
Chapter 23
Nonlinear Finite Element Model Updating, Part I: Experimental
Techniques and Nonlinear Modal Model Parameter Extraction

Benjamin R. Pacini, Randall L. Mayes, Brian C. Owens, and Ryan A. Schultz

Abstract Linear structural dynamic models are often used to support system design and qualification. Overall, linear models
provide an efficient means for conducting design studies and augmenting test data by recovering un-instrumented or un-
measurable quantities (e.g. stress). Nevertheless, the use of linear models often adds significant conservatism in design and
qualification programs by failing to capture critical mechanisms for energy dissipation. Unfortunately, the use of explicit
nonlinear models can require unacceptably large efforts in model development and experimental characterization to account
for common nonlinearities such as frictional interfaces, macro-slip, and other complex material behavior. The computational
requirements are also greater by orders of magnitude. Conversely, modal models are much more computationally efficient
and experimentally have shown the ability to capture typical structural nonlinearity. Thus, this work will seek to use modal
nonlinear identification techniques to improve the predictive capability of a finite element structural dynamics model.

Part I of this paper discusses the experimental aspects of this work. Linear natural frequencies, damping values, and mode
shapes are extracted from low excitation level testing. Subsequently, the structure is excited with high level user-defined
shaker inputs. The corresponding response data are modally filtered and fit with nonlinear elements to create the nonlinear
pseudo-modal model. This is then used to simulate the measured response from a high level excitation experiment which
utilized a different type of input. The nonlinear model is then employed in a reduced order, generalized structural dynamics
model as discussed in Part II.

Keywords Nonlinear System Identification • Nonlinear Simulation • Structural Dynamics • Modal Model • Restoring
Force Surface

Abbreviations

a Time history of the triangle function
c Damping coefficient
f Frequency in cycles/sec
fc Center frequency in cycles/sec
F Force
Fr Restoring force
Gvf Shaker voltage to excitation force transfer function
j Imaginary number variable
k Stiffness coefficient
q Modal degree of freedom
t Time

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract DE-AC04-94AL85000.

B.R. Pacini
Sandia National Laboratories, PO Box 5800, 87185, Albuquerque, NM, USA
e-mail: brpacin@sandia.gov

R.L. Mayes (�) • B.C. Owens • R.A. Schultz
Structural Dynamics Department, Sandia National Laboratories, P.O. Box 5800 – MS0557, Albuquerque, NM 87185, USA
e-mail: rlmayes@sandia.gov; bcowens@sandia.gov; rschult@sandia.gov

© The Society for Experimental Mechanics, Inc. 2017
M.S. Allen et al. (eds.), Dynamics of Coupled Structures, Volume 4, Conference Proceedings of the Society
for Experimental Mechanics Series, DOI 10.1007/978-3-319-54930-9_23

263

mailto:brpacin@sandia.gov
mailto:rlmayes@sandia.gov
mailto:bcowens@sandia.gov
mailto:rschult@sandia.gov


264 B.R. Pacini et al.

tr Rise time
x Physical displacement degree of freedom
v, V Shaker voltage, time domain and frequency domain, respectively
— Modal damping ratio
! Frequency in radians per second
'dp Drive point mode shape value
H Frequency response function matrix
P Modal response matrix�
U Known restoring force vector�
‰ Modal filter vector
D Subscript for desired
flm Subscript for “first local minimum”
F Subscript for Fourier transform
lin Subscript for linear
n Subscript for natural
nl Subscript for nonlinear
u Subscript for updated
C Moore-Penrose pseudo-inverse of a matrix

23.1 Introduction and Motivation

A large class of structural dynamic system responses are mildly nonlinear in stiffness (a few percent modal frequency change)
and significantly nonlinear in damping (hundreds of percent damping ratio change) as a function of amplitude of vibration.
We desire to experimentally identify such a system and then simulate the nonlinear response analytically. Such systems will
typically be linear at low level excitation. At higher levels of excitation, the resonant frequencies typically decrease slightly
and the apparent damping can increase more than 100%. Structures with joints typically have this softening behavior. Low-
excitation-level linear models used to simulate the response may over-predict the nonlinear response by tens to hundreds
of percent. Consider a frequency response function (FRF) from the hardware used in this work due to a high level and a
low level impact as shown in Fig. 23.1. The low level FRF peak is almost a factor of two greater than the high level FRF
peak. Occasionally, the resonant frequency will slightly increase and the apparent damping decrease as forcing amplitude
increases. We desire to be able to simulate both softening and stiffening behavior.

