
Studies in Computational Intelligence 707

Anis Koubaa Editor

Robot
Operating
System (ROS)
The Complete Reference (Volume 2)

Studies in Computational Intelligence

Volume 707

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

Anis Koubaa
Editor

Robot Operating System
(ROS)
The Complete Reference (Volume 2)

Special focus on Unmanned Aerial Vehicles (UAVs) with
ROS

123

Editor
Anis Koubaa
Prince Sultan University
Riyadh
Saudi Arabia

and

CISTER Research Unit
Porto
Portugal

and

Gaitech Robotics
Hong Kong
China

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-54926-2 ISBN 978-3-319-54927-9 (eBook)
DOI 10.1007/978-3-319-54927-9

Library of Congress Control Number: 2017933861

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Acknowledgements

The Editor would like to thank the Robotics and Internet of Things (RIoT) Unit at
Center of Excellence of Prince Sultan University for their support to this work.

Furthermore, the Editor thanks Gaitech Robotics in China for their support.

v

Acknowledgements to Reviewers

The Editor would like to thank the following reviewers for their great contributions
in the review process of the book by providing a quality feedback to authors.

Anis Koubâa Prince Sultan University, Saudi Arabia/CISTER
Research Unit, Portugal

Francisco Grau CATEC (Center for Advanced Aerospace
Technologies)

Michael Carroll Robotic Paradigm Systems

Bence Magyar PAL Robotics

Maram Alajlan Al-Imam Mohamed bin Saud University

Marc Morenza-Cinos UPF

Andre Oliveira UTFPR

Marco Wehrmeister Federal University of Technology – Parana

Walter Fetter Lages Universidade Federal do Rio Grande do Sul

Péter Fankhauser ETH Zurich

Christoph Rösmann Institute of Control Theory and Systems Engineering,
TU Dortmund University

Francesco Rovida Aalborg University of Copenhagen

Christopher-Eyk Hrabia Technische Universität/DAI Labor

Guilherme Sousa Bastos UNIFEI

Andreas Bihlmaier Karlsruhe Institute of Technologie (KIT)

Juan Jimeno linorobot.org

Timo Röhling Fraunhofer FKIE

Zavier Lee Henan University of Science and Technology

Myrel Alsayegh RST-TU Dortmund

Junhao Xiao National University of Defense Technology

Huimin Lu National University of Defense Technology

Alfredo Soto Freescale Semiconductors

Dinesh Madusanke University of Moratuwa
(continued)

vii

(continued)

Roberto Guzman Robotnik

Ingo Lütkebohle Robert Bosch GmbH

Brad Bazemore University of Georgia

Yasir Javed Prince Sultan University, Saudi Arabia

Mohamed-Foued Sriti Al-Imam Muhammad Ibn Saud Islamic University

Murilo Martins Centro Universitario da FEI

viii Acknowledgements to Reviewers

Contents

Part I Control of UAVs

Model Predictive Control for Trajectory Tracking
of Unmanned Aerial Vehicles Using Robot Operating System. 3
Mina Kamel, Thomas Stastny, Kostas Alexis and Roland Siegwart

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 41
Emanoel Koslosky, André Schneider de Oliveira,
Marco Aurélio Wehrmeister and João Alberto Fabro

Flying Multiple UAVs Using ROS . 83
Wolfgang Hönig and Nora Ayanian

Part II Control of Mobile Robots

SkiROS—A Skill-Based Robot Control Platform on Top
of ROS . 121
Francesco Rovida, Matthew Crosby, Dirk Holz,
Athanasios S. Polydoros, Bjarne Großmann,
Ronald P.A. Petrick and Volker Krüger

Control of Mobile Robots Using ActionLib . 161
Higor Barbosa Santos, Marco Antônio Simões Teixeira,
André Schneider de Oliveira, Lúcia Valéria Ramos de Arruda
and Flávio Neves, Jr.

Parametric Identification of the Dynamics of Mobile Robots
and Its Application to the Tuning of Controllers in ROS 191
Walter Fetter Lages

Online Trajectory Planning in ROS Under Kinodynamic
Constraints with Timed-Elastic-Bands. 231
Christoph Rösmann, Frank Hoffmann and Torsten Bertram

ix

Part III Integration of ROS with Internet and Distributed Systems

ROSLink: Bridging ROS with the Internet-of-Things for Cloud
Robotics . 265
Anis Koubaa, Maram Alajlan and Basit Qureshi

ROS and Docker . 285
Ruffin White and Henrik Christensen

A ROS Package for Dynamic Bandwidth Management
in Multi-robot Systems . 309
Ricardo Emerson Julio and Guilherme Sousa Bastos

Part IV Service Robots and Fields Experimental

An Autonomous Companion UAV for the SpaceBot
Cup Competition 2015 . 345
Christopher-Eyk Hrabia, Martin Berger, Axel Hessler,
Stephan Wypler, Jan Brehmer, Simon Matern and Sahin Albayrak

Development of an RFID Inventory Robot (AdvanRobot) 387
Marc Morenza-Cinos, Victor Casamayor-Pujol, Jordi Soler-Busquets,
José Luis Sanz, Roberto Guzmán and Rafael Pous

Robotnik—Professional Service Robotics Applications
with ROS (2) . 419
Roberto Guzmán, Román Navarro, Miquel Cantero
and Jorge Ariño

Using ROS in Multi-robot Systems: Experiences
and Lessons Learned from Real-World Field Tests 449
Mario Garzón, João Valente, Juan Jesús Roldán,
David Garzón-Ramos, Jorge de León, Antonio Barrientos
and Jaime del Cerro

Part V Perception and Sensing

Autonomous Navigation in a Warehouse
with a Cognitive Micro Aerial Vehicle . 487
Marius Beul, Nicola Krombach, Matthias Nieuwenhuisen,
David Droeschel and Sven Behnke

Robots Perception Through 3D Point Cloud Sensors 525
Marco Antonio Simões Teixeira, Higor Barbosa Santos,
André Schneider de Oliveira, Lucia Valeria Arruda and Flavio Neves, Jr.

x Contents

Part VI ROS Simulation Frameworks

Environment for the Dynamic Simulation of ROS-Based UAVs 565
Alvaro Rogério Cantieri, André Schneider de Oliveira,
Marco Aurélio Wehrmeister, João Alberto Fabro
and Marlon de Oliveira Vaz

Building Software System and Simulation Environment for RoboCup
MSL Soccer Robots Based on ROS and Gazebo 597
Junhao Xiao, Dan Xiong, Weijia Yao, Qinghua Yu, Huimin Lu
and Zhiqiang Zheng

VIKI—More Than a GUI for ROS . 633
Robin Hoogervorst, Cees Trouwborst, Alex Kamphuis
and Matteo Fumagalli

Contents xi

Editor and Contributors

About the Editor

Anis Koubaa is a full professor in Computer Science at Prince Sultan University and research
associate in CISTER Research Unit, ISEP-IPP, Portugal, add Senior Research Consultant with
Gaitech Robotics, China. He becomes a Senior Fellow of the Higher Education Academy
(SFHEA) in 2015. He received his B.Sc. in Telecommunications Engineering from Higher School
of Telecommunications (Tunisia), and M.Sc. degrees in Computer Science from University Henri
Poincare (France), in 2000 and 2001, respectively, and the Ph.D. degree in Computer Science
from the National Polytechnic Institute of Lorraine (France), in 2004. He was a faculty member at
Al-Imam University from 2006 to 2012. He has published over 120 refereed journal and con-
ference papers. His research interest covers mobile robots, cloud robotics, robotics software
engineering, Internet-of-Things, cloud computing and wireless sensor networks. Dr. Anis received
the best research award from Al-Imam University in 2010, and the best paper award of the 19th
Euromicro Conference in Real-Time Systems (ECRTS) in 2007. He is the head of the ACM
Chapter in Prince Sultan University. His H-Index is 30.

Contributors

Maram Alajlan Center of Excellence Robotics and Internet of Things (RIOT)
Research Unit, Prince Sultan University, Riyadh, Saudi Arabia; King Saud
University, Riyadh, Saudi Arabia

Sahin Albayrak DAI-Labor, Technische Universität Berlin, Berlin, Germany

Kostas Alexis University of Nevada, Reno, NV, USA

Jorge Ariño Robotnik Automation, SLL, Ciutat de Barcelona, Paterna, Valencia,
Spain

Lucia Valeria Arruda Federal University of Technology—Parana, Curitiba,
Brazil

Nora Ayanian Department of Computer Science, University of Southern
California, Los Angeles, CA, USA

xiii

Antonio Barrientos Centro De Automática y Robótica, UPM-CSIC, Madrid,
Spain

Guilherme Sousa Bastos System Engineering and Information Technology
Institute—IESTI, Federal University of Itajubá—UNIFEI, Pinheirinho, Itajubá,
MG, Brazil

Sven Behnke Autonomous Intelligent Systems Group, University of Bonn, Bonn,
Germany

Martin Berger DAI-Labor, Technische Universität Berlin, Berlin, Germany

Torsten Bertram Institute of Control Theory and Systems Engineering, TU
Dortmund University, Dortmund, Germany

Marius Beul Autonomous Intelligent Systems Group, University of Bonn, Bonn,
Germany

Jan Brehmer DAI-Labor, Technische Universität Berlin, Berlin, Germany

Miquel Cantero Robotnik Automation, SLL, Ciutat de Barcelona, Paterna,
Valencia, Spain

Alvaro Rogério Cantieri Federal Institute of Parana, Curitiba, Brazil

Victor Casamayor-Pujol Universtitat Pompeu Fabra, Barcelona, Spain

Henrik Christensen Contextual Robotics Institute, University of California, San
Diego, CA, USA

Matthew Crosby Heriot-Watt University, Edinburgh, UK

Lúcia Valéria Ramos de Arruda Federal University of Technology—Parana,
Curitiba, Brazil

Jorge de León Centro De Automática y Robótica, UPM-CSIC, Madrid, Spain

André Schneider de Oliveira Advanced Laboratory of Embedded Systems and
Robotics (LASER), Federal University of Technology—Parana (UTFPR), Curitiba,
Brazil

Marlon de Oliveira Vaz Federal Institute of Parana, Curitiba, Brazil

Jaime del Cerro Centro De Automática y Robótica, UPM-CSIC, Madrid, Spain

David Droeschel Autonomous Intelligent Systems Group, University of Bonn,
Bonn, Germany

João Alberto Fabro Advanced Laboratory of Embedded Systems and Robotics
(LASER), Federal University of Technology—Parana (UTFPR), Curitiba, Brazil

Matteo Fumagalli Aalborg University, Copenhagen, Denmark

David Garzón-Ramos Centro De Automática y Robótica, UPM-CSIC, Madrid,
Spain

xiv Editor and Contributors

Mario Garzón Centro De Automática y Robótica, UPM-CSIC, Madrid, Spain

Bjarne Großmann Aalborg University Copenhagen, Copenhagen, Denmark

Roberto Guzmán Robotnik Automation S.L.L., Paterna, Valencia, Spain

Axel Hessler DAI-Labor, Technische Universität Berlin, Berlin, Germany

Frank Hoffmann Institute of Control Theory and Systems Engineering, TU
Dortmund University, Dortmund, Germany

Dirk Holz Bonn University, Bonn, Germany

Robin Hoogervorst University of Twente, Enschede, Netherlands

Christopher-Eyk Hrabia DAI-Labor, Technische Universität Berlin, Berlin,
Germany

Wolfgang Hönig Department of Computer Science, University of Southern
California, Los Angeles, CA, USA

Ricardo Emerson Julio System Engineering and Information Technology
Institute—IESTI, Federal University of Itajubá—UNIFEI, Pinheirinho, Itajubá,
MG, Brazil

Mina Kamel Autonomous System Lab, ETH Zurich, Zurich, Switzerland

Alex Kamphuis University of Twente, Enschede, Netherlands

Emanoel Koslosky Advanced Laboratory of Embedded Systems and Robotics
(LASER), Federal University of Technology—Parana (UTFPR), Curitiba, Brazil

Anis Koubaa Center of Excellence Robotics and Internet of Things (RIOT)
Research Unit, Prince Sultan University, Riyadh, Saudi Arabia; Gaitech Robotics,
Hong Kong, China; CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto,
Porto, Portugal

Nicola Krombach Autonomous Intelligent Systems Group, University of Bonn,
Bonn, Germany

Volker Krüger Aalborg University Copenhagen, Copenhagen, Denmark

Walter Fetter Lages Federal University of Rio Grande do Sul, Porto Alegre RS,
Brazil

Huimin Lu College of Mechatronics and Automation, National University of
Defense Technology, Changsha, China

Simon Matern Technische Universität Berlin, Berlin, Germany

Marc Morenza-Cinos Universtitat Pompeu Fabra, Barcelona, Spain

Román Navarro Robotnik Automation, SLL, Ciutat de Barcelona, Paterna,
Valencia, Spain

Editor and Contributors xv

Flávio Neves Jr. Federal University of Technology—Parana, Curitiba, Brazil

Matthias Nieuwenhuisen Autonomous Intelligent Systems Group, University of
Bonn, Bonn, Germany

Ronald P.A. Petrick Heriot-Watt University, Edinburgh, UK

Athanasios S. Polydoros Aalborg University Copenhagen, Copenhagen,
Denmark

Rafael Pous Universtitat Pompeu Fabra, Barcelona, Spain

Basit Qureshi Prince Sultan University, Riyadh, Saudi Arabia

Juan Jesús Roldán Centro De Automática y Robótica, UPM-CSIC, Madrid,
Spain

Francesco Rovida Aalborg University Copenhagen, Copenhagen, Denmark

Christoph Rösmann Institute of Control Theory and Systems Engineering, TU
Dortmund University, Dortmund, Germany

Higor Barbosa Santos Federal University of Technology—Parana, Curitiba,
Brazil

José Luis Sanz Keonn Technologies S.L., Barcelona, Spain

Roland Siegwart Autonomous System Lab, ETH Zurich, Zurich, Switzerland

Jordi Soler-Busquets Universtitat Pompeu Fabra, Barcelona, Spain

Thomas Stastny Autonomous System Lab, ETH Zurich, Zurich, Switzerland

Marco Antonio Simões Teixeira Federal University of Technology—Parana,
Curitiba, Brazil

Cees Trouwborst University of Twente, Enschede, Netherlands

João Valente Centro De Automática y Robótica, UPM-CSIC, Madrid, Spain

Marco Aurélio Wehrmeister Advanced Laboratory of Embedded Systems and
Robotics (LASER), Federal University of Technology—Parana (UTFPR), Curitiba,
Brazil

Ruffin White Contextual Robotics Institute, University of California, San Diego,
CA, USA

Stephan Wypler Technische Universität Berlin, Berlin, Germany

Junhao Xiao College of Mechatronics and Automation, National University of
Defense Technology, Changsha, China

Dan Xiong College of Mechatronics and Automation, National University of
Defense Technology, Changsha, China

xvi Editor and Contributors

Weijia Yao College of Mechatronics and Automation, National University of
Defense Technology, Changsha, China

Qinghua Yu College of Mechatronics and Automation, National University of
Defense Technology, Changsha, China

Zhiqiang Zheng College of Mechatronics and Automation, National University of
Defense Technology, Changsha, China

Editor and Contributors xvii

Part I
Control of UAVs

Model Predictive Control for Trajectory
Tracking of Unmanned Aerial Vehicles
Using Robot Operating System

Mina Kamel, Thomas Stastny, Kostas Alexis and Roland Siegwart

Abstract In this chapter, strategies for Model Predictive Control (MPC) design and
implementation for Unmaned Aerial Vehicles (UAVs) are discussed. This chapter is
divided into two main sections. In the first section, modelling, controller design and
implementation of MPC for multi-rotor systems is presented. In the second section,
we show modelling and controller design techniques for fixed-wing UAVs. System
identification techniques are used to derive an estimate of the system model, while
state of the art solvers are employed to solve the optimization problem online. By
the end of this chapter, the reader should be able to implement an MPC to achieve
trajectory tracking for both multi-rotor systems and fixed-wing UAVs.

1 Introduction

Aerial robots are gaining great attention recently as they have many advantages
over ground robots to execute inspection, search and rescue, surveillance and goods
delivery tasks. Depending on the task required to be executed, a multi-rotor system
or fixed-wing aircraft might be a more suitable choice. For instance, a fixed-wing
aircraft is more suitable for surveillance and large-scale mapping tasks thanks to
their long endurance capability and higher speed compared to a multi-rotor system,
while for an inspection task that requires flying close to structures to obtain detailed
footage a multi-rotor UAV is more appropriate.

M. Kamel (B) · T. Stastny · R. Siegwart
Autonomous System Lab, ETH Zurich, Zurich, Switzerland
e-mail: fmina@ethz.ch

T. Stastny
e-mail: tstastny@ethz.ch

R. Siegwart
e-mail: rsiegwart@ethz.ch

K. Alexis
University of Nevada, Reno, NV, USA
e-mail: kalexis@unr.edu

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_1

3

4 M. Kamel et al.

Precise trajectory tracking is a demanding feature for aerial robots in general in
order to successfully perform required tasks, especially when operating in realistic
environments where external disturbances may heavily affect the flight performance
and when flying in the vicinity of structure. In this chapter, several model predictive
control strategies for trajectory tracking are presented for multi-rotor systems as well
as for fixed-wing aircraft. The general control structure followed by this chapter is a
cascade control approach, where a reliable and system-specific low-level controller
is present as inner loop, and a model-based trajectory tracking controller is running
as an outer loop. This approach is motivated by the fact that many critical flight
software is running on a separate navigation hardware which is typically based on
micro-controllers, such as Pixhawk PX4 and Navio [1, 2] while high level tasks are
running on more powerful -but less reliable- on-board computers. This introduces a
separation layer to keep critical tasks running despite any failure in the more complex
high-level computer.

By the end of this chapter, the reader should be able to implement and test various
Model Predictive Control strategies for aerial robots trajectory tracking, and integrate
these controllers into the Robot Operating System (ROS) [3]. Various implementation
hints and practical suggestions are provided in this chapter and we show several
experimental results to evaluate the proposed control algorithms on real systems.

In Sect. 2 the general theory behind MPC is presented, with focus on linear MPC
and robust linear MPC. In Sect. 3 we present the multi-rotor system model and
give hints on model identification approaches. Moreover, linear and robust MPC
are presented and we show how to integrate these controller into ROS and present
experimental validation results. In Sect. 4 we present a Nonlinear MPC approach for
lateral-directional position control of fixed-wing aircraft with implementation hints
and validation experiments.

2 Background

2.1 Concepts of Receding Horizon Control

Receding Horizon Control (RHC) corresponds to the historic evolution in control
theory that aimed to attack the known challenges of fixed horizon control. Fixed
horizon optimization computes a sequence of control actions {u0, u1, . . . , uN−1}
over a horizon N and is characterized by two main drawbacks, namely: (a) when
an unexpected (unknown during the control design phase) disturbance takes place
or when the model employed for control synthesis behaves different than the actual
system, then the controller has no way to account for that over the computed control
sequence, and (b) as one approaches the final control steps (over the computer fixed
horizon) the control law “gives up trying” since there is too little time left in the fixed
horizon to go to achieve a significant objective function reduction. To address these
limitations, RHC proposed the alternative strategy of computing the full control

Model Predictive Control for Trajectory Tracking … 5

sequence, applying only the first step of it and then repeating the whole process
iteratively (receding horizon fashion). RHC strategies are in general applicable to
nonlinear dynamics of the form (considering that state update is available):

ẋ = f(x,u) (1)

where the vector field f : Rn × R
m , x ∈ R

n×1 represents the state vector, and u ∈
R

m×1 the input vector. The general state feedback-based RHC optimization problem
takes the following form:

min
z

F(xt+N) +
N−1∑

k=0

||xt+k − xre ft+k ||� + ||ut+k ||�
s.t. xt+k+1 = f (xt+k,ut+k)

ut+k ∈ UC

xt+k ∈ XC

xt = x(t)

(2)

where z = {ut ,ut+1, . . . ,ut+N−1} is the optimization variables, � denotes some
(penalized) metric used for per-stage weighting, F(xt+N) represents the terminal
state weighting, xre ft+k is the reference signal, the subscript t + k is used to denote the
sample (using a fixed sampling time Ts) of a signal at k steps ahead of the current
time t , while t + k + 1 indicates the next evolution of that, UC represents the set of
input constraints, XC the state constraints and x(t) is the value of the state vector at
the beginning of the current RHC iteration. The solution of this optimization problem
leads again to an optimal control sequence {u�

t ,u
�
t+1, . . . ,u

�
t+N−1} but only the first

step of that u�
t is applied while the whole process is then repeated iteratively.

Within this formulation, the term F(xt+N) has a critical role for the closed-loop
stability. In particular, it forces the system state to take values within a particular set
at the end of the prediction horizon. It is relatively easy to prove stability per local
iteration using Lyapunov analysis. In its simplest case, this essentially means that
considering the regulation problem (xre ft+k = 0 for k = 0, . . . , N − 1), and a “decres-
cent” metric �, then the solution of the above optimization problem makes the system
stable at xt = 0, ut = 0 – that is that a terminal constraint xt+k = 0 is introduced (a
simplified illustration is provided in Fig. 1). However, the question of global stability

Fig. 1 Illustration of the terminal constraint set (Ω)

6 M. Kamel et al.

is in general not guaranteed. For that one has to consider the problem of introducing
both a terminal cost and a terminal constraint for the states [4]. However, general
constrained optimization problems can be extremely difficult to solve, and simply
adding terminal constraints may not be feasible. Note that in many practical cases,
the terminal constraint is not enforced during the control design procedure, but rather
verified a posteriori (by increasing the prediction horizon if not satisfied).

Furthermore, one of the most challenging properties of RHC is that of recur-
sive feasibility. Unfortunately, although absolutely recommended from a theoretical
standpoint, it is not always possible to construct a RHC that has a-priori guarantee
of recursive feasibility, either due to theoretical or practical implications. In general,
a RHC strategy lacks recursive feasibility –and is therefore invalidated– even when
it is possible to find a state which is feasible, but where the optimal control action
moves the state vector to a point where the RHC optimization problem is infeasible.
Although a general feasibility analysis methodology is very challenging, for spe-
cific cases powerful tools exist. In particular, for the case of linear systems then the
Farkas’ Lemma [5] in combination with bilevel programming can be used to search
for problematic initial states which lack recursive feasibility – thus invalidating an
RHC strategy.

2.2 Linear Model Predictive Control

In this subsection we briefly present the theory behind MPC for linear systems. We
formulate the optimal control problem for linear systems with linear constraints in the
input and state variables. Moreover, we discuss the control input properties, stability
and feasibility in the case of linear and quadratic cost function. To achieve offset
free tracking under model mismatch, we adopt the approach described in [6] where
the system model is augmented with additional disturbances state d(t) to capture
the model mismatch. An observer is employed to estimate disturbances in steady
state. The observer design and the disturbance model will be briefly discussed in this
subsection.

min
U

J0
(
x0,U,Xre f ,Ure f

)

subject to xk+1 = Axk + Buk + Bddk;
dk+1 = dk, k = 0, . . . , N − 1
xk ∈ XC , uk ∈ UC

xN ∈ XCN

x0 = x (t0) , d0 = d (t0) .

(3)

The optimal control problem to achieve offset-free state tracking under linear
state and and input constraints is shown in (3), where J0 is the cost function, Xre f =
{xre f0 , . . . , xre fN } is the reference state sequence, U = {u0, . . . ,uN−1} and Ure f =
{ure f0 , . . . ,ure fN−1} are respectively the control input sequence and the steady state
input sequence, Bd is the disturbance model and dk is the external disturbances, XC ,

Model Predictive Control for Trajectory Tracking … 7

UC and XCN are polyhedra. The choice of the disturbance model is not a trivial
task, and depends on the system under consideration and the type of disturbances
expected. The optimization problem is defined as

J0
(
x0,U,Xre f ,Ure f

) =
N−1∑

k=0

(
(xk − xre fk)TQx (xk − xre fk)+

(uk − ure fk)TRu(uk − ure fk)+
(uk − uk−1)

TRΔ(uk − uk−1)
)
+

(xN − xre fN)TP(xN − xre fN),

(4)

where Qx � 0 is the penalty on the state error, Ru � 0 is the penalty on control input
error, RΔ � 0 is a penalty on the control change rate and P is the terminal state error
penalty.

In general, stability and feasibility of receding horizon problems are not ensured
except for particular cases such as infinite horizon control problems as in Linear
Quadratic Regulator (LQR) case. When the prediction horizon is limited to N steps,
the stability and feasibility guarantees are disputable. In principle, longer prediction
horizon tends to improve stability and feasibility properties of the controller, but the
computation effort will increase, and for aerial robot application, fast control action
needs to be computed on limited computation power platforms. However, the terminal
cost P and terminal constraint XCN can be chosen such that closed-loop stability and
feasibility are ensured [6]. In this chapter we focus more on the choice of terminal
weight P as it is easy to compute, while the terminal constraint is generally more
difficult and practically stability is achieved with long enough prediction horizon.

Note that in our cost function (4), we penalize the control input rate Δuk . This
ensures smooth control input and avoids undesired oscillations. In the cost func-
tion (4), u−1 is the actual control input applied on the system in the previous time
step.

As previously mentioned, offset-free reference tracking can be achieved by
augmenting the system model with disturbances dk to capture the modeling error.
Assuming that we want to track the system output yk = Cxk and achieve steady state
offset free tracking y∞ = r∞. A simple observer that can estimate such disturbance
can be achieved as follows

[
x̂k+1

d̂k+1

]
=
[
A Bd

0 I

] [
x̂k
d̂k

]
+
[
B
0

]
uk +

[
Lx

Ld

] (
Cx̂k − ym,k

)
(5)

where x̂ and d̂ are the estimated state and external disturbances, Lx and Ld are the
observer gains and ym,k is the measured output at time k.

Under the assumption of stable observer, it is possible to compute the MPC state
at steady state xre f and control input at steady state ure f by solving the following
system of linear equations:

8 M. Kamel et al.

[
A− I B
C 0

] [
xre f,k

ure f,k

]
=
[−Bd d̂k

rk

]
(6)

2.3 Nonlinear Model Predictive Control

Aerial vehicles behavior is better described by a set of nonlinear differential equations
to capture the aerodynamic and coupling effects. Therefore in this subsection we
present the theory behind Nonlinear MPC that exploits the full system dynamics,
and generally achieve better performance when it comes to aggressive trajectory
tracking. The optimization problem for nonlinear MPC is formulated in Eq. (7).

min
U

∫ T

t=0

∥∥h (x(t),u(t)) − yre f (t)
∥∥2

Q dt + ∥∥m (x(T)) − yre f (T)
∥∥2

P

subject to ẋ = f(x(t),u(t));
u(t) ∈ UC

x(t) ∈ XC

x(0) = x (t0) .

(7)

A direct multiple shooting technique is used to solve the Optimal Control Problem
(OCP) (7). In this approach the system dynamics are discretized over a time grid
t0, . . . , tN within the time intervals

[
tk, tk+1

]
. The inequality constraints and control

action are discretized over the same time grid. A Boundary Value Problem (BVP)
is solved for each interval and additional continuity constraints are imposed. Due
to the nature of the system dynamics and the imposed constraints, the optimization
problem becomes a Nonlinear Program (NLP). This NLP is solved using Sequential
Quadratic Programming (SQP) technique where the Quadratic Programs (QPs) are
solved by active set method using the qpOASES solver [7].

Note that, in case of infeasibility of the underlying QP, �1 penalized slack variables
are introduced to relax all constraints.

The controller is implemented in a receding horizon fashion where only the first
computed control action is applied to the system, and the rest of the predicted state
and control trajectory is used as initial guess for the OCP to solve in the next iteration.

2.4 Linear Robust Model Predictive Control

Despite the robustness properties of the nominal MPC formulation, specific robust
control variations exist when further robustness guarantees are required. The problem
of linear Robust Model Predictive Control (RMPC) may be formulated as a Mini-
max optimization problem that is solved explicitly. As an optimality metric we may

Model Predictive Control for Trajectory Tracking … 9

State Space
representation

using the concate-
nated vectors over

the prediction
horizon

Fe
ed

ba
ck

Pr

ed
ic

tio
ns

State and Input Constraints

Constraints Robustification

Objective Function

R
el

ax
at

io
ns

 -
- D

er
iv

at
io

n
of

 C
on

ve
x

O
pt

im
iz

at
io

n
Pr

ob
le

m

Multiparametric
Optimizer

Explicit
Piecewise Affine

form

Extended
Sequential Table

Traversal

Fig. 2 Overview of the explicit RMPC optimization problem functional components

select the Minimum Peak Performance Measure (MPPM) for its known robustness
properties. Figure 2 outlines the relevant building blocks [8].

Within this RMPC approach, the following linear time invariant representation of
the system dynamics may be considered:

xk+1 = Axk + Buk + Gwk (8)

yk+1 = Cxk

where xk ∈ X,uk ∈ U and the disturbing signalswk are unknown but bounded (wk ∈
W). Within this paper, box-constrained disturbances are considered (W∞ = {w :
||w||∞ ≤ 1}). Consequently, the RMPC problem will be formulated for the system
representation and additive disturbance presented above. Let the following denote
the concatenated versions of the predicted output, states, inputs and disturbances,
where [k + i |k] marks the values profile at time k + i , from time k.

Y =
(
yTk|k yTk+1|k . . . yTk+N−1|k

)
(9)

X =
(
xTk|k xTk+1|k . . . xTk+N−1|k

)
(10)

U =
(
uTk|k uTk+1|k . . . uTk+N−1|k

)
(11)

W =
(
wT
k|k wT

k+1|k . . . wT
k+N−1|k

)
(12)

10 M. Kamel et al.

where X ∈ X
N = X × X · · · × X, U ∈ U

N = U × U · · · × U, W ∈ W
N = W ×

W × · · · × W. The predicted states and outputs present linear dependency on the
current state, the future control input and the disturbance, and thus the following
holds:

X = Axk|k + BU + GW (13)
Y = CX

where A,B, C,G are the stacked state vector matrices as in [8]. Subsequently, the
RMPC problem based on the MPPM (MPPM–RMPC) may be formulated as:

min
u

max
w

||Y ||∞, ||Y ||∞ = max
j

||yk+ j |k ||∞ (14)

s.t. uk+ j |k ∈ U, ∀ w ∈ W

xk+ j |k ∈ X, ∀ w ∈ W

wk+ j |k ∈ W

2.4.1 Feedback Predictions

Following the aforementioned formulation, the optimization problem will tend to
become conservative as the optimization essentially computes an open-loop control
sequence. Feedback predictions is a method to encode the knowledge that a receding
horizon approach is followed. Towards their incorporation, a type of feedback control
structure has to be assumed. Among the feedback parametrizations that are known
to lead to a convex problem space, the following is selected [9, 10]:

U = LW + V, V =
(
υT
k|k υT

k+1|k · · · υT
k+N−1|k

)
(15)

TL =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
L10 0 0 · · · 0
L20 L21 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

L(N−1)0 L(N−1)1 · · · L(N−1)(N−2) 0

⎞

⎟⎟⎟⎟⎟⎠
(16)

Employing this feedback predictions parameterization, the control sequence is now
parameterized directly in the uncertainty, and the matrix L describes how the control
action uses the disturbance vector. Inserting this parametrization yields the following
representation, where V becomes now the RMPC-manipulated action:

X = Axk|k + BV + (G + BL)W (17)

U = LW + V (18)

and the mapping from L, V to X , U is now bilinear. This allows the formulation of
the minimax MPC as a convex optimization problem [9]. Furthermore, let:

Model Predictive Control for Trajectory Tracking … 11

Fu = (
f Tu f Tu · · · f Tu

)
(19)

Fx = (
f Tx f Tx · · · f Tx

)
(20)

denote the concatenated –over the prediction horizon– versions of the input and
state constraints fu and fx . More specifically, fu = [fu(1)max, fu(1)min . . .] and
fx = [fx (1)max, fx (1)min . . .] where fu(i)max, fu(i)min represent the maximum and
minimum allowed input values of the i-th input, while fx (j)max, fx (j)min represent
the maximum and minimum acceptable/safe state configurations of the j-th state.

min
V,L,τ

τ

s.t. ||C(Axk|k + BV + (G + BL)W)||∞ ≤ τ, ∀ W ∈ W
N (21)

Eu(V + LW) ≤ Fu , ∀ W ∈ W
N

Ex (Axk|k + BV + (G + BL)W) ≤ Fx , ∀ W ∈ W
N

Eu = diagNEu, Ex = diagNEx , τ > 0

within which: (a) Ex , Eu are matrices that allow the formulation of the state and
input constraints in Linear Matrix Inequality (LMI) form, (b) diagN�i is a block
diagonal matrix with �i being the matrix that fills each diagonal block and allows
the incorporation of the state and input constraints. Within this formulation τ is
defined as a positive scalar value that bounds (from above) the objective function.
The peak constraint may be equivalently reformulated as:

C(Axk|k + BV) + C(G + BL)W ≤ τ1, ∀ W ∈ W
N (22)

−C(Axk|k + BV) − C(G + BL)W ≤ τ1, ∀ W ∈ W
N (23)

where 1 is a vector of ones (1 1 · · · 1)T with suitable dimensions. Satisfaction of
these uncertain inequalities is based on robust optimization methods.

2.4.2 Robust Uncertain Inequalities Satisfaction

Since box-constrained disturbances (w ∈ W∞) are assumed, the following holds:

max|x |≤1
cT x = ||c||1 = |cT |1 (24)

This equation holds as max|x |≤1 cT x = max|x |≤1
∑

ci xi = ∑
ci sign(ci) = ||c||1.

Consequently, the uncertain constraints with w ∈ W∞ are satisfied as long as [9]:

C(Axk|k + BV) + |C(G + BL)|1 ≤ τ1 (25)

−C(Axk|k + BV) + |C(G + BL)|1 ≤ τ1 (26)

12 M. Kamel et al.

To handle these constraints in a linear programming fashion [5], the term |C(G +
BL)| is bounded from above by introducing a matrix variable Γ � 0:

C(G + BL) ≤ Γ (27)

−C(G + BL) ≤ Γ (28)

and the peak constraint is guaranteed as long as:

C(Axk|k + BV) + Γ 1 ≤ τ1 (29)

−C(Axk|k + BV) + Γ 1 ≤ τ1 (30)

2.4.3 Robust State and Input Constraints

To robustly satisfy hard constraints on the input and the states along the prediction
horizon, a new matrix Ω � 0 is introduced and the constraints are reformulated as:

(Ex (Axk|k + BV)

EuV
)

+ Ω1 ≤
(Fx
Fu

)
(31)

(Ex (G + BL)

EuL
)

≤ Ω (32)

−
(Ex (G + BL)

EuL
)

≤ Ω (33)

Optimizing the control sequence, while robustly satisfying the state and input con-
straints is of essential importance for the flight control of micro aerial vehicles.

2.4.4 Minimum Peak Performance Robust MPC Formulation

Based on the aforementioned derivations, the total MPPM–RMPC formulation
is solved subject to element-wise bounded disturbances and feedback predictions
through the following linear programming problem:

min
V,L,τ,Ω,Γ

τ (34)

s.t. C(Axk|k + BV) + Γ 1 ≤ τ1

−C(Axk|k + BV) + Γ 1 ≤ τ1

C(G + BL) ≤ Γ

−C(G + BL) ≤ Γ

Ex (Axk|k + BV) (35)
(Ex (Axk|k + BV)

EuV
)

+ Ω1 ≤
(Fx
Fu

)

(Ex (G + BL)

EuL
)

≤ Ω

Model Predictive Control for Trajectory Tracking … 13

−
(Ex (G + BL)

EuL
)

≤ Ω

2.4.5 Multiparametric Explicit Solution

The presented RMPC strategy requires the solution of a linear programming problem.
However, a multiparametric-explicit solution is possible due to the fact that the
control action takes the general form [6]:

uk = Frxk + Zr , if xk ∈ Πr (36)

where Π i , r = 1, . . . , Nr are the regions of the receding horizon controller. The r -th
control law is valid if the state vector xk is contained in a convex polyhedral region
Π r = {xk |Hrxk ≤ Kr } computed and described in h-representation [11]. Such a fact
enables fast real-time execution even in microcontrollers with very limited computing
power. In this framework, the real-time code described in [8] is employed.

3 Model-Based Trajectory Tracking Controller for
Multi-rotor System

In this section, we present a simplified model of multi-rotor system that can be used
for model-based control to achieve trajectory tracking, and we present a linear and
nonlinear model predictive controller for trajectory tracking.

3.1 Multirotor System Model

The 6DoF pose of the multi-rotor system can be defined by assigning a fixed inertial
frame W and body frame B attached to the vehicle as shown in Fig. 3. We denote by
p the position of the origin of frame B in frame W expressed in frame W, by R the
rotation matrix of frame B in frame W expressed in frame W. Moreover, we denote
by φ, θ and ψ the roll, pitch and yaw angles of the vehicle. In this model we assume
a low level attitude controller that is able to track desired roll and pitch φd , θd angles
with a first order behavior. The first order inner-loop approximation provides suffi-
cient information to the MPC to take into account the low level controller behavior.
The inner-loop first order parameters can be identified through classic system identi-
fication techniques. The non-linear model used for trajectory tracking of multi-rotor
system is shown in Eq. (37).

14 M. Kamel et al.

Fig. 3 Illustration of the Firefly hexacopter from Ascending Technologies with attached body fixed
frame B and inertial frame W

ṗ(t) = v(t)

v̇(t) = R (ψ, θ, φ)

⎛

⎝
0
0
T

⎞

⎠+
⎛

⎝
0
0

−g

⎞

⎠−
⎛

⎝
Ax 0 0
0 Ay 0
0 0 Az

⎞

⎠ v(t) + d(t)

φ̇(t) = 1

τφ

(
Kφφd(t) − φ(t)

)

θ̇ (t) = 1

τθ

(Kθ θd(t) − θ(t))

(37)

where v indicates the vehicle velocity, g is the gravitational acceleration, T is the
mass normalized thrust, Ax , Ay, Az indicate the mass normalized drag coefficients,
d is external disturbance. τφ, Kφ and τθ , Kθ are the time constant and gain of inner-
loop behavior for roll angle and pitch angle respectively.

The cascade controller structure assumed in this chapter is shown in Fig. 4.

3.2 Linear MPC

In this subsection we show how to formulate a linear MPC to achieve trajectory
tracking for multi-rotor system and integrate it into ROS. The optimization problem
presented in Eq. (3) is solved by generating a C-code solver using the CVXGEN
framework [12]. CVXGEN generates a high speed solver for convex optimization
problems by exploiting the problem structure. For clarity purposes, we rewrite the
optimization problem here and show how to generate a custom solver using CVX-
GEN. The optimization problem is given by

Model Predictive Control for Trajectory Tracking … 15

Fig. 4 Controller scheme for multi-rotor system. n1 . . . nm are the i − th rotor speed and y is the
measured vehicle state

min
U

N−1∑

k=0

(xk − xre fk)TQx (xk − xre fk) + (uk − ure fk)TRu(uk − ure fk) + (uk − uk−1)
TRΔ(uk − uk−1)

+ (xN − xre fN)TP(xN − xre fN)

subject to xk+1 = Axk + Buk + Bddk ;
dk+1 = dk , k = 0, . . . , N − 1

uk ∈ UC

x0 = x (t0) , d0 = d (t0) .

(38)

To generate a solver for the aforementioned optimization problem, the following
problem description is used in CVXGEN.

1 dimens ions
2 m = 3 # dimension of i n p u t s .
3 nd = 3 # dimension of d i s t u r b a n c e s .
4 nx = 8 # dimension of s t a t e v e c t o r .
5 T = 18 # hor i zon − 1 .
6 end
7

8 p a r a m e t e r s
9 A (nx , nx) # dynamics ma t r ix .

10 B (nx ,m) # t r a n s f e r ma t r ix .
11 Bd (nx , nd) # d i s t u r b a n c e t r a n s f e r ma t r ix
12 Q_x (nx , nx) psd # s t a t e cos t , p o s i t i v e s e m i d i f i n e d .
13 P (nx , nx) psd # f i n a l s t a t e pena l ty , p o s i t i v e s e m i d i f i n e d .
14 R_u (m,m) psd # i n p u t pena l ty , p o s i t i v e s e m i d i f i n e d .
15 R_de l ta (m,m) psd # d e l t a i n p u t pena l ty , p o s i t i v e s e m i d i f i n e d .
16 x [0] (nx) # i n i t i a l s t a t e .
17 d (nd) # d i s t u r b a n c e s .
18 u_prev (m) # p r e v i o u s i n p u t a p p l i e d to t h e system .
19 u_max (m) # i n p u t ampl i tude l i m i t .
20 u_min (m) # i n p u t ampl i tude l i m i t .
21 x_ss [t] (nx) , t = 0 . . T+1 # r e f e r e n c e s t a t e .
22 u_ss [t] (m) , t = 0 . . T # r e f e r e n c e i n p u t .
23 end

16 M. Kamel et al.

24

25 v a r i a b l e s
26 x [t] (nx) , t = 1 . . T+1 # s t a t e .
27 u [t] (m) , t = 0 . . T # i n p u t .
28 end
29

30 minimize
31 quad (x[0]− x_ss [0] , Q_x) + quad (u[0]− u_ss [0] , R_u) + quad (u [0] −

u_prev , R_de l ta) + sum [t = 1 . . T] (quad (x [t]−x_ss [t] , Q_x) + quad (
u [t]−u_ss [t] , R_u) + quad (u [t] − u [t −1] , R_de l ta)) +quad (x [T+1]−
x_ss [T+1] , P)

32 s u b j e c t t o
33 x [t +1] == A∗x [t] + B∗u [t] + Bd∗d , t = 0 . . T # dynamics
34 u_min <= u [t] <= u_max , t = 0 . . T # i n p u t c o n s t r a i n t .
35 end

Before we show the integration of the generated solver into ROS, we discuss
how to estimate the attitude loop parameters τφ, Kφ, τθ , Kθ and the derivation of the
discrete system model A,B,Bd .

3.2.1 Attitude Loop Parameters Identification

The attitude loop identification is a recommended process when no knowledge is
available about the attitude controller used onboard of the vehicle. This is the case
for many commercially available platforms. To perform this system identification,
typically a pilot excites the vehicles axes in free flight. Attitude command and
actual vehicle attitude (estimated using motion capture system if available or Inertial
Measurement Unit (IMU)) are logged with accurate time stamp. Typically two
datasets are collected, one is used for parameters estimation and the other dataset
is used for validation purpose. We will not go into details of system identification,
interested readers can find more details in [13]. A set of scripts for attitude dynamics
identification will be made open source upon acceptance of the chapter.

To perform parameters identification using the available scripts please follow the
following steps:

1. Prepare the system and make sure you are able to log time stamped attitude
commands and actual vehicle attitude.

2. Perform a flight logging the commands and vehicle attitude in a bag file. During
the flight excite as much as possible each axis of the vehicle.

3. Repeat the flight test to collect validation dataset.
4. Set the correct bag files name and topics name in the provided script and run it.
5. The controller parameters will be displayed on screen with validation percentage

to confirm the validity of the identification.

Model Predictive Control for Trajectory Tracking … 17

3.2.2 Linearization, Decoupling and Discretization

For controller design, the vehicle dynamics can be approximated around hovering
condition where small attitude angles are assumed and vehicle heading aligned with
inertial frame x axis (i.e. ψ = 0). The linearized system around hovering condition
can be written as

ẋ(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −Ax 0 0 g 0
0 0 0 0 −Ay 0 0 −g
0 0 0 0 0 −Az 0 0
0 0 0 0 0 0 − 1

τφ
0

0 0 0 0 0 0 0 − 1
τθ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ac

x(t) +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
Kφ

τφ
0 0

0 Kθ
τθ

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Bc

u(t) +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Bd,c

d(t),

(39)

where the state vector isx=(pT , vT ,W φ,W θ)T , the input vectoru = (Wφd ,
W θd , T)T

and the disturbance vector d = (dx , dy, dz)T . The c subscription indicates that this
is a continuous time model. Note that in this linearization we marked the attitude to
be in inertial frame W to get rid of the yaw angle ψ from the model. The attitude
control action Wφd ,

W θd is computed in inertial frame and then converted to body
frame by performing a rotation around z axis. The control action in the vehicle body
frame B is given by

(
φd

θd

)
=
(

cos ψ sin ψ

− sin ψ cos ψ

)(
Wφd
Wθd

)
. (40)

After the computation of the control input, it is recommended to add a feed-forward
term to compensate for coupling effects and to achieve better tracking performance.
To compensate for vehicle non-zero attitude effects on thrust, and to achieve better
tracking of dynamic trajectory, the following compensation scheme is employed.

T̃ = T + g

cos φ cos θ
+B z̈d

φ̃d = gφd −B ÿd

T̃

θ̃d = gθd +B ẍd

T̃

(41)

where B ẍd ,B ÿd ,B z̈d are the desired trajectory acceleration expressed in vehicle body
frame and quantities with tilde sign are the actual applied control input.

18 M. Kamel et al.

Given that the controller is implemented in discrete time, it is necessary to dis-
cretize the system dynamics (39). This can be done as follows

A = eAcTs

B =
∫ Ts

0
eAcτdτBc

Bd =
∫ Ts

0
eAcτdτBd,c

(42)

where Ts is the sampling time. The computation of the terminal cost P matrix is done
by solving the Algebraic Riccati Equation iteratively.

3.2.3 ROS Integration

The strategy followed for the ROS integration of the solver is to create a ROS node to
interface the controller to ROS environment, while the controller, estimator and other
components are implemented as C++ shared libraries that get linked to the node at
compilation time. The controller node expects the vehicle state as a nav odometry
message and publishes a custom message of type RollPitchYawRateThrust
command message. The desired trajectory can be sent to the controller over a topic of
type MultiDOFJointTrajectory or as single desired point over a topic of type
PoseStamped. The advantage of passing the whole desired trajectory over single
point is that the MPC can take into consideration the future desired trajectory and
react accordingly. Figure 5 gives an overview of nodes and topics communication
through a ros graph diagram.

Fig. 5 ROS graph diagram showing various nodes and topics to control multi-rotor system

Model Predictive Control for Trajectory Tracking … 19

Each time the controller receives a new odometry message, a control action is
computed and published. Therefore it is important to guarantee that the state estimator
is publishing an odometry message at the desired rate of control. We recommend to
use this controller with the Modular Framework for MultiSensor Fusion [14]. An
important point to consider when implementing such a controller is to reduce as
much as possible the delays in the loop. A hint to minimize communication delay
is to use the ROS transportation hints by passing ros::TransportHints().
tcpNoDelay() flag to the odometry subscriber.

The controller node publishes the following information:

1. Current desired reference as tf.

Fig. 6 Through dynamic reconfiguration it is possible to change the controller parameters online
for tuning purposes

20 M. Kamel et al.

2. Desired trajectory as rviz marker.
3. Predicted vehicle state as rviz marker.

The controller parameters can be easily changed in run time from the dynamic recon-
figure as shown in Fig. 6.

An open source implementation of the presented controller can be found in https://
github.com/ethz-asl/mav_control_rw

-3.5

-3

-2.5

y [m]-2

-1.5
0
3.5 -13

x [m]

2.5 2 1.5 1 0.5 0 -0.5

3D trajectory tracking with linear MPC

-1

0.2

0.4z
[m

] 0.6

0.8

1

vehicle trajectory
reference trajectory

(a) Aggressive trajectory tracking using
linear MPC.3D trajectory plot.

0 5 10 15 20 25 30 35

time [s]

-3

-2

-1

0

1

2

3

po
si

tio
n

[m
]

Position tracking performance

x
y
z
x

ref

y
ref

z
ref

(b) Position tracking per formance
using linear MPC

0 5 10 15 20 25 30

time [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

ve
lo

ci
ty

 [m
/s

]

Velocity tracking performance

v
x

v
y

v
z

v
x,ref

v
y,ref

v
z,ref

(c) Velocity tracking performance using linear MPC

Fig. 7 Aggressive trajectory tracking performance using linear MPC controller running onboard
of Firefly hexacopter from Ascending Technologies

https://github.com/ethz-asl/mav_control_rw
https://github.com/ethz-asl/mav_control_rw

Model Predictive Control for Trajectory Tracking … 21

3.2.4 Experimental Results

To validate the controller performance, we track an aggressive trajectory. The
controller is running onboard a Firefly hexacopter from Ascending Technologies
(AscTec) with a NUC i7 computer onboard. An external motion capture system
Vicon [15] is used as pose sensor and fused with onboard IMU using the Multisensor
Fusion Framework (MSF). The controller is running at 100 Hz and the prediction
horizon is chosen to be 20 steps.

Figure 7 shows the tracking performance of the controller.

3.3 Nonlinear MPC

In this subsection we use the full vehicle nonlinear model to design a continuous
time nonlinear model predictive controller. The toolkit employed to generate the
nonlinear solver is ACADO [16] which is able to generate very fast custom C code
solvers for general optimal control problems OCP. The optimization problem can be
written as

min
U

∫ T

t=0
(x(t) − xre f (t))T Qx (x(t) − xre f (t)) + (u(t) − ure f (t))TRu(u(t) − ure f (t))dt

+ (x(T) − xre f (T))T P(x(T) − xre f (T))

subject to ẋ = f(x,u);
u(t) ∈ UC

x(0) = x (t0) .

(43)

To generate a solver for the aforementioned optimization problem, the following
problem description is used in ACADO’s Matlab interface.

1 c l c ;
2 c l e a r a l l ;
3 c l o s e a l l ;
4

5 Ts = 0 . 1 ; %sampling t ime
6 EXPORT = 1 ;
7

8 D i f f e r e n t i a l S t a t e p o s i t i o n (3) v e l o c i t y (3) r o l l p i t c h yaw ;
9 Con t ro l r o l l _ r e f p i t c h _ r e f t h r u s t ;

10

11 %o n l i n e d a t a r e p r e s e n t d a t a t h a t can be passed to t h e s o l v e r o n l i n e .
12 Onl ineData r o l l _ t a u ;
13 Onl ineData r o l l _ g a i n ;
14 Onl ineData p i t c h _ t a u ;
15 Onl ineData p i t c h _ g a i n ;
16 Onl ineData yaw_rate_command ;
17 Onl ineData d r a g _ c o e f f i c i e n t (3) ;

22 M. Kamel et al.

18 Onl ineData e x t e r n a l _ d i s t u r b a n c e s (3) ;
19

20 n_XD = l e n g t h (d i f f S t a t e s) ;
21 n_U = l e n g t h (c o n t r o l s) ;
22

23 g = [0 ; 0 ; 9 . 8 0 6 6] ;
24

25 %% D i f f e r e n t i a l Equat ion
26

27 %d e f i n e v e h i c l e body z−a x i s exp re s sed in i n e r t i a l frame .
28 z _ a x i s = [(cos (yaw) ∗ s i n (p i t c h) ∗cos (r o l l) + s i n (yaw) ∗ s i n (r o l l)) ; . . .
29 (s i n (yaw) ∗ s i n (p i t c h) ∗cos (r o l l)−cos (yaw) ∗ s i n (r o l l)) ; . . .
30 cos (p i t c h) ∗cos (r o l l)] ;
31

32 d r o l l = (1 / r o l l _ t a u) ∗(r o l l _ g a i n ∗ r o l l _ r e f − r o l l) ;
33 d p i t c h = (1 / p i t c h _ t a u) ∗(p i t c h _ g a i n ∗ p i t c h _ r e f − p i t c h) ;
34

35 f = dot ([p o s i t i o n , v e l o c i t y ; r o l l ; p i t c h ; yaw]) == . . .
36 [v e l o c i t y . . . ;
37 z _ a x i s ∗ t h r u s t − g − diag (d r a g _ c o e f f i c i e n t) ∗ v e l o c i t y +

e x t e r n a l _ d i s t u r b a n c e s ; . . .
38 d r o l l ; . . .
39 d p i t c h ; . . .
40 yaw_rate_command] ;
41

42 h = [p o s i t i o n ; v e l o c i t y ; r o l l ; p i t c h ; r o l l _ r e f ; p i t c h _ r e f ; z _ a x i s (3) ∗
t h r u s t −g (3)] ;

43

44 hN = [p o s i t i o n ; v e l o c i t y] ;
45

46

47 %% NMPCexport
48 acadoSet (’ problemname ’ , ’ n m p c _ t r a j e c t o r y _ t r a c k i n g ’) ;
49

50 N = 20;
51 ocp = acado .OCP(0 . 0 , N∗Ts , N) ;
52

53 W_mat = eye (l e n g t h (h)) ;
54 WN_mat = eye (l e n g t h (hN)) ;
55 W = acado . BMatrix (W_mat) ;
56 WN = acado . BMatrix (WN_mat) ;
57

58 ocp . minimizeLSQ (W, h) ;
59 ocp . minimizeLSQEndTerm (WN, hN) ;
60 ocp . sub j ec tTo (−deg2rad (4 5) <= [r o l l _ r e f ; p i t c h _ r e f] <= deg2rad (4 5)) ;
61 ocp . sub j ec tTo (g (3) / 2 . 0 <= t h r u s t <= g (3) ∗1 . 5) ;
62 ocp . setModel (f) ;
63

64 mpc = acado . OCPexport (ocp) ;
65 mpc . s e t (’HESSIAN_APPROXIMATION ’ , ’GAUSS_NEWTON’) ;
66 mpc . s e t (’DISCRETIZATION_TYPE ’ , ’MULTIPLE_SHOOTING ’) ;
67 mpc . s e t (’SPARSE_QP_SOLUTION ’ , ’FULL_CONDENSING_N2’) ;

Model Predictive Control for Trajectory Tracking … 23

68 mpc . s e t (’INTEGRATOR_TYPE’ , ’INT_IRK_GL4 ’) ;
69 mpc . s e t (’NUM_INTEGRATOR_STEPS’ , N) ;
70 mpc . s e t (’QP_SOLVER’ , ’QP_QPOASES ’) ;
71 mpc . s e t (’HOTSTART_QP’ , ’NO’) ;
72 mpc . s e t (’LEVENBERG_MARQUARDT’ , 1e−10) ;
73 mpc . s e t (’LINEAR_ALGEBRA_SOLVER’ , ’GAUSS_LU’) ;
74 mpc . s e t (’IMPLICIT_INTEGRATOR_NUM_ITS ’ , 4) ;
75 mpc . s e t (’CG_USE_OPENMP’ , ’YES’) ;
76 mpc . s e t (’CG_HARDCODE_CONSTRAINT_VALUES’ , ’NO’) ;
77 mpc . s e t (’CG_USE_VARIABLE_WEIGHTING_MATRIX’ , ’NO’) ;
78

79

80

81 i f EXPORT
82 mpc . exportCode (’ mav_NMPC_trajectory_tracking ’) ;
83

84 cd mav_NMPC_trajectory_tracking
85 make_acado_solver (’ . . / mav_NMPC_trajectory_tracking ’)
86 cd . .
87 end

3.3.1 ROS Integration

The ROS integration of the nonlinear controller follows the same guidelines of the
linear MPC previously presented. An open source implementation of the previously
presented controller can be found here. https://github.com/ethz-asl/mav_control_rw.

3.3.2 Experimental Results

The same setup used for the linear MPC is used to evaluate the nonlinear MPC. The
only difference is that we are currently evaluating the controller on a more aggressive
trajectory as shown in Fig. 8.

3.3.3 Robust Linear Model Predictive Control for Multirotor System

In order to evaluate the proposed RMPC, a set of test-cases were conducted using the
structurally modified AscTec Hummingbird quadrotor (ASLquad) shown in Fig. 9.
For the implementation of the RMPC, a software framework around ROS was devel-
oped. In particular, a set of low-level drivers and nodes handle the communication
with the attitude and motor control on-board the aerial robot and therefore enabling
us to provide attitude and thrust references through the RMPC. MATLAB was used
to derive and compute the explicity formulation of the RMPC, while the complete
explicit algorithm overviewed in Sect. 2.4.5 was implemented within a SIMULINK
block. Auto-code generation was then employed to extract the C-code equivalent

https://github.com/ethz-asl/mav_control_rw

24 M. Kamel et al.

0 5 10 15 20 25

time [s]

-3

-2

-1

0

1

2

po
si

tio
n

[m
]

Position tracking performance

x
y
z
x

ref

y
ref

z
ref

(a) Position tracking performance using
nonlinear MPC

0 5 10 15 20 25

time [s]

-4

-3

-2

-1

0

1

2

3

4

ve
lo

ci
ty

 [m
/s

]

Velocity tracking performance

v
x

v
y

v
z

v
x,ref

v
y,ref

v
z,ref

(b) Velocity tracking performance using
nonlinear MPC

(c) Sequence of rviz screen shot showing the reference trajectory in
green and predicted vehicle state in red.

Fig. 8 Aggressive trajectory tracking performance using nonlinear MPC controller running
onboard of Firefly hexacopter from Ascending Technologies

of this controller, which was then wrapped around a ROS node and integrated into
the overall software framework. For the described experiments with the RMPC, full
state feedback is provided through external motion capture, while an alignment step
to account for relative orientation of the on-board attitude and heading estimation
system also takes place.

Below we present the results on (a) trajectory tracking subject to wind distur-
bances, and (b) slung load operations, while further results are available at [8]. For

Model Predictive Control for Trajectory Tracking … 25

Fig. 9 Instance of an RMPC test for slung load operations

the presented experiments, the sampling time was set to Ts = 0.08 s, the predic-
tion horizon was set to N = 6 for both of them, while the following state and input
constraints were considered:

[
I7×7 07×7
07×7 −I7×7

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż
θ

φ

θr

φr

ẋ
ẏ
ż
θ

φ

θr

φr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5 m/s
1.5 m/s
1.5 m/s
π/4 rad
π/4 rad
π/4 rad
π/4 rad
1.5 m/s
1.5 m/s
1/5 m/s
π/4 rad
π/4 rad
π/4 rad
π/4 rad

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
I6×6 06×6
06×6 −I6×6

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż
φ

γ r

φr

ẋ
ẏ
ż
φ

γ r

φr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5 m/s
1.5 m/s
1.5 m/s
π/4 rad
π/6 rad
π/4 rad
1.5 m/s
1.5 m/s
1/5 m/s
π/4 rad
π/6 rad
π/4 rad

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

Regarding the first experimental test-case, an 80 W electric fan was pointed to
the ASLquad, while the RMPC was acting in order to track a helical path despite
the turbulent wind disturbance. As can be observed in Fig. 10, the tracking response
remains precise and only a minor influence from the external disturbance is observed.
Note that the box-constraints selection is sufficient to account –up to some extent–
for the kind of disturbance as although the dynamics of the wind disturbance are
unknown to the controller, its effect may be considered as bounded.

Consequently, the capabilities of performing slung load operations were consid-
ered. As shown in Fig. 11 where a forcible external disturbance is also applied onto
the slung load (a hit on the load), highly precise position hold and disturbance rejec-
tion results were achieved. This is despite the fact that the slung load introduces
disturbances that are phase-delayed compared to the vehicle states and the controller
is not augmented regarding its state to incorporate the load’s motion. For this exper-

26 M. Kamel et al.

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−1.2
−1

−0.8
−0.6

−0.4

−0.2
0

0.2

0.4
0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y (m)

x (m)

z
(m

)

Fig. 10 Trajectory tracking subject to wind disturbances using the RMPC framework applied to
the ASLquad

iment, a 0.16 kg load was utilized and was attached through a compressible string
with a length of 0.65 m.

Once the capabilities of the proposed RMPC to handle slung load operations
even while subjected to strong disturbances were verified, the problem of trajectory
tracking during slung load operations (i.e. transportation and delivery of goods in a
Search-and-Rescue scenario or as part of a product delivery mission), was examined.
Figure 12 presents the results achieved when continuously tracking a square refer-
ence trajectory for 10 times while the same slung load is attached onto the quadrotor
platform. As shown, efficient and robust results were derived, indicative of the capa-
bilities of the proposed control scheme to effectively execute such operations.

In the last presented trajectory tracking experiments, a slow response was com-
manded. However, more agile maneuvers could also be considered even during slung
load operations. To this purpose, a step reference of 1.25 m was commanded with the
velocity and attitude references being set to zero. The results are shown in Fig. 13
and as depicted, a satisfactory response was derived although some overshoot is
observed.

Model Predictive Control for Trajectory Tracking … 27

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2
x,y

r

x
y

0 1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1
zr

z

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5
φr

φ

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1
θr

θ

Time (s)

Time (s)

Time (s)

Time (s)

Fig. 11 RMPC performance against disturbance of the slung load which induces unpredicted
disturbances on the vehicle. At time t ≈ 3 s a forcible external disturbance (hit) is applied on the
load, however the RMPC manages to quickly and accurately stabilize the vehicle

4 Model-Based Trajectory Tracking Controller for
Fixed-Wing UAVs

In this section, we describe the modeling of simplified fixed-wing aircraft flight
dynamics, closed-loop low-level system identification methodology, and control
objective design necessary for a general-form high-level nonlinear model predictive
trajectory tracking controller. As the vast majority of fixed-wing flight is conducted
at fixed altitudes, we focus our presentation on planar lateral-directional position
control; though, the techniques employed can easily be extended towards three-
dimensional applications, assuming a suitably stabilizing longitudinal low-level con-
troller.

4.1 Fixed-Wing Flight Dynamics and Identification

Lateral-directional dynamics for a fixed-wing system are defined in the intertial frame
I, in local coordinates composed of Northing n̂ and Easting ê components, and body

28 M. Kamel et al.

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.5

0

0.5

1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

y (m)

x (m)

z
(m

)

Fig. 12 Trajectory tracking during slung load operations using the ASLquad: the controller tracks
the same square trajectory for 10 times with small deviations from the reference despite the signif-
icant and phase-delayed disturbances introduced from the load

frame B. In reality, aerodynamic effects result in an additional “wind” frame, where
the aircraft may slip, causing the airspeed vector v to deviate from the body-x̂-axis.
In our simplified model, we will assume low-level control is designed such that slip
is regulated appropriately, and we will assume wind and body frames are identical.
It is worth also noting our planar assumption further entails the assumption that we
fly at a fixed altitude. The dynamic equation are defined in Eq. (45).

ṅ = V cos ψ + wn

ė = V sin ψ + we

ψ̇ = g tan φ

V
φ̇ = p
ṗ = b0φr − a1 p − a0φ

(45)

where n and e are the Northing and Easting positions, respectively, ψ is the yaw
angle, V is the air-mass-relative airspeed, φ is the roll angle, p is the roll rate, g is the
acceleration of gravity, and wn and we are the Northing and Easting components of
the wind vector w, respectively. Note that roll φ and yaw ψ angles are defined about
the body frame B. This distinction is important when considering flight dynamics
in wind, where the ground-relative flight path of the vehicle is defined as the course
angle χ from North n̂ to the ground speed vector, vg , see Fig. 14. Additionally, note

Model Predictive Control for Trajectory Tracking … 29

0 1 2 3 4 5 6 7 8 9 10
−0.2
−0.1

0
0.1
0.2

0 1 2 3 4 5 6 7 8 9 10
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7 8 9 10
0.8
0.9

1
1.1

0 1 2 3 4 5 6 7 8 9 10
−0.4
−0.2

0
0.2
0.4

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05
0

0.05
0.1

xr

x

yr
y

zr

z

φr

φ

θr

θ

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Fig. 13 Lateral step response during slung load operations: minimal overshoot is observed

Fig. 14 Fixed-wing
modeling definitions

30 M. Kamel et al.

that we choose a second-order model with no zeros to describe the rolling dynamic
with respect to roll references φr , where a0, a1, and b0 are model coefficients. Higher
order dynamics could be used, however we have found through the identification
procedures outlined in Sect. 4.1.1, that second-order fits appropriately model the
closed loop low-level autopilot attitude control response; further, each increase in
order in turn increases the dimension of the control optimization problem, increasing
computational expense.

4.1.1 Model Identificaiton

Here, we will outline the basic methodology for closed loop model identification
on fixed-wing aircraft. Towards these ends, it is assumed a low-level autopilot with
onboard state estimation and attitude, airspeed, and altitude control functionality.
Such capabilities are present in commercially available autopilot hardware and soft-
ware such as the Pixhawk Autopliot, an open source/open hardware project started
at ETH Zurich [1]. Tuning of the low-level loops will not be discussed, though these
procedures are well documented in the literature as well as in practice on the Pixhawk
website.

The control architecture shown in Fig. 15 demonstrates a typical cascaded PID
structure with attitude PI control and angular rate PD control. Additional compensa-
tion for slipping effects is considered for coordinated turns, i.e. a yaw damper signal,
rr = g sin φ

V . The TECS block indicates the use of Total Energy Control System for
airspeed and altitude control, again fully implemented and documented on the pix-
hawk website. In three-dimensional extensions of the proposed lateral-directional
nonlinear MPC, the high-level TECS block could be replaced.

