
Chapter 7
Effect of Far-Field Structure on Joint Properties
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Abstract Classical structural analysis techniques have proven time and time again to be remarkably accurate for systems
consisting of a single, continuous piece of material. Unfortunately, nearly all real engineering structures are assembled from
multiple parts, joined by bolts, rivets, or other fasteners, and these joints introduce nonlinearities and uncertainties into
systems’ structural stiffness and damping. Nonlinear damping due to jointed connections in particular is critical to limiting
the resonant response of a structure, yet it remains poorly understood. This work seeks to understand the degree to which
joint properties are dependent on the rest of the structure. The testable hypothesis is that the boundary conditions and the far-
field structure itself (i.e. distribution of the stiffness and mass) change the way in which the interface is loaded, thus altering
the perceived or deduced nonlinear properties of the mechanical joint. This hypothesis is investigated using experimental
impact hammer testing methods in order to understand the extent to which alteration in the boundary conditions and far-
field structure change the interface properties as well as the underlying mechanics during loading. Numerical tools are also
employed to investigate and complement the experimental results, focusing on two fronts: replicating the experimental results
with discrete joint models, and investigating joint loading for different modes using numerical modal analysis.
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7.1 Introduction

Most real-world structures do not consist of a single piece of engineering material; instead, they are built-up structures
containing several individual pieces constrained by mechanical connections. Despite their prevalent use, distributed contact
connections such as joints, have long been difficult to characterize and model due to their nonlinear, stochastic nature.
To compound matters, estimation of damping due to friction in mechanicals joints is often extremely important in high-
performance applications such aerospace. As a result, many works have studied mechanical joints using analytical, numerical,
and experimental methods in an effort to derive quantitative descriptions for these complex engineering systems.

Perhaps one of the most well-known works in the academic community is that of Segalman [9], where he proposes and
derives a physically-based joint model using discrete arrangements of Jenkins elements, with the arrangements sometimes
called Iwan elements in this context. His so-called four-parameter Iwan element is oft cited and utilized by the joints research
community, as it has demonstrated the ability to qualitatively and quantitatively match certain experimental data. Roettgen
et al. [8] demonstrated this for the first few modes of an automotive exhaust structure, and Allen et al. [1] developed a quasi-
static approach so these types of models can be extracted more efficiently from computational models. Other reduced-order
models are proposed by authors such as Quinn [7], which utilize continuum representations of both the monolithic structure
and joint to derive computationally inexpensive models. Relatedly, authors have also explored the presence, or absence,
of energy transfer through mode coupling, an important physical phenomenon when discussing joint characterization [4, 8].
Regardless of method or characterization technique, the literature recognizes that energy dissipation versus forcing amplitude
in these systems is generally governed by a power-law, with hysteresis playing an important role.

Each of these modeling and characterization approaches has its own set of advantages and limitations; however, these
works all, cumulatively focus on describing the joint itself with less regard for the surrounding, or far-field, structure.
Comparatively little work has been done to assess the impact that the individual components of the built-up structure have
on the nonlinear characteristics of the joint. Put another way, there is opportunity to explore the degree to which a joint’s
excitation, or activation, is affected by the far-field structure in a built-up system. To address that question, this work utilizes
experimental methods, data-processing techniques, and numerical simulations that are current to the literature in order to
characterize the nonlinear properties of nominally identical joints in structures with different far-fields.

For the experimental portion of this work, several structures with nominally identical joints and different far-field
structures were excited using impact hammer testing, and the responses of those structures were identified and characterized
using the aforementioned methods currently available in the literature. The basic structure of interest to this work is the
Brake-Reuß Beam (BRB), and to address the effect of the far-field structure, several variations of the structure were also
created with the hope of altering the response while the joint setup remained constant. These variations include an elongated
BRB (LBRB) as well as a stiffness modified BRB (SBRB); details and diagrams of these structures are given in Sect. 7.2.1.
This beam-structure was chosen due to the plethora of data available for comparison and its consistent use by authors
in the field [2]. For the nonlinear characterization, the Hilbert transform method outlined in Kerschen’s work [5] and
using the smoothing process described in Roettgen et al. [8] was employed. These modal results are drastically different
among the different beams, but the experimental data alone does not give an understanding as to why these modal results are
so different.

