
Chapter 31
Evolutionary Identification of Block-Structured Systems

M. Schoukens and K. Worden

Abstract The identification of a nonlinear model often involves a significant amount of user interaction. The proposed
SADE evolutionary algorithm-based identification approach for block-structured systems reduces this user interaction to
a minimum. This is illustrated in this paper for the Wiener-Hammerstein class of systems. On top of this, most of the
assumptions and limitations on the considered Wiener-Hammerstein system class can be omitted compared to the popular
BLA and correlation based approaches. The developed identification algorithm is applied on the 2009 Wiener-Hammerstein
benchmark to illustrate its good performance.
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31.1 Introduction

Nonlinear models are becoming more and more important nowadays to obtain a better insight in the behaviour of the system
under test, to compensate for a potential nonlinear behaviour, or to improve control performance. One of the more popular
nonlinear model structures is the block-oriented model [1]. Block-oriented nonlinear models are quite simple to understand
and easy to use, due to the separation of the nonlinear dynamic behaviour into linear time invariant (LTI) dynamics and
static nonlinearities. The Wiener-Hammerstein system class can be seen as a generalisation of the popular Wiener and
Hammerstein system classes. A Wiener-Hammerstein system is a block oriented system where the static nonlinearity is
sandwiched in between two LTI blocks (see Fig. 31.1).

The problem of identifying a Wiener-Hammerstein system is challenging since the nonlinear subsystem is inaccessible
from both the input and the output. A variety of Wiener-Hammerstein identification methods have been developed over the
last years using different approaches. Two nonparametric methods are described in [2, 3] using carefully designed input
signals, Volterra (and tensor decomposition) based approaches are presented in [4–6], and some methods use evolutionary
algorithms [7–9] to solve the nonlinear optimisation problem. A wide range of approaches use the Best Linear Approximation
(BLA) [10, 11], or a similar correlation analysis, as a starting point for the algorithm, e.g. [3, 8, 12–16]. The interest in the
Wiener-Hammerstein identification problem is also illustrated by the two Wiener-Hammerstein benchmarks that are available
online [17, 18].

This paper proposes to use the SADE evolutionary algorithm optimisation approach [19, 20] to tackle the Wiener-
Hammerstein identification problem in a user-friendly way. The SADE algorithm has proven its robustness already in the past
on the identification of hysteretic systems [21, 22]. The proposed identification algorithm requires very little user interaction.
On top of this, most of the assumptions and limitations on the system class can be omitted compared to the BLA and
correlation based approaches.

The proposed evolutionary approach is very different from the one reported in [8], where the evolutionary optimisation is
used only for the pole-zero allocation problem reported in [13]. The approaches that are presented in [7, 9] are more similar
to the method presented in this paper. However, [7] only considers the problem where the LTI blocks are represented by a
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Fig. 31.1 A Wiener-Hammerstein system consists of a static nonlinear block f(r) sandwiched in between two LTI blocks H.q/ and S.q/

FIR model, and a simplified differential evolution algorithm is used. The method presented in [9] uses a biosocial culture
algorithm. It is comparable to the approach presented here, although it requires more hyperparameters to be selected by the
user.

The remainder of the paper introduces the Wiener-Hammerstein identification problem (Sect. 31.2), discusses the
evolutionary algorithm-based identification method (Sect. 31.3) and illustrates the effectiveness of the method in Sect. 31.4
on the 2009 Wiener-Hammerstein benchmark that was studied at the IFAC SYSID conference in 2009 [17].

31.2 Problem Formulation

Wiener-Hammerstein systems consist of a static nonlinear block that is sandwiched in between two LTI blocks (Fig. 31.1).
The output y.t/ of a Wiener-Hammerstein system is given by:

y.t/ D S.q/ Œf .H.q/ Œu.t/�/� C v.t/; (31.1)

where u.t/ is the known input signal, and v.t/ is an unknown additive disturbance with a finite variance acting on the output
only. It is assumed that the input u.t/ is persistently exciting the system under test. The system blocks H.q/, S.q/ and f .r/
are given by:

H.q/ D D.q/

C.q/
D d0 C d1q�1 C : : : C dnd q�nd

c0 C c1q�1 C : : : C cnc q�nc
; (31.2)

S.q/ D B.q/

A.q/
D b0 C b1q�1 C : : : C bnb q�nb

a0 C a1q�1 C : : : C ana q�na
; (31.3)

f .r.t// D
nwX

jD0

wjfj.r.t//; (31.4)

where q�1 denotes the backwards shift operator, and fj forms a set of nonlinear basis functions. Without limitation, it is
assumed in the remainder of the paper that these nonlinear basis functions are given by fj.r/ D rj. Note that the method itself
is not limited to a nonlinearity that is given by a nonlinear basis function expansion. Other nonlinearity representations, such
as neural networks, could also be used in combination with the SADE optimisation based approach.

