.g., 𝜇
T (x, y, r) and 𝜇

T (y, z, s), i.e., |x − y| ≤ fT (r) and |y − z| ≤ fT (s). Hence,

|x − z| ≤ |x − y| + |y − z| ≤ fT (r) + fT (s), hence, gT (|x − z|) ≥ gT (fT (r) + fT (s)) =
T(r, s), i.e., 𝜇

T (x, z,T(r, s)). Other cases go on same lines. Let us observe that rough

inclusions of the form (ari) are also symmetric.

5.3 Rough Inclusions in Information Systems (Data Tables)

An important domain where rough inclusions will play a dominant role in our analy-

sis of reasoning by means of parts is the realm of information systems of Pawlak [45],

cf., Polkowski [53], Chap. 6. We will define information rough inclusions denoted

with a generic symbol 𝜇
I
. We recall that an information system (a data table) is

represented as a tuple (U,A,V), where U is a finite set of things and A is a finite

set of attributes; each attribute a ∶ U → V maps the set U into the value set V . For

an attribute a and an object u ∈ U, a(u) is the value of a on u. For objects u, v the

discernibility set DIS(u, v) is defined as:

DIS(u, v) = {a ∈ A ∶ a(u) ≠ a(v)}. (36)

For an (ari) 𝜇T , we define a rough inclusion 𝜇

I
T by means of

(airi) 𝜇I
T (u, v, r) ⇔ gT (

|DIS(u, v)|
|A| ) ≥ r. (37)

Then, 𝜇
I
T is a rough inclusion with the associated ingredient relation of identity and

the part relation empty. For the Łukasiewicz t–norm, the airi 𝜇I
L is given by means

of the formula:

𝜇

I
L(u, v, r) ⇔ 1 − |DIS(u, v)|

|A| ≥ r. (38)



Rough Sets, Rough Mereology and Uncertainty 63

We introduce the set IND(u, v) = A ⧵ DIS(u, v). With its help, we obtain a new form

of (38):

𝜇

I
L(u, v, r) ⇔

|IND(u, v)|
|A| ≥ r. (39)

The formula (39) witnesses that the reasoning based on the rough inclusion 𝜇

I
L is

the probabilistic one which goes back to Łukasiewicz [31]. Each (airi)–type rough

inclusion 𝜇

I
T satisfies the transitivity condition (Trans) and is symmetric.

5.4 Rough Inclusions on Finite Sets and Measurable Sets

Formula (39) can be abstracted to set and geometric domains. For finite sets A,B, we

let:

𝜈L(A,B, r) ⇔
|A ∩ B|
|A| ≥ r, (40)

where |X| denotes the cardinality of X, defines a rough inclusion 𝜈L going back to

the Łukasiewicz idea of partial truth values. The rough inclusion 𝜈3 is defined as

⎧
⎪
⎨
⎪⎩

𝜈(A,B, 1) if A ⊆ B
𝜈(A,B, 1

2
) if A ∩ B ≠ ∅ and (A ⧵ B) ∪ (B ⧵ A) ≠ ∅

𝜈(A,B, 0) if A ∩ B = ∅
(41)

For bounded measurable sets X,Y in an Euclidean space En
, we have:

𝜇

G(A,B, r) ⇔ ||A ∩ B||
||A|| ≥ r, (42)

where ||A|| denotes the area (the Lebesgue measure) of the region A, defines a rough

inclusion 𝜇

G
. Both 𝜇

S
, 𝜇

G
are symmetric but not transitive.

6 Mereology in Engineering: Artifacts, Design
and Assembling

Zdzisław Pawlak suggested to us the direction but then we were travelling on our own

finding some applications for the developed schemes. In a wider sense, this is also

Zdzisław’s heritage. We select here applications of mereology to artefact making,

design and assembling. Mereology plays a fundamental role in problems of design

and assembling as basic ingredients in those processes are parts of complex things.

The process of synthesis involves sequencing of operations of fusion of parts into
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more complex parts until the final product—artifact. We propose a scheme for assem-

bling and a parallel scheme for design; the difference is in the fact that design operates

on abstracta, i.e. categories of things whereas assembling deals with concreta, i.e.,

with real things. The interplay between abstracta and concreta will be described as

a result of our analysis. The term artifact means, etymologically, a thing made by
art, which covers a wide specter of things from man–made things of everyday usage

to abstract pieces of mathematical proofs, software modules or sonnets, or concer-

tos. All those distinct things are unified in a scheme dependent on some common

ingredients in their making, cf., e.g., a concise discussion in SEP [67]. We cannot

include here a discussion of vast literature on ontological, philosophical and techno-

logical aspects of this notion, see, e.g., Baker [9], Hilpinen [23], Margolis and Lau-

rence [34], we point only to a thorough analysis of ontological aspects of artifacts

in Borgo and Vieu [16] in which authors propose also a scheme defining artifacts. It

follows from discussion by many authors that important in analysis of artifacts are

such aspects as: authorship, intended functionality, parthood relations. Analysis of

artifacts is closely tied to design and assembly, cf., Boothroyd [14] and Boothroyd,

Dewhurst and Knight [15] as well as Salustri [65] and Seibt [66]. A discussion of

mereology with respect to its role in domain science and engineering and computer

science can be found in Björner and Eir [12]. The present discussion comes from

[61]. We attempt at a definition of an artifact as a thing obtained over a collection of

things as a most complex thing in the sense of not being a part of any thing in the

collection; to aspects of authorship (operator) and functionality, we add a temporal

aspect, which allows for well–foundedness of the universe of parts, and seems to be

a natural aspect of the assembling or design process. We regard processes leading to

artifacts as fusion processes in which a by–product is obtained from a finite number

of substrats. Though processes, e.g., of assembling a bike from its parts or a chemical

reaction leading to a product obtained from a mixture of substances are very distinct

to the observer, yet the formal description is identical for the two; it does require a

category of operators P, a category of functionalities F, a linear time T with the

time origin 0. The domain of things is a category Things(P, F, 𝜋) of things endowed

with a part relation 𝜋. The assignment operator S acts as a partial mapping on the

Cartesian product P × F × Things(P,F, 𝜋) with values in the category Tree of rooted

trees. The act of assembling is expressed by means of a predicate

Art(p(u), < v1(u),⋯ , vk(u) >, u, f (u), t(u),T(u)),

which reads: an operator p(u) assembles at time t(u) a thing u with functionality f (u)
according to the assembling scheme T(u) organized by p(u) which is a tree with the
root u, from things v1(u),⋯ , vk(u) which are leaves of T(u). The thing vi(u) enters
in the position i the assembling process for u. The predicate ART is subject to the

following requirements.

ART1. If Art(p(u), <v1(u),⋯ , vk(u)>, u, f (u), t(u),T(u)) and for any i in {1, ..., k},

it holds that

Art(p(vi(u)), < vi1 (vi(u)),⋯ , vik (vi(u))) >, vi(u), f (vi(u)), t(vi(u)), T(vi(u))),
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then t(vi(u)) < t(u), f (u) ⊆ f (vi(u)), p(vi(u)) ⊆ p(u), and T(vi(u)) attached to T(u) at

the leaf vi(u) yields a tree, called an unfolding of T(u) via the assembling tree for
vi(u).

The meaning of ART1 is that for each substrate v entering the assembly process

for u, v is assembled at time earlier than time for u, functionality of u is lesser than

that of v, the operator for u has a greater operating scope than that of v, and the

assembly tree for u can be expanded at the leaf v by the assembly tree for

ART2. Art(p(u), < v1(u),⋯ , vk(u) >, u, f (u), t(u),T(u)) ⇒ 𝜋(vi(u), u)
for each vi(u).

Meaning that each thing can be assembled only from its parts. We introduce an

auxiliary predicate App(v, i(v), u, t(u)) meaning: v enters in the position i the design

process for u at time t(u).
ART3. 𝜋(v, u) ⇒ ∃w1(v, u),

⋯ ,wk(v, u), t(w2(v, u)),⋯ , t(wk(v, u)), i(w1(v, u)),⋯ , i(wk(v,u)−1))

such that v = w1(v, u), t(w2(v, u)) < ⋯ < t(wk(v, u), wk(v, u)) = u,

App(wj(v, u)), i(wj(v, u)),wj+1(v, u), t(wj+1(v, u))

for j = 1, 2, k(v, u) − 1.

This means that each thing which is a part of the other thing will enter the assem-

bly tree of the thing.

ART4. Each thing used in assembling of some other thing can be used in only

one such thing in only one position at only one time.

This requirement will be referred to as the uniqueness requirement.
Art5. Values t(u) belong in the set T = {0, 1, 2,…} of time moments

Corollary 1 By ART1, ART2, ART5: The universe of assembly things is well–
founded, i.e., there is no infinite sequence {xi ∶ i = 1, 2, ...} of things with 𝜋(xi+1, xi)
for each i.

From this Corollary, it follows that our notion of identity of artifacts (EA) is equiv-

alent to extensionality notions (EP), (EC), (UC) discussed in Varzi [78].

For a tree T(u), the ART–unfolding of T(u) is the tree T(u, 1) in which leaves

v1(u), v2(u),… , vk(u) are expanded by attaching those trees T(v1(u)), … ,T(vk(u))
which are distinct from their roots. For a tree T(u), the maximal ART–unfolding
T(u,max) is the tree obtained from T(u) by repeating the operation of ART–unfolding

until no further ART–unfolding is possible.

Corollary 2 Each leaf of the tree T(u,max) is an atom.

We now define an artifact: an artifact over the category Things(P, F, 𝜋) of assem-

bly things is a thing u such that 𝜋(u, v) holds for no thing v in Things(P, F, 𝜋). Thus

artifacts are ‘final things’ in a sense. We define the notion of identity for artifacts:
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Theorem 5 (Extensionality of artifacts (EA)) Artifacts a, b are identical if and only
if trees Tree(a,max), Tree(b,max) are isomorphic and have identical things at cor-
responding under the isomorphism nodes.

6.1 Design Artifacts

We regard the process of design as analogous to the assembly process; the only dif-

ference between the two which we introduce is that in design, the designer works

with not the things but with classes of equivalent things. Thus, to begin with, we

introduce an equivalence relation on things. To this end, we let:

u ∼ v if and only if [𝜋(u, t) if and only if 𝜋(v, t)] for each thing t (43)

and

Cat(u) = Cat(v) if and only if u ∼ v. (44)

Things in the same category Cat are ‘universally replaceable’. It is manifest that

the part relation 𝜋 can be factored through categories, to the relation 𝛱 of part on

categories,

𝛱(Cat(u),Cat(v)) if and only if 𝜋(u, v). (45)

In our formalism, design will imitate assembling with things replaced with cate-

gories of things and the part relation 𝜋 replaced with the factorization 𝛱 . We need

only to repeat the procedure with necessary replacements. We use the designer set

D, the functionality set F, and the time set T as above. The act of design is expressed

by means of a predicate,

Des(d, < Cat1,⋯ ,Catk >,Cat, f (Cat), t(Cat),T(Cat))

which reads: a designer d designs at time t a category of things Cat with functionality

f (Cat) according to the design scheme T(Cat) organized by d which is a tree with the

root Cat, from categories Cat1,… ,Catk which are leaves of T(Cat). The category

Cati enters in the position i the design process for Cat. The predicate Des is subject

to the following requirements.

DES1. If Des(d, < Cat(v1(u)),⋯ ,Cat(vk(u)) >,Cat(u), f (u), t(u),T(u)) and for

any i in {1,⋯ , k}, it holds that

Des(p(Cat(vi(u))), < Cat(vi1 (vi(u))),⋯ ,Cat(vik (vi(u)))) >,

Cat(vi(u)), f (vi(u)), t(vi(u)),T(vi(u))),
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then t(vi(u)) < t(u), f (u) ⊆ f (vi(u)), p(vi(u)) ⊆ p(u), and T(vi(u)) attached to T(u) at

the leaf Cat(vi(u)) yields a tree, called the unfolding of T(u) via the design tree for
Cat(vi(u)).

DES2.

Des(d, < Cat(v1(u)),⋯ ,Cat(vk(u)) >,Cat(u), f (u), t(u),T(u)) ⇒

𝛱(Cat(vi(u)),Cat(u))

for each vi(u).
Meaning that each thing can be designed only from its parts.

We introduce an auxiliary predicate App(v, i(v), u, t(u)) meaning: Cat(v) enters in

the position i the design process for Cat(u) at time t(u).

DES3. 𝛱(Cat(v),Cat(u)) ⇒ ∃Cat(w1(v, u)),… ,Cat(wk(v, u)), and,

t(w2(v, u)),… , t(wk(v, u)), i(w1(v, u)),⋯ , i(wk(v,u)−1))

such that v = w1(v, u), t(w2(v, u)) < ⋯ < t(wk(v, u), wk(v, u)) = u,

App(wj(v, u)), i(wj(v, u)),wj+1(v, u), t(wj+1(v, u))

for j = 1, 2,… , k(v, u) − 1.

This means that for each thing which is a part of the other thing the category of

the former will enter the design tree for the category of the latter.

For ART4, we may not have the counterpart in terms of DES: clearly, things of

the same category may be used in many positions and at many design stages of some

other category. We may only repeat our assumption about timing.

DES4. Values t(u) belong in the set T = {0, 1, 2,…} of time moments.

Corollary 3 The universe of categories is well–founded.

We define a design artifact as a category Cat(u) such that 𝛱(Cat(u), Cat(v)) is true

for no v. We are approaching the notion of identity for design artifacts. To begin with,

for a design artifact a, denote by the symbol art(a) the artifact obtained by filling in

the design tree for a all positions Cat(v) with things v for some choices of v. We state

the identity condition for design artifacts.

Theorem 6 (Extensionality for design artifacts (ED)) Design artifacts a, b are iden-
tical if and only if there exist artifacts art(a), art(b) which are identical.

From the principle of identity for artifacts, a corollary follows.

Corollary 4 If design artifacts a, b are identical then a, b have isomorphic design
trees and categories at corresponding nodes are identical.

Corollary 5 If design artifacts a, b have isomorphic design trees and categories at
corresponding nodes are identical, then a, b are identical.
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Indeed, consider two design artifacts a, b which satisfy the condition in the corollary.

There is at least one category Cat(v) in the same position in design trees of a and

b. Choose a thing x in Cat(v) and let a(x), b(x) be artifacts assembled according to

a, b, respectively. Having a thing in common, a(x), b(x) are identical hence a, b are

identical.

6.2 Action of Things on Design Abstracta

The interplay between concreta and abstracta in design and assembly can be exhib-

ited by action of things on design artifacts. We define a partial mapping 𝜄 on the

product Things(P,F, 𝜋) × Design−Artifacts into Artifacts: for a thing v and a design

artifact a, we define the value 𝜄(v, a) as NIL in case category Cat(v) is not any

node in the design tree for a, and, the unique artifact a(v) in the contrary case. The

inverse 𝜄

−1(𝜄(v, a)) is the set {(u, b) ∶ b ∈ Design−Artifacts,Cat(u) a node in b};

thus, abstracta are equivalent in this sense to collections of concreta.

7 Mereology in Spatial Reasoning: Mereological
Theory of Shape and Orientation

Spatial orientation of a thing depends on the real world in which things are immersed,

hence, to, e.g., discern among sides of a thing, one needs additional knowledge and

structures. An example of this approach is found, e.g., in Aurnague, Vieu and Borillo

[8], where it is proposed to exploit in determining orientation, e.g., the direction of

gravity (‘haut–grav’, ‘bas–grav’) or peculiar features of things (like the neck of a

bottle) suggesting direction, and usage of geometric predicates like equidistance in

definitions of, e.g., orthogonal directions. It is manifest that mereology is amorphous

in the sense that decomposition of a thing into parts does not depend of orientation,

isometric transformations etc. Hence, to exhibit in things additional features like

shape, side, one needs augmented mereology [54]. We mean by this adding to the

Leśniewski mereology the predicate C of being connected, see Clarke [20]. Of C we

require:

C1 C(x, x).
C2 If C(x, y), then C(y, x).
C3 For each z: if C(z, x) if and only if C(z, y), then (x = y).
C does induce predicates:

1. P(x, y) if for each z: C(z, x) implies C(z, y).
2. PP(x, y) if P(x, y) and not x = y.

3. Ov(x, y) if there is z such that P(z, x) and P(z, y).
4. EC(z, x) if C(z, x) and not Ov(z, x).
5. TP(x, y) if there is z such that P(x, y), EC(z, y) and C(z, x).
6. NTP(x, y) if not TP(x, y).
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P means ‘part’, PP means ‘proper part’, Ov means ‘overlap’, EC means ‘externally

connected’, TP means ‘tangential part’, and, NTP means ‘non-tangential part’. By

means of those new predicates we may express spatial relationships.

Particular features of shape like existence of ‘dents’ or ‘holes’ in a thing resulting

from removal of other things can be accounted for within mereology.

We define the predicate hole(x, y) reading a thing x constitutes a hole in a thing y
as follows:

hole(x, y) ⇔ ∃z.NTP(x, z) ∧ comp(y, x, z), (46)

i.e., x is a non–tangential thing in z and y complements x in z.

The predicate dent(x, y), reading a thing x constitutes a dent in a thing y is defined

as

dent(x, y) ⇔ ∃z.TP(x, z) ∧ comp(y, x, z), (47)

i.e., x is a tangential thing in z and y complements x in z. The notion of a dent may

be useful in characterizing things that ‘fit into a thing’: the predicate fits−into(x, y)
may be defined as

fits−into(x, y) ⇔ ∃z.dent(z, y) ∧ ingr(x, z), (48)

i.e., x is an ingredient of a thing which is a dent in y. A particular case of fitting is

‘filling’ i.e., a complete fitting of a dent. We offer a predicate fills(x, y)

fills(x, y) ⇔ ∃z.dent(z, y) ∧ z = x ⋅ y, (49)

i.e., dent–making z is the product of x and y. Following this, the notion of a join can

be defined as

joins(x, y, z) ⇔ ∃w.w = x + y + z ∧ fills(x, y) ∧ fills(x, z), (50)

i.e., x joins y and z when there is a thing x + y + z and x fills both y and z. This

predicate can be inductively raised to

join(n)(x1, x2, ..., xn; y1, y2, ..., yn, yn+1)

via

join(1)(x1; y1, y2) ⇔ join(x1, y1, y2)

and

join(k + 1)(x1, x2, ..., xk+1; y1, y2, ..., yk+1, yk+2) ⇔

join(xk+1, join(k)(x1, x2, ..., xk; y1, y2, ..., yk+1), yk+2)
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in which we express sequentially a possibly parallel processing. In case x joins

y and z, possibility of assembling arises which may be expressed by means of

modal operator ♢ of ‘possibility’, with an extended operator Asmbl to the form

Asmbl(x, i, y, j, ...w, p, f , t) meaning that w can be assembled from x in position i,
y in position j,... by an operator p with functionality f at time t,

join(x, y, z) ⇒ ♢∃w, p, f , t, i, j, k.Asmbl(x, i, y, j, z, k;w, p, f , t). (51)

Assuming our mereology is augmented with environment endowed with directions

N, S, E, W, we may represent these directions by means of mobile agents endowed

with laser or infrared beams of specified width; at the moment when the beam range

reaches the thing x, it marks on its boundary a region which we denote as top in case

of N, bottom in case of S, left-side in case of W, and right-side in case of E. Thus

we have top(x), bottom(x), left − side(x), right − side(x) as areas of the boundary of

x; these are not parts of x. To express relations among sides of things we need a

distinct language; for the sake of this example let us adopt the language of set theory

regarding sides as sets. Then we can say that the thing y

1. is on the thing x in case bottom(y) is contained in top(x).
2. is under the thing x when top(y) is contained in bottom(x).
3. touches x on the left when right-side(y) is contained in left-side(x)
4. touches x on the right when (left-side(y) is contained in right-side(x)).

This modus of orientation can be merged with mereological shape theory: one can

say that a thing x constitutes a dent on top/under/ on the left/on the right of the thing
y when, respectively,

1. denttop(x, y) ⇔ ∃z.TP(x, z) ∧ top(x) ⊆ top(z) ∧ comp(y, x, z).
2. dentbottom(x, y) ⇔ ∃z.TP(x, z) ∧ bottom(x) ⊆ bottom(z) ∧ comp(y, x, z).
3. dentleft(x, y) ⇔ ∃z.TP(x, z) ∧ left − side(x) ⊆ left − side(z) ∧ comp(y, x, z).
4. dentright(x, y) ⇔ ∃z.TP(x, z) ∧ right − side(x) ⊆ right − side(z) ∧ comp

(y, x, z).

These notions in turn allow for more precise definitions of fitting and filling; we

restrict ourselves to filling as fitting is processed along same lines: we say that a
thing x fills a thing y on top/bottom/on the left-side/on the right-side,

fills
𝛼

(x, y) ⇔ ∃z.dent
𝛼

(z, y) ∧ z = x ⋅ y

where 𝛼 is, respectively, top, bottom, left, right. This bears on the notion of a join

which can be made more precise: we say that a thing x (𝛼, 𝛽)–joins things y and z

joins
.𝛼,𝛽

(x, y, z) ⇔ ∃w.w = x + y + z ∧ fills
𝛼

(x, y) ∧ fills
𝛽

(x, z)

where 𝛼, 𝛽=top, bottom, left, right. A very extensive discussion of those aspects is

given in Casati and Varzi [19]. Applications are discussed in Kim et al. [25].
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8 Applications of Rough Mereology: Betweenness
in Spatial Problems and in Data Sets

We address geometry induced from rough mereology applying it in two areas: spatial

reasoning for teams of intelligent agents and partitioning information/decision sys-

tems into specific subsystems. In either case the tool is the betweenness relation. This

section introduces mereogeometry modeled on classical axiomatization of geometry

by Tarski [77]. It will serve us in the sequel in building tools for defining and nav-

igating formations of intelligent agents (robots). Elementary geometry was defined

by Alfred Tarski in His Warsaw University lectures in the years 1926–27 as a part of

Euclidean geometry which can be described by means of the 1st order logic. There

are two main aspects in formalization of geometry: one is metric aspect dealing with

the distance underlying the space of points which carries geometry and the other is

affine aspect taking into account the linear structure. In Tarski axiomatization, Tarski

[77], the metric aspect is expressed as a relation of equidistance (congruence) and

the affine aspect is expressed by means of the betweenness relation. The only logical

predicate required is the identity =. Equidistance relation denoted Eq(x, y, u, z) (or,

as a congruence: xy ≡ uz) means that the distance from x to y is equal to the dis-

tance from u to z (pairs x, y and u, z are equidistant). Betweenness relation is denoted

B(x, y, z), (x is between y and z). Johan Van Benthem [11] took up the subject propos-

ing a version of betweenness predicate based on the nearness predicate and suited,

hypothetically, for Euclidean spaces. We are interested in introducing into the mereo-

logical world defined by 𝜇 of a geometry in whose terms it will be possible to express

spatial relations among things. We first introduce a notion of a distance 𝜅, induced

by a rough inclusion 𝜇:

𝜅(x, y) = min{max r,max s ∶ 𝜇(x, y, r), 𝜇(y, x, s)}. (52)

Observe that the mereological distance differs essentially from the standard distance:

the closer are things, the greater is the value of 𝜅: 𝜅(x, y) = 1 means x = y whereas

𝜅(x, y) = 0 means that x, y are either externally connected or disjoint, no matter what

is the Euclidean distance between them. The notion of betweenness in the Tarski
sense B(z, x, y) in terms of 𝜅 is defined as:

B(z, x, y) ⇔ for each thing w, 𝜅(z,w) ∈ [𝜅(x,w), 𝜅(y,w)]. (53)

Here, [a, b] means the non–oriented interval with endpoints a, b. We use 𝜅 to define

in our context the relation N of nearness proposed in Van Benthem [11]

N(x, y, z) ⇔ 𝜅(x, y) ≥ 𝜅(z, y). (54)
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Here, N(x, y, z) means that x is closer to y than z is to y. We introduce a betweenness
relation in the sense of Van Benthem TB modeled on betweenness proposed in Van

Benthem [11]

TB(z, x, y) ⇔ [for each t (z = t) or N(z, x, t) or N(z, y, t)]. (55)

8.1 Betweenness in Spatial Reasoning: Autonomous Robot
Navigation

Robot navigation is a main topic in behavioral robotics as an archetypical example

of navigation by intelligent agents, especially in groups, see, e.g., [1, 2, 5, 10, 17,

18, 35]. The principal context bearing on our approach to robot control [39–42,

58, 59], deals with rectangles in 2D space regularly positioned, i.e., having edges

parallel to coordinate axes. We model robots (which are represented in the plane as

discs of the same radii in 2D space) by means of their safety regions about robots;

those regions are modeled as squares circumscribed on robots. One of advantages

of this representation is that safety regions can be always implemented as regularly

positioned rectangles. Given two robots a, b as discs of the same radii, and their

safety regions as circumscribed regularly positioned rectangles A,B, we search for a

proper choice of a region X containing A, and B with the Taking the rough inclusion

𝜇

G
defined in (42), for two disjoint rectangles A,B, we define the extent, ext(A,B)

of A and B as the smallest rectangle containing the union A ∪ B. Then we have the

claim.

Proposition 1 Given two disjoint rectangles C, D, the only thing between C and D
in the sense of the predicate TB is the extent ext(C,D) of C,D.

For a proof, as linear stretching or contracting along an axis does not change the area

relations, it is sufficient to consider two unit squares A,B of which A has (0,0) as one

of vertices whereas B has (a,b) with a, b > 1 as the lower left vertex (both squares are

regularly positioned). Then the distance 𝜅 between the extent ext(A,B) and either of

A,B is
1

(a+)(b+1)
. For a rectangle R ∶ [0, x] × [0, y] with x ∈ (a, a + 1), y ∈ (b, b + 1),

we have that

𝜅(R,A) =
(x − a)(y − b)

xy
= 𝜅(R,B). (56)

For 𝜙(x, y) = (x−a)(y−b)
xy

, we find that

𝜕𝜙

𝜕x
= a

x2
⋅ (1 − b

y
) > 0, (57)

and, similarly,
𝜕𝜙

𝜕y
> 0, i.e., 𝜙 is increasing in x, y reaching the maximum when R

becomes the extent of A,B. An analogous reasoning takes care of the case when R
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Fig. 1 Trails of robots in

the restored cross formation

in the free workspace after

passing through the passage

has some (c,d) with c, d > 0 as the lower left vertex. We say henceforth that a robot

C is between robots A,B if C is contained in the extent ext(A,B). Further usage of the

betweenness predicate is suggested by the Tarski [77] axiom of B,Eq–upper dimen-
sion, which implies collinearity of x, y, z. Thus,a line segment may be defined via the

auxiliary notion of a pattern; we introduce this notion as a relation Pt(u, v, z) which

is true if and only if TB(z, u, v) or TB(u, z, v) or TB(v, u, z). We will say that a finite

sequence u1, u2, ..., un of things belong in a line segment whenever Pt(ui, ui+1, ui+2)
for i = 1, ..., n − 2; formally, we introduce the functor Line of finite arity defined by

means of

Line(u1, u2, ..., un) if and only if Pt(ui, ui+1, ui+2) for i < n − 1.

For instance, any two disjoint rectangles A,B and their extent ext(A,B) form a line

segment. This notion was applied to navigation of intelligent agents, e.g., mobile

robots. For a team of agents F and a rough inclusion 𝜇 among them, we call a 𝜇-

formation F(𝜇) the team F along with the 𝜇-betweenness relation on it. Figure 1

shows a screenshot of a cross formation of robots navigating a narrow passage in

line formation and then restoring itself to the cross formation.

8.2 Betweenness in Data Sets

Given an information/decision system with the universe U and the attribute set A,

we apply to objects in U the Łukasiewicz rough inclusion (39). Given objects u, v in

U, for a choice of 𝛾 ∈ [0, 1], we form objects which have 𝛾 × |A| attribute values in

common with u and (1− 𝛾) × |A| attribute values in common with v. We represent

this class of things as the vector 𝛾 in the Euclidean plane. In this representation, u
is represented as [0,1] and v is represented as [0,1], so 𝛾 is a convex combination

of [0,1] and [0,1]. It was proved [55] that for each choice of 𝛾 ∈ [0, 1], the class of

things represented as 𝛾 is between u and v in the sense of betweenness relation TB
induced by the Łukasiewicz rough inclusion (39). This suggests a generalization.



74 L. Polkowski

We introduce a more general betweenness relation GB(u, v1, v2,… , vn) (read as ‘u
is between v1, v2, ..., vn’), see [55], which holds true if and only if for each object

w ∈ U,w ≠ u, the object u is closer than w to some vi in the mereological sense, in

formal terms

GB(u, v1, v2, ..., vn) if and only if for each w ≠ u there is vi such that (58)

𝜅(u, vi) ≥ 𝜅(w, vi).

We consider a set V = {v1, v2, ..., vn} of objects in U. For a choice of 𝛾1, 𝛾2, ..., 𝛾n ∈
[0, 1]with

∑
i 𝛾i = 1, which we summarily denote by the vector 𝛾 , we denote as (V , 𝛾)

the class of objects which have the fraction 𝛾i of attribute values in common with the

object vi. Formally,

u ∈ (V , 𝛾) ifInf (u) =
n⋃

i=1
Ci Ci ⊂ Inf (vi)

|Ci|
|A| = 𝛾i for i = 1, 2,… n. (59)

One proves

Proposition 2 Each object u in the class (V , 𝛾) satisfies the relation GB(u, v1,
v2, ..., vn). Conversely, each u satisfying the relation GB(u, v1, v2, ..., vn) belongs in
a class (V , 𝛾) for some vector 𝛾 .

We call a maximal set of things K with the property that for each u ∈ K there exist

k and v1, v2, ..., vk ∈ K ⧵ {u} such that GB(u, v1, v2, ..., vk) holds, a kernel. We call

the set {v1, v2, ..., vk} a set of neighbors of u, denoted with the generic symbol N(u).
In order to disambiguate the notion of a neighborhood, we introduce the following

structure for neighborhoods:

< (v1,C1 ⊆ Inf (v1), q(v1)),… , (vn,Cn ⊆ Inf (vk), q(vk)) >, (60)

with neighbors v1, v2,… , vn ordered in the descending order of the factor q, q(vi) =
𝛾i =

|Ci|
|A| .

8.3 Computing the Kernel: Dual Indiscernibility Matrix
(DIM)

In order to compute the kernel of the data set [55], we introduce a matrix dual in a

sense to the well–known Skowron–Rauszer Discernibility Matrix [70], whose entries

consist of objects instead of attributes, which fact justifies the adjective ‘dual’. The
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dual indiscernibility matrix for an information system IS = (U,A,V), is the matrix

DIM(IS) = [ca,val]|A|×|V|, where the entry for a given a ∈ A, val ∈ V is:

ca,val = {u ∈ U ∶ a(u) = val}. (61)

ALGORITHM: COMPUTING KERNEL BY DUAL INDISCERNIBILITY
MATRIX

Input: Information system IS = (U,A,V , val);
set R initialized as empty, set K initialized as U;

1. Form DIM;

2. Scan DIM row by row from left to right;

3. For each cell ca,val: if ca,val = {u} for some u ∈ U
4. then R ← R ∪ {u}, K ← K ⧵ {u};

5. Return K;

6. Return R.

The set K is the kernel and the set R is said to be the residuum of the data set. In

the kernel, each object is a convex combination of some other objects in the kernel

whereas in the residuum each object is an outlier, having at least one attribute value

not taken on any other object in the universe.

8.4 Kernel and Residuum in the Task of Classification

It is interesting to see how the kernel and the residuum, being on the opposite poles

of betweenness, behave in tasks of classification. We recall the results from [57] in

Table 1.

It follows from Table 1 that both kernel and residuum are satisfactory represen-

tatives of the whole data set as classification into decision classes is concerned as

they split between themselves the data set approximately in halves with accuracy of

classification not diminished.

8.5 Classifiers Based on Partial Approximation by Neighbors

The notion of a neighborhood suggests usage of neighbors in approximation of a

given test object by best training neighbors [7]: for a given decision system D split

into the training Trn and test Tst parts and for a given test object utst
, we select the

object vtrn
10 ∈ trn such that

vtrn
10 = argmaxv∈trn|Inf (utst) ∩ Inf (v)|, (62)
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Table 1 Classification results

Database Set tested Accuracy of

C4.5

Accuracy of

k-NN

Number of

samples

Adult Whole set 0.857 ± 0.003 0.837 ± 0.003 39074.0

Ker1 0.853 ± 0.004 0.835 ± 0.003 22366.0

Res1 0.849 ± 0.003 0.833 ± 0.003 16708.0

PID Whole set 0.733 ± 0.027 0.723 ± 0.021 614.4

Ker1 0.704 ± 0.037 0.711 ± 0.032 212.9

Res1 0.724 ± 0.035 0.745 ± 0.030 401.5

Fertility diagnosis Whole set 0.852 ± 0.073 0.866 ± 0.060 80.0

Ker1 0.846 ± 0.075 0.880 ± 0.064 71.6

Res1 0.852 ± 0.068 0.880 ± 0.064 8.4

German credit Whole set 0.713 ± 0.023 0.732 ± 0.025 800.0

Ker1 0.671 ± 0.045 0.714 ± 0.038 98.9

Res1 0.712 ± 0.023 0.726 ± 0.030 701.1

Heart disease Whole set 0.750 ± 0.054 0.825 ± 0.048 216.0

Ker1 0.742 ± 0.061 0.822 ± 0.051 109.2

Res1 0.767 ± 0.054 0.827 ± 0.041 106.8

i.e., the object vtrn
10 ‘covers’ utst

best. Then, we select the next best covering utst
object

vtrn
11 :

vtrn
11 = argmaxv∈trn⧵{vtrn

10
|Inf (utst) ∩ Inf (v)|. (63)

The pair (vtrn
10 , v

trn
11 ) is said to be the pair of level L0. We remove objects vtrn

110, v
trn
11

from the set trn and we repeat the process of covering by pairs from the set trn ⧵
{(vtrn

10 , v
trn
11 ), obtaining the pair of level L1 and so on. The process is repeated up to

Table 2 Pair classifier

Database kNN Bayes Pair–best Pair-0

Adult 0.841 0.864 0.853L1 0.823

Australian 0.855 0.843 0.859L4, 5 0.859

Diabetes 0.631 0.652 0.721L0 0.710

German credit 0.730 0.704 0.722L1 0.721

Heart disease 0.837 0.829 0.822L1 0.800

Hepatitis 0.890 0.845 0.892L0 0.831

Congressional voting 0.938 0.927 0.928L0 0.928

Mushroom 1.0 0.910 1.0L0 1.0

Nursery 0.578 0.869 0.845L0 0.845

Soybean large 0.928 0.690 0.910L0 0.910
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the apriori assumed level maxLevel. All decision values are pooled into a common

set and Majority Voting is applied to select the final decision value assigned to utst
.

Table 2 shows results of a comparison among Pair Classifier using the best approx-

imating pair, and k-NN and Bayes classifiers. The symbol Lx denotes the level of

covering, Pair-0 is the simple pair classifier with approximations by pairs and Pair–

best denotes the best result over levels studied. Those results show that Pair classifier

gives satisfactory results in classification problems at least for medium size data sets

mentioned above.

9 Rough Mereology in Granular Computing

Assume a rough inclusion 𝜇 on the universe U of an information system (U,A,V).
For an object u ∈ U and r ∈ [0, 1], we call the mereological class of the property:

𝛹 (v) if and only if 𝜇(v, u, r), (64)

the granule g(u, r, 𝜇) of radius r about u, i.e.,

g(u, r, 𝜇) is Cls𝛹. (65)

For symmetric transitive rough inclusions, g(u, r, 𝜇) is simply the set {v ∈ U ∶
𝜇(v, u, r)} and we will define in what follows granules as such sets.

9.1 Granular Mereotopology

Granules serve as quasi–open sets from which topologies are built [53]. The follow-

ing constitute a set of basic properties of rough mereological granules:

1. If ingr(y, x) then ingr(y, g
𝜇

(x, r));
2. If ingr(y, g

𝜇

(x, r)) and ingr(z, y) then ingr(z, g
𝜇

(x, r));
3. If 𝜇(y, x, r) then ingr(y, g

𝜇

(x, r));
4. If s < r then ingr(g

𝜇

(x, r), g
𝜇

(x, s)),

which follow straightforwardly from properties RINC1–RINC3 of rough inclusions

and the fact that ingr is a partial order, in particular it is transitive, regardless of the

type of the rough inclusion 𝜇. For T–transitive rough inclusions, we can be more

specific, and prove

Proposition 3 For each T–transitive rough inclusion 𝜇,

1. If ingr(y, g
𝜇

(x, r) then ingr(g
𝜇

(y, s), g
𝜇

(x,T(r, s));
2. If 𝜇(y, x, s) with 1 > s > r, then there exists 𝛼 < 1 with the property that ingr

(g
𝜇

(y, 𝛼), g
𝜇

(x, r).
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Proof Property 1 follows by transitivity of 𝜇 with the t–norm T . Property 2 results

from the fact that the inequality T(s, 𝛼) ≥ r has a solution in 𝛼, e.g., for T = P, 𝛼 ≥
r
s
,

and, for T = L, 𝛼 ≥ 1 − s + r.

It is natural to regard granule system {g𝜇t
r (x) ∶ x ∈ U, r ∈ (0, 1)} as a neighborhood

system for a topology on U that may be called the granular topology. In order to

make this idea explicit, we define classes of the form:

NT (x, r) = Cls(𝜓𝜇T
r,x ), (66)

where

𝜓

𝜇T
r,x (y) ⇔ ∃s > r.𝜇T (y, x, s). (67)

We declare the system {NT (x, r) ∶ x ∈ U; r ∈ (0, 1)} to be a neighborhood basis for

a topology 𝜃
𝜇

. This is justified by the following

Proposition 4 Properties of the system {NT (x, r) ∶ x ∈ U; r ∈ (0, 1)} are as fol-
lows:

1. y ingr NT (x, r) ⇒ ∃𝛿 > 0.NT (y, 𝛿) ingr NT (x, r);
2. s > r ⇒ NT (x, s) ingr NT (x, r);
3. z ingr NT (x, r) ∧ z ingr NT (y, s) ⇒ ∃𝛿 > 0 NT (z, 𝛿) ingr NT (x, r) ∧ NT

(z, 𝛿) ingr NT (y, s).

Proof For Property 1, y ingr Nt(x, r) implies that there exists an s > r such that

𝜇t(y, x, s). Let 𝛿 < 1 be such that t(u, s) > r whenever u > 𝛿; 𝛿 exists by continu-

ity of t and the identity t(1, s) = s. Thus, if z ingr Nt(y, 𝛿), then 𝜇t(z, y, 𝜂) with 𝜂 > 𝛿

and 𝜇t(z, x, t(𝜂, s)) hence z ingr Nt(x, r). Property 2 follows by RINC3 and Property

3 is a corollary to properties 1 and 2. This concludes the argument.

9.2 Granular Rough Mereological Logics

We assume that an information/decision system (U,A,V , d) is given, along with a

rough inclusion 𝜈3 of the form (41) or the rough inclusion 𝜈L (40) on the subsets of

the universe U; for a collection of unary predicates Pr, interpreted in the universe

U (meaning that for each predicate 𝜙 ∈ Pr the meaning [[𝜙]] is a subset of U), we

define the intensional logic GRM
𝜈

, cf. [60], by assigning to each predicate 𝜙 in Pr
its intension I

𝜈

(𝜙) defined by its extension I∨
𝜈

(g) at each particular granule g as

I∨
𝜈

(g)(𝜙) ≥ r ⇔ 𝜈(g, [[𝜙]], r). (68)

With respect to the rough inclusion 𝜈L (40), the formula (68) becomes

I∨
𝜈L
(g)(𝜙) ≥ r ⇔

|g ∩ [[𝜙]]|
|g| ≥ r. (69)
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The counterpart for the rough inclusion 𝜈3 (41) comes down to:

I∨
𝜈3
(g)(𝜙) ≥ r ⇔

⎧
⎪
⎨
⎪⎩

g ⊆ [[𝜙]] and r = 1
g ∩ [[𝜙]] ≠ ∅ and r ≥

1
2

g ∩ [[𝜙]] = ∅ and r = 0
(70)

We say that a formula 𝜙 interpreted in the universe U of an information system

(U,A,V) is true at a granule g with respect to a rough inclusion 𝜈 if and only if

I∨
𝜈

(g)(𝜙) = 1. Both (40) and (41) are regular, i.e., their value on a pair A,B is 1 if

and only if A ⊆ B. Hence, for every regular rough inclusion 𝜈, a formula𝜙 interpreted

in the universe U, with the meaning [[𝜙]] = {u ∈ U ∶ u ⊧ 𝜙}, is true at a granule g
with respect to 𝜈 if and only if g ⊆ [[𝜙]]. In particular, for a decision rule r ∶ p ⇒ q,

the rule r is true at a granule g with respect to a regular rough inclusion 𝜈 if and only

if g ∩ [[p]] ⊆ [[q]]. We state these facts in the following

Proposition 5 For every regular rough inclusion 𝜈, a formula 𝜙 interpreted in the
universe U, with the meaning [[𝜙]], is true at a granule g with respect to 𝜈 if and
only if g ⊆ [[𝜙]]. In particular, for a decision rule r ∶ p ⇒ q, the rule r is true at a
granule g with respect to a regular rough inclusion 𝜈 if and only if g ∩ [[p]] ⊆ [[q]].

Proof Indeed, truth of 𝜙 at g means that 𝜈(g, [[𝜙]], 1) which in turn, by regularity of

𝜈 is equivalent to the inclusion g ⊆ [[𝜙]].

We will say that a formula 𝜙 is a tautology of our intensional logic if and only if 𝜙

is true at every world g. The preceding proposition implies that,

Proposition 6 For every regular rough inclusion 𝜈, a formula𝜙 is a tautology if and
only if Cls(G) ⊆ [𝜙], where G is the property of being a granule; in the case when
granules considered cover the universe U this condition simplifies to [[𝜙]] = U. This
means for a decision rule p ⇒ q that it is a tautology if and only if [[p]] ⊆ [[q]].

Hence, the condition for truth of decision rules in the logic GRM
𝜈

is the same as

the truth of an implication in descriptor logic, see [43], under caveat that granules

considered cover the universe U of objects.

9.3 Granular Computing in Decision Making

Rough mereological granules were proposed as objects in granular decision sys-

tems induced from given information/data systems [48], [49]. For a decision system

(U,A,V , d),and a rough inclusion 𝜇 on U, for a radius of granulation r, we form the

collection Γ(r) of granules of radii of r about objects in U. From the set Γ, we select

a covering Δ of the set U, so each object in U belongs in at least one granule in Δ.

For each granule g ∈ Δ, we factor through g attributes in A ∪ {d}; typically we use

the Majority Voting MV so we let for an attribute a, and a granule g:
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MV(a)(g) = MV{a(u) ∶ u ∈ g}. (71)

The decision system (Δ, {MV(a) ∶ a ∈ A},V ,MV(d)) is the granular reflexion of the

decision system (U,A,V , d). An interesting variant of granulation is the concept-

dependent granulation in which granules are computed within decision classes [6],

[56]. To the granular reflections one applies a classifier as to any decision system.

Results are very good and show not less accuracy at much smaller usually universe

and much smaller number of rules. Table 3 shows classification results for the Ger-

man Credit data set from Univ. California at Irvine Data Mining Repository for four

variants of Bayes Classifier, see [56], Chap. 7, for details. Table 4 shows size of gran-

ule set for four variants of Bayes classifier.

Table 3 5 x CV-5; The result of experiments for four variants of Bayes classifier;𝐆𝐞𝐫𝐦𝐚𝐧 𝐂𝐫𝐞𝐝𝐢𝐭;
Concept dependent granulation; rgran = Granulation radius; nil = result for data without missing

values; Acc = Accuracy of classification; AccBias = Accuracy bias; GranSize = The size of data

set after granulation in the fixed r
rgran Acc AccBias

V1 V2 V3 V4 V1 V2 V3 V4
0 0.627 0.619 0.625 0.625 0.024 0.038 0.024 0.021
0.05 0.627 0.616 0.625 0.625 0.024 0.041 0.024 0.021
0.1 0.624 0.613 0.625 0.635 0.027 0.044 0.025 0.039
0.15 0.605 0.583 0.612 0.624 0.005 0.08 0.026 0.038
0.2 0.621 0.588 0.613 0.616 0.029 0.074 0.033 0.038
0.25 0.61 0.554 0.574 0.598 0.015 0.094 0.063 0.05
0.3 0.626 0.614 0.469 0.538 0.007 0.058 0.04 0.11
0.35 0.641 0.646 0.468 0.458 0.013 0.054 0.096 0.058
0.4 0.635 0.684 0.488 0.514 0.016 0.032 0.057 0.019
0.45 0.646 0.69 0.56 0.554 0.01 0.012 0.046 0.031
0.5 0.649 0.703 0.56 0.588 0.02 0.006 0.046 0.034
0.55 0.686 0.701 0.586 0.594 0.008 0.001 0.02 0.039
0.6 0.698 0.7 0.609 0.625 0.005 0 0.016 0.013
0.65 0.706 0.7 0.636 0.667 0.022 0 0.012 0.021
0.7 0.69 0.7 0.652 0.687 0.008 0 0.019 0.018
0.75 0.677 0.7 0.666 0.7 0.007 0 0.016 0.01
0.8 0.669 0.7 0.67 0.699 0.011 0 0.005 0.012
0.85 0.679 0.7 0.67 0.703 0.005 0 0.017 0.006
0.9 0.678 0.7 0.67 0.704 0.006 0 0.014 0.01
0.95 0.679 0.7 0.671 0.705 0.005 0 0.014 0.006
1 0.677 0.7 0.671 0.704 0.005 0 0.015 0.009
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Table 4 Size of the granular set for granulation radii and four variants of Bayes classifier

rgran GranSize

V1 V2 V3 V4
0 2 2 2 2
0.05 2 2 2 2
0.1 2 2.16 2 2.08
0.15 2.52 2.44 2.56 2.44
0.2 3.64 3.32 3.72 3.52
0.25 4.92 4.72 4.84 5.24
0.3 7.44 6.76 7.16 7.4
0.35 11.16 11.08 11.32 11.28
0.4 18.76 19.36 19.64 18.2
0.45 33.88 32.72 32.84 32.52
0.5 59.32 56.12 58.4 58.12
0.55 105.32 104.52 102.76 105.72
0.6 187.28 187.28 188.32 186.84
0.65 318.72 321.6 317.96 319.28
0.7 486.28 486 485.6 487.28
0.75 650 647.92 648.96 650.72
0.8 751.28 750.92 751.32 751.12
0.85 789.56 789.68 789.8 789.56
0.9 796.48 796.44 796.64 796.44
0.95 798.68 798.72 798.72 798.76
1 800 800 800 800

10 Conclusion

Zdzisław Pawlak left his trace on many topics, from random number generation,

through architecture of computing machines, semiotics, linguistics, information sys-

tems, scientific information theory, and then reached for his greatest achievement -

theory of uncertain knowledge expressed as the theory of rough sets. This author

entered the inner circle of rough set devotees 10 years after rough sets were born,

and he, along with others involved, rode on the crest of the vawe which carried rough

set theory into the world arena of science. This growth also in management aspects

was in great part thanks to Zdzisław Pawlak’s energy and devotion. He was going

to numerous conferences, attracted new scientists, provided funds, doing everything

necessary to secure the growth of the milieu of rough sets. Due to this involvement,

it was possible to organize in 1998 in Warsaw the conference RSCTC’98. From

that point on, rough sets gained impetus reflected in many conferences, a number
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of monographs, thousands of research contributions. Rough sets constantly grow in

scope and results and methods, and, this phenomenon is the Zdzisław Pawlak Her-

itage left us all.
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Rough Sets in Machine Learning: A Review

Rafael Bello and Rafael Falcon

Abstract This chapter emphasizes on the role played by rough set theory (RST)

within the broad field of Machine Learning (ML). As a sound data analysis and

knowledge discovery paradigm, RST has much to offer to the ML community. We

surveyed the existing literature and reported on the most relevant RST theoretical

developments and applications in this area. The review starts with RST in the con-

text of data preprocessing (discretization, feature selection, instance selection and

meta-learning) as well as the generation of both descriptive and predictive knowledge
via decision rule induction, association rule mining and clustering. Afterward, we

examined several special ML scenarios in which RST has been recently introduced,

such as imbalanced classification, multi-label classification, dynamic/incremental

learning, Big Data analysis and cost-sensitive learning.

1 Introduction

Information granulation is the process by which a collection of information gran-
ules are synthesized, with a granule being a collection of values (in the data space)

which are drawn towards the center object(s) (in the object space) by an underlying

indistinguishability, similarity or functionality mechanism. Note that the data and

object spaces can actually coincide [141]. The Granular Computing (GrC) paradigm
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[7, 183] encompasses several computational models based on fuzzy logic, Comput-

ing With Words, interval computing, rough sets, shadowed sets, near sets, etc.

The main purpose behind Granular Computing is to find a novel way to synthesize

knowledge in a more human-centric fashion and from vast, unstructured, possibly

high-dimensional raw data sources. Not surprisingly, Granular Computing (GrC) is

closely related to Machine Learning [83, 95, 257]. The aim of a learning process is

to derive a certain rule or system for either the automatic classification of the system

objects or the prediction of the values of the system control variables. The key chal-

lenge with prediction lies in modeling the relationships among the system variables

in such a way that it allows inferring the value of the control (target) variable.

Rough set theory (RST) [1] was developed by Zdzisław Pawlak in the early 1980s

[179] as a mathematical approach to intelligent data analysis and data mining [180].

This methodology is based on the premise that lowering the degree of precision in

the data makes the data pattern more visible, i.e., the rough set approach can be

formally considered as a framework for pattern discovery from imperfect data [220].

Several reasons are given in [34] to employ RST in knowledge discovery, including:

∙ It does not require any preliminary or additional information about the data

∙ It provides a valuable analysis even in presence of incomplete data

∙ It allows the interpretation of large amounts of both quantitative and qualitative

data

∙ It can model highly nonlinear or discontinuous functional relations to provide

complex characterizations of data

∙ It can discover important facts hidden in the data and represent them in the form

of decision rules, and

∙ At the same time, the decision rules derived from rough set models are based on

facts, because every decision rule is supported by a set of examples.

Mert Bal [3] brought up other RST advantages, such as: (a) it performs a clear

interpretation of the results and evaluation of the meaningfulness of data; (b) it can

identify and characterize uncertain systems and (c) the patterns discovered using

rough sets are concise, strong and sturdy.

Among the main components of the knowledge discovery process we can men-

tion:

∙ PREPROCESSING

– Discretization

– Training set edition (instance selection)

– Feature selection

– Characterization of the learning problem (data complexity, metalearning)

∙ KNOWLEDGE DISCOVERY

– Symbolic inductive learning methods

– Symbolic implicit learning methods (a.k.a. lazy learning)
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∙ KNOWLEDGE EVALUATION

– Evaluation of the discovered knowledge

All of the above stages have witnessed the involvement of rough sets in their

algorithmic developments. Some of the RST applications are as follows:

∙ Analysis of the attributes to consider

– Feature selection

– Inter-attribute dependency characterization

– Feature reduction

– Feature weighting

– Feature discretization

– Feature removal

∙ Formulation of the discovered knowledge

– Discovery of decision rules

– Quantification of the uncertainty in the decision rules.

RST’s main components are an information system and an indiscernibility rela-
tion. An information system is formally defined as follows. Let A = {A1,A2,… ,An}
be a set of attributes characterizing each example (object, entity, situation, state, etc.)

in non-empty setU called the universe of discourse. The pair (U,A) is called an infor-
mation system. If there exists an attribute d ∉ A, called the decision attribute, that

represents the decision associated with each example in U, then a decision system
(U, A ∪ {d}) is obtained.

The fact that RST relies on the existence of an information system allows estab-

lishing a close relationship with data-driven knowledge discovery processes given

that these information or decision systems can be employed as training sets for unsu-

pervised or supervised learning models, respectively.

A binary indiscernibility relation IB is associated with each subset of attributes

B ⊆ A. This relation contains the pairs of objects that are inseparable from each other

given the information expressed in the attributes in B, as shown in Eq. (1).

IB = {(x, y) ∈ U × U ∶ f (x,Ai) = f (y,Ai) ∀Ai ∈ B}. (1)

where f (x,Ai) returns the value of the i-th attribute in object x ∈ U.

The indiscernibility relation induces a granulation of the information system. The

classical RST leaned on a particular type of indiscernibility relations called equiv-

alence relations (i.e., those that are simmetric, reflexive and transitive). An equiva-

lence relation induces a granulation of the universe in the form of a partition. This

type of relation works well when there are only nominal attributes and no missing

values in the information system.

Information systems having incomplete, continuous, mixed or heterogeneous data

are in need of a more flexible type of indiscernibility relation. Subsequent RST for-

mulations relaxed the stringent requirement of having an equivalence relation by
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considering either a tolerance or a similarity relation [61, 68, 181, 207, 212, 231,

283, 284, 305, 306]; these relations will induce a covering of the system. Another

relaxation avenue is based on the probabilistic approach [65, 182, 210, 259, 264,

267, 307]. A third alternative is the hybridization with fuzzy set theory [54, 55,

172, 258, 280]. These different approaches have contributed to positioning RST as

an important component within Soft Computing [12].

All of the aforementioned RST formulations retain some basic definitions, such

as the lower and upper approximations; however, they defined it in multiple ways.

The canonical RST definition for the lower approximation of a concept X is given

as B∗(X) = {x ∈ U ∶ B(x) ⊆ X} whereas its upper approximation is calculated as

B∗(X) = {x ∈ U ∶ B(x) ∩ X ≠ ∅}. From these approximations we can compute the

positive region POS(X) = B∗(X), the boundary region BND(X) = B∗(X) − B∗(X)
and the negative region NEG(X) = U − B∗(X). These concepts serve as building

blocks for developing many problem-solving approaches, including data-driven

learning.

RST and Machine Learning are also related in that both take care of removing

irrelevant/redundant attributes. This process is termed feature selection and RST

approaches it from the standpoint of calculating the system reducts. Given an infor-

mation system S = (U,A), where U is the universe and A is the set of attributes, a

reduct is a minimum set of attributes B ⊆ A such that IA = IB.

This chapter emphasizes on the role played by RST within the broad field of

Machine Learning (ML). As a sound data analysis and knowledge discovery par-

adigm, RST has much to offer to the ML community. We surveyed the existing lit-

erature and reported on the most relevant RST theoretical developments and appli-

cations in this area. The review starts with RST in the context of data preprocessing
(discretization, feature selection, instance selection and meta-learning) as well as the

generation of both descriptive and predictive knowledge via decision rule induction,

association rule mining and clustering. Afterward, we examined several special ML
scenarios in which RST has been recently introduced, such as imbalanced classifi-

cation, multi-label classification, dynamic/incremental learning, Big Data analysis

and cost-sensitive learning.

The rest of the chapter is structured as follows. Section 2 reviews ML methods and

processes from an RST standpoint, with emphasis on data preprocessing and knowl-

edge discovery. Section 3 unveils special ML scenarios that are being gradually per-

meated by RST-based approaches, including imbalanced classification, multi-label

classification, dynamic/incremental learning, Big Data analysis and cost-sensitive

learning. Section 5 concludes the chapter.

2 Machine Learning Methods and RST

This section briefly goes over reported studies showcasing RST as a tool in data

preprocessing and descriptive/predictive knowledge discovery.
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2.1 Preprocessing

2.1.1 Discretization

As mentioned in [195], discretization is the process of converting a numerical

attribute into a nominal one by applying a set of cuts to the domain of the numer-

ical attribute and treating each interval as a discrete value of the (now nominal)

attribute. Discretization is a mandatory step when processing information systems

with the canonical RST formulation, as there is no provisioning for handling numer-

ical attributes there. Some RST extensions avoid this issue by, for example, using

similarity classes instead of equivalence classes and building a similarity relation

that encompasses both nominal and numerical attributes.

It is very important that any discretization method chosen in the context of RST-

based data analysis preserves the underlying discernibility among the objects. The

level of granularity at which the cuts are performed in the discretization step will

have a direct impact on any ensuing prediction, i.e., generic (wider) intervals (cuts)

will likely avoid overfitting when predicting the class for an unseen object.

Dougherty et al. [53] categorize discretization methods along three axes:

∙ global versus local: indicates whether an approach simultaneously converts all

numerical attributes (global) or is restricted to a single numerical attribute (local).

For instance, the authors in [174] suggest both local and global handling of numer-

ical attributes in large data bases.

∙ supervised versus unsupervised: indicates whether an approach considers values

of other attributes in the discretization process or not. A simple example of an

unsupervised approach is an “equal width” interval method that works by dividing

the range of continuous attributes into k equal intervals, where k is given. A super-

vised discretization method, for example, will consider the correlation between the

numerical attribute and the label (class) attribute when choosing the location of

the cuts.

∙ static versus dynamic: indicates whether an approach requires a parameter to deter-

mine the number of cut values or not. Dynamic approaches automatically generate

this number along the discretization process whereas static methods require an a

priori specification of this parameter.

Lenarcik and Piasta [128] introduced an RST-based discretization method that

leans on the concepts of a random information system and of an expected value

of classification quality. The method of finding suboptimal discretizations based on

these concepts is presented and is illustrated with data from concretes’ frost resis-

tance investigations.

Nguyen [173] considers the problem of searching for a minimal set of cuts that

preserves the discernibility between objects with respect to any subset of s attributes,

where s is a user-defined parameter. It was shown that this problem is NP-hard and

its heuristic solution is more complicated than that for the problem of searching for
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an optimal, consistent set of cuts. The author proposed a scheme based on Boolean

reasoning to solve this problem.

Bazan [5] put forth a method to search for an irreducible sets of cuts of an infor-

mation system. The method is based on the notion of dynamic reduct. These reducts

are calculated for the information system and the one with the best stability coeffi-

cient is chosen. Next, as an irreducible set of cuts, the author selected cuts belonging

to the chosen dynamic reduct.

Bazan et al. [6] proposed a discretization technique named maximal discernibility
(MD), which is based on rough sets and Boolean reasoning. MD is a greedy heuristic

that searches for cuts along the domains of all numerical attributes that discern the

largest number of object pairs in the dataset. These object pairs are removed from

the information system before the next cut is sought. The set of cuts obtained that

way is optimal in terms of object indiscernibility; however this procedure is not fea-

sible since computing one cut requires O(|A| ⋅ |U|3). Locally optimal cuts [6] are

computed in O(|A| ⋅ |U|) steps using only O(|A| ⋅ |U|) space.

Dai and Li [46] improved Nguyen’s discretization techniques by reducing the time

and space complexity required to arrive at the set of candidate cuts. They proved that

all bound cuts can discern the same object pairs as the entire set of initial cuts. A

strategy to select candidate cuts was proposed based on that proof. They obtained

identical results to Nguyen’s with a lower computational overhead.

Chen et al. [26] employ a genetic algorithm (GA) to derive the minimal cut set

in a numerical attribute. Each gene in a binary chromosome represents a particular

cut value. Enabling this gene means the corresponding cut value has been selected

as a member of the minimal cut set. Some optimization strategies such as elitist

selection and father-offspring combined selection helped the GA converge faster.

The experimental evidence showed that the GA-based scheme is more efficient than

Nguyen’s basic heuristic based on rough sets and Boolean reasoning.

Xie et al. [249] defined an information entropy value for every candidate cut point

in their RST-based discretization algorithm. The final cut points are selected based on

this metric and some RST properties. The authors report that their approach outper-

forms other discretization techniques and scales well with the number of cut points.

Su and Hsu [219] extended the modified Chi2 discretizer by learning the pre-

defined misclassification rate (input parameter) from data. The authors additionally

considered the effect of variance in the two adjacent intervals. In the modified Chi2,

the inconsistency check in the original Chi2 is replaced with the “quality of approxi-

mation” measure from RST. The result is a more robust, parameterless discretization

method.

Singh and Minz [205] designed a hybrid clustering-RST-based discretizer. The

values of each numerical attribute are grouped using density-based clustering algo-

rithms. This produces a set of (possibly overlapping) intervals that naturally reflect

the data distribution. Then, the rough membership function in RST is employed

to refine these intervals in a way that maximizes class separability. The proposed

scheme yielded promising results when compared to seven other discretizers.
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Jun and Zhou [116] enhanced existing RST-based discretizers by (i) computing

the candidate cuts with an awareness of the decision class information; in this way,

the scales of candidate cuts can be remarkably reduced, thus considerably saving

time and space and (ii) introducing a notion of cut selection probability that is defined

to measure cut significance in a more reasonable manner. Theoretical analyses and

simulation experiments show that the proposed approaches can solve the problem of

data discretization more efficiently and effectively.

2.1.2 Feature Selection

The purpose behind feature selection is to discard irrelevant features that are gener-

ally detrimental to the classifier’s performance, generate noise, increase the amount

of information to be stored and the computational cost of the classification process

[222, 302]. Feature selection is a computationally expensive problem that requires

searching for a subset of the n original features in a space of 2n − 1 candidate sub-

sets according to a predefined evaluation criterion. The main components of a feature

selection algorithm are: (1) an evaluation function (EF), used to calculate the fitness

of a feature subset and (2) a generation procedure that is responsible for generating

different subsets of candidate features.

Different feature selection schemes that integrate RST into the feature subset eval-

uation function have been developed. The quality of the classification 𝛾 is the most

frequently used RST metric to judge the suitability of a candidate feature subset, as

shown in [9–11, 64] etc. Other indicators are conditional independence [208] and

approximate entropy [209].

The concept of reduct is the basis for these results. Essentially, a reduct is a min-

imal subset of features that generates the same granulation of the universe as that

induced by all features. Among these works we can list [37, 38, 85, 89, 111, 136,

168, 196, 221, 223, 239, 247, 248, 255, 270, 302]. One of the pioneer methods

is the QuickReduct algorithm, which is typical of those algorithms that resort to a

greedy search strategy to find a relative reduct [136, 202, 247]. Generally speak-

ing, feature selection algorithms are based on heuristic search [97, 164, 302]. Other

RST-based methods for reduct calculation are [98, 209].

More advanced methods employ metaheuristic algorithms (such as Genetic Algo-

rithms, Ant Colony Optimization or Particle Swarm Optimization) as the underlying

feature subset generation engine [8–11, 15, 64, 102, 119, 241, 242, 245, 246, 268,

274, 297]. Feature selection methods based on the hybridization between fuzzy and

rough sets have been proposed in [13, 28, 42–44, 51, 75, 87, 90, 92, 101, 103–105,

125, 193, 197, 203, 225, 299]. Some studies aim at calculating all possible reducts

of a decision system [27, 28, 206, 225, 299].

Feature selection is arguably the Machine Learning (ML) area that has witnessed

the most influx of rough-set-based methods. Other RST contributions to ML are

concerned with providing metrics to calculate the inter-attribute dependence and the

importance (weight) of any attribute [120, 222].
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2.1.3 Instance Selection

Another important data preprocessing task is the editing of the training sets, also

referred to as instance selection. The aim is to reduce the number of examples in

order to bring down the size of the training set while maintaining the system effi-

ciency. By doing that, a new training set is obtained that will bring forth a higher

efficiency usually also produces a reduction of the data.

Some training set edition approaches using rough sets have been published in

[16, 19]. The simplest idea is to remove all examples in the training set that are not

contained in the lower approximation of any of the decision classes. A more thorough

investigation also considers those examples that lie in the boundary region of any of

the decision classes. Fuzzy rough sets have been also applied to the instance selection

problem in [99, 232, 233].

2.1.4 Meta-Learning

An important area within knowledge discovery is that of meta-learning, whose

objective is to learn about the underlying learning processes in order to make them

more efficient or effective [234]. These methods may consider measures related to

the complexity of the data [79]. The study in [18] explores the use of RST-based

metrics to estimate the quality of a data set. The relationship between the “quality

of approximation” measure and the performance of some classifiers is investigated

in [17]. This measure describe the inexactness of the rough-set-based classification

and denotes the percentage of examples that were correctly classified employing the

attributes included in the indiscernibility relationship [224]. The authors in [251]

analyze the inclusion degree as a perspective on measures for rough set data analysis

(RSDA). Other RSDA measures are the “accuracy of the approximation” and the

rough membership function [120]; for example, in [108, 109], the rough member-

ship function and other RST-based measures are employed to detect outliers (i.e.,

examples that behave in an unexpected way or have abnormal properties).

2.2 Descriptive and Predictive Knowledge Discovery

2.2.1 Decision Rule Induction

The knowledge uncovered by the different data analysis techniques can be either

descriptive or predictive. The former characterizes the general properties of the data

in the data set (e.g., association rules) while the latter allows performing inferences

from the available data (e.g., decision rules). A decision rule summarizes the rela-

tionship between the properties (features) and describes a causal relationship among

them. For example, IF Headache = Yes AND Weakness = YES THEN Influenza =
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YES. The most common rule induction task is to generate a rule base R that is both

consistent and complete.

According to [161], RST-based rule induction methods provide the following ben-

efits:

∙ Better explanation capabilities

∙ Generate a simple and useful set of rules.

∙ Work with sparse training sets.

∙ Work even when the underlying data distribution significantly deviates from the

normal distribution.

∙ Work with incomplete, inaccurate, and heterogeneous data.

∙ Usually faster execution time to generate the rule base compared to other methods.

∙ No assumptions made on the size or distribution of the training data.

Among the most popular RST-based rule induction methods we can cite LERS

[67, 215], which includes the LEM1 (Learn from examples model v1) and LEM2

methods (Learn from examples model v2); the goal is to extract a minimum set of

rules to cover the examples by exploring the attribute-value pairs search space of

while taking into account possible data inconsistency issues. MODLEM [214, 215]

is based on sequentially building coverings of the training data and generating min-

imal decision rule sets for each decision class. Each of these sets aims at covering

all positive examples that belong to a concept and none from any other concept.

The EXPLORE algorithm [216] extracts from data all the decision rules satisfy-

ing certain requirements. It can be adapted to handle inconsistent examples. The

LEM2, EXPLORE and MODLEM algorithms rule induction algorithms are imple-

mented in the ROSE2 software [3]. Filiberto et al. proposed the IRBASIR method

[62], which generates decision rules using an RST extension rooted on similarity

relations; another technique is put forth in [121] to discover rules using similarity

relations for incomplete data sets. This learning problem in presence of missing data

is also addressed in [80].

Other RST-based rule induction algorithms available in the literature using

rough sets are [3, 14, 63, 110, 118, 129, 154, 179, 228, 229]. The use of hybrid

models based on rough sets and fuzzy sets for rule induction and other knowledge

discovery methods is illustrated in [2, 24, 41, 100, 123, 159, 201, 298, 300], which

includes working with the so called “fuzzy decision information systems” [2].

One of the most popular rule induction methods based on rough sets is the

so-called three-way decisions model [81, 260–263]. This methodology is strongly

related to decision making. Essentially, for each decision alternative, this method

defines three rules based on the RST’s positive, negative and boundary regions. They

respectively indicate acceptance, rejection or abstention (non-commitment, denotes

weak or insufficient evidence).

This type of rules, derived from the basic RST concepts, is a suitable knowledge

representation vehicle in a plethora of application domains. Hence, it has been inte-

grated into common machine learning tasks to facilitate the knowledge engineering

process required for a successful modeling of the domain under consideration. The
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three-way decisions model has been adopted in feature selection [106, 107, 133,

163, 265, 293], classification [273, 281, 282, 293], clustering [276, 277] and face

recognition [132, 289].

2.2.2 Association Rule Mining

The discovery of association rules is one of the classical data mining tasks. Its goal

is to uncover relationships among attributes that frequently appear together; i.e., the

presence of one implies the presence of the other. One of the typical examples is the

purchase of beer and diapers during the weekends. Association rules are representa-

tive of descriptive knowledge. A particular case are the so called “class association

rules”, which are used to build classifiers. Several methods have been developed for

discovering association rules using rough sets, including [49, 70, 94, 111, 127, 134,

211, 266].

2.2.3 Clustering

The clustering problem is another learning task that has been approached from

a rough set perspective. Clustering is a landmark unsupervised learning problem

whose main objective is to group similar objects in the same cluster and separate

objects that are different from each other by assigning them to different clusters [96,

167]. The objects are grouped in such a way that those in the same group exhibit a

high degree of association among them whereas those in different groups show a low

degree of association. Clustering algorithms map the original N-dimensional feature

space to a 1-dimensional space describing the cluster each object belongs to. This is

why clustering is considered both an important dimensionality reduction technique

and also one of the most prevalent Granular Computing [183] manifestations.

One of the most popular and efficient clustering algorithms for conventional appli-

cations is K-means clustering [71]. In the K-means approach, randomly selected

objects serve as initial cluster centroids. The objects are then assigned to different

clusters based on their distance to the centroids. In particular, an object gets assigned

to the cluster with the nearest centroid. The newly modified clusters then employ

this information to determine new centroids. The process continues iteratively until

the cluster centroids are stabilized. K-means is a very simple clustering algorithm,

easy to understand and implement. The underlying alternate optimization approach

iteratively converges but might get trapped into a local minimum of the objective

function. K-means’ best performance is attained in those applications where clusters

are well separated and a crisp (bivalent) object-to-cluster decision is required. Its

disadvantages include the sensitivity to outliers and the initial cluster centroids as

well as the a priori specification of the desired number of clusters k.

Pawan Lingras [142, 145] found that the K-means algorithm often yields cluster-

ing results with unclear, vague boundaries. He pointed out that the “hard partition-

ing” performed by K-means does not meet the needs of grouping vague data. Lingras
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then proposed to combine K-means with RST and in the so-called “Rough K-means”

approach. In this technique, each cluster is modeled as a rough set and each object

belongs either to the lower approximation of a cluster or to the upper approximation

of multiple clusters. Instead of building each cluster, its lower and upper approxi-

mations are defined based on the available data. The basic properties of the Rough

K-means method are: (i) an object can be a member of at most a lower approxima-

tion; (ii) an object that is a member of the lower approximation of a cluster is also

a member of its upper approximation and (iii) an object that does not belong to the

lower approximation of any cluster is a member of at least the upper approximation

of two clusters. Other pioneering works on rough clustering methods are put forth

in [78, 192, 235, 236].

Rough K-means has been the subject of several subsequent studies aimed at

improving its clustering capabilities. Georg Peters [187] concludes that rough clus-

tering offers the possibility of reducing the number of incorrectly clustered objects,

which is relevant to many real-world applications where minimizing the number

of wrongly grouped objects is more important than maximizing the number of

correctly grouped objects. Hence in these scenarios, Rough K-means arises as a pow-

erful and stronger alternative to K-means. The same author proposes some improve-

ments to the method regarding the calculation of the centroids, thus aiming to make

the method more stable and robust to outliers [184, 185]. The authors in [291] pro-

posed a Rough K-means improvement based on a variable weighted distance mea-

sure. Another enhancement brought forward in [186] suggested that well-defined

objects must have a greater impact on the cluster centroid calculation rather than hav-

ing this impact be governed by the number of cluster boundaries an object belongs

to, as proposed in the original method. An extension to Rough K-means based on

the decision-theoretic rough sets model was developed in [130]. An evolutionary

approach for rough partitive clustering was designed in [168, 189] while [45, 190]

elaborate on dynamic rough clustering approaches.

Other works that tackle the clustering problem using rough sets are [35, 72, 76,

77, 122, 124, 135, 143, 144, 162, 177, 178, 213, 271, 272, 275, 292]. These meth-

ods handle more specific scenarios (such as sequential, imbalanced, categorical and

ordinal data), as well as applications of this clustering approach to different domains.

The rough-fuzzy K-means method is put forward in [88, 170] whereas the fuzzy-

rough K-means is unveiled in [169, 188]. Both approaches amalgamate the main

features of Rough K-means and Fuzzy C-means by using the fuzzy membership of

the objects to the rough clusters. Other variants of fuzzy and rough set hybridization

for the clustering problem are presented in [56, 126, 160, 171].

3 Special Learning Cases Based on RST

This section elaborates on more recent ML scenarios tackled by RST-based

approaches. In particular, we review the cases of imbalanced classification, multi-

label classification, dynamic/incremental learning and Big Data analysis.
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3.1 Imbalanced Classification

The traditional knowledge discovery methods presented in the previous section have

to be adapted if we are dealing with an imbalanced dataset [21]. A dataset is bal-

anced if it has an approximately equal percentage of positive and negative examples

(i.e., those belonging to the concept to be classified and those belonging to other con-

cepts, respectively). However, there are many application domains where we find an

imbalanced dataset; for instance, in healthcare scenarios there are usually a plethora

of patients that do not have a particularly rare disease. When learning a normalcy

model for a certain environment, the number of labeled anomalous events is often

scarce as most of the data corresponds to normal behaviour. The problem with imbal-

anced classes is that the classification algorithms have a tendency towards favoring

the majority class. This occurs because the classifier attempts to reduce the overall

error, hence the classification error does not take into account the underlying data

distribution [23].

Several solutions have been researched to deal with this kind of situations. Two of

the most popular avenues are either resampling the training data (i.e., oversampling

the minority class or undersampling the majority class) or modifying the learning

method [153]. One of the classical methods for learning with imbalanced data is

SMOTE (synthetic minority oversampling technique) [22]. Different learning meth-

ods for imbalanced classification have been developed from an RST-based stand-

point. For instance, Hu et al. [91] proposed models based on probabilistic rough sets

where each example has an associated probability p(x) instead of the default 1/n. Ma

et al. [158] introduced weights in the variable-precision rough set model (VPRS) to

denote the importance of each example. Liu et al. [153] bring about some weights

in the RST formulation to balance the class distribution and develop a method based

on weighted rough sets to solve the imbalanced class learning problem. Ramentol et

al. [194] proposed a method that integrates SMOTE with RST.

Stefanowski et al. [217] introduced filtering techniques to process inconsistent

examples of the majority class (i.e., those lying in the boundary region), thereby

adapting the MODLEM rule extraction method for coping with imbalanced learning

problems. Other RST-based rule induction methods in the context of imbalanced

data are also presented in [152, 243]. The authors in [218] proposed the EXPLORE

method that generates rules for the minority class with a minimum coverage equal

to a user-specified threshold.

3.2 Multi-label Classification

Normally, in a typical classification problem, a class (label) ci from a set C =
{c1,… , ck} is assigned to each example. However, in multi-label classification, a

subset S ⊆ C is assigned to each example, which means that an example could belong

to multiple classes. Some applications of this type of learning emerge from text clas-
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sification and functional genomics, namely, assigning functions to genes [226]. This

gives rise to the so-called multi-label learning problem. The two avenues envisioned

for solving this new class of learning problems have considered either converting

the multi-label scenario to a single-label (classical) scenario or adapting the learn-

ing methods. Examples of the latter trend are the schemes proposed in [47, 198,

227, 290]. Similar approaches have been proposed for multi-label learning using

rough sets. A first alternative is to transform the multi-label problem into a tradi-

tional single-label case and use classical RST-based learning methods to derive the

rules (or any other knowledge); the other option is to adapt the RST-based learning

methods, as shown in [240, 278, 279, 288].

In the first case, a decision system can be generated where some instances could

belong to multiple classes. Multi-label classification can be regarded as an incon-

sistent decision problem, in which two objects having the same predictive attribute

values do not share the same decision class. This leads to the modification of the

definition of the lower/upper approximations through a probabilistic approach that

facilitates modeling the uncertainty generated by the inconsistent system. This idea

gives rise to the so-called multi-label rough set model, which incorporates a prob-

abilistic approach such as the decision-theoretic rough set model. Some RST-based

feature selection methods in multi-label learning scenarios have been enunciated

[131], where the reduct concept was reformulated for the multi-label case.

3.3 Dynamic/Incremental Learning

Data are continuously being updated in nowadays’ information systems. New data

are added and obsolete data are purged over time. Traditional batch-learning methods

lean on the principle of running these algorithms on all data when the information

is updated, which obviously affects the system efficiency while ignoring any previ-

ous learning. Instead, learning should occur as new information arrives. Managing

this learning while adapting the previous knowledge learned is the essence behind

incremental learning. This term refers to an efficient strategy for the analysis of data

in dynamic environments that allows acquiring additional knowledge from an unin-

terrupted information flow. The advantage of incremental learning is not to have to

analyze the data from scratch but to utilize the learning process’ previous outcomes

as much as possible [57, 73, 112, 176, 200]. The continuous and massive acquisi-

tion of data becomes a challenge for the discovery of knowledge; especially in the

context of Big Data, it becomes very necessary to develop capacities to assimilate

the continuous data streams [29].

As an information-based methodology, RST is not exempt from being scrutinized

in the context of dynamic data. The fundamental RST concepts and the knowledge

discovery methods ensuing from them are geared towards the analysis of static data;

hence, they need to be thoroughly revised in light of the requirements posed by

data stream mining systems [151]. The purpose of the incremental learning strat-

egy in rough sets is the development of incremental algorithms to quickly update
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the concept approximations, the reduct calculation or the discovered decision rules

[40, 284]. The direct precursor of these studies can be found in [175]. According to

[149], in recent years RST-based incremental learning approaches have become “hot

topics” in knowledge extraction from dynamic data given their proven data analysis

efficiency.

The study of RST in the context of learning with dynamic data can be approached

from two different angles: what kind of information is considered to be dynamic

and what type of learning task must be carried out. In the first case, the RST-based

incremental updating approach could be further subdivided into three alternatives:

(i) object variation (insertion or deletion of objects in the universe), (ii) attribute

variation (insertion/removal of attributes) and (iii) attribute value variation (inser-

tion/deletion of attribute values). In the second case, we can mention (i) incremen-

tal learning of the concept approximations [33, 139]; (ii) incremental learning of

attribute reduction [52, 140, 237, 238, 250] and (iii) incremental learning of deci-

sion rules [59, 66, 148, 301].

Object variations include so-called object immigration and emigration [148].

Variations of the attributes include feature insertion or deletion [138, 287]. Vari-

ations in attribute values are primarily manifested via the refinement or scaling of

the attribute values [32, 146]. Other works that propose modifications to RST-based

methods for the case of dynamic data are [147, 149, 157].

The following studies deal with dynamic object variation:

∙ The update of the lower and upper approximations of the target concept is analyzed

in [33, 137, 156].

∙ The update in the reduction of attributes is studied in [82, 250].

∙ The update of the decision rule induction mechanism is discussed in [4, 40, 59,

93, 148, 199, 230, 244, 269, 301].

If the variation occurs in the set of attributes, its effects have been studied with

respect to these aspects:

∙ The update of the lower and upper approximations of the target concept is analyzed

in [20, 36, 138, 139, 150, 287].

∙ The update of the decision rule induction mechanism is discussed in [39].

The effect of the variations in the attribute values (namely, via refinement or

extension of the attribute domains) with respect to the update of the lower and upper

approximations of the target concept is analyzed in [30–32, 50, 237, 308].

The calculation of reducts for dynamic data has also been investigated. The effect

when the set of attributes varies is studied in [39]. The case of varying the attribute

values is explored in [50, 69] whereas the case of dynamic object update is dissected

in [199, 244]. Other studies on how dynamic data affect the calculation of reducts

appear in [140, 204, 237, 238].
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3.4 Rough Sets and Big Data

On the other hand, the accelerated pace of technology has led to an exponential

growth in the generation and collection of digital information. This growth is not

only limited to the amount of data available but to the plethora of diverse sources

that emit these data streams. It becomes paramount then to efficiently analyze and

extract knowledge from many dissimilar information sources within a certain appli-

cation domain. This has led to the emergence of the Big Data era [25], which has

a direct impact on the development of RST and its applications. Granular Comput-

ing, our starting point in this chapter, has a strong relation to Big Data [25], as its

inherent ability to process information at multiple levels of abstraction and interpret

information from different perspectives greatly facilitates the efficient management

of large data volumes.

Simply put, Big Data can be envisioned as a large and complex data collection.

These data are very difficult to analyze through traditional data management and

processing tools. Big Data scenarios require new architectures, techniques, algo-

rithms and processes to manage and extract value and knowledge hidden in the

data streams. Big Data is often characterized by the 5 V’s vector: Volume, Veloc-

ity, Variety, Veracity and Value. Big Data includes both structured and unstructured

data, including images, videos, textual reports, etc. Big Data frameworks such as

MapReduce and Spark have been recently developed and constitute indispensable

tools for the accurate and seamless knowledge extraction from an array of disparate

data sources. For more information on the Big Data paradigm, the reader is referred

to the following articles: [25, 48, 60, 117].

As a data analysis and information extraction methodology, RST needs to adapt

and evolve in order to cope with this new phenomenon. A major motivation to do

so lies in the fact that the sizes of nowadays’ decision systems are already extremely

large. This poses a significant challenge to the efficient calculation of the underlying

RST concepts and the knowledge discovery methods that emanate from them. Recall

that the computational complexity of computing the target concept’s approximations

is O(lm2
), the computational cost of finding a reduct is bounded by O(l2m2

) and the

time complexity to find all reducts is O(2lJ), where l is the number of attributes

characterizing the objects, m is the number of objects in the universe and J is the

computational cost required to calculate a reduct.

Some researchers have proposed RST-based solutions to the Big Data challenge

[191, 286]. These methods are concerned with the design of parallel algorithms

to compute equivalence classes, decision classes, associations between equivalence

classes and decision classes, approximations, and so on. They are based on partition-

ing the universe, concurrently processing those information subsystems and then

integrating the results. In other words, given the decision system S = (U,C ∪ D),
generate the subsystems {S1, S2,… , Sm}, where Si = (Ui,C ∪ D) and U =

⋃
Ui,

then process each subsystem Si, i ∈ {1, 2,… ,m}, Ui∕B,B ⊆ C. Afterwards, the

results are amalgamated. This MapReduce-compliant workflow is supported by sev-

eral theorems stating that (a) equivalence classes can be independently computed
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for each subsystem and (b) the equivalence classes from different subsystems can be

merged if they are based on the same underlying attribute set. These results enable

the parallel computation of the equivalence classes of the decision system S. Zhang

et al. [286] developed the PACRSEC algorithm to that end.

Analogously, RST-based knowledge discovery methods, including reduct calcu-

lation and decision rule induction, have been investigated in in the context of Big

Data [58, 256, 285].

3.5 Cost-Sensitive Learning

Cost is an important property inherent to real-world data. Cost sensitivity is an impor-

tant problem which has been addressed from different angles. Cost-sensitive learn-
ing [252, 294, 303, 304] emerged when an awareness of the learning context was

brought into Machine Learning. This is one of the most difficult ML problems and

was listed as one of the top ten challenges in the Data Mining/ML domain [296].

Two types of learning costs have been addressed through RST: misclassification
cost and test cost [253]. Test cost has been studied by Min et al. [163, 165, 166,

295] using the classical rough set approach, i.e., using a single granulation; a test-

cost-sensitive multigranulation rough set model is presented in [253]. Multigranu-

lation rough set is an extension of the classical RST that leans on multiple granular

structures.

A recent cost-sensitive rough set approach was put forward in [115]. The crux of

this method is that the information granules are sensitive to test costs while approx-

imations are sensitive to decision costs, respectively; in this way, the construction

of the rough set model takes into account both the test cost and the decision cost

simultaneously. This new model is called cost-sensitive rough set and is based on

decision-theoretic rough sets. In [132], the authors combine sequential three-way

decisions and cost-sensitive learning to solve the face recognition problem; this is

particularly interesting since in real-world face recognition scenarios, different kinds

of misclassifications will lead to different costs [155, 294].

Other studies focused on the cost-sensitive learning problem from an RST per-

spective are presented in [84, 113, 253, 254]; these works have considered both the

test cost and the decision cost. Attribute reduction based on test-cost-sensitivity has

been quite well investigated [74, 86, 106, 114, 115, 133, 163, 164, 166, 296].

4 Reference Categorization

Table 1 lists the different RST studies according to the ML tasks they perform.
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5 Conclusions

We have reported on hundreds of successful attempts to tackle different ML problems

using RST. These approaches touch all components of the knowledge discovery

process, ranging from data preprocessing to descriptive and predictive knowledge

induction. Aside from the well-known RST strengths in identifying inconsistent

information systems, calculating reducts to reduce the dimensionality of the feature

space or generating an interpretable rule base, we have walked the reader through

more recent examples that show the redefinition of some of the RST’s building blocks

to make it a suitable approach for handling special ML scenarios characterized by an

imbalance in the available class data, the requirement to classify a pattern into one or

more predefined labels, the dynamic processing of data streams, the need to manage

large volumes of static data or the management of misclassification/test costs. All of

these efforts bear witness to the resiliency and adaptability of the rough set approach,

thus making it an appealing choice for solving non-conventional ML problems.
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Application of Tolerance Rough Sets
in Structured and Unstructured Text
Categorization: A Survey

Sheela Ramanna, James Francis Peters and Cenker Sengoz

Abstract Text categorization or labelling methods assign unseen documents or

unknown linguistic entities to pre-defined categories or labels. This is an essential

preprocessing step in web mining. Text categorization is popularly referred to as

document classification/clustering. In this chapter, we present a survey of literature,

where tolerance rough set model (TRSM) is used as a text categorization and learning

model. The approach taken is to consider tolerance relations instead of equivalence

relations where the binary relation is both symmetric and reflexive but not transitive.

A very brief overview of the history of tolerance rough sets from an axiomatic point

of view is also presented. Various approaches to text categorization of both struc-

tured information such as documents as well as unstructured information such as

nouns and relations based on TRSM are presented. This survey is meant to demon-

strate the versatility of the tolerance form of rough sets and its successful application

in text categorization and labelling.

1 Introduction

Rough Set theory was introduced by Zdzisław Pawlak during the early 1980s [1]

(elaborated in [2–6]) as a mathematical framework for reasoning about ill-defined

objects. It is of fundamental importance to artificial intelligence (AI) and cognitive

sciences, especially in the areas of machine learning, knowledge acquisition, deci-

sion analysis, knowledge discovery from databases, expert systems, decision support
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systems, inductive reasoning, and pattern recognition [5]. Considerable work has

been done on combining rough sets and tolerance relations [7] to obtain a realis-

tic model (see for ex: [8–11]) leading to the tolerance rough sets model (TRSM).

Tolerance relations provide the most general tool for studying indiscernibility phe-

nomena [10]. The idea of tolerance first appeared in Poincaré’s work in 1905 [12]

and can be traced back to his work on the similarity of sensations [13]. Subsequently,

tolerance relations were considered by Zeeman [14] in his study of the topology of

the brain where he was concerned with different cells of the brain which, when they

are very near, are perceived as identical or indistinguishable. Tolerance spaces as a

framework for studying the concept of resemblance was presented in [15] and in [13].

Text categorization with classical rough sets where the concept of indiscernibil-

ity (similarity) formed by an equivalence relation is plausible but too restrictive.

The approach taken is to consider tolerance relations instead of equivalence rela-

tions where the binary relation is both symmetric and reflexive but not transitive.

We use the broader term of text categorization in this work to admit both structured

(documents) and unstructured (nouns and relations) information from web sources.

