
Designing Fuzzy Logic Controllers
for ROS-Based Multirotors

Emanoel Koslosky, André Schneider de Oliveira,
Marco Aurélio Wehrmeister and João Alberto Fabro

Abstract This chapter presents a tutorial on using an open-source ROS package
for implementing control systems based on Fuzzy Logic. Such a package has been
created to facilitate the development of fuzzy control systems along with ROS tech-
nology and infrastructure. A step-by-step tutorial discusses how to develop a set
of distributed and interconnected fuzzy controllers using the proposed ROS pack-
age. A fuzzy control system that controls the movement of an unmanned multirotor
(specifically a hexacopter) is presented as case study. The behavior of this control
system is demonstrated by means of a commercial robotics simulation environment
named V-REP. One scenario is used to illustrate the fuzzy control system steering
the movement of a virtual hexacopter carrying an attached loose payload, i.e. such
a loose payload forms a pendulum. In this case study, one can see the hexacopter
flight after receiving commands to fly to distinct positions within the scenario. It is
important to highlight that, in order to be able to perform this tutorial, the reader
must use ROS Indigo Igloo and V-REP PRO EDU version V3.3.0 both running on
Ubuntu 14.04.4 LTS.

Keywords ROS · Multirotor · Fuzzy logic · Simulation

The source code and examples discussed in this chapter are available as a catkin package
published in [1]

E. Koslosky (B) · A.S. de Oliveira · M.A. Wehrmeister · J.A. Fabro
Advanced Laboratory of Embedded Systems and Robotics (LASER), Federal University of
Technology—Parana (UTFPR), Av. Sete de Setembro 3165, Curitiba 80230-901, Brazil
e-mail: ekosky@gmail.com

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

M.A. Wehrmeister
e-mail: wehrmeister@utfpr.edu.br

J.A. Fabro
e-mail: fabro@utfpr.edu.br

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_2

41

42 E. Koslosky et al.

1 Introduction

Recent technology advances have led to a cost reduction in electronic and electro-
mechanical components, providing new capabilities to small electromechanical air-
crafts such as multirotor helicopters (also known as drones). Such devices are being
applied in many distinct application fields, such as video recording, plantation
inspections, search-and-rescue assistance, military and civil surveillance applica-
tions, among others. Some of these new applications demand multirotor helicopters
that fly autonomously as presented in [2, 3]. For that, additional computing systems
must be embedded into an autonomous multirotor helicopter, in addition to move-
ment and stabilization control systems, in order to provide higher level capabilities
to support the mission accomplishment. Unmanned Aerial Vehicles (UAV) are the
preferred choice for these applications due to cost reductions obtained from elimi-
nating the need of high-skilled and trained pilots. It is important to highlight that, in
this text, the term “multirotor” is used as a synonym for “multirotor helicopter”.

The multirotor rotors can be organized in different ways, varying in the amount of
rotors, as well as their positions onto the aircraft frame. The so-called quadcopter is
a multirotor equipped with four rotors. It is the most common multirotor. However,
its characteristic may limit some applications, e.g. a payload transportation from one
point to another. Recently, other multirotor topologies have become popular such the
hexacopter [4] that is equipped with six rotors.

In order to provide a stable flight for UAVs, hybrid control approaches (parallel,
cascade) with multiple PID controllers are commonly used [5, 6]. Although these
methods perform the system control in a properway, they require a precisemathemat-
ical formulation as well as the identification of UAV dynamics, in order to stabilize
the system while minimizing disturbances [7].

Adaptive algorithms can be applied to control multivariable systems (such asUAV
flying control system) more efficiently than classical strategies. In [8], an approach
based on artificial neural networks is presented to control the trajectory ofUAVflight.
A genetic algorithm is applied to control the flight of a hexacopter in [9], where as a
fuzzy logic method has been proposed to control the position of a hexacopter in [10].
The main focus of these previous works is on the UAV stabilization in the presence
of linear disturbances. However, these works do not consider nonlinear disturbances,
such as the ones introduced when the UAV carries a variable or loose payload. In
a previous work [11], we created a fuzzy logic controller to control the movements
of a hexacopter and also to deal with nonlinear disturbances. Such a fuzzy control
system was created to provide a robust and flexible controller that is able to keep the
hexacopter stability when moving or hovering, even when it carries a free or loose
payload that changes its center of gravity. It is important to highlight that, due to
space constraints, this chapter does not provide a in-depth discussion on this fuzzy
control system. Interested readers are referred to [11] in order to obtain details on
the design of such a control system.

This chapter discusses a ROS-based implementation of our fuzzy control sys-
tem in terms of an open-source ROS-based fuzzy logic library designed to control

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 43

multirotors. Specifically, the proposed fuzzy library has been implemented to be
used within a roscpp Node. The main goal is to present a step-by-step tutorial on
designing fuzzy based controllers for mobile robots (focusing on UAVs) using ROS
features [12]. This tutorial is intended to be followed by beginner level ROS users.
It discusses how ROS is used to receive signals from sensors and also to send com-
mands to actuators by means of the publisher/subscriber mechanism. Moreover, the
tutorial shows how to integrate a different robot simulator named V-REP [13] with
the fuzzy control system implemented with the proposed library. Thus, the engineers
may perform a round-trip engineering process1 by integrating the developed fuzzy
control system with a virtual environment or the real hardware seamlessly.

It is important to highlight that, as alreadymentioned, the tutorial described in this
chapter is aimed to beginner level users of ROS. Thus, in order to correctly under-
stand its content, the reader should be familiar with Linux and C/C++ programming
language, aswell as he/she should have some basic ROSunderstanding. The beginner
level tutorials [12] should be sufficient to understand the presented approach (tuto-
rial #16 presents the concepts about nodes, messages, publishers and subscribers).
Although it might be a good idea to follow the V-REP BubbleRob tutorial [14], the
short introduction given here would be enough for allowing the experimentation.
Moreover, a tutorial about V-REP and ROS integration is presented in [15]. The ver-
sions of the software used in this tutorial are: (i) Operating System: Ubuntu 14.04.4
LTS; (ii) ROS Indigo Igloo; (iii) V-REP PRO EDU version V3.3.0.

The remainder of this chapter is organized as follows. Section2 presents a brief
overview of multirotors features and movements. Section3 summarizes our fuzzy
control system for a hexacopter. Section4 presents the open-source ROS library that
provides the services supplied within our fuzzy logic library. Section5 discusses how
to use a different robotics simulation environment along with ROS and our library
to perform experiments on fuzzy control system, including the discussion of a case
study that illustrates the concepts and technologies discussed in this tutorial. Finally,
Sect. 6 concludes this chapter by discussing some final remarks.

2 Brief Overview of Multirotors

This section provides a description on how multirotors perform their movements.
An empirical discussion is presented rather than a formal modeling of multirotor
dynamics, in order to provide a practical view similar to a human pilot controlling
the multirotor bymeans of a radio control system (i.e. RC controller). Formal models
of multirotor dynamics can be obtained, for instance, in [5–7].

Initially, it is worth mentioning that a multirotor can present various distinct con-
figurations, i.e. multirotors may present various topologies. In summary, multirotor
topology varies in rotors number as well as the rotors position. Regarding the number
of rotors, amultirotormay have from three, four, six or eight rotors, namely, tricopter,

1This chapter does not intend to propose or discuss any concrete round-trip engineering process.

44 E. Koslosky et al.

quadcopter, hexacopter and octocopter, respectively. The most common multirotor
is the quadcopter, although the hexacopter is recently becoming popular due to its
good trade-off among cost, flight robustness, fault-tolerance, and capacity of flying
with heavier payloads.

On the other hand, these rotor may be positioned in distinct topologies regarding
the front/rear of the multirotor.

• “X” topology presents two rotors on both front and rear. One rotor is positioned
on the right-hand side and the other one on the left-hand side of front/rear. This
topology can be used with quad-, hexa-, and octocopters.

• “I” or “+” topology presents one rotor positioned on the front and one rotor
position on the rear. The remainder rotors are distributed evenly on the right-hand
and left-hand sides of the multirotor. This topology can be used with quad-, hexa-,
and octocopters.

• “H” topology is similar to the “X” topology, i.e. two rotors on both the front and
rear. However, the arms of the aircraft frame form an “H” rather than an “X”. This
topology can be used with quad- or hexacopters.

• “Y” topology presents two rotors on either front or rear, and one rotor on the
opposite side. This topology can be used with tri- or hexacopters. In hexacopters,
the counter rotating propellers are placed one on top of another.

It is important to highlight that both the amount of rotors and their positioning onto
the aircraft frame influence how a multirotor performs its movements, and hence,
how the movement control system is designed. In the remainder of this section, the
hexacopter “+” topology is used to illustrate the multirotor movements.

Amultirotor moves on three dimensions along X, Y and Z axes as shown in Fig. 1.
In summary, the rotors create thrust that allows for pitch, roll, yaw, uplift and downfall
movements. Thus, by activating the rotors accordingly, it is possible to control the
hexacopter movement along X, Y and Z axes. In other words, by speeding up or
slowing down some rotors, it is possible to move the multirotor towards the desired
direction on each axis.

Pitch is themultirotor movement towards either forward or backward. Controlling
pitch angle implies on the control of multirotor rotation2 onY-axis as shown in Fig. 2.
The multirotor moves forward when the rear rotor spins faster than the front rotor;
similarly, it moves backward when front rotor spins faster than the rear rotor. The
difference in these rotors spinning produces an unbalanced thrust on each rotor,
rotating the multirotor around its Y-axis leading to an horizontal movement along
the X-axis. The multirotor slows down the movement when the rotor positioned on
the movement direction spins faster than the other rotor, i.e. this decreases the pitch
angle.

Roll is the multirotor movement towards right-hand or left-hand side. Controlling
roll angle implies on the control of multirotor rotation (see footnote 2). on X-axis as
shown inFig. 3.Themultirotormoves sidewayswhen the rotor onone side spins faster

2Figures2, 3, 4 and 5 depict the inertial frame at the right-bottom corner of the figures. It is important
to note that this inertial frame is used in both V-REP environment and ROS representation.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 45

Fig. 1 Hexacopter movements: (i) roll is the rotation on X axis; (ii) pitch is the rotation on Y axis;
and (iii) yaw is the rotation on Z axis. The arrow indicates positive direction

Fig. 2 Hexacopter pitch movement: rotation around Y-axis

than the ones on the other side. The difference in these rotors spinning produces an
unbalanced thrust on right-hand or left-hand side, rotating themultirotor around itsX-
axis leading to a horizontal movement along the Y-axis. Likewise forward/backward
movement, the multirotor slows down the movement when the rotors positioned on
the movement direction spins faster than the other ones, i.e. this decreases the roll
angle.

Yaw is the deviation of themultirotor head (i.e. its front orientation) towards either
right or left. Controlling yaw angle implies on the control of multirotor rotation on Z-
axis as shown in Fig. 4. For that, interleaved rotorsmust spin faster than the other ones
leading to a gyroscopic effect on the multirotor frame. It is important to note that the
propellers attached to interleavedmotors rotate either clockwise or counterclockwise.
Therefore, in order to turn the multirotor to right-hand side direction, the clockwise
rotors must spin faster. Similarly, for turning to the left-hand side direction, the

46 E. Koslosky et al.

Fig. 3 Hexacopter roll movement: rotation around X-axis

Fig. 4 Hexacopter yaw movement: rotation around Z-axis

Fig. 5 Hexacopter uplift and downfall movements

counterclockwise rotors must spin faster. The multirotor does not move along X- or
Y-axis; it only rotates around Z-axis.

Uplift and downfall are the multirotor movements related to the flight altitude.
These movement are achieved by spinning all rotors on the same pace. The mul-
tirotor flies upwards when the lift force produced by the rotors is higher than the
multicopter weight. On the other hand, the multirotor flies downwards when the lift

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 47

force produced by the rotors is lower than the multicopter weight. When lift force is
equal to the weight, the multicopter hovers in the air.