The Wiener-Hammerstein structure is subject to some identifiabilty issues since only the signals u.t/ and y.t/ are known.
A gain exchange is possible in between the two LTI and the static nonlinear blocks. Also a delay exchange is possible in
between the two LTI blocks. To obtain a unique model representation, the first nonzero coefficients (the nonzero coefficients
belonging to the lowest power of q�1) of D.q/, C.q/, B.q/, A.q/ are set to zero, and all the full-sample delays are allocated
to the LTI subsystem H.q/.

As a result, assuming that a0, b0, c0 and d0 are equal to units, the unknown parameter vector to estimate is given by:

� D �
a1 : : : ana b1 : : : bnb c1 : : : cnc d1 : : : dnd w0 : : : wnw

�
(31.5)

The model orders na, nb, nc, nd and nw are set here by the user, although they could be determined by cross-validation in a
free machine learning approach.
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31.3 Evolutionary Algorithm-Based Identification

31.3.1 SADE Algorithm

As it is often natural to frame system identification problems directly in terms of optimisation, it is thus natural to take
advantage of the state of the art in optimisation. For some time now, evolutionary algorithms (EAs) have provided a powerful
and versatile approach to optimisation and have therefore proved useful for SI. EAs began with the basic Genetic Algorithm
(GA) and even the simplest form of that algorithm proved useful for SI; an early example of using a GA for the identification
of Bouc-Wen hysteretic systems can be found in [21]. However, once real-parameter evolutionary schemes like Differential
Evolution (DE) emerged [23], it quickly became clear that they offered major advantages for SI. The first application of DE
for the Bouc-Wen model appeared in [24]. As in all evolutionary optimisation procedures, a population of possible solutions
(here, the vector of parameter estimates), is iterated in such a way that succeeding generations of the population contain
better solutions to the problem in accordance with the Darwinian principle of ‘survival of the fittest’. The problem is framed
here as a minimisation problem with a least squares cost function defined as:

V.�/ D 1

N

NX

tD1

.y.t/ � Oy.t; �//2 ; (31.6)

where N is the total number of samples in the estimation record, and y.t; �/ is the modeled output given by Eq. (31.1) using
the parameter set � .

The standard DE algorithm of reference [23] attempts to transform a randomly generated initial population of parameter
vectors into an optimal solution through repeated cycles of evolutionary operations, in this case: mutation, crossover and
selection. In order to assess the suitability of a certain solution, a cost or fitness function is needed; the cost function in
Eq. (31.6) is the one used here. Figure 31.2 shows a schematic for the DE procedure for evolving between populations. The
following process is repeated with each vector within the current population being taken as a target vector; each of these
vectors has an associated cost taken from Eq. (31.6). Each target vector is pitted against a trial vector in a competition which
results in the vector with lowest cost advancing to the next generation.

The mutation procedure used in basic DE proceeds as follows. Two vectors A and B are randomly chosen from the current
population to form a vector differential A � B. A mutated vector is then obtained by adding this differential, multiplied by a
scaling factor F, to a further randomly chosen vector C to give the overall expression for the mutated vector: C C F.A � B/.
The scaling factor, F, is often found have an optimal value between 0.4 and 1.0.

The trial vector is the child of two vectors: the target vector and the mutated vector, and is obtained via a crossover
process; in this work uniform crossover is used. Uniform crossover decides which of the two parent vectors contributes to
each chromosome of the trial vector by a series of D � 1 binomial experiments. Each experiment is mediated by a crossover
parameter Cr (where 0 � Cr � 1). If a random number generated from the uniform distribution on [0,1] is greater than Cr,
the trial vector takes its parameter from the target vector, otherwise the parameter comes from the mutated vector.

This process of evolving through the generations is repeated until the population becomes dominated by only a few low
cost solutions, any of which would be suitable. Like the vast majority of optimisation algorithms, convergence to the global
minimum is not guaranteed; however, one of the benefits of the evolutionary approach is that it more resistant to finding a
local minimum.

A potential weakness of the standard implementation of the DE algorithm as described above is that it requires the prior
specification of a number of hyperparameters (parameters which need to be specified before the algorithm can run). Apart
from the population size, maximum number of iterations etc., the algorithm needs a priori specification of the scaling factor
F and crossover probability Cr. The values used in [24] were chosen on the basis of trial and error; however, they are not
guaranteed to work as well in all situations and an algorithm which establishes ‘optimum’ values for these parameters during
the course of the evolution is clearly desirable. Such an algorithm is available in the form of the Self-Adaptive Differential
Evolution (SADE) algorithm [19, 20]; the description and implementation of the algorithm here largely follows [20].