There are two main analytical methods to capture the nonlinear behavior: local physical models and pseudo-modal models.
The former are extremely computationally expensive and are prohibitively difficult to experimentally identify on a complex
structure. The latter assumes the total system response of a structure is a superposition of the responses of individual modes.
This allows one to study each mode individually and apply nonlinear elements in parallel with the linear spring and damper.

Fig. 23.1 Drive point FRF – low level vs high level impact force
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Inherent in this approach is the assumption that the mode shapes do not change with response amplitude, and that the modal
degrees of freedom (DOF) do not interact. The pseudo-modal approach is computationally inexpensive and methods have
been developed which allow for the extraction of parameters for nonlinear models. Therefore, the pseudo modal approach is
utilized for this work.

The methodology used here follows that of [1] which used the pseudo-modal model to characterize the nonlinearities of
a complex structure via three different nonlinear elements/identification methodologies. The Restoring Force Surface (RFS)
technique described in that work is the nonlinear model structure/identification method employed here. The approach begins
with the standard modal model using a linear spring and damper for each modal mass. The spring and damper are identified
in a standard low-level modal test. Then we assume that, for the nonlinear modes, nonlinear elements can be connected in
parallel with the standard linear elements. Unlike the previous work using impact testing, this works shows the advantages
of high level shaker tests on the nonlinear structure to provide calibration data for fitting the nonlinear parameters. The
identification of these parameters is accomplished using a single modal single degree of freedom (SDOF) response created
by modally filtering the measured structural responses from the high level tests. The nonlinear elements are realized by cubic
polynomials for stiffness and damping as a function of response amplitude.

In Sect. 23.3 the test hardware and instrumentation is described along with the new shaker testing approach that focuses
the input force on the mode of interest. The modal filtering technique used in this work is presented in Sect. 23.4. Section 23.5
describes the nonlinear model and the parameter identification processes. In Sect. 23.6 the simulation results are compared
against measured high level truth data utilizing a different forcing function than the calibration data, and observations are
given. Section 23.7 provides conclusions. In Part II of the paper the experimental results are incorporated into the analytical
modeling framework as an update to the finite element model.

23.2 Experiments

23.2.1 Hardware Description

A solid model cross-section of the test hardware, named the Cylinder-Plate-Beam assembly (CPB), is shown in Fig. 23.2
along with the coordinate systems (CS) utilized in this work. The physical hardware is shown in Fig. 23.3. The Beam is
bolted and epoxied to the Plate. The Plate-Beam is then mounted on the forward flange of the Cylinder using eight bolts. All
three components are 6061 T6 aluminum. Two coordinate systems were utilized for this test: a global Cartesian coordinate
system and a cylindrical coordinate system. The zero degree orientation of the cylindrical CS aligns with the global CS (i.e.
™ D 0ı aligns the cylindrical RC with the Cartesian XC).

23.2.2 Test Set-Up

The CPB was softly suspended using two bungee cords to approximate a free-free boundary condition and instrumented with
10 and 100 mV/g accelerometers. Twenty-six triaxial and four uniaxial accelerometers were mounted at locations that were
selected as a subset of the finite element model (FEM) nodes and minimized the condition number of the finite element mode
shape matrix for the modes below 1600 Hz. By minimizing this condition number, the modal observability and independence
of the mode shapes extracted from measured data were maximized.