Furthermore, in many application fields, a multirotor carries a payload in order to
accomplish its mission. A payload attached to the multirotor body frame changes the
gravity center of the whole aircraft thus affecting the way the multirotor performs
its movements [16]. When the payload has a constant mass and is fixed to the body
frame, the multirotor gravity center is modified but it remains on the same position.
On the other hand, when the payload has a varying mass (e.g. leaking bag of sand)
or it is loosely attached to the multirotor, the center of gravity changes during the
flight, introducing nonlinear disturbances. A loosely attached payload forms a mov-
ing pendulumwhen themultirotor flies. Hence, while the pendulum ismoving, center
of gravity of the entire aircraft changes as well [17]. Fuzzy logic controllers have
been used to deal with the moving center of gravity created by a moving pendulum
[17–19].

Finally, it is worth mentioning that a multirotor is equipped with a set of sen-
sors and actuators in order to run high- and low-level control systems. An Iner-
tial Measurement Unit (IMU) provides a combination of gyroscope, accelerometer
and compass (magnetometer) sensors. Multirotors demand three dimensional IMUs.
The accelerometer detects the current acceleration rate along with X, Y and Z axes,
whereas changes in rotational attributes, e.g. roll, pitch and yaw, are measured by the
gyroscope. The gyroscope provides the body frame angles known as Euler angles.
The magnetometer measures the magnetic field in order to assist the calibration
against orientation drift. In order to obtain the absolute position of the multirotor
within the environment, the Global Positioning System (GPS) sensor are used. GPS
is also applied to decrease errors in position and velocity produced within an inertial
navigation system. Stereo cameras or laser scanners can also be used to obtain the
distance to obstacles in the environment, and hence, allowing the multirotor to avoid
collisions.

3 Fuzzy Control System for Hexacopters

3.1 Brief Overview of Fuzzy Logic

This section provides an overview of the key concepts of Fuzzy Logic in order to
improve the reader’s understanding on our ROS-based fuzzy logic library. Interested
readers must refer to [17, 20] in order to get a deeper discussion on Fuzzy Logic.

Fuzzy logic is a way to model a system using basic human interpretations, provid-
ing a method to describe both the system model and the computation of its outputs.
For instance, when someone says that “I am close to a car” and “you are not close
to it”, the meaning of these phrases can be diverse. How can a computer calculate
how close is something? A human could answer “yes”, “not” or “almost”. However,
in order to provide such an answer, it is important to consider the context to realize

48 E. Koslosky et al.

the meaning of this answer. Fuzzy logic provides a way to cope with the intrinsic
imprecision of these answers by means of representing imprecisions and a common
reference to the meaning of concepts such as “close” and “distant”.

Let us use the altitude control of the hexacopter as an example. For instance,
the operator sets the altitude to ten meters. If the hexacopter is on the ground, at
altitude zero, some amount of power must be applied to all rotors until it reaches
the target altitude. How much power must be applied? If the target altitude is far
away from the starting position, the maximum power might be applied, and hence,
the hexacopter reaches the target altitude faster but it might overshoot the desired
position. On the other hand, if the applied power is minimal, the hexacopter moves
slower in order to minimize the overshooting, but it takes too much time to reach
the desired position. The process of mapping and adjusting the numerical values to
represent human linguistic values is key to design fuzzy systems.

A Fuzzy controller comprises a set of artifacts that enables the translation from
human linguistic terms into elements that are processed by computers. The following
artifacts compose a fuzzy control system:

• Linguistic Variables are used to represent the meaning of terms that are related to
input or output signals. The concept of “distance” is an example. It may have the
following values: “far”, “near”, “very close” and “on”. Linguistic variables can
define output values as well, e.g. the “power” to be applied on the rotors could have
the absolute values, e.g. “minimum”, “middle”, “maximum”, or relative values,
e.g. “much lower”, “lower”, “maintain”, “higher” and “much higher”. Therefore
any system input or output can be modeled as a set of linguistic values that have
meaning for an human expert.

• Membership Function defines the mapping linguistic variable and its linguis-
tic values. Since linguistic variable defines a set of concepts that are understood
by human experts, its linguistic values must be defined so that the computer can
process them. The expert defines numeric values to represent each concept. Each
membership function defines the interpretation of any numeric value, incorporat-
ing the subjective imprecision. This is done by using a geometric representation of
the concept, such as aGaussian function, or triangular/trapezoidal function. Exam-
ples of some membership functions defined in the proposed fuzzy controllers are
presented in the following sections.

• Rules define the relationship between input and output linguistic variables. A
fuzzy system comprises a set of rules that relates premises and consequences in
the form: IF premises THEN consequences. Premises represent com-
parisons between an input linguistic variable and values of its membership func-
tion. During the inference process, the relative strength of each premise is obtained
by means of a process called fuzzyfication and thereafter propagated to the con-
sequences. Once all the rules are evaluated, the consequences are evaluated alto-
gether. The quantitative output values are produced within the defuzzyfication
process and then such values are applied to the controlled process.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 49

It is worth pointing out that, besides defining the fuzzy set, the engineers are
responsible for tuning the membership function values, in order to obtain the desired
behavior for each situation.

Furthermore, the execution of fuzzy logic systems comprises the following three
processes:

• Fuzzyfication is the process in which raw values obtained from input signal are
comparedwith values of eachmember function, in order to find out the correspond-
ing activation level. Usually the input signal value comes directly from a sensor
reading. However, it can also be derived from some kind of calculation, such as the
velocity obtained from the difference of two consecutive position readings pro-
vided by a GPS. If the raw value intercepts more than one membership function,
all concepts are considered, and thus, each one presents a different activation level.

• Rule inference (also known as rule evaluation) is a process that evaluates all
rules of the fuzzy system. It takes the fuzzyfied input values and evaluates the
activation value of eachpremise, calculating the output value for each rule. Partially
activatedpremises lead to partial activationof consequences, allowing for a “fuzzy”
inference procedure.

• Defuzzification process obtains an exact output value (e.g. numerical value) that
can be directly applied onto an actuator, e.g. the power to be applied onto the
hexacopter rotors. The output strength points are used to calculate an average
value. For that, the area formed by the union of each output membership function
is used. There are several methods to obtain the output value. For instance, Center
of Gravity (COG) defuzzification method takes into account the relative position
over the horizontal axis plus the weight of the combined area.

3.2 Overview of Hexacopter Movement Control System

This section provides an overview of the fuzzymovement controller for a hexacopter,
in order to explain the ROS-based open-source package presented in this chapter.
Interested readers must refer to [11] in order to obtain details on the design of such
a control system.

The proposed controller implements a closed loop that comprises three layers.
Data produced as output of one layer is passed as input to the next layer. The proposed
multi-layer fuzzy controller is based on [17] and is depicted in Fig. 6. The Movement
Fuzzy Control System box is composed by a pre-processing phase (first layer), a set
of fuzzy controllers (second layer), and post-processing phase (third layer).

As one can observe, after the post-processing phase, the control outputs are applied
onto the plant by means of the hexacopter rotors that actuate on the hexacopter
movement, i.e. pitch, roll, yaw. The sequence of maneuvering is depicted in Fig. 7.
The sensors perceive the changes on the plant controlled variables, and hence, provide
the feedback to the controller. The controller, in turn, compares these input values

50 E. Koslosky et al.

Fig. 6 Overview of the hexacopter movement fuzzy control system

Fig. 7 FSM for sequencing the hexacopter maneuvering process. (X, Y, Z) inputs represent the
new target position of the hexacopter

with the reference values established as setpoints thereby closing the control loop
[17, 20].

The pre-processing phase (first layer) is responsible for acquiring data from the
input sensors, processing the input movement commands, as well as calculating the
controlled data used as input to the fuzzy controllers in the second layer. Before
the multi-layer controller starts its execution, there is an initialization phase that is
performed within the first layer. The target position is set as the current position, so
that the hexacopter does not move before receiving any command. Gyroscope and
accelerometer sensors are calibrated and the GPS sensor is initialized by gathering

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 51

at least four satellites. During the execution phase, the first layer is responsible
to calculate the input variables to the fuzzy controllers: (i) the angular and linear
distance (delta error) for X, Y, and Z axes between the current hexacopter position
and the target position; (ii) the rotation and translation movement matrices in order to
translate movement along X, Y and Z axes into the speed related to the ground (i.e. X
and Y axis). In addition, the pre-processing phase is responsible to convert the input
movement commands into setpoints for X-, Y- and Z-axis. Movements commands
are composed of three values representing the positive or negative movement along
X, Y and Z axes regarding the current positions, i.e. a command indicates a target
relative position. Thus, when a new command is received, the first layer converts
such a command to an absolute position. Then, once the control system is running,
this layer uses the current GPS position to determine the error in the position of the
hexacopter concerning the target position. These calculated errors in position are the
inputs to the fuzzy controllers (Euler X, Euler Y and Euler Z errors).

The second layer contains five fuzzy controllers, which act on issues regarding
the hexacopter movement, namely hovering, vertical and horizontal movement and
heading. As mentioned, these controllers take as input the data produced in the
first layer and generate output for the third layer. The generated outputs represent
the actuation on the six rotors for performing pitch, roll, yaw movements for all
maneuvers necessary to reach the target position. In order to provide an illustrative
example, one fuzzy controller is discussed in details in the next section.

The post-processing phase (third layer) is responsible for coordinating the fuzzy
controllers outputs. In order to perform a proper maneuver, the proposed multi-layer
controller establishes a priority onmovements needed to complete amaneuver.When
a new command is received, i.e. a new target point is set, the hexacopter must firstly
reach the target altitude. Then, the hexacopter must turn until its front aims the target
position. Finally, the hexacopter moves horizontally towards the target position. This
layers controls the position thresholds by means of output values saturation, in order
to keep the hexacopter stable while flying or hovering.

3.3 Example: Design of Vertical Movement and Hovering
Controller

Vertical movement and hovering fuzzy controller controls the movement on the Z-
axis, i.e. it controls uplift, downfall and hovering movements. Figure8 shows the
block diagram of this controller.

This controller takes as input the vertical distance to the target position, as well
as the vertical speed. The first one is the error in vertical distance (altitude error), i.e.
the difference between target position and actual hexacopter position on Z-axis. The
second input is the current speed calculated as a derivative information of hexacopter
displacement over time.

52 E. Koslosky et al.

Fig. 8 Vertical movement and hovering fuzzy controller

Fig. 9 Input linguistic variables and their membership functions for vertical distance

Fig. 10 Input linguistic variables and their membership functions for vertical speed

The linguistic variables for vertical distance and vertical speed are shown in Figs. 9
and 10, respectively. Letters “N” and “P” at the beginning of each membership
function mean negative and positive values, respectively. In Figs. 9 and 10, values
in the X-axis represent the distance from the setpoint in meters, whereas values in
the Y axis indicate the activation of each membership function, varying from 0.0
(minimum) to 1.0 (maximum activation) indicating a percentage. The shape of these
membership functions is the triangle, since the algorithm for calculating its area
presents a low computing cost, and hence, it may be used on embedded system
platform.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 53

Table 1 Control rules of vertical navigation

V. Dist. V.
Speed

NFAR NMID NNEAR ZERO PNEAR PMID PFAR

NFAST NMAX NMID NMIN PMIN PMID PMAX PMAX

NSLOW NMAX NMID NMIN PMIN PMID PMAX PMAX

ZERO NMAX NMID NMIN ZERO PMIN PMID PMAX

PSLOW NMAX NMAX NMID NMIN PMIN PMID PMAX

PFAST NMAX NMAX NMID NMIN PMIN PMID PMAX

Moreover, one can see the intersections of membership variables values, i.e. adja-
cent variables share a given range of values. This is an important characteristic of
fuzzy systems and allows the modeling of smooth transitions among adjacent con-
cepts. If there are gaps between transitions, i.e. no membership function is activated,
the fuzzy control system may stop working. Another important issue is that the input
membership functions must cover the complete range of input values, so that the
fuzzy process can work with all possible sensor readings.

Fuzzy rules can be specified by means of clauses (e.g. if premise then
consequence) or a table. The Table1 shows the set of rules that composes the
verticalmovement andhovering controller. It is important to highlight that the number
of rules increases as more linguistic variables and membership functions are added
to the fuzzy control system.

This controller sets the output throttle variable OThrottle as result (see Fig. 11)
Each value presented in Table1 is decomposed into an amount of power applied on
all rotors, increasing or decreasing the overall lift force making the hexacopter fly
on higher or lower altitude. It is worth noting that the power applied on the rotors
decreases along with vertical speed when the hexacopter comes closer to a target
altitude.