Applications of TRSM can be found in (i) document clustering [16–19], (ii) docu-

ment retrieval [20], an, (iii) unstructured text labelling [21].

The challenges with using TRSM for information representation and its subse-

quent use in information retrieval are multi-fold. Firstly, a thesaurus (which is a col-

lection of documents) must be constructed using some tolerance value 𝜀, since this

forms the very basis for queries used to retrieve related documents. So the challenge

is to determine the optimal value of 𝜀. With unstructured text, a thesaurus (for nouns

and relations) must be created. Specifically, in a semi-supervised setting, seed val-

ues for nouns (relations) are promoted based on some tolerance value 𝜀. The second

challenge is the optimization of a thesaurus with co-occurrence information between

elements of the thesaurus. In this context, it means constructing some form of tol-

erance matrix. This phase involves the use of approximation (upper) operator which

forms a basis of a weighting scheme (see Sect. 4). The third challenge is to employ

appropriate retrieval methods such as clustering or semi-supervised algorithms. In

this survey, we restrict our discussion to text categorization rather than information

retrieval in general. The contribution of the chapter is to present both the founda-

tions and applications of tolerance rough sets in text categorization in an attempt to

interest the readers to the tolerance form of rough sets as a useful tool in mining

both structured text such as documents as well as unstructured text such as nouns

and relations.

The chapter is organized as follows: In Sect. 2, we first start with an informal

presentation of classical and tolerance forms of rough sets followed by the formal

definitions of rough and tolerance rough sets. In Sect. 4, TRSM as a document rep-

resentation model is discussed. Section 5 presents various approaches to document

clustering using TRSM. Section 6 presents a detailed discussion of TRSM as an

unstructured information representation model.
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2 Rough Sets

In classical rough sets theory, a universe of objects is partitioned into indiscernible

classes (i.e. granules) by means of an indiscernibility relation. Indiscernible classes

form basic granules of knowledge about the universe. Given a concept that is deter-

mined to be vague (not precise), this theory makes it possible to express the vague

concept by a pair of precise concepts called the lower and the upper approximation.

A vague concept is defined as a class (or decision) that cannot be properly classi-

fied. The difference between the upper and the lower approximation constitutes the

boundary region of the vague concept. Hence, rough set theory expresses vague-

ness not by means of membership, but by employing a boundary region [5]. Figure 1

shows the regions that emerge with set approximation. The regions are depicted as

squares only for the sake of illustration, but they can be of arbitrary shape. We should

note that each granule can contain an arbitrary number of objects or may be empty.

However, there are some cases where the disjoint granules are not desired. Partic-

ularly, when it comes to natural language processing and information retrieval, over-

lapping classes would better fit to describe this universe and the desired outcome is

shown in Fig. 2 first presented by Ho and Nguyen [18]. Consider the universe U of

words {account, agency, antecedent, backbone, backing, bottom, basis, cause, cen-
ter, derivation, motive, root} excerpted from Roget’s thesaurus. Assume we would

like to define an indiscernibility (equivalence) relation R over those words based on

their semantic affinity. Each of those words seem to share a meaning with one or

more of the concepts Root, Cause and Basis and their meanings are not transitive.

Since classical rough set theory relies on an equivalence relation R ⊆ U × U to

approximate a target concept, R has the following 3 properties:

∙ Reflexivity: (x, x) ∈ R,∀x ∈ U.

∙ Symmetry: (x, y) ∈ R ⇒ (y, x) ∈ R,∀x, y ∈ U.

∙ Transitivity: (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R,∀x, y, z ∈ U.

In practice, R partitions the universe into disjoint (non-overlapping) equivalence

classes which are regarded as information granules. Particularly, when it comes to

text categorization or document clustering, a non-transitive binary relation that is

reflexive and symmetric is necessary.

Fig. 1 Rough sets and set

approximation
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Fig. 2 Overlapping classes

of words [18]

2.1 Formal Framework for Rough Sets

Let U be a finite, non-empty universe of objects and let R ⊆ U × U denote a binary

relation on the universeU.R is called an indiscernibility relation and for rough sets, it

has to be an equivalence relation. The pair (U,R) =  constitutes an approximation
space. Assume we have X ⊆ U as a target concept in this universe. Then the task is

to create an approximated representation forX inU with the help ofR. Let [x]R denote

the indiscernibility class of x i.e. y ∈ [x]R ⟺ (x, y) ∈ R. Then, every equivalence

class forms a granule or partition which, as the name implies, contains objects that

are indiscernible for this approximation space . Therefore, every single item in a

granule is considered identical and inseparable. These granules are approximated by

the following means:

∙ Lower approximation. Intuitively, these are the objects which certainly belong

to X with respect to .

(X) = {x ∈ U ∶ [x]R ⊆ X}.

∙ Upper approximation. Intuitively, these are the objects which may belong to X
with respect to .

(X) = {x ∈ U ∶ [x]R ∩ X ≠ ∅}.

These two approximations will also form the following two regions:

∙ Boundary region. These are the objects occurring in the upper approximation but

not in lower approximation of X.

(X) = (X) − (X).

∙ Negative region. These are the objects that certainly don’t belong to X.

U −(X).
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with this framework, we end up with two different types of sets: a set X is called

a crisp set if and only if (X) = ∅. Otherwise, it is called a rough set. The pair

((X),(X)) forms the rough approximation for X.

3 Tolerance Rough Sets

What follows is a very brief overview of the history of tolerance rough sets from an

axiomatic point of view leading upto the TRSM model that is currently used in text

categorization.

3.1 History of Tolerance Rough Sets: An Axiomatic View

Nieminen [8] introduce what are known as tolerance black boxes where a tolerance

box is defined as B = (I,O, f ) with I as a finite non-empty set of inputs and O as

a finite non-empty set of outputs and f ∶ ℙ(I) → O. A black box B is a tolerance
black box if there is a similarity relation ∼ on O such that o1 ∼ o2 ⟺ o1 and o2
are approximately the same [8, §3, p. 295]. From a practical point of view, most real

control systems are tolerance blackboxes. The authors give conditions for tolerance

admissibility and goodness for tolerance black boxes similar to rough black boxes

given in [9].

Polkowski et al. [10, §3, pp. 56–57] introduce a tolerance information and deci-

sion system as well as a theoretical adaptive decision algorithm to discover rules.

In general, a tolerance information system denoted by  = (U,A, 𝜏) where 𝜏 is a

tolerance relation on information function InfB(x) = {(a, a(x) ∶ a ∈ B} with x ∈ U
and B ⊆ A. In particular, a tolerance information system can be realized as a pair

(,D) where D is a discernibility relation which also satisfies the conditions for

a tolerance relation (see [13] for the details). Formally, D = (DB) with B ⊆ A and

DB ⊆ INF(B) × INF(B). The decision algorithm is termed adaptive, since a choice

of tolerance 𝜏 (measure of degree of similarity) as well as information function InfB
has a bearing on the performance of the algorithm, which can be tuned.

Marcus [11, §4, p. 475] introduce a tolerance form of rough sets where the empha-

sis is on attributes with unsharp borders (including real-valued attributes) which

admits different degrees of indiscernibility. A tolerance rough set is defined as an

ordered pair
(
T∗(A),T∗(A)

)
, where (X, 𝜏) is a tolerance space and X is endowed with

a tolerance relation 𝜏. LetA ⊂ X. For any x ∈ A, 𝜏(x) is its tolerance class. Here, toler-

ance rough sets are presented in the language of C̆ech topology. This characterization

leads to an hierarchical interval of approximations and permits a learning process.

Readers may refer to this chapter for an extensive bibliography dealing with early

work on topology and the two forms of rough sets equivalence and tolerance [11,

§12, pp. 483–486].
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Skowron and Stepaniuk [22, §2, p. 3] generalize the notion of approximation

space to tolerance approximation spaces and introduce a tolerance relation defined

by an uncertainty function for attribute reduction with Boolean reasoning. Specif-

ically, the authors generalize the rough membership function by introducing three

functions: (i) vague inclusion function (𝜇), (ii) uncertainty function (I), (iii) and a

structurality function (P). Formally a tolerance approximation space is defined as

 = (U, I, 𝜇,P) and the attribute reduction process leads to tolerance reducts and

relative tolerance reducts useful in decision-making.

3.2 Formal Framework for Tolerance Rough Sets

In order to define overlapping classes or granules, we need tolerance relations. Tol-

erance relations are reflexive and symmetric but they are not necessarily transitive

so the classes induced by such relations can overlap. Let U be a finite, non-empty

universe of objects, ℙ(U) be the power set of U, and let  ∶ U → ℙ(U) be a binary

relation such that x y ⟺ y ∈  (x) holds for any x, y ∈ U.  implicitly defines a

tolerance relation and  (x) defines a tolerance class of x. Then a tolerance member-

ship function (also known as vague inclusion function) 𝜈 ∶ ℙ(U) × ℙ(U) → [0, 1]
is defined as 𝜈(X,Y) = |X∩Y|

|X|
. The lower and upper approximations of set X can be

defined as

(X) = {x ∈ U ∶ | (x) ∩ X|
| (x)|

= 1},

(X) = {x ∈ U ∶ | (x) ∩ X|
| (x)|

> 0},

where  defines a simplified form of tolerance approximation space  = (U,  , 𝜈)
[22]. More recently, tolerance rough sets have been applied for pattern classification

in classical machine learning data sets [23].

4 Structured Information Representation with TRSM

Structured information such as documents were first modeled using the tolerance

form of rough sets by Kawasaki in 2000. In [16, 18, 19], the authors used TRSM for

text clustering and document clustering/classification and to model relations between

terms and documents. Briefly, TRSM introduces a vectorial representation of doc-

uments where each vector dimension corresponds to a term weight that is to be

enhanced by means of rough sets and tolerance approximation, by relating terms

across documents. This is useful particularly when each document is characterized

by only a small number of terms along with many zero-valued entries in a high
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dimensional term vector space. So TRSM promises a richer representation for doc-

uments to be clustered.

Definition 1 Let D = {d1, d2,… , dM} be a set of documents and let T = {t1, t2,
… , tN} be a universe of index terms that occur in those documents. Let each doc-

ument dj be represented as a weight vector of its terms d̂j = ⟨(t1,w1j), (t2,w2j),… ,

(tN ,wNj)⟩ where wij ∈ [0, 1] shows the significance of term i in document j.
Let a query Q be a cluster representative in the form of Q̂ = ⟨(q1,w1q), (q2,w2q),

… , (qs,wsq)⟩ where qi ∈ T and wiq ∈ [0, 1],

The task in hand is to find ordered documents dj ∈ D that are relevant to Q [18].

The tolerance approximation space  = (U, I, 𝜈,P) for documents is reconstituted

as follows:

∙ The universe is the set of index terms: U = T = {t1, t2,… , tN}.

∙ The uncertainty function I ⊆ T × T aims to capture the affinity amongst the terms

and defines the tolerance class for each index term. It is based on a tolerance rela-

tion that binds two terms if they co-occur frequently across documents. So the

function becomes

I
𝜃
(ti) = {tj|fD(ti, tj) ≥ 𝜃} ∪ {ti}.

It is parametrized over a threshold value 𝜃 where fD(ti, tj) denotes the number of

terms in which ti and tj co-occur. Note that tj ∈ I
𝜃
(ti) ⟺ tiI𝜃tj and that I

𝜃
is

reflexive (ti ∈ I
𝜃
(ti)) and symmetric (tj ∈ I

𝜃
(ti) ⟺ ti ∈ I

𝜃
(tj)) for all ti, tj ∈ T ,

satisfying the tolerance relation requirements.

∙ The vague inclusion function is 𝜈(X,Y) = |X∩Y|
|X|

. It is monotonous w.r.t the second

argument, as required. It can now be regarded as the membership function 𝜇 for

term ti ∈ T to target concept X ⊆ T

𝜇(ti,X) = 𝜈(I
𝜃
(ti),X) =

|I
𝜃
(ti) ∩ X|
|I
𝜃
(ti)|

,

provided that T is a closed set and Q consists exclusively of terms from T , the

structurality function is simply P = 1 for TRSM.

The lower and upper approximations of X are defined as follows:

(X) = {ti ∈ T ∶
|I
𝜃
(ti) ∩ X|
|I
𝜃
(ti)|

= 1},

(X) = {ti ∈ T ∶
|I
𝜃
(ti) ∩ X|
|I
𝜃
(ti)|

> 0}.

Weight Adjustment via TF-IDF scheme:

Tolerance approximation is used to enhance the document representation by adjust-

ing the term weights. In the absence of such enhancement, term weights are assigned
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by using the term frequency-inverse document frequency (tf-idf) scheme

wtfidf

ij =

{
(1 + log(fdj (ti))) × log M

fD(ti)
, if ti ∈ dj,

0, if ti ∉ (dj),

where fdj (ti) denotes the number of times ti occurs in dj (term frequency) and

fD(ti) denotes the number of documents in D that accommodates ti (document fre-

quency) [18]. In such a model, a term ti acquires a nonzero weight for d̂j if and only

if, it directly occurs in the document dj.

Weight Adjustment via Tolerance Rough Sets:

TRSM uses the following weighting scheme which also takes boundary terms into

account and assigns non-zero weights. Note that the upper approximation of a doc-

ument (dj) covers the tolerant terms for all of its own terms as well, creating the

enriched representation.

wtrs

ij =
⎧
⎪
⎨
⎪
⎩

(1 + log(fdj (ti))) × log M
fD(ti)

, if ti ∈ dj,

minth∈djwhj ×
log(M∕fD(ti))

1+log(M∕fD(ti))
, if ti ∈ (dj)∖dj,

0, if ti ∉ (dj).

Weight Adjustment via Tolerance Rough Sets with linear neurons:

In this work [24, §3, p. 389], weights wln
ij for tj ∈ A(di) are determined using a

neural network (training a set of linear neurons) with the assumption that 𝛽kj > 0.

wln
ij =

N∑

k=1
𝛿(i, j, k)𝛽kjwik,

where

𝛿(i, j, k) =
{

1, for tk ∈ di ∧ tj ∈ I
𝜃
(tk),

0, otherwise,

which is rewritten as

wln
ij =

N∑

k=1
𝛿(i, j, k)e𝛼kjwik.

The problem is framed as one of determining weights 𝛼kj resulting in a TRSM-WL

model.

Similarity Measure

Once the weights are adjusted within the framework of tolerance rough sets, one can

measure the similarity between a query vector Q where Q̂ = ⟨(q1,w1q), (q2,w2q),… ,

(qs,wsq)⟩ and a document vector dj by using the following formula
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Similarity(Q, dj) =
2 ×

∑N
k=1(wkq × wkj)

∑N
k=1 w

2
kq +

∑N
k=1 w

2
kj

,

and ultimately, cluster documents that are similar. A query vector may represent an

actual query in the context of information retrieval or a class of documents in the

context of document classification.

5 Structured Information Categorization with TRSM

TRSM has been gaining popularity in one form of text categorization method which

is document clustering. In this section, we discuss the popular TRSM-based work

for document clustering.

5.1 Hierarchical Document Clustering

The earliest known work on the application of TRSM as a document representation

model was proposed by Kawasaki et al. They introduced a TRSM-based hierarchical

document clustering that is an extension of the hierarchical agglomerative (bottom-

up) clustering algorithm [16]. In this model, every document is represented as a

weight vector of its terms and the upper approximation calculated by using a toler-

ance relation over the terms, as described by the TRSM framework bywtrs
ij . As before,

it aims to minimize the number of zero-valued coefficients in document vectors as

well as to increase the degree of similarity between documents with few common

terms. Once the representation is established, the clustering algorithm takes place. It

first assigns each document to a different cluster and defines cluster representatives

as supersets of popular terms of the constituting documents’. Subsequently, it finds

the most similar pair of clusters (by using a similarity method such as Dice, Jaccard

or Cosine) and merges them in an iterative fashion, until all the clusters are merged

into an ultimate single cluster. The advantage of using a hierarchy is that it allows the

use of document cluster representatives to calculate the similarity between clusters

instead of averaging similarities of all document pairs included in clusters, which

aids the execution time [16]. The results of validation and evaluation of this method

suggest that this clustering algorithm can be well adapted to text mining.

5.2 Non-hierarchical Document Clustering

Soon after, Ho et al. introduced a non-hierarchical document clustering method using

TRSM [18]. The authors pointed out that hierarchical methods become unsuitable
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for large document corpora, due to exploding time and space requirements of the

underlying algorithms. This model also uses the TRSM framework described in

Sect. 4 and forms a pre-specified number of possibly overlapping document clus-

ters. First, the TRSM-based document representation is established (documents are

approximated using the upper approximation operator, term weights are adjusted

using wtrs
ij ). Then, the cluster representatives Rk are formed by randomly assigning a

document to each cluster. Similar to the hierarchical approach, this is done by using

the popular terms of the constituting documents. Next, the similarity between each

cluster representative and the upper approximation of each document is calculated

using Similarity (Q, dj) given in Sect. 4. If the similarity is above a given threshold,

the document is assigned to that cluster, and the cluster representative is recalcu-

lated. The authors use a normalized Dice coefficient which is applied to the upper

approximation of cluster representative [18, §3.22, p. 206]. This process continues

until there is no more change in the clusters. The algorithm has been evaluated and

validated by experiments on test collections.

5.3 Lexicon-Based Document Clustering

More recently, a new method for document clustering, named a lexicon-based doc-

ument representation (LBDR) was introduced by Virginia et al. [20]. This model

uses TRSM in the form of a lexicon with the intention of creating an enhanced and

compact document representation. First of all, LBDR creates a term weight vector

for each document and then enhances the representation by means of TRSM, just

like the hierarchical [16] and non-hierarchical [18] methods. Next, the terms are

mapped to a lexicon and the ones which do not occur in the lexicon (i.e. irrelevant,

non-informative terms) are filtered out reducing the number of dimensions in the

vectors, creating a compact but yet enhanced representation. The intuition behind

this approach can be demonstrated via Fig. 3 [20, §1, p. 29]. In Fig. 3a, we can see

how document d1 and the lexicon overlap. The intersection is compact, but limited.

In Fig. 3b, the dashed line shows the upper approximated TRSM representation of

d1. LBDR combines the two and creates the dense and enhanced representation of d1
in lower dimensional space, as shown in the dark shaded area in Fig. 3c. Eventually,

Fig. 3 Lexicon-based document representation [20]
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the authors conclude that the effectiveness of lexicon-representation is comparable

with TRSM-representation while the efficiency of lexicon-representation should be

better than the existing TRSM-representation.

5.4 K-Means Based Tolerance Rough Set Clustering

Ngo and Nguyen [19] focused on a more specific type of document clustering. They

proposed a web search results clustering method which is based on tolerance rough

sets model. Their goals were the same as in [18] and [16], creating an enriched rep-

resentation for the web documents in order to reveal the subtle inter-document sim-

ilarities and to boost the clustering quality. They proposed a Tolerance Rough set

Clustering (TRC) algorithm [19, §5.3, p. 42], which is based on k-means clustering.

First, each document is pre-processed to create an index term-based vectorial rep-

resentation. After that, those vectors are combined and a term-document matrix is

formed. Then, they enhance the term weights of the documents by using TRSM and

upper approximation. Ultimately, TRC clusters the search results and labels them on

a given query. Their experiments have shown that tolerance rough sets and upper

approximation it offers can indeed improve the representations, with positive effects

on the clustering quality.

5.5 Two-Class Document Classification with Ensemble
Learning

Shi et al. [25] proposed a tolerance-based semi-supervised two-class ensemble clas-

sifier for documents with only positive and unlabeled examples i.e. in the absence

of labeled negative examples. TRSM model (discussed in Sect. 4) is used as the for-

mal model. The term weighting is done with a popular TF * IDF (term frequency

times inverse document frequency) weighting scheme wtfidf
ij to assign weight values

for a document vector. The methodology for generating a reliable negative set of

examples can be found in [25, §4.2, p. 6303]. There are four key steps: (i) select-

ing a positive feature set (from positive and unlabeled examples) based on a fre-

quency threshold, (ii) generating tolerance classes for terms from the unlabeled set,
(iii) expanding the positive feature set with the aid of tolerance classes and, (iv) gen-

erating a reliable negative set by filtering out possible positive documents from the

unlabeled set whose upper approximation does not have any positive feature in pos-
itive feature set. Support Vector Machines, Rocchio and Naive Bayes algorithms are

used as base classifiers to construct an ensemble classifier, which runs iteratively

and exploits margins between positive and negative data to progressively improve

the approximation of negative data. Experimental results indicate that the proposed

method achieves significant performance improvement.
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5.6 Indonesian Text Retrieval with TRSM

Virginia and Nguyen propose a framework for efficient retrieval of text specific to

the Indonesian language based on TRSM [26]. They propose an alternative to the

classical document representation by mapping index terms to terms in the lexicon

(termed LEX-representation) thus resulting in a compact representation and yield-

ing better retrieval results. This chapter by far, gives the most in depth discussion

of the challenges of employing TRSM for information retrieval. Three challenges

are addressed: creation of the thesaurus, optimization the thesaurus and finally the

retrieval process. A classical vector model is used where document and query are

represented as vectors in a high-dimensional space and each vector corresponds to a

term in the vocabulary of the collection. The framework includes a high-dimensional

vectorial space with standard linear algebra operations on vectors. The association

degree of documents with regard to the query is quantified by the cosine of the angle

between these two vectors.

In the discussion thus far, documents were the target entities and the index terms

were the features describing the documents. In Sect. 6, the focus is on text catego-

rization where the text consists of categorical noun phrases and relation instances.
Instead of documents, the target entities are the noun phrases and instead of index

terms, the features are the contextual patterns. In other words, this model grew out

of the observation that there is a natural affinity between the document clustering

problem and the context-based noun phrase clustering problem.

6 Unstructured Information Representation with TRSM

In this section, we discuss the problem of representation and categorization of

unstructured information typically gleaned from the web. The representation includes

definition of approximation spaces to provide the framework for the categorical and

relational information extraction, respectively. The categorization involves employ-

ing semi-supervised learning algorithms.

6.1 Unstructured Web Information

Figure 4 illustrates a typical unstructured information categorization problem where

the information needs to be categorized into noun and relational phrases. This cate-

gorization is typically accomplished using a co-occurrence matrix.

The structured information resulting from this process is represented as:

∙ categorical noun phrase instances

Sport(Ice Hockey), Country(Canada)



Application of Tolerance Rough Sets in Structured and Unstructured . . . 131

Fig. 4 Web information labelling

∙ relational noun phrase pairs

Popular-Sport-Of(Canada, Ice Hockey)

In other words, the noun phrase Ice Hockey belongs to the category of Sport. On

the other hand, a relational phrase “Canada, Ice-hockey” belongs to the category
of Popular-Sport-Of. A relational phrase is composed two noun phrases. In keeping

with the terminology used in current literature, we will refer to these as categorical

instances and relational instances respectively [27]. An illustration of the contextual

patterns and co-occurrence statistics are given as follows:

∙ contextual extraction patterns

e.g. “_ league”, “_ and other sports”, “_ is popular in _”

∙ co-occurrence statistics

e.g. f (“Ice Hockey”, “_ league”) = n
e.g. f (“Ice Hockey”, “Canada”, “_ is popular in _”) = n

6.2 TRSM for Noun Phrases

A tolerance form of rough sets model that labels categorical noun phrase instances

from a given corpus representing unstructured web pages was proposed in [28].

∙  = {n1, n2,… , nM} is the universe of noun phrases. This set will accommodate

every single noun phrase to be parsed from the source web documents.

∙  = {c1, c2,… , cP} is the universe of categorical (unary) contextual patterns.

These contexts are to yield the individual noun phrases to be extracted as cate-

gory instances.

∙  = {r1, r2,… , rQ} is the universe of relational (binary) contextual patterns.

These contexts are to yield the noun phrase pairs to be extracted for relations.
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∙  = {tij = (ni, nj) ∈  2 ∶ ∃rk ∈  ∣ f (tij, rk) > 0} is the universe of co-

occurring noun phrase pairs (i.e. tuples) described via the relational co-occurrence

function f (tij, rk) = {𝜅 ∈ ℕ ∶ tij occurs 𝜅 times within the context rk}

Definition 2 A categorical noun-context tolerance model [28] is described by the

tolerance approximation space  = (, , I, 𝜔, 𝜈) where  and  are as defined

previously. I = I
𝜃

is the parametrized uncertainty function describing the tolerance

classes for the contexts, in terms of contextual overlaps:

I
𝜃
(ci) = {cj ∶ 𝜔(N(ci),N(cj)) ≥ 𝜃}.

Here, 𝜃 is the tolerance threshold and 𝜔 is the overlap index which is the Sorensen-

Dice index [29]:

𝜔(A,B) = 2|A ∩ B|
|A| + |B|

.

The degree of inclusion is measured by 𝜈 ∶ ℙ() × ℙ() → [0, 1] and is defined as

𝜈(X,Y) = |X∩Y|
|X|

. Within the framework of , a context-described noun phrase can

now be approximated using the lower approximation:

(ni) = {cj ∈  ∶ 𝜈(I
𝜃
(cj),C(ni)) = 1},

giving us its closely related contexts; or else it can be approximated with the upper

approximation to its somewhat related contexts:

(ni) = {cj ∈  ∶ 𝜈(I
𝜃
(cj),C(ni)) > 0}.

6.3 TRSM for Relational Phrases

A tolerance form of rough sets model that labels relational phrase instances from a

given corpus representing unstructured web pages was proposed in [30]. The follow-

ing cross-mapping functions to represent every noun phrase (and noun phrase pair)

by means of their contexts, and vice versa [28, 30] is defined as:

∙ C ∶  → ℙ() maps each noun phrase to its set of co-occurring categorical con-

texts: C(ni) = {cj ∶ f (ni, cj) > 0} where f (ni, cj) = {𝜅 ∈ ℕ ∶ ni occurs 𝜅 times

within context cj}
∙ N ∶  → ℙ( ) maps each categorical context to its set of co-occurring noun

phrases: N(cj) = {ni ∶ f (ni, cj) > 0}
∙ R ∶  → ℙ() maps each noun phrase pair to its set of co-occurring relational

contexts: R(tij) = {rk ∶ f (tij, rk) > 0}
∙ T ∶  → ℙ( ) maps each relational context to its set of co-occurring noun phrase

pairs: T(rk) = {tij ∶ f (tij, rk) > 0}
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Definition 3 A relational noun-context tolerancemodel [21] is the analogous model

to extract related pairs. It is described by the approximation space = (,  , I, 𝜔, 𝜈)
where  , , 𝜔 and 𝜈 are defined as previously. I

𝜃
is again the uncertainty function

with the tolerance threshold 𝜃:

I
𝜃
(ri) = {rj ∶ 𝜔(T(ri),T(rj)) ≥ 𝜃}.

Within the framework of , a context-described noun phrase pair can now be lower

approximated to its closely related contexts:

(tij) = {rk ∈  ∶ 𝜈(I
𝜃
(rk),R(tij)) = 1},

or else it can be upper approximated to its somewhat related contexts:

(tij) = {rk ∈  ∶ 𝜈(I
𝜃
(rk),R(tij)) > 0}.

7 Semi-supervised Text Categorization Algorithms

In this section, we give a brief overview of the semi-supervised text categorization

(TPL) algorithms. The categorical extractor and relational extractor algorithms are

based on the two TRSM models discussed in Sects. 6.2 and 6.3 for noun and rela-

tion phrase labelling. The algorithm(s) were experimentally compared with Cou-

pled Bayesian Sets (CBS) [31] and Coupled Pattern Learner (CPL) algorithms [27]

respectively. TPL (tolerant pattern learner) does not use a vector-space model since it

describes noun phrases as sets of co-occurring contexts, instead of vectors. In accor-

dance, every trusted instance ni of a given category cat is associated with the fol-

lowing three descriptor sets: C(ni), (ni) and (ni). These sets are employed to

calculate a micro-score for the candidate noun phrase nj, against the trusted instance

ni of the category cat:

micro(ni, nj) = 𝜔(C(ni),C(nj))𝛼 + 𝜔((ni),C(nj))𝛽 + 𝜔((ni),C(nj))𝛾.

An overlap index function𝜔 given in Definition 1 is used for this calculation. 𝛼, 𝛽 and

𝛾 are the contributing factors of the scoring components and they may be adjusted

for the particular application domain.

The intuition behind this approach is illustrated in Fig. 5. A trusted instance ni
has the universe of contexts partitioned by its descriptors (ni), C(ni) and (ni)
into four zones of recognition. For a candidate nj, each zone will represent a differ-

ent degree of similarity. When calculating the micro-score, the candidate’s contexts

falling in zone 1 (lower approximation) will be covered by all three descriptors and

will thus make a high contribution to its score. Contexts in zone 2 will be covered by

C(ni) and (ni) so they will make medium contribution. Zone 3 contexts will only

be covered by (ni) and they will make low contribution. Contexts in zone 4 will
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Fig. 5 Four zones of recognition for contexts emerging from approximations of ni

not to contribute at all since they suggest no resemblance between ni and nj. An anal-

ogous scoring mechanism is also employed for learning relations. These descriptors

are used to calculate a micro-score for a candidate pair tkl, by the trusted pair tij:

micro(tij, tkl) = 𝜔(C(tij),C(tkl))𝛼 + 𝜔((tij),C(tkl))𝛽 + 𝜔((tij),C(tkl))𝛾.

Algorithm 1 outlines the semi-supervised mechanism for learning categories. The

input for the categorical extractor is an ontology which is formed by a set of cat-

egories (e.g. City) and a handful of seed noun phrases (e.g. Winnipeg, New Delhi,
Ankara). Furthermore, it expects a large co-occurrence matrix representing the noun

phrases and the contextual patterns cropped from the world wide web. The output

consists of trusted instances assigned to their respective categories within the ontol-

ogy. TPL employs a score-based ranking and the scoring mechanism uses tolerance

approximation spaces. For a given category cat, a macro-score (i.e. an accumulated

micro-score of proxies) for the candidate nj is maintained:

macrocat(nj) =
n∑

∀ni∈Trustedcat

micro(ni, nj).

After calculating the score for every candidate of cat, the candidates are ranked by

their macro-scores (normalized by the number of trusted instances of cat). Eventu-

ally, the top new candidates are promoted as trusted instances. Overall, TPL managed

to achieve a comparable performance with CBS, by means of the precision metric

as shown in Table 1. A detailed discussion of the experiment can be found in [28].
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Algorithm 1: Tolerant Pattern Learner for Categories

Input : An ontology O defining categories and a small set of seed examples; a large

corpus U
Output: Trusted instances for each category

1 for r = 1 → ∞ do
2 for each category cat do
3 for each new trusted noun phrase ni of cat do
4 Calculate the approximations UA(ni) and LA(ni);
5 for each candidate noun phrase nj do
6 Calculate micro(ni, nj);

7 for each candidate noun phrase nj do
8 macrocat(nj) =

∑

∀ni∈cat
micro(ni, nj);

9 Rank instances by macrocat∕|cat|;
10 Promote top instances as trusted;

Table 1 Precision@30 of TPL and CBS per category. CBS results are as seen in [31]

Categories Iteration 5 Iteration 10

TPL (%) CBS (%) TPL (%) CBS (%)

Company 100 100 100 100

Disease 100 100 100 100

KitchenItem 100 94 100 94

Person 100 100 100 100

PhysicsTerm 93 100 90 100

Plant 100 100 97 100

Profession 100 100 100 87

Sociopolitics 100 48 100 34

Sport 97 97 100 100

Website 90 94 90 90

Vegetable 93 83 63 48

Average 97.5 92 94.5 87

Similarly, the input for the relational extractor (algorithm given in [21]) an ontol-

ogy formed by a set of relations (e.g. City-Country) as well as a few seed noun phrase

pairs per relation (e.g. (Winnipeg, Canada), (New Delhi, India), (Ankara, Turkey)).
It also expects a large co-occurrence matrix representing the noun phrase pairs, and

the contextual patterns. The output are trusted relation instances, in forms of ordered

noun phrase pairs, assigned to their respective relations.

As shown in Table 2, for most relations, TPL maintained high quality extractions

and high precision values throughout the iterations, steering clear from the concept

drift problem. Overall, TPL is able to demonstrate comparable performance with
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Table 2 Precision@30 results of TPL and CPL as seen in [27] (%)

Evaluation Ranking-based Promotion-based

Iterations TPL TPL CPL

1 5 10 1 5 10 10

Relations

Athlete-Team 100 90 87 100 96 87 100

CEO-Company 100 100 100 100 100 100 100

City-Country 100 100 100 100 100 100 93

City-State 100 100 100 100 100 100 100

Coach-Team 93 93 93 100 100 93 100

Company-City 83 90 93 40 84 97 50

Stadium-City 97 93 80 80 92 70 100

State-Capital 100 97 73 100 100 63 60

State-Country 100 100 100 100 100 100 97

Team-versus-Team 93 83 80 100 84 80 100

Average 96.6 94.6 90.6 92.0 95.6 89.0 90.0

CBS and CPL in terms of precision [21]. Experimental details can be found in [30]

and can be downloaded from.
1

8 Concluding Remarks

In this chapter, we present a survey of the literature where the tolerance rough set

model serves as a text categorization and learning model. Particularly when it comes

to natural language processing and information retrieval tasks such as text catego-

rization or document clustering, a non-transitive binary relation that is reflexive and

symmetric is necessary. A brief overview of the history of tolerance rough sets that

led to the model that is widely used in document classification is presented. The four

representative papers are also an ideal source of broader related works dealing with

the theoretical aspects of tolerance form of rough sets. Document clustering appears

to be a more popular form of text categorization with the tolerance form of rough

sets. However, the more recent work on categorizing unstructured text in a semi-

supervised learning environment with tolerance form of rough sets points to another

fruitful area of application of TRSM. Future work includes categorizing unstruc-

tured text on a large dataset as well as comparison with rough-fuzzy models. This

survey is meant to demonstrate the versatility of the tolerance form of rough sets and

its successful application in structured and unstructured text categorization.

1
http://winnspace.uwinnipeg.ca/handle/10680/821.

http://winnspace.uwinnipeg.ca/handle/10680/821
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Medical Diagnosis: Rough Set View

Shusaku Tsumoto

Abstract This chapter dicusses formalization of medical diagnosis from the view-

point of rule reasoning based on rough sets. Medical diagnosis consists of the fol-

lowing three procedures. First, screening process selects the diagnostic candidates,

where rules from upper approximations are used. Then, from the selected candidates,

differential diagnosis is evoked, in which rules from lower approximations are used.

Finally, consistency of the diagnosis will be checked with all the inputs: inconsis-

tent symptoms suggest the existence of complications of other diseases. The final

process can be viewed as complex relations between rules. The proposed framework

successfully formalizes the representation of three types of reasoning styles.

1 Introduction

Classical medical diagnosis of a disease assumes that a disease is defined as a set of

symptoms, in which the basic idea is symptomatology. Symptomatology had been

a major diagnostic rules before laboratory and radiological examinations. Although

the power of symptomatology for differential diagnosis is now lower, it is true that

change of symptoms are very important to evaluate the status of chronic status. Even

when laboratory examinations cannot detect the change of patient status, the set of

symptoms may give important information to doctors.

Symptomatological diagnostic reasoning is conducted as follows. First, doctors

make physical examinations to a patient and collect the observed symptoms. If symp-

toms are observed enough, a set of symptoms give some confidence to diagnosis of

a corresponding disease. Thus, correspondence between a set of manifestations and

a disease will be useful for differential diagnosis. Moreover, similarity of diseases

will be infered by sets of symptoms.

The author has been discussed modeling of symptomatological diagnostic reason-

ing by using the core ideas of rough sets since [16]: selection of candidates (screen-
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ing) and differential diagnosis are closely related with diagnostic rules obtained by

upper and lower approximations of a given concept. Thus, this chapter dicusses for-

malization of medical diagnostic rules which is closely related with rough set rule

model. The important point is that medical diagnostic reasoning is characterized by

focusing mechanism, composed of screening and differential diagnosis, which corre-

sponds to upper approximation and lower approximation of a target concept. Furthre-

more, this chapter focuses on detection of complications, which can be viewed as

relations between rules of different diseases.

The chapter is organized as follows. Section 2 shows charateristics of medical

diagnostic process. Section 3 introduces rough sets and basic definition of probabilis-

tic rules. Section 4 gives two style of formalization of medical diagnostic rules. The

first one is a deterministic model, which correspond to Pawlak’s rough set model.

And the other one gives an extention of the above ideas in probabilistic domain,

which can be viewed as application of variable precision rough set model [18].

Section 5 proposes a new rule induction model, which includes formalization of rules

for detection of complications. Section 6 shows how to induce the above formalized

rules from data. Section 7 discussed what has not been achieved yet. Finally, Sect. 8

concludes this chapter.

2 Background: Medical Diagnostic Process

This section focuses on medical diagnostic process as rule-based reasoning. The

fundamental discussion of medical diagnostic reasoning related with rough sets is

given in [11].

2.1 RHINOS

RHINOS is an expert system which diagnoses clinical cases on headache or facial

pain from manifestations. In this system, a diagnostic model proposed by Matsumura

[1] is applied to the domain, which consists of the following three kinds of reasoning

processes: exclusive reasoning, inclusive reasoning, and reasoning about complica-

tions.

First, exclusive reasoning excludes a disease from candidates when a patient does

not have a symptom which is necessary to diagnose that disease. Secondly, inclusive

reasoning suspects a disease in the output of the exclusive process when a patient

has symptoms specific to a disease. Finally, reasoning about complications suspects

complications of other diseases when some symptoms which cannot be explained by

the diagnostic conclusion are obtained.

Each reasoning is rule-based and all the rules needed for diagnostic processes are

acquired from medical experts in the following way.
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2.1.1 Exclusive Rules

These rule correspond to exclusive reasoning. In other words, the premise of this

rule is equivalent to the necessity condition of a diagnostic conclusion. From the

discussion with medical experts, the following six basic attributes are selected which

are minimally indispensable for defining the necessity condition: 1. Age, 2. Pain
location, 3. Nature of the pain, 4. Severity of the pain, 5. History since onset, 6.
Existence of jolt headache. For example, the exclusive rule of common migraine is

defined as:

In order to suspect common migraine,

the following symptoms are required:

pain location: not eyes,

nature :throbbing or persistent

or radiating,

history: paroxysmal or sudden and

jolt headache: positive.

One of the reasons why the six attributes are selected is to solve an interface

problem of expert systems: if all attributes are considered, all the symptoms should

be input, including symptoms which are not needed for diagnosis. To make exclusive

reasoning compact, we chose the minimal requirements only. It is notable that this

kind of selection can be viewed as the ordering of given attributes, which is expected

to be induced from databases. This issue is discussed later in Sect. 6.

2.1.2 Inclusive Rules

The premises of inclusive rules are composed of a set of manifestations specific to a

disease to be included. If a patient satisfies one set, this disease should be suspected

with some probability. This rule is derived by asking the medical experts about the

following items for each disease: 1. a set of manifestations by which we strongly
suspect a disease. 2. the probability that a patient has the disease with this set of
manifestations: SI (Satisfactory Index) 3. the ratio of the patients who satisfy the set
to all the patients of this disease: CI (Covering Index) 4. If the total sum of the derived
CI (tCI) is equal to 1.0 then end. Otherwise, goto 5. 5. For the patients with this
disease who do not satisfy all the collected set of manifestations, goto 1. Therefore a

positive rule is described by a set of manifestations, its satisfactory index (SI), which

corresponds to accuracy measure, and its covering index (CI), which corresponds to

total positive rate. Note that SI and CI are given empirically by medical experts.

For example, one of three positive rules for common migraine is given as follows.

If history: paroxysmal,

jolt headache: yes,

nature: throbbing or persistent,
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prodrome: no, intermittent symptom: no,

persistent time: more than 6 hours,

and location: not eye,

then common migraine is suspected with

accuracy 0.9 (SI=0.9) and

this rule covers

60 percent of the total cases (CI=0.6).

2.1.3 Disease Image: Complications Detection

This rule is used to detect complications of multiple diseases, acquired by all the

possible manifestations of the disease. By the use of this rule, the manifestations

which cannot be explained by the conclusions will be checked, which suggest com-

plications of other diseases. For example, the disease image of common migraine

is:

The following symptoms can be

explained by common migraine:

pain location: any or depressing:

not or jolt headache: yes or ...

Therefore, when a patient who suffers from common migraine is depressing, it is

suspected that he or she may also have other disease.

2.2 Focusing Mechanism

The most important process in medical differential diagnosis shown above is called

a focusing mechanism [7, 17]. Even in differential diagnosis of headache, medical

experts should check possibilities of more than 100 candidates, though frequent dis-

eases are 5 or 6. These candidates will be checked by past and present history, physi-

cal examinations, and laboratory examinations. In diagnostic procedures, a candidate

is excluded one by one if symptoms necessary for diagnosis are not observed.

Focusing mechanism consists of the following two styles: exclusive reasoning

and inclusive reasoning. Relations of this diagnostic model with another diagnostic

model are discussed in [5, 11], which is summarized in Fig. 1: First, exclusive rea-

soning excludes a disease from candidates when a patient does not have symptoms

that is necessary to diagnose that disease. Second, inclusive reasoning suspects a dis-

ease in the output of the exclusive process when a patient has symptoms specific to

a disease. Based on the discussion with medical experts, these reasoning processes

are modeled as two kinds of rules, negative rules (or exclusive rules) and positive
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Focusing Mechanism              
(Selection of Candidates)

Differential Diagnosis

Detection of Complications

Screening
(Exclusive Rules)
Upper approximation

Diagnosis
(Inclusive Rules)
Lower approximation

Consistency Checking
(Disease Image)
Complex Rule Relations

Fig. 1 Focusing mechanism

rules; the former corresponds to exclusive reasoning, the latter to inclusive reason-

ing [1].
1

2.3 Medical Diagnosis = Set Classification?

Most of the conventional rule learning scheme assumes that medical diagnosis is

based on conventional set classification scheme. That is, it is assumed that once the

final conclusion is given, its classification is mutual exclusive. However, it is not a

correct assumption if the etiologies of complicated diseases is different. For example,

in the case of differential diagnosis of headache, differentiation of muscle tention

headache and vascular headache is very important since the corresponding therapy

is completely different. However, complication of both type of headache is possible,

since one is due to muscle pain and the other is due to the problems with arteries and

the etiologies are completely different.

Then, is it “fuzzy classification”? The author says that it may be under some spe-

cific condition. If the diagnostic time is fixed, we can think its fuzzy classification,

because the degree can be easily quantified: which type of headache is dominant or

not. Both diseases should be treated and the order of the treatment may depend on the

applied situation. In some contexts, preference should be considered. For example,

the status of one disease is in emergency, then this disease should be treated imme-

diately. In other contexts, the disease which is easy to treat may be selected at first.

Thus, preference depends on a given clinical context, which may not be included in

datasets.

Thus, we should think in the following way. Here we assume that there are many

binary decision attributes. That is, each diagnostic candidate corresponds to one

1
Implementation of detection of complications is not discussed here because it is derived after main

two process, exclusive and inclusive reasoning. The way to deal with detection of complications is

discussed in Sect. 5.
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decision attribute, and we will think about decision rules for each. For each deci-

sion attribute, set-classification based scheme can be applied. We do no think about

the preference of decisions or the degree of decisions because choice of decisions

may not be needed in general.

For this task, we may have to convert ordinary datasets, but we do not get into

the details of data preprocessing. Here we only focus on representations of rules for

such multiple decision attributes and their rule induction algorithms.

3 Basics of Rule Definitions

3.1 Rough Sets

In the following sections, we use the following notation introduced by Grzymala-

Busse and Skowron [4], based on rough set theory [2]. LetU denote a nonempty finite

set called the universe and A denote a nonempty, finite set of attributes, i.e., a ∶ U →
Va for a ∈ A, where Va is called the domain of a, respectively. Then a decision table

is defined as an information system, A = (U,A ∪ {d}). The atomic formulas over

B ⊆ A ∪ {d} and V are expressions of the form [a = v], called descriptors over B,

where a ∈ B and v ∈ Va. The setF(B,V) of formulas over B is the least set containing

all atomic formulas over B and closed with respect to disjunction, conjunction, and

negation.

For each f ∈ F(B,V), fA denotes the meaning of f in A, i.e., the set of all objects

in U with property f , defined inductively as follows:

1. If f is of the form [a = v], then fA = {s ∈ U|a(s) = v}.

2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f )A = U − fa.

3.2 Classification Accuracy and Coverage

3.2.1 Definition of Accuracy and Coverage

By use of the preceding framework, classification accuracy and coverage, or true

positive rate are defined as follows.

Definition 1 LetR andD denote a formula inF(B,V) and a set of objects that belong

to a decision d. Classification accuracy and coverage(true positive rate) for R → d is

defined as:

𝛼R(D) =
|RA ∩ D|
|RA|

(= P(D|R)), (1)

𝜅R(D) =
|RA ∩ D|

|D|
(= P(R|D)), (2)
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where |S|, 𝛼R(D), 𝜅R(D), and P(S) denote the cardinality of a set S, a classification

accuracy of R as to classification of D, and coverage (a true positive rate of R to D),

and probability of S, respectively.

It is notable that 𝛼R(D) measures the degree of the sufficiency of a proposition,

R → D, and that 𝜅R(D) measures the degree of its necessity. For example, if 𝛼R(D)
is equal to 1.0, then R → D is true. On the other hand, if 𝜅R(D) is equal to 1.0, then

D → R is true. Thus, if both measures are 1.0, then R ↔ D.

3.3 Probabilistic Rules

By use of accuracy and coverage, a probabilistic rule is defined as:

R
𝛼,𝜅

→ d s.t. R = ∧j[aj = vk], 𝛼R(D) 𝛿𝛼 and 𝜅R(D) 𝛿𝜅, (3)

where D denotes a set of samples that belong to a class d. If the thresholds for

accuracy and coverage are set to high values, the meaning of the conditional part of

probabilistic rules corresponds to the highly overlapped region. This rule is a kind

of probabilistic proposition with two statistical measures, which is an extension of

Ziarko’s variable precision model (VPRS) [18].
2

It is also notable that both a positive rule and a negative rule are defined as special

cases of this rule, as shown in the next sections.

4 Formalization of Medical Diagnostic Rules

4.1 Deterministic Model

4.1.1 Positive Rules

A positive rule is defined as a rule supported by only positive examples. Thus, the

accuracy of its conditional part to a disease is equal to 1.0. Each disease may have

many positive rules. If we focus on the supporting set of a rule, it corresponds to a

subset of the lower approximation of a target concept, which is introduced in rough

sets [2]. Thus, a positive rule is defined as:

R → d s.t. R = ∧j[aj = vk], 𝛼R(D) = 1.0 (4)

where D denotes a set of samples that belong to a class d.

2
This probabilistic rule is also a kind of rough modus ponens [3].
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This positive rule is often called a deterministic rule. However, we use the term,

positive (deterministic) rules, because a deterministic rule supported only by nega-

tive examples, called a negative rule, is introduced below.

4.1.2 Negative Rules

The important point is that a negative rule can be represented as the contrapositive

of an exclusive rule [17]. An exclusive rule is defined as a rule whose supporting set

covers all the positive examples. That is, the coverage of the rule to a disease is equal

to 1.0. That is, an exclusive rule represents the necessity condition of a decision. The

supporting set of an exclusive rule corresponds to the upper approximation of a target

concept, which is introduced in rough sets [2]. Thus, an exclusive rule is defined as:

R → d s.t. R = ∨j[aj = vk], 𝜅R(D) = 1.0, (5)

where D denotes a set of samples that belong to a class d.

Next, let us consider the corresponding negative rules in the following way. An

exclusive rule should be described as:

d → ∨j[aj = vk],

because the condition of an exclusive rule corresponds to the necessity condition of

conclusion d. Since a negative rule is equivalent to the contrapositive of an exclusive

rule, it is obtained as:

∧j¬[aj = vk] → ¬d,

which means that if a case does not satisfy any attribute value pairs in the condition

of a negative rule, then we can exclude a decision d from candidates.

Thus, a negative rule is represented as:

∧j ¬[aj = vk] → ¬d s.t. ∀[aj = vk]𝜅[aj=vk](D) = 1.0, (6)

where D denotes a set of samples that belong to a class d.

Negative rules should also be included in a category of deterministic rules,

because their coverage, a measure of negative concepts, is equal to 1.0. It is also

notable that the set supporting a negative rule corresponds to a subset of negative

region, which is introduced in rough sets [2].

In summary, positive and negative rules correspond to positive and negative

regions defined in rough sets. Figure 2 shows the Venn diagram of those rules.
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Fig. 2 Venn diagram of

exclusive and positive rules

Exclusive 

Rules
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D Inclusive Rules

4.2 Probabilistic Model

Although the above deterministic model exactly corresponds to original Pawlak

rough set model, rules for differential diagnosis is strict for clinical setting, because

clinical diagnosis may include elements of uncertainty.
3

Tsumoto [5] relaxes the

condition of positive rules and defines an inclusive rules, which models the inclu-

sive rules of RHINOS model. The definition is almost the same as probabilistic rules

defined in Sect. 3, except for the constraints for accuracy: the threshold for accuracy

is sufficiently high. Thus, the definitions of rules are summarized as follows.

4.2.1 Exclusive Rules

R → d s.t. R = ∨j[aj = vk], (7)

(s.t. 𝜅[aj = vk](D) > 𝛿
𝜅

)
𝜅R(D) = 1.0.

4.2.2 Inclusive Rules

R
𝛼,𝜅

→ d s.t. R = ∧j[aj = vk], (8)

𝛼R(D) > 𝛿
𝛼

and 𝜅R(D) > 𝛿
𝜅

.

3
However, deterministic rule induction model is still powerful in knowledge discovery context as

shown in [8].
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Fig. 3 Venn diagram of

exclusive and inclusive rules

Exclusive 

Rules

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

� � �

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

D Inclusive Rules

In summary, positive and negative rules correspond to positive and negative

regions defined in variable rough set model [18]. Figure 3 shows the Venn diagram

of those rules.

Tsumoto introduces an algorithm for induction of exclusive and inclusive rules as

PRIMEROSE-REX and conducted experimental validation and compared induced

results with rules manually acquired from medical experts [5]. The results show that

the rules do not include components of hierarchical diagnostic reasoning. Medical

experts classify a set of diseases into groups of similar diseases and their diagnostic

reasoning is multi-staged: first, different groups of diseases are checked, then final

differential diagnosis is performed with the selected group of diseases. In order to

extend the method into induction of hierarchical diagnostic rules, one of the authors

proposes several approach to mining taxonomy from a dataset in [6, 9, 10].

5 New Rule Induction Model

The former rule induction models do not include reasoning about detection of com-

plications, which is introduced as disease image as shown in Sect. 1. The core idea

is that medical experts detect the symptoms which cannot be frequently occurred in

the final diagnostic candidates. For example, let us assume that a patient suffering

from muscle contraction headache, who usually complains of persistent pain, also

complains of paroxysmal pain, say he/she feels a strong pain every 1 month. The

situation is unusual and since paroxysmal pain is frequently observed by migraine,

medical experts suspect that he/she suffers from muscle contraction headache and

common migraine. Thus, a set of symptoms which are not useful for diagnosis of a

disease may be important if they belong to the set of symptoms frequently manifested

in other diseases. In other means, such set of symptoms will be elements of detection

of complications. Based on these observations, complications detection rules can be

defined as follows.
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Fig. 4 Venn diagram of

exclusive, inclusive and

complications detection

rules. Type 1

Exclusive 

Rules
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Complications

5.1 Complications Detection Rules

Complications detection rule of a diseases are defined as a set of rules each of which

is included into inclusive rules of other diseases.
4

{R → d s.t. R = [ai = vj], 0 ≤ 𝛼R(D) ≤ 𝛿
𝛼

, 0 ≤ 𝜅R(D) ≤ 𝛿
𝜅

∃D′
, 𝛼R(D′) > 𝛿

𝛼

, 𝜅R(D′) > 𝛿
𝜅

}
(9)

Figures 4 and 5 depict the relations between exclusive, inclusive and complications

detection rules. The first type shows when a symptom for complicated disease can

be observed in the main diagnosis. On the other hand, in the second type, a symptom

will not be observed in the main diagnosis. Compared with the first case, the second

one may be more difficult, because complicated diseases may be filtered out from

diagnostic candidates.

The relations between three types of rules can be visualized in a two dimen-

sional plane, called (𝛼, 𝜅)-plane, as shown in Fig. 6. The vertical and horizontal axis

denotes the values of accuracy and coverage, respectively. Then, each rule can be

plotted in the plane with its accuracy and coverage values. The region for inclusive

rules is shown in upper right, whereas the region for candidates of detection of com-

plications is in lower left. When a rule of that region belongs to an inclusive rule of

other disease, it is included into complications detection rule of the target diseases.

Figure 7 shows the relations of rules for complications of disease D and D2. Two

(𝛼, 𝜅)-plane should be considered in this case, but the regions for both sides are

complimentary.

4
The first term R = [ai = vj] may not be needed theoretically. However, since deriving conjunction

in an exhaustive way is sometimes computationally expensive, here this constraint is imposed for

computational efficiency.
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Fig. 5 Venn diagram of exclusive, inclusive and complications detection rules. Type 2

Region of

Rules for Diagnostic Rules

Region for

Rules for Complications

(α,κ)-plane

Region for

Rules for Screening

Fig. 6 Two dimensional plot: (𝛼, 𝜅)-plane

6 Rule Induction Algorithm

From Eqs. 8 to 9, rule induction algorithms can be described as search algorithms

using the inequalities of accuracy and coverage as follows.

Algorithm 1 classifies a formula R in terms of a given decision D in which a

parameter Level denotes the number of attribute-value pairs in R. First, calculate

accuracy 𝛼R(D) and coverage 𝜅R(D) from Eqs. (1) and (2). Then, if both of the values

are larger than given thresholds, the formula R will be included into the list of the

candidates for rules, denoted by Listout(Level).
Algorithm 2 is a main routine of induction of inclusive rules. First, a set of ele-

mentary formula, that is, a formula which has only a single attribute-value pair is
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(α,κ)-plane for D

Region for

Rules for Complications

0 2

(α,κ)-plane for D2

Fig. 7 Two dimensional plot: (𝛼, 𝜅)-plane for disease image

given. For each formula in a given Level, select one formula from a elementary

formula set, say [a = v] and make conjunction of R and [a = v]. For example, if

Level = 2, R is of form [a1 = v1] ∧ [a2 = v2], and if a selected elementary formula is

[a3 = v3], then a new conjunctive formula will be [a1 = v1] ∧ [a2 = v2] ∧ [a3 = v3].
Then, accuracy and coverage of the formula will be checked whether it satisfies the

condition for inclusive rules. After all the conjunctive procedures are finished, a

member of Listrule(Level) is used for a conditional part of a rule. Algorithm 3 shows

how to induce exclusive rules. A set of elementary formula and a decision D is given,

for each member of a set, accuracy and coverage will be calculated. If the value of a

coverage is larger than a threshold, it is included into an output list and calculate the

total coverage. If the total is equal to 1.0, then the list of R will be outputed.

Algorithm 4 shows how to induce disease image. First, select one elementary

formula and calculate accuracy and coverage. Then, if both of the values satisfies

the inequalities, the algorithm checks whether this formula may have high values of

accuracy and coverage for another disease. If so, the formula is included into a list

of disease image. Since there are described as a heuristic search algorithm with the

constraints of accuracy and coverage, it is easy to extend them into incremental rule

induction as shown in [14]. Algorithms 5 and 6 shows how to induce probabilistic

rules incrementally. Algorithm 5 can be viewed as an extension of Algorithm 1.

Here, a formula R will be classified into three parts: first, regular candidates for

probabilistic rules, an element of Listrule(Level). Secondly, a member of subrule layer

out, Listsub_out which may be deleted from the candidate if a unsupportive case is
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appended. Finally, a member of subrule layer in Listsub_in, whose element may be

included into the candidate if a supportive case is appended.

Algorithm 6 is a main part of incremental rule induction, an extension of Algo-

rithm 2. Here, based on the classification obtained by Algorithm 5, a set of formula

is classified into rule layers and two subrule layers.

Algorithm 1 Checking inequalities for Probabilistic Rules

procedure CLASSIFICATION OF FORMULA(R:formula, D:decision,Level)

Level ← Number of attribute-value pairs in R
Calculate 𝛼R(D) and 𝜅R(D)
if 𝛼R(D) > 𝛿

𝛼

𝜅R(D) > 𝛿
𝜅

then
Listout(Level) ← Listout(Level) + {R}

end if
end procedure

Algorithm 2 Induction of Probabilistic Rules

procedure RULE INDUCTION(Listrule(0): A Set of Elementary Formula, D:decision)

for Level = 1 to Number of Attributes do
for all R ∈ Listrule(Level − 1) do

⊳ Listrule(0) = 1: [x]1 = U
for all [a = v] ∈ Listrule(1) do

Rn ← R ∧ [a = v]
Execute Procedure

Classification_of_Formula(Rn,D,Level)

end for
end for
for all R ∈ Listrule(Level) do

Register R → D as a Rule

end for
end for

end procedure

7 Discussion: What Has Not Been Achieved?

In [11], one of the authors discusses the characteristics of differential diagnosis of

headache as follows: (a) Hierarchical classification is used. (b) A set of symptoms is

used to describe each disease. (c) Description is based on specificity weighted over

sensitivity, which shows that reasoning about frequency is implicitly included. (d)

For coverage, exceptions are described. (e) Diagnostic criteria gives temporal infor-

mation about episodes of headache. In the previous studies, automated extraction of

knowledge with respect to (a), (b), (c) has been solved.
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Algorithm 3 Induction of Exclusive Rule

procedure EXCLUSIVE RULE INDUCTION(Listrule(exclusive, 0), A Set of Elementary Formula,

D:decision)

Listout(exclusive, 0) ← {}
for all R in A Set of Elementary Formula do

Calculate 𝛼R(D) and 𝜅R(D)
if 𝜅R(D) > 𝛿

𝜅

then
Listout(exclusive, 0) ← Listout(exclusive, 0) + {R}
Calculate 𝜅Listout(exclusive,0)(D)
if 𝜅Listout(exclusive,0)(D) = 1.0 then

quit

end if
end if

end for
Output Listout(exclusive, 0)

end procedure

Algorithm 4 Induction of Disease Image

procedure DISEASE IMAGE INDUCTION(Listrule(0): A Set of Elementary Formula, D:decision,

List(D): List of Diseases)

Listout(image, 0) ← {}
for all R in A Set of Elementary Formula do

Calculate 𝛼R(D) and 𝜅R(D)
if 0 ≤ 𝛼R(D) ≤ 𝛿

𝛼

0 ≤ 𝜅R(D) ≤ 𝛿
𝜅

then
for all D′ ∈ List(D) do

if 𝛼R(D′) > 𝛿
𝛼

𝜅R(D′) > 𝛿
𝜅

then
Listout(image, 0)
← Listout(image, 0) + {(R,D′)}

end if
end for

end if
end for
Output Listout,image(0)

end procedure

However, (d) and (e) still remains. Dealing with exceptions is related with compli-

cations detection, so partially (d) is solved. However, in some cases, exceptions are

used for case-based reasoning by medical experts. Thus, combination of rule-based

and case-based reasoning should be introduced.

Acquisition of temporal knowledge is important because medical experts use tem-

poral reasoning in a flexible way. When one of the author interviewed the domain

expert for RHINOS, he found that temporal reasoning is very important for com-

plicated cases. For example, one patient suffers from both common migraine and

tension headache. According to the diagnostic rules, RHINOS diagnoses the case

as migraine. However, the main complaint came from tension headache. Since the

onset of tension headache is persistent but the severity is mild, the patient focuses

on the symptoms of migraine. If the system can focus on the differences in temporal

natures of headaches, then it can detect the complications of migraine and tension
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Algorithm 5 Construction of Rule Layer

procedure CLASSIFICATION OF FORMULA(R:formula, D:decision,Level)

Level ← Number of attribute-value pairs in R
Calculate 𝛼R(D) and 𝜅R(D)
if 𝛼R(D) > 𝛿

𝛼

𝜅R(D) > 𝛿
𝜅

then
Listrule(Level) ← Listrule(Level) + {R}
if 𝛿

𝛼

< 𝛼R(D)(t) <
𝛿
𝛼

(nR+1)
nR

and

𝛿
𝜅

< 𝜅R(D)(t) <
𝛿
𝜅

(nD+1)
nD

then
Listsub_out(Level) ← Listsub_out(Level) + {R}

end if
else if 𝛿

𝛼

(nR+1)−1
nR

< 𝛼R(D)(t) ≤ 𝛿
𝛼

and

𝛿
𝜅

(nD+1)−1
nD

< 𝜅R(D)(t) ≤ 𝛿
𝜅

then
Listsub_in(Level) ← Listsub_in(Level) + {R}

end if
Listout(Level) ← Listout(Level) + {R}

end procedure

Algorithm 6 Incremental Rule Induction

procedure INCREMENTAL RULE INDUCTION(Table, D:decision)

Listrule(0) ← a Set of Elementary Formula of Table
Execute Procedure Rule Induction(Listrule(0), D)

Listrule ← ∪i=1Listrule(i)
Listsub_in ← ∪i=1Listsub_in(i)
Listsub_out ← ∪i=1Listsub_out(i)
Listout ← ∪i=1Listout(i)
repeat

Read a New Case x
for all R ∈ Listrule do

Execute Procedure Classification of Formula(R:formula,

D:decision,Level)

end for
for all R ∈ New_Listrule do

Register R → D as a Rule

end for
for all R ∈ New_Listsub_in do

Delete R → D from a set of Rule

Register R → D as a SubRule (in)

end for
for all R ∈ New_Listout do

Delete R → D from a set of Rule

Register R → D as a set of SubRule (out)

end for
until Abort

end procedure
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headache. Thus, temporal reasoning is a key to diagnose completed cases especially

when all the symptoms may give a contradict interpretation.

Research on temporal data mining is ongoing, and now the authors show that

temporal data mining is very important for risk management in several fields [12,

13, 15]. It will be our future work to develop methodologies for combination of

rule-based and case-base reasoning and temporal rule mining in clinical data.

8 Conclusion

Formalization of medical diagnostic reasoning based on symptomatology is dis-

cussed. Reasoning consists of three processes, exclusive reasoning, inclusive rea-

soning and complications detection, the former two of which belongs to a focusing

mechanism. In exclusive reasoning, a disease is ruled out from diagnostic candi-

dates when a patient does not have symptoms necessary for diagnosis. The process

corresponds to screening. Second, in inclusive reasoning, a disease out of selected

candidates is suspected when a patient has symptoms specific to a disease, which cor-

responds to differential diagnosis. Finally, if symptoms which are rarely observed in

the final candidate, complication of other diseases will be suspected.

Previous studies are surveyed: one of the author concentrate on the focusing

mechanism. First, in a deterministic version, two steps are modeled as two kinds

of rules obtained from representations of upper and lower approximation of a given

disease. Then, he extends it into probabilistic rule induction, which can be viewed

as an application of VPRS.

Then, the authors formalize complications detection rules in this chapter. The

core idea is that the rules are not simply formalized by the relations between a set

of symptoms and a disease, but by those between a symptoms, a target disease and

other diseases. The next step will be to introduce an efficient algorithm to generate

complication detection rules from data.
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Rough Set Analysis of Imprecise Classes

Masahiro Inuiguchi

Abstract Lower approximations of single decision classes have been mainly treated

in the classical rough set approaches. Attribute reduction and rule induction have

been developed based on the lower approximations of single classes. In this chapter,

we propose to use the lower approximations of unions of k decision classes instead of

the lower approximations of single classes. We first show various kinds of attribute

reduction are obtained by the proposed approach. Then we consider set functions

associated with attribute reduction and demonstrate that the attribute importance

degrees defined from set functions are very different depending on k. Third, we

consider rule induction based on the lower approximations of unions of k decision

classes and show that the classifiers with rules for unions of k decision classes can

perform better than the classifiers with rules for single decision classes. Finally, uti-

lization of rules for unions of k decision classes in privacy protection is proposed.

Throughout this chapter, we demonstrate that the consideration of lower approxima-

tions of unions of k classes enriches the applicability of rough set approaches.

1 Introduction

Rough set theory [25, 26] provides useful tools for reasoning from data. Attribute

reduction and rule induction are well developed techniques based on rough set the-

ory. They are applied to various fields including data analysis, signal processing,

knowledge discovery, machine learning, artificial intelligence, medical informatics,

decision analysis, granular computing, Kansei engineering, and so forth [3, 20, 28].

In rough set approach, the lower approximation (a set of objects whose classi-

fication is consistent in all given data) and upper approximation (a set of possible

members in view of given data) are calculated for a set of objects. Lower and upper

approximations of the classical rough sets [25, 26] are defined based on an equiva-

lence relation called an ‘indiscernibility relation’. They are extended in many ways
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depending on the necessity in applications. For example, the equivalence relation is

replaced with a similarity relation as a natural generalization [33], with a dominance

relation in decision making problems [6, 7], with a tolerance relation for treating

decision tables with missing data [22], with a fuzzy relation for a generalized setting

that a degree of similarity is available [2, 11]. Moreover, using a precision degree

and a consistency degree, the rough sets are generalized to variable precision rough

sets [37] and variable consistency rough sets [1] are proposed. Under those gener-

alized rough sets, various techniques for attribute reduction and rule induction are

developing.

However, the usage of rough sets has not yet investigated considerably. The lower

approximation of each decision class has been majorly used for obtaining attribute

reduction and rule induction, so far, although some studies using upper approxima-

tion of each decision class (see [19, 30]). Other sets of objects have not yet used

actively. In the dominance based rough set approach [6, 7], upward and downward

unions are used because they match well to the dominance relation (in other words,

a single decision class does not work well for obtaining lower and upper approxima-

tion under dominance relations). Inuiguchi et al. [18] proposed to use upward and

downward unions when the decision attribute is ordinal and showed its advantage in

the classification accuracy of the obtained classifier.

Recently, in the classical rough set setting, the authors [10, 12, 14–17] proposed

to use the lower approximations of unions of k decision classes instead of lower

approximations of single decision classes and demonstrated the interesting and use-

ful results. This approach can be seen as a rough set approach to imprecise modeling

because it provides the analysis based on the preservation of imprecise classification,

i.e., correct classification up to k possible decision classes. After a brief introduc-

tion of the classical rough set approaches, we describe the following recent results

obtained by the replacement of the lower approximation of each decision class with

that of each union of k decision classes:

(1) In the first part of Sect. 3, the attribute reduction based on lower approximations

of unions of k decision classes provides an intermediate between two extreme

attribute reductions using lower and upper approximations of single decision

classes. These two extremes are obtained by special parameter settings of k.

(2) In the last part of Sect. 3, it shows that the evaluation of attribute importance

changes drastically by the selection of parameter k. It implies that the attribute

importance cannot be evaluated univocally.

(3) In the major part of Sect. 4, the classifier with rules induced for unions of k deci-

sion classes achieves a better performance than the classifier with rules induced

for single decision classes.

(4) In the last part of Sect. 4, we describe the possible utilization of rules for k deci-

sion classes in the protection of data privacy.

Before the main part of this chapter, we briefly introduce the classical rough set

approaches, and after describing (1)–(4) shown above, we conclude this chapter with

giving some remarks for future investigation. In this chapter, as we consider unions



Rough Set Analysis of Imprecise Classes 159

of k decision classes (k ≥ 2), we assume that a decision table with multiple decision

classes (more than two decision classes) is given.

2 Rough Sets in Decision Tables

The classical rough sets are defined under an equivalence relation which is often

called an indiscernibility relation. In this chapter, we restrict ourselves to discus-

sions of the classical rough sets under decision tables. A decision table is char-

acterized by four-tuple I = ⟨U,C ∪ {d},V , 𝜌⟩, where U is a finite set of objects,

C is a finite set of condition attributes, d is a decision attribute, V =
⋃

a∈C∪{d} Va
and Va is a domain of the attribute a, and 𝜌 ∶ U × C ∪ {d} → V is an information

function such that 𝜌(x, a) ∈ Va for every a ∈ C ∪ {d}, x ∈ U. A condition attribute

value vector 𝝆(u,A) = (𝜌(u, a1), 𝜌(u, a2),… , 𝜌(u, al)) of an object u ∈ U is called

a profile of u in A, where A = {a1, a2,… , al} ⊆ C. The profile of u in C is sim-

ply called the profile of u. Multiple objects can have a common profile. Let 𝛹 the

set of all profiles appearing in the decision table. Let fr ∶ 𝛹 × Vd → 𝐍 ∪ {0} be

a function showing the frequency of objects having v ∈ Vd in the set of objects

having a profile 𝝆 ∈ 𝛹 , where 𝐍 be a set of natural numbers. A set of frequency

vector (fr(𝝆, v1), fr(𝝆, v2),… , fr(𝝆, vp)), 𝝆 ∈ 𝛹 is denoted by Fr. When the dis-

tinction between objects having a same profile is not significant, a decision table

I = ⟨U,C ∪ {d},V , 𝜌⟩ can be rewritten by a table ̂I = ⟨𝛹,C ∪ d,V , fr⟩. An exam-

ple of the decision table and its representation by profiles are shown in Table 1.

Given a set of attributes A ⊆ C ∪ {d}, we define an equivalence relation IA
referred to as an indiscernibility relation by IA = {(x, y) ∈ U × U ∣ 𝜌(x, a) = 𝜌(y, a),
∀a ∈ A}. From IA, we have an equivalence class, [x]A = {y ∈ U ∣ (y, x) ∈ IA}. When

A = {d}, we define

Table 1 Decision table and its representation by profiles

(a) Decision table

Object a1 a2 a3 d
u1 modern modern round class 1

u2 modern modern round class 1

u3 modern modern round class 2

u4 modern classic round class 3

u5 modern classic round class 1

u6 modern modern cubed class 2

u7 modern modern cubed class 2

u8 modern modern cubed class 2

u9 classic classic round class 3

u10 classic classic round class 3

⇒

(b) Representation by profiles

Profile a1 a2 a3 fr-vector

𝜌1 modern modern round (2, 1, 0)
𝜌2 modern classic round (1, 0, 1)
𝜌3 modern modern cubed (0, 3, 0)
𝜌4 classic classic round (0, 0, 2)
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D = {Dj, j = 1, 2,… , p} = {[x]{d} ∣ x ∈ U}, Di ≠ Dj (i ≠ j). (1)

Dj is called a ‘decision class’. There exists a unique vj ∈ Vd such that 𝜌(x, d) = vj for

each x ∈ Dj, i.e., Dj = {x ∈ U ∣ 𝜌(x, d) = vj}. Moreover, since Di ∩ Dj = ∅ (i ≠ j)
and

⋃
D = U hold, D forms a partition.

For a set of condition attributes A ⊆ C, the lower and upper approximations of an

object set X ⊆ U are defined as follows:

A∗(X) = {x ∣ [x]A ⊆ X}, A∗(X) = {x ∣ [x]A ∩ X ≠ ∅}. (2)

A pair (A∗(X),A∗(X)) is called a rough set of X. The boundary region of X is defined

by

BNA(X) = A∗(X) − A∗(X). (3)

Since [x]A can be seen as a set of objects indiscernible from x ∈ U in view of condi-

tion attributes in A, A∗(X) is interpreted as a collection of objects whose membership

to X is noncontradictive in view of condition attributes in A. BNA(X) is interpreted

as a collection of objects whose membership to X is doubtful in view of condition

attributes in A. A∗(X) is interpreted as a collection of possible members. For x ∈ U,

the generalized decision attribute value 𝜕A(x) of xwith respect to a condition attribute

set A ⊆ C is defined as follows (see [27, 30, 31]):

𝜕A(x) = {𝜌(y, d) ∣ y ∈ [x]A}. (4)

LetX, Y ⊆ U. The following fundamental properties are satisfied with rough sets:

A∗(X) ⊆ X ⊆ A∗(X), (5)

A ⊆ B ⇒ A∗(X) ⊆ B∗(X), A∗(X) ⊇ B∗(X), (6)

A∗(X ∩ Y) = A∗(X) ∩ A∗(Y), A∗(X ∪ Y) = A∗(X) ∪ A∗(Y), (7)

A∗(X ∪ Y) ⊇ A∗(X) ∪ A∗(Y), A∗(X ∩ Y) ⊆ A∗(X) ∩ A∗(Y), (8)

BNA(X) = A∗(X) ∩ A∗(U − X), (9)

A∗(X) = X − BNA(X), (10)

A∗(X) = X ∪ BNA(X) = U − A∗(U − X), (11)

A∗(X) = A∗(X) − A∗(U − X) = U − A∗(U − X). (12)

Let Xi, i = 1, 2,… , q forms a partition, i.e.,
⋃

i=1,2,…,q Xi = U, Xi ∩ Xj = ∅ for i, j ∈
{1, 2,… , q} such that i ≠ j. The following properties show the interpretation among

lower and upper approximations and boundary regions:
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A∗(Xj) = Xj ∪ BNA(Xj), j = 1, 2,… , q, (13)

BNA(Xj) = A∗(Xj) ∩
⋃

i≠j
A∗(Xi), j = 1, 2,… , q, (14)

A∗(Xj) = A∗(Xj) −
⋃

i≠j
A∗(Xi), j = 1, 2,… , q, (15)

A∗(Xj) = Xj − BNA(Xj), j = 1, 2,… , q. (16)

Equations (13) and (16) show that upper and lower approximations of Xj can be

obtained from the boundary region of Xj. Equations (14) and (15) show that the

boundary region and lower approximation of Xj can be obtained from upper approx-

imations of Xi, i = 1, 2,… , q.

3 Attribute Reduction and Importance

3.1 Attribute Reduction

3.1.1 Conventional Attribute Reduction

A given decision table can include superfluous condition attribute to the decision

attribute. It is significant to find the necessary condition attributes for the determi-

nation of decision attribute values. The selection of necessary condition attributes is

called ‘feature selection’ while the elimination of unnecessary condition attributes

is called ‘attribute reduction’. By utilizing rough sets, we can find sets of minimally

necessary condition attributes to classify objects without the deterioration of classi-

fication accuracy. A set of minimally necessary attributes is called a ‘reduct’. Finding

reducts is one of the major topics in rough set approaches. Finding all reducts reveals

indispensable condition attributes.

In the classical rough set analysis of decision tables, reducts preserving lower

approximations of decision classes Dj, j = 1, 2,… , p are frequently used. The

attribute reduction called a reduct is defined as follows (see [26, 36]).

Definition 1 A set of condition attributes, A ⊆ C is called a reduct if and only if it

satisfies

(L1) A∗(Dj) = C∗(Dj), j = 1, 2,… , p, and

(L2) ∀a ∈ A, (A − {a})∗(Dj) ≠ C∗(Dj), j = 1, 2,… , p.

Since we discuss several kinds of reducts, we call this reduct, a ‘reduct preserv-

ing lower approximations’ or an ‘L-reduct’ for short. Let RL
be a set of L-reducts.

Then
⋂

RL
is called the ‘core preserving lower approximation’ or the ‘L-core’.

Attributes in the L-core are important because we cannot preserve all lower approx-

imations of decision classes without any of them. Set A ⊆ C satisfying (L1) is called

a ‘superreduct preserving lower approximation’ or an ‘L-superreduct’.
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We can consider reducts preserving upper approximations or equivalently, pre-

serving boundary regions [19, 30].

Definition 2 A set of condition attributes,A ⊆ C is called a ‘reduct preserving upper

approximations’ or a ‘U-reduct’ for short if and only if it satisfies

(U1) A∗(Dj) = C∗(Dj), j = 1, 2,… , p, and

(U2) ∀a ∈ A, (A − {a})∗(Dj) ≠ C∗(Dj), j = 1, 2,… , p.

On the other hand, a set of condition attributes, A ⊆ C is called a ‘reduct preserving

boundary regions’ or a ‘B-reduct’ for short if and only if it satisfies

(B1) BNA(Dj) = BNC(Dj), j = 1, 2,… , p, and

(B2) ∀a ∈ A, BN(A−{a})(Dj) ≠ BNC(Dj), j = 1, 2,… , p.

For those reducts, we have

(R1) A U-reduct is also a B-reduct and vice versa,

(R2) There exists an L-reduct A for a U-reduct B such that B ⊇ A, and

(R3) There exists an L-reduct A for a B-reduct B such that B ⊇ A.

Those relations can be proved easily from (13) to (16). Since B-reduct is equivalent to

U-reduct, we describe only U-reduct in what follows. Let RU
be a set of U-reducts.

Then
⋂

RU
is called the ‘core preserving upper approximation’ or the ‘U-core’.

Attributes in the U-core are important because we cannot preserve all upper approx-

imations of decision classes without any of them.

To obtain a part or all of reducts, many approaches have been proposed in the

literature [26, 32]. Among them, we mention an approach based on a discernibility

matrix [27, 32]. In this approach, we construct a Boolean function which character-

izes the preservation of the lower approximations to obtain L-reducts. Each L-reduct

is obtained as a prime implicant of the Boolean function. For the detailed discussion

of the discernibility matrix for L-reducts, see references [27, 32].

Remark 1 Reducts preserving generalized decision attribute values, 𝜕C(u), ∀u ∈ U
is also proposed and called ‘𝜕-reduct’ (see [30]). a set of condition attributes, A ⊆ C
is a 𝜕-reduct if and only if it satisfies

(𝜕1) 𝜕A(u) = 𝜕C(u), ∀u ∈ U, and

(𝜕2) ∀a ∈ A, 𝜕(A−{a})(u) ≠ 𝜕C(u), ∀u ∈ U.

𝜕-reduct is also equivalent to U-reduct as well as to B-reduct. This are understood

from the following equations.

A∗(Dj) = {u ∣ vj ∈ 𝜕A(u)} and 𝜕A(u) = {vj ∣ u ∈ A∗(Dj)}, (17)

where we remind you of the definition of Dj, i.e., Dj = {u ∈ U ∣ 𝜌(u, d) = vj}, j =
1, 2,… , p.



Rough Set Analysis of Imprecise Classes 163

3.1.2 Refinement of Attribute Reduction

In the previous subsubsection, we find that L-reducts are smaller than U-reduct. It

is interesting to investigate the existence of intermediate reducts between L- and U-

reducts. For such intermediate reducts, we assume that all decision classes are treated

equally. This has been studied by Inuiguchi [14]. We describe the result.

Consider a cover Fk = {Di1 ∪ Di2 ∪⋯ ∪ Dik ∣ 1 ≤ i1 < i2 < ⋯ < ik ≤ p} for k ∈
{1, 2,… , p − 1}. We define attribute reduction based on Fk as follows.

Definition 3 A condition attribute set A is called an Fk-reduct if and only if

(F1(k)) A∗(F) = C∗(F) for all F ∈ Fk, and

(F2(k)) ∀ a ∈ A, (A − {a})∗(F) ≠ C∗(F) for all F ∈ Fk.

Fk-reducts have the following properties:

(i) From (11) and (12), we know that an Fk-reduct A is a minimal set such that

A∗(F) = C∗(F) for all F ∈ Fp−k.

(ii) Because for any F ∈ Fl, there exists F1, F2 ∈ Fk such that F = F1 ∩ F2 and

l < k, from (7), anFk-reductA satisfies (F1(l)) for all l ≤ k, i.e.,A∗(F) = C∗(F),
for all F ∈ Fl for all l ≤ k.

(iii) From (i) and (ii), an Fk-reduct A satisfies A∗(F) = C∗(F) for all F ∈ Fp−l and

for all l ≤ k.

(iv) In particular, F1-reducts are equivalent to L-reducts and Fp−1-reducts are

equivalent to U-reducts.

From this observation the strong-weak relations among Fk-reducts for 1 ≤ k ≤
p − 1 can be depicted as in Fig. 1. The reducts located on the upper side of Fig. 1 are

strong, i.e., the condition to be the upper reduct is stronger than the lower. On the

contrary, the reducts located on the lower side of Fig. 1 are weak, i.e., the condition

to be the lower reduct is weaker than the upper. Therefore, for any reduct A located

on the upper side, there exists a reduct B located on the lower side such that B ⊆ A.

Let R(k) be a set of Fk-reducts. Then
⋂

R(k) is called the ‘Fk-core’. Attributes

in the Fk-core are important because we cannot preserve C∗(F) for all F ∈ Fk with-

out any of them.

Fig. 1 The strong-weak relation among reducts
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As all L-reducts can be calculated using a discernibility matrix [27, 32], all Fk-

reducts for 1 ≤ k ≤ p − 1 can be calculated by a discernibility matrix. The (i, j)-
component D k

ij of the discernibility matrix D k
for calculating Fk-reducts is obtained

as the following set of attributes:

D k
ij =

⎧
⎪
⎨
⎪
⎩

{a ∈ C ∣ 𝜌(xi, a) ≠ 𝜌(xj, a)},
if 𝜕C(xi) ≠ 𝜕C(xj) and min(|𝜕C(xi)|, |𝜕C(xj)|) ≤ k,

C (don’t care), otherwise.

(18)

While the discernibility matrix shown in [14] is asymmetric, D k
defined by (18) is

symmetric. Therefore, we need to know only the upper triangular portion of D k
, i.e.,

D k
ij such that i < j.
Then all Fk-reducts are obtained as prime implicants of a Boolean function,

f k =
⋀

i,j∶ xi,xj∈U,i<j

⋁
D k

ij , (19)

where we regard a ∈ D k
ij as a statement that ‘the reduct includes a’. The computa-

tional complexity is NP-hard as in the classical decision matrix method [32].

Note that D k
ij can be obtained from D l

ij with l > k by replacing (i, j)-component

such that |𝜕C(xi)| > k and |𝜕C(xj)| > k with C (don’t care). Then, once Dp−1
ij is

obtained, the other decision matrices can be obtained easily.

Example 1 Consider the decision table given in Table 2 with C = {a1, a2, a3, a4}.

The decision table is represented by profiles and the corresponding generalized

decision attribute values are also given. Namely, fr-vector (1, 0, 1, 0) at the row of

w1 implies that there are two objects of profile w1 and one of them takes decision

attribute value v1 and the other takes decision attribute value v3. Therefore, the gener-

alized decision attribute value becomes {v1, v3}. Similarly, fr-vector (2, 0, 0, 0) at the

Table 2 A decision table

Profile a1 a2 a3 a4 fr-vector 𝜕C

w1 1 1 1 1 (1, 0, 1, 0) {v1, v3}
w2 1 1 2 2 (1, 0, 0, 1) {v1, v4}
w3 2 2 3 1 (2, 0, 0, 0) {v1}
w4 3 3 4 2 (0, 1, 0, 0) {v2}
w5 4 1 2 2 (0, 1, 1, 0) {v2, v3}
w6 2 5 3 2 (1, 0, 0, 0) {v1}
w7 2 4 4 2 (0, 0, 2, 0) {v3}
w8 4 1 5 5 (0, 1, 1, 1) {v2, v3, v4}
w9 4 1 5 4 (1, 0, 1, 1) {v1, v3, v4}
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Table 3 The upper triangular portion of discernibility matrix D3

w2 w3 w4 w5 w6 w7 w8 w9

w1
{a3, a4}
(k ≥ 2)

{a1, a2, a3}
(k ≥ 1)

C
(k ≥ 1)

{a1, a3, a4}
(k ≥ 2)

C
(k ≥ 1)

C
(k ≥ 1)

{a1, a3, a4}
(k ≥ 2)

{a1, a3, a4}
(k ≥ 2)

w2 —
C

(k ≥ 1)

{a1, a2, a3}
(k ≥ 1)

{a1}
(k ≥ 2)

{a1, a2, a3}
(k ≥ 1)

{a1, a2, a3}
(k ≥ 1)

C
(k ≥ 2)

{a1, a3, a4}
(k ≥ 2)

w3 — —
C

(k ≥ 1)

C
(k ≥ 1)

C
(k ≥ 1)

{a2, a3, a4}
(k ≥ 1)

C
(k ≥ 1)

C
(k ≥ 1)

w4 — — —
{a1, a2, a3}

(k ≥ 1)

{a1, a2, a3}
(k ≥ 1)

{a1, a2}
(k ≥ 1)

C
(k ≥ 1)

C
(k ≥ 1)

w5 — — — —
{a1, a2, a3}

(k ≥ 1)

{a1, a2, a3}
(k ≥ 1)

{a3, a4}
(k ≥ 2)

{a3, a4}
(k ≥ 2)

w6 — — — — —
{a2, a3}
(k ≥ 1)

C
(k ≥ 1)

C
(k ≥ 1)

w7 — — — — — —
C

(k ≥ 1)

C
(k ≥ 1)

w8 — — — — — — —
{a4}

(k ≥ 3)

row of w3 implies that there are two objects of profile w1 and both of them take deci-

sion attribute value v1. Accordingly, the generalized decision attribute value becomes

{v1}.

For this decision table, we calculate all Fk reducts for k = 1, 2, 3. We may apply

the discernibility matrix defined by (18) with substitution of wi for ui. The upper

triangular portion of D k
, k = 1, 2, 3 is shown in Table 3. Each entry of Table 3 is

composed of a set of condition attributes and the condition of k. It implies thatD k
ij(i <

j) takes the set of condition attributes if k satisfies the condition and C otherwise.

From (19), applying absorption laws, we obtain

f 1 = (a1 ∨ a2) ∧ (a2 ∨ a3) = a2 ∨ (a1 ∧ a3), (20)

f 2 = a1 ∧ (a2 ∨ a3) ∧ (a3 ∨ a4) = (a1 ∧ a3) ∨ (a1 ∧ a2 ∧ a4), (21)

f 3 = a1 ∧ (a2 ∨ a3) ∧ a4 = (a1 ∧ a2 ∧ a4) ∨ (a1 ∧ a3 ∧ a4). (22)

Therefore, we find Fk-reducts and Fk-core for k = 1, 2, 3 as follows:

F1-reducts∶ {a2}, {a1, a3}; F1-core∶ ∅,
F2-reducts∶ {a1, a3}, {a1, a2, a4}; F2-core∶ {a1},
F3-reducts∶ {a1, a2, a4}, {a1, a3, a4}; F2-core∶ {a1, a4}.

As shown above, Fk-reducts as well as Fk-cores are different by k ∈ {1, 2, 3}.
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Remark 2 Given a family G on U, we can define G -reducts as follows: A condition

attribute set A is called an G -reduct if and only if

(G1) A∗(F) = C∗(F) for all F ∈ G , and

(G2) ∀ a ∈ A, (A − {a})∗(F) ≠ C∗(F) for all F ∈ G .

LetRG
be a set of U-reducts. Then

⋂
RG

is called the ‘G -core’. A ⊆ C satisfying

(G1) is called a ‘G -superreduct’.