Fig. 23.2 Cylinder Plate Beam assembly full system solid model and coordinate systems
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Fig. 23.3 Physical test hardware

Table 23.1 Excitation information, low-level tests

Input DOF Description Input type

34965R Radial input on mid span of cylinder at 60ı Hammer
32916R Radial input on mid span of cylinder at 30ı Hammer
53632Y Axial input at tip of Beam Shaker
25449Y Axial input at aft end of cylinder at 270ı Shaker
31349Y Axial input at aft end of cylinder at 0ı Shaker

23.2.3 Test Procedure

A series of tests were performed in this work. The first was to conduct low-level excitation tests in order to establish a linear
model and collect data for developing the modal filter. Subsequently, high-level excitation tests were conducted in order to
collect data for calibration of parameters for the nonlinear pseudo-modal model.

23.2.4 Extraction of the Linear Modal Model

The linear model is an essential step in this work as its mode shape matrix allows for the translation between the physical and
modal domains. Additionally, the modal filter is calculated from this step (see Sect. 23.4) as well as the linear coefficients of
the pseudo-modal model (see Sect. 23.5).

Low-level excitation was input at the DOFs shown in Table 23.1 in order to extract linear modal parameters (natural
frequencies, damping, and shapes) of the CPB. The input force was reduced as much as possible to minimize the nonlinear
response of the CPB but remain sufficiently above the noise floor. A combination of hammer impact and low-level burst
random tests were used to extract the linear parameters. The Synthesize Modes And Correlate (SMAC) program by Mayes
and Hensley [2] was used to extract modal parameters from each data set individually using a real modes approximation in
Table 23.2. Rigid body mode shapes were calculated from solid model mass properties.

The CPB contains only metal components that are bolted together. Thus the only significant source of nonlinearity in the
amplitudes achieved in this work are the joints. The only modes that exhibit detectable nonlinear response are the bending
modes (7, 8, and 14) and the axial mode (11). Therefore, only these modes were selected for nonlinear modeling.
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Table 23.2 Linear modal parametersa, b

Mode fn (Hz) � (%cr) Reference Shape description

7 128 0.30 31349Y First bend of Beam in soft direction (global X)
8 171 0.31 25449Y First bend of Beam in stiff direction (global Z)
9 391 0.21 34965R (2,0) ovaling of cylinder aligned with X-Z axes
10 395 0.03 34965R (2,0) ovaling of cylinder 45ı from X-Z axes
11 560 0.34 53632Y Axial mode
12 957 0.11 34965R (3,0) ovaling of cylinder
13 958 0.09 32916R (3,0) ovaling of cylinder
14 978 0.23 31349Y Second bend of Beam in soft direction (global X)

aModes 7, 8,11 and 14 were considered nonlinear
bRigid body modes not shown

(a) (b) (c)

Fig. 23.4 Shaker input creation, time domain; (a) triangle wave a(t), (b) sine wave sin(2� fct), and (c) combined signal vi(t)

23.2.4.1 High Level Shaker Testing

Reference [1] utilized impact testing to extract parameters for the nonlinear models. However, impacts excite all modes at
once, thus causing a large initial response which can overload accelerometers, especially the drive point. Therefore, this work
employed shaker testing in order to increase the excitation amplitude of individually targeted nonlinear modes.

One method of nonlinear testing with a shaker involves a stepped-sine input with closed-loop control to maintain either
constant force or response amplitude. This process is slow and difficult to practically implement due to shaker-structure
interactions at resonance. Alternatively, this work developed a shaker input that is quick and simple to conduct. It also drives
a targeted modal amplitude beyond that achievable by impacts which overload the drive point accelerometer.

The basic concept is to excite the structure with a sine wave at a single frequency whose amplitude is shaped by a short
triangle function such that all of the input energy is concentrated near the target modal frequency.

vi.t/ D a.t/ sin .2� fct/ (23.1)

where vi(t) is the voltage sent to the shaker amplifier, fc is the center frequency, and a(t) is the time history of the triangle
function, see Fig. 23.4.