The aim is to identify the closed loop low-level autpilot dynamic response when
reacting to attitude commands. We will specifically discuss the roll dynamic here,
however the same procedures discussed could be used for identification of pitch-
ing dynamics as well as airspeed, given that well-tuned low-level controllers are in
place. Depending on the hardware used, autopilot source code could be modified for
an identification option commanding repeatable excitation inputs, or in the case of

Fig. 15 Fixed-wing control architecture

Model Predictive Control for Trajectory Tracking … 31

Fig. 16 Two concatenated
2-1-1 maneuvers from a
flight experiment with a
fixed-wing UAV

Time [s]
0 2 4 6 8 10 12

-30

-20

-10

0

10

20

30

input
output

utilizing a Linux operating system, a simple ROS node could be written to generate
the same. For roll channel identification, pitch references to the low level controller
should be held constant for holding altitude. Depending on the operational airspeed,
the pitch reference may vary. 2-1-1 maneuvers, a modified doublet input consisting
of alternating pulses with pulse widths in the ratio 2-1-1, are recommended, see
Fig. 16. Morelli [17] demonstrated that flight time required for the 2-1-1 maneuver
is approximately one-sixth of the time required for the standard frequency sweep,
enabling one to gather more data in the same flight time, which is often limited by
battery capacity. At the same time, concatenated 2-1-1 maneuvers make for suit-
able identification inputs for both frequency and time domain system identification
approaches, on par with frequency sweeps.

It is good practice to perform all identification experiments on calm days with
no wind and to persistently excite the control inputs. Data collection should consist
of several 2-1-1 maneuvers for each of several setpoint magnitudes throughout the
desired range. A similar set of data for both training and validation is required. To
test the generalizability of the fit parameters, it is also worthwhile to include non-
2-1-1 maneuvers in the validation set, e.g. arbitrary piloting (still within attitude
control augmentation mode), to test the generalizability of the fit parameters. The
authors provide a set of Matlab scripts that can perform the parameter identification
after data collection and format conversion. Further literature on closed loop system
identification for fixed-wing vehicles can be found in [17, 18].

4.2 Nonlinear MPC

In this section, we formulate a nonlinear MPC for general high-level fixed-wing
lateral-directional trajectory tracking utilizing the model developed in the previous
section. The generalized form involves augmentation of the vehicle model with trajec-
tory information, including discretely defined sequential tracks. We use the ACADO

32 M. Kamel et al.

Toolkit [16] for generation of a fast C code based nonlinear solver and integration
scheme. The optimization problem OCP takes the continuous time form

min
U

∫ T

t=0

∥∥h (x(t), u(t)) − yre f (t)
∥∥2

Q dt + ∥∥m (x(T)) − yre f (T)
∥∥2

P

subject to ẋ = f(x(t), u(t));
u(t) ∈ UC

x(t) ∈ XC

x(0) = x (t0) .

(46)

The state vector is defined as x = (n, e, φ, ψ, p, xsw)T , and control input u = φr ,
where the augmented state xsw is a switch state used within the horizon in the case
that desired trajectories are piece-wise continuously, or generally discretely, defined.
The switch variable has no dynamic until a switch condition is detected within the
horizon, at which point an arbitrary differential α is applied for the remainder of the
horizon calculations, see Eq. (47). This assumes we only consider a maximum of
two track segments in a given horizon, and ensures the optimization does not revert
back to a previous track after switching within the horizon.

ẋsw =
{

α switch condition met ‖ xsw > threshold

0 else
(47)

A general tracking objective is constructed for minimizing the position error to a
given track,

et = (d − p) × T̄d (48)

where T̄d is the tangent unit tangent vector at the closest point d from the UAV
position p to the current path P , while also aligning the vehicle course with the
desired trajectory direction, i.e. minimize

eχ = χd − χ (49)

where χd = atan2
(
T̄de , T̄dn

) ∈ [−π, π]. Here, we use the atan2 function from the
standard C math library. See also Fig. 17. Use of this general objective formulation
allows inputting any path shape, so long as the nearest point from the UAV position
can be calculated and a direction of motion along the path is given for minimization
throughout the horizon.

A relevant example of switching trajectories is that of Dubins Car, or Dubins
Aircraft in the three-dimensional case, path following, see [19]. Dubins paths can be
used to describe the majority of desired flight maneuvers in a typical fixed-wing UAV
mission. Further, using continuous curves such as arcs and lines allow time-invariant

Model Predictive Control for Trajectory Tracking … 33

Fig. 17 Trajectory tracking
objectives

Fig. 18 Dubins path
definitions

trajectory tracking, as oppose to desired positions in time, a useful quality when only
spatial proximity to the track is desired and timing is less important; for instance,
if energy conservation is required and a single low airspeed reference is given to
be tracked. For the remainder of the section, we will consider Dubins segments as
path inputs to the high-level controller, though it should be noted that the objective
formulation is not limited to these.

Using the definitions in Eqs. (48) and (49), we formulate the objective vector
y = (et , eχ , φ, p, φr)

T . We assume a fixed air-mass-relative airspeed V and two-
dimensional wind vector w, held constant throughout the horizon. These values
are estimated and input to the optimization as online data. Also input as online
data, the current and next sets of Dubins path parameters Pcur , Pnext , where line
parameters include P = {t ype = 0, a,b}, a and b are two waypoints defining a
straight segment, and arc parameters include P = {t ype = 1, c, R, dir, ψ0,Δψ},
c is the center point of the arc, R is the radius, dir is the loiter direction, and ψ0, is
the heading pointing towards the entrance point on the arc, and Δψ is the arclength
traveled. The path segments are managed and switched based on an acceptance radius
and heading direction criteria, see Fig. 18.

34 M. Kamel et al.

All references are set to zero, except for the control input references. As the
continuous time formulation does not allow slew rate penalties, it is possible to
instead store the previous control horizon for input as weighted control references
in the next nonlinear MPC iteration. This is done to avoid bang–bang control action
when the nonlinear MPC iterations occur at relatively large steps, for fixed-wing
we run the high-level controller at either 10 or 20 Hz. As only the second step in
the current control horizon is sent to the vehicle for tracking, the early horizon is
penalized more heavily than the latter horizon values. This can be accomplished by
weighting the horizon of controls with a decreasing quadratic function. More insights
on the control formulation may be found in [20].

The following MATLAB script may be run to generate the ACADO solver in
C code. Note when dealing with discontinuous functions in the model formulation,
external models with accompanying external jacobians must be supplied, written in
C. Further, if the objective function contains discontinuous functions, this may also
be input externally. Here, we implement a numerical jacobian, though one could find
individual analytic expressions for each discontinuous case and supply them to the
code generation.

1 c l c ;
2 c l e a r a l l ;
3 c l o s e a l l ;
4

5 Ts = 0 . 1 ; % model d i s c r e t i z a t i o n
6 N = 40; % hor i zon l e n g t h
7

8 % STATES − − − − − − − −
9 D i f f e r e n t i a l S t a t e n ; % (n o r t h i n g) [m]

10 D i f f e r e n t i a l S t a t e e ; % (e a s t i n g) [m]
11 D i f f e r e n t i a l S t a t e phi ; % (r o l l ang le) [rad]
12 D i f f e r e n t i a l S t a t e p s i ; % (yaw ang le) [rad]
13 D i f f e r e n t i a l S t a t e p ; % (r o l l r a t e) [rad / s]
14 D i f f e r e n t i a l S t a t e x_sw ; % (s w i t c h i n g s t a t e) [~]
15

16 % CONTROLS − − − − − − −
17 Con t ro l p h i _ r ; % (r o l l ang le r e f e r e n c e) [rad]
18

19 % ONLINE DATA − − − − − −
20 Onl ineData V; % (a i r s p e e d) [m/ s]
21 Onl ineData pparam1 ; % type =0 type =1
22 Onl ineData pparam2 ; % a_n c_n
23 Onl ineData pparam3 ; % a_e c_e
24 Onl ineData pparam4 ; % b_n R
25 Onl ineData pparam5 ; % b_e d i r
26 Onl ineData pparam6 ; % −− p s i 0
27 Onl ineData pparam7 ; % −− d p s i
28 Onl ineData pparam1_next ; % type =0 type =1
29 Onl ineData pparam2_next ; % a_n c_n
30 Onl ineData pparam3_next ; % a_e c_e
31 Onl ineData pparam4_next ; % b_n R
32 Onl ineData pparam5_next ; % b_e d i r
33 Onl ineData pparam6_next ; % −− p s i 0

Model Predictive Control for Trajectory Tracking … 35

34 Onl ineData pparam7_next ; % −− d p s i
35 Onl ineData wn ; % (n o r t h i n g wind) [m/ s]
36 Onl ineData we ; % (e a s t i n g wind) [m/ s]
37

38 % OPTIMAL CONTROL PROBLEM − − − − − −
39

40 % l e n g t h s
41 n_X = l e n g t h (d i f f S t a t e s) ; % s t a t e s
42 n_U = l e n g t h (c o n t r o l s) ; % c o n t r o l s
43 n_Y = 4 ; % s t a t e / o u t p u t s o b j e c t i v e s
44 n_Z = 1 ; % c o n t r o l o b j e c t i v e s
45 n_OD = 17; % o n l i n e d a t a
46

47 % weigh ts
48 Q = eye (n_Y+n_Z , n_Y+n_Z) ;
49 Q = acado . BMatrix (Q) ;
50

51 QN = eye (n_Y , n_Y) ;
52 QN = acado . BMatrix (QN) ;
53

54

55

56 % op t ima l c o n t r o l problem
57 acadoSet (’ problemname ’ , ’nmpc ’) ;
58 ocp = acado .OCP(0 . 0 , N∗Ts , N) ;
59

60 % min imiza t ion
61 ocp . minimizeLSQ (Q, ’ evaluateLSQ ’) ;
62 ocp . minimizeLSQEndTerm (QN, ’ evaluateLSQEndTerm ’) ;
63

64 % e x t e r n a l model
65 ocp . setModel (’ model ’ , ’ r h s ’ , ’ r h s _ j a c ’) ;
66 ocp . se tDimens ions (n_X , n_U , n_OD, 0) ;
67

68 ocp . sub j ec tTo (−35∗p i /180 <= p h i _ r <= 35∗ p i /180) ;
69

70 setNOD (ocp , n_OD) ;
71

72 % e x p o r t s e t t i n g s
73 nmpc = acado . OCPexport (ocp) ;
74 nmpc . s e t (’HESSIAN_APPROXIMATION ’ , ’GAUSS_NEWTON’) ;
75 nmpc . s e t (’DISCRETIZATION_TYPE ’ , ’MULTIPLE_SHOOTING ’) ;
76 nmpc . s e t (’SPARSE_QP_SOLUTION ’ , ’FULL_CONDENSING’) ;
77 nmpc . s e t (’INTEGRATOR_TYPE’ , ’INT_IRK_GL4 ’) ;
78 nmpc . s e t (’NUM_INTEGRATOR_STEPS’ , N) ;
79 nmpc . s e t (’QP_SOLVER’ , ’QP_QPOASES ’) ;
80 nmpc . s e t (’HOTSTART_QP’ , ’YES’) ;
81 nmpc . s e t (’LEVENBERG_MARQUARDT’ , 1e−10) ;
82 nmpc . s e t (’GENERATE_MAKE_FILE’ , ’YES’) ;
83 nmpc . s e t (’GENERATE_TEST_FILE ’ , ’YES’) ;
84 nmpc . s e t (’GENERATE_SIMULINK_INTERFACE’ , ’YES’) ;
85 nmpc . s e t (’CG_HARDCODE_CONSTRAINT_VALUES’ , ’YES’) ;
86 nmpc . s e t (’CG_USE_VARIABLE_WEIGHTING_MATRIX ’ , ’YES’) ;

36 M. Kamel et al.

87

88 % e x p o r t
89 c o p y f i l e (’ . . / acado / e x t e r n a l _ p a c k a g e s / qpoases ’ , . . .
90 ’ export_nmpc / qpoases ’)
91 nmpc . exportCode (’ export_nmpc ’) ;
92

93 cd export_nmpc
94 make_acado_solver (’ . . / acado_nmpc_step ’ , ’ model . c ’)
95 cd . .

4.2.1 ROS Integration

As described in Sect. 3.2.3, we integrate the ACADO solver into a ROS node for
generating control solutions in real-time on the aircraft. However, our approach
for the fixed-wing UAV differs slightly from the MAV as all low-level control and
state estimation is performed on the low-level autopilot’s micro-controller (we use
the Pixhawk Autopilot [1]). As processing power on the Pixhawk micro-controller
is somewhat limited, an additional onboard ODROID-U3 computer with 1.7 GHz
Quad-Core processor and 2 GB RAM, running Robotic Operating System (ROS) [3]
is integrated into the platform for experimentation with more computationally tax-
ing algorithms. High-level controllers can be run within ROS node wrappers which
communicate with the Pixhawk via UART serial communication; average commu-
nication latency was observed <3µs. The nonlinear MPC is run within a ROS node
on the ODROID-U3. MAVROS [21], an extendable communication node for ROS,
is used to translate MAVLink Protocol messages containing current state estimates
from the Pixhawk, and similarly send back control references from the nonlinear
MPC implemented in ROS. As high-level fixed-wing dynamics are somewhat slow,
we choose a fixed rate loop for control generation using a simple while loop, shown
as an example in the following code excerpt.

1 whi le (r o s : : ok ()) {
2

3 /∗ empty c a l l b a c k queues ∗ /
4 r o s : : spinOnce () ;
5

6 /∗ nmpc i t e r a t i o n s t e p ∗ /
7 r e t = nmpc . n m p c I t e r a t i o n () ;
8

9 i f (r e t != 0) {
10 ROS_ERROR(’ ’ n m p c _ i t e r a t i o n : e r r o r i n qpOASES QP s o l v e r . ’ ’) ;
11 r e t u r n 1 ;
12 }
13

14 /∗ s l e e p ∗ /
15 nmpc_rate . s l e e p () ;
16 }

Note the nonlinear MPC iteration step is only called once per loop, and the sleep
function regulates the timing of the loop. The ros::spinOnce() updates any

Model Predictive Control for Trajectory Tracking … 37

Fig. 19 Fixed-wing test platform

subscriptions with the most recent state estimates for use in the controller, and con-
trol action is subsequently published as a geometry_msgs::TwistStamped
message for processing within the MAVROS attitude setpoint plugin. This plugin is
integrated for off-board control functionality within the Pixhawk standard firmware.
Messages from the pixhawk are streamed at a rate of ∼40 Hz, and it is reasonable to
assume the callback functions will contain up-to-date values in their queues at every
nonlinear MPC iteration; as mentioned previously, typical high-level control rates
for fixed-wing vehicles are often 10 or 20 Hz. All augmented states, i.e. not directly
measured or estimated, used within the controller are also stored and kept for the
next iteration.

4.2.2 Experimental Results

System identification, controller design, and flight experiments described in this
section are performed on a small, 2.6 m wingspan, light-weight 2.65 kg, low-altitude,
and hand-launchable fixed-wing UAV, Techpod, see Fig. 19.

Two flight experiments were conducted using the described framework. A hori-
zon length of N = 40, or 4 s was used with objective weights Qydiag = Pdiag =
[0.01, 10, 0.1, 0.01, 10], Qu = 100. The discretization time step within the hori-
zon is Tstep = 0.1 s, and the nonlinear MPC is iterated every 0.05 s. The average
solve time for the nonlinear MPC running on the ODROID-U3 was observed to be
∼13 ms. Both experiments took place during very calm conditions, and the wind
speed was negligible.

In Fig. 20, Techpod is commanded towards a box pattern until returning to a
loiter circle. Minimal overshoot is observed, considering the set acceptance radius
of 35 m, and convergence within less than 1 m of position error is observed for each

38 M. Kamel et al.

Easting [m]

-100 -50 0 50 100 150 200 250

N
or

th
in

g
[m

]

-200

-150

-100

-50

0

50

start

end

Path
UAV Trajectory

-10

0

10

20

30

40
Reference
Actual

Time [s]

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70
-40

-20

0

20

40

60

Fig. 20 Flight experiment: box tracking

Easting [m]

-50 0 50 100 150 200 250

N
or

th
in

g
[m

]

-150

-100

-50

0

50

100

start

end

Path
UAV Trajectory

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

-40

-20

0

20

40

Reference
Actual

Time [s]

-40

-20

0

20

40

60

Fig. 21 Flight experiment: Dubins tracking

line segment and the final loiter circle. The commanded and actual roll angles as well
as the roll rate, are both kept within acceptable bounds.

In Fig. 21, an arbitrary sequence of Dubins segments were given to the high-level
nonlinear MPC. Again, good convergence to the path is seen, with acceptable state
responses. Position error of less than 3 m was observed after convergence to the path.
The end of the shown flight path is stopped just before converging to the final loiter
due to rain fall starting during the flight experiment and manual take-over of the
aircraft for landing.

5 Conclusion

In this chapter we presented an overview of many model-based control strategies for
multiple classes of unmanned aerial vehicles. The strategies presented are: Robust
MPC for multi-rotor system, Linear MPC for multi-rotor system and Nonlinear
MPC for multi-rotor system and fixed-wing UAVs. These control strategies have

Model Predictive Control for Trajectory Tracking … 39

been evaluated in real experiments and performance evaluation has been shown in
this chapter. The presented controllers are available as open source ROS package
on https://github.com/ethz-asl/mav_control_rw for rotary wing MAVs and https://
github.com/ethz-asl/mav_control_fw for fixed wing MAVs.

References

1. Px4 autopilot. https://pixhawk.org.
2. Navio autopilot. https://emlid.com.
3. Robot operating system. http://www.ros.org.
4. Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O. Scokaert. 2000. Constrained model predictive

control: Stability and optimality. Automatica 36 (6): 789–814.
5. Boyd, S., and L. Vandenberghe. 2004.ConvexOptimization. Cambridge: Cambridge University

Press.
6. Borrelli, F., A. Bemporard, and M. Morari. 2015. Predictive Control for Linear and Hybrid

Systems. Cambridge: Cambridge University Press.
7. Ferreau, H., C. Kirches, A. Potschka, H. Bock, and M. Diehl. 2014. qpOASES: A parametric

active-set algorithm for quadratic programming. Mathematical Programming Computation 6
(4): 327–363.

8. Alexis, K., C. Papachristos, R. Siegwart, and A. Tzes. 2015. Robust model predictive flight
control of unmanned rotorcraft. Journal of Intelligent & Robotic Systems 1–27.

9. Loefberg, J. 2003. Minimax approaches to robust model predictive control. Ph.D. dissertation
Linkoping, Sweden: Linkoping University.

10. Cannon, M., S. Li, Q. Cheng, and B. Kouvaritakis. 2011. Efficient robust output feedback mpc.
In Proceedings of the 18th IFAC World Congress, vol. 18, 7957–7962.

11. Kvasnica, M. 2009. Real-Time Model Predictive Control via Multi-Parametric Programming:
Theory and Tools. Saarbrücken: VDM Verlag.

12. Mattingley, J., and S. Boyd. 2012. Cvxgen: A code generator for embedded convex optimiza-
tion. Optimization and Engineering 13 (1): 1–27.

13. Ljung, L. 1999. System identification - Theory for the User. Englewood Cliffs: Prentice-Hall.
14. Lynen, S., M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. 2013. A robust and modu-

lar multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3923–3929. IEEE.

15. vicon systems. http://www.vicon.com.
16. Houska, B., H. Ferreau, M. Vukov, and R. Quirynen. 2009–2013. ACADO Toolkit User’s

Manual. http://www.acadotoolkit.org.
17. Morelli, E.A. 2003. Low-order equivalent system identification for the tu-144ll supersonic

transport aircraft. Journal of guidance, control, and dynamics 26 (2): 354–362.
18. Luo, Y., H. Chao, L. Di, and Y. Chen. 2011. Lateral directional fractional order (pi) π control

of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. Control
Theory & Applications, IET 5 (18): 2156–2167.

19. Beard, R.W., and T.W. McLain. 2013. Implementing dubins airplane paths on fixed-wing uavs.
In Contributed Chapter to the Springer Handbook for Unmanned Aerial Vehicles.

20. Stastny, T., A. Dash, and R. Siegwart. 2017. Nonlinear mpc for fixed-wing uav trajectory
tracking: Implementation and flight experiments. In AIAA Guidance, Navigation, and Control
(GNC) Conference.

21. MAVROS. 2016. http://wiki.ros.org/mavros.

https://github.com/ethz-asl/mav_control_rw
https://github.com/ethz-asl/mav_control_fw
https://github.com/ethz-asl/mav_control_fw
https://pixhawk.org
https://emlid.com
http://www.ros.org
http://www.vicon.com
http://www.acadotoolkit.org
http://wiki.ros.org/mavros

Designing Fuzzy Logic Controllers
for ROS-Based Multirotors

Emanoel Koslosky, André Schneider de Oliveira,
Marco Aurélio Wehrmeister and João Alberto Fabro

Abstract This chapter presents a tutorial on using an open-source ROS package
for implementing control systems based on Fuzzy Logic. Such a package has been
created to facilitate the development of fuzzy control systems along with ROS tech-
nology and infrastructure. A step-by-step tutorial discusses how to develop a set
of distributed and interconnected fuzzy controllers using the proposed ROS pack-
age. A fuzzy control system that controls the movement of an unmanned multirotor
(specifically a hexacopter) is presented as case study. The behavior of this control
system is demonstrated by means of a commercial robotics simulation environment
named V-REP. One scenario is used to illustrate the fuzzy control system steering
the movement of a virtual hexacopter carrying an attached loose payload, i.e. such
a loose payload forms a pendulum. In this case study, one can see the hexacopter
flight after receiving commands to fly to distinct positions within the scenario. It is
important to highlight that, in order to be able to perform this tutorial, the reader
must use ROS Indigo Igloo and V-REP PRO EDU version V3.3.0 both running on
Ubuntu 14.04.4 LTS.

Keywords ROS · Multirotor · Fuzzy logic · Simulation

The source code and examples discussed in this chapter are available as a catkin package
published in [1]

E. Koslosky (B) · A.S. de Oliveira · M.A. Wehrmeister · J.A. Fabro
Advanced Laboratory of Embedded Systems and Robotics (LASER), Federal University of
Technology—Parana (UTFPR), Av. Sete de Setembro 3165, Curitiba 80230-901, Brazil
e-mail: ekosky@gmail.com

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

M.A. Wehrmeister
e-mail: wehrmeister@utfpr.edu.br

J.A. Fabro
e-mail: fabro@utfpr.edu.br

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_2

41

42 E. Koslosky et al.

1 Introduction

Recent technology advances have led to a cost reduction in electronic and electro-
mechanical components, providing new capabilities to small electromechanical air-
crafts such as multirotor helicopters (also known as drones). Such devices are being
applied in many distinct application fields, such as video recording, plantation
inspections, search-and-rescue assistance, military and civil surveillance applica-
tions, among others. Some of these new applications demand multirotor helicopters
that fly autonomously as presented in [2, 3]. For that, additional computing systems
must be embedded into an autonomous multirotor helicopter, in addition to move-
ment and stabilization control systems, in order to provide higher level capabilities
to support the mission accomplishment. Unmanned Aerial Vehicles (UAV) are the
preferred choice for these applications due to cost reductions obtained from elimi-
nating the need of high-skilled and trained pilots. It is important to highlight that, in
this text, the term “multirotor” is used as a synonym for “multirotor helicopter”.

The multirotor rotors can be organized in different ways, varying in the amount of
rotors, as well as their positions onto the aircraft frame. The so-called quadcopter is
a multirotor equipped with four rotors. It is the most common multirotor. However,
its characteristic may limit some applications, e.g. a payload transportation from one
point to another. Recently, other multirotor topologies have become popular such the
hexacopter [4] that is equipped with six rotors.

In order to provide a stable flight for UAVs, hybrid control approaches (parallel,
cascade) with multiple PID controllers are commonly used [5, 6]. Although these
methods perform the system control in a properway, they require a precisemathemat-
ical formulation as well as the identification of UAV dynamics, in order to stabilize
the system while minimizing disturbances [7].

Adaptive algorithms can be applied to control multivariable systems (such asUAV
flying control system) more efficiently than classical strategies. In [8], an approach
based on artificial neural networks is presented to control the trajectory ofUAVflight.
A genetic algorithm is applied to control the flight of a hexacopter in [9], where as a
fuzzy logic method has been proposed to control the position of a hexacopter in [10].
The main focus of these previous works is on the UAV stabilization in the presence
of linear disturbances. However, these works do not consider nonlinear disturbances,
such as the ones introduced when the UAV carries a variable or loose payload. In
a previous work [11], we created a fuzzy logic controller to control the movements
of a hexacopter and also to deal with nonlinear disturbances. Such a fuzzy control
system was created to provide a robust and flexible controller that is able to keep the
hexacopter stability when moving or hovering, even when it carries a free or loose
payload that changes its center of gravity. It is important to highlight that, due to
space constraints, this chapter does not provide a in-depth discussion on this fuzzy
control system. Interested readers are referred to [11] in order to obtain details on
the design of such a control system.

This chapter discusses a ROS-based implementation of our fuzzy control sys-
tem in terms of an open-source ROS-based fuzzy logic library designed to control

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 43

multirotors. Specifically, the proposed fuzzy library has been implemented to be
used within a roscpp Node. The main goal is to present a step-by-step tutorial on
designing fuzzy based controllers for mobile robots (focusing on UAVs) using ROS
features [12]. This tutorial is intended to be followed by beginner level ROS users.
It discusses how ROS is used to receive signals from sensors and also to send com-
mands to actuators by means of the publisher/subscriber mechanism. Moreover, the
tutorial shows how to integrate a different robot simulator named V-REP [13] with
the fuzzy control system implemented with the proposed library. Thus, the engineers
may perform a round-trip engineering process1 by integrating the developed fuzzy
control system with a virtual environment or the real hardware seamlessly.

It is important to highlight that, as alreadymentioned, the tutorial described in this
chapter is aimed to beginner level users of ROS. Thus, in order to correctly under-
stand its content, the reader should be familiar with Linux and C/C++ programming
language, aswell as he/she should have some basic ROSunderstanding. The beginner
level tutorials [12] should be sufficient to understand the presented approach (tuto-
rial #16 presents the concepts about nodes, messages, publishers and subscribers).
Although it might be a good idea to follow the V-REP BubbleRob tutorial [14], the
short introduction given here would be enough for allowing the experimentation.
Moreover, a tutorial about V-REP and ROS integration is presented in [15]. The ver-
sions of the software used in this tutorial are: (i) Operating System: Ubuntu 14.04.4
LTS; (ii) ROS Indigo Igloo; (iii) V-REP PRO EDU version V3.3.0.

The remainder of this chapter is organized as follows. Section2 presents a brief
overview of multirotors features and movements. Section3 summarizes our fuzzy
control system for a hexacopter. Section4 presents the open-source ROS library that
provides the services supplied within our fuzzy logic library. Section5 discusses how
to use a different robotics simulation environment along with ROS and our library
to perform experiments on fuzzy control system, including the discussion of a case
study that illustrates the concepts and technologies discussed in this tutorial. Finally,
Sect. 6 concludes this chapter by discussing some final remarks.

2 Brief Overview of Multirotors

This section provides a description on how multirotors perform their movements.
An empirical discussion is presented rather than a formal modeling of multirotor
dynamics, in order to provide a practical view similar to a human pilot controlling
the multirotor bymeans of a radio control system (i.e. RC controller). Formal models
of multirotor dynamics can be obtained, for instance, in [5–7].

Initially, it is worth mentioning that a multirotor can present various distinct con-
figurations, i.e. multirotors may present various topologies. In summary, multirotor
topology varies in rotors number as well as the rotors position. Regarding the number
of rotors, amultirotormay have from three, four, six or eight rotors, namely, tricopter,

1This chapter does not intend to propose or discuss any concrete round-trip engineering process.

44 E. Koslosky et al.

quadcopter, hexacopter and octocopter, respectively. The most common multirotor
is the quadcopter, although the hexacopter is recently becoming popular due to its
good trade-off among cost, flight robustness, fault-tolerance, and capacity of flying
with heavier payloads.

On the other hand, these rotor may be positioned in distinct topologies regarding
the front/rear of the multirotor.

• “X” topology presents two rotors on both front and rear. One rotor is positioned
on the right-hand side and the other one on the left-hand side of front/rear. This
topology can be used with quad-, hexa-, and octocopters.

• “I” or “+” topology presents one rotor positioned on the front and one rotor
position on the rear. The remainder rotors are distributed evenly on the right-hand
and left-hand sides of the multirotor. This topology can be used with quad-, hexa-,
and octocopters.

• “H” topology is similar to the “X” topology, i.e. two rotors on both the front and
rear. However, the arms of the aircraft frame form an “H” rather than an “X”. This
topology can be used with quad- or hexacopters.

• “Y” topology presents two rotors on either front or rear, and one rotor on the
opposite side. This topology can be used with tri- or hexacopters. In hexacopters,
the counter rotating propellers are placed one on top of another.

It is important to highlight that both the amount of rotors and their positioning onto
the aircraft frame influence how a multirotor performs its movements, and hence,
how the movement control system is designed. In the remainder of this section, the
hexacopter “+” topology is used to illustrate the multirotor movements.

Amultirotor moves on three dimensions along X, Y and Z axes as shown in Fig. 1.
In summary, the rotors create thrust that allows for pitch, roll, yaw, uplift and downfall
movements. Thus, by activating the rotors accordingly, it is possible to control the
hexacopter movement along X, Y and Z axes. In other words, by speeding up or
slowing down some rotors, it is possible to move the multirotor towards the desired
direction on each axis.

Pitch is themultirotor movement towards either forward or backward. Controlling
pitch angle implies on the control of multirotor rotation2 onY-axis as shown in Fig. 2.
The multirotor moves forward when the rear rotor spins faster than the front rotor;
similarly, it moves backward when front rotor spins faster than the rear rotor. The
difference in these rotors spinning produces an unbalanced thrust on each rotor,
rotating the multirotor around its Y-axis leading to an horizontal movement along
the X-axis. The multirotor slows down the movement when the rotor positioned on
the movement direction spins faster than the other rotor, i.e. this decreases the pitch
angle.

Roll is the multirotor movement towards right-hand or left-hand side. Controlling
roll angle implies on the control of multirotor rotation (see footnote 2). on X-axis as
shown inFig. 3.Themultirotormoves sidewayswhen the rotor onone side spins faster

2Figures2, 3, 4 and 5 depict the inertial frame at the right-bottom corner of the figures. It is important
to note that this inertial frame is used in both V-REP environment and ROS representation.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 45

Fig. 1 Hexacopter movements: (i) roll is the rotation on X axis; (ii) pitch is the rotation on Y axis;
and (iii) yaw is the rotation on Z axis. The arrow indicates positive direction

Fig. 2 Hexacopter pitch movement: rotation around Y-axis

than the ones on the other side. The difference in these rotors spinning produces an
unbalanced thrust on right-hand or left-hand side, rotating themultirotor around itsX-
axis leading to a horizontal movement along the Y-axis. Likewise forward/backward
movement, the multirotor slows down the movement when the rotors positioned on
the movement direction spins faster than the other ones, i.e. this decreases the roll
angle.

Yaw is the deviation of themultirotor head (i.e. its front orientation) towards either
right or left. Controlling yaw angle implies on the control of multirotor rotation on Z-
axis as shown in Fig. 4. For that, interleaved rotorsmust spin faster than the other ones
leading to a gyroscopic effect on the multirotor frame. It is important to note that the
propellers attached to interleavedmotors rotate either clockwise or counterclockwise.
Therefore, in order to turn the multirotor to right-hand side direction, the clockwise
rotors must spin faster. Similarly, for turning to the left-hand side direction, the

46 E. Koslosky et al.

Fig. 3 Hexacopter roll movement: rotation around X-axis

Fig. 4 Hexacopter yaw movement: rotation around Z-axis

Fig. 5 Hexacopter uplift and downfall movements

counterclockwise rotors must spin faster. The multirotor does not move along X- or
Y-axis; it only rotates around Z-axis.

Uplift and downfall are the multirotor movements related to the flight altitude.
These movement are achieved by spinning all rotors on the same pace. The mul-
tirotor flies upwards when the lift force produced by the rotors is higher than the
multicopter weight. On the other hand, the multirotor flies downwards when the lift

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 47

force produced by the rotors is lower than the multicopter weight. When lift force is
equal to the weight, the multicopter hovers in the air.

Furthermore, in many application fields, a multirotor carries a payload in order to
accomplish its mission. A payload attached to the multirotor body frame changes the
gravity center of the whole aircraft thus affecting the way the multirotor performs
its movements [16]. When the payload has a constant mass and is fixed to the body
frame, the multirotor gravity center is modified but it remains on the same position.
On the other hand, when the payload has a varying mass (e.g. leaking bag of sand)
or it is loosely attached to the multirotor, the center of gravity changes during the
flight, introducing nonlinear disturbances. A loosely attached payload forms a mov-
ing pendulumwhen themultirotor flies. Hence, while the pendulum ismoving, center
of gravity of the entire aircraft changes as well [17]. Fuzzy logic controllers have
been used to deal with the moving center of gravity created by a moving pendulum
[17–19].

Finally, it is worth mentioning that a multirotor is equipped with a set of sen-
sors and actuators in order to run high- and low-level control systems. An Iner-
tial Measurement Unit (IMU) provides a combination of gyroscope, accelerometer
and compass (magnetometer) sensors. Multirotors demand three dimensional IMUs.
The accelerometer detects the current acceleration rate along with X, Y and Z axes,
whereas changes in rotational attributes, e.g. roll, pitch and yaw, are measured by the
gyroscope. The gyroscope provides the body frame angles known as Euler angles.
The magnetometer measures the magnetic field in order to assist the calibration
against orientation drift. In order to obtain the absolute position of the multirotor
within the environment, the Global Positioning System (GPS) sensor are used. GPS
is also applied to decrease errors in position and velocity produced within an inertial
navigation system. Stereo cameras or laser scanners can also be used to obtain the
distance to obstacles in the environment, and hence, allowing the multirotor to avoid
collisions.

3 Fuzzy Control System for Hexacopters

3.1 Brief Overview of Fuzzy Logic

This section provides an overview of the key concepts of Fuzzy Logic in order to
improve the reader’s understanding on our ROS-based fuzzy logic library. Interested
readers must refer to [17, 20] in order to get a deeper discussion on Fuzzy Logic.

Fuzzy logic is a way to model a system using basic human interpretations, provid-
ing a method to describe both the system model and the computation of its outputs.
For instance, when someone says that “I am close to a car” and “you are not close
to it”, the meaning of these phrases can be diverse. How can a computer calculate
how close is something? A human could answer “yes”, “not” or “almost”. However,
in order to provide such an answer, it is important to consider the context to realize

48 E. Koslosky et al.

the meaning of this answer. Fuzzy logic provides a way to cope with the intrinsic
imprecision of these answers by means of representing imprecisions and a common
reference to the meaning of concepts such as “close” and “distant”.

Let us use the altitude control of the hexacopter as an example. For instance,
the operator sets the altitude to ten meters. If the hexacopter is on the ground, at
altitude zero, some amount of power must be applied to all rotors until it reaches
the target altitude. How much power must be applied? If the target altitude is far
away from the starting position, the maximum power might be applied, and hence,
the hexacopter reaches the target altitude faster but it might overshoot the desired
position. On the other hand, if the applied power is minimal, the hexacopter moves
slower in order to minimize the overshooting, but it takes too much time to reach
the desired position. The process of mapping and adjusting the numerical values to
represent human linguistic values is key to design fuzzy systems.

A Fuzzy controller comprises a set of artifacts that enables the translation from
human linguistic terms into elements that are processed by computers. The following
artifacts compose a fuzzy control system:

• Linguistic Variables are used to represent the meaning of terms that are related to
input or output signals. The concept of “distance” is an example. It may have the
following values: “far”, “near”, “very close” and “on”. Linguistic variables can
define output values as well, e.g. the “power” to be applied on the rotors could have
the absolute values, e.g. “minimum”, “middle”, “maximum”, or relative values,
e.g. “much lower”, “lower”, “maintain”, “higher” and “much higher”. Therefore
any system input or output can be modeled as a set of linguistic values that have
meaning for an human expert.

• Membership Function defines the mapping linguistic variable and its linguis-
tic values. Since linguistic variable defines a set of concepts that are understood
by human experts, its linguistic values must be defined so that the computer can
process them. The expert defines numeric values to represent each concept. Each
membership function defines the interpretation of any numeric value, incorporat-
ing the subjective imprecision. This is done by using a geometric representation of
the concept, such as aGaussian function, or triangular/trapezoidal function. Exam-
ples of some membership functions defined in the proposed fuzzy controllers are
presented in the following sections.

• Rules define the relationship between input and output linguistic variables. A
fuzzy system comprises a set of rules that relates premises and consequences in
the form: IF premises THEN consequences. Premises represent com-
parisons between an input linguistic variable and values of its membership func-
tion. During the inference process, the relative strength of each premise is obtained
by means of a process called fuzzyfication and thereafter propagated to the con-
sequences. Once all the rules are evaluated, the consequences are evaluated alto-
gether. The quantitative output values are produced within the defuzzyfication
process and then such values are applied to the controlled process.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 49

It is worth pointing out that, besides defining the fuzzy set, the engineers are
responsible for tuning the membership function values, in order to obtain the desired
behavior for each situation.

Furthermore, the execution of fuzzy logic systems comprises the following three
processes:

• Fuzzyfication is the process in which raw values obtained from input signal are
comparedwith values of eachmember function, in order to find out the correspond-
ing activation level. Usually the input signal value comes directly from a sensor
reading. However, it can also be derived from some kind of calculation, such as the
velocity obtained from the difference of two consecutive position readings pro-
vided by a GPS. If the raw value intercepts more than one membership function,
all concepts are considered, and thus, each one presents a different activation level.

• Rule inference (also known as rule evaluation) is a process that evaluates all
rules of the fuzzy system. It takes the fuzzyfied input values and evaluates the
activation value of eachpremise, calculating the output value for each rule. Partially
activatedpremises lead to partial activationof consequences, allowing for a “fuzzy”
inference procedure.

• Defuzzification process obtains an exact output value (e.g. numerical value) that
can be directly applied onto an actuator, e.g. the power to be applied onto the
hexacopter rotors. The output strength points are used to calculate an average
value. For that, the area formed by the union of each output membership function
is used. There are several methods to obtain the output value. For instance, Center
of Gravity (COG) defuzzification method takes into account the relative position
over the horizontal axis plus the weight of the combined area.

3.2 Overview of Hexacopter Movement Control System

This section provides an overview of the fuzzymovement controller for a hexacopter,
in order to explain the ROS-based open-source package presented in this chapter.
Interested readers must refer to [11] in order to obtain details on the design of such
a control system.

The proposed controller implements a closed loop that comprises three layers.
Data produced as output of one layer is passed as input to the next layer. The proposed
multi-layer fuzzy controller is based on [17] and is depicted in Fig. 6. The Movement
Fuzzy Control System box is composed by a pre-processing phase (first layer), a set
of fuzzy controllers (second layer), and post-processing phase (third layer).

As one can observe, after the post-processing phase, the control outputs are applied
onto the plant by means of the hexacopter rotors that actuate on the hexacopter
movement, i.e. pitch, roll, yaw. The sequence of maneuvering is depicted in Fig. 7.
The sensors perceive the changes on the plant controlled variables, and hence, provide
the feedback to the controller. The controller, in turn, compares these input values

50 E. Koslosky et al.

Fig. 6 Overview of the hexacopter movement fuzzy control system

Fig. 7 FSM for sequencing the hexacopter maneuvering process. (X, Y, Z) inputs represent the
new target position of the hexacopter

with the reference values established as setpoints thereby closing the control loop
[17, 20].

The pre-processing phase (first layer) is responsible for acquiring data from the
input sensors, processing the input movement commands, as well as calculating the
controlled data used as input to the fuzzy controllers in the second layer. Before
the multi-layer controller starts its execution, there is an initialization phase that is
performed within the first layer. The target position is set as the current position, so
that the hexacopter does not move before receiving any command. Gyroscope and
accelerometer sensors are calibrated and the GPS sensor is initialized by gathering

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 51

at least four satellites. During the execution phase, the first layer is responsible
to calculate the input variables to the fuzzy controllers: (i) the angular and linear
distance (delta error) for X, Y, and Z axes between the current hexacopter position
and the target position; (ii) the rotation and translation movement matrices in order to
translate movement along X, Y and Z axes into the speed related to the ground (i.e. X
and Y axis). In addition, the pre-processing phase is responsible to convert the input
movement commands into setpoints for X-, Y- and Z-axis. Movements commands
are composed of three values representing the positive or negative movement along
X, Y and Z axes regarding the current positions, i.e. a command indicates a target
relative position. Thus, when a new command is received, the first layer converts
such a command to an absolute position. Then, once the control system is running,
this layer uses the current GPS position to determine the error in the position of the
hexacopter concerning the target position. These calculated errors in position are the
inputs to the fuzzy controllers (Euler X, Euler Y and Euler Z errors).

The second layer contains five fuzzy controllers, which act on issues regarding
the hexacopter movement, namely hovering, vertical and horizontal movement and
heading. As mentioned, these controllers take as input the data produced in the
first layer and generate output for the third layer. The generated outputs represent
the actuation on the six rotors for performing pitch, roll, yaw movements for all
maneuvers necessary to reach the target position. In order to provide an illustrative
example, one fuzzy controller is discussed in details in the next section.

The post-processing phase (third layer) is responsible for coordinating the fuzzy
controllers outputs. In order to perform a proper maneuver, the proposed multi-layer
controller establishes a priority onmovements needed to complete amaneuver.When
a new command is received, i.e. a new target point is set, the hexacopter must firstly
reach the target altitude. Then, the hexacopter must turn until its front aims the target
position. Finally, the hexacopter moves horizontally towards the target position. This
layers controls the position thresholds by means of output values saturation, in order
to keep the hexacopter stable while flying or hovering.

3.3 Example: Design of Vertical Movement and Hovering
Controller

Vertical movement and hovering fuzzy controller controls the movement on the Z-
axis, i.e. it controls uplift, downfall and hovering movements. Figure8 shows the
block diagram of this controller.

This controller takes as input the vertical distance to the target position, as well
as the vertical speed. The first one is the error in vertical distance (altitude error), i.e.
the difference between target position and actual hexacopter position on Z-axis. The
second input is the current speed calculated as a derivative information of hexacopter
displacement over time.

52 E. Koslosky et al.

Fig. 8 Vertical movement and hovering fuzzy controller

Fig. 9 Input linguistic variables and their membership functions for vertical distance

Fig. 10 Input linguistic variables and their membership functions for vertical speed

The linguistic variables for vertical distance and vertical speed are shown in Figs. 9
and 10, respectively. Letters “N” and “P” at the beginning of each membership
function mean negative and positive values, respectively. In Figs. 9 and 10, values
in the X-axis represent the distance from the setpoint in meters, whereas values in
the Y axis indicate the activation of each membership function, varying from 0.0
(minimum) to 1.0 (maximum activation) indicating a percentage. The shape of these
membership functions is the triangle, since the algorithm for calculating its area
presents a low computing cost, and hence, it may be used on embedded system
platform.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 53

Table 1 Control rules of vertical navigation

V. Dist. V.
Speed

NFAR NMID NNEAR ZERO PNEAR PMID PFAR

NFAST NMAX NMID NMIN PMIN PMID PMAX PMAX

NSLOW NMAX NMID NMIN PMIN PMID PMAX PMAX

ZERO NMAX NMID NMIN ZERO PMIN PMID PMAX

PSLOW NMAX NMAX NMID NMIN PMIN PMID PMAX

PFAST NMAX NMAX NMID NMIN PMIN PMID PMAX

Moreover, one can see the intersections of membership variables values, i.e. adja-
cent variables share a given range of values. This is an important characteristic of
fuzzy systems and allows the modeling of smooth transitions among adjacent con-
cepts. If there are gaps between transitions, i.e. no membership function is activated,
the fuzzy control system may stop working. Another important issue is that the input
membership functions must cover the complete range of input values, so that the
fuzzy process can work with all possible sensor readings.

Fuzzy rules can be specified by means of clauses (e.g. if premise then
consequence) or a table. The Table1 shows the set of rules that composes the
verticalmovement andhovering controller. It is important to highlight that the number
of rules increases as more linguistic variables and membership functions are added
to the fuzzy control system.

This controller sets the output throttle variable OThrottle as result (see Fig. 11)
Each value presented in Table1 is decomposed into an amount of power applied on
all rotors, increasing or decreasing the overall lift force making the hexacopter fly
on higher or lower altitude. It is worth noting that the power applied on the rotors
decreases along with vertical speed when the hexacopter comes closer to a target
altitude.

The fuzzy control surface graphic shown in Fig. 12 provides the visualization of
the input and output values of the vertical movement and hovering fuzzy controller.
The altitude is maintained by means of controlling the throttle applied on all rotors

Fig. 11 Output linguistic variables and their membership functions for OThrottle

54 E. Koslosky et al.

Fig. 12 Surface of fuzzy controller for vertical navigation and hovering control

simultaneously. The GPS sensor provides the current altitude information. On the
other hand, the vertical speed is used to decrease the oscillation when the hexacopter
reaches the desired altitude. In order to illustrate the relationship between vertical
distance error (altitude error) and vertical speed, let us suppose some situations. In
the first one, the altitude error is zero (i.e. the hexacopter reaches the target vertical
position) and the vertical speed is positive (e.g. 0.4 or higher). This situation means
that the hexacopter has reached the target altitude but it will fly beyond that position
because the speed indicates the hexacopter is still flying upwards. The hexacopter
vertical speed must be slowed down before reaching the target altitude, and hence,
the controller must set an output value lower than ZERO. In the second situation, the
altitude error is zero and the vertical speed is negative. In this situation the hexacopter
is falling down, and hence, the controller must set an output value higher than ZERO
in order to stop the fall. It is worth noting that theZERO output value for OThrottle
does not mean that any power is applied on the rotors; instead, it represents a minimal
power value that keeps the hexacopter hovering at the current altitude.

In order to illustrate the fuzzyfication and defuzzyfication process, let us assume
that the current vertical distance error (altitude error) is −0.75m. This value is com-
pared to the level of membership functions during the fuzzification process. After
fuzzyfication, the value represents 0.28 (28%) of the NMID membership function
and 0.5 (50%) of the NNEAR as shown in Fig. 13. During rules inference process,
the activation of NMID and NNEARmembership function enables ten rules (see third
and fourth columns of Table1).

As one can see in Table1, these rules combine two linguistic variables (vertical
distance error and vertical speed), and hence, they define two premises that are
connected with an “AND” operator (the minimum operator). “AND” operator selects
a lower number of rules that have received high activation values. The resulting
consequence depends on both linguistic variables. Let us suppose that the current
value of speed_uavZ is ZERO. The rule with the highest value is the intersection
of NNEAR column and ZERO line of Table1.

However, it is important to highlight that NMID variable has some influence on the
result of the fuzzy rules inference. Therefore, Othrottle output linguistic variable
is defined as a combination of NMID and NMIN values. This situation forms points of

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 55

Fig. 13 An example of input at −0.75m. After fuzzification the distance means 0.28 of negative
middle, NMID, and 0.5 of NNEAR

Fig. 14 Obtaining Othrottle raw value after defuzzyfication process

different activations between two output membership functions, creating two areas.
The defuzzification process produces the raw value that represents the influence of
both NMID and NMIN values. The values provided to each linguistic value depends
on the activation of each rule. Figure14 shows two possible output values. The first
output value is 0.33, and it was obtained by calculating the arithmetic average of the
two areas. The second output value is 0.36, and it was calculated using the center of
gravity (COG) method that represents a weighted average between the two areas.

4 Open-Source Package of ROS-Based Fuzzy Logic
Control Systems

4.1 Package Overview

This section describes our open-Source Package of ROS-based Fuzzy Logic Con-
trollers [1]. This package provides the following artefacts: (i) the proposed fuzzy
logic library; (ii) examples of fuzzy set files for the hexacopter movement fuzzy con-
trol system; (iii) the fuzzy control system main software implemented using ROS;

56 E. Koslosky et al.

(iv) a software to send commands (i.e. the desired target position) to the virtual hexa-
copter; (v) a telemetry software that displays data from the hexacopter as well as the
fuzzy controllers.

The package structure is composed by the following directories3:

• fz directory stores the text files that specify the fuzzy set. One fuzzy set is formed
by three files: (i) input linguistic variables, e.g. “HexaPlus_i_stabZ.fz” defines the
inputs for the vertical controller and hovering fuzzy controller; (ii) fuzzy rules,
e.g. HexaPlus_r_stabZ.fz specifies the rules for the vertical controller and hover-
ing fuzzy controller; (iii) output linguistic variables, e.g. “HexaPlus_o_stabZ.fz”
defines the output linguistic variables.

• include directory provides the C/C++ header files. This directory presents two
subdirectories: one subdirectory provides the header files for the tutorial, while
the other one provides the header files for the fuzzy library, so that the library can
be reused in other projects.

• src directory stores the source code. The code files of fuzzy logic library are stored
within the subdirectory “fuzzy”, whereas the tutorial source code files are located
directly in the src directory.

• scenes directory provides the V-REP scenarios that are used in this tutorial.

The next sessions discuss how to install, use and test our package. For that, the
reader must use Ubuntu 14.04.4 LTS Operating System with the following software
installed: ROS Indigo Igloo, catkin, cmake, V-REP PRO EDU version V3.3.0.4

4.2 Configuring ROS Environment and Installing the
Package

First of all, a workspace is created in order to compile the shared library files so that
the V-REP can be integrated with ROS. The V-REP provides a set of ROS packages
to generate the share libraries. The workspace will also host the fuzzy package, as
well as some libraries will be copied to the V-REP directory.

1. Create a directory under your home directory and initialize the catkin work-space
using catkin_init_workspace.

1 $ cd ~
2 $ $ mkdir -p catkin_hexacopter/src
3 $ cd catkin_hexacopter/src
4 $ catkin_init_workspace
5 $ cd ..
6 $ catkin_make
7 $ source devel/setup.bash

3Files and subdirectories created automatically by catkin/make commands are ignored.
4This tutorial assumes that V-REP has been installed in /opt/V-REP/ directory.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 57

2. Copy the ROS package from the V-REP directory and generate the libraries with
catkin_make.

1 $ cd ~/ catkin_hexacopter/src
2 $ cp -rp /opt/V-REP/V-REP_PRO_EDU_V3_3_0_64_Linux/programming

/ros_packages /* .
3 $ cd ..
4 $ catkin_make

3. Once two shared libraries have been created, copy these libraries to the V-REP
directory, enabling the V-REP to work with the roscore.

1 $ cd ~/ catkin_hexacopter
2 $ cp devel/lib/libv_repExtRos.so /opt/V-REP/V-

REP_PRO_EDU_V3_3_0_64_Linux/
3 $ cp devel/lib/libv_repExtRosSkeleton.so /opt/V-REP/V-

REP_PRO_EDU_V3_3_0_64_Linux/

These libraries enable V-REP to look for an instance of roscore at startup. If
roscore is not running and the simulation scenario has some call to ROS, the
simulation fails and the user is warned. V-REP acts as a ROS node, and hence,
roscoremust be running before starting V-REP. The integration between ROS
and V-REP succeeded whether the ROS plugins are loaded during the V-REP
startup, as shown below.

1 $ /opt/V-REP/V-REP_PRO_EDU_V3_3_0_64_Linux/vrep.sh &
2 ...
3 Plugin ’Ros ’: loading ...
4 Plugin ’Ros ’: load succeeded.
5 ...

4. After performing this tutorial, the reader may want to delete V-REP packages,
and thus, the following commands must be executed:

1 $ cd ~/ catkin_hexacopter
2 $ rm -fr ros_bubble_rob vrep_joy vrep_*

Once catkin workspace identified as catkin_hexacopter has been created
and configured, the reader can download our ROS-based fuzzy logic package from
[1]. In order to compile and run such a package, the package zip file must be uncom-
pressed inside the the catkin_hexacopter workspace source directory.

1 $ unzip hexaplus_tutorial.zip -d ~/ catkin_hexacopter/src
2 $ cd ~/ catkin_hexacopter
3 $ catkin_make

If the fuzzy package has been uncompressed into a workspace with a lot of others
packages, use the option “pkg” to compile only the fuzzy package.

1 $ catkin_make --pkg hexaplus_tutorial

These commands compile the package and generate the objects listed below.

1 [14%] [28%] Built target FuzzySet
2 Built target Linguistic
3 [28%] [28%] Built target FuzzyLoader
4 Built target HexaPlus

58 E. Koslosky et al.

5 [28%] Built target LinguisticSet
6 [42%] [42%] Built target MembershipFunction
7 Built target Rule
8 [57%] Built target RuleSet
9 [71%] Built target RuleElement

10 [71%] [71%] Built target navigation

Thereafter, it is important to checkwhether the packagewas successfully compiled
and it is working properly. For that, the roscore must be started, and then three pack-
age applications can be executed: rosvrep_controller, rosvrep_panel,
rosvrep_telemetry. In addition, check the created topics by using rostopic
andrqt_graph. However, before executing the package applications, the usermust
run the source command on the setup.sh file (line 2) at least once in the shell session,
as well as open five terminals to run each application separately.

1 $ roscore &
2 $ source ~/ catkin_hexacopter/devel/setup.sh
3 $ xterm & xterm & xterm & xterm & xterm &

The following commands should be executed in each terminal.

1 $ rosrun hexaplus_tutorial rosvrep_controller
2 $ rosrun hexaplus_tutorial rosvrep_panel
3 $ rosrun hexaplus_tutorial rosvrep_telemetry
4 $ rostopic list
5 $ rqt_graph

The rostopic command lists the topics beginning with /vrep/. These names
can be easilymodified through the remap argument of rosrun command; for details
see [21].

4.3 Fuzzy Set Files

As discussed in Sect. 3.1, the fuzzy set is composed of linguistic variables for inputs
and outputs, membership functions and rules. Such information can be hard-coded
into the source code files. This way, the fussy set is stored in memory by using arrays
or lists, and thus, the fuzzy inference engine is able to produce the expected outputs.
However, a flexible fuzzy inference engine is able to load the fuzzy set from a file
stored in a storage dive (e.g. disk). In the proposed fuzzy library, we implemented a
flexible engine that loads the fuzzy sets from plain text files. As described bellow, we
defined a simple format to describe linguistic variables, membership functions and
rules, in order to facilitate the specification process and also the systemmaintenance.

The fuzzy set is located in “fz” subdirectory. In order to illustrate how to specify
a fuzzy set, the vertical movement and hovering controller (see Sect. 3.3) is used as a
case study. The files whose name ends with “_stabZ.fz” are related to this controller.
Listing 1.1 describes the input linguistic variable depicted in Fig. 9 and specified in
HexaPlus_i_stabZ.fzfile. Likewise, Listing 1.2 describes the output linguistic
variable depicted in Fig. 10 and specified in HexaPlus_o_stabZ.fz file.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 59

Listing 1.1 HexaPlus_i_stabZ.fz: Input linguistic variables and membership functions of vertical
movement and hovering controller

1 uavZ_error NFAR -1001 -3.00 -3.00 -1.50
2 uavZ_error NMID -3.00 -1.50 -1.50 -0.50
3 uavZ_error NNEAR -1.50 -0.05 -0.05 0
4 uavZ_error ZERO -0.05 0 0 0.05
5 uavZ_error PNEAR 0 0.05 0.05 1.50
6 uavZ_error PMID 0.50 1.50 1.50 3.00
7 uavZ_error PFAR 1.50 3.00 3.00 1001
8
9 speed_uavZ NFAST -1000000 -1.00000 -1.00000 -0.50000

10 speed_uavZ NSLOW -1.00000 -0.50000 -0.50000 0.00000
11 speed_uavZ ZERO -0.50000 0.00000 0.00000 0.50000
12 speed_uavZ PSLOW 0.00000 0.50000 0.50000 1.00000
13 speed_uavZ PFAST 0.50000 1.00000 1.00000 1000000

Listing 1.2 HexaPlus_o_stabZ.fz:Output linguistic variables andmembership functions of vertical
movement and hovering controller

1 uavZ_error NFAR -1001 -3.00 -3.00 -1.50
2 uavZ_error NMID -3.00 -1.50 -1.50 -0.50
3 uavZ_error NNEAR -1.50 -0.05 -0.05 0
4 uavZ_error ZERO -0.05 0 0 0.05
5 uavZ_error PNEAR 0 0.05 0.05 1.50
6 uavZ_error PMID 0.50 1.50 1.50 3.00
7 uavZ_error PFAR 1.50 3.00 3.00 1001
8
9 speed_uavZ NFAST -1000000 -1.00000 -1.00000 -0.50000

10 speed_uavZ NSLOW -1.00000 -0.50000 -0.50000 0.00000
11 speed_uavZ ZERO -0.50000 0.00000 0.00000 0.50000
12 speed_uavZ PSLOW 0.00000 0.50000 0.50000 1.00000
13 speed_uavZ PFAST 0.50000 1.00000 1.00000 1000000

Linguistic variables files follow the same format. Thus, these output linguistic
variable files can be reused as input from different fuzzy controllers. As one can see
in Listings 1.1 and 1.2, each line describes one linguistic variable. The first token
is the name of linguistic variable, e.g. the vertical distance error uavZ_error and
the vertical speed speed_uavZ. The second token is the name of the membership
function, and the next four fields describe the range of values. There are four values in
order to createmembership functionwith triangular or trapezoidal shape.A triangle is
formedwhen the second and third values are the same. These four points is referenced
in the code implementation by variables “a”, “b”, “c” and “d”, respectively, defined
in the MembershipFunction class (see MembershipFunction.h MembershipFunction
in the include directory).

The vertical movement and hovering controller defines 35 fuzzy rules as depicted
in Table1 in Sect. 3.3. These rules are specified in HexaPlus_r_stabZ.fz file
that is shown in Listing 1.3).

Listing 1.3 HexaPlus_r_stabZ.fz: fuzzy rules of vertical movement and hovering controller
1 STABZ_NFAR_01 if uavZ_error is NFAR and speed_uavZ is PFAST then Othrottle is NMAX
2 STABZ_NFAR_02 if uavZ_error is NFAR and speed_uavZ is PSLOW then Othrottle is NMAX
3 STABZ_NFAR_03 if uavZ_error is NFAR and speed_uavZ is ZERO then Othrottle is NMAX
4 STABZ_NFAR_04 if uavZ_error is NFAR and speed_uavZ is NSLOW then Othrottle is NMAX
5 STABZ_NFAR_05 if uavZ_error is NFAR and speed_uavZ is NFAST then Othrottle is NMAX
6
7 STABZ_NMID_01 if uavZ_error is NMID and speed_uavZ is PFAST then Othrottle is NMAX
8 STABZ_NMID_02 if uavZ_error is NMID and speed_uavZ is PSLOW then Othrottle is NMAX
9 STABZ_NMID_03 if uavZ_error is NMID and speed_uavZ is ZERO then Othrottle is NMID

10 STABZ_NMID_04 if uavZ_error is NMID and speed_uavZ is NSLOW then Othrottle is NMID

60 E. Koslosky et al.

11 STABZ_NMID_05 if uavZ_error is NMID and speed_uavZ is NFAST then Othrottle is NMID
12
13 STABZ_NNEAR_01 if uavZ_error is NNEAR and speed_uavZ is PFAST then Othrottle is NMID
14 STABZ_NNEAR_02 if uavZ_error is NNEAR and speed_uavZ is PSLOW then Othrottle is NMID
15 STABZ_NNEAR_03 if uavZ_error is NNEAR and speed_uavZ is ZERO then Othrottle is NMIN
16 STABZ_NNEAR_04 if uavZ_error is NNEAR and speed_uavZ is NSLOW then Othrottle is NMIN
17 STABZ_NNEAR_05 if uavZ_error is NNEAR and speed_uavZ is NFAST then Othrottle is NMIN
18
19 STABZ_ZERO_01 if uavZ_error is ZERO and speed_uavZ is PFAST then Othrottle is NMIN
20 STABZ_ZERO_02 if uavZ_error is ZERO and speed_uavZ is PSLOW then Othrottle is NMIN
21 STABZ_ZERO_03 if uavZ_error is ZERO and speed_uavZ is ZERO then Othrottle is ZERO
22 STABZ_ZERO_04 if uavZ_error is ZERO and speed_uavZ is NSLOW then Othrottle is PMIN
23 STABZ_ZERO_05 if uavZ_error is ZERO and speed_uavZ is NFAST then Othrottle is PMIN
24
25 STABZ_PNEAR_01 if uavZ_error is PNEAR and speed_uavZ is NFAST then Othrottle is PMID
26 STABZ_PNEAR_02 if uavZ_error is PNEAR and speed_uavZ is NSLOW then Othrottle is PMID
27 STABZ_PNEAR_03 if uavZ_error is PNEAR and speed_uavZ is ZERO then Othrottle is PMID
28 STABZ_PNEAR_04 if uavZ_error is PNEAR and speed_uavZ is PSLOW then Othrottle is PMIN
29 STABZ_PNEAR_05 if uavZ_error is PNEAR and speed_uavZ is PFAST then Othrottle is PMIN
30
31 STABZ_PMID_01 if uavZ_error is PMID and speed_uavZ is NFAST then Othrottle is PMAX
32 STABZ_PMID_02 if uavZ_error is PMID and speed_uavZ is NSLOW then Othrottle is PMAX
33 STABZ_PMID_03 if uavZ_error is PMID and speed_uavZ is ZERO then Othrottle is PMID
34 STABZ_PMID_04 if uavZ_error is PMID and speed_uavZ is PSLOW then Othrottle is PMID
35 STABZ_PMID_05 if uavZ_error is PMID and speed_uavZ is PFAST then Othrottle is PMID
36
37 STABZ_PFAR_01 if uavZ_error is PFAR and speed_uavZ is NFAST then Othrottle is PMAX
38 STABZ_PFAR_02 if uavZ_error is PFAR and speed_uavZ is NSLOW then Othrottle is PMAX
39 STABZ_PFAR_03 if uavZ_error is PFAR and speed_uavZ is ZERO then Othrottle is PMAX
40 STABZ_PFAR_04 if uavZ_error is PFAR and speed_uavZ is PSLOW then Othrottle is PMAX
41 STABZ_PFAR_05 if uavZ_error is PFAR and speed_uavZ is PFAST then Othrottle is PMAX

The first token is the rule name. Such information is used to identify each rule and
it is not used for processing. The token “if” indicates that the next tokens are related
to the rule premises. Each premise must specify one or more logical expressions
following the format name of linguistic variable “is” name of a membership function
value. The token “is” indicates that the activation level for eachmembership function
must be calculated. A premise may indicate multiple expressions that are related by
means of “AND” or “OR” operators. If “AND” operator is used, the rule activation
(consequence) is equal to the minimum activation of all the premises of this rule. If
“OR” operator is used, the rule activation is equal to the maximum activation of all
premises.

The token “then” indicates that the next tokens are related to the consequence.
During the rule inference process, an activation is assigned to the rule according
to its premises activation. During the defuzzyfication, the activation level of each
output linguistic variable is obtained by using the maximum operator, forming an
area under all the membership functions that are activated in the rule (see Sect. 3.1).
There may be one or more membership function values whose area value is greater
than zero. The Center of Gravity (COG) approach is used to determine the weighted
average of these areas which is used to determine the raw output value. Section3.3
provides an example of this process.

4.4 Fuzzy Library Implementation

The fuzzy library provides the set of classes depicted in class diagram shown
in Fig. 15. Our package provides a C++ implementation of the fuzzy library. A
Fuzzy Set object is composed of two sets of Linguistic Variables objects: one for

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 61

Fig. 15 The UML class diagram of the fuzzy logic library

representing input and another representing output linguistic variables. In addition,
Fuzzy Set object owns a set of fuzzy Rules. Each Rules is composed of one or
more premises and one or more consequences. Premises and consequences are rep-
resented as Rules Element objects. One premise describes a logic expression that
includes a Linguistic Variable and Membership Function value. One consequence
defines a value for a output Linguistic Variable. Each Linguistic Variable has a set of
Membership Functions, which, in turn, represents triangular or trapezoidal shapes as
depicted in Figs. 9, 10, and 11 in Sect. 3.3. The fuzzy library provides an additional
class named FuzzyLoader. Such a class is responsible to load the information con-
tained in the fuzzy set files, i.e. linguistic variables, membership functions, and rules
(see Sect. 4.3).

In order to process the fuzzy control system implemented using the proposed
library, the sequence of steps must be performed. First of all, the objects represent-
ing fuzzy set must be instantiated. For that, a FuzzyLoader object is created. It loads
the information from the fuzzy set files (*.fz) and instantiates the library objects
accordingly. In the hexacopter movement control system, the HexaPlus class imple-
ments a method called HexaPlus::initFZ() that is responsible for loading the fuzzy
set. Listing 1.4 shows a code fragment of this method. This code shows how to load
the fuzzy set files of the vertical movement and hovering controller.