3.2 Set Functions Associated with Reducts

Consider the following set function 𝜇

Q
:

𝜇

Q(A) =

∑p

i=1
|A∗(Di)|
|U|

, (23)

where 𝜇
Q

is called a ‘quality of approximation’ of partition D and evaluates to what

extent the set of condition attributes clearly classifies the objects into decision classes

(see [5, 26]). L-reducts can be defined by 𝜇

Q
as follows: A ⊆ C is an L-reduct if and

only if A satisfies

(L1) 𝜇

Q(A) = 𝜇

Q(C), and

(L2) ∀a ∈ A, 𝜇
Q(A − {a}) ≠ 𝜇

Q(C).

Because L-reducts can be defined by using 𝜇Q, we call it an “associated set func-

tion” with L-reducts. For a kind of reduct, the associated set function is not unique.

For example, 𝜇

IG
1 (A) = log p −

(∑
i∶|𝜕C(ui)|=1 log |𝜕A(ui)|

)
∕|{i ∶ |𝜕C(ui)| = 1}| is

also the associated set function with L-reducts.

Similarly, associated with U-reducts, the following set functions 𝜇
sp

, 𝜇
𝜕

are con-

ceivable (see [14, 19]):

𝜇

sp(A) =

∑p

i=1
|U − A∗(Di)|

(p − 1)|U|
=

∑

ui∈U

(
p − |𝜕A(ui)|

)

(p − 1)|U|
, (24)

𝜇

𝜕(A) =

∑|U|

i=1

[
𝜕C(ui) = 𝜕A(ui)

]

|U|
, (25)

where [statement] takes 1 if statement is true and 0 otherwise. 𝜇
sp

shows the degree

of specificity and evaluates to what extent the set of condition attributes decreases the

possible classes of objects. On the other hand, 𝜇
𝜕

shows the ratio of objects u whose

generalized decision attribute value 𝜕C(u) with respect to C is preserved in that with

respect to the reduced set A ⊆ C. Those are not all of associated set functions with



Rough Set Analysis of Imprecise Classes 167

U-reducts. U-reducts can be defined by 𝜇
sp

and 𝜇
𝜕

as follows: For 𝜇 = 𝜇

sp
, 𝜇

𝜕

,A ⊆ C
is a U-reduct if and only if A satisfies

(U1) 𝜇(A) = 𝜇(C), and

(U2) ∀a ∈ A, 𝜇(A − {a}) ≠ 𝜇(C).

Associated set functions with Fk-reducts can be also considered. The following

set functions are given by Inuiguchi [12, 14]:

𝜇

re
k (A) =

{
1, if A∗(F) = C∗(F), ∀F ∈ Fk,

0, otherwise,
(26)

𝜇

sp
k (A) =

∑

F∈Fk
|A∗(F)|

(
p − 1
k − 1

)

|U|

=

∑

ui∈Uk

(
p − |𝜕A(ui)|
k − |𝜕A(ui)|

)

(
p − 1
k − 1

)

|U|

, (27)

𝜇

𝜕

k (A) =

∑

ui∈Uk

[
𝜕C(ui) = 𝜕A(ui)

]

|U|
, (28)

where we define

Uk = {ui ∈ U ∶ |𝜕C(ui)| ≤ k}. (29)

𝜇

re
k is a characteristic function of Fk-superreduct. 𝜇

sp
k and 𝜇

𝜕

k are the generalizations

of 𝜇
sp

and 𝜇

𝜕

. Indeed, we have 𝜇

sp
p (A) = 𝜇

sp(A) and 𝜇

𝜕

p(A) = 𝜇

𝜕(A) for all A ⊆ C,

but we assume k ≤ p − 1. Even when k = p − 1, we have 𝜇

sp
p−1(A) = 𝜇

sp(A) and

𝜇

𝜕

p−1(A) = 𝜇

𝜕(A) − |
|{x ∈ U ∣ |𝜕C(x)| = p}|| ∕|U| for all A ⊆ C, where we note that

|
|{x ∈ U ∣ |𝜕C(x)| = p}|| ∕|U| is independent of A ⊆ C. Moreover, we have 𝜇

sp
1 (A) =

𝜇

𝜕

1(A) = 𝜇

Q(A) for all A ⊆ C. For any A ⊆ C, 𝜇
re
k (A), 𝜇

sp
k (A) and 𝜇

𝜕

k (A) takes a value

between [0, 1] for k = 1, 2,… , p − 1. Especially when 𝜕A(u) = p for all u ∈ U, we

have 𝜇
re
k (A) = 𝜇

sp
k (A) = 𝜇

𝜕

k (A) = 0, k = 1, 2,… , p − 1, i.e., set functions 𝜇
re
k , 𝜇

sp
k and

𝜇

𝜕

k are ‘grounded’ [4].

Ślȩzak [31] defined the following set functions to define approximate reducts:

g
𝜕

(A) = 1
|U|

∑

ui∈U

1
|𝜕A(ui)|

, (30)

e
𝜕

(A) = 1
|U|

∑

ui∈U

1
2|𝜕A(ui)|−1

, (31)

h
𝜕

(A) = 1
|U|

∑

ui∈U
log |𝜕A(ui)|, (32)
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where the base of a logarithm log is 2. Functions g
𝜕

and h
𝜕

are related gini index

and non-specificity measure (Hartley measure), respectively (see [21, 31]). e
𝜕

(A)
satisfies the following equation:

e
𝜕

(A) = 1 − 1
2p

p−1∑

k=1

∑

F∈Fk

(
|A∗(F)|
|U|

−
|A∗(F)|
|U|

)

. (33)

We note that 2p =
∑p−1

k=1 |Fk| + 2, i.e., the number of subsets of {Dj, j = 1, 2,… , p}.

By modifying those functions to be monotonously increasing and zero-normalized

and introducing the size parameter k of generalized decision class, we consider the

following set functions:

𝜇

g
k (A) =

1
|U|

∑

ui∈Uk

(
1

|𝜕A(ui)|
− 1

p

)

, (34)

𝜇

e
k(A) =

1
|U|

∑

ui∈Uk

( 1
2|𝜕A(ui)|−1

− 1
2p−1

)
, (35)

𝜇

h
k (A) =

1
|U|

∑

ui∈Uk

(log p − log |𝜕A(ui)|). (36)

We note that 𝜇
g
1(A) = (p − 1)𝜇Q(A)∕p, 𝜇

e
1(A) = (2p−1 − 1)𝜇Q(A)∕2p−1 and 𝜇

h
1(A) =

(log p)𝜇Q(A). Moreover, we have 𝜇

g
p−1(A) = g

𝜕

(A) − |U|∕p, 𝜇

e
p−1(A) = e

𝜕

(A) −
|U|∕2p−1 and 𝜇

h
p−1(A) = log p − h

𝜕

(A).
Those set functions, 𝜇

𝛼

k , 𝛼 ∈ {re, sp, 𝜕, g, s, h} are associated set functions with

Fk-reduct, i.e., A ⊆ U is a Fk-reduct if and only if

(F1(k)) 𝜇

𝛼

k (A) = 𝜇

𝛼

k (C), and

(F2(k)) ∀a ∈ A, 𝜇
𝛼

k (A − {a}) ≠ 𝜇

𝛼

k (C).

We note that set functions, 𝜇
𝛼

k , 𝛼 ∈ {re, sp, 𝜕, g, s, h} are monotonously increasing

with respect to set-inclusion, i.e., if A1 ⊆ A2 ⊆ C, we have 𝜇
𝛼

k (A1) ≤ 𝜇

𝛼

k (A2). Such a

zero-normalized set function can be seen as a fuzzy measure [24].

Remark 3 Similar to (33), we have

𝜇

e
k(A) =

|Uk|

|U|

(

1 − 1
2p

k∑

j=1

∑

F∈Fk

(
|A∗(F)|
|U|

−
|A∗(F)|
|U|

)

− 1
2p−1

)

. (37)
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3.3 Attribute Importance Based on the Associated Set
Functions

Regarding a fuzzy measure 𝜇 ∶ 2C → 𝐑 as a characteristic function of cooperative

game theory, the attribute importance and interactions are evaluated by the Shapley

value [29] and Harsanyi dividend (called also, Möbius transform) defined respec-

tively as (see [5, 23])

IS
𝜇

(A) =
∑

K⊆C−A

(|C| − |K| − |A|)!|K|!
(|C| − |A| + 1)!

∑

L⊆A
(−1)|A|−|L|𝜇(K ∪ L), (38)

m
𝜇

(A) =
∑

B⊆A
(−1)|A−B|𝜇(B). (39)

Shapley index IS
𝜇

({ai}) called Shapley value shows the average contribution of

ai in 𝜇, i.e., the average importance degree of ai in the sense of 𝜇. Shapley index

IS
𝜇

(A) shows the interaction among condition attributes in A. Let A = {ai, aj}, i ≠ j.
Fact IS

𝜇

({ai, aj}) < 0 implies that condition attributes ai and aj are compensative in 𝜇.

Fact IS
𝜇

({ai, aj}) = 0 implies that condition attributes ai and aj are additive in 𝜇. Fact

IS
𝜇

({ai, aj}) > 0 implies that condition attributes ai and aj are synergic in 𝜇. Harsanyi

dividends (Möbius transform) m
𝜇

(A) shows the additional contribution of a coalition

A in itself, i.e., the change of importance degree by a coalition A in itself. Especially,

m
𝜇

({ai}) shows the individual contribution of condition attribute ai in itself, i.e., the

individual importance degree of ai. Therefore, we have

𝜇(A) =
∑

B⊆A
m

𝜇

(B), (40)

where we define m
𝜇

(∅) = 0. For Shapley value I
𝜇

({ai}), we have

I
𝜇

({ai}) =
∑

A∶A∋ai

1
|A|

m
𝜇

(A). (41)

Applying this idea to an associated set function, 𝜇
𝛼

k , 𝛼 ∈ {re, sp, 𝜕, g, s, h}, we can

analyze the degrees of attribute importance and interactions in the sense of 𝜇
𝛼

k . In

next example, we calculate the degrees of attribute importance and interactions in

decision table given by Table 2.

Example 2 Consider a decision table shown in Table 2. As shown in Example 1,

we obtained {a2} and {a1, a3} as F1-reducts, {a1, a3} and {a1, a2, a4} as F2-

reducts, and {a1, a2, a4} and {a1, a3, a4} as F3-reducts. We have {a1} as F2-core

and {a1, a4} as F3-core. We have no F1-core, i.e., F1-core is the empty set. Set

functions 𝜇
re
k , 𝜇

sp
k and 𝜇

𝜕

k as well as their Shapley interaction indices and Harsanyi

dividends are shown in Table 4. Set functions 𝜇
g
k , 𝜇

e
k and 𝜇

h
k as well as their Shapley

interaction indices and Harsanyi dividends are shown in Table 5.
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Ta
bl
e
4

S
h
a
p
le

y
in

te
r
a
c
ti

o
n

in
d
ic

e
s

a
n
d

H
a
r
s
a
n
y
i

d
iv

id
e
n
d
s

fo
r
𝜇

re k
,
𝜇

sp k
a
n
d
𝜇

𝜕 k

A
𝜇

re 1
IS 𝜇

re 1
m

𝜇

re 1
𝜇

re 2
IS 𝜇

re 2
m

𝜇

re 2
𝜇

re 3
IS 𝜇

re 3
m

𝜇

re 3

a 1
0

0.
16
67

0
0

0.
58
33

0
0

0.
41
67

0
a 2

1
0.
66
67

1
0

0.
08
33

0
0

0.
08
33

0
a 3

0
0.
16
67

0
0

0.
25

0
0

0.
08
33

0
a 4

0
0

0
0

0.
08
33

0
0

0.
41
67

0
a 1
a 2

1
−
0.
5

0
0

0.
16
67

0
0

0.
16
67

0
a 1
a 3

1
0.
5

1
1

0.
66
67

1
0

0.
16
67

0
a 1
a 4

0
0

0
0

0.
16
67

0
0

0.
66
67

0
a 2
a 3

1
−
0.
5

0
0

−
0.
33
33

0
0

−
0.
33
33

0
a 2
a 4

1
0

0
0

0.
16
67

0
0

0.
16
67

0
a 3
a 4

0
0

0
0

−
0.
33
33

0
0

0.
16
67

0
a 1
a 2
a 3

1
−
1

−
1

1
−
0.
5

0
0

−
0.
5

0
a 1
a 2
a 4

1
0

0
1

0.
5

1
1

0.
5

1
a 1
a 3
a 4

1
0

0
1

−
0.
5

0
1

0.
5

1
a 2
a 3
a 4

1
0

0
0

−
0.
5

0
0

−
0.
5

0
C

1
0

0
1

−
1

−
1

1
−
1

−
1

A
𝜇

sp 1
IS 𝜇

sp 1
m

𝜇

sp 1
𝜇

sp 2
IS 𝜇

sp 2
m

𝜇

sp 2
𝜇

sp 3
IS 𝜇

sp 3
m

𝜇

sp 3

a 1
0.
05
56

0.
05
56

0.
05
56

0.
14
81

0.
12
04

0.
14
81

0.
31
48

0.
20
99

0.
31
48

a 2
0.
33
33

0.
17
59

0.
33
33

0.
33
33

0.
15
12

0.
33
33

0.
33
33

0.
12
65

0.
33
33

a 3
0.
16
67

0.
09
26

0.
16
67

0.
25
93

0.
12
65

0.
25
93

0.
35
19

0.
14
81

0.
35
19

a 4
0

0.
00
93

0
0.
07
41

0.
04
63

0.
07
41

0.
25
93

0.
18
21

0.
25
93

a 1
a 2

0.
33
33

−
0.
12
96

−
0.
05
56

0.
33
33

−
0.
13
58

−
0.
14
81

0.
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As shown in Tables 4 and 5, the attribute importance is very different by k and

by set function. We observe signs of IS
𝜇

𝛼

k
(A) and m

𝜇

𝛼

k
(A) are similar. From Shapley

indices and Harsanyi dividends of {ai, aj}, i ≠ j in 𝜇

𝛼

k , 𝛼 ∈ {cl, 𝜕, g, e, h}, we found

that a2 is compensative with other condition attributes. Therefore, Shapley value (the

average importance degree) IS
𝜇

𝛼

k
({a2}) is smaller than Harsanyi dividend (individual

importance degree) m
𝜇

({a2}). On the other hand, a1 and a4 are synergic. When k =
1, except 𝜇

re
1 , the behaviors of set function values 𝜇

𝛼

1 (A), Shapley interaction indices

and Harsanyi dividends with respect to A ⊆ C are similar because those set functions

are proportional to 𝜇

Q
.

In what follows, we compare mainly Shapley indices I
𝜇

𝛼

k
({ai}), i = 1, 2, 3, 4

because it is most understandable. From F1-reducts, we feel that a2 is more impor-

tant than a1 because a2 itself forms an F1-reduct although a1 does not. However,

considering F2- and F3-reducts, we found a1 is more important because a1 is in F2-

and F3-cores although a2 is not. These facts are well captured by Shapley indices

of ai, i = 1, 2, 3, 4 with respect to 𝜇

re
k , k = 1, 2, 3 as shown in Table 4. When k = 1,

in Shapley index I
𝜇

re
1
({ai}), a2 is four times more important than a1 and a3, and a4

is not important at all. When k = 2, in Shapley index I
𝜇

re
1
({ai}), the average impor-

tance degree of a1 is significantly increased because it composes F2-core by itself.

The average importance degree of a2 decreases by 0.5833 while those of a3 and

a4 increase by 0.0833. As the result, a1 becomes the most important attribute, a3
becomes the second and a2 as well as a4 are the least important attributes. The roles

of a2 and a4 are same in the sense of 𝜇
re
2 . When k = 3, in Shapley index I

𝜇

re
3
({ai}), a4

as well as a1 become the most important because {a1, a4} is F3-core. a2 and a3 take

the smallest average importance degree because a1 and a4 compose an F3-reduct

with one of a2 and a3. The roles of a1 and a4 are same and the roles of a2 and a3 are

also same. However, a1 and a4 are complementary while a2 and a3 are substitute.

The attribute importance degree is changed significantly by the required precision

level k of classification.

From the viewpoint of the specificity 𝜇

sp
k of the class estimation, the evaluation of

the attribute importance is a little different because it considers the precision of class

estimation for all objects in U. Namely, the value of 𝜇
sp
k (A) is evaluated by the sum of

the scores of objects whose classes are estimated to be one of l(≤ k) possible classes

by A, i.e., objects x ∈ U such that |𝜕A(x)| ≤ k. The smaller |𝜕A(x)|, the larger the

score of x ∈ U. When k = 1, the value of 𝜇
sp
1 (A) depends on the number of objects

such that their classes are uniquely determined by A. Because a3 itself determines

uniquely the classes of 16.67% of objects in U which is three times more than a1, as

shown in 𝜇

sp
1 values in Table 4. On the other hand, together with a4, a1 improves 𝜇

sp
1

value as much as a3. As the result, I
𝜇

sp
1
({a3}) is only 1.7 times bigger than I

𝜇

sp
1
({a1}).

This fact is very different from the evaluation by 𝜇

re
1 . When k = 2, the value of 𝜇

sp
2 (A)

becomes larger as |𝜕A(x)| ≤ 2 becomes smaller. Because of this fact, a2 still takes

the highest average importance degree among ai, i = 1, 2, 3, 4. This is different from
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the evaluation by 𝜇

re
2 . When k = 3, as the value of 𝜇

sp
3 (A) is influenced by scores

of objects x such that |𝜕A(x)| = 3, the Shapley index I
𝜇

sp
3
({a2}) of a2 becomes the

lowest. The Shapley index decreases in the order of a1, a4, a3, a2. Similarly to the

evaluation by 𝜇

re
3 , a1 and a4 are more important than a2 and a3.

From the viewpoint of generalized decision class preservation 𝜇

𝜕

k , the evalua-

tion of the attribute importance is further different. When k = 1, the evaluation of

attribute importance is the same as that by the specificity. When k = 2, a1 takes the

highest Shapley index. However, the difference of Shapley indices between a1 and a2
are not very big. This is very different from the evaluation by 𝜇

re
2 . This is also differ-

ent from the evaluation by 𝜇

sp
2 which implies that a2 takes the highest Shapley index

although the differences of Shapley indices from a1 and a3 are small. When k = 3,

a4 takes the highest Shapley index and the differences from the Shapley indices of

other attributes are significantly big. Those results are obtained from the fact that the

evaluation of 𝜇
𝜕

k does not depend on the size of the preserved generalized decision

class |𝜕C(u)| while others except 𝜇
re
k does.

From the viewpoint of a set function 𝜇

g
k related to gini index, the evaluation of

the attribute importance is different again. When k = 1, the evaluation of attribute

importance is the same as that by the specificity and the generalized decision class

preservation but the values are 0.75 times of values in 𝜇

sp
1 . In this set function, a2

takes the highest Shapley index I
𝜇

g
3
({ai}) among ai, i = 1, 2, 3, 4 for all k ∈ {1, 2, 3}.

When k ≥ 2, the Shapley value (average importance degree) of a4 is much smaller

than those of other condition attributes ai, i = 1, 2, 3. Attribute a4 contributes to

the preservation of some generalized decision classes whose sizes are 2 and 3. The

preservation of big generalized decision classes does not influence very much to 𝜇

g
k

because it is discounted by the inverse number of the size of generalized decision

class.

The behaviors of the Shapley indices with respect to 𝜇

e
k is similar to those with

respect to 𝜇

g
k although a2 does not take the highest Shapley index when k = 3. The

behavior of the Shapley indices with respect to𝜇
h
k is similar to that with respect to𝜇

sp
k .

This can be understood from the fact that both set functions evaluate the specificity of

decision attribute value. However, because the contribution of a4 in the preservations

of some generalized decision classes is also discounted by logarithmic function, the

Shapley indices of a4 are evaluated relatively small values in 𝜇

h
k .

The results in Example 2 imply the following significant fact: to evaluate the

attribute importance we should determine

(i) the required precision of classification, and

(ii) in what sense we evaluate the attribute importance.

(i) means the selection of parameter k and (ii) means the selection of set func-

tion, i.e., reducibility, specificity, generalized decision class preservation, gini-index,

etc.



176 M. Inuiguchi

4 Rule Induction

4.1 The Conventional Approach

The other major topic in rough set approaches is the minimal rule induction, i.e.,

inducing rules inferring the membership to Dj with minimal conditions which can

differ members of C∗(Dj) from non-members, are investigated well. In this chapter,

we use minimal rule induction algorithms proposed in the field of rough sets, i.e.,

LEM2 and MLEM2 algorithms [8, 9]. By those algorithms, we obtain minimal set of

rules with minimal conditions which can explain all objects in lower approximations

of X under a given decision table. LEM2 algorithm [8] and MLEM2 algorithm [9]

are different in their forms of condition parts of rules: by LEM2 algorithm, we obtain

rules of the form of “if f (u, a1) = v1, f (u, a2) = v2, … and f (u, as) = vs then u ∈ X”,

while by MLEM2 algorithm, we obtain rules of the form of “if vL1 ≤ f (u, a1) ≤ vR1 ,

vL2 ≤ f (u, a2) ≤ vR2 , … and vLs ≤ f (u, as) ≤ vRs then u ∈ X”. Namely, MLEM2 algo-

rithm is a generalized version of LEM2 algorithm to cope with numerical/ordinal

condition attributes. For each decision class Di we induce rules inferring the mem-

bership of Di. Using all those rules, we build a classifier system as proposed in

LERS [8, 9]. Namely, The classification of a new object u is made by the follow-

ing two steps:

⟨1⟩ When the condition attribute values of u match to all conditions of at least one

of the induced rules, for each Di, we calculate

S(Di) =
∑

matching rules r for Di

Stren(r) × Spec(r), (42)

where r is called a matching rule if the condition part of r is satisfied with u.

Stren(r) is the total number of objects in given decision table correctly classified

by rule r. Spec(r) is the total number of condition attributes in the condition part

of rule r. For convenience, when rules for Di are not matched by the object, we

define S(Di) = 0. Then u is classified into Di with highest S(Di). If Dj such that

S(Dj) > 0 exists, class Di with the largest S(Di) is selected. However, if class Di
with the largest S(Di) is not unique, class Di with smallest index i is selected

from them and terminate the procedure.

⟨2⟩ When the condition attribute values of u do not match totally to the condition

part of any rule composing the classifier system, for each Di, we calculate

M(Di) =
∑

partially matching rules r for Di

Mat_f (r) × Stren(r) × Spec(r), (43)

where r is called a partially matching rule if a part of the premise of r is satisfied

with u. Mat_f (r) is the ratio of the number of matched conditions of rule r to

the total number of conditions of rule r. Then class Di with the largest M(Di)
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is selected. If a tie occurs, class Di with smallest index i is selected from tied

classes.

Here we note that Di is regarded not only as a subset of U but also as a conclusion

indicating a member of decision class Di.

4.2 Classification with Imprecise Rules

As described above, in the conventional rough set approaches, rules inferring the

memberships to single decision classes have been induced and used to build the

classifier system. However, rules inferring the memberships to unions of multiple

decision classes can be also induced based on the rough set model. We call rules

inferring the memberships to single decision classes ‘precise rules’ and rules infer-

ring the memberships to unions of multiple decision classes ‘imprecise rules’.

Each of imprecise rules cannot give a conclusion univocally while each of precise

rules can give a conclusion univocally. However, if we have imprecise rules for many

kinds of unions, we can give a univocal conclusion. For example, if we have a rule

for D1 ∪ D2 and a rule for D1 ∪ D3 and if a new object satisfy the conditions of both

rules, we know that the object is inD1 ∪ D2 and at the same time inD1 ∪ D3, and thus

it is in D1. Therefore, many kinds of imprecise rules can work well for classification

of objects.

From this point of view, Inuiguchi and Hamakawa [10, 15, 16] investigated the

induction of imprecise rules and classifier based on imprecise rules. They induced

rules for every F ∈ Fk under fixed k ∈ {1, 2,… , p − 1} and build a classifier using

all induced imprecise rules. Here, we note that F ∈ Fk is regarded not only as a sub-

set of U but also as a conclusion indicating a member of one of k decision classes

Di1 ,… ,Dik . We can induce imprecise rules for F ∈ Fk, k ∈ {1, 2,… , p − 1} in the

same way as the induction method for rules about Di (see [10, 15, 16]). Namely,

LEM2-based algorithms can be applied to the induction of imprecise rules. More-

over, in the same way, we can build a classifier by induced imprecise rules.

Two classifiers under imprecise rules for F ∈ Fk have been investigated. In the

first classifier Cla1, a new object u is classified by the following procedure:

⟨1⟩ When u matches to at least one of the conditions of the rule, we calculate

̂S(Di) =
∑

matching rule r
for F ⊇ Di

Stren(r) × Spec(r), (44)

where r is called a matching rule if the condition part of r is satisfied with u.

The strength Stren(r) is the total number of objects in the given dataset correctly

classified by rule r. The specificity Spec(r) is the total number of condition

attributes in the condition part of rule r. F is a variable set such that F ∈ Fk. For

convenience, when there is no matching rules about F ⊇ Di, we define ̂S(Di) =
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0. If there exists Dj such that ̂S(Dj) > 0, the class Di with the largest ̂S(Di) is

selected. If a tie occurs, class Di with smallest index i is selected from tied

classes.

⟨2⟩ When u does not match totally to any rule, for each Di, we calculate

̂M(Di) =
∑

partially matching
rules r for F ⊇ Di

Mat_f (r) × Stren(r) × Spec(r), (45)

where r is called a partially matching rule if a part of the premise of r is satisfied.

The matching factor Mat_f (r) is the ratio of the number of matched conditions

of rule r to the total number of conditions of rule r. Then the class Di with the

largest ̂M(Di) is selected. If a tie occurs, classDi with smallest index i is selected

from tied classes.

In the other classifierCla2, a new object u is classified by the following procedure:

⟨1⟩ For all F ∈ Fk, we calculate S(F) of (42). Let W =
⋃
{F ∈ Fk ∣ S(F) = 0}. If

W = U, go to ⟨3⟩.
⟨2⟩ We calculate ̂S(Di) for Di such that Di ∩W = ∅. The class Di with the largest

̂S(Di) is selected. If a tie occurs, class Di with smallest index i is selected from

tied classes.

⟨3⟩ For each Di, we calculate ̂M(Di). Then the class Di with the largest ̂M(Di) is

selected. If a tie occurs, class Di with smallest index i is selected from tied

classes.

In Cla2, Di ⊆ W cannot be a candidate of the decision class for u if W ≠ U (W
includes all decision classes). We note that these classification methods Cla1 and

Cla2 are reduced to the conventional one when k = 1, because F ∈ F1 becomes a

decision class Di.

4.3 Numerical Experiment

We examined the classification accuracy of classifiers Cl1 and Cl2 with imprecise

rules by using eight datasets shown in Table 6. Those datasets are obtained from UCI

machine learning repository [35], and consistent, i.e., U = U1 = {u ∈ U ∣ |𝜕(u)| ≤
1}. For the evaluation, we apply a 10-fold cross validation method. Namely we divide

the dataset into 10 subsets and 9 subsets are used for training dataset and the remain-

ing subset is used for checking dataset. Changing the combination of 9 subsets, we

obtain 10 different evaluations. We calculate the averages and the standard deviations

in number of obtained rules and classification accuracy. We execute this procedure

10 times with different divisions.

The results are shown in Table 7. In column ‘# rules’, the numbers of rules are

shown. In columns ‘Accuracy (Cla1)’ and ‘Accuracy (Cla2)’, the classification accu-

racy scores (%) of classifiers Cla1 and Cla2 are shown, respectively. Each entry in
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Table 6 Eight datasets

Dataset |U| |C| p = |Vd| Attribute type

car 1,728 6 4 Ordinal

dermatology 358 34 6 Numerical

ecoli 336 7 8 Numerical

glass 214 9 6 Numerical

hayes-roth 159 4 3 Nominal

iris 150 4 3 Numerical

wine 178 13 3 Numerical

zoo 101 16 7 Nominal

those columns shows the average ave and the standard deviation dev in the form of

ave ± dev. Asterisk ∗ and two asterisks ∗∗ imply the significant differences from

the corresponding classification accuracy scores of classifiers with precise rules

(k = 1) in the paired t-test with significance levels 𝛼 = 0.05 and 𝛼 = 0.01, respec-

tively. Scores with superscript asterisks are significantly bigger than those of classi-

fiers with precise rules (k = 1) while scores with subscripts asterisks are significantly

smaller than those of classifiers with precise rules (k = 1). Underline and double

underline imply the significant differences between classification accuracy scores

of classifiers Cla1 and Cla2 with same imprecise rules in the paired t-test with sig-

nificance levels 𝛼 = 0.05 and 𝛼 = 0.01, The better scores are underlined.

As shown in Table 7, when p = |Vd| is larger than 2, the classification accu-

racy is improved by using imprecise rules except k = p − 1. In attribute reduction,

Fp−1-reducts preserve the classification ability more than other reducts (Fk-reducts,

k < p − 1). From this fact, we may expect the classifier with imprecise rules for

F ∈ Fp−1 works well although given datasets are consistent. Namely the obtained

results for k = p − 1 are counter-intuitive.

An important issue is the selection of k. The best performed k can depend on the

given dataset. However we cannot know the best performed k in advance, yet. As

far as the results in Table 7 show, the classifiers with imprecise rules for F ∈ Fk
with k ≈ p/2 perform well. As k approaches to p/2, the number of possible combina-

tions of k decision classes, i.e., |Fk|, increases. Accordingly, the number of induced

rules attains the maximum around k = p/2. Since we used consistent datasets in the

numerical experiment, having many rules may be advantageous for the classifier in

making robust estimation.

There is no big difference in the classification ability between classifiers Cla1 and

Cla2, as far as in Table 7, Cla2 is a bit better.

To sum up, classifiers with imprecise rules work well although the number of

rules is increased significantly. This can be understood, even from imprecise rules,

we can obtain a correct conclusion if you have many of them. The big volume of
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Table 7 Classification accuracy (%)

Dataset k # rules Accuracy (Cla1) Accuracy (Cla2)

car 1 57.22 ± 1.74 98.67 ± 0.97 98.67 ± 0.97
2 128.02 ± 3.16 98.96∗∗ ± 0.75 99.16∗∗ ± 0.76
3 69.55 ± 1.37 99.68∗∗ ± 0.49 99.57∗∗ ± 0.54

dermatology 1 12.09 ± 1.27 92.32 ± 4.42 92.32 ± 4.42
2 61.32 ± 4.07 94.58∗∗ ± 3.59 95.72∗∗ ± 3.15
3 103.58 ± 6.11 96.03∗∗ ± 3.26 96.40∗∗ ± 3.14
4 77.28 ± 4.45 95.58∗∗ ± 3.69 95.78∗∗ ± 3.67
5 23.84 ± 1.81 91.87 ± 4.75 88.83∗∗ ± 5.73

ecoli 1 35.89 ± 2.03 77.52 ± 6.21 77.52 ± 6.21

2 220.67 ± 8.93 83.20∗∗ ± 5.66 83.42∗∗ ± 5.56
3 565.67 ± 21.48 84.66∗∗ ± 5.64 84.54∗∗ ± 5.75
4 781.36 ± 28.42 84.87∗∗ ± 5.71 84.84∗∗ ± 5.65
5 617.06 ± 23.06 83.74∗∗ ± 6.26 83.53∗∗ ± 6.38
6 269.27 ± 10.5 82.56∗∗ ± 6.26 82.76∗∗ ± 6.27
7 54.09 ± 2.86 78.38 ± 6.70 77.17 ± 6.71

glass 1 25.38 ± 1.5 68.34 ± 10.18 68.34 ± 10.18
2 111.40 ± 4.33 72.57∗∗ ± 8.81 73.59∗∗ ± 8.77
3 178.35 ± 5.41 73.44∗∗ ± 9.19 74.28∗∗ ± 9.93
4 130.14 ± 4.96 71.16∗ ± 9.91 72.71∗∗ ± 9.45
5 39.59 ± 2.18 65.04

∗∗
± 9.96 63.55∗∗ ± 10.79

hayes-roth 1 23.17 ± 1.41 81.38 ± 7.95 81.38 ± 7.95
2 39.25 ± 2.2 72.94∗∗ ± 10.42 70.81∗∗ ± 10.5

iris 1 7.40 ± 0.72 92.87 ± 5.52 92.87 ± 5.52
2 8.52 ± 0.78 92.93 ± 5.32 94.60∗∗ ± 4.96

wine 1 4.65 ± 0.5 93.25 ± 5.87 93.25 ± 5.87
2 7.31 ± 0.59 88.83∗∗ ± 7.15 89.15∗∗ ± 6.75

zoo 1 9.67 ± 0.55 95.84 ± 6.63 95.84 ± 6.63
2 48.5 ± 2.1 95.55 ± 7.15 95.74 ± 6.33
3 105.37 ± 4.25 96.74∗ ± 5.45 96.74∗ ± 5.45
4 113.78 ± 3.74 96.84∗ ± 5.22 96.84∗ ± 5.22
5 66.76 ± 2.69 97.24∗∗ ± 5.07 97.44∗∗ ± 4.97
6 17.72 ± 0.66 96.05 ± 6.51 96.05 ± 6.51
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imprecise rules can affect the interpretability of results as well as the computational

time. The reduction of number of rules is investigated in [10, 16].

4.4 Rule Anonymization

When a classifier with rules is used in public, it may be required to unfold the under-

lying rules. The publication of rules makes the classification fair and impartial. How-

ever, by the publication of rule can invade the privacy of individuals if some of rules

are supported only a few objects. Namely, from such a rule, some sensitive personal

data can be revealed. From this point of view, the concept of K-anonymity [34]
1

has

been investigated. In the case of a rule, the K-anonymity implies that the rule is sup-

ported by at least K objects. However, if we restrict rule adoption to K-anonymous

rules, we will not obtain a sufficient number of rules to perform good classification.

Inuiguchi et al. [17] proposed to use K-anonymous imprecise rules.

The procedure for K-anonymous rule induction proposed by Inuiguchi et al. [17]

is as follows:

⟨1⟩ Let R be the set of K-anonymous rules and initialize R = ∅. Let l = 1.

⟨2⟩ Induce a set S1 of precise rules by MLEM2 algorithm.

⟨3⟩ Select rules r ∈ Sl satisfying Supp(r) ≥ K and put them in R.

⟨4⟩ If Sl −R ≠ ∅ and l < n, update l = l + 1. Otherwise, terminate this procedure.

⟨5⟩ Define object set B by objects match r ∈ Sl such that Supp(r) < K.

⟨6⟩ Induce a set Sl of imprecise rules for each possible union F ∈ Fl by MLEM2

algorithm inputtingB ∩ F ≠ ∅ as a set of objects uncovered by presently induced

rules. Return to ⟨3⟩. We note that we skip F such that B ∩ F = ∅ in this proce-

dure.

In order to examine the performances of this K-anonymous rule induction pro-

cedure, we apply it to eight datasets in Table 6 and compare classifiers with K-

anonymous rules and the classifier with MLEM2 rules. For classifiers with K-

anonymous rules, we use classifier Cla2. By 10 times run of 10-fold cross valida-

tion method described in the previous subsection, we obtain the results as shown in

Table 8. In Table 8, the average av and the standard deviation sd is shown in the style

of av ± sd in each cell of table. The underlined numbers are average scores of clas-

sification accuracy obtained by the classifiers composed of K-anonymous imprecise

rules better than those obtained by the classifiers composed of MLEM2 precise rules.

Asterisk ∗ shown in the columns of classification accuracy of K-anonymous impre-

cise rules stands for the value is significantly different from the case of MLEM2

precise rules by the paired t-test with significance level 𝛼 = 0.05.

As shown in Table 8, the numbers of K-anonymous rules are smaller than those

of MLEM2 precise rules for K = 5, 10 and 15 in datasets ‘hayes-roth’, ‘iris’ and

1
We use capital letter K because we already used lower case letter k to show the number of decision

classes to be combined by union.
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Table 8 MLEM2 precise rules versus K-anonymous imprecise rules (from [17])

Data-set MLEM2 precise rules 5-anonymous imprecise rules

Number of rules Accuracy Number of rules Accuracy

car 57.22 ± 1.74 98.67 ± 0.97 58.94 ± 2.64 98.76 ± 0.88

dermatology 12.09 ± 1.27 92.32 ± 4.42 13.78 ± 5.63 92.38 ± 4.28

ecoli 35.89 ± 2.03 77.52 ± 6.21 1343.84 ± 123.08 82.88
∗±5.64

glass 25.38 ± 1.5 68.34 ± 10.18 84.61 ± 28.87 66.17 ± 10.32

hayes-roth 23.17 ± 1.41 81.38 ± 7.95 18.01 ± 1.40 74.56
∗± 9.24

iris 7.40 ± 0.72 92.87 ± 5.52 6.53 ± 0.90 93.07 ± 5.65

wine 4.65 ± 0.50 93.25 ± 5.87 4.46 ± 0.50 93.25 ± 5.87

zoo 9.67 ± 0.55 95.84 ± 6.63 138.63 ± 29.08 94.55 ± 8.00

Data-set 10-anonymous imprecise rules 15-anonymous imprecise rules

Number of rules Accuracy Number of rules Accuracy

car 66.48 ± 4.19 98.94
∗± 0.85 66.26 ± 8.75 98.21

∗± 1.34

dermatology 30.69 ± 18.06 91.73 ± 4.80 41.2 ± 31.14 92.77 ± 4.74

ecoli 1351.04 ± 58.85 83.68
∗± 6.31 1094.66 ± 47.43 82.48

∗± 6.52

glass 254.90 ± 17.07 72.52
∗± 8.76 200.32 ± 5.95 70.88 ± 9.2

hayes-roth 14.25 ± 1.44 59.44
∗± 16.64 1.90 ± 1.46 39.63

∗± 12.38

iris 6.87 ± 1.05 93.20 ± 5.33 5.11 ± 1.03 92.47 ± 6.16

wine 4.09 ± 0.47 92.92 ± 6.06 4.05 ± 0.46 92.92 ± 6.06

zoo 196.08 ± 14.05 93.98 ± 7.06 198.22 ± 9.66 95.17 ± 6.55

‘wine’. This implies that in those datasets, with high probability, no K-anonymous

rules are induced for some of objects in U. Indeed we observed some objects uncov-

ered by induced rules in those datasets. Especially for dataset ‘hayes-roth’, no rule

is induced in some sets of training data when K = 15. We note that any new object

is classified into a default class D1 (the decision class of the first decision attribute

value) when no rule is induced. It is very hard to protect the privacy in dataset ‘hayes-

roth’. We also observe that the three datasets ‘hayes-roth’, ‘iris’ and ‘wine’ have only

three classes. This observation can be understood by the following reason. If we

have only a few classes, we obtain a limited number of unions of classes and we

cannot make the unions large enough to have many K-anonymous rules. Although

the classification accuracy scores of K-anonymous imprecise rules are comparable

to those of MLEM2 precise rules in datasets ‘iris’ and ‘wine’, we find that the pro-

posed approach is not always very efficient in datasets with a few classes. For such

datasets we need a lot of samples to induce a sufficient number of K-anonymous

rules.

On the contrary, the proposed approach works well in dataset ‘ecoli’ having eight

classes. We observe that very manyK-anonymous imprecise rules are induced in this

dataset. In datasets ‘car’ and ‘glass’, 10-anonymous imprecise rules perform best. We

observe that the number of rules are most at K = 10 in those datasets. We note that
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the number of rules does not increase monotonously because, as K increases, the

K-anonymity becomes stronger condition while the size of B at ⟨5⟩ of the proposed

method increases. The more the size of B, the more imprecise rules are induced at

⟨6⟩. Indeed, as k increases, the average number of rules increases in datasets ‘der-

matology’ and ‘zoo’ while it decreases in datasets ‘hayes-roth’, ‘iris’ and ‘wine’.

In other datasets, it attains the largest number at k = 10. In general, except ‘hayes-

roth’, the classifier composed of the rules induced by the proposed method preserves

the classification accuracy of the conventional classification while the induced rules

improve the anonymity.

More investigation of the proposed rule anonymization is found in [17].

5 Concluding Remarks

In this chapter, we described the rough set approaches to decision tables based on

the lower approximations of unions of k decision classes instead of lower approxima-

tions of single decision classes. We demonstrated that significantly different results

are obtained by the selection of k. In attribute reduction and importance, the selec-

tion of k depends on to what extent of imprecision is meaningful/allowable in object

classification. On the other hand, in rule induction, k can be selected about p/2 (a half

of the number of decision classes), because of the classification accuracy of the clas-

sifier. The imprecise rules have applied to privacy protection when the publication

of rules is requested.

In attribute reduction, bigger k preserves more information about classification.

Therefore, we may guess that bigger k is better. On the other hand, in rule induc-

tion, we showed that k around a half of the number of decision classes seems good.

This results are obtained when the proposed approach is applied to consistent deci-

sion tables. Therefore, the analysis of inconsistent decision tables and selection of the

best performed k are conceivable for future topics. Moreover, the proposed imprecise

rule induction method can be improved so as to reduce the number of induced rules

without big deterioration of classification accuracy. The applications and improve-

ments of the proposed approaches as well as the comparison with other multi-class

rule mining methods are other future topics.
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Pawlak’s Many Valued Information System,
Non-deterministic Information System,
and a Proposal of New Topics on Information
Incompleteness Toward the Actual
Application

Hiroshi Sakai, Michinori Nakata and Yiyu Yao

Abstract This chapter considers Pawlak’s Many Valued Information System

(MVIS), Non-deterministic Information System (NIS), and related new topics on

information incompleteness toward the actual application. Pawlak proposed rough

sets, which were originally defined in a standard table, however his research in non-

standard tables like MVIS and NIS is also seen. Since rough sets have been known

to many researchers deeply and several software tools have been proposed until now,

it will be necessary to advance from this research on a standard table to research on

MVIS and NIS, especially in regards to NIS. In this chapter, previous research is sur-

veyed and new topics toward the actual application of NIS are proposed, namely data

mining under various types of uncertainty, rough set-based estimation of an actual

value, machine learning by rule generation, information dilution, and an application

to privacy-preserving questionnaire, in NIS. Such new topics will further extend the

role of Pawlak’s rough sets.

1 Introduction

Rough sets proposed by Pawlak have been known to many researchers, and the con-

cept on a discernibility relation is applied to several research areas [5, 9, 12–14,

17, 23, 30, 31, 40, 41, 44, 49, 50]. We briefly survey the history of rough sets and

non-deterministic information at first.
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In the 1970s, a mathematical framework of information retrieval for a standard

table [20] and relational algebra [6] were investigated. Based on research of the past,

a Deterministic Information System (DIS) 𝜓 is usually considered for specifying a

standard table [26–29, 41]:

𝜓 = (OB,AT , {VALA| A ∈ AT}, f ), (1)

where OB is a finite set whose elements are called objects, AT is a finite set whose

elements are called attributes, VALA is a finite set whose elements are called attribute
values for an attribute A ∈ AT , and f is a mapping below:

f ∶ OB × AT → ∪A∈ATVALA. (2)

At the beginning of the 1980s, rough sets seem to be defined with respect to

question-answering [20] and relational algebra [6], and Pawlak also dealt with

question-answering and relational algebra in non-standard tables like Many Val-
ued Information System (MVIS) and Non-deterministic Information System (NIS).

Tables 1 and 2 are examples of MVIS [27] and NIS [24]. The keyword ‘nondetermin-

istic information’ [24] is used by Orłowska and Pawlak, and many valued information

[27] by Pawlak. The attribute values are enumerated in Table 1.

In MVIS and NIS, each attribute value is given as a set, and this set is mathemat-

ically defined by a mapping g:

g ∶ OB × AT → 2(∪A∈ATVALA). (3)

Table 1 An example of

many valued information

system [27]. Each possible

color value is enumerated

OB color
x1 blue
x2 blue, red
x3 blue
x4 blue, red
x5 blue, red, green
x6 green

Table 2 An example of

nondeterministic information

system [24]. Each attribute

value is a set of possible

values

OB a1 a2
D1 {v1, v3} {u1, u2, u3}
D2 {v2, v5} {u1}
D3 {v1, v3, v4} {u1, u2}
D4 {v1} {u1, u2}
D5 {v1, v3} {u1}
D6 {v5} {u1}
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Table 3 An example of Lipski’s incomplete information database [18]. The age of x2 is one of 52,

53, 54, 55, and 56 years old, which is non-deterministic information

OB age dept# hireyear salary
x1 [60, 70] {1,⋯ , 5} {70,⋯ , 75} {10000}
x2 [52, 56] {2} {72,⋯ , 76} (0, 20000]
x3 {30} {3} {70, 71} (0,∞)
x4 (0,∞) {2, 3} {70,⋯ , 74} {22000}
x5 {32} {4} {75} (0,∞)

For example, MVIS handles such information as that Tom can speak both English

and French by g(Tom,Language)= {English,French} [25]. We employ the conjunc-

tive interpretation for this description. On the other hand, NIS seems to be defined in

order to handle information incompleteness in tables, and we employ the disjunctive

interpretation (more correctly the exclusive disjunctive interpretation). For exam-

ple, we see g(Tom,Age)= {24, 25, 26} that Tom’s age is not certain but his age is

one of 24, 25, and 26. Based on tables with a mapping g, we can formally consider

information incompleteness in DIS.

A framework of Lipski’s incomplete information databases is known well [18,

19]. Table 3 is cited from [18]. In his framework, the purpose is to realize an actual

question-answering system based on possible world semantics [15]. Lipski proposed

a set of axioms for the equivalent query transformation and a normal form query, and

proved the soundness (a transformed query becomes a normal form query) and the

completeness (a normal form query can be transformed from a query by the set of

axioms) of the set of axioms. This set of axioms is equal to the system S4 in modal

logic [18, 19]. By using this transformation, it is possible to handle a normal form

query for any query. This causes the simplification of the query evaluation procedure,

and reduces the execution time.

Generally, if we employ possible world semantics, it will be necessary to consider

some algorithms for reducing the execution time, because there may be a huge num-

ber of possible worlds. In rule generation described in the subsequent section, the

number of possible worlds may exceed 10100. We follow Lipski’s way of thinking,

and consider rule generation based on possible world semantics later.

In the 1990s, the research trend seemed to move from question-answering to data

mining, and rough sets seemed to be employed as the mathematical framework on

data mining. Now, we enumerate research on information incompleteness during this

decade. The complexity on incomplete information and the theoretical aspect includ-

ing logic were investigated by Demri and Orłowska [7]. Then, the LERS system

was implemented by Grzymała-Busse [10–12]. We understand that the LERS system

employs a covering method for a target set, and rules are obtained as a side effect

of the covering. Furthermore, rules in incomplete information systems were defined

by Kryszkiewicz, and reduction algorithms were shown [16, 17]. In two interest-

ing pieces of research, missing values are employed instead of non-deterministic

information, and rules are defined based on some assumptions about the missing
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Fig. 1 A chart on non-deterministic information in rough sets in our opinion. The blocks with

broken line show our work. This chart is a revised version in [35]

values. However, we think that non-deterministic information describes more gen-

eral information than a missing value does, because it includes every missing value

as a special case. For example non-deterministic information such that ‘Tom’s age

is one of 24, 25, and 26’ is expressed by g(Tom,Age)= {24, 25, 26}. On the other

hand, if Tom’s age is missing, we express it by g(Tom,Age)= {0, 1, 2,⋯ , 120} by

non-deterministic information. In rule generation in NIS, we face with the problem

that the number of possible worlds becomes very huge, and we recently showed a

solution for this problem [33, 36].

In the 2000s, we have several variations of rough sets, for example dominance-
based rough sets [9], generalized rough approximations [5], covering-based rough
sets [50], etc. We have also coped with NIS, and surveyed about rough sets and non-

deterministic information [35]. Figure 1 shows our opinion. We are investigating the

issues in the blocks with broken lines.

Here, we have to remark that each author has his major part with respect to NIS

and information incompleteness, for example the first and the second authors’ Rough
Non-deterministic Information Analysis (RNIA) [32, 33, 36], the second author’s

information tables containing possibilistic values, Generalized Discernibility Rela-
tion (GDR), and Twofold Rough Approximations [21–23], and the third author’s

Three Way Decision (TWD), Multi-Granular Rough Sets (MGRS), Decision The-
oretic Rough Sets, etc. [31, 46–49]. Basically, RNIA is research toward realizing the

application software tools, and the second and the third authors’ work is research
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for establishing a new mathematical framework on rough sets. Relying on inter-

disciplinary research the authors cooperate to extend the role of Pawlak’s rough

sets in more depth. In this chapter, the application of RNIA is especially focused

on, and new topics on information incompleteness are proposed toward the actual

application.

This chapter is organized as follows: Sect. 2 surveys RNIA and some theoreti-

cal frameworks. Section 3 proposes new topics on information incompleteness, and

Sect. 4 concludes this chapter.

2 Background

This section at first simply surveys RNIA toward the actual application, then

describes the theoretical frameworks of GDR, TWD, and MGRS.

2.1 Background of RNIA

1. In RNIA, we handle NIS like Table 2 and Fig. 2. We obtain DIS by replacing

each set in NIS with a value in the set. We call such DIS a derived DIS, and we

see there is the actual DIS in all derived DISs. In Fig. 2, there are 24 (=23 × 3)

derived DISs. The definition of derived DISs is coming from the definition of

the extension by Lipski [18, 19]. Lipski introduced modal logic into incom-

plete information databases by using extensions, and axiomatized the equivalent

query transformation for question-answering.

2. A pair [Ai, vali] of attribute Ai and its attribute value vali is called a descriptor in

a table, like [color, red] and [size,m] in Fig. 2. For a decision attribute Dec, an

implication 𝜏 ∶ ∧i[Ai, vali] ⇒ [Dec, val] with an appropriate property is called

a rule in a table. Namely, any rule consists of descriptors in a table.

Fig. 2 NIS and 24 derived

DISs [36]
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3. In rule generation, we employ the usual definition of a rule in DIS [14, 28, 43,

44], and extended it to a certain rule and a possible rule in NIS below [32, 33]:

(Rule in DIS) An implication 𝜏 is a rule, if 𝜏 satisfies support(𝜏) ≥ 𝛼 and

accuracy(𝜏) ≥ 𝛽 in DIS for the given 𝛼 and 𝛽.

(Certain rule in NIS) An implication 𝜏 is a certain rule, if 𝜏 is a rule in each

derived DIS for the given 𝛼 and 𝛽.

(Possible rule in NIS) An implication 𝜏 is a possible rule, if 𝜏 is a rule in at least

one derived DIS for the given 𝛼 and 𝛽.

4. If 𝜏 is a certain rule, we can conclude 𝜏 is also a rule in the unknown actual DIS.

This property is also described in Lipski’s incomplete information databases.

Let us consider Fig. 2. For an implication 𝜏 ∶ [color, red] ⇒ [size,m], threshold

values 𝛼 = 0.3, and 𝛽 = 0.5, support(𝜏)= 3/3>0.3 and accuracy(𝜏)= 3/3>0.5 in

DIS4. This means 𝜏 is a rule in DIS4 and 𝜏 is a possible rule in NIS. However,

support(𝜏)= 1/3>0.3 and accuracy(𝜏)= 1/3<0.5 in DIS1, so 𝜏 is not a rule in

DIS1. Thus, it is concluded that 𝜏 is not a certain rule in NIS.

5. Here, we give an example on non-deterministic information and missing values.

In Tables 4 and 5, there is no information incompleteness except Tom’s age.

Since we generally see that ? may become any possible value, so we may have

an implication [age, senior] ⇒ [salary, low] from Tom’s tuple. This contradicts

the implication 𝜏 ∶ [age, senior] ⇒ [salary, high] from Mary’s tuple. Therefore,

𝜏 is not a certain rule in Table 4. However in Table 5, there are two derived DISs,

and 𝜏 is consistent in each derived DIS. Therefore, 𝜏 is a certain rule in Table 5.

6. The definition of rules in NIS seems to be natural, and it follows possible world

semantics. However, the number of all derived DISs increases exponentially for

the number of non-deterministic values. For example, there are more than 10100
derived DISs for Mammographic data set and Hepatitis data set in UCI machine

learning repository [8]. So, it will be hard to examine whether 𝜏 is a certain

rule or not, if the trivial algorithm is employed (we sequentially pick up every

derived DIS, and examine whether 𝜏 is a rule or not).

7. For this computational problem, we proved some mathematical properties [33,

36], and added these properties to the Apriori algorithm [3, 4]. (The Apriori

algorithm originally handles transaction data sets, however we can consider the

Apriori algorithm by identifying each item in the transaction data with a descrip-

tor in a table.) We named this new algorithm the NIS-Apriori algorithm, which

does not depend upon the number of derived DISs. By using this algorithm, we

provided a solution for escaping from the computational problem. The details

of the NIS-Apriori algorithm are in [33, 36, 40].

8. This NIS-Apriori algorithm preserves a logical property, namely it is sound and

complete for the defined rules [37]. If we fix a decision attribute, and two thresh-

old values 𝛼 and 𝛽, the whole set of all certain rules and possible rules is fixed.

For this fixed set, the NIS-Apriori algorithm has the next property:

(Soundness) Each implication generated by the NIS-Apriori algorithm is either

a certain rule or a possible rule. Any other implication is not generated.

(Completeness) Each certain rule and possible rule is obtained by the NIS-

Apriori algorithm.
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Table 4 An example of DIS

with a missing value
OB age salary
Tom ? low
Mary senior high

Table 5 An example of NIS OB age salary
Tom {young,middle} {low}
Mary {senior} {high}

In logic, this is seen as the most important property, and this property assures

the validity of the NIS-Apriori algorithm. In Lipski’s framework [18, 19], the

axiomatized query transformation system is also sound and complete.

9. The analysis on the computational complexity of the NIS-Apriori algorithm is

still in progress. This algorithm consists of two parts, the certain rule generation

part and the possible rule generation part, and the Apriori algorithm is applied

to each part. The calculation on the minimum support, the minimum accuracy,

the maximum support, and the maximum accuracy for each implication 𝜏 does

not depend upon the number of all derived DISs, and we can calculate them in

polynomial time [33, 36]. Therefore, we figure out that the computational com-

plexity of the NIS-Apriori algorithm is more than twice the complexity of the

Apriori algorithm. However, we can escape from the exponential order prob-

lem by using the NIS-Apriori algorithm. We actually obtained certain rules and

possible rules from tables with more than 10100 derived DISs. It will be hard to

obtain them by using the trivial method.

10. The set of implications obtained by the NIS-Apriori algorithm is equal to the

whole set of all certain rules and possible rules. This means that it is enough for

us to apply NIS-Apriori algorithm for obtaining rules in NIS. We have imple-

mented some software tools by using this algorithm. On the web page [40], the

files for details and the execution log files are uploaded.

2.2 Background of Theoretical Framework on Rough Sets

Now, we refer to our theoretical framework on rough sets. The framework named

Three Way Decision (TWD) [47] is the most common concept on information

incompleteness. For handling information incompleteness, we often depend upon

the modal concept like certainty and possibility, the minimum and the maximum, or

an optimistic view and a pessimistic view. Certain rules and possible rules in RNIA

also belong to the framework in TWD.

In NIS, we usually have a huge number of possible tables. For example in Fig. 2,

we have 24 derived DISs, and we have different equivalence relations. In Multi-

Granular Rough Sets (MGRS) [31, 49], the property on different equivalence rela-
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Table 6 An exemplary table with containing possibilistic information by a possibility distribution.

Each attribute value is given as a set of pairs of a value and it possibility

OB P Q
x1 {(a, 1.0)} {(w, 1.0), (z, 0.6)}
x2 {(a, 1.0), (b, 0.8)} {(w, 0.4), (x, 1.0)}
x3 {(b, 1.0)} {(x, 1)}

tions is clarified, and an optimistic interpretation (causing the best decision) and

a pessimistic interpretation (causing the worst decision) are proposed by the third

author. In rule generation in RNIA, we employ these concepts, namely a certain rule

is defined by an implication 𝜏 satisfying the constraint in the pessimistic interpreta-

tion for 𝜏. A possible rule is defined by an implication 𝜏 satisfying the constraint in

the optimistic interpretation for 𝜏.

We are also focusing on a variation of NIS, for example a table containing with

possibilistic information by a possibility distribution in Table 6. The second author

proposes rough sets in such tables, which we simply call research on Generalized

Discernibility Relation (GDR). We need to apply these theoretical results to the

actual application of rough sets.

3 New Topics on Information Incompleteness

In the previous research, we focused on how we obtain certain and possible rules

in NIS. Since we gave a solution for rule generation in NIS, we think that it will be

able to cope with next new topics in Fig. 3, which will extend the role of rough sets

and information incompleteness. We sequentially describe the new topics based on

Fig. 3.

Fig. 3 An overview of new

topics
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3.1 Handling Various Types of Uncertain Data

This subsection considers rule generation from various types of uncertain data in

Fig. 3.

In NIS, we employ variations inf ([A, val]) and sup([A, val]) of an equivalence

class eq([A, val]) for each descriptor [A, val] below [32, 33]:

(1) inf ([A, val]) = {x ∈ OB | g(x,A) = {val}},
(2) inf (∧i[Ai, vali]) = ∩i inf ([Ai, vali]),
(3) sup([A, val]) = {x ∈ OB | val ∈ g(x,A)},
(4) sup(∧i[Ai, vali]) = ∩i sup([Ai, vali]),
Here, g is a mapping in formula (3).

(4)

In DIS, inf ([A, val])= sup([A, val]) holds, however inf ([A, val]) ⊆ sup([A, val]) gen-

erally holds in NIS. For example in Fig. 2, inf ([color, red])= {2} and sup([color,
red])= {1, 2, 3} hold. The difference in sup([A, val]) ⧵ inf ([A, val]) means a set of

objects which may be changeable.

For an implication 𝜏 ∶ ∧i[Ai, vali] ⇒ [Dec, val], we consider sets inf (∧i[Ai, vali]),
sup(∧i[Ai, vali]), inf ([Dec, val]), and sup([Dec, val]). Then, OUTACC in formula (5)

shows a set of objects which may have the same condition of 𝜏 and different deci-

sions of 𝜏.

OUTACC = [sup(∧i[Ai, vali]) ⧵ inf (∧i[Ai, vali])] ⧵ inf ([Dec, val]) (5)

To reduce the accuracy value, we manipulate each object in OUTACC. On the other

hand, INACC in formula (6) shows a set of an object which may have the same

condition of 𝜏 and the same decision of 𝜏.

INACC = [sup(∧i[Ai, vali]) ⧵ inf (∧i[Ai, vali])] ∩ sup([Dec, val]) (6)

For increasing the accuracy value, we manipulate each object in INACC [33, 36]. In

NIS, these sets inf ([A, val]) and sup([A, val]) take an important role instead of the

equivalence class eq([A, val]) in DIS.

Referring to Fig. 4, the block with the broken line shows the procedure in the

NIS-Apriori algorithm. For a given NIS 𝛷, we obtain descriptors occurring in 𝛷

and two sets inf and sup for each descriptor by formula (4). Namely, the descriptors

and two sets inf and sup are essential in rule generation. Therefore, if we define

the descriptors and two sets inf and sup in any type of data sets, we can apply the

NIS-Apriori algorithm to these data sets.

In Fig. 5, if we obtain descriptors and two sets inf and sup, even in the different

tables and plotted data, we are able to consider rules based on the different tables. Let

us consider tables T1 and T2. Since the set of objects in T1 and the set of objects in

T2 may not be the same, we generate rules based on a set OB(T1∩T2) of all objects,

which occur in T1 and T2. We can also consider a set OB(T1∩T2 ∩⋯∩Tn) for tables
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Fig. 4 Inf and sup

information in NIS-Apriori

algorithm

Fig. 5 Unified

Apriori-based rule

generation for various types

of uncertain data

T1, T2, ⋯, Tn. Each element in OB(T1∩T2 ∩⋯∩Tn) takes the role of the primary

key. In plotted data, probably each cluster center will take the role of a descriptor.

Using this concept, we are able to handle not only table data sets but also any types

of uncertain data.

3.2 Rough Set-Based Estimation of an Actual Value in NIS

This section considers rough set-based estimation of an actual value in NIS. As for

estimation, we know statistical estimation, and we focus on the strategy of the max-
imum likelihood estimation (MLE) [1]. The idea is that ‘A sample value is obtained,

because its probability is high’. In MLE, at first we obtain a set of sample values,

and we estimate some parameters in a distribution function so as to maximize the

probability of the set of sample values.
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Based on MLE, we propose rough set-based estimation. Even though we need

some details for this proposal, we show an example in the next subsection. Thus,

here it will be described in brief. In certain rule 𝜏certain generation, a derived DIS

𝛹min (𝛹min may not be unique) which causes 𝜏certain is implicitly fixed. For 𝜏certain,

we also obtain a derived DIS 𝛹max,𝜏certain (𝛹max,𝜏certain may not be unique). In 𝛹max,𝜏certain ,

𝜏certain is obtained as a possible rule [33, 36]. Since 𝜏certain is the most reliable rule,

we should estimate each attribute value so as to cause 𝜏certain as many as possible.

This follows the strategy by MLE. Namely, we estimate 𝛹max,𝜏certain from NIS based

on 𝜏certain. We name this estimation Rough set-based estimation of actual values.
It will also be possible to consider constraints like the equivalence classes, data

dependency, and consistency. In each constraint, we have a set M
𝛾

(𝛾: constraint) of

estimated DISs, and we estimate the actual DIS as an element of ∩
𝛾
M

𝛾
. In this case,

the estimation will be dealt with as the constraint satisfaction problem [45].

3.3 Machine Learning by Rule Generation

This subsection extends the estimation concept in the previous subsection toMachine
Learning by Rule Generation (MLRG) as seen in Fig. 6. We have just proposed this

framework [38], and we show an example in this subsection.

Even though Table 7 is a toy example, it will be easy to know the framework

of MLRG. In Table 7, there are 144 (=24 × 32) derived DISs. At first, we fix the

thresholds 𝛼 to 0.3 and 𝛽 to 0.6, and the NIS-Apriori algorithm generates every

certain rule 𝜏 satisfying support(𝜏) ≥ 0.3 and accuracy(𝜏) ≥ 0.6 in each of the 144

derived DISs. The following is a part of the log file.

Fig. 6 An overview of machine learning by rule generation [38]
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Table 7 An exemplary NIS

object age dept. smoker salary
x1 {young} {first} {yes} {low}
x2 {young, senior} {first, second, third} {yes} {low}
x3 {senior} {second} {yes, no} {high}
x4 {young, senior} {second} {no} {high}
x5 {young} {first, second, third} {yes, no} {high}
x6 {senior} {third} {no} {high}

Table 8 NIS in step 2

object age dept. smoker salary
x1 {young} {first} {yes} {low}
x2 {young} {first, third} {yes} {low}
x3 {senior} {second} {no} {high}
x4 {senior} {second} {no} {high}
x5 {young} {second} {no} {high}
x6 {senior} {third} {no} {high}

File=salary2016.rs Support=0.3, Accuracy=0.6

===== 1st STEP ==========================================

===== Lower System ======================================

[4][age,senior]=>[salary,high](0.333,0.667) Objects:[3,6]

[6][dept,second]=>[salary,high](0.333,0.667) Objects:[3,4]

[10][smoker,no]=>[salary,high](0.333,1.000) Objects:[4,6]

The Rest Candidates: [[[3,1],[4,1]]]

(Lower System Terminated)

Based on the execution log, we see a certain rule 𝜏10 ∶ [smoker, no] ⇒ [salary, high]
is the most reliable implication, because the pair (0.330,1.000) of values is better. In

order to create 𝜏10 as many as possible based on the MLE strategy, we estimate no
from both g(x3, smoker)= {yes, no} and g(x5, smoker)= {yes, no}. Then, we con-

sider a certain rule 𝜏4 ∶ [age, senior] ⇒ [salary, high]. In order to create 𝜏4 as many

as possible, we estimate senior from g(x4, age)= {young, senior}. On the other hand,

we estimate young from g(x2, age)= {young, senior} so as not to make a contradic-

tion. Like this we obtain a new NIS in Step 2 (Table 8).

For Table 8, we fix the thresholds 𝛼 to 0.1 and 𝛽 to 0.4, and the NIS-Apriori algo-

rithm generates certain rules. The following is a part of the log file.

File=salary2016(STEP2).rs Support=0.1, Accuracy=0.4

===== 1st STEP ==========================================

===== Lower System ======================================
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Table 9 An estimated DIS from NIS

object age dept. smoker salary
x1 young first yes low
x2 young first yes low
x3 senior second no high
x4 senior second no high
x5 young second no high
x6 senior third no high

[1][age,young]=>[salary,low](0.333,0.667) Objects:[1,2]

[4][age,senior]=>[salary,high](0.500,1.000) Objects:[3,4,6]

[5][dept,first]=>[salary,low](0.167,1.000) Objects:[1]

[8][dept,second]=>[salary,high](0.500,1.000) Objects:[3,4,5]

[10][dept,third]=>[salary,high](0.167,0.500) Objects:[6]

[11][smoker,yes]=>[salary,low](0.333,1.000) Objects:[1,2]

[14][smoker,no]=>[salary,high](0.667,1.000) Objects:[3,4,5,6]

The Rest Candidates: [[[1,1],[4,2]]]

(Lower System Terminated)

Based on the execution log, we focus on 𝜏5 with (0.167,1.000) and 𝜏10 with

(0.167,0.500). Since 𝜏5 has a better minimum accuracy value, we try to fix attribute

values so as to generate 𝜏5 as many as possible. Thus, we estimate first from

g(x2, dept)= {first, third}, and we estimate one DIS in Table 9 from 144 DISs.

In MLRG, NIS recognizes certain rules by itself after rule generation. NIS tries

to create certain rules as many as possible. In this process, non-deterministic infor-

mation is fixed to one value, and NIS repeats this process by reducing the threshold

values 𝛼 and 𝛽 sequentially. In order to obtain new certain rules, it will be necessary

to reduce these threshold values. The selection of the threshold values will strongly

cause the result by MLRG, and we need to consider what selection of the threshold

values is proper in MLRG.

We have proposed MLRG, whose concept comes from the maximum likelihood

estimation. Even though it will be impossible to know the actual value for non-

deterministic information [18, 19], we think that MLRG will give us a plausible

estimation.

3.4 Information Dilution

We consider generating NIS from DIS intentionally in Fig. 3. We add noisy infor-

mation to DIS, and generate NIS for hiding the actual information. NIS 𝛷 is seen as

a diluted DIS 𝜓 , and we can hide the actual values in 𝜓 by using 𝛷. We name this
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Fig. 7 Formalization of information dilution with constraint cited from [34]

Table 10 An exemplary DIS

𝛹
OB A B C D
1 3 1 1 1
2 2 1 1 1
3 1 1 1 2
4 3 1 2 1
5 3 1 1 1
6 2 2 2 2
7 1 2 1 2
8 2 2 2 2

method of hiding Information Dilution by non-deterministic information as seen in

Fig. 7. We are going to apply this idea to data hiding and privacy-preserving [2].

Reduction is one of the most important concepts in rough sets, and we remove

any redundant information from each table by reduction. Pawlak’s original reduction

is defined by preserving the consistency of a data set [28], and this is extended to

reduction with the preservation of lower and upper approximations [13], etc. On the

other hand, in dilution we add some noisy information to some attribute values. We

may say that dilution is inverse-reduction, and we consider a constraint that each rule

in DIS is obtained as a possible rule in NIS in Fig. 7.

Here, we consider rules defined by support(𝜏) > 0 and accuracy(𝜏)= 1.0 in DIS

𝛹 . Although we omit the details of the dilution algorithm, the set of rules in 𝛹

(Table 10) is equal to the set of possible rules in 𝛷 (Table 11). Namely, 𝛷 is a diluted

NIS from DIS 𝛹 with preserving the same rules. The details of this example are in

[34]. As for dilution, even though we have shown such examples, further research is

now in progress. Information dilution will also be the next topic in rough sets (Fig. 7).
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Table 11 NIS 𝛷 diluted from 𝛹

OB A B C D
1 {3} {1, 2} {1, 2} {1}
2 {2} {1} {1} {1}
3 {1, 2, 3} {1} {1} {2}
4 {1, 2, 3} {1} {2} {1}
5 {1, 2, 3} {1, 2} {1, 2} {1, 2}
6 {2} {1, 2} {2} {2}
7 {1} {1, 2} {1, 2} {2}
8 {1, 2, 3} {2} {1, 2} {2}

Fig. 8 A chart on a privacy-preserving questionnaire

3.5 Application to a Privacy-Preserving Questionnaire

Let us consider rule generation from DIS and NIS in Fig. 8. We have implicitly coped

with the block with the broken lines, namely DIS and NIS are given. For given NIS,

we investigated how we generate rules in order to know the tendency and the property

of a data set.

Now, we consider the application of NIS to the privacy preserving questionnaire,

which consists of three-choice question or multiple-choice question. In question-

naire, we may respond personal information, which the organizer of the question-

naire should deal with safely. However, there are several cases of information leaks,

so it is necessary for the organizer to pay attention to such questionnaire.

If we answer ‘either A or B’ instead of the actual choice A, we intentionally

dilutes our choice. This will be the similar concept on the 2-anonymity [2], and non-

deterministic information will be desirable for preserving each respondent’s informa-
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tion. Since we can generate rules from NIS now, we can consider this new question-

naire in Fig. 8 [39]. In the usual case, the actual table 𝛹 is obtained, and the organizer

acquires the tendency of all respondents by using rules in 𝛹 . On the other hand in

our proposal, 𝛹 is diluted to one DIS in all derived DISs from 𝛷, and the organizer

knows the tendency by using certain and possible rules. For knowing the tendency of

respondents, 𝛹 will be more suitable than 𝛷. However, 𝛷 is more suitable than 𝛹 for

information security. Like this non-deterministic information will take an important

role in information security, and we propose the next questionnaire.

(A privacy-preserving questionnaire) Usually, each respondent answers one choice

from the multiple-choice question. However, each respondent may answer non-

deterministic information like ‘either A or B’ from the multiple choices, if the ques-

tion is inconvenient for him. It is possible to know the tendency of all respondents

by using certain rules and possible rules in 𝛷. Even though rules in 𝛷 may not be

clearer than rules in 𝛹 , 𝛷 is more suitable than 𝛹 for data security.

4 Concluding Remarks

This chapter surveyed rough sets and non-deterministic information, and consid-

ered the topics related to non-deterministic information toward the actual applica-

tion. Recently, we realized the software tool NIS-Apriori in SQL [40, 42], which is

implemented by the procedures in SQL. The environment for analyzing NIS is get-

ting better, so we will be able to cope with proposing topics on NIS. We think such

topics on NIS will further extend the role of Pawlak’s rough set.

Acknowledgements The first author is grateful to Prof. Shusaku Tsumoto for his comments on the

privacy-preserving questionnaire. He also thanks Prof. Dominik Ślęzak for his guidance on SQL.

This work is supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant

Number 26330277.

References

1. Aldrich, J.: R. A. Fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 12(3),

162–176 (1997)

2. Aggarwal, C., Yu, S.: A general survey of privacy-preserving data mining models and algo-

rithms. In: Aggarwal, C., Yu, S. (eds.) Privacy-Preserving Data Mining, Models and Algo-

rithms, pp. 11–52. Springer (2008)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:

Bocca, J.B., Jarke, M., Zaniolo, C (eds.) Proceedings of VLDB’94, pp. 487–499. Morgan Kauf-

mann (1994)

4. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I.: Fast discovery of associ-

ation rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT

Press (1996)

5. Ciucci, D., Flaminio, T.: Generalized rough approximations in PI 1/2. Int. J. Approximate Rea-

soning 48(2), 544–558 (2008)



Pawlak’s Many Valued Information System, Non-deterministic . . . 203

6. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),

377–387 (1970)

7. Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference. Complexity. An

EATCS Series, Springer, Monographs in Theoretical Computer Science (2002)

8. Frank, A., Asuncion, A.: UCI machine learning repository. Irvine, CA: University of Califor-

nia, School of Information and Computer Science. http://mlearn.ics.uci.edu/MLRepository.

html (2010)

9. Greco, S., Matarazzo, B., Słowiński, R.: Granular computing and data mining for ordered data:

The dominance-based rough set approach. In: R.A. Meyers (ed.) Encyclopedia of Complexity

and Systems Science, pp. 4283–4305. Springer (2009)

10. Grzymała-Busse, J. W., Werbrouck, P.: On the best search method in the LEM1 and LEM2

algorithms. In: E. Orłowska (ed.) Incomplete Information: Rough Set Analysis, Studies in

Fuzziness and Soft Computing, vol. 13, pp. 75–91. Springer (1998)

11. Grzymała-Busse, J.W.: Data with missing attribute values: Generalization of indiscernibility

relation and rule induction. Trans. Rough Sets 1, 78–95 (2004)

12. Grzymała-Busse, J., Rząsa, W.: A local version of the MLEM2 algorithm for rule induction.

Fundamenta Informaticae 100, 99–116 (2010)

13. Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set

approach and attribute reduction. Int. J. Approximate Reasoning 50(8), 1199–1214 (2009)

14. Komorowski, J., Pawłak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial, In: Pal, S.

K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Method for Decision Making, pp.

3–98. Springer (1999)

15. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94

(1963)

16. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inf. Sci. 112(1–4),

39–49 (1998)

17. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113(3–4), 271–292

(1999)

18. Lipski, W.: On semantic issues connected with incomplete information databases. ACM Trans

Database Syst. 4(3), 262–296 (1979)

19. Lipski, W.: On databases with incomplete information. J. ACM 28(1), 41–70 (1981)

20. Marek, W., Pawłak, Z.: Information storage and retrieval systems: Mathematical foundations.

Theor. Comput. Sci. 1(4), 331–354 (1976)

21. Nakata, M., Sakai, H.: Lower and upper approximations in data tables containing possibilistic

information. Trans. Rough Sets 7, 170–189 (2007)

22. Nakata, M., Sakai, H.: Applying rough sets to information tables containing possibilistic val-

ues. Trans. Comput. Sci. 2, 180–204 (2008)

23. Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information. Int. J.

Gen. Syst. 42(6), 546–571 (2013)

24. Orłowska, E., Pawłak, Z.: Representation of nondeterministic information. Theoret. Comput.

Sci. 29(1–2), 27–39 (1984)

25. Orłowska, E.: Introduction: What you always wanted to know about rough sets, In: Orłowska, E

(ed.) Incomplete Information: Rough Set Analysis, Studies in Fuzziness and Soft Computing,

vol. 13, pp. 1–20. Springer (1998)

26. Pawłak, Z.: Information systems theoretical foundations. Inf. Syst. 6(3), 205–218 (1981)

27. Pawłak, Z.: Systemy Informacyjne: Podstawy Teoretyczne (In Polish), p. 186. WNT Press

(1983)

28. Pawłak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, p. 229. Kluwer Acad-

emic Publishers (1991)

29. Pawłak, Z.: Some issues on rough sets. Trans. Rough Sets 1, 1–58 (2004)

30. Polkowski, L., Skowron, A. (Eds.): Rough sets in knowledge discovery 1: Methodology and

applications. In: Studies in Fuzziness and Soft Computing, vol. 18, p. 576. Springer (1998)

31. Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: A multi-granulation rough set. Inf. Sci.

180, 949–970 (2010)

http://mlearn.ics.uci.edu/MLRepository.html
http://mlearn.ics.uci.edu/MLRepository.html


204 H. Sakai et al.

32. Sakai, H., Okuma, A.: Basic algorithms and tools for rough non-deterministic information

analysis. Trans. Rough Sets 1, 209–231 (2004)

33. Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and apriori algorithm in non-deterministic

information systems. Trans. Rough Sets 9, 328–350 (2008)

34. Sakai, H., Wu, M., Yamaguchi, N., Nakata, M.: Rough set-based information dilution by non-

deterministic information. In: Ciucci, Davide, et al. (eds.) Proceedings of RSFDGrC2013, vol.

8170, pp. 55–66. Springer, LNCS (2013)

35. Sakai, H., Wu, M., Yamaguchi, N., Nakata, M.: Non-deterministic information in rough sets:

A survey and perspective. In: Pawan Lingras et al. (eds.) Proceedings of RSKT2013 vol. 8171,

pp. 7–15. LNCS, Springer (2013)

36. Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete information data-

bases and non-deterministic information systems. Fundamenta Informaticae 130(3), 343–376

(2014)

37. Sakai, H., Wu M.: The completeness of NIS-Apriori algorithm and a software tool getRNIA.

In: Mori, M. (ed.) Proceedings of International Conference on AAI2014, pp. 115–121. IEEE

(2014)

38. Sakai, H., Liu, C.: A consideration on learning by rule generation from tables with missing

values. In: Mine, T. (ed.) Proceedings of International Conference on AAI2015, pp. 183–188.

IEEE (2015)

39. Sakai, H., Liu, C., Nakata, M., Tsumoto, S.: A proposal of the privacy-preserving question-

naire by non-deterministic information and its analysis. In: Proceedings of IEEE International

Conference on Big Data, pp. 1956–1965 (2016)

40. Sakai, H.: Execution logs by RNIA software tools. http://www.mns.kyutech.ac.jp/~sakai/

RNIA (2016)

41. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems.

In: Słowiński, R. (ed.) Intelligent Decision Support—Handbook of Advances and Applications

of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers (1992)

42. Ślęzak, D., Sakai, H.: Automatic extraction of decision rules from non-deterministic data

systems: Theoretical foundations and SQL-based implementation. In: Ślęzak, D., Kim, T.H.,

Zhang, Y., Ma, J., Chung, K.I. (eds.) Database Theory and Application, Communications in

Computer and Information Science, vol. 64, pp. 151–162. Springer (2009)

43. Tsumoto, S.: Knowledge discovery in clinical databases and evaluation of discovered knowl-

edge in outpatient clinic. Inf. Sci. 124(1–4), 125–137 (2000)

44. Tsumoto, S.: Automated extraction of hierarchical decision rules from clinical databases using

rough set model. Expert Syst. Appl. 24, 189–197 (2003)

45. Wikipedia: Constraint satisfaction problem. https://en.wikipedia.org/wiki/Constraint_

satisfaction_problem

46. Yao, Y.Y.: A note on definability and approximations. Trans. Rough Sets 7, 274–282 (2007)

47. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180, 314–353 (2010)

48. Yao, Y.Y.: Two sides of the theory of rough sets. Knowl. Based Syst. 80, 67–77 (2015)

49. Yao, Y.Y., She, Y.: Rough set models in multigranulation spaces. Inform. Sci. 327, 40–56

(2016)

50. Zhu, W.: Topological approaches to covering rough sets. Inform. Sci. 177(6), 1499–1508

(2007)

http://www.mns.kyutech.ac.jp/~sakai/RNIA
http://www.mns.kyutech.ac.jp/~sakai/RNIA
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem


Part III
Rough Set Theory



From Information Systems to Interactive
Information Systems

Andrzej Skowron and Soma Dutta

Abstract In this chapter we propose a departure from classical notion of informa-

tion systems. We propose to bring in the background of agent’s interaction with

physical reality in arriving at a specific information system. The proposals for gen-

eralizing the notion of information systems are made from two aspects. In the first

aspect, we talk about incorporating relational structures over the value sets from

where objects assumes values with respect to a set of attributes. In the second aspect,

we introduce interaction with physical reality within the formal definition of infor-

mation systems, and call them as interactive information systems.

1 Introduction

Professor Zdzisław Pawlak published several papers [8–14, 16, 18–24, 26, 27] as

well as a book (in Polish) [25] on information systems (see Figs. 1, 2, 3 and 4). The

first definition of information systems, as proposed by him, appeared in [18, 19].

An information system was defined as a tuple consisting of a finite set of objects

and a set of attributes defined over the set of objects with values in attribute value

sets. More formally, an information system is a tuple

IS = (U,A , {fa ∶ U → Va}a∈A ), (1)
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Fig. 1 The first papers on information systems by Zdzisław Pawlak [18, 19]

Fig. 2 Further papers on information systems by Zdzisław Pawlak et al. [8–14]
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Fig. 3 Further papers on information systems by Zdzisław Pawlak [21–23] (CONT)

Fig. 4 Book (in Polish) dedicated to information systems by Zdzisław Pawlak [25]

where

∙ U is a finite set of objects,

∙ A is a finite set of attributes,

∙ any attribute a from A can be characterized as a function fa from U to a value set

Va corresponding to a.

In the mentioned papers and in the book, Pawlak investigated different kinds of

information systems such as deterministic, nondeterministic, information systems

with missing values, probabilistic, stochastic as well as distributed. From the point

of view of rough sets, information systems are used for constructive definition of

indiscernibility relation. Then the indiscernibility or similarity classes can be tuned

to relevant ones (in order to get relevant indiscernibility classes, also called elemen-

tary granules), e.g., by selecting or extracting relevant attributes. On the basis of

information systems (as data sets) data models are induced using different methods,

in particular based on rough sets.

In this chapter, we propose some generalizations of information systems.
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First we will consider a bit more general definition of the value sets for attributes.

In particular, together with the value set Va for any attribute a, we will also consider

a relational structure Ra over Va. These Ra’s are not restricted to the case of the

relational structure consisting of only the equality relation on Va’s, as it was origi-

nally considered by Pawlak. More general cases can include a linear order over Va as

well as more complex relations with arity greater than 2 [34]. Together with the rela-

tional structure Ra we consider a language La of formulas defining (under a given

interpretation over Ra) subsets of Va. It is to be noted, that such formulas can be

obtained from formulas with many free variables by substituting a constant for each

of them except one. Some relevant formulas from this set of formulas become useful

as they can play a role in inducing data models. For example, one can consider an

attribute with real values and formalize a discretization problem. In this case for any

real-valued attribute a we can consider a set of formulas {x ∈ [c, d]}, where x is a

free variable corresponding to the attribute a taking real values and c, d are constants

defining an interval. Then we search for a minimal set of such formulas discerning

in the optimal by decisions labeling the attribute values and defining the partition of

the real numbers [15]. Another example may be related to the dominance rough set

approach (see, e.g., [3, 35]), where linear orders are considered on attribute value

sets.

In this chapter, we also introduce a network of information systems over such

generalized information systems. This is done analogous to the notion of informa-

tion flow approach proposed by Barwise and Seligman [1, 32, 33]. However, first

we consider different kinds of aggregation of relational structures corresponding to

attributes from a given set of attributes A. Then we define a set of formulas L which

can be interpreted over such relational structures. In this context, one may introduce

relations with many arguments. Discovery of such kinds of relevant relations, based

on purpose, is the task of relational learning [2].

Our final stage of generalization of information systems concerns of interactions

of information systems with the environment. This issue is strongly related to the dis-

cussed interactive granular computations (see e.g., [4–7, 28–31]), where information

systems are treated as open objects, which are continuously evolving based on the

interactions with the environment. This extension can be used as a basis for develop-

ing Perception Based Computing (PBC) [17, 36] and for developing the foundations

of Interactive Granular Computing (IGrC) [4–7, 28–31].

The chapter is structured as follows. In Sect. 2, we first discuss the roles of rela-

tional structures over the value sets corresponding to attributes of an information sys-

tem. We present different examples to elucidate the fact that aggregation of such rela-

tional structures plays an important role in representation and granulation of data of

an information system, which often contains huge and scattered data. Section 3 intro-

duces the notion of interactive information system as a generalization of the notion

of IS (cf. Eq. (1)) presented at the beginning of this chapter. In the last section, as

concluding remarks, we add some discussion regarding incorporation of some other

finer aspects of interactive information systems.
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2 Role of Relational Structures in Aggregation
of Information Systems

Depending on purpose we need to gather information of different nature, such as

images of some object as well as quantitative values for some features of the same

object, together in order to make an overall understanding about the object. So, values

corresponding to different features as well as the intra-relational structures among

the values become important. The aim of this section is to present different kinds of

aggregation of relational structures, which we need to perform in order to aggregate

information collected from, and for, different perspectives.

The chapter is organized so that, in one aspect we would talk about relations over

the value sets of the attributes of an information system, and in another aspect we

also would like to address the issue of the relational objects lying in the real world,

about which we only able to gather some information through some attributes and

their values. This aspect of real world will be discussed in the next section where

we propose to introduce interaction with physical reality in the process of obtain-

ing an information system. A physical object o, being in a complex relation with

other objects in the real physical world, sometimes cannot be directly accessed. We

sometimes identify the object with some of its images or with some of its parts or

components, and try to gauge information about the object with respect to some

parameters. One possible way of measuring the real state of an object through some

other state is proposed through the notion of complex granule in [4–7, 28–31]. Here

we will address this introducing a notion of infomorphism in the line of [ ], and call

that interaction with physical reality. In this section, we only stick to the relations

among the values of attributes using which we learn about objects in the physical

world. Let us start with some examples in order to make the issue more lucid.

LetArect = {a, b, c} be a set of attributes representing respectively length, breadth,

and angle between two sides of a rectangle. Clearly, a and b are of the same nature

and can assume values from the same set, say Va = [0, 300] in some unit of length,

and be endowed with the same relation ≤. Let us call the relational structure over the

values for the attribute a as Ra = (Va,≤), which is same as Rb too, in this context.

Let Vc = [0◦, 180◦] and Rc = (Vc,=). Now we can construct a language La, b (cf.

Table 1).

Table 1 Language La, b

Variable: x1
Constants: any value from Va

Function symbol: a, b
Relational symbol: ≤

Terms: (i) Variable and constants are terms (ii) a(x1) and b(x1) are terms

Examples of wffs: b(x1) ≤ a(x1) is an atomic wff
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Table 2 Language Lc

Variable: x1
Constants: any value from Vc

Function symbol: c
Relational symbol: =

Terms: (i) Variable and constants are terms (ii) c(x1) is a term

Examples of wffs: c(x1) = 90◦ is an atomic wff

In particular, we may call b(x1) ≤ a(x1), which represents breadth of x1 is less
or equal to the length of x1, as 𝜙11(x1). Considering that the variable x1 is ranging

over a set of objects, say O , values from Ra = (Va,≤) can be assigned to a(x1), b(x1),
and thus the semantics of La,b can be given over the relational structure Ra. In the

similar way we can have the language Lc, semantics of which can be given over the

relational structure Rc (cf. Table 2).

Before passing on to the next table for Lc, it is to be noted that, the values of

terms a(x1), b(x1), belonging to Va and Vb respectively, are obtained by some agent

ag observing a complex granule (c-granule, for short) [4–7, 28–31] grounded on a

configuration of physical objects. Relations among the parts of the configuration can

be perceived partially by the c-granule through a(x1), b(x1). Some objects in the con-

figuration have states which may be directly measurable, and those can be encoded

by elements of Va and Vb. They can be be treated as values, e.g., a(x1), b(x1) of the

example, under the assumption that they represent states of one distinguished object

o in the configuration. They considered as a current value of x1, identified by some

mean with o. However, the states of o may not be directly measurable. Information

about not directly measurable states may be obtained using relevant interactions with

physical objects pointed by the c-granule, and making it possible to transmit infor-

mation about such states and encode it using measurable states. In this chapter we

represent interactions of agents with the physical reality using infomorphisms [1].

