Chapter 3
Parameter Estimation of Joint Models Using Global Optimization

Robert J. Kuether and David A. Najera

Abstract Nonlinear joints and interfaces modeled with a discrete four-parameter Iwan element are defined by parameters
that are often unknown a priori or require calibration to get better agreement with test data. While this constitutive model has
been validated experimentally, its drawback lies in the difficulty of identifying the correct coefficients. This work proposes a
parameter estimation approach using a genetic algorithm to minimize the residual between experimental and model data.
Global optimization schemes have the ability to find global minima/maxima of a broad parameter space but require a
very large number of function evaluations. This research focuses on decreasing the computational cost of the optimization
scheme by developing a simplified model of the structure of interest and defining the objective function with amplitude
dependent frequencies and damping ratios. A recently developed quasi-static modal analysis technique is used to determine
these amplitude dependent properties of the model at a significantly reduced cost in comparison to solutions obtained with
numerical time integration. This technique is demonstrated on a structure termed the Ministack which contains a foam-to-
metal interface held together with a press fit joint.
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3.1 Introduction

Common types of mechanical joints include bolted joints, compression fits, tape joints, and others. Joints maintain their
strength via contact pressure and friction distributed over the contact surface, and at high enough load levels, they experience
microslip or possibly full macroslip. The presence of frictional slip causes joints to have a nonlinear damping and a nonlinear
stiffness, which makes their behavior difficult to model accurately. However, the ability to predict the nonlinear response of a
structure with mechanical joints would greatly benefit a number of industries, including aerospace and defense where failure
of critical systems can have grave consequences.

From a modeling perspective, a number of joint models have been developed to capture the phenomenological behavior
of a mechanical interface, namely microslip, loss of stiffness, and nonlinear energy dissipation. One model of particular
interest to this research is the four-parameter Iwan element developed by Segalman [1]. This one-dimensional element is a
simplified whole joint model for use in structural dynamic simulations. Other simplified joint models include various Iwan
type elements [2, 3] or the Bouc-Wen hysteresis model [4, 5]. Recently, a decoupled modal Iwan model was developed [6]
to capture the nonlinear response of a mode assuming the mode shape is unchanged, and this modeling approach has been
successfully applied to a realistic engineering structure [7].

One of the practical challenges involved with whole joint models, such as the four-parameter Iwan element, is the
identification of the model parameters that capture the characteristic behavior of the interface. The four parameters of a
modal Iwan model can be estimated by applying a modal filter to measured transient ring-down data and taking the Hilbert
transform to estimate the nonlinear damping and frequency [6, 7]. A whole joint model can also be calibrated to test data
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by using optimization techniques to minimize the residual between the data predicted by the numerical model and the
measured data. Examples of this include the work by Charalampakis et al. [8, 9] who developed an identification method
to determine the parameters of a Bouc-Wen hysteretic model using different global optimization schemes. Wang et al. [10]
presented a joint model updating scheme using analytical mode decomposition to extract the instantaneous characteristics of
the measured and numerically integrated response. These cost function metrics are used with a simulated annealing global
optimization method to identify the optimal joint parameters.

The research presented here proposes to model the mechanical interface of a structural dynamic model with a four-
parameter Iwan element and use the genetic algorithm implemented in [11] to calibrate the joint parameters. The genetic
algorithm is a global optimization scheme that explores a broad parameter space and does not require an initial guess. Using
global optimization over gradient based schemes is more computationally expensive since it demands more evaluations of the
objective function, but has the advantage of finding global optimum. Because of this, quasi-static modal analysis [12] is used
to estimate the amplitude dependent frequency and damping of the nonlinear mode of interest. Since this approach computes
the instantaneous properties of the nonlinear model with a static solution, the proposed calibration scheme significantly
reduces the computational effort needed to evaluate the objective function.

The sections of the paper are as follows. Section 3.2 briefly reviews the four-parameter Iwan formulation along with the
optimization scheme developed to calibrate the parameters. Section 3.3 demonstrates the methodology on a simplified model
of the “Ministack” hardware, which consists of a press fit joint of a metal slug within a foam encapsulant. The parameters of
the nonlinear model are calibrated to experimental swept sine data of the real hardware. Section 3.4 discusses the conclusion.