To complement the experimental studies for this work, numerical methods were also employed in order to better under-
stand the underlying physics of the system. A finite element model using discrete, physical four-parameter Iwan elements
was generated and tuned to match the experimental nonlinear, modal damping and natural frequency versus amplitude that
were measured from the nominal structure (the classic Brake-Reuß beam) [1]. These same physical joint parameters were
then used in a model for the LBRB and the numerical modal nonlinear characterizations match remarkably well. This result
implies that, despite the structural modifications, the underlying representative joint properties remain identical.

7.2 Experimental Investigation

The core of this work is the experimental investigation of three different structures with nominally identical joints. First, the
design of those structures is discussed, followed by the linear then nonlinear experimental analyses. The linear experimental
analysis was designed to identify the appropriate modal filter for the nonlinear characterization, and further details of the
characterization method are discussed. Experimental results are shown for the first several modes of the systems, with an
emphasis on the lowest three bending modes.
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Fig. 7.1 The different beam assemblies

Table 7.1 Dimensions of tested
beams

L � H � W [mm]

BRB – nominal Brake Reus beam 720 � 25.4 � 25.4

SBRB – stiffness modified beam 720 � 25.4 � 25.4

LBRB – mass/length modified beam 1080 � 25.4 � 25.4

Fig. 7.2 Experimental setup

7.2.1 Experimental Setup

Three different structures were designed for this investigation in order to understand the effect of changing the geometrical
properties around a mechanical joint. The first structure is known as the Brake-Reuss beam (BRB) (see [2]); it consists
of two identical steel beams bolted together to form a lap-joint connection, assembled using three M8 bolts tightened to a
torque of 20 Nm.

The second test structure is similar to the first lap-joint configuration, with the same bolts and torque, however each
identical steel beam in this assembly has a spring shaped cut out for stiffness modification. The last test structure also
consists of the same lap-joint configuration, but the length of the two parts is larger to provide mass/length modifications.
Figure 7.1 shows the three tested beam assemblies configurations and Table 7.1 presents their dimensions. For simplicity,
for each beam was assigned an acronym that will be used throughout this paper: BRB for the nominal Brake-Reuss Beam,
LBRB for the mass/length modified beam and SBRB for the stiffness modified beam.

Figure 7.2 shows the experimental configuration for the BRB structure. The structure is supported by two bungee cords,
and 10 accelerometers were distributed in a symmetrically proportional way on the beam. The chosen source of excitation
is the impact hammer: this is commonly used in vibration testing, as it applies a broadband excitation signal to the test
structure. The excited band spans within 0–3200 Hz to encompass as many modes as possible. The chosen impact point, or
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Table 7.2 Natural frequencies
and damping from linear modal
analysis

BRB LBRB SBRB

MODE fn [Hz] � (%) fn [Hz] � (%) fn [Hz] � (%)

1 168:3 0:24 80:5 0:17 92:1 0:12

2 584:3 0:16 291:6 0:05 194:6 0:05

3 1183:8 0:14 521:2 0:07 504:6 0:16

4 1618:3 0:20 857:9 0:19 958:9 0:09

5 1656:3 0:20 1142:9 0:11 1240:2 0:11

6 2825:9 0:15 1339:5 0:05 1623:7 0:16

7 3022:6 0:15 1583:6 0:23 2088:6 0:12
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Fig. 7.3 FRF comparison at node 8

driving point (DP), is shown in Fig. 7.2. The SBRB was instrumented in the same way due to the fact that it has similar
dimensions to the BRB; however because LBRB is longer than the other two, the accelerometers were attached at positions
proportionally consistent with the other two systems. The data acquisition was performed using the Spectral Test module in
LMS Test Lab 13.