The fuzzy control surface graphic shown in Fig. 12 provides the visualization of
the input and output values of the vertical movement and hovering fuzzy controller.
The altitude is maintained by means of controlling the throttle applied on all rotors

Fig. 11 Output linguistic variables and their membership functions for OThrottle

54 E. Koslosky et al.

Fig. 12 Surface of fuzzy controller for vertical navigation and hovering control

simultaneously. The GPS sensor provides the current altitude information. On the
other hand, the vertical speed is used to decrease the oscillation when the hexacopter
reaches the desired altitude. In order to illustrate the relationship between vertical
distance error (altitude error) and vertical speed, let us suppose some situations. In
the first one, the altitude error is zero (i.e. the hexacopter reaches the target vertical
position) and the vertical speed is positive (e.g. 0.4 or higher). This situation means
that the hexacopter has reached the target altitude but it will fly beyond that position
because the speed indicates the hexacopter is still flying upwards. The hexacopter
vertical speed must be slowed down before reaching the target altitude, and hence,
the controller must set an output value lower than ZERO. In the second situation, the
altitude error is zero and the vertical speed is negative. In this situation the hexacopter
is falling down, and hence, the controller must set an output value higher than ZERO
in order to stop the fall. It is worth noting that theZERO output value for OThrottle
does not mean that any power is applied on the rotors; instead, it represents a minimal
power value that keeps the hexacopter hovering at the current altitude.

In order to illustrate the fuzzyfication and defuzzyfication process, let us assume
that the current vertical distance error (altitude error) is −0.75m. This value is com-
pared to the level of membership functions during the fuzzification process. After
fuzzyfication, the value represents 0.28 (28%) of the NMID membership function
and 0.5 (50%) of the NNEAR as shown in Fig. 13. During rules inference process,
the activation of NMID and NNEARmembership function enables ten rules (see third
and fourth columns of Table1).

As one can see in Table1, these rules combine two linguistic variables (vertical
distance error and vertical speed), and hence, they define two premises that are
connected with an “AND” operator (the minimum operator). “AND” operator selects
a lower number of rules that have received high activation values. The resulting
consequence depends on both linguistic variables. Let us suppose that the current
value of speed_uavZ is ZERO. The rule with the highest value is the intersection
of NNEAR column and ZERO line of Table1.

However, it is important to highlight that NMID variable has some influence on the
result of the fuzzy rules inference. Therefore, Othrottle output linguistic variable
is defined as a combination of NMID and NMIN values. This situation forms points of

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 55

Fig. 13 An example of input at −0.75m. After fuzzification the distance means 0.28 of negative
middle, NMID, and 0.5 of NNEAR

Fig. 14 Obtaining Othrottle raw value after defuzzyfication process

different activations between two output membership functions, creating two areas.
The defuzzification process produces the raw value that represents the influence of
both NMID and NMIN values. The values provided to each linguistic value depends
on the activation of each rule. Figure14 shows two possible output values. The first
output value is 0.33, and it was obtained by calculating the arithmetic average of the
two areas. The second output value is 0.36, and it was calculated using the center of
gravity (COG) method that represents a weighted average between the two areas.

4 Open-Source Package of ROS-Based Fuzzy Logic
Control Systems

4.1 Package Overview

This section describes our open-Source Package of ROS-based Fuzzy Logic Con-
trollers [1]. This package provides the following artefacts: (i) the proposed fuzzy
logic library; (ii) examples of fuzzy set files for the hexacopter movement fuzzy con-
trol system; (iii) the fuzzy control system main software implemented using ROS;

56 E. Koslosky et al.

(iv) a software to send commands (i.e. the desired target position) to the virtual hexa-
copter; (v) a telemetry software that displays data from the hexacopter as well as the
fuzzy controllers.

The package structure is composed by the following directories3:

• fz directory stores the text files that specify the fuzzy set. One fuzzy set is formed
by three files: (i) input linguistic variables, e.g. “HexaPlus_i_stabZ.fz” defines the
inputs for the vertical controller and hovering fuzzy controller; (ii) fuzzy rules,
e.g. HexaPlus_r_stabZ.fz specifies the rules for the vertical controller and hover-
ing fuzzy controller; (iii) output linguistic variables, e.g. “HexaPlus_o_stabZ.fz”
defines the output linguistic variables.

• include directory provides the C/C++ header files. This directory presents two
subdirectories: one subdirectory provides the header files for the tutorial, while
the other one provides the header files for the fuzzy library, so that the library can
be reused in other projects.

• src directory stores the source code. The code files of fuzzy logic library are stored
within the subdirectory “fuzzy”, whereas the tutorial source code files are located
directly in the src directory.

• scenes directory provides the V-REP scenarios that are used in this tutorial.

The next sessions discuss how to install, use and test our package. For that, the
reader must use Ubuntu 14.04.4 LTS Operating System with the following software
installed: ROS Indigo Igloo, catkin, cmake, V-REP PRO EDU version V3.3.0.4

4.2 Configuring ROS Environment and Installing the
Package

First of all, a workspace is created in order to compile the shared library files so that
the V-REP can be integrated with ROS. The V-REP provides a set of ROS packages
to generate the share libraries. The workspace will also host the fuzzy package, as
well as some libraries will be copied to the V-REP directory.

1. Create a directory under your home directory and initialize the catkin work-space
using catkin_init_workspace.

1 $ cd ~
2 $ $ mkdir -p catkin_hexacopter/src
3 $ cd catkin_hexacopter/src
4 $ catkin_init_workspace
5 $ cd ..
6 $ catkin_make
7 $ source devel/setup.bash

3Files and subdirectories created automatically by catkin/make commands are ignored.
4This tutorial assumes that V-REP has been installed in /opt/V-REP/ directory.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 57

2. Copy the ROS package from the V-REP directory and generate the libraries with
catkin_make.

1 $ cd ~/ catkin_hexacopter/src
2 $ cp -rp /opt/V-REP/V-REP_PRO_EDU_V3_3_0_64_Linux/programming

/ros_packages /* .
3 $ cd ..
4 $ catkin_make

3. Once two shared libraries have been created, copy these libraries to the V-REP
directory, enabling the V-REP to work with the roscore.

1 $ cd ~/ catkin_hexacopter
2 $ cp devel/lib/libv_repExtRos.so /opt/V-REP/V-

REP_PRO_EDU_V3_3_0_64_Linux/
3 $ cp devel/lib/libv_repExtRosSkeleton.so /opt/V-REP/V-

REP_PRO_EDU_V3_3_0_64_Linux/

These libraries enable V-REP to look for an instance of roscore at startup. If
roscore is not running and the simulation scenario has some call to ROS, the
simulation fails and the user is warned. V-REP acts as a ROS node, and hence,
roscoremust be running before starting V-REP. The integration between ROS
and V-REP succeeded whether the ROS plugins are loaded during the V-REP
startup, as shown below.

1 $ /opt/V-REP/V-REP_PRO_EDU_V3_3_0_64_Linux/vrep.sh &
2 ...
3 Plugin ’Ros ’: loading ...
4 Plugin ’Ros ’: load succeeded.
5 ...

4. After performing this tutorial, the reader may want to delete V-REP packages,
and thus, the following commands must be executed:

1 $ cd ~/ catkin_hexacopter
2 $ rm -fr ros_bubble_rob vrep_joy vrep_*

Once catkin workspace identified as catkin_hexacopter has been created
and configured, the reader can download our ROS-based fuzzy logic package from
[1]. In order to compile and run such a package, the package zip file must be uncom-
pressed inside the the catkin_hexacopter workspace source directory.

1 $ unzip hexaplus_tutorial.zip -d ~/ catkin_hexacopter/src
2 $ cd ~/ catkin_hexacopter
3 $ catkin_make

If the fuzzy package has been uncompressed into a workspace with a lot of others
packages, use the option “pkg” to compile only the fuzzy package.

1 $ catkin_make --pkg hexaplus_tutorial

These commands compile the package and generate the objects listed below.

1 [14%] [28%] Built target FuzzySet
2 Built target Linguistic
3 [28%] [28%] Built target FuzzyLoader
4 Built target HexaPlus

58 E. Koslosky et al.

5 [28%] Built target LinguisticSet
6 [42%] [42%] Built target MembershipFunction
7 Built target Rule
8 [57%] Built target RuleSet
9 [71%] Built target RuleElement

10 [71%] [71%] Built target navigation

Thereafter, it is important to checkwhether the packagewas successfully compiled
and it is working properly. For that, the roscore must be started, and then three pack-
age applications can be executed: rosvrep_controller, rosvrep_panel,
rosvrep_telemetry. In addition, check the created topics by using rostopic
andrqt_graph. However, before executing the package applications, the usermust
run the source command on the setup.sh file (line 2) at least once in the shell session,
as well as open five terminals to run each application separately.

1 $ roscore &
2 $ source ~/ catkin_hexacopter/devel/setup.sh
3 $ xterm & xterm & xterm & xterm & xterm &

The following commands should be executed in each terminal.

1 $ rosrun hexaplus_tutorial rosvrep_controller
2 $ rosrun hexaplus_tutorial rosvrep_panel
3 $ rosrun hexaplus_tutorial rosvrep_telemetry
4 $ rostopic list
5 $ rqt_graph

The rostopic command lists the topics beginning with /vrep/. These names
can be easilymodified through the remap argument of rosrun command; for details
see [21].

4.3 Fuzzy Set Files

As discussed in Sect. 3.1, the fuzzy set is composed of linguistic variables for inputs
and outputs, membership functions and rules. Such information can be hard-coded
into the source code files. This way, the fussy set is stored in memory by using arrays
or lists, and thus, the fuzzy inference engine is able to produce the expected outputs.
However, a flexible fuzzy inference engine is able to load the fuzzy set from a file
stored in a storage dive (e.g. disk). In the proposed fuzzy library, we implemented a
flexible engine that loads the fuzzy sets from plain text files. As described bellow, we
defined a simple format to describe linguistic variables, membership functions and
rules, in order to facilitate the specification process and also the systemmaintenance.

The fuzzy set is located in “fz” subdirectory. In order to illustrate how to specify
a fuzzy set, the vertical movement and hovering controller (see Sect. 3.3) is used as a
case study. The files whose name ends with “_stabZ.fz” are related to this controller.
Listing 1.1 describes the input linguistic variable depicted in Fig. 9 and specified in
HexaPlus_i_stabZ.fzfile. Likewise, Listing 1.2 describes the output linguistic
variable depicted in Fig. 10 and specified in HexaPlus_o_stabZ.fz file.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 59

Listing 1.1 HexaPlus_i_stabZ.fz: Input linguistic variables and membership functions of vertical
movement and hovering controller

1 uavZ_error NFAR -1001 -3.00 -3.00 -1.50
2 uavZ_error NMID -3.00 -1.50 -1.50 -0.50
3 uavZ_error NNEAR -1.50 -0.05 -0.05 0
4 uavZ_error ZERO -0.05 0 0 0.05
5 uavZ_error PNEAR 0 0.05 0.05 1.50
6 uavZ_error PMID 0.50 1.50 1.50 3.00
7 uavZ_error PFAR 1.50 3.00 3.00 1001
8
9 speed_uavZ NFAST -1000000 -1.00000 -1.00000 -0.50000

10 speed_uavZ NSLOW -1.00000 -0.50000 -0.50000 0.00000
11 speed_uavZ ZERO -0.50000 0.00000 0.00000 0.50000
12 speed_uavZ PSLOW 0.00000 0.50000 0.50000 1.00000
13 speed_uavZ PFAST 0.50000 1.00000 1.00000 1000000

Listing 1.2 HexaPlus_o_stabZ.fz:Output linguistic variables andmembership functions of vertical
movement and hovering controller

1 uavZ_error NFAR -1001 -3.00 -3.00 -1.50
2 uavZ_error NMID -3.00 -1.50 -1.50 -0.50
3 uavZ_error NNEAR -1.50 -0.05 -0.05 0
4 uavZ_error ZERO -0.05 0 0 0.05
5 uavZ_error PNEAR 0 0.05 0.05 1.50
6 uavZ_error PMID 0.50 1.50 1.50 3.00
7 uavZ_error PFAR 1.50 3.00 3.00 1001
8
9 speed_uavZ NFAST -1000000 -1.00000 -1.00000 -0.50000

10 speed_uavZ NSLOW -1.00000 -0.50000 -0.50000 0.00000
11 speed_uavZ ZERO -0.50000 0.00000 0.00000 0.50000
12 speed_uavZ PSLOW 0.00000 0.50000 0.50000 1.00000
13 speed_uavZ PFAST 0.50000 1.00000 1.00000 1000000

Linguistic variables files follow the same format. Thus, these output linguistic
variable files can be reused as input from different fuzzy controllers. As one can see
in Listings 1.1 and 1.2, each line describes one linguistic variable. The first token
is the name of linguistic variable, e.g. the vertical distance error uavZ_error and
the vertical speed speed_uavZ. The second token is the name of the membership
function, and the next four fields describe the range of values. There are four values in
order to createmembership functionwith triangular or trapezoidal shape.A triangle is
formedwhen the second and third values are the same. These four points is referenced
in the code implementation by variables “a”, “b”, “c” and “d”, respectively, defined
in the MembershipFunction class (see MembershipFunction.h MembershipFunction
in the include directory).