3.2 Modeling and Calibration

3.2.1 Whole Joint Models

In structural dynamics, a whole joint modeling approach condenses a mechanical interface down to a discrete nodal location
at which a pointwise constitutive model is used to describe the interface forces. This joint modeling approach reduces the
time and length scales of the joint model for structural dynamics simulations requiring many time steps over a large period.
Detailed interface models with Coulomb friction and node-to-node contact require detailed meshes not amenable to structural
dynamics. The whole joint modeling philosophy relies on the assumption that the local kinematics at the interface do not
significantly contribute to the response, since multi-point constraints (MPCs) are often used to tie a set of nodes on the contact
surface down to a single point. Figure 3.1 shows an example of how MPCs tie to a surface to a single node to resemble the
kinematics of three bolted joints in a beam.

One of the constitutive equations used within the whole joint model is the four-parameter Iwan element that was originally
derived for lap-type joints [1]; the theory is briefly reviewed here. This constitutive model captures the microslip behavior

Iwan Elements

RBE3 Spiders

Fig. 3.1 Example of a whole joint model of three bolts in a lap-joint [13]
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Fig. 3.2 Schematic of the (a) parallel-series Iwan element, (b) power-law population distribution, and (¢) power-law energy dissipation versus
force (Image from Gross et al. [13])

and nonlinear dependence of damping as the amplitude of the response increases, as well as a loss of stiffness at larger
amplitudes. The force of a parallel-series Iwan model is written as,

o0
Fo = [p@ ) ~xt.9)dy G.1)
0
with the stick/slip condition definitions,
i(t.g) = i if |ju—x(t, g0)||. =¢ and uu—x(t,¢)] >0 (.2)
0 otherwise

The dimensionless values, x(z, ¢), are the displacement of the Jenkins elements with a slip displacement ¢, p(¢) is
the population density of Jenkins elements of strength ¢, and u(f) and F(¢) are the joint displacement and applied force,
respectively. The schematic in Fig. 3.2. shows the Iwan element as a set of Jenkins elements along with the population
density and energy dissipation versus joint force.

Assuming a power-law population distribution that is terminated at a finite displacement,

p(¢) = Ro* [H (¢) — H (¢ — ¢max)] + S8 (¢ — @max) (3.3)

Substituting this equation into Eq. (3.1), the force-displacement relationship becomes,

Pmax
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0

where the parameters of the Iwan element are defined as,
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The Iwan element in Eq. (3.4) in conjunction with Egs. (3.5), (3.6), and (3.7) is completely defined by the following
parameters: Fy (slip force), K7 (joint stiffness when no slip occurs), y (exponent describing slope of force-dissipation curve),
and B (shape parameter of the force-dissipation curve near transition to macroslip). As discussed in [1], these parameters
are preferred since they are “measureable” quantities. The slip force can be estimated from static calculations with an
assumed Coulomb friction coefficient, while the low amplitude stiffness can be estimated by performing vibration tests
at low excitation levels. Determining the values for y and f§ is a bit more challenging and requires specific harmonically
loaded experiments to calibrate.

3.2.2 Objective Function

Calibrating Iwan parameters (Fy, K7, y, B) can be difficult when the specific set of experiments are unavailable or too costly
to run. Furthermore, finite element models with many joints, such as the one shown above in Fig. 3.1, could potentially have
joint models with different parameters requiring calibration data. This section proposes a joint model calibration scheme that
uses measured vibration data to identify the optimal parameters. First, a least squares objective function is defined in order
to minimize the difference between the measured and predicted output,

LR (y-m)
F_NZ(—) (3.8)

i=1 y

The measured output, y, is obtained from test data and the predicted output, y, is the solution to the model for a given set
of parameters, p. A global optimization scheme makes numerous evaluations of this objective function so it is important to
make the model simulations as inexpensive as possible.