Listing 1.4 Source code fragment of HexaPlus::initFZ() method
1 void HexaPlus :: initFZ () {
2 // Getting the package path
3 std:: string path = ros:: package :: getPath("hexaplus_tutorial");
4 // String objects declared
5 std:: stringstream ssi ,sso ,ssr;
6

62 E. Koslosky et al.

7 // Using the FuzzyLoader to upload the fuzzy artifacts
8 fuzzy :: FuzzyLoader fzLoader;
9 ... // some lines are omitted

10
11 // Loading inputs and outputs linguistics variable
12 // with their membership functions
13 // and the rules of vertical controller
14 ssi.str(""); ssi << path << "/fz/HexaPlus_i_stabZ.fz";
15 sso.str(""); sso << path << "/fz/HexaPlus_o_stabZ.fz";
16 ssr.str(""); ssr << path << "/fz/HexaPlus_r_stabZ.fz";
17
18 fzLoader.loadFromFile(fS_stabZ ,
19 ssi.str().c_str (),
20 sso.str().c_str (),
21 ssr.str().c_str ());
22 ... // remainder lines are omitted

Once the fuzzy objects are instantiated, the system controller can be initialized
and executed. The HexaPlus::initHexaPlus() method initializes all variables related
to the hexacopter movement control system. On the other hand, the source code file
named rosvrep_controller.cpp contains the main() function. In addition to
the invocation of HexaPlus::initHexaPlus() method, the main() function
defines a ROS node and configures the data publishers and subscribers. Thereafter
the main control loop is executed. Details are provided in Sect. 4.5.

The fuzzy system is processed within the FuzzySet::fuzzifying()
method. As presented in Sect. 3.2, there are five fuzzy controllers, and hence, there
are FuzzySet objects to control hovering, vertical and horizontal movements and
heading. Listing 1.5 shows the implementation of FuzzySet::fuzzifying()
method. As one can see three main steps are executed.

Listing 1.5 Source code of FuzzySet::fuzzifying() method
1 void FuzzySet :: fuzzifying ()
2 {
3 fuzzyfication ();
4 ruleInference ();
5 defuzzification ();
6 }

The first step is called fuzzification and consists of converting the raw value of a
sensor reading into a value of linguistic variable. For that, the raw value is compared
to the range of values defined in a membership function, in order to calculate the
degree of membership of the raw values. Therefore, once the degree of member-
ship is calculated, activation level for the raw value is identified. Listing 1.6 shows
FuzzySet::fuzzyfication() method implementation. Listing 1.7 shows
MembershipFunction::calcDegreeMembership() method implemen-
tation. The delta1 and delta2 variables indicate the distance of inputValue
parameter5 to the points a and d that represent the base of the trapezium or triangle.
The membership degree is calculated by comparing the inclination of two segments
(slopeLeft and slopeRight) multiplied by the corresponding delta values.

5I.e. the raw value read from a sensor.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 63

Listing 1.6 Source code of FuzzySet::fuzzyfication() method
1 void FuzzySet :: fuzzyfication ()
2 {
3 typedef std::vector <Linguistic >:: iterator

linguisticIterator_t;
4 typedef std::vector <MembershipFunction >:: iterator

membershipFunctionIterator_t;
5 linguisticIterator_t it_Ling;
6 membershipFunctionIterator_t it_Mem;
7
8 for (it_Ling=inputLinguisticSet ->linguisticVector.begin ();
9 it_Ling != inputLinguisticSet ->linguisticVector.end();

10 it_Ling ++) {
11 for (it_Mem=it_Ling ->membershipFunctionVector .begin ();
12 it_Mem!=it_Ling ->membershipFunctionVector .end();
13 it_Mem ++) {
14 it_Mem ->calcDegreeMembership(it_Ling ->value);
15 }
16 }
17 }

Listing 1.7 Source code of MembershipFunction::calcDegreeMembership()
method

1 void MembershipFunction :: calcDegreeMembership(float inputValue)
2 {
3 float delta1 , delta2;
4 delta1 = inputValue - a;
5 delta2 = d - inputValue;
6 if ((delta1 <= 0) || (delta2 <=0)) {
7 degree = 0;
8 } else {
9 degree= minimum ((slopeLeft*delta1),(slopeRight*delta2));

10 }
11 degree = minimum(degree ,FZ_MAX_LIMIT);
12 }
13 // Slopes are calculated during the loading of fuzzy set files
14 // slopeLeft = (float)FZ_MAX_LIMIT /(b-a);
15 // slopeRight = (float)FZ_MAX_LIMIT /(d-c);

The second step of fuzzifying process is to perform the rules inference process.
Such a process is implemented in FuzzySet::ruleInference() method as
shown in Listing 1.8. As one can see, the inference process has twomain steps. In the
first step, the inference values previously calculated are dismissed. On the other hand,
in the second step, the strength of all rules is calculated. The degree of membership
for each linguistic variable is used to define the rule strength which, in turn, is used
to define the rule activation.

Listing 1.8 Source code of FuzzySet::ruleInference() method
1 void FuzzySet :: ruleInference ()
2 {
3 typedef std::vector <Rule >:: iterator RuleIterator_t;
4 typedef std::vector <RuleElement >:: iterator

RuleElementIterator_t;
5
6 RuleIterator_t it_r;
7 RuleElementIterator_t it_e;
8
9 //Clean up IF elements for new round

10 for (it_r=ruleSet ->ruleVector.begin (); it_r != ruleSet ->
ruleVector.end(); it_r ++) {

11 it_r ->strength =0;

64 E. Koslosky et al.

12 for (it_e=it_r ->then_RuleElementVector.begin (); it_e !=
it_r ->then_RuleElementVector.end(); it_e ++) {

13 it_e ->linguistic ->value= 0;
14 it_e ->membershipFunction ->degree = 0;
15 }
16 }
17
18 // Inference
19 float strength_tmp;
20 for (it_r=ruleSet ->ruleVector.begin (); it_r != ruleSet ->

ruleVector.end(); it_r ++) {
21 // Calculate the strength of the premises
22 strength_tmp = FZ_MAX_LIMIT;
23 for (it_e=it_r ->if_RuleElementVector.begin (); it_e != it_r

->if_RuleElementVector.end(); it_e ++) {
24 strength_tmp = minimum(strength_tmp , it_e ->

membershipFunction ->degree);
25 if (!it_e ->isOperator)
26 trength_tmp = 1-strength_tmp;
27 }
28
29 // Calculate the strength of the consequences
30 for (it_e=it_r ->then_RuleElementVector.begin (); it_e !=

it_r ->then_RuleElementVector.end(); it_e ++) {
31 it_e ->membershipFunction ->degree = maximum(strength_tmp

,it_e ->membershipFunction ->degree);
32 if (!it_e ->isOperator)
33 it_e ->membershipFunction ->degree = 1 - it_e ->

membershipFunction ->degree;
34 }
35 it_r ->strength = strength_tmp;
36 }
37 }

Once all elements of rules are evaluated, the third step of fuzzifying process is the
defuzzyfication process.As discussed inSect. 3.2, during the defuzzyfication process,
the triangle/trapezoid area of the output linguistic variables is calculated taking into
account the membership function and the rule activation. Then the linguistic value
chosen as output is converted into a raw value that may be applied to the rotors.
Such a raw value is obtained by means of calculating an arithmetic average or a
weighted average (Center of Gravity method) of two areas. Listing 1.9 shows the
implementation of FuzzySet::defuzzification() method.

Listing 1.9 Source code of FuzzySet::defuzzification() method
1 void FuzzySet :: defuzzification ()
2 {
3 typedef std::vector <Linguistic >:: iterator

LinguisticIterator_t;
4 typedef std::vector <MembershipFunction >:: iterator

MembershipFunctionIterator_t;
5
6 LinguisticIterator_t it_l;
7 MembershipFunctionIterator_t it_m;
8
9 float sum_prod;

10 float sum_area;
11 float area , centroide;
12
13 for (it_l=outputLinguisticSet ->linguisticVector.begin (); it_l

!= outputLinguisticSet ->linguisticVector.end(); it_l ++)
14 {
15 sum_prod=sum_area =0;

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 65

16 for (it_m = it_l ->membershipFunctionVector .begin (); it_m
!= it_l ->membershipFunctionVector .end(); it_m ++)

17 {
18 area = it_m ->calcTrapeziumArea ();
19 centroide = it_m ->a + ((it_m ->d - it_m ->a) /2.0);
20 sum_prod += area * centroide;
21 sum_area += area;
22 }
23
24 if (sum_area ==0)
25 it_l ->value = FZ_MAX_OUTPUT;
26 else
27 {
28 it_l ->value = sum_prod/sum_area;
29 }
30 }
31 }

4.5 Main Controller Implementation

The hexacopter movement fuzzy control system has been implemented in some dis-
tinct source code files. The source code file named rosvrep_controller.cpp
implements the main control loop, i.e. the system main() function. The file
HexaPlus.cpp contains the implementation of the HexaPlus class that is respon-
sible for initializing the fuzzy library objects (see Sect. 4.4).

The main() function is divided in two parts. The first one performs all necessary
initialization, i.e. it instantiates the HexaPlus object, loads the fuzzy set files, creates
a ROS node, and and configures the data publishers (i.e. callback functions) and
subscribers. Listing 1.11 depicts fragments of the initialization part of the main()
function.

Listing 1.10 Fragments of main() function in rosvrep_controller.cpp
1 // /////////// THE CALLBACK FUNCTION

///////////////////////////////
2 // Subscriber callback functions for euler angles
3 ...
4 void callback_eulerZ(const std_msgs :: Float32 f)
5 { eulerZ = f.data; }
6 // Subscriber callback functions for GPS position
7 ...
8 void callback_gpsZ(const std_msgs :: Float32 f)
9 { gpsZ = f.data; }

10 // Subscriber callback functions for accelerometer sensor
11 ...
12 void callback_accelZ(const std_msgs :: Float32 f)
13 { accelZ = f.data; }
14 // Subscriber callback functions for operator setpoints
15 ...
16 void callback_gpsZ_setpoint(const std_msgs :: Float32 f)
17 {gpsZ_setpoint = f.data;}
18 ...
19 // /////////// END CALLBACK FUNCTION

///////////////////////////////
20
21 int main(int argc , char* argv [])
22 {

66 E. Koslosky et al.

23 unsigned long int time_delay =0;
24
25 // Initialize the ros subscribers
26 ros::init(argc , argv , "rosvrep_controller");
27 ros:: NodeHandle n;
28
29 // the rosSignal is used to send signal to uav via Publisher.
30 std_msgs :: Float32 rosSignal;
31 // Hexacopter sensor subscribers
32 ... // some lines are omitted
33
34 // Initialize the ROS Publishers
35 // Rotors publishers
36 ros:: Publisher rosAdv_propFRONT =
37 n.advertise <std_msgs ::Float32 >("/vrep/propFRONT" ,1);
38 ros:: Publisher rosAdv_propLEFT_FRONT =
39 n.advertise <std_msgs ::Float32 >("/vrep/propLEFT_FRONT" ,1)

;
40 ros:: Publisher rosAdv_propLEFT_REAR =
41 n.advertise <std_msgs ::Float32 >("/vrep/propLEFT_REAR" ,1);
42 ros:: Publisher rosAdv_propREAR =
43 n.advertise <std_msgs ::Float32 >("/vrep/propREAR" ,1);
44 ros:: Publisher rosAdv_propRIGHT_FRONT =
45 n.advertise <std_msgs ::Float32 >("/vrep/propRIGHT_FRONT"

,1);
46 ros:: Publisher rosAdv_propRIGHT_REAR =
47 n.advertise <std_msgs ::Float32 >("/vrep/propRIGHT_REAR" ,1)

;
48 ros:: Publisher rosAdv_propYaw =
49 n.advertise <std_msgs ::Float32 >("/vrep/Yaw" ,1);
50 ... // remainder lines are omitted

The second part is the main control loop of the hexacopter movement fuzzy con-
trol system. Such a loop performs three main activities: (i) pre-processing phase,
(ii) processing of five distinct fuzzy controllers, (iii) post-processing phase. These
activities are discussed in Sect. 3.2. Moreover, the execution frequency of loop iter-
ations is 10 Hz. Such an execution frequency is obtained by using the commands
loop_rate.sleep() and ros::spinOnce() at the end of the loop. The 10
Hz timing requirement has been arbitrarily defined and has been demonstrated to
be enough to control a simulated hexacopter as discussed in Sect. 5. However, it is
important to highlight that a more careful and sound timing analysis is required in
order to define the execution frequency of the main control loop for a real hexacopter.
A discussion on such an issue is out of this chapter scope. Interested reader should
refer to [19, 22–27].

The pre-processing phase is responsible for acquiring data from the input sensors,
processing the input movement commands, as well as for calculating the controlled
data used as input to the five fuzzy controllers. Two examples of data calculated
in this phase are: (i) vertical and horizontal speed calculated using the hexacopter
displacement over time; and (ii) the drift of new heading angle in comparison with
the actual heading. Listing 1.11 presents some fragments of the code related to the
pre-processing phase.

Listing 1.11 Fragments of pre-processing phase in rosvrep_controller.cpp
1 ... // some lines are omitted
2 // Determine the delta as errors.
3 // It means the difference between setpoint and current

information

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 67

4
5 // GPS error
6 gpsX_error = (float) gpsX_setpoint - gpsX;
7 gpsY_error = (float) gpsY_setpoint - gpsY;
8 gpsZ_error = (float) gpsZ_setpoint - gpsZ;
9

10 // View position error (yaw or heading of the hexacopter)
11 viewX_error = (float) viewX_setpoint - gpsX;
12 viewY_error = (float) viewY_setpoint - gpsY;
13
14 // Calculate the drift_angle
15 // This angle is the difference between direction
16 //to navigate and direction of view (yaw).
17 drift_angle = (float) eulerZ - uav_goal_angle;
18 ... // remainder lines are omitted

Once the pre-processing phase is executed, the second activity is responsi-
ble to execute the five fuzzy controllers. This occurs by means of invoking the
fuzzifying() method of each controller FuzzySet object. The “fuzzify-
ing” process includes “fuzzyfication”, rules inference, and “defuzzification” (see
Sect. 4.4). Listing 1.12 depicts the code fragment that processes the five fuzzy con-
trollers.

Listing 1.12 Fragment depicting the processing five fuzzy controllers in
rosvrep_controller.cpp

1 ... // previous lines are omitted
2 hexaplus.fS_stabX ->fuzzifying ();
3 hexaplus.fS_stabY ->fuzzifying ();
4 hexaplus.fS_stabZ ->fuzzifying ();
5 hexaplus.fS_yaw ->fuzzifying ();
6 hexaplus.fS_hnav ->fuzzifying ();
7 ... // remainder lines are omitted

The last activity is the post-processing phase. In this phase the output linguistic
variables are transformed in rawvalues that are applied on the rotors in order to control
the hexacoptermovements. Listing 1.13 presents a fragment of post-processing phase
code.

Listing 1.13 Fragment depicting the post-processing phase in rosvrep_controller.cpp
1 // fuzzifying is finished , applying the outputs
2 Opitch = hexaplus.fz_Opitch ->value;
3 Oroll = hexaplus.fz_Oroll ->value;
4 Othrottle = hexaplus.fz_Othrottle ->value;
5 Oyaw = hexaplus.fz_Oyaw ->value;
6 Opitch_nav = hexaplus.fz_Opitch_nav ->value;
7
8 propForceFRONT = (float) Othrottle - 0.45* zOth*cos(

angleOth);
9 propForceRIGHT_FRONT = (float) Othrottle - (0.45* zOth*(sin(

angleOth)/2));
10 propForceRIGHT_REAR = (float) Othrottle - (0.45* zOth*(sin(

angleOth)/2));
11 propForceREAR = (float) Othrottle + 0.45* zOth*cos(

angleOth);
12 propForceLEFT_REAR = (float) Othrottle + (0.45* zOth*(sin(

angleOth)/2));
13 propForceLEFT_FRONT = (float) Othrottle + (0.45* zOth*(sin(

angleOth)/2));
14
15 // Sending signals to the rotors
16 rosSignal.data = propForceFRONT;

68 E. Koslosky et al.

17 rosAdv_propFRONT.publish(rosSignal);
18 rosSignal.data = propForceRIGHT_FRONT;
19 rosAdv_propRIGHT_FRONT.publish(rosSignal);
20 rosSignal.data = propForceRIGHT_REAR ;
21 rosAdv_propRIGHT_REAR.publish(rosSignal);
22 rosSignal.data = propForceREAR;
23 rosAdv_propREAR.publish(rosSignal);
24 rosSignal.data = propForceLEFT_REAR;
25 rosAdv_propLEFT_REAR.publish(rosSignal);
26 rosSignal.data = propForceLEFT_FRONT ;
27 rosAdv_propLEFT_FRONT.publish(rosSignal);
28 rosSignal.data = Oyaw;
29 rosAdv_propYaw.publish(rosSignal);

Finally, it is worth mentioning that the main controller interacts with other two
applications. A command interface application named Panel sends commands to
determine a new position, as well as new heading direction, towards which the hexa-
copter must fly. Moreover, some data produced in the main controller are published
so that these telemetry data can be seen within an application named Telemetry. List-
ing 1.14 shows the code in rosvrep_controller.cpp that configures ROS
publishers for the telemetry data. Next sections provide detail on these two applica-
tions.

Listing 1.14 Configuring ROS publisher for publishing telemetry data in
rosvrep_controller.cpp

1 // Telemetry
2 ros:: Publisher rosAdv_gpsX_error = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsX_error" ,1);
3 ros:: Publisher rosAdv_gpsY_error = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsY_error" ,1);
4 ros:: Publisher rosAdv_gpsZ_error = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsZ_error" ,1);
5 ros:: Publisher rosAdv_drift_angle = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/drift_angle" ,1);
6 ros:: Publisher rosAdv_uav_goal_angle = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/uav_goal_angle" ,1);
7 ros:: Publisher rosAdv_uav_goal_dist = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/uav_goal_dist" ,1);
8 ros:: Publisher rosAdv_speed_uavZ = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/speed_uavZ" ,1);
9 ros:: Publisher rosAdv_speed_goal = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/speed_goal" ,1);

4.6 Command Interface Implementation

The command interface application named Panel is a ROS node that allows a user
to send commands to modify hexacopter pose and position. The implementation
of such an application is provided in rosvrep_panel.cpp file. Two types of
commands are allowed: (i) the user can set a new (X, Y, Z) position, and hence, the
hexacopter will fly towards this target position; (ii) the user can set a new heading
direction by setting a new (X, Y) position, and hence, the hexacopter will perform a
yaw movement in order to aim the target position.

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 69

The Panel application is very simple: it publishes a setpoint position and a view
direction, as well as provides means for user input. Listing 1.15 shows the code
fragment that configures the ROS publisher for the new 3D position (i.e. setpoint)
and new heading (i.e. view direction).

Listing 1.15 Configuring ROS publisher for telemetry data in rosvrep_panel.cpp
1 // Operator setpoint Publishers
2 ros:: Publisher rosAdv_gpsX_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsX_setpoint" ,1);
3 ros:: Publisher rosAdv_gpsY_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsY_setpoint" ,1);
4 ros:: Publisher rosAdv_gpsZ_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/gpsZ_setpoint" ,1);
5
6 ros:: Publisher rosAdv_viewX_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/viewX_setpoint" ,1);
7 ros:: Publisher rosAdv_viewY_setpoint = n.advertise <std_msgs ::

Float32 >("/hexaplus_tutorial/viewY_setpoint" ,1);

The Panel application must be executed with the rosrun command as depicted
in line 01 fromListing 1.16.When the user presses “s”, he/she is asked to inform new
position setpoint in terms of X, Y, Z coordinates. When the user presses “y”, he/she
is asked to inform the new heading direction new in terms of X, Y coordinates. In
the example presented in lines 09–12 from Listing 1.16, the user sent (5, 3, 7) as
new (X, Y, Z) target position. It is important to mention that the values for (X, Y, Z)
coordinates are measured in meters. After sending the new setpoints, the hexacopter
startsmoving. If the user press CTRL-C and the ENTERkeys, the program is finished
and the hexacopter continues until it reaches the target position.

Listing 1.16 Panel application
1 $ rosrun hexaplus_tutorial rosvrep_panel
2
3 ==========================
4
5 Setpoints for position [s]
6 Setpoints for View heading [y]
7 Or CTRL -C to exit.
8
9 Enter the option: s

10 Enter X value: 5
11 Enter Y value: 3
12 Enter Z value: 7

4.7 Telemetry Implementation

The Telemetry application is also a very simple program. It receives the signals
from the hexacopter sensors and from some data calculated during the execution
of the control program. Likewise the Panel application, the Telemetry application is
executed with the rosrun command as depicted in line 01 from Listing 1.18. The
telemetry data is shown in lines 03–23.

70 E. Koslosky et al.

Listing 1.17 Panel application
1 $ rosrun hexaplus_tutorial rosvrep_telemetry
2
3 ------------------- Telemetry ------------------------------
4 gpsX: 0.000000
5 gpsY: 0.000000
6 gpsZ: 0.000000
7 gpsX_error: 0.000000
8 gpsY_error: 0.000000
9 gpsZ_error: 0.000000

10 drift_angle: 0.000000 (0.000000
degrees)

11 uav_goal_angle: 0.000000 (0.000000
degrees)

12 uav_goal_dist: 0.000000
13 speed_uavZ: 0.000000
14 speed_goal: 0.000000
15 ---------------- Operator Command -------------------------
16 gpsX_setpoint: 0.000000
17 gpsY_setpoint: 0.000000
18 gpsZ_setpoint: 0.000000
19
20 viewX_setpoint: 0.000000
21 viewY_setpoint: 0.000000
22 ---
23 Press CTRL -C to exit

Telemetry application is a very simple program. It subscribes some ROS topics
and displays them on the terminal. The program terminates whenCTRL-C is pressed.
The rosvrep_telemetry.cpp file implements this application. The main part
of the code is the declaration of ROS subscribers and callback functions. Listing 1.18
shows these declarations. Callback functions declaration is depicted in line 02–04,
while ROS subscribers in line 09–11. One can notice that some topics start with
“/vrep”, others with “/hexaplus_tutorial”; this means that some topics came from
V-REP and other ones from the control program.

Listing 1.18 Panel application
1 ... // previous line omitted
2 void callback_gpsX_error(const std_msgs :: Float32 f) { gpsX_error

= f.data; }
3 void callback_gpsY_error(const std_msgs :: Float32 f) { gpsY_error

= f.data; }
4 void callback_gpsZ_error(const std_msgs :: Float32 f) { gpsZ_error

= f.data; }
5
6 ... // some lines omitted
7
8 ros:: Subscriber sub_gpsX_error = n.subscribe("/hexaplus_tutorial

/gpsX_error" ,1, callback_gpsX_error);
9 ros:: Subscriber sub_gpsY_error = n.subscribe("/hexaplus_tutorial

/gpsY_error" ,1, callback_gpsY_error);
10 ros:: Subscriber sub_gpsZ_error = n.subscribe("/hexaplus_tutorial

/gpsZ_error" ,1, callback_gpsZ_error);
11 ... // remaining lines omitted

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 71

5 Virtual Experimentation Platform

5.1 Introduction

A common tool used during the design of control systems is the simulator. There is a
number of different simulators available for using, e.g. Simulink, Gazebo and Stage.
In special, for robotics control systems design, a virtual environment for simulation
must allow the creation of objects and also the specification of some of the physical
parameters for both objects and the environment. The virtual environment should
also provide a programming interface to control not only the simulation, but also the
objects behavior and the time elapsed in simulation.

Although there are some robotics simulators supported inROS such asGazebo and
Stage, this tutorial discusses the use of a different robotics simulator named V-REP.
The main goal is to show the feasibility of using other (non-standard) simulators,
opening room for the engineer to choose the tools he/she finds suitable for his/her
project. The hexacopter movement fuzzy control system is used to illustrate how to
integrate V-REP with ROS. An overview on V-REP virtual simulation environment
is presented, so that the reader can understand how a virtual hexacopter was created.
In addition, the reader will learn how the V-REP acts as a ROS publisher/subscriber
to exchange messages with roscore.

V-REP uses the Lua language [28] to implement scripts that access and control
the simulator. Lua is quite easy to learn, and hence, only a few necessary instructions
are presented herein. Although V-REP uses Lua for its internal scripts, there are
many external interfaces to other languages, such as C/C++, Java, Python, Matlab
and ROS. V-REP documentation is extensive, and hence, the interested reader should
refer to [29].

The installation of the V-REP simulator on Linux is simple: the reader must
download the compressed installation file from Coppelia Robotics’ website [30] and
expand it on a directory using the UNIX tar command. It is interesting to mention
some subdirectories within V-REP directory:

• scenes: V-REP provides a number of scenes as examples. The scene files extension
is “ttt”.

• tutorial: This directory provides all scenes used in the tutorials presented in the
V-REP site [29].

• programming: This directory provides examples written in C/C++, Java, Lua and
Python. In addition, it provides the ros_packages interface that are in this
tutorial.

72 E. Koslosky et al.

5.2 V-REP Basics

When V-REP is started, a blank scenario is open automatically for using. The user
can start developing a new scenario, or open a scenario created previously, or open
a scenario from scenes directory. Figure16 shows a screenshot.

In order to illustrate the use of V-REP, select the menus File→Open scene
and choose the scene Hexacopter.ttt provided in the directory
~/catkin_hexac opter/src/hexaplus_tutorial/scenes. A com-
plex object like a hexacopter is built by putting objects under a hierarchic structure.
For instance, the sensors such as GPS, gyroscope and accelerometer are under the
HexacopterPlus object. During the simulation execution, if the HexacopterPlus or
any subpart, is moved, all parts are moved as if they are a single object. Any primitive
object, e.g. cuboids, cylinders and spheres, can be inserted into a scene. There are
some especial objects such as joints, video sensors, force sensors, and other. The
special objects have some specific attributes used during simulation, e.g. position
information, angle measurements, force data, etc. The sensors and rotors are made
from these kinds of objects. The user can get some already available devices from
“Model Browser”. For instance, there are several sensors available in the Model
Browser→components→sensors, e.g. laser scanners, the Kinect sensor,
Velodyne, GPS, Gyrosensor and Accelerometer. The last three sensors were used in
the hexacopter model.

It is important to mention that when a new robot is created, one must pay attention
to the orientation between the robot body and its subparts, especially sensors. Sensors
will not work properly whether there are inconsistencies in the parts orientation. The

Fig. 16 Screenshot of the V-REP initial screen

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 73

Fig. 17 Open the Lua script code

inertial frame 3D orientation is shown on the bottom right corner. When one clicks
on any object, the 3D axes of the selected object body orientation is depicted.

The camera sensor is an exception. The camera orientation has a rotation of+90◦
over the Z-axis and −90◦ over the X-axis in relation to the axes of the robot body.
Such a situation leads to an issue: Z-axis of the camera matches with the X-axis of
the robot. Thus, the camera X-axis matches the robot Y-axis, and the camera Y-axis
matches the robot Z-axis. Such a difference can be seen by clicking on vCamera and
hexacopter object while pressing the shift key at the same time.

In addition, one can observe that some objects have an icon to edit its Lua script
code, as shown at Fig. 17. If the object does not have a piece of code, it is possible
to add one by the right-clicking on the object and choosing Add→Associated
child script→Non Threaded (or Threaded).

While a simulation is running,V-REPexecutes the scripts associated to each object
throughout the main internal loop. Script execution can be run in separate thread
whether the associated script is indicated as threaded. V-REP controls the simulation
elapsing time by means of time parameters. In order to execute the simulation of this
tutorial, set the time configuration as “Bullet”, “Fast” at “dt = 10.0ms”. This will
ensure a suitable simulation speed.

5.3 Publishing ROS Topics

V-REP provides a plugin infrastructure that allows the engineer customize the sim-
ulation tool. RosPlugin services in V-REP is an interface to support general ROS

74 E. Koslosky et al.

functionality. The V-REP has several mechanisms to communicate with the user
code: (i) tubes are similar to the UNIX pipe mechanism; (ii) signals are similar to
global variables; (iii) wireless communication simulation; (iv) persistent data blocks;
(v) customLua functions; (vi) serial port; (vii) LuaSocket; (viii) custom libraries, etc.
An easy way to communicate with ROS is creating a V-REP signal and publishing
or subscribing its topic. RosPlugin publishers offer an API to setup and publish data
within ROS topics.

An example on how the V-REP publishes messages to roscore can be found
in the Lua child object script of HexacopterPlus. Let us consider the GPS as an
example. Before publishing GPS data, it is necessary to check if the ROS module
has been loaded. Listing 1.19 depicts the Lua script defined in the HexacopterPlus
element as shown in Fig. 17.

Listing 1.19 Lua script to check whether ROS module is loaded
1 ... -- previous lines are omitted
2 -- Check if the required remote Api plugin is there:
3 moduleName =0
4 moduleVersion =0
5 index =0
6 pluginNotFound=true
7 while moduleName do
8 moduleName ,moduleVersion=simGetModuleName(index)
9 if (moduleName ==’Ros’) then

10 pluginNotFound=false
11 end
12 index=index +1
13 end
14 if (pluginNotFound) then
15 -- Display an error message if the plugin was not found:
16 simDisplayDialog(’Error ’,
17 ’ROS plugin was not found .&& nSimulation will not run

properly ’,
18 sim_dlgstyle_ok ,false ,nil ,{0.8,0,0,0,0,0},{0.5,0,0,1,1,1})
19 else
20 -- Ok go on.
21 ... -- remainder lines are omitted

All plugins are loaded by executing the simLoadModule function, how-
ever, ROS plugins are loaded automatically during V-REP startup, i.e. the library
libv_repExtRos.so is loaded automatically. This is achieved because the
shared ROS libraries were generated and copied to the V-REP directory in Sect. 4.2.

The scripts in V-REP are divided into sections. At simulation time, all scripts are
executed within the internal main loop. Some sections are executed once, whereas
others are performed on each loop iteration. The script fragment presented in Listing
1.20 executes once on each simulation. For publishing the GPS data as topic to
roscore, a special Lua function is called. There is a variety of Lua functions
provided by V-REP team in order to work with ROS and others communication
channels.

Listing 1.20 preencher
1 ... // previous lines are omitted
2 -- Publish the Euler angle as ROS topic
3 topicName=simExtROS_enablePublisher (’eulerX ’ 1,

simros_strmcmd_get_float_signal ,-1,-1,’eulerX ’ ,0)

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 75

4 topicName=simExtROS_enablePublisher (’eulerY ’,1,
simros_strmcmd_get_float_signal ,-1,-1,’eulerY ’ ,0)

5 topicName=simExtROS_enablePublisher (’eulerZ ’,1,
simros_strmcmd_get_float_signal ,-1,-1,’eulerZ ’ ,0)

6 ... // next lines are omitted

The simExtROS_enablePublisher function is used to enable a publisher
on V-REP. The parameters are similar to the function used for publishing date by
means of ros::Publisher.advertise method as follows:

1. The name of the target topic to which data is published, e.g. “eulerX”.
2. The queue size has the samemeaning of the original queue size of ROS publisher.
3. The stream data type parameter is used define how to process the two follow-

ing parameters, e.g. the user can use the simros_strmcmd_get_float_
signal signal to publish floating-point data. There is a variety of predefined
data types.

4. The meaning of auxiInt1 parameter depends on the data type. When this
parameter is not in use, the value is −1.

5. The auxiInt2 parameter semantics is similar to auxiInt1.
6. The auxString parameter. The type simros_strmcmd_get_float_

signal means that a float type from a V-REP signal is being published. This
parameter must match with the signal name. Listing 1.21 depicts the GPS script
code that is used to explain how a V-REP signal is declared within a Lua script.

7. The publishCnt parameter indicates the number of times a signal is published
before it goes to sleep. The −1 value lead to start the sleep mode, whereas values
greater than zero indicates that data are published exactly publishCnt times.
The publisher wakes up when simExtROS_wakePublisher is executed. All
published data never sleep by setting this parameter to zero.

Some published or subscribed data types use the parameters auxiInt1 or
auxiInt2. For example, the simros_strmcmd_get_joint_state type
was used to get the joint state. It uses the auxiInt1 to indicate the joint handle.
Other type is simros_strmcmd_get_object_pose which is used to enable
data streaming from the the object pose. This type uses the auxiInt1 to identify
V-REP object handle and the auxiInt2 indicates the reference frame from which
the pose is obtained. For more information please see [31].

Listing 1.21 presents a code fragment of the virtual GPS script. These lines create
three distinct signals related to the object position information. The
objectAbsolutePosition variable is a Lua vector with values calculated
before in this fragment execution.

Listing 1.21 Fragment of Lua script of the virtual GPS
1 ... // previous lines are omitted
2 simSetFloatSignal(’gpsX’,objectAbsolutePosition [1])
3 simSetFloatSignal(’gpsY’,objectAbsolutePosition [2])
4 simSetFloatSignal(’gpsZ’,objectAbsolutePosition [3])
5 ... // next lines are omitted

76 E. Koslosky et al.

5.4 Subscribing to ROS Topics

A ROS node (e.g. the hexacopter main controller) may subscribe to ROS topics in
order to receive data published by other nodes, e.g. the sensor in the V-REP. Thus,
a virtual object can be controlled during simulation by means of subscribing ROS
topics within V-REP scripts. For instance, the rotor of the virtual hexacopter must
receive throttle signals published by the ROS node created in themain() function in
rosvrep controller.cpp file (see Sect. 4.5). Listing 1.22 shows the fragment
of HexacopterPlus object script that enables V-REP to subscribe topics and receive
the ROS messages.

Listing 1.22 Fragment of Lua script of the HexacopterPlus object
1 ... // previous lines are omitted
2 -- Rotors Subscribers
3 simExtROS_enableSubscriber(’propFRONT ’, 1,

simros_strmcmd_set_float_signal , -1,-1, ’propFRONT ’)
4 simExtROS_enableSubscriber(’Yaw’, 1,

simros_strmcmd_set_float_signal , -1,-1, ’Yaw’)
5 ... // next lines are omitted

The parameters of simExtROS_enableSubscriber function are similar to
the simExtROS_enablePublisher function (see Sect. 5.3), however, there is
a difference in the specification on how data are handled. The simros_strmcmd_
set_ float_signal parameter indicates that V-REP subscribes to the topic,
whilesimros_strmcmd_get_float_signal indicates that V-REP publishes
in the topic. The last parameter is a signal that is used in a Lua script associ-
ated with any objects from V-REP virtual environment. For instance, propFRONT
signal is used in the script of propeller_jointFRONT object by means of calling
simGetFloatSignal function in the parameters list of simSetJointTarget
Velocity function as shown in Listing 1.23. A V-REP signal is a global variable.
When the simExtROS_enableSubscriber is executed, a value is assigned
to that global variable. If such a global variable does not exist, the simExtROS_
enableSubscriber creates it.

Listing 1.23 Fragment of Lua script of the HexacopterPlus object
1 ... // previous lines are omitted
2 simSetJointTargetVelocity (simGetObjectHandle(’

propeller_jointFRONT ’),
3 simGetFloatSignal(’propFRONT ’)*-200)
4 ... // next lines are omitted

5.5 Publishing Images from V-REP

Many robotic applications usually demand some sort of video processing in order
to perform advanced tasks. Cameras are commonly used in computational vision
tasks, e.g. for collision avoidance while the robot is moving or for mapping and
navigating towards the environment [32]. Thus, it is important to provide means

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 77

for video processing during the simulation phase of a robot design. This sections
presents how to setup a virtual video camera in V-REP and how to stream the capture
video to a ROS node.

It is possible to many distinct data types within topics published or subscribe
between ROS and V-REP, including images from the virtual video sensor. A ROS
node receives an image that can be processed using the OpenCV API [33]. Although
the OpenCV library is not a part of ROS, vision_opencv package [34] pro-
vides an interface between ROS and the OpenCV library. This package was used
in the camera application6 implemented in rosvrep_camera.cpp. Although
this tutorial does not discuss video processing, we show how to setup a ROS topic
and stream the video captured within the V-REP simulated environment. For that,
the HexacopterPlus has an object named vCamera attached onto its frame. vCam-
era object is a video sensor that streams images captured during simulation. Using
the simros_strmcmd_get_ vision_sensor_image type, V-REP is able
to send images to a ROS node. Listing 1.24 depicts a fragment of the Lua script from
HexacopterPlus object. The video streamed from the virtual camera can be seen in
the camera application.

Listing 1.24 Fragment of Lua script from the HexacopterPlus object
1 ... // previous lines are omitted
2 vCameraHandle=simGetObjectHandle(’vCamera ’)
3 topicName=simExtROS_enablePublisher (’vCamera ’,1,
4 simros_strmcmd_get_vision_sensor_image ,

vCameraHandle ,0,’’)
5 ...

5.6 Running the Sample Scenarios

Our package provides two scenes that are located in the scenes subdirectory.
The first scene was modeled in Hexacopter.ttt file. It was created to illus-
trate how the hexacopter was created in V-REP. The second scene was modeled in
rosHexaPlus_scene.ttt. This is a more elaborated scene whose environment
presents trees and textures. The aim is to illustrate the hexacopter movements, and
hence, it is the scene used in the rest of this section.

Before starting the scene execution, the reader must ensure that roscore
and V-REP are running (see Sect. 4.2). In the V-REP, open the rosHexaPlus_
scene.ttt file using the menu command File→Open scene. The reader
must start the simulation by either choosing the menu option Simulation→
Start Simulation or by clicking on Start/resume simulation in the
toolbar.

Go to the terminal that is executing the rosvrep_panel application as shown
in Fig. 18. The first set of coordinates must be inserted in the order presented in
in Table2, aiming to command the hexacopter to fly around the environment. It is

6This application was created for debugging purposes and it is not discussed in this chapter.

78 E. Koslosky et al.

Fig. 18 A screenshot of the test

Table 2 First test: hexacopter flying around the environment

Commands
sequence

Target coordinates Heading

X Y Z X Y

1 −15 15 3 −17 11

2 −7 10 10 −17 11

3 7 10 10 −3 2

4 2 −3.5 10 −3 2

5 2 −3.5 0 −3 2

important to notice that the hexacopter carry a free payload. Insert the target position
by using the “s” option and then heading directions using the “y” option. The next
target position should be sent only after the hexacopter reaches the position indicated
in previous command. The reader can see the execution using these coordinates in
the youtube video https://youtu.be/Pvve5IFz4e4. This video shows a long distance
movement.

The second simulation shows a flight in which the hexacopter moves to short
distance target position. Figure19 shows a screenshot on which one can see the
hexacopter behavior carrying a free payload. In this second test, the reader should
insert the commands shown in Table3. The video of this test can be seen in in https://
youtu.be/7n8tThctAns.

https://youtu.be/Pvve5IFz4e4
https://youtu.be/7n8tThctAns
https://youtu.be/7n8tThctAns

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 79

Fig. 19 The V-REP screenshot of short distance execution

Table 3 First test: hexacopter flying around the environment

Commands
sequence

Target coordinates Heading

X Y Z X Y

1 −20 18 3 −18 23

2 −18 18 3 −10 18

3 −23 22 5 −10 18

6 Final Remarks

This chapter describes a tutorial onhow to implement a control systembasedonFuzzy
Logic. Themovement control system of an hexacopter is used as a case study. AROS
package that includes a fuzzy library was presented. By using such a package, we
discussed how to integrate the commercial robotics simulation environment namedV-
REPwith a fuzzy control system implemented using ROS infrastructure. Instructions
on how to perform a simulation with V-REP were presented. Therefore, this tutorial
provides additional knowledge on using different tools for designing ROS-based
systems.

This tutorial can be used as a starting point to make more experiences. The reader
can modify or improve the proposed fuzzy control system by changing the “.fz”
files. There is no need to modify the controller main controller implementation in
rosvrep_controller.cpp file. As a suggestion to further improve the skills
on using the propose fuzzy package and V-REP, the reader could create another ROS
node which may act as a mission controller by sending automatically a set of target
positions.

80 E. Koslosky et al.

References

1. Koslosky, E., et al. Hexacopter tutorial package. https://github.com/ekosky/hexaplus-ros-
tutorial.git. Accessed Nov 2016.

2. Bipin, K., V. Duggal, and K.M. Krishna. 2015. Autonomous navigation of generic monocular
quadcopter in natural environment. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), 1063–1070.

3. Haque, M.R., M. Muhammad, D. Swarnaker, and M. Arifuzzaman. 2014. Autonomous quad-
copter for product home delivery. In 2014 International Conference on Electrical Engineering
and Information Communication Technology (ICEEICT), 1–5.

4. Leishman, R., J. Macdonald, T. McLain, and R. Beard. 2012. Relative navigation and control
of a hexacopter. In 2012 IEEE International Conference on Robotics and Automation (ICRA),
4937–4942.

5. Ahmed, O.A., M. Latief, M.A. Ali, and R. Akmeliawati. 2015. Stabilization and control of
autonomous hexacopter via visual-servoing and cascaded-proportional and derivative (PD)
controllers. In 2015 6th International Conference on Automation, Robotics and Applications
(ICARA), 542–549.

6. Alaimo, A., V. Artale, C.L.R. Milazzo, and A. Ricciardello. 2014. PID controller applied to
hexacopter flight. Journal of Intelligent & Robotic Systems 73 (1–4): 261–270.

7. Ołdziej, D., andZ.Gosiewski. 2013.Modelling of dynamic and control of six-rotor autonomous
unmanned aerial vehicle. Solid State Phenomena 198: 220–225.

8. Collotta, M., G. Pau, and R. Caponetto. 2014. A real-time system based on a neural network
model to control hexacopter trajectories. In 2014 International Symposium on Power Electron-
ics, Electrical Drives, Automation and Motion (SPEEDAM), 222–227.

9. Artale, V., C.L. Milazzo, C. Orlando, and A. Ricciardello. 2015. Genetic algorithm applied
to the stabilization control of a hexarotor. In Proceedings of the International Conference on
Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), 222–227.

10. Bacik, J., D. Perdukova, and P. Fedor. 2015. Design of fuzzy controller for hexacopter position
control. Artificial Intelligence Perspectives and Applications, 193–202. Berlin: Springer.

11. Koslosky, E., M.A. Wehrmeister, J.A. Fabro, and A.S. Oliveira. 2016. On using fuzzy logic
to control a simulated hexacopter carrying an attached pendulum. In Designing with Com-
putational Intelligence, vol. 664, ed. N. Nedjah, H.S. Lopes, and L.M. Mourelle. Studies in
Computational Intelligence. Berlin: Springer. 01–32 Expected publication on Dec. 2016.

12. Open Source Robotics Foundation: ROS basic tutorials. http://wiki.ros.org/ROS/Tutorials.
Accessed March 2016.

13. Coppelia Robotics: V-REP: Virtual robot experimentation platform. http://www.
coppeliarobotics.com. Accessed March 2016.

14. Coppelia Robotics: V-REP bubblerob tutorial. http://www.coppeliarobotics.com/helpFiles/en/
bubbleRobTutorial.htm. Accessed March 2016.

15. Coppelia Robotics: V-REP tutorial for ROS indigo integration. http://www.coppeliarobotics.
com/helpFiles/en/rosTutorialIndigo.htm. Accessed March 2016.

16. Yoshida, K., I. Kawanishi, and H. Kawabe. 1997. Stabilizing control for a single pendulum by
moving the center of gravity: theory and experiment. In American Control Conference, 1997.
Proceedings of the 1997, vol. 5, 3405–3410.

17. Passino, K.M., and S. Yurkvich. 1998. Fuzzy Control. Reading: Addison-Wesley.
18. Hwang, G.C., and S.C. Lin. 1992. A stability approach to fuzzy control design for nonlinear

systems. Fuzzy Sets and Systems 48 (3): 279–287.
19. Pedro, J.O., and C. Mathe. 2015. Nonlinear direct adaptive control of quadrotor UAV using

fuzzy logic technique. In 2015 10th Asian Control Conference (ASCC), 1–6.
20. Pedrycz,W., and F. Gomide. 2007.RuleBased Fuzzy Models, 276–334. NewYork:Wiley-IEEE

Press.
21. Open Source Robotics Foundation: ROS remapping. http://wiki.ros.org/Remapping%

20Arguments. Accessed March 2016.

https://github.com/ekosky/hexaplus-ros-tutorial.git
https://github.com/ekosky/hexaplus-ros-tutorial.git
http://wiki.ros.org/ROS/Tutorials
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com/helpFiles/en/bubbleRobTutorial.htm
http://www.coppeliarobotics.com/helpFiles/en/bubbleRobTutorial.htm
http://www.coppeliarobotics.com/helpFiles/en/rosTutorialIndigo.htm
http://www.coppeliarobotics.com/helpFiles/en/rosTutorialIndigo.htm
http://wiki.ros.org/Remapping%20Arguments
http://wiki.ros.org/Remapping%20Arguments

Designing Fuzzy Logic Controllers for ROS-Based Multirotors 81

22. Chak, Y.C., and R. Varatharajoo. 2014. A heuristic cascading fuzzy logic approach to reactive
navigantion for UAV. IIUM Engineering Journal, Selangor - Malaysia 15 (2).

23. Sureshkumar, V., and K. Cohen. Autonomous control of a quadrotor UAV using fuzzy logic.
Unisys Digita - Journal of Unmanned System Technology, Cincinnati, Ohio.

24. EusebiuMarcu,C.B.UAVfuzzy logic control systemstability analysis in the sense ofLyapunov.
UPB Scientific Bulletin, Series D 76 (2).

25. Abeywardena, D.M.W., L.A.K. Amaratunga, S.A.A. Shakoor, and S.R. Munasinghe. 2009.
A velocity feedback fuzzy logic controller for stable hovering of a quad rotor UAV. In 2009
International Conference on Industrial and Information Systems (ICIIS), 558–562.

26. Gomez, J.F., and M. Jamshidi. 2011. Fuzzy adaptive control for a UAV. Journal of Intelligent
& Robotic Systems 62 (2): 271–293.

27. Limnaios, G., and N. Tsourveloudis. 2012. Fuzzy logic controller for a mini coaxial indoor
helicopter. Journal of Intelligent & Robotic Systems 65 (1): 187–201.

28. Ierusalimschy, R., W. Celes, and L.H. de Figueiredo. 2016. Lua documentation. https://www.
lua.org/. Accessed March 2016.

29. Coppelia Robotics: V-REP help. http://www.coppeliarobotics.com/helpFiles/. Accessed
March 2016.

30. CoppeliaRobotics:V-REPdownloadpage. http://www.coppeliarobotics.com/downloads.html.
Accessed March 2016.

31. Coppelia Robotics: ROS publisher typer for V-REP. http://www.coppeliarobotics.com/
helpFiles/en/rosPublisherTypes.htm. Accessed March 2016.

32. Steder, B., G. Grisetti, C. Stachniss, and W. Burgard. 2008. Visual SLAM for flying vehicles.
IEEE Transactions on Robotics 24 (5): 1088–1093.

33. Itseez: OpenCV - Open Source Computer Vision Library. http://opencv.org/. Accessed Nov
2016.

34. Mihelich, P., and J. Bowman. 2016. vision_openCV documentation. Accessed March 2016.

Author Biographies

Emanoel Koslosky is Master’s degree student in the applied computing and embedded systems.
As a student, he took classes abount Mobile Robotics, Image Processing, Hardware Architecture
for Embedded Systems, Operating Systems in Real Time. As a professional, he received Certi-
fications of Oracle Real Application Clusters 11g Certified Implementation - Specialist, Oracle
Database 10g Administrator Certified Professional - OCP, Oracle8i Database Administrator Cer-
tified Professional - OCP. He has professionally worked as programmer and developer since 1988
using languages such as C/C++, Oracle Pro*C/C++, Pro*COBOL, Java and Oracle Tools like Ora-
cle Designer, Oracle Developer, as a Database Administrator worked with high availability and
scalability environment, also as a System Adminstrator of Oracle e-Business Suite - EBS.

Marco Aurélio Wehrmeister received the Ph.D. degree in Computer Science from the Federal
University of Rio Grande do Sul (Brazil) and the University of Paderborn (Germany) in 2009
(double-degree). In 2009, he worked as Lecturer and Postdoctoral Researcher for the Federal Uni-
versity of Santa Catarina (Brazil). From 2010 to 2013, he worked as tenure track Professor with
the Department of Computer Science from the Santa Catarina State University (UDESC, Brazil).
Since 2013, he has been working as a tenure track Professor with the Department of Informatics
from the Federal University of Technology - Paraná (UTFPR, Brazil). From 2014 to 2016, he was
the Head of the M.Sc. course on Applied Computing of UTFPR. In 2015, Prof. Dr. Wehrmeister
was a Visiting Fellow (short stay) with School of Electronic, Electrical and Systems Engineer-
ing from the University of Birmingham (UK). Prof. Dr. Wehrmeister’s thesis was selected by the
Brazilian Computer Society as one of the six best theses on Computer Science in 2009. He is
member of the special commission on Computing Systems Engineering of the Brazilian Com-
puter Society. Since 2015, he is a member of the IFIP Working Group 10.2 on Embedded Systems.

https://www.lua.org/
https://www.lua.org/
http://www.coppeliarobotics.com/helpFiles/
http://www.coppeliarobotics.com/downloads.html
http://www.coppeliarobotics.com/helpFiles/en/rosPublisherTypes.htm
http://www.coppeliarobotics.com/helpFiles/en/rosPublisherTypes.htm
http://opencv.org/

82 E. Koslosky et al.

His research interests are in the areas of embedded and real-time systems, aerial robots, model-
driven engineering, and hardware/software engineering for embedded systems and robotics. Prof.
Dr. Wehrmeister has co-authored more than 70 papers in international peer-reviewed journals and
conference proceedings. He has been involved in various research projects funded by Brazilian
R&D agencies.

Andre Schneider de Oliveira holds a degree in Computer Engineering from the University of
Vale do Itajaí (2004), master’s degree in Mechanical Engineering from the Federal University of
Santa Catarina (2007) and Doctorate in Automation and Systems Engineering from the Federal
University of Santa Catarina (2011). He is currently Assistant Professor at the Federal Technolog-
ical University of Paran - Curitiba campus. He has carried out research in Electrical Engineering
with emphasis on Robotics, Mechatronics and Automation, working mainly with the following
topics: navigation and positioning of mobile robots; autonomous and intelligent systems; percep-
tion and environmental identification; and control systems for navigation.

João Alberto Fabro is an Associate Professor at Federal University of Technology - Parana
(UTFPR), where he has been working since 2008. From 1998 to 2007, he was with the State Uni-
versity of West-Parana (UNIOESTE). He has an undergraduate degree in Informatics, from Fed-
eral University of Paran (UFPR 1994), a Master’s Degree in Computing and Electric Engineer-
ing, from Campinas State University (UNICAMP 1996), a Ph.D. degree in Electric Engineering
and Industrial Informatics(CPGEI) from UTFPR (2003) and recently actuated as a Post-Doc at the
Faculty of Engineering, University of Porto, Portugal (FEUP, 2014). He has experience in Com-
puter Science, specially Computational Intelligence, actively researching on the following sub-
jects: Computational Intelligence (neural networks, evolutionary computing and fuzzy systems),
and Autonomous Mobile Robotics. Since 2009, he has participated in several Robotics Competi-
tions, in Brazil, Latin America and World Robocup, both with soccer robots and service robots.

Flying Multiple UAVs Using ROS

Wolfgang Hönig and Nora Ayanian

Abstract This tutorial chapter will teach readers how to use ROS to fly a small
quadcopter both individually and as a group. We will discuss the hardware platform,
the Bitcraze Crazyflie 2.0, which is well suited for swarm robotics due to its small
size andweight. After first introducing the crazyflie_ros stack and its use on an
individual robot, we will extend scenarios of hovering and waypoint following from
a single robot to the more complex multi-UAV case. Readers will gain insight into
physical challenges, such as radio interference, and how to solve them in practice.
Ultimately, this chapter will prepare readers not only to use the stack as-is, but also
to extend it or to develop their own innovations on other robot platforms.

Keywords ROS · UAV · Multi-Robot-System · Crazyflie · Swarm
1 Introduction

Unmanned aerial vehicles (UAVs) such as AscTec Pelican, Parrot AR.Drone, and
Erle-Copter have a long tradition of being controlled with ROS. As a result, there
are many ROS packages devoted to controlling such UAVs as individuals.1 How-
ever, using multiple UAVs creates entirely new challenges that such packages cannot
address, including, but not limited to, the physical space required to operate the
robots, the interference of sensors and network communication, and safety require-
ments.

Multiple UAVs have been used in recent research [1–5], but such research can
be overly complicated and tedious due to the lack of tutorials and books. In fact,

1E.g., http://wiki.ros.org/ardrone_autonomy, http://wiki.ros.org/mavros, http://wiki.ros.org/as
ctec_mav_framework.

W. Hönig (B) · N. Ayanian
Department of Computer Science, University of Southern California,
Los Angeles, CA, USA
email: whoenig@usc.edu
URL: http://act.usc.edu

N. Ayanian
e-mail: ayanian@usc.edu

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_3

83

http://wiki.ros.org/ardrone_autonomy
http://wiki.ros.org/mavros
http://wiki.ros.org/asctec_mav_framework
http://wiki.ros.org/asctec_mav_framework

84 W. Hönig and N. Ayanian

even with packages that can support multiple UAVs, documentation focuses on the
single UAV case, not considering the challenges that occur once multiple UAVs are
used. Research publications often skip implementation details, making it difficult to
replicate the results. Papers about specialized setups exist [6, 7], but rely on expensive
or commercially unavailable solutions.

This chapter will attempt to fill this gap in documentation. In particular, we try to
provide a step-by-step guide on how to reproduce results we presented in an earlier
research paper [3], which used up to six UAVs.2 We focus on a small quadcopter —
the Bitcraze Crazyflie 2.0 — and how to use it with the crazyflie_ros stack,
particularly as part of a group of 2 or more UAVs. We will assume that an external
position tracking system, such as a motion capture system, is available because the
Crazyflie is not able to localize itself with just onboard sensing. We will discuss the
physical setup and how to support a single human pilot. Each step will start with the
single UAV case and then extend to the more challenging multi-UAV case.

We begin with an introduction to the target platform, including the software setup
of the vendor’s software and the crazyflie_ros stack. We then show teleoper-
ation of multiple Crazyflies using joysticks. The usage of a motion capture system
allows us to autonomously hover multiple Crazyflies.We then extend this to multiple
UAVs following waypoints. The chapter will also contain important insights into the
crazyflie_ros stack, allowing the user to understand the design in-depth. This
can be helpful for users interested in implementing other multi-UAV projects using
different hardware or adding extensions to the existing stack.

Everything discussed here has been tested on Ubuntu 14.04 using ROS Indigo.
The stack and discussed software also work with ROS Jade (Ubuntu 14.04) and ROS
Kinetic (Ubuntu 16.04).

2 Target Platform

As our target platform we use the Bitcraze Crazyflie 2.0 platform, an open-source,
open-hardware nano quadcopter that targets hobbyists and researchers alike. Its small
size (92mmdiagonal rotor-to-rotor) andweight (29g)make it ideal for indoor swarm-
ing applications. Additionally, its size allows users to operate the UAVs safely even
with humans or other robots around. The low inertia causes only few parts to break
after a crash — the authors had several crashes from a height of 3m to a concrete
floor with damage only to cheaply replaceable plastic parts. A Crazyflie can com-
municate with a phone or PC using BlueTooth. Additionally, a custom USB dongle
called Crazyradio PA, or Crazyradio for short, allows lower latency communication.
The Crazyflie 2.0 and Crazyradio PA are shown in Fig. 1.

A block diagram of the Crazyflie’s architecture is shown in Fig. 2. The commu-
nication system is used to send the setpoint, consisting of thrust and attitude, tweak
internal parameters, and stream telemetry data, such as sensor readings. It is also

2Video available at http://youtu.be/px9iHkA0nOI.

http://youtu.be/px9iHkA0nOI

Flying Multiple UAVs Using ROS 85

Fig. 1 Our target platform Bitcraze Crazyflie 2.0 quadcopter (left), which can be controlled from
a PC using a custom USB dongle called Crazyradio PA (right). Image credit: Bitcraze AB

Fig. 2 Components and architecture of the Crazyflie 2.0 quadcopter. Based on images by
Bitcraze AB

possible to update the onboard software wirelessly. The Crazyflie has a 9-axis iner-
tial measurement unit (IMU) onboard, consisting of gyroscope, accelerometer, and
magnetometer. Moreover, a pressure sensor can be used to estimate the height. Most
of the processing is done on the main microcontroller (STM32). It runs FreeRTOS as
its operating system and state estimation and attitude control are executed at 250Hz.
A second microcontroller (nRF51) is used for the wireless communication and as
a power manager. The two microcontrollers can exchange data over the syslink,
which is a protocol using UART as a physical interface. An extension port permits
the addition of additional hardware. The official extensions include an inductive
charger, LED headlights, and buzzer. Finally, it is possible to use the platform on a
bigger frame if higher payload capabilities are desired. Extensions are called “decks”
and are also used by the community to add additional capabilities.3 The schematics

3https://www.hackster.io/bitcraze/products/crazyflie-2-0.

https://www.hackster.io/bitcraze/products/crazyflie-2-0

86 W. Hönig and N. Ayanian

as well as all firmwares are publicly available.4 The technical specifications are as
follows:

• STM32F405: main microcontroller, used for state-estimation, control, and han-
dling of extensions. We will call this STM32.
(Cortex-M4, 168 MHz, 192 kB SRAM, 1 MB flash).

• nRF51822: radio and powermanagementmicrocontroller.Wewill call this nRF51.
(Cortex-M0, 32 MHz, 16 kB SRAM, 128 kB flash).

• MPU-9250: 9-axis inertial measurement unit.
• LPS25H: pressure sensor.
• 8 kB EEPROM.
• uUSB: charging and wired communication.
• Expansion port (I2C, UART, SPI, GPIO).
• Debug port for STM32. An optional debug-kit can be used to convert to a standard
JTAG-connector and to debug the nRF51 as well.

The onboard sensors are sufficient to stabilize the attitude, but not the position.
In particular, external feedback is required to fly to predefined positions. By default,
this is the human who teleoperates the quadcopter either using a joystick connected
to a PC, or a phone. In this chapter, we will use a motion-capture system for fully
autonomous flights.

The vendor provides an SDK written in Python which runs on Windows, Linux,
and Mac. It can be used to teleoperate a single Crazyflie using a joystick, to plot
sensor data in real-time, and to write custom applications. We will use ROS in the
remainder of this chapter to control the Crazyflie; however, ROS is only used on the
PC controlling one or more Crazyflies. The ROS driver sends the data to the different
quadcopters using the protocol defined in the Crazyflie firmware.

The Crazyflie has been featured in a number of research papers. Themathematical
model and system identification of important parameters, such as the inertia matrix,
have been discussed in [8, 9]. An updated list with applications can be found on the
official webpage.5

3 Setup

In this section we will describe how to set up the Crazyflie software. We cover both
the official Python SDK and how to install the crazyflie_ros stack. The first
is useful to reconfigure the Crazyflie as well as for troubleshooting, while the later
will allow us to use multiple Crazyflies with ROS.

We assume a PC with Ubuntu 14.04 as operating system, which has ROS Indigo
(desktop-full) installed.6 It is better to install Ubuntu directly on a PC rather than

4https://github.com/bitcraze/.
5https://www.bitcraze.io/research/.
6http://wiki.ros.org/indigo/Installation/Ubuntu.

https://github.com/bitcraze/
https://www.bitcraze.io/research/
http://wiki.ros.org/indigo/Installation/Ubuntu

Flying Multiple UAVs Using ROS 87

using a virtual machine for two reasons: First, you will be using graphical tools,
such as rviz, which rely on OpenGL and therefore do not perform as well on a
virtual machine as when natively installed. Second, the communication using the
Crazyradio would have additional latency in a virtual machine since the USB signals
would go through the host system first. This might cause less stable control.

In particular, we will follow the following steps:

1. Configure the PC such that the Crazyradio will work for any user.
2. Install the official software package to test the Crazyflie.
3. Update Crazyflie’s onboard software to the latest version to ensure that it will

work with the ROS package.
4. Install the crazyflie_ros package and run a first simple connection test.

The later sections in this chapter assume that everything is set up as outlined here
to perform higher-level tasks.

3.1 Setting PC Permissions

By default, the Crazyradio will only work for a user with superuser rights when
plugged in to a PC. This is not only a security concern but also makes it harder to
use with ROS. In order to use it without sudo, we first add a group (plugdev) and
then add ourselves as a member of that group:

$ sudo groupadd plugdev
$ sudo usermod -a -G plugdev $USER

Now, we create a udev-rule, setting the permission such that anyone who is a
member of our newly created group can access the Crazyradio. We create a new
rules file using gedit:

$ sudo gedit /etc/udev/rules.d/99-crazyradio.rules

and add the following text to it:

1 # Crazyradio (normal operation)
2 SUBSYSTEM=="usb", ATTRS{idVendor}=="1915",

ATTRS{idProduct}=="7777", MODE="0664", GROUP="plugdev"
3 # Bootloader
4 SUBSYSTEM=="usb", ATTRS{idVendor}=="1915",

ATTRS{idProduct}=="0101", MODE="0664", GROUP="plugdev"

The second entry is useful for firmware updates of the Crazyradio.

88 W. Hönig and N. Ayanian

In order to use the Crazyflie when directly connected via USB, you need to create
another file named 99-crazyflie.rules in the same folder, with the following
content:

1 SUBSYSTEM=="usb", ATTRS{idVendor}=="0483",
ATTRS{idProduct}=="5740", MODE="0664", GROUP="plugdev"

Finally, we reload the udev-rules:

$ sudo udevadm control --reload-rules
$ sudo udevadm trigger

You will need to log out and log in again in order to be a member of the plugdev
group. You can then plug in your Crazyradio (and follow the instructions in the next
section to actually use it).

3.2 Bitcraze Crazyflie PC Client

The Bitcraze SDK is composed of two parts. The first is crazyflie-lib-
python, which is a Python library to control the Crazyflie without any graphi-
cal user interface. The second is crazyflie-client-python, which makes
use of that library and adds a graphical user interface.

We start by installing the required dependencies:

$ sudo apt-get install git python3 python3-pip python3-pyqt4
python3-numpy python3-zmq

$ sudo pip3 install pyusb==1.0.0b2
$ sudo pip3 install pyqtgraph appdirs

To install crazyflie-lib-python, use the following commands:

$ mkdir ~/crazyflie
$ cd ~/crazyflie
$ git clone

https://github.com/bitcraze/crazyflie-lib-python.git
$ cd crazyflie-lib-python
$ pip3 install --user -e .

Here, the Python package manager pip is used to install the library only for the
current user. The library uses Python 3. In contrast, ROS Indigo, Jade, and Kinetic
use Python 2.

Similarly, crazyflie-client-python can be installed using the following
commands:

Flying Multiple UAVs Using ROS 89

Fig. 3 Screenshot of the Bitcraze Crazyflie PC Client

$ cd ~/crazyflie
$ git clone

https://github.com/bitcraze/crazyflie-clients-python.git
$ cd crazyflie-clients-python
$ pip3 install --user -e .

To start the client, execute the following:

$ cd ~/crazyflie/crazyflie-clients-python
$ python3 bin/cfclient

You should see the graphical user interface, as shown in Fig. 3.

90 W. Hönig and N. Ayanian

Versions Might Change

Since theCrazyflie software is under active development, the installation pro-
cedure and required dependenciesmight change in the future. You can use the
exact same versions as used in the chapter by using the following commands
after git clone. Use the following for crazyflie-lib-python

$ git checkout a0397675376a57adf4e7c911f43df885a45690d1

and use the following for crazyflie-clients-python:

$ git checkout 2dff614df756f1e814538fbe78fe7929779a9846

If you want to use the latest version please follow the instructions provided
in the README.md file in the respective repositories.

3.3 Firmware

Everything described in this chapter works with the Crazyflie’s default firmware.
You can obtain the latest compiled firmware from the repository7 — this chapter was
tested with the 2016.02 release. Make sure that you update the firmware for both
STM32 and nRF51 chips by downloading the zip-file. Execute the following steps
to update both firmwares:

1. Start the Bitcraze Crazyflie PC Client.
2. In the menu select “Connect”/“Bootloader.”
3. Turn your Crazyflie off by pressing the power button. Turn it back on by pressing

the power button for 3 seconds. The blue tail lights should start blinking: The
Crazyflie is now waiting for a new firmware.

4. Click “Initiate bootloader cold boot.” The status should switch to “Connected to
bootloader.”

5. Select the downloaded crazyflie-2016.02.zip and press “Program.”
Click the “Restart in firmware mode” button after it is finished.

If you prefer compiling the firmware yourself, please follow the instructions in
the respective repositories.8

7https://github.com/bitcraze/crazyflie-release/releases.
8https://github.com/bitcraze/crazyflie-firmware,
https://github.com/bitcraze/crazyflie2-nrf-firmware.

https://github.com/bitcraze/crazyflie-release/releases
https://github.com/bitcraze/crazyflie-firmware
https://github.com/bitcraze/crazyflie2-nrf-firmware

Flying Multiple UAVs Using ROS 91

3.4 Crazyflie ROS Stack

The crazyflie_ros stack contains the driver, a position controller, and vari-
ous examples. We will explore the different possibilities later in this chapter and
concentrate on the initial setup first.

We first create a new ROS workspace:

$ mkdir -p ~/crazyflie_ws/src
$ cd ~/crazyflie_ws/src
$ catkin_init_workspace

Next, we add the required packages to the workspace and build them:

$ git clone https://github.com/whoenig/crazyflie_ros.git
$ cd ~/crazyflie_ws
$ catkin_make

In order to use your workspace add the following line to your ~/.bashrc:

$ source ~/crazyflie_ws/devel/setup.bash

This will ensure that all ROS related commands will find the packages in all
terminals. To update your current terminal window, use source ~/.bashrc,
which will reload the file.