The vertical movement and hovering controller defines 35 fuzzy rules as depicted
in Table1 in Sect. 3.3. These rules are specified in HexaPlus_r_stabZ.fz file
that is shown in Listing 1.3).

Listing 1.3 HexaPlus_r_stabZ.fz: fuzzy rules of vertical movement and hovering controller
1 STABZ_NFAR_01 if uavZ_error is NFAR and speed_uavZ is PFAST then Othrottle is NMAX
2 STABZ_NFAR_02 if uavZ_error is NFAR and speed_uavZ is PSLOW then Othrottle is NMAX
3 STABZ_NFAR_03 if uavZ_error is NFAR and speed_uavZ is ZERO then Othrottle is NMAX
4 STABZ_NFAR_04 if uavZ_error is NFAR and speed_uavZ is NSLOW then Othrottle is NMAX
5 STABZ_NFAR_05 if uavZ_error is NFAR and speed_uavZ is NFAST then Othrottle is NMAX
6
7 STABZ_NMID_01 if uavZ_error is NMID and speed_uavZ is PFAST then Othrottle is NMAX
8 STABZ_NMID_02 if uavZ_error is NMID and speed_uavZ is PSLOW then Othrottle is NMAX
9 STABZ_NMID_03 if uavZ_error is NMID and speed_uavZ is ZERO then Othrottle is NMID

10 STABZ_NMID_04 if uavZ_error is NMID and speed_uavZ is NSLOW then Othrottle is NMID

60 E. Koslosky et al.

11 STABZ_NMID_05 if uavZ_error is NMID and speed_uavZ is NFAST then Othrottle is NMID
12
13 STABZ_NNEAR_01 if uavZ_error is NNEAR and speed_uavZ is PFAST then Othrottle is NMID
14 STABZ_NNEAR_02 if uavZ_error is NNEAR and speed_uavZ is PSLOW then Othrottle is NMID
15 STABZ_NNEAR_03 if uavZ_error is NNEAR and speed_uavZ is ZERO then Othrottle is NMIN
16 STABZ_NNEAR_04 if uavZ_error is NNEAR and speed_uavZ is NSLOW then Othrottle is NMIN
17 STABZ_NNEAR_05 if uavZ_error is NNEAR and speed_uavZ is NFAST then Othrottle is NMIN
18
19 STABZ_ZERO_01 if uavZ_error is ZERO and speed_uavZ is PFAST then Othrottle is NMIN
20 STABZ_ZERO_02 if uavZ_error is ZERO and speed_uavZ is PSLOW then Othrottle is NMIN
21 STABZ_ZERO_03 if uavZ_error is ZERO and speed_uavZ is ZERO then Othrottle is ZERO
22 STABZ_ZERO_04 if uavZ_error is ZERO and speed_uavZ is NSLOW then Othrottle is PMIN
23 STABZ_ZERO_05 if uavZ_error is ZERO and speed_uavZ is NFAST then Othrottle is PMIN
24
25 STABZ_PNEAR_01 if uavZ_error is PNEAR and speed_uavZ is NFAST then Othrottle is PMID
26 STABZ_PNEAR_02 if uavZ_error is PNEAR and speed_uavZ is NSLOW then Othrottle is PMID
27 STABZ_PNEAR_03 if uavZ_error is PNEAR and speed_uavZ is ZERO then Othrottle is PMID
28 STABZ_PNEAR_04 if uavZ_error is PNEAR and speed_uavZ is PSLOW then Othrottle is PMIN
29 STABZ_PNEAR_05 if uavZ_error is PNEAR and speed_uavZ is PFAST then Othrottle is PMIN
30
31 STABZ_PMID_01 if uavZ_error is PMID and speed_uavZ is NFAST then Othrottle is PMAX
32 STABZ_PMID_02 if uavZ_error is PMID and speed_uavZ is NSLOW then Othrottle is PMAX
33 STABZ_PMID_03 if uavZ_error is PMID and speed_uavZ is ZERO then Othrottle is PMID
34 STABZ_PMID_04 if uavZ_error is PMID and speed_uavZ is PSLOW then Othrottle is PMID
35 STABZ_PMID_05 if uavZ_error is PMID and speed_uavZ is PFAST then Othrottle is PMID
36
37 STABZ_PFAR_01 if uavZ_error is PFAR and speed_uavZ is NFAST then Othrottle is PMAX
38 STABZ_PFAR_02 if uavZ_error is PFAR and speed_uavZ is NSLOW then Othrottle is PMAX
39 STABZ_PFAR_03 if uavZ_error is PFAR and speed_uavZ is ZERO then Othrottle is PMAX
40 STABZ_PFAR_04 if uavZ_error is PFAR and speed_uavZ is PSLOW then Othrottle is PMAX
41 STABZ_PFAR_05 if uavZ_error is PFAR and speed_uavZ is PFAST then Othrottle is PMAX

The first token is the rule name. Such information is used to identify each rule and
it is not used for processing. The token “if” indicates that the next tokens are related
to the rule premises. Each premise must specify one or more logical expressions
following the format name of linguistic variable “is” name of a membership function
value. The token “is” indicates that the activation level for eachmembership function
must be calculated. A premise may indicate multiple expressions that are related by
means of “AND” or “OR” operators. If “AND” operator is used, the rule activation
(consequence) is equal to the minimum activation of all the premises of this rule. If
“OR” operator is used, the rule activation is equal to the maximum activation of all
premises.

The token “then” indicates that the next tokens are related to the consequence.
During the rule inference process, an activation is assigned to the rule according
to its premises activation. During the defuzzyfication, the activation level of each
output linguistic variable is obtained by using the maximum operator, forming an
area under all the membership functions that are activated in the rule (see Sect. 3.1).
There may be one or more membership function values whose area value is greater
than zero. The Center of Gravity (COG) approach is used to determine the weighted
average of these areas which is used to determine the raw output value. Section3.3
provides an example of this process.

4.4 Fuzzy Library Implementation

The fuzzy library provides the set of classes depicted in class diagram shown
in Fig. 15. Our package provides a C++ implementation of the fuzzy library. A
Fuzzy Set object is composed of two sets of Linguistic Variables objects: one for

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 61

Fig. 15 The UML class diagram of the fuzzy logic library

representing input and another representing output linguistic variables. In addition,
Fuzzy Set object owns a set of fuzzy Rules. Each Rules is composed of one or
more premises and one or more consequences. Premises and consequences are rep-
resented as Rules Element objects. One premise describes a logic expression that
includes a Linguistic Variable and Membership Function value. One consequence
defines a value for a output Linguistic Variable. Each Linguistic Variable has a set of
Membership Functions, which, in turn, represents triangular or trapezoidal shapes as
depicted in Figs. 9, 10, and 11 in Sect. 3.3. The fuzzy library provides an additional
class named FuzzyLoader. Such a class is responsible to load the information con-
tained in the fuzzy set files, i.e. linguistic variables, membership functions, and rules
(see Sect. 4.3).

In order to process the fuzzy control system implemented using the proposed
library, the sequence of steps must be performed. First of all, the objects represent-
ing fuzzy set must be instantiated. For that, a FuzzyLoader object is created. It loads
the information from the fuzzy set files (*.fz) and instantiates the library objects
accordingly. In the hexacopter movement control system, the HexaPlus class imple-
ments a method called HexaPlus::initFZ() that is responsible for loading the fuzzy
set. Listing 1.4 shows a code fragment of this method. This code shows how to load
the fuzzy set files of the vertical movement and hovering controller.

Listing 1.4 Source code fragment of HexaPlus::initFZ() method
1 void HexaPlus :: initFZ () {
2 // Getting the package path
3 std:: string path = ros:: package :: getPath("hexaplus_tutorial");
4 // String objects declared
5 std:: stringstream ssi ,sso ,ssr;
6

62 E. Koslosky et al.

7 // Using the FuzzyLoader to upload the fuzzy artifacts
8 fuzzy :: FuzzyLoader fzLoader;
9 ... // some lines are omitted

10
11 // Loading inputs and outputs linguistics variable
12 // with their membership functions
13 // and the rules of vertical controller
14 ssi.str(""); ssi << path << "/fz/HexaPlus_i_stabZ.fz";
15 sso.str(""); sso << path << "/fz/HexaPlus_o_stabZ.fz";
16 ssr.str(""); ssr << path << "/fz/HexaPlus_r_stabZ.fz";
17
18 fzLoader.loadFromFile(fS_stabZ ,
19 ssi.str().c_str (),
20 sso.str().c_str (),
21 ssr.str().c_str ());
22 ... // remainder lines are omitted

Once the fuzzy objects are instantiated, the system controller can be initialized
and executed. The HexaPlus::initHexaPlus() method initializes all variables related
to the hexacopter movement control system. On the other hand, the source code file
named rosvrep_controller.cpp contains the main() function. In addition to
the invocation of HexaPlus::initHexaPlus() method, the main() function
defines a ROS node and configures the data publishers and subscribers. Thereafter
the main control loop is executed. Details are provided in Sect. 4.5.

The fuzzy system is processed within the FuzzySet::fuzzifying()
method. As presented in Sect. 3.2, there are five fuzzy controllers, and hence, there
are FuzzySet objects to control hovering, vertical and horizontal movements and
heading. Listing 1.5 shows the implementation of FuzzySet::fuzzifying()
method. As one can see three main steps are executed.

Listing 1.5 Source code of FuzzySet::fuzzifying() method
1 void FuzzySet :: fuzzifying ()
2 {
3 fuzzyfication ();
4 ruleInference ();
5 defuzzification ();
6 }

The first step is called fuzzification and consists of converting the raw value of a
sensor reading into a value of linguistic variable. For that, the raw value is compared
to the range of values defined in a membership function, in order to calculate the
degree of membership of the raw values. Therefore, once the degree of member-
ship is calculated, activation level for the raw value is identified. Listing 1.6 shows
FuzzySet::fuzzyfication() method implementation. Listing 1.7 shows
MembershipFunction::calcDegreeMembership() method implemen-
tation. The delta1 and delta2 variables indicate the distance of inputValue
parameter5 to the points a and d that represent the base of the trapezium or triangle.
The membership degree is calculated by comparing the inclination of two segments
(slopeLeft and slopeRight) multiplied by the corresponding delta values.

5I.e. the raw value read from a sensor.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 63

Listing 1.6 Source code of FuzzySet::fuzzyfication() method
1 void FuzzySet :: fuzzyfication ()
2 {
3 typedef std::vector <Linguistic >:: iterator

linguisticIterator_t;
4 typedef std::vector <MembershipFunction >:: iterator

membershipFunctionIterator_t;
5 linguisticIterator_t it_Ling;
6 membershipFunctionIterator_t it_Mem;
7
8 for (it_Ling=inputLinguisticSet ->linguisticVector.begin ();
9 it_Ling != inputLinguisticSet ->linguisticVector.end();

10 it_Ling ++) {
11 for (it_Mem=it_Ling ->membershipFunctionVector .begin ();
12 it_Mem!=it_Ling ->membershipFunctionVector .end();
13 it_Mem ++) {
14 it_Mem ->calcDegreeMembership(it_Ling ->value);
15 }
16 }
17 }

Listing 1.7 Source code of MembershipFunction::calcDegreeMembership()
method

1 void MembershipFunction :: calcDegreeMembership(float inputValue)
2 {
3 float delta1 , delta2;
4 delta1 = inputValue - a;
5 delta2 = d - inputValue;
6 if ((delta1 <= 0) || (delta2 <=0)) {
7 degree = 0;
8 } else {
9 degree= minimum ((slopeLeft*delta1),(slopeRight*delta2));

10 }
11 degree = minimum(degree ,FZ_MAX_LIMIT);
12 }
13 // Slopes are calculated during the loading of fuzzy set files
14 // slopeLeft = (float)FZ_MAX_LIMIT /(b-a);
15 // slopeRight = (float)FZ_MAX_LIMIT /(d-c);

The second step of fuzzifying process is to perform the rules inference process.
Such a process is implemented in FuzzySet::ruleInference() method as
shown in Listing 1.8. As one can see, the inference process has twomain steps. In the
first step, the inference values previously calculated are dismissed. On the other hand,
in the second step, the strength of all rules is calculated. The degree of membership
for each linguistic variable is used to define the rule strength which, in turn, is used
to define the rule activation.