Calibration algorithms for linear finite element models rely on invariant modal properties to define the residuals in the
objective function in Eq. (3.8). Since the Iwan elements introduce nonlinear behavior, a new metric is sought to capture the
important characteristics of the system. Recently Allen et al. [12] developed a quasi-static modal analysis technique that
estimates the amplitude dependent natural frequency and damping ratio of a finite element model with Iwan elements. The
approach works by applying a quasi-static force in the shape of the linearized mode and computing the nonlinear quasi-static
response. From this force-displacement relationship, the secant of the loading curve provides an estimate of the amplitude
dependent frequency, while the full hysteresis curve obtained using Masing’s rules is used to estimate the effective damping
for the given response amplitude. These two effective modal properties are used to define the objective function for the
genetic algorithm described in the next subsection,

2
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Here the amplitude dependent natural frequencies, @, (a;, p), and damping ratios E ‘wan (@i, p), are computed from the
quasi-static approach for a set of model parameters, p. The experimental data, w,(a;) and ¢(q;), can been estimated with
either swept sine or transient ring-down tests as done in [14]. The scalar 7 is the weight coefficient used to give more or less
importance to the frequencies or the damping ratios; a value of n = 0.5 gives equal weight to both properties.

Figure 3.3 shows a comparison of the amplitude dependent frequency and damping from simulated swept sine tests and
the quasi-static modal analysis. The simplified model introduced later in Sect. 3.3.2 was used to generate this numerical data.
Comparisons between the quasi-static modal analysis and transient ring-down data have been reported in [12]. The agreement
between the frequency and damping estimates from both techniques suggests that the quasi-static approach can be used to
simulate the model and obtain the same meaningful information as would be obtained from sine sweep data. Computing
swept sine responses from a model would add significantly more computational effort per function evaluation of Eq. (3.8)
and slow down the global optimization algorithm needed to explore the broad parameter space. Simulating the quasi-static
analysis demands much less computational effort and hence is more desirable for use in the optimization algorithm.
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Fig. 3.3 Amplitude dependent (a) frequencies and (b) damping ratios for a simplified two degree-of-freedom model

3.2.3 Genetic Algorithm

A genetic algorithm (GA) is used to calibrate the Iwan parameters since it is a global optimization method that balances
broad exploration of the parameter space with computational efficiency. It is usually better suited than gradient-based
algorithms when multiple optima exist, but is more computationally expensive due to the number of function evaluations.
GA is part of the family of evolutionary algorithms and relies on operators inspired by biological evolution. A random set of
candidate solutions known as “individuals” are generated, forming a “population”. At each generation, each individual has a
set probability of “mutating”, which is the main mechanism used for exploration of new solutions. In the case of joint model
calibration, a Gaussian mutation operation is used. Individuals are also able to “mate” thus generating new solutions based
on the combination of the fittest individuals in a given generation, where fitness is the value of the objective function. After
mutation and mating, there is a selection process during which only the fittest individuals make it to the next generation. This
process is repeated until convergence is reached and variance in the population is low. The GA algorithm used to calibrate
the joint models is implemented in Python using the DEAP package [11].

3.3 Results

3.3.1 Experimental Hardware and Data

Test data was collected from a system termed the “Ministack” which consists of a solid aluminum 6061-T6 mass that fits
into two 20 pounds per cubic foot closed cell PMDI foam cups. This subassembly is then inserted into an aluminum can,
and a steel disk covering the top of the foam holds a nominal 700 Ibf preload that is held in place with a threaded steel ring.
The base plate of the can is then bolted to the shaker table for vibration testing. A schematic of the setup is shown below in
Fig. 3.4. For reference, the solid aluminum mass (i.e. slug) is 4 inches high with a diameter of 3 inches. The foam cups each
have an average inner depth of 2 inches, with an average inner diameter of 2.99 inches. As a result, the slug nominally fits
tightly within the foam casing allowing for the preload to go through both the foam cups and the aluminum slug. In axial
base excitation, the axial mode of the slug is expected to exercise the large foam-to-metal interface between the slug and
foam cups and be the main source of nonlinear behavior.