Like previous case, here also we can assume 𝜙12(x1) as the formula c(x1) = 90◦,

which represents angles between two sides of x1 is 90◦. So, we have two relational

structures, namelyRa = (Va,≤) andRc = (Vc,=), on which respectively the formulas

𝜙11(x1) and 𝜙12(x1) are interpreted with respect to the domain of interpretation of x1,

which can be considered as a set of objects. The value of the term c(x1) is obtained in

an analogous way as mentioned before for a(x1), b(x1). Now, the question arises how

can we combine these two relational structures to gather information about whether

an object is rectangle or not. Here, as the attributes a, b, c are relevant for the same

sort of objects, we may simply extend the language combining all the components

of La, b and Lc together (cf. Table 3).

In Lrect instead of relational symbols ≤ and =, one can also consider a new three-

place relational symbol r31 such that r31(a(x1), b(x1), c(x1)) holds for some object from

the domain of x1 if b(x1) ≤ a(x1) (i.e., 𝜙11(x1)) is true over Ra and c(x1) = 90◦ (i.e.,
𝜙12(x1)) is true over Rc. So, assuming a set of objects as the domain of interpretation
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Table 3 Language Lrect: combination of La, b and Lc

Variable: x1
Constants: any value from Va ∪ Vc

Function symbol: a, b, c
Relational symbol: ≤, =

Terms: (i) Variable and constants are terms (ii) a(x1), b(x1), c(x1) are terms

Examples of wffs: b(x1) ≤ a(x1), c(x1) = 90◦ are atomic wffs

Table 4 Language Ltri: combination of Ld and Le

Variable: x2
Constants: any value from Vd ∪ Ve

Function symbol: d, e
Relational symbol: ≤, ⪯
Terms: (i) Variable and constants are terms (ii) d(x2), e(x2) are terms

Examples of wffs: d(x2) = 1, e(x2) = 180◦ are atomic wffs.

for x1, this new language Lrect can be interpreted over the combined relational struc-

ture Rrect = (Vrect, {≤,=}), where Vrect = Va ∪ Vc. We may call r31(a(x1), b(x1), c(x1))
as 𝜙13(x1).

Let us consider another context where the attributes are relevant for a triangle-

shaped object. So, we consider Atri = {d, e}, where d stands for three-sided and e
stands for sum of the angles. Again the relational structures suitable for the values of

the attributes are respectively Rd = ({0, 1},≤) and Re = ([0◦, 180◦],⪯). It is to be

noted that ⪯ is the same relation as that of the real numbers (i.e., ≤). We use different

symbol in order to emphasize that the values relevant for d and e are of different

types. Now as shown in the previous case, we can construct different languages over

the different relations from Rd and Re, and combining them together we can have

the language Ltri (cf. Table 4).

In this context too, in Ltri, instead of two relation symbols ≤, ⪯, one can take

a two-place relation symbol r21 such that for some object from the domain of x2,

r21(d(x2), e(x2)) holds if with respect to that object d(x2) = 1 and e(x2) = 180◦ are

true over Rtri = (Vtri, {≤,⪯}) where Vtri = Vd ∪ Ve. As above, r21(d(x2), e(x2)) may

be called 𝜙23(x2), where the values of d(x2) and e(x2) are obtained in an analogous

way as before.

In the above two cases we have obtained the extended relational structures Rrect
and Rtri by combining the respective relational structures for each attribute from

Arect and Atri. In some context, we need to gather information about objects whose

domain consists of tuples of elements of different natures. As an example we can

consider a situation where we need to collect information about objects which are

prisms with rectangular bases and triangular faces. So, we need to have a language

over A = Arect ∪Atri, and contrary to the earlier cases of combining languages here
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Table 5 Language Lprism: aggregation of Lrect and Ltri

Variable: x = (y, z)
Constants: any value from Vrect ∪ Vtri, x1, x2, and 𝜙13(x1), 𝜙23(x2)
Relational symbol: r11, r21
Terms: (i) Variable and constants are terms

Wffs: r11((x1, x2), 𝜙13(x1)), r21((x1, x2), 𝜙23(x2)) are atomic wffs

we need to aggregate information of two different languages Lrect and Ltri with

different domains of concern focusing on different parts of an object. In this context,

we would construct the language Lprism one level above the languages Lrect and

Ltri, and the variables, constants, and wffs of those languages will be referred to as

constant symbols of the language of Lprism (cf. Table 5).

Here we have introduced a pair of variables (y, z) to represent a single object with

respectively first component for the base and the second component for the face, and

(y, z) is assumed to range over a set of objects of the form o = (ob, of ) where ob’s are

taken from the domain of interpretation of Lrect (i.e., objects on which x1 ranges),

and of ’s from that of Ltri (i.e., objects on which x2 ranges). So, r11((x1, x2), 𝜙13(x1))
is introduced to represent that an object, characterized by the pair of components

base and face (x1, x2), has the property of a prism with rectangular base. On the

other hand, r21((x1, x2), 𝜙23(x2)) is introduced to represent that (x1, x2) is a prism

with triangular face. Let us call r11((x1, x2), 𝜙13(x1)) = 𝛼 and r21((x1, x2), 𝜙23(x2)) =

𝛽. Then with respect to the set of objects of the form (ob, of )’s, 𝛼 and 𝛽 are true over

RA for the subsets of objects given by {(ob, of ) = o ∶ ob ∈ ||𝜙13(x1)||RArect
} and

{(ob, of ) = o ∶ of ∈ ||𝜙23(x2)||RAtri
} respectively.

Let us now come to the discussion of how these relational structures over the val-

ues for attributes and the respective languages help in the representation of different

purposes of information systems.

Let us assume that we have a technical set-up to abstract out images of some parts

of the objects appearing in front of a system. Two cameras are set up in a way that

any object appearing to the system through a specified way can have their images

recorded in the database of the system through some way of measurements. Let the

first camera be able to capture the image of the base of the object and the second cam-

era be able to capture the face of the object. So, there are two information systems,

namely ISrect = (B,Arect, {Ra}a∈Arect
, {fa ∶ B ↦ Va}a∈Arect

) where Ra = (Va,≤) =

Rb and Rc = (Vc,=), and IStri = (F,Atri, {Rd}d∈Atri
, {fd ∶ F ↦ Vd}d∈Atri

) with Rd
= (Vd,≤) and Re = (Ve,⪯). At the first level we may need to gather information from

both ISrect and IStri in a single information system, say ISprism, in a way that a copy

of each of ISrect and IStri is available. So, we construct a sum of information sys-

tems as ISprism = (B × F, Aprism, Rprism, {fa ∶ B × F ↦ Vprism}a∈Aprism
) where Aprism

= ({1} ×Arect) ∪ ({2} ×Atri),Vprism =Vrect ∪ Vtri, and the relational structureRprism
= (Vprism, {r}r∈Rrect∪Rtri

).
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Fig. 5 ISprism: sum of the

information systems ISrect
and IStri

Table 6 Sum of information systems

(1, a) (1, b) (1, c) (2, d) (2, e)

(ob, of ) fa(ob) fb(ob) fc(ob) fd(of ) fd(of )
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(o′b, o
′
f ) fa(o′b) fb(o′b) fc(o′b) fd(o′f ) fd(o′f )

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Language over the relational structure comes into play when we want to have an

information system with an added constraint. Let us assume that from all possible

three-dimensional objects from B × F, in the above information system ISprism, we

are interested in the chunk which has objects with rectangular bases and triangular

faces. We can construct an information system imposing a constraint from the lan-

guage Lprism, and thus have the constraint-based information system, viz., CISprism
= ((B × F) ∩ (||𝛼||RA

∩ ||𝛽||RA
), Aprism, Rprism, {fa ∶ B × F ↦ Vprism}a∈Aprism

).

Simultaneous consideration of each relational structure included in Rprism =

(Vprism, {r}r∈Rrect∪Rtri
) becomes useful when looking at values for one object, say

(ob, of ) one needs to predict about another object, say (o′b, o
′
f ). Let us consider the

following situation where we have the information aggregated from ISrect and IStri in

the information system ISprism (cf. Fig. 5 and Table 6).

Let us assume that the values corresponding to each attribute for o = (ob, of )
are known. A new object o′ = (o′b, o

′
f ) appears to the system for which some of the

values are missing or because of some technical error measurements of values are

not precise. So, one may need to check how value corresponding to each attribute

of o is related to the respective value of the other object o′. Let (v1o, v
2
o, v

3
o, v

4
o, v

5
o)

be the tuple of values corresponding to the attributes (a, b, c, d, e) for object o, and

(v1o′ , v
2
o′ , v

3
o′ , v

4
o′ , v

5
o′ ) be that of o′. Now on Πa∈A Va, the cartesian product of the value

sets corresponding to each attributes of A , we can define a relation r such that

r((v1o, v
2
o, v

3
o, v

4
o, v

5
o), (v1o′ , v

2
o′ , v

3
o′ , v

4
o′ , v

5
o′ )) if and only if the following relations hold

among their components.
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(i) r1,2((v1o, v
2
o), (v

1
o′ , v

2
o′ )) iff v1o ≤ v2o and v1o′ ≤ v2o′ ,

(ii) r3(v3o, v
3
o′ ) iff |v3o − v3o′ | ≤ 𝜖 for some 𝜖 > 0,

(iii) r4(v4o, v
4
o′ ) iff v4o = v4o′ , and

(iv) r5(v5o, v
5
o′ ) iff |v5o − v5o′ | ≤ 𝛿 for some 𝛿 > 0.

So, based on the relational structure RA = (Πa∈A Va, r) we can have the information

system (B × F, Πa∈A a, RA , f ∶ B × F ↦ Πa∈A Va), which will allow us to cluster

objects together, satisfying the relation r.
So, in this section we observe different types of aggregation of relational struc-

tures, starting from simple combination of all value sets and their relations in a single

aggregated relational structure to cartesian product of value sets and some new rela-

tions defined over the relations of the component value sets. We also notice that how

based on the requirement of presentation of data in a form of a table, aggregation

of those relational structures, and languages interpreted over them become useful.

This gives a hint that we need to depart from the classical way of presenting an infor-

mation system as IS = (U,A , {fa ∶ U ↦ Va}a∈A ) to (U,A , {Ra}a∈A , {fa ∶ U ↦
Va}a∈A ), where Ra = (Va, {rai}ki=1).

In the next section, we would present another aspect of generalizing the classical

notion of information systems bringing in a component of interaction of an infor-

mation system, via the respective agent, with the physical reality, and letting the

information system to evolve with time.

3 Interactive Information Systems

Information system (cf. Eq. (1)) allow us to present the information about the real

world phenomenon in the form a table with object satisfying certain properties to

certain degrees. Moreover, as discussed in the previous section, through information

systems we can also present how two objects are related based on the interrelation

among the values/degrees they obtain for different parameters/attributes/properties.

But presentation of the reality through an information system is subjective to the

agent’s perspective towards viewing, perceiving the reality, which can change with

time. At some time t an agent can manage to access some parts of a real object or

phenomenon through some process of interactions with the real physical world and

abstract out some relevant information, which then can be presented in the form of

an information system. That this interaction with reality, based on the factors of time

and accessibility, plays a great role in the presented form of an information system

cannot be ignored. Two information systems approximating the same real phenom-

enon may yield quite different views. Thus, incorporating the process of interactions,

through which one obtains a particular information system, may help in understand-

ing the background of the presented data. In this regard, below we propose a notion

of interactive information system.

As presented the definition of IS in Sect. 1, we start with an information system

ISt = (Ot,At, {fa ∶ Ut ↦ Va}a∈At
) at time t, and trace back to the interactions with
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the physical reality causing the formation of such an ISt. The idea is to incorporate

those interactions with reality in the mathematical model of IS and have an interactive

information system, which we may call ISAPR, an information system approximating
the physical reality. Let at time t, there be an existing physical reality which is nothing

but a complex network of objects and their interrelations.

1. We assume physical reality at time t, denoted as PRt, as PRt = (U′
t ,R), where

U′
t is the set of real objects at time t, and R is a family of relations of different

arities on U′
t . The time point t can be considered as the time related to the local

clock of the agent involved in the process of interaction with the physical reality.

2. A part of PRt is a subrelational structure (U#,R#) where U# ⊆ U′
t and R# (⊆ R)

is a subfamily of relations over U#.

3. The set of all subrelational structures at time t is denoted by SPRt
. It is to be noted

that for any subset of U′
t endowed with the set of relations from R, restricted

to that subset, is a member of SPRt
. So, SPRt

= {(U#,R#) ∶ U# ∈ P(U′
t ),R# =

R|U#
}.

4. At time t, by some means, we can access some information about some parts of

the reality. As an instance we can consider a real tree as an object of the physi-

cal world, and some houses, park surrounding it as a description of a relational

structure among objects in the reality. This we may call (U#,R#), a fragment of

the real world. Now when an agent captures some images of the tree using a cam-

era, which is another physical object, some states of the real tree are recorded.

The real object tree may then be identified with those states or images in the

agent’s information system. So, we introduce a function ARt ∶ SPRt
↦ P(S∗),

where Ot ⊆ S∗, and call it a function accessing reality at time t. S∗ may be inter-

preted as a set of states, which can be accessible by some means, and Ot is the set

of states which is possible to access at time t. The role of the camera here is like a

tool, which mathematically can be thought of as the function ARt, through which

we access the reality. If instead of a standard camera, one uses a high-resolution

camera, then the same fragment of a real physical world may be accessed bet-

ter than before. So, change of ARt may give different perspectives of the same

physical object.

5. The pair (SPRt
,ARt) can also be viewed as an information system. For any pair

(U#,R#) ∈ SPRt
, the first component of the pair can be considered as object and

the second can be considered as the set of relations characterizing the object in

the physical reality. Given such a pair (U#,R#), the function ARt, which may be

a tool (like camera) to interact with the physical reality, basically selects out a

set of states, say {s1, s2,… , sm} (⊆ S∗) representing the object (U#,R#). That is,

we can visualize the information system as follows (Table 7).

Table 7 Information system

corresponding to (SPRt
,ARt)

ARt . . .

(U#,R#) {s1, s2,… , sm} . . .

⋮
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6. When we fix such a function ARt, i.e., the mean by which a part of the real world

is accessed, we can identify different parts of the real world, say (U#,R#) with

the respective set of states {s1, s2,… , sm} obtained through the function.

Let us call StatesARt
(SPRt

) = ∪(U#,R#)∈SPRt
ARt(U#,R#). So, we may consider

the physical reality with respect to a specific accessibility function ARt as an

information system PRARt
= (SPRt

, StatesARt
, ⊧PRt

), where (U#,R#) ⊧PRt
s iff

s ∈ ARt(U#,R#) ∩ Ot.

7. On agent’s side there is EISt = (P(S∗),At, ⊧ISt ), which is grounded on the infor-

mation system ISt = (Ot,At, {fa ∶ Ot ↦ Va}a∈At
). In EISt agent also consid-

ers states belonging to S∗ − Ot, which are potentially measurable with respect

to some parameters, but not measured at time t. So, the satisfaction relation is

defined with respect to the information available at ISt, and given by {s1, s2,
… , sl} ⊧ISt a iff for all i = 1, 2,… , l, fa(si) ∈ Va.

8. Now an interaction of the agent with PRt, the physical reality at time t, can be

presented as an infomorphism from EISt = (P(S∗), At, ⊧PRt
), an extension of

ISt to PRARt
= (SPRt

, StatesARt
(SPRt

), ⊧PRt
) following the sense of Barwise and

Seligman [1].

The infomorphism from (P(S∗), At, ⊧PRt
) to (SPRt

, StatesARt
(SPRt

), ⊧PRt
) is

defined as follows. An infomorphism

It ∶ (P(S∗), At, ⊧ISt ) ⇄ (SPRt
, StatesARt

(SPRt
), ⊧PRt

)

consists of a pair of functions ( ̂It, ̌It) where for any a ∈ At,
̂It(a) ∈ StatesARt

(SPRt
)

and for any (U#,R#) ∈ SPRt
, ̌It(U#,R#) ∈ P(S∗), and (U#,R#) ⊧PRt

̂It(a) iff ̌It(U#,

R#) ⊧ISt a.

9. An ISAPR at time point t, denoted as ISAPRt, is represented by the tuple

(PRARt
, It, ISt). In the classical sense of information system, ISAPRt is also an

information system consisting of a single object PRARt
representing the infor-

mation at the physical world with respect to the accessibility function ARt, a

single parameter It representing a specific interaction, and an outcome of the

interaction with the physical reality viz., ISt = (Ot,At, {fa ∶ Ot ↦ Va}a∈At
) (cf.

Table 8).

Here we use the same symbol It considering an interaction as a parameter. Thus

there is a function fIt corresponding to the parameter It such that fIt (PRARt
) = ISt

if It ∶ (P(S∗), At, ⊧ISt ) ⇄ (SPRt
, StatesARt

(SPRt
), ⊧PRt

).
10. An interactive information system approximating the physical reality, denoted

as IISAPR, represents an information system of the following kind. (Fig. 6)

Table 8 An information system as an outcome of an interaction with the physical reality

It
PRARt

(Ot,At, {fa ∶ Ot ↦ Va}a∈At
)
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Fig. 6 Interaction between agent and physical reality through an infomorphism from the agent’s

information system to the physical reality

Table 9 An interactive information system approximating the physical reality

Ij1 Ij2 . . .

PRARt1
(Ot1 ,At1 , {fa ∶ Ot1 ↦
Va}a∈At1

)
(O1

t1
,A 1

t1
, {fa ∶ U1

t1
↦

Va}a∈A 1
t1
)

. . .

PRAR1
t2

(O ′
t2
,At2 , {fa ∶ O ′

t2
↦

Va}a∈At2
)

. . . . . .

⋮ ⋮ ⋮ ⋮

IISAPR = ({PRARt
}ARt∈Af , t∈T , {Ij}j∈J , {fIj ∶ {PRARt

}ARt ∈Af ,t∈T ↦ {ISl}l∈L}j∈J),

where {PRARt
}ARt∈Af , t∈T is a family of fragments of reality indexed by both

time t ∈ T and possible accessibility functions ARt ∈ Af , {Ij}j∈J is a family of

possible interactions of agents with the physical world, and corresponding to

each interaction Ij, fIj is a function assigning a unique information system from

{ISl}l∈L to each of {PRARt
}ARt∈Af , t∈T . That is, we have Table 9 for IISAPR.

So, the whole process of arriving at relevant information systems with the passage

of time and different interactions may be visualized through the picture presented in

Fig. 7. There can be different cases when the time factor is considered. At some point
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Fig. 7 Example: the process of interaction between agent and physical reality and obtaining an

information system

of time t′ (> t), PRt′ may remain the same as PRt, but with time the agent can manage

to access more or something different than before. That is, ARt′ may change; that is

PRARt′
may become different from PRARt

, and one can arrive at a different set of

states {s′1, s
′
2,… , s′n} from the same fragment of the physical world (U#,R#). On the

other hand, with time the physical reality itself can change, and we may have PRt′
different from PRt (Fig. 6).

It is to be noted that apart from the time point t there are two more factors, namely

the function accessing the reality at time t (ARt) and the interaction of agent with real-
ity at time t (It). Let us take an attempt to explain the role of the different components

we have introduced in the model for an interactive information system.

Let there be a tree surrounded by a number of houses and a park, which may be

considered as a fragment of reality (U#,R#). An agent can gather some informa-

tion about (U#,R#) from an image of the fragment of the physical world taken by

some particular camera. So, the camera works as a tool for accessing the informa-

tion about the real physical world. That is, mathematically the functionality of such a

tool or mode of accessing reality is availed by a function ARt. Let through the camera

the agent become able to get a good overview of the tree and two houses close to the

tree, which are respectively captured by some states s1, s2, s3 of the image in terms of

brightness of colours (a1), pixel-points (a2) etc. Let us assume that some other state

s4, representing another object in the vicinity of the tree, appeared blurred in the

image. So, though s4 seems to be a possible measurable state, is not measured prop-

erly at time t. So, following the terminologies used above s4 ∈ S∗ − Ot. The agent
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manages to get an image of (U#,R#) as there was a specific interaction It between

the agent and the reality at time t, which might be considered as placing a camera
in a specific angle. At some further point of time t′ the agent may initiate a differ-

ent interaction It′ by changing the angle of the same camera, or replacing the earlier

camera by a high-resolution camera. In the former case, interaction It′ changes but

the tool for accessing the reality ARt′ remains the same as ARt. On the other hand, in

the latter case, both It′ and ARt′ change.

4 Concluding Remarks

As concluding remarks, let us present some important aspects, which can come up

naturally from the proposed idea of interactive information systems, as future issues

of investigation.

∙ One is, how can we assure that the set of states, about which we learn through

ARt, depicts the relational structure present in (U#,R#) properly. In this context,

we need to concentrate on the relations over the sets of values i.e., the range sets

of the functions ARt as well as fa’s for each a ∈ At. To illustrate the point we

can think about the example of image of a real object captured by a camera. The

expectation to ARt is that when applied on a pair (U#,R#) as an outcome it should

produce a set of states {s1, s2,… , sm} which together represents a prototypical

image of the real object (U#,R#) preserving the relations among the real parts

of the object. So, we may consider that if two objects oi, oj ∈ U# are such that for

some r# ∈ R#, r#(oi, oj), then the relation should also be preserved somehow under

the transformation of (U#,R#) to ARt(U#,R#) = {s1, s2,… , sm}. So, the relational

structures as well as the languages having interpretation over them would come

into play in the context of interactive information systems.

∙ The above point leads us towards another important aspect. The question is, what

happens if for two object oi, oj ∈ U#, r#(oi, oj) holds for some r# ∈ R# but the rela-

tion is not preserved among the states which represent (U#,R#) under the accessi-

bility function ARt. In the context of an human agent, it is quite natural that such a

situation would generate some action to initiate new interaction with the physical

reality. So, satisfaction or dissatisfaction of some interrelations between the rela-

tional structures lying in the physical object, and that of in its representation with

respect to the the agent’s information system may generate some typical actions.

These actions in turn, with the progress of time, generates new interaction and

keeps on modifying the agent’s information system characterizing some fragment

of the physical world. So, for each interactive information system approximating

the physical reality at some time point t, viz., IISAPRt, we also need to count a set

of decision attributes consisting of actions, say Ac, so that depending on the level

of accuracy of an agent’s information system in characterizing a fragment of the

physical world which action to be taken can be determined.
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Back to the Beginnings: Pawlak’s Definitions
of the Terms Information System and Rough
Set

Davide Ciucci

Abstract There are several notions and terms in Rough Set Theory not having a

crystal clear definition. I discuss here two basic ones: Rough Set and Information

System. The discussion will be lead by the two founding papers by Z. Pawlak. We will

see that the term Information System has a narrow sense (the most used one in the

rough set community) and a wide one (the world wide common use of information

system and also Pawlak’s one). In case of the term Rough Set, several definitions

are possible, none of them without problems. Some other minor issues related to

Pawlak’s papers will be highlighted.

1 Introduction

After 35 years of rough set research, we tend to give for granted some basic terms

such as “information system” and “rough set”. However, information system has a

different and much wider meaning in the computing science community with respect

to the intended meaning of the Rough Set Theory (RST) community. On the other

hand, the term rough set is overloaded inside the RST community itself, as widely

discussed by M. Chakraborty [3, 4]. Moreover, once faced with the simple question

“what is a rough set?”, whatever definition we choose, we are forced to a (to some

extent) long explanation in order to give a precise answer.

Surprisingly, while reading the two founding papers by Z. Pawlak, we see that the

term Information System was used in a more conscious way and strictly related to

the standard way of using it. On the other hand, the difficulty of defining a Rough Set

is perhaps intrinsic to its notion. In [18], a formal definition arrives only in section

five, using several notions defined in the previous sections. We also notice that the

definition given in [18] is one of the list given in [3]. More precisely, a rough set is

defined as a family of subsets of the universe which are roughly equal, that is whose

lower and upper approximations coincide.
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In this work, I will discuss the meaning of the term Information System and the

difficulty to give a problem-free definition of a Rough Set. Besides these two termi-

nological problems, other issues arising from a reading of the two founding papers

will be pointed out and in particular the relationship of RST with other disciplines

such as Database Theory and Artificial Intelligence. The structure of the chapter will

reflect this objective: in Sect. 2, two definitions of information system will be given,

whereas in Sect. 3, I will recall the possible definitions of a rough set and show some

problems in these definitions. Finally, some conclusions will close the chapter.

2 Information System

An Information System is defined according to Encyclopædia Britannica
1

as

an integrated set of components for collecting, storing, and processing data and for provid-

ing information, knowledge, and digital products. [. . . ] The main components of information

systems are computer hardware and software, telecommunications, databases and data ware-

houses, human resources, and procedures.

On the other hand, in Rough Set Theory the meaning of Information System is con-

fined to data representation and in particular to a simple mathematical modelization

of data. It relies on the formal definition given by Pawlak [17]:

Definition 1 An Information System is a tuple S = (X,A,V , 𝜌) where X is a finite

set of objects, A is a finite set of attributes, V = ∪a∈AVa where va is the set of values

of attribute a and |Va| > 1, 𝜌 is a function mapping objects and attributes to values,

𝜌 ∶ X × A ↦ V .

Remark 1 As a side remark, we notice that attribute values are kept distinguished in

Definition 1. Sometimes, in definitions of Information Systems, we can find simply

V instead of Va. Clearly, the original formulation Definition 1 is more informative.

If we compare Definition 1 with the worldwide point of view, the former only gives

a partial view of what an Information System is. However, with respect to Pawlak’s

work, this is only a part of the story. First of all, let me notice that this is just one of

the names used by Pawlak himself to denote this concept. Indeed, in his publications

we can find at least the following names:

∙ Descriptive System [16]

∙ Information storage and retrieval system [14]

∙ Information System [17]

∙ Knowledge representation system [19]

However, the one that is most used in rough set literature is exactly Information

System. For instance in RSDS
2

we can find 98 papers with “Information system”

1
https://global.britannica.com/topic/information-system

2
Rough Set Database System, http://rsds.univ.rzeszow.pl/

https://global.britannica.com/topic/information-system
http://rsds.univ.rzeszow.pl/
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in title or keyword, 12 with “Knowledge representation system” and none using the

other two terms.

2.1 A Complex Notion

Besides the fact that different alternative names exist, it is more important to notice

that if we consider the whole paper [17], we see that the notion of Information Sys-

tem has a more wide meaning and it is perfectly in line with the development of

the area at that time. Pawlak explicitly refers to the standard notion of Information

System and his proposal tries to unify the two research lines of relational database

and data language, by considering, at the same time, data and language: “Syntax

and semantics of a query language is introduced”. Indeed, the above Definition 1

comes together with a formally defined query language. Moreover, implementation

issues and distributed Information Systems are also discussed. In the sequel of the

section we review these points, in order to highlight how complex was the notion of

Information System described in [17] with respect to the simple Definition 1.

Query language

The query language introduced by Pawlak is a purely logical one whose syntax and

semantics depend on a given Information System. Indeed, the language is built up

from the constants 0, 1 and so called descriptors, that is attribute-value pairs, i.e.,

elements of A × V . Terms are combination of descriptors and formulas combination

of terms. Of course, semantics assigns to each formula a set of objects of a given

Information System. There are two kinds of query that a user can perform, namely

Terms, that return a set of objects and Formulas, that return a logical value yes/no.

Example 1 Let us consider the Information System in Table 1.

A “term query” is for instance (SEX=Female) + (AGE = 20–30), where +
means OR. Clearly, the answer to this query is the set of objects {x2, x3, x4, x6} being

x2, x6 females and x3, x4 aged 20–30. On the other hand the “formula query” (SEX =
female) = (EMPLOYED = yes) has answer no since the set of females does

not coincide with set of employed people.

Table 1 Example of information system

X Sex Employed Age

x1 Male No 30–40

x2 Female No 30–40

x3 Male Yes 20–30

x4 Male Yes 20–30

x5 Male Yes 30–40

x6 Female Yes 30–40
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Other important notions (which will be useful later) in the query language are

elementary terms: a conjunction of basic descriptors, and normal form: a disjunction

of elementary terms.

So, (Pawlak) Information System is an approach explicitly antagonistic to the

standard relational model and links and differences with other database models are

stressed in his paper. In particular, a fundamental difference regards the way func-

tional dependencies work. In the relational model are defined independently from

data and they represent a constraint on data. On the other hand, in (what will be)

Rough Set Theory they are extracted from data, thus they are not universally valid,

but can change according with data changes.

Remarks on Implementation

Besides mathematical foundations, Pawlak also discusses implementation details for

an “efficient method of information retrieval”. The basic idea is to keep in memory

the elementary terms and to transform a query in normal form. Of course some prob-

lems must be solved, Pawlak lists them and also proposes a solution. Namely:

∙ There are too many elementary terms in order to be stored. To overcome this

problem some heuristics are proposed, for instance considering only some of the

attributes, in order to reduce the number of the elementary terms.

∙ How to (efficiently) find the elementary terms. Pawlak refers to the solution pro-

posed in [14].

∙ How to efficiently transform a query in normal form. With respect to this issue,

standard methods already existed.

Distributed System

Further, the problem of separate (called distributed) systems and how to retrieve

information in this case is discussed.

The problem is that we have n systems S1,… , Sn each with its own logical lan-

guage Li, we have to combine them in a unique system S with a unique language L
and understand if it is possible to give a global answer to a query by combining local

answers. The issues to be addressed are:

∙ combine different systems. To this purpose three connection operations are pro-

posed: a general one (a sort of full outer join in SQL); an attribute connection,

when attributes are the same (so it corresponds to a SQL union); an object con-

nection, when objects are the same (a sort of SQL inner join).

∙ give access to a local user to other sub-system (this issue is not addressed in his

paper).

Moreover, the concept of local lower and upper approximations to a query are for-

mally defined. Thus, the idea of approximations, which will then be developed in

Rough Set Theory, already appears here.

We can conclude that for Pawlak, Information Systems seem to be something

more complex than the only Definition 1. So, considering the terminology, my advice

is to avoid the term Information System in the narrow sense of Definition 1 and
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use an alternative name such as information table [26], attribute-value system [28],

knowledge representation system, descriptive system, etc.

Further, whereas Pawlak’s work was settled in the context of databases and Infor-

mation Systems (in the wider sense), now there is a gap between rough sets and

Databases/Information Systems with, of course, some few exceptions, notably the

approximate query approach by Infobright Inc.
3

The rough set community should

investigate if this gap can be reduced.

3 Rough Sets

If we are faced with the simple question “what is a rough set?”, the answer is not so

simple and linear. First of all, it is a complex notion, secondly, even if we consider

the classical case, several possible definitions exist.

At least four definitions of (equivalence-based) rough set can be given (see [3]),

divided in two categories: rough used as an adjective (Definition 2 below), identify-

ing a particular classical set or rough set as a noun defining a new category of sets

(Definitions 3–5 below). They are (L is the lower and U the upper approximation):

Definition 2 A set A is rough iff its boundary U(A)∖L(A) is empty;

Definition 3 A rough-set is a pair (L(A),U(A)) (or equivalently (L(A),U(A)c));

Definition 4 A rough-set is a pair (D1,D2)whereD1,D2 are definable andD1 ⊆ D2;

Definition 5 A rough-set is an equivalence class [A]
≡

with respect to rough equality.

The last definition is the one given by Pawlak in [18] and it belongs to the sec-

ond category: a rough set is a family of subsets that are equivalent with respect to

the rough equality relation, that is X and Y are equivalent if their lower and upper

approximations coincide.

Example 2 Let us consider the data Table 1 and the partition 𝜋 = { {x1, x2}, {x3, x4},
{x5, x6} } given by the two attributes Employees and Age. Then, rough sets are

for instance the set containing the emptyset: {∅} and the families {{x1}, {x2}};

{{x1, x2}}; {{x1, x3}, {x2, x4}}; . . .

In order to arrive at this definition, we thus need an approximation space, a def-

inition of the approximations and of the rough equality: a rich and complex notion.

In the light of the actual researches on rough sets, it seems that this complexity is

intrinsic to the model. Rough sets share this feature with other models, such as For-

mal Concept Analysis. If we are asked what a formal concept is, we need to define at

first a formal context, then the derivation operations which finally permits to intro-

duce formal concepts [10]. On the other hand, we notice that this is different from

Fuzzy Set Theory. Indeed, usually a fuzzy subset f of X is defined through its mem-

bership function
4
: f ∶ X ↦ [0, 1].

3
https://infobright.com/.

4
A slightly more complex but mathematically equivalent definition can be given inside classical set

theory [24].

https://infobright.com/
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We also notice that Definition 5 is not the most commonly used definition. Indeed,

as a rough set the lower-upper approximation pair (Definition 3) is often meant.

3.1 Is There an Optimal/Correct Definition?

Given the fact that there are several definitions, we can wonder if there is some which

is best according to some criteria. I argue that all of them suffer from some problem.

First of all, I do not tend to consider Definition 4 as a good definition of a rough set.

Indeed, it eliminates the idea of approximations. The pair (D1,D2) with D1 ⊆ D2, is

more similar to what I call an orthopair [7], the only difference being the requirement

that D1,D2 are definable sets. The notion of orthopair is more generic than the rough

set one, with several other applications. On the other hand, this definition is the only

one that avoids the language problem we are going to discuss.

Let us consider all the other three definitions. They all suffer from what we can

call the two level or language problem. The two levels in question are objects and

granules. Each level has its own language and we can reason inside each level with

no problems. However, with the above rough set definitions we mix the two levels.

This has some not desirable consequences, for instance:

∙ it is not possible to capture “the variability in the interpretation of a vague concept”

(Chakraborty, [3]);

∙ there are difficulties in defining (and interpreting) the operations on approxima-

tions.

The first point has been discussed by M. Chakraborty in [3], basically he points out

that there are different interpretations of a vague concept and the above definitions

are not able to capture them all.

The second problem is detailed in [3, 4, 8] and I am going to recall it in the next

paragraph.

Language problem

Let us consider the rough set Definition 4. We want to show the two-level problem

by defining the standard intersection operation on rough sets:

(L(A),U(A)) ⊓ (L(B),U(B)) = (L(A) ∩ L(B),U(A) ∩ L(B)). (1)

In order to show that ⊓ is a well defined operation on rough sets, we have to find

a set C such that r(C) = r(A) ⊓ r(B) (where ∀H ⊆ X, r(H) = (L(H),U(H)), since

in general, C ≠ A ∩ B. The problem has been solved independentely by different

authors [1, 2, 11]. In particular, let us consider the definition given in [1]:

C = (A ∩ B) ∪ ((A ∩ U(B)) ∩ (U(A ∩ B)c)). (2)

and show how it works on an example.
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Example 3 Let us consider the data Table 1 and the two subsets X1 = {x1, x2, x6}
and X2 = {x3, x5}. If we consider the two attributes Employees and Age we obtain

the partition 𝜋1 = { {x1, x2}, {x3, x4}, {x5, x6} }. Hence, the approximation of X1 and

X2 are respectively:

r(X1) = ({x1, x2}, {x1, x2, x5, x6}) r(X2) = (∅, {x3, x4, x5, x6})

According to Eq. 2, the set giving the intersection is C = {x6}, in effect, r(C) =
(∅, {x5, x6}) = r({x1, x2, x6}) ⊓ r({x3, x5}). However, this is not the unique solution,

indeed also r({x5}) = (∅, {x5, x6}). Clearly this is due to the granulation of the uni-

verse, where different objects, x5, x6 in the example, (the first level) are glued into

a unique granule (the second level). Moreover, if we change partition, by using the

attributes Sex and Age, we obtain 𝜋2 = { {x1, x5}, {x3, x4}, {x2, x6} }. The approxi-

mations are thus,

r(X1) = ({x2, x6}, {x1, x2, x5, x6}}) r(X2) = (∅, {x1, x3, x4, x5})

and the intersection C′ = {x1} with r(C′) = r({x1, x2, x6}) ⊓ r({x3, x5}) = (∅, {x1,
x5}). So summarizing, changing or not partition, the intersection of two sets A and

B can be very different. We got in the example, {x3}, {x5} or {x1}.

We have seen in the previous example that the result of an operation strongly

depends on the partition (which of course represent our available knowledge),

through the two approximations L,U and finally, in case of a data table, on the

attributes. Moreover, the solution is not unique even inside the same partition. So,

the two languages we are implicitely using are

∙ The language of sets, representing the extension of the set;

∙ The language of attributes (or approximations, granules), representing the inten-

sion of the set.

In order to compute an aggregation operator, we can operate on the language of

attributes but then we are not able to interpret the result on sets.

As a further issue let us consider that if we want to compute A ∩ Ac
, that is we

set B = Ac
in Eq. 2, then we generally get that C ≠ ∅, which may sound odd since

the intersection of a set with its complement should be empty. Finally, we notice

that the problem does not concern only the intersection as defined above. In [8] we

considered 14 intersections and 14 implications and showed that they all depend on

the approximations L and U, hence the problem is present in all these operations.

An open issue

In conclusion, the question if there does exist a mathematical problem-free definition

of a rough set is still open. In order to find a new definition, Chakraborty proposes

what we can summarize with a slogan as try to move vagueness inside the language.

Indeed, given a propositional language representing rough sets, the interpretation
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should not be a function but a relation
5

such that a rough set would be a collection of

sets (A1,A2,…) with the same lower and upper approximations, but not necessarily

all such subsets. However, Chakraborty also suggests to use as intersection between

two collections (A1,A2,…) and (B1,B2,…) the operation given in equation (2), so

the language problem could rise once more.

Whatever the definition, I think it has to have some characteristics in order to be

considered a good one. First of all, whether intended as a classical or a new concept

of set, it should be defined in a way such that the extension is known, the intension is
uncertain. That is, given a set S = {o1, o2,…} it is not possible to exactly describe

it with the available knowledge (relation, attributes,. . . ). Moreover, the set S can be
approximated by a lower and an upper approximation.

Clearly, these characterizations have to be casted in a specific domain, by giving

formal definitions. So, several ways to proceed and several problems open here. For

instance: what to define at first, approximations or definable sets? Which properties

(duality, monotonicity, etc.) should the approximations satisfy? These topics have

already been discussed (see for instance [6, 9, 13, 27]) but not in the light of finding

a new problem-free definition, so more reflections are needed.

3.2 Other Issues

There are other points worth considering in the paper [18], here I list two of them.

Non standard examples

We are used to consider as a paradigmatic example of rough sets a data table, intro-

duce an equivalence relation and then compute the approximations. A peculiarity of

[18] is that the first two given examples on rough approximations are not given in an

Information System context. Indeed, the first one is on real number approximations,

with the idea of a use in measurement theory. Roughly speaking a real number r is

approximated by the lower and upper integer. The second one is on approximation

of formal languages, with a possible use in “speech recognition, pattern matching,

fault tolerant computer, etc.”. Let  ⊆ V∗
be a language on the vocabulary V and

(V∗
,R) an approximation space (R to be defined), then a language  is recognizable

if L() = U() otherwise it can be approximated.

These aspects have been partly investigated also later [15, 23], but perhaps to a

few extent. Hence, the rough-set community could take care of these preliminary

ideas and develop them. More generally, rough sets have been mostly successfully

applied to data analysis, thus using approximation spaces originated from data tables.

Some applications using other kinds of approximation spaces, as the two mentioned

above, can be also found in the literature, for instance approximation spaces based

5
Let me notice that this is done for instance in many valued paraconsistent logics where a proposi-

tion can map to 0, 1, both or none of the two values [22].
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on graphs (see [5] and its references), matroids [25], relations [12], . . .The challenge

is to make this research line grow.

Artificial Intelligence

Finally, we notice that in the paper [18] there are several references to Artificial

Intelligence. Quoting from the introduction : “The rough set concept can be of some

importance, primarily in some branches of artificial intelligence” and “we are pri-

marily aiming at laying mathematical foundations for artificial intelligence”. His

interest for artificial intelligence was also evident in the following years, at least

in two papers [20, 21] he explicitly connected the two disciplines pointing out appli-

cations of rough sets to AI related problems. Nowadays, however, the two commu-

nities seem to be at a great extent not connected.
6

In my opinion, it would be worth

to increase these connections and attract the attention of AI researches to Rough Set

Theory and vice versa. Indeed, rough set theory is still applied in several branches

of artificial intelligence, such as knowledge representation and reasoning, machine

learning, cognitive science, decision support systems, conflict analysis, etc.

4 Conclusion

In this note, I put forward a terminological discussion on Information Systems and

Rough Sets in the light of the two founding papers by Z. Pawlak.

We have seen that the notion of Information System, as presently used in many

rough set papers, is much more restricted than the one used by other communities and

by Pawlak himself in his founding paper. This of course represents a communication

problem which could isolate rough set research(ers). My suggestion is to avoid to

use the term Information System in the narrow sense and substitute it with one of

the existing alternatives.

In case of rough sets, several possible definitions are available and I highlighted

the fact that there are problems with any definition, in particular a language or two-

level problem. It is a task for future research to find a problem-free definition.

Finally, other ideas for the future are to increase the connections with Information

System, Database and Artificial Intelligence research areas and people and to apply

rough set ideas in a general setting of approximation spaces, not necessarily based

on an information table.

6
For instance, recently, we had to cancel the Rough Set Theory workshop at ECAI 2016 (European

Conference on Artificial Intelligence) due to insufficient participants.
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Knowledge and Consequence in AC
Semantics for General Rough Sets

A. Mani

Abstract Antichain based semantics for general rough sets was introduced recently

by the present author. In her paper two different semantics, one for general rough sets

and another for general approximation spaces over quasi-equivalence relations, were

developed. These semantics are improved and studied further from a lateral algebraic

logic and an algebraic logic perspective in this research. The framework of granular

operator spaces is also generalized. The main results concern the structure of the

algebras, deductive systems and the algebraic logic approach. The epistemological

aspects of the semantics is also studied in this chapter in some depth and revolve

around nature of knowledge representation, Peircean triadic semiotics and temporal

aspects of parthood. Examples have been constructed to illustrate various aspects of

the theory and applications to human reasoning contexts that fall beyond information

systems.

1 Introduction

It is well known that sets of rough objects (in various senses) are quasi or partially

orderable. Specifically in classical or Pawlak rough sets [31], the set of roughly equiv-

alent sets has a Quasi Boolean order on it while the set of rough and crisp objects is

Boolean ordered. In the classical semantic domain or classical meta level, associated

with general rough sets, the set of crisp and rough objects is quasi or partially order-

able. Under minimal assumptions on the nature of these objects, many orders with

rough ontology can be associated—these necessarily have to do with concepts of

discernibility. Concepts of rough objects, in these contexts, depend additionally on

approximation operators and granulations used. These were part of the motivations

of the development of the concept of granular operator spaces by the present author

in [26].
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In quasi or partially ordered sets, sets of mutually incomparable elements are

called antichains (for basics see [9, 11, 15]). The possibility of using antichains of

rough objects for a possible semantics was mentioned in [23, 24, 27] by the present

author and developed in [26]. The semantics is applicable for a large class of operator

based rough sets including specific cases of RYS [21], other general approaches

like [7, 12, 13] and all specific cases of relation based and cover based rough set

approaches. In [7], negation like operators are assumed in general and these are not

definable operations relative the order related operations/relation. A key problem

in many of the latter types of approaches is of closure of possible aggregation and

commonality operations [14, 27, 44, 45].

In the present paper, the semantics of [26] is improved and developed further

from an algebraic logic point of view (based on defining ternary deduction terms),

the concept of knowledge in the settings is also explored in some depth and related

interpretations are offered. The basic framework of granular operator spaces used in

[26] is generalized in this paper as most of the mathematical parts carry over. The

semantics of [26], as improved in the present paper by way of ternary terms, is very

general, open ended, extendable and optimal for lateral studies. Most of it applies

to general granular operator spaces, introduced in a separate paper by the present

author. In the same framework, the machinery for isolation of deductive systems is

developed and studied from a purely algebraic logic point of view. New results on

representation of roughness related objects are also developed. Last but not least,

the concept of knowledge as considered in [21, 22, 27, 32] is recast in very dif-

ferent terms for describing the knowledge associated with representation of data by

maximal antichains. These representations are also examined for compatibility with

triadic semiotics (that is not necessarily faithful to Peirce’s ideas) for integration

with ontology. Philosophical questions relating to perdurantism and endurantism are

also solved in some directions. Illustrative examples that demonstrate applicability to

human reasoning contexts involving approximations but no reasonable data tables
have also been constructed in this chapter.

In the next subsection, relevant background is presented. Granular operator spaces

are generalized and nature of parthood is explained in the next section. In the third

section, the essential algebraic logic approach used is outlined. In the next section,

possible operations on sets of maximal antichains derived from granular opera-

tor spaces are considered, AC-algebras are defined and their generation is studied.

Representation of antichains derived from the context are also improved and ear-

lier examples are refined. The algebras of quasi-equivalential rough sets formed by

related procedures is presented to illustrate key aspects of the semantics in the fifth

and sixth sections. Ternary deduction terms in the context of the AC-algebra are

explored next and various results are proved. The connections with epistemology and

knowledge forms the following section. Further directions are provided in Sect. 9.

Background
Let K be any set and l, u be lower and upper approximation operators on  ⊆ ℘(K)
that satisfy monotonicity and (∀a ⊆ K) a ⊆ au

. An element a ∈  will be said to be

lower definite (resp. upper definite) if and only if al = a (resp. au = a) and definite,
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when it is both lower and upper definite. In this chapter, the operators will be on

℘(K) and not on a proper subset thereof. For possible concepts of rough objects

[21, 26] may be consulted. Finiteness of K and granular operator spaces, defined
below, will be assumed (though not always essential) unless indicated otherwise.

Let K be any set and l, u be lower and upper approximation operators on  ⊆

℘(K) that satisfy monotonicity and (∀a ⊆ K) a ⊆ au
. An element a ∈  will be said

to be lower definite (resp. upper definite) if and only if al = a (resp. au = a) and def-
inite, when it is both lower and upper definite. The following are some of the the

possible concepts of rough objects considered in the literature, (and all considera-

tions will be restricted as indicated in the next definition):

∙ A non definite subset of K, that is x is a rough object if and only if xl
≠ xu

.

∙ Any pair of definite subsets of the form (a, b) satisfying a ⊆ b.

∙ Any pair of subsets of the form (xl
, xu).

∙ Sets in an interval of the form (xl
, xu).

∙ Sets in an interval of the form (a, b) satisfying a ⊆ b and a, b being definite sub-

sets.

∙ A non-definite element in a RYS, that is an x satisfying ¬𝐏xuxl
(x may be a subset

and both upper and lower case letters may be used for them).

∙ An interval of the form, (a, b) satisfying a ⊆ B and a, b being definite subsets.

Set framework with operators will be used as all considerations will require quasi

orders in an essential way. The evolution of the operators need not be induced by a

cover or a relation (corresponding to cover or relation based systems respectively),

but these would be special cases. The generalization to some rough Y-systems RYS
(see [21] for definitions), will of course be possible as a result.

Definition 1 A Granular Operator Space [26] S will be a structure of the form S =⟨
S,, l, u

⟩
with S being a set,  an admissible granulation (defined below) over S

and l, u being operators ∶ ℘(S) ⟼ ℘(S) satisfying the following (S will be replaced

with S if clear from the context. Lower and upper case alphabets will both be used
for subsets):

al
⊆ a& all = al & au

⊂ auu

(a ⊆ b ⟶ al
⊆ bl & au

⊆ bu)
∅l = ∅&∅u = ∅& Sl

⊆ S& Su
⊆ S.

Here, Admissible granulations are granulations  that satisfy the following three

conditions (Relative RYS [21], 𝐏 =⊆, ℙ =⊂) and t is a term operation formed from

set operations):

(∀a∃b1,… br ∈ ) t(b1, b2,… br) = al

and (∀a) (∃b1, … br ∈ ) t(b1, b2,… br) = au
, (Weak RA, WRA)

(∀b ∈ )(∀a ∈ ℘(S)) (b ⊆ a ⟶ b ⊆ (al)), (Lower Stability, LS)

(∀a, b ∈ )(∃z ∈ ℘(S)) a ⊂ z, b ⊂ z& zl = zu = z, (Full Underlap, FU)
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In the present context, these conditions mean that every approximation is some-

how representable by granules, that granules are lower definite, and that all pairs of

distinct granules are contained in definite objects.

On ℘(S), the relation ⊏ is defined by

A ⊏ B if and only if Al
⊆ Bl &Au

⊆ Bu
. (1)

The rough equality relation on ℘(S) is defined via A ≈ B if and only if A ⊏ B
& B ⊏ A.

Regarding the quotient S| ≈ as a subset of ℘(S), the order ⋐ will be defined as

per

𝛼 ⋐ 𝛽 if and only if 𝛼
l
⊆ 𝛽

l & 𝛼u
⊆ 𝛽

u
. (2)

Here 𝛼
l

is being interpreted as the lower approximation of 𝛼 and so on. ⋐ will be

referred to as the basic rough order.

Definition 2 By a roughly consistent object will be meant a set of subsets of S of the

form H = {A; (∀B ∈ H)Al = Bl
,Au = Bu}. The set of all roughly consistent objects

is partially ordered by the inclusion relation. Relative this maximal roughly consis-

tent objects will be referred to as rough objects. By definite rough objects, will be

meant rough objects of the form H that satisfy

(∀A ∈ H)All = Al &Auu = Au
. (3)

Proposition 1 ⋐ is a bounded partial order on S| ≈.

Proof Reflexivity is obvious. If 𝛼 ⋐ 𝛽 and 𝛽 ⋐ 𝛼, then it follows that 𝛼
l = 𝛽 l

and

𝛼

u = 𝛽u
and so antisymmetry holds.

If 𝛼 ⋐ 𝛽, 𝛽 ⋐ 𝛾 , then the transitivity of set inclusion induces transitivity of ⋐. The

poset is bounded by 0 = (∅, ∅) and 1 = (Sl
, Su). Note that 1 need not coincide with

(S, S). ⊓⊔

Theorem 1 Some known results relating to antichains and lattices are the following:

1. Let X be a partially ordered set with longest chains of length r, then X can be
partitioned into k number of antichains implies r ≤ k.

2. If X is a finite poset with k elements in its largest antichain, then a chain decom-
position of X must contain at least k chains.

3. The poset ACm(X) of all maximum sized antichains of a poset X is a distributive
lattice.

4. For every finite distributive lattice L and every chain decomposition C of JL (the
set of join irreducible elements of L), there is a poset XC such that L ≅ ACm(XC).
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Proof Proofs of the first three of the assertions can be found in in [9, 17] for example.

Many proofs of results related to Dilworth’s theorems are known in the literature and

some discussion can be found in [17] (pp. 126–135).

1. To prove the first, start from a chain decomposition and recursively extract the

minimal elements from it to form r number of antichains.

2. This is proved by induction on the size of X across many possibilities.

3. See [9, 17] for details.

4. In [15], the last connection between chain decompositions and representation

by antichains reveals important gaps—there are other posets X that satisfy L ≅
ACm(X). Further the restriction to posets is too strong and can be relaxed in many

ways [39].
⊓⊔

If R is a binary relation on a set S, then the neighborhood generated by an x ∈ S
will be

[x] = {y ∶ Ryx}

A binary relation R on a set S is said to be a Quasi-Equivalence if and only if it

satisfies:

(∀x, y) ([x] = [y] ↔ Rxy&Ryx).

It is useful in algebras when it behaves as a good factor relation [2]. But the condition

is of interest in rough sets by itself. Note that Rxy is a compact form of (x, y) ∈ R.

2 General Granular Operator Spaces (GSP)

Definition 3 A General Granular Operator Space (GSP) S shall be a structure of

the form S =
⟨

S,, l, u,𝐏
⟩

with S being a set,  an admissible granulation (defined

below) over S, l, u being operators ∶ ℘(S) ⟼ ℘(S) and 𝐏 being a definable binary

generalized transitive predicate (for parthood) on ℘(S) satisfying the following:

(S will be replaced with S if clear from the context. Lower and upper case alphabets
will both be used for subsets):

al
⊆ a& all = al & au

⊂ auu

(a ⊆ b ⟶ al
⊆ bl & au

⊆ bu)
∅l = ∅&∅u = ∅& Sl

⊆ S& Su
⊆ S.

Here, the generalized transitivity can be any proper nontrivial generalization of part-

hood (see [23]) and Admissible granulations are granulations  that satisfy the fol-

lowing three conditions (In the granular operator space of [26], 𝐏 =⊆, ℙ =⊂ only

in that definition), ℙ is proper parthood (defined via ℙab iff 𝐏ab&¬𝐏ba) and t is a

term operation formed from set operations:
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(∀x∃y1,… yr ∈ ) t(y1, y2,… yr) = xl

and (∀x) (∃y1, … yr ∈ ) t(y1, y2,… yr) = xu
, (Weak RA, WRA)

(∀y ∈ )(∀x ∈ ℘(S)) (𝐏yx ⟶ 𝐏yxl), (Lower Stability, LS)

(∀x, y ∈ )(∃z ∈ ℘(S))ℙxz, &ℙyz& zl = zu = z, (Full Underlap, FU)

On ℘(S), if the parthood relation 𝐏 is defined via a formula 𝛷 as per

𝐏ab if and only if 𝛷(a, b), (4)

then the 𝛷-rough equality would be defined via

a ≈
𝛷

b if and only if 𝐏ab&𝐏ba. (5)

In a granular operator space, 𝐏 is the same as ⊏ and is defined by

a ⊏ b if and only if al
⊆ bl & au

⊆ bu
. (6)

The rough equality relation on℘(S) is defined via a ≈ b if and only if a ⊏ b& b ⊏ a.

Regarding the quotient S| ≈ as a subset of ℘(S), the order ⋐ will be defined as per

𝛼 ⋐ 𝛽 if and only if 𝛷(𝛼, 𝛽) (7)

Here 𝛷(𝛼, 𝛽) is an abbreviation for (∀a ∈ 𝛼, b ∈ 𝛽)𝛷(a, b). ⋐ will be referred to as

the basic rough order.

Definition 4 By a roughly consistent object will be meant a set of subsets of S of the

form H = {A; (∀B ∈ H)Al = Bl
,Au = Bu}. The set of all roughly consistent objects

is partially ordered by the inclusion relation. Relative this maximal roughly consis-

tent objects will be referred to as rough objects. By definite rough objects, will be

meant rough objects of the form H that satisfy

(∀A ∈ H)All = Al &Auu = Au
. (8)

Other concepts of rough objects will also be used in this chapter.

Proposition 2 When S is a granular operator space, ⋐ is a bounded partial order
on S| ≈. More generally it is a bounded quasi order.

Proof The proof of the first part is in [26], the second part is provable analogously.

2.1 Parthood and Frameworks

Many of the philosophical issues relating to mereology take more specific forms

in the context of rough sets in general and in the GSP framework. The axioms of
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parthood that can be seen to be not universally satisfied in all rough contexts include

the following:

𝐏ab&𝐏bc ⟶ 𝐏ac (Transitivity)

(𝐏 ab ↔ 𝐏ba) ⟶ a = b (Extensionality)

(𝐏ab&𝐏ba ⟶ a = b) (Antisymmetry)

This affords many distinct concepts of proper parthoods ℙ:

ℙab if and only if 𝐏ab& a ≠ b (PP1)

ℙab if and only if 𝐏ab&¬𝐏ba (PP2)

ℙab ⟶ (∃z)𝐏zb&(∀w)¬(𝐏wa&𝐏wz) (WS)

PP1 does not follow from PP2 without antisymmetry and WS (weak supplemen-

tation) is a kind of proper parthood. All this affords a mereological approach with

much variation to abstract rough sets.

3 Deductive Systems

In this section, key aspects of the approach to ternary deductive systems in [4, 5]

are presented. These are intended as natural generalizations of the concepts of ideals

and filters and classes of congruences that can serve as subsets or subalgebras closed

under consequence operations or relations (also see [10]).

Definition 5 Let 𝕊 = ⟨S,Σ⟩ be an algebra, then the set of term functions over it will

be denoted by 𝐓Σ(𝕊) and the set of r-ary term functions by 𝐓Σ
r (𝕊). Further let

g ∈ 𝐓Σ
1 (𝕊), z ∈ S, 𝜏 ⊂ 𝐓Σ

3 (𝕊), (0)

g(z) ∈ 𝛥 ⊂ S, (1)

(∀t ∈ 𝜏)(a ∈ 𝛥& t(a, b, z) ∈ 𝛥⟶ b ∈ 𝛥), (2)

(∀t ∈ 𝜏)(b ∈ 𝛥⟶ t(g(z), b, z) ∈ 𝛥), (3)

then 𝛥 is a (g, z)− 𝜏-deductive system of 𝕊. If further for each k-ary operation f ∈ Σ
and ternary p ∈ 𝜏

(∀ai, bi ∈ S)(&k
i=1p(ai, bi, z) ∈ 𝛥⟶ p(f (a1,… , ak), f (b1,… , bk), x) ∈ 𝛥), (9)

then 𝛥 is said to be compatible.

𝜏 is said to be a g-difference system for 𝕊 if 𝜏 is finite and the condition

(∀t ∈ 𝜏)t(a, b, c) = g(c) if and only if a = b holds. (10)
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A variety  of algebras is regular with respect to a unary term g if and only if for

each S ∈  ,

(∀b ∈ S)(∀𝜎, 𝜌 ∈ con(S))([g(b)]
𝜎

= [g(b)]
𝜌

⟶ 𝜎 = 𝜌). (11)

It should be noted that in the above 𝜏 is usually taken to be a finite subset and a

variety has a g-difference system if and only if it is regular with respect to g.

Proposition 3 In the above definition, it is provable that

(∀t ∈ 𝜏)(t(g(z), b, z) ∈ 𝛥⟶ b ∈ 𝛥). (12)

Definition 6 In the context of Definition 5, 𝛩Delta,z shall be a relation induced on S
by 𝜏 as per the following

(a, b) ∈ 𝛩
𝛥,z if and only if (∀t ∈ 𝜏) t(a, b, z) ∈ 𝛥. (13)

Proposition 4 In the context of Definition 6, 𝛥 = [g(z)]
𝛩
𝛥,z

.

Proposition 5 Let 𝜏 ⊂ TΣ
3 (𝕊) with the algebra 𝕊 = ⟨S,Σ⟩, v ∈ TΣ

1 (𝕊), e ∈ S, K ⊆ S
and let 𝛩K,e be induced by 𝜏. If 𝛩K,e is a reflexive and transitive relation such that
K = [v(e)]ThetaK,e

, then K is a (v, e)- 𝜏-deductive system of 𝕊.

Theorem 2 Let h is a unary term of a variety  and 𝜏 a h-difference system for  .
If 𝕊 ∈ m𝛩 ∈ Con(𝕊), z ∈ S and 𝛥 = [h(z)]

𝛩

, then𝛩
𝛥,z = 𝛩 and 𝛥 is a compatible

(h, z)-𝜏-deductive system of 𝕊.

The converse holds in the following sense:

Theorem 3 If h is a unary term of a variety , 𝜏 is a h-difference system in it,𝕊 ∈  ,
z ∈ S and if 𝛥 is a compatible (h, z)-𝜏-deductive system of 𝕊, then𝛩

𝛥,z ∈ Con(𝕊) and
𝛥 = [g(z)]

𝛩
𝛥,z

.

When  is regular relative h, then  has a h-difference system relative 𝜏 and

for each 𝕊 ∈  , z ∈ S and 𝛥 ⊂ S, 𝛥 = [h(z)] if and only if 𝛥 is a (h, z)- 𝜏-deductive

system of 𝕊.

In each case below, {t} is a h-difference system (x⊕ y = ((x ∧ y∗)∗ ∧ (x∗ ∧ y)∗)∗):

h(z) = z & t(a, b, c) = a − b + c (Variety of Groups)

h(z) = z & t(a, b, c) = a⊕ b⊕ c (Variety of Boolean Algebras)

h(z) = z∗∗ & t(a, b, c) = (a + b) + c (Variety of p-Semilattices)
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4 Anti Chains for Representation

In this section, the main algebraic semantics of [26] is summarized, extended to

AC-algebras and relative properties are studied. It is also proved that the number of

maximal antichains required to generate the AC-algebra is rather small.

Definition 7 𝔸,𝔹 ∈ S| ≈, will be said to be simply independent (in symbols

𝛯(𝔸,𝔹))if and only if

¬(𝔸 ⋐ 𝔹) and ¬(𝔹 ⋐ 𝔸). (14)

A subset 𝛼 ⊆ S| ≈ will be said to be simply independent if and only if

(∀𝔸,𝔹 ∈ 𝛼)𝛯(𝔸,𝔹) ∨ (𝔸 = 𝔹). (15)

The set of all simply independent subsets shall be denoted by (S).
A maximal simply independent subset, shall be a simply independent subset that

is not properly contained in any other simply independent subset. The set of maximal

simply independent subsets will be denoted by m(S). On the set m(S),≪ will

be the relation defined by

𝛼 ≪ 𝛽 if and only if (∀𝔸 ∈ 𝛼)(∃𝔹 ∈ 𝛽)𝔸 ⋐ 𝔹. (16)

Theorem 4 ⟨m(S),≪⟩ is a distributive lattice.

Analogous to the above, it is possible to define essentially the same order on the

set of maximal antichains of S| ≈ denoted by 𝔖 with the ⋐ order. This order will be

denoted by ⋖ - this may also be seen to be induced by maximal ideals.

Theorem 5 If 𝛼 = {𝔸1,𝔸2,… ,𝔸n,…} ∈ 𝔖, and if L is defined by

L(𝛼) = {𝔹1,𝔹2,… ,𝔹n,…} (17)

with X ∈ 𝔹i if and only if Xl = 𝔸ll
i = 𝔹l

i and Xu = 𝔸lu
i = 𝔹u

i , then L is a partial oper-
ation in general.

Proof The operation is partial because L(𝛼) may not always be a maximal antichain.

This can happen in general in which the properties All
⊂ Al

and/or Aul
⊂ A hold for

some elements. The former possibility is not possible by our assumptions, but the

latter is scenario is permitted.

Specifically this can happen in bitten rough sets when the bitten upper approxi-

mation [19] operator is used in conjunction with the lower approximation. But many

more examples are known in the literature (see [21]). ⊓⊔

Definition 8 Let 𝜒(𝛼 ∩ 𝛽) = {𝜉; 𝜉 is a maximal antichain & 𝛼 ∩ 𝛽 ⊆ 𝜉} be the set

of all possible extensions of 𝛼 ∩ 𝛽. The function 𝛿 ∶ 𝔖2 ⟼ 𝔖 corresponding to
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extension under cognitive dissonance will be defined as per 𝛿(𝛼, 𝛽) ∈ 𝜒(𝛼 ∩ 𝛽) and

(LST means maximal subject to)

𝛿(𝛼, 𝛽) =
⎧
⎪
⎨
⎪
⎩

𝜉, if 𝜉 ∩ 𝛽 is a maximum subject to 𝜉 ≠ 𝛽 and 𝜉is unique,

𝜉, if 𝜉 ∩ 𝛽& 𝜉 ∩ 𝛼 are LST 𝜉 ≠ 𝛽, 𝛼 and 𝜉is unique,

𝛽, if 𝜉 ∩ 𝛽& 𝜉 ∩ 𝛼 are LST & 𝜉 ≠ 𝛽, 𝛼 but 𝜉 is not unique,

𝛽, if 𝜒(𝛼 ∩ 𝛽) = {𝛼, 𝛽}.

(18)

Definition 9 In the context of the above definition, the function 𝜚 ∶ 𝔖2 ⟼ 𝔖 cor-

responding to radical extension will be defined as per 𝜚(𝛼, 𝛽) ∈ 𝜒(𝛼 ∩ 𝛽) and (MST

means minimal subject to)

𝜚(𝛼, 𝛽) =
⎧
⎪
⎨
⎪
⎩

𝜉, if 𝜉 ∩ 𝛽 is a minimum under 𝜉 ≠ 𝛽 and 𝜉 is unique,

𝜉, if 𝜉 ∩ 𝛽& 𝜉 ∩ 𝛼 are MST 𝜉 ≠ 𝛽, 𝛼 and 𝜉is unique,

𝛼, if (∃𝜉) 𝜉 ∩ 𝛽& 𝜉 ∩ 𝛼 are MST 𝜉 ≠ 𝛽, 𝛼& 𝜉 is not unique,

𝛼, if 𝜒(𝛼 ∩ 𝛽) = {𝛼, 𝛽}.

(19)

Theorem 6 The operations 𝜚, 𝛿 satisfy all of the following:

𝜚, 𝛿 are groupoidal operations, (1)
𝜚(𝛼, 𝛼) = 𝛼 (2)
𝛿(𝛼, 𝛼) = 𝛼 (3)

𝛿(𝛼, 𝛽) ∩ 𝛽 ⊆ 𝛿(𝛿(𝛼, 𝛽), 𝛽) ∩ 𝛽 (4)
𝛿(𝛿(𝛼, 𝛽), 𝛽) = 𝛿(𝛼, 𝛽) (5)

𝜚(𝜚(𝛼, 𝛽), 𝛽) ∩ 𝛽 ⊆ 𝜚(𝛼, 𝛽) ∩ 𝛽. (6)

Proof 1. Obviously 𝜚, 𝛿 are closed as the cases in their definition cover all possi-

bilities. So they are groupoid operations. Associativity can be easily shown to

fail through counterexamples.

2. Idempotence follows from definition.

3. Idempotence follows from definition.

For the rest, note that by definition, 𝛼 ∩ 𝛽 ⊆ 𝛿(𝛼, 𝛽) holds. The intersection with

𝛽 of 𝛿(𝛼, 𝛽) is a subset of 𝛿(𝛿(𝛼, 𝛽), 𝛽) ∩ 𝛽 by recursion. ⊓⊔

In general, a number of possibilities (potential non-implications) like the follow-

ing are satisfied by the algebra: 𝛼 ⋖ 𝛽& 𝛼 ⋖ 𝛾 ↛ 𝛼 ⋖ 𝛿(𝛽, 𝛾). Given better proper-

ties of l and u, interesting operators can be induced on maximal antichains towards

improving the properties of 𝜚 and 𝛿. The key constraint hindering the definition of

total l, u induced operations can be avoided in the following way:

Definition 10 In the context of Theorem 5, operations □,◊ can be defined as fol-

lows:



Knowledge and Consequence in AC Semantics for General Rough Sets 247

∙ Given 𝛼 = {𝔸1,𝔸2,… ,𝔸n,…} ∈ 𝔖, form the set

𝛾(𝛼) = {𝔸l
1,𝔸

l
2,… ,𝔸

l
n,…}. If this is an antichain, then 𝛼 would be said to be

lower pure.

∙ Form the set of all relatively maximal antichains 𝛾+(𝛼) from 𝛾(𝛼).
∙ Form all maximal antichains 𝛾∗(𝛼) containing elements of 𝛾+(𝛼) and set □(𝛼) =
∧𝛾∗(𝛼).

∙ For ◊, set 𝜋(𝛼) = {𝔸u
1,𝔸

u
2,… ,𝔸

u
n,…}. If this is an antichain, then 𝛼 would be

said to be upper pure.

∙ Form the set of all relatively maximal antichains 𝜋+(𝛼) from 𝜋(𝛼).
∙ Form all maximal antichains 𝜋∗(𝛼) containing elements of 𝜋+(𝛼) and set ◊(𝛼) =
∨𝜋∗(𝛼).

Theorem 7 In the context of the above definition, the following hold:

𝛼 ⋖ 𝛽 ⟶ □(𝛼) ⋖ □(𝛽)&◊(𝛼) ⋖ ◊(𝛽)
□(𝛼) ⋖ 𝛼 ⋖ ◊(𝛼), □(0) = 0&◊(1) = 1

Based on the above properties, the following algebra can be defined.

Definition 11 By a Concrete AC algebra (AC -algebra) will be meant an algebra

of the form
⟨
𝔖, 𝜚, 𝛿,∨,∧,□,◊, 0, 1

⟩
associated with a granular operator space S

satisfying all of the following:

∙ ⟨𝔖,∨,∧⟩ is a bounded distributive lattice derived from a granular operator space

as in the above.

∙ 𝜚, 𝛿,□,◊ are as defined above.

The following concepts of ideals and filters are of interest as deductive systems in

a natural sense and relate to ideas of rough consequence (detailed investigation will

appear separately).

Definition 12 By a LD-ideal (resp. LD-filter) K of an AC-algebra 𝔖 will be meant

a lattice ideal (resp. filter) that satisfies:

(∀𝛼 ∈ K)□(𝛼),◊(𝛼) ∈ K (20)

By a VE-ideal (resp. VE-filter) K of an AC-algebra 𝔖 will be meant a lattice ideal

(resp. filter) that satisfies:

(∀𝜉 ∈ 𝔖)(∀𝛼 ∈ K) 𝜚(𝜉, 𝛼), 𝛿(𝜉, 𝛼) ∈ K (21)

Proposition 6 Every VE filter is closed under ◊
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4.1 Generating AC-Algebras

Now it will be shown below that specific subsets of AC-algebras suffice to generate

the algebra itself and that the axioms satisfied by the granulation affect the generation

process and properties of AC-algebras and forgetful variants thereof.

An element x ∈ 𝔖will be said to be meet irreducible (resp. join irreducible) if and

only if∧{xi} = x ⟶ (∃i) xi = x (resp.∨{xi} = x ⟶ (∃i) xi = x). Let W(S), J(S) be

the set of meet and join irreducible elements of 𝔖 and let l(𝔖) be the length of the

distributive lattice.

Theorem 8 All of the following hold:

∙ (𝔖,∨,∧, 0, 1) is a isomorphic to the lattice of principal ideals of the poset of join
irreducibles.

∙ l(𝔖) = #(J(S)) = #(W(S)).
∙ J(S) is not necessarily the set of sets of maximal antichains of granules in general.
∙ When  satisfies mereological atomicity that is (∀a ∈ )(∀b ∈ S)(𝐏ba, al = au =

a ⟶ a = b), and all approximations are unions of granules, then elements of J(S)
are proper subsets of .

∙ In the previous context, W(S) must necessarily consist of two subsets of S that are
definite and are not parts of each other.

Proof ∙ The first assertion is a well known.

∙ Since the lattice is distributive and finite, its length must be equal to the number

of elements in J(S) and W(S). For a proof see [29].

∙ Under the minimal assumptions on , it is possible for definite elements to be

properly included in granules as in esoteric or prototransitive rough sets [18, 23].

These provide the required counterexamples.

∙ The rest of the assertions follows from the nature of maximal antichains and the

constructive nature of approximations. ⊓⊔

Theorem 9 In the context of the previous theorem if R(◊), R(□) are the ranges of
the operations ◊,□ respectively, then these have a induced lattice order on them.
Denoting the associated lattice operations by ⋎,⋏ on R(◊), it can be shown that

∙ R(◊) can be reconstructed from J(R(◊)) ∪ W(R(◊)).
∙ R(□) can be reconstructed from J(R(□)) ∪ W(R(□)).
∙ When  satisfies mereological atomicity and absolute crispness (i.e. (∀x ∈ ) xl =

xu = x), then R(◊) are lattices which are constructible from two sets A, C (with
A = { ∪ {g1 ∪ g2}u ⧵ {g1, g2}; g1, g2 ∈ } and C being the set of two element
maximal antichains formed by sets that are upper approximations of other sets).

Proof It is clear that R(◊) is a lattice in the induced order with J(R(◊)) and W(R(◊))
being the partially ordered sets of join and meet irreducible elements respectively.

This holds because the lattice is finite.
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The reconstruction of the lattice can be done through the following steps:

∙ Let Z = J(R(◊)) ∪ W(R(◊)). This is a partially ordered set in the order induced

from R(◊).
∙ For b ∈ J(R(◊)) and a ∈ W(R(◊)), let b ≺ a if and only if a ≠ b in R(◊).
∙ On the new poset Z with ≺, form sets including elements of W(R(◊)) connected

to it.

∙ The set of union of all such sets including empty set ordered by inclusion would

be isomorphic to the original lattice [29].

∙ Under additional assumptions on , the structure of Z can be described further.

When the granulation satisfies the properties of crispness and mereological atom-

icity, then A = J(R(◊)) and C = W(R(◊)). So the third part holds as well. ⊓⊔

The results motivate this concept of purity: A maximal antichain will be said to

pure if and only if it is both lower and upper pure.

4.2 Enhancing the Anti Chain Based Representation

An integration of the orders on sets of maximal antichains or antichains and the

representation of rough objects and possible orders among them leads to interesting

multiple orders on the resulting structure. A major problem is that of defining the

orders or partials thereof in the first place among the various possibilities.

Definition 13 By the rough interpretation of an antichain will be meant the

sequence of pairs obtained by substituting objects in the rough domain in place of

objects in the classical perspective. Thus if 𝛼 = {a1, a2 … , ap} is a antichain, then

its rough interpretation would be (𝜋(ai) = (al
i, a

u
i ) for each i)

𝛼 = {𝜋(a1), 𝜋(a2),… , 𝜋(ap)}. (22)

Proposition 7 It is possible that some rough objects are not representable by max-
imal antichains.

Proof Suppose the objects represented by the pairs (a, b) and (e, f ) are such that

a = e and b ⊂ f , then it is clear that any maximal antichain containing (e, f ) can-

not contain any element from {x ∶ xl = a& xu = b}. This situation can happen, for

example, in the models of proto transitive rough sets [24, 27]. Concrete counterex-

amples can be found in the same paper. ⊓⊔

Definition 14 A set of maximal antichains V will be said to be fluent if and only if

(∀x)(∃𝛼 ∈ V)(∃(a, b) ∈ 𝛼) xl = a& xu = b.

It will be said to be well fluent if and only if it is fluent and no proper subset of it

is fluent.

A related problem is of finding conditions on , that ensure that V is fluent.
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Table 1 Successor neighborhoods

Objects E a b c e f
Neighborhoods [E] {a} {a, b, e} {c, e} {c, f } {e}

4.3 Extended Abstract Example-1

The following example is intended to illustrate some aspects of the intricacies of the

inverse problem situation where anti chains may be described. It is done within the

relation based paradigm and the assumption that objects are completely determined

by their properties.

Let § = {a, b, c, e, f } and let R be a binary relation on it defined via

R ={(a, a), (b, b), (c, c), (a, b),
(c, e), (e, f ), (e, c), (f , e), (e, b)}

If the formula for successor neighborhoods is

[x] = {z ; Rzx},

then the table for successor neighborhoods would be as in Table 1.

Using the definitions

xl =
⋃

[z]⊆x
[z] & xu =

⋃

[z]∩x≠∅
[z],

the approximations and rough objects that follow are in Table 2 (strings of letters of

the form abe are intended as abbreviation for the subset {a, b, e} and ⌟ is for, among

subsets).

Under the rough inclusion order, the bounded lattice of rough objects in Fig. 1

(arrows point towards smaller elements) is the result:

From this ordered structure, maximal antichains can be evaluated by standard

algorithms or by a differential process of looking at elements, their order ideals (and

order filters) and maximal antichains that they can possibly form. In the figure, for

example, elements in the order ideals of 69 cannot form antichains with it. This

computation is targeted at representation in terms of relatively exact objects. The

direct computation that is likely to come first before representation in practice is

presented after the Table 3 in which some of the maximal antichains are computed

by representation:

{60, 54, 69, 72} is a maximal antichain because no more elements can be added

to the set without violating incomparability. Note that the singletons {0} and {1}
are also maximal antichains by definition. A diagram of the associated distributive

lattice will not be attempted because of the number of elements.
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Table 2 Approximations and rough objects

Rough object x zl zu
RO identifier

{a⌟b⌟ab} {a} {abe} {3}
{ae⌟abe} {a} {abce} {6}
{e⌟be} {e} {abec} {9}
{c} {∅} {cef } {15}
{f } {∅} {cf } {24}
{cf } {cf } {cef } {27}
{bc⌟bf } {∅} {S} {30}
{ac⌟af ⌟abc⌟abf } {a} {S} {33}
{aef } {ae} {S} {36}
{ef ⌟bef } {e} {S} {42}
{ec⌟bce} {ec} {S} {45}
{bcf } {fc} {S} {51}
{abef } {abe} {S} {54}
{ace} {ace} {S} {60}
{acf } {acf } {S} {63}
{ecf ⌟bcef } {cef } {S} {69}
{abcf } {abcf } {S} {72}
{abce} {abcf } {S} {78}

Table 3 Maximal antichains

Rough object Z Antichains including Z (differential)

78 {78, 69, 72}
60 {60, 54, 69, 72}, {60, 54, 69, 63}, {60, 54, 51}, {60, 54, 27}
54 {54, 45, 72}
72 {72, 45, 36}, {36, 69, 72}, {42, 72}, {9, 72}
69 {36, 69, 63}, {69, 33, 42}, {69, 6}, {69, 3}
42 {42, 33, 51}, {42, 33, 27}, {42, 6, 27}, {42, 6, 51}, {42, 63}
36 {36, 45, 63}, {36, 51, 45}, {36, 27, 45}
33 {45, 33, 51}, {45, 33, 27}
6 {9, 6, 15}, {9, 6, 27}, {9, 6, 51}, {9, 6, 24}
9 {9, 3, 15}, {9, 3, 24}, {9, 3, 27}, {9, 3, 51}, {9, 63}

4.3.1 Comparative Computations

In practice, the above table corresponds to only one aspect of information obtained

from information systems. The scope of the anti chain based is intended to be beyond

that including the inverse problem [21]. The empirical aspect is explained in this part.
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Fig. 1 Lattice of rough objects

Antichains are formed from ℘(S) or subsets of it with some implicit temporal

order (because of the order in which elements are accessed). If the elements of ℘(S)
are accessed in lexicographic order, and the sequence is decomposed by rough object

discernibility alone, then it would have the following form (⌈, ⌉ being group bound-

aries):
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{⌈{a}⌉, ⌈{b} {c}, {e}, {f }⌉, ⌈{a, b}, {a, c}, {a, e}⌉,
⌈{a, f }, {b, c}, {b, e}⌉,

⌈{b, f }, {c, e}, {c, f }, {e, f }, {a, b, c}, {a, b, e}}⌉,…}

If these are refined by rough inclusion, then a decomposition into antichains would

have the following form (⌈, ⌉ now serve as determiners of antichain boundaries)

{⌈{a}⌉, ⌈{b} {c}, {e}⌉, ⌈{f }, {a, b}⌉, ⌈{a, c}⌉, ⌈{a, e}⌉,
⌈{a, f }⌉, ⌈{b, c}, {b, e}⌉,

⌈{b, f }⌉, ⌈{c, e}, {c, f }⌉, ⌈{e, f }, {a, b, c}⌉, ⌈{a, b, e}}⌉,…}

Implicit in all this is that the agent can perceive

∙ rough approximations,

∙ rough inclusion,

∙ rough equality and

have good intuitive algorithms for arriving at maximal antichains. In the brute force

approach, the agent would need as much as
2#(℘(S))!

2
orders for obtaining all maximal

antichains. The number of computations can be sharply reduced by the table of rough

objects and known algorithms in the absence of intuitive algorithms.

A reading of the above sequence of antichains in terms of approximations (the

compact notation introduced earlier is used) is

{⌈(a, abe)⌉, ⌈(a, abe), (∅, cef ), (e, abec)⌉, ⌈(∅, cf ), (a, abe)⌉,
⌈(a, S)⌉, ⌈(a, abec)⌉, ⌈(a, S)⌉, ⌈(∅, S), (e, abec)⌉,

⌈(∅, S)⌉, ⌈(ec, S), (cf , cef )⌉, ⌈(e, S), (a, S)⌉, ⌈(a, abec)⌉,…}

Relative the order structure this reads as

{⌈3⌉, ⌈3, 15, 9⌉, ⌈24, 3⌉,
⌈33⌉, ⌈6⌉, ⌈33⌉, ⌈30, 9⌉,

⌈30⌉, ⌈45, 27⌉, ⌈42, 33⌉, ⌈6⌉,…}

4.4 Example: Micro-Fossils and Descriptively Remote Sets

This is a somewhat extended version of the example mentioned by the present author

in [26]. In the case study on numeric visual data including micro-fossils with the

help of nearness and remoteness granules in [34], the difference between granules

and approximations is very fluid as the precision level of the former can be varied.
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The data set consists of values of probe functions that extract pixel data from images

of micro-fossils trapped inside other media like amethyst crystals.

The idea of remoteness granules is relative a fixed set of nearness granules

formed from upper approximations—so the approach is about reasoning with sets

of objects which in turn arise from tolerance relations on a set. In [34], antichains of

rough objects are not used, but the computations can be extended to form maximal

antichains at different levels of precision towards working out the best antichains

from the point of view of classification.

Let X be an object space consisting of representation of some patterns and 𝛷 ∶
X ⟼ ℝn

be a probe function, defined by

𝛷(x) = (𝜙1(x), 𝜙2(x),… , 𝜙n(x)), (23)

where 𝜙i(x) is intended as a measurement of the ith component in the feature space

ℑ(𝛷). The concept of descriptive intersection of sets permits migration from clas-

sical ideas of proximity to ones based on descriptions. A subset A ⊆ X’s descriptive

intersection with subset B ⊆ X is defined by

A ∩
𝛷

B = {x ∈ A ∪ B ∶ 𝛷(x) ∈ 𝛷(A)&𝛷(x) ∈ 𝛷(B)} (24)

A is then descriptively near B if and only if their descriptive intersection is nonempty.

Peter’s version of proximity 𝜋
𝛷

is defined by

A𝜋
𝛷

B ↔ 𝛷(A) ∩𝛷(B) ≠ ∅ (25)

In [8], weaker implications for defining descriptive nearness are considered :

A ∩
𝛷

B ≠ ∅ → A𝛿
𝛷

B. (26)

Specifically, if 𝛿 is a proximity on Rn
, then a descriptive proximity 𝛿

𝛷

is definable

via

A𝛿
𝛷

B ↔ 𝛷(A)𝛿𝛷(B). (27)

All these are again approachable from an anti-chain perspective.

4.5 Example: Beyond Data Tables

In this example subjective data is cast in terms of rough language for the purpose of

understanding appropriate frameworks and solving context related problems.

Suppose agent X wants to complete a task and this task is likely to involve the use

of a number of tools. X thinks tool-1 suffices for the task that a tool-2 is not suited
for the purpose and that tool-3 is better suited than tool-1 for the same task. X also

believes that tool-4 is as suitable as tool-1 for the task and that tool-5 provides more
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than what is necessary for the task. X thinks similarly about other tools but not

much is known about the consistency of the information. X has a large repository of

tools and limited knowledge about tools and their suitability for different purposes,

and at the same time X might be knowing more about difficulty of tasks that in turn

require better tools of different kinds.

Suppose also that similar heuristics are available about other similar tasks.

The reasoning of the agent in the situation can be recast in terms of lower, upper

approximations and generalized equality and questions of interest include those relat-

ing to the agent’s understanding of the features of tools, their appropriate usage con-

texts and whether the person thinks rationally.

To see this it should be noted that the key predicates in the context are as below:

∙ suffices for can be read as includes potential lower approximation of a right tool

for the task.

∙ is not suited for can be read as is neither a lower or upper approximation of any

of the right tools for the task.

∙ better suited than can be read as potential rough inclusion,

∙ is as suitable as can be read as potential rough equality and

∙ provides more than what is necessary for is for upper approximation of a right

tool for the task.

If table rationality is the process of reasoning by information tables and approx-

imations, then when does X’s reasoning become table rational?

This problem fits in easily with the antichain perspective, but not the information

table approach because the latter requires extra information about properties.

5 Quasi Equivalential Rough Sets and More

Entire semantics of various general rough set approaches can be recast in the antichain

based perspective. For example, prototransitive rough sets [27] can be dealt with the

same way. A finer characterization of the same will appear separately. Quasi Equiv-

alential rough set were considered also as an example of the approach in [26]. As

this can serve as an important example, the part is repeated below.

One of the most interesting type of granulation  in relational RST is one that

satisfies

(∀x, y) (𝜙(x) = 𝜙(y) ↔ Rxy&Ryx), (28)

where 𝜙(x) is the granule generated by x ∈ S. This granular axiom says that if x is
left-similar to y and y is left-similar to x, then the elements left similar to either of
x and y must be the same. R is being read as left-similarity because it is directional

and has effect similar to tolerances on neighborhood granules.

Reflexivity is not assumed as the present author’s intention is to isolate the effect

of the axiom alone.
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For example, it is possible to find quasi equivalences that do not satisfy other

properties from contexts relating to numeric measures. Let S be a set of variables such

that Rxy if and only if x ≈ 𝜅y& y ≈ 𝜅′x& 𝜅, 𝜅′ ∈ (0.9, 1.1) for some interpretation

of ≈.

Definition 15 By a Quasi-Equivalential Approximation Space will be meant a pair

of the form S =
⟨

S,R
⟩

with R being a quasi equivalence. For an arbitrary subset

A ∈ ℘(S), the following can be defined:

(∀x ∈ S) [x] = {y ; y ∈ S&Ryx}.

Al =
⋃

{[x] ; [x] ⊆ A& x ∈ S}&Au =
⋃

{[x] ; [x] ∩ A ≠ ∅& x ∈ S}

Alo =
⋃

{[x] ; [x] ⊆ A&x ∈ A}&Auo =
⋃

{[x] ; [x] ∩ A ≠ ∅& x ∈ A}

AL = {x ; ∅ ≠ [x] ⊆ A& x ∈ S}&AU = {x ; [x] ∩ A ≠ ∅& x ∈ S}
ALo = {x ; [x] ⊆ A& x ∈ A}&AUo = {x ; [x] ∩ A ≠ ∅ ∨ x ∈ A}.

AL1 = {x ; [x] ⊆ A& x ∈ S}&AU = {x ; [x] ∩ A ≠ ∅& x ∈ S}.

Note the requirement of non-emptiness of [x] in the definition of AL
, but it is not

necessary in that of ALo .

Theorem 10 The following properties hold:

1. All of the approximations are distinct in general.
2. (∀A ∈ ℘(S))ALo

⊆ Alo
⊆ Al

⊆ A and ALo
⊆ AL

.

3. (∀A ∈ ℘(S))Alol = Alo &Allo
⊆ Alo &Alolo

⊆ Alo

4. (∀A ∈ ℘(S))Au = Aul
⊆ Auu, but it is possible that A ⊈ Au

5. It is possible that AL
⊈ A and A ⊈ AU, but (∀A ∈ ℘(S))AL

⊆ AU holds. In gen-
eral AL would not be comparable with Al and similarly for AU and Au.

6. (∀A ∈ ℘(S))ALoLo
⊆ ALo

⊆ A ⊆ AUo
⊆ AUoUo . Further AU

⊆ AUo .

Clearly the operators l, u are granular approximations, but the latter is contro-

versial as an upper approximation operator. The point-wise approximations L,U are

more problematic—not only do they fail to satisfy representability in terms of neigh-

borhood granules, but the lower approximation fails inclusion.

Example 1 (General)

Let S = {a, b, c, e, f , k, h, q} (29)

and let R be a binary relation on it defined via

R = {(a, a), (b, a), (c, a), (f , a),
(k, k), (e, h), (f , c), (k, h)

(b, b), (c, b), (f , b), (a, b), (c, e), (e, q)}.
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The neighborhood granules  are then

[a] = {a, b, c, f } = [b], [c] = {f }, [e] = {c},
[k] = {k}, [h] = {k, e}, [f ] = ∅& [q] = {e}.