The frequency content of vi(t) is shown in Fig. 23.5. The maximum amplitude occurs at fc and the first local minima
occurring at fflm Hz above and below this value. By taking the Fourier transform of a triangle wave, the ramp up (or down)
time of the triangle function, tr, is calculated to be inversely related to fflm as in the following.

tr D 1

fflm
(23.2)
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Fig. 23.5 Shaker input spectrum

Table 23.3 Shaker input
parameters

Mode fc (Hz) fflm(Hz)

7 128 50
8 169 50
11 560 200
14 974 200

Thus, the shape of this spectrum can be specifically tailored by independently selecting the center frequency and the
location of the first local minima. These values can then be used with (23.1) and (23.2) to create the voltage signal that is
sent to the shaker.

In this work, fc was selected to be the approximate linear natural frequency of the targeted mode and fflm was chosen based
on the target mode’s linear natural frequency and damping and the proximity of nearby modes. This work did not include an
exhaustive evaluation of the ramifications of various values of fflm, and the values of fflm for the four nonlinear modes were
chosen by the authors’ judgement. Table 23.3 contains the input function parameters used in the testing of all the nonlinear
modes.

Exciting the structure via the shaker voltage signal described above would ideally focus the force input in a similar fashion
to produce essentially a scaled version of Fig. 23.5. However, the force measured by the load cell is influenced both by the
shaker input and the response of the test hardware. Thus, the force spectrum is not as smooth as the voltage spectrum and
can actually have significant dips near the resonances. Since the goal of this shaker testing is to concentrate the input energy
near the resonance, the shaker voltage is updated with measurements in order to maximize the response of the targeted mode.
This is accomplished using the transfer function between voltage signal from (23.1) and the corresponding force measured
during a test where vi(t) was the input to the shaker.

Gvf .!/ D F .!/

Vi .!/
(23.3)

where F(!) is the measured force from the experiment. A desired force spectrum, FD(!), can be created by scaling Vi(!)
until its minima at fc ˙ fflm are at approximately the same value as those in F(!). Then, dividing FD(!) by the transfer
function from (23.3) results in an updated shaker voltage signal spectrum, Vu(!).

Vu .!/ D FD .!/

Gvf .!/
(23.4)

The inverse Fourier transform of Vu(!) produces an updated time signal, vu(t), that is subsequently used as the shaker
amplifier input voltage for a second test, improving the energy concentration at the targeted resonance. The nonlinear
parameters for the targeted modes are extracted from the data from this second updated experiment. This process is
summarized in Fig. 23.6.
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Fig. 23.6 Shaker input creation and updating flowchart

(a) (b)

Fig. 23.7 Shaker input updating effectiveness; (a) least effective replication of desired force and (b) most effective replication of desired force

Note the transfer function is a linear operator, so this updating process has limited efficacy due to the nonlinearities in
the test object. However, for this work, this updating process performed sufficiently well to concentrate the input energy at
the resonance. Fig. 23.7 shows two examples of this updating process. The left plot shows an instance where the updating
process made significant improvement, but still struggled to replicate the desired force spectrum. The right plot shows an
example where the updating process resulted in a force spectrum very similar to the desired.

Generally, this method was able to produce higher modal responses than that achieved with a hammer without overloading
the drive point or beam tip accelerometers. Fig. 23.8 shows a comparison of the maximum modal responses achieved using
either shaker or hammer excitation. For modes 7 and 8, the shaker was able to excite the CPB an order of magnitude higher
than the hammer before overloading the beam tip accelerometer. Conversely, for mode 14 the limiting factor for the shaker
input was the stinger buckling. Overall, the shaker was found to better excite targeted modes.

23.3 Modal Filtering

To develop a nonlinear pseudo-modal model, our approach requires the structural response be separated into the individual
modal responses. This requires some type of filter that can transform multiple sensor measurements into modal coordinates.
Once these modal responses are calculated, the nonlinear parameters can be identified. Previous work showed that the modal
filter embedded in the SMAC algorithm generally suppresses non-target modes better than other methods [1]. The following
describes in greater detail the SMAC modal filter.