7.2.2 Linear Experimental Analysis

In order to derive the modal filter used in the nonlinear characterization of these systems, a linear modal test was performed
for all three configurations of the beam assemblies. A low level excitation test (F = 50N) was carried out for each beam.
The linear natural frequencies and damping ratios were estimated from the frequency response functions (FRFs), using the
frequency-domain subspace identification algorithm presented in [6]. Results are shown in Table 7.2. Figure 7.3 shows the
FRFs obtained from node 8 of each beam in the range 0–1400 Hz. It is possible to observe that the responses of the three
beams are very different between each other as a result of the far-field structure modifications. For example, the first bending
mode of the BRB is at 168.3 Hz, for the LBRB is at 80.5 Hz, while for the SBRB is at 92.14 Hz. Furthermore, the steep
resonance peaks of the FRFs indicates that the structure is lightly damped across the selected bandwidths. The authors have
selected the first three bending modes for each beam assembly to be investigated further in this paper.

The mode shapes for the first three bending modes of interest are obtained from the linear modal analysis for each beam,
and they are shown in Fig. 7.4. Comparing these mode shapes, it is clear that the far-field structure modifications have a
large impact on the curvature of the linear modes, as expected. For all three modes, the LBRB appears to have a qualitatively
similar overall shape to the original BRB. For the first mode, this can be identified more specifically by noting the generally
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Fig. 7.4 Mode shapes for the three beams

larger radii of curvature in both the BRB and LBRB. By contrast, the SBRB mode shapes exhibit fundamental differences
from the other two. Again, in the case of the first mode, the SBRB exhibits lower curvature near the joint area and higher
curvature near the ends than the BRB and LBRB.

7.2.3 Nonlinear Experimental Analysis

After the linear modal analysis, the second type of investigation performed was a series of impact tests at increasing
force levels in order to elicit nonlinear behavior in the different beams. Each beam was excited at the same impact point
DP (see Fig. 7.2), and several impact excitation levels ranging from 50N to 750N were performed. This section details
approximate nonlinear characterizations through peak-picking methods in order to illustrate the differences between the
linear and nonlinear responses while Sect. 7.2.4 details a more rigorous analysis using the Hilbert Transform method.

7.2.3.1 Impact Test Characterization

Time response signals and frequency response functions (FRFs) were obtained from each test at each forcing level; Fig. 7.5a
shows the time response at several excitation forces of the BRB at node 8. As an initial and simplified method to detect
nonlinearities in the system, the collected FRFs at increasing impact forces were superposed and compared for each beam:
Fig. 7.5b–d show the results of this process at node 8 for the first bending mode and for each beam.

The first observation that can be made is evident in Fig. 7.5a, where an absence of proportionality is noticed between the
time responses at low (50N) and high (700N) excitation forces. This indicates the breakdown of superposition principle which
serves as a cornerstone for linear theory. Beyond time series inspection, another meaningful method of detecting nonlinear
behavior from measured data is the check for homogeneity in the frequency response functions over different excitation
levels. In particular, Fig. 7.5b–d show a shift in the natural frequencies and response amplitude as the impact force increases.
The characteristics observed from the extracted FRFs show that each beam assembly has a softening behavior within the
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Fig. 7.5 (a) Time responses of the BRB at node 8 at different impact forces, and Mode 1 FRFs for (b) the BRB, (c) the LBRB, and (d) the SBRB

frequency range and the impact excitation levels, with the natural frequency decreasing as the impact force increases. For the
first mode, for the BRB, LBRB and SBRB, frequency shifts, as estimated by the lcoation of the peak in the FRFs, between
the lowest and highest impact force are respectively �2, �1:6 and �0.15%. Thus the BRB has the most nonlinear softening
behaviour compared to the other beams.