So R is a quasi-equivalence relation.

If A = {a, k, q, f }, then

Al = {k, f }, Au = {a, b, c, f , k, e}, Auu = {a, b, c, f , k, e, h}
Alo = {k}, Auo = {a, b, c, k, f }.

AL = {k, f }, AU = {a, b, c, k, h, q}.
ALo = {q, k, f }, AUo = {a, k, q, f , b, c, h}.

AL1 = {k, c, f }, AU = {a, b, c, k, h, q}.

Note that AL1
⊈ A&AL1

⊈ AU &A ⊈ AU
. (30)

6 Semantics of QE-Rough Sets

In this section a semantics of quasi-equivalential rough sets (QE-rough sets), using

antichains generated from rough objects, is developed. Interestingly the properties of

the approximation operators of QE-rough sets fall short of those of granular operator

space. Denoting the set of maximal antichains of rough objects by 𝔖 and carrying

over the operations≪, 𝜚, 𝛿, the following algebra can be defined.

Definition 16 A maximal simply independent algebra Q of quasi equivalential

rough sets shall be an algebra of the form

Q = ⟨𝔖,≪, 𝜚, 𝛿⟩ (31)

defined as in Sect. 4 with the approximation operators being l, u uniformly in all

constructions and definitions.

Theorem 11 Maximal simply independent algebras are well defined.

Proof None of the steps in the definition of the maximal antichains, or the operations

𝜚 or 𝛿 are problematic because of the properties of the operators l, u. ⊓⊔

The above theorem suggests that it would be better to try and define more specific

operations to improve the uniqueness aspect of the semantics or at least the properties

of 𝜚, 𝛿. It is clearly easier to work with antichains as opposed to maximal antichains as

more number of suitable operations are closed over the set of antichains as opposed

to those over the set of maximal antichains.
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Definition 17 Let 𝔎 be the set of antichains of rough objects of S then the following

operations 𝔏, 𝔘 and extensions of others can be defined:

∙ Let 𝛼 = {𝔸1,𝔸2,… ,𝔸n,…} ∈ 𝔎 with 𝔸i being rough objects; the lower and

upper approximation of any subset in 𝔸i will be denoted by 𝔸l
i and 𝔸u

i respec-

tively.

∙ Define 𝔏(𝛼) = {𝔸l
1,𝔸

l
2,… ,𝔸

l
r,…} with duplicates being dropped

∙ Define 𝔘(𝛼) = {𝔸u
1,𝔸

u
2,… ,𝔸

u
r ,…} with duplicates being dropped

∙ Define

𝜇(𝛼) =
{
𝛼 if 𝛼 ∈ 𝔖
undefined, else.

(32)

∙ Partial operations 𝜚
∗
, 𝛿

∗
corresponding to 𝜚, 𝛿 can also be defined as follows:

Define

𝜚

∗(𝛼, 𝛽) =
{
𝜚(𝛼, 𝛽) if 𝛼, 𝛽 ∈ 𝔖
undefined, else.

(33)

𝛿

∗(𝛼, 𝛽) =
{
𝛿(𝛼, 𝛽) if 𝛼, 𝛽 ∈ 𝔖
undefined, else.

(34)

The resulting partial algebra 𝔎 = ⟨𝔎, 𝜇,∨,∧, 𝜚∗, 𝛿∗,𝔏,𝔘, 0⟩ will be said to be a

simply independent QE algebra.

Theorem 12 Simply independent QE algebras are well defined and satisfy the fol-
lowing:
∙ 𝔏(𝛼) ∨ 𝛼 = 𝛼.
∙ 𝔘(𝛼) ∨ 𝛼 = 𝔘(𝛼).

7 Ternary Deduction Terms

Since AC-algebras are distributive lattices with additional operations, a natural strat-

egy should be to consider terms similar to Boolean algebras and p-Semilattices.

For isolating deductive systems in the sense of Sect. 3, a strategy can be through

complementation-like operations. This motivates the following definition:

Definition 18 In a AC-algebra 𝔖, if an antichain 𝛼 = (X1,X2,… ,Xn), then some

possible general complements on the schema

𝛼

c = ℌ(Xc
1,X

c
2,… ,X

c
n)

are as follows:

X∗
i = {w; (∀a ∈ Xi) ¬𝐏aw&¬𝐏wa} (Class A)

X#
i = {w; (∀a ∈ Xi) ¬al = wl

or ¬au = wu} (Light)

X♭i = {w; (∀a ∈ Xi) ¬al = wl
or ¬auu = wuu} (UU)
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ℌ is intended to signify the maximal antichain containing the set if that is defin-

able.

Note that under additional assumptions (similarity spaces), the light complemen-

tation is similar to the preclusivity operation in [3] for Quasi BZ-lattice or Heyting-

Wajsburg semantics and variants.

The above operations on 𝛼 are partial in general, but can be made total with the

help of an additional order on 𝛼 and the following procedure:

1. Let 𝛼 = {X1,X2,… ,Xn} be a finite sequence,

2. Form 𝛼
c

and split into longest ACs in sequence,

3. Form maximal ACs containing each AC in sequence

4. Join resulting maximal ACs.

Proposition 8 Every general complement defined by the above procedure is well
defined.

Proof ∙ Suppose {Xc
1,X

c
2}, {Xc

3,…Xc
n} form antichains, but {Xc

1,X
c
2,X

c
3} is not an

antichain.

∙ Then form the maximal antichains 𝜂1,… , 𝜂p containing either of the two

antichains.

∙ The join of this finite set of maximal antichains is uniquely defined. By induction,

it follows that the operations are well defined. ⊓⊔

7.1 Translations

As per the approach of Sect. 3, possible definitions of translations are as follows:

Definition 19 A translation in a AC-algebra 𝔖 is a 𝜎 ∶ 𝔖 ⟼ 𝔖 that is defined in

one of the following ways (for a fixed a ∈ 𝔖):

𝜎
𝜃

(x) = 𝜃(a, x) ; 𝜃 ∈ {∨,∧, 𝜚, 𝛿}
𝜎
𝜇

(x) = 𝜇(x) ;𝜇 ∈ {□,◊}
𝜎t(x) = (x⊕ a)⊕ b for fixed a, b

𝜎t+(x) = (a⊕ b)⊕ x for fixed a, b

Theorem 13

𝜎∨(0) = a = 𝜎∨(a ; 𝜎∨(1) = 1
Ran(𝜎∨) is the principal filter generated by a
Ran(𝜎∧) is the principal ideal generated by a

x ⋖ w ⟶ 𝜎∨(x) ⋖ 𝜎∨(w)& 𝜎∧(x) ⋖ 𝜎∧(w)

Proof ∙ Let 𝔽 (a) be the principal lattice filter generated by a.
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∙ If a ⋖ w, then a ∨ w = w = 𝜎∨(w). So w ∈ Ran(𝜎∨).
∙ 𝜎∨(x) ∧ 𝜎∨(w) = (a ∨ x) ∧ (a ∨ w) = a ∨ (x ∧ w) = 𝜎∨(x ∧ w).
∙ So if x,w ∈ Ran(𝜎∨), then x ∧ w, x ∨ w ∈ Ran(𝜎∨)
∙ Similarly it is provable that Ran(𝜎∧) is the principal ideal generated by a.

⊓⊔

7.2 Ternary Terms and Deductive Systems

Possible ternary terms that can cohere with the assumptions of the semantics include

the following t(a, b, z) = a ∧ b ∧ z, t(a, b, z) = a⊕ b⊕ z (⊕ being as indicated ear-

lier) and t(a, b, z) = □(a ∧ b) ∧ z. These have admissible deductive systems associ-

ated. Further under some conditions on granularity, the distributive lattice structure

associated with 𝔖 becomes pseudo complemented.

Theorem 14 If t(a, b, z) = a ∧ b ∧ z, 𝜏 = {t}, z ∈ H, h(x) = x 𝜎(x) = x ∧ z and if H
is a ternary 𝜏-deduction system at z, then it suffices that H be an filter.

Proof All of the following must hold:

∙ If a ∈ H, t(z, a, z) = a ∧ z ∈ H
∙ If t(a, b, z) ∈ H, then t(𝜎(a), 𝜎(b), z) = t(a, b, z) ∈ H
∙ If a, t(a, b, z) ∈ H then t(a, b, z) = (a ∧ z) ∧ b ∈ H. But H is a filter, so b ∈ H.

⊓⊔

Theorem 15 If t(a, b, z) = (a ∨ (□b)) ∧ z, 𝜏 = {t}, z ∈ H, h(x) = x 𝜎(x) = x ∧ z and
if H is a ternary 𝜏-deduction system at z, then it suffices that H be a principal LD-
filter generated by z.

Proof All of the following must hold:

∙ If a ∈ H, t(z, a, z) = (z ∨ (□a)) ∧ z ∈ H because (z ∨ (□a)) ∈ H.

∙ If t(a, b, z) ∈ H, then t(𝜎(a), 𝜎(b), z) = t((a ∧ z), (b ∧ z), z) = ((a ∧ z) ∨□
(b ∧ z)) ∧ z ∈ H

∙ If a, t(a, b, z) ∈ H then t(a, b, z) = (a ∨□(b)) ∧ z = (a ∧ z) ∨ (□(b) ∧ z) ∈ H. But

H is a LD-filter, so a ∨□(b) ∈ H. This implies □(b) ∈ H, which in turn yields

b ∈ H.
⊓⊔

In the above two theorems, the conditions on H can be weakened considerably.

The converse questions are also of interest.

The existence of pseudo complements can also help in defining ternary terms

that determine deductive systems (or subsets closed under consequence). In general,

pseudo complementation⊛ is a partial unary operation on 𝔖 that is defined by x⊛ =
max{a ; a ∧ x = 0} (if the greatest element exists).

There is no one answer to the question of existence as it depends on the granularity

assumptions of representation and stability of granules. The following result guar-

antees pseudo complementation (in the literature, there is no universal approach—it

has always been the case that in some case they exist):
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Theorem 16 In the context of AC-algebras, if the granulation satisfies mereological
atomicity and absolute crispness, then a pseudo complementation is definable.

Proof Under the conditions on the granulation, it is possible to form the rough inter-

pretation of each antichain. Moreover the granules can be moved in every case to

construct the pseudo complement. The inductive steps in this proof have been omit-

ted. ⊓⊔

8 Relation to Knowledge Interpretation

In Pawlak’s concept of knowledge in classical RST [30, 32], if S is a set of attributes

and P an indiscernibility relation on it, then sets of the form Al
and Au

represent

clear and definite concepts (the semantic domain associated is the rough semantic

domain). Extension of this to other kinds of RST have also been considered in [20,

22, 24, 27] by the present author. In [20], the concept of knowledge advanced by

her is that of union of pairwise independent granules (in set context corresponding

to empty intersection) correspond to clear concepts. This granular condition is desir-

able in other situations too, but may not correspond to the approximations of interest.

In real life, clear concepts whose parts may not have clear relation between them-

selves are too common. If all of the granules are not definite objects, then analogous

concepts of knowledge may be graded or typed based on the properties satisfied by

them [24, 27]. Then again the semantic domains in which these are being considered
can be varied and so knowledge is relative. Some examples of granular knowledge

axioms are as follows:

1. Individual granules are atomic units of knowledge.

2. If collections of granules combine subject to a concept of mutual independence,

then the result would be a concept of knowledge. The ‘result’ may be a single

entity or a collection of granules depending on how one understands the concept

of fusion in the underlying mereology. In set theoretic (ZF) setting the fusion

operation reduces to set-theoretic union and so would result in a single entity.

3. Maximal collections of granules subject to a concept of mutual independence are

admissible concepts of knowledge.

4. Parts common to subcollections of maximal collections are also knowledge.

5. All stable concepts of knowledge consistency should reduce to correspondences

between granular components of knowledges. Two knowledges are consistent if

and only if the granules generating the two have ’reasonable’ correspondence.

6. Knowledge A is consistent with knowledge B if and only if the granules generating

knowledge B are part of some of the granules generating A.

An antichain of rough objects is essentially a set of some-sense mutually distinct
rough concepts relative that interpretation. Maximal antichains naturally correspond

to represented knowledge that can be handled in a clear way in a context involving

vagueness. The stress here should be on possible operations both within and over
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them. It is fairly clear that better the axioms satisfied by a concept of granular knowl-

edge, better will be the nature of possible operations over sets of some-sense mutually
distinct rough concepts.

From decision making perspectives, antichains of rough objects correspond to

forming representative partitions of the whole and semantics relate to relation

between different sets of representatives.

8.1 Knowledge Representation

In Sect. 4.2, the developed representation has the following features:

∙ Every object in a antichain is representable by a pair of objects (a, b) that are

respectively of the form xl
and zu

.

∙ Some of these objects might be of the form (a, a) under the restriction a = al = au

∙ The above means that antichains can be written in terms of objects that are approx-

imations of other objects or themselves.

∙ At another level, the concepts of rough objects mentioned in the background

section suggest classification of the possible concepts of knowledge.

∙ The representation is perceivable in a rough semantic domain and this will be

referred to as the AC-representable rough domain ACR.

∙ If definable rough objects are those rough objects representable in the form (a, b)
with a, b being definite objects, then these together with definite objects may not

correspond to maximal antichains in the classical semantic domain—the point is

that some of the non crisp objects may fail to get represented under the constraints.

The semantic domain associated with the definable rough objects with the repre-

sentation and crisp objects will be referred to as the strict rough domain (SRD).

The above motivates the following definition sequence

Definition 20 All of the following constitute the basic knowledge structure in the

context of AC-semantics:

∙ A Proper Knowledge Sequence in ACR corresponds to the representation of any

of the maximal antichains.

∙ An Abstract Proper Knowledge Sequence in ACR corresponds to the representa-

tion of possible maximal antichains. These may be realized in particular models.

∙ A Knowledge Sequence in SRD corresponds to the relatively maximal antichains

formed by sequences of definable rough objects and definite objects.

∙ Definable rough objects.

∙ Representation of rough and crisp objects.

More complex objects formed by antichains are also of interest. The important

thing about the idea of knowledge sequences is the explicit admission of temporality

and the relation to all of the information available in the context. This is considered

next.
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8.2 Perdurantism and Endurantism

The endurantist position is that objects persist over time by being wholly present
at all times of their existence. Endurantism is also known as Three dimensionalism.

The perdurantist position (or four dimensionalism),in contrast, is that objects persist

over time by having temporal parts in addition to their spatial parts at all times of

their existence. Some references are [16, 38, 42, 43]. In the context of rough sets,

though temporality has been investigated, these concepts do not figure explicitly in

earlier work in both the present author’s work and the rough membership function

based approach [35].

Classical extensional mereology CEM is seen by most endurantists and perduran-

tists as a reasonable framework for handling real objects with material existence. In

the framework, such objects may be viewed as mereological aggregations including

sum and fusion. But when it comes to concepts as in rough sets, such an approach

need not suffice (see [21]). Given the assumptions of CEM, it can be seen that maxi-

mal antichains have temporal parts and by modification of temporal parts their iden-

tity changes. Again they can be seen as the same information with irrelevant temporal

parts—but in doing this the semantic domain needs to be changed. This means that

the positions of perdurantism and endurantism need to rely on choice of semantic

domain for their validation. From the way the algebraic semantics has been con-

structed, it is clear that any two distinct maximal antichain have distinct temporal

components. So the following meta theorem follows:

Theorem 17 The semantic domain associated with the the AC-algebras is perdu-
rantist (or four dimensional).

But the argument does not stop here. It can be argued that two distinct maximal

antichains

∙ are insufficient references to the same knowledge U (say).

∙ U is guaranteed to exist by generalized granular operator spaces.

∙ U is not affected by the so-called temporal parts and in the classical semantic

domain maximal antichains correspond to distinct knowledge.

All this confirms the present author’s position that the two positions happen

because of choice of semantic domains—the main problem is then of construct-

ing/describing consistent domains.

8.3 Patterns of Triads

Pierce’s approach to semiotics does not provide a consistent perspective for ontol-

ogy in general. This is often seen as a failure of the enterprise [1]. But attempts have

been made to adopt aspects of the semiotics to get to new insights in the structure

of knowledge and consequence. In this section, parts of how these might play with
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the concept of knowledge afforded by rough sets and the antichain based knowledge

representation is examined. Admittedly the developed approach may differ substan-

tially with Pierce’s ideas and in particular on assumptions relating to existence of

fixed ontologies.

The first thing to be noted is that the concept of knowledge in general rough

sets must be viewed in a deconstructive perspective rather than in the perspective

of aggregation. The deconstructive process in the triadic perspective may not always

yield parts that correspond to exact knowledge and so a few redefinitions of the ontol-

ogy are introduced. Multiple sources of knowledge can also be handled within the

framework with scope for handling conflict resolution by algebraic strategies espe-

cially when the graphical take forever.

If knowledge is viewed as the result of a process of knowing an object or phenom-

ena then the process in question may be about placing all of the parts or the whole

in a logical space of reasons that refers to justification and the justified. This kind

of knowledge will be referred to as pre-rational knowledge and if the understanding

of pre-rational is something less than rational, then the machinery of general rough

sets affords a specific instance of this definition of pre-rational knowledge. This def-

inition may be seen as a variation of the definition of knowledge in [36] (passage 36)

wherein the part-whole distinctions are missing. Unless quasi orders or preference

orders is imposed on granulations or attributes or the mereological is necessary part
of is specified between subsets of granules and objects, the concept of rationality in

approximations is difficult to ensure scientific rationality.

In Peirce’s view all forms of reality exist in Signs. A sign is a spatiotemporal

reality that may be material or conceptual. These exist in relation to other signs and

is determined by its Object, and determines Interpretant through the mediating role

of representations. Somewhat controversially all this can be assumed to establish the

nature of the sign as a triad of interactions or relations. Thus in [33] pp. 272–273 it

is stated that

A Sign, (or Representamen), is a First which stands in such a genuine triadic relation to a

Second, called its Object, as to be capable of determining a Third, called its Interpretant, to

assume the same triadic relation to its Object in which it stands itself to the same Object.

The semiotic process of Object-Representation;
Representation-Representation; Representation-Interpretant is then a triad of three

relations, correlated by the mediation of the Representation. Some authors [40] reject

the singularity of a triadic relation because it contributes to setting up a kind of

closed and isolated process, while others believe that it is but one of the possibilities.

Signs are definable through six relations (called semiosic predicates) and interact

as functions that act as mediation between input and output. The triad may be read

as Object-Mediation/Representation-Interpretant in Peirce’s sense and being irre-

ducible. One scheme described in [37, 40], consists of ten basic signs that can be

seen as classes with further subdivisions. This approach requires further ontology

for a reasonable ascription of thresholds for concepts of reasonable/rational approx-

imations.
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The triadic approach again refers some fragment of rationality because of the

way in which sign-vehicles [1] refer parts of attributes possessed—for example all

attributes associated with red traffic lights are not used by drivers for the intended

interpretation. The main features of sign vehicles in the triadic approach are classified

by the signified by virtue of qualities, existential facts, or conventions respectively

into qualisigns, sinsigns, and legisigns respectively.

Explicit integration with rough theoretic ideas of knowledge is however hindered

by the ontological commitments of the semiosis and is an interesting problem—Will

the triadic approach yield good thresholds of rationality in approximations?

Omitting even the ten sign classification, knowledge can be associated with onto-

logical types along the following simple lines—these can in turn be applied to knowl-

edge and its parts.

∙ Simplified Firstness [f]: these directly refer possible qualities or primitives that

interact or become combined in multiple ways to form real objects or entities.

∙ Simplified Secondness [s]: these directly refer real objects/entities.

∙ Simplified Thirdness [t]: these directly refer general principles, rules, laws,

methodologies and categories.

The resulting triads may not be easily applicable for handling questions relating

to rational approximations and concepts, but permits contextual reasoning to some

degree of rigor. An example ontological assignment may be like the following [41]:

Entities-[f]

.[SingleEntities-[f]

...[Objects-[f]

...States-[s]

...Events-[t]]

.PartOfEntities-[s]

...[Members-[f]

...Parts-[s]

...FunctionalComponents-[t]]

.ComplexEntities-[t]

...[CollectiveStuff-[f]

...MixedStuff-[s]

...CompoundEntities-[t]]

In the ontology, it is claimed that the process of investigation of knowledge by

way of thirdness is fractal in nature. In the present author’s perspective it is obvious

that the claim is provably false at sufficient depth and is not a mathematical one. How

deep are fractals formed on three symbols?

The components of maximal antichains and antichains in general rough sets can

also be perceived in the triadic systems of reasoning and in the above mentioned

ontological scheme. For closely related considerations on ontology and parthood

the reader is referred to [25].
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9 Concluding Remarks

In this research, general approaches to semantics of rough sets using antichains of

rough objects and maximal antichains have been developed further. Specifically the

operations used in [26] have been improved. The semantics is shown to be valid for a

very large class of general rough set theories. This has been possible mainly because

the objects of study have been taken to be antichains of rough objects as opposed to

plain rough objects.

The problem of finding deductive systems in the context of antichain based

semantics for general rough sets has also been explored in considerable detail and

key results have been proved by the present author. The lateral approach used by

her is justified by the wide variety of possible concepts of rough consequence in the

general setting.

In forthcoming papers including [28], the framework of granular operator spaces

has been expanded with definable parthood relations and semantics has been consid-

ered through counting strategies. All this will be explored in greater detail in future

work.

The concept of knowledge afforded by the antichain based approach is explored

in much detail and contrasted with concepts of knowledge studied in earlier papers

by the present author. New concepts of fullness of knowledge have also been isolated

by her and it is shown (in a sense) that the knowledge afforded by antichains is four

dimensional. Last but not least methods of integrating Peirce’s triadic approach to

semiotics is shown to be possible.

This research also motivates the following:

∙ Further study of specific rough sets from the perspective of antichains.

∙ Research into connections with the rough membership function based semantics

of [6] and extensions by the present author in a forthcoming paper. This is justified

by advances in concepts of so-called cut-sets in antichains.

∙ Research into computational aspects as the theory is well developed for antichains.

The abstract example illustrates parts of this aspect in particular.

∙ Study of consequence and special ideals afforded by the semantics and

∙ Research into ontologies indicated by the triadic approach.

Acknowledgements The present author would like to thank the referees for useful comments that

helped in improving the readability of this research chapter.
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Measuring Soft Roughness of Soft Rough
Sets Induced by Covering

Amr Zakaria

Abstract In this chapter, important properties of soft rough sets induced by soft

covering have been studied and different examples are mentioned. A measure of soft

roughness has been introduced via soft covering approximation. Further, integral

properties of the measure have been discussed and an example to show the promi-

nence of the measure has been presented. A New approach of soft rough approx-

imation space has been presented via a measure of soft roughness. Moreover, the

concepts of soft lower and soft upper approximations via soft roughness have been

mentioned. Finally, essential properties of this new approach have been elaborated.

1 Introduction

Rough set theory, introduced by Pawlak [16], is an expansion of set theory for the

study of knowledge classification [7, 19] and rule learning [20, 21]. Moreover, the

theory has been successfully applied in machine learning [1], data mining [2], deci-

sion making support and analysis [12, 17, 18], and expert system [23]. Other impor-

tant research about rough set theory and its generalizations can be found in [4, 8–11,

25–27, 30].

In 1999, Molodtsov [13] suggested the unprecedented concept of soft set theory,

which furnishes a fully new approach for modeling vagueness and uncertainty. Soft

set theory has a prosperous potential for applications in various directions, few of

which were shown by Molodtsov in [13]. After Molodtsov’s work, some different

applications of soft sets were studied in Chen [3]. Further theoretical sides of soft

sets were explored by Maji et al. [14]. Also the same authors [15] presented the

definition of a fuzzy soft set. Some results are acquired about the relevance between

rough sets and soft sets in [5, 22, 28, 29].
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In this chapter, integral properties of soft rough sets induced by soft covering
have been investigated. This chapter is organized as follows: Sect. 2 has a collection

of all basic definitions and notions for further study. The aim of Sect. 3 is to intro-

duce essential properties of soft rough set induced by soft covering. Moreover, some

illustration examples have been mentioned. In Sect. 4, the definition of a measure of

soft roughness via soft covering has been introduced. Many properties of this new

definition have been discussed and an example in order to show the importance of

the measure has been mentioned. In Sect. 5, a new approach of soft rough sets via a

measure of soft roughness has been discussed. Furthermore, the soft lower and soft

upper approximations of this new approach have been defined. Finally, the properties

of this new approach of soft rough sets are presented.

2 Preliminaries

In this section, some fundamental concepts and properties of soft sets and covering-

based soft rough sets have been mentioned.

Definition 1 ([13]) Let U be a nonempty set, E be a set of parameters, and P(U)
denotes the power set of U. A pair (F,E) is said to be a soft set over U, where F is a

mapping given by F ∶ E → P(U). The family of all these soft sets on (U,E) denoted

by P(U)E.

Definition 2 ([14]) Let F,G ∈ P(U)E. Then F is soft subset of G, denoted by F ̃
⊆G,

if F(e) ⊆ G(e) for all e ∈ E.

Definition 3 ([14]) Two soft subsets F and G over a nonempty set U are said to be

soft equal if F is a soft subset of G and G is a soft subset of F.

Definition 4 ([14]) A soft set (F,E) over U is said to be a null soft set, denoted by

̃∅, if F(e) = ∅ for all e ∈ E.

Definition 5 ([14]) A soft set (F,E) over U is said to be an absolute soft set, denoted

by ̃U, if F(e) = U for all e ∈ E.

Definition 6 ([5]) The intersection of two soft sets (F,A) and (G,B) over a non-

empty set U is a soft set (H,D), denoted by (F,A) ∩̃ (G,B) = (H,D), where D =
A ∩ B and H(e) = F(e) ∩ G(e) for all e ∈ D.

Definition 7 ([14]) The union of two soft sets (F,A) and (G,B) over a nonempty set

U is a soft set (H,D), denoted by (F,A) ∪̃ (G,B) = (H,D), where D = A ∪ B and for

all e ∈ D,

H(e) =
⎧
⎪
⎨
⎪
⎩

F(e) if e ∈ A − B
G(e) if e ∈ B − A
F(e) ∪ G(e) if e ∈ A ∩ B
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Definition 8 ([5]) Let (F,E) be a soft set over U, A ⊆ E and C = {F(e) ∶ e ∈ A}.

C is said to be a soft covering of U if F(e) ≠ ∅ for all e ∈ A and ∪e∈AF(e) = U. The

ordered pair ⟨U,C ⟩ is called soft covering approximation space.

Definition 9 ([6]) Let ⟨U,C ⟩ be a soft covering approximation space and u ∈ U.

The soft minimal description of u, denoted by Md(u), is defined as follows:

Md(u) ∶= {K ∈ C ∶ u ∈ K ∧ (∀C ∈ C ∧ u ∈ C ⊆ K) ⇒ K = C}.

Definition 10 ([24]) Let ⟨U,C ⟩ be a soft covering approximation space. ForX ⊆ U,

soft covering lower approximation and soft covering upper approximation are,

respectively, defined as

C (X) ∶= ∪e∈E{F(e) ∶ F(e) ⊆ X}, (1)

C (X) ∶= ∪{Md(x) ∶ x ∈ X}. (2)

3 Extended Properties of Soft Rough Sets Induced
by Covering

Definition 11 ([6]) Let ⟨U,C ⟩ be a soft covering approximation space. N(u) ∶=
∩{K ∈ C ∶ u ∈ K} is called the neighborhood of an element u ∈ U.

Definition 12 ([6]) Let ⟨U,C ⟩ be a soft covering approximation space. For any

X ⊆ U, the soft lower approximation and soft upper approximation of X are defined,

respectively, as:

X∗ ∶= {u ∈ U ∶ N(u) ⊆ X}, (3)

X∗ ∶= {u ∈ U ∶ N(u) ∩ X ≠ ∅}. (4)

The pair (X∗,X∗) is referred to as the soft rough set of X.

Definition 13 Let ⟨U,C ⟩ be a soft covering approximation space. For X ⊆ U, the

soft boundary, soft positive, soft negative regions and accuracy measure of X are

defined, respectively, as:

BNDC (X) ∶= X∗ − X∗, (5)

POSC (X) ∶= X∗, (6)

NEGC (X) ∶= U − X∗
, (7)
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Table 1 Tabular

representation of the soft

set G1

u1 u2 u3 u4 u5
e1 1 1 0 0 0

e2 0 1 1 0 0

e3 0 0 1 1 0

e4 0 0 0 1 1

𝜈C (X) ∶=
|X∗|

|X∗|
. (8)

It may be noted that 0 ≤ 𝜈C (X) ≤ 1.

Example 1 Let U = {u1, u2, u3, u4, u5}, E = {e1, e2, e3, e4}. G1 = (F,E) be a soft

set over U given by Table 1. It is clear that C = {F(e1),F(e2),F(e3),F(e4)} is

a covering of U. Hence ⟨U,C ⟩ is soft covering approximation space. One eas-

ily sees that Md(u1) = {F(e1)}, Md(u2) = {F(e1),F(e2)}, Md(u3) = {F(e2),F(e3)},

Md(u4) = {F(e3),F(e4)} and Md(u5) = {F(e4)}. In addition, N(u1) = {u1, u2},

N(u2) = {u2}, N(u3) = {u3}, N(u4) = {u4} and N(u5) = {u4, u5}. For X = {u2}, the

covering-based approximations of X, according to (1) and (2), are C (X) = ∅ and

C (X) = {u1, u2, u3}. On the other hand, the covering-based approximations of X,

according to (3) and (4), are X∗ = {u2} and X∗ = {u1, u2}. Therefore, the two

approaches are different.

Lemma 1 Let ⟨U,C ⟩ be a soft covering approximation space and u, v ∈ U such
that v ∈ N(u). Then N(v) ⊆ N(u).

Proof Let w ∈ N(v) = ∩{K ∈ C ∶ v ∈ K}. That is, w belongs to all elements of C
containing v, but v belongs to all element of C containing u. Hence w belongs to all

elements of C containing u. Consequently, w ∈ N(u). Thus N(v) ⊆ N(u). □

Proposition 1 Let ⟨U,C ⟩ be a soft covering approximation space and u ∈ U. Then
(N(u))∗ = N(u).

Proof Let v ∈ N(u). Hence Lemma 1 implies that N(v) ⊆ N(u). That is to say v ∈
(N(u))∗. Hence N(u) ⊆ (N(u))∗. On the other hand, let v ∈ (N(u))∗. It follows that

N(v) ⊆ N(u). Since v ∈ N(v), hence v ∈ N(v) ⊆ N(u). Then (N(u))∗ ⊆ N(u). Conse-

quently, (N(u))∗ = N(u). □

Theorem 1 Let ⟨U,C ⟩ be a soft covering approximation space. Then the soft lower
approximation, defined in (3), satisfies the following properties:

(L1) X∗ ⊆ X,
(L2) (Xc)∗ = (X∗)c,
(L3) ∅∗ = ∅,
(L4) U∗ = U,
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(L5) (X ∩ Y)∗ = X∗ ∩ Y∗,
(L6) X ⊆ Y ⇒ X∗ ⊆ Y∗,
(L7) X∗ ∪ Y∗ ⊆ (X ∪ Y)∗,
(L8) (X∗)∗ = X∗.

Proof (L1) Let u ∈ X∗. It follows that N(u) ⊆ X. Since u ∈ N(u), this implies that

u ∈ X. Thus X∗ ⊆ X.

(L2) Let u ∈ (Xc)∗, then

u ∈ (Xc)∗ ⇔ N(u) ⊆ Xc

⇔ N(u) ∩ X = ∅
⇔ u ∉ X∗

⇔ u ∈ (X∗)c.

(L3) Part (L1) in this theorem implies that ∅∗ ⊆ ∅. Since ∅ ⊆ ∅∗. Hence ∅∗ = ∅.

(L4) It is clear that U∗ = {u ∈ U ∶ N(u) ⊆ U} = U.

(L5) For any u ∈ (X ∩ Y)∗, the following implications are hold:

u ∈ (X ∩ Y)∗ ⇔ N(u) ⊆ X ∩ Y
⇔ N(u) ⊆ X and N(u) ⊆ Y
⇔ u ∈ X∗ and u ∈ Y∗
⇔ u ∈ X∗ ∩ Y∗.

(L6) Let u ∈ X∗. HenceN(u) ⊆ X. Since X ⊆ Y . It follows thatN(u) ⊆ Y . Therefore,

u ∈ Y∗. Hence X∗ ⊆ Y∗.

(L7) The result follows directly from (L6).

(L8) Since X∗ ⊆ X, then (L6) implies that (X∗)∗ ⊆ X∗. On the other hand, let u ∈ X∗.

Hence N(u) ⊆ X. (L6) implies that (N(u))∗ ⊆ X∗. This result, combined with

Proposition 1, implies that N(u) ⊆ X∗. Thus u ∈ (X∗)∗, and hence X∗ ⊆ (X∗)∗.

As a consequence, (X∗)∗ = X∗. □

Theorem 2 Let ⟨U,C ⟩ be a soft covering approximation space. Then the soft upper
approximation, defined in (4), satisfies the following properties:

(U1) X ⊆ X∗,
(U2) (Xc)∗ = (X∗)c,
(U3) ∅∗ = ∅,
(U4) U∗ = U,
(U5) (X ∪ Y)∗ = X∗ ∪ Y∗,
(U6) X ⊆ Y ⇒ X∗

⊆ Y∗,
(U7) (X ∩ Y)∗ ⊆ X∗ ∩ Y∗,
(U8) (X∗)∗ = X∗.

Proof The proof is similar to that of Theorem 1. □
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Table 2 Tabular

representation of the soft

set G2

u1 u2 u3 u4
e1 1 0 0 1

e2 0 1 0 1

e3 1 0 1 0

Corollary 1 Let ⟨U,C ⟩ be a soft covering approximation space. Then the soft lower
approximation, defined in (3), satisfies Kuratowski’s axioms and induces a topology
on U called 𝜏C given by

𝜏C ∶= {X ⊆ U ∶ X∗ = X}. (9)

Proof The proof is a direct consequence of Theorem 1. □

The following example shows that the equality does not hold in (L7) of Theorem 1

and (U7) of Theorem 2, in general.

Example 2 LetU = {u1, u2, u3, u4},E = {e1, e2, e3, e4, e5} andA = {e1, e2, e3} ⊆ E.

G2 = (F,A) be a soft set over U given by Table 2. It is clear that C = {F(e1),F(e2),
F(e3)} is soft covering of U. Hence ⟨U,C ⟩ is soft covering approximation space.

Obviously, N(u1) = {u1}, N(u2) = {u2, u4}, N(u3) = {u1, u3} and N(u4) = {u4}. For

X = {u1, u2} and Y = {u2, u3, u4}, then X∗ = {u1}, Y∗ = {u2, u4} and (X ∪ Y)∗ = U.

Hence (X ∪ Y)∗ ≠ X∗ ∪ Y∗. Also,X∗ = {u1, u2, u3}, Y∗ = {u2, u3, u4} and (X ∩ Y)∗ =
{u2}. Thus (X ∩ Y)∗ ≠ X∗ ∩ Y∗

.

4 A Measure of Soft Roughness via Soft Covering

4.1 Soft Rough Membership Function

Definition 14 Let ⟨U,C ⟩ be a soft covering approximation space and X ⊆ U. The

soft rough membership function with respect to C

𝜇

C
X ∶ U → [0, 1]

is defined by

𝜇

C
X (u) ∶= ∣ N(u) ∩ X ∣

∣ N(u) ∣
u ∈ U.

It should be noted that 0 ≤ 𝜇

C
X (u) ≤ 1.
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Theorem 3 Let ⟨U,C ⟩ be a soft covering approximation space. Then the following
assertions are hold:
(i) 𝜇

C
X (u) = 1 if and only if u ∈ X∗,

(ii) 𝜇

C
X (u) = 0 if and only if u ∈ NEGC (X),

(iii) 0 < 𝜇

C
X (u) < 1 if and only if u ∈ BNDC (X),

(iv) 𝜇

C
∅ (u) = 0 and 𝜇C

U (u) = 1 for all u ∈ U,
(v) 𝜇

C
Xc (u) = 1 − 𝜇

C
X (u) for all u ∈ U,

(vi) If X ⊆ Y, then 𝜇C
X (u) ≤ 𝜇

C
Y (u) for all u ∈ U,

(vii) 𝜇

C
X∪Y (u) ≥ max{𝜇C

X (u), 𝜇C
Y (u)} for all u ∈ U, the equality holds if X ⊆ Y or

Y ⊆ X,
(viii) 𝜇

C
X∩Y (u) ≤ min{𝜇C

X (u), 𝜇C
Y (u)} for all u ∈ U, the equality holds if X ⊆ Y or

Y ⊆ X.

Proof (i) By definitions, the following implications are directly hold

𝜇

C
X (u) = 1 ⇔ N(u) ⊆ X ⇔ u ∈ X∗.

(ii) By definitions, the following implications are follow:

𝜇

C
X (u) = 0 ⇔ N(u) ∩ X = ∅

⇔ u ∉ X∗

⇔ u ∈ U − X∗

⇔ u ∈ NEGC (X).

(iii) The result is a direct consequence of (i) and (ii).

(iv) It is clear that 𝜇

C
∅ (u) = ∣N(u)∩∅∣

∣N(u)∣
= ∣∅∣

∣N(u)∣
= 0. Also, 𝜇

C
U (u) = ∣N(u)∩U∣

∣N(u)∣
=

∣N(u)∣
∣N(u)∣

= 1.

(v) 𝜇

C
X (u) + 𝜇

C
Xc (u) = ∣N(u)∩X∣+∣N(u)∩Xc∣

∣N(u)∣
= ∣N(u)∣

∣N(u)∣
= 1. Thus 𝜇

C
Xc (u) = 1 − 𝜇

C
X (u).

(vi) Let u ∈ U and X ⊆ Y , then ∣ N(u) ∩ X ∣≤∣ N(u) ∩ Y ∣. Hence
∣N(u)∩X∣
∣N(u)∣

≤
∣N(u)∩Y∣
∣N(u)∣

.

That is to say 𝜇

C
X (u) ≤ 𝜇

C
Y (u).

(vii) For all u ∈ U,

𝜇

C
X∪Y (u) =

∣ N(u) ∩ (X ∪ Y) ∣
∣ N(u) ∣

= ∣ (N(u) ∩ X) ∪ (N(u) ∩ Y) ∣
∣ N(u) ∣

≥
max{∣ (N(u) ∩ X) ∣, ∣ (N(u) ∩ Y) ∣}

∣ N(u) ∣

= max{ ∣ (N(u) ∩ X) ∣
∣ N(u) ∣

,

∣ (N(u) ∩ Y) ∣
∣ N(u) ∣

}

= max{𝜇C
X (u), 𝜇C

Y (u)}.
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Obviously, if X ⊆ Y or Y ⊆ X. It follows that max{𝜇C
X (u), 𝜇C

Y (u)} = 𝜇

C
Y (u) or

𝜇

C
X (u), respectively. Thus 𝜇

C
X∪Y (u) = max{𝜇C

X (u), 𝜇C
Y (u)}.

(viii) For all u ∈ U,

𝜇

C
X∩Y (u) =

∣ N(u) ∩ (X ∩ Y) ∣
∣ N(u) ∣

= ∣ (N(u) ∩ X) ∩ (N(u) ∩ Y) ∣
∣ N(u) ∣

≤
min{∣ (N(u) ∩ X) ∣, ∣ (N(u) ∩ Y) ∣}

∣ N(u) ∣

= min{ ∣ (N(u) ∩ X) ∣
∣ N(u) ∣

,

∣ (N(u) ∩ Y) ∣
∣ N(u) ∣

}

= min{𝜇C
X (u), 𝜇C

Y (u)}.

Obviously, if X ⊆ Y or Y ⊆ X. It follows that min{𝜇C
X (u), 𝜇C

Y (u)} = 𝜇

C
X (u) or

𝜇

C
Y (u), respectively. Thus 𝜇

C
X∩Y (u) = min{𝜇C

X (u), 𝜇C
Y (u)}. □

The following example shows that the equality does not hold in (vii) and (viii) of

Theorem 3, in general.

Example 3 Consider Example 1. Let X = {u1} and Y = {u2}. Hence 𝜇

C
X (u1) =

1
2
,

𝜇

C
Y (u1) =

1
2
, 𝜇

C
X∪Y (u1) = 1 and 𝜇

C
X∩Y (u1) = 0. Therefore, max{𝜇C

X (u1), 𝜇C
Y (u1)} =

1
2

and min{𝜇C
X (u1), 𝜇C

Y (u1)} = 1
2
. Consequently, 𝜇

C
X∪Y (u1) ≠ max{𝜇C

X (u1), 𝜇C
Y (u1)}

and 𝜇

C
X∩Y (u1) ≠ min{𝜇C

X (u1), 𝜇C
Y (u1)}.

4.2 Example

Suppose U is the set of washing machines, E is the set of parameters, each parameter

being a word or a sentence. A soft set G3 = (F,E) describes the attractiveness of the

washing machines which Mr. X is going to buy. Suppose that there are six washing

machines in the universe, given by

U = {h1, h2, h3, h4, h5, h6}

andE∶={washing quality, power use, spin capacity, noise, design and ease of use}
be the set of parameters. Then G3 = (F,E) be a soft set over U given by Table 3.

Hence

C = {F(washing quality),F(power use),F(spin capacity),F(noise),F(design and ease of use)}

is soft covering of U and ⟨U,C ⟩ is soft covering approximation space. Therefore,
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Table 3 Tabular representation of the soft set G3

h1 h2 h3 h4 h5 h6
Washing quality 1 0 1 0 0 0

Power use 1 1 1 0 0 0

Spin capacity 1 0 0 0 1 1

Noise 0 0 1 0 1 0

Design and ease of use 1 1 0 1 0 0

N(h1) = {h1} N(h2) = {h1, h2}
N(h3) = {h3} N(h4) = {h1, h2, h4}
N(h5) = {h5} N(h6) = {h1, h5, h6}.

It is clear that washing quality ↦ {h1, h3}, power use ↦ {h1, h2, h3}, spin capac-

ity ↦ {h1, h5, h6}, noise ↦ {h3, h5} and design and ease of use ↦ {h1, h2, h4}. For

any hi ∈ U, i = 1,… , 6, the degree of soft rough membership in X can be directly

obtained as follows:

𝜇

C
{h1,h3}

(h1) = 1 𝜇

C
{h1,h3}

(h2) =
1
2

𝜇

C
{h1,h3}

(h3) = 1 𝜇

C
{h1,h3}

(h4) =
1
3

𝜇

C
{h1,h3}

(h5) = 0 𝜇

C
{h1,h3}

(h6) =
1
3
.

Similarly, all degrees of soft rough membership are represented in Table 4. It is

clear that the degree of the fifth machine belonging to {washing quality} is 0, which

means that the washing quality of this machine is bad. The membership degree of the

first or the third in {washing quality} is 1. The second, the fourth and the sixth belong

to {washing quality} because the degrees of soft rough membership are
1
2
,
1
3

and
1
3
,

respectively. So, we can decide to which category a machine belongs according to

the degrees of soft rough membership.

Table 4 Degrees of soft rough membership in different decisions

Washing

quality

Power use Spin capacity Noise Design and

ease of use

h1 1 1 1 0 1

h2
1
2

1
1
2

0 1

h3 1 1 0 1 0

h4
1
3

2
3

1
3

0 1

h5 0 0 1 1 0

h6
1
3

1
3

1
1
3

1
3
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5 New Approach of Soft Rough Sets

In this section, a new approach of soft rough set via soft rough membership function

has been introduced. Moreover, some properties of this new approach have been

discussed.

Definition 15 Let ⟨U,C ⟩ be a soft covering approximation space and X ⊆ U. Then

the soft lower approximation and soft upper approximation of X are defined, respec-

tively, as:

X ∶= {u ∈ U ∶ 𝜇

C
X (u) = 1}, (10)

X ∶= {u ∈ U ∶ 𝜇

C
X (u) > 0}. (11)

The pair (X,X) is referred to as the soft rough set of X.

Theorem 4 Let ⟨U,C ⟩ be a soft covering approximation space. Then the soft lower
approximation, defined in (10), satisfies the following properties:

(i) X = (Xc)c,
(ii) X ⊆ X,
(iii) ∅ = ∅,
(iv) U = U,
(v) X ⊆ Y ⇒ X ⊆ Y,
(vi) X ∩ Y = X ∩ Y,
(vii) X ∪ Y ⊆ X ∪ Y,
(viii) X = X.

Proof (i)

(Xc)c = {u ∈ U ∶ 𝜇

C
Xc (u) > 0}c

= {u ∈ U ∶ 1 − 𝜇

C
X (u) > 0}c

= {u ∈ U ∶ 𝜇

C
X (u) < 1}c

= {u ∈ U ∶ 𝜇

C
X (u) ≥ 1}

= {u ∈ U ∶ 𝜇

C
X (u) = 1}

= X.

(ii) Let u ∈ X. Then 𝜇

C
X (u) = 1. Hence (i) of Theorem 3 implies that u ∈ X∗. It

follows that N(u) ⊆ X. Since u ∈ N(u), hence u ∈ N(u) ⊆ X. Thus X ⊆ X.

(iii) Part (iv) of Theorem 3 implies that 𝜇
C
∅ (u) = 0 for all u ∈ U. Hence ∅ = ∅.

(iv) Part (iv) of Theorem 3 implies that 𝜇
C
U (u) = 1 for all u ∈ U. Thus U = U.
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(v) Let u ∈ X. Hence 𝜇

C
X (u) = 1. Since X ⊆ Y , then (vi) of Theorem 3 implies

𝜇

C
X (u) ≤ 𝜇

C
Y (u). That is to say 𝜇

C
Y (u) ≥ 1, but any soft rough membership lies

between 0 and 1. Consequently, 𝜇
C
Y (u) = 1. Hence u ∈ Y . Therefore, X ⊆ Y .

(vi) Let u ∈ X ∩ Y . Hence𝜇
C
X (u) = 1 and𝜇

C
Y (u) = 1. Thus (i) of Theorem 3 implies

u ∈ X∗ and u ∈ Y∗. This result combined with (L5) of Theorem 1, implies u ∈
(X ∩ Y)∗. Again, (i) of Theorem 3 implies 𝜇

C
X∩Y (u) = 1. Therefore, u ∈ X ∩ Y .

Thus X ∩ Y ⊆ X ∩ Y . The other inclusion is a direct consequence of (v) of this

theorem. Hence X ∩ Y = X ∩ Y .

(vii) The result is a direct consequence of (v) of this theorem.

(viii) It is sufficient to prove that X ⊆ X and the other inclusion follows directly by

(ii) and (v) of this theorem. Let u ∈ X. Hence 𝜇

C
X (u) = 1. This result, com-

bined with Theorem 3 part (i) and Theorem 1 (L8), implies u ∈ (X∗)∗. Again,

Theorem 3 part (i) implies 𝜇
C
X (u) = 1. Hence u ∈ X. Then the result. □

Theorem 5 Let ⟨U,C ⟩ be a soft covering approximation space. Then the soft upper
approximation, defined in (11), satisfies the following properties:

(i) X = (Xc)c,
(ii) X ⊆ X,
(iii) ∅ = ∅,
(iv) U = U,
(v) X ∪ Y = X ∪ Y,
(vi) X ⊆ Y ⇒ X ⊆ Y,
(vii) X ∩ Y ⊆ X ∩ Y,
(viii) X = X.

Proof The proof is similar to that of Theorem 4. □

The following example shows that the equality does not hold in (vii) of Theo-

rems 4 and 5, in general.

Example 4 Consider Example 2. For X = {u1, u2} and Y = {u3}, then X = {u1},

Y = ∅ andX ∪ Y = {u1, u3}. HenceX ∪ Y ≠ X ∪ Y . Also,X = {u1, u2, u3}, Y = {u3}
and X ∩ Y = ∅. Thus X ∩ Y ≠ X ∩ Y .

Corollary 2 Let ⟨U,C ⟩ be a soft covering approximation space. Then the soft lower
approximation, defined in (10), satisfies Kuratowski’s axioms and induces a topology
on U called 𝜏C given by

𝜏C ∶= {X ⊆ U ∶ X = X}. (12)

Proof The proof is a direct consequence of Theorem 4. □
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6 Conclusion

In this chapter, extended properties of soft rough sets induced via soft covering have

been introduced. A measure of soft roughness via soft covering has been presented.

Moreover, essential examples to show the significance of soft rough sets and a mea-

sure of soft roughness induced via soft covering have been studied. Moreover, prop-

erties of a measure of soft roughness have been discussed. A new approach of soft

rough sets via soft rough membership has been introduced. Finally, many properties

of this new approach are mentioned and an illustration examples have been presented.

Acknowledgements The author is grateful to the anonymous referee for a careful checking of the

details and for helpful comments that improved this work.
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Rough Search of Vague Knowledge

Edward Bryniarski and Anna Bryniarska

Abstract This chapter presents the theoretical basis of the vague knowledge search
algorithmization of a rough method. It introduces some data granulation method
which aggregates this data as rough sets of data or ways to search this data in the
semantic networks. As a result of this method is the possibility of the rough sets
description, analogically to sets in the classical theory of sets. We try to answer the
question how the agent searching some knowledge can conceive the search of
vague knowledge in the semantic networks: (1) if it can, accordingly to the
semantic and the conceiving rules, describe the relationships between nodes in this
semantic network which are identified as ways of searching knowledge, (2) if it can
approximate sets of this ways by using ways described by some concepts and roles.

1 Introduction

This chapter is a continuation of the paper [3]. In [3] it is shown how rough
pragmatic description logic RPDL defines accurately how to interpret formulas
describing vague knowledge: an incomplete information, unclear, unprecise,
ambiguously expressed knowledge [2, 20, 21], within the structure of rough sets,
which is determined by a semantic network. This network is determined in some
pragmatic information system, in which agents make use of only some distin-
guished data types. And this system is determined by a pragmatic system of
knowledge representation. It is in this system that, for the distinguished data types,
the vague knowledge is determined. Therefore, it is right to say that formulas of the
RPDL refer to vague knowledge. Since, in practice, man most often communicates
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with other people, he passes to them data representing vague knowledge, thus, he
conceives his utterances in approximation, approximating their sense. This means
that people communicating with one another apply the RPDL.

Accordingly to the quoted paper [3], the procedure of the agent searching vague
knowledge can take in the following steps:

1. Establishing a pragmatic system of knowledge representation.
2. Determining the set of data types that will be available to the agent.
3. Checking whether an information system in Pawlak’s sense can be determined

for the available set of types of knowledge.

Due to the dynamic of language communication, the relations of using a data
copy can be vague and data classification, which leads to recognition of data types,
is not precise. Then, realization of this procedure is not possible and should be
preceded by using methods of fuzzy sets theory [2, 20, 22–24]: fuzzification and
defuzzification which leads to sharpening knowledge. It is necessary to define
pragmatic system of the knowledge representation. There may also be used the
evolutionary methods or other of machine-learning theory methods. However, the
effective method in information retrieval is the method of data granulation [16–19].
Data granulation is an important paradigm of modeling and processing with
uncertainty. Then the information granules are the main mathematical constructions
in the context of granular calculations. The information granules relate to the
description of objects and are mathematical models which describe aggregated data
about these objects. By using Fuzzy Description Logic in the Information Retrieval
[6], data from these aggregates are functionally and structurally connected with
each other. For this purpose, we use similarities of language criteria of the aggre-
gated data. The data granulation method for describing the best possible data in
tables from the information system [7], lets us check, if for available attributes, can
be applied the generalized information systems in Pawlak’s sense.

4. After establishing the general information system, we create the semantic net-
work which corresponds to this system.

5. Formulate the language of description logic and provide the syntax of
TBox terms, ABox assertions and RBox axioms. For the defined semantic
network we determine the general information system. For the determined
system we define the set-theoretical structure of rough sets. We establish pro-
cedures of interpretation of the language of descriptive logic in the structure of
rough sets. We distinguish primitive axioms. We distinguish a set of rules
conceiving the axioms.

6. We determine the base of the knowledge Ab, Tb, Rb, where the sets Ab, Tb, Rb
are finite sets of expressions (descriptions of nodes of a semantic network),
which are possible to be computer-processed, respectively: (1) assertions, about
which the agent knows, (2) concepts, which the agent has knowledge of and
also (3) axioms, which the agent conceives by means of the rules of con-
ceiving. Since we say about a human being who is an agent availing himself of
the base of knowledge that he knows something, has knowledge about
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something and conceives something, hence by replacing this human being by an
AI agent, we can say the same about this very agent. We will call such an AI
agent—a pragmatic agent of an AI and we will say that he is one who knows
something about holding of assertions, knowing some concepts and con-
ceiving axioms.

However, in that quoted paper [3] is no answer to the question if this agent
conceives vague knowledge search in the semantic networks. In other words,

7. if it can, accordingly to the semantic and the conceiving rules, describe the
relationships between nodes in this semantic network which are identified as
ways of searching knowledge,

8. if it can approximate sets of this ways by using ways described by concepts and
roles from knowledge base ⟨Ab, Tb, Rb⟩.

Answers for these questions are the main motivation of this chapter. In Sects. 2
and 3 of this work are repeated, presented in the paper [3], the theory of approx-
imation in the information systems and description of the pragmatic rough
description logic PRDL. Moreover, next three sections present the conceptual
apparatus about the new algorithmization issues, which are pointed out in the steps
7, 8 of the described above algorithm of searching vague knowledge.

2 Approximation in Information Systems

The main goal of the information systems is to compare data from different states of
searching knowledge (gathering information from these states accordingly to this
system attributes). We can ask question: which states are equally described by
specific types of expressions (attributes), or in other words are they undistin-
guishable in this description.

Definition 1 (general information systems [4, 11]) Let Σ is an ordered system

Σ = ⟨U, A, A1, A2, . . . , An, Vaf ga∈A⟩

where U is a finite set and A is set of all attributes, Ak (k = 1, 2, …, n) is the set of
k-ary attributes understood as k-ary functions, Va is the set of all codes of the
attribute a ∈ A.

If for any a ∈ A and a ∈ Ak, a: Uk → Va, then Σ is called the general
information system.

In an analogous way, as for Pawlak’s information system, we can define
indiscernibility of information states in the general information system
∑ = ⟨U, A, A1, A2, . . . , An, Vaf ga ∈ A⟩.
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Definition 2 (indiscernibility of states in an information system [4]) Let
Ugen = U ∪ U2 ∪ ⋯ ∪ Un. The relation ≈ ⊆ Ugen × Ugen such that for any x,
y ∈ Ugen:

x ≈ y iff there is an k ∈ {1, 2, …, n} such that x, y ∈ Uk and any a ∈ Ak, a
(x) = a(y), is called the indiscernibility relation in the system Σ. The family
C = {[s]≈: s ∈ Ugen} of the equivalence classes of the relation ≈ is a partition of
the set Ugen. Such a family of equivalence classes of the relations ≈ is determined
uniquely in every information system. For this family of sets of information states,
one can determine—in a unique manner—all sets X = ∪B, for B ⊆ C. We will say
about such sets that they are deterministic in an information system. Is it possible to
characterize, by means of exact sets, those that are not exact?

According to the rough set theory of Pawlak [11–14], in any general information
system S = ⟨U, A, A1, A2, . . . , An, fVaga∈A⟩ (including also a non-deterministic
information system) the operation of lower approximation C − : 2Ugen → 2Ugen, as
well as that of upper approximation C+:2Ugen → 2Ugen for set X⊆∪C ⊆
Ugen = U ∪ U2∪ … ∪ Un can be determined (if S is a set, then 2S = {X: X ⊆ S}).
Let us accept the notation C = {[s]≈: s ∈ Ugen}. For this reason we use the letter
‘C’ in operations C−, C+. A system ⟨Ugen, C⟩ is called an approximation space of
subsets of Ugen [8].

Definition 3 (Pawlak [11–14]) For any X ⊆ Ugen,

C − Xð Þ= fx∈Ugen: x½ �≈⊆Xg
C + Xð Þ= fx∈Ugen: x½ �≈∩X ≠∅g
Bn Xð Þ=C + Xð Þ\C − Xð Þ

where the relations ≈ is a discernibility relation in the general information system
Σ. The operation Bn is called the boundary operation.

Fact 1. [8]

For any X ⊆ Ugen,

1. C − Xð Þ = ∪ K ∈ C : K ⊆Xf g,
2. C + Xð Þ = ∪ K ∈ C : K ∩ X ≠ ∅f g,
3. C − Xð Þ⊆C + Xð Þ,
4. setsC − Xð ÞandC + Xð Þare exact,
5. if X is exact, thenC − Xð Þ = C + Xð Þ = X.

Definition 4 (indiscernibility of sets) Any sets X, Y ⊆ Ugen are indiscernible, which
we write down as follows: X ∼ Y iff C-(X) = C−(Y) and C+(X) = C+(Y).
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The relation ∼ is an equivalence relation. We denote equivalence classes [X]∼ of
this relation with the representative X by XC. We denote ∅C by 0C and (Ugen)C by
1C.

Definition 5 We call equivalence classes of the relations ∼ —rough sets in the
information system Σ.

Definition 6 (an element of a rough set [8, 9]) For any X, Y ⊆ Ugen, X ∈ C YC iff
X ≠ ∅ and there is such x ∈ Ugen, such that X ⊆ [x]≈, C

−(X) ⊆ C−(Y) and [x]≈ ⊆
C+(Y).

We call the relation ∈ C—a rough membership relation. We read the expression
X ∈ C YC: X is a rough element of the rough set YC.

Using the relation ∈ C, one can define inclusion of rough sets.

Definition 7 For any X, Y ⊆ Ugen,

XC ⊆C YC iff for every Z ⊆Ugen, if Z ∈ C XC, then Z ∈ C YC.

Theorem 1

1. XC ⊆C YC iff C − Xð Þ⊆C − Yð Þ and C + Xð Þ⊆C + Yð Þ,
2. XC = YC iff C − ðXÞ = C − Yð Þ and C + Xð Þ = C + Yð Þ,
3. XC = YC iff for every Z ⊆Ugen, Z ∈ C XC iff Z ∈ C YC,
4. It is not the case, that there is Z ⊆Ugen, Z ∈ C 0C,
5. For every X ⊆Ugen, XC ⊆C 1C.

Bryniarski, in his works [8, 9], defines the operations of addition ∪ C, multi-
plication ∩ C, substraction \C and complement ‘C of rough sets in the family of
rough sets.

Definition 8 For any rough sets XC, YC, for any Z ⊆ Ugen,

Z ∈ C XC ∪ C YC iff Z ∈ C XC or Z ∈ C Y

Z ∈ C XC ∩ C YC iff Z ∈ C XC and Z ∈ C Y

Z ∈ C XC \C YC iff Z ∈ C XC and not Z ∈ C Y

Z ∈ C ðXCÞ′c iff Z ∈ C UC \C XC

Let us denote the family of all rough sets in the information system Σ by R(Σ).

Theorem 2 [8, 9] For any rough sets XC, YC, there is the set Z ⊆ Ugen such that XC

∪ C YC = ZC or XC ∩ C YC = ZC or XC \C YC = ZC or (XC)
’C = ZC.

Hence
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Theorem 3 The structure R ∑ð Þ = ⟨RðSÞ, ∪ C, ∩ C, \C,
0C 0C, 1C⟩ restricted to

exact rough sets is homomorphic to a set-theoretical field of sets.
Let us extend the structure R(Σ) by relations of rough membership and inclusion

of rough sets. Let us introduce, for any family A family A ⊆ R(Σ) the generalized
sum ∪ CA:

X ∈ C ∪ CA iff there isYC ∈ A, such thatX ∈ C YC.

Now, in a way analogous with the set-theoretical construction of approximation
of sets (homomorphic with these constructions), one can provide the construction of
approximation of rough sets in the approximation space ⟨ Ugen

� �
C, KC: K ∈ Cf g⟩

of rough sets.
It is noted that (Ugen)C = ∪ C{KC : K ∈ C}.

Definition 9 (approximation of rough sets) For any XC ∈ R(Σ),

F − XCð Þ = ∪ C KC:K ∈ C, KC ⊆C XCf g,

F + XCð Þ = ∪ C KC: K ∈ C, KC ∩ XC ≠ 0Cf g,

Fbn XCð Þ = F + XCð Þ\CF − XCð Þ.

We call these operations, respectively: lower approximation, upper approxi-
mation and boundary approximation of the rough set XC.

Theorem 4 For any XC ∈ Rð∑Þ,
1. F − XCð Þ= C − Xð Þð ÞC,
2. F + XCð Þ= C + Xð Þð ÞC,
3. Fbn XCð Þ= Bn Xð Þð ÞC,
4. F − XCð Þ= C − Xð Þf g,
5. F + XCð Þ= C + Xð Þf g,
6. Fbn XCð Þ= Bn Xð Þf g.

Let h: 2Ugen → R(Σ) be a function such that for any X ⊆ Ugen, h(X) = XC. The
function h is a homomorphism from the structure ⟨2Ugen, C − , C + , Bn⟩ to the
structure ⟨Rð∑Þ, F − , F + , Fbn⟩, i.e.: for any X, Y ⊆ Ugen,

∙ if X ⊆Y , then h Xð Þ⊆C h Yð Þ,

∙ hðC −XÞÞ=F − ðhðXÞÞ,
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∙ hðC + ðXÞÞ=F + ðhðXÞÞ,

∙ h BnXð ÞÞ=Fbn h Xð Þð Þ,

The above theorem allows providing the properties of the upper and lower
approximation operations, as well as boundary operation of rough sets as homo-
morphic to the standard properties.

Theorem 5 (cf. [15]) For any X, Y ⊆ Ugen,

1. F − XCð Þ⊆C F + XCð Þ,
2. F − XCð Þ⊆C XC ⊆C F + XCð Þ,
3. F − F − XCð Þð Þ =F − XCð Þ,
4. F + F − XCð Þð Þ= F − XCð Þ,
5. Fbn F − XCð Þð Þ=0C,
6. F − F + XCð Þð Þ=F + XCð Þ,
7. F + F + XCð Þð Þ=F + XCð Þ,
8. Fbn F + XCð Þð Þ =0C,
9. F − Fbn XCð Þð Þ=Fbn XCð Þ

10. F + Fbn XCð Þð Þ=Fbn XCð Þ,
11. Fbn Fbn XCð Þð Þ = 0C,
12. F − XCð Þ ∪ C F − YCð Þ⊆C F − ðXC ∪ C YCÞ,
13. F − ðXC ∩ CYCÞ=F − XCð Þ∩ CF − YCð Þ,
14. F + ðXC ∪ CYCÞ=F + XCð Þ∪ CF + YCð Þ,
15. F + ðXC ∩ C YCÞ⊆C F + XCð Þ ∩ C F + YCð Þ.
16. If XC is an exact rough set, then F − XCð Þ = F + XCð Þ = XC and Fbn XCð Þ = 0C
17. XC ⊆C YC iff F − XCð Þ⊆C F − YCð Þ and F + XCð Þ⊆C F + YCð Þ,
18. X ⊆C YC iff XC ⊆C YC, F − XCð Þ = 0C and there is an exact rough set KC such

that F+(XC) = KC.

We will call the structure

F ∑ð Þ = ⟨R ∑ð Þ, F − , F + , Fbn, ∪ C, ∩ C, \C, ′C, 0C, 1C, ∈ C, ⊆C⟩

a set-theoretical structure of rough sets determined by the information system Σ.

3 Rough Description Logic

Accepting that we have an information system determined by a pragmatic system of
knowledge representation [3], we can in this information system distinguish a set IN
of nodes, i.e. a set of individual names of the described objects or pronouns which
point individually to the objects being described. Also consider the set AS of the
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pairs: the value dsk of n-argument attribute and the node or the edge, i.e. n-tuple
⟨s1, s2, . . . , sk⟩ of individual names of the described objects, for which this attri-
bute has the given value dsn. We obtain, then, another system of knowledge rep-
resentation, other than the information system.

Definition 10 (semantic network) We call a semantic network the following
ordered system:

SN = ⟨IN, AS, DSif gi∈N, i< n+1⟩,

where the sets: IN—a set of nodes, DSn, n ∈ N—sets of the descriptions, called sets
of descriptions of n-argument relations and the set AS satisfy the following
conditions:

AS⊆ ðDS1 × INÞ ∪ ðDS2 × IN2Þ ∪ ⋯ ∪ ðDSn × INnÞ,

where dsi ∈ DSi is a description of the relation R such that

dsif g × R = dsif g × INi� �
∩ AS.

We call elements of the set AS—assertions. We call any relation R, when it is a
one argument, satisfying the above equation—a concept (a notion), and when R is,
at the least, a two-argument one—a role.

For example, the role of “filiation” that links the person bearing the name “John”
with the one named “Charles”, the latter being the father to the former, leads to the
assertion: filiation, John, Charles, which we also write down: filiation(John,
Charles) or (John, Charles): filiation. We write the assertion expressed in the
sentence “Eve is sitting between John and Charles” in the following way:

sitting_between(Eve, John, Charles) or (Eve, John, Charles): sitting_between.
Let us notice that when in the following three (Eve, John, Charles), cyclically,

we reverse the names, we will obtain the following three (John, Charles, Eve),
which is also an occurrence of a role, e.g. expressed in the sentence “John and
Charles are sitting beside Eve”. We can write down this assertion as follows: (John,
Charles, Eve): are sitting_beside. We will say about the role sitting_beside that it is
cyclically reverse towards that of sitting_between. When the three (Eve, John,
Charles), which is an occurrence of the assertion sitting_between, is reduced by the
first name, then the pair (John, Charles), is also an occurrence of the assertion, e.g.
one expressed in the sentence “someone is sitting between John and Charles”:
(John, Charles): someone_sitting_between. We will say about this role that it is a
reduction of that sitting_between.

For any description ds of the relation R (a concept or a role) there is the char-
acteristic functiona: INi → Va ⊆ 0, 1f g, such that when ds = dsi and ⟨dsi, x1,
x2, . . . , xi⟩ ∈ AS, then a(x1, x2, …, xi) = 1, and for ⟨dsi, x1, x2, . . . , xi⟩
∉AS, a x1, x2, . . . , xið Þ = 0. Let us denote the set of all such characteristic func-
tions by A. Let Va = a(INi). Then the structure:
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∑ SNð Þ = ⟨U, A, Vaf ga∈A⟩,

where U = IN U = IN, will be an information system.

Definition 11 We call the information system Σ(SN)—an information system
determined by the semantic network SN.

In the context of research of Semantic Web (for example in the works [1, 2, 11]),
knowledge representation in the semantic network is determined by two systems of
representation: the terminology called TBox, as well as a set of representation of
assertion called ABox. A semantic network can be extended with nodes which render
the available knowledge about concepts or roles, and also extended with boundaries
determining dependences between concepts or roles. Descriptions of these depen-
dences are called axioms, and the system of representing this knowledge is called
RBox. In the presented research trend, the base of the knowledge represented in the
semantic network, in the descriptive language AL (attributive language) of the logic
DL (Description Logic), is defined as the following triple Ab, Tb, Rb, where the sets
Ab, Tb, Rb are finite sets of expressions (descriptions of nodes of a semantic network)
that can be computer-processed, respectively: assertions, concepts, axioms.
Describing rough knowledge in information systems determined by the semantic
network SN, we will apply the suitably reformulated and extended language AL. We
will call this language—rough pragmatic language (RPL; a set of its expressions
will be denoted by RPL). It will be the language of the proposed logic RPDL.

3.1 Syntax of the Language RPL

Let the data be some non-empty sets: individual variables, individual names, names
of concepts, names of roles and symbols of modifying agents of concepts.

3.1.1 Syntax of Occurrences of Concepts and Roles

Occurrences of a concept are the symbols x, y, z, v …, x1, y1, …, variables and the
symbols a, b, c,…, a1, b1 …, determining individual names. The variables run over
individual names. Intuitively, they describe the nodes of the semantic web.

Occurrences of a role are tuples (t1, t2, …, tk) of occurrences of concepts.
Transposition of the occurrence (t1, t2,…,tk) is tuples (t1, t2,…, tk)

T = (tk, tk−1,…,t1).

3.1.2 Syntax of TBox

The following names belong to the set of names of concepts and roles:

9. T (Top)—universal concept and universal role,
10. ⊥ (Bottom)—empty concept and empty role.
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Top includes all occurrences of concepts and roles, and Bottom includes
knowledge about a lack of any occurrences of concepts and roles.

11. {t}—singleton of the occurrences of t, a concept determined unequivocally by
an occurrence of concept t,

12. {(t1, t2, …, tk)}—a role being a singleton of n-tuple of occurrences.

Let A, B be the names of concepts, R be the name of a role, a m—the symbol of a
modifier, then the following are concepts:

¬A negation of a concept—the expression denoting all the
occurrences of concepts that are not occurrences of the
concept A;

A ∧ B intersection (conjunction) of the concepts A and B—the
expression denoting all the occurrences of the concepts
A and B;

A ∨ B union (alternative) of the concepts A and B—the
expression denoting all the occurrences of the concept
A or the concept B;

A \ B difference of the concepts A and B—the expression
denoting all the occurrences of the concept A, which are
not an occurrence of the concept B;

∃A.R existential quantification—the concept, whose occur-
rences are those of the concept A remaining in the role
R in the first place, at least once with appearances of
some concepts related to the role R in the successive
places of the role;

∀A.R general quantification—the concept, whose occurrences
are those of the concept A, remaining in the role R in the
first place, together with all the occurrences of some
concepts related to the role R in the successive places of
this role;

m(A) modification m of the concept A—denoting a concept
that is the concept C altered by the word m, e.g. m can
have such occurrences as: very much, more, the most, or
high, higher, the highest; in the approximated calculus,
modifications are lower approximation or upper approx-
imation, or the boundary—m∈ {Upper, Lower,
Boundary},

m(R) modification m of the role R—m∈ {Upper, Lower,
Boundary},

R−1 the role cyclically reverse to the role R;
A.R restriction of the occurrences of the role R by the

occurrences of the concept A—such a role that the
occurrences of A remain in the role R in the first place,
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together with those of some concepts in the other places
of the role R;

RT transposition of the role R—the occurrences of the role
RT are the transpositions of the occurrences R;

R− reduction of the role R by the first argument—is the role
for at least a three-argument role R, and the concept for a
two-argument role;

A1 × A2 × ⋅ ⋅ ⋅ × An the Cartesian product of the concepts A1, A2, …, An.

3.1.3 Syntax of ABox

For any variables x, y, individual names a, b, the names of the concept C and those
of the role R, which is a two-argument one, assertions are denoted by means of
expressions in the form “x: C”, “a: C”, “(x, y): R”, “(a, y): R”, “(x,b): R”, “(a, b): R”.
Generally, for the n-argument role R, expressions of assertion take on the form (t1,
t2, …, tn) : R, where ti are any occurrences of the concepts. Inscriptions of the form
t1 : A, (t1, t2, …, tk) : R are read as follows: t1 an occurrence of the concept A, n-th
tuple (t1, t2, …, tk) is an occurrence of the role R.

3.1.4 Syntax of RBox

For any names of the concepts A, B, the names of the roles R1, R2, as well as
expressions of the assertion α, β, axioms are expressions rendered in the following
form:

A ⊆ B inclusion of the concepts A, B,
A = B identity of the concepts A, B,
R1 ⊆ R2 inclusion of the roles R1, R2,
R1 = R2 identity of the roles R1, R2,
α : −β Horn’s clause for the assertion α, β; we read this in the following way: if

there holds an occurrence of the assertion β, then there holds an
occurrence of the assertion α.

3.2 The Distinguished Axioms for RPDL

Let us distinguish some selected axioms for RPDL, divided into three groups. For
any names of concepts or roles A, B, C and R and any occurrences t, t1, t2, …, tk.

Ax.1. T = ¬⊥, A⊆T, ⊥⊆A, A⊆A,
Ax.2. A=A, R=R,
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Ax.3. A∨⊥=A, A∧T=A,
Ax.4. A∧⊥=⊥, A∨T=T,
Ax.5. A∨B=B∨A, A∧B=B∧A,
Ax.6. ðA∨BÞ∧C= ðA∧CÞ∧ ðB∧CÞ, ðA∧BÞ∨C= ðA∨CÞ∧ ðB∨CÞ,
Ax.7. A∨¬A⊆T, A∧¬A=⊥,
Ax.8. ¬A⊆T\A,
Ax.9. ∀C.R⊆∃C.R,
Ax.10. t: T: − t:A,
Ax.11. t: tf g: − t:A,
Ax.12. t1 , t2, . . . , tkð Þ: t1, t2, . . . , tkð Þf g: − t1, t2, . . . , tkð Þ:R,
Ax.13. ∃ t1f g.R: − t1, t2, . . . , tkð Þ:R,
Ax.14. t1, t2, . . . , tkð Þ:R: −∀ t1f g.R,
Ax.15. t2, t3, . . . , tk , t1ð Þ:R− 1: − t1, t2, . . . , tkð Þ:R,
Ax.16. t2, . . . , tkð Þ:R− : − t1, t2, . . . , tkð Þ:R, dla k>2,
Ax.17. t2:R− : − t1, t2ð Þ:R,
Ax.18. A− =⊥,
Ax.19. Lower Að Þ⊆UpperðAÞ,
Ax.20. Boundary Að Þ⊆ Lower Að Þ,
Ax.21. Lower Að Þ⊆A⊆Upper Að Þ,
Ax.22. Upper Upper Að Þð Þ=Upper Að Þ,
Ax.23. Lower Upper Að Þð Þ=Upper Að Þ,
Ax.24. Boundary Upper Að Þð Þ=⊥,
Ax.25. Upper Lower Að Þð Þ= Lower Að Þ,
Ax.26. Lower Lower Að Þð Þ= LowerðAÞ,
Ax.27. Boundary Lower Að Þð Þ=⊥,
Ax.28. Upper Boundary Að Þð Þ=Boundary Að Þ,
Ax.29. Lower Boundary Að Þð Þ=Boundary Að Þ,
Ax.30. Boundary Boundary Að Þð Þ=⊥,
Ax.31. Lower Að Þ ∨ Lower Bð Þ⊆LowerðA ∨ BÞ,
Ax.32. LowerðA∧BÞ=Lower Að Þ∧Lower Bð Þ,
Ax.33. UpperðA∨BÞ=Upper Að Þ∨Upper Bð Þ,
Ax.34. UpperðA∧BÞ⊆Upper Að Þ∧Upper Bð Þ,

The above axioms will be satisfied in a selected set-theoretical structure of rough
sets

F ∑ SNð Þð Þ = ⟨F, F − , F + , Fbn, ∪ C, ∩ C, \C, ′C, 0C, 1C, ∈ C, ⊆C⟩,

determined by the information system ∑ SNð Þ = ⟨U, A, fVaga∈A⟩. Where U = IN
for the semantic network SN = ⟨IN, AS, fDSigi∈N, i< n+1⟩ under consideration,
and F = R(Σ(SN)) is a set of all the rough sets determined in the information system
Σ(SN).
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3.3 Semantics of the Language RPL

Let us determine interpretation I = (F, I) of RPL language for which the inter-
pretation function I: RPL → F (we write the values I(E) as EI) satisfies the fol-
lowing conditions:

I1. any occurrences of concepts and roles are assigned elements of rough sets:

tI ∈ CUC,

t1, t2, . . . , tkð ÞI ∈ C ⟨x1, x2, . . . , xk⟩f gc,

for ⟨x1, x2, . . . , xk⟩ ∈ Uk, tI1 ∈ C x1f gC, tI2 ∈ C x2f gC, . . . , tIk ∈ C xkf gc,

I2. names of the concepts A, including the singletons {t}, are assigned the following
rough sets:

tf gI = xf gC, for some x ∈ U,

t1, t2, . . . , tkð Þf gI = ⟨x1, x2, . . . , xk⟩f gc,

for ⟨x1, x2, . . . , xk⟩ ∈ Uk, tI1 ∈ C fx1gC, tI2 ∈ C fx2gC, . . . , tIk ∈ C fxkgC, AI ∈ F,

I3. names of the role R are assigned the rough sets RI ∈ F,
I4. the modifiers m ∈ {Upper, Lower, Boundary} assign some functions mI : F →
F, from the set {F−, F+, Fbn}:

LowerI = F − ,

UpperI = F + ,

BoundaryI = Fbn.

3.3.1 Semantics of the Concepts of TBox Language

For any names of the concepts A, B, the name of the role R and the modifier m

I5. TI = 1C,
I6. ⊥I = 0C,

I7. ð¬AÞI = AIð Þ′C,
I8. ðA∧BÞI = ðAI ∩ CBIÞ,
I9. ðA∨BÞI = ðAI ∪ CBIÞ,
I10. A\Bð ÞI = AI \CBIð Þ.
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For RI ⊆C (Uk)C where R is a k-argument role, there hold the following condi-
tions of interpretation of concepts and roles:

I11. ð∃A.RÞI = ∪ Cf t1f gI : ð t1, t2, . . . , tkð ÞI ∈ CRI ∧ tI1 ∈ CAIÞg,
I12. ð∀A.RÞI = ∪ Cf t1f gI : ð t1, t2, . . . , tkð ÞI ∈ CRI ∧ tI1 ∈ CAIÞg,
I13. A.Rð ÞI = ∪ Cf t1, t2, . . . , tkð Þf gI : ð t1, t2, . . . , tkð ÞI ∈ CRI ∧ tI1 ∈ CAIÞg,
I14. R− 1ð ÞI = ∪ Cf t1, t2, . . . , tkð Þf gI : t2, t3, . . . , tk, t1ð ÞI ∈ CRIg,
I15. R−ð ÞI = ∪ Cf t1, t2, . . . , tkð Þf gI : if for some tk+1, ðtk+1, t1 , t2, . . . , tkÞI ∈ CRIg,
where the operations ∪ C, ∪ C are generalized operations of addition and multi-
plication that are defined on subsets of the family F of rough sets. For an empty set
the value of these generalized operations is an empty rough set 0C.
I16. m Að Þð ÞI = mI AIð Þ, form∈ Upper, Lower, Boundaryf g,
I17. m Rð Þð ÞI =mI RIð Þ, form∈ Upper, Lower, Boundaryf g,

3.3.2 Semantics of the Assertion of ABox Language

I18. For any occurrences t, t1, t2,…, tk concepts or roles, the name of the concept C,
as well as the name of the role R

t:Cð ÞI iff xI
� �

∈ CCI ,

ð t1, t2, . . . , tkð Þ:RÞI iff t1, t2, . . . , tkð ÞI ∈ CRI .

3.3.3 Semantics of the RBox Axioms

I19. For any A, B the names of concepts or roles and any assertions α, β

ðX ⊆YÞI iff XI ⊆CYI ,

X =Yð ÞI iff XI = YI ,

ðα : − βÞI iff if βI then αI .

We call the rule of conceiving of axioms—the expression in the form of α1, α2,
…, αk/β, for any axioms α1, α2,…,αk, β. The rule is adequate for the given inter-
pretation function I, if—from the fact that there hold the interpretations α1I , α2I , …,
αkI—there follows the fact that the interpretation βI holds.
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3.3.4 Distinguished Adequate Rules of Conceiving

Rule 1. A⊆B, B⊆C ̸A⊆C,
Rule 2. A⊆B, B⊆A ̸A = B,
Rule 3. A⊆B ̸ t:Bð Þ : − t:Að Þ,
Rule 4. R1 ⊆R2 ̸ t1, t2, . . . , tkð Þ:R2ð Þ: − t1, t2, . . . , tkð Þ:R1ð Þ,
Rule 5. t1:A1, t2:A2, . . . , tk:Ak ̸ t1, t2, . . . , tkð Þ:A1 ×A2 × . . . ×An,
Rule 6. tk: ð tk− 1f g.ð. . . ð t2f g.ðft1g.RÞ− Þ− Þ . . .Þ− Þ− ̸ t1, t2, . . . , tkð Þ:R.

The adequate rules of conceiving do not serve the purpose of proving
theorems—they merely determine the logical relations between axioms. If agents of
the pragmatic system of representation of knowledge apply these rules, it means
that they conceive, in an appropriate manner, interpretations of axioms in the
structure of rough sets.

4 Subject of Conceiving in the Logic PRDL

Let in logic PRDL the set N = {n1, n2, …, nk} be a set of constant concepts
occurrences, which correspond to the nodes in the semantic network SN for any the
interpretation I = (F, I). We accept the following definitions, which derive
important facts and theorems.

Definition 12 We call a system of conceiving by the semantic network, the ordered
system:

Con SNð Þ = ⟨N, C, R, N0, C0, R0⟩

which is relational system, in which:

C0 is a set of distinguished (accepted on the basis of the Definition 10) concepts in
the RPDL logic, which have occurrences described by elements from the set N,

R0 a set of distinguished (accepted on the basis of the Definition 10) roles in the
RPDL logic, which have occurrences described by elements from the set N,

N0 a choice set of distinguished occurrences of constants from the set N,
C a choice set of concepts derived from the accepted concepts C0 and roles R0

and the set N0 of nodes accordingly to the syntactic and the conceiving rules of
the RPDL logic,

R a choice set of roles derived from the accepted concepts C0 and roles R0 and
the set N0 of nodes accordingly to the syntactic and the conceiving rules of the
RPDL logic.

Moreover, for any x ∈ N is satisfied at least one of the following conditions:

1. x is an element of some set from the family C,
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2. x is an argument of some relations from the set R,
3. x is an element of the set N0.

Intuitively, thanks to knowledge of psychology, by conceiving in the semantic
network

SN = ⟨IN, AS, DSif gi∈N, i< n+1⟩,

We understand determining whether or not we can specify relationships between
network nodes, accordingly to the syntactic and conceiving rules, by the concepts
and roles occurrences defined in this network. In this sense, it is justified calling
conceiving ways all ordered sets of occurrences which describe nodes of the net-
work SN.

In this chapter we assume that N0 =N.

Definition 13 A conceiving way in the Con(SN), (short: a way), we call any
occurrences of concept or role:

ðα1, α2, . . . , αjÞ, ðk≥ j≥ 1Þ

such that for

α1, α2, . . . , αj ∈N.

A part of conceiving way r = (α1, α2,…,αj) we call any subsequence:

t = ðαi1, . . . , αi2Þ such that: 1 ≤ i1 ≤ i2 ≤ j ≤ k.

The expression “the conceiving way t is part of the way r” we write as: t ε r.
We accept the following notation agreement: (α) = α.

Definition 14

a. A conceiving subject in the Con(SN), (short: subject), we call any subset M of
the set of all conceiving ways Ngen.

b. The conceiving subject M on the way t (symbolic: t ε M) is defined as follows:

tεM⇔∃u∈MðtεuÞ.

c. A closure of the conceiving subject X:

X# = ft: tεXg

d. A minimalisation of the conceiving subject X

X# = ∩ Z: Z# =X#� �
.
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e. Let Ni be i-th Cartesian power of the set N, and number n the largest number of
arguments, roles in the network SN. For the conceiving system
Con SNð Þ= ⟨N, C R , N0,C0, R0⟩ we accept notation:

Ngen = ð∪ fA:A∈C ∪RgÞ#⊆N ∪N2 ∪⋯∪Nn.

Ngen is the closure of the set of all conceiving ways, in which are conceiving
concepts and roles in the semantic network SN. We call it a universe of
conceiving.

Fact 2.

1. X⊆X#,

2. X# =X#,

3. ∅# =∅,

4. Ngen
� �# =Ngen

5. X#ð Þ# =X,

6. X ⊆Y ⇒ X# ⊆ Y#,

7. ðX ∪ YÞ# =X# ∪Y#,

8. ðX ∩ YÞ# =X# ∩Y#,

9. ∀rðrεX⇔ rεYÞ⇔X# = Y#,

10. r∈X# ⇒ rf g#⊆X#,

11. X# = Z# ∧ Y# =Z# ⇒ ðX ∪ YÞ# = ðX ∪YÞ# = ðX ∩ YÞ# = Z#,

12. ð∩ Z: Z# =X#f gÞ# =X#,

13. X# ∩ Y# =∅⇒ X\Yð Þ# =X#\Y#, where symbol ‘\’ means the substractions of
the sets.

Remark 1 Sometimes the dependency (X\Y)# = X#\Y# is not satisfied; i.e. when
X = {(c, a, b)}, Y = {(a, b, c)}, because X# = {a, b, c, (c, a), (a, b), (c, a, b)},
Y# = {a, b, c, (b, c), (a, b), (a, b, c)}, X\Y = X and X#\Y# = {(c, a), (c, a, b)}, then
(X\Y)# = X# ≠ X#\Y#.

Statement 1

X# ∩ Y# = ∅⇔ hom X#� �
∩ hom Y#� �

= ∅, where hom Að Þ = x ∈ U: xð ÞεAf g.

Based on the closure of the conceiving subject.
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Theorem 6 The family of all closures of the conceiving subjects with operations:
the sum and intersection of sets, defined in this family subjects ∅ and Ngen, is a
complete distributive lattice with the zero ∅ and the unit Ngen.

Analogically to the minimalisation of the conceiving subjects there are following
conditions:

Fact 3.

1. X# = Y# ⇒X#⊆Y⊆X#,

2. X# = Y# ⇒X# =Y#,

3. X#ð Þ# =X#,

4. X#ð Þ# =X#,

5. ðX ∪ YÞ# =X# ∪Y#,

6. ðX ∪ YÞ# =X# ∪Y#,

7. ðX ∩ YÞ# = X# ∩Y#.

Proof 6, 7: the Fact 2, 3 that:

ðX ∪ YÞ# = ðX# ∪Y#Þ# = ð X#ð Þ# ∪ Y#ð Þ#Þ# = ððX# ∪Y#Þ#Þ# =X# ∪ Y#,

ðX ∩ YÞ# = ðX# ∩Y#Þ# = ð X#ð Þ# ∩ Y#ð Þ#Þ# = ððX# ∩ Y#Þ#Þ# =X# ∩Y#.

Therefore:

Theorem 7 The family of all minimalisation of the conceiving subjects with
operations: the sum and intersection of sets, defined in this family subjects ∅ and
Ngen, is a complete distributive lattice with the zero ∅ and the unit Ngen.

Example 1 Let the conceiving system of drawing a square (for the semantic net-
work representing vague knowledge about drawing a square) is:

Con SNð Þ= ⟨N, C, R, N0, C0, R0⟩,

where:

N = w1, w2, w3, w4f g—set of the constant concepts occurrences and the con-
cepts—the ways of conceiving the vertices of the square,

C= Nf g,R= R1, R2f g,N0 =N, C0 = Nf g,R0 = R01, R02, R03, R04f g,
R01 = w1,w2ð Þf g,R02 = w2, w3ð Þf g,R03 = w3, w4ð Þf g,R04 = w4, w1ð Þf gg,
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R1 = w1, w2, w3ð Þ, w4, w1, w2ð Þf g—the role of connecting with each other three
vertices by line,

R2 = w2, w3ð Þ, w3, w4ð Þ, w4, w1ð Þf g—the role of connecting with each other two
vertices by line.