A uniaxial control accelerometer was placed in a recess at the bottom of the base plate, and a triaxial accelerometer was
attached to a cavity located on top of the slug (as seen in the left of Fig. 3.4). A series of sine sweep tests were carried out
at various excitation levels to observe the nonlinear behavior near the resonance of the dominant axial mode. The test series
is given below in Table 3.1. Prior to testing, the Ministack hardware was assembled by applying a preload via a press until
the reading on the load cell was approximately the nominal value of 700 1bf. The retaining ring was tightened to maintain
the preload, the press was released, and Ministack was then bolted to the shaker. The base plate of the can was accelerated
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Fig. 3.4 Ministack hardware

Table 3.1 Sine Sweep test series Test ID

o Sweep series amplitudes
for Ministack assembly

1 lgup,1gdown,lgup,1g
down, 1 gup, 1 g down

2 gup, 2 g down

5 gup, 5 g down

10 g up, 10 g down

EIRVS RN ]

with a swept sine input between 700 and 2500 Hz at a linear rate. The first test was a sweep at 1 g amplitude from 700 to
2500 Hz (up), followed by a 1 g sweep from 2500 to 700 Hz (down). This was repeated two more times at a 1 g load level to
allow the slug to “settle” within the foam cups. Following the 1 g sweeps, the Ministack was excited from 700 to 2500 Hz at
a 2 g level, and then back down from 2500 to 700 Hz. The same upward and downward tests were then run at 5 g and 10 g
levels, and the hardware was disassembled and reassembled, carefully noting the alignment as not to change the orientation
of the components. The same tests were repeated for the reassembled hardware in order to observe any variability between
two assembly processes.

The axial slug acceleration was processed using the short-time Fourier transform to estimate the envelope of the signal in
the frequency domain. These results are shown below in Fig. 3.5 for all the downward sweeps (the 1 g sweep was the last
of the three in the test series). There seemed to be some slight directional dependence of the sweep frequency (not shown
here) but for the most part the upward and downward sweeps showed very similar responses. The envelopes of the response
show that as the amplitude of the base acceleration increased, the resonant frequency decreased. This is consistent with the
nonlinear behavior of microslip in mechanical joints. The resonant frequencies were determined from the swept sine test data
by identifying the frequency at which the input and response were 90 degrees out-of-phase from one another. The effective
damping was estimated via the half power bandwidth rule. The plots in Fig. 3.6 show the effective frequencies and damping
ratios from the sine sweep data in Fig. 3.5 which served as the reference data of the objective function in Eq. (3.9) with which
the model was calibrated.

3.3.2 Optimal Model Parameters

A simplified two degree-of-freedom system of equations was generated in order to model the dynamics of the Ministack
hardware in Fig. 3.4. The schematic in Fig. 3.7 shows the discrete model of a slug mass, m,g, connected to the can and
the shaker mass, m,,, through parallel linear spring and Iwan elements. The mass of the aluminum slug was measured to
be 2.65 1bf while the mass of the can plus shaker were assumed to be 386,000 Ibf. The latter value was chosen in order to
numerically apply a base acceleration as an external force.
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Fig. 3.5 Swept sine response envelopes for (a) initial assembly and (b) disassembly + reassembly
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Fig. 3.6 Amplitude dependent (a) resonant frequencies and (b) damping ratios estimated from swept sine tests for initial assembly and
disassembly + reassembly

Fig. 3.7 Schematic of simplified Ministack model
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Table 3.2 Optimal model parameters.

Iwan parameters Linear parameters

Fi(Ibf) Kr(Ibf/in) X B k(Ibf7in) Sviscous
First assembly 313 1.02 x 10° —0.65 0.004 6.12 x 10° 0.0015
Reassembly 274 0.90 x 10° —0.61 0.025 8.56 x 10° 0.0017
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Fig. 3.8 Comparison of amplitude dependent frequencies and damping ratios from experiment and calibrated model for the (fop row) initial
assembly and (bottom row) disassembly + reassembly