You can test your setup by typing:

$ rosrun crazyflie_tools scan

This should print the uniform-resource-identifier (URI) of any Crazyflie found in
range. For example, the output might look like this:

Configured Dongle with version 0.54
radio://0/100/2M

In this case, the URI of your Crazyflie is radio://0/100/2M. Each URI has
several components. Here, the Crazyradio is used (radio). Since you might have
multiple radios in use, you can specify a zero-based index on the device to use (0).
The next number (100) specifies the channel, which is a number between 0 and 125.
Finally, the datarate (2M) (one of 250K, 1M, 2M) specifies the speed to use in bits
per second. There is an optional address as well, which we will discuss in Sect. 5.1.

92 W. Hönig and N. Ayanian

Versions

As before, the instructions might be different in future versions. Use the
following to get the exact same version of the crazyflie_ros stack:

$ git checkout 34beecd2a8d7ab02378bcdfcb9adf5a7a0eb50ea

Install the following additional dependency in order to use the teleoperation:

$ sudo apt-get install ros-indigo-hector-quadrotor-teleop

If you are using ROS Jade or Kinetic, you will need to add the package to your
workspace manually.

4 Teleoperation of a Single Quadcopter

In this section we will use ROS to control a single Crazyflie using a joystick. More-
over, we will gain access to the internal sensors and show how to visualize the data
using rviz and rqt_plot.

This is a useful first step to understand the cmd_vel interface of the crazy-
flie_ros stack. Later, we will build on this knowledge to let the Crazyflie fly
autonomously. Furthermore, teleoperation is useful for debugging. For example, it
can be used to verify that there is no mechanical hardware defect.

In the first subsection, we assume that you have access to a specific joystick, the
Microsoft XBox360 controller. We show how to connect to the Crazyflie using ROS
and how to eventually fly it manually. The second subsection relaxes this assumption
by discussing the required steps needed to add support for another joystick.

4.1 Using an XBox360 Controller

For this example, we assume that you have an Xbox360 controller plugged into your
machine. We will show how to use different joysticks later in this section. Use the
following command to run the teleoperation example:

$ roslaunch crazyflie_demo teleop_xbox360.launch
uri:=radio://0/100/2M

Make sure that you adjust the URI based on your Crazyflie.
The launch file teleop_xbox360.launch has the following structure:

Flying Multiple UAVs Using ROS 93

teleop_xbox360.launch

1 <launch>
2 <arg name="uri" default="radio://0/80/2M" />
3 <arg name="joy_dev" default="/dev/input/js0" />
4 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />
5 <group ns="crazyflie">
6 <include file="$(find

crazyflie_driver)/launch/crazyflie_add.launch">
7 <arg name="uri" value="$(arg uri)" />
8 <arg name="tf_prefix" value="crazyflie" />
9 <arg name="enable_logging" value="True" />
10 </include>
11 <node name="joy" pkg="joy" type="joy_node"

output="screen" >
12 <param name="dev" value="$(arg joy_dev)" />
13 </node>
14 <include file="$(find

crazyflie_demo)/launch/xbox360.launch" />
15 <node name="crazyflie_demo_controller"

pkg="crazyflie_demo" type="controller.py"
output="screen" />

16 </group>
17 <node pkg="rviz" type="rviz" name="rviz" args="-d $(find

crazyflie_demo)/launch/crazyflie.rviz" />
18 <node pkg="rqt_plot" type="rqt_plot" name="rqt_plot1"

args="/crazyflie/battery"/>
19 <node pkg="rqt_plot" type="rqt_plot" name="rqt_plot2"

args="/crazyflie/rssi"/>
20 </launch>

In line 4 the crazyflie_server is launched, which accesses the Crazyra-
dio to communicate with the Crazyflie. Lines 5–16 contain information about
the Crazyflie we want to control. First, the Crazyflie is added with a specified
URI. Second, the joy_node is launched to create the joy topic. This particu-
lar joystick is configured by including xbox360.launch. This file will launch
a hector_quadcopter_teleop node with the appropriate settings for the
XBox360 controller. Furthermore, controller.py is started; this maps addi-
tional joystick buttons to Crazyflie specific behaviors. For example, the red button
onyour controllerwill cause theCrazyflie to turn off all propellers (emergencymode).
Finally, lines 17–19 start rviz and two instances of rqt_plot for visualization.
Figure4 shows a screenshot of rviz as it visualizes the data from the inertial mea-
surement unit as streamed from the Crazyflie at 100Hz. The other two rqt_plot
instances show the current battery voltage and radio signal strength indicator (RSSI),
respectively.

If you tilt your Crazyflie, you should instantly see the IMU arrow changing in
rviz. You can now use the joystick to fly — the default uses the left stick for
thrust (up/down) and yaw (left/right) and the right stick for pitch (up/down) and roll

94 W. Hönig and N. Ayanian

Fig. 4 Screenshot of rviz showing the IMU data

(left/right). Also, the red B-button can be used to put the ROS driver in emergency
mode. In that case, your Crazyflie will immediately turn off its engines (and if it was
flying it will fall to the ground).

4.2 Add Support for Another Controller

Support for another joystick can be easily added, as long as it is recognized as a joy-
stick by the operating system. Themajor difference between joysticks is the mapping
between the different axes and buttons of a joystick to the desired functionality. In
the following steps we first try to find the desired mapping and use that to configure
the crazyflie_ros stack accordingly.

1. Attach your joystick. Thiswill create a new device file, e.g.,/dev/input/js0.
You can use dmesg to find details about which device file was used in the system
log.

2. Run the following command in order to execute the joy_node:

Flying Multiple UAVs Using ROS 95

$ rosrun joy joy_node _dev:=/dev/input/js0

3. In another terminal, execute:

$ rostopic echo /joy

This will print the joystick messages published by joy_node. Move your joy-
stick to find the desired axes mapping. For example, you might increase the thrust
on your joystick and see that the second number of the axes array decreases.

4. Change the axis mapping in xbox360.launch (or create a new file) by updat-
ing parameters x_axis, y_axis, z_axis, and yaw_axis accordingly. You
can use negative axis values to indicate that this axis should be inverted. For
example, in the previous example for the thrust changes, you would choose −2
as axis for z_axis.

5. Update thebuttonmapping incrazyflie_demo/scripts/controller.
py to change which button triggers high-level behavior such as emergency.

ThePS3 controller is already part of thecrazyflie_ros stack and themapping
was found in the same way as described above.

5 Teleoperation of Multiple UAVs

This section discusses the initial setup: how to assign unique addresses to each
UAV, how to communicate using fewer radios than UAVs, and how to find good
communication channels to decrease interference between UAVs as well as between
UAVs and existing infrastructure such as WiFi.

Flying multiple Crazyflies is mainly limited by the communication bandwidth.
One way to handle this issue is to have one Crazyradio per Crazyflie and to use
a different channel for each of them. There are two major disadvantages to this
approach:

• The number of USB ports on a computer is limited. Even if you would add addi-
tional USB hubs, this adds additional latency because USB operates serially.

• There are 125 channels available; however, not all of them might lead to good
performance since the 2.4GHz band is shared. For example, BlueTooth and WiFi
operate in the same band.

Therefore, wewill use a single Crazyradio to controlmultiple Crazyflies and share
the channels used. Hence, we will need to assign unique addresses to each Crazyflie
to avoid crosstalking between the different quadcopters.

96 W. Hönig and N. Ayanian

5.1 Assigning a Unique Address

The communication chips used in the Crazyflie and Crazyradio (nRF51 and
nRF24LU1+ respectively) permit 40-bit addresses. By default, each Crazyflie has
0xE7E7E7E7E7 assigned as address. You can use the Bitcraze PC Client to change
the address using the following steps:

1. Start the Bitcraze PC Client.
2. Make sure the address field is set to 0xE7E7E7E7E7 and click “Scan.” The

drop-down box containing “Select an interface” should now have another entry
containing the URI of your Crazyflie, for example radio://0/100/2M (See
Fig. 5, left). Select this entry and click “Connect.”

3. In the “Connect” menu, select the item “Configure2.0.” In the resulting dia-
log (see Fig. 5, right) change the address to a unique number, for example
0xE7E7E7E701 for your first Crazyflie, 0xE7E7E7E702 for the second one
and so on. Select “Write” followed by “Exit.”

4. In the PC Client, select “Disconnect.”
5. Restart your Crazyflie.
6. Update the address field of the client (1 in Fig. 5, left) and click “Scan.” If every-

thing was successful, you should now see a longer URI in the drop-down box
containing radio://0/100/2M/E7E7E7E701.

If it does not work, verify that you have the latest firmware for both nRF51 and
STM32 flashed. This feature might not be available or working properly otherwise.
The address (and other radio parameters) are stored in EEPROM and therefore will
remain even if you upgrade the firmware.

Fig. 5 Left To connect to a Crazyflie, first enter its address, click “Scan”, and finally select the
found Crazyflie in the drop-down box. Right The configuration dialog for the Crazyflie to update
radio related parameters

Flying Multiple UAVs Using ROS 97

Scanning Limitation

The scan feature of both ROS driver and Bitcraze PC client assume that
you know the address of your Crazyflie (it is not feasible to try 240 different
addresses during scanning). If you forget the address, you will need to reset
the EEPROM to its default values by connecting the Crazyflie directly to the
PC using a USB cable and running a Python script.a

ahttps://wiki.bitcraze.io/doc:crazyflie:dev:starting#reset_eeprom.

5.2 Finding Good Communication Parameters

The radio can be tuned by changing two parameters: datarate and channel. The
datarate can be 250 kBit/s, 1, or 2 MBit/s. A higher datarate has a lower chance
of collision with other networks such as WiFi but less range. Hence, for indoor
applications the highest datarate (2 MBit/s) is recommended.

The channel number defines the offset in MHz from the base frequency of
2400MHz. For example, channel 15 sets the operating frequency to 2415MHz and
channel 80 refers to an operating frequency of 2480MHz. If you selected 2MBit/s as
datarate, the channels need to have a spacing of at least 2 MHz (otherwise, a 1MHz
spacing is sufficient).

Unlike WiFi, there is no channel hopping implemented in the Crazyflie. That
means that the selected channel is very important because it will not change over
time.On the other hand, interference can change over time; for example, aWiFi router
might switch channels at runtime. Therefore, it is best if, during your flights, you
can disable any interfering signal such as WiFi or wireless mouse/keyboards which
use the 2.4GHz band. If that is not possible, you can use the following experiments
to find a set of good channels:

• Use the Bitcraze PC Client to teleoperate the Crazyflie in the intended space. Look
at the “LinkQuality” indicator on the top right. This indicator shows the percentage
of successfully delivered packets. If it is low, there is likely interference.

• If you teleoperate the Crazyflie using ROS, there will be a ROS warning if the
link quality is below a certain threshold. Avoid those channels. Additionally,
rqt_plot shows the Radio Signal Strength Indicator (RSSI). This value, mea-
sured in -dBm, indicates the signal strength, which is affected both by distance
and interference. A low value (e.g., 35) is good, while a high value (>80) is bad.
For example, the output in Fig. 6 suggests that another channel should be used,
because the second half of the plot shows additional noise caused by interference.

Once you have found a set of good channels, you can assign them to your
Crazyflies, using the Bitcraze PC Client (see Sect. 5.1 for details). You can share

https://wiki.bitcraze.io/doc:crazyflie:dev:starting#reset_eeprom

98 W. Hönig and N. Ayanian

Fig. 6 Output of rqt_plot showing the radio signal strength indicator. The first 15 s show a
good signal, while the second half shows higher values and noise caused by interference

up to four Crazyflies per Crazyradio with reasonable performance. Hence, the num-
ber of channels you need is about a quarter of the number of Crazyflies you intend
to fly.

Legal Restrictions

In some countries the 2.4GHz band is limited to certain channels. Please
refer to your local regulations before you adjust the channel.
For example, in theUnited States frequencies between 2483.5 and 2500MHz
are power-restricted and as a result frequently not used by WiFi routers.
Hence, channels 84 to 100 might be a good choice there. Channels above
2500MHz are not allowed to be used in the United States.

5.3 ROS Usage (Multiple Crazyflies)

Let’s assume that you have two Crazyflies with unique addresses, two joysticks, and
a single Crazyradio. You can teleoperate them using the following command:

$ roslaunch crazyflie_demo multi_teleop_xbox360.launch
uri1:=radio://0/100/2M/E7E7E7E701
uri2:=radio://0/100/2M/E7E7E7E702

This should connect to both Crazyflies, visualize their state in rivz, and plot real-
time data using rqt_graph. Furthermore, each joystick can be used to teleoperate
one of the Crazyflies.

The launch file looks very similar to the single UAV case:

Flying Multiple UAVs Using ROS 99

multi_teleop_xbox360.launch

1 <launch>
2 <arg name="uri1" default="radio://0/90/2M" />
3 <arg name="uri2" default="radio://0/80/2M" />
4 <arg name="joy_dev1" default="/dev/input/js0" />
5 <arg name="joy_dev2" default="/dev/input/js1" />
6

7 <include file="$(find
crazyflie_driver)/launch/crazyflie_server.launch" />

8 <group ns="crazyflie1">
9 <!-- Similar to before -->
10 </group>
11 <group ns="crazyflie2">
12 <!-- Similar to before -->
13 </group>
14 <!-- Visualization (Similar to before) -->
15 </launch>

In particular, we still have a single crazyflie_server (which now manages
both Crazyflies). However, we have two different namespaces (crazyflie1 and
crazyflie2). The content of those namespaces is nearly identical to the single
UAV case (compare lines 5–16 in teleop_xbox360.launch, Sect. 4) and thus
not repeated here for clarity.

In order to teleoperate more than two Crazyflies, you simply need to add more
groups with different namespaces to the launch file. If you want the ROS driver to
use a different Crazyradio, you can adjust the first number in the URI. For example,
radio://1/100/2M/E7E7E7E701 uses the second Crazyradio (or reports an
error if only one is plugged in). It is important to consider the following for the usage
of multiple radios:

• For improved performance, use the same channel per Crazyradio. This avoids
that the radio changes channels whenever it switches between sending to different
Crazyflies.

• If you do not need the IMU raw data, disable it by setting enable_logging
to False when you include the crazyflie_add.launch file. This saves
bandwidth and allows you to use more than two Crazyflies per radio.

Depending on your packet drop rate, you can use up to twoCrazyflies per Crazyra-
dio if logging is enabled and up to four otherwise. It does work with a higher number
as well, but you will see decreasing controllability since the radio is used in a time-
slice fashion.

100 W. Hönig and N. Ayanian

6 Hovering

Afirst important step for autonomous flight of a quadcopter is hovering in place. This
also requires the ability to take off from the ground and land after the flight. All of
these basic motions require a position controller, which takes the Crazyflie’s current
position as input in order to compute new commands for the Crazyflie. Hence, this
position controller is replacing the teleoperating human we had before.

This section describes the crazyflie_controller package and how it is
used for autonomous take-off, landing, and hovering. As before, first the single UAV
case is considered and later it is extended to the multi-UAV case. Furthermore, this
section will cover working strategies on how to use the crazyflie with optical motion
capture systems such as VICON9 and OptiTrack.10 This is, due to the size of the
UAV, a non-trivial task, particularly for swarming applications.

6.1 Position Estimate

We assume that there is already a way to track the position and preferably yaw of
the Crazyflies at least 30Hz. It is possible to use Microsoft Kinect,11 AR tags, or
Ultra-Wideband Localization [10] for this task. However, those solutions are not
as accurate at specialized motion capture systems, which can reach sub-millimeter
accuracy. We want to fly many small quadcopters, perhaps in a dense formation, and
hence need a very accurate position feedback. Therefore, we will discuss the usage
of optical motion capture systems such as VICON or OptiTrack.

We run our experiments in a space of approximately 5m × 4m equipped with
a 12-camera VICON MX motion capture system. Optical motion capture systems
typically require spatially unique marker configurations for each object to track such
that it is possible to identify each object.12 Otherwise, occlusions or a short-term
camera outage would result in unrecoverable tracking failures. For a small platform
like the Crazyflie, there are not many ways to place markers uniquely on the existing
frame. In particular, if you need more than four Crazyflies, you will need to add
additional structures where you can place the markers:

• Propeller guards. They are commercially available for the Hubsan X4 toy quadro-
tor,13 which has identical physical dimensions. Moreover, you can use a 3D printer
to print your own guard based on published files on thingiverse.14

9http://www.vicon.com/.
10https://www.optitrack.com/.
11https://github.com/ataffanel/crazyflie-ros-kinect2-detector.
12Some solutions, like the Crazyswarm project [5], use identical marker configurations.
13You can search on amazon for “propeller guard hubsan x4.”.
14http://www.thingiverse.com/search?q=crazyflie\&sa=.

http://www.vicon.com/
https://www.optitrack.com/
https://github.com/ataffanel/crazyflie-ros-kinect2-detector
http://www.thingiverse.com/search?q=crazyflie&sa=

Flying Multiple UAVs Using ROS 101

Fig. 7 Left Crazyflie with four optical markers (6.4mm) attached and no additional guard used.
Right Crazyflie with markers on propeller guard to allow a higher number of unique marker
configurations

• Custom motor mounts. OpenSCAD15 files can be found in the official mechanical
repository.16

• Spatial extensions in form of sticks, either mounted on the rotor arms or on top of
the Crazyflie as extension board.

For small groups of up to four Crazyflies, we place the markers directly on the
Crazyflies. We flew up to six Crazyflies (using three Crazyradios) using the propeller
guard approach.However, this significantly reducesflight times and changes theflight
dynamics. Figure7 shows examples of Crazyflies equipped with markers.

The exact method is highly dependent on your motion capture system, so there
will be some experimentation involved. Similarly, the best markers to use depend on
the system aswell.We successfully use 6.4 and 7.9mmspherical traditional reflective
markers from B&L Engineering.17 A smaller size impacts the flight dynamics less
(and fits underneath the rotors) and is preferred as long as the motion capture system
is able to detect the markers properly. We use the No-Base option of the markers and
small pieces of Command Poster Strips18 to attach them to the Crazyflie.

If you use VICON, it is best to install the vicon_bridge ROS package using
the following steps:

15http://www.openscad.org/.
16https://github.com/bitcraze/bitcraze-mechanics/tree/master/cf2-mount-openscad.
17http://www.bleng.com/.
18http://www.command.com.

http://www.openscad.org/
https://github.com/bitcraze/bitcraze-mechanics/tree/master/cf2-mount-openscad
http://www.bleng.com/
http://www.command.com

102 W. Hönig and N. Ayanian

Fig. 8 Output of view_frames for two objects names crazyflie1 and crazyflie2,
respectively

$ cd ~/crazyflie_ws/src
$ git clone https://github.com/ethz-asl/vicon_bridge.git
$ cd ~/crazyflie_ws
$ catkin_make

This will add the source to your workspace and compile it. The package assumes that
you have another PC with VICON Tracker running in the same network, accessible
under the hostname vicon and with no firewalls in between. You can test your
installation by running:

$ roslaunch vicon_bridge vicon.launch

In another terminal, execute:

$ rosrun tf view_frames

and open the resulting frames.pdf file to check your transformations. It should
look like Fig. 8.

If you use OptiTrack (or any other motion capture system which supports
VRPN19), you can install the vrpn_client_ros package using:

$ sudo apt-get install ros-indigo-vrpn-client-ros

In order to test it, you will need to write a custom launch file, similar to the sam-
ple file provided in the package.20 Afterwards, you can check if it works using
view_frames.

19https://github.com/vrpn/vrpn/wiki.
20https://github.com/clearpathrobotics/vrpn_client_ros/blob/indigo-devel/launch/sample.launch.

https://github.com/vrpn/vrpn/wiki
https://github.com/clearpathrobotics/vrpn_client_ros/blob/indigo-devel/launch/sample.launch

Flying Multiple UAVs Using ROS 103

Coordinate System

It is important to verify that your transformations match the ROS standard.a

That means we use a right-handed coordinate system with x forward, y left,
and z pointing up. One way to check is to launch rviz, and add a “TF”
visualization. Move the Crazyflie around in your hand, while verifying that
the visualization in rviz matches the expected coordinate system.

ahttp://www.ros.org/reps/rep-0103.html.

6.2 ROS Usage (Single Crazyflie)

Here, we assume that you have a working localization for a single Crazyflie
already. We assume that there is a ROS transform between the frames /world
and /crazyflie1 and that radio://0/100/2M/E7E7E7E701 is the URI of
your Crazyflie.

With VICON you can launch the following:

$ roslaunch crazyflie_demo hover_vicon.launch
uri:=radio://0/100/2M/E7E7E7E701 frame:=crazyflie1 x:=0
y:=0 z:=0.5

Once the Crazyflie is connected, you can press the blue (X) button on the XBox360
controller to take off and the green (A) button to land. If successful, the Crazyflie
should hover at (0, 0, 0.5). Use the red (B) button to handle any emergency situation
(or unplug the Crazyradio to get the same effect). The launch file starts rviz as
well, visualizing both the Crazyflie’s current position and goal position (indicated
by a red arrow).

If you are using OptiTrack, you can use hover_vrpn.launch rather than
hover_vicon.launch.

The launch file is similar to before, but adds a few more elements:

hover_vicon.launch

1 <launch>
2 <!-- Launch file arguments -->
3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />
4 <group ns="crazyflie">
5 <!-- Similar to before -->
6 <node name="joystick_controller" pkg="crazyflie_demo"

type="controller.py" output="screen">

http://www.ros.org/reps/rep-0103.html

104 W. Hönig and N. Ayanian

7 <param name="use_crazyflie_controller" value="True"
/>

8 </node>
9 <include file="$(find

crazyflie_controller)/launch/crazyflie2.launch">
10 <arg name="frame" value="$(arg frame)" />
11 </include>
12 <node name="pose" pkg="crazyflie_demo"

type="publish_pose.py" output="screen">
13 <param name="name" value="goal" />
14 <param name="rate" value="30" />
15 <param name="x" value="$(arg x)" />
16 <param name="y" value="$(arg y)" />
17 <param name="z" value="$(arg z)" />
18 </node>
19 <node pkg="tf" type="static_transform_publisher"

name="baselink_broadcaster" args="0 0 0 0 0 0 1
$(arg frame) /crazyflie/base_link 100" />

20 </group>
21 <!-- run vicon bridge or vrpn_client_ros -->
22 <param name="robot_description" command="$(find

xacro)/xacro.py $(find
crazyflie_description)/urdf/crazyflie.urdf.xacro" />

23 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find
crazyflie_demo)/launch/crazyflie_pos.rviz"
required="true" />

24 </launch>

We start by defining the arguments (not shown here for brevity) and launch-
ing the crazyflie_server (line 3). Within the group element, we include
crazyflie_add (not shown). Now we get a few differences: in line 7 we set
use_crazyflie_controller to True to enable the takeoff and landing
behavior using the joystick. Moreover, we add a position controller node by includ-
ing crazyflie2.launch (lines 9–11). The static goal position for this controller
is published in the /crazyflie/goal topic in lines 12–18. The group ends by
publishing a static transform from the given frame to the Crazyflie’s base link. This
allows us to visualize the current pose of the Crazyflie in rviz using the 3D model
provided in the crazyflie_description package (lines 19 and 22).

6.3 ROS Usage (Multiple Crazyflies)

The main difference between the single UAV and multi-UAV case is that the joystick
should be shared: Takeoff, landing, and an emergency should trigger the appropriate
behavior on all Crazyflies. This allows us to have a single backup pilot who can
trigger emergency power-off in case of an issue. The low inertia of the Crazyflies
causes them to be very robust to mechanical failures when dropping from the air.

Flying Multiple UAVs Using ROS 105

We have had crashes from heights of up to 4m on a slightly padded floor, with
only propellers and/or motor mounts needing replacement. (Replacement parts are
available for purchase separately.)

The crazyflie_demo package contains an example for hovering two
Crazyflies. You can run it for VICON by executing:

$ roslaunch crazyflie_demo multi_hover_vicon.launch
uri1:=radio://0/100/2M/E7E7E7E701 frame1:=crazyflie1
uri2:=radio://0/100/2M/E7E7E7E702 frame2:=crazyflie2

There is also an example using VRPN (multi_hover_vrpn.launch). The
launch file is similar to the single Crazyflie case:

multi_hover_vicon.launch

1 <launch>
2 <!-- Launch file arguments -->
3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />
4 <node name="joy" pkg="joy" type="joy_node"

output="screen">
5 <param name="dev" value="$(arg joy_dev)" />
6 </node>
7 <group ns="crazyflie1">
8 <!-- Similar to before -->
9 <node name="joystick_controller" pkg="crazyflie_demo"

type="controller.py" output="screen">
10 <param name="use_crazyflie_controller" value="True"

/>
11 <param name="joy_topic" value="/joy" />
12 </node>
13 </group>
14 <group ns="crazyflie2">
15 <!-- Similar to first group -->
16 </group>
17 <!-- Similar to before -->

In this case, we only need a single joystick; the joy node for it is instantiated in
lines 4–6. In order to use that topic, we need to supply controller.py with the
correct topic name (line 11).

We can summarize what we have learned so far by looking at the output of
rqt_graph, as shown in Fig. 9. It shows the various nodes (ellipsoid), namespaces
(rectangles), and topics (arrows). In particular, we have two namespaces:
crazyflie1 and crazyflie2. Each namespace contains the nodes used for
a single Crazyflie: joystick_controller to deal with the user-input, pose
to publish the (static) goal position for that particular Crazyflie, and controller
to compute the low-level attitude commands based on the high-level user input.
The attitude commands are transmitted using the cmd_vel topics. There is only

106 W. Hönig and N. Ayanian

crazyflie1

crazyflie2

vicon crazyflie_serverjoy

/crazyflie1/goal

/crazyflie1/controller /crazyflie1/cmd_vel

/crazyflie_server

/crazyflie1/joystick_controller

/crazyflie1/baselink_broadcaster

/tf

/crazyflie1/pose

/crazyflie2/goal

/crazyflie2/controller /crazyflie2/cmd_vel/crazyflie2/joystick_controller

/crazyflie2/pose

/crazyflie2/baselink_broadcaster

/vicon
/joy /tf_static

Fig. 9 Visualization of the different nodes and their communication using rqt_graph

one node, the crazyflie_server, which listens on those topics and trans-
mits the data to both Crazyflies, using the Crazyradio. The joy node provides
the input to both namespaces, allowing a single user to control both Crazyflies.
Similarly, the vicon node is shared between Crazyflies, because the motion-
capture system provides feedback (in terms of tfmessages) of all quadcopters. The
baselink_broadcaster nodes are only used for visualization purposes, allow-
ing us to visualize a 3D model of the Crazyflie in rviz. More than two Crazyflies
can be used by duplicating the groups in the launch file accordingly. This will result
in more namespaces; however, the crazyflie_server, vicon, and joy nodes
will always be shared between all Crazyflies.

7 Waypoint Following

The hovering of the previous section is extended to let the UAVs follow specified
waypoints. This is useful if you want the robots to fly specified routes, for example
for delivery systems or construction tasks. As before, first the single-UAV case is
presented, followed by how to use it in the multi-UAV case.

Here,we concentrate on theROS-specific changes in a toy examplewhere theway-
points are static and known upfront. Planning such routes for a group of quadcopters
is a difficult task in itself and we refer the reader to related publications [11–13].

Flying Multiple UAVs Using ROS 107

The main difference between hovering and waypoint following is that, for the
latter, the goal changes dynamically. First, test the behavior of the controller for
dynamic waypoint changes:

$ roslaunch crazyflie_demo teleop_vicon.launch

Here, the joystick is used to change the goal pose rather than influencing the motor
outputs directly. The visualization in rviz shows the current goal pose as well as
the quadcopter pose to provide some feedback.

Waypoint following works in a similar fashion: the first waypoint is set as goal
position and, once the Crazyflie reaches its current goal (within some radius),
the goal point is set to the next position. This simple behavior is implemented in
crazyflie_demo/scripts/demo.py. Each Crazyflie can have its own way-
point defined in a Python script, for example:

1 #!/usr/bin/env python
2 from demo import Demo
3

4 if __name__ == ’__main__’:
5 demo = Demo(
6 [
7 #x , y, z, yaw, sleep
8 [0.0 , 0.0, 0.5, 0, 2],
9 [1.5 , 0.0, 0.5, 0, 2],
10 [-1.5 , 0.0, 0.75, 0, 2],
11 [-1.5 , 0.5, 0.5, 0, 2],
12 [0.0 , 0.0, 0.5, 0, 0],
13]
14)
15 demo.run()

Here, x , y, and z are in meters, yaw is in radians, and sleep is the delay in seconds
before the goal switches to the next waypoint.

Adjust demo1.py and demo2.py to match your coordinate system and run the
demo for two Crazyflies using:

$ roslaunch crazyflie_demo multi_waypoint_vicon.launch

The path for the two Crazyflies should not be overlapping because simple waypoint
following does not have any time guarantees. Hence, it is possible that the first
Crazyflie finishes much earlier than the second one, even if the total path length and
sleep time are the same. This limitation can be overcome by generating a trajectory
for each Crazyflie and setting the goal points dynamically accordingly.

108 W. Hönig and N. Ayanian

The launch file looks very similar to before:

multi_waypoint_vicon.launch

1 <launch>
2 <!-- Launch file arguments -->
3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />
4 <node name="joy" pkg="joy" type="joy_node"

output="screen">
5 <param name="dev" value="$(arg joy_dev)" />
6 </node>
7 <group ns="crazyflie1">
8 <!-- Similar to before -->
9 <node name="pose" pkg="crazyflie_demo" type="demo1.py"

output="screen">
10 <param name="frame" value="$(arg frame1)" />
11 </node>
12 </group>
13 <group ns="crazyflie2">
14 <!-- Similar to first group -->
15 </group>
16 <!-- Similar to before -->
17 </launch>

Instead of publishing a static pose, each Crazyflie now executes its own demo<x>.
py node, which in turn publishes goals dynamically. An example video demonstrat-
ing six Crazyflies following dynamically changing goals is available online.21

8 Troubleshooting

As with most physical robots, debugging can be difficult. In order to identify and
eventually solve the problem, it helps to simplify the failing case until it is easier
to analyze. In this section, we provide several actions which have helped us resolve
issues in the past. In particular, we first identify if the issue is on the hardware or
software side, and provide recipes to address both kinds of issues.

1. Verify that the position estimate works correctly. For example, use rviz to visu-
alize the current pose of all quadrotors, move a single quadrotor manually at a
time and make sure that rviz reflects the changes accordingly.

2. Check the wireless connection between the PC and the Crazyflies. If the packet
drop rate is high, the crazyflie_server will output ROS warnings. Simi-
larly, you can check the LEDs on each Crazyradio; ideally the LEDs showmostly
green. If there is an communication issue the LEDs will frequently flash red as
well. If communication is an issue, try a different channel by following Sect. 5.2.

21http://youtu.be/px9iHkA0nOI.

http://youtu.be/px9iHkA0nOI

Flying Multiple UAVs Using ROS 109

3. Work your way backwards: If a swarm fails, test the individual Crazyflies (or
subgroups of them). If waypoint following fails, test hovering and, if there is an
issue there as well, test teleoperation using ROS followed by teleoperation using
the Bitcraze PC Client.

4. Issues with many Crazyflies but not smaller subgroups can occur if there are com-
munication issues or if the position estimate suddenly worsens. For the first case,
try reducing the number of Crazyflies per Crazyradio and adjusting the channel.
For the second case try to estimate the latency of your position estimator. If you
have multiple objects enabled, there might be axis-flips (marker configurations
might not be unique enough) or the computer doing the tracking might be adding
too much latency for the controller to operate properly.

5. If waypoint following does not work, make sure that you visualize the current
waypoint in rviz. In general, the waypoints should not jump around very much.
The provided controller is a hover controller which works well if the goal point
is within a reasonable range of the Crazyflie’s current position.

6. If hovering does notwork, you can try to tune the provided controller. For example,
if you have a higher payload you might increase the proportional gains. You
can find the gains in crazyflie_controller/config/crazyflie2.
yaml.

7. If teleoperation does not work or it is very hard to keep the Crazyflie hovering
in place, there is most likely an issue with your hardware. Make sure that the
propellers are balanced22 and that the battery is placed in the center of mass.
When in doubt, replace the propellers.

9 Inside the crazyflie_ros Stack

This section will cover some more details of the stack. The knowledge you gain will
not only help you better understand on what is happening under the hood, but also
provide the foundations to change or add features. Furthermore, some of the design
insights given might be helpful for similar projects.

Wewill start with a detailed explanation of the different packages that compose the
stack and their relationship. For each package, wewill discuss important components
and the underlying architecture. For example, for the crazyflie_driver pack-
age we will explain the different ROS topics and services, why there is a server, and
how the radio time-slicing works. Guidelines for possible extensions will conclude
the section.

22https://www.bitcraze.io/balancing-propellers/.

https://www.bitcraze.io/balancing-propellers/

110 W. Hönig and N. Ayanian

9.1 Overview

The crazyflie_ros stack is composed of six different packages:

crazyflie_cpp contains a C++11 implementation for the Crazyradio driver as well
as the Crazyflie. It supports the logging framework streaming data in real-time and
the parameter framework adjusting parameters such as PID gains. This package
has no ROS dependency and only requires libusb and boost. Unlike the
official Python SDK it supports multiple Crazyflies over a shared radio.

crazyflie_tools contains standalone command line tools which use the crazy-
flie_cpp library. Currently, there is a tool to find any Crazyflies in range and
tools to list the available logging variables and parameters. Because there is no
ROS dependency, the tools can be used without ROS as well.

crazyflie_description contains the URDF description of the Crazyflie to visualize
in rviz. The models are currently not accurate enough to be used for simulation.

crazyflie_driver contains a ROS wrapper around crazyflie_cpp. The
logging subsystem is mapped to ROS messages and parameters are mapped to
ROS parameters. One node (crazyflie_server) manages all Crazyflies.

crazyflie_controller contains a PID position controller for the Crazyflie. As long
as the position of the Crazyflie is known (e.g., by using a motion capture system
or a camera), it can be used to hover or execute (non-aggressive) flight maneuvers.

crazyflie_demo contains sample scripts and launch files for teleoperation, hover-
ing, and waypoint following for both single and multi Crazyflie cases.

The dependencies between the packages are shown in Fig. 10. Both crazy-
flie_tools and crazyflie_demo contain high-level examples. Because
crazyflie_cpp does not have any ROS dependency, it can be used with other
frameworks as well. We will now discuss the different packages in more detail.

Fig. 10 Dependencies between the different packages within the crazyflie_ros stack

Flying Multiple UAVs Using ROS 111

9.2 crazyflie_cpp

The crazyflie_cpp package is a static C++ library, with some components
being header-only to maximize type-safety and efficiency. The library consists of
four classes:

Crazyradio This class uses libusb to communicate with a Crazyradio. It sup-
ports the complete protocol23 implemented in the Crazyradio firmware. The typ-
ical approach is to configure the radio (such as channel and datarate to use) first,
followed by actual sending and receiving of data. The Crazyradio operates in Pri-
mary Transmitter Mode (PTX), while the Crazyflie operates in Primary Receiver
Mode (PRX). That means that the Crazyradio is sending data (with up to 32 bytes
of payload) using the radio and, if the data is successfully received, will receive an
acknowledgement from the Crazyflie. The acknowledgment packet might contain
up to 32 bytes of user-data as well. However, since the acknowledgment has to be
sent immediately, the acknowledgment is not a direct response to the request sent.
Instead, the communication can be seen as two asynchronous data streams, with
one stream going from the Crazyradio to the Crazyflie and another stream for the
reverse direction. If a request-respond like protocol is desired, it has to be imple-
mented on top of the low-level communication infrastructure. The Crazyradio
will automatically resend packets if no acknowledgment has been received.
Below is a small example on how to use the class to send a custom packet:

1 Crazyradio radio(0); // Instantiate an object bound to the
first Crazyflie found

2 radio.setChannel(100); // Update the base frequency to 2500
MHz

3 radio.setAddress(0xE7E7E7E701); // Set the address to send
to

4 // Send a packet
5 uint8_t data[] = {0xCA, 0xFE};
6 Crazyradio::Ack ack;
7 radio.sendPacket(data, sizeof(data), ack);
8 if (ack.ack) {
9 // Parse ack.data and ack.size

10 }

Exceptions are thrown in cases of error, for example if no Crazyradio could be
found or if the user does not have the permission to access the USB dongle.

Crazyflie This class implements the protocol of the Crazyflie24 and provides high-
level functions to send new setpoints and update parameters. In order to support
multipleCrazyflies correctly, it instantiates theCrazyradio automatically.A global
static array of Crazyradio instances and mutexes is used. Whenever the Crazyflie
needs to send a packet, it first uses the mutex to lock its Crazyradio, followed

23https://wiki.bitcraze.io/projects:crazyradio:protocol.
24https://wiki.bitcraze.io/projects:crazyflie:crtp.

https://wiki.bitcraze.io/projects:crazyradio:protocol
https://wiki.bitcraze.io/projects:crazyflie:crtp

112 W. Hönig and N. Ayanian

by checking if the radio is configured properly. If not, the configuration (such as
address) is updated and finally the packet is sent. The mutex ensures that multiple
Crazyflies can be used in separate threads, even if they share a Crazyradio. The
critical section of sending a packet causes the radio to multiplex the requests in
time. Therefore, the bandwidth is split between all Crazyflies which share the
same radio.
Below is a small example demonstrating how multiple Crazyflies can be used
with the same radio:

1 Crazyflie cf1("radio://0/100/2M/E7E7E7E701"); // Instantiate
first Crazyflie object

2 Crazyflie cf2("radio://0/100/2M/E7E7E7E702"); // Instantiate
second Crazyflie object

3 // launch two threads and set new setpoint at 100 Hz
4 std::thread t1([&] {
5 while (true) {
6 cf1.sendSetpoint(0, 0, 0, 10000); // send roll, pitch,

yaw, and thrust
7 std::this_thread::sleep_for(std::chrono::milliseconds(10));
8 }
9 });

10 std::thread t2([&] {
11 while (true) {
12 cf2.sendSetpoint(0, 0, 0, 20000); // send roll, pitch,

yaw, and thrust
13 std::this_thread::sleep_for(std::chrono::milliseconds(10));
14 }
15 });
16 t1.join();
17);

First, two Crazyflie objects are instantiated. Then two threads are launched
using C++11 and lambda functions. Each thread sends an updated setpoint con-
sisting of roll, pitch, yaw, and thrust to its Crazyflie at about 100Hz.

LogBlock<T> This set of templated classes is used to stream out sensor data
from the Crazyflie. The logging framework on the Crazyflie allows to create so-
called log blocks. Each log block is a struct with a maximum size of 28 bytes,
freely arranged based on global variables available for logging in the Crazyflie
firmware. The list of available variables and their types can be queried at runtime
(requestLogToc method in the Crazyflie class).
This templated version provides maximum typesafety at the cost that you need to
know at compile time which log blocks to request.

LogBlockGeneric This class is very similar to LogBlock<T> but also allows
the user to dynamically create log blocks at runtime. The disadvantages of this
approach are that it does not provide typesafety and that it is slightly slower at
runtime.

Flying Multiple UAVs Using ROS 113

9.3 crazyflie_driver

We first give a brief overview of the ROS interface, including services, subscribed
topics, and published topics. In the second part we describe the usage and internal
infrastructure in more detail.

Most of the services and topics are within the namespace of a particular Crazyflie,
denoted with 〈crazyflie〉. For example, if you have two Crazyflies, there will be
namespaces crazyflie1 and crazyflie2.

The driver supports the following services:

add_crazyflie Adds a Crazyflie with known URI to the crazyflie_server
node. Typically, this is used with the helper application from crazyflie_add
from a launch file.
Type: crazyflie_ros/AddCrazyflie

〈crazyflie〉/emergency Triggers an emergency state, in which no further messages
to the Crazyflie are sent. The onboard firmware will stop all rotors if it did not
receive a message for 500 ms, causing the Crazyflie to fall shortly after the emer-
gency was requested.
Type: std_srvs/Empty

〈crazyflie〉/update_params Uploads updated values of the specified parameters
to the Crazyflie. The parameters are stored locally on the ROS parameter server.
This service first reads the current values and then uploads them to the Crazyflie.
Type: crazyflie_ros/UpdataParams

The driver subscribes the following topics:

〈crazyflie〉/cmd_vel Encodes the setpoint (attitude and thrust) of the Crazyflie.
This can be used for teleoperation or automatic position control.
Type: geometry_msgs/Twist

The following topics are being published:

〈crazyflie〉/imu Samples the inertial measurement unit of the Crazyflie every
10 ms, including the data from the gyroscope and accelerometer. The orienta-
tion and covariance are not known and therefore not included in the messages.
Type: sensor_msgs/Imu

〈crazyflie〉/temperature Samples the temperature as reported by the barometer
every 100 ms. This might not be the ambient temperature, as the Crazyflie tends
to heat up during operation.
Type: sensor_msgs/Temperature

〈crazyflie〉/magnetic_field Samples the magnetic field as measured by the IMU
every 100 ms. Currently, the onboard magnetometer is not calibrated in the
firmware. Therefore, external calibration is required to use it for navigation.
Type: sensor_msgs/MagneticField

〈crazyflie〉/pressure Samples the air pressure as measured by the barometer every
100 ms in mbar.
Type: std_msgs/Float32

114 W. Hönig and N. Ayanian

〈crazyflie〉/battery Samples the battery voltage every 100 ms in V.
Type: std_msgs/Float32

〈crazyflie〉/rssi Samples theRadioSignal Strength Indicator (RSSI) of the onboard
radio in -dBm.
Type: std_msgs/Float32

The crazyflie_driver consists of two ROS nodes: crazyflie_server
and crazyflie_add. The first manages all Crazyflies in the system (using one
thread for each), while the second one is just a helper node to be able to addCrazyflies
from a launch file.

It is possible to launch multiple crazyflie_server’s, but these cannot share
a Crazyradio. This is mainly a limitation of the operating system, which limits the
ownership of aUSBdevice to one process. In order to hide this implementation detail,
each Crazyflie thread will operate in its own namespace. If you use rostopic, the
topics of the first Crazyflie will be in the crazyflie1 namespace (or whatever
tf_frame you assigned to it), even though the code is actually executed within
the crazyflie_server context. Each Crazyflie offers a topic cmd_vel which
is used to send the current setpoint (roll, pitch, yaw, and thrust) and, if logging is
enabled, topics such as imu, battery, and rssi. Furthermore, services are used
to trigger the emergency mode and to re-upload specified parameters. The values
of the parameters themselves are stored within the ROS parameter server. They are
added dynamically once the Crazyflie is connected, because parameter names, types,
and values are all dynamic and dependent on your firmware version. For that reason,
it is currently not possible to use the dynamic_reconfigure package, because
in this case the parameter names and types need to be known at compile time. Instead,
a custom service call needs to be triggered containing a list of parameters to update
once a user changed a parameter on the ROS parameter server. The following Python
example can be used to turn the headlight on (if the LED expansion is installed):

1 import rospy
2 from crazyflie_driver.srv import UpdateParams
3 rospy.wait_for_service("/crazyflie1/update_params")
4 update_params =

rospy.ServiceProxy("/crazyflie1/update_params",
UpdateParams)

5 rospy.set_param("/crazyflie1/ring/headlightEnable", 1)
6 update_params(["ring/headlightEnable"])

After the service has become available, a service proxy is created and can be used to
call the service whenever a parameter needs to be updated. Updating the parameter
sets the parameter to a new value followed by a service call, which will trigger an
upload to the Crazyflie.

Another important part of the driver is the logging system support. If logging is
enabled, the Crazyflie will advertise a number of fixed topics. In order to receive
custom logging values (or at custom frequencies), you will either need to change the
source code or use custom log blocks. The latter has the disadvantage that it is not

Flying Multiple UAVs Using ROS 115

typesafe (it just uses an array of floats as message type) and that it will be slightly
slower at runtime. You can use custom log blocks as follows:

customLogBlocks.launch

1 <launch>
2 <arg name="uri" default="radio://0/80/2M" />
3 <include file="$(find

crazyflie_driver)/launch/crazyflie_server.launch" />
4 <group ns="crazyflie">
5 <node pkg="crazyflie_driver" type="crazyflie_add"

name="crazyflie_add" output="screen">
6 <param name="uri" value="$(arg uri)" />
7 <param name="tf_prefix" value="crazyflie" />
8 <rosparam>
9 genericLogTopics: ["log1", "log2"]
10 genericLogTopicFrequencies: [10, 100]
11 genericLogTopic_log1_Variables: ["pm.vbat"]
12 genericLogTopic_log2_Variables: ["acc.x", "acc.y",

"acc.z"]
13 </rosparam>
14 </node>
15 </group>
16 </launch>

Here, additional parameters are used within the crazyflie_add node to specify
which log blocks to get. The first log block only contains pm.vbat and is sampled
every 10 ms. A new topic named /crazyflie1/log1 will be published. Simi-
larly, the /crazyflie1/log2 topic will contain three values (x , y, and z of the
accelerometer), published every 100 ms.

The easiest way to find the names of variables is by using the Bitcraze PC Client.
After connecting to a Crazyflie select “Logging Configurations” in the “Settings”
menu. A new dialog will open and list all variables with their respective types. Each
log block can only hold up 28 bytes and the minimum update period is 10 ms. You
can also use the listLogVariables command line tool which is part of the
crazyflie_tools package to obtain a list with their respective types.

9.4 crazyflie_controller

The Crazyflie is controlled by a cascaded PID controller. The inner attitude controller
is part of the firmware. The inputs are the current attitude, as estimated using the
IMU sensor data, and the setpoint (attitude and thrust), as received over the radio.
The controller runs at 250Hz.

The crazyflie_controller node runs another outer PID controller, which
takes the current and goal position as input and produces a setpoint (attitude and
thrust) for the inner controller. This cascaded design is typical if the sensor update

116 W. Hönig and N. Ayanian

rates are different [11]. In this case, the IMU can be sampled much more frequently
than the position.

A PID controller has absolute, integral, and differential terms on an error variable:

u(t) = KPe(t) + KI

∫ t

0
e(t)dt + KD

de(t)

dt
, (1)

where u(t) is the control output and KP , KI and KD are scalar parameters. The
error e(t) is defined as the difference between the goal and current value. The
crazyflie_controller uses four independent PID controllers for x , y, z,
and yaw, respectively. The controller also handles autonomous takeoff and landing.
The integral part of the z-PID controller is initialized during takeoff with the esti-
mated required base thrust to keep theCrazyflie hovering. The takeoff routine linearly
increases the thrust, until the takeoff is detected by the external position system. A
state machine switches to the PID controller, using the current thrust value as initial
guess for the integral part of the z-axis PID controller. This avoids retuning of a
manual offset in case the payload changes or a different battery is used.

The current goal can be changed by publishing to the goal topic. However, since
the controller makes the hover assumption, large jumps between different control
points should be avoided.

Thevarious parameters canbe tuned in a configfile (crazyflie_controller
/config/crazyflie2.yaml), or a custom config file can be loaded instead
of the default one (see crazyflie_controller/launch/crazyflie2.
launch for an example).

9.5 Possible Extensions

The overview of the crazyflie_ros stack should allow you to reuse some of
its architecture ideas or to extend it further. For example, you can use the Crazyra-
dio and crazyflie_cpp for any other remote-controlled robot which requires a
low-latency radio link. The presented controller of the crazyflie_controller
package is a simple hover controller. A non-linear controller, as presented in [14]
or [11] might be an interesting extension to improve the controller performance.
Higher-level behaviors, such as following a trajectory rather than just goal points,
could make more interesting flight patterns possible. Finally, including simulation
for the Crazyflie25 could help research and development by enabling simulated
experiments.

25E.g., adding support to the RotorS package (http://wiki.ros.org/rotors_simulator).

http://wiki.ros.org/rotors_simulator

Flying Multiple UAVs Using ROS 117

10 Conclusion

In this chapter we showed how to use multiple small quadcopters with ROS in
practice. We discussed our target platform, the Bitcraze Crazyflie 2.0, and guided the
reader step-by-step to the process of letting multiple Crazyflies following waypoints.
We tested our approach on up to six Crazyflies, using three radios. We hope that this
detailed description will help other researchers use the platform to verify algorithms
on physical robots.

More recent research has shown that the platform can even be used for swarms
of up to 49 robots [5]. In the future, we would like to provide a similar step-by-step
tutorial about the additional required steps to guide other researchers in working on
larger swarms. Furthermore, it would be interesting to make the work more accessi-
ble to a broader audience once more inexpensive but accurate localization systems
become available.

References

1. Michael, N., J. Fink, and V. Kumar. 2011. Cooperative manipulation and transportation with
aerial robots. Autonomous Robots 30 (1): 73–86.

2. Augugliaro, F., S. Lupashin, M. Hamer, C. Male, M. Hehn, M.W. Mueller, J.S. Willmann, F.
Gramazio, M. Kohler, and R. D’Andrea. 2014. The flight assembled architecture installation:
Cooperative construction with flying machines. IEEE Control Systems 34 (4): 46–64.

3. Hönig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., and N. Ayanian. 2015. Mixed reality
for robotics. In IEEE/RSJ Intl Conference Intelligent Robots and Systems, 5382–5387.

4. Mirjan, A., Augugliaro, F., D’Andrea, R., Gramazio, F., and M. Kohler. 2016. Building a
Bridge with Flying Robots. In Robotic Fabrication in Architecture, Art and Design 2016.
Cham: Springer International Publishing, 34–47.

5. Preiss, J.A., Hönig, W., Sukhatme, G.S., and N. Ayanian. 2016. Crazyswarm: A large nano-
quadcopter swarm. In IEEE/RSJ Intl Conference Intelligent Robots and Systems (Late Breaking
Results).

6. Michael, N., D. Mellinger, Q. Lindsey, and V. Kumar. 2010. The GRASP multiple micro-uav
testbed. IEEE Robotics and Automation Magazine 17 (3): 56–65.

7. Lupashin, S., Hehn, M., Mueller, M.W., Schoellig, A.P., Sherback, M., and R. D’Andrea.
2014. A platform for aerial robotics research and demonstration: The flying machine arena.
Mechatronics 24(1):41–54.

8. Landry, B. 2015. Planning and control for quadrotor flight through cluttered environments,
Master’s thesis, MIT.

9. Förster, J. 2015. System identification of the crazyflie 2.0 nano quadrocopter, Bachelor’s Thesis,
ETH Zurich.

10. Ledergerber, A., Hamer, M., and R. D’Andrea. 2015. A robot self-localization system using
one-way ultra-wideband communication. In IEEE/RSJ Intl Conference Intelligent Robots and
Systems, 3131–3137.

11. Mellinger, D. 2012. Trajectory generation and control for quadrotors, Ph.D. dissertation, Uni-
versity of Pennsylvania.

12. Kushleyev, A., D. Mellinger, C. Powers, and V. Kumar. 2013. Towards a swarm of agile micro
quadrotors. Autonomous Robots 35 (4): 287–300.

13. Hönig, W., Kumar, T.K.S., Ma, H., Koenig, S., and N. Ayanian. 2016. Formation change for
robot groups in occluded environments. In IEEE/RSJ Intl Conference Intelligent Robots and
Systems.

118 W. Hönig and N. Ayanian

14. Lee, T., Leok, M., and N.H. McClamroch. 2010. Geometric tracking control of a quadrotor
UAV on SE(3). In IEEE Conference on Decision and Control, 5420–5425.

Author Biographies

Wolfgang Hönig has been a Ph.D. student at ACT Lab at University of Southern California since
2014. He holds a Diploma in Computer Science from Technical University Dresden, Germany.
He is the author and maintainer of the crazyflie_ros stack.

Nora Ayanian is an Assistant Professor at University of Southern California. She is the director
of the ACT Lab at USC and received her Ph.D. from the University of Pennsylvania in 2011. Her
research focuses on creating end-to-end solutions for multirobot coordination.

Part II
Control of Mobile Robots

SkiROS—A Skill-Based Robot Control
Platform on Top of ROS

Francesco Rovida, Matthew Crosby, Dirk Holz,
Athanasios S. Polydoros, Bjarne Großmann,
Ronald P.A. Petrick and Volker Krüger

Abstract The development of cognitive robots in ROS still lacks the support of
some key components: a knowledge integration framework and a framework for
autonomous mission execution. In this research chapter, we will discuss our skill-
based platform SkiROS, that was developed on top of ROS in order to organize
robot knowledge and its behavior. We will show how SkiROS offers the possibil-
ity to integrate different functionalities in form of skill ‘apps’ and how SkiROS
offers services for integrating these skill-apps into a consistent workspace. Further-
more, we will show how these skill-apps can be automatically executed based on
autonomous, goal-directed task planning. SkiROS helps the developers to program
and port their high-level code over a heterogeneous range of robots, meanwhile the
minimal Graphical User Interface (GUI) allows non-expert users to start and super-

This project has received funding from the European Union’s Seventh Framework Programme
for research, technological development and demonstration under grant agreement no 610917
(STAMINA).

F. Rovida (B) · A.S. Polydoros · B. Großmann · V. Krüger
Aalborg University Copenhagen, A.C. Meyers Vænge 15,
2450 Copenhagen, Denmark
e-mail: francesco@m-tech.aau.dk

A.S. Polydoros
e-mail: athanasios@m-tech.aau.dk

B. Großmann
e-mail: bjarne@m-tech.aau.dk

V. Krüger
e-mail: vok@m-tech.aau.dk

D. Holz
Bonn University, Bonn, Germany
e-mail: holz@ais.uni-bonn.de

M. Crosby · R.P.A. Petrick
Heriot-Watt University, Edinburgh, UK
e-mail: m.crosby@hw.ac.uk

R.P.A. Petrick
e-mail: r.pretrick@hw.ac.uk

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_4

121

122 F. Rovida et al.

vise the execution. As an application example, we present how SkiROS was used to
vertically integrate a robot into the manufacturing system of PSA Peugeot-Citroën.
We will discuss the characteristics of the SkiROS architecture which makes it not
limited to the automotive industry but flexible enough to be used in other application
areas as well. SkiROS has been developed on Ubuntu 14.04 LTS and ROS indigo and
it can be downloaded at https://github.com/frovida/skiros. A demonstration video is
also available at https://youtu.be/mo7UbwXW5W0.

Keywords Autonomous robot · Planning · Skills · Software engineering · Knowl-
edge integration · Kitting task

1 Introduction

In robotics the ever increasing level of system complexity and autonomy is naturally
demanding a more powerful system architecture to relieve developers from reoc-
curring integration issues and to increase the robot’s reasoning capabilities. Nowa-
days, several middleware-based component platforms, such as ROS, are available
to support the composition of different control structures. Nevertheless, these mid-
dlewares are not sufficient, by themselves, to support the software organization of a
full-featured autonomous robot (Fig. 1).

First, the presence of a knowledge-integration framework is necessary to support
logic programming and increase software composability and reusability. In tradi-
tional robotic systems, knowledge is usually hidden or implicitly described in terms
of if-then statements. With logic programming, the knowledge is integrated in a
shared semantic database and the programming is based on queries over the data-
base. This facilitates further software compositions since the robot’s control program
does not need to be changed, and the extended knowledge will automatically intro-
duce more solutions. Also, reusability is improved because knowledge that has been
described once, can now be used multiple times for recognizing objects, inferring
facts, or parametrizing actions.

Fig. 1 SkiROS and the kitting pipeline ported on 3 heterogeneous industrial mobile manipulators

https://github.com/frovida/skiros
https://youtu.be/mo7UbwXW5W0

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 123

Second, the complex design process and integration of different robot’s behav-
iors requires the support of a well-defined framework. The framework is not only
necessary to simplify the software integration, but it is also fundamental to extend
scripted behaviors with autonomous task planning based on context awareness. In
fact, task planning in robotics is still not largely used due to the complexity of defin-
ing a planning domain and keeping it constantly updated with the robot’s available
capabilities and sensors readings.

In the course of a larger project on kitting using mobile manipulators [1–3], we
have developed a particularly efficient pipeline for automated grasping of parts from
pallets and bins, and a pipeline for placing into kits. To integrate these pipelines,
together and with other ones, into different robot platforms, the Skill-based platform
for ROS (SkiROS) was developed. The proposal for implementing such a program-
ming platform defines tasks as sequences of skills, where skills are identified as the
re-occurring actions that are needed to execute standard operating procedures in a
factory (e.g., operations like pick ‘object’ or place at ‘location’). Embedded within
the skill definitions are the sensing and motor operations, or primitives, that accom-
plish the goals of the skill, as well as a set of condition checks that are made before
and after execution, to ensure robustness. This methodology provides a process to
sequence the skills automatically using a modular task planner based on a standard
domain description, namely the Planning Domain Definition Language (PDDL) [4].
The planning domain is automatically inferred from the robot’s available skill set
and therefore does not require to be stated explicitly from a domain expert.

In this research chapterwe present a complete in-depth description of the platform,
how it is implemented in ROS, and how it can be used to implement perception and
manipulation pipelines on the example of mobile robot depalletizing, bin picking
and placing in kits. The chapter is structured as follows. Section2, discusses related
work in general with a focus on the existing ROS applications. Section3, discusses
the software architecture theoretical background. Section4, holds a tutorial on the
graphical user interface. Section5, holds a tutorial on the plug-ins development.
Section6, discusses the task planner theoretical background and tutorial on planner
plug-in development. Section7, presents an application on a real industrial kitting
task. Section8, discusses relevant conclusions.

1.1 Environment Configuration

SkiROS consist of a core packages set that can be extended during the development
process with plug-ins. The SkiROS package, and some initial plug-ins sets can be
downloaded from, respectively:

• https://github.com/frovida/skiros, core package
• https://github.com/frovida/skiros_std_lib, extensionwith task planner, drive-pick-
place skills and spatial reasoner

https://github.com/frovida/skiros
https://github.com/frovida/skiros_std_lib

124 F. Rovida et al.

• https://github.com/frovida/skiros_simple_uav, extensionwith drive-pick-place for
UAVs, plus takeoff and landing skills

SkiROS has been developed and tested on ubuntu 14.04 with ROS indigo and the
compilation is not guaranteed to work within a different setup.

Dependencies Skiros requires the oracle database and the redland library installed
on the system. These are necessary for the world model activity. To install all
dependencies is possible to use the script included in the SkiROS repository
skiros/scripts/install_dependencies.sh. Other dependencies nec-
essary for the planner can be installed running the script skiros_std_lib/
scripts/install_dependencies.sh. After these steps, SkiROS can be
compiled with the standard “catkin_make” command. For a guide on how to launch
the system after compilation, refer to Sect. 3.1.

2 Related Work

During the last three decades, threemain approaches to robot control have dominated
the research community: reactive, deliberative, and hybrid control [5]. Reactive sys-
tems rely on a set of concurrently runningmodules, called behaviours, which directly
connect input sensors to particular output actuators [6, 7]. In contrast, deliberative
systems employ a sense-plan-act paradigm, where reasoning plays a key role in an
explicit planning process. Deliberative systems canworkwith longer timeframes and
goal-directed behaviour, while reactive systems respond to more immediate changes
in the world. Hybrid systems attempt to exploit the best of both worlds, through
mixed architectures with a deliberative high level, a reactive low level, and a syn-
chronisation mechanism in the middle that mediates between the two [8]. Most mod-
ern autonomous robots follow a hybrid approach [9–12], with researchers focused
on finding appropriate interfaces between the declarative descriptions needed for
high-level reasoning and the procedural ones needed for low-level control.

In the ROS ecosystem, we find ROSco,1 Smach2 and pi_trees3 which are architec-
tures for rapidly creating complex robot behaviors, under the form of Hierarchical
Finite State Machine (HFSM) or Behavior Trees (BT). These softwares are useful to
model small concatenations of primitives with a fair reactive behavior. The approach
can be used successfully up to a level comparable to our skills’ executive, but doesn’t
scale up for high dynamic contexts. In fact the architectures allow only static com-
position of behaviors and cannot adapt those to new situations during execution. At
time being, and at the best of author knowledge, we find in the ROS ecosystem only
one maintained package for automated planning: rosplan4 (Trex is no longer main-

1http://pwp.gatech.edu/hrl/ros-commander-rosco-behavior-creation-for-home-robots/.
2http://wiki.ros.org/smach.
3http://wiki.ros.org/pi_trees.
4https://github.com/KCL-Planning/ROSPlan.

http://pwp.gatech.edu/hrl/ros-commander-rosco-behavior-creation-for-home-robots/
http://wiki.ros.org/smach
http://wiki.ros.org/pi_trees
https://github.com/KCL-Planning/ROSPlan

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 125

tained). In rosplan, the planning domain has to be defined manually from a domain
expert. With our approach, the planning domain is automatically inferred at run-time
from the available skill set, which results in a higher flexibility and usability.

Knowledge representation plays a fundamental role in cognitive robotic systems
[13], especially with respect to defining world models. The most relevant approach
for our work is the cognitivist approach, which highlights the importance of sym-
bolic computation: symbolic representations are produced by a human designer and
formalised in an ontology. Several modern approaches for real use-cases rely on
semantic databases [14–16] for logic programming. It allows robotic system to
remain flexible at run-time and easy to re-program. A prominent example of knowl-
edge processing in ROS is the KnowRob system [17], which combines knowledge
representation and reasoning methods for acquiring and grounding knowledge in
physical systems. KnowRob uses a semantic library which facilitates loading and
accessing ontologies represented in theWeb Ontology Language (OWL). Despite its
advanced technology, KnowRob is a framework with a bulky knowledge base and a
strict dependency with the ‘Prolog’ language. For our project, a simpler and minimal
implementation has been preferred, still compliant with the widely used OWL stan-
dard. Coupled with KnowRob there is CRAM (Cognitive Robot Abstract Machine)
[18]. Like SkiROS, CRAM is a software toolbox for the design, the implementation,
and the deployment of cognition-enabled autonomous robots, that do not require the
whole planning domain to be stated explicitly. The CRAM kernel consists of the
CPL plan language, based on Lisp, and the KnowRob knowledge processing system.
SkiROS presents a similar theoretical background with CRAM, but differs in several
implementations choices. For example, SkiROS doesn’t provide a domain specific
language such as CPL to support low-level behavior design, but relies on straight
C++ code and the planner in CRAM is proprietary, meanwhile in SkiROS is modular
and compatible with every PDDL planner.

3 Conceptual Overview

The Skill-based platform for ROS (SkiROS) [19] helps to design and execute the
high-level skills of an hybrid behavior-deliberative architecture, commonly referred
with the name of 3-tiered architecture [9–12]. As such, it manages the executive and
deliberative layers, that are expected to control a behavior layer implemented using
ROS nodes. While the theory regarding 3-tiered architectures is well know, it is still
an open question how to build a general and scalable platform with well-defined
interfaces. In this sense, the development of the SkiROS platform has been carried
out taking into consideration the needs of two key stakeholders: the developer and
the end-user. This approach derives from the field of the interaction design, where
the human’s needs are placed as focal point of the research process. It is also included
in the ISO standard [ISO9241-210;ISO16982].

Briefly, SkiROS provide: (i) a workspace to support the development process and
software integration betweendifferent sources and (ii) an intuitive interface to instruct

126 F. Rovida et al.

missions to the robot. The main idea is that the developers can equip the robots with
skills, defined as the fundamental software building blocks operating a modification
on the world state. The end-user can configure the robot by defining a scene and a
goal and, given this information, the robot is able to plan and execute autonomously
the sequence of skills necessary to reach the required goal state. The possibility of
specifying complex states is tightly coupled with the amount of skills that the robot
is equipped with and the richness of the robot’s world representation. Nevertheless,
developing and maintaining a large skill set and a rich knowledge base can be an
overwhelming task, even for big research groups. Modular and shareable skills are
mandatory to take advantage of the network effect - a phenomenon occurring when
the number of developers of the platform grows. When developers start to share
skills and knowledge bases, there is possible to develop a robot able to understand
and reach highly articulated goals. This is particularly achievable for the industrial
case, where the skills necessary to fulfill most of use-cases have been identified from
different researchers as a very compact set [20, 21].

The ROS software development approach is great to develop a large variety of dif-
ferent control systems, but lacks support to the reuse of effective solutions to recurrent
architectural design problems. Consequently, we opted for a software development
based on App-like plug-ins, that limits the developer to program a specific set of
functionalities, specifically: primitives, skills, conditions, task planners and discrete
reasoners. This approach partially locks the architecture of the system, but ensure a
straightforward re-usability of all the modules. On the other side, we also modular-
ized the core parts of the system into ROS nodes, so that the platform itself doesn’t
become a black box w.r.t. to ROS and can be re-used in some of its parts, like e.g.
the world model.

Several iterative processes of trial and refinement has been necessary in order to
identify:

• how to structure the system
• the part of the system that needs to be easily editable or replaced by the developer
• the interface required from the user in order to control and monitor the system,
without the necessity of becoming an expert on all its parts

The application on a real use-case has been fundamental to apply these iterations.