M1 = w1, w2, w3ð Þ, w3, w4ð Þ, w4, w1ð Þf g—the first conceiving subject of draw-
ing the square (Fig. 1a):
(1)
connect three vertices w1, w2, w3,

(2) connect two vertices w3, w4

(3) connect two vertices w4, w1,

M2 = w4, w1, w2ð Þ, w2, w3ð Þ, w3, w4ð Þf g—the second conceiving subject of
drawing the square (Fig. 1b). The closure of the conceiving subject M1 and M2:

M#
1 = w1ð Þ, w2ð Þ, w3ð Þ, w4ð Þ, w1, w2, w3ð Þ, w2, w3ð Þ, w3, w4ð Þ, w4, w1ð Þf g,

M#
2 = w1ð Þ, w2ð Þ, w3ð Þ, w4ð Þ, w4, w1, w2ð Þ, w2, w3ð Þ, w3, w4ð Þ, w4, w1ð Þf g.

The minimalisation of the conceiving subject M1 and M2:

M1# = M1, M2# = M2.

5 Multistructures

Now we may introduce the multistructure calculation.We use concepts which were
presented for the first time in papers [25, 26]. On this basis we formulate definition,
easy to prove facts and theorems. Hence, we show that the family of multistructures
is a complete distributive lattice with zero and unit.

Definition 15 The relation Adq, defined in the set of all conceiving subjects, is
called a relation of conceiving adequacy, when for any M1, M2 ⊆Ngen

Fig. 1 Two different
conceiving subjects of
drawing square
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M1 AdqM2 ⇔ ∀rðrεX⇔ rεYÞ

The expression M1 AdqM2 we read: the conceiving subjects M1 and M2 are
conceived in the same ways.

Fact 4.

M1 AdqM2 ⇔M#
1 = M#

2 .

Fact 5.
A relation Adq is the equivalent relation in the set of all conceiving subjects.

Definition 16 [25, 26] An abstract class [M]Adq of the relation Adq, in which the
subject M ⊆ Ngen is represented, is called the multistructure defined by the subject
M.
Fact 6.

For any two subjects M1, M2

1. M1½ �Adq = M2½ �Adq ⇔M#
1 = M#

2 ,
2. M1 AdqM2⇔ M1½ �Adq = M2½ �Adq,
3. M1½ �Adq = M#

1

� �
Adq.

Definition 17 A conceiving way x ∈ Ngen belongs to the multistructure [M]Adq iff
x ε M. The fact that the way x belongs to the multistructure [M]Adq we write
symbolically as:

x∈ m M½ �Adq.

Definition 18 Let [M1]Adq, [M2]Adq be any multistructure.
[M1]Adq is included in [M2]Adq iff for any x, if x ∈m [M1]Adq, then x ∈m [M2]Adq.
The fact that the multistructure [M1]Adq is included in the multistructure [M2]Adq

we write symbolically as:

M1½ �Adq ⊆m M2½ �Adq.

Fact 7.
For any two subjects M1, M2

M1½ �Adq ⊆m M2½ �Adq ⇔M#
1 ⊆M#

2 .

Theorem 8 For any two subjects M1, M2 and any way x
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x ∈ m ½M#
1 ∪ M#

2 �Adq ⇔ x ∈ m M1½ �Adq ∨ x ∈ m M2½ �Adq.

Definition 19 A sum M1½ �Adq ∪ m M2½ �Adq of multistructures M1½ �Adq and M2½ �Adq is
called the multistructure ½M#

1 ∪M#
2 �Adq.

Fact 8.
For any two subjects M1, M2 and any way x

x ∈ m M1½ �Adq ∪ m M2½ �Adq ⇔ x ∈ m M#
1

� �
Adq ∨ x ∈ m M#

2

� �
Adq.

Theorem 9 For any two subjects M1, M2 and any way x

x ∈ m ½M#
1 ∩ M#

2 �Adq ⇔ x ∈ m M#
1

� �
Adq ∧ x ∈ m M#

2

� �
Adq.

Definition 20 A intersection M1½ �Adq ∩ m M2½ �Adq of multistructures M1½ �Adq and
M2½ �Adq is called the multistructure ½M#

1 ∩M#
2 �Adq.

Fact 9.
For any two subjects M1, M2 and any way x

x ∈ m M1½ �Adq ∩ m M2½ �Adq ⇔ x ∈ m M1½ �Adq ∧ x ∈ m M2½ �Adq.

Fact 10. (distributable)
For any subjects M1, M2, M3 ⊆ INgen

M1½ �Adq ∩ mð M2½ �Adq ∪ m M3½ �AdqÞ= ð M1½ �Adq ∩ m M2½ �AdqÞ∪ mð M1½ �Adq ∩ m M3½ �AdqÞ.

Definition 21 Let M = f M½ �Adq:M ⊆Ngeng. A generalized sum of the multistruc-
tures family M is the multistructure:

∪ mM = ½∪ fM#:M ⊆Ngen ∧ M½ �Adq ∈ Mg�Adq.

A generalized intersection of the multistructures family M is the multistructure:

∩ mM = ½∩ fM#:M⊆Ngen ∧ M½ �Adq ∈Mg�Adq.

Fact 11.
For any multistructures family M:

1. x∈ m ∪ m M⇔ exist suchmultistructure S½ �Adq ∈ M, that x ∈ m S½ �Adq,
2. x ∈ m ∩ m M⇔ for anymultistructure S½ �Adq ∈M is x ∈ m S½ �Adq.
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Definition 22

a. Themultistructure 0m = ½∅�Adqwe call the emptymultistructure

b. Themultistructure 1m = Ngen
� �

Adqwe call the full multistructure.

Fact 12.
For any subject M

1. M½ �Adq ∪ m0m = M½ �Adq,
2. M½ �Adq ∩ m0m =0m,
3. M�Adq ∪ m1m =1m,
4. M½ �Adq ∩ m1m = M½ �Adq.

As a result of the given definitions, facts and theorems about multistructures we
have:

Theorem 10 [25, 26] The family of all multistructures with operations of the sum
∪m and the intersection ∩m, defined on this family with the full 1m and empty 0m

multistructure, is a full distributive lattice with the zero 0m and the unit 1m.

6 Approximation of Conceiving Subjects

Referring to work [5] which presents the theoretical apparatus about the covering
approximation space ⟨U, C⟩ where U is nonempty set, C its finite covering
(U = ∪C), we accept the following definition and theorems.

Definition 23 The conceiving base in the system Con(SN) is called the covering
B of the set Ngen such that:

B= fK:K = r, rT
� �# ∧∃AðA∈C ∪R∪ N0f g∧ r∈AÞg,

where rT is a transposition of the sequence r. The elements K ∈ B are called the
base conceiving subjects.

The approximation space of the conceiving subjects is called an ordered pair
⟨Ngen,B⟩.

Remark 2 The base B conceiving subject K = {r, rT}# is determined by two
conceiving ways which lead from one node to another of the semantic network, in
one direction and a second direction (transposition).

Definition 24 (a minimal description of the conceiving way) In the approximation
space ⟨Ngen, B⟩, for any conceiving way u ∈ Ngen, a minimal description of this
way is called a subset of the conceiving base:
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Cl rð Þ = fK ∈ B: r ∈ K ∧ ∀S ∈ Bðu ∈ S ∧ S⊆K ⇒ K = SÞg.

The minimal description of the conceiving way r is a set of all minimal (in the
sense of conclusion) base conceiving subjects (the subset of the base) for which is
included the way r.

Definition 25 Let M ⊆Ngen be any conceiving subject.
The lower approximation of the subject M is a set:

B− Mð Þ = fK ∈ B:K ⊆M#g.

The boundary approximation M is a set:

Bn Mð Þ= ∪ fCl rð Þ: r∈M#\ ∪B− Mð Þg.

The upper approximation M is a set:

B+ Mð Þ=B− Mð Þ∪Bn Mð Þ.

Fact 13.
In the approximation space ⟨Ngen, B⟩, for any conceiving subject X, Y ⊆Ngen

1. B− ð∅Þ = B+ ð∅Þ = ∅,
2. B− Ngen

� �
= B+ Ngen

� �
= B,

3. X = ∪A ∧ A⊆B− ⇒ ðXÞ⊆=B+ ðXÞ,
4. B− Xð Þ⊆B+ Xð Þ,
5. X ⊆Y ⇒ B− Xð Þ⊆B− Yð Þ ∧ B+ Xð Þ⊆B+ Yð Þ,
6. B− ðXÞ = B− ðX#Þ ∧ B+ ðXÞ = B+ ðX#Þ, BnðXÞ = BnðX#Þ.

And for any x ∈ Ngen

7. x ∈ Ngen ⇒ ∀s ∈ Ngen s ε x ⇒ s ε ∪ Cl xð Þð Þ,
8. ∀K ∈ Cl xð Þ∀s ∈ Ngenðs εK ⇒ s ε ∪ Cl xð ÞÞ,
9. B− ð xf gÞ ≠ ∅⇔ xf g ∈ B,

10. xf g ∈ B⇔B− fxgð Þ = xf gf g,
11. xf g∉B ⇒ B− fxgð Þ = ∅ ∧ B+ fxgð Þ = Cl xð Þ,
12. x ∈ X# ⇒ x ∈ ∪ B+ Xð Þ.

Remark 3 Based on Fact 13.6 of the lattice closures of conceiving subjects, the
space approximation ⟨Ngen, B⟩ has all properties of the covering approximation
space ⟨U, C⟩ described in the paper [5].

Theorem 11 The base B of the approximation space ⟨Ngen, B⟩ is representative
when it satisfies the condition:
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∀K ∈ B ∃r ∀K ∈ S ∈ Bðr ∈ S ⇒ K ⊆ SÞ

The subject K ∈ B has representative r0, when

∀S ∈ Bðr0 ∈ S ⇒ K ⊆ SÞ

Any approximation space ⟨Ngen, B⟩ is representative and every, at least
two-element set of the base B, has at least two representative elements.

Proof Let K = {(x1,…, xj), (x1,…, xj)
T}# ∈ B, for some (x1,…, xj) ∈ ∪B. When

the set K ∈ B is a one-element set, in other words: K = {(x)}# = {(x)}, (x) ∈ ∪B,
then from (x) ∈ S appears that K ⊆ S.

For K = {(x1, …, xj), (x1, …, xj)
T}#, (x1, …, xj)∈Nj, j > 1, it is assumed that

r = (x1,…, xj). Let r ∈ S = {(y1,…, yl), (y1,…, yl)
T}#, then r ε (y1,…, yl) and r

T ε
(y1, …, yl)

T or rT ε (y1, …, yl) and r ε (y1, …, yl)
T, so K = {r, rT}# ⊆ S.

Analogically is when we accept r = (x1, …, xj)
T.

Furthermore, for r0 ∈ {r, rT} ⊆ K is ∀S ∈ B(r0 ∈ S ⇒ K ⊆ S), which means
that the base subject K has two representatives.

Definition 26 The equivalence relation ≈B described as follows for any subjects X,
Y ⊆ Ngen

X≈BY⇔B− Xð Þ=B− Yð Þ∧B+ Xð Þ=B+ Yð Þ

is called a indiscernibility relation of conceiving subject. The expression “X ≈B Y”
we read: the subjects X, Y are undistinguishable. Two conceiving subjects are
indiscernible in the established approximation space ⟨Ngen, B⟩ iff their represen-
tatives have identical lower and upper approximations.

Definition 27 In the approximate space of conceiving subjects ⟨Ngen, B⟩, a rough
conceiving subject MB appointed by the conceiving subject M, is called an abstract
class with representative M of the equivalence relation ≈B.

The set of all rough conceiving subjects will be denoted by Rs(Ngen, B).

Definition 28 In the approximation space ⟨Ngen, B⟩ the relation ⊆C is described for
any subjects X, Y ⊆ Ngen by model:

XB⊆BYB⇔B− Xð Þ⊆B− Yð Þ∧B+ Xð Þ⊆B+ Yð Þ

It is called the inclusion relation of the rough conceiving subjects.
Using Remark 3, we have

Theorem 12 [5] Any approximation space ⟨Ngen, B⟩ is representative and every, at
least two-element set of the base B, has at least two representative elements if, and
only if, for any family of rough subjects of conceiving in a poset ⟨RsðNgen, BÞ, ⊆B⟩

there is a supremum and an infimum.
From this, and Theorem 11 about the representative ⟨Ngen, B⟩, we obtain:
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Fact 14.
The poset ⟨RsðNgen, BÞ, ⊆B⟩ is a complete distributive lattice.
In the complete lattice ⟨RsðNgen, BÞ, ⊆B⟩ are described general operations, such

as a sum ∪ B and an intersection ∩ B:
For family of sets A ⊆ 2Ngen

∪ BfMB:M ∈Ag= supfMB:M ∈Ag=XB,

where X ⊆ Ngen satisfies the conditions

∪ fB− Mð Þ:M ∈Ag=B− Xð Þ, ∪ fB+ Mð Þ:M ∈Ag=B+ Xð Þ.

For infimum

∩ BfMB:M ∈Ag= inf fMB:M ∈Ag=YB,

where Y ⊆ Ngen satisfies the conditions

∩ B− Mð Þ:M ∈ Af g = B− Xð Þ, ∩ B+ Mð Þ:M ∈ Af g = B+ Xð Þ

In particular, for two-argument operations, the sign ∪ B for addition and ∩ B for
multiplication:

For any subjects of conceiving X, Y ⊆ Ngen

XB ∪ BYB = ∪ B XB, YBf g,XB ∩ BYB = ∩ B XB, YBf g.

Assuming the definition given in the paper [5]:

X ∈ B YB iff X ≠ ∅ ∧ XB ⊆B YB ∧ ∃K ∈ B B+ Xð Þ = fKgð Þ.

We get all set theory interpretation of rough sets, for which algorithm was given
in the second chapter of this chapter.

7 Further Research

In this chapter is shown the data granulation method for vague knowledge, which
occurs in information systems and semantic networks. Finally, it is proposed to use
granulation of data searching result in the semantic networks by using set theory (or
lattice) operations, which are done on rough conceiving subjects. Realization of the
vague knowledge search algorithm is finished, when are established the elements of the
rough conceiving subject. Intuitively, finding set of all ways in the conceiving system,
where represented knowledge is vague, is at the same time establishing (finding) this
knowledge. Logic properties of these calculations remain to further research. Maybe,
based on this research, we could formulate some conceiving logic [10].
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Vagueness and Uncertainty: An F-Rough Set
Perspective

Dayong Deng and Houkuan Huang

Abstract F-rough sets are the first dynamical rough set model for a family of infor-

mation systems (decision systems). This chapter investigates vagueness and uncer-

tainty from the viewpoints of F-rough sets. Some indexes, including two types of

F-roughness, two types of F-membership-degree and F-dependence degree etc., are

defined. Each of these indexes may be a set of number, not like other vague and

uncertain indexes in Pawlak rough sets. These indexes extend those of Pawlak rough

sets, and indicate vagueness and uncertainty in a family of information subsystems

(decision subsystems). Moreover, these indexes themselves also include vagueness

and uncertainty, namely, vagueness of vagueness and uncertainty of uncertainty. Fur-

ther, we investigate some interesting properties of these indexes.

1 Introduction

Human beings have investigated vagueness and uncertainty for more than 100 years.

Frege presented the concept of vagueness in 1904. Russell [25] investigated it fur-

ther in 1923. Zadeh [36] proposed fuzzy set theory in 1965. Shafer [26] introduced

the theory of evidence in 1976. Pawlak presented rough set theory in 1982 [19, 20].

Recently, type-2 fuzzy sets [18] and cloud model [15, 16] were proposed. These two

theories can investigate not only vague and uncertain phenomena, but also vague-

ness of vagueness and uncertainty of uncertainty. However, these methods except for

rough set theory have more or less subjectivity.
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Rough set theory was introduced by Pawlak [19, 20, 22, 23], which can deal

with imprecise, vague and incomplete information, and has no subjectivity. In order

to deal with different kinds of data, many models of rough sets are extended, includ-

ing various precision rough set model [1, 14, 41], rough fuzzy sets and fuzzy rough

sets [13], bayesian rough set model [27–30], probabilistic rough set model [17, 24,

31, 32, 42, 43], rough sets based on accessible relation [5], covering rough set

model [37–40] and decision-theoretic rough set model [32–35] etc. All of these mod-

els can investigate vagueness and uncertainty, but they can’t investigate vagueness

of vagueness or uncertainty of uncertainty, namely, can’t investigate the change of

vagueness or uncertainty.

The model of F-rough sets [7] is the first dynamical model of rough sets, which

extends Pawlak rough sets from one information system (decision system) to a family

of information systems (decision systems), and can combine with any models of

rough sets. These information systems (decision systems) can be obtained from a

large amount of data, increasing data and multi-source data. In [6, 7] Deng et al.

used F-rough sets to obtain dynamic reducts [2, 3] and parallel reducts.

Moreover, F-rough sets can deal with vagueness of vagueness and uncertainty of

uncertainty in vague and uncertain cases, and have been employed to detect concept

drifting. In [8, 9] F-rough sets were employed to detect concept drifting, and var-

ious indexes of uncertainty and vagueness were proposed. In [10] the uncertainty

and concept drifting in a single decision system were investigated from the view of

F-rough sets, which extended concept drifting from time to space (or conditions),

and defined the concept of cognition convergence. In [12] the loss of information

for conditional reduction was presented, which consolidated the information theory

basis for rough sets. In [11] double-level absolute reduction for multi-granulation

rough sets were proposed, which obtained absolute reducts from heterogenous data.

In this chapter, the indexes of uncertainty and vagueness are investigated from

the viewpoints of F-rough sets, which are different from those in Pawlak rough sets.

In F-rough sets, every decision system (information system) indicates one situation,

among which exists differences. Just like Pawlak rough sets, upper approximation

and lower approximation are used to approximate one concept, but there may be dif-

ferences for these upper approximations and lower approximations in F-rough sets.

Moreover, these indexes, such as membership degree, roughness, will be significant

differences between in Pawlak rough sets and in F-rough sets. In Pawlak rough sets,

indexes of vagueness and uncertainty, which indicate vague and uncertain phenom-

enons, are fixed. However, in F-rough sets, indexes of vagueness and uncertainty are

flexible, just like type-2 fuzzy sets.

The rest of this chapter is organized as follows. Section 2 reviews briefly vague-

ness and uncertainty in Pawlak rough sets. Section 3 refers to vagueness and

uncertainty of the boundary region in F-rough sets. Section 4 defines two type

of membership degree in F-rough sets, and investigates their properties. Section 5

defines two types of dependence degree in F-rough sets, and investigates their prop-

erties. Section 6 defines two types of roughness, and investigates their properties. At

last, we draw a conclusion in Sect. 7.
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2 Vagueness and Uncertainty in Pawlak Rough Sets

Pawlak rough set theory is to deal with imprecise, vague and inconsistent infor-

mation in an information system (a decision system). There are some indexes to

indicate vagueness and uncertainty, including upper approximation, lower approxi-

mation, roughness, membership function and dependence degree etc. [4, 21]. In the

following paragraphs, we will briefly review some related knowledge about rough

set theory and these vague and uncertain indexes.

An information system is a pair IS = (U,A), where U is the universe of discourse

with a finite number of objects (or entities), A is a set of attributes defined on U. Each

a ∈ A corresponds to the function a ∶ U → Va, where Va is called the value set of

a. Elements of U are called situation, objects or rows, interpreted as, e.g., cases,

states [20].

With any subset of attributes B ⊆ A, we associate the information set for any ele-

ment x ∈ U by

InfB(x) = {(a, a(x)) ∶ a ∈ B}

An equivalence relation called B-indiscernible relation is defined by

IND(B) = {(x, y) ∈ U × U ∶ InfB(x) = InfB(y)}

Two elements x, y satisfying the relation IND(B) are indiscernible by attributes

from B. [x]B is referred to as the equivalence class of IND(B) defined by x.

Suppose IS = (U,A) is an information system, B ⊆ A is a subset of attributes, and

X ⊆ U is a subset of discourse, the sets

B(X) = {x ∈ U ∶ [x]B ⊆ X}

B(X) = {x ∈ U ∶ [x]B ∩ X ≠ ∅}

are called B-lower approximation and B-upper approximation respectively. The

lower approximation is also called positive region, denoted by POSB(X). Sometimes

B(X) and B(X) are denoted by B(IS,X) and B(IS,X) respectively.

In a decision system DS = (U,A, d), where {d} ∩ A = ∅, the decision attribute d
divides the universe U into parts, denoted by U∕{d} = {Y1,Y2, ...,Yp}, where Yi is

an equivalence class. The positive region is defined as

POSB(d) =
⋃

Yi∈U∕{d}
B(Yi)

where B ⊆ A.

Sometimes the positive region POSB(d) is also denoted by POSB(DS, d) or POS
(DS,B, d).
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We always define 𝜕(x) = {d(y) ∶ y ∈ [x]A} in a decision system DS = (U,A, d), if

∀x∈U(|𝜕(x)| = 1), the decision system DS = (U,A, d) is called a consistent decision

system, or else, it is called an inconsistent decision system.Where | ∙ | denotes the

cardinality of a set.

In rough set theory, membership degree is an important index to indicate a vague

and uncertain degree which an element belongs to a set. The membership degree in

rough set theory is defined as follows:

𝜇B,X|DS(x) =
|X ∩ [x]B|
|[x]B|

In a decision system DS = (U,A, d) we will say d depends on B ⊆ A to a degree

h(0 ≤ h ≤ 1), if

h = 𝛾(B,DS) =
|POSB(d)|

|U|

The dependence degree is a very important index when we want to obtain a condi-

tional reduct from a decision system and an information system.

In a broad sense, all of indexes in rough set theory can be called roughness (vague-

ness), but in the narrow sense roughness is a ratio which the lower approximation of

a concept is divided by its upper approximation. Its mathematic formula is expressed

as follows.

𝛼B,DS(X) =
|B(X)|
|B(X)|

In [21] Pawlak discussed vagueness and uncertainty in rough sets. We don’t intro-

duce them here in detail. In the following sections, we will discuss vagueness and

uncertainty of lower approximation and upper approximation, membership degree,

dependence degree and roughness from the viewpoints of F-rough sets respectively.

3 Vagueness and Uncertainty in the Boundary Region
of F-Rough Sets

In F-rough sets [7], the domain of discourse is a family of decision subsystems F and

the family of its corresponding information subsystems FIS = {ISi}(i = 1, 2,… , n),

where ISi = (Ui,A), DTi = (Ui,A, d) ∈ F, F ≠ ∅ ⊆ P(DS), DS = (U,A, d).

Definition 1 Suppose X is a concept, and N is a situation. X|N denotes the concept

X in the situation N. In a family of information subsystems FIS = {IS1, IS2,… , ISn},

ISi ∈ FIS, X|ISi = X ∩ ISi, X|FIS = {X|IS1,X|IS2,… ,X|ISn}. If it is not confused,

the X|N can be denoted by X for short.
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Table 1 Decision subsystem DT1
U1 a b c d
x1 0 0 1 1

x2 1 1 0 1

x3 0 1 0 0

x4 1 1 0 1

Table 2 Decision subsystem DT2
U2 a b c d
y1 0 1 0 0

y2 1 1 0 1

y3 1 1 0 1

y4 0 1 0 0

y5 1 2 0 0

y6 1 2 0 1

Example 1 Suppose F = {DT1,DT2} is a family of decision subsystems, corre-

sponding to Tables 1 and 2 respectively, where a, b, c are condition attributes, d
is a decision attribute.

For a concept X = {x ∶ d(x) = 0}, it is different in the decision subsystems DT1
and DT2. X|DT1 = {x ∶ d(x) = 0} ∩ DT1 = {x3}, X|DT2 = {x ∶ d(x) = 0} ∩ DT2 =
{y1, y4, y5}, X|F = {X|DT1,X|DT2} = {{x3}, {y1, y4, y5}}.

Suppose X is a concept in FIS, its lower approximation, upper approximation,

boundary region and negative region are defined respectively in the following.

B(FIS,X) = {B(ISi,X) ∶ ISi ∈ FIS} = {{x ∈ Ui ∶ [x]B ⊆ X}}

B(FIS,X) = {B(ISi,X) ∶ ISi ∈ FIS} = {{x ∈ Ui ∶ [x]B ∩ X ≠ 𝜙}}

BND(FIS,X) = {BND(ISi,X) ∶ ISi ∈ FIS} = {B(ISi,X) − B(ISi,X) ∶ ISi ∈ FIS}

NEG(FIS,X) = {NEG(ISi,X) ∶ ISi ∈ FIS} = {Ui − B(ISi,X) ∶ ISi ∈ FIS}

The lower approximation, upper approximation, boundary region and negative

region of X in FIS are the sets of corresponding regions of X in elements of FIS.

The pair (B(FIS,X),B(FIS,X)) is called F-rough sets. If B(FIS,X) = B(FIS,X),
then the pair (B(FIS,X),B(FIS,X)) is crisp.

From the definition of F-rough sets, the lower approximation, the upper approx-

imation, the boundary region and the negative region of a concept in every element

of F contain vagueness and uncertainty. Moreover, they are different in different
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element of F. This is to say, the lower approximation, the upper approximation, the

boundary region and the negative region of a concept in F-rough sets contain vague-

ness of vagueness and uncertainty of uncertainty.

4 Uncertainty and Membership Function

Membership degree is an important index to measure vagueness and uncertainty in

rough sets. In F-rough sets, we can also define its membership degree as follows:

Definition 2 For an element x ∈ U in an information system IS = (U,A), a subset of

attributes B ⊆ A, a subset of universe X ⊆ U and a family of information subsystems

FIS = {IS1, IS2,… , ISn}, where ISi ⊆ IS. the membership degree of x ∈ X relative

to FIS (F-membership-degree in short) is defined as

𝜇B,X|FIS(x) = {𝜇B,X|IS1 (x), 𝜇B,X|IS2 (x),… , 𝜇B,X|ISn (x)}

The average of membership degree of x ∈ X relative to FIS is

𝜇B,X|FIS(x) =
∑n

i=1 𝜇B,X|ISi (x)
n

The maximum of membership degree of x ∈ X relative to FIS is

𝜇B,X|FIS(x) = max
ISi∈FIS

{𝜇B,X|ISi (x)}

The minimum of membership degree of x ∈ X relative to FIS is

𝜇B,X|FIS(x) = min
ISi∈FIS

{𝜇B,X|ISi (x)}

The variance of the membership degree of x ∈ X relative to FIS is,

𝛿

2
M =

∑n
i=1(𝜇B,X|ISi (x) − 𝜇B,X|FIS(x))2

n

and 𝛿M is the standard deviation of the membership degree x ∈ X in FIS.

F-membership degree indicates the membership degree of an element x belonging

to a concept X in different situations. It is a set which contains vagueness of vague-

ness and uncertainty of uncertainty. If the order of its elements should be fixed, it

can be denoted as a vector by 𝜇B,X|FIS(x) =< 𝜇B,X|IS1 (x), 𝜇B,X|IS2 (x),… , 𝜇B,X|ISn (x) >.
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Table 3 Decision sub-system DT3
U1 a b c d
x1 0 0 1 1

x2 1 1 0 1

x3 1 1 0 0

x4 1 1 0 1

Table 4 Decision sub-system DT4
U2 a b c d
y1 0 1 0 0

y2 1 1 0 1

y3 1 1 0 1

y4 1 1 0 0

y5 1 1 0 0

y6 1 2 0 1

F-membership degree can describe the changing of a membership degree and

uncertainty of uncertainty,but if a number needs to be used to indicate the mem-

bership degree in F-rough sets, we can use the following definition of membership

degree.

Definition 3 The total membership degree of x ∈ X relative to FIS (F-total-

membership-degree in short) is defined as

T𝜇B,X|FIS(x) =
∑

X⊆ISi∧ISi∈FIS |[x]B ∩ X|
∑

[x]B⊆ISi∧ISi∈FIS |[x]B|

Both F-membership degree and F-total-membership-degree express the mem-

bership degree of an element x belonging to a concept X in F-rough sets, but they

have some differences. F-membership degree focuses on uncertainty of uncertainty,

and the changing of membership degrees in every element of F, while F-total-

membership-degree emphasizes the total effectiveness of membership degrees in the

family of information systems (decision systems) F. Both F-membership degree and

F-total-membership-degree can be abbreviated as F-membership degree or member-

ship degree if not confused.

Example 2 Assume thatF = {DT3,DT4}which shows in Tables 3 and 4,B = {a, b},

and that x3 in DT3 is the same as y3 in DT4. Then, the membership degree of

x3 ∈ X = {x ∶ d(x) = 0} can be calculated as follows:

𝜇B,X|DT3 (x3) =
|[x3]B∩X|
|[x3]B|

= 1
3

𝜇B,X|DT4 (x3) =
|[x3]B∩X|
|[x3]B|

= 1
2
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So,

𝜇B,X|F(x3) = {𝜇B,X|DT3 (x3), 𝜇B,X|DT4 (x3)} = {1
3
,

1
2
}

𝜇B,X|F(x3) =
∑4

i=3 𝜇B,X|DTi (x3)
2

=
1
3 +

1
2

2
= 5

12
𝜇B,X|F(x3) = maxDTi∈F{𝜇B,X|DTi (x3)} = 1

2
𝜇B,X|F(x3) = minDTi∈F{𝜇B,X|DTi (x3)} = 1

3

𝛿

2
M =

∑4
i=3(𝜇B,X|DTi (x3)−𝜇B,X|F(x3))2

2
= 1

144

T𝜇B,X|F(x3) =
∑

X⊆DTi∧DTi∈F
|[x3]B∩X|

∑
[x3]B⊆DTi∧DTi∈F

|[x3]B|
= 3

7

In the following paragraphs, we will investigate some properties of these two

membership degrees in F-rough sets.

Proposition 1 For an information system IS = (U,A) and a family of its information
subsystems FIS = FIS1 ∪ FIS2, a concept X ⊆ U, B ⊆ A and an element x ∈ U. The
following propositions are true.

(1) 𝜇B,X|FIS(x) = max{𝜇B,X|FIS1 (x), 𝜇B,X|FIS2 (x)}
(2) 𝜇B,X|FIS(x) = min{𝜇B,X|FIS1 (x), 𝜇B,X|FIS2 (x)}.
(3) min{𝜇B,X|FIS1 (x), 𝜇B,X|FIS2 (x)} ≤ 𝜇B,X|FIS(x) ≤ max{𝜇B,X|FIS1 (x), 𝜇B,X|FIS2 (x)}.
(4) min{T𝜇B,X|FIS1 (x),T𝜇B,X|FIS2 (x)}≤T𝜇B,X|FIS(x)≤max{T𝜇B,X|FIS1 (x),T𝜇B,X|FIS2

(x)}.

Proof It is easy to prove the above proposition.

Proposition 1 shows that both F-membership degree and F-total-member-

ship-degree will be changed after two sets of information subsystems (decision

subsystems) are united. The average of F-membership degree and the value of F-

total-membership-degree will be a value between the two old corresponding ones.

This means that both the average of F-membership degree and F-total-membership-

degree will converge a stable number with the increment of data sets.

Proposition 2 For an information system IS = (U,A) and a family of its information
subsystems FIS = {IS1, IS2,… , ISn}, a concept X ⊆ U, B ⊆ A and an element x ∈ U,
the following formulas are true.

(1) 𝜇B,X|FIS(x) = 1 ⇔ ∀ISi∈FIS(x ∈ B(ISi,X)).

(2) 𝜇B,X|FIS(x) > 0 ⇔ ∀ISi∈FIS(x ∈ B(ISi,X)).
(3) 𝜇B,X|FIS(x) = 1 ⇔ ∃ISi∈FIS(x ∈ B(ISi,X)).
(4) 𝜇B,X|FIS(x) > 0 ⇔ ∃ISi∈FIS(x ∈ B(ISi,X)).
(5) 𝜇B,X|FIS(x) = 0 ⇔ ∀ISi∈FIS(x ∈ NEG(ISi,X)).
(6) T𝜇B,X|FIS(x) = 1 ⇔ ∀ISi∈FIS(x ∈ B(ISi,X)).
(7) T𝜇B,X|FIS(x) = 0 ⇔ ∀ISi∈FIS(x ∈ NEG(ISi,X)).
(8) T𝜇B,X|FIS(x) > 0 ⇔ ∃ISi∈FIS(x ∈ B(ISi,X)).

Proof It is easy to prove the above propositions.
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Proposition 2 shows: According to the value of F-membership degree or F-total-

membership-degree, we can judge whether an element in the discourse is in the pos-

itive region, or the negative region,or the boundary region in a family of information

subsystems (decision subsystems).

Proposition 3 For an information system IS = (U,A) and a family of its information
subsystems FIS = {IS1, IS2,… , ISn}, concepts X,Y ⊆ U, B ⊆ A and an element x ∈
U, the following formulas are true.

(1) 𝜇B,(X∪Y)|FIS(x) ≥ max{𝜇B,X|FIS(x), 𝜇B,Y|FIS(x)}.
(2) min{𝜇B,X|FIS(x), 𝜇B,Y|FIS(x)} ≥ 𝜇B,(X∩Y)|FIS(x).
(3) ̃𝜇B,(X∪Y)|FIS(x) ≥ max{𝜇B,X|FIS(x), 𝜇B,Y|FIS(x)}.
(4) ̃𝜇B,(X∩Y)|FIS(x) ≤ min{𝜇B,X|FIS(x), 𝜇B,Y|FIS(x)}.
(5) T𝜇B,X∪Y|FIS(x) ≥ max{T𝜇B,X|FIS(x),T𝜇B,Y|FIS(x)}.
(6) T𝜇B,X∩Y|FIS(x) ≤ min{T𝜇B,X|FIS(x),T𝜇B,Y|FIS(x)}.

Proof It is easy to prove these propositions according to their definitions.

According to Propositions 3, both the value of F-membership degree and F-total-

membership-degree will increase with the increment of the extension of a concept,

and will decrease with the decrement of the extension of a concept.

Both F-membership degree and F-total-membership-degree can be calculated

strictly from a family of information systems (decision systems) F. F-membership

degree focuses on the changing of membership degree in a family of information sub-

systems (decision subsystems), while F-total-membership-degree emphasizes the

total effectiveness of membership degree. They preserve the advantages of both

membership degree in rough sets and membership degree in fuzzy sets. They are

both fixed and flexible.

5 Uncertainty and Dependence Degree

The dependence degree is a very important index in rough sets. It is usually used to

obtain reducts and reason. In F-rough sets the index should also be defined. In [7]

F-total-dependence-degree is defined and used to obtain parallel reducts. In the fol-

lowing paragraphs, we will define another dependence degree in F-rough sets, called

F-dependence degree, and investigate properties of both F-dependence degree and

F-total-dependence-degree.

Definition 4 In a decision system DS = (U,A, d), a subset of attributes B ⊆ A,

a family of decision subsystems F = {DT1,DT2,… ,DTn}, where DTi ⊆ DS. the

dependence degree relative to F(F-dependence degree in short) is defined as

𝛾(B,F) = {𝛾(B,DT1), 𝛾(B,DT2),… , 𝛾(B,DTn)}
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The average of dependence degree relative to F is

̃
𝛾(B,F) =

∑n
i=1 𝛾(B,DTi)

n

The maximum of dependence degree relative to F is

𝛾(B,F) = max
ISi∈FIS

{𝛾(B,DTi)}

The minimum of dependence degree relative to F is

𝛾(B,F) = min
DTi∈F

{𝛾(B,DTi)}

The variance of the dependence degree relative to F is,

𝛿

2
D =

∑n
i=1(𝛾(B,DTi) − ̃

𝛾(B,F))2

n

and 𝛿D is the standard deviation of the membership degree x ∈ X in F.

F-dependence degree is an index to indicate the changing of dependence degrees

in a family of decision subsystems. If the elements of F-dependence degree should

be fixed, it can be expressed as a vector 𝛾(B,F) =< 𝛾(B,DT1), 𝛾(B,DT2),… , 𝛾

(B,DTn) > instead. In [7] we defined another version of F-dependence degree, called

F-total-dependence-degree, to express the dependence degree in a family of decision

subsystems and use it to obtain parallel reducts from them. It is defined as follows.

Definition 5 ([7]) The total dependence degree relative to F (F-total-dependence-

degree in short) is defined as

T𝛾(B,F) =
∑

ISi∈F |POS(B,DTi, d)|∑
DTi∈F |Ui|

Both F-dependence degree and F-total-dependence-degree are to indicate the depen-

dence degree in a family of decision subsystems. When we want to know the chang-

ing of dependence degree in different decision subsystems, F-dependence degree can

be used, otherwise, F-total-dependence-degree can be used. F-dependence degree

and F-total-dependence-degree can be abbreviated as F-dependence degree or depen-

dence degree, if not confused. In the following, an example is given to explain the

calculating process of F-dependence degree and F-total-dependence-degree.

Example 3 Assume that B = {a, b} ⊆ A and F = {DT1,DT2} which shows in

Tables 1 and 2. Two types of F-dependence degree will be calculated as follows:

𝛾(B,DT1) =
|POS(DT1,B,d)|

|U1|
= 1



Vagueness and Uncertainty: An F-Rough Set Perspective 321

𝛾(B,DT2) =
|POS(DT2,B,d)|

|U2|
= 2

3
So,

𝛾(B,F) = {𝛾(B,DT1), 𝛾(B,DT2)} = {1, 2
3
}

̃
𝛾(B,F) =

∑2
i=1 𝛾(B,DTi)

2
= 5

6
𝛾(B,F) = maxDTi∈F{𝛾(B,DTi)} = 1
𝛾(B,F) = minDTi∈F{𝛾(B,DTi)} = 2

3

𝛿

2
D =

∑n
i=1(𝛾(B,DTi)−̃

𝛾(B,F))2

n
= 1

36

T𝛾(B,F) =
∑

DTi∈F
|POS(B,DTi ,d)|

∑
DTi∈F

|Ui|
= 4

5

Some properties of F-dependence degree and F-total-dependence-degree are

showed as follows.

Proposition 4 Let ∅ ≠ B1 ⊆ B2 ⊆ A, then, the following expressions are true:
(1) 𝛾(B1,F) ≤ 𝛾(B2,F) (This means that every element in 𝛾(B2,F) is not less than

that 𝛾(B1,F)).
(2) T𝛾(B1,F) ≤ T𝛾(B2,F).

Proof In every element DTi of F, when the subset of condition attributes is increas-

ing, say, B1 → B2, the positive region POS(DTi,B1, d) ⊆ POS(DTi,B2, d), and

𝛾(B1,DTi) ≤ 𝛾(B2,DTi). Thus, the above two expressions are true.

Proposition 4 shows that both F-dependence degree and F-total-dependence-

degree will increase with the increment of the set of conditional attributes.

Proposition 5 Let F = F1 ∪ F2 ⊆ P(DS), the following expressions are true:
(1) 𝛾(B,F) = max{𝛾(B,F1), 𝛾(B,F2)}.
(2) 𝛾(B,F) = min{𝛾(B,F1), 𝛾(B,F2)}.
(3) min{ ̃

𝛾(B,F1), ̃
𝛾(B,F2)} ≤ ̃

𝛾(B,F) ≤ max{ ̃
𝛾(B,F1), ̃

𝛾(B,F2)}.
(4) min{T𝛾(B,F1),T𝛾(B,F2)} ≤ T𝛾(B,F) ≤ max{T𝛾(B,F1),T𝛾(B,F2)}.

Proof According to their definitions and primary mathematical knowledge, the

above expressions are true.

Proposition 5 shows: The F-dependence degree and the F-total-dependence-

degree will change after two sets of decision subsystems are united. Especially, the

average of F-dependence degree and the value of F-total-dependence-degree will be

a value between the two corresponding old ones.

Proposition 6 The following propositions are true.
(1) 𝛾(B,F) = 1 ⇔ T𝛾(B,F) = 1 ⇔ ∀DTi∈F(POS(B,DTi, d) = Ui).
(2) 𝛾(B,F) = 0 ⇔ T𝛾(B,F) = 0 ⇔ ∀DTi∈F(POS(B,DTi, d) = ∅).
(3) 𝛾(B,F) = 1 ⇔ ∃DTi∈F(POS(B,DTi, d) = Ui).
(4) 𝛾(B,F) = 0 ⇔ ∃DTi∈F(POS(B,DTi, d) = ∅).
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Proof According to their definitions, it is easy to get these results.

Proposition 6 shows we can know the positive region according to both the value

of F-dependence degree and F-total-membership-degree in a family of decision sub-

systems.

F-dependence degree and F-total-dependence-degree indicate dependence degree

from two ways, the first focuses on the changing and variation of dependence degree

in elements of F, but the last emphasizes the total effectiveness of dependence

degrees in all of elements of F. Both of them can be used to obtain parallel reducts.

6 Uncertainty and Roughness

Roughness is a unique index to indicate the ratio between lower approximation and

upper approximation in rough set theory. In a family of information subsystems

(decision subsystems), the indexes of roughness for all these information subsys-

tems (decision subsystems) may be different. We will indicate them with two types

of roughnesses as follows.

Definition 6 For a concept X ⊆ U in an information system IS = (U,A), a subset of

attributes B ⊆ A, and a family of information subsystems FIS = {IS1, IS2,… , ISn},

where ISi ⊆ IS. the roughness of X ⊆ U relative to FIS (F-roughness in short) is

defined as

𝛼B,FIS(X) = {𝛼B,IS1 (X), 𝛼B,IS2 (X),… , 𝛼B,ISn (X)}

The average of roughness of X ⊆ U relative to FIS is

̃
𝛼B,FIS(X) =

∑n
i=1 𝛼B,ISi (X)

n

The maximum of roughness of X ⊆ U relative to FIS is

𝛼B,FIS(X) = max
ISi∈FIS

{𝛼B,ISi (X)}

The minimum of roughness of X ⊆ U relative to FIS is

𝛼B,FIS(X) = min
ISi∈FIS

{𝛼B,ISi (X)}

The variance of the roughness degree of X ⊆ U relative to FIS is,

𝛿

2
R =

∑n
i=1(𝛼B,ISi (X) − 𝛼B,FIS(X))2

n

and 𝛿R is the standard deviation of the roughness degree X in FIS.
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For 𝛼B,FIS(X), if ∀ISi∈FIS(𝛼B,ISi (X) = a), a ∈ [0, 1], then it is called 𝛼B,FIS(X) = a.

For 𝛼B1,FIS(X) and 𝛼B2,FIS(X), if ∀ISi∈FIS(𝛼B1,ISi (X) = 𝛼B2,ISi (X)), then 𝛼B1,FIS(X) is

equal to 𝛼B2,FIS(X), denoted by 𝛼B1,FIS(X) = 𝛼B2,FIS(X). If ∀ISi∈FIS(𝛼B1,ISi (X) ≤
𝛼B2,ISi (X)), then 𝛼B1,FIS(X) is not less than 𝛼B2,FIS(X), denoted by 𝛼B1,FIS(X) ≤
𝛼B2,FIS(X).

Just like F-membership degree and F-dependence degree, F-roughness indicates

the changing of roughnesses in different information subsystems (decision subsys-

tems). If elements of F-roughness are required to be fixed, we also express it as a vec-

tor 𝛼B,FIS(X) =< 𝛼B,IS1 (X), 𝛼B,IS2 (X),… , 𝛼B,ISn (X) >. When we don’t want to know

the changing of roughnesses in different information subsystems (decision subsys-

tems), a number, called F-total-roughness, is used. It is defined as follows.

Definition 7 The total roughness degree of X ⊆ U relative to FIS (F-total-

roughness-degree in short) is defined as

T𝛼B,FIS(X) =
∑

X⊆ISi∧ISi∈FIS |B(ISi,X)|
∑

X⊆ISi∧ISi∈FIS |B(ISi,X)|

Both F-roughness and F-total-roughness can indicate roughness in a family of

information subsystems (decision subsystems). F-roughness focuses on the changing

and variation of roughnesses in a family of information subsystems (decision sub-

systems), while F-total-roughness emphasizes the total effectiveness of roughnesses.

Both of them can be abbreviated as F-roughness or roughness, if not confused. An

example is given to show how to calculate F-roughness and F-total-roughness as

follows.

Example 4 Assume that X = {x ∶ d(x) = 0}, F = {DT1,DT2} and B = {a, b} in

Tables 1 and 2.

X|DT1={x ∶ d(x)=0} ∩ DT1={x3}, X|DT2={x ∶ d(x) = 0} ∩ DT2 = {y1, y4, y5}.

𝛼B,DT1 (X) =
B(X)
B(X)

= |{x3}|
|{x3}|

= 1, 𝛼B,DT2 (X) =
B(X)
B(X)

= |{y1,y4}|
|{y1,y4,y5,y6}|

= 1
2

𝛼B,F(X) = {𝛼B,DT1 (X), 𝛼B,DT2 (X)} = {1, 1
2
}

̃
𝛼B,F(X) =

∑2
i=1 𝛼B,DTi (X)

2
= 3

4
𝛼B,F(X) = maxDTi∈F{𝛼B,DTi (X)} = 1
𝛼B,F(X) = minDTi∈F{𝛼B,DTi (X)} = 1

2

𝛿

2
R =

∑2
i=1(𝛼B,DTi (X)−𝛼B,F(X))

2

2
= 1

16

T𝛼B,F(X) =
∑

X⊆DTi∧DTi∈F
|B(DTi,X)|

∑
X⊆DTi∧DTi∈F

|B(DTi,X)|
= 3

5

We will investigate some properties of F-roughness and F-total-rough in the fol-

lowing paragraphs.
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Proposition 7 In a family of information subsystems FIS, suppose that ∅ ≠ B1 ⊆

B2 ⊆ A, the following expressions are true.
(1) 𝛼B1,FIS(X) ≤ 𝛼B2,FIS(X).
(2) ̃

𝛼B1,FIS(X) ≤ ̃
𝛼B2,FIS(X).

(3) 𝛼B1,FIS(X) ≤ 𝛼B2,FIS(X).
(4) 𝛼B1,FIS(X) ≤ 𝛼B2,FIS(X).
(5) T𝛼B1,FIS(X) ≤ T𝛼B2,FIS(X).

Proof According to their definitions, it is easy to prove the above expressions.

Proposition 7 shows that both F-roughness and F-total-roughness will increase

with the increment of condition attributes.

Proposition 8 Assume that both FIS1 and FIS2 are families of information subsys-
tems and ∅ ≠ FIS1 ⊆ FIS2, then, the following expressions are true.

(1) 𝛼B,FIS1 (X) ≤ 𝛼B,FIS2 (X).
(2) 𝛼B,FIS2 (X) ≤ 𝛼B,FIS1 (X).

Proof It is obvious that these expressions are true.

Proposition 8 shows that the maximum of F-roughness will increase with the

increment of the set of information subsystems, while the minimum of F-roughness

will decrease with the increment of the set of information subsystems.

Proposition 9 Let FIS1 and FIS2 be families of information subsystems and ∅ ≠

FIS1 ⊆ FIS2, FIS = FIS1 ∪ FIS2, then, the following expressions are true.
(1) min{ ̃

𝛼B,FIS1 (X), ̃
𝛼B,FIS2 (X) ≤ ̃

𝛼B,FIS(X) ≤ max{ ̃
𝛼B,FIS1 (X), ̃

𝛼B,FIS2 (X)}.
(2) 𝛼B,FIS(X) = max{𝛼B,FIS1 (X), 𝛼B,FIS2 (X)}.
(3) 𝛼B,FIS(X) = min{𝛼B,FIS1 (X), 𝛼B,FIS2 (X)}.
(4) min{T𝛼B,FIS1 (X),T𝛼B,FIS2 (X)} ≤ T𝛼B,FIS(X) ≤ max{T𝛼B,FIS1 (X),T𝛼B,FIS2 (X)}.

Proof According to their definitions and primary mathematical knowledge, the

above expressions are true.

According to Proposition 9, when two sets of information subsystems are united,

the average of F-roughness and the F-total-roughness will be a value between the

two old ones, and the maximum of F-roughness will be the maximum one in the

union of two F-roughnesses, and the minimum of F-roughness will be the minimum

one in the union of two F-roughnesses.

Proposition 10 The following propositions are true.
(1) 𝛼B,FIS(X) = 1 ⇔ T𝛼B,FIS(X) = 1 ⇔ B(FIS,X) = B(FIS,X).
(2) 𝛼B,FIS(X) = 0 ⇔ T𝛼B,FIS(X) = 0 ⇔ ∀ISi∈FIS(BND(ISi,X) = X).
(3) 𝛼B,FIS(X) = 1 ⇔ ∃ISi∈FIS(B(ISi,X) = B(ISi,X)).
(4) 𝛼B,FIS(X) = 0 ⇔ ∃ISi∈FIS(BND(ISi,X) = X)
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Proof According to their definitions, it is easy to get the above results.

Proposition 10 shows that we can judge the relations among the upper approx-

imation, the boundary region and the original concept according to the values of

F-roughness and F-total-roughness in F-rough sets.

F-roughness and F-total-roughness are two types of roughness in F-rough sets.

The first focuses on the changing and variation of roughness in every elements of F,

while the last emphasizes the effectiveness of roughness in the family of information

subsystems (decision subsystems) F.

7 Conclusion

In this chapter some indexes of vagueness and uncertainty are defined in F-rough

sets, including F-membership-degree, F-total-membership-degree, F-dependence

degree, F-total-dependence-degree, F-roughness and F-total roughness. These

indexes may be a set of numbers or a vector, and can indicate vagueness of vague-

ness and uncertainty of uncertainty just like type-2 fuzzy sets and cloud model. After

having defined these indexes, F-rough sets becomes the third tools to describe vague-

ness of vagueness and uncertainty of uncertainty in vague and uncertain phenomena.

These indexes can be calculated strictly from a family of information subsystems

(decision subsystems), but they are flexible and applicable. Moreover, This research

provides not only a way to obtain vagueness of vagueness and uncertainty of uncer-

tainty from data sets directly, but also a possibility to unify rough set theory and

fuzzy set theory.

In the future we will investigate more properties of these indexes, and employ

them to mine stream data and detect concept drift.
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Directions of Use of the Pawlak’s Approach
to Conflict Analysis

Małgorzata Przybyła-Kasperek

Abstract The chapter briefly discusses selected applications of the rough set theory.

The main aim of the chapter is to describe a model of conflict proposed by Professor

Pawlak as well as its extension. In the chapter the Pawlak’s model was applied to ana-

lyze the conflicts that arise between classifiers when making decisions. The example

that is included in the chapter allows for comparison of the results generated by the

Pawlak’s model with the results generated by other approaches. Some properties in

generated coalitions have been noticed.

1 Introduction

Nowadays, the ability to process data very quickly, is extremely important. Approxi-

mate reasoning provides the ability to process big data. Rough set theory, which was

proposed by Professor Pawlak, gives us the opportunity to use approximate reasoning

based on vague concepts.

The ability to analyze conflict situations that arise for example between classifiers

is also crucial. Many mathematical models of conflict situations were proposed [17,

18, 21, 55]. The approach that was proposed by Professor Pawlak is still another

approach to conflict analysis. The model is simple enough for easy computer imple-

mentation and allows to determine coalitions, the course and outcome of conflict,

and takes into account the strength and strategies of agents.

This chapter describes selected applications of the rough set theory but mainly it

focuses on the Pawlak’s conflict model. The chapter presents the original Pawlak’s

model. Provides basic definitions and shows an example of the use of the origi-

nal model. In the chapter three approaches, which are an extension of the Pawlak’s

model and were proposed by the author, are considered in more detail. In addition,

some other extensions of the Pawlak’s model are mentioned in the chapter. The main

novelty of this chapter is to use the Pawlak’s model to analyze conflicts that arise
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Bȩdzińska 39, 41-200 Sosnowiec, Poland

e-mail: malgorzata.przybyla-kasperek@us.edu.pl

© Springer International Publishing AG 2017

G. Wang et al. (eds.), Thriving Rough Sets, Studies in Computational

Intelligence 708, DOI 10.1007/978-3-319-54966-8_16

329



330 M. Przybyła-Kasperek

between classifiers when making decisions. Three different approaches to applica-

tion of the Pawlak’s model to analyze the conflicts between classifiers are discussed

in this chapter. These approaches rely on different methods of defining an informa-

tion system in a conflict model and different functions for determining the intensity of

conflict between agents. Based on an example, results obtained by these approaches

were compared. A measure for determining the distance between pairs of agents

belonging to one coalition is proposed. Analysis of the obtained results allowed to

identify the advantages and disadvantages of the discussed approaches.

The chapter is organized as follows. In the second part of this chapter a review

of selected applications of the rough set theory is included. In the third section,

the original Pawlak’s model and its extensions are discussed. The fourth chapter

describes three approaches to application of the Pawlak’s model to analyze the

conflicts between classifiers. In this section, an example is presented on the basis

of which the results obtained using the considered approaches are compared. The

chapter concludes with a short summary in the fifth section.

2 About the Rough Sets—A Review of Applications
at the University of Silesia

Theory of rough set is one of the major contributions of the Professor Pawlak’s work

in the development of computer science. Rough sets were defined in 1982 in the paper

[29]. Very quickly, this theory has found many applications [9, 13, 22, 27, 38, 51,

53]. Of course, the papers mentioned here are only a small part of applications—it

is not possible to mention all, because there are so many of them. In the Institute of

Computer Science at the University of Silesia rough sets were used, inter alia, in the

following approaches.

The theory of rough set was used in the research conducted under the supervision

of A. Wakulicz-Deja that were presented in a doctoral dissertation of P. Paszek. This

approach was considered in the papers [28, 57, 58]. The study analyzed the real set

of medical data that was gathered in the II Department of the Medical University of

Silesia in Katowice. The set of data concerned diagnosing of patients with suspected

mitochondrial diseases. In this study, the need to create, in real cases, local knowl-

edge bases that contain different sets of conditional attributes was highlighted. The

rough set theory was used in the inference process.

The rough set theory was applied to the analysis of complex medical data in the

doctoral dissertation of G. Ilczuk where the supervisor was A. Wakulicz-Deja [14–

16]. The study analyzed the real sets of medical data that were provided by the Elec-

trocardiography Clinic of the Medical University of Silesia in Katowice. These data

were grouped in separate tables, which were linked by relations to ensure data con-

sistency. The study noted that the typical medical data contain dozens of tables that

are related by different types of relations. These tables contain thousands of objects

that are described by dozens of attributes. The method of construction of decision
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table containing attributes appropriate to the considered research problem, based on

separate tables, was proposed.

M. Moshkov and B. Zielosko analyzed the use of partial reducts and partial deci-

sion rules in the papers [23, 24]. More precise classifiers are built on the basis of

partial (approximate) reducts and decision rules than on the basis of exact reducts.

In the monograph [25] concepts such as decision trees, decision rules and reducts

have been widely discussed by M. Moshkov and B. Zielosko.

The rough set theory was also used in studies of many other researchers from the

Institute of Computer Science at the University of Silesia [10, 26, 47, 48].

Analysis of conflicts, which is another important issue that Professor Pawlak dealt

with, is also analyzed at the University of Silesia. Several publications in which this

issue was considered, were prepared at this faculty [39–42]. This chapter presents

yet another approach to this issue.

The aim of the review presented in this section is to show that the Institute of

Computer Science at the University of Silesia is one of the centers that are engaged

in the development of the Professor Pawlak’s work.

3 About Conflict Analysis

Very important contribution of the Professor Pawlak’s work in the development of

computer science and in general to the theory of conflict and negotiation is a model

of conflict analysis that was proposed in 1984 in the article [30]. This model was

then developed in the papers [31–36]. This model provides a simple way to deter-

mine the relations between individuals involved in the conflict. It enables the analysis

of strength of units and allows the modeling of the conflict. Basic concepts of the

Pawlak’s model will be presented.

It is assumed that the set Ag is a set of agents that are involved in the conflict.

Opinion about certain discussed issues is expressed by each agent separately. This

opinion is given by one of three values: −1 means that an agent is against, 0 neutral

toward the issue 1 means favorable. This knowledge can be written in the form of an

information system S = (U,A), where the universe U are agents, A is a set of issues,

and the set of values of a ∈ A is equal to Va = {−1, 0, 1}. The value a(x), where

x ∈ U, a ∈ A is opinion of agent x about issue a. In order to better understand the

conflict analysis problem and model, an example will be presented.

Example 1 We consider an example that is related to politics and elections. In the

example there are six voters (agents) U = {1, 2, 3, 4, 5, 6} and four parties (issues)

A = {a, b, c, d}

a Democratic Party,

b Republican Party,

c Libertarian Party,

d Green Party.
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Table 1 Information system for Example 1

U a b c d

1 −1 +1 +1 +1

2 +1 −1 0 −1

3 +1 −1 −1 0

4 0 −1 −1 0

5 +1 –1 −1 −1

6 0 +1 −1 0

The relationship of each voter to a specific issue is presented in Table 1.

In the first step of conflict analysis the relationships between agents are deter-

mined. For this purpose, a function 𝜙a ∶ U × U → {−1, 0, 1} is defined for each

a ∈ A:

𝜙a(x, y) =
⎧
⎪
⎨
⎪
⎩

1 if a(x)a(y) = 1 or x = y,
0 if a(x)a(y) = 0 and x ≠ y,
−1 if a(x)a(y) = −1.

Three relations are defined: R+
a alliance, R0

a neutrality, R−
a conflict over U × U. These

relationships are expressed as follows

R+
a (x, y) if and only if 𝜙a(x, y) = 1,

R0
a(x, y) if and only if 𝜙a(x, y) = 0,

R−
a (x, y) if and only if 𝜙a(x, y) = −1.

Each equivalence class of alliance relation R+
a is called coalition on a.

As can be seen, in Example 1, voters 2, 3 and 5 are allied on issue a—Democratic

Party, voters 4 and 6 are neutral to this issue whereas, voter 1 and voter 2, voter 1 and

voter 3, and voter 1 and voter 5 are in conflict about this issue. Coalition on issue a
is a set of voters {2, 3, 5}.

Of course, we want to determine the relations between agents not only due to one

attribute, but also due to a set of attributes. A function of distance between agents

𝜌

∗
B ∶ U × U → [0, 1] for the set of issues B ⊆ A is defined

𝜌

∗
B(x, y) =

∑
a∈B 𝜙

∗
a(x, y)

card{B}
,

where

𝜙

∗
a(x, y) =

1 − 𝜙a(x, y)
2

=
⎧
⎪
⎨
⎪
⎩

0 if a(x)a(y) = 1 or x = y,
0.5 if a(x)a(y) = 0 and x ≠ y,
1 if a(x)a(y) = −1.
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In the definition it was assumed that the distance between agents being in conflict

is greater than distance between agents which are neutral. The function of distance

between agents for the set of all issues B = A is written in short as 𝜌
∗
.

There is also another way of determining the strength of the conflict between

agents. For this purpose, we can use a concept of a discernibility matrix [49]. The

discernibility matrix of B ⊆ A has a dimension card{U} × card{U} and the element

with index x, y ∈ U is equal to

𝛿B(x, y) = {a ∈ B ∶ a(x) ≠ a(y)}.

Then a conflict function 𝜌B ∶ U × U → [0, 1] for the set of issues B ⊆ A is defined

𝜌B(x, y) =
card{𝛿B(x, y)}

card{B}
.

In this function, the distance between agents being in conflict is equal to distance

between agents which are neutral.

Applying one of the two functions mentioned above, we can define the relations

between agents more generally by taking into account a set of attributes. A pair x, y ∈
U is said to be:

∙ allied R+(x, y), if 𝜌(x, y) < 0.5,

∙ in conflict R−(x, y), if 𝜌(x, y) > 0.5,

∙ neutral R0(x, y), if 𝜌(x, y) = 0.5.

Set X ⊆ U is a coalition if for every x, y ∈ X, R+(x, y) and x ≠ y.

The value of the function of distance between agents and the value of the conflict

function for Example 1 was calculated for each pair of agents. These values are given

in Table 2.

This conflict situation can be easily illustrated by a graph. A graphical represen-

tation of the conflict situation, that takes into account all issues and the function 𝜌

∗
,

is presented in Fig. 1. Figure 2 shows a graphical representation of the conflict situa-

tion for the function 𝜌. Agents are represented by circles in the figures. When agents

are allied the circles representing the agents are linked. In order to find coalitions,

all cliques should be identified in the graph. So the subset of vertices such that every

two vertices are linked is determined. When we consider the function 𝜌

∗
there is

one coalition {2, 3, 4, 5}. When we consider the function 𝜌 there are four coalitions

{2, 5}, {3, 4}, {3, 5} and {4, 6}. As can be seen, in the case of the use of the function

𝜌 one big coalition {2, 3, 4, 5} was split into three smaller {2, 5}, {3, 4}, {3, 5}. An

additional coalition was also created {4, 6}, which previously has not been gener-

ated. This situation stems from the fact that both agents 4 and 6 are neutral towards

the issues a and d, and then the function 𝜌 has a smaller value than the function 𝜌

∗
.

The approach to conflict analysis proposed by Professor Pawlak was general-

ized and developed by other authors. In the papers [43–46, 52] of A. Skowron, S.

Ramanna and J.F. Peters, the Pawlak’s conflict model was developed by applying

approximation spaces. In this extended model, a level of conflict that is acceptable
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Table 2 Values of functions for Example 1

Function of distance between agents 𝜌
∗

1 2 3 4 5 6

1

2 0.875

3 0.875 0.25

4 0.75 0.375 0.25

5 1 0.125 0.125 0.25

6 0.5 0.625 0.5 0.5 0.5

Conflict function 𝜌

1 2 3 4 5 6

1

2 1

3 1 0.5

4 1 0.75 0.25

5 1 0.25 0.25 0.5

6 0.75 1 0.5 0.25 0.75

Fig. 1 A graphical

representation of Example 1,

the function 𝜌

∗

Fig. 2 A graphical

representation of Example 1,

the function 𝜌
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may be defined. It is also possible to specify the equivalent set of requirements based

on a specified set of negotiation parameters in this model.

Another important extension of the Pawlak’s model was presented in the papers

[3–8, 50] by A. Skowron and R. Deja. This model can be applied in a situation in

which each agent has a separate set of issues that he is interested in. The limitation of

available resources is the reason that the agents get into conflicts. The main extension

of the Pawlak’s model is the ability to search for the causes of conflict and seek

consensus on various levels.

The approach proposed by the author of the paper is yet another extension of the

Pawlak’s model. Conflict analysis was used to examine relations between classifiers

that generate vectors of ranks or vectors of probabilities. In the cases described in the

papers [39–42], classifiers make decisions on the basis of separate—local decision

tables. These tables can be in various forms—sets of conditional attributes and sets

of objects of different tables do not have to be equal or disjoint. However, there are no

contraindications to apply the conflict model, in cases where the probability vectors

or vectors of ranks are generated by various classifiers on the basis of one decision

table.

The proposed development of the Pawlak’s model provides three basic approaches

to the creation of coalitions of classifiers. In the first two approaches coalitions are

formed as a result of a one-step process that uses relations between classifiers. In

the first approach (proposed in the paper [41]) disjoint coalitions are created, in the

second approach (proposed in the paper [39]) non-disjoint coalitions are created. In

the third approach (proposed in the papers [40, 42]) a two-step process of coalitions

creation is used—the second step is a negotiations stage. Now we will describe the

basic concepts of these three approaches.

Each classifier is called an agent, ag is an agent and Ag is a set of agents. It

is assumed that for a classified object x and for each classifier a vector of ranks

or a vector of probabilities is generated. In this second case, based on the vector

of probabilities a vector of ranks is defined. Thus, for each agent agi the vector of

ranks [ri,1(x),… , ri,c(x)], where c = card{Vd} and Vd
is a set of values of decision

attribute, is generated. We define the function 𝜙

x
vj

for the classified object x and each

value of the decision attribute vj ∈ Vd
; 𝜙

x
vj
∶ Ag × Ag → {0, 1}

𝜙

x
vj
(agi, agk) =

{
0 if ri,j(x) = rk,j(x)
1 if ri,j(x) ≠ rk,j(x)

where agi, agk ∈ Ag.

We also define the intensity of conflict between agents using a function of the

distance between agents. We define the distance between agents 𝜌
x

for the test object

x: 𝜌
x ∶ Ag × Ag → [0, 1]

𝜌

x(agi, agk) =

∑

vj∈Vd

𝜙

x
vj
(agi, agk)

card{Vd}
,
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where agi, agk ∈ Ag.

We say that agents agi, agk ∈ Ag are in a friendship relation due to the object x,

which is written R+(agi, agk), if and only if 𝜌
x(agi, agk) < 0.5. Agents agi, agk ∈ Ag

are in a conflict relation due to the object x, which is written R−(agi, agk), if and only

if 𝜌
x(agi, agk) ≥ 0.5.

In the first approach [41], disjoint groups of agents remaining in friendship rela-

tion are created. Formation of coalitions in this approach is very similar to the

hierarchical agglomerate clustering method and proceeds as follows. Initially, each

resource agent is treated as a separate cluster. These two steps are performed until

the stop condition, which is given in the first step, is met.

1. One pair of different clusters is selected (in the very first step a pair of different

resource agents) for which the distance reaches a minimum value. If the selected

value of the distance is less than 0.5, then agents from the selected pair of clusters

are combined into one new cluster. Otherwise, the clustering process is termi-

nated.

2. After defining a new cluster, the value of the distance between the clusters are

recalculated. The following method for recalculating the value of the distance is

used. Let 𝜌
x ∶ 2Ag × 2Ag → [0, 1], let Di be a cluster formed from the merging of

two clusters Di = Di,1 ∪ Di,2 and let it be given a cluster Dj then

𝜌

x(Di,Dj) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜌

x(Di,1,Dj)+𝜌x(Di,2,Dj)
2

if 𝜌
x(Di,1,Dj) < 0.5

and 𝜌

x(Di,2,Dj) < 0.5

max{𝜌x(Di,1,Dj), 𝜌x(Di,2,Dj)} if 𝜌
x(Di,1,Dj) ≥ 0.5

or 𝜌
x(Di,2,Dj) ≥ 0.5

In the second approach [39], non-disjoint groups of agents who are in friendship

relation are created. In this approach, the coalition is the maximum, due to the inclu-

sion relation, subset of agents X ⊆ Ag such that

∀agi,agk∈X R+(agi, agk).

In the third approach [40] modified definitions of relations between agents are

used. Let p be a real number that belongs to the interval [0, 0.5). We say that

agents agi, agk ∈ Ag are in a friendship relation due to the object x, which is writ-

ten R+(agi, agk), if and only if 𝜌
x(agi, agk) < 0.5 − p. Agents agi, agk ∈ Ag are in

a conflict relation due to the object x, which is written R−(agi, agk), if and only if

𝜌

x(agi, agk) > 0.5 + p. Agents agi, agk ∈ Ag are in a neutrality relation due to the

object x, which is writtenR0(agi, agk), if and only if 0.5 − p ≤ 𝜌

x(agi, agk) ≤ 0.5 + p.

The process of coalition creating consists of two stages. In the first stage, agents

remaining in the friendship relations are combining into initial groups. In the second

stage, neutral agents are connected to the created initial groups. However, in order to

determine the opportunity to join the neutral agents, a generalized distance function

between agents must be calculated. In the definition of this distance, disagreements
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of agents for only the highest ranks are considered. We define the function 𝜙

x
G for

test object x; 𝜙
x
G ∶ Ag × Ag → [0,∞)

𝜙

x
G(agi, agj) =

∑
vl∈Signi,j |ri,l(x) − rj,l(x)|

card{Signi,j}

where agi, agj ∈ Ag and Signi,j ⊆ Vd
is the set of significant decision values for the

pair of agents agi, agj. We also define the generalized distance between agents 𝜌

x
G

for the test object x; 𝜌
x
G ∶ 2Ag × 2Ag → [0,∞)

𝜌

x
G(X,Y) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if card{X ∪ Y} ≤ 1
∑

ag,ag′∈X∪Y
𝜙

x
G(ag, ag

′)

card{X ∪ Y} ⋅ (card{X ∪ Y} − 1)
else

where X,Y ⊆ Ag. As can be easily seen, the value of the generalized distance func-

tion for two sets of agents X and Y is equal to the average value of the function 𝜙

x
G

for each pair of agents ag, ag′ that belong to the set X ∪ Y . In order to determine the

final coalitions, for each agent, that does not belong to any initial group, we calcu-

late the value of generalized distance function for this agent and every initial cluster.

Then the agent is included to all initial clusters, for which the generalized distance

does not exceed a certain threshold, which is set by the system’s user. Also agents

without coalition, for which the value does not exceed the threshold, are combined

into a new cluster. Of course, the agents, who are in a conflict relation can not be

connected into one coalition. In this way we obtain the final form of coalitions.

In the literature, other approaches to conflicts analysis can be found. Fusion meth-

ods are often used when several classifiers make decisions [20, 54]. There are also

methods that are proposed in the multiple model approach [11, 19, 37] and in dis-

tributed data mining approach [1, 2]. All of these approaches are different from those

considered in this chapter, because the relations between classifiers are not as thor-

oughly analyzed in them. In addition, assumptions relating to local tables are also

completely different in these approaches. In the literature, a general framework for

conflict analysis can also be found, e.g., a conflict model theory of decision making

[56, 59]. It uses the expectations and values. Expectations include the anticipated

consequences of the decision, and values are what the decision maker finds desirable.

The basic questions about risks, consequences and alternatives are considered by the

decision maker. The decision making process is presented in the form of a graph. In

a situation which is considered in the paper, only vectors of ranks are available and it

would be difficult to apply such a general framework, since many aspects occurring

in it is not determined.
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4 An Example

In this section, an example of using four different approaches to the analysis of con-

flicts arising between the classifiers when generating a global decision will be pre-

sented. In the first part, for the analysis of the conflict situation the Pawlak’s model

will be used. Although this model is not dedicated to deal with such situations, it can

be used when assuming certain arrangements. Two cases of the use of the Pawlak’s

model will be considered. Then the three models proposed by the author of the paper

will be considered. These models are extensions of the Pawlak’s model. In the first

approach disjoint coalitions of classifiers are created. In the second approach, coali-

tions are inseparable and in the third approach a two-step process of creating coali-

tions is used.

Consider an example in which the set of agents consists of seven classifiers Ag =
{ag1, ag2, ag3, ag4, ag5, ag6, ag7}. We assume that Vd = {v1, v2, v3, v4, v5}. Each

agent has generated a vector of probabilities that indicates the level of certainty with

which the decisions were taken. These vectors are a reflection of the classification

of a certain object x and are shown in Table 3. Based on these vectors, the vectors of

ranks were designated, which are also shown in Table 3.

The conflict situation, to which we wanted to apply the Pawlak’s model must be

presented in the form of an information system that has the sets of attribute values

equal to {−1, 0, 1}. Therefore, the vectors of ranks must be converted to this form.

The universe U will be the set of agents Ag and the set of issues that being considered

A will be the set of values of decision attribute Vd
. Two approaches to determine the

opinion of agent ag ∈ U about issue a ∈ A in the Pawlak’s model will be considered.

4.1 Pawlak’s Model—Case Study 1

In the first approach it was assumed, that if the classifier ag assigns the rank 1 to the

value of the decision attribute a ∈ Vd
then the classifier is favorable to this decision

value and a(ag) = 1. In other cases, we assume that the classifier is against, which

Table 3 Vectors of probabilities and vectors of ranks

Agent Vector of probabilities Vector of ranks

ag1 [0.13, 0.2, 0.13, 0.2, 0.34] [3, 2, 3, 2, 1]

ag2 [0.15, 0.08, 0.23, 0.31, 0.23] [3, 4, 2, 1, 2]

ag3 [0.08, 0.17, 0.17, 0.25, 0.33] [4, 3, 3, 2, 1]

ag4 [0.1, 0.3, 0.2, 0.2, 0.2] [3, 1, 2, 2, 2]

ag5 [0.29, 0.14, 0.14, 0.29, 0.14] [1, 2, 2, 1, 2]

ag6 [0, 0.14, 0.14, 0.29, 0.43] [4, 3, 3, 2, 1]

ag7 [0.08, 0.15, 0.15, 0.38, 0.24] [4, 3, 3, 1, 2]
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Table 4 Information system—case study 1

U v1 v2 v3 v4 v5
ag1 –1 –1 –1 –1 +1

ag2 –1 –1 –1 +1 –1

ag3 –1 –1 –1 –1 +1

ag4 –1 +1 –1 –1 –1

ag5 +1 –1 –1 +1 –1

ag6 –1 –1 –1 –1 +1

ag7 –1 –1 –1 +1 –1

Table 5 Values of the distance function between agents 𝜌

∗
and the conflict function 𝜌—case

study 1

ag1 ag2 ag3 ag4 ag5 ag6 ag7
ag1
ag2 0.4

ag3 0 0.4

ag4 0.4 0.4 0.4

ag5 0.6 0.2 0.6 0.6

ag6 0 0.4 0 0.4 0.6

ag7 0.4 0 0.4 0.4 0.2 0.4

means a(ag) = −1. Thus, the information system in our example has the form as is

shown in Table 4.

The value of the function of the distance between agents is calculated for each

pair of agents. In this case, the values of the conflict function are the same as the

values of the function of the distance between agents, as we do not have the neutral

agents. These values are given in Table 5.

Figure 3 shows a graphical representation of the conflict situation. Agents are rep-

resented by circles in the figure. When agents are allied (𝜌(ag, ag′) < 0.5), the cir-

cles representing the agents are linked. In order to find coalitions, all cliques should

be identified in the graph. So the subset of vertices such that every two vertices are

linked is determined. There are two coalitions in the example

{ag1, ag2, ag3, ag4, ag6, ag7} and {ag2, ag5, ag7}.

4.2 Pawlak’s model—Case study 2

In the second approach the opinions of the agents are a bit softened by applying

neutrality. It was assumed, that if the classifier ag assigns the rank 1 to the value of

the decision attribute a ∈ Vd
then the classifier is favorable to this decision value and
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Fig. 3 A graphical

representation of the

example, the Pawlak’s

model—case study 1

Table 6 Information system—case study 2

U v1 v2 v3 v4 v5
ag1 –1 0 –1 0 +1

ag2 –1 –1 0 +1 0

ag3 –1 –1 –1 0 +1

ag4 –1 +1 0 0 0

ag5 +1 0 0 +1 0

ag6 –1 –1 –1 0 +1

ag7 –1 –1 –1 +1 0

Table 7 Values of the distance function between agents 𝜌
∗
—case study 2

ag1 ag2 ag3 ag4 ag5 ag6 ag7
ag1
ag2 0.4

ag3 0.2 0.3

ag4 0.4 0.5 0.5

ag5 0.6 0.5 0.6 0.6

ag6 0.2 0.3 0.1 0.5 0.6

ag7 0.3 0.2 0.2 0.5 0.5 0.2

a(ag) = 1. If the classifier ag assigns the rank 2 to the value of the decision attribute

a ∈ Vd
then the classifier is neutral toward this decision value and a(ag) = 0. In other

cases, we assume that the classifier is against, which means a(ag) = −1. Thus, the

information system in this case has the form as is shown in Table 6.

The values of the function of the distance between agents are given in Table 7.

The values of the conflict function are given in Table 8. As can be easily seen in most

cases the value of the function 𝜌

∗
is less than or equal to the value of the function
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Table 8 Values of the conflict function 𝜌—case study 2

ag1 ag2 ag3 ag4 ag5 ag6 ag7
ag1
ag2 0.8

ag3 0.2 0.6

ag4 0.6 0.4 0.6

ag5 0.8 0.4 1 0.6

ag6 0.2 0.6 0 0.6 1

ag7 0.6 0.2 0.4 0.6 0.6 0.4

Fig. 4 A graphical

representation of the conflict

with the function 𝜌

∗
, the

Pawlak’s model—case

study 2

𝜌. However, in the case of pairs of agents (ag2, ag4), (ag2, ag5), and (ag3, ag6) the

inequality is inverted. This is due to the fact that if a(ag) = 0 and a(ag′) = 0, for

a ∈ Vd
and ag, ag′ ∈ Ag then 𝜌

∗
{a}(ag, ag

′) > 𝜌{a}(ag, ag′).
Figure 4 shows a graphical representation of the conflict situation that is examined

by the function 𝜌

∗
. As before when agents are allied (𝜌

∗(ag, ag′) < 0.5), the circles

representing the agents are linked. When agents are neutral (𝜌
∗(ag, ag′) = 0.5), the

circles representing the agents are connected by dotted line. In order to find coali-

tions, all cliques should be identified in the graph. So the subset of vertices such that

every two vertices are linked is determined. There are three coalitions in the example

{ag1, ag2, ag3, ag6, ag7}, {ag1, ag4} and {ag5}.

Figure 5 shows a graphical representation of the conflict situation that is exam-

ined by the function 𝜌. As before when agents are allied (𝜌(ag, ag′) < 0.5), the cir-

cles representing the agents are linked. In order to find coalitions, all cliques should

be identified in the graph. There are five coalitions in the example {ag1, ag3, ag6},

{ag3, ag6, ag7}, {ag2, ag5}, {ag2, ag4} and {ag2, ag7}.

To summarize the considered above two cases it can be seen that the coalitions

that have been defined for the case study 2 (both with using the function 𝜌

∗
and the

function 𝜌) are included in the coalitions defined in the case study 1. In the case
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Fig. 5 A graphical

representation of the conflict

with the function 𝜌, the

Pawlak’s model—case

study 2

study 2, the use of function 𝜌

∗
leads to the definition of fewer but more numerous

coalitions, than with using the function 𝜌. However, these two sets of coalitions are

incomparable, i.e. the set of coalitions defined with using 𝜌 is not included in the set

of coalitions defined with using 𝜌

∗
.

4.3 The Extension of the Pawlak’s Model—The Approach
with Disjoint Coalitions

As was mentioned earlier, this approach is described in detail in the paper [41]. In this

approach, the value of the function of the distance between agents is calculated for

each pair of agents on the basis of the vectors of rank that were presented in Table 3.

In Table 9 the values of the function of the distance between agents are shown.

Then, in order to define disjoint coalitions algorithm that is presented in the pre-

vious section of the chapter is implemented. This algorithm is very similar to the

hierarchical agglomerate clustering method and its subsequent steps are presented

Table 9 Values of the distance function between agents 𝜌
x

Agent ag1 ag2 ag3 ag4 ag5 ag6 ag7
ag1 0

ag2 0.8 0

ag3 0.4 1 0

ag4 0.6 0.4 0.8 0

ag5 0.8 0.4 1 0.6 0

ag6 0.4 1 0 0.8 1 0

ag7 0.8 0.6 0.4 0.8 0.6 0.4 0
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Table 10 Process of coalitions creating in the approach with disjoint coalitions of classifiers

Step 1
Agent ag1 ag2 ag3 ag4 ag5 ag6 ag7
ag1 0

ag2 0.8 0

ag3 0.4 1 0

ag4 0.6 0.4 0.8 0

ag5 0.8 0.4 1 0.6 0

ag6 0.4 1 0 0.8 1 0

ag7 0.8 0.6 0.4 0.8 0.6 0.4 0

Step 2
Agent ag1 ag2 {ag3, ag6} ag4 ag5 ag7
ag1 0

ag2 0.8 0

{ag3, ag6} 0.4 1 0

ag4 0.6 0.4 0.8 0

ag5 0.8 0.4 1 0.6 0

ag7 0.8 0.6 0.4 0.8 0.6 0

Step 3
Agent ag2 {ag1, ag3, ag6} ag4 ag5 ag7
ag2 0

{ag1, ag3, ag6} 1 0

ag4 0.4 0.8 0

ag5 0.4 1 0.6 0

ag7 0.6 0.8 0.8 0.6 0

Step 4
Agent {ag2, ag4} {ag1, ag3, ag6} ag5 ag7
{ag2, ag4} 0

{ag1, ag3, ag6} 1 0

ag5 0.6 1 0

ag7 0.8 0.8 0.6 0

in Table 10. In each of the steps, the selected minimum value of the distance func-

tion, for agents who will be merged into the next step, is bold in the matrix.

As a result of the algorithm’s implementation we get four coalitions {ag2, ag4},

{ag1, ag3, ag6}, {ag5} and {ag7}.
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Fig. 6 A graphical

representation of the

example, the approach with

non-disjoint coalitions

4.4 The Extension of the Pawlak’s Model—The Approach
with Non-disjoint Coalitions

As was mentioned earlier, this approach is described in detail in the paper [39]. In

this approach, coalition is the maximum, due to inclusion relation, set of agents that

remain in the friendship relation. A pair of agents (ag, ag′) is in the friendship rela-

tion if and only if 𝜌
x(ag, ag′) < 0.5. Based on the values of the distance function 𝜌

x
,

given in Table 9, a graphical representation of the conflict situation was made and

shown in Fig. 6. When agents are in a friendship relation, the circles representing

the agents are linked. In order to find coalitions, all cliques should be identified in

the graph. There are four coalitions in the example {ag1, ag3, ag6}, {ag3, ag6, ag7},

{ag2, ag5} and {ag2, ag4}.

4.5 The Extension of the Pawlak’s Model—The Approach
with Two-Step Process of Coalitions Creating

As was mentioned earlier, this approach is described in detail in the paper [40]. In

this approach, the definitions of relations between agents were modified. In these

definitions, parameter p occurs. Let us assume that this parameter is equal to p = 0.1.

In the first step of the method some initial groups are created. Agents in the friendship

relation are combined in the initial group. In the example only one initial group

{ag3, ag6} is generated, as only 𝜌

x(ag3, ag6) < 0.5 − p = 0.4.

In the next step of the method for each agent that has not been included in any

initial groups, the values of generalized distance function are calculated. These val-

ues are given in Table 11. If a conflict occurs between the two sets of agents, then

the corresponding cell in the table contains X.

Figure 7 shows a graphical representation of the neutrality relations (0.4 ≤ 𝜌

x

(ag, ag′) ≤ 0.6) in the considered conflict situation. When a pair of agents is in a
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Table 11 Values of the generalized distance function between agents

ag1 ag2 {ag3, ag6} ag4 ag5 ag7
ag1 0

ag2 X 0

{ag3, ag6} 0 X 0

ag4 1 2 X 0

ag5 X 1 X
4
3

0

ag7 X 0
2
3

X
3
2

0

Fig. 7 A graphical

representation of the

example, the approach with

two-step process of

coalitions creating

neutrality relation, the circles representing the agents are linked. In order to find

potential coalitions, all cliques should be identified in the graph. Then, for each of

cliques the function value 𝜌
x
G is calculated and if this value meets the threshold con-

dition, a coalition is created. Let us assume that the threshold value is equal to 2.

From the graphical representation and the following calculations

𝜌

x
G({ag1}, {ag4}) = 1 ≤ 2

𝜌

x
G({ag2, ag5}, {ag7}) =

0 + 1 + 3
2

3
≤ 2

𝜌

x
G({ag2, ag4}, {ag5}) =

1 + 2 + 4
3

3
≤ 2

𝜌

x
G({ag3, ag6}, {ag1}) = 0 ≤ 2

𝜌

x
G({ag3, ag6}, {ag7}) =

2
3
≤ 2
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Table 12 Coalitions received in the considered approaches

Approach Coalitions

Pawlak’s model—Case study 1 {ag1, ag2, ag3, ag4, ag6, ag7}, {ag2, ag5, ag7}
Pawlak’s model—Case study 2 with 𝜌

∗ {ag1, ag2, ag3, ag6, ag7}, {ag1, ag4}, {ag5}
Pawlak’s model—Case study 2 with 𝜌 {ag1, ag3, ag6}, {ag3, ag6, ag7}, {ag2, ag5},

{ag2, ag4}, {ag2, ag7}
Disjoint coalitions {ag2, ag4}, {ag1, ag3, ag6}, {ag5}, {ag7}
Non-disjoint coalitions {ag1, ag3, ag6}, {ag3, ag6, ag7}, {ag2, ag5},

{ag2, ag4}
Two-step process of coalitions creating {ag1, ag4}, {ag2, ag5, ag7}, {ag2, ag4, ag5},

{ag1, ag3, ag6}, {ag3, ag6, ag7}

we obtain the following coalitions {ag1, ag4}, {ag2, ag5, ag7}, {ag2, ag4, ag5},

{ag1, ag3, ag6}, {ag3, ag6, ag7}.

To summarize the considered above three approaches, that have been proposed by

the author, it can be noted that the third approach with two-step process of coalitions

creating generates the most comprehensive and complex coalitions. More precisely,

the coalitions that have been defined using the first approach (disjoint coalitions)

are included in the coalitions defined using the second approach (non-disjoint coali-

tions). And the coalitions that have been defined using the second approach (non-

disjoint coalitions) are included in the coalitions defined using the third approach

(two-step process of coalitions creating). In the papers [40, 42] it has been observed

that in general, in the approach with negotiation, the clusters are more complex and

better reconstruct and illustrate the views of the agents on the classification.

Table 12 shows a comparison of coalitions received in each of the considered

approaches.

When comparing all considered approaches it can be seen that the Pawlak’s

model—Case study 2 with 𝜌 and the approaches non-disjoint coalitions and two-step

process of coalitions creating generate the most similar coalitions. The coalitions that

have been defined using the Pawlak’s model—Case study 2 with 𝜌 are included in

the coalitions defined using the approach with two-step process of coalitions cre-

ating. The coalitions generated using approaches the Pawlak’s model: Case study 1

and Case study 2 with 𝜌

∗
are significantly more numerous compared to the coalitions

generated using other approaches.

4.6 Comparative Study

In order to better evaluate and compare the coalitions that were obtained using dif-

ferent approaches, a measure to evaluate coalitions should be used. In the social

theory, there are many measures of coalition’s evaluation [12]. However, they take

into account aspects such as—commitment, participation benefits and costs, stages

of coalition development, member characteristics and so on—that do not occur in

our considerations. Therefore, it was decided to use measure that is derived from
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the cluster analysis. One of the simplest and the most commonly used criteria for

clusters evaluation is to minimize the sum of the distances between pairs of points

belonging to the same cluster.

In our approach in order to calculate the distance between a pair of agents the

vectors of ranks generated for these agents will be used. For each set of coalitions

the sum of the distances between pairs of agents belonging to the same coalition is

calculated according to the formula

W = 1
2

K∑

k=1

∑

ag,ag′∈Ck

card{Vd}∑

i=1
(rag,i(x) − rag′,i(x))2,

where K is the number of coalitions and Ck is the k-th coalition.

The distances between pairs of agents are given in Table 13 and the sum of the

distances between pairs of agents belonging to the same coalition for each of the

considered approaches is presented in Table 14.