The GA optimization and quasi-static modal analysis were applied to the simplified two degree-of-freedom model to
estimate the four Iwan parameters (Fy, Kr, y, ). In addition, the linear spring stiffness (k) and viscous damping ratio
(Cviscous) Were also treated as unknowns. Due to the uncertainty of the damping ratios extracted from the test data, the weight
coefficient, 1, was set to 0.85 to more heavily weight the frequencies in Eq. (3.9). The resulting optimal model parameters
found from the optimization routine are presented in Table 3.2 forthe initial assembly and disassembly 4 reassembly
configurations. The linear viscous damping was effectively the same between the two configurations, but was lower than
expected since the foam cups should introduce damping levels higher than ~0.1%. The linear spring stiffness shifted up
when the system was reassembled and could be explained by the time dependent behavior of the foam under an uncertain
level of preload. The Iwan parameters were in relatively good agreement between the two assemblies, with the exception of
B. The slight change in slip force, F,, and joint stiffness, K7, could be explained by the change in load path between the can,
foam and slug, as well as the relaxation of stresses within the foam. The slope of the energy dissipation curve, y, agrees well
between the two models suggesting that the power-law energy dissipation behavior is consistent for the press fit joint.

A comparison of the response obtained with the calibrated model using the quasi-static method and test data for initial
assembly and disassembly + reassembly is shown in Fig. 3.8. The optimization algorithm was able to get the simplified
model to predict frequencies that agreed very well with the test data and reasonably well for the damping ratios. The model
was computed over a broad range of response amplitudes to show where the test data lies within the range of nonlinear
stiffness and damping.

Figures 3.9 and 3.10 illustrate the design space explored by the GA. The scatter plots show the interactions between
different model parameters and how they were explored. The plot in the last row and column show the value of the objective
function as a function of the different parameters as they were explored. Plots along the diagonal are density plots showing
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Fig. 3.9 Scatter plot matrix of GA exploration for initial assembly model parameters and objective function values

where the algorithm spent most of the time. The peaks of the density plots correlate with the optimal parameters ultimately
chosen. These plots show that there was broad exploration of the parameter space and that a clear minimum emerged from
the objective function.

3.3.3 Validation with Sine Sweeps

A final validation step was done to check how well the simplified, calibrated model could predict the experimental swept sine
response. During testing, the axial base acceleration was measured with a control accelerometer and used as the input into
the discrete model. Figure 3.11 shows the comparison between the experimentally measured response envelopes (solid lines)
and the predicted envelopes (dashed lines) for the 1, 2, 5 and 10 g levels. The model under predicts the response amplitude
for each input, however the resonant peaks appear to align with one another. It was observed in the control signal that the
accelerometer had significant amplification as the shaker swept through the resonance. The input signal could have some
significant coupling between the shaker and the Ministack that would not be captured by the model (the can and shaker were
modeled as a rigid mass). Development of a higher fidelity model may better capture the flexibility of the Ministack and
improve the ability of the model to predict the swept sine response.
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3.4 Conclusion

This research developed a joint model calibration scheme using global optimization and quasi-static modal analysis. A
genetic algorithm was used due to its ability to search a broad parameter space and find global optimum. Since this approach
typically requires an increased number of function evaluations, the quasi-static modal analysis was used to efficiently
compute the amplitude dependent frequencies and damping ratios of the nonlinear model. These dynamic characteristics
defined the least squares objective function used to evaluate the fitness of the parameters of the joint model. This method was
demonstrated using the Ministack hardware, which consisted of a press fit joint of a metal slug within a foam encapsulant. A
simplified two degree-of-freedom model was created to capture the dynamics of the fundamental axial vibration mode and
the foam-to-metal interface was modeled with a four-parameter Iwan element. Experimental swept sine data taken from the
Ministack hardware was used to determine the amplitude dependent frequencies and damping, and the model was calibrated
to match this data. An optimal set of Iwan parameters were identified for two different assembly steps, and showed that the
interface properties were only slightly affected by the reassembly. The validation step of the model unfortunately showed
that the model was not in perfect agreement with the test data, and that the responses were under predicted. Development of
a higher fidelity model could improve the ability to capture the experimental response.
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model
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