7.2.3.2 Damping Shift Comparison

Since the amount of energy dissipated in the lap joint configuration depends on the amount of load it carries, it is important
to measure and quantify the change in the damping and stiffness properties of the beam caused by the increase in load. In
this section of the paper, the percentage shifts in natural frequency and damping ratio are used to quantify the changes in the
properties of each beam. The frequency and damping shift are in a percentage form and they are obtained as,

fs D jfmin � fnj
fn

� 100 Œ%�; �s D j�max � �Lj
�L

� 100 Œ%�: (7.1)
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Fig. 7.6 Frequency and damping shift against impact force for Mode 1 (a) and Mode 2 (b)

The percentage frequency and damping shifts were calculated for the first three modes of each beam as the impact force
changes: Fig. 7.6a, b present the frequency and damping percentage shift for all three beams against the impact force level
for the first two bending modes. It can be noticed that, for the first mode, BRB shows a high shift in frequency compared to
the other beams, while the LBRB shows a larger shift in the damping. Similarly, for the second mode, the shift in frequency
and damping is larger for the BRB and LBRB. Turning to the SBRB, this has a very low shift in frequency and damping for
the first mode and practically no shift for the second mode, as demonstrated by the constant straight line in Fig. 7.6b. From
these observations it’s possible to say that the BRB and LBRB structures experience the highest level of nonlinearity as a
result of the increase in impact load, while the SBRB shows little or no nonlinear behavior for both modes.

In Fig. 7.7a, b, the frequency and damping shifts for the first three modes are compared against each other for the BRB
and LBRB. It can be noticed that, for both beams, the frequency shift experienced by the first mode is significantly higher
than the other two modes. The frequency shift for the first mode of the BRB lies between 0.8 and 2.1% while the frequency
shifts for the second and third modes fall within 0.2 and 0.5%, hence the shift observed in the first mode is a factor of 4
higher than the shift observed in the other modes. A similar behavior was also observed in the LBRB configuration where
the frequency shift for the first mode lies within 0.38 and 1.63%, while the shift experienced by the other modes are within
0.1 and 0.35%. Again, the first mode has a frequency shift of a factor of 4 higher than the other modes. One of the reasons
for very high frequency shift observed for the first mode of both beams might be the method used to excite the beams during
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Fig. 7.7 Frequency and damping shift against impact force for BRB (a) and LBRB (b)

the test, since the energy transferred by the impact hammer to the test structure is not always constant and it can quickly
fade out without activating each mode of the structure equally. Hence the higher frequency shift observed on the first mode
of each beam can be associated to this effect. However, a different behavior is observed in the damping shift for both beam
configurations: in Fig. 7.7a the percentage damping shift for the first two modes are approximately within the same range,
while it is slightly lower for mode three. In Fig. 7.7b, for the LBRB, it’s possible to see the same behavior, only this time
the damping shift is higher for the first mode, while it lies almost on the same range for the other modes. The increase in
damping shift with the increase in impact force confirms the high level of nonlinear damping in both beams. The results
show the typical behavior found in jointed structures, where the damping nonlinearity can be very high concurrently with a
limited frequency nonlinearity.

7.2.4 Nonlinear Characterization Using Hilbert Transform

In order to develop a nonlinear characterization for each beam assembly, a three-step procedure was carried out to identify
the frequency and damping behavior at several excitation levels. The first step was a homogeneity check on the FRFs at
different excitation levels to detect potential nonlinearities. The second step was a transformation of measured physical
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data into modal coordinates, performed by applying first a modal filter and then a bandpass one, in order to isolate the
contribution of a single mode. The third step consisted of the nonlinear identification and characterization of nonlinearities
using the Hilbert Transform (HT). The HT method was used to deduce frequency and damping ratio trends against modal
displacement amplitude (see [3–8]).