As can be seen, in the approaches: Pawlak’s model—Case study 1 and Case study

2 with 𝜌

∗
coalitions with the largest distance between agents within the coalition are

Table 13 Distances between pairs of agents

Agent ag1 ag2 ag3 ag4 ag5 ag6 ag7
ag1 0

ag2 7 0

ag3 2 5 0

ag4 3 10 7 0

ag5 7 8 13 6 0

ag6 2 5 0 7 13 0

ag7 4 3 2 7 11 2 0

Table 14 Sum of the

distances between pairs of

agents belonging to the same

coalition

Approach Sum of the distances

Pawlak’s model—Case study 1 66 + 22 = 88
Pawlak’s model—Case study 2

with 𝜌

∗
32 + 3 + 0 = 35

Pawlak’s model—Case study 2

with 𝜌

4 + 4 + 8 + 10 + 3 = 29

Disjoint coalitions 10 + 4 + 0 + 0 = 14
Non-disjoint coalitions 4 + 4 + 8 + 10 = 26
Two-step process of coalitions

creating

3 + 22 + 24 + 4 + 4 = 57
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generated. That is, in the approach with Pawlak’s model—Case study 1 the coalition

{ag1, ag2, ag3, ag4, ag6, ag7} with the sum of the distances equal to 66 was gener-

ated, and in the approach with Pawlak’s model—Case study 2 with 𝜌

∗
the coalition

{ag1, ag2, ag3, ag6, ag7} with the sum of the distances equal to 32 was generated.

When the sums of the distances of all coalitions are compared, the approach with

two-step process of coalitions creating is in the second place in terms of this value.

However, after the precise analysis of the coalitions generated in this approach, it can

be noticed that the distance within each coalition separately is not so large. Simply

in this approach, we have the maximum number of coalitions and they are the most

complex, and that is why the sum of the distances is relatively large. The smallest

value of the sum of the distances was obtained for the approach with disjoint coali-

tions. This is due to the fact that in this approach, some agents remained isolated—

they were not included in any coalition. Such property can be considered as a short-

coming of the approach. Because otherwise the best approach would be the approach,

in which no coalition would be created, each agent was separately considered (then

the sum of the distances is equal to zero).

To summarize, the measure that is used gives us some view of the form of coali-

tions that were created. It shows that the drawback of the approaches with Pawlak’s

model—Case study 1 and Case study 2 with 𝜌

∗
is that they generate coalitions,

which consist of agents that are very different in their views. The disadvantage of

the approach with disjoint coalitions is that it leaves agents who are isolated. Among

other approaches, the approach with two-step process of coalitions creating generates

the most complex and extensive coalitions.

5 Summary

Contribution of the Professor Pawlak’s work in the development of computer sci-

ence is significant and indisputable. The Pawlak’s model of conflict is a simple and

transparent tool for modeling conflict situations. This model has many extensions.

In the paper application of this model to analyze conflicts that arise between classi-

fiers was proposed. The obtained results were compared with three other approaches

proposed by the author. It has been noted that in some cases the use of the Pawlak’s

model may generate coalitions that consist of agents that are very different in their

views. In one of the case study, coalitions that were generated by the Pawlak’s model

are similar to coalitions which were generated by the approach with negotiations.
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Lattice Structure of Variable Precision
Rough Sets

Sumita Basu

Abstract The main purpose of this chapter is to study the lattice structure of variable

precision rough sets. The notion of variation in precision of rough sets have been

further extended to variable precision rough set with variable classification error

and its algebraic properties are also studied.

1 Introduction

Classical rough set theory as introduced by Pawlak [1, 2] is a tool for computation

with data which give imprecise or vague information in terms of three valued logic.

When the data set is granular in nature we are unable to observe individual objects

but are forced to reason with accessible granules of knowledge. The elements of each

granule can not be distinguished from the available knowledge. Due to such indis-

cernibility of the elements very often a subset of the entire data set (the Universal

set) cannot be precisely defined. Pawlak represented the granularity by equivalence

relation and defined such a set S as a suitable pair of sets (S, S) based on equivalence

classes and called it a Rough Set. It is widely used for knowledge classification and

rule learning. Finite state machine with rough transition have been reported in [3].

On the one hand, owing to the restrictions of equivalence relations, many researchers

have presented various extensions [4–8], specially, covering-based rough sets [9–12]

are investigated as the extensions of classical rough set theory by extending parti-

tions to coverings. On the other hand, in classical rough set model, the approximation

using the equivalence relation admits no error though may be somewhat imprecise.

It is implied that S ⊂ S ⊂ S. The cardinality of the set BN(S) = S − S will determine

the precision of the representation. If BN(S) = 𝜙 the representation is exact. Increase

in cardinality of BN(S) will increase the imprecision of the solution.

A generalization of rough set model was proposed by Ziarko [13]. He introduced

a measure of relative degree of misclassification (error) and chose to decrease the

imprecision thereby increasing the error in approximation. This is an extension of
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classical rough set where the granules of knowledge are equivalence classes and

called it variable precision rough set. Some researchers extended this concept to

variable precision covering based rough set model [14].

Algebraic properties of rough set have been widely studied by researchers [15–

19]. Lattice structure of rough set have been discussed in [20–22]. Algebraic proper-

ties of variable precision rough set is discussed in this chapter and it could be shown

that for different classification error the set of variable precision rough sets have a lat-

tice structure. Katzberg and Ziarko [23] introduced variable precision rough set with

asymmetric bounds. Using the concept of asymmetric bounds a variable measure of

degree of error have been introduced in this chapter and we call such a set variable
precision rough set with variable error. Properties of such sets are compared with

variable precision rough sets.

The chapter is organized as follows. In Sect. 2 basic concepts of rough set, vari-

able precision rough set and lattice are introduced. In Sect. 3 structure of variable

precision rough set for different classification error is explored. Section 4 is devoted

to study of variable precision rough set where classification error for lower and upper

approximations are not same. An example is included to explain the computation of

different variable precision rough set.

2 Preliminaries

In this section some basic concepts on Rough Sets, Variable Precision Rough Sets
and Lattice are discussed.

2.1 Rough set

Definition 2.1 An approximation space is defined as a pair ⟨U, R⟩, U being a non-

empty set (the domain of discourse) and R an equivalence relation on it, representing

indiscernibility at the object level. For x ∈ R[x],R[x] is the set of elements of U
indiscernible from x. E = {R[x]∕x ∈ U} is the set of elementary blocks or defining

blocks of the approximation space.

Definition 2.2 A rough set X in the approximation space ⟨U, R⟩ is a pair (XR, XR)

such that XR (called lower approximation) & XR (called upper approximation) are

definable sets in U defined as follows:

XR = {R[y]∕y ∈ U ∧ R[y] ⊆ X}

XR = {R[y]∕y ∈ U ∧ X ∩ R[y] ≠ 𝜙}
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The region definitely included in X is denoted by D(X) and defined by D(X) = XR.

XR will be the smallest region including X. The regions defined above are defined by

definable sets of U. The boundary region BN(X) of the rough set X is XR − XR. The

region not included in X is denoted by N(X) and defined by U − XR.

Definition 2.3 The accuracy of approximation by the rough set X is given by

𝛼 =
card(X)

card(X)

Remark 1 If for a rough set X, XR = XR, i.e. BR = 𝜙 then the rough set is precisely

defined and the accuracy of approximation is 1. In general the accuracy of approxi-

mation is 𝛼 ∈ [0, 1].

2.2 Variable Precision Rough Set

In this rough set model a set X ⊆ U is approximately defined using three exactly

definable sets:D(X),BN(X) and N(X). However, it may so happen that an elementary

set R[y] where y ∈ U is such that although R[y] ∩ D(X) = 𝜙, card(R[y] ∩ X) is quite

high relative to card(R[y]). So inclusion of R[y] in D(X) will incur a small amount

of error. However, if we agree to accept this error we will be able to increase the

precision of the rough set so obtained. With this idea Ziarko formulated Variable

Precision Rough Set (VPRS) which is defined below.

Definition 2.4 A measure of the degree of overlap between two sets X and Y with

respect to X is denoted by d(X,Y) and defined by,

d(X,Y) = 1 − card(X ∩ Y)
card(X)

Definition 2.5 A variable precision rough set (VPRS) X(𝛽) in the approximation

space ⟨U, R⟩, is a pair (XR(𝛽), XR(𝛽)) such that XR(𝛽) & XR(𝛽) are definable sets in

U defined as follows:

XR(𝛽) = {R[y]∕y ∈ U ∧ R[y] ⊂ X ∧ d(R[y],X) ≤ 𝛽}

XR(𝛽) = {R[y]∕y ∈ U ∧ X ∩ R[y] ≠ 𝜙 ∧ d(R[y],X) < 1 − 𝛽}

For the variable precision rough set model with 𝛽 error a set X ⊆ U is approximately

defined using three sets of definable sets: DX(𝛽),BNX(𝛽) and NX(𝛽) as follows:

DX(𝛽) = {R[y]∕y ∈ U ∧ R[y] ⊂ X ∧ d(R[y],X) ≤ 𝛽}
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BNX(𝛽) = XR(𝛽) − XR(𝛽)

NX(𝛽) = {R[y]∕y ∈ U ∧ X ∩ R[y] ≠ 𝜙 ∧ d(R[y],X) ≥ 1 − 𝛽}

In general, 𝛽 is chosen so that 𝛽 ∈ [0, .5). For given X, 𝛽, DX(𝛽) is the region

included in X, NX(𝛽) is the region not included in X and BNX(𝛽) is the boundary

region possibly included in X. If BNX(𝛽) = 𝜙 then X is 𝛽 discernible.

Definition 2.6 The accuracy of approximation by the rough set X(𝛽) is given by

𝛼X(𝛽) =
card(XR(𝛽))

card(XR(𝛽))

Proposition 2.1 Let X be an arbitrary subset of the universe U in the approximation
space ⟨U,R⟩, and 𝛽 be the error specified then,

1. DX(𝛽) ∪ BNX(𝛽) ∪ NX(𝛽) = U
2. DX(𝛽) ∩ BNX(𝛽) = BNX(𝛽) ∩ NX(𝛽) = DX(𝛽) ∩ NX(𝛽) = 𝜙

Proposition 2.2 Let X be an arbitrary subset of the universe U in the approximation
space ⟨U,R⟩, and 𝛽1 < 𝛽2 then,

1. XR(𝛽1) ⊆ XR(𝛽2)
2. XR(𝛽2) ⊆ XR(𝛽1)
3. DX(𝛽1) ⊆ DX(𝛽2)
4. NX(𝛽1) ⊆ NX(𝛽2)
5. BNX(𝛽2) ⊆ BNX(𝛽1)
6. 𝛼X(𝛽1) ≤ 𝛼X(𝛽2)

Proof Results 1–5 follows from the Definition 2.5. Result 6 follows from Result 1

and 2.

2.3 Lattice

Definition 2.7 Let L be a set of elements in which the binary operations
⋂
,

⋃
(meet

and joint respectively) and =(equality) are defined. An algebra L = ⟨L,
⋂
,

⋃
⟩ is a

lattice if the following identities are true in L. Let x, y, z ∈ L

1. Idempotence: x
⋃

x = x; x
⋂

x = x
2. Commutativity: x

⋃
y = y

⋃
x; x

⋂
y = y

⋂
x

3. Associativity: x
⋃
(y
⋃

z) = (x
⋃

y)
⋃

z; x
⋂
(y
⋂

z) = (x
⋂

y)
⋂

z
4. Absorption: x

⋃
(x
⋂

y) = x; x
⋂
(x
⋃

y) = x
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3 Order in VPRS with Respect to Classification Error 𝜷

We will follow the VPRS model as introduced by Ziarko with classification error

𝛽 ∈ [0, .5]. For any set X and a classification error 𝛽 the VPRS will be X(𝛽) =
(XR(𝛽),XR(𝛽)). Given X there may be a set of VPRS for different values of 𝛽 as

defined below:

Definition 3.1 Let B = {𝛽i∕𝛽i ∈ [0, .5] and (i ≤ j → (𝛽i ≤ 𝛽j)}. Then B is a totally

ordered set.

Henceforth we will assume that ∀i, 𝛽i ∈ B.

Definition 3.2 Let ̃X be the set of all VPRS for X(𝛽) ⊂ U where the classification

error 𝛽 ∈ B. So, ̃X = {X(𝛽)∕𝛽 ∈ B} so that X(𝛽) = (XR(𝛽),XR(𝛽))

Proposition 3.1 For an arbitrary subset X of the universe U, let us define DX =
{DX(𝛽)∕𝛽 ∈ B}, then DX is a totally ordered set with DX(0) = XR as the least ele-
ment and DX(0.5) as the greatest element.

This result follows from 3 of Proposition 2.2. Similarly we have the following

propositions:

Proposition 3.2 For an arbitrary subset X of the universe U, let us define NX =
{NX(𝛽)∕𝛽 ∈ B}, then NX is a totally ordered set with NX(0) = U − XR as the least
element and NX(0.5) as the greatest element.

Proposition 3.3 For an arbitrary subset X of the universe U, let us define BNX =
{BNX(𝛽)∕𝛽 ∈ B}, then BNX is a totally ordered set with BNX(0) = XR − XR as the
greatest element and BNX(0.5) as the least element.

Definition 3.3 Let X(𝛽1),X(𝛽2) ∈ ̃X then X(𝛽1) ⊆ X(𝛽2) iff XR(𝛽1) ⊆ XR(𝛽2) and

XR(𝛽1) ⊆ XR(𝛽2).

Proposition 3.4 For an arbitrary subset X of the universe U,

1. {XR(𝛽i)∕𝛽i ∈ B} is a totally ordered set with lub{XR(𝛽i)} = XR(𝛽0.5) and
glb{XR(𝛽i)} = XR(0) = XR

2. {XR(𝛽i)∕𝛽i ∈ B} is a totally ordered set with glb{XR(𝛽i)} = XR(𝛽0.5) and
lub{XR(𝛽i)} = XR(0) = XR

3. XR(0.5) ⊆ XR(0.5)

Remark 2 Though DX, BNX, NX are totally ordered set ̃X is not necessarily so.

However, we will show below that ̃X has a lattice structure. So, ̃X will be a partially

ordered set.

Proposition 3.5 If,
⋃

and
⋂

represent the union and intersection operation of two
sets then we have the following:
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1. XR(𝛽i)
⋃

XR(𝛽j) = XR(𝛽j) if 𝛽i ≤ 𝛽j
2. XR(𝛽i)

⋂
XR(𝛽j) = XR(𝛽i) if 𝛽i ≤ 𝛽j

3. XR(𝛽i)
⋃

XR(𝛽j) = XR(𝛽i) if 𝛽i ≤ 𝛽j

4. XR(𝛽i)
⋂

XR(𝛽j) = XR(𝛽j) if 𝛽i ≤ 𝛽j

Definition 3.4 Two binary operations join (
⋃

) and meet (
⋂

) are defined on ̃X as

follows:

X(𝛽1)
⋃

X(𝛽2) = ((XR(𝛽1)
⋃

XR(𝛽2)), (XR(𝛽1)
⋃

XR(𝛽2)))

X(𝛽1)
⋂

X(𝛽2) = ((XR(𝛽1)
⋂

XR(𝛽2)), (XR(𝛽1)
⋂

XR(𝛽2)))

Definition 3.5 Two VPRS X(𝛽i) and X(𝛽j) are said to be equal if XR(𝛽i) = XR(𝛽j)
and XR(𝛽i) = XR(𝛽j)

The approximation space remaining the same the equivalence relation R will

remain the same and henceforth R will not be mentioned explicitly.

Proposition 3.6 If, X(𝛽i),X(𝛽j) ∈ ̃X then

1. X(𝛽i)
⋃

X(𝛽j) = (X(𝛽j),X(𝛽i)) if 𝛽i ≤ 𝛽j

2. X(𝛽i)
⋂

X(𝛽j) = (X(𝛽i),X(𝛽j)) if 𝛽i ≤ 𝛽j

Proposition 3.7 Binary operations
⋂

and
⋃

are idempotent and commutative in
̃X

Proof From 1 of Proposition 3.6,

X(𝛽i)
⋃

X(𝛽i) = (X(𝛽i),X(𝛽i)) = X(𝛽i)

Also,

X(𝛽i)
⋃

X(𝛽j) = (X(𝛽j),X(𝛽i)) = X(𝛽j)
⋃

X(𝛽i) if 𝛽i ≤ 𝛽j

The result for
⋂

may be proved similarly.

Proposition 3.8 Binary operations
⋂

and
⋃

are associative in ̃X.

Proof
X(𝛽i)

⋂
(X(𝛽j)

⋂
X(𝛽k)) = (X(𝛽i)

⋂
X(𝛽j))

⋂
X(𝛽k)

= (X(𝛽i),X(𝛽k)) if 𝛽i ≤ 𝛽j ≤ 𝛽k
= (X(𝛽i),X(𝛽j)) if 𝛽i ≤ 𝛽k ≤ 𝛽j
= (X(𝛽k),X(𝛽j)) if 𝛽k ≤ 𝛽i ≤ 𝛽j
= (X(𝛽j),X(𝛽k)) if 𝛽j ≤ 𝛽i ≤ 𝛽k
= (X(𝛽j),X(𝛽i)) if 𝛽j ≤ 𝛽k ≤ 𝛽i
= (X(𝛽k),X(𝛽i)) if 𝛽k ≤ 𝛽j ≤ 𝛽i

(1)
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Hence the
⋂

operation is associative. Similarly it can be shown that the
⋃

operation

is associative.

Proposition 3.9 For the binary operations
⋂

and
⋃

absorption rule hold in ̃X.
So,

X(𝛽i)
⋂

(X(𝛽i)
⋃

X(𝛽j)) = X(𝛽i); X(𝛽i)
⋃

(X(𝛽i)
⋂

X(𝛽j)) = X(𝛽i); if 𝛽i, 𝛽j ∈ B

Proof Case I: 𝛽i ≤ 𝛽j

X(𝛽i)
⋂

(X(𝛽i)
⋃

X(𝛽j)) = (X(𝛽i),X(𝛽i))
⋂

(X(𝛽j),X(𝛽i)) = (X(𝛽i),X(𝛽i)) = X(𝛽i)

Case II: 𝛽j ≤ 𝛽i

X(𝛽i)
⋂

(X(𝛽i)
⋃

X(𝛽j)) = (X(𝛽i),X(𝛽i))
⋂

(X(𝛽i),X(𝛽j)) = (X(𝛽i),X(𝛽i)) = X(𝛽i)

The other part may be similarly proved.

Using Propositions 3.7, 3.8 and 3.9 we get the final result.

Proposition 3.10 ( ̃X,
⋃
,

⋂
) form a lattice.

4 VPRS with Variable Classification Error (𝜷, 𝜸)

Discussions of VPRS show that both lower and upper approximations vary with clas-

sification error. It may so happen that for a particular problem the error admissible

for the lower approximation and the error admissible for the upper approximation

are different. The variable precision rough set with variable error is defined below.

Definition 4.1 A variable precision rough set with variable error (VPRSVE) X(𝛽, 𝛾)

in the approximation space ⟨U, R⟩, is a pair (XR(𝛽, 𝛾),XR(𝛽, 𝛾)) such that XR(𝛽, 𝛾) &
XR(𝛽, 𝛾) are definable sets in U defined as follows:

XR(𝛽, 𝛾) = XR(𝛽) = {R[y]∕y ∈ U ∧ R[y] ⊂ X ∧ d(R[y],X) ≤ 𝛽}

XR(𝛽, 𝛾) = XR(𝛾) = {R[y]∕y ∈ U ∧ X ∩ R[y] ≠ 𝜙 ∧ d(R[y],X) ≤ (1 − 𝛾)}

For the VPRSVE with (𝛽, 𝛾) error a set X ⊆ U is approximately defined using three

sets of definable sets: DX(𝛽, 𝛾),BNX(𝛽, 𝛾) and NX(𝛽, 𝛾) as follows:

DX(𝛽, 𝛾) = {R[y]∕y ∈ U ∧ R[y] ⊂ X ∧ d(R[y],X) ≤ 𝛽}

BNX(𝛽, 𝛾) = XR(𝛾) − XR(𝛽)
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NX(𝛽, 𝛾) = {R[y]∕y ∈ U ∧ X ∩ R[y] ≠ 𝜙 ∧ d(R[y],X) > (1 − 𝛾)}

Remark 3 According to the requirement of the situation the boundary region of the

VPRSVEX(𝛽, 𝛾) (denoted byBNX(𝛽, 𝛾) = XR(𝛾) − XR(𝛽)) is increased or decreased.

Proposition 2.1 will be modified in this case as

Proposition 4.1 Let X be an arbitrary subset of the universe U in the approximation
space ⟨U,R⟩, and 𝛽, 𝛾 ∈ [0, 0.5] be the error specified then,

1. DX(𝛽, 𝛾) = DX(𝛽)
2. NX(𝛽, 𝛾) = NX(𝛾)
3. DX(𝛽, 𝛾) ∪ BNX(𝛽, 𝛾) ∪ NX(𝛽, 𝛾) = U
4. DX(𝛽, 𝛾) ∩ BNX(𝛽, 𝛾) = BNX(𝛽, 𝛾) ∩ NX(𝛽, 𝛾) = DX(𝛽, 𝛾) ∩ NX(𝛽, 𝛾) = 𝜙

Example 4.1 Let U = {xi∕i = 1, 2, 3.....25} and R is an equivalence relation on U

such that U∕R = {[x1], [x2, x3], [x4, x5, x6], [x7, x8], [x9], [x10, x11], [x12, x13, x14, x15],
[x16], [x17], [x18, x19, x20], [x21, x22, x23, x24], [x25]}. Let A = {x3, x4, x5, x10, x11, x13,
x14, x15, x19, x21}.

Problem Define A with respect to the equivalence classes of U/R

Pawlakian rough set A = (A,A) where A = {[x10, x11]} and

A = {[x10, x11], [x2, x3], [x4, x5, x6], [x12, x13, x14, x15], [x18, x19, x20], [x21, x22,
x23, x24]}, so that

DA = {[x10, x11]}

BNA = {[x2, x3], [x4, x5, x6], [x12, x13, x14, x15], [x18, x19, x20], [x21, x22, x23, x24]}

NA = {[x1], [x7, x8], [x9], [x16], [x17], [x25]}

For VPRS A, 𝛽 can have values 0.25, 0.33, 0.5. So there can be three possible VPRS

A(0.25),A(0.33),A(0.5). Thus,

A(0.25) = {[x10, x11], [x12, x13, x14, x15]}

A(0.25) = {[x10, x11], [x2, x3], [x18, x19, x20], [x21, x22, x23, x24], [x4, x5, x6], [x12, x13, x14, x15]}

DA(0.25) = {[x10, x11], [x12, x13, x14, x15]}

BNA(0.25) = {[x2, x3], [x4, x5, x6], [x18, x19, x20], [x21, x22, x23, x24]}

NA(0.25) = {[x1], [x7, x8], [x9], [x16], [x17], [x25]}
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Also,

A(0.33) = {[x10, x11], [x4, x5, x6], [x12, x13, x14, x15]}

A(0.33) = {[x10, x11], [x2, x3], [x18, x19, x20], [x4, x5, x6], [x12, x13, x14, x15]}

DA(0.33) = {[x10, x11], [x4, x5, x6], [x12, x13, x14, x15]}

BNA(0.33) = {[x2, x3], [x18, x19, x20]}

NA(0.33) = {[x1], [x7, x8], [x9], [x16], [x17], [x21, x22, x23, x24], [x25]}

and,

A(0.5) = {[x10, x11], [x2, x3], [x4, x5, x6], [x12, x13, x14, x15]} = A(0.5)

DA(0.5) = {[x10, x11], [x2, x3], [x4, x5, x6], [x12, x13, x14, x15]}

BNA(0.5) = 𝜙

NA(0.5) = {[x1], [x7, x8], [x9], [x16], [x17], [x21, x22, x23, x24], [x25], [x18, x19, x20]}

Six VPRSVE are possible for A defined with respect to given approximation space

of which A(0.25, 0.33) is given below:

A(0.25, 0.33) = A(0.25) = {[x10, x11], [x12, x13, x14, x15]}

A(0.25, 0.33) = A(0.33) = {[x10, x11], [x2, x3], [x18, x19, x20], [x4, x5, x6], [x12, x13, x14, x15]}

DA(0.25, 0.33) = {[x10, x11], [x12, x13, x14, x15]}

BNA(0.25, 0.33) = {[x2, x3], [x4, x5, x6], [x18, x19, x20]}

NA(0.25, 0.33) = {[x1], [x7, x8], [x9], [x16], [x17], [x21, x22, x23, x24], [x25]}

5 Conclusion

In this chapter algebraic properties of set of VPRS for a particular imprecise set X

have been studied. In order to define such an imprecise set the approximation space

is partitioned into three regions, the included region (DX(𝛽)), the boundary region

(BNX(𝛽)) and the rejection region (NX(𝛽)). For a particular X with variations of 𝛽
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the regions vary. It could also be shown that the set of all VPRS for the set X forms

a lattice. We extended the classification error 𝛽 to a pair (𝛽, 𝛾) and explained its use

with an example. The included region, boundary region and rejection region for a

VPRSVE is defined and it is shown that these three regions partition the approxima-

tion space. Study of the algebraic properties of VPRSVE is an open area of research.
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Mining for Actionable Knowledge in Tinnitus
Datasets

Katarzyna A. Tarnowska, Zbigniew W. Ras and Pawel J. Jastreboff

Abstract This chapter describes the application of decision and action rules mining

to the problem area of tinnitus treatment and characterization. The chapter presents

the process of a Tinnitus Retraining Therapy treatment protocol, which is to be

automatized with classification and action rules. The tinnitus dataset collected at

Emory University School of Medicine in Atlanta, as well as preprocessing steps

performed on the data are described. Next, a series of experiments on association

and action rule extraction are presented. Selected outcome rules are listed in a form

of medical hypotheses. An analysis and interpretation of sample rules are provided

together with their validation in accordance with expert medical knowledge.

1 Introduction

Recently, there has been an increasing interest in business analytics and big data

tools to understand and drive industries evolution. The healthcare industry is also

interested in new methods to analyze data and provide better care. Given the wealth

of data that various institutions are accumulating, it is natural to take advantage

of data driven decision-making solutions. Modern computing techniques, includ-

ing machine learning, intelligent data analysis and decision support systems tech-

nologies, provide a new promising way to better understand, further improve and

support the treatment. The main motivation for researching this topic is to study and

analyze the possibilities of applying modern information technologies and machine

learning methods in the area of medicine. Machine learning and data exploration
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methods should help in understanding relationships among the treatment factors and

audiological measurements, in order to better understand tinnitus treatment. Under-

standing the relationships between patterns among treatment factors would help to

optimize the treatment process. Additionally, different preprocessing techniques will

be used so that to transform the tinnitus dataset into more suitable for machine under-

standing.

2 Background

Tinnitus, popularly known as “ringing in the ears”, nowadays, affects a significant

portion of the population—according to some estimations about 10–20% general

population. Causes of tinnitus are often not clear—it is associated with hearing loss,

ear infections, acoustic neuroma, Menere’s syndrome, aging and side-effect of some

drugs. There is no cure for it and treatment methodologies prove ineffective in many

cases and some methods of treatment work well for some patients but not necessary

for the others (must be highly personalized).

Tinnitus Retraining Therapy is a highly successful method of treatment proposed

and developed by Dr. Jastreboff. The patients are categorized into one of four groups

of tinnitus based on interview, audiological and medical evaluation (see Table 1). The

therapy consists of a series of counseling sessions accompanied by use of devices

called sound generators. Treatment progress and results were historically collected

by Dr. Jastreboff resulting in a database of demographic and medical data of patients,

as well as a series of metrics measuring treatment progress for each visit.

Our motivation was to further study factors behind therapy’s effectiveness in order

to collect actionable knowledge gathered by Dr. Jastreboff over several years of treat-

ment (1999–2005). This would allow for further proliferation of therapy, introducing

objectivity and standardization of the therapy in places lacking expertise in the field.

Table 1 Determining categories of tinnitus patients [1]

Category Hyperacusis Prolonged

sound-

induced

exacerbation

Subjective

hearing loss

Impact

on life

Treatment

0 – – – Low Counseling only

1 – – – High Sound generator set at

mixing point

2 – – Present High Hearing aid with stress on

enrichment of the

auditory background

3 Present – Not relevant High Sound generators set

above threshold of

hearing

4 Present Present Not relevant High Sound generators set at

threshold; very slow

increase of sound level
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3 Approach

The approach based on the action rules presents a new method of machine learning,

which solves problems that traditional methods, such as classification or association

rules, cannot handle. The purpose here is to analyze data in order to improve the

understanding of the data and seek specific actions to enhance the decision-making

process. In contrast to learning the association rules, the action rule approach mines

actionable patterns that can be employed to reach a desired goal (such as to increase

treatment progress) instead of merely extracting passive relations between variables.

Since its introduction in 2000 [2], action rules have been successfully applied in

many domain areas including business [2], medical diagnosis and treatment [3], and

music automatic indexing and retrieval [4].

Action rules seem to be especially promising in the field of medical data, as a doc-

tor can examine the effect of treatment decisions on a patient’s improved state. For

example, in the tinnitus dataset, such an indicator for tracking improvement progress

would be a Total score attribute, calculated by the sum of the responses from the

interview form.

3.1 Origins in Rough Set Theory

Concepts of Action Rule, Reducts, Decision Table and Information System have their

origins in the theory of Rough Sets, developed by Professor Zdzisław Pawlak at the

beginning of 1980s [5]. The theory proposed a novel approach to the formal repre-

sentation of knowledge description, and since its introduction was developing exten-

sively all around the word, confirming its usefulness in practical settings.

3.2 Decision Rules

The decision rule, for a given decision table, is a rule in the form: (𝜙 → 𝛿), where 𝜙

is called premise (or assumption) and 𝛿 is called conclusion (or thesis) of the rule.

The premise for an atomic rule can be a single term or a conjunction of k elemen-

tary conditions: 𝜙 = p1 ∧ p2 ∧ ... ∧ pn, and 𝛿 is a decision attribute. Decision rule

describing a class Kj means that objects, which satisfy (match) the rule’s premise,

belong to Kj.

Each rule can be characterized by the following features:

∙ length(r) = number of descriptors in the premise of the rule,

∙ [r] = a set of objects from U matching the rule’s premise,

∙ support(r) = number of objects from U matching the rule’s premise: |[r]| (relative

support is further divided by number of objects N),
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∙ confidence(r) = reliability of the rule:

|[r] ∩ DECk|

|[r]|
—number of objects matching

both rule’s premise and conclusion, divided by absolute support.

3.2.1 Classification Rules

In the context of prediction problem, decision rules generated from training dataset,

are used for classifying new objects (for example classifying a new patient for tinnitus

category). New objects are understood as objects that were not used for the rules

induction (new patients coming to the doctor). The new objects are described by

attribute values (for instance a patient with conducted audiological evaluation and

form responses). The goal of classification is to assign a new object to one of the

decision classes. Prediction is performed by matching the object description with

the rule antecedents.

3.3 Action Rules

An action is understood as a way of controlling or changing some of attribute values

in an information system to achieve desired results [6]. An action rule is defined [2]

as a rule extracted from an information system, that describes a transition that may

occur within objects from one state to another, with respect to decision attribute, as

defined by the user. In nomenclature, action rule is defined as a term: [(𝜔) ∧ (𝛼 →
𝛽) → (𝛷 → 𝛹 )], where 𝜔 denotes conjunction of fixed condition attributes, (𝛼 → 𝛽)
are proposed changes in values of flexible features, and (𝛷 → 𝛹 ) is a desired change

of decision attribute (action effect). Action rule discovery applied to tinnitus dataset

could, for example, suggest a change in a flexible attribute, such as type of sound

generator instrument, to help “reclassify” or “transit” an object (patient) to a different

category and consequently, attain better treatment effectiveness.

An action rule is built from atomic action sets.

Definition 1 Atomic action term is an expression (a, a1 → a2), where a is attribute,

and a1, a2 ∈ Va, where Va is a domain of attribute a.

If a1 = a2 then a is called stable on a1.

Definition 2 By action sets we mean the smallest collection of sets such that:

1. If t is an atomic action term, then t is an action set.

2. If t1, t2 are action sets, then t1 ∧ t2 is a candidate action set.

3. If t is a candidate action set and for any two atomic actions (a, a1 → a2), (b, b1 →
b2) contained in t we have a ≠ b, then t is an action set. Here b is another attribute

(b ∈ A), and b1, b2 ∈ Vb.



Mining for Actionable Knowledge in Tinnitus Datasets 371

Definition 3 By an action rule we mean any expression r = [t1 ⇒ t2], where t1 and

t2 are action sets.

The interpretation of the action rule r is, that by applying the action set t1, we would

get, as a result, the changes of states in action set t2.

Example 1 Assuming that a, b and d are stable attribute, flexible attribute and deci-

sion attribute respectively in S, expressions (a, a2), (b, b1 → b2), (d, d1 → d2) are

examples of atomic action sets. Expression (a, a2)means that the value a2 of attribute

a remains unchanged, (b, b1 → b2) that value of attribute b is changed from b1 to

b2. Expression r = [{(a, a2) ∧ (b, b1 → b2)} ⇒ {(d, d1 → d2)}] is an example of an

action rule meaning that if value a2 of a remains unchanged and value of b will

change from b1 to b2, then the value of d will be expected to transition from d1 to d2.

Rule r can be also perceived as the composition of two association rules r1 and r2,
where r1 = [{a, a2) ∧ (b, b1)} ⇒ (d, d1)] and r2 = [{a, a2) ∧ (b, b2)} ⇒ (d, d2)].

In other words, if we apply action rule r on a patient satisfying rule r1, then it is

also expected that this patient will satisfy rule r2. The confidence of action rule r is

defined as (confidence of r1) x (confidence of r2).

3.4 Meta Actions

Action rules are mined on the entire set of objects in S. Meta-actions, on the other

hand, are chosen based on the action rules. They are formally defined as higher level

concepts used to model a generalization of action rules in an information system [2].

They trigger actions that cause transitions in values of some flexible attributes in the

information system. These changes, in turn, result in a change of decision attributes’

values.

Definition 4 Let M(S) be a set of meta-actions associated with an information sys-

tem S. Let a ∈ A, x ∈ X, and M ⊂ M(S). Applying the meta-actions in the set M
on object x will result in M(a(x)) = a(y), where object x is converted to object y by

applying all meta-actions in M to x.

Example 2 Let M(S), where S = (X,A), be a set of meta-actions associated with an

information system S. In addition let T = {vi,j ∶ j ∈ Ji, xi ∈ X} be the set of ordered

transactions, patient visits, such that vi,j = [(xi,A(xi)j)], where A(xi)j is a set of

attribute values {a(xi) ∶ a ∈ A} of the object xi for the visit represented uniquely by

the visit identifier j. Each visit represents the current state of the object (patient) and

current diagnosis. For each patient’s two consecutive visits (vi,j, vi,j+1), where meta-

actions were applied at visit j, it is possible to extract an action set. In this example,

an action set is understood as an expression that defines a change of state for a dis-

tinct attribute that takes several values (multivalued attribute) at any object state. For

example {a1, a2, a3} → {a1, a4} is an action set that defines a change of values for

attribute a ∈ A from the set {a1, a2, a3} to {a1, a4}, where {a1, a2, a3, a4} ⊆ Va [7].
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These action sets resulting from the application of meta-actions represent the action-

able knowledge needed by practitioners. However, not every patient reacts the same

way to the same meta-actions, because patients may have different preconditions. In

other words, some patients can be partially affected by the meta actions and may

have other side-effects. So, there is a need to introduce personalization on meta

actions when executing action rules. The problem of personalized meta-actions is

a fairly new topic that creates room for new improvements. There is a minor work

on the personalization of meta-actions done so far [8]. Action sets have to be addi-

tionally mined for the historical patterns. To evaluate these action set patterns some

frequency measure for all patients has to be used (for example support or confi-

dence). There is a room for improvements in personalized meta action mining, as

well. In healthcare for instance, meta actions representing patient’s treatments can

be mined from doctor’s prescription. In addition to action rule mining in healthcare,

meta actions present an interesting area for personalized treatments mining.

4 Experiments

4.1 Dataset

The progress of treatment with Tinnitus Retraining Therapy (habituation of tinnitus)

was monitored and collected in Tinnitus and Hyperacusis Center at Emory Univer-

sity School of Medicine. Original sample of 555 patients, described by forms during

initial or follow-up visits, collected by Dr. Jastreboff, was used. Additionally, the

Tinnitus Handicap Inventory was administered to individuals during their visits to

the Center. The database consists of tuples identified with patient and visit numbers

and have been developed over years by inserting patients’ information from paper

forms (devised by doctor Jastreboff).

The raw dataset was organized into 11 tables including data on:

∙ Demographics—includes al the demographics information such as address, age,

gender, occupation, work status.

∙ Pharmacology—information on medications taken by a patient.

∙ Visits—the main inventory of visits and their outcomes, timestamped.

∙ Audiological measurements—carried out by physician at visits.

∙ Initial and follow-up forms’ questions on tinnitus, sound tolerance and hearing

problem—the answers are mostly Likert scale.

∙ Newman form questions—contain patient’s subjective opinion on impact of tin-

nitus on three areas of their lives: emotional, functional and catastrophical, along

with summary values and total score of all of them.

∙ Instruments—sound generators used within the therapy with the details such as

type, model, etc.

∙ REM—settings used for sound generators as a part of the therapy.
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4.2 Preprocessing and Feature Extraction

The raw dataset was preprocessed: tables were merged into one dataset of visits. The

dataset was found to be incomplete and inconsistent in terms of visits’ numbering

and timestamps, which had to be fixed manually. Some columns contained too many

missing values, so they had to be discarded.

New features were introduced as described below.

4.2.1 Tinnitus Background

Binary features related to Tinnitus background, such as: STI—Stress Tinnitus
Induced, NTI—Noise Tinnitus Induced, etc., developed based on the textual descrip-

tions in T Induced and H Induced columns in the Demographics table—for example

STI was identified with keywords, such as ‘divorce’, ‘excessive work’, etc. NTI—

with ‘noise exposure’, ‘shooting guns’. Other binary attributes developed to indicate

a tinnitus/hyperacusis cause were related to specific medical conditions:

∙ HLTI—Hearing Loss Tinnitus Induced—covers patients who associated their tin-

nitus with a hearing loss.

∙ DETI—Depression Tinnitus Induced—relates tinnitus symptoms to depression.

∙ AATI—Auto Accident Tinnitus Induced—whether tinnitus emerged as a result of

auto accident, which involved head injuries.

∙ OTI—Operation Tinnitus Induced—patients after surgeries.

∙ OMTI—Other Medical—patients, whose tinnitus was related to medical condi-

tions other than a hearing loss, depression or an operation—patients with acoustic

neuroma, Lyme’s disease, ear infections, obsessive compulsive disorder and

others.

4.2.2 Temporal Features

Having information about patient’s date of birth, as well as date of the first visit, a

column, informing what was the age of the patient when they started treatment, can

be derived. Temporal information could be also extracted from T induced column (or

H induced), which often contains data about how long ago or the date the tinnitus

(or hyperacusis) appeared. This way DTI/DHI columns were developed-by checking

each tuple of a patient and calculating it manually. Having this information it was

possible to derive a number of new features: the age of a patient when tinnitus started,

as well as the time elapse between the tinnitus onset and the initial visit to doctor. It

can potentially lead to discovering the knowledge on an impact of patient’s age at the

start of the treatment, the age when tinnitus began, and time elapse from the tinnitus

symptoms onset to the treatment start, on the effectiveness of particular treatment

methods in TRT.
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To summarize the work on temporal features development, following new

columns were added to the original database:

∙ DTI—Date Tinnitus Induced—date column derived from text columns,

∙ DHI—Date Hyperacusis Induced—analogous to the above, but derived from H
induced column—these both new attributes convey general information about

when “the problem” started and both were developed manually,

∙ AgeInd—patient’s age when the problem (tinnitus or hyperacusis) was induced—

derived from DOB and DTI/DHI columns,

∙ AgeBeg—patient’s age when they started TRT treatment (first visit to doctor

Jastreboff)—derived from DOB and Date (of visit 0) columns,

∙ numerical columnsDAgo,WAgo,MAgo, YAgo—informing how many days, weeks,

months, and years ago the problem started,

∙ binary columns calculated on the basis of columns above: Y30, Y20, Y10, Y5, Y3,

Y1, M6, M3, M1, W2, W1, D1 informing to which group of time elapse, between

the tinnitus onset to the treatment start, a patient belongs (Y—years, M—months,

W—weeks, D-days, and numerical value). For example, having “True” value in

Y5 column for the given patient, means that the problem was induced between 5

to 10 years before starting TRT treatment.

4.2.3 Binary Features for Medications Taken by Patients

Instead of maintaining a list of medications for each patient, they were altered into

pivotal features. By pivoting the data values on the medication column, the result-

ing set contains a single row per patient. This single row lists all the medication

taken by a patient, with the medication names shown as column names, and a binary

value (True/False) for the columns. Pivot transformation was deployed with PL/SQL

procedures. Each distinct value in Medication column of Pharmacology table was

developed into additional column. Bit values in the column indicate, for each patient-

visit tuple, whether the medication denoted by a column name was taken. As a

result, 311 additional features were developed, each for distinct medication. Sim-

ilar approach was taken to Application column in Pharmacology table. Values in

this column describe patients’ medical problems that are associated with the taken

medications. As a result, additional 161 columns were developed for each separate

medical state (for example “anxiety”, “asthma”, “insomnia”, “ulcers”, etc.).

4.3 Feature Selection

Feature selection experiments were performed along with classification (in WEKA)

to choose the most relevant subset of features. The most important features for the

diagnosis classification purposes proved to be audiological measurements.
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5 Diagnostic Rule Extraction

5.1 Methodology

The associations of interest to mine for are factors affecting patient’s category of tin-

nitus, such as audiological measurements, demographics data, forms’ answers and

pharmacology. The simplified process of diagnosis is presented in Fig. 1. The treat-

ment approach varies according to category; thus, accurate placement of patients

into these categories is critical to provide proper treatment.

Experiments on diagnostic rule discovery (association rules) were carried out

with LISp-Miner system, which offers exploratory data analysis, implemented by

its own procedures, called GUHA—highly optimized algorithm for rules genera-

tion [9]. The GUHA method, an original Czech data mining method with strong

theoretical background, uses definition of the set of association rules (or G-rules

in Ac4ft-Miner) to generate and verify particular rules on the data provided to the

system. Algorithm does not use Apriori-like, but bit-string approach to mine rules.

Premise and conclusion of the GUHA rule (relevant pattern) are defined in terms

of boolean attributes, which are, in turn, defined as conjunction or disjunction of

boolean attributes or literals.

5.2 Results

The results from the system are printed as general hypotheses (all factors were used

for an algorithm). The following printings show example of generated comprehen-

sive rules along with confidence ad support values for each rule (the explanation

for the attribute’s abbreviations is provided in Appendix in Table 4). These obtained

from experiments targeting the best confidence can be interpreted as being more

Fig. 1 Factors and data flow in the process of determining patient’s category and problem
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accurate, but less general. On the other hand, rules extracted with such settings, so

that to obtain best support, hold true more generally (in greater population).

Besides, a series of experiments was run for each area of interest separately in

relation to patient’s category (to obtain more detailed results), which are discussed

in the subsequent subsections:

∙ Interview ⟹ Category

∙ Audiology ⟹ Category

∙ Demographics ⟹ Category

∙ Pharmacology ⟹ Category

∙ Pharmacology ⟹ Tinnitus

Some interesting findings were obtained. We show only the most interesting exam-

ples of rules with best support and confidence, among many rules generated. In the

listings below, confidence and support values are provided for each rule, where sup-

port is defined as percentage of objects in the whole dataset satisfying that rule.

5.2.1 Comprehensive—Most General rules (names of attributes are
explained in Table 4)

Examples of rules for each category, mined from all the relevant attributes, with the

highest support:

Hypotheses 1 H EL < 1 ⟹ 0.52;0.04 C(0)
L SD≥ 100 ∧ LL4≥ 999 ∧ LR8≥ 999 ∧ R SD≥ 100 ⟹ 0.5;0.04 C(0)
L SD≥ 100 ∧ LL4≥ 999 ∧ LL8≥ 999 ∧ LR8≥ 999 ∧ R SD≥ 100 ⟹ 0.5;0.04 C(0)

Hypotheses 2 LL12≥ 999 ∧ LR12≥ 999 ∧ R SD≥ 100 ⟹ 0.58;0.11 C(1)
LR12≥ 999 ∧ T EL≥ 8 ⟹ 0.57;0.09 C(1)
T An≥ 8 ∧ R SD≥ 100 ⟹ 0.56;0.09 C(1)

Hypotheses 3 L4≥65 ⟹ 0.62;0.1 C(2)
HL pr≥ 5 ⟹ 0.54;0.14 C(2)

Hypotheses 4 H An≥ 8 ∧ H Sv≥ 7.5 ⟹ 0.55;0.1 C(3)
H Sv≥ 7.5 ⟹ 0.5;0.11 C(3)
H EL≥ 8 ⟹ 0.5;0.11 C(3)

Hypotheses 5 L SD≥ 100 ∧ L4<10 ∧ LL3<75 ⟹ 0.67;0.02 C(4)
L3<5 ∧ LL3<75 ⟹ 0.59;0.02 C(4)
L4<10 ∧ LL3<75 ⟹ 0.53;0.02 C(4)

5.2.2 Comprehensive—Most Accurate

Examples of rules for each category, mined from all the relevant attributes, with the

highest confidence:
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Hypotheses 6 DST(N) ⟹ 0.78;0.01 C(0)
Concert(0) ⟹ 0.75;0.01 C(0)
Rest(0) ⟹ 0.75;0.01 C(0)

Hypotheses 7 R3(<15;20)) ∧ T An≥ 8 ⟹ 0.94;0.03 C(1)
LL2≥ 999 ∧ LR12≥ 999 ∧ R4(<15;20)) ∧ T EL≥ 8 ⟹ 0.94;0.03 C(1)
LR12≥ 999 ∧ R4(<15;20)) ∧ T EL≥ 8 ⟹ 0.94;0.03 C(1)
R4(<15;20)) ∧ T Sv≥ 8 ⟹ 0.94;0.03 C(1)

Hypotheses 8 LR8≥ 999 ∧ R6≥ 75 ∧ T Sv≥ 8 ⟹ 0.96;0.04 C(2)
LL8≥ 999 ∧ LR8≥ 999 ∧ R6≥ 75 ∧ T Sv≥ 8 ⟹ 0.96;0.04 C(2)
LR6≥ 999 ∧ LR8≥ 999 ∧ R2≥ 45 ∧ R3≥ 60 ∧ R6≥ 75 ⟹ 0.95;0.03 C(2)
LR6≥ 999 ∧ LR8≥ 999 ∧ R2≥ 45 ∧ R4≥ 65 ∧ R6≥ 75 ⟹ 0.95;0.03 C(2)
LR6≥ 999 ∧ LR8≥ 999 ∧ R2≥ 45 ∧ R4≥ 65 ∧ R8≥ 75 ⟹ 0.95;0.03 C(2)
L2≥ 50 ∧ L3≥ 60 ∧ LR8≥ 999 ∧ R6≥ 75 ⟹ 0.95;0.03 C(2)

Hypotheses 9 LL3(<85;91)) ∧ H pr≥ 7 ∧ H Sv≥ 7.5 ⟹ 1;0.03 C(3)
LL3(<85;91)) ∧ H An≥ 8 ∧ H EL≥ 8 ∧ H Sv≥ 7.5 ⟹ 1;0.03 C(3)
LL3(<85;91)) ∧ H EL≥ 8 ∧ H Sv≥ 7.5 ⟹ 1;0.03 C(3)
LR1< 74 ∧ LR2< 74 ∧ LR6< 78 ∧ H pr≥ 7 ∧ H An≥ 8 ⟹ 0.94;0.03 C(3)

5.2.3 Interview ⟹ Category

Hypotheses 10 H EL < 1 ⟹ 0.52;0.04 C(0)
H An < 1.5 ∧ H EL < 1 ∧ H Sv < 1.5 ⟹ 0.51;0.03 C(0)

Hypotheses 11 HL pr< 0.5 ∧ T EL≥ 8 ⟹ 0.55;0.06 C(1)
H pr< 0.5 ∧ HL pr<0.5 ⟹ 0.58;0.04 C(1)

Hypotheses 12 HL pr≥ 5 ∧ T EL≥ 8 ⟹ 0.57;0.07 C(2)
HL pr≥ 5 ∧ T Sv≥ 8 ⟹ 0.57;0.06 C(2)
HL pr≥ 5 ∧ T An≥ 8 ⟹ 0.55;0.07 C(2)

Hypotheses 13 H An≥ 8 ∧ H EL≥ 8 ∧ H Sv≥ 7.5 ⟹ 0.58;0.09 C(3)
H pr≥ 7 ∧ H An≥ 8 ∧ H EL≥ 8 ∧ H Sv≥ 7.5 ⟹ 0.58;0.08 C(3)

The obtained rules seem to confirm the expert’s (medical) knowledge:

∙ patients categorized into 0 group have a problem a low impact on life (H EL is

low),

∙ category-1 patients have significant tinnitus problem, but without hyperacusis (H
pr is low) and there is no significant hearing loss (HL pr is low),

∙ category 2 is characterized on the other hand with significant hearing loss (HL
pr≥ 5),

∙ category 3 is associated by the expert with significant hyperacusis problem—

obtained hypotheses show association of high values of H An, H Sv and H EL
with this category.
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5.2.4 Audiology ⟹ Category

Hypotheses 14 L SD≥ 100 ∧ LL4≥ 999 ∧ LR8≥ 999 ∧ R SD≥ 100 ⟹ 0.5;0.04
C(0)
L SD≥ 100 ∧ LL4≥ 999 ∧ LL8≥ 999 ∧ LR8≥ 999 ∧ R SD≥ 100 ⟹ 0.5;0.04 C(0)

Hypotheses 15 LL12≥ 999 ∧ LR12≥ 999 ∧ R SD≥ 100 ⟹ 0.58;0.11 C(1)
LL12≥ 999 ∧ R SD≥ 100 ⟹ 0.55;0.12 C(1)

Hypotheses 16 LR8≥ 999 ∧ R4≥ 65 ⟹ 0.78;0.08 C(2)
L2≥ 50 ⟹ 0.7;0.1 C(2)

Hypotheses 17 LR6< 78 ⟹ 0.63;0.07 C(3)
LR2< 74 ⟹ 0.62;0.07 C(3)

Hypotheses 18 L SD≥ 100 ∧ L4< 10 AND LL3< 75 ⟹ 0.67;0.02 C(4)
L3< 5 ∧ LL3< 75 ⟹ 0.59;0.02 C(4)

For the second tested area generated hypotheses inform that a basic audiogram with

LDLs is the crucial test for diagnosis. Based on obtained rules, it can be concluded

that the lower the tolerance, the more severe category of tinnitus should be assigned

to a patient. According to our medical expertise, the found results were interesting

and also in theory it is expected to have strong correlation of THI with LDL.

5.2.5 Demographics ⟹ Category

Hypotheses 19 Country(USA) ∧ MedNr(<3;4)) ∧ State(GA) ⟹ 0.56;0.02 C(0)

Hypotheses 20 AgeBeg(<50;55)) ∧ Country(USA) ∧ G(m) ⟹ 0.58;0.02 C(1)
AgeBeg(<50;55)) ∧ G(m) ⟹ 0.56;0.02 C(1)
Country(USA) ∧ G(m) ∧ M6(yes) ⟹ 0.5;0.02 C(1)

Hypotheses 21 AgeBeg≥ 68 ⟹ 0.58;0.03 C(2)
G(m) ∧ MedNr≥ 5 ∧ T side(yes) ⟹ 0.53;0.03 C(2)

Hypotheses 22 Work(h) ⟹ 0.69;0.02 C(3)
Country(USA) ∧ G(f) ∧ M1(yes) ⟹ 0.83;0.01 C(3)
AgeBeg≥ 40 ∧ Country(USA) ∧ AgeInd(<30;38)) ⟹ 0.71;0.01 C(3)
Occup(homemaker) ⟹ 0.71;0.01 C(3)
G(f) ∧ STI(yes) ⟹ 0.5;0.01 C(3)

Hypotheses 23 Country(USA) ∧ G(m) ∧ MedNr(3) ∧ Y10(yes) ⟹ 0.8;0.01 C(4)

Some relevant patterns of patients’ demographics in particular categories were also

found out. For example, as a rule, patients with tinnitus of low effect on their lives

(that is, category-0) came from the state of Georgia in the USA (that is nearby the
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clinic) and were affected with 3 other afflictions (were taking three types of med-

ications for treating them). According to our medical expertise, that probably just

reflects the fact that long distance patients with low level of severity did not bother

to come as it would involve cost and effort; coming was much easier for people from

Georgia. Another common pattern for patients in category 1 was: a male aged 50–55

from the USA, whose tinnitus had started 6–12 months before he began TRT.

It could also be observed that category-2 patients are typically older (age when

they began treatment typically higher than 68 years old, as a rule), they had been

taking more medications (5 and more) and their tinnitus was associated with taking

these medications (T side(yes)). According to our medical knowledge, we can con-

firm that older patients are taking more medications. Also, hearing loss, which has

to be present for Category 2, is strongly correlated with the age.

Relevant patterns for Category 3 included:

∙ the patients who worked at home (and also their tinnitus was induced by medica-

tions),

∙ the patients occupied with homemaking,

∙ the female patients with the tinnitus induced 1–3 months before they went to a

doctor,

∙ females whose tinnitus was associated with stressful situations,

∙ patients relatively young (younger than 40 years old, whose problem started at

30–38 years old), living in the USA.

Pattern found for patients with the fourth category, included males curing three other

afflictions with the corresponding medications, whose tinnitus is 10–20 years old.

It should be noted that the demographic-based rules must not be primarily used

in diagnosis, and the medical knowledge confirms it. Patient’s category should not

be based on their age, place of residence, occupation, etc., but rather on more objec-

tive medical factors, such as, audiological measures or interview. Nevertheless, they

reveal some common demographic patterns in categories of patients treated in the

past, which may bring additional knowledge, used as heuristics or hints in the rule-

based decision support system.

5.2.6 Pharmacology ⟹ Category

Another series of experiments were focused on discovering patterns relating addi-

tional patients’ afflictions and medication taken in order to cure them, to the category

of tinnitus treatment.

Hypotheses 24 Ativan(yes) ∧ Anxiety disorder(yes) ⟹ 0.58;0.01 C(1)
Klonopin(yes) ∧ Panic disorder(yes) ∧ Seizures(yes) ⟹ 0.53;0.01 C(1)
Depression disorder(yes) ∧ Panic disorder(yes) ∧ Seizures(yes) ⟹ 0.5;0.02 C(1)

Preliminary results have shown that patients with accompanying depression, anxiety

or panic disorders were assigned to Category 1, while patients with hypertension,
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for example, belonged to category 2. Relevant group of patients treated for anxiety,

panic/seizures or depression disorders (with Ativan/Klonopin) was diagnosed with

the first category of tinnitus. According to our medical expertise, these drugs are

routinely prescribed by physicians for treating tinnitus, in order to decrease anxiety

or depression.

Hypotheses 25 Angin(yes) ∧ Hypertension(yes) ⟹ 0.69;0.02 C(2)
Patients with hypertension and angina can be hypothetically classified into the sec-

ond category of tinnitus (with 69% confidence). According to our medical expertise,

typically these conditions are associated with aging which in turn is strongly associ-

ated with hearing loss.

5.2.7 Pharmacology ⟹ Tinnitus

The last group of experiments aimed at finding out which drugs might cause side-

effect of tinnitus:

Hypotheses 26 Norvasc(yes) ∧ T side(yes) ⟹ 0.67;0.01 C(2)
Prozac(yes) ∧ T side(yes) ⟹ 0.6;0.01 C(1)
Synthroid(yes) ∧ T side(yes) ⟹ 0.6;0.01 C(2)
Atenolol(yes) ∧ T side(yes) ⟹ 0.56;0.01 C(2)
Celebrex(yes) ∧ T side(yes) ⟹ 0.56;0.01 C(2)
Klonopin(yes) ∧ T side(yes) ⟹ 0.56;0.01 C(1)
The first medication is applied for hypertension and angina, the second for depres-

sion, bulimia nervosa, OCD. Synthroid is used in thyroid hormone therapy, Atenolol

reduces blood pressure (treats hypertension). Celebrex acts anti -inflammatory and

Klonopin—anti-panic and anti-seizure.

The conclusion from the experiment is that these medications should be further

investigated on their side-effects. Patients taking them and seeking help for their tin-

nitus might recover simply after stop taking them or switching to other complemen-

tary pharmaceuticals, with no such side-effects. It might also save time on complex

tinnitus therapy, avoiding unnecessary actions. As for depression, however, it is not

clear, whether this disorder is a cause or an effect of tinnitus. According to our med-

ical expertise it can be both.

6 Treatment Rule Extraction

6.1 Methodology

As stated earlier, action rules should help in choosing the right course of treatment

within Tinnitus Retraining Therapy. The treatment process and a data flow within it

is shown in Fig. 2.
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Fig. 2 The process and data flow of treatment actions and TRT tracking

Appropriate tasks were defined in LISp-Miner [9] based on analysis of the process.

Treatment actions include: treatment protocol (relevant for each category), applying

a sound generator and setting the generator (REM). An attribute chosen to track treat-

ment and improvement is a Total score, which indicates severity of tinnitus according

to the following scale: 0–16 -slight, 18–36 -mild, 38–56 -moderate, 58–76 -severe,

and 78–100 -catastrophic handicap. The aim of extracting the action rules is to find

treatment actions that lead to changes in severity of a patient’s tinnitus from higher

to lower. A Total Score attribute was missing for about half of visits registered in a

tinnitus database and the same for A Tinnitus Awareness attribute. Even when con-

sidering case of both Tsc or Taw still about 40% values were missing. To handle this

problem and retain all the tuples for visits which may contain useful information

about treatment actions, an algorithm for imputation of missing values was devel-

oped and applied.

6.2 Decision Attribute Development

In order to find out action rules that indicate improvement, the decision attribute was

further preprocessed and new derived features were developed:

∙ ChTsc—Change in Total Score

∙ ChTaw—Change in Tinnitus Awareness

∙ PerChTsc—Percentage Change in Tinnitus Score

∙ PerChTaw—Percentage Change in Tinnitus Awareness

On the top of these, one decision attribute was developed: a new change attribute for

X indicator at visit v of a given patient, in a following way:
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Definition 5 CHX,v =

∙ NULL, for Xn = NULL or Xn+1 = NULL
∙ 0, for Xn = 0 and Xn+1 = 0
∙ −100

distn+1,n
, for Xn = 0 and Xn+1 > 0

∙ (100% ∗ Xn+1−Xn

Xn
)∕(distn+1,n), for Xn ≠ 0

where:

∙ X = Tsc or X = Taw
∙ Xn is a measurement of X at v, or the closest previous measurement of X from v:

DATE(v) ≥ DATE(Xn)
∙ Xn+1 is the closest next measurement ofX since the visit v:DATE(v) < DATE(Xn+1)
∙ dist is a distance defined as below:

Definition 6 distn+1,n =

∙ NULL, for CHXn,v = NULL
∙ DATEDIFF(weeks,DATE(Xn+1),DATE(Xn)), for DATE(Xn+1) > DATE(Xn)

Algorithm calculates the change and distance values for each visit based on the

definitions presented above.

One final change attribute is a combined change attribute defined as follows:

Definition 7 CH = ChTsc and distCh = distTsc
in the following cases (in order of priority):

∙ ChTsc is not NULL and ChTaw is NULL—this is the most obvious case—we choose

a change in indicator that is available,

∙ ScT is notNULL and AwT isNULL—the case when both change features are avail-

able for the tuple, but change for Sc t is accurate, while ChTaw is approximated

by “neighboring” previous and next measurements,

∙ ChTsc is not NULL and ChTaw is not NULL and distTsc < distTaw—there are val-

ues for change attributes for both indicators, as well as current values of indicators

themselves (Sc t and Aw T)—a change value associated with lower distance is cho-

sen (it is assumed that treatment effectiveness measured in shorter time distance

is more accurate).

Analogously:

CH = ChTaw and distCh = distTaw

when:

∙ ChTsc is NULL and ChTaw is not NULL,

∙ ScT is NULL and AwT is not NULL
∙ ChTsc is not NULL and ChTaw is not NULL and distTsc > distTaw.
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Table 2 Ch and treat len attributes definition in LISp-Miner

Group Att name Attribute meaning Type Cat Sample

Temporal Ch Percentage change

per week

Inter 5 Better

treatlen Length of treatment

in weeks

Inter 10 <1;4)

Fig. 3 Frequency distribution of categories for Ch attribute in tinnitus dataset

Table 3 Category names and corresponding intervals for Ch attribute

Category name Ch

Much better < −99; −4.9107)
Better < −4.9107; −2)
Slightly better < −2; 0.4348)
About the same < −0.4348; 0.8418)
Worse < 0.8418; 1944.7369)

The last case, not resolved by the two above, is when ChTsc is not NULL and ChTaw
is not NULL and distTsc = distTaw. Then a “combined” change is calculated as an

average of both:

CH = ChTsc+ChTaw
2

and distCh = distTaw = distTsc.

A new attribute Ch (with corresponding distCh attribute) was introduced to LISp-

Miner environment under Temporal group of attributes (see Table 2).

Figure 3 shows categories defined for a Ch attribute, as intervals, along with their

balanced frequency (absolute, relative and cumulated).

There are 5 categories for a change value: “worse” for positive values of Ch,

“about the same” for no change, and three categories for different magnitudes of
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negative values: “slightly better”, “better” and “much better”. Corresponding inter-

vals for each category are shown in Table 3.

6.3 Distance Features

An additional column, indicating length of treatment of a given measure (distCh),

was defined as an interval attribute—treat len. In order to relate patient’s visits tem-

porally, following columns were additionally developed:

∙ distPrev—time difference (in weeks) between the current and the previous visit of

a patient (for initial visit the distance is 0),

∙ dist0—for each visit: time elapse (in weeks) from the initial visit, the last visit’s

dist0 informs about the total time of a patient’s treatment,

After defining the additional attributes in LISp-Miner, they were used for defin-

ing relevant patterns. It is assumed that actions that generally lead to a “better” con-

dition are interesting (for now, no matter if an improvement is slight, moderate or

significant). The procedure is enforced to generate only interesting action rules (for

treatment purposes) and generates only effective treatment actions.

With a new, accurate change attribute Ch for the succedent part, developed as

described above, final choice of the most reliable rules can be made.

Besides considering aCh attribute in the experimental setup, also temporal depen-

dencies between actions and their effects were considered, suggesting a change in the

length of treatment with a particular method (treat attribute).

6.4 Instrument Fitting

(names of all attributes are explained in the Table 4):

Hypotheses 27 Instr(GHI):Freq LE(<3000;3150))→Freq LE≥ 3775) ⟹ 0.32;37;8
Ch(better/much better/slightly better)
Instr(SG): Mix R SL(<9;10)) → Mix R SL(<11;12)) ⟹ 0.27;8;11 Ch(better/much
better/slightly better)

Instr(SG): Mix R SL(<9;10))→Mix R SL(<15;17)) ⟹ 0.27;8;8 Ch(better/much
better/slightly better)

Instr(GHI): Mix L SL(<7;8)) →Mix L SL<2 ⟹ 0.27;8;8 Ch(better/much bet-
ter/slightly better)

Instr(GHI): Mix L SL(<7;8))→Mix L SL(<11;12)) ⟹ 0.27;8;8 Ch(better/much
better/slightly better)
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Instr(SG): Freq LE(<2670;2800)) ∧ Freq RE(<2670;2800))→ Freq LE(<2500;
2670)) ∧ Freq RE(<2500;2670)) ⟹ 0.23;6;7 Ch(better/much better/slightly better)

Instr(GHI): Th L SPL(<36;37)) → Th L SPL(<37;38)) ⟹ 0.17;8;9 Ch(better/
much better/slightly better)

Instr(GHI): Mix R SL(<6;7)) → Mix R SL(<9;10)) ⟹ 0.17;9;8 Ch(better/much
better/slightly better)

Instr(SG): Freq RE(<3000;3150)) → Freq RE(<2500;2670)) ⟹ 0.11;9;12
Ch(better/much better)

Instr(SG): Freq RE(<3000;3150)) → Freq RE(<2500;2670)) ⟹ 0.03;5;6
Ch(slightly better) → Ch(better/much better)

Instr(SG): Freq LE(<2670;2800)) → Freq LE(<2500;2670)) ⟹ 0.1;12;9
Ch(better/much better/slightly better)

Instr(SG): Freq LE(<2670;2800)) → Freq LE(<3000;3150)) ⟹ 0.1;8;11
Ch(better/much better)

Instr(SG) ∧Model(TR COE): Freq RE(<2500;2670))→ Freq RE(<2670;2800))
⟹ 0.09;10;10 Ch(better/much better/slightly better)

Instr(SG) ∧Model(TR COE): Freq RE(<2500;2670))→ Freq RE(<3000;3150))
⟹ 0.08;10;12 Ch(better/much better/slightly better)

Instr(SG): Freq RE(<2670;2800)) → Freq RE(<2500;2670)) ⟹ 0.08;11;12
Ch(better/much better/slightly better)

Instr(GHS): Freq RE(<2800;3000)) → Freq RE(<2670;2800)) ⟹ 0.07;11;12
Ch(better/much better/slightly better)

Instr(SG): Th R SPL(<33;34))→ ThR SPL(<36;37)) ⟹ 0.02;8;9 Ch(better/much
better/slightly better)

Type(GHH): Freq RE(<2670;2800)) → Freq RE(<3000;3150)) ⟹ 0.02;8;13
Ch(better/much better/slightly better)

FU(A) ∧ Instr(GHI) ∧ Freq RE(<3000;3150)): treat(<6;8))→ treat(<5;6)) ⟹
0.1;9;8 Ch(better/much better/slightly better)

The above action rules, related to the instruments’ fitting with REM, include rules

for the following types of instruments: “SG” (sound generators generally), “GHI”

(general type of sound generator that includes both GHI hard and GHI soft models),
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particular types: “GHS” (GHI soft) and “GHH” (GHI hard), up to specific model,

such as “TRI-COE”. The following settings of the instruments were considered in

the variable antecedent parts of rules: Freq RE, Freq LE, Mix R SL, Mix L SL, Th R
SPL, Th L SPL. These constitute quite a significant subset of settings for fitting the

instruments.

For example, the last action rule from Hypotheses 27 informs that the probability

of a successful treatment increases by 10 percentage points, when the “Audiolog-

ical/counseling” treatment combined with the setting of "GHI" instrumentation to

"Freq RE" at in <3000;3150) shortens from 6–8 weeks to 5–6 weeks.

6.5 Treatment Protocol

The second rule from the listing below informs that changing the treatment of a

patient in Category-1 from the treatment protocol “0” lasting 12–16 weeks to the

treatment protocol “1” for more than 32 weeks, should increase improvement by 61

percentage points.

Hypotheses 28 Cat(0): CC(0) → CC(1) ⟹ 0.33;42;9 Ch(better/slightly better)

Cat(0): CC(0) ∧ treat(<12;16)) → CC(1) ∧ treat≥ 32 ⟹ 0.61;42;9 Ch(better/
slightly better)

Cat(3): Instr(GHH) ∧ FU(T) ∧ CC(3) → Instr(TCI-C) ∧ FU(A) ∧ CC(2) ⟹
0.33;8;9 Ch(better/much better/slightly better)

Cat(3): Instr(Viennatone) ∧ CC(3) → Instr(TCI-C) ∧ CC(2) ⟹ 0.25;8;8
Ch(slightly better/better/much better)

Cat(3): CC(0) → CC(2) ⟹ 0.18;8;22 Ch(slightly better/better/much better)

Cat(1): CC(0) → CC(1) ⟹ 0.14;9;491 Ch(slightly better/better/much better)

Cat(3): CC(0) → CC(3) ⟹ 0.08;8;239 Ch(slightly better/better/much better)

6.6 Treatment Personalized for Demographics

The following hypotheses were generated for the tasks that were defined in order to

maximize treatment personalization.

Hypotheses 29 AgeBeg(<50;55)) ∧ G(m) ∧ Cat(1) ∧ T side(yes): MedNr≥ 5 →
MedNr(<2;3)) ⟹ 0.55;14;8 Ch(slightly better/better)



Mining for Actionable Knowledge in Tinnitus Datasets 387

G(m) ∧ Cat(1) ∧ OMTI(yes) ∧ T side(yes): MedNr(<3;4)) → MedNr(<4;5))
⟹ 0.41;9;18 Ch(slightly better/better/much better)

AgeBeg(<50;55)) ∧ G(m) ∧ AgeInd(<50;56)) ∧ T side(yes): CC(2) → CC(1)
⟹ 0.55;14;11 Ch(slightly better/better/much better)

G(m) ∧ Cat(1) ∧OMTI(yes) ∧ T side(yes): F(T)→ F(A) ⟹ 0.23;9;16 Ch(slightly
better/much better)

AgeBeg(<55;60))∧G(m)∧Cat(1)∧ T side(yes): Instr(GHS)→ Instr(GHH) ⟹
0.19;8;8 Ch(better/much better)

6.7 Treatment Personalized for Tinnitus Background

Hypotheses 30 OMTI(yes)∧ T side(yes): Instr(Viennatone)∧FU(T)→ Instr(GHH)
∧ FU(A) ⟹ 0.56;8;8 Ch(slightly better/better)

NTI(yes) ∧ G(m): Instr(GHS) → Instr(GHH) ⟹ 0.33;28;8 Ch(slightly better/
better/much better)

G(m) ∧OMTI(yes) ∧M6(yes) ∧ Cat(1): FU(T)→ FU(A) ⟹ 0.3;5;10 Ch(slightly
better/better/much better)

OMTI(yes) ∧ T side(yes): Work(h) → Work(w) ⟹ 0.3;13;11 Ch(slightly better/
better)

OMTI(yes) ∧ G(f): Instr(GHS) → Instr(GHH) ⟹ 0.28;10;8 Ch(slightly better/
better)

OMTI(yes) ∧ T side(yes) ∧ Cat(1): Instr(GHS) → Instr(GHH) ⟹ 0.3;13;11
Ch(slightly better/better)

OMTI(yes) ∧G(f): Instr(Viennatone)→ Instr(GHH) ⟹ 0.25;8;8 Ch(slightly bet-
ter/better/much better)

OMTI(yes) ∧ T side(yes) ∧ Cat(1): Instr(Viennatone) ∧ FU(T) → Instr(GHS) ∧
FU(A) ⟹ 0.24;8;8 Ch(slightly better/better)

G(m) ∧ NTI(yes) ∧ M3(yes) ∧ Cat(3): FU(A) → FU(T) ⟹ 0.18;6;8 Ch(slightly
better/better/much better)
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OMTI(yes) ∧ Instr(GHS): treat≥ 32 → treat(<5;6)) ⟹ 0.06;9;6 Ch(slightly bet-
ter/better/much better)

OMTI(yes) ∧ FU(T): treat(<21;32)) → treat(<8;10)) ⟹ 0.01;11;14 Ch(slightly
better/better/much better)

The two last rules hypothesize that in case of medical-induced tinnitus

(OMTI(yes)), it should be advantageous to shorten the treatment with “GHS” instru-

mentation from “above 32 weeks” to 5–6 weeks, as well as shorten the telephone-

based treatment from 21–32 weeks to 8–10 weeks.

6.8 Treatment Personalized for Medical Condition

The relevant action rules, which consider other diseases in a patient, include: patients

with ulcers, hypertension, seizures, depression/anxiety disorders. The treatment

actions include: reducing the number of medications (which are also associated with

tinnitus as a side-effect), changing instrumentation (for example, from “GHS” to

“HA”, or from “Viennatone” to “GHS”), but also changing place of residence (for

example, state “NY” to “WI”, “GA” to “IL”).

Hypotheses 31 G(m) ∧ T side(yes) ∧ Ulcers(yes): Med(≥5) ∧ State(GA) →
Med(<2;3)) ∧ State(IL) ⟹ 0.73;10;8 Ch(slightly better/better)

G(m)∧ T side(yes)∧Ulcers(yes)∧Erosive arthritis(yes)∧GERD(yes): Med(≥5)
∧ State(GA)→ Med(<2;3)) ∧ State(IL) ⟹ 0.71;10;8 Ch(slightly better/better)

Cat(1) ∧ T side(yes) ∧ Hypertension(yes): Med(≥5) ∧ FU(T) → Med(<4;5)) ∧
FU(A) ⟹ 0.56;12;11 Ch(slightly better/better/much better)

G(m) ∧ T side(yes) ∧ Seizures(yes): Instr(GHS) ∧ State(NY) → Instr(HA) ∧
State(WI) ⟹ 0.53;9;8 Ch(slightly better/much better)

G(m) ∧ T side(yes) ∧ Depression(yes) ∧ Panic disorder (yes) ∧ Seizures(yes):
Instr(GHS) ∧ State(NY) → Instr(HA) ∧ State(WI) ⟹ 0.53;9;8 Ch(slightly better/
much better)

Cat(1) ∧ T side(yes) ∧ Depression(yes) ∧ Anxiety disorder (yes): Instr(GHH) ∧
Med(≥5) → Instr(GHS) ∧ Med(<4;5)) ⟹ 0.48;9;12 Ch(slightly better/better/much
better)

G(m) ∧ T side(yes) ∧ Depression(yes): Med(≥5) ∧ State(GA) → Med(<2;3))) ∧
State(WI) ⟹ 0.47;14;10 Ch(slightly better/much better)
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G(m) ∧ T side(yes) ∧ Seizures(yes): Med(≥5) ∧ FU(A) → Med(<2;3)) ∧ FU(T)
⟹ 0.47;9;8 Ch(slightly better/better/much better)

OMTI(yes) ∧ T side(yes) ∧ Depression(yes): Instr(Viennatone) ∧ Med(≥5) →
Instr(GHS) ∧ Med(<4;5)) ⟹ 0.42;21;12 Ch(slightly better/much better)

6.9 Meta Actions

Following hypotheses show examples of meta actions generated for the patient with

an ID 01054 (that is, a set of effective actions, for this particular patient).

Hypotheses 32 THC(01054) ∧Cat(1): Instr(VSS)∧ F(T)→ Instr(V - AMTI)∧ F(A)
⟹ 0.67;1;4 Ch(slightly better/better/much better)

THC(01054) ∧ Cat(1): Freg LE(<2500;2670)) ∧ Freg RE(<2500;2670)) ∧ Mix
R SPL(<51;52)) → Freg LE(<2120;2380)) ∧ Freg RE(<2380;2500)) ∧ Mix R
SPL(<53;55)) ⟹ 0.5;1;1 Ch(better/much better)

THC(01054) ∧Cat(1): Freg LE(<3000;3150)) ∧ Freg RE(<3000;3150)) ∧Mix R
SL(<9;10)) → Freg LE(<2500;2670)) ∧ Freg RE(<2500;2670)) ∧ Mix R
SL(<14;15)) ⟹ 0.5;1;1 Ch(slightly better/much better)

THC(01054) ∧Cat(1): Freg LE(<3000;3150)) ∧ Freg RE(<3000;3150)) ∧Mix R
SL(<9;10)) → Freg LE(<2120;2380)) ∧ Freg RE(<2380;2500)) ∧ Mix R
SL(<11;12)) ⟹ 0.5;1;1 Ch(slightly better/better/much better)

THC(01054) ∧ Cat(1): Mix R SL(<13;14)) ∧ Mix R SPL(<51;52)) ∧ Th R
SPL(<38;39)) → Mix R SL(<11;12)) ∧ Mix R SPL(<53;54)) ∧ Th R SPL(<42;43))
⟹ 0;1;1 Ch(better/much better)

The above sets of actions for the patient “01054” (meta-actions) are examples of

an effective treatment undertaken for this case (profile) of a patient. It can be also

observed that the last set of actions (the last hypothesis) brought no results.

7 Discussion

7.1 Summary of Experiments on Rule Extraction

Experiments described in the two previous sections were conducted in order to

extract knowledge on tinnitus diagnosis and treatment, in the form of rules—decision

rules and action rules, whose theoretical background was presented in Sect. 3. While

the former should help in understanding the relations between different diagnosis

factors, the latter suggest a course of treatment (action) leading to improvement in
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a patient’s condition. The experiments on finding association rules can also help in

analyzing the collected data in terms of patient’s characteristics and discover patterns

that are not obvious from a medical point of view.

However, the main advantage of the proposed approach based on rule extrac-

tion, is a possibility to automatically retrieve knowledge in the form of rules, with-

out engaging time of a medical expert. It seems promising, as experts are usually

not widely available. Additionally, knowledge engineering based on interviewing

experts is quite time- consuming. Often, it is also cumbersome for experts to for-

mulate their knowledge in the form of specific rules, as they often make decisions

intuitively, based on experience. This knowledge, on the other hand, is hidden in

large databases which can be extracted in the form of rules that imitate human behav-

ior. This methodology is particularly interesting and useful for building a rule-based

decision support system.

The discovered rules can be either exploited in a qualitative way by an expert, or

used to perform classification (scoring) of incoming objects. Ultimately, automati-

cally extracted rules should be built into the rule engine of decision support system.

An appropriate mechanism of automatic rule execution (or alternatively inference

engine) should be implemented. The relevant rules could be then evoked by matching

new data with the rules’ premises (antecedents) and their conclusions (succedents)

can be presented to the system user.

Rule extraction, in contrary to the method based on building a classifier provides

a better insight into different diagnostic and treatment factors. It also enables cus-

tomizing the associations which are supposed to be discovered. Also, when imple-

mented into a knowledge base of a decision support system, they can potentially

provide an explanatory mechanism. It means, the decision the system arrives at, can

be explained by means of antecedent parts of the rules that were triggered. It can also

potentially serve for educational purposes. The personnel untrained in tinnitus treat-

ment can learn tinnitus diagnosis and treatment by using the system and its explana-

tory functionalities, which imitate the behavior and decision making processes of a

human expert.

To sum up the experiments, the discovered rules confronted with expert knowl-

edge confirm the correctness of the approach and methodology. The discovered new,

unknown patterns provide additional knowledge to an expert that otherwise could

not be easily noticed from a large and complex dataset. It is important to note that

the discovered knowledge should be treated as hypotheses, which nevertheless, have

to be either confirmed by an expert or by a controlled study, designed to validate

the hypothetical claims. In particular, the rules generated and presented in this work

should not be used for any diagnosis or treatment decision, or suggest any particular

course of treatment. The work within this research is experimental and aimed at pre-

senting potential application of action rules and meta actions in the area of medical

diagnosis and treatment. The final validity check of the presented approach can be

done by comparing clinical results with the extracted knowledge.
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7.2 Conclusions

The work within this chapter verifies a possibility of applying theory of traditional

machine learning techniques, such as classification and association rules, as well as

novel data mining methods, including action rules and meta actions, to a practical

decision problem in the area of medicine.

The work included a series of data preprocessing steps, building new features and

testing the proposed approach with the use of chosen methodologies and tools. The

tests on knowledge discovery approach were divided into: testing the classification

model first (not presented in this chapter), extracting the decision rules and gener-

ating action rules/ meta actions. New temporal features were introduced to describe

the sparse records of patients’ visits. Next, they were used in building a classifica-

tion model and extracting the rules. Interesting and potentially novel rules relating

treatment factors to symptoms were revealed.

Appendix: Attribute Definition

Table 4 The definition of attributes related to tinnitus patients and their visits in LISp-Miner: an

attribute’s group, name (short), meaning, type, number of categories, sample value(s)

Group Att name Attribute meaning Type Cat Sample

General THC Patient identifier Nom 583 00001

V Visit number Nom 36 0, 1, 2, 3, 4

P Problems in order Nom 15 H, HLT, TL

Miso Misophonia Nom 2 Yes/no

Miso treat Miso treatment protocol Nom 4 1, 2, 3, 4

FU Follow-up contact Nom 5 A, C, T, E

DP Dependency of H presence Nom 2 Yes/no

REM Real-ear measurements Nom 2 Yes/no

C Category assigned by doctor Nom 6 0, 1, 2, 3, 4

CC Category chosen by patient Nom 6 0, 1, 2, 3, 4

Audiological R25 RE pure-tone thresh 0.25 kHz Inter 8 <−10;0)

R50 RE pure-tone thresh 0.50 kHz Inter 8 <−5;0)

... ... ... ... ...

L25 LE pure-tone thresh 0.25 kHz Inter 8 <−5;0)

... ... ... ... ...

LR50 Loudness Discomfort Level R Inter 8 <12;75)

(continued)
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Table 4 (continued)

Group Att name Attribute meaning Type Cat Sample

LL50 Loudness Discomfort Level L Inter 8 <11;77)

... ... ... ... ...

T PR T pitch match Inter 40 <0.35;1)

T Rm RE match type Nom 4 NB,NBN

T LR T loudness match dB Inter 4 <4;22)

Th R RE threshold of hearing Inter 50 < − 10;−2)

MRR RE minimal masking level Inter 8 <0;26)

... ... ... ... ...

Demographics AgeBeg Age when treatment began Inter 7 <8;40)

G Gender Nom 2 f/m

Occup Occupation Nom 54 Engineer

Work Work status Nom 4 h, r, s, w

MedNr Number of medications taken Inter 5 <1;2)

Country Country of residence Nom 9 USA, Chile

State State of residence Nom 31 AL, GA

Zip Zip code of residence Nom 181 01742

Tinnitus AgeInd Age problem started Inter 7 <7;30)

AATI Tin induced by auto accident Nom 2 Yes/no

DETI Tin induced by depression Nom 2 Yes/no

HLTI Tin assoc with hearing loss Nom 2 Yes/no

NTI Tin induced by noise Nom 2 Yes/no

STI Tin induced by stress Nom 2 Yes/no

OTI Tin induced by operation Nom 2 Yes/no

OMTI Tin induced by other medical Nom 2 Yes/no

T side Tin as side-effect of pharm Nom 2 Yes/no

Gradual Gradual onset of tinnitus Nom 2 Yes/no

Sudden Sudden onset of tinnitus Nom 2 Yes/no

Condition Aches Aches present? Nom 2 Yes/no

... ... ... ...

Menieres Menieres disease present? Nom 2 Yes/no

... ... ... ...

Vertigo Vertigo present? Nom 2 Yes/no

Medication Accupiril Accupiril taken? Nom 2 Yes/no

... ... ... ...

Zyrtec Zyrtec taken? Nom 2 Yes/no

(continued)
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Table 4 (continued)

Group Att name Attribute meaning Type Cat Sample

Instruments Ins Instrument category Nom 3 SG, HA

Type Type of instrument Nom 6 GHH

Model Model of instrument Nom 16 BTE

Ins vis Instrument (Visits table) Nom 43 BTE, GHS

Instr Instrument (Question table) Nom 32 SG, GHS

REM Freg RE Right-ear measurements Inter 12 <39;2000)

Th R SPL Inter 25 <22;26)

Mix R SPL Inter 25 <4;31)

Mix R SL Inter 15 <0;2)

Tol R SPL Inter 25 <7;29)

Tol R SL Inter 15 <4;8)

Max R SPL Inter 25 <43;48)

Max R SL Inter 25 <6;11)

Freg LE Left-ear measurements Inter 12 <50;2000)

... ... ... ...

Interview An t % of time when annoyed Inter 10 <0;2)

Aw t % of time when aware Inter 10 <0;7.5)

Out Outcome Nom 4 B,N,S,W

T sv Severity of tinnitus Inter 5 <0;3)

T an Annoyance of tinnitus Inter 5 <0;3)

T EL Tinnitus effect on life Inter 5 <0;2)

T pr Tinnitus as a problem Inter 5 <0;2.5)

H pr Hyperacusis as a problem Inter 5 <0;0.5)

HL pr Hearing loss as a problem Inter 5 <0;0.5)

DST Oversensitivity y/n Nom 2 Y, N

Phys Physical discomfort y/n Nom 2 Y, N

Descr Descr of troublesome sound Nom 43 Sirens

Concert Activity prevented Nom 5 0, 2, 4

Shopp Shopping prevented Nom 5 0, 2, 4

Mov Movies prevented Nom 5 0, 2, 4

Wrk Work prevented Nom 5 0, 2, 4

Rest Restaurants prevented Nom 5 0, 2, 4

Drv Driving prevented Nom 5 0, 2, 4

Sport Sports prevented Nom 5 0, 2, 4

Church Church prevented Nom 5 0, 2, 4

House Housekeeping prevented Nom 5 0, 2, 4

(continued)
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Table 4 (continued)

Group Att name Attribute meaning Type Cat Sample

Child Childcare prevented Nom 5 0, 2, 4

Soc Social activities prevented Nom 5 0, 2, 4

Oth Other activities prevented Nom 5 0, 2, 4

H sv Severity of DST Inter 5 <0;1.5)

H an Annoyance of DST Inter 5 <0;1.5)

H EL DST effect on life Inter 5 <0;1)

Pr Program assessment Nom 3 Y, N, U

Ret Returning Instruments Nom 2 Y, N

NewmanQ F1 Difficult to concentrate? Nom 3 0, 2, 4

F2 Difficult to hear people? Nom 3 0, 2, 4

E3 Tin makes you angry? Nom 3 0, 2, 4

F4 Tin makes you confused? Nom 3 0, 2, 4

C5 Feel desperate? Nom 3 0,2,4

E6 Complain about your tin? Nom 3 0, 2, 4

F7 Sleeping problems? Nom 3 0,2,4

C8 Feel cannot escape your tin? Nom 3 0, 2, 4

F9 Tin interfere social activities? Nom 3 0, 2, 4

E10 Feel frustrated? Nom 3 0,2,4

C11 Feel have a terrible disease? Nom 3 0, 2, 4

F12 Difficult for you to enjoy life? Nom 3 0, 2, 4

F13 Job /house responsibilities? Nom 3 0, 2, 4

E14 Tin make you often irritable? Nom 3 0, 2, 4

F15 Difficult for you to read? Nom 3 0, 2, 4

E16 Tinnitus make you upset? Nom 3 0, 2, 4

E17 Stress on your relationships? Nom 3 0, 2, 4

F18 Difficult to focus

attention?

Nom 3 0, 2, 4

C19 No control over your tinnitus? Nom 3 0, 2, 4

F20 Tin makes you often tired? Nom 3 0, 2, 4

E21 Tin makes you depressed? Nom 3 0, 2, 4

E22 Tinnitus makes you anxious? Nom 3 0, 2, 4

C23 Cannot cope with your tin? Nom 3 0, 2, 4

F24 Tin worse when under stress? Nom 3 0, 2, 4

E25 Tin makes you feel insecure? Nom 3 0, 2, 4

Sc F Total score: Function Inter 6 <0;6)

Sc E Total score: Emotion Inter 6 <0;4)

Sc C Total score: Catastrophic Inter 6 <0;2)

Sc T Total score: sum of above Inter 5 Mild
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Rough-Granular Computing
for Relational Data

Piotr Hońko

Abstract Rough set theory and granular computing have widely been applied in

data mining. They have been used separately as well as a combined approach called

rough-granular computing. The usefulness of this approach in data mining is the

driving force for employing it to improve processing of relational data. This chapter

introduces three rough-granular approaches dedicated to handle complex data such

as relational one. Each of them processes relational data as granules and use the

tolerance rough set model to deal with possible uncertainty in data. The chapter

also compares the three approaches in terms of construction of information system,

information granules, and approximation spaces.