3.1 Packages Structure

SkiROS is a collection of ROS packages that implements a layered architecture. Each
layer is a stand-alone package, which shares few dependencies with other layers. The
packages in the SkiROS core repository are:

• skiros - the skirosmeta-package contains ROS launch files, logs, ontologies, saved
istances and scripts to install system dependencies

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 127

• skiros_resource, skiros_primitive - these packages are still highly experimental
and are not taken into consideration in this paper. The primitives are currently
managed together with skills, in the skill layer.

• skiros_skill - contains the skill manager node and the base class for the skills and
the primitives

• skiros_world_model - contain the world model node, C++ interfaces to the ROS
services, utilities to treat ontologies and the base class for conditions and reasoners

• skiros_common - shared utilities
• skiros_msgs - shared ROS actions, services and messages
• skiros_config - contains definition of URIs, ROS topic names and other reconfig-
urable parameters

• skiros_task - the higher SkiROS layer, contain the task manager node and the
base class for task planner plug-in

• skiros_rqt_gui - the Graphical User Interface, a plug-in for the ROS rqt package

Each layer implements core functionalities with plug-ins, using the ROS ‘plugin-
lib’ system. The plug-ins are the basic building blocks available to the developer to
design the robot behavior and tailor the system to his specific needs. This method-
ology ensure a complete inter-independence of the modules at compile time. Every
node has clear ROS interfaces with others so that, if necessary, any implementa-
tion can be replaced. The system is also based on two standards: the Web Ontology
Language (OWL) standard [22] for the knowledge base and the Planning Domain
Definition Language (PDDL) standard [4] for the planner. The platform architecture
is visualized in Fig. 2. The complete platform consist of three ROS nodes - task man-
ager, skill manager and world model - plus a Graphical User Interface (GUI). It can
be executed using the command:

roslaunch skiros skiros_system.launch robot_name:=my_robot

Where my_robot should be replaced with the desired semantic robot descrip-
tion in the knowledge base (see Sect. 5.1). The default robot model loaded is
aau_stamina_robot. In theskiros_std_lib repository there is an example
of the STAMINA use-case specific launch file:

roslaunch skiros_std_lib skiros_system_fake_skills.launch

This launch file runs the SkiROS system with two skill managers: one for the mobile
base, loading the drive skill, and one for the arm, loading pick and place skills.

3.2 World Model

Generally speaking, it is possible to subdivide the robot knowledge into three main
domains: continuous, discrete and semantic. Continuous data is extracted directly

http://dx.doi.org/10.1007/978-3-319-54927-9_5

128 F. Rovida et al.

Fig. 2 An overview of the SkiROS architecture, with squares representing ROS nodes and rectan-
gles representing plug-ins. The robot presents an external interface to specify the scene and receive a
goal, that can be accessed by the GUI or directly from a factory system. Internally, the task manager
dispatches the generated plans to the skill managers in each subsystem of the robot. A skill manager
is the coordinator of a subset of capabilities, keeping the world model updated with its available
hardware, skills and primitives. The world model is the focal point of the system: all knowledge is
collected and shared through it

from sensors. Discrete data are relevant features that are computed from the continu-
ous data and are sufficient to describe a certain aspect of the environment. Semantic
data is abstract data, that qualitatively describes a certain aspect of the environment.
Our world model stores semantic data. It works as a knowledge integration frame-
work and supports the other subsystems’ logic reasoning by providing knowledge
on any relevant topic. In particular, the robot’s knowledge is organised into an ontol-
ogy that can be easily embedded, edited and extracted from the system. It is defined
in the Web Ontology Language (OWL) standard which ensures greater portability
and maintainability. The OWL ontology files have usually a .owl extension, and are
based on XML syntax. An ontology consists of a set of definitions of basic categories

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 129

(objects, relations, properties) which describe the elements of the domain of interest,
their properties, and the relations they maintain with each other [23]. Ontologies
are defined in Description Logic (DL), a specialisation of first-order logic, which
is designed to simplify the description of definitions and properties of categories.
The knowledge base consists of a terminological component (T-Box), that contains
the description of the relevant concepts in the domain and their relations, and an
assertional component (A-Box) that stores concept instances (and assertions about
those instances).

The SkiROS core ontology skiros/owl/stamina.owl gives a structure to
organize the knowledge of 3 fundamental categories:

• the objects in the world
• the robot hardware
• the robot available capabilities (skills and primitives)

The knowledge base can be extended from the developer at will. It is possible to
modify the default OWL loading path skiros/owl, by specifying the parameter
skiros/owl_workspace. All theOWLfiles found in the specified path are auto-
matically loaded from the world model at boot andmerged to the SkiROS knowledge
core - that is always loaded first. The world model node can be executed individually
with the command:

rosrun skiros_world_model world_model_node

At run-time, the world model allows all the modules to maintain a shared work-
ing memory in a world instance, or scene, which forms a database complemen-
tary to the ontology database. The scenes are managed in the path specified in
the skiros/scene_workspace parameter (default: skiros/scene). It is possi-
ble to start the world model with a predefined scene, by specifing the skiros/
scene_name parameter. It is also possible to load and save the scene using the
ROS service or the SkiROS GUI. An example of the scene tree structure is showed

Fig. 3 An example of a possible scene, with the robot visualized on rviz (left) and the corresponding
semantic representation (right). The scene includes both physical objects (blue boxes) and abstract
objects (orange boxes)

130 F. Rovida et al.

in Fig. 3. The ontology can be extended automatically by the modules, to learn new
concepts in a long-term memory (e.g. to learn a new grasping pose). The modules
can modify the A-Box but not the T-Box. It is possible to interface with the world
model using the following ROS services and topics:

• /skiros_wm/lock_unlock shared mutex for exclusive access (service)
• /skiros_wm/query_ontology query theworldmodelwithSPARQLsyntax (service)
• /skiros_wm/modify_ontology add and remove statements in the ontology. New
statements are saved in the filelearned_concepts.owl in the owlworkspace
path. The imported ontologies are never modified (service)

• /skiros_wm/element_get get one or more elements from the scene (service)
• /skiros_wm/element_modify modify one or more elements in the scene (service)
• /skiros_wm/set_relation set relations in the scene (service)
• /skiros_wm/query_model query relations in the scene (service)
• /skiros_wm/scene_load_and_save save or load a scene from file (service)
• /skiros_wm/monitor publish any change done to the world model, both ontology
and scene (topic)

It is also available a C++ interface class skiros_world_model/
world_model_interface.h that wraps the ROS interface and can be included
in every C++ program. This interface is natively available for all the skills and prim-
itives plug-ins (see Sect. 5.2).

3.3 Skill Manager

The skill manager is a ROS node that collects the capabilities of a specific robot’s
subsystem. A skill manager is launched with the command:

rosrun skiros_skill skill_manager_node __name:=my_robot

Where my_robot has to be replaced with the identifier of the robot in the world
model ontology. Since many of the skill managers’ operations are based on the
information stored in theworldmodel, it requires theworldmodel node to be running.
Each skill manager in the system is responsible to instantiate in world scene its
subsystem information: hardware, available primitives and available skills. Similarly,
each primitive and skill can extend the scene information with the results of robot
operation or sensing. To see how to create a new robot definition refer to Sect. 5.1.
A skill manager, by default, tries to load all the skills and primitives that are been
defined in the pluginlib system.5 It is also possible to load only a specific set by
defining the parameters: skill_list and module_list. For example:

<node name="my_robot" pkg="skiros_skill" type="skill_manager_node">

5http://wiki.ros.org/pluginlib.

http://dx.doi.org/10.1007/978-3-319-54927-9_5
http://dx.doi.org/10.1007/978-3-319-54927-9_5
http://wiki.ros.org/pluginlib

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 131

<param name="skill_list" type="string" value="pick place"/>
<param name="module_list" type="string" value="arm_motion locate"/>

</node>

In this case the robot my_robot will try to load pick and place skill, and the
arm_motion and locate primitives. If the modules are loaded correctly, they will
appear on the world model, associated to the robot name. It is possible to interface
with the skill manager using the following ROS services and topics:

• /my_robot/module_command command execution or stop of a primitive (service)
• /my_robot/module_list_query get the primitive list (service)
• /my_robot/skill_command command execution or stop of a skill (service)
• /my_robot/skill_list_query get the skill list (service)
• /my_robot/monitor publish execution feedback (topic)

It is also available a C++ interface class skiros_skill/skill_manager_
interface.h that wraps the ROS interface and can be included in every C++
program and an high-level interface class skiros_skill/skill_layer_
interface.h to handle multiple skill managers. Note that, on every skill man-
ager, the same module can be executed once at a time, but different modules can be
executed concurrently.

3.4 Task Manager

The task manager acts as the general robot coordinator. It monitors the presence
of robot’s subsystems via the world model and use this information to connect to
the associated skill manager. The task manager is the interface for external systems,
designed to be controlled by a GUI or the manufacturing execution system (MES)
of a factory. The task manager is launched individually with the command:

rosrun skiros_task task_manager_node

It is possible to interface with the task manager using the following ROS services
and topics:

• /skiros_task_manager/task_modify add or remove a skill from the list (service)
• /skiros_task_manager/task_plan send a goal to plan a skill sequence (service)
• /skiros_task_manager/task_query get the skill sequence (service)
• /skiros_task_manager/task_exe start or stop a task execution (topic)
• /skiros_task_manager/monitor publish execution feedback (topic)

132 F. Rovida et al.

3.5 Plugins

The plug-ins are C++ classes, derived from an abstract base class. Several plug-
ins can derive from the same abstract class. For example, any skill derives from the
abstract class skill base. The following system parts have been identified as modules:

• skill - an action with pre- and postconditions that can be concatenated to form a
complete task

• primitive - a simple action without pre- and postconditions, that is concatenated
manually from a expert programmer inside a skill. The primitives support hierar-
chical composition

• condition - a desired world state. It is expressed as a boolean variable (true/false)
applied on a property of an element (property condition) or a relation between
two elements (relation condition). The plug-in can wrap methods to evaluate the
condition using sensors.

• discrete reasoner - an helper class necessary to link the semantic object definition
to discrete data necessary for the robot operation

• task planner - a plug-in to plan the sequence of skills given a goal state. Any
planner compatiblewith PDDLand satisfying the requirements described in Sect. 6
can be used

These software pieces are developed by programmers during the development phase
and are inserted as plug-in into the system.

3.6 Multiple Robots Control

SkiROS can be used in multi-robot system in two ways. In the first solution, each
skill manager is used to represent a robot in itself, and the task manager is used to
plan and dispatch plans to each one of them. The solution is simple to implement
and the robots will have a straightforward way to share the information via the single
shared world model. The main limitation is that the skill execution is at the moment
strictly sequential. Therefore, the task manager will move the robots one at a time.
The second solution consist in implementing a high-level mission planner, and use
this to dispatch goals for the SkiROS system running on each one of the robots. The
latter solution is the one currently used for the integration in the PSA factory system
[24].

4 User Interface

To allow any kind of user to be able to run and monitor the execution of the
autonomous robot, the support of a clean and easy-to-use UI is necessary. At the

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 133

Fig. 4 The full GUI showing the task tab

moment, the interaction between human and robot is based on a Graphical UI, which
in the future can be extended with more advanced and intuitive ways of interaction,
like voice or motion capture. The full GUI is presented in Fig. 4. It consists of 4 tabs:

• Goal - from this tab is possible to specify the desired goal state and trigger an
action planning

• Task - this tab visualize the planned skill sequence and allows to edit it
• Module - this tab allows to run modules (skills and primitives). It is principally
used for testing purposes

• World model - from this tab is possible to load, edit and save the world scene

The GUI is structured for different level of user skill. The most basic user is going to
use the Goal tab and the World model tab. First of all, he can build up a scene, then
can specify the goals, plan a task and run or stop the execution. More advanced user
can edit the planned task or build it by themselves from the Task tab. System tester
can use the Module tab for module testing.

134 F. Rovida et al.

4.1 Edit, Execute and Monitor the Task

From the task tab presented in Fig. 4 is possible to edit a planned task or create a new
one from scratch. The menu on the left allows to add a skill. First, the right robot
must be selected from the top bar (e.g. /aau_stamina_robot). After this, a skill
can be selected from the menu (e.g. place_fake). The skill must be parametrized
appropriately and then can be added to the task list clicking the ‘Add’ button. The
user can select each skill on the task list and remove it with the ‘Remove skill’ button.
On the top bar there are two buttons to execute and stop the task execution and the
‘Iterate’ check box, that can be selected to repeat the task execution in loop (useful
for testing a particular sequence). At the bottom is visualized the execution output
of all the modules, with the fields:

• Module - the module name
• Status - this can be: started, running, preempted, terminated or error
• Progress code - a positive number related to the progress of the module execution.
A negative number indicates an error

• Progress description - a string describing the progress

4.2 Plan a Task

From the goal tab it is possible to specify the desired goal state and generate automat-
ically a skill sequence, that will be then available in the task tab. The goal is expressed
as a set of conditions required to be fulfilled. These can be chosen between the set
of available ones. The available conditions set is calculated at run-time depending
on the robots’ skill set and can be updated using the ‘Refresh’ button. It is possi-
ble to specify as goals only conditions that the robot can fulfill with its skills, or
in other words, conditions that appear in at least one of the skills. In the example
in Fig. 5, we require an abstract alternator to be in Kit-9 and we require the
robot to be at LargeBox-3. By abstract we refer to individuals that are defined
in the ontology, but not instantiated in the scene. Specify an abstract object means
specify any object whichmatch the generic description. The InKit condition allows
abstract types, meanwhile RobotAtLocation can be applied only on instantiated
objects (objects in the scene). For more details about conditions the reader can refer
to Sect. 5.3.

4.3 Module Testing

From the Modules tab is possible to execute primitives. The procedure is exactly
the same presented previously for the skills, except that the primitives are executed
singularly. The module tab becomes handy to test the modules singularly or to setup

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 135

Fig. 5 The goal tab

Fig. 6 The Modules tab

the robot, e.g. to teach a new grasping pose or to move the arm back to home position
(Fig. 6).

4.4 Edit the Scene

From the world model tab Fig. 7 is possible to visualize and edit the world scene.
On the left the scene is visualized in a tree structure. The limit of the tree structure
doesn’t allow to visualize thewhole semantic graph,which can count several relations
between the objects. We opted to limit the visualization to a scene graph, that is a
general data structure commonly used in modern computer games to arrange the
logical and spatial representation of a graphical scene. Therefore, only the spatial
relations (contain and hasA) are visible, starting from the scene root node. On the
right there are buttons to add, modify and remove objects in the scene. When an
element in the tree is selected, its properties are displayed in the box on the right.

136 F. Rovida et al.

Fig. 7 The World Model tab

In the figure, for example, we are displaying the properties of the LargeBox 76. It is
possible to edit its property by clicking on the ‘Modify object’ button. This opens a
pop-up window where properties can be changed one by one, removed (by leaving
the field blank) or added with the ‘+’ button on bottom. It is also possible to add
an object by clicking on the ‘Add object’ button. When an object is added to the
scene, it becomes child of the selected element in the tree. The properties and objects
are limited to the set specified in the ontology. This not only helps to avoid input
mistakes, but also to give the user an intuitive feedback on what it possible to put in
the scene. Once the scene is defined, the interface on the bottom left allows to save
the scene for future use.

5 Development

In this section we discuss how to develop an action context for the robot planning,
using as an example a simplified version of the kitting planning context. The develop-
ment process consist of two steps: specify the domain knowledge in the ontology and
develop the plug-ins specified in Sect. 3.5. Some plug-ins and templates are available
together with the SkiROS core package (see Sect. 1.1).

5.1 Edit the Ontology

Before starting to program, an ontology must be defined to describe the objects in
the domain of interest. This regards in particular:

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 137

• Data - define which kind of properties can be related to elements
• Concepts - define the set of types expected to find using a taxonomy, a hierarchical
tree where is expressed the notion about types and subtypes

• Relations - define a set of relations between elements
• Individuals - somepredefined instanceswith associated data. E.g, a specific device
or a specific robot

The world model is compliant with the OWL w3c standard that counts several
tools for managing ontologies. A well-known open-source program is Protege
(http://protege.stanford.edu/). To install and use it, the reader can refer to one of
the several guides available on internet.6 As introduced in Sect. 3.2, it is possible to
have several custom ontologies in the defined OWL path and these get automatically
loaded and merged with the SkiROS knowledge core at boot. The reader can refer
to the uav.owl file in the skiros_simple_uav repository to see a practical
example on how to create an ontology extension. The launch file in the same package
provide an example on how to load it. Note in particular the importance of providing
the right ontology prefix in the launch file and in general when referencing entities
in the ontology (Fig. 8).

The entities defined in the ontology are going to constraint the development of skill
and primitives. For example, a place skill will require as input only objects that are
subtypes of Container. To avoid the use of strings in the code, that are impossible
to track down, an utility has been implemented in the skiros_world_model
package to generate an enum directly from the ontology. It is possible to run this
utility with the command:

rosrun skiros_world_model uri_header_generator

This utility updates the skiros_config/declared_uri.h, automatically
included in all modules. Using the generated enum for the logic queries allows
to get an error at compile time, if the name changes or is missing.

Create a new robot definition The semantic robot structure is the necessary infor-
mation for the skill manager to manage the available hardware. E.g. if the robot has
a camera mount on the arm, it can move the camera to look better at an object. The
robot and its devices must be described in detail with all the information that the
developer wants to have stated explicitly. The user should use protege to create an
ontology with an individual for each device and an individual for the robot, collect-
ing the devices using the hasA relation. To give a concrete example, lets consider the
aau_stamina_robot, the smaller stamina prototype used for laboratory test:

• NamedIndividual: aau_stamina_robot
• Type: Robot
• LinkedToFrameId: base_link
• hasA− >top_front_camera
• hasA− >top_left_camera

6e.g. http://protegewiki.stanford.edu/wiki/Protege4GettingStarted.

http://protege.stanford.edu/
http://protegewiki.stanford.edu/wiki/Protege4GettingStarted

138 F. Rovida et al.

Fig. 8 The taxonomy of spatial things for the kitting application

• hasA− >top_right_camera
• hasStartLocation− >unknown_location
• hasA− >ur10

The robot has a LinkedToFrameId property, related to the AauSpatial
Reasoner, and a start location, used for the drive skill. For more information
about this properties, refer to the plug-ins description. The robot hardware consist
of 3 cameras and a robotic arm (ur10). If we expand the ur10 description we find:

• NamedIndividual: ur10
• Type: Arm
• MoveItGroup: arm
• DriverAddress: /ur10
• MotionPlanner: planner/plan_action
• MotionExe: /arm_controller/follow_joint_trajectory

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 139

• hasA− >arm_camera
• hasA− >rq3

The arm has an additional camera and a end-effector rq3. Moreover, it has useful
properties for the configuration ofMoveIt. Thanks also to the simple parametrization
of MoveIt, we have been able to port the same skills on 3 heterogeneous arms (ur,
kuka and fanuc) by changing only the arm description as presented here.

5.2 Create a Primitive

ASkiROSmodule is a C++ software class based on the standard ROS plug-in system.
In particular, thosewhoare experienced in programmingROSnodelets7 will probably
find it straightforward to program SkiROS modules. Developing a module consists
of programming a C++ class derived from an abstract template. The basic module, or
primitive, usually implements an atomic functionality like opening a gripper, locating
an object with a camera, etc. These functionalities can be reused in other primitives
or skills or executed individually from the module tab. A primitive inherits from the
template defined in skiros_skill/module_base.h. It requires to specify the
following virtual functions:

1 / / ! \ b r i e f persona l i zed i n i t i a l i z a t i o n rou t ine
2 v i r t u a l bool on In i t () = 0;
3 / / ! \ b r i e f module main
4 v i r t u a l i n t execute () = 0;
5 / / ! \ b r i e f spec i a l i z ed pre−preempt rou t ine
6 v i r t u a l void onPreempt () ;

The onInit() function is called when the skill manager is started to initialize
the primitive. The execute() function is called when the primitive is executed
from the GUI or called by another module. The onPreempt() function is called
when the primitive is stopped, e.g. from theGUI. All primitives have protected access
to a standard set of interfaces:

1 / / ! \ b r i e f I n t e r f a c e with the parameter s e t
2 boost : : shared_ptr <ParamHandler> getParamHandler () ;
3 / / ! \ b r i e f I n t e r f a c e with the sk i ro s world model
4 boost : : shared_ptr <WorldModelInterfaceS> getWorldHandler () ;
5 / / ! \ b r i e f I n t e r f a c e to modules
6 boost : : shared_ptr <Ski l lManagerInter face > getModulesHandler () ;
7 / / ! \ b r i e f I n t e r f a c e with the ROS network
8 boost : : shared_ptr <NodeHandle> getNodeHandler () ;

The ParamHandler allows to define and retrieve parameters.
The WorldModelInterface allows to interact with the world model. The

primitive’s parameter set must be defined in the class constructor and never
modified afterwards.

7http://wiki.ros.org/nodelet.

http://wiki.ros.org/nodelet

140 F. Rovida et al.

The SkillManagerInterface allows the primitive to interact with other
modules.

World model interface Modules’ operations apply over an abstract world model,
which has to been constantly matched to the real world. There is no space in this
chapter to describe in detail theworldmodel interface. Nevertheless, it is important to
present the atomic world model’s data type, defined as element. In fact, the element
is the most common input parameter for a module. An element structure is the
following:

1 / / Unique I d e n t i f i e r of the element in the DB
2 i n t id ;
3 / / Ind iv idua l i d e n t i f i e r in the ontology
4 s td : : s t r i n g l abe l ;
5 / / Category i d e n t i f i e r in the ontology
6 s td : : s t r i n g type ;
7 / / Last update time stamp
8 ros : : Time las t_upda te ;
9 / /A l i s t of p rope r t i e s (color , pose , s ize , e t c .)

10 s td : :map<s td : : s t r i ng , skiros_common : : Param> p rope r t i e s ;

The first 3 fields are necessary to relate the element in the ontology (label and type)
and the scene database (id). The properties list contains all relevant information
associated to the object.

Parameters Every module relies on a dynamic set of parameters to configure the
execution. The parameters are divided in the following categories:

• online parameters that must always be specified
• offline usually are configuration parameters with a default value, such as the
desired movement speed, grasp force, or stiffness of the manipulator

• optional like an offline parameter, but can be left unspecified
• hardware indicate a robot’s device themodule need to access. This can be changed
at every module call (e.g. to locate with different cameras)

• config like an hardware parameter, but it is specified when the module loads and
cannot be changed afterwards. (e.g. an armmotionmodule bounded to a particular
arm)

• planning a parameter necessary for pre and post condition check in a skill. This
is set automatically and doesn’t appear on the UI.

To understand the concept, we present a code example. First, we show how to insert
a parameter:

1 getParamHandler ()−>addParam<my: : Type>("myKey" , "My desc r i p t i on " , ←↩

skiros_common : : onl ine , 3) ;

Here we are adding a parameter definition, specifying in the order: the key, a brief
description, the parameter type, and the vector length. The template argument has to
be specified explicitly too. In the above example we define an online parameter as
a vector of 3 doubles. The key myKey can be used at execution time to access the
parameter value:

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 141

1 s td : : vector <double> myValue = getParamHandler ()−>getParamValues<←↩

double >("myKey") ;

The parameter state is defined as initialized until its value get specified. After this
the state changes to specified. A module cannot run until all unspecified parameters
are specified. It is also possible to define parameters with a default value:

1 getParamHandler ()−>addParamWithDefaultValue ("myKey" , t rue , "My ←↩

de sc r i p t i on " , skiros_common : : o f f l i n e , 1) ;

In this case, the parameter will be initialized to true. When an input parameter is a
world’s element, it is possible to apply a special rule to limit the input range. In fact
sometimes a module requires a precise type of element as input. For example, a pick
skill can pick up only elements of type Manipulatable. In this case, it is possible
to use a partial definition. For example:

1 ’ / s k i r o s_ s t d_ l i b / skiros_l ib_dummy_ski l ls / s rc / pick . cpp ’ L.34 :
2 getParamHandler ()−>addParamWithDefaultValue (" ob jec t " , skiros_wm : :←↩

Element ("Manipulatable ") , "Object to pick up") ;

In this example, only subtypes of Manipulatable will be valid as input for the
object parameter. Every module can have a customized amount of parameters.
The parameters support any data type that can be serialized in a ROS message. This
means all the standard data types and all the ROS messages. ROS messages requires
a quick but non-trivial procedure to be included in the system, that is excluded from
the chapter for space reasons.

Invoke modules Each module can recursively invoke other modules’ execution. For
example, the pick skill invoke the locate module with the following:

1 ’ / s k i r o s_ s t d_ l i b / skiros_l ib_dummy_ski l ls / s rc / pick . cpp ’ L.155 :
2 sk i ro s : : Module loca t e (getModulesHandler () , " loca te_fake " , t h i s−>←↩

moduleType ()) ;
3 l o ca t e . setParam ("Camera" , camera_up_) ;
4 l oca t e . setParam ("Container " , conta iner_) ;
5 l o ca t e . exe () ;
6 l oca t e . wai tResul t () ;
7 v = getWorldHandle ()−>getChildElements (container_ , " " , objObject . type←↩

()) ;

Here, line 2 instantiate a proxy class for the module named locate_fake. Line
3 and 4 set the parameters and line 5 request the execution. The execution is non
blocking, so that is possible to call several modules in parallel. In this case, we wait
for the execution end and then we retrieve the list of located object.

142 F. Rovida et al.

5.3 Create a Skill

A skill is a complex type of module, which inherits from the template defined in
skiros_skill/skill_base.h. A conceptual model of a complete robot skill
is shown in Fig. 9. A skill extends the basic module definition with the presence
of pre- and postcondition checks. By implementing pre- and postcondition check-
ing procedures the skills themselves verify their applicability and outcome. This
enables the skill-equipped robot to alert an operator or task-level planner if a skill
cannot be executed (precondition failures) or if it did not execute correctly (postcon-
dition failures). A formal definition of pre- and postconditions is not only useful for
robustness, but also task planning, which utilizes the preconditions and prediction
to determine the state transitions for a skill, and can thus select appropriate skills
to be concatenated for achieving a desired goal state. A skill adds also two more
virtual functions, preSense() and postSense(), where sensing routines can
be called before evaluating pre- and postconditions. Internally, a skill results into
a concatenation of primitives, that can be both sequential or parallel. The planned
sequence of skills forms the highest level of execution, that is dynamically concate-
nated and parametrized at run-time. The further hierarchical expansion of primitives
is scripted by the developer, but still modular, so that its parts can be reused in dif-
ferent pipelines or replaced easily. Still, if the developer has some code that doesn’t
want to modularize, e.g. a complete pick pipeline embedded in an ROS action, it is
allowed, but unrecommended, to implement a skill as a single block that only makes
the action call.

Create a condition Preconditions and postconditions are based on sensing oper-
ations and expected changes to the world model from executing the skill. The
user defines the pre- and postconditions in the skill onInit() function, after
the parameter definitions. The conditions can be applied only on world model’s
elements input parameters. While some ready-to-use conditions are available in
the system, it’s also possible to create a new condition by deriving it from the

Fig. 9 The model of a robot skill [21]. Execution is based on the input parameters and the world
state, and the skill effectuates a change in the world state. The checking procedures before and after
execution verify that the necessary conditions are satisfied

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 143

condition templates skiros_wm/condition.h. There are two base templates:
ConditionRelation and ConditionProperty. The first put a condition on
a relation between two individuals. The second put a condition on a property of an
individual. When implementing a new condition, two virtual functions have to be
implemented:

• void init() - here define the property (or the relation) on which the condition is
applied

• bool evaluate() - a function that returns true if the condition is satisfied or false
otherwise

Once the condition is defined, every skill can add it to its own list of pre or postcon-
ditions in the onInit() function. For example:

1 ’ / s k i r o s_ s t d_ l i b / skiros_l ib_dummy_ski l ls / s rc / pick . cpp ’ L.62 :
2 addPrecondi t ion (newCondition ("RobotAtLocation " , t rue , "Robot" , "←↩

Container ")) ;

This command instantiate a new condition RobotAtLocation between Robot
and Container and add it to the list of preconditions. Note that Robot and
Container refer to the key defined in the input parameters. In this case, the skill
requires the Robot parameter to have a specific relation with the Container
parameter. If this relation doesn’t hold, the skill will return a failure without being
executed.

5.4 Create a Discrete Reasoner

The world’s elements are agnostic placeholders where any kind of data can be
stored and retrieved. Their structure is general and flexible, but this flexibility
requires that no data-related methods are implemented. The methods are therefore
implemented in another code structure, called discrete reasoner, that is imported
in the SkiROS system as a plug-in. Any reasoner inherits from the base class
skiros_world_model/discrete_reasoner.h. The standardized inter-
face allow to use the reasoners as utilities to (i) store/retrieve data to/from elements
and (ii) to reason about the data to compare and classify elements at a semantic level.

Spatial reasoner A fundamental reasoner for manipulation is the spatial rea-
soner, developed specifically to manage position and orientation properties. The
AauSpatialReasoner, an implementation based on the standard ‘tf’ library of
ROS, is included in the skiros_std_lib/skiros_lib_reasoner package.
An example of the reasoner use is in the following:

1 conta iner_ =getParamHandler ()−>getParamValue<skiros_wm : : Element >("←↩

Container ") ;
2 skiros_wm : : Element ob jec t ;
3 ob jec t . type ()=concept : : S t r [concept : : Compressor] ;
4 ob jec t . s toreData (t f : : Vector3 (0 . 5 , 0 . 0 , 0 . 0) , data : : Pos i t ion , "←↩

AauSpatialReasoner ") ;

144 F. Rovida et al.

5 t f : : Quaternion q ;
6 q . setRPY (0 . 0 , 0 . 0 , 0 . 0) ;
7 ob jec t . s toreData (q , data : : Or i en ta t ion) ;
8 ob jec t . s toreData (s t r i n g ("map") , data : : BaseFrameId) ;
9 t f : : Pose pose= ob jec t . getData< t f : : Pose >(data : : Pose) ;

10 s td : : se t <s td : : s t r i ng > r e l a t i o n s = ob jec t . getRelat ionsWrt (conta iner_)←↩

;

In this example, we first get the container variable from the input parameters. Then
we create an new object instance and we use the AauSpatialReasoner reasoner
to store a position, an orientation and the reference frame. Note that it necessary to
specify the reasoner only on the first call. At line 8, we get back the object pose (a
combination of position and orientation). At line 9 we use the reasoner to calculate
semantic relations between the object itself and the container. The relations will
contain predicates like front/back, left/right, under/over, etc. It is also possible to get
relations with associated literal values for more advanced reasoning. It is up to the
developer to define the supported data structures in I/O and which relevant semantic
relations are extracted.

Example To give an example of some of the concepts presented in the section, lets
consider the code of a skill to start the flying of an UAV (note: the code is slightly
simplified w.r.t. the real file):

1 ’ / skiros_simple_uav / s imple_uav_sk i l l s / s rc / f lyToAl t i tude . cpp ’ :
2 c l a s s F lyAl t i tude : publ ic Ski l lBase
3 {
4 publ ic :
5 F lyAl t i tude ()
6 {
7 t h i s−>se tSki l lType ("Drive ") ;
8 t h i s−>setVers ion (" 0 .0 .1 ") ;
9 getParamHandle ()−>addParamWithDefaultValue ("Robot" , ←↩

skiros_wm : : Element (concept : : S t r [concept : : Robot]) , "Robot←↩

to con t ro l " , skiros_common : : onl ine) ;
10 getParamHandle ()−>addParamWithDefaultValue (" Al t i t ude " , 1 .0 , ←↩

" Al t i t ude to reach (meters) " , skiros_common : : o f f l i n e) ;
11 }
12 bool on In i t ()
13 {
14 addPrecondi t ion (newCondition ("uav : LowBattery" , f a l se , "Robot←↩

")) ;
15 addPostcondi t ion ("NotLanded" , newCondition ("uav : Landed" , ←↩

f a l se , "Robot")) ;
16 r e t u rn t rue ;
17 }
18 i n t preSense ()
19 {
20 sk i ro s : : Module monitor (getModulesHandler () , " moni tor_bat te ry "←↩

, t h i s−>ski l lType ()) ;
21 monitor . setParam ("Robot" , getParamHandle ()−>getParamValue<←↩

Element >("Robot")) ;
22 monitor . setParam (" f " , 10 .0) ;

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 145

23 monitor . exe () ;
24 r e t u rn 1;
25 }
26 i n t execute ()
27 {
28 double a l t i t u d e = getParamHandle ()−>getParamValue<double >("←↩

Al t i tude ") ;
29 t h i s−>se tP rogres s ("Going to a l t i t u d e " + s td : : t o _ s t r i ng (←↩

a l t i t u d e)) ;
30 ros : : Duration (2 . 0) . s leep () ; / / Fake an execut ion time
31 se tAl lPos tCondi t ions () ;
32 r e t u rn 1;
33 }
34 } ;
35 / / Export
36 PLUGINLIB_EXPORT_CLASS(FlyAl t i tude , s k i r o s _ s k i l l : : Ski l lBase)

Lets go through the code line by line:

• Constructor - line 7–8 define constants to describe the module itself. Line 9-10
define the required parameters.

• onInit() - line 14 add the precondition of having a charged battery, line 15 add
a postcondition of having the robot no more on the ground. Note the use of the
prefix ‘uav:’ to the condition names. This because the conditions are defined in
the uav.owl ontology.

• preSense() - invoke the monitor_batterymodule, to update the condition of
the battery.

• execute() - at line 28 the parameter Altitute is retrieved. Line 29 print out
a progress message. Line 30 and 31 are in place of a real implementation. In
particular, the setAllPostConditions() command set all postconditions
true, in order to simulate the execution at a high-level. Line 32 return a positive
value, to signal that the skill terminated correctly.

At the very end, line 36 exports the plug-in definition.

6 Task Planner

The Task Planner’s function is to provide a sequence of instantiated skills that, when
carried out successfully, will lead to a desired goal state that has been specified by
the user or some other automated process. For example, the goal state may be that
a certain object has been placed in a kit that is being carried by the robot, and the
returned sequence of skills (the plan) may be to drive to the location where the object
can be found, to pick the object, and then to place the object in the kit. Of course,
real goals and plans can be much more complicated than this, only limited by the
relations that exist in the world model and the skills that have been defined.

This section discusses the general translation algorithm to the Planning Domain
Definition Language (PDDL) aswell as the additions tailored for the STAMINA use-

146 F. Rovida et al.

Fig. 10 An overview of the Task Planning pipeline. The inputs are the set of goals and the world
scene. The output is a sequence of instantiated skills. The solid arrows represent execution flow.
The dashed arrows pointing towards the data structures represent writing or modification while the
dashed arrows pointing away from the data structures represent read access

case. PDDL is a well-known and popular language for writing automated planning
problems and, as such, is supported by a large array of-the-shelf planners. The PDDL
files created with the basic Task Planner options only use the types requirement of
the original PDDL 1.2 version and are therefore suitable for use with almost all
existing planners. Some extra features of the Task Planner (see Sect. 6.3) can be
employed which introduce fluents and durative actions, and therefore must be used
with a PDDL 2.1 compatible temporal planner. The Task Planner is built as a plug-
in to SkiROS that generate generic PDDL so that the developer can insert whichever
external planning algorithm they wish to use.

6.1 Overview and Usage

The Task Planner exists as a plug-in for SkiROS (skiros_std_lib/task_
planners/skiros_task_planner_plugin) that creates a PDDL problem
using the interface provided in skiros_task/pddl.h. The Task Planner con-
tains two const’s; robotParameterName, and robotTypeNamewhich default
to Robot and Agent respectively andmust be consistent with the robot names used
in the skill and world model definitions. Additionally, pddl.h contains a const bool
STAMINA that toggles the use of specific extra features (explained in Sect. 6.3).
Operation of the Task Planner is split into five main functions, as shown in Fig. 10
and described below:

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 147

• initDomain - This function causes the Task Planner to translate the skill infor-
mation in the world model into the planning actions and predicates found in the
planning domain.While this translation is based on the preconditions and postcon-
dition defined in the skill, it is not direct, and details of the necessary modifications
are given below.

• setGoal - This function sets the goal, or set of goal predicates, to be planned for.
These can be provided as SkiROS elements or as PDDL strings.

• initProblem - This function takes no arguments and tells the Task Planner to query
the world model to determine the initial state of the planning problem. This must
be called after the previous two functions as it relies on them to work out which
parts of the world model are relevant to the planning problem.

• outputPDDL - This function prints out a pddl domain file domain.pddl and prob-
lem file p01.pddl in the task planner directory.

• callPlanner - This function invokes an external planner that will take the previ-
ously output PDDL files as input and return a plan. This must be implemented by
the user for whichever external planner they wish to use. The planner has been
tested with Fast Downward8 for the general case and Temporal Fast Downward9

for the STAMINA use-case. Any plan found must then be converted to a vector
of parameterised skills, so any extra parameters created for internal use by the
planner must be removed at this point.

The user only needs to specify the external call to the planner in the callPlanner
function. The setGoal function is the only one that takes arguments and requires a
goalset comprised of SkiROS elements or PDDL strings. The other functions inter-
face directly with the world model and require no arguments.

6.2 From Skills to PDDL

The design of the SkiROS skills system facilitates the translation to a searchable A.I.
planning format. However, a direct translation from skills to planning actions is not
possible, or even desirable. The preconditions and postconditions of skills should
be definable by a non-planning expert based on the precondition and postcondition
checks required for safe execution of the skill along with any expected changes to
the world model. Therefore, the translation algorithm is required to do some work
to generate a semantically correct planning problem. We will briefly discuss two
important points; how it deals with heterogeneous robots, and implicitly defined
transformations.

Heterogenous RobotsTheremay bemultiple robots in theworld, eachwith different
skill sets. For example, in the STAMINA use-case, the mobile platform is defined as

8http://www.fast-downward.org/.
9gki.informatik.uni-freiburg.de/tools/tfd/.

http://www.fast-downward.org/
http://gki.informatik.uni-freiburg.de/tools/tfd/

148 F. Rovida et al.

a separate robot to the robotic arm. The mobile platform has the drive skill while the
gripper has the pick and place skills.

To ensure that each skill ’s’ can only be performed by the relevant robot, a ’can_s’
predicate is added as a precondition to each action, so that the action can only be
performed if ’can_s(r)’ is true for robot ’r’. ’can_s(r)’ is then added to the initial state
of the problem for each robot ’r’ that has skill ’s’. This way the planner can plan for
multiple robots at a time.

Implicit Transformations The skill definitions may include implicit transformation
assumptions that need to bemade explicit for the planner. For example, theSTAMINA
drive skill is implemented with the following condition:

1 addPostcondi t ion ("AtTarget " , newCondition ("RobotAtLocation " , t rue , "←↩

Robot" , " TargetLocat ion ")) ;

That is, only a single postcondition check, that the robot is at the location it was
meant to drive to. For updating the SkiROS world model, setting the location of the
robot to the ‘TargetLocation’ will automatically remove it from its previous location.
However, the planner needs to explicitly encode the deletion of the previous location
otherwise the robot will end up in two places at once in its representation.

Of course, it is possible to add the relevant conditions to the skill definition.
However, this is not ideal as it would mean that the robot performs verification that it
is not at the previous location at the end of the drive skill. This prohibits the robot from
driving from its location to the same location as the new postcondition check would
fail. Whether this is a problem or not, allowing the Task Planner to automatically
include explicit updates reduces the pressure on the skill writer to produce both a
skill definition that is correct in terms of both the robot and the internal planning
representation.

The transformation is performed in a general manner that works for all spatial
relations. The skills in the planning library are iterated over and checked against the
spatial relations defined in SkiROS. If spatial relations are found to be missing, in
either the preconditions or delete effects of the action (i.e., no predicatewithmatching
relation and subject as in the case of the drive skill), then a new predicate of the same
spatial relation and the same object, but a new subject variable, is created and added
to the preconditions and delete effects of the action. If a related spatial relation exists
in just one of the preconditions and delete effects then it is added (with the same
subject) to the other. More details of the planning transformation algorithm can be
found in [25].

6.3 Additional Features

The task planner contains additional features used in the STAMINAproblem instance
that can either be enabled or disabled depending on user preference. These extra fea-
tures include sequence numbers for ordering navigation through the warehouse, for

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 149

which the planner employs numeric fluents and temporal actions, and abstract objects
for which the planner must add internal parameters to ensure correct execution.

Sequence Numbers In the usecase for STAMINA, the robot navigates around a
warehouse following a strict path. This is enforced following the previous setup to
ensure that human workers will always exit in the same order they entered, therefore
preserving the output order of the kits they are creating. The locations that it is
possible to navigate to are given a sequence number (by a human operator) and these
numbers are used to determine the shortest path based on the particular parts in the
current order.

Abstract Objects In the world model for STAMINA, parts are not instantiated until
they are actually picked up. The pick skill is called on an abstract object because it is
not known before execution which of the possibly numerous objects in a container
will be picked up. On the other hand, the place skill is often called for an instantiated
object, as, at the time of execution, it is a particular instance of an object that is in
the gripper (Fig. 11).

7 Application Example

7.1 Overview

As an example application, we focus on a logistic operation and specifically con-
sider the automation of an industrial kitting operation. Such operation is common
in a variety of manufacturing processes since it involves the navigation of a mobile
platform to various containers from which the objects are picked and placed in their

Fig. 11 The two different hardware setups that have been used for evaluation

150 F. Rovida et al.

corresponding compartments of a kitting box. Thus, in order to achieve this task we
have developed three skills, namely the drive, pick and place which consist of a
combination of primitives such:

• locate - roughly localize an object on a flat surface using a camera
• object registration - precisely localize an object using a camera
• arm motion - move the arm to a desired joint state or end-effector pose
• kitting box registration - localization of the kitting-box using a camera
• gripper ctrl - open and close the gripper

Ontology The ontology that represents our specific kitting domain has been defined
starting from the general ontology presented in Fig. 8.We extended the ontologywith
the types of manipulatable objects (starter, alternator, compressor, etc.) and boxes
(pallet, box, etc.). Second, the following set of conditions has been defined: FitsIn,
EmptyHanded, LocationEmpty, ObjectAtLocation, Carrying, Holding, RobotAtLo-
cation.

Learning primitives Learning primitives are needed to extend the robot’s knowl-
edge base with some important information about the environment. The learning
primitives, in our case, are:

• object train - record a snapshot and associate it to an object’s type specified from
the user

• grasping pose learn - learn a grasping pose w.r.t. an object’s snapshot
• placing pose learn - learn a placing pose w.r.t. a container
• driving pose learn - learn a driving pose w.r.t. a container

The primitives are executed from the GUI module tab during an initial setup phase
of the robot. The snapshot and the poses taught during this phase are then used for
all subsequent skills’ execution.

7.2 Skills

The Drive Skill is the simplest skill. It is based on the standard ROS navi-
gation interface, therefore the execution consist of an action call based on the
’move_base_msgs::MoveBaseGoal’ message. The details about navigation’s imple-
mentation are out of the scope of this chapter, but more implementation details can
be found in [26].

The Picking Skill pipeline is organized in several stages, it 1. detects the container
(pallet or box) using one of theworkspace cameras, 2.moves thewrist camera over the
detected container to detect and localize parts, and 3. picks up a part using predefined
grasps.Lowcycle times of roughly40–50s are achievedbyusingparticularly efficient
perception components and pre-computing paths between common paths to save
motion planning time. Figure15 shows examples of part picking using different
mobile manipulators in different environments. The picking skill distinguishes two

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 151

types of storage containers: pallets in which parts are well separated and boxes in
which parts are stored in unorganized piles. Internally, the two cases are handled
by two different pipelines which, however, follow the same three-step procedure as
mentioned above. In case of pallets, we first detect and locate the horizontal support
surface of the pallet and then segment and approach the objects on top of the pallet
for further object recognition, localization and grasping [3]. For boxes, we first locate
the top rectangular edges of the box and then approach an observation pose above
the box center to take a closer look inside and to localize and grasp the objects in the
box [27]. In the following, we will provide further details about these two variants of
the picking pipeline and how the involved components are implemented as a set of
primitives in the SkiROS framework. An example of this three-step procedure fors
grasping a part from a transport box is shown in Fig. 12.
The Placing Skill is responsible for reliable and accurate kitting of industrial parts in
confined compartments [28]. It consists of twomain modules the armmotion and the
kit locate. The first is responsible for reliable planning and execution of collision-free
trajectories subject to task-depended constrains, while the kit locate is responsible
for the derivation of the kitting-box pose. The high precision and reliability of both
is crucial for a successful manipulation of the objects in the confined compartments
of the kitting box.

7.3 Primitives

The locate primitive is one of the perception components in the picking pipeline and
locates the horizontal support surfaces of pallets. In addition it segments the objects
on top of this support surface, selects the object to grasp (object candidate being

(a) Scene (b) Approaching the
 observation Pose

(c) Grasping the part

Fig. 12 Example of grasping a tube connector from a transport box (a): after detecting the box and
approaching the observation pose (b), the part is successfully grasped (c)

152 F. Rovida et al.

closest to the pallet center) and computes an observation pose to take a closer look
at the object for recognition and localization. The detection of the horizontal support
surface is based on very fast methods for computing local surface normals, extracting
points on horizontal surfaces and fitting planes to the extracted points [3]. In order
to find potential object candidates, we then select the most dominant support plane,
compute both convex hull and minimum area bounding box, and select all RGB-D
measurements lying within these polygons and above the extracted support plane.
We slightly shrink the limiting polygons in order to neglect measurements caused
by the exterior walls of the pallet. The selected points are clustered (to obtain object
candidates), and the cluster being closest to the center of the pallet is selected to be
approached first.

After approaching the selected object candidate with the end effector, the same
procedure is repeated with the wrist camera in order to separate potential objects
from the support surface. Using the centroid of the extracted cluster as well as the
main axes (as derived from principal component analysis), we obtain a rough initial
guess of the object pose. With the subsequent registration stage, it does not matter
when objects are not well segmented (connected in a single cluster) or when the
initial pose estimate is inaccurate.

The registration primitive accurately localized the part and verifies whether the
found object is the correct part or not. The initial part detection only provides a rough
estimate of the position of the object candidate. In order to accurately determine both
position and orientation of the part, we apply a dense registration of the extracted
object cluster against a pre-trained model of the part. We use multi-resolution surfel
maps (MRSMAPs) as a concise dense representation of the RGB-D measurements
on an object [29]. In a training phase, we collect one to several views on the object
whose view poses can be optimized using pose graph optimization techniques. The
final pose refinement approach is then based on a soft-assignment surfel registration.
Instead of considering each point individually, we map the RGB-D image acquired
by the wrist camera into an MRSMAP and match surfels. This needs several orders
of magnitudes less map elements for registration. Optimization of the surfel matches
(and the underlying joint data-likelihood) yields the rigid 6 degree-of-freedom (DoF)
transformation from scene tomodel, i.e., the pose of the object in the coordinate frame
of the camera.

After pose refinement, we verify that the observed segment fits to the object
model for the estimated pose. We can thus find wrong registration results, e.g., if the
observed object and the known object model do not match or if a wrong object has
been placed on the pallet. In such cases the robot stops immediately and reports to
the operator (a special requirement of the end-user). For the actual verification, we
establish surfel associations between segment and object model map, and determine
the observation likelihood similar as in the object pose refinement. In addition to
the surfel observation likelihood, we also consider occlusions by model surfels of
the observed RGB-D image as highly unlikely. Such occlusions can be efficiently
determined by projecting model surfels into the RGB-D image given the estimated
alignment pose and determining the difference in depth at the projected pixel position.

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 153

The resulting segment observation likelihood is compared with a baseline likelihood
of observing the model MRSMAP by itself. We determine a detection confidence
from the re-scaled ratio of both log likelihoods thresholded between 0 and 1.

The arm motion primitive exploits many capabilities of MoveIt software10 such as
the Open Motion Planning Library (OMPL), a voxel representation of the planning
scene and interfaces with the move-group node. In order to achieve motions that are
able to successfully place an object in compartments which in many cases are very
confined, we have developed a planning pipeline by introducing two deterministic
features which could be anticipated as planning reflexes.

The need for that addition arises due to the stochasticity of the OMPL planners
which makes them unstable as presented in preliminary benchmarking tests [28].
The Probabilistic Road-maps (PRM), Expansive-Spaces Tree (EST) and Rapidly
exploring Random Tree (RRT) algorithms were evaluated. Based on the results PRM
performs better on the kitting task. However, its success rate is not desirable for
industrial applications.

Another deterrent factor on motion planning is the Inverse Kinematics (IK) solu-
tions that derive from MoveIt. Although that there exist multiple IK solutions for a
given pose, MoveIt functions provide only one which is not always the optimal i.e.
the closest to the initial joint configuration. We deal with this problem by sampling
multiple solutions from the IK solver with different seeds. The IK solution whose
joint configuration is closer to the starting joint configuration of the trajectory is used
for planning.

The developed planning pipeline achieves repeatable and precise planning by
introducing two planning reflexes, the joint and operational space linear interpola-
tions. The first ensures that the robot’s joints will rotate as less as possible and can be
anticipated as an energy minimization planner. This happens by linearly interpolat-
ing, in the joint space of the robot, between the starting and the final configurations.
Additionally, the operational space interpolation results to a linear motion of the end-
effector in its operational space. This is achieved by performing a linear interpolation
between the starting and final poses. Furthermore, the spherical linear interpolation
(slerp) is used for interpolating between orientations. This linear motion is desirable
for going in the narrow compartments of the kitting box.

The path that is created from the two reflexes is evaluated for collisions, constraint
violations and singularities. If any of those happen then the pipeline employs themore
sophisticated PRM algorithm for solving the planning problem.

The kitting box registration primitive is responsible to locate the kitting box in which
compartments the grasped objects have to be placed. Usually, the pose estimation
of the kitting box has to be executed whenever a new kitting box arrives in the
placing area of the robot, however, due to slight changes in its position or orientation
occurring during the placing task, the kitting box registration can be used as part of
any skill, e.g. in the beginning of the placing skill.

10http://moveit.ros.org.

http://moveit.ros.org

154 F. Rovida et al.

For the pose estimation of the box, an additional workspace camera with a top
view on the kitting area is used. Due to the pose of the camera and objects which are
already placed in the kitting box, most of it is not visible except for the top edges.
Additionally, parts of the box edges are distorted or missing in the 3D data caused
by the noise of the camera. The kitting box registration therefore implements an
approach based on a 2D edge detection on a cleaned and denoised depth image. It
applies a pixelwise temporal voting scheme to generate potential points belonging
to the kitting box. After mapping these back to 3D space, a standard ICP algorithm
is utilized to find the kitting box pose (cmp. Fig. 13). A more detailed description of
the algorithm and a performance evaluation is presented in [28].

7.4 Results

We have evaluated the presented architecture with two robotic platforms that operate
on different environments. A stationery Universal Robotics UR10 robot that oper-
ates within a lab environment and a Fanuc M-20iA which is mounted on a mobile
platform and operates within an industrial environment. Both robotic manipulators

Fig. 13 The 3D scene shows a highly cluttered kitting box with the final registered kitting box
(blue) overlaid. The images in the bottom (left to right) show different steps of the registration
process: a raw RGB image b normalized depth image c after edge extraction with box candidates
overlaid in green d final voting space for box pixels

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 155

are equipped with a Robotiq 3-Finger Adaptive Gripper and a set of RGB-D sensors.
The drivers that have been used for control of both robotic manipulators and the
gripper are available from the ROS-Industrial project.11

Kitting Operation with UR10 We evaluate the whole kitting task on the UR10
robot with various manipulated objects. The task was planned using the Graphical
User Interface presented in Sect. 4 and is a concatenation of the pick and place
skills. Figure14 illustrates the key steps of the kitting taks. Detailed results on the
performance of the kiting operation can be found in [2, 28]

Kitting Operation with Fanuc on mobile platform Additionally to the UR10 test
case, where the robot is stationery and operates in a lab environment, we have applied
the presented architecture on a Fanuc robotwhich ismounted on amobile base. In this
case the kitting operation consists of three skills, the drive, pick and place. Thus, the
robot navigates at the location of the requested object, picks it and then places it in the
kitting box. This sequence is illustrated in Fig. 15. Using the presented architecture
the mobile manipulator is able to perform kitting operations with multiple objects
that are located in various spots.

Fig. 14 Sequence of a kiting operation in the lab environment. The top row illustrates the execution
of the pick skill and the bottom row the execution of placing skill

11http://rosindustrial.org/.

http://rosindustrial.org/

156 F. Rovida et al.

Fig. 15 Sequence of a kiting operation in an industrial environment. The top row illustrates the
drive skill, the middle row the picking skill and the bottom row the placing skill

8 Conclusions

In this research chapter we presented SkiROS, a skill-based platform to develop
and deploy software for autonomous robots, and an application example on a real
industrial use-case. The platform eases the software integration and increases the
robot reasoning capabilities with the support of a knowledge integration framework.
The developer can split complex procedures into ‘’skills’, that get composed auto-
matically at run-time to solve goal oriented missions. We presented an application
example where a mobile manipulator navigated in the warehouse, picked parts from
pallets and boxes, and placed them in kitting boxes. Experiments conducted in two
laboratory environments, and at the industrial end-user site gave a proof-of-concept
of our approach. ROS joined with SkiROS allowed for porting the pipelines on
several heterogeneous mobile manipulator platforms.We believe that using SkiROS,
the pipelines can integrate easily with other skills for other use-cases, e.g. for assem-
bly operations. The code released with the chapter allows any ROS user to try out
the platform and plan with a fake version of the drive, pick and place skills. The user
can then add their own skill definitions and pipelines to the platform and use SkiROS
to help implement and manage their own robotics systems.

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 157

References

1. Pedersen, M.R., L. Nalpantidis, R.S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen.
2015. Robot skills for manufacturing: From concept to industrial deployment. Robotics and
Computer-Integrated Manufacturing. Available online.

2. Holz, D., A. Topalidou-Kyniazopoulou, F. Rovida, M.R. Pedersen, V. Krüger, and S. Behnke.
2015. A skill-based system for object perception andmanipulation for automating kitting tasks.
In Proceedings of the IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA).

3. Holz, D., A. Topalidou-Kyniazopoulou, J. Stückler, and S. Behnke. 2015. Real-time object
detection, localization and verification for fast robotic depalletizing. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Ger-
many, 1459–1466.

4. McDermott, D. 2000. The 1998 ai planning systems competition. Artifical Intelligence Maga-
zine 21 (2): 35–55.

5. Kortenkamp, D., and R. Simmons. 2007. Robotic systems architectures and programming.
In Springer Handbook of Robotics, ed. B. Siciliano, and O. Khatib, 187–206. Heidelberg:
Springer.

6. Arkin, R.C. 1998. Behavior-based Robotics, 1st ed. Cambridge: MIT Press.
7. Brooks, R.A. 1986. A robust layered control system for a mobile robot. Journal of Robotics

and Automation 2 (1): 14–23.
8. Firby, R.J. 1989. Adaptive Execution in Complex Dynamic Worlds. Ph.D. thesis, Yale Univer-

sity, USA.
9. Gat, E. 1998. On three-layer architectures. In Artificial Intelligence and Mobile Robots, MIT

Press.
10. Ferrein, A., and G. Lakemeyer. 2008. Logic-based robot control in highly dynamic domains.

Robotics and Autonomous Systems 56 (11): 980–991.
11. Bensalem, S., and M. Gallien. 2009. Toward a more dependable software architecture for

autonomous robots. IEEE Robotics and Automation Magazine 1–11.
12. Magnenat, S. 2010. Software integration in mobile robotics, a science to scale up machine

intelligence. Ph.D. thesis, École polytechnique fédérale de Lausanne, Switzerland.
13. Vernon, D., C. von Hofsten, and L. Fadiga. 2010. A Roadmap for Cognitive Development in

Humanoid Robots. Heidelberg: Springer.
14. Balakirsky, S., Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff, and S. Gupta. 2013.

Knowledge driven robotics for kitting applications. Volume 61., Elsevier B.V. 1205–1214
15. Björkelund, A., J. Malec, K. Nilsson, P. Nugues, and H. Bruyninckx. 2012. Knowledge for

Intelligent Industrial Robots. In AAAI Spring Symposium on Designing Intelligent Robots:
Reintegrating AI.

16. Stenmark, M., and J. Malec. 2013. Knowledge-based industrial robotics. In Scandinavian
Conference on Artificial Intelligence.

17. Tenorth, M., and M. Beetz. 2013. KnowRob: A knowledge processing infrastructure for
cognition-enabled robots. The International Journal of Robotics Research 32 (5): 566–590.

18. Beetz, M., L. Mösenlechner, and M. Tenorth. 2010. CRAM - A Cognitive Robot Abstract
Machine for everyday manipulation in human environments. In IEEE/RSJ 2010 International
Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 1012–
1017.

19. Rovida, F., and V. Krüger. 2015. Design and development of a software architecture for
autonomous mobile manipulators in industrial environments. In 2015 IEEE International Con-
ference on Industrial Technology (ICIT).

20. Huckaby, J. 2014. Knowledge Transfer in Robot Manipulation Tasks. Ph.D. thesis, Georgia
Institute of Technology, USA.

21. Bøgh, S., O.S. Nielsen, M.R. Pedersen, V. Krüger, and O. Madsen. 2012. Does your robot have
skills? In The 43rd International Symposium of Robotics (ISR).

158 F. Rovida et al.

22. Bechhofer, S., F. vanHarmelen, J.Hendler, I. Horrocks,D.L.McGuinness, P.F. Patel-Schneider,
and L.A. Stein. 2004. OWLWeb Ontology Language reference, 10 Feb 2004. http://www.w3.
org/TR/owl-ref/.

23. Lortal, G., S. Dhouib, and S. Gérard. 2011. Integrating ontological domain knowledge into
a robotic DSL. In Models in Software Engineering, ed. J. Dingel, and A. Solberg, 401–414.
Heidelberg: Springer.

24. Krüger, V., A. Chazoule, M. Crosby, A. Lasnier, M.R. Pedersen, F. Rovida, L. Nalpantidis,
R.P.A. Petrick, C. Toscano, and G. Veiga. 2016. A vertical and cyber-physical integration of
cognitive robots in manufacturing. Proceedings of the IEEE 104 (5): 1114–1127.

25. Crosby, M., F. Rovida, M. Pedersen, R. Petrick, and V. Krueger. 2016. Planning for robots
with skills. In Planning and Robotics (PlanRob) workshop at the International Conference on
Automated Planning and Scheduling (ICAPS).

26. Sprunk,C., J. Rowekamper,G. Parent, L. Spinello,G.D. Tipaldi,W.Burgard, andM. Jalobeanu.
2014. An experimental protocol for benchmarking robotic indoor navigation. In ISER.

27. Holz,D., andS.Behnke. 2016. Fast edge-based detection and localization of transport boxes and
pallets in rgb-d images for mobile robot bin picking. In Proceedings of the 47th International
Symposium on Robotics (ISR), Munich, Germany.

28. Polydoros, A.S., B. Großmann, F. Rovida, L. Nalpantidis, and V. Krüger. 2016. Accurate and
versatile automation of industrial kitting operations with skiros. In 17th Conference Towards
Autonomous Robotic Systems (TAROS), (Sheffield, UK).

29. Stückler, J., and S. Behnke. 2014. Multi-resolution surfel maps for efficient dense 3Dmodeling
and tracking. Journal of Visual Communication and Image Representation 25 (1): 137–147.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

SkiROS—A Skill-Based Robot Control Platform on Top of ROS 159

Author Biographies

Francesco Rovida is a Ph.D. student at the Robotics, Vision and Machine Intelligence Lab
(RVMI), Aalborg University Copenhagen, Denmark. He holds a Bachelor’s degree in Computer
Science Engineering (2011), and a Master’s degree in Robotic Engineering (2013) from the Uni-
versity of Genoa (Italy). He did his Master’s thesis at the Istituto Italiano di Tecnologia (IIT,
Genoa, Italy) on the development of an active head with motion compensation for the HyQ robot.
His research interests include knowledge representation and software integration for the develop-
ment of autonomous robots.

Matthew Crosby is a Postdoctoral Research Associate currently working at Heriot Watt Uni-
versity on high-level planning for robotics on the EU STAMINA project. His background is in
multiagent planning (PHD, Edinburgh) and Mathematics and Philosophy (MSci, Bristol). More
details can be found at mdcrosby.com.

Dirk Holz received a diploma in Computer Science from the University of Applied Sciences
Cologne in 2006 and a M.Sc. degree in Autonomous Systems from the University of Applied
Sciences Bonn-Rhein-Sieg in 2009. He is currently pursuing the Ph.D. degree at the University
of Bonn. His research interests include perceiving, extracting and modeling semantic information
using 3D sensors as well as simultaneous localization and mapping (SLAM).

Athanasios S. Polydoros received a Diploma in Production Engineering from Democritus Uni-
versity of Thrace in Greece and a M.Sc. degree with Distinction in Artificial Intelligence from
the University of Edinburgh, Scotland. He is currently a Ph.D. student at the Robotics, Vision and
Machine Intelligence (RVMI) Lab, Aalborg University Copenhagen, Denmark. His research inter-
ests are focused on machine learning for robot control and cognition and model learning.

Bjarne Großmann graduated with a dual M.Sc. degree in Computer Science in Media from
the University of Applied Sciences Wedel (Germany) in collaboration with the Aalborg Univer-
sity Copenhagen (Denmark) in 2012. He is currently working as a Ph.D. student at the Robotics,
Vision and Machine Intelligence (RVMI) Lab in the Aalborg University Copenhagen. The main
focus of his work is related to Robot Perception - from Human-Robot-Interaction over 3D object
recognition and pose estimation to camera calibration techniques.

Ronald Petrick is a Research Fellow in the School of Informatics at the University of Edin-
burgh. He received an MMath degree in Computer Science from the University of Waterloo and
a PhD in Computer Science from the University of Toronto. His research interests include plan-
ning with incomplete information and sensing, cognitive robotics, knowledge representation and
reasoning, and applications of planning to human-robot interaction. His recent work has focused
on the application of automated planning to task-based action and social interaction on robot plat-
forms deployed in real-world environments. Dr. Petrick has participated in a number of EU-funded
research projects under FP6 (PACOPLUS) and FP7 (XPERIENCE and STAMINA). He was also
the Scientific Coordinator of the FP7 JAMES project.

160 F. Rovida et al.

Volker Krüger is a Professor at Aalborg University, Denmark where he has worked since 2002.
His teaching and research interests are in the area of cognitive robotics for manufacturing and
industrial automation. Since 2007, he has headed the Robotics, Vision and Machine Intelligence
group (RVMI). Dr. Krueger has participated in a number of EU-funded research projects under
FP4, FP5, and FP6, coordinated the FP7 project GISA (under ECHORD), and participated in the
EU projects TAPAS, PACO-PLUS, and CARLoS. He is presently coordinating the FP7 project
STAMINA. Dr. Krueger has recently completed an executive education at Harvard Business School
related to academic industrial collaborations and knowledge-exchange.

Control of Mobile Robots Using ActionLib

Higor Barbosa Santos, Marco Antônio Simões Teixeira,
André Schneider de Oliveira, Lúcia Valéria Ramos de Arruda
and Flávio Neves Jr.

Abstract Mobile robots are very complex systems and involve the integration of
various structures (mechanical, software and electronics). The robot control system
must integrate these structures so that it can perform its tasks properly. Mobile robots
use control strategies for many reasons, like velocity control of wheels, position con-
trol and path tracking. These controllers require the use of preemptive structures.
Therefore, this tutorial chapter aims to clarify the design of controllers for mobile
robots based on ROS ActionLib. Each controller is designed in an individual ROS
node to allow parallel processing by operating system. To exemplify the controller
design using ActionLib, this chapter will demonstrate the implementation of two
different types of controllers (PID and Fuzzy) for position control of a servo motor.
These controllers will be available on GitHub. Also, a case study of scheduled fuzzy
controllers based on ROSActionLib for a magnetic climber robot used in the inspec-
tion of spherical tanks will be shown.

Keywords ROS · Mobile robots · Control · ActionLib
1 Introduction

Mobile robots have great versatility because they’re free to run around their applica-
tion environment. However, this is only possible because this kind of robot carries
a great variety of exteroceptive and interoceptive sensors to measure its motion and

H.B. Santos (B) · M.A.S. Teixeira · A.S. de Oliveira · L.V.R. de Arruda · F. Neves Jr.
Federal University of Technology—Parana, Av. Sete de Setembro, 3165 Curitiba, Brazil
e-mail: higorsantos@alunos.utfpr.edu.br

M.A.S. Teixeira
e-mail: marcoteixeira@alunos.utfpr.edu.br

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

L.V.R. de Arruda
e-mail: lvrarruda@utfpr.edu.br

F. Neves Jr.
e-mail: neves@utfpr.edu.br

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_5

161

162 H.B. Santos et al.

Fig. 1 Interface of ActionLib. Source [1]

interact with environment around it. Several of these information are used to robot’s
odometry or environment mapping. Thus, these signals are the robot’s sense about
its motion and its way to correct it.