7.2.4.1 Data Filtering

Prior to the nonlinear characterization of the beams, each measured data was modally filtered, i.e. the data were transformed
from physical coordinates into modal coordinates. The modal filter was performed using the physical time series data and the
mode shapes matrix obtained previously from the linear modal analysis. After the application of the modal filter, a bandpass
filter with an order specified between 4 and 8 was performed on each selected mode of each beam, in order to isolate a single
mode in the response. An example of a transformed response after the modal and bandpass filters for the first mode of the
BRB is presented in Fig. 7.8, respectively in the time (Fig. 7.8a) and frequency (Fig. 7.8b), domains. Modally filtered data
was used for the BRB characterization; however, for the LBRB and the SBRB, the bandpass filter performed better, hence it
was used in the characterization section.

7.2.4.2 Nonlinear Characterization

The next step in the experimental investigation was to quantify the change in natural frequency and damping with amplitude.
First the Hilbert Transform was applied to the previously obtained modal acceleration data for several modes of each beam
system. Then, a 4th order spline fit was applied to the Hilbert amplitude and phase over a selected time window, in order to
get the instantaneous damping and frequency, respectively (see [3, 8]). The spline fit serves as a smoothing mechanism in
order to estimate the instantaneous damping and frequency; however, because the Hilbert Transform is susceptible to noise
at the extremes of the fit, the time window must be carefully selected. Figure 7.9 shows how well the blue filtered modal
acceleration is reproduced by the green reconstructed time signal from the fitted Hilbert Transform for the first bending mode
of the BRB. The modal velocity and displacement amplitudes Vfit and Xfit were calculated as,

Vfit D Afit

!d;fit
; Xfit D Afit

!2
d;fit

; (7.2)

where Afit and !d;fit are the modal acceleration amplitude fit and the instantaneous damped natural frequency obtained from
the Hilbert Transform spline fit, respectively.
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Fig. 7.9 Bandpass filtered modal acceleration and Hilbert fit – BRB Mode 1

Figure 7.10 shows the instantaneous frequency and damping curves against modal displacement amplitude Xfit for the
first bending mode of the three beams. All three beams show the same softening behavior, with higher impact forces
generating higher frequency shifts. The damping behavior exhibited by all three beams shows a power-law relationship,
which is dependent on the excitation amplitude. The same analysis was repeated for the second and third modes, for which
the damping curves showed the same increasing trend. For mode 3, the Hilbert transform only produced useful results over
a range of small amplitudes; however a similar power-law relationship was observed. It is important to point out the fact that
the impact point DP is very close to a node of the third mode, especially for the SBRB. As a result of this, the third mode
may not have been properly excited and results for this specific mode may be inaccurate.

Comparing the results from the three beams, it is possible to say that the BRB and LBRB graphs show smooth curves and
consistent trends at several impact forces, while for the SBRB, the curves are noisier and scattered. This can be due to the
fact that, compared to the BRB and LBRB, SBRB shows smaller frequency and damping shifts and to the previously cited
Hilbert Transform flaws. A summary of the observed nonlinearities for the three structures is given in Table 7.3; fn and �L are,
respectively, the linear natural frequency and linear damping ratio measured from the flat parts of the frequency-amplitude
and damping-amplitude plots, while fn;min and �max are the minimum frequency and maximum damping ratio measured from
the same plots at the highest impact force.

Further, comparing the damping curves for all three beams directly leads to some interesting conclusions regarding the
effect of the far-field structure on the response. Figure 7.11 plots the damping curves for each of the three beams at all
forcing levels for the first two bending modes, i.e. all of the nonlinear damping characterizations for the BRB are shown in
blue, LBRB in red, SBRB in green. The key observation from these figures is that the three beams, each with a different
far-field structure, have very different modal responses. In particular, while the BRB and LBRB exhibit the typical power-law
nonlinearity that is consistent with literature, the SBRB shows a roughly linear response. While directly comparing the modal
responses for these beams is useful and illuminating, one must keep in mind that the mode shapes for each of these beams
are markedly different, as illustrated in Fig. 7.4. At first, this may seem to be an unfair comparison; however, the dependence
of the modal response on the mode shape is explored later in the numerical section of this paper in order to draw meaningful
conclusions regarding the root-cause of the experimental observations show here.