Listing 1.8 Source code of FuzzySet::ruleInference() method
1 void FuzzySet :: ruleInference ()
2 {
3 typedef std::vector <Rule >:: iterator RuleIterator_t;
4 typedef std::vector <RuleElement >:: iterator

RuleElementIterator_t;
5
6 RuleIterator_t it_r;
7 RuleElementIterator_t it_e;
8
9 //Clean up IF elements for new round

10 for (it_r=ruleSet ->ruleVector.begin (); it_r != ruleSet ->
ruleVector.end(); it_r ++) {

11 it_r ->strength =0;

64 E. Koslosky et al.

12 for (it_e=it_r ->then_RuleElementVector.begin (); it_e !=
it_r ->then_RuleElementVector.end(); it_e ++) {

13 it_e ->linguistic ->value= 0;
14 it_e ->membershipFunction ->degree = 0;
15 }
16 }
17
18 // Inference
19 float strength_tmp;
20 for (it_r=ruleSet ->ruleVector.begin (); it_r != ruleSet ->

ruleVector.end(); it_r ++) {
21 // Calculate the strength of the premises
22 strength_tmp = FZ_MAX_LIMIT;
23 for (it_e=it_r ->if_RuleElementVector.begin (); it_e != it_r

->if_RuleElementVector.end(); it_e ++) {
24 strength_tmp = minimum(strength_tmp , it_e ->

membershipFunction ->degree);
25 if (!it_e ->isOperator)
26 trength_tmp = 1-strength_tmp;
27 }
28
29 // Calculate the strength of the consequences
30 for (it_e=it_r ->then_RuleElementVector.begin (); it_e !=

it_r ->then_RuleElementVector.end(); it_e ++) {
31 it_e ->membershipFunction ->degree = maximum(strength_tmp

,it_e ->membershipFunction ->degree);
32 if (!it_e ->isOperator)
33 it_e ->membershipFunction ->degree = 1 - it_e ->

membershipFunction ->degree;
34 }
35 it_r ->strength = strength_tmp;
36 }
37 }

Once all elements of rules are evaluated, the third step of fuzzifying process is the
defuzzyfication process.As discussed inSect. 3.2, during the defuzzyfication process,
the triangle/trapezoid area of the output linguistic variables is calculated taking into
account the membership function and the rule activation. Then the linguistic value
chosen as output is converted into a raw value that may be applied to the rotors.
Such a raw value is obtained by means of calculating an arithmetic average or a
weighted average (Center of Gravity method) of two areas. Listing 1.9 shows the
implementation of FuzzySet::defuzzification() method.

Listing 1.9 Source code of FuzzySet::defuzzification() method
1 void FuzzySet :: defuzzification ()
2 {
3 typedef std::vector <Linguistic >:: iterator

LinguisticIterator_t;
4 typedef std::vector <MembershipFunction >:: iterator

MembershipFunctionIterator_t;
5
6 LinguisticIterator_t it_l;
7 MembershipFunctionIterator_t it_m;
8
9 float sum_prod;

10 float sum_area;
11 float area , centroide;
12
13 for (it_l=outputLinguisticSet ->linguisticVector.begin (); it_l

!= outputLinguisticSet ->linguisticVector.end(); it_l ++)
14 {
15 sum_prod=sum_area =0;

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 65

16 for (it_m = it_l ->membershipFunctionVector .begin (); it_m
!= it_l ->membershipFunctionVector .end(); it_m ++)

17 {
18 area = it_m ->calcTrapeziumArea ();
19 centroide = it_m ->a + ((it_m ->d - it_m ->a) /2.0);
20 sum_prod += area * centroide;
21 sum_area += area;
22 }
23
24 if (sum_area ==0)
25 it_l ->value = FZ_MAX_OUTPUT;
26 else
27 {
28 it_l ->value = sum_prod/sum_area;
29 }
30 }
31 }

4.5 Main Controller Implementation

The hexacopter movement fuzzy control system has been implemented in some dis-
tinct source code files. The source code file named rosvrep_controller.cpp
implements the main control loop, i.e. the system main() function. The file
HexaPlus.cpp contains the implementation of the HexaPlus class that is respon-
sible for initializing the fuzzy library objects (see Sect. 4.4).

The main() function is divided in two parts. The first one performs all necessary
initialization, i.e. it instantiates the HexaPlus object, loads the fuzzy set files, creates
a ROS node, and and configures the data publishers (i.e. callback functions) and
subscribers. Listing 1.11 depicts fragments of the initialization part of the main()
function.

Listing 1.10 Fragments of main() function in rosvrep_controller.cpp
1 // /////////// THE CALLBACK FUNCTION

///////////////////////////////
2 // Subscriber callback functions for euler angles
3 ...
4 void callback_eulerZ(const std_msgs :: Float32 f)
5 { eulerZ = f.data; }
6 // Subscriber callback functions for GPS position
7 ...
8 void callback_gpsZ(const std_msgs :: Float32 f)
9 { gpsZ = f.data; }

10 // Subscriber callback functions for accelerometer sensor
11 ...
12 void callback_accelZ(const std_msgs :: Float32 f)
13 { accelZ = f.data; }
14 // Subscriber callback functions for operator setpoints
15 ...
16 void callback_gpsZ_setpoint(const std_msgs :: Float32 f)
17 {gpsZ_setpoint = f.data;}
18 ...
19 // /////////// END CALLBACK FUNCTION

///////////////////////////////
20
21 int main(int argc , char* argv [])
22 {

66 E. Koslosky et al.

23 unsigned long int time_delay =0;
24
25 // Initialize the ros subscribers
26 ros::init(argc , argv , "rosvrep_controller");
27 ros:: NodeHandle n;
28
29 // the rosSignal is used to send signal to uav via Publisher.
30 std_msgs :: Float32 rosSignal;
31 // Hexacopter sensor subscribers
32 ... // some lines are omitted
33
34 // Initialize the ROS Publishers
35 // Rotors publishers
36 ros:: Publisher rosAdv_propFRONT =
37 n.advertise <std_msgs ::Float32 >("/vrep/propFRONT" ,1);
38 ros:: Publisher rosAdv_propLEFT_FRONT =
39 n.advertise <std_msgs ::Float32 >("/vrep/propLEFT_FRONT" ,1)

;
40 ros:: Publisher rosAdv_propLEFT_REAR =
41 n.advertise <std_msgs ::Float32 >("/vrep/propLEFT_REAR" ,1);
42 ros:: Publisher rosAdv_propREAR =
43 n.advertise <std_msgs ::Float32 >("/vrep/propREAR" ,1);
44 ros:: Publisher rosAdv_propRIGHT_FRONT =
45 n.advertise <std_msgs ::Float32 >("/vrep/propRIGHT_FRONT"

,1);
46 ros:: Publisher rosAdv_propRIGHT_REAR =
47 n.advertise <std_msgs ::Float32 >("/vrep/propRIGHT_REAR" ,1)

;
48 ros:: Publisher rosAdv_propYaw =
49 n.advertise <std_msgs ::Float32 >("/vrep/Yaw" ,1);
50 ... // remainder lines are omitted

The second part is the main control loop of the hexacopter movement fuzzy con-
trol system. Such a loop performs three main activities: (i) pre-processing phase,
(ii) processing of five distinct fuzzy controllers, (iii) post-processing phase. These
activities are discussed in Sect. 3.2. Moreover, the execution frequency of loop iter-
ations is 10 Hz. Such an execution frequency is obtained by using the commands
loop_rate.sleep() and ros::spinOnce() at the end of the loop. The 10
Hz timing requirement has been arbitrarily defined and has been demonstrated to
be enough to control a simulated hexacopter as discussed in Sect. 5. However, it is
important to highlight that a more careful and sound timing analysis is required in
order to define the execution frequency of the main control loop for a real hexacopter.
A discussion on such an issue is out of this chapter scope. Interested reader should
refer to [19, 22–27].

The pre-processing phase is responsible for acquiring data from the input sensors,
processing the input movement commands, as well as for calculating the controlled
data used as input to the five fuzzy controllers. Two examples of data calculated
in this phase are: (i) vertical and horizontal speed calculated using the hexacopter
displacement over time; and (ii) the drift of new heading angle in comparison with
the actual heading. Listing 1.11 presents some fragments of the code related to the
pre-processing phase.

Listing 1.11 Fragments of pre-processing phase in rosvrep_controller.cpp
1 ... // some lines are omitted
2 // Determine the delta as errors.
3 // It means the difference between setpoint and current

information

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 67

4
5 // GPS error
6 gpsX_error = (float) gpsX_setpoint - gpsX;
7 gpsY_error = (float) gpsY_setpoint - gpsY;
8 gpsZ_error = (float) gpsZ_setpoint - gpsZ;
9

10 // View position error (yaw or heading of the hexacopter)
11 viewX_error = (float) viewX_setpoint - gpsX;
12 viewY_error = (float) viewY_setpoint - gpsY;
13
14 // Calculate the drift_angle
15 // This angle is the difference between direction
16 //to navigate and direction of view (yaw).
17 drift_angle = (float) eulerZ - uav_goal_angle;
18 ... // remainder lines are omitted

Once the pre-processing phase is executed, the second activity is responsi-
ble to execute the five fuzzy controllers. This occurs by means of invoking the
fuzzifying() method of each controller FuzzySet object. The “fuzzify-
ing” process includes “fuzzyfication”, rules inference, and “defuzzification” (see
Sect. 4.4). Listing 1.12 depicts the code fragment that processes the five fuzzy con-
trollers.

Listing 1.12 Fragment depicting the processing five fuzzy controllers in
rosvrep_controller.cpp

1 ... // previous lines are omitted
2 hexaplus.fS_stabX ->fuzzifying ();
3 hexaplus.fS_stabY ->fuzzifying ();
4 hexaplus.fS_stabZ ->fuzzifying ();
5 hexaplus.fS_yaw ->fuzzifying ();
6 hexaplus.fS_hnav ->fuzzifying ();
7 ... // remainder lines are omitted

The last activity is the post-processing phase. In this phase the output linguistic
variables are transformed in rawvalues that are applied on the rotors in order to control
the hexacoptermovements. Listing 1.13 presents a fragment of post-processing phase
code.