Robot control is a complex and essential task which must be performed during all
navigation. Several kinds of controllers can be applied (like proportional-integral-
derivative, predictive, robust, adaptive and fuzzy). The implementation of the robot
control is very similar and can be developed with the use of ROS Action Protocol by
ActionLib. ActionLib provides a structure to create servers that execute long-running
tasks and interacts with clients by specific messages [1].

The proposed chapter aims to explain how to create ROS controllers using the
ActionLib structure. This chapter is structured in five sections.

In the first section, we will carefully discuss the ActionLib structure. This section
introduces the development of preemptive tasks with ROS. The ActionLib works
with three main messages, as can be seen in Fig. 1. Goal message is the desired
value for controller, like its target or objective. Feedback message is the measure
of controlled variable which usually is updated by means of a robot sensor. Result
message is a flag that indicates when the controller reaches its goal.

The second section will demonstrate the initial requirements for the creation of a
controller using ActionLib package.

The third section will present an implementation of a classic Proportional-Deriva-
tive-Integrative (PID) control strategy with the use of ActionLib. This section aims
to introduce a simple (but powerful) control structure that can be applied to many
different purposes, like position control, velocity control, flight control, adhesion
control and among others. It’ll be shown how to create your own package, set the
action message, structure the server/client code, compile the created package and,
finally, show the experimental results of the PID controller.

In the fourth section will be present a design of a fuzzy controller. The con-
troller is implemented using ActionLib and an open-source fuzzy library. The fuzzy
logic enables the implementation of a control without the knowledge of the system
dynamics model.

Finally, last section will show a study case of an ActionLib based control for the
second-generation of a climbing robotwith four steerablemagneticwheels [2], called

Control of Mobile Robots Using ActionLib 163

Fig. 2 Autonomous inspection robot (AIR-2)

as Autonomous Inspection Robot 2nd generation (AIR-2), as shown in Fig. 2. AIR-2
is a robot fully compatible with ROS and it has a mechanical structure designed to
provide high mobility when climbs on industrial storage tanks. The scheduled fuzzy
controllers were designed to manage the speed of AIR-2.

2 ActionLib

Mobile robots are very complex, they havemany sensors and actuators that help them
get around and locate in an unknown environment. The control of the robot isn’t an
easy task and it should have a parallel processing. The mobile robot must handle
several tasks at same time, so the preemption is an important feature to robot control.
Often, the robot control is multivariable, that’s means multiple-input multiple-output
systems (MIMO). Therefore, developing an algorithm with these characteristics is
hard.

Robot control covers various functions of a robot. For example, obstacle avoid-
ance is very important for the autonomous mobile robots. Therefore, [3] proposed a
fuzzy intelligent obstacle avoidance controller for a wheeled mobile robot. Balanc-
ing robot is another relevant aspect in robotics, said that, [4] designed a cascaded
PID controller for movement control of a two wheel robot. On the other hand, [5]
presented an adhesion force control for a magnetic climbing robot used in the inspec-
tion of storage tanks. Therefore, the robot control is essential to ensure its operation,
either navigation or obstacle avoidance.

The ROS has libraries that help in the implementation of control, like ros_control.
Other library is ActionLib that enables to create servers to execute long-running
tasks and clients that interact with servers. Given these features, the development of
a controller using this library becomes easy. On the other hand, ros_control package
is hard to be used, it presents a control structure that requires many configurations
for implementation of a specific controller, for example, a fuzzy controller.

164 H.B. Santos et al.

Fig. 3 Client-server interaction. Source [1]

The Actionlib provides a simple application for client sends goals and server
executes goals. The server executes long-running goals that can be preempted. Client-
server interaction using ROS Action Protocol is shown in Fig. 3.

The client-server interaction in ActionLib is provided by messages that are dis-
played in Fig. 1. The messages are:

• goal: client sends goal to the server;
• cancel: client sends the cancellation of the goal to the server;
• status: server notifies the status of the goal for the client;
• feedback: server sends goal information to the client;
• result: server notifies the client when the goal was achieved.

Thus, the ActionLib package is a powerful tool for the design of controllers in
robotics. In the next section, the initial configuration of ROS Workspace will be
presented for the use of ActionLib package.

3 ROS Workspace Configuration

For implementation of the controller it’s necessary that ROS Indigo is properly
installed. It’s available at:

http://wiki.ros.org/indigo/Installation/Ubuntu
The next step is the ROS Workspace configuration. If it isn’t configured on your

machine, it’ll be necessary create it:

1 $ mkdir -p /home/user/catkin_ws/src
2 $ cd /home/user/catkin_ws/src
3 $ catkin_init_workspace

The catkin_init_workspace command sets the catkin_ws folder as yourworkspace.
After, youmust build theworkspace. For this, you need to navigate to yourworkspace
folder and then type the command catkin_make, as shown below.

http://wiki.ros.org/indigo/Installation/Ubuntu

Control of Mobile Robots Using ActionLib 165

Fig. 4 PID control

1 $ cd /home/user/catkin_ws/
2 $ catkin_make

To add the workspace to your ROS environment, you need to source the generated
setup file:

1 $ source /home/user/catkin_ws/devel/setup.bash

After workspace configuration, we can start creating a PID controller using
ActionLib, which it’ll be shown in the next section.

4 Creating a PID Controller Using ActionLib

There’re various types of algorithm used to robot control. But the PID control is more
used, due to its good performance for linearized systems and easy implementation.
The PID controller is a control loop feedback widely used in various applications, in
Fig. 4 can be seen its diagram. The Eq.1 shows the PID equation:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ) dτ + Kd

d

dt
e(t) (1)

e(t) = r(t) − y(t) (2)

where u(t) is output, Kp is proportional gain, e(t) is error (difference between set-
point r(t) and process output y(t), as shown in Eq.2), Ki is integral gain and Kd is
derivative gain. The controller calculates the error and by adjusting the gains (Kp,
Ki and Kd), the PID seeks to minimize it.

In this section, it’ll be shown thePIDcontrol implementation usingActionLib. The
PID will control the angle of a servo motor. The servo motor was simulated in robot
simulator V-REP. The V-REP is simulator based on distributed control architecture,
it allows the modeling of robotic systems similar to the reality [6].

The controller has been implemented in accordance with Fig. 4, in which the
setpoint is the desired angle (goal) and the feedback is provided by encoder servo.

The PID controller is available onGitHub and can be installed on your workspace:

166 H.B. Santos et al.

1 $ source /opt/ros/indigo/setup.bash
2 $ cd /home/user/catkin_ws/src
3 $ git clone https://github.com/air-lasca/tutorial_controller
4 $ cd ..
5 $ catkin_make
6 $ source /home/user/catkin_ws/devel/setup.bash

The following will be shown its creation step-by-step.

4.1 Steps to Create the Controller

1st step: Creating the ActionLib package Once the workspace is created and con-
figured, let’s create package using ActionLib:

1 $ cd /home/user/catkin_ws/src/
2 $ catkin_create_pkg tutorial_controller actionlib
3 message_generation roscpp rospy std_msgs actionlib_msgs

The catkin_create_package command creates a package named tutorial_
controller which depends on actionlib,message_generation, roscpp, rospy, std_msgs
and actionlib_msgs. Posteriorly, if you need other dependencies just add them in
CMakelist.txt. This will be detailed in fifth step.

After creating the package, we need to define the message that is sent between
the server and client.
2nd step: Creating the action messages Continuing steps to create the controller,
you must set the action messages. The action file has three parts: goal, result and
feedback. Each section of action file is separated by 3 hyphens (- - -).

The goal message is the setpoint of controller, it is sent from the client to the
server. Yet, the result message is sent from the server to the client, it tells us when
the server completed the goal. It would be a flag to indicate that the controller has
reached the goal, but for the control has no purpose. While, the feedback message is
sent by the server to inform the goal of incremental progress for the client. Feedback
would be the information from the sensor used in control.

Then, to create the action messages, you must create a folder called action in your
package.

1 $ cd /home/user/catkin_ws/src/tutorial_controller
2 $ mkdir action

After creating the folder, you must create an .action file (Tutorial.action) in
action’s folder of your package. The first letter of the action name should be upper-
case. This information is placed in the .action file:

1 #Define the goal
2 float64 position
3 ---

Control of Mobile Robots Using ActionLib 167

4 #Define the result
5 bool ok
6 ---
7 #Define a feedback message
8 float64 position

The goal and feedback are defined as float64. The goal will receive the desired
position of a servo motor and feedback will be used to send the information acquired
from the encoder servo. The result is defined as bool, but it won’t be used in control.
This action file will be used in the controllers examples shown in this chapter.

The action messages are generated automatically from the .action file.
3rd step: Create the action client In src folder of your package, create Controller-
Client.cpp, it’ll be client of ActionLib. Firstly, we’ll include the necessary libraries
of ROS, action message and action client.

1 #include <ros/ros.h>
2 #include <tutorial_controller/TutorialAction.h>
3 #include <actionlib/client/simple_action_client.h>
4 #include "std_msgs/Float64.h"

The tutorial_controller/TutorialAction.h is the action message library. It’ll access
the messages created in the .action file.

The actionlib/server/simple_action_client.h is the action library used from imple-
menting simple action client. If necessary, you can include other libraries.

Continuing the code, the client class must be set. The action client constructor
defines the topic to publish the messages. So, you need specific the same topic name
of your server, in this example, pid_control was used.

6 class ControllerClient
7 {
8 public:
9 ControllerClient(std::string name):
10

11 //Set up the client. It’s publishing to topic "
pid_control", and is set to auto-spin

12 ac("pid_control", true),
13

14 //Stores the name
15 action_name(name)
16 {
17 //Get connection to a server
18 ROS_INFO("%s Waiting For Server...", action_name.c_str());
19

20 //Wait for the connection to be valid
21 ac.waitForServer();
22

23 ROS_INFO("%s Got a Server...", action_name.c_str());
24

25 goalsub = n.subscribe("/cmd_pos", 100, &ControllerClient::
GoalCallback, this);

26 }

168 H.B. Santos et al.

The ac.waitForSever() causes the client waits for the server to start before contin-
uing. Once the server has started, the client informs that established communication
with it. Then, define a subscriber (goalsub) to provide the setpoint of the control.

The doneCb function is called every time that goal completes. It provides state of
action server and result message. It’ll only be called if the server has not preempted,
because the controller must run continuously.

28 void doneCb(const actionlib::SimpleClientGoalState& state,
const tutorial_controller::TutorialResultConstPtr& result){

29 ROS_INFO("Finished in state [%s]", state.toString().c_str());
30 ROS_INFO("Result: %i", result->ok);
31 };

The activeCb is called every time the goal message is active, in other words, it’s
called each new goal received by client.

33 void activeCb(){
34 ROS_INFO("Goal just went active...");
35 };

The feedbackCb is called every time the server sends the feedback message to the
action client.

38 void feedbackCb(const tutorial_controller::
TutorialFeedbackConstPtr& feedback){

39 ROS_INFO("Got Feedback of Progress to Goal: position: %f",
feedback->position);

40 };

GoalCallback is a function that transmits the goal of the topic /cmd_goal to the
action server.

42 void GoalCallback(const std_msgs::Float64& msg){
43 goal.position = msg.data;
44

45 ac.sendGoal(goal, boost::bind(&ControllerClient::doneCb, this
, _1, _2),

46 boost::bind(&ControllerClient::activeCb, this),
47 boost::bind(&ControllerClient::feedbackCb, this, _1));
48 };

The private variables of action client: n is a NodeHandle, ac is an action client
object, action_name is a string to set the client name, goal is the message that is used
to publish goal to server (set in .action file) and goalsub is a subscriber to get the
goal and pass to the action server.

50 private:
51 actionlib::SimpleActionClient<tutorial_controller::

TutorialAction> ac;
52 std::string action_name;
53 tutorial_controller::TutorialGoal goal;
54 ros::Subscriber goalsub;

Control of Mobile Robots Using ActionLib 169

55 ros::NodeHandle n;
56 };

Begin action client:

58 int main (int argc, char **argv){
59 ros::init(argc, argv, "pid_client");
60

61 // create the action client
62 // true causes the client to spin its own thread
63 ControllerClient client(ros::this_node::getName());
64

65 ros::spin();
66

67 //exit
68 return 0;
69 }

4th step: Create the action serverTherefore, the action client is finished.Now, create
action server named ControllerServer.cpp in your src folder. Initially, it’s necessary
include the libraries of ROS, action message and action server. Procedure similar
will be made at the client.

1 #include <ros/ros.h>
2 #include <tutorial_controller/TutorialAction.h>
3 #include <actionlib/server/simple_action_server.h>
4 #include "std_msgs/Float64.h"
5 #include "geometry_msgs/Vector3.h"
6 #include "sensor_msgs/JointState.h"
7 #include <math.h>

So, we need to set the server class. The action server constructor starts the server.
Also, it defines subscriber (feedback loop’s control), publisher (PID output), PID
limits and initiates the control variables.

9 class ControllerServer{
10 public:
11 ControllerServer(std::string name):
12 as(n, "pid_control", boost::bind(&ControllerServer::

executeCB, this, _1), false),
13 action_name(name)
14 {
15 as.registerPreemptCallback(boost::bind(&ControllerServer

::preemptCB, this));
16

17 //Start the server
18 as.start();
19

20 //Subscriber current positon of servo
21 sensorsub = n2.subscribe("/sensor/encoder/servo", 1, &

ControllerServer::SensorCallBack, this);
22

23 //Publisher setpoint, current position and error of
control

170 H.B. Santos et al.

24 error_controlpub = n2.advertise<geometry_msgs::Vector3>("
/control/error", 1);

25

26 //Publisher PID output in servo
27 controlpub = n2.advertise<std_msgs::Float64>("/motor/

servo", 1);
28

29 //Max e Min Output PID Controller
30 float max = M_PI;
31 float min = -M_PI;
32

33 //Initializing PID Controller
34 Initialize(min,max);
35 }

In the action constructor, an action server is created. A sensor subscriber (sensor-
sub) and a controller output publisher (controlpub) are created to the control loop.

The preemptCB informs that the current goal has been canceled by sending a new
goal or action client canceled the request.

37 void preemptCB(){
38 ROS_INFO("%s got preempted!", action_name.c_str());
39 result.ok = 0;
40 as.setPreempted(result, "I got Preempted!");
41 }

A pointer to the goal message is passed in executeCB function. This function
defines the rate of the controller. You can set the frequency in the rate argument
of your control. Inside the while, the function of the controller should be called,
as shown in line 60. It’s passed to the controller setpoint (goal→position) and the
feedback sensor (position_encoder).

43 void executeCB(const tutorial_controller::TutorialGoalConstPtr&
goal){

44 prevTime = ros::Time::now();
45

46 //If the server has been killed, don’t process
47 if(!as.isActive()||as.isPreemptRequested()) return;
48

49 //Run the processing at 100Hz
50 ros::Rate rate(100);
51

52 //Setup some local variables
53 bool success = true;
54

55 //Loop control
56 while(1){
57 std_msgs::Float64 msg_pos;
58

59 //PID Controller
60 msg_pos.data = PIDController(goal->position,
61 position_encoder);
62

Control of Mobile Robots Using ActionLib 171

63 //Publishing PID output in servo
64 controlpub.publish(msg_pos);
65

66 //Auxiliary Message
67 geometry_msgs::Vector3 msg_error;
68

69 msg_error.x = goal->position;
70 msg_error.y = position_encoder;
71 msg_error.z = goal->position - position_encoder;
72

73 //Publishing setpoint, feedback and error control
74 error_controlpub.publish(msg_error);
75

76 feedback.position = position_encoder;
77

78 //Publish feedback to action client
79 as.publishFeedback(feedback);
80

81 //Check for ROS kill
82 if(!ros::ok()){
83 success = false;
84 ROS_INFO("%s Shutting Down", action_name.c_str());
85 break;
86 }
87

88 //If the server has been killed/preempted, stop processing
89 if(!as.isActive()||as.isPreemptRequested()) return;
90

91 //Sleep for rate time
92 rate.sleep();
93 }
94

95 //Publish the result if the goal wasn’t preempted
96 if(success){
97 result.ok = 1;
98 as.setSucceeded(result);
99 }
100 else{
101 result.ok = 0;
102 as.setAborted(result,"I Failed!");
103 }
104 }

Initialize is a function that sets the initial parameters of a controller. It defines the
PID controller output limits and gains.

105 void Initialize(float min, float max){
106 setOutputLimits(min, max);
107 lastError = 0;
108 errSum = 0;
109

110 kp = 1.5;
111 ki = 0.1;
112 kd = 0;

172 H.B. Santos et al.

113 }

The setOutputLimits function sets the control limits.

115 void setOutputLimits(float min, float max){
116 if (min > max) return;
117 minLimit = min;
118 maxLimit = max;
119 }

The Controller function implements the PID equation (Eq.1). It can be used to
design your control algorithm.

121 float PIDController(float setpoint, float PV) {
122 ros::Time now = ros::Time::now();
123 ros::Duration change = now - prevTime;
124

125 float error = setpoint - PV;
126

127 errSum += error*change.toSec();
128 errSum = std::min(errSum, maxLimit);
129 errSum = std::max(errSum, minLimit);
130

131 float dErr = (error - lastError)/change.toSec();
132

133 //Do the full calculation
134 float output = (kp*error) + (ki*errSum) + (kd*dErr);
135

136 //Clamp output to bounds
137 output = std::min(output, maxLimit);
138 output = std::max(output, minLimit);
139

140 //Required values for next round
141 lastError = error;
142 prevTime = now;
143

144 return output;
145 }

Sensor callback is a subscriber that provides sensor information, e.g., position or
wheel velocity of a robot. In this case, it receives the position of the servo motor
encoder.

148 void SensorCallBack(const sensor_msgs::JointState& msg){
149 position_encoder = msg.position[0];
150 }

The protected variables of action server:

152 protected:
153 ros::NodeHandle n;
154 ros::NodeHandle n2;
155

156 //Subscriber

Control of Mobile Robots Using ActionLib 173

157 ros::Subscriber sensorsub;
158

159 //Publishers
160 ros::Publisher controlpub;
161 ros::Publisher error_controlpub;
162

163 //Actionlib variables
164 actionlib::SimpleActionServer<tutorial_controller::

TutorialAction> as;
165 tutorial_controller::TutorialFeedback feedback;
166 tutorial_controller::TutorialResult result;
167 std::string action_name;
168

169 //Control variables
170 float position_encoder;
171 float errSum;
172 float lastError;
173 float minLimit, maxLimit;
174 ros::Time prevTime;
175 float kp;
176 float ki;
177 float kd;
178 };

Finally, the main function creates the action server and spins the node. The action
will be running and waiting to receive goals.

180 int main(int argc, char** argv){
181 ros::init(argc, argv, "pid_server");
182

183 //Just a check to make sure the usage was correct
184 if(argc != 1){
185 ROS_INFO("Usage: pid_server");
186 return 1;
187 }
188

189 //Spawn the server
190 ControllerServer server(ros::this_node::getName());
191

192 ros::spin();
193

194 return 0;
195 }

5th step: Compile the created package To compile your controller, it’ll be need to
add a few things toCMakeLists.txt. Firstly, you need to specify the necessary libraries
to compile the package. If you require any other library that wasn’t mentioned when
creating your package, you can add it to find_package() and catkin_package().

1 find_package(catkin REQUIRED COMPONENTS
2 actionlib
3 actionlib_msgs
4 message_generation

174 H.B. Santos et al.

5 roscpp
6 rospy
7 std_msgs
8)
9

10 find_package(
11 CATKIN_DEPENDS actionlib actionlib_msgs message_generation

roscpp rospy std_msgs
12)

Then, specify the action file to generate the messages.

1 add_action_files(
2 DIRECTORY action
3 FILES Tutorial.action
4)

And specify the libraries that need .action.

1 generate_messages(
2 DEPENDENCIES
3 actionlib_msgs std_msgs
4)

Include directories that your package needs.

1 include_directories(${catkin_INCLUDE_DIRS})

The add_executable() creates the executable of your server and client. The tar-
get_link_libraries() includes libraries that can be used by action server and client
at build and/or execution. The macro add_dependencies() creates a dependency
between the messages generated by the server and client with your executables.

1 add_executable(TutorialServer src/ControllerServer.cpp)
2 target_link_libraries(TutorialServer ${catkin_LIBRARIES})
3 add_dependencies(TutorialServer ${

tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

4

5 add_executable(TutorialClient src/ControllerClient.cpp)
6 target_link_libraries(TutorialClient ${catkin_LIBRARIES})
7 add_dependencies(TutorialClient ${

tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

Additionally, the package.xml file must include the following dependencies:

1 <build_depend>actionlib</build_depend>
2 <build_depend>actionlib_msgs</build_depend>
3 <build_depend>message_generation</build_depend>
4 <run_depend>actionlib</run_depend>
5 <run_depend>actionlib_msgs</run_depend>
6 <run_depend>message_generation</run_depend>

Control of Mobile Robots Using ActionLib 175

Fig. 5 PID controller server

Fig. 6 PID controller client

Now, just compile your workspace:

1 $ cd /home/user/catkin_ws/
2 $ catkin_make

And refresh your ROS environment:

1 $ source /home/user/catkin_ws/devel/setup.bash

So your PID controller is ready to be used.
6th step: Run the controller Once compiled, your package is ready for use. To run
your package, open terminal and start ROS:

1 $ roscore

After the ROS starts, you must start the server in new terminal, as shown in Fig. 5.
So, in a new terminal, start the client, as demonstrated in Fig. 6.
PID Controller client waits for the server and notifies you when the connection is

established between them.
An alternative to rosrun is roslaunch. To use roslaunch command, you need to

create a folder named launch in your package.

1 $ cd /home/user/catkin_ws/src/tutorial_controller
2 $ mkdir launch

After creating the folder, create a launch file (tutorial.launch) in the directory
launch of your package. In the launch file put the following commands:

1 <launch>
2 <node pkg="tutorial_controller" type="TutorialServer" name="TutorialServer"

output="screen"/>
3 <node pkg="tutorial_controller" type="TutorialClient" name="TutorialClient"

output="screen"/>
4 </launch>

176 H.B. Santos et al.

To roslaunch works, it’s necessary add roslaunch package in find_package() of
CMakeLists.txt:

1 find_package(
2 catkin REQUIRED
3 COMPONENTS actionlib actionlib_msgs roslaunch
4)

And add below line of the find_package() in CMakeLists.txt:

1 roslaunch_add_file_check(launch)

Thus, CMakeLists.txt would look like this:

1 cmake_minimum_required(VERSION 2.8.3)
2 project(tutorial_controller)
3

4 find_package(catkin REQUIRED COMPONENTS
5 actionlib
6 actionlib_msgs
7 message_generation
8 roscpp
9 rospy
10 std_msgs
11 roslaunch
12)
13

14 roslaunch_add_file_check(launch)
15

16 add_action_files(
17 DIRECTORY action
18 FILES Tutorial.action
19)
20

21 generate_messages(
22 DEPENDENCIES
23 actionlib_msgs std_msgs
24)
25

26 catkin_package(
27 CATKIN_DEPENDS actionlib actionlib_msgs message_generation

roscpp rospy std_msgs
28)
29

30 include_directories(${catkin_INCLUDE_DIRS})
31

32 add_executable(TutorialServer src/ControllerServer.cpp)
33 target_link_libraries(TutorialServer ${catkin_LIBRARIES})
34 add_dependencies(TutorialServer ${

tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

35

36 add_executable(TutorialClient src/ControllerClient.cpp)
37 target_link_libraries(TutorialClient ${catkin_LIBRARIES})

Control of Mobile Robots Using ActionLib 177

38 add_dependencies(TutorialClient ${
tutorial_controller_EXPORTED_TARGETS} ${
catkin_EXPORTED_TARGETS})

Save the CMakeLists file. So, you can compile the workspace:

1 $ cd /home/user/catkin_ws/
2 $ catkin_make

Don’t forget to add the workspace to your ROS environment:

1 $ source catkin_ws/devel/setup.bash

Now, to run your package, you just need this command:

1 $ roslaunch tutorial_controller tutorial.launch

Please note that roslaunch starts ROS automatically, as shown in Fig. 7. Therefore,
the roscore command isn’t required before running the controller.

With rqt_graph command, you can see all the topics published and interation
between the nodes in ROS.

Fig. 7 Roslaunch running PID controller

178 H.B. Santos et al.

Fig. 8 Interaction between nodes of PID controller

1 $ rqt_graph

The rqt_graph package provides a GUI plugin for visualizing the ROS compu-
tation graph [7]. You can visualize the topics used for communication between the
client and server. Exchanging messages between the client and server are shown in
Fig. 8.

The rqt_plot package provides a GUI plugin to plot 2D graphics of the ROS topics
[8]. Open new terminal and enter the following command:

1 rqt_plot /control/error/x /control/error/y

The variable x is the controller setpoint and y is feedbacked signal (sensor infor-
mation). In Fig. 9 is shown the rqt_plot plugin.

In case you need, the variable z is the controller error and it can be added in the
rqt_plot. Just add the topic /control/error/z in rqt_plot via command:

1 rqt_plot /control/error/x /control/error/y /control/error/z

Or add the error topic directly in the rqt_plot GUI. Just enter the desired topic, as
in the Fig. 10, and click on the + symbol so that it add more information to plot.

Control of Mobile Robots Using ActionLib 179

Fig. 9 rqt_plot

Fig. 10 Add the error topic in rqt_plot

180 H.B. Santos et al.

Fig. 11 PID control servo’s position

4.2 Experimental Result of PID Controller

For the controller validation, 4 different setpoints were sent to the controller.
The Fig. 11 presents the results of servo position PID control using ActionLib,

the control shows a good response.

5 Creating a Fuzzy Controller Using ActionLib

In this section, the implementation of a Fuzzy control usingActionLibwill be shown.
The fuzzylite librarywas used to design the fuzzy logic control. The fuzzylite is a free
and open-source fuzzy library programmed in C++ formultiple platforms (Windows,
Linux, Mac, iOS, Android) [9].

QtFuzzyLite 4 is a graphic user interface for fuzzylite library, you can implement
your fuzzy controller using this GUI. Its goal is to accelerate the implementation
process of fuzzy logic controllers by providing a graphical user interface very useful
and functional allowing you to easily create and directly interact with your controllers
[9]. This GUI is available at:

http://www.fuzzylite.com/download/fuzzylite4-linux/.
In the Fig. 12 can be seen the graphic user interface, QtFuzzyLite 4.
In QtFuzzyLite, you can then export the C ++ code to your controller, as shown

in Fig. 13.
The Fuzzy controller uses the same application example used in the PID control.

In Fig. 14 the fuzzy control diagram of position servo motor can be seen, where β is
setpoint, βs is encoder servo information and u is fuzzy output.

http://www.fuzzylite.com/download/fuzzylite4-linux/

Control of Mobile Robots Using ActionLib 181

Fig. 12 QtFuzzyLite 4 GUI

Fig. 13 Export fuzzy to C++ in QtFuzzyLite 4

182 H.B. Santos et al.

Fig. 14 Fuzzy controller for a servo motor

Fig. 15 Membership functions for the servo fuzzy controller of a error and change of error and b
angle increment

The Servo Fuzzy Controller designed for the linear and orientationmotion control
is presented in Fig. 15. The inputs are ‘e’ (angle error) and ‘ce’ (angle change of error),
and the output u is angle increment (u[k] = u[k] + u[k − 1]).

The rules for fuzzy controller are shown in Table1.
The Fuzzy controller is available on GitHub and can be installed on your

workspace:

1 $ source /opt/ros/indigo/setup.bash
2 $ cd /home/user/catkin_ws/src
3 $ git clone https://github.com/air-lasca/tutorial2_controller

Table 1 Rule table e N Z P

ce

N NB NS Z

Z NS Z PS

P Z PS PB

Control of Mobile Robots Using ActionLib 183

5.1 Steps to Create the Controller

The creation of Fuzzy controller follows the same steps of the PID. But it has some
peculiarities that will be presented below.
1st step: Creating the ActionLib package Create the package:

1 $ cd /home/user/catkin_ws/src/
2 $ catkin_create_pkg tutorial2_controller actionlib

message_generation roscpp rospy std_msgs actionlib_msgs

2nd step: Creating the action messages The action file will be the same used by
PID controller, but the action’s name will be different: FuzzyControl.action.
3rd step: Create action client The structure of the client will be the same PID client,
it will be changed the client’s name (FuzzyClient.cpp), action (FuzzyControl.action),
topic (fuzzy_control) and package (tutorial2_controller).
4th step: Create the action server The server will be named FuzzyServer.cpp, but
you will need to include the fuzzylite library.

1 #include <ros/ros.h>
2 #include <tutorial2_controller/FuzzyControlAction.h>
3 #include <actionlib/server/simple_action_server.h>
4

5 #include "std_msgs/Float64.h"
6 #include "geometry_msgs/Vector3.h"
7 #include "sensor_msgs/JointState.h"
8 #include <math.h>
9

10 //Fuzzylite library
11 #include "fl/Headers.h"
12 using namespace fl;

The changes mentioned in creating the Fuzzy client should also be made. And the
control algorithm will also change, just copy it in the FuzzyServer.cpp available on
GitHub.
5th step: Compile the created package Before you compile the fuzzy controller
package, you must copy the libfuzzylite library to your /usr/lib/. Then, add the
fuzzylite’s source files (fl folder) in the include directory of your package. The lib-
fuzzylite.so file and fl folder can be downloaded from the link:

https://github.com/air-lasca/tutorial2_controller.
The CMakeLists.txt and package.xml follow the instructions specified in the PID

controller. Only, in the CMakeLists.txt, you’ll need to add the include folder and add
the libfuzzylite library, because the server needs to be built.

1 include_directories(${catkin_INCLUDE_DIRS} include)
2

3 target_link_libraries(FuzzyServer ${catkin_LIBRARIES}
libfuzzylite.so)

Then, you can compile the package.

https://github.com/air-lasca/tutorial2_controller

184 H.B. Santos et al.

Fig. 16 Fuzzy controller server

Fig. 17 Fuzzy controller client

Fig. 18 Getting fuzzy goal information

1 $ cd /home/user/catkin_ws/
2 $ catkin_make
3 $ source /home/user/catkin_ws/devel/setup.bash

6th step: Run controller To run the package, open a terminal and start the ROS.

1 $ roscore

Start the server in new terminal. In the Fig. 16, Fuzzy Controller server waits the
client.

And start the client in new terminal (Fig. 17).
In Fig. 18 the goal information can be seen: type of message, publisher and sub-

scriber.
The Fig. 19 shows the exchange of messages between the server and client.
You can also use the roslaunch to start the controller.

1 $ roslaunch tutorial2_controller fuzzycontrol.launch

Control of Mobile Robots Using ActionLib 185

Fig. 19 Interaction between nodes of fuzzy controller

Fig. 20 Fuzzy control servo’s position

5.2 Experimental Results of Fuzzy Controller

The results of servo position Fuzzy control are demonstrated in Fig. 20. The fuzzy
controller didn’t present overshoot in its response curve, even though it had a con-
siderable response time due to the delay of the encoder.

186 H.B. Santos et al.

6 Scheduled Fuzzy Controllers for Omnidirectional Motion
of an Autonomous Inspection Robot

The scheduled fuzzy controller of AIR-2 is based on the linear velocities ẋG and
ẏG and angular velocity θ̇G , as presented in Eq.3. According to the inputs, switcher
(MUX) will choose which controller should be activated. if inputs are the linear
velocities, linear motion controller will be activated. Already, when input is only
angular velocity, the orientation controllerwill be enabled.Andwhen inputs are linear
and angular velocities, the free motion controller will be activated. The scheduled
controllers can be seen in Fig. 21. The experimental results were simulated using
V-REP. The control was implement with ActionLib and fuzzylite library.

ξG =
⎡
⎣ẋG
ẏG
θ̇G

⎤
⎦ (3)

The feedback loop of each controller is related to each control variable. The linear
velocities ẋR and ẏR of AIR-2 give feedback to linear motion and the angular velocity
θ̇R ofAIR-2 provides feedback to orientationmotion.While, linear velocities ofAIR-
2 and angular velocity β̇R of servo motors give feedback to free motion, due to side
slip constraint, AIR-2 can’t reorient while moving.

Each motion controller (linear, orientation and free motion) is composed of 8
Fuzzy controllers, inwhich 4 controllers performvelocity control of brushlessmotors
and other 4 controllers are responsible by angle control of servo motors.

Fig. 21 Scheduled fuzzy controllers of AIR-2

Control of Mobile Robots Using ActionLib 187

Fig. 22 AIR-2 path in the LPG sphere

Fig. 23 Desired and obtained ẋ

A path with five different setpoints is generated for experimental results, which
can be seen in Fig. 22.

In first, second and third setpoint, the AIR-2 has been set with linear motion, the
setpoint was, respectively, ẋ , ẏ and ẋ + ẏ. The fourth was a free motion with ẋ and
θ̇ . And the fifth setpoint was orientation motion, that means only θ̇ .

The low response time of brushless and servo motors produce overshoots that can
be seen Figs. 23 and 24. It’s caused by sampling frequency of encoders in V-REP.

The Fig. 25 shows the response controller to the θ̇ . It has a small oscillation, due
data provided by the IMU, even filtered, these data present a great noise. Even so, the
control of angular velocity features a good response. In free motion, the high delay of

188 H.B. Santos et al.

Fig. 24 Desired and obtained ẏ

Fig. 25 Desired and obtained θ̇

controller is caused by reorientation wheels. It’s necessary to stop brushless motors
and servo motors orientate. The servo motors of front and rear are positioned at 90
degrees and left and right are positioned at zero degrees. So, the brushless motors
are actuated to control the angular velocity of the AIR-2.

The overshoots and the delay times presented in the speed control don’t influence
the inspection, since inspection robot operating velocities are low.

The experimental results can be seen in a YouTube video available at the link
below:

https://youtu.be/46EKARdyP0w.

https://youtu.be/46EKARdyP0w

Control of Mobile Robots Using ActionLib 189

7 Conclusion

The ActionLib has proved that the package can be used to implement controllers,
exhibited good results as shown in the examples. Easy design of the package allows
you to make any adjustments to your control, it allows even implement new control
algorithms. The main disadvantage of ActionLib is non-real time, but its preemptive
features allow almost periodic execution of the controller.

References

1. Wiki, R. 2016. Actionlib. http://wiki.ros.org/actionlib/.
2. Veiga, R., A.S. de Oliveira, L.V.R. Arruda, and F.N. Junior. 2015. Localization and navigation

of a climbing robot inside a LPG spherical tank based on dual-lidar scanning of weld beads. In
Springer Book onRobotOperating System (ROS): TheComplete Reference. NewYork: Springer.

3. Ren, L., W. Wang, and Z. Du. 2012. A new fuzzy intelligent obstacle avoidance control strat-
egy for wheeled mobile robot. In 2012 IEEE International Conference on Mechatronics and
Automation, 1732–1737.

4. Pratama, D., E.H. Binugroho, and F. Ardilla. 2015. Movement control of two wheels balancing
robot using cascaded PID controller. In International Electronics Symposium (IES), 94–99.

5. de Oliveira, A., L. de Arruda, F. Neves, R. Espinoza, and J. Nadas. 2012. Adhesion force control
and active gravitational compensation for autonomous inspection in lpg storage spheres. In
Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian,
232–238.

6. Robotics, C. 2016. Coppelia robotics v-rep: Create. compose. simulate. any robot. http://www.
coppeliarobotics.com/.

7. Wiki, R. 2016. rqt_graph. http://wiki.ros.org/rqt_graph.
8. Wiki, R. 2016. rqt_plot. http://wiki.ros.org/rqt_plot.
9. Rada-Vilela, J. 2014. Fuzzylite: a fuzzy logic control library. http://www.fuzzylite.com.

http://wiki.ros.org/actionlib/
http://www.coppeliarobotics.com/
http://www.coppeliarobotics.com/
http://wiki.ros.org/rqt_graph
http://wiki.ros.org/rqt_plot
http://www.fuzzylite.com

Parametric Identification of the Dynamics
of Mobile Robots and Its Application
to the Tuning of Controllers in ROS

Walter Fetter Lages

Abstract This tutorial chapter explains the identification of dynamic parameters of
the dynamic model of wheeled mobile robots. Those parameters depend on the mass
and inertia parameters of the parts of the robot and even with the help of modern
CAD systems it is difficult to determine them with a precision as the designed robot
is not built with 100% accuracy; the actual materials have not exactly the same
properties as modeled in the CAD system; there is cabling which density changes
over time due to robot motion and many other problems due to differences between
theCADmodel and the real robot. To overcome these difficulties and still have a good
representation of the dynamics of the robot, this work proposes the identification of
the parameters of the model. After an introduction to the recursive least-squares
identification method, it is shown that the dynamic model of a mobile robot is a
cascade between its kinematic model, which considers velocities as inputs, and its
dynamics, which considers torques as inputs and then that the dynamics can be
written as a set of equations linearly parameterized in the unknown parameters,
enabling the use of the recursive least-squares identification. Although the example
is a differential-drive robot, the proposed method can be applied to any robot model
that can be parameterized as the product of a vector of parameters and a vector of
regressors. The proposed parameter identification method is implemented in a ROS
package and can be used with actual robots or robots simulated in Gazebo. The
package for the Indigo version of ROS is available at http://www.ece.ufrgs.br/twil/
indigo-twil.tgz. The chapter concludes with a full example of identification and the
presentation of the dynamic model of a mobile robot and its use for the design of a
controller. The controller is based on three feedback loops. The first one linearizes
the dynamics of the robot by using feedback linearization, the second one uses a
set of PI controllers to control the dynamics of the robot, and the last one uses a
non-linear controller to control the pose of the robot.

W.F. Lages (B)
Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 103,
Porto Alegre RS 90035-190, Brazil
email: fetter@ece.ufrgs.br
URL: http://www.ece.ufrgs.br/∼fetter

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_6

191

http://www.ece.ufrgs.br/twil/indigo-twil.tgz
http://www.ece.ufrgs.br/twil/indigo-twil.tgz

192 W.F. Lages

Keywords Parametric identification · Dynamic model · Recursive least-squares ·
Controller tuning · Feedback linearization · Non-smooth controller

1 Introduction

Like any robot, a wheeled mobile robot is subject to kinematics and dynamics.
Also, its kinematic model depends only on geometric parameters, while the dynamic
model depends on geometric parameters and mass and inertia moments. However,
different from manipulator robots, the kinematic model of a wheeled mobile robot is
represented by differential equations. The output of the kinematic model of a mobile
robot is its pose (position and orientation) while its inputs are velocities. Depending
on how the model is formulated, its inputs may be the velocity on each wheels or
angular and linear velocity of the robot, or any other variable which is homogeneous
to velocity [9].

Based on those properties of the kinematic model of mobile robots, many con-
trollers for mobile robots command velocities to the robot, under the assumption that
those commanded velocities are instantaneously imposed on the robot. Of course,
that assumption is only valid if the actuators are powerful enough regarding the mass
and inertia moments of the robot. That is indeed the case for small robots or robots
using servo motors, which are commanded in velocity, as actuators. In this case, the
controller can be designed based on the kinematic model alone, whose parameters
are usually well-known. Note that, as the kinematic model of a mobile robot is given
by a differential equation, it is often called a dynamic model (because its described
by dynamic, i.e. differential equations) although it does not effectively model the
dynamics of the robot. In this chapter, that model is referred to as a kinematic model.
The term dynamic model is reserved for models that describe the dynamics of the
robot.

However, for larger robots, or robots in which actuators are not powerful enough
to impose very fast changes in velocities, it is necessary to consider the dynamics
of the robot in the design of the controller. Then, a more sophisticated model of the
robot, including its kinematics and its dynamics, should be used. The output of this
model is the robot pose, as well as in the kinematic model, but its inputs are the
torques on the wheels. The parameters of this model depends on the mass and inertia
parameters of the parts of the robot and even with the help of modern CAD systems
it is difficult to know with good precision some of those values as the designed
robot is not built with 100% accuracy; the actual materials have not exactly the same
properties as modeled in the CAD system; there is cabling which density changes
over time due to motion and many other problems.

To overcome the difficulties in considering all constructive details in a mathe-
matical model and still have a good representation of the dynamics of the robot, it
is possible to obtain a model by observing the system output given proper inputs
as shown in Fig. 1. This procedure is called system identification [10] or model
learning [18].

Parametric Identification of the Dynamics of Mobile Robots … 193

Fig. 1 Basic block diagram
for system identification

u(t) y(t)

Perturbation
Noise

System to
identify

Identification
method

System
model

It is shown that the dynamic model of a mobile robot can be properly parame-
terized such that the recursive least-squares method [10] can be used for parameter
identification. The proposed parameter identification method is implemented in a
ROS package and can be used with actual robots or robots simulated in Gazebo. The
package for the Indigo version of ROS can be downloaded from http://www.ece.
ufrgs.br/twil/indigo-twil.tgz. See Sect. 3 for details on how to install it.

The identified parameters and the respective diagonal of the covariance matrix are
published as ROS topics to be used in the off-line design of controllers or even used
online to implement adaptive controllers. The diagonal of the covariance matrix is a
measure of confidence on the parameter estimation and hence can be used to decide
if identified parameters are good enough. In the case of an adaptive controller, it can
be used to decide if the adaptation should be shut-off or not.

The chapter concludes with a complete example of identification and controller
design. Note that although the example and the general method is developed for
differential-drivemobile robots, it can be applied to any robot, as long as it is possible
to write the model in a way such that the unknown parameters are linearly related to
the measured variables, as shown in Sect. 2.1.

More specifically, the remainder of this chapter will cover the following topics:

• a background on identification
• a background on modeling of mobile robots
• installing the required packages
• testing the installed packages
• description of the package for identification of mobile robots.

http://www.ece.ufrgs.br/twil/indigo-twil.tgz
http://www.ece.ufrgs.br/twil/indigo-twil.tgz

194 W.F. Lages

2 Background

2.1 Parametric Identification

In order to design a control system it is generally necessary to have a model of the
plant (the system to be controlled). In many cases, those models can be obtained by
analyzing how the system works and using the laws of Physics to write the set of
equations describing it. This is called the white-box approach. However, sometimes
it is not possible to obtain the model using this approach, due to complexity of the
system or uncertainty about its parameters or operating conditions. In those cases, it
might be possible to obtain a model through the observation of the system behavior
as shown in Fig. 1, which is known as the black-box approach and formally called
system identification.

In this chapter, the focus is on identification methods which can be used online,
because they are more convenient for computational implementation and can be
readily used for implementing adaptive controllers. When the parameter estimation
is performed online, it is necessary to obtain a new updated estimate in the period
between two successive samples. Hence, it is highly desirable for the estimation
algorithm to be simple and easily implementable. A particularly interesting class
of online algorithms are those in which the current estimate θ(t) is computed as a
function of the former estimates, and then it is possible to compute the estimates
recursively.

Let a single-input, single-output (SISO) system represented by its ARX1

model:

y(t + 1) = a1y(t) + · · · + ap y(t − p + 1)

+ b1u(t) + · · · + bqu(t − q + 1) + ω(t + 1) (1)

where t is the sampling period index,2 y ∈ R is the system output, u ∈ R is the
system input, ai , i = 1, 2, . . . p and bi , j = 1, 2, . . . q are the system parameters and
ω(t + 1) is a Gaussian noise representing the uncertainty in the model.

The model (1) can be rewritten as:

y(t + 1) = φT (t)θ + ω(t + 1) (2)

1AutoRegressive with eXogenous inputs.
2Note that in system identification theory it is common to use t as the independent variable even
though the model is a discrete time one.

Parametric Identification of the Dynamics of Mobile Robots … 195

with

θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ap

b1
...

b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, the vector of parameters (3)

and

φ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(t)
...

y(t − p + 1)
u(t)

...

u(t − q + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, the regression vector. (4)

The identification problem consists in determining θ based on the information
(measurements) about y(t + 1) and φ(t) for t = 0, 1, . . . , n. To solve this problem,
it can be formulated as an optimization problem with the cost to minimize:

J (n, θ) = 1

n

n−1∑
t=0

(
y(t + 1) − φT (t)θ

)2
(5)

where y(t + 1) − φT (t)θ is the prediction error.
More formally:

θ̂(n) = argmin
θ

J (n, θ) (6)

Figure2 shows a block diagram of the identification system implementing (6).
In order to solve the minimization (6) it is convenient to write it as:

θ̂(n) = argmin
θ

(
(Y (n) − Φ(n)θ)T (Y (n) − Φ(n)θ)

)
(7)

with

Y (n) =

⎡
⎢⎢⎢⎣

y(1)
y(2)

...

y(n)

⎤
⎥⎥⎥⎦ (8)

196 W.F. Lages

θ̂(t) Algorithm
minimizing J(n, θ)

e(t, θ)

Prediction with
parameters θ

ŷ(t, θ)

System to
identify

u(t) y(t)

+
−

Fig. 2 Block diagram of system identification

and

Φ(n) =

⎡
⎢⎢⎢⎣

φT (0)
φT (1)

...

φT (n − 1)

⎤
⎥⎥⎥⎦ (9)

Then, (6) can be solved by making the differential of J (n, θ) with respect to θ
equal to zero:

∂ J (n, θ)

∂θ

∣∣∣∣
θ=θ̂(n)

= 0 = −2ΦT (n)Y (n) + 2ΦT (n)Φ(n)θ̂(n) (10)

Hence,

θ̂(n) = (
ΦT (n)Φ(n)

)−1
ΦT (n)Y (n) (11)

or

θ̂(n) =
(

n−1∑
t=0

φ(t)φT (t)

)−1 n−1∑
t=0

φ(t)y(t + 1) (12)

Expression (12) is the solution of (6) and can be used to compute an estimate
θ̂ for the vector of parameters θ at time instant n. However, this expression is not
in a recursive form and is not practical for online computing because it requires the
inversion of a matrix of dimension (n − 1) × (n − 1) for each update of the estimate.
Furthermore, n keeps increasing without bound, thus increasing computation time
and memory requirements.

Parametric Identification of the Dynamics of Mobile Robots … 197

For online computation it is convenient to have a recursive form of (12), such that
at each update time, the new data can be assimilated without the need to compute
everything again. To obtain such a recursive form define:

P(n) =
(

n∑
t=0

φ(t)φT (t)

)−1

(13)

then, from (12):

θ̂(n + 1) = P(n)

n∑
t=0

φ(t)y(t + 1) (14)

On the other hand:

P−1(n) =
n∑

t=0

φ(t)φT (t) (15)

=
n−1∑
t=0

φ(t)φT (t) + φ(n)φT (n) (16)

= P−1(n − 1) + φ(n)φT (n) (17)

or

P(n) = (
P−1(n − 1) + φ(n)φT (n)

)−1
(18)

= P(n − 1) − P(n − 1)φ(n)
(
φT (n)P(n − 1)φ(n) + 1

)−1
φT (n)P(n − 1) (19)

By using the Matrix Inversion Lemma3 [3] with A = P−1(n − 1), B = φ(n),
C = 1 e D = φT (n), it is possible to compute:

P(n) = P(n − 1) − P(n − 1)φ(n)φT (n)P(n − 1)

1 + φT (n)P(n − 1)φ(n)
(20)

which, replaced in (14) results:

θ̂(n + 1) = P(n)

n∑
t=0

φ(t)y(t + 1) (21)

= P(n)

(
n−1∑
t=0

φ(t)y(t + 1) + φ(n)y(n + 1)

)
(22)

3Matrix Inversion Lemma: (A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1
DA−1.

198 W.F. Lages

=
(
P(n − 1) − P(n − 1)φ(n)φT (n)P(n − 1)

1 + φT (n)P(n − 1)φ(n)

)

(
n−1∑
t=0

φ(t)y(t + 1) + φ(n)y(n + 1)

)
(23)

By expanding the product:

θ̂(n + 1) = P(n − 1)
n−1∑
t=0

φ(t)y(t + 1) + P(n − 1)φ(n)y(n + 1)

− P(n − 1)φ(n)φT (n)P(n − 1)

1 + φT (n)P(n − 1)φ(n)

n−1∑
t=0

φ(t)y(t + 1)

− P(n − 1)φ(n)φT (n)P(n − 1)

1 + φT (n)P(n − 1)φ(n)
φ(n)y(n + 1) (24)

Then by delaying (14) a sampling period and replacing in (24):

θ̂(n + 1) = θ̂(n) + P(n − 1)φ(n)y(n + 1)

− P(n − 1)φ(n)φT (n)

1 + φT (n)P(n − 1)φ(n)
θ̂(n)

− P(n − 1)φ(n)φT (n)P(n − 1)

1 + φT (n)P(n − 1)φ(n)
φ(n)y(n + 1) (25)

and by grouping together the terms in φ(n)y(n + 1):

θ̂(n + 1) = θ̂(n) +

+ P(n − 1) + P(n − 1)φT (n)P(n − 1)φ(n) − P(n − 1)φ(n)φT (n)P(n − 1)

1 + φT (n)P(n − 1)φ(n)
φ(n)y(n + 1)

− P(n − 1)φ(n)φT (n)

1 + φT (n)P(n − 1)φ(n)
θ̂(n) (26)

or

θ̂(n + 1) = θ̂(n) + P(n − 1)

1 + φT (n)P(n − 1)φ(n)
φ(n)y(n + 1)

− P(n − 1)φ(n)φT (n)

1 + φT (n)P(n − 1)φ(n)
θ̂(n) (27)

which can be rewritten as:

θ̂(n + 1) = θ̂(n) + P(n − 1)φ(n)

1 + φT (n)P(n − 1)φ(n)

(
y(n + 1) − φT (n)θ̂(n)

)
(28)

Parametric Identification of the Dynamics of Mobile Robots … 199

The term multiplying the error can be regarded as the optimal gain of the iden-
tification algorithm. Hence, the solution for the problem (6) in a recursive form is
given by:

θ̂(n + 1) = θ̂(n) + K (n)
(
y(n + 1) − φT (n)θ̂(n)

)
(29)

K (n) = P(n − 1)φ(n)

1 + φT (n)P(n − 1)φ(n)
(30)

P(n) = (
I − K (n)φT (n)

)
P(n − 1) (31)

Expression (29) is an update of the previous parameter estimate θ̂(n) by an optimal
gain K (n), from (30), multiplied by the prediction error, y(n + 1) − ŷ(n + 1). Note
that ŷ(n + 1) = φT (n)θ̂(n) is the prediction of the system output. It can be shown
that P(n) as computed by (31) is the covariance of the prediction error and hence it
is a measure of the confidence in the parameter estimates.

The Algorithm 1 details the procedure for parameter identification:

Algorithm 1 Recursive Least-Squares.

Initialize φ(0), θ̂(0), e P(−1) = cI .
At sampling time n + 1:

1. Read system output y(n + 1) from sensors
2. Compute the prediction of system output ŷ(n + 1):

ŷ(n + 1) = φT (n)θ̂(n) (32)

3. Compute the gain K (n):

K (n) = P(n − 1)φ(n)

1 + φT (n)P(n − 1)φ(n)
(33)

4. Update the parameter vector estimate:

θ̂(n + 1) = θ̂(n) + K (n)
(
y(n + 1) − ŷ(n + 1)

)
(34)

5. Store θ̂(n + 1) for use, if necessary
6. Update the covariance matrix:

P(n) =
(
I − K (n)φT (n)

)
P(n − 1) (35)

7. Wait for the next sampling time
8. Increment n and return to step 1

200 W.F. Lages

O X0

Y0

XcYc

xc

yc

C

θc

Fig. 3 Coordinate systems

2.2 Mobile Robot Model

Themodel of themobile robot used in this chapter is described in this section. Figure3
shows the coordinate systems used to describe the mobile robot model, where Xc

and Yc are the axes of the coordinate system attached to the robot and X0 and Y0
form the inertial coordinate system.

The pose (position and orientation) of the robot is represented by x = [
xc yc θc

]T
.

The mobile robot dynamic model can be obtained based on the Lagrange-Euler
formulation [9] and is given by:

{
ẋ = B(x)u

H(β)u̇ + f (β, u) = F(β)τ
(36)

where β is the vector of the angles of the caster wheels, u = [
v ω

]T
is the vector of

the linear and angular velocities of the robot and τ is the vector of input torques on
the wheels. B(x) is a matrix whose structure depends on the kinematic (geometric)
properties of the robot, while H(β), f (β, u) and F(β) depend on the kinematic and
dynamic (mass and inertia) parameters of the robot. Although this chapter is based
on a differential-drive mobile robot, the model (36) is valid for any type of wheeled
mobile robot. See [9] for details and examples for other types of wheeled mobile
robots.

Parametric Identification of the Dynamics of Mobile Robots … 201

τ u x

Mobile robot

Dynamics Kinematics

Fig. 4 Cascade between dynamics and the kinematic model

Fig. 5 The Twil mobile
robot

Note that the dynamicmodel of the robot is a cascade between its kinematicmodel
(the first expression of (36), with velocities as inputs) and its dynamics (the second
expression of (36), with torques as inputs), as shown in Fig. 4.

This chapter is based on the Twil mobile robot (see Fig. 5), which is a differential-
drive mobile robot, but the results and the ROS package for parameter identification
can be used directly for any other differential-drive mobile robot, as it does not
depends on Twil characteristics. For other types of wheeled mobile robots, the model
has the same form as (36) and given its particular characteristics such as the location
of the wheels with respect to the robot reference frame, the model (36) can be
customized and rewritten in a form similar to the one used here for differential-drive
robots. Then, the same procedure, could be used for parameter estimation.

The matrices of the model (36) customized for a differential-drive robot such as
Twil are:

202 W.F. Lages

B(x) =
⎡
⎣
cos θc 0
sin θc 0
0 1

⎤
⎦ (37)

H(β) = I (38)

f (β, u) = −
[
0 K5

K6 0

] [
u1u2
u22

]
= − f (u) (39)

F(β) =
[
K7 K7

K8 −K8

]
= F (40)

where I is the identity matrix and K5, K6, K7 and K8 are constants depending only
on the geometric and inertia parameters of the robot. Note that for this robot H(β),
f (β, u) and F(β) do not actually depend on β.
Note that only the dynamics of the robot depends on mass and inertia parameters,

which are difficult to know with precision. Furthermore, u is a vector with linear
and angular velocity of the robot, which can be easily measured, while x are the
robot pose, which are more difficult to be obtained. However, the parameter of the
kinematics depends on the geometry of the robot and can be obtained with good
precision by calibration. Therefore, only the part of themodel regarding the dynamics
is used for parameter estimation, taking u as output and τ as input.

In the following it is shown that the dynamics of the robot can be written as a
set of equations in the form of y(k + 1) = φT (k)θ(k), where y is the acceleration
(measured or estimated from velocities), φ is the vector of regressors (measured
velocities and applied torques) and θ is the vector of unknown parameters to be
identified. Then, it is possible to obtain an estimate θ̂ for θ by using the recursive
least squares algorithm [10] described in Sect. 2.1.

The parameters K5, K6, K7 and K8 depend on the geometric and mass properties
of the robot in a very complex way. Even for a robot simulated in Gazebo, the same
problem arises, as the model (36) is more simple than a typical robot described in
URDF, which typically include more constructive details, for a realistic and good
looking animation. On the other hand, the model described in URDF is not available
in a closed form as (36), whose structure can be explored in the design of a controller.
Also, it is not trivial to obtain a model in the form of (36) equivalent to an URDF
description.

To overcome the difficulties in considering all constructive details in an algebraic
model such as (36) and still have a good representation of the dynamics of the robot,
the parameters of the model are identified.

In obtaining a model in a form suitable to be identified by the recursive least
squares algorithm described in Sect. 2.1 it is important to note that only the second
expression of (36) depends on the unknown parameters. Furthermore, u is a vector
with linear and angular velocity of the robot, which can be easily measured, while
x are the robot pose, which are more difficult to be obtained. Therefore, only the
second expression of (36) will be used for parameter estimation, taking u as output
and τ as input.

Parametric Identification of the Dynamics of Mobile Robots … 203

By using (37)–(40), the second expression of (36) for the Twil robot can be
written as:

u̇ =
[
0 K5

K6 0

] [
u1u2
u22

]
+

[
K7 K7

K8 −K8

]
τ (41)

Although (41) seems somewhat cryptic, its physical meaning can be understood
as u̇ = [

v̇ ω̇
]T

is the vector of linear and angular acceleration of the robot. Hence,
the term K5u22 represents the centrifugal, the term K6u1u2 represents the Coriolis
acceleration.Also, as the linear acceleration of the robot is proportional to the average
of the torques applied to the left and right wheels, 1/K7 represents the robot mass and
as the angular acceleration of the robot is proportional to the difference of torques,
1/K8 represents the moment of inertia of the robot.

For the purpose of identifying K5, K6, K7 and K8 it is convenient to write (41) as
two scalar expressions:

u̇1 = K5u
2
2 + K7 (τ1 + τ2) (42)

u̇2 = K6u1u2 + K8 (τ1 − τ2) (43)

Then, by discretizing (42)–(43) it is possible to obtain two recursive models:
one linearly parameterized in K5 and K7 and another linearly parameterized in K6

and K8:

y1(k + 1) = u̇1(k) � u1(k + 1) − u1(k)

T
(44)

= K5u
2
2(k) + K7(τ1(k) + τ2(k)) (45)

y1(k + 1) =
[

u22(k)
τ1(k) + τ2(k)

]T [
K5

K7

]
(46)

y2(k + 1) = u̇2(k) � u2(k + 1) − u2(k)

T
(47)

= K6u1(k)u2(k) + K8(τ1(k) − τ2(k)) (48)

y2(k + 1) =
[

u1(k)u2(k)
τ1(k) − τ2(k)

]T [
K6

K8

]
(49)

Note that it is easier andmore convenient to identify twomodels depending on two
parameters each one than to identify a single model depending on four parameters.

Then, by defining:

φ1(k) =
[

u22(k)
τ1(k) + τ2(k)

]
(50)

θ1(k) =
[
K5

K7

]
(51)

204 W.F. Lages

φ2(k) =
[

u1(k)u2(k)
τ1(k) − τ2(k)

]
(52)

θ2(k) =
[
K6

K8

]
(53)

it is possible to write (46) and (49) as:

y1(k + 1) = φT
1 (k)θ1(k) (54)

y2(k + 1) = φT
2 (k)θ2(k) (55)

and then, it is possible to obtain an estimate θ̂i for θi by using a standard recursive
least squares algorithm such as described in Sect. 2.1:

ŷi (n + 1) = φT
i (n)θ̂i (n) (56)

Ki (n) = Pi (n − 1)φi (n)

1 + φT
i (n)P(n − 1)φi (n)

(57)

θ̂i (n + 1) = θ̂i (n) + Ki (n)
(
yi (n + 1) − ŷi (n − 1)

)
(58)

Pi (n) = (
I − Ki (n)φT

i (n)
)
Pi (n − 1) (59)

where ŷi (n + 1) are estimates for yi (n + 1), Ki (n) are the gains and Pi (n) are the
covariance matrices.

3 ROS Packages for Identification of Robot Model

This sectiondescribes the installationof somepackages useful for the implementation
of the identification procedure described in Sect. 2. Some of them are not present in
a standard installation of ROS and should be installed. Also, some custom packages
with our implementation of the identification should be installed.

3.1 Setting up a Catkin Workspace

The packages to be installed for implementing ROS controllers assume an existing
catkin workspace. If it does not exist, it can be created with the following commands
(assuming a ROS Indigo version):

Parametric Identification of the Dynamics of Mobile Robots … 205

source /opt/ros/indigo/setup.bash
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

3.2 ros_control

The ros_controlmeta-package includes a set of packages to implement generic
controllers. It is a rewrite of the pr2_mechanism packages to be used with all
robots and no just with PR2. This package implements the base architecture of
ROS controllers and hence is required for setting up controllers for the robot. In
particular, for the identification method proposed here, it is necessary to actuate the
robot directly, that is, without any controller, neither an open-loop nor a closed-loop
controller. This can be done in ROS by configuring a forward controller, a controller
that just replicates its input in its output.

This meta-package includes the following packages:

control_toolbox: contains classes that are useful for all controllers, such as
PID controllers.

controller_interface: implements a base class for interfacing with con-
trollers, the Controller class.

controller_manager: implements the ControllerManager class,
which loads, unloads, starts and stops controllers.

hardware_interface: base class for implementing the hardware interface,
the RobotHW and JointHandle classes.

joint_limits_interface: base class for implementing the joint limits.
transmission_interface: base class for implementing the transmission

interface.
realtime_tools: contains a set of tool that can be used from a hard real-time

thread.

The ros_control meta-package is not included in the standard ROS desktop
installation, hence it should be installed. On Ubuntu, it can be installed from Debian
packages with the command:

sudo apt-get install ros-indigo-ros-control

3.3 ros_controllers

This meta-package is necessary to make the forward_command_controller
and forward_command_controller controllers available. The robot is put in

206 W.F. Lages

open-loop by using the forward_command_controller controller, and then
the desired input signal can be applied for identification. The joint_state_
controller controller, which by its name seems an state-space controller in the
joint space, but actually it is just a publisher for the values of the position andvelocities
of the joints. Then, that topic is used to obtain the output of the robot system to be
used in the identification.

More specifically, ros_controllers includes the following:

forward_command_controller: just a bypass from the reference to the
control action as they are the same physical variable.

effort_controllers: implements effort controllers, that is, SISOcontrollers
inwhich the control action is the torque (or an equivalent physical variable) applied
to the robot joint. There are there types of effort_controllers, depending
on the type of the reference and controlled variable:

effort_controllers/joint_effort_controller: just a bypass
from the reference to the control action as they are the same physical variable.

effort_controllers/joint_position_controller: a contro-
ller in which the reference is joint position and the control action is torque.
The PID control law is used.

effort_controllers/joint_velocity_controller: a contro-
ller in which the reference is joint velocity and the control action is torque.
The PID control law is used.

position_controllers: implements SISO controllers in which the control
action is the position (or an equivalent physical variable) applied to the robot joint.
Currently, there is just one type of position_controllers:

position_controllers/joint_position_controller: just a
bypass from the reference to the control action as they are the same physi-
cal variable.

velocity_controllers: implements SISO controllers in which the control
action is the velocity (or an equivalent physical variable) applied to the robot joint.
Currently, there is just one type of velocity_controllers:

velocity_controllers/joint_velocity_controller: just a
bypass from the reference to the control action as they are the same physi-
cal variable.

joint_state_controller: implements a sensor which publishes the joint
state as a sensor_msgs/JointState message, the JointState
Controller class.

The ros_controllers meta-package is not included in the standard ROS
desktop installation, hence it should be installed. On Ubuntu, it can be installed from
Debian packages with the command:

sudo apt-get install ros-indigo-ros-controllers

Parametric Identification of the Dynamics of Mobile Robots … 207

3.4 gazebo_ros_pkgs

This is a collection of ROS packages for integrating the ros_control controller
architecture with the Gazebo simulator [12], containing the following:

gazebo_ros_control: Gazebo plugin that instantiates the RobotHW class
in a DefaultRobotHWSim class, which interfaces with a robot simulated in
Gazebo. It also implements the GazeboRosControlPlugin class.

The gazebo_ros_pkgs meta-package is not included in the standard ROS
desktop installation, hence it should be installed. On Ubuntu, it can be installed from
Debian packages with the command:

sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-gazebo-ros-control

3.5 twil

This is a meta-package with the package for identification of the Twil robot. It
contains anURDF description of the Twilmobile robot [4] and the implementation of
the identification and some controllers used for identification and using the identified
parameters. More specifically it includes the following packages:

twil_description: URDF description of the Twil mobile robot.
twil_controllers: implementation of a forward controller, a PID controller

and a linearizing controller for the Twil mobile robot.
twil_ident: ROS node implementing the recursive least-squares for identifi-

cation of the parameters of a differential-drive mobile robot.

The twil meta-package can be downloaded and installed in the ROS catkin
workspace with the commands:

cd ~/catkin_ws/src
wget http://www.ece.ufrgs.br/twil/indigo-twil.tgz
tar -xzf indigo-twil.tgz
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

4 Testing the Installed Packages

A simple test for the installation of the packages described in Sect. 3 is performed
here.

The installation of the ROS packages can be done by loading the Twil model in
Gazebo and launching the computed torque controller with the commands:

208 W.F. Lages

source /opt/ros/indigo/setup.bash
source ~/catkin_ws/devel/setup.bash
roslaunch twil_controllers joint_effort.launch

The robot should appear in Gazebo as shown in Fig. 6.
Then, start the simulation by clicking in the play button in the Gazebo panel, open

a new terminal and issue the following commands to move the robot.

source /opt/ros/indigo/setup.bash
source ~/catkin_ws/devel/setup.bash
rosrun twil_controllers test_openloop.sh

If everything is right, the Twil robot should move for some seconds and then stop,
as shown in Fig. 7.

In this simulation, the Twil mobile robot is driven by standard ROS controllers
implementing a bypass from its reference to its output. This is the equivalent to drive
the robot in open-loop, that means, without any controller.

The effort_controllers/JointEffortController controller
implements just a bypass from its input to its output as its input is effort and its
output is effort, as well. The example uses one of such controllers in each wheel
of the Twil mobile robot, effectively keeping it in open-loop. Hence, the reference
applied to the controllers is directly the torque applied to each wheel. Figure8 shows
the computation graph for this example.