We desire a modal filter such that

�
‰

T �
x D qi (23.5)
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(a) (b)

(c) (d)

Fig. 23.8 (a–d) Maximum modal responses without overloading accelerometers from shaker and hammer

where qi is the ith modal DOF, column vector
�
x contains measured responses, and

�
‰ is the vector of weights transforming

the measured responses to the modal response. The SMAC modal filter [3] obtains this vector by operating directly on the
FRFs. If one employs (23.5) in the frequency domain and divides by the input force, then

�
‰

T �
Hx D Hqi (23.6)

where
�
Hx is now a vector of measured FRFs and Hqi is an analytically calculated SDOF FRF with an estimate of the frequency

and damping of the target mode and is given by

Hqi D 'dp;i

!2
ni � !2 C j2�i!ni!

(23.7)

where 'dp , i is the drive point shape value for the ith mode. Columns for every frequency line of interest are included in
�
Hx

and Hqi creating a matrix of Hx and a vector of the analytical FRF
�
Hqi. Transposing (non-conjugate) and isolating the modal

filter on the left side yields

�
‰ D HTC

x

�
Hqi (23.8)

where the superscript C represents the pseudo-inverse. Hence, the SMAC modal filter is obtained with the measured FRFs
and an analytical SDOF FRF constructed using the linear estimate of the natural frequency, damping, and drive point shape
of the target mode.
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23.4 Nonlinear Model

This section describes the pseudo-modal approach to capture the nonlinearities in the CPB. This approach assumes each
mode can be modeled with a single degree of freedom system as a modal coordinate. Each modal degree of freedom is
linked to ground with a linear spring and damper. In order to capture the nonlinearity, one adds nonlinear spring and damper
elements in parallel with the linear spring and damper as seen in Fig. 23.9.

There are many methods to model/parameterize the nonlinearity. Reference [1] compares the capabilities of the Iwan,
FREEVIB, and Restoring Force Surface (RFS) methods to capture the nonlinear response of the CPB in a foam-filled
configuration. The RFS method is utilized for this work with the nonlinear spring and damping forces parameterized with
cubic polynomials.

The RFS method has been extensively researched and refined with several permutations, see reference [4] for an extensive
synopsis of the past variances and applications. The foundation of RFS is in the Newtonian equation of motion:

Rq.t/ C Fr .q.t/; Pq.t// D F.t/ (23.9)

where Fr .q; Pq/ represents the damping and stiffness forces (called the restoring forces) and F(t) is the excitation force.
Assuming the acceleration and excitation force are measured, then at every time instant, the restoring force is also known.
We write Fr as in the following:

Fr .q.t/; Pq.t// D c0 Pq.t/ C c1 jPq.t/j Pq.t/ C c2 Pq3.t/ C k0q.t/ C k1 jq.t/j q.t/ C k2q3.t/ (23.10)

where c1, c2, k1, and k2 are constants. Since c0 and k0 are already known from the low level modal tests (see Table 23.2),
(23.9) is rearranged to

� jPqj Pq Pq3 jqj q q3
�

2

66
4

c1

c2

k1

k2

3

77
5 D F � Rq � c0 Pq � k0q (23.11)

where the time-dependency has been omitted for clarity. Equation (23.11) can be expressed as

P

2

6
6
4

c1

c2

k1

k2

3

7
7
5 D �

U (23.12)

Fig. 23.9 Schematic of SDOF
for RFS modal coordinate
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Table 23.4 Damping and stiffness coefficients

Mode c0 c1 c2 k0 k1 k2

7 4.77 2.6 �1.95 6.48E C 05 �9.15E C 07 3.77E C 10
8 6.61 3.17 �3.28 1.15E C 06 �2.86E C 08 1.92E C 11
11 23.9 318 �834 1.24E C 07 �2.05E C 10 1.54E C 14
14 27.8 �188 811 3.77E C 07 �6.16E C 09 8.41E C 13

where P and
�
U are processed measurements with a row for each time sample. We obtained the best results by taking the

Fourier transform of
�
U and each column of P giving

PF

2

66
4

c1

c2

k1

k2

3

77
5 D UF: (23.13)

Note that in order to yield real coefficients, PF must be reconfigured to.

PF D
�

real .PF/

imaginary .PF/

�
: (23.14)

�
UF must be similarly restructured. Pre-multiplying

�
UF by the pseudo-inverse of PF results in the least-squares estimate for

c1, c2, k1, and k2 as in (23.15).