7.3 Numerical Investigation

From the experimental findings of this work, it is clear that different far-field structures elicit vastly different modal responses;
however, this observation alone does not directly confirm or deny the hypothesis that altering the far-field structure changes
the way in which the joint is excited or activated. In order to firmly and rigorously arrive at a scientific conclusion, one
must “close the loop” by returning to the physical domain and identify a root cause for the experimental observation. The
numerical study for this project does just that through validation of the experimental findings.



7 Effect of Far-Field Structure on Joint Properties 73

10-4 10-3 10-2 10-1 100

Modal Displacement Amplitude

10-2 10-1 100

Modal Displacement Amplitude

10-2 10-1 100

Modal Displacement Amplitude

10-2 10-1 100

Modal Displacement Amplitude

10-4 10-3 10-2 10-1 100

10-3 10-2 10-1 100

Modal Displacement Amplitude

165.5

166

166.5

167

167.5

168

168.5

169

169.5

170

Fr
eq

ue
nc

y 
[H

z]
BRB - MODE 1

FREQUENCY VS AMPLITUDE

(a)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

 ζ
 [%

]

BRB - MODE 1
DAMPING VS AMPLITUDE

50N
100N
200N
300N
400N
550N
700N

(b)

79.2

79.4

79.6

79.8

80

80.2

80.4

80.6

80.8

81

Fr
eq

ue
nc

y 
[H

z]

LBRB - MODE 1
FREQUENCY VS AMPLITUDE

(c)
Modal Displacement Amplitude

0

0.1

0.2

0.3

0.4

0.5

0.6

 ζ
 [%

]

LBRB - MODE 1
DAMPING VS AMPLITUDE

(d)

91.2

91.25

91.3

91.35

91.4

91.45

91.5

91.55

91.6

91.65

Fr
eq

ue
nc

y 
[H

z]

SBRB - MODE 1
FREQUENCY VS AMPLITUDE

(e)

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

 ζ
 [%

]

SBRB - MODE 1
DAMPING VS AMPLITUDE

(f)

50N
100N
200N
300N
400N
550N
700N

50N
100N
200N
300N
400N
550N
700N

50N
100N
200N
300N
400N
550N
700N

50N
100N
200N
300N
400N
550N
700N

50N
100N
200N
300N
400N
550N
700N

Fig. 7.10 Frequency and damping against modal displacement amplitude for BRB (a–b), LBRB (c–d), and SBRB (e–f)
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Table 7.3 Measures of
nonlinearities

MODE fn[Hz] fn;min [Hz] �L (%) �max (%)
BRB 1 169; 4 165; 6 0; 17 0; 58

2 585; 7 582; 05 0; 08 0; 23

3 1185; 5 1178; 2 0; 08 0; 22

LBRB 1 80; 7 79; 4 0; 12 0; 46

2 291; 7 290; 9 0; 04 0; 11

3 521; 5 519; 8 0; 06 0; 16

SBRB 1 91; 5 91; 3 0; 10 0; 15

2 194; 3 194; 3 0; 03 0; 04

3 496; 1 494; 7 0; 20 0; 44

Fig. 7.11 Comparison of the damping ratios as functions of response amplitude for all three beams across all force levels tested for both (a) Mode
1 and (b) Mode 2

7.3.1 Nonlinear Amplitude Dependent Properties from Quasi-static Finite Element

In this numerical study, discrete, physical four-parameter Iwan elements were implemented into finite element models. It was
found that a single set of physical Iwan model parameters can be implemented into two of the different beam structures to
match experimental, modal findings. This result lends credibility to the underlying assumption that the joints in the structures
are nominally similar, as they can be physically represented by the same set of modeling parameters.