The controllers themselves are not shown because they are plugins loaded by the
controllers manager and hence they are not individual ROS nodes. The right wheel
controller receives its reference through the /twil/right_wheel_joint
_effort_controller_command topic and the leftwheel controller receives its
through the/twil/left_wheel_joint_effort_controller_command

Fig. 6 Twil mobile Robot in Gazebo

Parametric Identification of the Dynamics of Mobile Robots … 209

Fig. 7 Gazebo with Twil robot after test motion

topic. The /joint_states topic is where the state of the joints (wheels) are pub-
lished by the JointStateController controller. In the next Sections the data
published in this topic, will be used to identify the parameters of the Twil mobile
robot. For a good identification, adequate signals, as detailed in Sect. 5.3, will be
applied to the /twil/right_wheel_joint_effort_controller_
command and /twil/left_wheel_joint_effort_controller_
command topics.

Thetest_openloop.sh is a script with an example of how to set the reference
for the controllers, in this case, the torque on right and left wheels of the Twil robot.
The script just publishes the required values by using the rostopic command. In
a real application, probably with a more sophisticated controller, those references
would be generated by a planning package, such asMoveIt! [24] or a robot navigation
package, such as the Navigation Stack [15, 16]. In the case of an identification
task, as discussed here, the references for the controllers are generated by a node
implementing the identification algorithm.

210 W.F. Lages

F
ig
.8

C
om

pu
ta
tio

n
gr
ap
h
fo
r
Tw

il
in

op
en

lo
op

Parametric Identification of the Dynamics of Mobile Robots … 211

5 Implementation of Parametric Identification in ROS

In this section, the twil ROSmeta-package is detailed. This meta-package consists
of an URDF description of the Twil mobile robot (twil_description), the
implementation of some controllers for Twil (twil_controllers) and a ROS
node for implementing the parametric identification (twil_ident). Although the
parametric identification launch file is configured for Twil, the source code for the
identification is generic and should work directly with any differential-drive mobile
robot and with minor modifications for any wheeled mobile robot. Hence, in most
cases, the package can be used with any robot by just adapting the launch file.

5.1 twil_description Package

The twil_description package has the URDF description of the Twil robot.
Files in the xacro directory contains the files describing the geometric and mass
parameters of the many bodies used to compose the Twil robot, while the meshes
directory holds the STereoLithography (STL) files describing the shapes of the
bodies. The files in the launch directory are used to load the Twil model in
the ROS parameter server. The twil.launch file just loads the Twil model in
the parameter server and is intended to be used with the actual robot, while the
twil_sim.launch file loads the Twil model in the parameter server and launches
the Gazebo simulator.

It is beyond the scope of this chapter to discuss the modeling of robots in URDF.
The reader is directed to the introductoryROS references for learning the details about
URDF modeling in general. However, one key point for simulating ROS controllers
in Gazebo is to tell it to load the plugin for connecting with ros_control. In the
twil_description package this is done in the top level URDF file, within the
<gazebo> tag, as shown in Listing 1. See [13] for a detailed description of the
plugin configuration.

Listing 1 Plugin description in twil.urdf.xacro.
<gazebo>

<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so" >
<robotNamespace>/twil</robotNamespace>
<controlPeriod>0.001</controlPeriod>

</plugin>
</gazebo>

5.2 twil_controllers Package

The twil_controllers package implements the controllers for Twil. In par-
ticular, a Cartesian linearizing controller is implemented as an example of using

212 W.F. Lages

the results of the parametric identification. The files in the config directory spec-
ify the parameters for the controllers, such as the joints of the robot associated
to the controller, its gains and sampling rate. The script directory has some
useful scripts for setting the reference for the controllers and can be used for
testing them. Note that although only the CartLinearizingController is
implemented in this package, the Twil can use other controllers, as those imple-
mented in the ros_controllers package. In particular, the controller used for
identification (effort_controllers/JointEffortController) comes
from the ros_controllers package.

The file in the src directory are the implementation of controllers for Twil, in par-
ticular CartLinearizingController, derived from the Controller class,
while the include directory holds the files with the declarations of those classes.
The twil_controllers_plugins.xml file specifies that the classes imple-
menting the controllers are plugins for the ROS controller manager. The files in the
launch directory are used to load and start the controllers with the respective con-
figuration files. The detailed description of the implementation of controllers is not
the scope of this chapter. See [13] for a detailed discussion about the implementation
of controllers in ROS.

5.3 twil_ident Package

The twil_ident package contains a ROS node implementing the parameter iden-
tification procedure described in Sect. 2.1. Again, the source code is in the src
directory and there is a launch file in the launch directory which is used to load
and start the node.

The identification node can be launched through the command:

roslaunch twil_ident ident.launch

The launch file is shown in Listing 2. Initially, there are remaps of the topic names
used as reference for the controllers for the right and left wheels, then, another launch
file, which loads Gazebo with the Twil simulation is called. The next step is the load-
ing of controller parameters from the configuration file effort_control.yaml
in the parameter server and the controller manager node is spawn for loading the
controllers for both wheels and the joint_state_controller to publish the
robot state. Finally the identification node is loaded and the identification procedure
starts.

Listing 2 Launch file ident.launch.
<launch>

<remap from="/twil/left_wheel_joint_effort_controller/command"

to="/twil/left_wheel_command"/>

<remap from="/twil/right_wheel_joint_effort_controller/command"

to="/twil/right_wheel_command"/>

<include file="$(find twil_description)/launch/twil_sim.launch"/>

Parametric Identification of the Dynamics of Mobile Robots … 213

Fig. 9 Computation graph for parameter identification

<rosparam file="$(find twil_controllers)/config/effort_control.yaml" command="load"/>

<node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false"

output="screen" ns="/twil"

args="joint_state_controller left_wheel_joint_effort_controller \

right_wheel_joint_effort_controller"/>

<node name="ident" ns="/twil" pkg="twil_ident" type="ident" output="screen">

<remap from="ident/left_wheel_command" to="left_wheel_command"/>

<remap from="ident/right_wheel_command" to="right_wheel_command"/>

</node>

</launch>

Figure9 shows the computation graph used for the identification. The dif-
ference with respect to the computation graph in Fig. 8 is that torques to be
applied to the wheels are published on the /twil/right_wheel_command and
/twil/left_wheel_command by the ident node. These topics are the same
described in Sect. 4, but had their names changed to force the connection between
the /gazebo and the /twil/ident nodes.

The/twil/ident node implements the parameter identification and subscribes
to the /joint_states topic in order to obtain the joint (wheel) velocities nec-
essary for the identification algorithm and publishes the torque commands for the
wheels in the /twil/right_wheel_command and /twil/left_wheel_
command topics. The torques follow a Pseudo Random Binary Sequence (PRBS)
pattern [21] in order to ensure the persistent excitation for a good identification of
the parameters.

The identified parameters and the respective diagonal of the covariance matrix are
published on the /twil/ident/dynamic_parameters topic. Those values
can be used offline by controllers, for the implementation of non-adaptive controllers
or can be used online to implement adaptive controllers. In this case, the controller
can subscribe to the /twil/ident/dynamic_parameters topic to receive
updates of the identified parameters and the respective diagonal of the covariance
matrix, which is a measure of confidence on the parameter estimation and hence can
be used to decide if the adaptation should be shut-off or not. This way, the mass and
inertia parameters of the robotwould be adjusted on-line for variations due to changes

214 W.F. Lages

in workload, for example. In order to ensure the reliability of the identified values,
parameters would be changed only if the associated covariance is small enough.

The Ident class is shown in Listing 3. The private variable members of the
Ident class are:

node_: the ROS nodeidentifier
jointStateSubscriber: ROS topic subscriber to receive the joint state
dynParamPublisher: ROS topic to publish the identified parameters
leftWheelCommandPublisher: ROS topic to publish the reference for the

left wheel controller
dynParamPublisher: ROS topic to publish the reference for the right wheel

controller
nJoints: the number of joints (wheels) of the robot
u: vector of joint velocities
thetaEst1: vector of estimated parameters θ̂1
thetaEst2: vector of estimated parameter θ̂2
P1: covariance of the error in estimates θ̂1
P2: covariance of the error in estimates θ̂2
prbs: vector of PRBS sequences used as input to the robot for identification
lastTime: time for the last identification iteration.

Listing 3 Ident class.
1 class Ident

2 {

3 public:

4 Ident(ros::NodeHandle node);

5 ~Ident(void);

6 void setCommand(void);

7
8 private:

9 ros::NodeHandle node_;

10
11 ros::Subscriber jointStatesSubscriber;

12 ros::Publisher dynParamPublisher;

13 ros::Publisher leftWheelCommandPublisher;

14 ros::Publisher rightWheelCommandPublisher;

15
16 const int nJoints;

17
18 Eigen::VectorXd u;

19 Eigen::VectorXd thetaEst1;

20 Eigen::VectorXd thetaEst2;

21 Eigen::MatrixXd P1;

22 Eigen::MatrixXd P2;

23
24 std::vector<Prbs> prbs;

25
26 ros::Time lastTime;

27
28 void jointStatesCB(const sensor_msgs::JointState::ConstPtr &jointStates);

29 void resetCovariance(void);

30 };

The jointStatesCB() function is the callback for receiving the state of the
robot and running the identifier iteration, as shown in Listing 4.

Parametric Identification of the Dynamics of Mobile Robots … 215

Listing 4 JointStatesCB() function.
1 void Ident::jointStatesCB(const sensor_msgs::JointState::ConstPtr &jointStates)
2 {
3 ros::Duration dt=jointStates->header.stamp-lastTime;
4 lastTime=jointStates->header.stamp;
5
6 Eigen::VectorXd y=-u; //y(k+1)=(u(k+1)-u(k))/dt
7
8 Eigen::VectorXd Phi1(nJoints);
9 Eigen::VectorXd Phi2(nJoints);

10 Phi1[0]=u[1]*u[1]; // u2^2(k)
11 Phi2[0]=u[0]*u[1]; // u1(k)*u2(k)
12
13 Eigen::VectorXd torque(nJoints);
14 for(int i=0;i < nJoints;i++)
15 {
16 u[i]=jointStates->velocity[i]; // u(k+1)
17 torque[i]=jointStates->effort[i]; // torque(k)
18 }
19
20 y+=u;
21 y/=dt.toSec();
22
23 Phi1[1]=torque[0]+torque[1];
24 Phi2[1]=torque[0]-torque[1];
25
26 double yEst1=Phi1.transpose()*thetaEst1;
27 Eigen::VectorXd K1=P1*Phi1/(1+Phi1.transpose()*P1*Phi1);
28 thetaEst1+=K1*(y[0]-yEst1);
29 P1-=K1*Phi1.transpose()*P1;
30
31 double yEst2=Phi2.transpose()*thetaEst2;
32 Eigen::VectorXd K2=P2*Phi2/(1+Phi2.transpose()*P2*Phi2);
33 thetaEst2+=K2*(y[1]-yEst2);
34 P2-=K2*Phi2.transpose()*P2;
35
36 std_msgs::Float64MultiArray dynParam;
37 for(int i=0;i < nJoints;i++)
38 {
39 dynParam.data.push_back(thetaEst1[i]);
40 dynParam.data.push_back(thetaEst2[i]);
41 }
42 for(int i=0;i < nJoints;i++)
43 {
44 dynParam.data.push_back(P1(i,i));
45 dynParam.data.push_back(P2(i,i));
46 }
47 dynParamPublisher.publish(dynParam);
48 }

In the callback, first of all the time interval since last call is computed (dt), then the
φ1(t) and φ2(t) vectors are assembled in variables Phi1 and Phi2 and the system
output y(t + 1) is assembled. Then, the parameter estimates and their covariances
are computed from (56)–(59) and finally, the parameter estimates and the covariance
matrix diagonal are published in dynParamPublisher.

The main() function of the ident node is shown in Listing 5. It is just
a loop running at 100 Hz publishing torques for the robot wheels through the
setCommand() function.

216 W.F. Lages

Listing 5 ident node main() function.
1 int main(int argc,char* argv[])
2 {
3 ros::init(argc,argv,"twil_ident");
4 ros::NodeHandle node;
5
6 Ident ident(node);
7
8 ros::Rate loop(100);
9 while(ros::ok())
10 {
11 ident.setCommand();
12
13 ros::spinOnce();
14 loop.sleep();
15 }
16 return 0;
17 }

Torques to be applied to the robot wheels are published by the setCommand()
function shown in Fig. 6. A PRBS signal with amplitude switching between −5 and
5 Nm is applied to each wheel.

Listing 6 setCommand() function.
1 void Ident::setCommand(void)
2 {
3 std_msgs::Float64 leftCommand;
4 std_msgs::Float64 rightCommand;
5 leftCommand.data=10.0*prbs[0]-5.0;
6 rightCommand.data=10.0*prbs[1]-5.0;
7 leftWheelCommandPublisher.publish(leftCommand);
8 rightWheelCommandPublisher.publish(rightCommand);
9 }

While the identification procedure is running, the estimates of parameters K5,
K6, K7 and K8 and their associated covariances are published as a vector in the
/twil/ident/dynamic_parameters topic. Hence, the results of estimation
can be observed by monitoring this topic with the command:

rostopic echo /twil/ident/dynamic_parameters

The results for the estimates of parameters K5, K6, K7 and K8 can be viewed
in Figs. 10, 11, 12 and 13, respectively. Note that for a better visualization the time
horizon for Figs. 10 and 11 is not the same in all figures.

Figures14, 15, 16 and 17 show the evolution of the diagonal of the covariance
matrix related to the K5, K6, K7 and K8 parameters, respectively.

Although the identified values remain changing over time due to noise, it is pos-
sible to consider that they converge to an average value and stop the identification
algorithm. The resulting values are shown in Table1, with the respective diagonal
of the covariance matrix. Those values were used for the implementation of the
feedback linearization controller.

Given the results in Table1 and recalling the model (36) and (37)–(40), the iden-
tified model of the Twil mobile robot is:

Parametric Identification of the Dynamics of Mobile Robots … 217

K5

Time [s]

Fig. 10 Evolution of the estimate of the K5 parameter

K6

Time [s]

Fig. 11 Evolution of the estimate of the K6 parameter

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ =
⎡
⎣
cos θc 0
sin θc 0
0 1

⎤
⎦ u

u̇ =
[

0 0.00431
0.18510 0

] [
u1u2
u22

]
+

[
18.7807 18.7807

−14.3839 14.3839

]
τ

(60)

In principle, it sounds pointless to identify the parameters of a simulated robot.
However, the simulation performed by Gazebo is based on the Open Dynamics
Engine (ODE) library [23] with parameters derived from a URDF description of
the robot, which is more detailed than the model used for identification and control.
Due to the model non-linearities and the richness of details of the URDF description

218 W.F. Lages

K7

Time [s]

Fig. 12 Evolution of the estimate of the K7 parameter

K8

Time [s]

Fig. 13 Evolution of the estimate of the K8 parameter

it is not easy to compute the equivalent parameters to be used in a closed form
model useful for control design. Hence, those parameters are identified. Note that
this situation is analogous to a real robot, where the actual parameters are not the
same as the theoretical ones due to many details not being modeled.

Parametric Identification of the Dynamics of Mobile Robots … 219

P111

Time [s]

Fig. 14 Diagonal of the covariance matrix related to the K5 parameter

P122

Time [s]

Fig. 15 Diagonal of the covariance matrix related to the K6 parameter

220 W.F. Lages

P211

Time [s]

Fig. 16 Diagonal of the covariance matrix related to the K7 parameter

P222

Time [s]

Fig. 17 Diagonal of the covariance matrix related to the K8 parameter

Parametric Identification of the Dynamics of Mobile Robots … 221

Table 1 Twil parameters
obtained by identification

Parameter Value Covariance diagonal

K5 0.00431 7.0428 × 10−12

K6 0.18510 1.0870 × 10−09

K7 18.7807 1.9617 × 10−06

K8 −14.3839 1.9497 × 10−06

6 Controller Design

Themodel (60) can be used for the design of controllers. Although nowall parameters
are known, it is still a non-linear model and a cascade of the dynamics and the
kinematics as shown in Fig. 4. Also, as discussed in Sect. 1 there are in the literature
many publications dealing with the control of mobile robots using only the kinematic
model. Furthermore, the non-holonomic constraints associated tomobile robots, with
exception of the ominidirectional ones, are associated to the first expression of (60),
while the second expression is a holonomic system. For this reason, most difficulties
in designing a controller for a mobile robot are related to its kinematic model and
not to its dynamic model.

In order to build-up on the many methods developed to control mobile robots
based on the kinematic model alone, the control strategy proposed here considers the
kinematics and the dynamics of the robot in two independent steps. See [6, 7] for a
control approach dealing with the complete model of the robot in a single step.

The dynamics of the robot is described by the second expression of (60) and has
the form:

u̇ = f (u) + Fτ (61)

and a state feedback linearization [11, 13] with the control law:

τ = F−1 (ν − f (u)) (62)

where ν is a new control input, leads to:

u̇ = ν (63)

which is a linear, decoupled system. That means that each element of u is driven by
a single element of ν or u̇i = νi .

For differential-drive mobile robot such as Twil the elements of u = [
v ω

]T
, are

the linear and angular velocities of the robot. For other types of wheeled mobile
robots, the number and meaning of the elements of u would not be the same, but (63)
would still have the same form, eventually with larger vectors. Anyway, the transfer
function for each element of (63) is:

222 W.F. Lages

+

−

+

− Mobile
robot

Linearization
PI1

PIn

ur

ur1

urn

...

...

...

ν1

νn

u1

un

u

u u

ν τ x

e1

en

Fig. 18 Block diagram of the controller for the dynamics of the mobile robot

Gi (s) = Ui (s)

Vi (s)
= 1

s
(64)

In other words, by using the feedback (62), the system (61) is transformed in a
set of independent systems, each one with a transfer function equal to Gi (s). Each
one of these systems can be controlled by a PI controller, then:

νi = Kpiei + Kii

∫
eidt (65)

where ei = uri − ui , uri is the reference for the i-th element of u and Kpi and Kii

are the proportional and integral gains, respectively.
The transfer function of PI controller (65) is:

Ci (s) = Vi (s)

Ei (s)
= Kpi s + Kii

s
(66)

Then, by remembering that Ei (s) = Uri (s) −Ui (s) and using (64) and (66), it is
possible to write the closed-loop transfer function as:

Hi (s) = Ui (s)

Uri (s)
= Ci (s)Gi (s)

1 + Ci (s)Gi (s)
= Kpi s + Kii

s2 + Kpi s + Kii
(67)

Figure18 shows the block diagram of the proposed controller, which is imple-
mented by using (62) and (65). Note that (65) can be implemented by using the
Pid class already implemented in the control_toolbox ROS package, by just
making the derivative gain equal to zero.

The performance of the controller is determined by the characteristic polynomial
(the denominator) of (67). For canonical second order systems, the characteristic
polynomial is given by:

s2 + 2ξωns + ω2
n (68)

where ξ is the damping ratio and ωn is the natural frequency.

Parametric Identification of the Dynamics of Mobile Robots … 223

Hence, it is easy to see that Kpi = 2ξωn and Kii = ω2
n . Furthermore, the time it

takes to the control system to settle to a precision of 1% is given by [19]:

Ts = − ln 0.01

ξωn
= 4.6

ξωn
(69)

Therefore, by choosing the damping ration and the settling time required for each
PI controller it is possible to compute Kpi and Kii .

Again, for the Twil mobile robot and all differential-drive robots, u = [
v ω

]T
,

hence, for this type of robot there are two PI controllers: one for controlling the linear
velocity and other for controlling the angular velocity. In most cases it is convenient
to tune both controllers for the same performance, therefore, as the system model
is the same, the controller gains would be the same. In robotics, it is usual to set
ξ = 1.0, to avoid overshoot, and Ts is the time required for the controlled variable
to converge to within 1% of error of the reference. In a first moment one may think
that Ts should be set to a very small value. However, the trade-off here is the control
effort. A very small Ts would require a very large ν and hence very large torques on
the motors, probably above what they are able to provide. Therefore, Ts should be
set to a physically sensible value. By making Ts = 50ms, from (69):

ωn = 4.6

ξTs
= 4.6

50 × 10−3
= 92 rad/s (70)

and

Kp1 = Kp2 = 2ξωn = 184 (71)

Ki1 = Ki2 = ω2
n = 8464 (72)

By using the above gains, the controls system shown in Fig. 18 ensures that u
will converge to ur in a time Ts . Then, by commanding ur it is possible to steer the
mobile robot to the desired pose. To do this in a robust way, it is necessary to have
another control loop using the robot pose as feedback signal. By supposing that Ts
is selected to be much faster than the pose control loop (at least five times faster),
the dynamics (67) can be neglected and the resulting system (equivalent to see the
system in Fig. 18 as a single block) model can be written as:

ẋ =
⎡
⎣
cos θc 0
sin θc 0
0 1

⎤
⎦ ur (73)

It is important to note that using (73) for the design of the pose controller is not
the same as using only the kinematic model (first expression of (36)). Although the
equations are the same, and then, the same control methods can be used, now there
is an internal control loop (Fig. 18) that forces the commanded ur to be effectively
applied to the robot despite the dynamics of the robot.

224 W.F. Lages

The pose controller used here follows the one proposed in [1] and is non-linear
controller based on the Lyapunov theory and a change of the robot model to polar
coordinates. Also, as most controllers based on Lyapunov theory, it is assumed that
the system should converge to its origin. However, as it is interesting to be able to
stabilize the robot at any pose xr = [

xcr ycr θcr
]T
, the following coordinate change

[2] is used to move the origin of the new system to the reference pose::

x̄ =
⎡
⎣
x̄c
ȳc
θ̄c

⎤
⎦ =

⎡
⎣

cos θcr sin θcr 0
− sin θcr cos θcr 0

0 0 1

⎤
⎦ (x − xr) (74)

By using a change to polar coordinates [5] given by:

e =
√
x̄2c + ȳ2c (75)

ψ = atan2(ȳc, x̄c) (76)

α = θ̄c − ψ (77)

the model (73) can be rewritten as:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė = cosαur1

ψ̇ = sinα

e
ur1

α̇ = − sinα

e
ur1 + ur2.

(78)

which is only valid for differential-drive mobile robots. For a similar procedure for
other configurations of wheeled mobile robots see [14].

Then, given a candidate to Lyapunov function:

V = 1

2

(
λ1e

2 + λ2α
2 + λ3ψ

2
)
, (79)

with λi > 0. Its time derivative is:

V̇ = λ1eė + λ2αα̇ + λ3ψψ̇ (80)

By replacing ė, α̇ and ψ̇ from (78):

V̇ = λ1e cosαur1 − λ2α
sinα

e
ur1 + λ2αur2 + λ3ψ

sinα

e
ur1 (81)

Parametric Identification of the Dynamics of Mobile Robots … 225

and, it can be shown that the input signal:

ur1 = −γ1e cosα (82)

ur2 = −γ2α − γ1 cosα sinα + γ1
λ3

λ2
cosα

sinα

α
ψ (83)

leads to:

V̇ = −γ1λi e
2 cos2 α − γ2λ2α

2 ≤ 0 (84)

which, along with the continuity of V , assures the system stability. However, the
convergence of system state to the origin still needs to be proved. See [22] for other
choices of ur leading to V̇ ≤ 0.

Given that V is lower bounded, that V is non-increasing, as V̇ ≤ 0 and that V̇
is uniformly continuous, as V̈ < ∞, the Barbalat lemma [20] assures that V̇ → 0
which implies α → 0 and e → 0. It remains to be shown that ψ also converges to
zero.

To prove that ψ → 0, consider the closed loop system obtained by applying (82)–
(83) to (78), given by:

ė = −γ1e cos
2 α (85)

ψ̇ = −γ1 sinα cosα (86)

α̇ = −γ2α + γ1
λ3

λ2
ψ
sinα

α
cosα (87)

Given thatψ is bounded and from (86) it can be concluded that ψ̇ is also bounded, it
follows thatψ is uniformly continuous, which implies that α̇ is uniformly continuous
as well, since α̈ < ∞. Then, it follows from the Barbalat lemma that α → 0 implies
α̇ → 0. Hence, from (87) it follows that ψ → 0. Therefore, (82)–(83) stabilize the
system (78) at its origin.

Note that although the open loop system described by (78) has a mathematical
indetermination due to the e in denominator, the closed-loop system (85)–(87) is not
undetermined and hence can converge to zero. The indetermination in (78) is not due
to a fundamental physical constraint as it not present in the original model (73), but
was artificially created by the coordinate change (75)–(77). It is a well-known result
from [8] that a non-holonomic mobile robot can not be stabilized to a pose by using
a smooth, time-invariant feedback. Here, those limitations are overcame by using a
discontinuous coordinate change. Also, the input signals (82)–(83) can be always
computed as sin (α)

α
converges to 1 as α converges to 0. Furthermore, (78) is just an

intermediate theoretical step to obtain the expressions for the input signals (82)–(83).
There is no need to actually compute it. If using the real robot, there is no need to
use the model for simulation and if using a simulated robot, it can be simulated by
the Cartesian model (73), which does not present any indetermination.

226 W.F. Lages

Mobile
robot

Linearization
PI1

PIn

ur1

urn

...

...

...

ν1

νn

u1

un

u

u u

ν τ x

e1

en

xr

x̄

e α ψ

Non-linear
controller

Coordinates
change

+

+

+

−

−

−

Fig. 19 Block diagram of the pose controller considering the kinematics and the dynamics of the
mobile robot

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

xc

xest

xr

y
c
(t

)[
m

]

xc(t)[m]

Fig. 20 Controller performance in the Cartesian plane

Figure19 shows a block diagram of the whole pose control system, considering
the kinematics and the dynamics of the robot. Note that although this control system
can theoretically make the robot converge to any xr pose departing from any pose,
without a given trajectory (it is generated implicitly by the controller), in practice it
is not a good idea to force xr too far from the current robot position, as this could
lead to large torque signals which can saturate the actuators. Hence, in practice xr
should be a somewhat smooth reference trajectory and the controller would force the
robot to follow it.

Figure20 shows the performance of the controller with the proposed controller
while performing an 8 path. The red line is the reference path, starting at xr =[
0 0 0

]T
, the blue line is the actual robot position, starting at xest = [

0 1 0
]T
, and

the read line is the robot position estimated by odometry, starting at xest = [
0 1 0

]T
.

Note that the starting position of the robot is outside the reference path and that the
controller forces the convergence to the reference path and then the reference path
is followed. Also note that the odometry error increases over time, but that is a pose
estimation problem, which is not addressed in this chapter. The controller forces the

Parametric Identification of the Dynamics of Mobile Robots … 227

estimated robot position to follow the reference. Unfortunately, using just odometry,
the pose estimation is not good and after some time it does not reflect the actual robot
pose.

Figure21 shows the robot orientation. Again, the red line is the reference ori-
entation, the blue line is the actual robot orientation and the red line is the robot
orientation.

An adaptive version of the controllers shown in Fig. 19 can be built, by using
simultaneously the proposed controller and the identification module, as shown in
Fig. 22. Then, the mass and inertia parameters of the robot would be adjusted on-line
for variations due to changes in workload, for example.

Note that in this case, a PRBS pattern of torques is not necessary, as the control
input generated by the controller is used. The noise and external perturbations should
provide enough richness in the signal for a good identification. In extreme cases, the

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7

θc
θest
θr

θ c
(t

)[
ra

d]

time [s]

Fig. 21 Controller performance. Orientation in time

Mobile
robot

Linearization
PI1

PIn

ur1

urn

...

...

...

ν1

νn

u1

un

u

u

u u

ν

τ

τ

x

e1

en

xr

x̄

e α ψ

Non-linear
controller

Coordinates
change

+

+

+

−

−

−

Identification

θ, P

Fig. 22 Block diagram of the adaptive controller

228 W.F. Lages

persistence of excitation of the control signal could be tested for and the identification
turned off while it is not rich enough for a good identification.

7 Conclusion

This chapter presented the identification of the dynamic model of a mobile robot in
ROS. This model is the departure point for the design of advanced controllers for
mobile robots. While for small robots, it is possible to neglect the dynamics and
design a controller based only on the kinematic model, for larger or faster robots the
controller should consider the dynamic effects. However, the theoretical determina-
tion of the parameters of the dynamic model is not easy due to the many parts of the
robot and uncertainty in the assembly of the robot. Then, the online identification of
those parameters enables the overcame of those difficulties.

The packages used for such identificationwere described and a complete example,
from modeling, parameterizing of the model until the computation the of numerical
values for the unknown parameters and the write down of the model with all its
numerical values was shown.

The identification method was implemented as an online recursive algorithm,
which enable its use in an adaptive controller, where new estimates of the parameters
of the model are used to update the parameters of the controller, in a strategy known
as indirect adaptive control [17].

The results of the identification procedure were used to design a controller based
on the dynamics and the kinematics of the mobile robot Twil and adaptive version
of that controller was proposed.

References

1. Aicardi, M., G. Casalino, A. Bicchi, and A. Balestrino. 1995. Closed loop steering of unicycle-
like vehicles via lyapunov techniques. IEEE Robotics and Automation Magazine 2 (1): 27–35.

2. Alves, J.A.V., andW.F. Lages. 2012.Mobile robot control using a cloud of particles. InProceed-
ings of 10th International IFAC Symposium on Robot Control. pp. 417–422. International Fed-
eration of Automatic Control, Dubrovnik, Croatia. doi:10.3182/20120905-3-HR-2030.00096.

3. Åström, K.J., and B. Wittenmark. 2011. Computer-Controlled Systems: Theory and Design,
3rd ed., Dover Books on Electrical Engineering, Dover Publications.

4. Barrett Technology Inc. 2011. Cambridge. MA: WAM User Manual.
5. Barros, T.T.T., and W.F. Lages. 2012. Development of a firefighting robot for educational

competitions. In Proceedings of the 3rd Intenational Conference on Robotics in Education.
Prague, Czech Republic.

6. Barros, T.T.T., andW.F. Lages. 2014. A backstepping non-linear controller for a mobile manip-
ulator implemented in the ros. In Proceedings of the 12th IEEE International Conference on
Industrial Informatics. IEEE Press, Porto Alegre, RS, Brazil.

7. Barros, T.T.T. andW.F. Lages. 2014. Amobile manipulator controller implemented in the robot
operating system. In Proceedings for the Joint Conference of 45th International Symposium

http://dx.doi.org/10.3182/20120905-3-HR-2030.00096

Parametric Identification of the Dynamics of Mobile Robots … 229

on Robotics and 8th German Conference on Robotics. pp. 121–128. VDE Verlag, Munich,
Germany, iSBN 978-3-8007-3601-0.

8. Brockett, R.W. 1982. New Directions in Applied Mathematics. New York: Springer.
9. Campion, G., G. Bastin, and B. D’Andréa-Novel. 1996. Structural properties and classification

of kinematic and dynamical models of wheeled mobile robots. IEEE Transactions on Robotics
and Automation 12 (1): 47–62. Feb.

10. Goodwin, G.C., and K.S. Sin. 1984. Adaptive Filtering, Prediction and Control. Prentice-Hall
Information and System Sciences Series. Englewood Cliffs, NJ: Prentice-Hall Inc.

11. Isidori, A. 1995. Nonlinear Control Systems, 3rd ed. Berlin: Springer.
12. Koenig, N., and A. Howard. 2004. Design and use paradigms for gazebo, an open-source multi-

robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2004). vol. 3, pp. 2149–2154. IEEE Press, Sendai, Japan.

13. Lages, W.F. 2016. Implementation of real-time joint controllers. In Robot Operating System
(ROS): The Complete Reference (Volume 1), Studies in Computational Intelligence, vol. 625,
ed. A. Koubaa, 671–702. Switzerland: Springer International Publishing.

14. Lages,W.F., and E.M.Hemerly. 1998. Smooth time-invariant control of wheeledmobile robots.
In Proceedings of The XIII International Conference on Systems Science. Technical University
of Wrocław, Wrocław, Poland.

15. Marder-Eppstein, E. 2016. Navigation Stack. http://wiki.ros.org/navigation.
16. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and K. Konolige. 2010. The office

marathon: Robust navigation in an indoor office environment. In 2010 IEEE International
Conference on Robotics and Automation (ICRA). pp. 300–307. IEEE Press, Anchorage, AK.

17. Narendra, K.S., and A.M. Annaswamy. 1989. Stable Adaptive Systems. Englewood Cliffs, NJ:
Prentice-Hall Inc.

18. Nguyen-Tuong, D., and J. Peters. 2011. Model learning for robot control: a survey. Cognitive
Processing 12(4), 319–340 (2011). http://dx.doi.org/10.1007/s10339-011-0404-1.

19. Ogata, K. 1970. Modern Control Engineering. Englewood Cliffs, NJ, USA: Prentice-Hall.
20. Popov, V.M. 1973. Hyperstability of Control Systems, Die Grundlehren der matematischen

Wissenshaften, vol. 204. Berlin: Springer.
21. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical Recipes in

C: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press.
22. Secchi, H., Carelli, R., and V. Mut. 2003. An experience on stable control of mobile robots.

Latin American Applied Research 33(4):379–385 (10 2003). http://www.scielo.org.ar/scielo.
php?script=sci_arttext&pid=S0327-07932003000400003&nrm=iso.

23. Smith, R. 2005. Open dynamics engine. http://www.ode.org.
24. Sucan, I.A., and S. Chitta. 2015. MoveIt! http://moveit.ros.org.

Author Biography

Walter Fetter Lages graduated in Electrical Engineering at Pontifícia Universidade Católica do
Rio Grande do Sul (PUCRS) in 1989 and received the M.Sc. and D.Sc. degrees in Electronics
and Computer Engineering from Instituto Tecnológico de Aeronáutica (ITA) in 1993 and 1998,
respectively. From 1993 to 1997 he was an assistant professor at Universidade do Vale do Paraíba
(UNIVAP), from 1997 to 1999 he was an adjoint professor at Fundação Universidade Federal
do Rio Grande (FURG). In 2000 he moved to the Universidade Federal do Rio Grande do Sul
(UFRGS) where he is currently a full professor. In 2012/2013 he held an PostDoc position at Uni-
versität Hamburg. Dr. Lages is a member of IEEE, ACM, the Brazilian Automation Society (SBA)
and the Brazilian Computer Society (SBC).

http://wiki.ros.org/navigation
http://dx.doi.org/10.1007/s10339-011-0404-1
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932003000400003&nrm=iso
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932003000400003&nrm=iso
http://www.ode.org
http://moveit.ros.org

Online Trajectory Planning in ROS
Under Kinodynamic Constraints
with Timed-Elastic-Bands

Christoph Rösmann, Frank Hoffmann and Torsten Bertram

Abstract This tutorial chapter provides a comprehensive and extensive step-by-step
guide on the ROS setup of a differential-drive as well as a car-like mobile robot with
the navigation stack in conjunction with the teb_local_planner package. It covers the
theoretical foundations of the TEB local planner, package details, customization and
its integration with the navigation stack and the simulation environment. This tutorial
is designated for ROS Kinetic running on Ubuntu Xenial (16.04) but the examples
and code also work with Indigo, Jade and is maintained in future ROS distributions.

1 Introduction

Service robotics and autonomous transportation systems require mobile robots to
navigate safely and efficiently in highly dynamic environments to accomplish their
tasks. This observation poses the fundamental challenge in mobile robotics to con-
ceive universal motion planning strategies that are applicable to different robot
kinematics, environments and objectives. Online planning is preferred over offline
approaches due to its immediate response to changes in a dynamic environment or
perturbations of the robot motion at runtime. In addition to generating a collision free
path towards the goal online trajectory optimization considers secondary objectives
such as control effort, control error, clearance from obstacles, trajectory length and
travel time.

The authors developed a novel, efficient online trajectory optimization scheme
termed Timed-Elastic-Band (TEB) in [1, 2]. The TEB efficiently optimizes the robot
trajectory w.r.t. (kino-)dynamic constraints and non-holonomic kinematics while

C. Rösmann (B) · F. Hoffmann · T. Bertram
Institute of Control Theory and Systems Engineering, TU Dortmund University,
44227 Dortmund, Germany
e-mail: christoph.roesmann@tu-dortmund.de

F. Hoffmann
e-mail: frank.hoffmann@tu-dortmund.de

T. Bertram
e-mail: torsten.bertram@tu-dortmund.de

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_7

231

232 C. Rösmann et al.

explicitly incorporating temporal information in order to reach the goal pose in min-
imal time. The approach accounts for efficiency by exploiting the sparsity structure
of the underlying optimization problem formulation. In practice, due to limited com-
putational resources online optimization usually rests upon local optimization tech-
niques forwhich convergence towards the global optimal trajectory is not guaranteed.
In mobile robot navigation locally optimal trajectories emerge due to the presence
of obstacles. The original TEB planner is extended in [3] to a fully integrated online
trajectory planning approach that combines the exploration and simultaneous opti-
mization of multiple admissible topologically distinctive trajectories during runtime.

The complete integrated approach is implemented as an open-source package
teb_local_planner1 within the Robot Operating System (ROS). The package con-
stitutes a local planner plugin for the navigation stack.2 Thus, it takes advantage
of the features of the established mobile navigation framework in ROS, e.g. such
as sharing common interfaces for robot hardware nodes, sensor data fusion and
the definition of navigation tasks (by requesting navigation goals). Furthermore, it
conforms to the global planning plugins available in ROS. A video that describes
the package and its utilization is available online.3 Recently, the package has been
extended to accomplish navigation tasks for car-like robots (with Ackermann steer-
ing) beyond the originally considered differential-drive robots.4 To our best knowl-
edge, the teb_local_planner is currently the only local planning package for the
navigation stack that explicitly supports car-like robots with limited turning radius.
The main features and highlights of the planner are:

• seamless integration with the ROS navigation stack,
• general objectives for optimal trajectory planning, such as time optimality and
path following,

• explicit consideration of kino-dynamic constraints,
• applicable to general non-holonomic kinematics, such as car like robots,
• explicit exploration of distinctive topologies in case of dynamic obstacles,
• computationally efficiency for online trajectory optimization.

This chapter covers the following topics:

1. the theoretical foundations of the underlying trajectory optimization method is
presented (Sect. 2),

2. description of the ROS package and its integration with the navigation stack
(Sect. 3),

3. package test and parameter exploration for optimization of an example trajectory
(Sect. 4),

4. modeling differential-drive and car-like robots for simulation in stage (Sect. 5),
5. Finally, complete navigation setup of the differential-drive robot (Sect. 6) and the

car-like robot (Sect. 7).

1teb_local_planner, URL: http://wiki.ros.org/teb_local_planner.
2ROS navigation, URL: http://wiki.ros.org/navigation.
3teb_local_planner, online-video, URL: https://youtu.be/e1Bw6JOgHME.
4teb_local_planner extensions, online-video, URL: https://youtu.be/o5wnRCzdUMo.

http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/navigation
https://youtu.be/e1Bw6JOgHME
https://youtu.be/o5wnRCzdUMo

Online Trajectory Planning in ROS Under Kinodynamic … 233

Fig. 1 Discretized trajectory
with n = 3 poses

ym

xm{map}

y1

x1

s1
β1

y2

x2

s2 β2

y3

x3

s3 β3

ΔT1
ΔT2

2 Theoretical Foundations of TEB

This section introduces and explains the fundamental concepts of the TEB optimal
planner. It provides the theoretical foundations for its successful utilization and cus-
tomization in own applications. For a detailed description of trajectory planning with
TEB the interested reader is referred to [1, 2].

2.1 Trajectory Representation and Optimization

A discretized trajectory b = [s1,ΔT1, s2,ΔT2, . . . , ΔTN−1, sN]ᵀ is represented by
an ordered sequence of poses augmented with time stamps. sk = [xk, yk,βk]ᵀ ∈
R

2 × S1 with k = 1, 2, . . . , N denotes the pose of the robot and ΔTk ∈ R>0 with
k = 1, 2, . . . , N − 1 represents the time interval associated with the transition
between two consecutive poses sk and sk+1, respectively. Figure1 depicts an example
trajectory with three poses. The reference frame of the trajectory representation and
planning frame respectively is denoted as map-frame.5

Trajectory optimization seeks for a trajectory b∗ that constitutes a minimizer
of a predefined cost function. Common cost functions capture criteria such as the
total transition time, energy consumption, path length and weighted combinations
of those. Admissible solutions are restricted to a feasible set for which the trajectory
does not intersect with obstacles or conforms to the (kino-)dynamic constraints of
the mobile robot. Improving the efficiency of solving such nonlinear programs with
hard constraints has become an important research topic over the past decade. The
TEB approach includes constraints as soft penalty functions into the overall cost
function. The introduction of soft rather than hard constraints enables the exploitation
of efficient and well studied unconstrained optimization techniques for whichmature
open-source implementations exist.

5Conventions for names of common coordinate frames in ROS are listed here: http://www.ros.org/
reps/rep-0105.html.

http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html

234 C. Rösmann et al.

The TEB optimization problem is defined such that b∗ minimizes a weighted and
aggregated nonlinear least-squares cost function:

b∗ = arg min
b\{s1,sN }

∑

i

σi f
2
i (b) , i ∈ {J ,P} (1)

The terms fi : B → R≥0 capture conflicting objectives and penalty functions. The
set of indices associated with objectives is denoted by J and the set of indices that
refer to penalty functions by P . The trade-off among individual terms is determined
by weights σi . The notation b\{s1, sN } indicates that start pose s1 = ss and goal pose
sN = sg are fixed and hence not subject to optimization. In the cost function, s1 and
sN are substituted by the current robot pose ss and desired goal pose sg.

The TEB optimization problem (1) is represented as a hyper-graph in which
poses sk and time intervals ΔTk denote the vertices of the graph and individual cost
terms fi define the (hyper-)edges. The term hyper indicates that an edge connects an
arbitrary number of vertices, in particular temporal related poses and time intervals.
The resulting hyper-graph is efficiently solved by utilizing the g2o-framework6 [4].
The interested reader is referred to [2] for a detailed description on how to integrate
the g2o-framework with the TEB approach. The formulation as hyper-graph benefits
from both the direct capture of the sparsity structure for its exploitation within the
optimization framework and its modularity which easily allows incorporation of
additional secondary objectives fk .

Before the individual cost terms fk are described, the approximation of constraints
by penalty functions is introduced. Let B denote the entire set of trajectory poses and
time intervals such that b ∈ B. The inequality constraint gi (b) ≥ 0 with gi : B → R

is approximated by a positive semi-definite penalty function pi : B → R≥0 which
captures the degree of violation:

pi (b) = max{0,−gi (b) + ε} (2)

The parameter ε adds a margin to the inequality constraint such that the cost only
vanishes for gi (b) ≥ ε. Combining indices of inequality constraints gi respectively
penalty functions pi into the setP results in the overall cost function (1) by assigning
fi (b) = pi (b), ∀i ∈ P . It is assumed that the choice of gi (b) preserves a contin-
uous derivative (C1-differentiability) of p2i (b) and that gi (b) adheres to eligible
monotonicity or convexity constraints.

In order to guarantee the true compliance of a solution with the constraint
gi (b) ≥ 0 by means of (2) the corresponding weights in the overall objective func-
tion (1) are required to tend towards infinity σi → ∞, ∀i ∈ P . For a comprehensive
introduction to the theory of penalty methods the reader is referred to [5]. On the
other hand, large weights prevent the underlying solver to converge properly as they
cause the optimization problem to become numerically ill-conditioned. Hence, the

6libg2o, URL: http://wiki.ros.org/libg2o.

http://wiki.ros.org/libg2o

Online Trajectory Planning in ROS Under Kinodynamic … 235

Global Planner Trajectory Optimization Control

Robot

Localization

TEB approach / teb local planner

Path b∗ v, ω

Odometry
Pose and
velocityGlobal Map Local Map

Start GoalObstacle Start GoalObstacle

t1
t2

t3
t0 tn

Start Obstacle

t2
t3

t1t0

Fig. 2 System setup of a robot controlled by the TEB approach

TEB approach compensates the true minimizer with a suboptimal but computation-
ally more efficiently obtained solution with user defined weights and the specifi-
cation of an additional margin ε. The ROS implementation provides the parameter
penalty_epsilon that specifies ε.

The TEB method utilizes multiple cost terms fi for e.g. obstacle avoidance, com-
pliance with (kino-)dynamic constraints of mobile robots and visiting of via-points.
The list of currently implemented cost terms is described in theROSpackage descrip-
tion in Sect. 3.3.

2.2 Closed-Loop Control

Figure2 shows the general control architecture with the local TEB planner. The opti-
mization scheme for (1) starts with an initial solution trajectory generated from the
path provided by the global planner w.r.t. a static representation of the environment
(global map). Instead of a tracking controller which regulates the motion along the
planned optimal trajectory b∗, a predictive control scheme is applied in order to
account for dynamic environments encapsulated in the local map and to allow the
refinement of the trajectory during runtime. Thus, optimization problem (1) is solved
repeatedly w.r.t. the current robot pose and velocity. The current position of the robot
is usually obtained from a localization scheme. Within each sampling interval7 only
the first control action of the TEB is commanded to the robot, which is the basic idea
in model predictive control [6]. As most robots are velocity controlled by their base
controllers, low-level hardware interfaces accept translational and angular velocity
components w.r.t. the robot base frame. These components are easily extracted from

7The move_base node (navigation stack) provides a parameter controller_frequency to
adjust the sampling interval.

236 C. Rösmann et al.

the optimal trajectory b∗ by investigating finite differences on the position and ori-
entation part. Car-like robots often require the steering angle rather than angular
velocity. The corresponding steering angle is calculated from the turn rate and the
car-like kinematic model.

In order to improve computational efficiency the trajectory optimization pursues a
warm start approach. Trajectories generated in previous iterations are reused as initial
solutions in subsequent sampling intervals with updated start and goal poses. Since
the time differences ΔTk are subject to optimization the resolution of the trajectory
is adjusted at each iteration according to an adaptation rule. If the resolution is too
high, overly many poses increase the computational load of the optimization. On
the other hand, if the resolution is too low, the finite difference approximations of
quantities related to the (kino-)dynamic model of the robot are no longer accurate,
causing a degradation of navigation capabilities. Therefore, the approach accounts for
changing magnitudes of ΔT by regulating the resolution towards a desired temporal
discretization ΔTref (ROS parameter dt_ref). In case of low resolution ΔTk >

ΔTref + ΔThyst an additional pose and time interval are filled in between sk and
sk+1. In case of inflated resolution ΔTk < ΔTre f − ΔThyst pose sk+1 is removed.
The hysteresis specified by ΔThyst (ROS parameter dt_hyst) avoids oscillations
in the number of TEB states. In case of a static goal pose this adaption implies a
shrinking horizon since the overall transition time decreases as the robot advances
towards to the goal.

Algorithm 1 Online TEB feedback control
1: procedure TebAlgorithm(b, xs , xg , O, V) � Invoked each sampling interval
2: Initialize or update trajectory
3: for all Iterations 1 to Iteb do
4: Adjust length n of the trajectory
5: Build/update hyper-graph incl. association of obstacles O and via-points V with poses of

the trajectory
6: b∗ ← CallOptimizer(b) � solve (1), e.g. with libg2o
7: Check feasibility

return First (sub-) optimal control inputs (v1,ω1)

Themajor steps performed at each sampling interval are captured by Algorithm 1.
The loop starting at line 3 is referred to as the outer optimization loop, which adjusts
the length of the trajectory as described above and associates the current set of obsta-
cles O and via-points V with their corresponding states sk of the current trajectory.
Further information on obstacles and via-points is provided in Sects. 3.3 and 3.5. The
loop is repeated Iteb times (ROS parameter no_outer_iterations). The actual
solver for optimization problem (1) is invoked in line 6 which itself performs multi-
ple solver iterations. The corresponding ROS parameter for the number of iterations
of the inner optimization loop is no_inner_iterations. The choice of these
parameters significantly influences the required computation time as well as the con-
vergence properties. After obtaining the optimized trajectory b∗ a feasibility check

Online Trajectory Planning in ROS Under Kinodynamic … 237

is performed that verifies if the first M poses actually are collision free based on their
original footprint model defined in the navigation stack (note, this is not the footprint
model used for optimization as presented in Sect. 3.4). The verification horizon M
is represented by the ROS parameter feasibility_check_no_poses.

2.3 Planning in Distinctive Topologies

The previously introduced TEB approach and its closed-loop application are subject
to local optimization schemes which might cause the robot to get stuck in local
minima. Local minima often emerge due to the presence of obstacles. Identifying
those local minima coincides with analyzing distinctive topologies between start
and goal poses. For instance the robot either chooses the left or right side in order to
circumnavigate an obstacle.OurTEBROS implementation investigates the discovery
and optimization of multiple trajectories in distinctive topologies and selects the best
candidate for control at each sampling interval. The equivalence relation presented
in [7] determines whether two trajectories share the same topology. However, the
configuration and theory of this extension is beyond the scope of this tutorial. The
predefined default parameters are usually appropriate for applications as presented
in the following sections. For further details the reader is referred to [3].

3 The teb_local_planner ROS Package

This section provides an overview about the teb_local_planner ROS package which
implements the TEB approach for online trajectory optimization as described in
Sect. 2.

3.1 Prerequisites and Installation

In order to install and configure the teb_local_planner package for a particular appli-
cation, observe the following limitations and prerequisites:

• Although online trajectory optimization approaches pursue mature computational
efficiency, their application still consumes substantial CPU resources. Depend-
ing on the desired trajectory length respectively resolution as well as the number
of considered obstacles, common desktop computers or modern notebooks usu-
ally cope with the computational burden. However, older systems and embedded
systems might not be capable to perform trajectory optimization at a reasonable
rate.

238 C. Rösmann et al.

• Results and discussions on stability and optimality properties for online trajectory
optimization schemes are widespread in the literature, especially in the field of
model predictive control. However, since these results are often theoretically and
the planner is confronted with e.g. sensor noise and dynamic environments in real
applications, finding a feasible and stable trajectory in every conceivable scenario
cannot be guaranteed. However, the planner tries to detect and resolve failures to
generate a feasible trajectory by post-introspection of the optimized trajectory. Its
ongoing algorithmic improvement is subject to further investigations.

• The package currently supports differential-drive, car-like and omnidirectional
robots. Since the planner is integrated with the navigation stack as plugin it
provides a geometry_msgs/Twist message containing the velocity com-
mands for controlling the robots motion. Since the original navigation stack is
not intended for car-like robots yet, the additional recovery behaviors must be
turned off and the global planner is expected to provide appropriate plans. How-
ever, the default global planners work well for small and medium sized car-like
robots as long as the environment does not contain long and narrow passages
unless the length of the vehicle exceeds their width. A conversion to steering
angle has to be applied in case the car-like robot only accepts a steering angle
rather than the angular velocity and interprets the geometry_msgs/Twist
or ackermann_msgs/AckermannDriveStamped message different from
the nominal convention. The former is directly enabled (see Sect. 6) and the latter
requires a dedicated conversion ROS node.

• The oldest officially supported ROS distribution is Indigo. At the time of writing
the planner is also available in Jade and Kinetic. Support of future distributions is
expected. The package is released for both default and ARM architectures.

• Completion of the common ROS beginner tutorials, e.g. being aware of navigating
the filesystem, creating and building packages as well as dealing with rviz,8 launch
files, topics, parameters and yaml files is essential. Experiences with the naviga-
tion stack are highly recommended. The user should be familiar with concepts and
components of ROS navigation such as local and global costmaps and local and
global planners (move_base node), coordinate transforms, odometry and local-
ization. This tutorial outlines the configuration of a complete navigation setup.
However, explanation of the underlying concepts in detail is beyond the scope of
this chapter. Tutorials on ROS navigation are available at the wiki page2 and [8].

• Table1 provides an overview of currently available local planners for the ROS
navigation stack and summarizes its main features.

The teb_local_planner is easily installed from the official ROS repositories by
invoking in terminal:

$ sudo apt-get install ros-kinetic-teb-local-planner

8rviz, URL: http://wiki.ros.org/rviz.

http://wiki.ros.org/rviz

Online Trajectory Planning in ROS Under Kinodynamic … 239

Table 1 Comparison of available local planners in the ROS navigation stack

EBanda TEB DWAb

Strategy Force-based path
deformation and
path following
controller

Continuous
trajectory
optimization resp.
predictive controller

Sampling-based
trajectory
generation,
predictive controller

Optimality Shortest path
without considering
kinodynamic
constraints (local
solutions)

Time-optimal (or ref.
path fidelity) with
kinodynamic
constraints (multiple
local solutions,
parallel
optimization)

Time-sub-optimal
with kinodynamic
constraints, samples
of trajectories with
constant curvature
for prediction
(multiple local
solutions)

Kinematics Omnidirectional and
differential-drive
robots

Omnidirectional,
differential-drive and
car-like robots

Omnidirectional and
differential-drive
robots

Computational burden Medium High Low/Medium
aeband_local_planner, URL: http://wiki.ros.org/eband_local_planner
bTrajectoryPlannerROS, URL: http://wiki.ros.org/base_local_planner

The distribution namekineticmight be adapted tomatch the currently installed
one. In the following, terminal commands are usually indicated by a leading $-sign.
As an alternative to the default package installation, recent versions (albeit experi-
mental) can be obtained and compiled from source:

$ cd ~/catkin_ws/src
2 $ git clone https://github.com/rst-tu-dortmund/

teb_local_planner.git --branch kinetic-devel
$ cd ../

4 $ rosdep install --from-paths src --ignore-src --rosdistro
kinetic -y

$ catkin_make

Hereby, it is assumed that ˜/catkin_ws points to the user-created catkin work-
space.

3.2 Integration with ROS Navigation

The teb_local_planner package seamlessly integrates with the ROS navigation stack
since it complies with the interface nav_core::BaseLocalPlanner specified
in the nav_core2 package. Figure3 shows an overview of the main components that
constitute the navigation stack and themove_base node respectively.9 Themove_base
node takes care about the combination of the global and local planner as well as

9Adopted from the move_base wiki page, URL: http://wiki.ros.org/move_base.

http://wiki.ros.org/eband_local_planner
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/move_base

240 C. Rösmann et al.

global planner global costmap

teb local planner local costmap

recovery behaviors

move base

sensor
transforms

amcl

odometry
source

map server

sensor
sources

base controller

internal
nav msgs/Path“/tf ”

“odom”

“/map”

sensor topics
Laser Scan/
Point Cloud

“move base simple/goal”

“cmd vel”

Fig. 3 ROS navigation component-view including teb_local_planner

handling costmaps for obstacle avoidance. The amcl node10 provides an adaptive
monte carlo localization algorithm which corrects the accumulated odometric error
and localizes the robot w.r.t. the global map. For the following tutorials the reader is
expected to be familiar with the navigation stack components and the corresponding
topics.

The teb_local_planner package comes with its own parameters which are con-
figurable by means of the parameter server. The full list of parameters is available
on the package wiki page, but many of them are presented and described in this
tutorial. Parameters are set according to the relative namespace of move_base, e.g.
/move_base/TebLocalPlannerROS/param_name. Most of the parame-
ters can also be configured during runtime with rqt_reconfigurewhich is instantiated
as follows (assuming a running planner instance):

$ rosrun rqt_reconfigure rqt_reconfigure

Within each local planner invocation (respectively each sampling interval) the
teb_local_planner chooses an intermediate virtual goal within a specified lookahead
distance on the current global plan. Only the local stretch of the global plan between
current pose and lookahead point is subject to trajectory optimization by means
of Algorithm 1. Hence the lookahead distance implies a receding horizon control
strategy which transits to a shrinking horizon once the virtual goal coincides with
the final goal pose of the global plan. The lookahead distance to the virtual goal is
set by parameter max_global_plan_lookahead_dist but the virtual goal is
never located beyond the boundaries of the local costmap.

10amcl, URL: http://wiki.ros.org/amcl.

http://wiki.ros.org/amcl

Online Trajectory Planning in ROS Under Kinodynamic … 241

3.3 Included Cost Terms: Objectives and Penalties

The teb_local_planner determines the current control commands in terms of mini-
mizing the future trajectory w.r.t. a specified cost function (1) which itself consists
of aggregated objectives and penalty terms as described in Sect. 2. Currently imple-
mented cost terms fi of the optimization problem (1) are summarized in the follow-
ing overview including their corresponding ROS parameters such as the optimization
weights σi .

Limiting translational velocity (Penalty)
Description: Constrains the translational velocity vk to the interval [−vback, vmax].
vk is computed with sk , sk+1 and ΔTk using finite differences.
Weight parameter: weight_max_vel_x
Additional parameters: max_vel_x (vmax), max_vel_x_backwards (vback)

Limiting angular velocity (Penalty)
Description: Constrains the angular velocity to |ωk | ≤ ωmax (finite differences).
Weight parameter: weight_max_vel_theta
Additional parameters: max_vel_theta (ωmax)

Limiting translational acceleration (Penalty)
Description: Constrains the translational acceleration to |ak | ≤ amax (finite differ-
ences).
Weight parameter: weight_acc_lim_x
Additional parameters: acc_lim_x (amax)

Limiting angular acceleration (Penalty)
Description: Constrains the angular acceleration to |ω̇k | ≤ ω̇max (finite differences).
Weight parameter: weight_acc_lim_theta
Additional parameters: acc_lim_theta (ω̇max)

Compliance with non-holonomic kinematics (Objective)
Description: Minimize deviations from the geometric constraint that requires two
consecutive poses sk and sk+1 to be located on a common arc of constant curvature.
Actually, kinematic compliance is not merely an objective, but rather an equality
constraint. However, since as the planner rests upon unconstrained optimization a
sufficient compliance is ensured by a large weight.
Weight parameter: weight_kinematics_nh

Limiting the minimum turning radius (Penalty)
Description: Some mobile robots exhibit a non-zero turning radius (e.g. implicated
by a limited steering angle). In particular car-like robots are unable to rotate in place.
This penalty term enforces r = vk

ωk
≥ rmin . Differential drive and unicycle robots can

turn in place rmin = 0.
Weight parameter: weight_kinematics_turning_radius
Additional parameters: min_turning_radius (rmin)

242 C. Rösmann et al.

Penalizing backwards motions (Penalty)
Description: This cost term expresses preference for forwardmotions independent of
the actual maximum backward velocity vback in terms of a bias weight. The penalty
is deactivated if min_turning_radius is non-zero.
Weight parameter: weight_kinematics_forward_drive

Obstacle avoidance (Penalty)
Description: This cost term maintains a minimum separation dmin of the trajectory
from obstacles. A dedicated robot footprint model is taken into account for distance
calculation (see Sect. 3.3).
Weight parameter: weight_obstacle
Additional parameters: min_obstacle_dist (dmin)

Via-points (Objective)
Description: This cost term minimizes the distance to via-points, e.g. located along
the global plan. Each via-point defines an attractor for the planned trajectory.
Weight parameter: weight_viapoint
Additional parameters: global_plan_viapoint_sep

Arrival at the goal in minimum time (Objective)
Description: This term minimizes ΔTk in order seek for a time-optimal trajectory.
Weight parameter: weight_optimaltime.

3.4 Robot Footprint for Optimization

The obstacle avoidance penalty function introduced in Sect. 3.3 depends on a ded-
icated robot footprint model. The reason behind not using the original footprint
specified in the navigation stack resp. costmap configuration is to promote efficiency
in the optimization formulation while keeping the original footprint for feasibil-
ity checks. Since the optimization scheme is subject to a large number of distance
calculations between robot and obstacles, the original polygonal footprint would
drastically increase the computational load, as each polygon edge has to be taken
into account. However, the user might still duplicate the original footprint model for
optimization, but in practice simpler approximations are often sufficient. The current
package version provides four different models (see Fig. 4). Parameters for defining
the footprint model (as listed below) are defined w.r.t. the robot base frame, e.g.
base_link, such that sk defines its origin. An example robot frame is depicted in
Fig. 4d. In particular, the four models are:

• Point model: The most efficient representation in which the robot is modeled as
a single point. The robot’s radial extension is captured by inflating the minimum
distance from obstacles dmin (min_obstacle_dist, see Fig. 4a) by the robot’s
radius.

• Linemodel: The line model is ideal for robots which dimensions differ in longitu-
dinal and lateral directions. Start and end of the underlying line segment, ls ∈ R

2

Online Trajectory Planning in ROS Under Kinodynamic … 243

sk
dmin

(a) Point model

sk ls le
dmin

(b) Line model

cr cfsk cr cf
rf

rr

dmin

(c) Two-circles model

sk

v1 v2

v3
v4

v5
v6

v7v8

dmin

xr

yr

(d) Polygon model

Fig. 4 Available footprint models for optimization

and le ∈ R
2 respectively, are arbitrary w.r.t. the robot’s center of rotation sk as

origin (0, 0). The robot’s radial extension is controlled similar to the point model
by inflation of dmin (refer to Fig. 4b).

• Two-circle model: The two-circle model is suited for robots that exhibit a more
cone-shaped footprint rather than a rectangular one (see Fig. 4c). The centers of
both circles, cr and c f respectively, are restricted to be located on the robot’s
x-axis. Their offsets w.r.t. the center of rotation sk and their radii rr and r f are
arbitrary.

• Polygon model: The polygon model is the most general one, since the num-
ber of edges is arbitrary. Figure4d depicts a footprint defined by 8 vertices
v1, v2, . . . , v8 ∈ R

2. The polygon is automatically completed by adding an edge
between the first and last vertex.

The following yaml file contains example parameter values for customizing the
footprint. All parameters are defined w.r.t. the local planner namespace TebLocal
PlannerROS:

244 C. Rösmann et al.

TebLocalPlannerROS:
2 footprint_model:

type: "point" # types: "point", "line", "two_circles",
"polygon"

4 line_start: [-0.3, 0.0] # for type "line"
line_end: [0.3, 0.0] # for type "line"

6 front_offset: 0.2 # for type "two_circles"
front_radius: 0.2 # for type "two_circles"

8 rear_offset: 0.2 # for type "two_circles"
rear_radius: 0.2 # for type "two_circles"

10 vertices: [[-0.1,0.2], [0.2,0.2], [0.2,-0.2], [-0.1,-0.2]]
for type "polygon"

3.5 Obstacle Representations

The teb_local_planner takes the local costmap into account as already stated in
Sect. 3.2. The costmap mainly consists of a grid in which each cell stores an 8-bit
cost value that determineswhether the cell is free (0), unknown, undesiredor occupied
(255). Besides, the ability to implementmultiple layers and to fuse data fromdifferent
sensor sources, the costmap is perfectly suited for local planners in the navigation
stack due to their sampling based nature. In contrast, the TEB optimization problem
(1) cannot just test discrete cell states inside its own cost function for collisions, but
rather requires continuous functions based on the distance to obstacles. Therefore, our
implementation extracts relevant obstacles from the current costmap at the beginning
of each sampling interval and considers each occupied cell as single dimensionless
point-shaped obstacle. Hence, the computation time strongly depends on the local
costmap size and resolution (see Sect. 6). Additionally, custom obstacles can be
provided by a specific topic. The teb_local_planner supports obstacle representations
in terms of points, lines and closed polygons. A costmap conversion11 might be
activated in order to convert costmap cells into primitive types such as lines and
polygons in a separate thread. However, these extensions are beyond the scope of
this introductory tutorial, but the interested reader is referred to the package wiki
page.

Once obstacles are extracted and cost terms (hyper-edges) according to Sect. 3.3
are constructed, obstacles are associated with the discrete poses sk of the trajectory
in order to maintain a minimal separation.

In order to speed up the time spent by the solver for computing the cost func-
tion multiple times during optimization, each pose sk is only associated with its
nearest obstacles. The association is renewed at every outer iteration (refer to Algo-
rithm 1) in order to correct vague associations during convergence. For advanced
parameters of the association strategy the reader is referred to the teb_local_planner
ROS wiki page. Figure5 depicts an example planning scenario in which the three

11costmap_converter, URL: http://wiki.ros.org/costmap_converter.

http://wiki.ros.org/costmap_converter

Online Trajectory Planning in ROS Under Kinodynamic … 245

Footprint model

s1

s7

s2
s3

s4
s5

s6
ΔT2

Obstacle

d4 d5 d6

Closest pose
to obstacle

Fig. 5 Association between poses and obstacles

closest poses are associated with the polygonal obstacle. Notice, the minimum dis-
tances d4, d5 and d6 to the robot footprints located at s4, s5 and s6 are constrained
to min_obstacle_dist. The minimum distance should account for an addi-
tional safety margin around the robot, since the penalty functions cannot guarantee
its fulfillment and small violations might cause a rejection of the trajectory by the
feasibility check (refer to Sect. 2).

4 Testing Trajectory Optimization

Before starting with the configuration process of the teb_local_planner for a par-
ticular robot and application, we recommend the reader to familiarize himself with
the optimization process and furthermore to check the performance on the target
hardware. The package includes a simple test node (test_optim_node) that optimizes
a trajectory between a fixed start and goal pose. Some obstacles are included with
interactive markers12 which are conveniently moved via the GUI in rviz.