2

66
4

c1

c2

k1

k2

3

77
5 D PF

CUF: (23.15)

Note that acceleration, velocity, and displacement must all be known (estimated or measured). For this work, acceleration
was obtained from the modal filtered measured accelerations and the other two states were estimated by integrating in the
frequency domain.

The identification procedure described above was performed on the four identified nonlinear modes, and the results are
provided in Table 23.4.

23.5 Results and Observations

To evaluate the effectiveness of the pseudo-modal model extracted as described above, a truth test was conducted where the
CPB was excited from DOF 31349Y via a 0.3 s chirp (i.e. a very fast sine sweep) from 50 to 1400 Hz. This DOF was chosen
since it excited three of the four nonlinear modes. The amplitude of the sweep was varied in order to maximize the response
of each nonlinear mode without exceeding the maximum voltage limit of any accelerometer.

The pseudo-modal model with all 14 modes (6 rigid body, 4 linear and 4 nonlinear) was excited with simulated modal
forces corresponding to the measured excitation signal from the truth test. The calculated modal responses were transformed
back to the physical DOF via the linear mode shape matrix extracted from the low level test. These responses were compared
against the measured data from the truth test in Figs. 23.10 and 23.11 which show the drive point response in the frequency
and time domains, respectively. Note that the line labeled “Linear” is the response of a modal model which used only the
linear parameters of all 14 modes.

The 31349Y drive point DOF does not excite mode 8 and thus there is no corresponding response in either of these figures.
Additionally, the colored boxes in Fig. 23.11 approximately correspond to the maximum response of the indicated modes.
Figs. 23.10 and 23.11 show that the nonlinear model offers an improved results over the linear model.
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Fig. 23.10 Truth test simulation results, FFT of the drive point response for input DOF 31349Y

Fig. 23.11 Truth test simulation results, time domain drive point response for input DOF 31349Y

23.6 Discussion

The shaker inputs were able to drive the CPB to a much higher modal response than the hammer without overloading
any accelerometers by concentrating the excitation energy near a targeted modal frequency. There are multiple benefits
to this. The first is that the input spectrum can be tailored to minimize nearby resonances, enhancing the desired single
mode response. The purer the modal response, the greater the accuracy of the extracted nonlinear parameters. The second
advantage is that higher response amplitudes can be achieved for a given sensitivity range of accelerometers, allowing for
the characterization of nonlinearities over a larger amplitude range. Thus a more accurate nonlinear model can be generated
and a greater understanding of the hardware can be attained.
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Although imperfect, the truth test results demonstrate that using simple cubic polynomials was an effective method
for representing damping and stiffness nonlinearities of the test hardware. These models are easy to understand and were
considered adequate for this work. Higher order polynomials could achieve a better fit to the measured data, but they also
introduce worse conditioning for the pseudo-inverse of P in (23.15). The engineer may decide what polynomial order is
adequate.

A disadvantageous feature of the polynomic nonlinear model is that, outside the amplitude range in which its coefficients
were fit, the polynomial tends toward infinity (either positive or negative). This can cause the simulation to become unstable
and give erroneous results. Therefore, the pseudo-modal with the nonlinear damping and stiffness represented by polynomials
should only be used to interpolate and not for extrapolation.

23.7 Conclusions

This work showed the capability of using a pseudo-modal model to capture nonlinearities of a real structure using cubic
polynomials for the stiffness and damping forces. The coefficients for these polynomials were extracted from data measured
during shaker tests. A method was developed to create inputs for these shaker tests specifically tailored to concentrate the
excitation energy around a target mode. This allowed for the excitation of individual modes to amplitudes greater than
that achievable by impact testing while not overloading any accelerometers. Additionally, concentrating the energy around
a target mode increased the efficacy of the modal filter, creating a purer modal response from which to extract nonlinear
parameters. A truth test consisting of a chirp from 50 to 1400 Hz showed that the nonlinear pseudo-modal model effectively
captured the nonlinear dynamics seen in the CPB and matched the measured data better than a linear model.
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