Listing 1.13 Fragment depicting the post-processing phase in rosvrep_controller.cpp
1 // fuzzifying is finished , applying the outputs
2 Opitch = hexaplus.fz_Opitch ->value;
3 Oroll = hexaplus.fz_Oroll ->value;
4 Othrottle = hexaplus.fz_Othrottle ->value;
5 Oyaw = hexaplus.fz_Oyaw ->value;
6 Opitch_nav = hexaplus.fz_Opitch_nav ->value;
7
8 propForceFRONT = (float) Othrottle - 0.45* zOth*cos(

angleOth);
9 propForceRIGHT_FRONT = (float) Othrottle - (0.45* zOth*(sin(

angleOth)/2));
10 propForceRIGHT_REAR = (float) Othrottle - (0.45* zOth*(sin(

angleOth)/2));
11 propForceREAR = (float) Othrottle + 0.45* zOth*cos(

angleOth);
12 propForceLEFT_REAR = (float) Othrottle + (0.45* zOth*(sin(

angleOth)/2));
13 propForceLEFT_FRONT = (float) Othrottle + (0.45* zOth*(sin(

angleOth)/2));
14
15 // Sending signals to the rotors
16 rosSignal.data = propForceFRONT;

68 E. Koslosky et al.

17 rosAdv_propFRONT.publish(rosSignal);
18 rosSignal.data = propForceRIGHT_FRONT;
19 rosAdv_propRIGHT_FRONT.publish(rosSignal);
20 rosSignal.data = propForceRIGHT_REAR ;
21 rosAdv_propRIGHT_REAR.publish(rosSignal);
22 rosSignal.data = propForceREAR;
23 rosAdv_propREAR.publish(rosSignal);
24 rosSignal.data = propForceLEFT_REAR;
25 rosAdv_propLEFT_REAR.publish(rosSignal);
26 rosSignal.data = propForceLEFT_FRONT ;
27 rosAdv_propLEFT_FRONT.publish(rosSignal);
28 rosSignal.data = Oyaw;
29 rosAdv_propYaw.publish(rosSignal);

Finally, it is worth mentioning that the main controller interacts with other two
applications. A command interface application named Panel sends commands to
determine a new position, as well as new heading direction, towards which the hexa-
copter must fly. Moreover, some data produced in the main controller are published
so that these telemetry data can be seen within an application named Telemetry. List-
ing 1.14 shows the code in rosvrep_controller.cpp that configures ROS
publishers for the telemetry data. Next sections provide detail on these two applica-
tions.

Listing 1.14 Configuring ROS publisher for publishing telemetry data in
rosvrep_controller.cpp

1 // Telemetry
2 ros:: Publisher rosAdv_gpsX_error = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsX_error" ,1);
3 ros:: Publisher rosAdv_gpsY_error = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsY_error" ,1);
4 ros:: Publisher rosAdv_gpsZ_error = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsZ_error" ,1);
5 ros:: Publisher rosAdv_drift_angle = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/drift_angle" ,1);
6 ros:: Publisher rosAdv_uav_goal_angle = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/uav_goal_angle" ,1);
7 ros:: Publisher rosAdv_uav_goal_dist = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/uav_goal_dist" ,1);
8 ros:: Publisher rosAdv_speed_uavZ = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/speed_uavZ" ,1);
9 ros:: Publisher rosAdv_speed_goal = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/speed_goal" ,1);

4.6 Command Interface Implementation

The command interface application named Panel is a ROS node that allows a user
to send commands to modify hexacopter pose and position. The implementation
of such an application is provided in rosvrep_panel.cpp file. Two types of
commands are allowed: (i) the user can set a new (X, Y, Z) position, and hence, the
hexacopter will fly towards this target position; (ii) the user can set a new heading
direction by setting a new (X, Y) position, and hence, the hexacopter will perform a
yaw movement in order to aim the target position.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 69

The Panel application is very simple: it publishes a setpoint position and a view
direction, as well as provides means for user input. Listing 1.15 shows the code
fragment that configures the ROS publisher for the new 3D position (i.e. setpoint)
and new heading (i.e. view direction).

Listing 1.15 Configuring ROS publisher for telemetry data in rosvrep_panel.cpp
1 // Operator setpoint Publishers
2 ros:: Publisher rosAdv_gpsX_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsX_setpoint" ,1);
3 ros:: Publisher rosAdv_gpsY_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsY_setpoint" ,1);
4 ros:: Publisher rosAdv_gpsZ_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsZ_setpoint" ,1);
5
6 ros:: Publisher rosAdv_viewX_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/viewX_setpoint" ,1);
7 ros:: Publisher rosAdv_viewY_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/viewY_setpoint" ,1);

The Panel application must be executed with the rosrun command as depicted
in line 01 fromListing 1.16.When the user presses “s”, he/she is asked to inform new
position setpoint in terms of X, Y, Z coordinates. When the user presses “y”, he/she
is asked to inform the new heading direction new in terms of X, Y coordinates. In
the example presented in lines 09–12 from Listing 1.16, the user sent (5, 3, 7) as
new (X, Y, Z) target position. It is important to mention that the values for (X, Y, Z)
coordinates are measured in meters. After sending the new setpoints, the hexacopter
startsmoving. If the user press CTRL-C and the ENTERkeys, the program is finished
and the hexacopter continues until it reaches the target position.

Listing 1.16 Panel application
1 $ rosrun hexaplus_tutorial rosvrep_panel
2
3 ==========================
4
5 Setpoints for position [s]
6 Setpoints for View heading [y]
7 Or CTRL -C to exit.
8
9 Enter the option: s

10 Enter X value: 5
11 Enter Y value: 3
12 Enter Z value: 7

4.7 Telemetry Implementation

The Telemetry application is also a very simple program. It receives the signals
from the hexacopter sensors and from some data calculated during the execution
of the control program. Likewise the Panel application, the Telemetry application is
executed with the rosrun command as depicted in line 01 from Listing 1.18. The
telemetry data is shown in lines 03–23.

70 E. Koslosky et al.

Listing 1.17 Panel application
1 $ rosrun hexaplus_tutorial rosvrep_telemetry
2
3 ------------------- Telemetry ------------------------------
4 gpsX: 0.000000
5 gpsY: 0.000000
6 gpsZ: 0.000000
7 gpsX_error: 0.000000
8 gpsY_error: 0.000000
9 gpsZ_error: 0.000000

10 drift_angle: 0.000000 (0.000000
degrees)

11 uav_goal_angle: 0.000000 (0.000000
degrees)

12 uav_goal_dist: 0.000000
13 speed_uavZ: 0.000000
14 speed_goal: 0.000000
15 ---------------- Operator Command -------------------------
16 gpsX_setpoint: 0.000000
17 gpsY_setpoint: 0.000000
18 gpsZ_setpoint: 0.000000
19
20 viewX_setpoint: 0.000000
21 viewY_setpoint: 0.000000
22 ---
23 Press CTRL -C to exit

Telemetry application is a very simple program. It subscribes some ROS topics
and displays them on the terminal. The program terminates whenCTRL-C is pressed.
The rosvrep_telemetry.cpp file implements this application. The main part
of the code is the declaration of ROS subscribers and callback functions. Listing 1.18
shows these declarations. Callback functions declaration is depicted in line 02–04,
while ROS subscribers in line 09–11. One can notice that some topics start with
“/vrep”, others with “/hexaplus_tutorial”; this means that some topics came from
V-REP and other ones from the control program.

Listing 1.18 Panel application
1 ... // previous line omitted
2 void callback_gpsX_error(const std_msgs :: Float32 f) { gpsX_error

= f.data; }
3 void callback_gpsY_error(const std_msgs :: Float32 f) { gpsY_error

= f.data; }
4 void callback_gpsZ_error(const std_msgs :: Float32 f) { gpsZ_error

= f.data; }
5
6 ... // some lines omitted
7
8 ros:: Subscriber sub_gpsX_error = n.subscribe("/hexaplus_tutorial

/gpsX_error" ,1, callback_gpsX_error);
9 ros:: Subscriber sub_gpsY_error = n.subscribe("/hexaplus_tutorial

/gpsY_error" ,1, callback_gpsY_error);
10 ros:: Subscriber sub_gpsZ_error = n.subscribe("/hexaplus_tutorial

/gpsZ_error" ,1, callback_gpsZ_error);
11 ... // remaining lines omitted

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 71

5 Virtual Experimentation Platform

5.1 Introduction

A common tool used during the design of control systems is the simulator. There is a
number of different simulators available for using, e.g. Simulink, Gazebo and Stage.
In special, for robotics control systems design, a virtual environment for simulation
must allow the creation of objects and also the specification of some of the physical
parameters for both objects and the environment. The virtual environment should
also provide a programming interface to control not only the simulation, but also the
objects behavior and the time elapsed in simulation.

Although there are some robotics simulators supported inROS such asGazebo and
Stage, this tutorial discusses the use of a different robotics simulator named V-REP.
The main goal is to show the feasibility of using other (non-standard) simulators,
opening room for the engineer to choose the tools he/she finds suitable for his/her
project. The hexacopter movement fuzzy control system is used to illustrate how to
integrate V-REP with ROS. An overview on V-REP virtual simulation environment
is presented, so that the reader can understand how a virtual hexacopter was created.
In addition, the reader will learn how the V-REP acts as a ROS publisher/subscriber
to exchange messages with roscore.

V-REP uses the Lua language [28] to implement scripts that access and control
the simulator. Lua is quite easy to learn, and hence, only a few necessary instructions
are presented herein. Although V-REP uses Lua for its internal scripts, there are
many external interfaces to other languages, such as C/C++, Java, Python, Matlab
and ROS. V-REP documentation is extensive, and hence, the interested reader should
refer to [29].

The installation of the V-REP simulator on Linux is simple: the reader must
download the compressed installation file from Coppelia Robotics’ website [30] and
expand it on a directory using the UNIX tar command. It is interesting to mention
some subdirectories within V-REP directory:

• scenes: V-REP provides a number of scenes as examples. The scene files extension
is “ttt”.

• tutorial: This directory provides all scenes used in the tutorials presented in the
V-REP site [29].

• programming: This directory provides examples written in C/C++, Java, Lua and
Python. In addition, it provides the ros_packages interface that are in this
tutorial.

72 E. Koslosky et al.

5.2 V-REP Basics

When V-REP is started, a blank scenario is open automatically for using. The user
can start developing a new scenario, or open a scenario created previously, or open
a scenario from scenes directory. Figure16 shows a screenshot.

In order to illustrate the use of V-REP, select the menus File→Open scene
and choose the scene Hexacopter.ttt provided in the directory
~/catkin_hexac opter/src/hexaplus_tutorial/scenes. A com-
plex object like a hexacopter is built by putting objects under a hierarchic structure.
For instance, the sensors such as GPS, gyroscope and accelerometer are under the
HexacopterPlus object. During the simulation execution, if the HexacopterPlus or
any subpart, is moved, all parts are moved as if they are a single object. Any primitive
object, e.g. cuboids, cylinders and spheres, can be inserted into a scene. There are
some especial objects such as joints, video sensors, force sensors, and other. The
special objects have some specific attributes used during simulation, e.g. position
information, angle measurements, force data, etc. The sensors and rotors are made
from these kinds of objects. The user can get some already available devices from
“Model Browser”. For instance, there are several sensors available in the Model
Browser→components→sensors, e.g. laser scanners, the Kinect sensor,
Velodyne, GPS, Gyrosensor and Accelerometer. The last three sensors were used in
the hexacopter model.

It is important to mention that when a new robot is created, one must pay attention
to the orientation between the robot body and its subparts, especially sensors. Sensors
will not work properly whether there are inconsistencies in the parts orientation. The

Fig. 16 Screenshot of the V-REP initial screen

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 73

Fig. 17 Open the Lua script code

inertial frame 3D orientation is shown on the bottom right corner. When one clicks
on any object, the 3D axes of the selected object body orientation is depicted.

The camera sensor is an exception. The camera orientation has a rotation of+90◦
over the Z-axis and −90◦ over the X-axis in relation to the axes of the robot body.
Such a situation leads to an issue: Z-axis of the camera matches with the X-axis of
the robot. Thus, the camera X-axis matches the robot Y-axis, and the camera Y-axis
matches the robot Z-axis. Such a difference can be seen by clicking on vCamera and
hexacopter object while pressing the shift key at the same time.

In addition, one can observe that some objects have an icon to edit its Lua script
code, as shown at Fig. 17. If the object does not have a piece of code, it is possible
to add one by the right-clicking on the object and choosing Add→Associated
child script→Non Threaded (or Threaded).

While a simulation is running,V-REPexecutes the scripts associated to each object
throughout the main internal loop. Script execution can be run in separate thread
whether the associated script is indicated as threaded. V-REP controls the simulation
elapsing time by means of time parameters. In order to execute the simulation of this
tutorial, set the time configuration as “Bullet”, “Fast” at “dt = 10.0ms”. This will
ensure a suitable simulation speed.

5.3 Publishing ROS Topics

V-REP provides a plugin infrastructure that allows the engineer customize the sim-
ulation tool. RosPlugin services in V-REP is an interface to support general ROS

74 E. Koslosky et al.

functionality. The V-REP has several mechanisms to communicate with the user
code: (i) tubes are similar to the UNIX pipe mechanism; (ii) signals are similar to
global variables; (iii) wireless communication simulation; (iv) persistent data blocks;
(v) customLua functions; (vi) serial port; (vii) LuaSocket; (viii) custom libraries, etc.
An easy way to communicate with ROS is creating a V-REP signal and publishing
or subscribing its topic. RosPlugin publishers offer an API to setup and publish data
within ROS topics.