The development of the SADE algorithm begins with the observation that Storn and Price, the originators of DE, arrived
at five possible strategies for the mutation operation [25]:

1. rand1: M D A C F.B � C/

2. best1: M D X� C F.B � C/

3. current-to-best: M D T C F.X� � T/ C F.B � C/

4. best2: M D X� C F.A � B/ C F.C � D/

5. rand2: M D A C F.B � C/ C F.D � E/
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Fig. 31.2 Schematic for the standard DE algorithm

where T is the current trial vector, X� is the vector with (currently) best cost and .A; B; C; D; E/ are randomly-chosen vectors
in the population distinct from T . F is a standard (positive) scaling factor. The SADE algorithm also uses multiple variants
of the mutation algorithm as above; however these are restricted to the following four:

1. rand1
2. current-to-best2: M D T C F.X� � T/ C F.A � B/ C F.C � D/

3. rand2
4. current-to-rand: M D T C K.A � T/ C F.B � C/

In the strategy current-to-rand, K is defined as a coefficient of combination and would generally be assumed in the range
[�0.5, 1.5]; however, in the implementation of [20] and the one used here, the prescription K D F is used to essentially
restrict the number of tunable parameters. The SADE algorithm uses the standard crossover approach, except that at least
one crossover is forced in each operation on the vectors. If mutation moves a parameter outside its allowed (predefined)
bounds, it is pinned to the boundary. Selection is performed exactly as in DE; if the trial vector has smaller (or equal) cost to
the target, it replaces the target in the next generation.

The adaption strategy must now be defined. First, a set of probabilities are defined: fp1; p2; p3; p4g, which are the
probabilities that a given mutation strategy will be used in forming a trial vector. These probabilities are initialised to be
all equal to 0.25. When a trial vector is formed during SADE, a roulette wheel selection is used to choose the mutation
strategy on the basis of the probabilities (initially, all equal). At the end of a given generation, the numbers of trial vectors
successfully surviving to the next generation from each strategy are recorded as: fs1; s2; s3; s4g; the numbers of trial vectors
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from each strategy which are discarded are recorded as: fd1; d2; d3; d4g. At the beginning of a SADE run, the survival and
discard numbers are established over the first generations, this interval is called the learning period (and is another example
of a hyperparameter). At the end of the learning period, the strategy probabilities are updated by,

pi D si

si C di
(31.7)

After the learning period, the probabilities are updated every generation but using survival and discard numbers established
over a moving window of the last NL generations. The algorithm thus adapts the preferred mutation strategies. SADE also
incorporates adaption or variation on the hyperparameters F and Cr. The scaling factor F mediates the convergence speed of
the algorithm, with large values being appropriate to global search early in a run and small values being consistent with local
search later in the run. The implementation of SADE used here largely follows [19] and differs only in one major aspect,
concerning the adaption of F. Adaption of the parameter Cr is based on accumulated experience of the successful values for
the parameter over the run. It is assumed that the crossover probability for a trial is normally distributed about a mean Cr

with standard deviation 0.1. At initiation, the parameter Cr is set to 0.5 to give equal likelihood of each parent contributing a
chromosome. The crossover probabilities are then held fixed for each population index for a certain number of generations
and then resampled. In a rather similar manner to the adaption of the strategy probabilities, the Cr values for trial vectors
successfully passing to the next generation are recorded over a certain greater number of generations and their mean value is
adopted as the next Cr. The record of successful trials is cleared at this point in order to avoid long-term memory effects. The
version of the algorithm here adapts F in essentially the same manner as Cr but uses the Gaussian N.0:5; 0:3/ for the initial
distribution. At this point, the reader might legitimately argue that SADE has simply replaced one set of hyperparameters (F,
Cr) with another (duration of the learning period etc.). In fact, because DE and SADE are heuristic algorithms, there is no
analytical counter to this argument. However, the transition to SADE is justified by the fact that the algorithm appears to be
very robust with respect to the new hyperparameters.

From an SI point of view there are a number of advantages to the evolutionary approaches. First of all, in general, EAs are
quite resistant to stalling in local minima because they use a (potentially large) population of possible solutions. Specific to
SI problems, EAs offer the advantages that they work just as well for problems which are nonlinear in the parameters or have
hidden or latent variables; one only needs measurements of any states which appear in the cost function. Of course, there are
disadvantages too; the algorithms can be slow, depending on the computational cost of the objective function and, because
the algorithms are fundamentally heuristic, there is no recourse to mathematics in order to prove theorems on parameter bias
etc.