1 Introduction

Handling uncertainty in data is a challenging task in the field of data mining. A

powerful framework intended for this issue is provided by rough set theory [17]. It

was proposed by Professor Zdzisław Pawlak in early 1980s as a mathematical tool

to deal with uncertainty in data. Although being a standalone field, rough set theory

is considered as one of the main granular computing tools.

Granular computing is a relatively new, rapidly growing field of research (see,

e.g. [1, 4, 5, 12, 19, 24, 28]). It can be viewed as a label of theories, method-

ologies, techniques, and tools that make use of granules in the process of problem

solving [29].

A granule is a collection of entities drawn together by indistinguishability, sim-

ilarity, proximity or functionality [30]. Therefore, a granule can be defined as any

object, subset, class, or cluster of a given universe. The process of the formation of

granules is called granulation. To clearly differentiate granulation from clustering,

the semantic aspect of GC is taken into account. Therefore, we treat information
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granulation as a semantically meaningful grouping of elements based on a given

criterion [3].

In recent years, one can observe a trend in data mining towards the application of

granular computing based on the rough set approach. This newly emerging approach

is called rough-granular computing [23, 26].

Techniques of granular computing, especially rough sets, have widely been

applied in the field of data mining (see, e.g. [2, 18, 23]). Methods of rough sets

have also found application in mining data stored in multiple tables, i.e. relational

data mining. Namely, it has found application in tasks such as eliminating unimpor-

tant data (see, e.g. [25]); the analysis of invalid, missing, and indistinguishable data

(see, e.g. [13, 15]); reducing data size (see, e.g. [14]); relational classification rules

generation (see, e.g. [14, 16, 27]). A rough set model in those approaches was used

as a separate tool, i.e. it was not embedded in the granular computing framework.

Constructing a rough set model for processing data stored in a relational structure

is not a trivial task. A relational database considered in the context of data mining

tasks (e.g. classification) has a specified table (target table) that includes objects to

be analyzed and it can be treated as the counterpart of the single table database. The

remaining relational database tables (background tables) include additional data that

is directly or indirectly associated with the target table. For that reason, a lot of, or

even most, essential information about target objects can be hidden in the background

tables.

The crucial problem when applying rough sets to relational data is, therefore, to

construct an approximation space. Such a space should include essential information

about target objects, background objects, as well as relationships among them.

The goal of this chapter is to present three approaches for processing relational

data using rough set tools. They all are defined in the paradigm of granular comput-

ing and are constructed based on the tolerance rough set model, which was origi-

nally developed for single table databases. The underlying idea of building a rough-

granular approach to relational data is to use the benefits of both: granular computing

to define a given problem at a proper level of granularity, and rough set theory to deal

with uncertainty in relational data.

The remaining of the chapter is organized as follows. Section 2 introduces a

rough-granular computing defined for single table databases. Sections 3, 4, and 5

present three rough-granular approaches constructed, respectively, based on sum

of approximation spaces, relational approximation space, and compound approxi-

mation spaces. Section 6 compares the three approaches in terms of essential steps

such as construction of information system, information granules, and approxima-

tion spaces. Section 7 provides concluding remarks.

2 Rough-Granular Computing for Single Table Data

This section provide a rough-granular computing based approach for processing data

stored in single table databases.
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Rough-granular computing can be viewed as rough set theory interpreted in the

framework of granular computing and applied to discovering knowledge from data-

bases. Elementary granules in this approach are represented by indiscernibility or

similarity classes. Higher level granules, which correspond to rough approximations,

are constructed based on elementary granules that totally (lower approximation) or

partially (upper approximation) belong to the concept under consideration. These

granules are the basis for discovering relevant patterns (e.g. classification rules)

describing the concept.

Depending on the data type and the task to be performed, different rough set

models can be used as the core of rough-granular computing. The tolerance rough

set model [20, 25] can be taken due to its flexibility in tuning parameters. This model

is defined using the notion of information system, and is in fact a generalization of

the standard rough set model introduced by Professor Zdzisław Pawlak.

Definition 1 (information system) [17] An information system is a pair IS = (U,A),
where U is a non-empty finite set of objects, called the universe, and A is a non-

empty finite set of attributes. Each attribute a ∈ A is treated as a function a ∶ U →
Va, where Va is the value set of a.

Granules in a information system are defined using the following language. Let

𝛴(IS) denote the set of formulas, i.e. Boolean combinations of descriptors over IS =
(U,A). Descriptors are of the form (a in V) where a ∈ A and V ⊆ Va.

Definition 2 [21] (set of formulas) The set 𝛴(IS) formulas is defined recursively by

1. (a in V) ∈ 𝛴(IS) for any a ∈ A and V ⊆ Va,

2. if 𝛼 ∈ 𝛴(IS), then ¬𝛼 ∈ 𝛴(IS),
3. if 𝛼, 𝛽 ∈ 𝛴(IS), then 𝛼 ∧ 𝛽 ∈ 𝛴(IS),
4. if 𝛼, 𝛽 ∈ 𝛴(IS), then 𝛼 ∨ 𝛽 ∈ 𝛴(IS).

Let ||𝛼||IS ⊆ U denote the semantics of 𝛼 in IS.

Definition 3 [21] (semantics of formulas) The semantics of formulas from 𝛴(IS)
with respect to an information system IS = (U,A) is defined recursively by

1. ||a in V||IS = {x ∈ U ∶ a(x) ∈ V},

2. ||¬𝛼||IS = U⧵||¬𝛼||IS,

3. ||𝛼 ∧ 𝛽||IS = ||𝛼||IS ∩ ||𝛽||IS,

4. ||𝛼 ∨ 𝛽||IS = ||𝛼||IS ∪ ||𝛽||IS.

An approximation space is defined based on an information system as follows.

Definition 4 [20] (approximation space) A parameterized approximation space

AS#,$ for an information system IS = (U,A) is defined by AS#,$ =
(
U, I#, 𝜈$

)
, where

1. U is a non-empty set of objects,

2. I# ∶ U → P (U) is an uncertainty function,

3. 𝜈$ ∶ P (U) × P (U) → [0, 1] is a rough inclusion function.
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For every object, the uncertainty function defines a set of similarly described objects

(elementary granule). The function can be defined as follows.

Definition 5 (cf. [20]) (uncertainty function) Let IS = (U,A) be an information sys-

tem. An uncertainty function IB,𝜀 is defined by

IB,𝜀(x) =
⋂

a∈B
Ia,𝜀a (x)

where x ∈ U,B ⊆ A, 𝜀 = (𝜀a ∶ a ∈ B) is a vector of thresholds such that 𝜀a ≥ 0
for a ∈ B, Ia,𝜀a(x) = {y ∈ U ∶ da(x, y) ≤ 𝜀a}, and da ∶ U × U → [0,∞) is a distance

measure.

The rough inclusion function defines the degree of inclusion of a set X in a set

Y , where X,Y ⊆ U. Depending on its definition, the rough inclusion function can

satisfy different properties. The following properties can be considered.

1. ∀
A,B⊆U

A ⊆ B ⇒ 𝜈$(A,B) = 1 (p1),
2. ∀

A,B⊆U
𝜈$(A,B) = 1 ⇔ A ⊆ B (p2),

3. ∀
A,B,C⊆U

𝜈$(B,C) = 1 ⇒ 𝜈$(A,B) ≤ 𝜈$(A,C) (p3),
4. ∀

A,B,C⊆U
B ⊆ C ⇒ 𝜈$(A,B) ≤ 𝜈$(A,C) (p4),

5. ∀
A,B⊆U

𝜈$(A,B) = 0 ⇔ A ∩ B = ∅ (p5).

We call 𝜈$ rough inclusion function (RIF), quasi-rough inclusion function (q-

RIF), or weak quasi-rough inclusion function (weak q-RIF) if it satisfies properties

p2 and p3, p1 and p3, or p1 and p4, respectively [6]. Property p5 is optional.

The following rough inclusion functions will be used.

Definition 6 [20] (rough inclusion functions) The rough inclusion 𝜈l,u (X,Y) of a set

X in a set Y is defined by

𝜈l,u (X,Y) = fl,u
(
𝜈SRI (X,Y)

)
,where fl,u (t) =

⎧
⎪
⎨
⎪
⎩

0 if 0 ≤ t ≤ l
t−l
u−l

if l < t < u
1 if t ≥ u

,

0 ≤ l < u ≤ 1and 𝜈SRI (X,Y) =

{
card(X∩Y)
card(X)

if X ≠ ∅
1 if X = ∅

is the standard rough inclusion.

Note that if l = 0 and u = 1, then the rough inclusion 𝜈l,u is equivalent to the

standard rough inclusion 𝜈SRI .

The lower and upper approximations (higher level granules) of a concept are defined

as follows.

Definition 7 [20] (approximations of a subset in AS#,$) For an approximation space

AS#,$ =
(
U, I#, 𝜈$

)
and any subset X ⊆ U, the lower and the upper approximations

are defined respectively by
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LOW
(
AS#,$,X

)
=
{
x ∈ U ∶ 𝜈$

(
I# (x) ,X

)
= 1

}
,

UPP
(
AS#,$,X

)
=
{
x ∈ U ∶ 𝜈$

(
I# (x) ,X

)
⟩ 0

}
.

Symbols #, $ denote vectors of parameters which can be tuned in the process of

concept approximation.

Granules in an approximation space are constructed while computing similarity

classes.

Definition 8 (similarity class as a granule) Given an approximation spaceAS(B,𝜀),$ =(
U, I(B,𝜀), 𝜈$

)
constructed based on an information system IS = (U,A), where B ⊆

A, and (x, y) ∈ I(B,𝜀) ⇔ ∀a∈B|a(x) − a(y)| ≤ 𝜀a, 𝜀a ∈ 𝜀. Let 𝛼i =
⋀

a∈B(a, [a(xi) − 𝜀a,

a(xi) + 𝜀a]) where xi ∈ U.

A similarity class defined by uncertainty function IB,𝜀(xi) can be expressed by the

granule (𝛼i, ||𝛼i||IS).

Example 1 Consider the following database.

Customer

id Name Age Gender Income Class

1 Adam Smith 36 Male 1500 Yes

2 Tina Jackson 33 Female 2500 Yes

3 Ann Thompson 30 Female 1800 No

4 Susan Clark 30 Female 1800 Yes

5 Eve Smith 26 Female 2500 Yes

6 John Clark 29 Male 3000 Yes

7 Jack Thompson 33 Male 1800 No

Let AS(B,𝜀),(l,u) =
(
U, IB,𝜀, 𝜈l,u

)
be an approximation space, where U = {oi ∶ 1 ≤

i ≤ 7}, oi correspond to i-th object from table customer, B = {age, income}, 𝜀 =
(𝜀age, 𝜀income) = (3, 500), the distance measure is d(x, y) = |a(x) − a(y)|, l = 0.33, u =
0.67. The similarity class IB,𝜀(xi) of an object xi ∈ U can be expressed be the gran-

ule (𝛼i, ||𝛼i||IS)where 𝛼i = (age, [age(xi) − 3, age(xi) + 3]) ∧ (income, [income(xi) −
500, income(xi) + 500]).

Let X1 = {1, 2, 4, 5, 6} be the set (i.e. concept) to be approximated.

The table below shows the similarity classes and their rough inclusion degrees in X.

oi ∈ U IB,𝜀(oi) 𝜈SRI(IB,𝜀(oi),X)
1 {1, 7} 0.5
2 {2} 1
3 {3, 4, 7} 0.33
4 {3, 4, 7} 0.33
5 {5, 6} 1
6 {5, 6} 1
7 {1, 3, 4, 7} 0.5
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We obtain the following approximations (higher level granules)

LOW(AS(B,𝜀),(l,u),X) = {2, 5, 6},UPP(AS(B,𝜀),(l,u),X) = {1, 2, 5, 6, 7}.

3 Sum of Approximation Spaces

This section introduces an approach that is based on a sum of approximation spaces,

each constructed based on one information system [22].

3.1 Sum of Information Systems and Their Granules

The structure used to store data is a sum of information systems.

Definition 9 (sum of information systems) Let ISi = (Ui,Ai) for i = 1,… , k be infor-

mation systems. The sum of ISi (i = 1,… , k), denoted by +(IS1,… , ISk), is defined

by

1. The objects of +(IS1,… , ISk) consist of tuples (x1,… , xk) of objects from ISi,
i.e. U = U1 ×⋯ × Uk.

2. The attributes of +(IS1,… , ISk) consist of the attributes of ISi-copy with disjoint

attribute sets.

To define dependencies among particular systems the constrained sum of infor-

mation systems is introduced.

Definition 10 (constrained sum of information systems) Let ISi = (Ui,Ai) for i =
1,… , k be information systems and let R ⊆ U1 ×⋯ × Uk be a constraint relation.

The constrained sum of ISi (i = 1,… , k), denoted by +R(IS1,… , ISk), is defined by

1. The objects of +R(IS1,… , ISk) consist of k-tuples (x1,… , xk) of objects from R,

i.e. all objects from U1 ×⋯ × Uk satisfying the constraint R.

2. The attributes of +R(IS1,… , ISk) consist of the attributes of A1,… ,Ak where

distinct copies are made for attributes in common.

Constraints in a constrained sum of information system can be defined inter-

nally, i.e. by Boolean combination of attribute-value descriptors where attributes

come from particular information systems, or externally, i.e. by measurable attributes

different than those from particular information systems. The information system

+R(IS1,… , ISk) can also be defined as a subsystem of +(IS1,… , ISk) by imposing

on it a constraint being the characteristic function of the relation R.

Granules in sums of information systems are defined using the language defined

in Sect. 2.

Definition 11 (granules in: information system, sum of information systems, con-
strained sum of information systems)
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1. A granule in IS constructed over a formula 𝛼 ∈ 𝛴(IS) is defined by (𝛼, ||𝛼||IS).
2. A granule in +(IS1, IS2) constructed over formulas 𝛼 ∈ 𝛴(IS1) and 𝛽 ∈ 𝛴(IS2)

is defined by (𝛼 ∧ 𝛽, ||𝛼||IS1 × ||𝛽||IS2 ).
3. A granule in +R(IS1, IS2) constructed over formulas 𝛼 ∈ 𝛴(IS1) and 𝛽 ∈ 𝛴(IS2)

is defined by (𝛼 ∧ 𝛽, (||𝛼||IS1 × ||𝛽||IS2 ) ∩ R).

Granules in +(IS1,… , ISk) and +R(IS1,… , ISk) can be defined analogously to

those from +(IS1, IS2) and +R(IS1, IS2), respectively.

3.2 Approximation Spaces Constructed Based on Sum
of Information Systems

The sum of information system is used to define an approximation space.

Definition 12 (sum of approximation spaces) Let AS#i = (Ui, I#i , 𝜈SRI) be an approx-

imation space for the information system ISi, where i = 1,… , k. The sum of approx-

imation spaces +(AS#1 ,… ,AS#k ) for the sum of information systems +(IS1,… , ISk)
is defined by

1. the universe U = U1 × ⋯ × Uk,

2. the uncertainty function I#1,…,#k ((x1,… , xk)) = I#1 (x1) × ⋯ × I#k (xk),
3. the inclusion relation 𝜈SRI(X1 × ⋯ × Xk,Y1 × ⋯ × Yk) = 𝜈SRI(X1,Y1) ⋅ ⋯ ⋅

𝜈SRI(Xk,Yk).

Definition 13 (approximations of a subset in +(AS#1 ,… ,AS#k )) For an approxima-

tion space +(AS#1 ,… ,AS#k ) =
(
U, I#1,…,#k , 𝜈SRI

)
and any subset X1 × ⋯ × Xk ⊆ U,

the lower and the upper approximations are defined respectively by

LOW
(
+(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
=

{
(x1,… , xk) ∈ U ∶ 𝜈SRI

(
I#1,…,#k

(
(x1,… , xk)

)
,X1 × ⋯ × Xk

)
= 1

}
,

UPP
(
+(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
=

{
(x1,… , xk) ∈ U ∶ 𝜈SRI

(
I#1,…,#k

(
(x1,… , xk)

)
,X1 × ⋯ × Xk

)
> 0

}
.

An approximation of a compound concept (i.e. X1 × ⋯ × Xk ⊆ U) can be com-

puted based on approximations of its particular components (i.e. Xi, 1 ≤ i ≤ k).

Proposition 1 For an approximation space +(AS#1 ,… ,AS#k ) and any subset
X1 × ⋯ × Xk ⊆ U we obtain

LOW
(
+(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
= LOW(AS#1 ,X1) × ⋯ × LOW(AS#k ,Xk),

UPP
(
+(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
= UPP(AS#1 ,X1) × ⋯ × UPP(AS#k ,Xk).
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A proof of this proposition can be found in [22].

Definition 14 (constrained sum of approximation spaces) Let AS#i = (Ui, I#i , 𝜈SRI)
be an approximation space for the information system ISi, where i = 1,… , k, and

let R ⊆ U1 × ⋯ × Uk be a constraint relation. The constrained sum of approxima-

tion spaces +R(AS#1 ,… ,AS#k ) for the sum of information systems +R(IS1,… , ISk)
is defined by

1. the universe (U1 × ⋯ × Uk) ∩ R = R,

2. the uncertainty function I#1,…,#k ((x1,… , xk)) = (I#1 (x1) × ⋯ × I#k (xk)) ∩ R,

3. the inclusion relation 𝜈SRI(X1 × ⋯ × Xk,Y1 × ⋯ × Yk) = 𝜈SRI(X1,Y1) ⋅ ⋯ ⋅
𝜈SRI(Xk,Yk).

Definition 15 (approximations of a subset in+R(AS#1 ,… ,AS#k )) For an approxima-

tion space+R(AS#1 ,… ,AS#k ) =
(
U, I#1,…,#k , 𝜈SRI

)
and any subsetX1 × ⋯ × Xk ⊆ U,

the lower and the upper approximations are defined respectively by

LOW
(
+R(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
=

{
(x1,… , xk) ∈ R ∶ 𝜈SRI

(
I#1,…,#k

(
(x1,… , xk)

)
,X1 × ⋯ × Xk

)
= 1

}
,

UPP
(
+R(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
=

{
(x1,… , xk) ∈ R ∶ 𝜈SRI

(
I#1,…,#k

(
(x1,… , xk)

)
,X1 × ⋯ × Xk

)
> 0

}
.

An approximation of a compound concept in +R(AS#1 ,… ,AS#k ) can be computed

based on its approximation obtained in +(AS#1 ,… ,AS#k ).

Proposition 2 For an approximation space +R(AS#1 ,… ,AS#k ) and any subset
X1 × ⋯ × Xk ⊆ U we obtain

LOW
(
+R(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
=

R ∩ LOW
(
+(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
,

UPP
(
+R(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
=

R ∩ UPP
(
+(AS#1 ,… ,AS#k ),X1 × ⋯ × Xk

)
.

A proof of this proposition can be found in [22].

Example 2 Given an extended version of the database from Example 1.

Customer

id Age Gender Income Class

1 36 Male 1500 Yes

2 33 Female 2500 Yes

3 30 Female 1800 No

4 30 Female 1800 Yes

5 26 Female 2500 Yes

6 29 Male 3000 Yes

7 30 Male 1800 No

Product

id Name Price

1 Bread 2.00

2 Butter 3.50

3 Milk 2.50

4 Tea 5.00

5 Coffee 6.00

6 Cigarettes 6.50

Purchase

id cust_id prod_id Amount Date

1 1 1 1 24/06

2 1 3 2 24/06

3 2 1 1 25/06

4 2 3 1 26/06

5 4 6 1 26/06

6 4 2 3 27/06

7 5 5 2 27/06

8 6 4 1 27/06
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1. Let IS1 = (U1,A1) and IS2 = (U2,A2) be information systems corresponding to

relations customer and product, respectively. Consider the approximation space

+(ASB1
,ASB2

) where ASB1
= (U1, I(B1,𝜀1), 𝜈SRI) and ASB2

= (U2, I(B2,𝜀2), 𝜈SRI) are

constructed respectively based on IS1 and IS2, and B1 = {age, income},B2 =
{price}, 𝜀1 = (𝜀age, 𝜀income) = (3, 500), 𝜀2 = (𝜀price) = (2.00).
The similarity class I(B1,𝜀1),(B2,𝜀2)((xi, yj)) of an object (xi, yj) ∈ U1 × U2 can be

expressed be the granule (𝛼i ∧ 𝛽j, ||𝛼i||IS1 × ||𝛽j||IS2 ) where 𝛼i = (age, [age(xi) −
3, age(xi) + 3]) ∧ (income, [income(xi) − 500, income(xi) + 500]) and

𝛽j = (price, [price(yi) − 2.00, price(yi) + 2.00]).

x1 ∈ U1 IB1
(x1) 𝜈SRI(IB1

(x1),X1) x2 ∈ U2 IB2
(x2) 𝜈SRI(IB2

(x2),X2)
1 {1, 7} 0.5 1 {1, 2, 3} 0
2 {2} 1 2 {1, 2, 3, 4} 0.25
3 {3, 4, 7} 0.33 3 {1, 2, 3} 0
4 {3, 4, 7} 0.33 4 {2, 4, 5} 0.67
5 {5, 6} 1 5 {4, 5} 1
6 {5, 6} 1 6 {6} 1
7 {1, 3, 4, 7} 0.5 – – –

Let X1 = {1, 2, 4, 5, 6} ⊂ U1, X2 = {4, 5, 6} ⊂ U2, and X1 × X2 be the set to be

approximated.

The table below shows the similarity classes and their rough inclusion degrees

in the respective sets.

We obtain the following approximations LOW(+(ASB1
,ASB2

),X1 × X2) =
{2, 5, 6} × {5, 6} and UPP(+(ASB1

,ASB2
),X1 × X2) = {1,… , 7} × {2, 4, 5, 6}.

2. Consider an approximation space +R(ASB1
,ASB2

), where ASB1
and ASB2

are

defined as in the previous point, and where R ⊂ U1 × U2 is defined by the con-

dition: A customer bought a product. In fact, R is defined by the purchase table,

i.e. R = 𝜋cust_id,prod_id(purchase).

(x1, x2) ∈ R I(B1 ,𝜀1),(B2 ,𝜀2)((x1, x2)) 𝜈SRI(I(B1 ,𝜀1),(B2 ,𝜀2)((x1, x2)),X1 × X2)
(1, 1) {(1, 1), (1, 3)} 0
(1, 3) {(1, 1), (1, 3)} 0
(2, 1) {(2, 1), (2, 3)} 0
(2, 3) {(2, 1), (2, 3)} 0
(4, 6) {(4, 6)} 1
(4, 2) {(4, 2), (6, 4)} 0.5
(5, 5) {(5, 5)} 1
(6, 4) {(4, 2), (6, 4)} 0.5

The table below shows the similarity classes and their rough inclusion degrees

in the concept.
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We obtain the following approximations LOW(+R(ASA1
,ASA2

),X1 × X2) =
{(4, 6), (5, 5)} and UPP(+R(ASA1

,ASA2
),X1 × X2) = {(4, 6), (4, 2), (5, 5), (6, 4)}.

Except for the possibility to deal with uncertain data, the approach based on the

sum of approximation spaces also enables to express patterns (e.g. classification rules

generated for approximations) in a simple manner than it is possible using a relational

language. Namely, patterns can be expressed using an attribute-value language and

constraints showing dependencies among particular information systems. The con-

struction of patterns can also be simplified compared with that of relational patterns

since operations such as pattern refinement and pattern satisfiability are less complex

when using an attribute-value language.

4 Relational Approximation Spaces

This section introduce an approach that is based on an information system dedicated

to processing relational data [8, 9].

4.1 Relational Information System and Its Granules

To consider objects apart from the tables they belong to, the notion of relational

object is used.

Definition 16 (relational object) Given a database relation with the schema

R(a1, a2,… , an). An expression of the form R(v1, v2,… , vn) is an object of R if and

only if (v1, v2,… , vn) is a tuple of R.

In this approach a relational database is represented by an information system that

is constructed based on a standard information system.

We will use DT and DB to denote, respectively, the sets of target and background

relations of database D = T ∪ B.

Let UDT
=

⋃

R∈DT

R and UDB
=

⋃

R∈DB

R be, respectively, the set of all target and back-

ground objects of database D. Subsequently, let ADT
=

⋃

R∈DT

AR
1

and ADB
=

⋃

R∈DB

AR

be, respectively, the set of all attributes of the target and background relations of

database D.

The following representation of a relational database is introduced.

Definition 17 (information system for a relational database) A relational database

D = T ∪ B is represented by an information system ISD = (UD,AD), where

1AR denotes here the set of all attributes of relation R.
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1. UD = UDT
∪ UDB

is a non-empty finite set of objects, called the universe,

2. AD = ADT
∪ ADB

is a non-empty finite set of attributes.

The information system defined above includes objects together with the names of

tables they belong to. Information on table joins is not directly stored int the system.

They can be reconstructed based on metadata on primary and foreign keys.

In this approach essential information acquired from the relational data are

descriptions of target objects. These descriptions are used, in a sense, to identify

the objects, i.e., based on their descriptions the objects are compared to one another

or to relational patterns. For each target object its description based on the back-

ground relations is constructed. To construct such descriptions the notion of related

set is introduced [7, 9].

Definition 18 (related objects) Object o is related to object o′ if and only if there

exists a key attribute joining o with o′.2

In this approach, the key attribute is, in general, understood as an important attribute

for joining tables. It is usually a primary or foreign key. However, in some cases, it

can also be another attribute by which one table can be joined with another table or

with itself.

A target object’s description is expressed by a set of background objects joined

with the target object.

Definition 19 (related set) A related set of a target object o, denoted by rlt(o), is a

set of background objects directly or indirectly related to the target object.

Each target object in the approach is processed along with its related set.

For a given target object one can usually obtain more than one description, each

of which describes the object with different precision. The objective is to choose an

appropriate description of the target object with respect to a given data mining task.

The precision of the target object’s description (i.e., the related set) can be tuned by

its depth level. To define a related set of a given depth level, Definitions 18 and 19

are generalized.

Definition 20 (n-related objects) Object o0 is n-related to object on if and only if

there exist n − 1 objects such that oi is related to oi+1, where n > 0 and 0 ≤ i ≤ n − 1.

Definition 21 (n-related set) The n-th depth level related set of a target object o,

denoted by rltn(o), is a set of background objects, each of which are m-related to

object o and m ≤ n.

A related set of a given target object can be viewed as its specific description. In

order to derive relational patterns, the target object’s description is generalized. To

obtain a general description of a target object itself and its related set, they are both

generalized.

2
The tables the objects belong to are not assumed to be different.
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Definition 22 (generalized object) Let o = R(v1, v2,… , vn) be an object where

(v1, v2,… , vn) is a tuple of a relation R. A generalized object o, denoted by ogen,

is defined by

ogen = o𝜎

where 𝜎 = {vi1∕t1, vi2∕t2,… vim∕tm} is a substitution such that vij ∈ {v1, v2,… , vn}
(j = 1,… ,m, m ≤ n), and ti is either a variable, a list of constants, or symbol “_” if

the component is not important for the consideration.

Definition 23 (generalized related set) Let rlt(o) = {o1,… , on} be the related set of

a target object o. A generalized related set of a target object o, denoted by rltgen(o),
is defined by

rltgen(o) = rlt(o)𝜎 = {o1𝜎1,… , on𝜎n}

where 𝜎 is a substitution, there exists 𝜎0 ⊆ 𝜎 such that ogen = o𝜎0, and 𝜎i ⊆ 𝜎 (i =
1,… , n).

A generalized n-related set is defined in an analogous way.

Related sets can be generalized in a variety of ways (for more, details see [7]). A

method for generalization can be developed taking into consideration language bias.

Generalized target objects and their related sets are used to define information

granules. For this purpose the method for constructing information granules [21] is

expanded to a relational case.

In this approach an elementary granule is defined by a conjunction of relational

descriptors, i.e., expressions of the form R(t1, t2,… , tn), where R is a relation name,

and ti (1 ≤ i ≤ n) are the terms (constants or variables).

Given information system ISD = (UD,AD).

1. A generalized target object ogen of object o from ISD is a trivial elementary gran-

ule, i.e., a single relational descriptor. The meaning (i.e., semantics) of the gran-

ule, denoted by SEMISD (ogen), is the set of target objects that satisfy the descriptor.

2. A generalized related set rltgen(o) of target object o from ISD is an elementary

granule where each descriptor is constructed based on a background relation.

The meaning of the granule, denoted by SEMISD (rltgen(o)), is the set of target

objects for each of which there exists a substitution such that each descriptor

under the substitution is satisfied.

3. A generalized target object ogen with its generalized related set rltgen(o) is repre-

sented by the granule (ogen, rltgen(o)). The meaning of the granule is

SEMISD

(
(ogen, rltgen(o))

)
= (SEMISD (ogen), SEMISD (rltgen(o))).

The information granules as defined above can be viewed as an abstract repre-

sentation of relational data. The accuracy level of the representation can easily be

changed by taking another depth level of the related sets.
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4.2 Approximation Spaces Constructed Based on Relational
Information Systems

The information system defined for relational database is used to construct an

approximation space.

Definition 24 (approximation space ASi#,$) An approximation spaceASi#,$ for a data-

base D = T ∪ B represented by the information system ISD = (UD,AD) is defined by

ASi#,$ =
(
Ui

, I#, 𝜈$
)
, where

1. Ui =
{
(o, rlti(o)) ∶ o ∈ UT

}
is a non-empty set of granules,

2. I# ∶ Ui → P
(
Ui)

is an uncertainty function,

3. 𝜈$ ∶ P
(
Ui) × P

(
Ui) → [0, 1] is a rough inclusion function.

Definition 25 (similarity of objects) Let o and o′ be relational objects constructed

over a relation R. The similarity of objects o and o′ for attribute subset B ⊆ R.A is

computed as follows

simB(o, o′) =

{ ∑
a∈B sima(a(o),a(o′))

|B|
if B ≠ ∅,

0 if B = ∅,

where sima(v, v′) is any measure that returns the similarity of values v and v′ of an

attribute a.

Since a target object may be joined with more than one object of the same relation,

the measure that operates on sets of objects is introduced.

Definition 26 (similarity of sets) Let SR and S′R be sets of relational objects con-

structed over a relation R such that |SR| ≤ |S′R|. The similarity of sets SR and S′R is

computed as follows

R_simB(SR, S′R) =
max

{∑|SR|
i=1 simB(P[i],P′[i]) ∶ P′ ∈ perm(S′R)

}

|S′R|

where perm(S) is the set of all permutations of a set S, and P is a certain permutation

of SR.

Due to operating on permutations the measure is suitable for relatively small sets.

The next measure operate on sets including objects of different relations.

Let B = {BR ∶ R ∈ S ∩ S′,B ⊆ R.A} where S and S′ are sets of relational objects.

Definition 27 (similarity of sets of relational objects) The similarity of sets S and

S′ of relational objects is computed as follows

S_simB(S, S′) =
∑

R∈rel(S)∩rel(S′) R_simBR
(SR, S′R)

|rel(S) ∪ rel(S′)|
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Definition 28 (similarity of granules) Let g = (o, rlt(o)) and g′ = (o′, rlt(o′)) be

granules such that o, o′ ∈ UDT
. The similarity of granules g and g′ is computed as

follows

g_simB(g, g′) = S_simB({o} ∪ rlt(o), {o′} ∪ rlt(o′)).

Definition 29 (uncertainty function) The uncertainty function IB,𝜀

is defined as fol-

lows

IB,𝜀

(g) =
{
g′ ∈ Ui ∶ g_simB

(
g, g′

)
≥ 𝜀

}
,

where 𝜀 ∈ (0, 1] is a similarity threshold.

When the uncertainty function is defined one can compute approximations of any

subset of Ui
using measures analogous to those from Definition 7.

If the standard rough inclusion and the full similarity of granules are considered

(i.e. the uncertainty function is IB,1), then the quality of approximations increases

together with the increase of the depth level.

Proposition 3 Let ASi(B,1),SRI = (Ui
, IB,1, 𝜈SRI) and ASj(B,1),SRI = (Uj

, IB,1, 𝜈SRI) be
approximation spaces such that i ≤ j and let Xi

⊆ Ui and Xj
⊆ Uj be subsets con-

structed based on the same subset of UT. The following hold

LOW(ASi(B,1),SRI ,X
i) ⊆ LOW(ASj(B,1),SRI ,X

j),

UPP(ASj(B,1),SRI ,X
j) ⊆ UPP(ASi(B,1),SRI ,X

i).

A proof can be constructed based on the fact that IB,1(g) ⊆ IB,1(g′) where g ∈ Uj

and g′ ∈ Ui
are constructed based on the same object from UT .

Definition 30 (approximation space genASi#,$) An approximation space genASi#,$
for a database D = T ∪ B represented by the information system ISD = (UD,AD) is

defined by genASi#,$ =
(

Ui
gen, I#, 𝜈$

)

, where

1. Ui
gen =

{

(ogen, rltigen(o)) ∶ o ∈ UT

}

is a non-empty set of granules,

2. I# ∶ Ui
gen → P

(

Ui
gen

)

is an uncertainty function,

3. 𝜈$ ∶ P
(

Ui
gen

)

× P
(

Ui
gen

)

→ [0, 1] is a rough inclusion function.

To compute the similarity of generalized objects of the same relation, the measure

from Definition 19 can be used. Here, attributes that are replaced in a generalized

object with variables are treated as nominal.

The mentioned measures can be used if a syntactic comparison of generalized

objects is sufficient. Otherwise the following measure can be applied.

Definition 31 (semantic similarity of objects) Let ogen and o′gen be relational objects

constructed over the same relation. The semantic similarity of objects ogen and o′gen
for attribute subset B is computed as follows
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sim′
B(ogen, o

′
gen) =

{
1 if ∃

𝜎

ogen𝜎 = o′gen ∧ o′gen𝜎
−1 = ogen;

0 otherwise.

For generalized approximation spaces we have analogous properties to those from

Proposition 3.

Example 3
1. Consider the following approximation space for the database from Example 2:

AS2(B,𝜀),SRI = (U2
, IB,𝜀

, 𝜈SRI), where B = {B0,B1},B0 = {age,
income},B1 = {price}, 𝜀 = 0.5.

Universe U2
consists of the following granules g1 = (c1, {p1, p2, p′1, p

′
3}), g2 =

(c2, {p3, p4, p′1, p
′
3}), g3 = (c3, ∅), g4 = (c4, {p5, p6, p′6, p

′
2}), g5 = (c5, {p7, p′5}),

g6 = (c6, {p8, p′4}), g7 = (c7, ∅).3

The similarity of granules for attributes from B is computed using the function

sima(v, v′) = 1 − |v−v′|
maxVa−minVa

. To compare the whole granules, the function from

Definition 28 is used.

Let X = {1, 2, 4, 5, 6} be the set to be approximated.

The table below shows the similarity classes and their rough inclusion degrees

in X.

g ∈ U2 IB,𝜀

(g) 𝜈SRI(IB,𝜀

(g),X)
1 {1, 2, 4} 1
2 {1, 2, 4, 6} 1
3 {3, 7} 0
4 {1, 2, 4, 5, 6} 1
5 {4, 5, 6} 1
6 {2, 4, 5, 6} 1
7 {3, 7} 0

We obtain that LOW(AS2(B,𝜀),SRI ,X) = UPP(AS2(B,𝜀),SRI ,X) = X.

2. Consider the approximation spaces AS2(B,𝜀),SRI = (U2
gen, IB,𝜀

, 𝜈SRI), where B and

𝜀 are defined as in the previous point.

Universe U2
gen can have the following form after generalization:

g1 = (c(A, _, 30, _, 1500, yes), {p(B,A,C, _, _), p′(C, _, {2.00, 2.50})},
g2 = (c(A, _, 33, _, 2500, yes), {p(B,A,C, _, _), p′(C, _, {2.00, 2.50})},
g3 = (c(A, _, 30, _, 1800, no), ∅),

3
Symbols ci, pi, p′i denote the i-th object of tables customer, purchase, product, respectively.
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g4 = (c(A, _, 30, _, 1800, yes), {p(B,A,C, _, _), p′(C, _, {12.00, 3.50})}
g5 = (c(A, _, 26, _, 2500, yes), {p(B,A,C, _, _), p′(C, _, 6.00)},
g6 = (c(A, _, 29, _, 3000, yes), {p(B,A,C, _, _), p′(C, _, 5.00)},
g7 = (c(A, _, 30, _, 1800, no), ∅).

The same results regarding approximations of X can be obtained using functions

from the previous point and the following one to measure the similarity of sets of

prices: sim(V ,V ′) = 1 − |avg(V) − avg(V ′)| min{|V|,|V
′|}

max{|V|,|V ′|}
where avg(V) returns the

average of values from V , and
min{|V|,|V ′|}
max{|V|,|V ′|}

is used to take into account a possible

difference in the cardinalities of V and V ′
.

This approach enables to construct a granular representation of relational objects.

Such a representation can speed up the process of pattern generation. Namely, the

information (i.e. dependencies between target objects and their related background

ones) to be used in the pattern construction is included in the granular representa-

tion. Depending on the depth level one can obtain a more or less general granular

representation of relational objects. When a more general representation is taken, the

descriptions of some target objects may become indistinguishable. To deal with this

issue the above described relational approximation space can be used.

5 Compound Approximation Spaces

This section introduces an approach that is a relational extension of the granular data

mining approach dedicated to dealing with uncertainty in data [10, 11].

5.1 Compound Information Systems and Their Granules

Each table of a database is represented by an information system.

Definition 32 (information system for a database table) An information system for

a database table with the schema Ri(id, a1,… , am) is a pair ISi = (Ui,Ai), whereUi =
{x ∶ x ∈ Ri} and Ai = {id, a1, a2,… , am}.

4

The compound information system corresponding to m database tables is defined

as follows.

Definition 33 (compound information system IS(1,2,…,m)) Let ISi = (Ui,Ai) be infor-

mation systems, where 1 ≤ i ≤ m and m > 1 is a fixed number. A compound infor-

mation system IS(1,2,…,m) is defined by

4
The index (i.e. the relation identifier) is omitted if this does not lead to a confusion.
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IS(1,2,…,m) = ×(IS1, IS2,… , ISm) =

( m∏

i=1
Ui,

m⋃

i=1
Ai

)

. (1)

To allow the connections between tables that occur in the original database or are

defined by an expert a constrained version of the compound information system is

introduced.

A constraint, denoted by ⋈
𝛩

, is defined by the theta join on disjunction of the

formulas from 𝛩.

The constrained compound information system corresponding to m database

tables is defined as follows.

Definition 34 (constrained compound information system IS𝛩(1,2,…,m)) A constrained

compound information system IS𝛩(1,2,…,m) is defined by

IS𝛩(1,2,…,m) =⋈
𝛩

(IS1, IS2,… , ISm) = (U1 ⋈𝛩

U2 ⋈𝛩

⋯ ⋈
𝛩

Um,

m⋃

i=1
Ai). (2)

For each information system that corresponds to a database table a description

language is defined. The language enables to define formulas that are used for con-

structing information granules.

Let A = Ades ∪ Akey, where IS = (U,A) is an information system and Ades (Akey)
is the set of descriptive (key) attributes. The descriptive language for IS is denoted

by LIS = LISdes ∪ LISkey . An atomic formula and its negation are defined in LIS by their

syntax and semantics.

Definition 35 (syntax and semantics of an atomic formula in LIS = LISdes ∪ LISkey )
The syntax and semantics of atomic formulas in a language LIS are defined by

1. a ∈ Ades, v ∈ Va ⇒ (a, v) ∈ LISdes and SEMISdes (a, v) = {x ∈ U ∶ a(x) = v},

2. a ∈ Ades, V ⊆ Va ⇒ (a,V) ∈ LISdes and SEMISdes (a,V) = {x ∈ U ∶ a(x) ∈ V},

3. 𝛼 ∈ LISdes ⇒ ¬𝛼 ∈ LISdes and SEMISdes (¬𝛼) = U⧵SEMISdes (𝛼),
4. a, a′ ∈ Akey ⇒ (a, a′) ∈ LISkey and SEMISkey (a, a

′) = {x ∈ U ∶ a(x) = a′(x)},

5. 𝛼 ∈ LISkey ⇒ ¬𝛼 ∈ LISkey and SEMISkey (¬𝛼) = U⧵SEMISkey (𝛼).

More advanced formulas are constructed recursively using logical operators such

as conjunction and disjunction. For more details, see [10].

The above defined language facilitates the construction of formulas that express

not only simple features of objects (i.e. formulas with descriptors of the form (a, v) ∈
LISdes ) but also relationships between the features (i.e. formulas with descriptors of

the form (a, a′) ∈ LISkey ).
Using any granule description language L, one can defined granules of the form

(𝛼, SEM(𝛼)), where 𝛼 ∈ L.

A description language corresponding to two database tables is constructed as

follows.
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Let LIS(i,j) = LISi∨j ∪ LISi∧j , where LISi∨j consists of formulas from LISi and LISj , and

LISi∧j consists of formulas constructed over both ISi and ISj.

Definition 36 (syntax and semantics of an atomic formula in LIS(i,j) ) The syntax and

semantics of atomic formulas in a language LIS(i,j) are defined by

1. 𝛼 ∈ LISi ⇒ 𝛼 ∈ LISi∨j and SEMISi∨j (𝛼) = SEMISi (𝛼) × Uj,

2. 𝛼 ∈ LISj ⇒ 𝛼 ∈ LISi∨j and SEMISi∨j (𝛼) = Ui × SEMISj (𝛼),
3. 𝛼 ∈ LISi∨j ⇒ ¬𝛼 ∈ LISi∨j and SEMISi∨j (¬𝛼) = (Ui × Uj)⧵SEMISi∨j (𝛼),
4. a ∈ (Ai)key, a′ ∈ (Aj)key ⇒ (a, a′) ∈ LISi∧j and SEMISi∧j (a, a

′) = {(x, y) ∈ Ui ×
Uj ∶ a(x) = a′(y)},

5. 𝛼 ∈ LISi∧j ⇒ ¬𝛼 ∈ LISi∧j and SEMISi∧j (¬𝛼) = (Ui × Uj)⧵SEMISi∧j (𝛼).

The above defined language makes it possible to construct formulas that show fea-

tures of pairs of objects from different universes. Furthermore, the formulas can also

show the relationship between the objects themselves (i.e. formulas with a descriptor

of the form (a, a′) ∈ LISi∧j ).
A description language can be extended to LIS(m) defined for a compound infor-

mation system IS(m).

Definition 37 (syntax and semantics of an atomic formula in LIS(m) ) The syntax and

semantics of atomic formulas in a language LIS(m) are defined by

1. 𝛼 ∈ LISi ⇒ 𝛼 ∈ LIS(m) and SEMIS(m) (𝛼) = U1 × ⋯ × Ui−1 × SEMISi (𝛼) × Ui+1 ×
⋯ × Um,

2. 𝛼 ∈ LIS(i,j) ⇒ 𝛼 ∈ LIS(m) and SEMIS(m) (𝛼) = {(x1,… , xi,… , xj,… , xm) ∈
m∏

k=1
Uk ∶

(xi, xj) ∈ SEMIS(i,j) (𝛼)},

3. 𝛼 ∈ LIS(m) ⇒ ¬𝛼 ∈ LIS(m) and SEMIS(m) (¬𝛼) = (U1 × ⋯ × Um)⧵SEMIS(m) (𝛼).

Since knowledge discovery is focused on selected database tables only, usually

one table (i.e. the target table), the semantics of LIS(m) is extended by the following

1. 𝛼 ∈ LIS(m) ⇒ SEM𝜋i
IS(m)

(𝛼) = 𝜋Ai
(SEMIS(m) (𝛼)), where 1 ≤ i ≤ m,

5

2. 𝛼 ∈ LIS(m) ⇒ SEM
𝜋i1 ,i2 ,…,ik
IS(m)

(𝛼) = 𝜋Ai1
,Ai2

,…,Aik
(SEMIS(m) (𝛼)), where

1 ≤ i1, i2,… , ik ≤ m and k < m.

The syntax and semantics of LIS𝛩(m) are defined in the same way as in Definition 37.

It is enough to replace IS(i,j), IS(m), and the × operation with IS𝛩(i,j), IS
𝛩

(m), and the ⋈
𝛩

operation, respectively.

5
𝜋A(∙) is understood as a projection over the attributes from A.
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5.2 Approximation Spaces Constructed Based on Compound
Information Systems

Firstly, the notion of approximation space is slightly redefined.

Definition 38 (approximation space AS
𝜔

) An approximation spaceAS
𝜔

for an infor-

mation system IS = (U,A) is defined by

AS
𝜔

= (U
,

I
𝜔

, 𝜈
𝜔

) (3)

where 𝜔 = (#, $), I
𝜔

= I#, 𝜈𝜔 = 𝜈$.

Definition 39 (compound approximation space AS
𝜔(m)

) Let AS
𝜔i
= (Ui, I𝜔i

, 𝜈
𝜔i
),

where 1 ≤ i ≤ m and m > 1, be approximation spaces for information systems ISi =
(Ui,Ai). A compound approximation space AS

𝜔(m)
for a compound information sys-

tem IS(m) = ×(ISi,… , ISm) is defined by

AS
𝜔(m)

= ×(AS
𝜔1
,… ,AS

𝜔m
) = (U

𝜔(m)
, I

𝜔(m)
, 𝜈

𝜔(m)
) (4)

where

1. U
𝜔(m)

=
m∏

i=1
Ui,

2. ∀
(x1,…,xm)∈U𝜔(m)

I
𝜔(m)

((x1,… , xm)) =
m∏

i=1
I
𝜔i
(xi),

3. ∀
Xi,Yi∈Ui,1≤i≤m

𝜈
𝜔(m)

(
m∏

i=1
Xi,

m∏

i=1
Yi) =

m∏

i=1
𝜈
𝜔i
(Xi,Yi).

Approximations of a set in a compound approximation space are defined as fol-

lows.

Definition 40 (approximations of a set in AS
𝜔(m)

) Let AS
𝜔(m)

= (U
𝜔(m)

, I
𝜔(m)

, 𝜈
𝜔(m)

) be

a CAS and Xi ⊆ Ui, where 1 ≤ i ≤ m. The lower and upper approximations of the

set

m∏

i=1
Xi in AS

𝜔(m)
are defined, respectively, by

LOW(AS
𝜔(m)

,

m∏

i=1
Xi) = {(x1,… , xm) ∈ U

𝜔(m)
∶ 𝜈

𝜔(m)
(I
𝜔(m)

((x1,… , xm)),
m∏

i=1
Xi) = 1},

UPP(AS
𝜔(m)

,

m∏

i=1
Xi) = {(x1,… , xm) ∈ U

𝜔(m)
∶ 𝜈

𝜔(m)
(I
𝜔(m)

((x1,… , xm)),
m∏

i=1
Xi) > 0}.

Approximations of a set in AS
𝜔(m)

have properties analogous to those defined in

+(AS#1 ,… ,AS#k ) (see Proposition 1).
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Definition 41 (constrained compound approximation space AS𝛩
𝜔(m)

) Let AS
𝜔i
=

(Ui, I𝜔i
, 𝜈

𝜔i
) be approximation spaces for information systems ISi = (Ui,Ai), and

𝜈$ = 𝜈
𝜔i

for 1 ≤ i ≤ m. Let also𝛩 = {𝜃1, 𝜃2,… , 𝜃n} be a set of joins ofAS
𝜔i

such that

∀
1<j≤m

∃
i<j

Ui ⋈𝛩

Uj ≠ ∅ (each approximation space joins with some earlier considered

space).

A constrained compound approximation space AS𝛩
𝜔(m)

for a constrained compound

information system IS𝛩(m) is defined by

AS𝛩
𝜔(m)

=⋈
𝛩

(AS
𝜔1
,⋯ ,AS

𝜔m
) = (U𝛩

𝜔(m)
, I𝛩

𝜔(m)
, 𝜈

𝛩

𝜔(m)
) (5)

where

1. U𝛩

𝜔(m)
= U1 ⋈𝛩

⋯ ⋈
𝛩

Um,

2. ∀
(x1,…,xm)∈U1⋈𝛩

⋯⋈
𝛩

Um

I𝛩
𝜔(m)

((x1,… , xm)) = I
𝜔1
(x1) ⋈𝛩

⋯ ⋈
𝛩

I
𝜔m
(xm),

3. ∀
Xi,Yi∈Ui,1≤i≤m

𝜈

𝛩

𝜔(m)
(X1 ⋈𝛩

⋯ ⋈
𝛩

Xm,Y1 ⋈𝛩

⋯ ⋈
𝛩

Ym) = 𝜈$(X1 ⋈𝛩

⋯ ⋈
𝛩

Xm,

Y1 ⋈𝛩

⋯ ⋈
𝛩

Ym).

Approximations of a set in a constrained compound approximation space are

defined as follows.

Definition 42 (approximations of a set in AS𝛩
𝜔(m)

) Let AS𝛩
𝜔(m)

= (U𝛩

𝜔(m)
, I𝛩

𝜔(m)
, 𝜈

𝛩

𝜔(m)
) be

a CCAS and Xi ⊆ Ui, where 1 ≤ i ≤ m. The lower and upper approximations of the

set X1 ⋈𝛩

⋯ ⋈
𝛩

Xm in AS𝛩
𝜔(m)

are defined, respectively, by

LOW(AS𝛩
𝜔(m)

,X1 ⋈𝛩

⋯ ⋈
𝛩

Xm) =

{(x1,… , xm) ∈ U𝛩

𝜔(m)
∶ 𝜈

𝛩

𝜔(m)
(I𝛩
𝜔(m)

((x1,… , xm)),X1 ⋈𝛩

⋯ ⋈
𝛩

Xm) = 1},

UPP(AS𝛩
𝜔(m)

,X1 ⋈𝛩

⋯ ⋈
𝛩

Xm) =

{(x1,… , xm) ∈ U𝛩

𝜔(m)
∶ 𝜈

𝛩

𝜔(m)
(I𝛩
𝜔(m)

((x1,… , xm)),X1 ⋈𝛩

⋯ ⋈
𝛩

Xm) > 0}.

The lower approximation of a compound concept (i.e. X1 ⋈𝛩

⋯ ⋈
𝛩

Xm ⊆ U𝛩

𝜔(m)
)

may differ from that computed based on the lower approximations of its particular

components (i.e. Xi, 1 ≤ i ≤ m). Thanks to this, additional knowledge can be pro-

vided by the lower approximation of a compound concept.

Proposition 4 Let AS
𝜔(m)

be a compound approximation space and AS𝛩
𝜔(m)

its con-
strained version such that 𝜈

𝜔i
(1 ≤ i ≤ m) and 𝜈𝛩

𝜔(m)
are RIFs. For any subset X1 ⋈𝛩

⋯ ⋈
𝛩

Xm ⊆ U𝛩

𝜔(m)
we have

LOW(AS
𝜔1
,X1) ⋈𝛩

⋯ ⋈
𝛩

LOW(AS
𝜔m
,Xm) ⊆ LOW(AS𝛩

𝜔(m)
,X1 ⋈𝛩

⋯ ⋈
𝛩

Xm),
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UPP(AS
𝜔1
,X1) ⋈𝛩

⋯ ⋈
𝛩

LOW(AS
𝜔m
,Xm) = UPP(AS𝛩

𝜔(m)
,X1 ⋈𝛩

⋯ ⋈
𝛩

Xm).

A proof of this proposition can be found in [11].

Example 4 1. The approximation space that corresponds to +(ASB1
,ASB2

) from

Example 2 is AS
𝜔(2)

= ×(AS
𝜔1
,AS

𝜔2
) = (U

𝜔(2)
, I

𝜔(2)
, 𝜈

𝜔(2)
), where AS

𝜔1
and AS

𝜔2

are constructed respectively based on IS1 = (U1,A1) and IS2 = (U2,A2), i.e.

U
𝜔(2)

= U1 × U2, I
𝜔(2)

is constructed with I
𝜔1

= I{age,income},𝜀1 and I
𝜔2

= I{price},𝜀2
(𝜀1 = (𝜀age, 𝜀income) = (3, 500), 𝜀2 = (𝜀price) = (2.00)), 𝜈

𝜔(2)
is constructed with

𝜈
𝜔1

= 𝜈SRI and 𝜈
𝜔1

= 𝜈SRI .

The similarity class I
𝜔(2)

((xi, yj)) of an object (xi, yj) ∈ U
𝜔(2)

can be expressed be

the granule (𝛼ij, SEMIS(2) (𝛼ij) where 𝛼i = (age, [age(xi) − 3, age(xi) + 3]) ∧
(income, [income(xi) − 500, income(xi) + 500]) ∧ (price, [price(yi) − 2.00,
price(yi) + 2.00]).
The approximations of X1 × X2 = {1, 2, 4, 5, 6} × {4, 5, 6} ⊂ U

𝜔(2)
are as those

from Example 2, i.e. LOW(AS
𝜔(1,2)

,X1 × X2) = {2, 5, 6} × {5, 6} and

UPP(AS
𝜔(1,2)

,X1 × X2) = {1,… , 7} × {2, 4, 5, 6}. Moreover, we obtained

𝜋1(LOW(AS
𝜔(2)

,X1 × X2)) = {2, 5, 6}, 𝜋1(UPP(AS𝜔(2)
,X1 × X2)) = {1,… , 7},

𝜋2(LOW(AS
𝜔(2)

,X1 × X2)) = {5, 6}, 𝜋2(UPP(AS𝜔(2)
,X1 × X2)) = {2, 4, 5, 6}.

2. The approximation space that corresponds to +R(ASB1
,ASB2

) from

Example 2 is AS𝛩
𝜔(3)

=⋈ (AS
𝜔1
,AS

𝜔2
,AS

𝜔3
) = (U𝛩

𝜔(3)
, I𝛩

𝜔(3)
, 𝜈

𝛩

𝜔(3)
), where 𝛩 =

{𝜃1, 𝜃2}, 𝜃1 = (customer.id, purchase.cust_id), 𝜃2 = (purchase.prod_id, product.
id). Furthermore, AS

𝜔1
,AS

𝜔2
, and AS

𝜔3
are constructed respectively based on

IS1 = (U1,A1) (customer), IS2 = (U2,A2) (purchase), and IS2 = (U2,A2)
(product). Namely, U𝛩

𝜔(3)
= U1 ⋈𝛩

U2 ⋈𝛩

U3, I
𝜔1

= I{age,income},𝜀1 , I𝜔2
= I∅,null,6

and I
𝜔3

= I{price},𝜀2 (𝜀1 = (𝜀age, 𝜀income) = (3, 300), 𝜀2 = (𝜀price) = (2.00)).
The similarity class I

𝜔(3)
((xi, xj, xk)) of an object (xi, xj, xk) ∈ U𝛩

𝜔(3)
can be

expressed be the granule (𝛼ijk, SEMIS𝛩(2)
(𝛼ij)) where 𝛼i = (age, [age(xi) − 3,

age(xi) + 3]) ∧ (income, [income(xi) − 500, income(xi) + 500]) ∧ (price, [price
(xk) − 2.00, price(xk) + 2.00]).
Let X = X1 ⋈𝛩

U2 ⋈𝛩

X3 = {1, 2, 4, 5, 6} ⋈
𝛩

U2 ⋈𝛩

{4, 5, 6} = {(4, 5, 6),
(5, 7, 5), (6, 8, 4)} ⊂ U

𝜔(3)
be the concept to be approximated.

The table below shows the similarity classes and their rough inclusion degrees

in X.

We obtain the following approximations LOW(AS𝛩
𝜔(2)

,X) = {(4, 5, 6), (5, 7, 5)}
and UPP(AS𝛩

𝜔(2)
,X) = {4, 5, 6), (4, 6, 2), (5, 7, 5), (6, 8, 4)}. We also have

𝜋1(LOW(AS𝛩
𝜔(2)

,X)) = {4, 5}, 𝜋1(UPP(AS𝛩
𝜔(2)

,X)) = {4, 5, 6},
𝜋3(LOW(AS𝛩

𝜔(2)
,X)) = {5, 6} and 𝜋3(UPP(AS𝛩

𝜔(2)
,X)) = {2, 4, 5, 6}.

The compound approximation spaces enable to approximate not only a combina-

tion of concepts defined for particular relational database tables, but also the rela-

tionships that take place for these concepts. Thanks to this, additional knowledge

6
The uncertainty function I∅,null is used when no condition is defined.
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(x1, x2) ∈ U1 ⋈𝛩

U2 I𝛩
𝜔(1,2)

((x1, x2)) 𝜈
𝜔(1,2)

(I𝛩
𝜔(1,2)

((x1, x2)),X1 ⋈𝛩

X2)
(1, 1, 1) {(1, 1, 1), (1, 2, 3)} 0
(1, 2, 3) {(1, 1, 1), (1, 2, 3)} 0
(2, 3, 1) {(2, 3, 1), (2, 4, 3)} 0
(2, 4, 3) {(2, 3, 1), (2, 4, 3)} 0
(4, 5, 6) {(4, 5, 6)} 1
(4, 6, 2) {(4, 6, 2), (6, 8, 4)} 0.5
(5, 7, 5) {(5, 7, 5)} 1
(6, 8, 4) {(4, 6, 2), (6, 8, 4)} 0.5

based on obtained approximation can be acquired compared with that obtained by

direct joining approximations of the concepts defined in particular tables.

Furthermore, patterns in this approach can be constructed and expressed in a sim-

pler way since an extended attribute-value language is used, which has a simpler

syntax than a relational one.

6 Comparative Study

This section compares the three approaches in terms of construction of information

system, information granules, and approximation spaces. For simplicity’s sake the

approaches from Sects. 3, 4, and 5 will be referred to as A1, A2, and A3, respectively.

1. Information system for relational data.

The data structure in A1 enables to join different information systems into one

system called sum of information systems. In the basic version all particular sys-

tems are independent of one another. The extended version, called constrained

sum of information systems, makes it possible to define a relation between any

two particular systems. This structure can be used to store relational data in such

a way that each particular system corresponds to a basic database table, and the

relation between two systems corresponds to the join table. In spite of the fact

that a constraint used in a constrained sum of information systems is more general

than the theta join of two tables, it can only be used for a limited group of join

tables. Namely, those tables which include only key attributes (see Example 2).

Approach A2 uses an information system that can collect relational objects from

all database tables. The universe in this data structure is divided into two subsets,

each of which includes either target or background objects. The system enables

to store data from any relational database that is devoted to mining data, i.e. at

least one target table is specified. It is also assumed that the target table is fixed

before transforming the database into its corresponding information system. The

change of the target table, which may take place in e.g. association discovery,

requires rebuilding the information system.

Approach A3 provides two versions of a compound information system. The

basic version joins particular information systems, each of which corresponds to
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one database table. The constrained version enables to impose constraints on two

or more particular information systems. Such a constraint may reflect a relation-

ship that occurs in the original relational database, but it also enables to introduce

another limitation defined by an expert.

The data structures in this approach are similar to those from A1. Namely, the

compound information system is coincident with the sum of information sys-

tems, whereas its constrained version corresponds in a sense to the constrained

sum of information systems. On the one hand, the constrained compound infor-

mation system can be treated as a special case of the constrained sum of infor-

mation systems since the constraint, which is generally defined in the latter, can

be formed by using formulas that join tables. On the other hand, the system in

A3 is more general since it enables to transform any join tables, also those that

join more than two tables as well as those that include not only key attributes,

but also descriptive ones.

2. Granules in information systems.

In A1 granules in particular information systems are defined using the gran-

ule description language defined in the approach for single table databases (see

Sect. 2). In the constrained sum of information system, the syntax of a granule is

the same as in the non-constrained version, whereas the semantic of the granule

is that from the non-constrained version limited to those objects that belong to

the constraint defined by relation R. Such an approach enables to use directly the

standard granule description language for defining granules in a system consist-

ing of any number of particular information systems.

In A2 a basic granule is formed based on one target object and the set of back-

ground objects related to the target one. The relationship between a target object

and a background one can be defined based on the relationship between the tar-

get and background tables. These objects can also be joined using a relationship

introduced by an expert. The approach enables also to define information gran-

ules, each of which is constructed based on one basic granule. The construc-

tion relies on a generalization of a basic granule by replacing its constants with

appropriate variables. The set of such information granules can be seen as an

abstract representation of relational data, and it facilitates the process of discov-

ering important regularities in relational data.

In A3 information granules are defined in particular information systems using

the description language adapted to defining granules in a single table of a

relational database. To define granules that take into account the relationship

between tables, the description language is extended by introducing formulas

that express the join of two tables. Therefore, the expressiveness of the descrip-

tion language is increased since it can use formulas constructed based not only

on an attribute-value condition, but also on an attribute-attribute condition where

the two attributes can be either descriptive ones or key ones.

3. Approximation space.

Each of the approaches adapts the tolerance rough set model and constructs it

based on the information system defined in the approach.
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In A1 an approximation space is defined for each particular system of the sum of

information systems in the same way as for a single table database (see Sect. 2).

An approximation space for the whole sum of information systems is defined

by combining the universes, the uncertainty functions, and the rough inclusion

functions from particular approximation spaces. Such an approach facilitates the

process of computing approximations of a concept defined in the whole space

since it can be done by merging partial results obtained in particular spaces. The

approximations in the constrained version are computed based on those from the

non-constrained version by limiting them using the constraint defined by rela-

tion R.

In A2 the standard approximation space (see Sect. 2) is adapted to work on the

universe that consists of granules. Since each of granules includes a target object

and its related set the main effort to adapt the tolerance rough set model is to

adjust the uncertainty function. To this end, a similarity measure used by the

uncertainty function is defined to compare granules. The comparison is done at

each level of granules, i.e. additional functions are used to measure similarity of

two attributes, two objects of the same relation, two sets of objects of the same

relation, two sets of objects of any relations, and finally two target objects together

with their related sets.

Like the sum of information systems, the compound approximation space in A3
makes it possible to define approximations of a compound concept based on the

partial results obtained for particular approximation spaces. The constrained ver-

sion, in turn, enables to approximate a more advanced concept than that being

a combination of concepts defined in particular spaces. Namely, such a concept

can also include an information how database tables are joined. Thank to this,

it is possible to approximate not only a combination of concepts, but also the

relationship that occurs among the tables. Furthermore, the approach enables to

consider approximations of a compound concept in the context of an approxima-

tion subspace, in particular the subspace corresponding to one table.

It is worth mentioning that the three approaches can be used to process relational

data that is stored in a typical relational database or in any database consisting of

multiple tables. All the approaches provide tools to express any constraints or rela-

tionships that occur in the database. Thanks to this, it is possible to deal with e.g.

functional and multi-valued dependencies.

7 Conclusions

This chapter has presented and compared three rough-granular computing based

approaches to processing relational data. They all use information granules to

describe information hidden in data. The core of the three approaches is the tolerance

rough set model.

The following main advantages of using the approaches can be pointed out.
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1. Patterns are generated from relational data in a simpler way and they are expressed

using a simple language than a relational one (Approaches A1 and A3).

2. Pattern can be generated faster when they are constructed based on a granular

representation of relational data (Approach A2).

3. Additional knowledge can be obtained when approximating not only concepts

from particular relational database tables, but also the relationships that take

place for these concepts (Approach A3).

The choice of the approach for a given task can be done based on the character-

istics given below.

1. Sum of approximation spaces.

The approach is dedicated to complex data that can be expressed as a combination

of information systems that can alternatively interact with one another, where the

way of interaction is defined by a constraint. The data structure enables to store a

relational database where each join table includes only key attributes. A concept

in a sum of approximation spaces can be approximated using a combination of

partial results obtained in particular spaces.

2. Relational approximation space.

A relational database used in this approach is required to have at least one spec-

ified target table that includes objects to be analyzed. The remaining tables, i.e.

background ones, should include objects that can be used to build descriptions

of the target objects that are joined with them. The approach enables to approx-

imate a concept of target objects in the context of their descriptions. They can

be adjusted to a given problem by e.g. changing the depth level used during con-

struction of the descriptions.

3. Compound approximation space.

The approach enables to store tables of a relational database and relationships that

occur in the original database. It is also possible to define by an expert additional

constraints that are relevant for a given task. The concept to be approximated

can be a combination of concepts defined in particular database tables. It can

also include the information on relationships among tables. Taking into account

a relationship enables to produce additional approximations that may be different

from those for the concept not including the relationship. The result obtained for

a compound concept can be limited to any table in order to analyze the result for

a particular table in the context of the remaining ones.

The approaches have been presented in this chapter show that the notion of rough

set, originally defined by Professor Zdzisław Pawlak for single table databases, can

also be useful for processing relation data. Namely, rough set theory enables to pro-

vide an approximated description of a compound concept defined over many tables

as well as to analyze a concept of one table in the context of information hidden in

the remaining part of the database.
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The Boosting and Bootstrap Ensembles
for the Pair Classifier Based on the Dual
Indiscernibility Matrix

Piotr Artiemjew, Bartosz Nowak, Lech Polkowski
and Przemyslaw Gorecki

Abstract In search for subsets of data sets relevant in the classification of data

tasks, we have exploited the betweenness relation adopted from axiomatic elemen-

tary geometry. It has turned out that this relation can partition data into two subsets,

one of them dense in the sense that each object in this set is a convex combination

of a finite number of objects in it, the other, to the contrary, consisting of objects

endowed with outliers, i.e., pairs of (attribute, value) not possessed by any other

object. A technical tool for singling out those subsets is the Dual Indiscernibility

Matrix defined as a counterpart to a well-known Discernibility Matrix of Skowron-

Rauszer. On the basis of those ideas, the pair Classifier has been introduced. It is its

main feature that test objects are approximated to a certain degree by pairs of train-

ing objects which are not required to cover the object completely. In this chapter,

we examine selected methods for stabilization of the Pair Classifier like Bootstrap

Ensemble, Arcing based Bootstrap, Ada–Boost with Monte Carlo split. We present

results of experiments with some standard data sets. Consecutive sections are dedi-

cated to basics of the method: Dual Indiscernibility Matrix, Kernel and residuum

in data sets, Pair Classifier, Experiments, Discussion of results, Conclusion and

Perspectives.
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1 Introduction: Rough Set Theory

Rough set theory was proposed by Pawlak [13] as a tool for reasoning about uncer-
tain concepts by means of a precise language. The basic notion of that theory, the

approximation space, meant a pair of the form (U,R), where U denoted a set of

objects and R was an equivalence relation on the set U. In this scenario, concepts

defined as subsets of the setU were stratified into exact and inexact (rough) by means

of the relation R and its equivalence classes, denoted [x]R for each object x ∈ U. A

concept X ⊆ U was termed exact if and only if X could be represented as a union

of a family of equivalence classes of R, in the contrary case the concept X is rough.

For a rough concept X, its description in terms of R was possible only by means of

approximations from below and from above.

The lower approximation RX of the concept X is defined as the union
⋃
{[x]R ∶

[x]R ⊆ X} and the upper approximation RX is defined as the union
⋃
{[x]R ∶ [x]R ∩

X ≠ ∅}. Clearly, RX ⊆ X ⊆ RX and the three are equal if and only if X is exact. The

reader will find a detailed algebraic analysis of approximations in Pawlak [14].

This approach to uncertain notions has paid in cases of raw data assembled in

data tables. This tables were formalized in Pawlak [14] as information systems. An

information system is a pair IS = (U,A) where U is a set of objects and A is a set of

attributes of objects. Each attribute a ∈ A is formalized as a mapping on the set U
into a set V of possible values; the symbol a(u) denotes the value of the attribute a
on the object u. To render in this setting the basic notion of an approximation space,

one invokes the Leibniz Principle of identitas indiscernibilium, see Leibniz [10],

which states that objects which by no available means can be discerned should be

regarded as identical. Application of the Leibniz Principle leads to the hierarchy of

indiscernibility relations {INDB ∶ B ⊆ A} where each relation INDB is defined as

the set of pairs:

{(x, y) ∶
⋀

a ∈ B.a(x) = a(y)}. (1)

The equivalence relation INDB defines the family of B − exact concepts and the

family of B − rough concepts. An information system, reflecting the user choice of

attributes, can be confronted with the expert in a given process whose evaluation of

objects is reflected in the decision attribute d. The decision system is a triple (U,A, d)
where (U,A) is an information system and d ∉ A is a decision attribute, see Pawlak

[14].

To describe objects in an information/decision system (U,A)∕(U,A, d), one uses

the language of descriptors; a descriptor is a formula of the form (a, a(u)), where

a ∈ A ∪ {d} is an attribute and u ∈ U is an object. Descriptors are interpreted in the

set U of objects and the meaning of the descriptor (a, a(u)) is

[(a, a(u))] = {v ∈ U ∶ a(v) = a(u)}. (2)
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Descriptors relevant for an object u ∈ U, are collected in the information set of u,

denoted Inf (u) and defined as:

Inf (u) = {(a, a(u)) ∶ a ∈ A}. (3)

The relation between the set Inf = {Inf (u) ∶ u ∈ U} and the decision is expressed

by decision rules of the form:

⋀
Inf (u) ⇒ (d, d(u)). (4)

2 Mereology and Rough Mereology

Mereology in its classical form was created by Leśniewski [11], see Polkowski

[16, 17]. Its basic notion is the notion of a part relation, denoted 𝜋. Parts are required

to satisfy the following conditions on a set of objects U:

1.
⋀

u∈U
¬𝜋(u, u) 2. 𝜋(u, v) ∧ 𝜋(v,w) ⇒ 𝜋(u,w). (5)

The relation between mereology and rough set theory becomes evident when one

realizes that the subset relation in the set theory satisfies the requirements to be a

part relation, hence, a characterization of a rough concept X is: X is rough if and
only if 𝜋(RX,X) if and only if 𝜋(X,RX). It follows that the substantial relational-

algebraic fragment of rough set theory can as well be formalized in the language of

mereology.

2.1 Rough Mereology: Basic Notions

It was realized early in the development of rough set theory that the indiscernibility

relations do not give satisfactory flexibility in dealing with complex objects and data

and the need was felt was more parameterized theory, see Polkowski et al. [21] as

the first work in which tolerance relations were introduced into rough set theory, and

from that time many papers were produced on similarity relations in rough sets.

One way of introducing similarity and tolerance relations into rough sets was pro-

posed in Polkowski and Skowron [19, 20], as rough mereology which Achille Varzi

termed ‘fuzzified mereology’, see Varzi [26]. Rough mereology aimed at capturing

the essential features of partial containment and its basic notion has been proposed

as a ternary relation 𝜇(u, v, r) read ‘the object u is a part to a degree of r in the object

v’, where r is a real number in the interval [0,1] and u, v are objects in a set of objects

U. The relation 𝜇 was called in [19] a rough inclusion and the requirements it has

been subjected to have been as follows
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∙ 𝜇(u, v, 1) if and only if there exists a weak tolerance relation 𝜏 satisfying the con-

ditions: 1. tau(u, u); 2. 𝜏(u, v) ∧ 𝜏(v, u) ⇒ u = v; 3. 𝜏(u, v) ∧ 𝜏(v,w) ⇒ 𝜏(u,w).
∙ 𝜇(u, v, 1) ∧ 𝜇(w, u, r) ⇒ 𝜇(, v, r).
∙ 𝜇(u, v, r) ∧ s < r ⇒ 𝜇(u, v, s).

The choice of a particular rough inclusion depends on the context; for instance, in

the problem of intelligent control of a formation of autonomous mobile robots, the

rough inclusion was defined on closed convex subsets of the plane as:

𝜇(C,D, r) ⇔ ||C ∩ D||
||C||

≥ r, (6)

where ||X|| denotes the area of X.

2.2 Rough Mereology in Information and Decision Systems.
Meregeometry in Data

For an information system IS = (U,A) (a similar analysis holds for any decision sys-

tem, so we omit this case for now), we define as standard the Łukasiewicz rough
inclusion in whose definition the Jan Łukasiewicz idea of partial truth value is

exploited, see Łukasiewicz [12]

𝜇L(u, v, r) ⇔
|Inf (u) ∩ Inf (v)|

|Inf (u)|
≥ r. (7)

We recall that |X| denoted the cardinality of X.

For a rough inclusion 𝜇(u, v, r), one defines the mereological distance function

𝜅
𝜇

as follows:

kappa(u, v) = min{argmaxr𝜇(u, v, r), argmaxs𝜇(v, u, s)}. (8)

The distance function 𝜅 allows for introduction of geometry into the information

system. First, we define the mereological counterpart of the relation of nearness due

to Johan van Benthem in [2], denoted N(u, v,w) and read ‘u is nearer to than w’, see

Polkowski [16]:

N(u, v,w) ⇔ 𝜅(u, v) ≥ 𝜅(w, v). (9)

The relation of nearness is a prelude to the relation of betweenness. The relation of

betweenness was introduced by Alfred Tarski in his lectures on elementary geometry

in Warsaw University in 1926-7, and it was along with the relation of equidistance the

basis for axiomatization of elementary Euclidean geometry, see Tarski and Givant

[25]. In Tarski axiomatization the meaning of the relation Btw(u, v,w) was that ‘u is

between v and w’, i.e., u is a point in the segment with endpoints v,w.
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The abstract version of the betweenness relation due to van Benthem [2] is the

relation B(u, v,w) defined as follows,

B(u, v,w) ⇔
⋀

t
[(t = u) ∨ N(u, v, t) ∨ N(u,w, t)], (10)

which means that for each object t distinct from u, the object u is nearer to one at

least of endpoints v,w than t.

3 Dual Indiscernibility Matrix (DIM), Kernel, Residuum

We consider an information system IS = (U,A) with the value set V of possible

attribute values denoted by the generic symbol q. For the system IS, we define, see

Polkowski [15], the matrix DIM as the matrix of the form [ca,q]A×V , where

ca,q = {u ∈ U ∶ a(u) = q}. (11)

We generalize the betweenness relation B of (10) to the relation GB of generalized
betweenness in the context of the information system IS, to express betweenness of

an object among a finite number of other objects,

GB(u, v1, v2, ..., vk) ⇔
⋀

t.(t = u) ∨
⋁

j ≤ k.𝜅(u, vj) ≥ 𝜅(t, vj). (12)

We interpret this notion of betweenness in case when 𝜅 is induced by the Łukasiewicz

rough inclusion (7).

Theorem 1 (Polkowski [15]) GB(u, v1, v2, ..., vk) is true if and only if the infor-
mation set Inf (u) can be partitioned into sets C1,C2, ...,Ck, where Ci ⊂ Inf (vi) for
i = 1, 2, ..., k. Letting 𝛼i =

card(Ci)
card(A)

for i = 1, 2, ..., k, we represent u as the convex com-
bination of v1, v2, ..., vk with

∑k
i=1 𝛼i = 1, each 𝛼i positive.

For the information system IS, applying DIM to it, we single out the set

Res(IS) = {u ∈ U ∶
⋁

(a, q).ca,q = {u}, (13)

i.e., u is an outlier in the sense that the value q of a is taken only on u. We call the

set Res(IS) the residuum of IS. The complement U⧵Res(IS) is called the kernel of IS
denoted Ker(IS).

The idea behind the kernel is that objects in it are approximated by some other

objects in it in the sense of the generalized betweenness GB, close to it in the sense

of (12), hence this idea is similar to the idea of nearest neighbors NN; the difference

is in the fact that u in (12) is built from fragments of v1, v2, ..., vk making the idea of

closeness expressed stronger than in case of NN.
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Table 1 Classification results

Database Set tested Accuracy of C4.5 Accuracy of

k-NN

Number of

samples

Adult Whole set 0.857 ± 0.003 0.837 ± 0.003 39074.0

Ker 0.853 ± 0.004 0.835 ± 0.003 22366.0

Res 0.849 ± 0.003 0.833 ± 0.003 16708.0

PID whole set 0.733 ± 0.027 0.723 ± 0.021 614.4

Ker 0.704 ± 0.037 0.711 ± 0.032 212.9

Res 0.724 ± 0.035 0.745 ± 0.030 401.5

Fertility Whole set 0.852 ± 0.073 0.866 ± 0.060 80.0

Diagnosis Ker 0.846 ± 0.075 0.880 ± 0.064 71.6

Res 0.852 ± 0.068 0.880 ± 0.064 8.4

German whole set 0.713 ± 0.023 0.732 ± 0.025 800.0

Credit Ker 0.671 ± 0.045 0.714 ± 0.038 98.9

Res 0.712 ± 0.023 0.726 ± 0.030 701.1

Heart Whole set 0.750 ± 0.054 0.825 ± 0.048 216.0

Disease Ker 0.742 ± 0.061 0.822 ± 0.051 109.2

Res 0.767 ± 0.054 0.827 ± 0.041 106.8

Both subsets, the kernel and the residuum yield very satisfactory results when

standard well-known classifiers are applied to them. Table 1 shows a comparison

among accuracy of C4.5 and kNN classifiers applied, respectively, to the whole set,

the kernel and the residuum, see [18].

4 The Pair Classifier

The success of the kernel in representing the whole system, as shown in Table 1,

suggests a further simplification of the procedure for approximation of test objets

by training objects and here we propose a study of approximation of test objects by

pairs of training objects successively approximating test objects best. We consider

anew a decision system (U,A, d) in the task of classification, and we split the set U
into the training set Utrn and the test set Utst.

Given a test object utst ∈ Utst, we define the best training cover of level 0 for utst
denoted best − 00 − utst, as follows,

best − 00 − utst = argmaxvtrn |Inf (vtrn) ∩ Inf (utst|. (14)

Next, we define the second best training cover of level 0 for utst denoted best −
01 − utst,
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best − 01 − utst = argmaxvtrn≠best−00−utst |Inf (vtrn) ∩ Inf (utst|. (15)

This two training objects constitute the level 0 of approximation: L0 = {best − 00 −
utst, best − 01 − utst}. Assuming training objects of levels up to the level k, Lk, have

been defined for the test object utst, we define training objects of the level (k+1),

L(k+1), as:

best − (k + 1)0 − utst = argmaxvtrn∈U⧵
⋃
{Li∶i=0,1,...,k}|Inf (vtrn) ∩ Inf (utst|, (16)

and best − (k + 1)1 − utst =

argmaxvtrn∈U⧵[
⋃
{Li∶i=1,2,...,k|}∪{best−(k+1)0−utst |Inf (vtrn) ∩ Inf (utst|. (17)

The variable max stores the largest number m such that Lm is defined.

Having levels defined pairs in them are pooled according to a chosen scheme and

their pooled set of decision values is subjected to Majority Voting with the random

tie resolution. We can have the following schemes,

∙ Only pairs of level 0;

∙ Pairs of the specified best level;

∙ All pairs up to a specified level;

∙ All pairs selected up to Lmax.

Table 2 shows results of a comparison among Pair Classifier and k-NN, and, Bayes

classifiers. The symbol Lx denotes the whole system, as shown in Table 1, level of

covering, Pair-0 is the simple pair classifier with approximations by pairs and Pair-

best denotes the best result over levels studied.

Table 2 Pair classifier

Database kNN Bayes Pair-best Pair-0

Adult 0.841 0.864 0.853 L1 0.823

Australian 0.855 0.843 0.859 L4,5 0.859

Diabetes 0.631 0.652 0.721 L0 0.710

German credit 0.730 0.704 0.722 L1 0.721

Heart disease 0.837 0.829 0.822 L1 0.800

Hepatitis 0.890 0.845 0.892 L0 0.831

Congressional

voting

0.938 0.927 0.928L0 0.928

Mushroom 1.0 0.910 1.0 L0 1.0

Nursery 0.578 0.869 0.845 L0 0.845

Soybean large 0.928 0.690 0.910 L0 0.910
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5 Stabilization of Pair Classifier by Some Selected Methods

As the last leg in this study, we propose to apply to the Pair classifier some methods

of stabilization. We propose to stabilize results of classification by Pair Classifier

by Bootstrap Aggregating, Boosting based on Arcing, Boosting based Ada–Boost

with Monte carlo split and Random Forests. We recall below for the benefit of the

reader the principles of all of them. Ensemble methods own their resurgence to the

question:‘can a set of weak learners create a strong learner?’, see Kearns [8] and

Kearns and Valiant [9]. Methods for making this goal possible are known under the

common name of boosting, see Freund and Schapire [5], Shapire [23, 24], Zhou [27,

28]. We briefly recapitulate the approaches to boosting selected by us.

5.1 Bootstrap Aggregating

This method proposed by Breiman [3] known also as bagging, produces from the

training set Trn of size n, a number of copies of size n by random sampling with

replacement; the number m of copies is a parameter. Each copy is used to produce a

classification on the test part of data and in case of classification, the final result is

produced by Majority Voting. Bootstrap aggregating is also used in statistical analy-

sis of data in order to reduce variance in high-variance classifiers like regresion or

decision trees.

5.2 Bosting Based on Arcing

The idea of bagging has been strengthened, see Freund-Shapire [5, 6] and Shapire

[24], cf. also Breiman [4] by coupling it with the idea of ‘arcing’ (‘adaptive resam-

pling and combining’). As with bagging, the user specifies the number of steps in

the procedure. In the first step, the copy of the training set is i.i.d. drawn with uni-

form probability. In subsequent steps, probabilities with which copies are re-sampled

change. Assuming the probability distribution at the kth step to be Pk
, and the clas-

sifier induced from the kth copy be Ck
, its error is

d(u) = 1 if u is classified incorrectly else 0. (18)

One lets

𝜀k =
∑

x
Pk(x) × d(x) (19)

as the error of classification by Ck
averaged over all objects in the kth copy. Then the

parameter
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𝛽k =
1 − 𝜀k

𝜀k
(20)

is computed, and, the probability distribution for the (k+1)st copy is defined as

Pk+1(u) =
Pk(u) × 𝛽

dk(u)
k

∑
v Pk(v) × 𝛽

dk(v)
k

, (21)

the sum extended over all v’s in the (k+1)st copy. It follows that arcing assigns a

greater weight to worse classifiers. Finally, after the assumed number of steps, all

classifiers vote, the classifier Ck
with the weight equal to log𝛽k.

5.3 AdaBoost with Monte Carlo Split

AdaBoost, see Freund-Shapire [7], see Rojas [22], meaning ‘adaptive boosting’

is a proposition on the Kearns question ‘how weak learners may combine into a

strong learner?’. AdaBoost consists in adaptively adding consecutive weak classi-

fiers in a judicious way. The rational choice of the next weak classifier provided

by AdaBoost is based on the following consideration. For the training sample of

the form {(xi, yi) ∶ i = 1, 2, ..., n}, where each yi ∈ {+1,−1}, +1 meaning correct

classification, −1 misclassification, consider ensemble of classifiers C ∈ C of finite

cardinality, and assume that after (k-1)-steps the boosted classifier is of the form

C(k−1) = a1C1 + a2C2 +⋯ + am−1Cm−1 and at the mth step we want to choose Cm
and its weight am in order to make a better classifier.

Introducing the exponential loss
∑k

i=1 exp(−yiCm(xi)), and the weight w(m)
i =

exp(−yiCm−1(xi), we can represent the error by the mth classifier as
∑k

i=1 w
(m)
i exp

(−yiamCm(xi). It follows (see works quoted) that the best mth classifier Cm is the

one that minimizes the error
∑k

i=1 w
(m)
i and the weight am is given as

1
2
ln 1−𝜀m

𝜀m
where

𝜀m =
∑

yi≠Cm (xi)
w(m)
i

∑k
i=1 w

(m)
i

. In AdaBoost with Monte Carlo split the Trn set is split according

to a fixed ratio, usually about 0.6. Except for this the algorithm is as the previous

one.

6 Experimental Session

In the experimental part we have carried out experiments on the real data from the

UCI Repository [29]. We have carried out experiments with use of multiple Cross

Validation 5 (CV-5) [3]. We use Australian, Pima Indians Diabetes and Heart Dis-

ease data sets. The boosting, stabilisation methods are performed with pair classifier
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five times and the average results are presented on the plots. Considering the results

from [1] we have chosen for pair classifier the parameters max = 1 and descriptors

indiscernibility ratio 𝜀 = 0.01. The experimental session was extensive but due to

lack of space we show only a few selected results.

7 Discussion of Results

In this section we have the results of our experimental session. In Figs. 1, 2 and 3,

we have the result for Australian credit, Heart disease and Diabetes, respectively. In

each figure, on the top, we have the result for Ensemble of Bootstraps, in the middle

the result for Boosting based on Arcing and the bottom plots are for Boosting based

on the Monte Carlo split. On the plots we have the average result from five series

of 50 iterations of learning and the quality of classification is presented in the sense

of global accuracy of classification. When looking at all results, it turns out that

the stabilisation of classification for the committee starts from about 20 iterations

of learning, and after that the standard deviation of results was less than 0.005. In

all cases there is high stabilisation of classification for committee of classifiers in

comparison with the result for each separate weak classifier. It is difficult to point

to one ensemble method which could work best for all data, it is evident that the

quality is highly dependent on data internal logic. For instance, the Ensemble of

Bootstraps works best for Australian credit, in case of Heart disease the Boosting

based on Arcing seems to be the best, but in case of Diabetes, Ensemble of Bootstraps

and Boosting based on Monte carlo split works best with a similar accuracy.

8 Conclusions

In this work we have checked the effectiveness of selected ensemble models for our

novel dual matrix based Pair Classifier. We use three more popular methods of boost-

ing, Ensemble of Bootstraps, Arcing and Boosting by Monte Carlo split. We have

investigated the version of the pair classifier introduced after proposal by Polkowski

in [18]. We have carried out experiments on the real data from the UCI repository.

The result show the classification quality improvement for pair based classification

with use of all boosting variants. There is no one rule for choice of the proper ensem-

ble model for any data, the effectiveness depends on the type of data set. For instance,

in case of Australian credit data set the Ensemble of Bootstraps works best. In case

of Heart disease data set the Boosting based on Arcing seems to be the best. And in

case of Diabetes data set the Ensemble of Bootstraps and Boosting based on Monte

Carlo split wins. In all cases there is significant improvement of classification accu-

racy for committee of classifiers in comparison with the single weak classifier. The

classifier stabilizes after a few iterations of learning.
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Fig. 1 The result for 5 × 50 iterations of learning for Australian credit for pair classifier. The first

picture show the result for Ensemble of Bootstraps, the second for Arcing, and the last one for

Ada-Boost
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Fig. 2 The result for 5 × 50 iterations of learning for Heart disease for pair classifier. The first

picture show the result for Ensemble of Bootstraps, the second for Arcing, and the last one for

Ada-Boost
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Fig. 3 The result for 5 × 50 iterations of learning for Diabetes for pair classifier. The first picture

show the result for Ensemble of Bootstraps, the second for Arcing, and the last one for Ada-Boost
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In the future works, we would like to check the effectiveness of pair classifier on

the approximated data sets. Additionally we have plan to extend the basic version of

proposed classifier focusing on the decision classes of the training data and to check

the version based on the fuzzy sets.
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