An example on how the V-REP publishes messages to roscore can be found
in the Lua child object script of HexacopterPlus. Let us consider the GPS as an
example. Before publishing GPS data, it is necessary to check if the ROS module
has been loaded. Listing 1.19 depicts the Lua script defined in the HexacopterPlus
element as shown in Fig. 17.

Listing 1.19 Lua script to check whether ROS module is loaded
1 ... -- previous lines are omitted
2 -- Check if the required remote Api plugin is there:
3 moduleName =0
4 moduleVersion =0
5 index =0
6 pluginNotFound=true
7 while moduleName do
8 moduleName ,moduleVersion=simGetModuleName(index)
9 if (moduleName ==’Ros’) then

10 pluginNotFound=false
11 end
12 index=index +1
13 end
14 if (pluginNotFound) then
15 -- Display an error message if the plugin was not found:
16 simDisplayDialog(’Error ’,
17 ’ROS plugin was not found .&& nSimulation will not run

properly ’,
18 sim_dlgstyle_ok ,false ,nil ,{0.8,0,0,0,0,0},{0.5,0,0,1,1,1})
19 else
20 -- Ok go on.
21 ... -- remainder lines are omitted

All plugins are loaded by executing the simLoadModule function, how-
ever, ROS plugins are loaded automatically during V-REP startup, i.e. the library
libv_repExtRos.so is loaded automatically. This is achieved because the
shared ROS libraries were generated and copied to the V-REP directory in Sect. 4.2.

The scripts in V-REP are divided into sections. At simulation time, all scripts are
executed within the internal main loop. Some sections are executed once, whereas
others are performed on each loop iteration. The script fragment presented in Listing
1.20 executes once on each simulation. For publishing the GPS data as topic to
roscore, a special Lua function is called. There is a variety of Lua functions
provided by V-REP team in order to work with ROS and others communication
channels.

Listing 1.20 preencher
1 ... // previous lines are omitted
2 -- Publish the Euler angle as ROS topic
3 topicName=simExtROS_enablePublisher (’eulerX ’ 1,

simros_strmcmd_get_float_signal ,-1,-1,’eulerX ’ ,0)

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 75

4 topicName=simExtROS_enablePublisher (’eulerY ’,1,
simros_strmcmd_get_float_signal ,-1,-1,’eulerY ’ ,0)

5 topicName=simExtROS_enablePublisher (’eulerZ ’,1,
simros_strmcmd_get_float_signal ,-1,-1,’eulerZ ’ ,0)

6 ... // next lines are omitted

The simExtROS_enablePublisher function is used to enable a publisher
on V-REP. The parameters are similar to the function used for publishing date by
means of ros::Publisher.advertise method as follows:

1. The name of the target topic to which data is published, e.g. “eulerX”.
2. The queue size has the samemeaning of the original queue size of ROS publisher.
3. The stream data type parameter is used define how to process the two follow-

ing parameters, e.g. the user can use the simros_strmcmd_get_float_
signal signal to publish floating-point data. There is a variety of predefined
data types.

4. The meaning of auxiInt1 parameter depends on the data type. When this
parameter is not in use, the value is −1.

5. The auxiInt2 parameter semantics is similar to auxiInt1.
6. The auxString parameter. The type simros_strmcmd_get_float_

signal means that a float type from a V-REP signal is being published. This
parameter must match with the signal name. Listing 1.21 depicts the GPS script
code that is used to explain how a V-REP signal is declared within a Lua script.

7. The publishCnt parameter indicates the number of times a signal is published
before it goes to sleep. The −1 value lead to start the sleep mode, whereas values
greater than zero indicates that data are published exactly publishCnt times.
The publisher wakes up when simExtROS_wakePublisher is executed. All
published data never sleep by setting this parameter to zero.

Some published or subscribed data types use the parameters auxiInt1 or
auxiInt2. For example, the simros_strmcmd_get_joint_state type
was used to get the joint state. It uses the auxiInt1 to indicate the joint handle.
Other type is simros_strmcmd_get_object_pose which is used to enable
data streaming from the the object pose. This type uses the auxiInt1 to identify
V-REP object handle and the auxiInt2 indicates the reference frame from which
the pose is obtained. For more information please see [31].

Listing 1.21 presents a code fragment of the virtual GPS script. These lines create
three distinct signals related to the object position information. The
objectAbsolutePosition variable is a Lua vector with values calculated
before in this fragment execution.

Listing 1.21 Fragment of Lua script of the virtual GPS
1 ... // previous lines are omitted
2 simSetFloatSignal(’gpsX’,objectAbsolutePosition [1])
3 simSetFloatSignal(’gpsY’,objectAbsolutePosition [2])
4 simSetFloatSignal(’gpsZ’,objectAbsolutePosition [3])
5 ... // next lines are omitted

76 E. Koslosky et al.

5.4 Subscribing to ROS Topics

A ROS node (e.g. the hexacopter main controller) may subscribe to ROS topics in
order to receive data published by other nodes, e.g. the sensor in the V-REP. Thus,
a virtual object can be controlled during simulation by means of subscribing ROS
topics within V-REP scripts. For instance, the rotor of the virtual hexacopter must
receive throttle signals published by the ROS node created in themain() function in
rosvrep controller.cpp file (see Sect. 4.5). Listing 1.22 shows the fragment
of HexacopterPlus object script that enables V-REP to subscribe topics and receive
the ROS messages.

Listing 1.22 Fragment of Lua script of the HexacopterPlus object
1 ... // previous lines are omitted
2 -- Rotors Subscribers
3 simExtROS_enableSubscriber(’propFRONT ’, 1,

simros_strmcmd_set_float_signal , -1,-1, ’propFRONT ’)
4 simExtROS_enableSubscriber(’Yaw’, 1,

simros_strmcmd_set_float_signal , -1,-1, ’Yaw’)
5 ... // next lines are omitted

The parameters of simExtROS_enableSubscriber function are similar to
the simExtROS_enablePublisher function (see Sect. 5.3), however, there is
a difference in the specification on how data are handled. The simros_strmcmd_
set_ float_signal parameter indicates that V-REP subscribes to the topic,
whilesimros_strmcmd_get_float_signal indicates that V-REP publishes
in the topic. The last parameter is a signal that is used in a Lua script associ-
ated with any objects from V-REP virtual environment. For instance, propFRONT
signal is used in the script of propeller_jointFRONT object by means of calling
simGetFloatSignal function in the parameters list of simSetJointTarget
Velocity function as shown in Listing 1.23. A V-REP signal is a global variable.
When the simExtROS_enableSubscriber is executed, a value is assigned
to that global variable. If such a global variable does not exist, the simExtROS_
enableSubscriber creates it.

Listing 1.23 Fragment of Lua script of the HexacopterPlus object
1 ... // previous lines are omitted
2 simSetJointTargetVelocity (simGetObjectHandle(’

propeller_jointFRONT ’),
3 simGetFloatSignal(’propFRONT ’)*-200)
4 ... // next lines are omitted

5.5 Publishing Images from V-REP

Many robotic applications usually demand some sort of video processing in order
to perform advanced tasks. Cameras are commonly used in computational vision
tasks, e.g. for collision avoidance while the robot is moving or for mapping and
navigating towards the environment [32]. Thus, it is important to provide means

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 77

for video processing during the simulation phase of a robot design. This sections
presents how to setup a virtual video camera in V-REP and how to stream the capture
video to a ROS node.

It is possible to many distinct data types within topics published or subscribe
between ROS and V-REP, including images from the virtual video sensor. A ROS
node receives an image that can be processed using the OpenCV API [33]. Although
the OpenCV library is not a part of ROS, vision_opencv package [34] pro-
vides an interface between ROS and the OpenCV library. This package was used
in the camera application6 implemented in rosvrep_camera.cpp. Although
this tutorial does not discuss video processing, we show how to setup a ROS topic
and stream the video captured within the V-REP simulated environment. For that,
the HexacopterPlus has an object named vCamera attached onto its frame. vCam-
era object is a video sensor that streams images captured during simulation. Using
the simros_strmcmd_get_ vision_sensor_image type, V-REP is able
to send images to a ROS node. Listing 1.24 depicts a fragment of the Lua script from
HexacopterPlus object. The video streamed from the virtual camera can be seen in
the camera application.

Listing 1.24 Fragment of Lua script from the HexacopterPlus object
1 ... // previous lines are omitted
2 vCameraHandle=simGetObjectHandle(’vCamera ’)
3 topicName=simExtROS_enablePublisher (’vCamera ’,1,
4 simros_strmcmd_get_vision_sensor_image ,

vCameraHandle ,0,’’)
5 ...

5.6 Running the Sample Scenarios

Our package provides two scenes that are located in the scenes subdirectory.
The first scene was modeled in Hexacopter.ttt file. It was created to illus-
trate how the hexacopter was created in V-REP. The second scene was modeled in
rosHexaPlus_scene.ttt. This is a more elaborated scene whose environment
presents trees and textures. The aim is to illustrate the hexacopter movements, and
hence, it is the scene used in the rest of this section.

Before starting the scene execution, the reader must ensure that roscore
and V-REP are running (see Sect. 4.2). In the V-REP, open the rosHexaPlus_
scene.ttt file using the menu command File→Open scene. The reader
must start the simulation by either choosing the menu option Simulation→
Start Simulation or by clicking on Start/resume simulation in the
toolbar.

Go to the terminal that is executing the rosvrep_panel application as shown
in Fig. 18. The first set of coordinates must be inserted in the order presented in
in Table2, aiming to command the hexacopter to fly around the environment. It is

6This application was created for debugging purposes and it is not discussed in this chapter.

78 E. Koslosky et al.

Fig. 18 A screenshot of the test

Table 2 First test: hexacopter flying around the environment

Commands
sequence

Target coordinates Heading

X Y Z X Y

1 −15 15 3 −17 11

2 −7 10 10 −17 11

3 7 10 10 −3 2

4 2 −3.5 10 −3 2

5 2 −3.5 0 −3 2

important to notice that the hexacopter carry a free payload. Insert the target position
by using the “s” option and then heading directions using the “y” option. The next
target position should be sent only after the hexacopter reaches the position indicated
in previous command. The reader can see the execution using these coordinates in
the youtube video https://youtu.be/Pvve5IFz4e4. This video shows a long distance
movement.

The second simulation shows a flight in which the hexacopter moves to short
distance target position. Figure19 shows a screenshot on which one can see the
hexacopter behavior carrying a free payload. In this second test, the reader should
insert the commands shown in Table3. The video of this test can be seen in in https://
youtu.be/7n8tThctAns.

https://youtu.be/Pvve5IFz4e4
https://youtu.be/7n8tThctAns
https://youtu.be/7n8tThctAns

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 79

Fig. 19 The V-REP screenshot of short distance execution

Table 3 First test: hexacopter flying around the environment

Commands
sequence

Target coordinates Heading

X Y Z X Y

1 −20 18 3 −18 23

2 −18 18 3 −10 18

3 −23 22 5 −10 18

6 Final Remarks

This chapter describes a tutorial onhow to implement a control systembasedonFuzzy
Logic. Themovement control system of an hexacopter is used as a case study. AROS
package that includes a fuzzy library was presented. By using such a package, we
discussed how to integrate the commercial robotics simulation environment namedV-
REPwith a fuzzy control system implemented using ROS infrastructure. Instructions
on how to perform a simulation with V-REP were presented. Therefore, this tutorial
provides additional knowledge on using different tools for designing ROS-based
systems.

This tutorial can be used as a starting point to make more experiences. The reader
can modify or improve the proposed fuzzy control system by changing the “.fz”
files. There is no need to modify the controller main controller implementation in
rosvrep_controller.cpp file. As a suggestion to further improve the skills
on using the propose fuzzy package and V-REP, the reader could create another ROS
node which may act as a mission controller by sending automatically a set of target
positions.

80 E. Koslosky et al.

References

1. Koslosky, E., et al. Hexacopter tutorial package. https://github.com/ekosky/hexaplus-ros-
tutorial.git. Accessed Nov 2016.