31.3.2 Initialisation

At the start of the SADE algorithm a random initial population is generated. This population is generated here such that the
LTI subsystems H.q/ and S.q/ are stable, and such that the parameters � are limited within a given parameter range. The
algorithm is implemented such that the parameters remain within that range during the optimisation.

31.4 Wiener-Hammerstein Benchmark Results

31.4.1 Benchmark Setup

A detailed description of the benchmark is given in [17]. The benchmark data are generated from a Wiener-Hammerstein
nonlinear electronic circuit, as shown in Fig. 31.3. The first LTI block is a third order Chebyshev low-pass filter with 0.5 dB
ripple and a cut-off frequency at 4.4 kHz. The second LTI block is a third order inverse Chebyshev low-pass filter with a
�40 dB stop band starting at 5 kHz. The static nonlinearity is a one-sided saturation implemented as a resistor-diode network.
The system is excited by low-pass filtered Gaussian noise, with cut-off frequency set at 10 kHz. The input and output signals
are measured with a sampling frequency equal to 51.2 kHz.

The benchmark setup is chosen as an illustration since a good comparison with other identification methods is possible
using this system. A wide range of results on the 2009 Wiener-Hammerstein benchmark are reported in [26].
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Fig. 31.3 Wiener-Hammerstein benchmark system

Table 31.1 Settings of the
SADE optimisation algorithm

Population size 1600

Generation number 5000

Parameter range [�55]

Update generation number 100

Mean update generation number 100

Strategy learning period 100

Table 31.2 Results on the 2009 Wiener-Hammerstein benchmark

Run number 1 2 3 4 5 6 7 8 9 10

Estimation error rms (mV) 8:7 8:7 25:6 8:7 8:8 8:7 8:7 8:7 8:7 8:7

Estimation error mean (mV) 1:40 1:40 �1:81 1:40 1:43 1:40 1:40 1:40 1:40 1:40

Estimation error std (mV) 8:6 8:6 25:6 8:6 8:7 8:6 8:6 8:6 8:6 8:6

Validation error rms (mV) 9:3 9:3 32:0 9:3 9:5 9:3 9:3 9:3 9:3 9:3

Validation error mean (mV) �0:33 �0:33 �0:50 �0:33 �0:36 �0:33 �0:33 �0:33 �0:33 �0:33

Validation error std (mV) 9:3 9:3 32:0 9:3 9:4 9:3 9:3 9:3 9:3 9:3

31.4.2 Model Estimation

The estimation of the model is performed on a small set of the available estimation data, only samples 4901–6000 are
considered. The model orders na, nb, nc, nd are set equal to 3, the static nonlinearity is estimated as a third degree polynomial.
This results in a total of 16 free parameters to estimate.

The SADE algorithm is set to use a population size of 1600 and runs for 5000 iterations. The parameter values are limited
to the range [�5, 5], the exact settings of the SADE algorithm can be found in Table 31.1. To test the robustness of the
proposed algorithm, ten different runs of the algorithm are made, each starting from a new, randomly generated, initial
population.

31.4.3 Validation Results

The validation estimation results are reported in Table 31.2, as requested in [17] the root mean square error (RMSE) is used
as the error criterion. The obtained RMSE is comparable with the one obtained by other Wiener-Hammerstein identification
methods using a third-order polynomial static nonlinearity [26]. The time-domain validation output and the obtained model
error are shown in Fig. 31.4. Note that the peaks in the error suggests that a further improvement of the RMSE can be
expected if a higher order polynomial nonlinearity, or another nonlinearity structure is considered. Note that the proposed
approach converges in 8 out of the 10 cases to the same minimum. Run number 5 is very near to this minimum, and after a
closer inspection it turned out that this particular run was not yet fully converged to its minimum. Run number 3 got stuck in
a local minimum.
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Fig. 31.4 Time-domain representation of the measured validation output (blue) and the model error (red)

31.5 Conclusions

This paper illustrates how evolutionary algorithms in general, and the SADE algorithm in particular, offer a robust and user-
friendly optimisation tool for the identification of block-oriented structures. The Wiener-Hammerstein structure is studied in
detail in this paper, however, one can expect to obtain similar results on other model structures.

The SADE evolutionary algorithm used in this paper requires almost no user interaction. It is known to be quite robust
with respect to the setting of the hyperparameters. The main downside of the evolutionary algorithms is the rather heavy
computational load.
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