7.3.1.1 Modeling Procedure

To begin, solid finite element model was created in a finite element program, and this model was extracted as a Craig-
Bampton reduced-order model into MATLAB. In the finite element program, the two beams were modeled separately and
connected with weak springs; Fig. 7.12 shows and example of the mesh used for the beams. Then, in MATLAB, stiffness
elements were added between the spidered-joints between the beams; four-parameter Iwan elements were also added along
the length of the beam to the five spider patches. Figure 7.13 illustrates the symmetric arrangement of these spider elements.

The parameters of these elements were fine-tuned to match the amplitude dependent information using standard Brake-
Reuss beam information provided by the experimental results for the first two modes. The parameters for the four-parameter
Iwan models are given in Table 7.4. To do this, rather than computing the dynamic response of the FEM to an impulsive
load, a quasi-static loading was applied in the shape of the structure to the FEM model. The loadings were applied at various
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Fig. 7.12 Finite element model with discrete, physical Iwan elements

Fig. 7.13 Distribution of spider elements

Table 7.4 Tuned Iwan
parameters for quasi-static FEM

Joint ID Fs Kt � ˇ

1 35,000 1.5e5 �0.60 0.25

2 35,000 2.2e5 �0.90 0.35

3 1750 2.2e5 �0.15 0.05

amplitudes in order to generate the expected amplitude-dependent curves. Next, the same tuned physical parameters were
applied to a model of the LBRB. Using the same quasi-static loading technique based on its mode shapes, modal data for the
LBRB model was also recovered.

7.3.1.2 Comparison of Numerical and Experimental Results

Comparisons between the experimental and tuned numerical modal results for the BRB are given in Fig. 7.14. The tuned
physical parameters are remarkably effective at capturing the modal responses for the first two modes. Then, using those
same identified physical parameters, the comparison of the experimental and numerical results for the LBRB is presented in
Fig. 7.15. Without any retuning, the numerical model is still able to recover the experimentally-derived modal results. This
result heavily suggests that the joints for these systems are nominally identical, and that it is indeed the far-field structure
that is responsible for changing the modal responses for these systems. This work thus serves to validate the experimental
findings. Put another way, these data show that the joint model’s parameters were not significantly influenced by the far-field
structure; however, because the total dynamics of the system are, figuratively, the sum of the joint, that evidently behaves the
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Fig. 7.14 Comparison of numerical and experimental frequency damping curves for the BRB

Fig. 7.15 Comparison of numerical and experimental frequency damping curves for the LBRB

same regardless of the far-field structure, and the linear dynamics of the surrounding structure, the modal responses observed
experimentally exhibit different characteristics.

7.4 Conclusions

While this work comprises a multitude of techniques, approaches and ideas, it ultimately reduces to a single result. First, it
was experimentally observed that the far-field structures of the considered Brake-Reuß beams had significant effects on the
modal nonlinear stiffness and damping characteristics of each beam. Then, it was numerically shown that identical physical
joint properties can be implemented into the different beam structures to match these experimental modal results without
retuning, illustrating that the physical joint properties of these systems are nominally identical. Naturally then, one way to
think of each of these systems is the sum of two parts, the nonlinear dynamics of the joint and the linear dynamics of the far-
field structure. The ramifications of these results are that physical models of joints can be accurately constructed; however,
the parameters must be deduced in the context of the surrounding structure. Thus, to characterize a joint, the Surrogate
System Hypothesis is proposed:
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The Surrogate System Hypothesis states that a surrogate structure, which is easy to model and machine, that contains the
same joint as the system of interest can be used to deduce the properties of the joint. These properties, once accounting for
the properties of the surrogate structure, can then be substituted directly into the system of interest as a spatially discrete
joint model (as opposed to a modal model).

From the modal perspective, relocating the same joint to a new system necessitates the development of a new set of modal
joint parameters. In this work, the quasi-static approach in [1] was used to do this. As is done in linear modal substructuring
or structural modification, one must recognize that changes to any part of the structure will change the effective modal
parameters, and for the nonlinear system, this results in a change to the damping versus amplitude and frequency versus
amplitude curves.
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