2. Bipin, K., V. Duggal, and K.M. Krishna. 2015. Autonomous navigation of generic monocular
quadcopter in natural environment. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), 1063–1070.

3. Haque, M.R., M. Muhammad, D. Swarnaker, and M. Arifuzzaman. 2014. Autonomous quad-
copter for product home delivery. In 2014 International Conference on Electrical Engineering
and Information Communication Technology (ICEEICT), 1–5.

4. Leishman, R., J. Macdonald, T. McLain, and R. Beard. 2012. Relative navigation and control
of a hexacopter. In 2012 IEEE International Conference on Robotics and Automation (ICRA),
4937–4942.

5. Ahmed, O.A., M. Latief, M.A. Ali, and R. Akmeliawati. 2015. Stabilization and control of
autonomous hexacopter via visual-servoing and cascaded-proportional and derivative (PD)
controllers. In 2015 6th International Conference on Automation, Robotics and Applications
(ICARA), 542–549.

6. Alaimo, A., V. Artale, C.L.R. Milazzo, and A. Ricciardello. 2014. PID controller applied to
hexacopter flight. Journal of Intelligent & Robotic Systems 73 (1–4): 261–270.

7. Ołdziej, D., andZ.Gosiewski. 2013.Modelling of dynamic and control of six-rotor autonomous
unmanned aerial vehicle. Solid State Phenomena 198: 220–225.

8. Collotta, M., G. Pau, and R. Caponetto. 2014. A real-time system based on a neural network
model to control hexacopter trajectories. In 2014 International Symposium on Power Electron-
ics, Electrical Drives, Automation and Motion (SPEEDAM), 222–227.

9. Artale, V., C.L. Milazzo, C. Orlando, and A. Ricciardello. 2015. Genetic algorithm applied
to the stabilization control of a hexarotor. In Proceedings of the International Conference on
Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), 222–227.

10. Bacik, J., D. Perdukova, and P. Fedor. 2015. Design of fuzzy controller for hexacopter position
control. Artificial Intelligence Perspectives and Applications, 193–202. Berlin: Springer.

11. Koslosky, E., M.A. Wehrmeister, J.A. Fabro, and A.S. Oliveira. 2016. On using fuzzy logic
to control a simulated hexacopter carrying an attached pendulum. In Designing with Com-
putational Intelligence, vol. 664, ed. N. Nedjah, H.S. Lopes, and L.M. Mourelle. Studies in
Computational Intelligence. Berlin: Springer. 01–32 Expected publication on Dec. 2016.

12. Open Source Robotics Foundation: ROS basic tutorials. http://wiki.ros.org/ROS/Tutorials.
Accessed March 2016.

13. Coppelia Robotics: V-REP: Virtual robot experimentation platform. http://www.
coppeliarobotics.com. Accessed March 2016.

14. Coppelia Robotics: V-REP bubblerob tutorial. http://www.coppeliarobotics.com/helpFiles/en/
bubbleRobTutorial.htm. Accessed March 2016.

15. Coppelia Robotics: V-REP tutorial for ROS indigo integration. http://www.coppeliarobotics.
com/helpFiles/en/rosTutorialIndigo.htm. Accessed March 2016.

16. Yoshida, K., I. Kawanishi, and H. Kawabe. 1997. Stabilizing control for a single pendulum by
moving the center of gravity: theory and experiment. In American Control Conference, 1997.
Proceedings of the 1997, vol. 5, 3405–3410.

17. Passino, K.M., and S. Yurkvich. 1998. Fuzzy Control. Reading: Addison-Wesley.
18. Hwang, G.C., and S.C. Lin. 1992. A stability approach to fuzzy control design for nonlinear

systems. Fuzzy Sets and Systems 48 (3): 279–287.
19. Pedro, J.O., and C. Mathe. 2015. Nonlinear direct adaptive control of quadrotor UAV using

fuzzy logic technique. In 2015 10th Asian Control Conference (ASCC), 1–6.
20. Pedrycz,W., and F. Gomide. 2007.RuleBased Fuzzy Models, 276–334. NewYork:Wiley-IEEE

Press.
21. Open Source Robotics Foundation: ROS remapping. http://wiki.ros.org/Remapping%

20Arguments. Accessed March 2016.

https://github.com/ekosky/hexaplus-ros-tutorial.git
https://github.com/ekosky/hexaplus-ros-tutorial.git
http://wiki.ros.org/ROS/Tutorials
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com/helpFiles/en/bubbleRobTutorial.htm
http://www.coppeliarobotics.com/helpFiles/en/bubbleRobTutorial.htm
http://www.coppeliarobotics.com/helpFiles/en/rosTutorialIndigo.htm
http://www.coppeliarobotics.com/helpFiles/en/rosTutorialIndigo.htm
http://wiki.ros.org/Remapping%20Arguments
http://wiki.ros.org/Remapping%20Arguments

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 81

22. Chak, Y.C., and R. Varatharajoo. 2014. A heuristic cascading fuzzy logic approach to reactive
navigantion for UAV. IIUM Engineering Journal, Selangor - Malaysia 15 (2).

23. Sureshkumar, V., and K. Cohen. Autonomous control of a quadrotor UAV using fuzzy logic.
Unisys Digita - Journal of Unmanned System Technology, Cincinnati, Ohio.

24. EusebiuMarcu,C.B.UAVfuzzy logic control systemstability analysis in the sense ofLyapunov.
UPB Scientific Bulletin, Series D 76 (2).

25. Abeywardena, D.M.W., L.A.K. Amaratunga, S.A.A. Shakoor, and S.R. Munasinghe. 2009.
A velocity feedback fuzzy logic controller for stable hovering of a quad rotor UAV. In 2009
International Conference on Industrial and Information Systems (ICIIS), 558–562.

26. Gomez, J.F., and M. Jamshidi. 2011. Fuzzy adaptive control for a UAV. Journal of Intelligent
& Robotic Systems 62 (2): 271–293.

27. Limnaios, G., and N. Tsourveloudis. 2012. Fuzzy logic controller for a mini coaxial indoor
helicopter. Journal of Intelligent & Robotic Systems 65 (1): 187–201.

28. Ierusalimschy, R., W. Celes, and L.H. de Figueiredo. 2016. Lua documentation. https://www.
lua.org/. Accessed March 2016.

29. Coppelia Robotics: V-REP help. http://www.coppeliarobotics.com/helpFiles/. Accessed
March 2016.

30. CoppeliaRobotics:V-REPdownloadpage. http://www.coppeliarobotics.com/downloads.html.
Accessed March 2016.

31. Coppelia Robotics: ROS publisher typer for V-REP. http://www.coppeliarobotics.com/
helpFiles/en/rosPublisherTypes.htm. Accessed March 2016.

32. Steder, B., G. Grisetti, C. Stachniss, and W. Burgard. 2008. Visual SLAM for flying vehicles.
IEEE Transactions on Robotics 24 (5): 1088–1093.

33. Itseez: OpenCV - Open Source Computer Vision Library. http://opencv.org/. Accessed Nov
2016.

34. Mihelich, P., and J. Bowman. 2016. vision_openCV documentation. Accessed March 2016.

Author Biographies

Emanoel Koslosky is Master’s degree student in the applied computing and embedded systems.
As a student, he took classes abount Mobile Robotics, Image Processing, Hardware Architecture
for Embedded Systems, Operating Systems in Real Time. As a professional, he received Certi-
fications of Oracle Real Application Clusters 11g Certified Implementation - Specialist, Oracle
Database 10g Administrator Certified Professional - OCP, Oracle8i Database Administrator Cer-
tified Professional - OCP. He has professionally worked as programmer and developer since 1988
using languages such as C/C++, Oracle Pro*C/C++, Pro*COBOL, Java and Oracle Tools like Ora-
cle Designer, Oracle Developer, as a Database Administrator worked with high availability and
scalability environment, also as a System Adminstrator of Oracle e-Business Suite - EBS.

Marco Aurélio Wehrmeister received the Ph.D. degree in Computer Science from the Federal
University of Rio Grande do Sul (Brazil) and the University of Paderborn (Germany) in 2009
(double-degree). In 2009, he worked as Lecturer and Postdoctoral Researcher for the Federal Uni-
versity of Santa Catarina (Brazil). From 2010 to 2013, he worked as tenure track Professor with
the Department of Computer Science from the Santa Catarina State University (UDESC, Brazil).
Since 2013, he has been working as a tenure track Professor with the Department of Informatics
from the Federal University of Technology - Paraná (UTFPR, Brazil). From 2014 to 2016, he was
the Head of the M.Sc. course on Applied Computing of UTFPR. In 2015, Prof. Dr. Wehrmeister
was a Visiting Fellow (short stay) with School of Electronic, Electrical and Systems Engineer-
ing from the University of Birmingham (UK). Prof. Dr. Wehrmeister’s thesis was selected by the
Brazilian Computer Society as one of the six best theses on Computer Science in 2009. He is
member of the special commission on Computing Systems Engineering of the Brazilian Com-
puter Society. Since 2015, he is a member of the IFIP Working Group 10.2 on Embedded Systems.

https://www.lua.org/
https://www.lua.org/
http://www.coppeliarobotics.com/helpFiles/
http://www.coppeliarobotics.com/downloads.html
http://www.coppeliarobotics.com/helpFiles/en/rosPublisherTypes.htm
http://www.coppeliarobotics.com/helpFiles/en/rosPublisherTypes.htm
http://opencv.org/

82 E. Koslosky et al.

His research interests are in the areas of embedded and real-time systems, aerial robots, model-
driven engineering, and hardware/software engineering for embedded systems and robotics. Prof.
Dr. Wehrmeister has co-authored more than 70 papers in international peer-reviewed journals and
conference proceedings. He has been involved in various research projects funded by Brazilian
R&D agencies.

Andre Schneider de Oliveira holds a degree in Computer Engineering from the University of
Vale do Itajaí (2004), master’s degree in Mechanical Engineering from the Federal University of
Santa Catarina (2007) and Doctorate in Automation and Systems Engineering from the Federal
University of Santa Catarina (2011). He is currently Assistant Professor at the Federal Technolog-
ical University of Paran - Curitiba campus. He has carried out research in Electrical Engineering
with emphasis on Robotics, Mechatronics and Automation, working mainly with the following
topics: navigation and positioning of mobile robots; autonomous and intelligent systems; percep-
tion and environmental identification; and control systems for navigation.

João Alberto Fabro is an Associate Professor at Federal University of Technology - Parana
(UTFPR), where he has been working since 2008. From 1998 to 2007, he was with the State Uni-
versity of West-Parana (UNIOESTE). He has an undergraduate degree in Informatics, from Fed-
eral University of Paran (UFPR 1994), a Master’s Degree in Computing and Electric Engineer-
ing, from Campinas State University (UNICAMP 1996), a Ph.D. degree in Electric Engineering
and Industrial Informatics(CPGEI) from UTFPR (2003) and recently actuated as a Post-Doc at the
Faculty of Engineering, University of Porto, Portugal (FEUP, 2014). He has experience in Com-
puter Science, specially Computational Intelligence, actively researching on the following sub-
jects: Computational Intelligence (neural networks, evolutionary computing and fuzzy systems),
and Autonomous Mobile Robotics. Since 2009, he has participated in several Robotics Competi-
tions, in Brazil, Latin America and World Robocup, both with soccer robots and service robots.

	Designing Fuzzy Logic Controllers for ROS-Based Multirotors
	1 Introduction
	2 Brief Overview of Multirotors
	3 Fuzzy Control System for Hexacopters
	3.1 Brief Overview of Fuzzy Logic
	3.2 Overview of Hexacopter Movement Control System
	3.3 Example: Design of Vertical Movement and Hovering Controller

	4 Open-Source Package of ROS-Based Fuzzy Logic Control Systems
	4.1 Package Overview
	4.2 Configuring ROS Environment and Installing the Package
	4.3 Fuzzy Set Files
	4.4 Fuzzy Library Implementation
	4.5 Main Controller Implementation
	4.6 Command Interface Implementation
	4.7 Telemetry Implementation

	5 Virtual Experimentation Platform
	5.1 Introduction
	5.2 V-REP Basics
	5.3 Publishing ROS Topics
	5.4 Subscribing to ROS Topics
	5.5 Publishing Images from V-REP
	5.6 Running the Sample Scenarios

	6 Final Remarks
	References