Launch the test_optim_node in combination with a preconfigured rviz node as
follows:

$ roslaunch teb_local_planner test_optim_node.launch

An rviz window should open showing the trajectory and obstacles. Select the menu
button Interact in order to move the obstacles around. An example setting is depicted
in Fig. 6a.As briefly stated in Sect. 2, the package generates and optimizes trajectories
in different topologies in parallel. The currently selected trajectory for navigation is

12interactive_markers, URL: http://wiki.ros.org/interactive_markers.

http://wiki.ros.org/interactive_markers

246 C. Rösmann et al.

(a) test optim node and its visualization (b) rqt reconfigure window

Fig. 6 Testing trajectory optimization with test_optim_node

augmented with red pose arrows in visualization. In order to change parameters
during runtime, invoke

$ rosrun rqt_reconfigure rqt_reconfigure

in a new terminal window and select test_optim_node from the list of available nodes
(refer to Fig. 6b). Try to customize the optimization with different parameter settings.
Since some parameters significantly influence the optimization result, adjustments
should be performed slightly and in a step-by-step manner. In case you encounter
a poor performance on your target system even with the default settings, try to
decrease parameters no_inner_iterations, no_outer_iterations or
increase dt_ref slightly.

5 Creating a Mobile Robot in Stage Simulator

This section introduces a minimal stage13 simulation setup with a differential-drive
and a car-like robot. stage is chosen for this tutorial since it constitutes a package
which is commonly used in ROS tutorials and is thus expected to be available in
future ROS distributions as well. Furthermore, stage is fast and lightweight in terms
of visualization which allows its execution even on slow CPUs and older graphic
cards. It supports kinematic models for differential-drive, car-like and holonomic
robots, but it is not intended to perform dynamic simulations such as Gazebo.14

However, even if the following sections refer to a stage model, the procedures and
configurations are directly applicable to other simulation environments or a real
mobile robot without major modifications.

13stage_ros, URL: http://wiki.ros.org/stage_ros.
14gazebo_ros_pkgs, URL: http://wiki.ros.org/gazebo_ros_pkgs.

http://wiki.ros.org/stage_ros
http://wiki.ros.org/gazebo_ros_pkgs

Online Trajectory Planning in ROS Under Kinodynamic … 247

Note stage (resp. stage_ros) publishes the coordinate transformation between
odom and base_link and the odometry information to the odom topic. It sub-
scribes to velocity commands by the topic cmd_vel.

Make sure to install stage for your particular ROS distribution:

$ sudo apt-get install ros-kinetic-stage-ros

In order to gather all configuration and launch files that will be created during the
tutorial, a new package is initiated as follows:

$ cd ~/catkin_ws/src
2 $ catkin_create_pkg teb_tutorial

It is a good practice to add teb_local_planner and stage_ros to the run dependencies
of your newly created package (check the new package.xml file). Now, create a stage
and a maps folder inside the teb_tutorial package and download a predefined map
called maze.png15 and its yaml configuration for the map_server:

$ roscd teb_tutorial
2 $ mkdir stage && mkdir maps
$ cd maps

4 # remove any whitespaces in the URLs below after copying
$ wget https://cdn.rawgit.com/rst-tu-dortmund/

teb_local_planner_tutorials/rosbook/maps/maze.png
6 $ wget https://cdn.rawgit.com/rst-tu-dortmund/

teb_local_planner_tutorials/rosbook/maps/maze.yaml

5.1 Differential-Drive Robot

Stage loads its environment from world files that define a static map and agents
such like your robot (in plain text format). In the following, we add a world file to
the teb_tutorial package which loads the map maze.png and spawns a differential-
drive robot. The robot is assumed to be represented as a box (0.25m × 0.25m ×
0.4m). Whenever text files are edited, the editor gedit is utilized (sudo apt-get
install gedit), but you might employ the editor of your preferred choice.

$ roscd teb_tutorial/stage
2 $ gedit maze_diff_drive.world # or use the editor of your

choice

The second command creates and opens a new file with gedit. Add the following
code and save the contents to file maze_diff_drive.world:

15Borrowed from the turtlebot_stage package: http://wiki.ros.org/turtlebot_stage.

http://wiki.ros.org/turtlebot_stage

248 C. Rösmann et al.

Simulation settings
2 resolution 0.02
interval_sim 100 # simulation timestep in milliseconds

4 ## Load a static map
model(

6 name "maze"
bitmap "../maps/maze.png"

8 size [10.0 10.0 2.0]
pose [5.0 5.0 0.0 0.0]

10 color "gray30"
)

12 ## Definition of a laser range finder
define mylaser ranger(

14 sensor(
range_max 6.5 # maximum range

16 fov 58.0 # field of view
samples 640 # number of samples

18)
size [0.06 0.15 0.03]

20)
Spawn robot

22 position(
name "robot"

24 size [0.25 0.25 0.40] # (x,y,z)
drive "diff" # kinematic model of a differential-drive robot

26 mylaser(pose [-0.1 0.0 -0.11 0.0]) # spawn laser sensor
pose [2.0 2.0 0.0 0.0] # initial pose (x,y,z,beta[deg])

28)

General simulation settings are defined in lines 1–3. Afterwards the static map is
defined using a stage model object. The size property is important in order to define
the transformation between pixels ofmaze.png and their actual sizes in theworld. The
bitmap is shifted by an offset defined in pose in order to adjust the bitmap position
relative to the map frame. Simulated robots in this tutorial are equipped with a laser
range finder set up in lines 12–20. Finally, the robot itself is setup in lines 22–28.
The code specifies a differential drive robot (drive "diff") with the previously
defined laser scanner attached and the desired box size as well as the initial pose.
The base_link frame is automatically located in the geometric center of the box,
specified by the size parameter, which in this case coincides with the center of
rotation. A case in which the origin must be corrected occurs for the car-like model
(see Sect. 5.2).

In order to test the created robot model invoke the following commands in a
terminal:

$ roscore
2 $ rosrun stage_ros stageros ‘rospack find teb_tutorial‘/stage/

maze_diff_drive.world

Online Trajectory Planning in ROS Under Kinodynamic … 249

base link xr [m]

yr [m]

−0.2 −0.1 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.1

0.1

0.2

geometric
center

center
of rotation

wheelbase
stage

box origin

Fig. 7 Dimensions of the car-like robot for simulation

5.2 Car-Like Robot

In this section you generate a second world file that spawns a car-like robot. The 2D-
contours of the car-like robot are depicted in Fig. 7 (gray-colored). For the purpose
of this tutorial, only the boundary box of the robot is considered in the simple stage
model. The length in yr is increased slightly in order to account for the steerable front
wheels. The top left and bottom right corners are located at vtl = [−0.1, 0.125]T m
and vbr = [0.5, −0.125]T m respectively w.r.t. the robot’s base frame base_link
(defined by the xr - and yr -axis). For car-like robots with front steering wheels the
center of rotation coincides with the center of the rear axle. Since the TEB approach
assumes a unicycle model for planning but with additional constraints for car-like
robots such as minimum turning radius, the robot’s base frame must be placed at
the center of rotation in order to fulfill this relation.

The next step consist of duplicating the previous world file from Sect. 5.1 and
modifying the robot model according to Fig. 7:

$ roscd teb_tutorial/stage
2 $ cp maze_diff_drive.world maze_carlike.world # duplicate

diffdrive.world
$ gedit maze_carlike.world # or use the editor of your choice

Replace the robot model (line 21–28) by the following one and save the file:

Spawn robot
2 position(

name "robot"
4 size [0.6 0.25 0.40] # (x,y,z) - bounding box of the robot

origin [0.2 0.0 0.0 0.0] # correct center of rotation (x,y,z
,beta)

6 drive "car" # kinematic model of a car-like robot
wheelbase 0.4 # distance between rear and front axles

8 mylaser(pose [-0.1 0.0 -0.11 0.0]) # spawn laser sensor
pose [2.0 2.0 0.0 0.0] # initial pose (x,y,z,beta[deg])

10)

250 C. Rösmann et al.

Notice, the kinematic model is changed to the car-like one (drive "car"). Para-
meter wheelbase denotes the distance between the rear and front axle (see Fig. 7).
The size of the robot’s bounding box is set in line 4 w.r.t. the box origin as depicted
in Fig. 7. Stage automatically defines the center of rotation in the geometric center,
which is located at [0.3, 0.125]T m w.r.t. the box origin. In order to move the center
of rotation towards the correct location [0.1, 0.125]T m w.r.t. the box origin, the
frame is shifted as specified by parameter origin. Load and inspect your robot
model in stage for testing purposes:

$ roscore
2 $ rosrun stage_ros stageros ‘rospack find teb_tutorial‘/stage/

maze_carlike.world

The robot is controlled via a geometry_msgs/Twist message even though
the actual kinematics refer to a car-like robot. But in contrast to the differentential-
drive robot, the angular velocity (yaw-speed, around z-axis) is interpreted as steering
angle rather than the true velocity component.

6 Planning for a Differential-Drive Robot

This section covers the complete navigation setup with the teb_local_planner for the
differential-drive robot defined in Sect. 5.1. Start by creating configuration files for
the global and local costmap (refer to Fig. 3). In the following, configuration files are
stored in a separate cfg folder inside your teb_tutorial package which was created
during the steps in Sect. 5.

Create a costmap_common_params.yaml file which contains parameters for both
the global and local costmap:

$ roscd teb_tutorial
2 $ mkdir cfg && cd cfg
$ gedit costmap_common_params.yaml

Now insert the following lines and save the file afterwards:

file: costmap_common_params.yaml
2 # Make sure to preserve indentation if copied (for all yaml

files)
footprint: [[-0.125,0.125], [0.125,0.125], [0.125,-0.125],

[-0.125,-0.125]]
4

transform_tolerance: 0.5
6 map_type: costmap
global_frame: /map

8 robot_base_frame: base_link

10 obstacle_layer:
enabled: true

12 obstacle_range: 3.0
raytrace_range: 4.0

Online Trajectory Planning in ROS Under Kinodynamic … 251

14 track_unknown_space: true
combination_method: 1

16 observation_sources: laser_scan_sensor
laser_scan_sensor: {data_type: LaserScan, topic: scan,

marking: true, clearing: true}
18

inflation_layer:
20 enabled: true

inflation_radius: 0.5
22

static_layer:
24 enabled: true

The robot footprint is specified according to the projection of the dimensions of
the robot (0.25m × 0.25m × 0.4m) introduced in Sect. 6 onto the x-y-plane. The
footprint must be defined in the base_link frame, which center coincides with the
center of rotation. In this tutorial the selected map_type iscostmapwhich creates
an internal 2d grid. If the robot is equippedwith 3D range sensors it is often desired to
include the height of obstacles. This allows for ignoring obstacles beyond a specific
height or tiny obstacles above the ground floor. For this purpose, the costmap_2d16

package also supports voxel grids. Refer to the costmap_2d wiki page for further
information.

The obstacle layer is defined in lines 9–16 which includes external sensors such
like our laser range finder by implementing ray-tracing. In this tutorial the laser range
finder is expected to publish its range data on topic scan.

An inflation layer adds exponentially decreasing cost to cells w.r.t. their distance
from actual (lethal) obstacles. This allows the user to set a preference for maintaining
larger separation from obstacles whenever possible. Although the teb_local_planner
only extracts lethal obstacles from the costmap as described in Sect. 3.5 and ignores
inflation, an activated inflation layer still influences the global planner and thus the
location of virtual goals for local planning (refer to Sect. 3.2 for the description of
virtual goals). Consequently, a non-zeroinflation_radiusmoves virtual goals
further away from (static) obstacles. Finally, the static layer includes obstacles from
the static map which are retrieved from the map topic by default. The mapmaze.png
is published later by the map_server node.

After saving and closing the file, specific configurations for the global and local
costmap are created.

$ roscd teb_tutorial/cfg
2 $ gedit global_costmap_params.yaml # insert content, save and

close
$ gedit local_costmap_params.yaml # insert content, save and

close

16costmap_2d, URL: http://wiki.ros.org/costmap_2d.

http://wiki.ros.org/costmap_2d

252 C. Rösmann et al.

The default content for global_costmap_params.yaml is listed below:

file: global_costmap_params.yaml
2 global_costmap:

update_frequency: 1.0
4 publish_frequency: 0.5

static_map: true
6 plugins:

- {name: static_layer, type: "costmap_2d::StaticLayer"}
8 - {name: inflation_layer, type: "costmap_2d::InflationLayer

"}

The global costmap is intended to be a static one which means its size is inherited
from the map provided by the map_server node (notice the loaded static layer
pluginwhichwas defined incostmap_common_params.yaml). The previously
defined inflation layer is added as well.

The content for local_costmap_params.yaml is as follows:

file: local_costmap_params.yaml
2 local_costmap:

update_frequency: 5.0
4 publish_frequency: 2.0

static_map: false
6 rolling_window: true

width: 5.5 # -> computation time: teb_local_planner
8 height: 5.5 # -> computation time: teb_local_planner

resolution: 0.1 # -> computation time: teb_local_planner
10 plugins:

- {name: obstacle_layer, type: "costmap_2d::ObstacleLayer
"}

It is highly recommended to define the local costmap as a rolling window in medium
or large environments, since otherwise the implied huge number of obstacles might
lead to intractable computational loads. The rolling window is specified by its width,
height and resolution. These parameters have a significant impact on the computation
time of the planner. The size should not exceed the local sensor range and it is often
sufficient to set the width and height to values of approx. 5–6m. The resolution deter-
mines the discretization granularity respectively howmany grid cells are allocated in
order to represent the rolling window. Since each occupied cell is treated as a single
obstacle by default (see Sect. 3.5), a small value (resp. high resolution) indicates a
huge number of obstacles and therefore long computation times. On the other hand,
the resolution must be fine enough to cope with small obstacles, narrow hallways
and passing doors. Finally, the previously defined obstacle layer is activated in order
to incorporated dynamic obstacles obtained from the laser range finder.

Prior to generating the overall launch file, a configuration file for the local planner
is created:

$ roscd teb_tutorial/cfg
2 $ gedit teb_local_planner_params.yaml

Online Trajectory Planning in ROS Under Kinodynamic … 253

The content of the teb_local_planner_params.yaml is listed below:

file: teb_local_planner_params.yaml
2 TebLocalPlannerROS:

4 # Trajectory
dt_ref: 0.3

6 dt_hysteresis: 0.1
global_plan_overwrite_orientation: True

8 allow_init_with_backwards_motion: False
max_global_plan_lookahead_dist: 3.0

10 feasibility_check_no_poses: 3

12 # Robot
max_vel_x: 0.4

14 max_vel_x_backwards: 0.2
max_vel_theta: 0.3

16 acc_lim_x: 0.5
acc_lim_theta: 0.5

18 min_turning_radius: 0.0 # diff-drive robot (can turn in place
!)

footprint_model:
20 type: "point" # include robot radius in min_obstacle_dist

22 # Goal Tolerance
xy_goal_tolerance: 0.2

24 yaw_goal_tolerance: 0.1

26 # Obstacles
min_obstacle_dist: 0.25

28 costmap_obstacles_behind_robot_dist: 1.0
obstacle_poses_affected: 10

30

Optimization
32 no_inner_iterations: 5

no_outer_iterations: 4

For the sake of readability, only a small subset of available parameters is defined
here. Feel free to add other parameters, e.g. after determining suitable parameter
sets with rqt_reconfigure. In this example configuration, the point footprint model
is chosen for optimization (parameter footprint_model). The circumscribed
radius R of the robot defined in Sect. 5.1 is derived by applying geometry calculus:
R = 0.5

√
0.252 + 0.252 m ≈ 0.18m. In order to compensate possible small distance

violations due to penalty terms the parameter min_obstacle_dist is set to
0.25m.

Parameter costmap_obstacles_behind_robot_dist specifies how
many meters of the local costmap portion beyond the robot are taken into account in
order to extract obstacles from cells.

After all related configuration files are created, the next step consist of defining
the launch file that starts all nodes required for navigation and includes configuration
files. Launch files are usually added to a subfolder called launch:

254 C. Rösmann et al.

$ cd ~/catkin_ws/src/teb_tutorial/
2 $ mkdir launch && cd launch
$ gedit robot_in_stage.launch # create a new launch file

Add the following content to your newly created launch file:

<!-- file: robot_in_stage.launch -->
2 <launch>
<!-- ************** Global Parameters *************** -->

4 <param name="/use_sim_time" value="true"/>

6 <!-- ************** Stage Simulator *************** -->
<node pkg="stage_ros" type="stageros" name="stageros" args="$(

find teb_tutorial)/stage/maze_diff_drive.world">
8 <remap from="base_scan" to="scan"/>
</node>

10

<!-- ************** Navigation *************** -->
12 <node pkg="move_base" type="move_base" respawn="false" name="

move_base" output="screen">
<rosparam file="$(find teb_tutorial)/cfg/
costmap_common_params.yaml" command="load" ns="
global_costmap"/>

14 <rosparam file="$(find teb_tutorial)/cfg/
costmap_common_params.yaml" command="load" ns="
local_costmap"/>
<rosparam file="$(find teb_tutorial)/cfg/
local_costmap_params.yaml" command="load" />

16 <rosparam file="$(find teb_tutorial)/cfg/
global_costmap_params.yaml" command="load" />
<rosparam file="$(find teb_tutorial)/cfg/
teb_local_planner_params.yaml" command="load" />

18

<param name="base_global_planner" value="global_planner/
GlobalPlanner"/>

20 <param name="planner_frequency" value="1.0" />
<param name="planner_patience" value="5.0" />

22

<param name="base_local_planner" value="teb_local_planner/
TebLocalPlannerROS"/>

24 <param name="controller_frequency" value="5.0" />
<param name="controller_patience" value="15.0" />

26 </node>

28

<!-- ****** Maps ***** -->
30 <node name="map_server" pkg="map_server" type="map_server" args

="$(find teb_tutorial)/maps/maze.yaml" output="screen">
<param name="frame_id" value="/map"/>

32 </node>

34 <!-- ****** AMCL ***** -->
<node pkg="amcl" type="amcl" name="amcl" output="screen">

36 <param name="initial_pose_x" value="2"/>

Online Trajectory Planning in ROS Under Kinodynamic … 255

<param name="initial_pose_y" value="2"/>
38 <param name="initial_pose_a" value="0"/>

<param name="odom_model_type" value="diff"/>
40 <param name="use_map_topic" value="true"/>

<param name="transform_tolerance" value="0.5"/>
42 </node>

</launch>

After activating simulation time, the stage_ros node is loaded. The path to the world
file previously created in Sect. 5.1 is forwarded as an additional argument. The
command $(find teb_tutorial) automatically searches for the teb_tutorial
package path in your workspace. Since stage_ros publishes the simulated laser range
data on topic base_scan, but the costmap is configured for listening on scan,
remapping is performed here.

Afterwards, the core navigation node move_base is loaded. All costmap and
planner parameters are included relative to the move_base namespace. Some addi-
tional parameters are defined, such as which local and global planner plugins to
be loaded. The selected global planner is commonly used in ROS. Parameters
planner_frequency and planner_patience define the rate (in Hz) at
which the global planner is invoked and how long the planner waits
(seconds) without receiving any valid control before backup operations are per-
formed, respectively. Similar settings are applied to the local planner with parameters
controller_frequency and controller_patience. We also specify the
teb_local_planner/TebLocalPlannerROS as the local planner plugin.

The two final nodes are the map_server node which provides the maze map and
the amcl node for adaptive monte carlo localization. The latter corrects odometry
errors of the robot by providing and adjusting the transformation between map and
odom. amcl requires an initial pose which is set to the actual robot pose as defined
in the stage world file. All other parameters are kept at their default settings in this
tutorial.

Congratulations, the initial navigation setup is completed now. Further parameter
adjustments are easily integrated into the configuration and launch files. Start your
launch file in order to test the overall scheme:

$ roslaunch teb_tutorial robot_in_stage.launch

Ideally, a stage window occurs, no error messages appear and move_base prints
“odom received!”. Afterwards start a new terminal and open rviz in order to start the
visualization and send navigation goals:

$ rosrun rviz rviz

Make sure to set the fixed frame to map. Add relevant displays by clicking on the
Add button. You can easily show all available displays by selecting the tab by topic.
Select the following displays:

256 C. Rösmann et al.

• from /map/: Map
• from /move_base/TebLocalPlannerROS/: global_plan/Path,
local_plan/Path, teb_markers/Marker and teb_poses/
PoseArray

• from global_costmap/: costmap/Map
• from local_costmap/: costmap/Map and footprint/Polygon (we
do not have a robot model to display, so use the footprint).

Now specify a desired goal pose using the 2D Nav Goal button in order to start
navigation.

In the following, some parameters are modified during runtime: Keep everything
running and open in a new terminal:

$ rosrun rqt_reconfiugre rqt_reconfigure

Select move_base/TebLocalPlanner in the menu in order to list all parame-
ters which can be changed online. Now increase min_obstacle_dist to 0.5m
which is larger than the door widths in the map (the robot assumes a free space of
2 × 0.5m then). Move the robot through a door and observe what is happening. The
behavior should be similar to the one shown in Fig. 8a. The planner still tries to plan
through the door according to the global plan and since the solution constitutes a
local minimum. From the optimization point of view, the distance to each pose is
minimized such that poses must be moved along the trajectory in both directions in
order to avoid penalties (introducing the gap). However, min_obstacle_dist
is chosen such that a door passing cannot be intended. As a consequence, the robot
collides. After testing, reset the parameter back to 0.25m.

The following task involves configuration of the trade-off between time opti-
mality and global path following. Activate the via-points objective function by
increasing the parameter global_plan_viapoint_sep to 0.5. Command a

(a) Improper parameter value for
min obstacle dist

via-pointsfootprint

global plan

(b) Via-points added along the global
plan

Fig. 8 Testing navigation with the differential-drive robot

Online Trajectory Planning in ROS Under Kinodynamic … 257

new navigation goal and observe the new blue quadratic markers along the global
plan (see Fig. 8b). Via-points are generated each 0.5m (according to parameter value
global_plan_viapoint_sep). Each via-point constitutes an attractor for the
trajectory during optimization. Obviously, the trajectory still keeps a certain dis-
tance to some via-points as shown in Fig. 8b. The optimizer minimizes the weighted
sum of both objectives: time optimality and reaching via-points. By increasing the
weight global_plan_viapoint_sep (via rqt_reconfigure) and commanding
new navigation goals you might recognize that the robot increasingly tends to prefer
the original global plan over the fastest trajectory. Note, an excessive optimization
weight for via-points might cause the obstacle cost to become negligible in com-
parison to the via-point cost. In that case avoiding dynamic obstacles does not work
properly anymore. However, a suitable parameter setting for a particular application
is determined in simulation.

7 Planning for a Car-Like Robot

This section describes how to configure the car-like robot defined in Sect. 5.2 for sim-
ulation with stage. The steps for setting up the differential drive robot as described
in the previous section must be completed before in order to avoid redundant expla-
nations.

Create a copy of the teb_local_planner_params.yaml file for the new
car-like robot:

$ roscd teb_tutorial/cfg
2 $ cp teb_local_planner_params.yaml

teb_local_planner_params_carlike.yaml
$ gedit teb_local_planner_params_carlike.yaml

Change the robot section according to the following snippet:

file: teb_local_planner_params_carlike.yaml
2 # Robot

max_vel_x: 0.4
4 max_vel_x_backwards: 0.2

max_vel_theta: 0.3
6 acc_lim_x: 0.5

acc_lim_theta: 0.5
8 min_turning_radius: 0.5 # we have a car-like robot!

wheelbase: 0.4 # wheelbase of our robot
10 cmd_angle_instead_rotvel: True # angle instead of the rotvel

for stage
weight_kinematics_turning_radius: 1 # increase, if the penalty

for min_turning_radius is not sufficient
12 footprint_model:

type:"line"
14 line_start: [0.0, 0.0] # include robot expanse in

min_obstacle_dist

258 C. Rösmann et al.

line_end: [0.4, 0.0] # include robot expanse in
min_obstacle_dist

Parameter min_turning_radius is non-zero in comparison to the differential-
drive robot configuration. The steering angle φ of the front wheels of the robot is
limited to ±40 deg(≈ ±0.7 rad). From trigonometry the relation between the turn-
ing radius r and the steering angle φ is defined by r = L/ tan φ [9]. Hereby, L
denotes the wheelbase. Evaluating the expression with φ = 0.7 rad and L = 0.4m
reveals a minimum turning radius of 0.47m. Due to the penalty terms, it is rounded
up to 0.5m for the parameter min_turning_radius. Since move_base pro-
vides a geometry_msgs/Twist message containing linear and angular veloc-
ity commands v and ω respectively, the signals are transformed to a robot base
driver that only accepts the linear velocity v and a steering angle φ. Since the turn-
ing radius is expressed by r = v/ω, the relation to the steering angle φ follows
immediately: φ = atan(Lv/ω). The case v = 0 is treated separately, e.g. by keep-
ing the previous angle or by setting the steering wheels to their default position.
For robots accepting an ackermann_msgs/AckermannDriveStampedmes-
sage type, a simple converter node/script is added to communicate and map between
move_base and the base driver. As described in Sect. 5.2 stage requires the default
geometry_msgs/Twist type but with changed semantics: the angular veloc-
ity component is interpreted as steering angle. The teb_local_planner already pro-
vides the automatic conversion for this type of interface by activating parameter
cmd_angle_instead_rotvel. The steering angle φ is set to zero in case of
zero linear velocities (v = 0 m

s).
The footprint model is redefined for the rectangular robot (according to Sect. 5.2).

The linemodel is recommended for rectangular-shaped robots. Instead of defining the
line over the complete width (−0.1m ≤ xr ≤ 0.5m), 0.1m are subtracted in order
to account for the robot’s expansion along the yr -axis, since this value is added to
parameter min_obstacle_dist similar to the differential-drive robot in Sect. 6.
With some additional margin, min_obstacle_dist = 0.25m should perform
well, such that the parameter remains unchanged w.r.t. the previous configuration.

Create a new launch file in order to test the modified configuration:

$ roscd teb_tutorial/launch
2 $ cp robot_in_stage.launch carlike_robot_in_stage.launch
$ gedit carlike_robot_in_stage.launch

The stage_ros nodemust now load themaze_carlike.world file. Additionally, the
local planner parameter configurationfilemust be replaced by the car-like version.An
additional parameter clearing_rotation_allows is set to false in order
to deactivate recovery behaviors which require the robot to turn in place. Relevant
snippets are listed below:

Online Trajectory Planning in ROS Under Kinodynamic … 259

<!-- file: carlike_robot_in_stage.launch -->
2 <!-- ... -->
<!-- ************** Stage Simulator *************** -->

4 <node pkg="stage_ros" type="stageros" name="stageros" args="$(
find teb_tutorial)/stage/maze_carlike.world">
<remap from="base_scan" to="scan"/>

6 </node>

8 <!-- ************** Navigation *************** -->
<node pkg="move_base" type="move_base" respawn="false" name="

move_base" output="screen">
10 <!-- ... -->

<rosparam file="$(find teb_tutorial)/cfg/
teb_local_planner_params_carlike.yaml" command="load" />

12 <!-- ... -->
<param name="clearing_rotation_allowed" value="false" /> <!
-- Our carlike robot is not able to rotate in place -->

14 </node>
<!-- ... -->

Close any previous ROS nodes and terminals and start the car-like robot simula-
tion:

$ roslaunch teb_tutorial robot_in_stage.launch

If no errors occur, navigate your robot through the environment. Again run rviz
for visualization with all displays configured in Sect. 5.1 and rqt_reconfigure for
playing with different parameter settings. An example scenario is depicted in Fig. 9.
The displayed markers in rviz indicate occupied cells of the local costmap which are
taken into account as point obstacle during trajectory optimization.

optimal trajectory

global plan

footprint

considered
point obstacles

(a) Visualization in rviz

robot
walls

(b) Stage simulator preview

Fig. 9 Navigating a car-like robot in simulation

260 C. Rösmann et al.

8 Conclusion

This tutorial chapter presented a step-by-step guide on how to setup the package
teb_local_planner in ROS for navigation with a differential-drive and a car-like
robot. The package implements an online trajectory optimization scheme termed
Timed-Elastic-Band approach and it seamlessly integrates with the navigation stack
as local planner plugin. The fundamental theory and concepts of the underlying
approach along with related ROS parameters was introduced. The package provides
an effective alternative to the currently available local planners as it supports trajec-
tories planning with cusps (backwardmotion) and car-like robots. To our knowledge,
the latter is currently not provided by any other local planner. The package allows
the user to quantify a spatial-temporal trade-off between a time optimal trajectory
and compliance with the original global plan. Further work intends to address the
automatic tuning of cost function weights for common cluttered environments and
maneuvers. Furthermore, a benchmark suite for the performance evaluation of the
different planners available in ROS could be of large interests for the community.
Benchmark results facilitate the appropriate selection of planners for different kinds
of applications. Additionally, future work aims to include dynamic obstacles, support
of additional kinematic models as well as further improving algorithmic efficiency.

References

1. Rösmann,C., Feiten,W.,Wösch, T.,Hoffmann, F., andT.Bertram. 2012. Trajectorymodification
considering dynamic constraints of autonomous robots. In 7th German Conference on Robotics
(ROBOTIK), 74–79.

2. Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., and T. Bertram. 2013. Efficient trajectory
optimization using a sparse model. In 6th European Conference on Mobile Robots (ECMR),
138–143.

3. Rösmann, C., Hoffmann, F., and T. Bertram. 2015. Planning of multiple robot trajectories in
distinctive topologies. In IEEE European Conference on Mobile Robots, 1–6.

4. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and W. Burgard. 2011. G2o: A general
framework for graph optimization. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 3607–3613.

5. Nocedal, J., and S.J. Wright. 1999. Numerical Optimization., Springer series in operations
research New York: Springer.

6. Morari, M., and J.H. Lee. 1999. Model predictive control: past, present and future. Computers
and Chemical Engineering 23 (4–5): 667–682.

7. Bhattacharya, S., Kumar, V., and M. Likhachev. 2010. Search-based path planning with homo-
topy class constraints. In Proceedings of National Conference on Artificial Intelligence.

8. Guimarães, R.L., de Oliveira, A.S., Fabro, J.A., Becker, T., and V.A. Brenner. 2016. ROS Nav-
igation: Concepts and Tutorial. In Robot Operating System (ROS) - The Complete Reference
(A. Koubaa, ed.), vol. 625 of Studies in Computational Intelligence, pp. 121–160, Springer
International Publishing.

9. LaValle, S.M. 2006. Planning Algorithms. New York, USA: Cambridge University Press.

Online Trajectory Planning in ROS Under Kinodynamic … 261

Christoph Rösmann was born in Münster, Germany, on December 8, 1988. He received the
B.Sc. and M.Sc. degree in electrical engineering and information technology from the Technische
Unversität Dortmund, Germany, in 2011 and 2013 respectively. He is currently working towards
the Dr.-Ing. degree at the Institute of Control Theory and Systems Engineering, Technische Uni-
versität Dortmund, Germany. His research interests include nonlinear model predictive control,
mobile robot navigation and fast optimization techniques.

Frank Hoffmann received the Diploma and Dr. rer. nat. degrees in physics from Christian-
Albrechts University of Kiel, Germany. He was a Postdoctoral Researcher at the University of
California, Berkeley from 1996–1999. From 2000 to 2003, he was a lecturer in computer science
at the Royal Institute of Technology, Stockholm, Sweden. He is currently a Professor at TU Dort-
mund and affiliated with the Institute of Control Theory and Systems Engineering. His research
interests are in the areas of robotics, computer vision, computational intelligence, and control sys-
tem design.

Torsten Bertram received the Dipl.-Ing. and Dr.-Ing. degrees in mechanical engineering from
the Gerhard Mercator Universität Duisburg, Duisburg, Germany, in 1990 and 1995, respectively.
In 1990, he joined the Gerhard Mercator Universität Duisburg, Duisburg, Germany, in the Depart-
ment of Mechanical Engineering, as a Research Associate. During 1995–1998, he was a Subject
Specialist with the Corporate Research Division, Bosch Group, Stuttgart, Germany, In 1998, he
returned to Gerhard Mercator Universität Duisburg as an Assistant Professor. In 2002, he became a
Professor with the Department of Mechanical Engineering, Technische Universität Ilmenau, Ilme-
nau, Germany, and, since 2005, he has been a member of the Department of Electrical Engineering
and Information Technology, Technische Universität Dortmund, Dortmund, Germany, as a Profes-
sor of systems and control engineering and he is head of the Institute of Control Theory and Sys-
tems Engineering. His research fields are control theory and computational intelligence and their
application to mechatronics, service robotics, and automotive systems.

Part III
Integration of ROS with Internet and

Distributed Systems

ROSLink: Bridging ROS with the
Internet-of-Things for Cloud Robotics

Anis Koubaa, Maram Alajlan and Basit Qureshi

Abstract The integration of robots with the Internet is nowadays an emerging trend,
as new form of the Internet-of-Things (IoT). This integration is crucially important
to promote new types of cloud robotics applications where robots are virtualized,
controlled and monitored through the Internet. This paper proposes ROSLink, a
new protocol to integrate Robot Operating System (ROS) enabled-robots with the
IoT. The motivation behind ROSLink is the lack of ROS functionality in monitoring
and controlling robots through the Internet. Although, ROS allows control of a robot
from a workstation using the same ROS master, however this solution is not scalable
and rather limited to a local area network. Solutions proposed in recent works rely
on centralized ROS Master or robot-side Web servers sharing similar limitations.
Inspired from the MAVLink protocol, the proposed ROSLink protocol defines a
lightweight asynchronous communication protocol between the robots and the end-
users through the cloud. ROSLink leverages the use of a proxy cloud server that
links ROS-enabled robots with users and allows the interconnection between them.
ROSLink performance was tested on the cloud and was shown to be efficient and
reliable.

A. Koubaa (B) · M. Alajlan
Center of Excellence Robotics and Internet of Things (RIOT) Research Unit,
Prince Sultan University, Riyadh, Saudi Arabia
e-mail: akoubaa@coins-lab.org

M. Alajlan
e-mail: maram.ajlan@coins-lab.org

A. Koubaa
Gaitech Robotics, Hong Kong, China

A. Koubaa
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

M. Alajlan
King Saud University, Riyadh, Saudi Arabia

B. Qureshi
Prince Sultan University, Riyadh, Saudi Arabia
e-mail: qureshi@psu.edu.sa

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_8

265

266 A. Koubaa et al.

Keywords Robot Operating System (ROS) · Cloud robotics · Internet-of-Things ·
ROSLink · Mobile robots · Protocol Design

1 Introduction

Cloud Robotics [1–3] is a recent and emerging trend in robotics that aims at levering
the use of Internet-of-Things (IoT) and cloud computing technologies to promote
robotics applications from two perspectives: (i) Virtualization: providing seamless
access to robots through Web and Web services technologies, (ii) Remote Brain:
offloading intensive computations from robots to the cloud resources to overcome
the computation, storage and energy limitations of robots.

Nowadays, Robot Operating System (ROS) [4] represents a defacto standard for
the development of robotics applications. ROS as amiddleware, provides several lev-
els of software abstraction to hardware and robotics resources (i.e. sensor and actu-
ators) in addition to the reuse of open source project libraries. It has been designed
to overcome difficulties when developing large-scale service robots reducing the
complexity of robotics software construction. Although widely used in developing
applications for service robots, ROS lacks the native support for control andmonitor-
ing of robots through the Internet. It is possible to write ROS nodes (i.e. programs)
in a remote workstation on the same local area network (LAN), where both the
robot machine and the workstation use the ROSMaster Uniform Resource Identifier
(URI)., however controlling the ROS nodes from a remote location is challenging.
To address this limitation many research works have been proposed focusing on
client-server based architecture [5–10].

A milestone work that addressed this issues is the ROSBridge protocol [11].
It is based on Websockets server installed on the robot side that allows to send the
internal status of the robot based on ROS topics and services and receives commands
toWebsockets clients to process them.This approach enabled the effective integration
of ROS with the Internet; however, the fact that the Websockets server is running on
the robot machine requires the robot to have a public IP address to be accessible by
Websockets clients, which is not possible for every robot, or being on the same local
area networks. Network address translation (NAT) could also be used when the robot
is behind a NAT domain, but still this option may be cumbersome in deployment.
In [12], the author proposed a ROS as a Web service which allow to define a Web
service server in the robot to access through the Internet. However, this solution share
the same limitation as ROSBridge as the server is located at the robot side.

This paper fills the gap and proposes ROSLink, a communication protocol that
overcomes the aforementioned limitations by (i) implementing specifications of
client in the robot side, (ii) manifestation of a proxy server located at a public IP
server machine, such a cloud server. The idea is inspired by the MAVLink protocol
[13], where the robot sends its data in serializedmessages through a network client to
a ground station that acts as a server which in turn, receives thesemessages, processes
them and sends control commands to the robot. As such, it is no longer needed for a

ROSLink: Bridging ROS with the Internet-of-Things … 267

robot to have a public IP address, whereas it will still be accessible behind the proxy
server.

The contribution of this paper are two folded. First, we propose ROSLink a
new communication protocol that defines a 3-tier architecture. The ROSLink Bridge
client executes in the robot side; the ROSLink Proxy acts as a server in the ground
station, and a client application at the user side that interacts with the robot through
theROSLink protocol. Second,we validate the proposed ROSLink protocol through
an experimental study on the ground Turtlebot robot as well as the aerial AR.Parrot
drone. We demonstrate the effectiveness and feasibility of ROSLink.

The remainder of this paper is organized as follows. Section2 presents motivat-
ing examples and objectives behind the design of ROSLink. Section3 presents the
ROSLink communication protocol. Section4 presents the experimental validation of
ROSLink and the evaluation of its performance. Finally, Sect. 5 concludes the paper.

2 Motivating Problems and Objectives

2.1 Problem Statement

The motivation behind this work is to integrate ROS with the Internet of Things.
ROS does not natively support monitoring and control of robots through the Internet.
In fact, as illustrated in Fig. 1a, ROS allows to control a robot from a workstation
using the same ROS master, but this solution is not scalable and rather limited to a
local area network usage. The typical scenario is that every robot starts its own ROS
Master node, and users can control the robot from their workstations if they configure
their ROS network settings to use the same ROS Master running in the robot. This
standard approach does not natively allow to control the robot through the Internet as
robots typically do not have a public IP address. The use of port forwarding behind
NAT can be considered in certain cases, but might not be possible in other cases, like
connection through 3G/4G connection.

One possible solution, as illustrated in Fig. 1b, is to use one ROSMaster node for
all robots, where the Master node runs on a central server with a public IP address on
the Internet. All users will connect to the same ROSMaster and can access any robot
by publishing and subscribing to their topics and services. However, this solution has
several limitations. First, some ROS topics, services and nodes may be in conflict
with having the same name. This issue requires a careful design of namespace for
ROS nodes, services and topics to avoid any conflict.With the large number of robots,
this solution becomes very complex. The second issue is the lack of scalability, i.e.
the ROS Master might become overloaded when several robots are bound to it at a
given time. Apart from the known networking issues while considering that several
ROS topics are bandwidth greedy, there is no viable solution to mapping individual
users to their robots since all topics will be visible to all users.

268 A. Koubaa et al.

(a) Standard Approach:Typical connection between ROS
robots and ROS users. A user is connected to the ROS Mas-
ter of the robot to control and monitor its status, typically, in a
local area network.

(b) Centralized Approach: One central ROS Master to which
all robots and users connected. This solution is not scalable, does
not provide effective management of robots and users.

(c) ROSLink Approach: A cloud based approach, where ROS
robots and users interact through the cloud. The ROSLink cloud
provides users and robots management, service oriented inter-
faces, and real-time streaming services.

Fig. 1 ROS operation approaches

ROSLink: Bridging ROS with the Internet-of-Things … 269

Our approach consists in the design of ROSLink, a lightweight communica-
tion protocol, inspired from MAVLink [13], to allow for a cloud-based interaction
between ROS robots and their users, as depicted in Fig. 1c. The idea is to add a
ROSLink Bridge on top of ROS for every robot such that this bridge sends all the
status of the robot using JSON serialized messages. ROSLink Bridge is a ROS node
that accesses all topics and services of interest in ROS, and sends selected informa-
tion in ROSLinkmessages, serialized in JSON format. Thesemessages are sent to the
ROSLink Cloud Proxy, which processes the messages and forwards them to the indi-
vidual user and/or users of the robot. In addition, users send commands to the robot
through the ROSLink cloud proxy utilizing ROSLink JSON messages, which are
later processed by the ROSLink Bridge resulting in execution of the corresponding
ROS action. The ROSLink cloud-based approach presents three major advantages
(1) to be independent from the ROS master nodes of the robots, (2) ensure seamless
communication between users and robots through the cloud, (3) provide effective
management of robots, users and underlying services.

2.2 Overview

The main objective of ROSLink is to control and monitor a ROS-enabled robot
through the Internet. In the literature, most of the related works focused on using
two-tiered client/server approach while the server is implemented in the robot and
the client is implemented in the user application. In fact, most of these researches are
based on the instantiation of ROSBridge and ROSJS frameworks [11, 14] to build
remotely controlled robots. ROSBridge represents a milestone that enabled this kind
of remote control of ROS-enabled tele-operated robots. However, the drawbacks of
this approach are (1) robot-centric approach, which restricts the scalability of the
system as the server is centralized in the robot itself, (2) the deployment on Internet
is rather difficult as the robot needs to have a public IP address or accessible through
a NAT forwarding port, when it is inside a local area network.

To overcome these limitations, we propose ROSLink a three-tiered client/server
model, where the client is implemented in the robot and the user, whereas the server
is located at a public domain and acts as a proxy to link the robots with their users.
ROSLink overcomes the two aforementioned problems. First, there is no longer a
server implemented inside the robot, so it does no longer follow the robot-centric
approach. In contrast, the robot implements the client side through the ROSLink
Bridge components, which is a ROS node that interfaces with ROS on the one
hand, and on the other hand sends ROS data to the outside world through a network
interface (UDP, TCP, or Websockets). Besides, the ROSLink server side of the
model is implemented in a publicly available server called ROSLink proxy, which
acts as a mediator between the robots and the users. Robots and users send messages
to the proxy server, which will dispatch them accordingly to the other side.

ROSLink makes a complete abstraction of ROS by defining a communication
protocol (inspired from the MAVLink protocol) that provides all information about

270 A. Koubaa et al.

the robot through ROS topics/services without exposing ROS ecosystem to the users.
The user does not need to be familiar with ROS to be able to use ROSLink to send
commands for robot. ROSLink defines a set of interfaces for the users to interact
with the robot, and a set of messages to exchange between them.

ROSLinkmessages are constructed based on ROS topics/services parameters to
either get data from or submit data to execute an action. Themessages are represented
as JSON strings. JSON format is opted to use in data interchange because it is
platform-independent and language-independent data representation format [15].
In addition, it is a lighter-weight solution as compared to XML, which is more
appropriate for resource-constrained and bandwidth-constrained platforms. This will
allow the client application developer to choose any programming language (C++,
Java, JavaScript, Python, etc.) to develop a client application that interacts with
ROSLink to command and monitor ROS-enabled robots.

In summary, ROSLink differs from previous works, and in particular from
ROSBridge in these aspects:

• ROSLink implements a client in the robot as well as in the user applications, and
implements a server in an intermediate proxy, whereas ROSBridge implements
a Websocket server in the robot and Websocket clients in user applications.

• ROSBridge is based on theWebsocket protocol, whereas ROSLink can be imple-
mented with any transport layer protocol (TCP, UDP and Websockets). In this
paper, we used UDP and Websockets interfaces to implement ROSLink.

• ROSLink does not rely on ROSBridge as in previous works but defines its own
communication protocol between ROS and non-ROS users.

3 The ROSLink Protocol

In what follows, we present an overview of system and software architecture.

3.1 ROSLink System Architecture

The general architecture of ROSLink is presented in Fig. 2.
The system is composed of three main parts:

• TheROSLink Bridge: this is the main component of the system. It is the interface
between ROS and the ROSLink protocol. This bridge has twomain functionalities:
(1) it reads data from messages of ROS topics and services, serializes the data
in JSON format according to ROSLink protocol specification, and sends to a
ground station, a proxy server or a client application, (2) receives JSON serialized
data through a network interface from a ground station or a client application,
deserializes it from the JSON string, parse the command, and executes it through
ROS.

ROSLink: Bridging ROS with the Internet-of-Things … 271

• The ROSLink Proxy and Cloud: it acts as a proxy server between the ROSLink
Bridge (embedded in the robot) and the user client application. Its role is to link a
user client application to a ROS-enabled robot through its ROSLink Bridge. The
ROSLink proxy is mainly a forwarder of ROSLink messages between the robot
and user. It allows to keep the user updated with the robot status, and also forward
control commands from the user to the robot. In addition ROSProxy interact
with ROSLink Cloud component, to maintain and manages the list of robots and
users, create a mapping between them, and perform all management functionality,
including security, quality-of-service monitoring, etc.

• The ROSLink Client Application: it basically represents a control and monitor-
ing application of the robot. This application is intended to monitor the status of
the robot that it receives through ROSLink messages via the ROSLink Proxy from
the robot. In addition, it sends commands through ROSLink messages to control
the robot activities.

3.2 ROSLink Communication Protocol

We designed the ROSLink communication protocol to allow interaction between the
different parts of the ROSLink system, namely the ROSLink Bridge, ROSLink
Proxy and the ROSLink Client application.

The ROSLink communication protocol is based on two main things: (1) The
transport protocol to use to communicate between the users, clouds and robots. (2)
the message specification and its serialization in JSON format.

Fig. 2 ROSLink architecture

272 A. Koubaa et al.

Transport Protocol ROSLink Bridge, ROSLink Proxy and ROSLink
Client all of them use a network interface to communicate. There are different
options for the transport protocol, which include UDP, TCP and Websockets. Com-
munication through Serial port and telemetry devices is not considered as we only
aim at a communication pattern through the Internet.

In our ROSLink implementation, we considered both UDP and Websockets
transport protocols. The ROSLink Proxy implements both UDP and Websock-
ets servers providing different interfaces for robots and users to interact with it.
On the other hand, ROSLink Bridge and ROSLink Client can implement
either protocol UDP, or Websockets clients or both together that interact with the
ROSLink Proxy server. This gives enough flexibility to the developer to choose
themost appropriate transport protocol for his application. On the one hand, we opted
for the UDP connection because it is better and lighter weight choice for real-time
and loss-tolerant streaming applications as compared to TCP, as it is the case with
ROSLink data exchange model. In fact, the robot will be streaming its internal sta-
tus (e.g. position, odomtery, velocities, etc.) in real-time to the proxy server, which
will deliver it to the ROSLink client application. On the other hand, theWebsockets
interface also provide an idea protocol for more reliable transport of data streams
as compared to UDP, while meeting real-time requirements. In fact, Websockets is
a connection-based protocol that opens the connections between the two communi-
cating ends before data exchanges, and ensure connection to remain open all along
the message exchange sessions. The connection is closed when any of the two ends
terminate the sessions, which make it more reliable. It is also possible to think of
using a TCP connection for better reliability of transfer, but in our context, the lost
of data occasionally is not that critical. It might be critical in case of closed-control
loop applications, which is out of our scope at this stage.

ROSLink Message Types The ROSLink communication protocol is based on the
exchange of ROSLink messages. ROSLink messages are JSON formatted strings
that contain information about the command and its parameters. To standardize the
type of messages exchanged, we specified a set of ROSLink messages that are sup-
ported by the ROSLink Proxy. These message can be easily extended based on
the requirements of the user and the application. There are two main categories of
ROSLink messages: (i.) State messages: these are message sent by the robot and
carry out information about the internal state of the robot, including its position,
orientation, battery level, etc. (ii.) Command messages: these are messages sent by
the client application to the robot and carry out commands to make the robot execute
some actions, like for example moving, executing a mission, going to a goal location,
etc. In what follows, we identify an example of messages and command types:

• Presence message: the robot should declare its presence regularly to declare itself
and to be considered as active. Typically, Heartbeat messages sent at a certain
frequency (typically one message per second) are used for this purpose.

• Motion messages: In robot mission, it is important to know the location and
odometry motion parameters (i.e. linear and angular velocities) of the robot at a

ROSLink: Bridging ROS with the Internet-of-Things … 273

Fig. 3 ROSLink message header structure

certain time. Thus, a motion message containing position information of the
robot should be periodically broadcast.

• Sensor messages: The robot needs to broadcast its internal sensor data such
as IMU, laser scanners, camera images, GPS coordinates, actuators states, etc.
ROSLink also defines several sensor messages to exchange these data between the
robot and the user.

• Motion commands: For the robot to navigate in ROS, certain commands are sent
to it like Twist messages in ROS, goal/waypoint locations, and takeoff/landing
command for drones. ROSLink also specifies different types of commands tomake
the robot moves as desired.

The aforementioned list is not exhaustive as other types of messages can be
designed based on the requirements of the users and available information from
the robot. In what follows, we present the ROSLink message structures for the main
state messages and commands.

ROSLink Message Structure A ROSLink message is a composed of a header and
a payload. The structure of the ROSLink message header is presented in Fig. 3.

ROSLink Message Header: The total header size is 128 bits. The roslink_
version is encoded as a short int on 8 bits and specifies the version of ROSLink
protocol. This is because in the future, new ROSLink versions would be released and
it is important to specify which version a message belongs to for correct parsing. The
ros_version specifies the ROS version (e.g. Indigo). The system_id is an int
encoded into 16 bits and specifies the ID of the robot. It helps in differentiating robots
from each other at the server side. It is possible to encode the system_id in 8 bits
to reduce the header size, but the problem this restricts the scalability of the system
to only 256 robots ID. The message_id specifies the type of message received. It
helps in correctly parsing the incoming message and extract underlying information.
The sequence_number denotes the sequence of the packet, identifies a single
packet, and avoid processing duplicate packets. Finally, the key field is encoded on
24 bits and is used to identify a robot, and to map it to a user. A user that would
like to have access to a robot, must use the same key that the robot is using in its
Heartbeat message.

ROSLink Message Payload: The payload carries out data relevant for each
ROSLinkmessage type. ROSLink defines several statemessage and command types.

274 A. Koubaa et al.

In what follows, we give an overview of the most common state and command
messages. For a complete set of messages, the reader may refer to [16].

The most basic ROSLink message is the Heartbeat message, which is
sent periodically from the robot to the ROSLink proxy server, and vice-versa.
Every ROSLink Bridge should implement the periodic transmission of the
Heartbeat message. The objective of the Heartbeat message is for the proxy
server to ensure that the robot is active and connected, upon reception of thatmessage.
In the same way, a robot that receives a Heartbeat message from the ROSLink
Proxy server ensures that the server is alive. This message increases the reliabil-
ity of the system when it uses a UDP connectionless protocol, such that both ends
make sure of the activity of the other end. Failsafe operations can be designed when
the robot loses reception of Heartbeat messages from the user such as stopping
motion or returning to start location until connectivity is resumed.

The Heartbeat message structure is defined in JSON representation in List-
ing1.1. In the ROSlink protocol, the message_id of the Heatbeat message is
set to zero.

Listing 1.1 Heartbeat Message Structure

{"roslink_version": int8,
"ros_version": int8,
"system_id": int16,
"message_id": 0,
"sequence_number": int64,
"payload": {"type": int8

"name": String,
"system_status": int8,
"owner_id": String,
"mode": int8}

}

The Robot Status message contains the general system state, like which
onboard controllers and sensors are present and enabled in addition to informa-
tion related to the battery state. Listing1.2 presents the Robot Status message
structure, which has a message_id equal to 1.

Listing 1.2 Robot Status Message Structure

{"roslink_version": int8,
"ros_version": int8,
"system_id": int16,
"message_id": 1,
"sequence_number": int64,
"payload":{"onboard_control_sensors_present":uint32,

"onboard_control_sensors_enabled": uint32,
"voltage_battery": uint16,
"current_battery": int16,
"battery_remaining": int8, }

}

ROSLink: Bridging ROS with the Internet-of-Things … 275

The Global motion message represents the position of the robot and its
linear and angular velocities. This information is sent to the ROSLink client at high
frequency to keep track of robotmotion state in real-time.An instance of the Global
motion message structure is expressed in Listing1.3:

Listing 1.3 Global Motion Message Structure

{"roslink_version": int8,
"ros_version": int8,
"system_id": int16,
"message_id": int8,
"sequence_number": int64,
"payload":{"time_boot_ms":uint32

"x": float64,
"y": float64,
"z": float64,
"vx": float64,
"vy": float64,
"vz": float64,
"wx": float64,
"wy": float64,
"wz": float64,
"pitch": float64,
"roll": float64,
"yaw": float64,}

}

Listing1.4 presents the Range Finder Data message, which carries out
information and data about laser scanners attached to the robot. The Range
Finder Data sensor information enables to develop control application on the
client through the cloud, such as obstacle avoidance reactive navigation, SLAM, etc.

Listing 1.4 Range Finder Data Message Structure

{"roslink_version": int8,
"ros_version": int8,
"system_id": int16,
"message_id": int8,
"sequence_number": int64,
"payload":{"time_usec":int64

"angle_min": float32,
"angle_max": float32,
"angle_increment": float32,
"time_increment": float32,
"scan_time": float32,
"range_min": float32,
"range_max": float32,
"ranges": float32[],
"intensities": float32[],}

}

276 A. Koubaa et al.

The following Listings present a few examples on command messages that can
be sent from the ROSLink client application to the robot through the cloud.

The most basic command message is the Twist command message, which
controls the linear and angular velocities of the robot, and ins illustrated in Listing1.5.
This ROSLink Twist message maps directly with the Twist message defined in
ROS. Once the ROSLink Twist command reaches the ROSLink Bridge, it is first
deserialized from the JSON wrapper, then extract velocity commands and publishes
them as a ROS Twist message to make the robot move.

Listing 1.5 Twist Command Message Structure

{"roslink_version": int8,
"ros_version": int8,
"system_id": int16,
"message_id": int8,
"sequence_number": int64,
"payload": {"lx": float,

"ly": float,
"lz": float,
"ax": float,
"ay": float,
"az": float,}

}

To stop the robot, it simply requires to send a Twist commandmessagewith all
velocities set to zeros. In the same way, the Go to Waypoint command message
defines a command to send the robot to a specific goal location. The parameters x,
y and z represent the 3D coordinates of the goal location. The frame_type field
represents the world frame if it is set to true, and the robot frame is it is set to
false.

Listing 1.6 Go-To-Wayoint Command Message Structure

{"roslink_version": int8,
"ros_version": int8,
"system_id": int16,
"message_id": int8,
"sequence_number": int64,
"payload": {"frame_type": boolean,

"x": float,
"y": float,
"z": float,}

}

Several other commands and statemessageswere also defined like the takeoff/land
commandmessages in the context of drones, and theGPS statemessage that provides
information of the GPS sensor, etc.

ROSLink: Bridging ROS with the Internet-of-Things … 277

3.3 Integration of ROSLink Proxy in Dronemap Planner

As mentioned in Sect. 3.1, ROSLinkProxy is responsible for map users to robots,
manages them, and control the access of users to robots. We integrated ROSLink
Proxy into the Dronemap Planner cloud application [17]. Dronemap Planner is mod-
ular service-oriented cloud based system that was originally developed for the man-
agement of MAVLink drones and to provide seamless access to them through the
Internet.

The software architecture of Dronemap Planner defines a proxy layer interface
that allow to mediate between robots and users. In [17], this proxy interface was
implemented as a MAXProxy component that mediates between MAVLink drones
and users. As such Dronemap Planner is a comprehensive system that allow to
control both MAVLink and ROSLink robots simultaneously. Video demonstrations
of Dronemap Planner related to control of drones over the Internet are available
in [18].

We extended Dronemap Planner to also support the ROSLink protocol by imple-
menting the proxy layer interface as ROSLinkProxy that allows the exchanges of
ROSLinkmessages between ROS-enabled robots and their users. Dronemap Planner
provides a comprehensive system for drones and usersmanagement, and session han-
dling. In addition, Dronemap Planner provides both Websockets and UDP sockets
network interfaces for ROSLink robots and users.

We have used Dronemap Planner to run experiments related to the performance
evaluation of ROSLink in controlling and monitoring ROS-enabled robots through
the Internet, in Sect. 4.

4 Experimental Validation

In this section, we present an experimental study to demonstrate the effectiveness of
ROSLink and to assess its impact on real-time open-loop control applications.

We investigate the impact of network and cloud delays on the performance of
open-loop control applications of ROS-enabled robots. With open-loop control, the
commands are sent to the robot without the need for any feedback from the robot. The
problem can be formulated as follows:“If the control application is offloaded from
the robot to the ROSLink client, what is the impact of network and cloud processing
delays on the performance of the control?”

Trajectory Control Application To address this question, we consider a prototype
open-loop control application of the motion of Turtesim robot (default simulator
inROS) to follow a spiral trajectory.Wehave chosen a spiral trajectorymotion control
application because the resulting trajectory is sensitive to delays and jitters. A spiral
trajectory is defined by a combination of an increasing linear velocity over time and
a constant angular velocity. The general algorithm for drawing a spiral trajectory is
presented in the following listing:

278 A. Koubaa et al.

Listing 1.7 Spiral Trajectory Motion Control Algorithm

double constant_angular_speed=ANGULAR_SPEED_CONSTANT ;
double linear_velocity_step = LINEAR_STEP_CONSTANT ;
double time = SIMULATION_TIME_CONSTANT ;
double rate = FREQUENCY_OF_UPDATE_CONSTANT
i n t number_of_iterations = (i n t) (time∗rate) ;
double linear_velocity = _INIT_LINEAR_VELOCITY ;

f o r (i n t i=0;i<number_of_iterations ;i++){
linear_velocity=linear_velocity+linear_velocity_step ;
angular_speed =constant_speed ;
send_velocity_command (linear_velocity , angular_speed) ;
sleep (1 /rate) ;

}

We implemented this algorithm in both the ROSLink Control Application in the
client side, aswell as on-board of the robot usingROS.Theobjective is to qualitatively
and quantitatively compare the resulting trajectories executed on-board using ROS
against the ones produced by ROSLink Control application through the Dronemap
Planner cloud.

Experimental Set-up We consider a spiral trajectory generation through the trans-
mission of Twist messages where linear and angular velocities follow the algorithms
in Listing1.7.

We analyzed the impact of networks and cloud processing delays on the generated
spiral trajectories with varying the linear velocity steps, and also the discrete time
granularity captured by the update rate variable in Listing1.7.

Using ROS, Twist velocity commands are directly published from a ROS script
running on the same machine of the robot ROS Master. When using ROSLink,
Twist velocity commands are sent in ROSLink Twist messages to the Dronemap
Planner cloud, which forwards them to the ROSLink Bridge which is running on
the robot. Finally the Twist ROSLink command is converted into a ROS Twist
messages published on the velocity topic. An example of spiral trajectory generated
by ROS and ROSLink are presented in Fig. 4.

Qualitative Analysis Figure5 presents the generated spiral trajectories using open-
loop motion control for both ROS and ROSLink. The spiral corresponds to a rate
frequency equal to 2Hz, an initial velocity of 1.0, a constant angular velocity equal
to 4.0 and a linear step equal to 0.05 and 0.13.A first observation is that these spiral
trajectories are visually correlated and follow a similar pattern based on the linear
speed incremental steps. However, it can be observed that the spiral generated by
ROSLink client control commands has more curves than the trajectory generated by
Twist control command published directly fromROS. This becomesmore contrasted
when the velocity step increases. The main reasons behind this behavior are both
delays and jitters. The delay variation observed with ROSLink are induced by the
network and cloud processing results in updating the linear velocity at different
instances than with ROS.

Quantitative/Statistical Analysis Figure5 depicts the box plot of the jitters for
four scenarios, namely, (i) using ROS onboard, (ii) using ROSLink when the cloud

ROSLink: Bridging ROS with the Internet-of-Things … 279

a.) ROS [step=0.05] b.) ROSLink [step=0.05]

c.) ROS [step=0.13] d.) ROSLink [step=0.13]

Fig. 4 ROS and ROSLink spiral generated trajectories

server is located in the same localhost as ROS (ROSLinkLH), (iii) two scenarios with
ROSLink (ROSLinkCL1 and ROSLinkCL2) where the cloud server is located on the
DreamCompute cloud instance machine, while being accessed from two different
networks. Table1 presents the average values, standard deviations and coefficient of
variations for the jitter.

The ROSLinkLH scenario allows to investigate the impact of cloud process-
ing without networking delays as ROS and ROSLink are in the same machine. On
the other hand, ROSLinkCL1 and ROSLinkCL2 capture the impacts of both cloud
processing and networking over the Internet. As anticipated, in the presence of the jit-
ter, ROS ismuch stable comparedwith ROSLink scenarios. In fact, the average jitters
with ROSLink scenarios are around 1000 times larger compared to ROS, as can be
observed in Table1. This provides an explanation for the discrepancies between the
two spiral trajectories. However, the jitters remain in order of tens of microseconds,
which is acceptable and provides no threat of compromising the real-time control
of the robot through the cloud. Furthermore, we observe that the network has an

280 A. Koubaa et al.

ROS ROSLinkLH ROSLinkCL1 ROSLinkCL2

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Jitter (Seconds)

Fig. 5 ROS and ROSLink spiral generated trajectories

Table 1 Effect of Jitter on various ROSLink deployments

Average StdDev Coeff Var

ROS 3.5274e−06 3.1892e−04 90.4110

ROSLinkLH 0.0031 0.0016 0.5206

ROSLinkCL1 0.0035 0.0044 1.2684

ROSLinkCL2 0.0044 0.0122 2.7605

additional impact to the cloud processing on the jitter, when comparing the jitter of
ROSLink cloud server when deployed on Localhost, against ROSLink cloud server
which is deployed over the Internet. The unpredictable network delays on the com-
munication channel contribute naturally to a larger jitter. Results shown in Table1
confirm this observation, where the standard deviation of coefficient of variation
reach upwards of up to 5 to 6 six times increase in case of the Internet deployment
of the ROSLink cloud.

It must be noted that although these jitters exist, they do not compromise the qual-
ity of control and similarity of trajectories. To verify the similarity and correlation
between the generated trajectories, we applied chi-square test statistical method for
assessing the goodness of fit between the time series of the trajectories at a signifi-
cance level of 5%. It has been found that all trajectories are correlated based on the
chi-square goodness of fit.

The results presented here illustrate the effectiveness of robot control through the
cloudwith reasonable real-time constraints. The quality of control could be improved
using a feedback-control, which we will investigate further in future work. In addi-
tion, ROSLink could also be effectively used for request-response communication
pattern between the client and the robot by for example using it to send goal points
to be executed by the ROS navigation services of the robot.

ROSLink: Bridging ROS with the Internet-of-Things … 281

5 Related Work

Over the past few years the robotics community has made quite a few forays into
using robots over the Internet Earlier contributions in remote access and control of the
robots over the Internet were made by on-line robotics labs. The remote robotics labs
allows users to address research and engineering problems in physical laboratories
which are made available over the Internet Examples of such labs include the UWA
Telerobot [19], UJI on-line robot [20], Lego robots lab [5], PR2 Remote Lab [6]
among many others. Previous endeavors focused on executing simple experiments
remotely supporting on-line learning but did not address shared control of remote
robots through middle-ware The PR2 Lab [6] introduced a middle-ware that allows
developing web based robots applications using the open-source Robot Web Tools
(RWT) [14] interfacing robots running the ROS. Further works in developing and
using middle-ware involving web accessibility of ROS based applications includes
Robotic ProgrammingNetwork (RPN)presented in [7],which allows users to execute
programs through a client in a browser window using python. While RPN is a viable
solution for remote learning, users of the system need to be familiar with ROS
packages and programming interfaces which could be complex for new learners.

Esteller-Curto in [8] provide a REST-based architecture server to control a ROS
enabled robot using the client server approach where the robot executes the client
application connecting to the server. The communication between the client and the
server is done using HTTP headers and in XML. Although an implementation is
provided, the work lacks a high level architecture to store information from various
clients so as to avoid collision at the server. The DAvinCi project presented in [9]
introduced a cloud robotics framework that allows multiple client applications exe-
cuting onROSenabled robots to communicate to theDAvinCi server over the Internet
The server maintains the state of collaborative work completed by the clients. For
large number of clients, the intermediate server can be exposed to network congestion
thus needing further work in reliability and scalability of the service. This project
provided a foray extending the robot-to-robot communications over the Internet to
the cloud based robotics middle-ware. Narita et. al. in [10] present a reliable cloud
based robot services platform extending their earlier work on Robot Service Network
Protocol. The suggested protocol adopts push communication and a reliable messag-
ing mechanism in order to perform reliable communication on robot services based
on web service technologies. Authors in [14] present rosjs, a Javascript library for
ROS, that allows developers to expose robot functionality as web services. The rosjs
allows developers to create robot applications that can be used in the web browser
and extends ROS to provide security and data logging mechanisms.

The ROSBridge protocol in [11] uses a Websockets server installed on the robot
side that allows to send the internal status of the robot based on ROS topics and ser-
vices and receives commands to Websockets clients to process them. This approach
enabled the effective integration of ROS with the Internet; however, the fact that the
Websockets server is running on the robot machine requires the robot to have a public
IP address to be accessible by Websockets clients, which may not be possible for all

282 A. Koubaa et al.

robots. In [12], the author proposed ROS-as-a-web-service which allows to define a
Web service server in the robot to access through the Internet. However, this solution
share the same limitation as ROSBridge as the server is located at the robot side.

6 Conclusion

In this chapter, we proposed,ROSLink, a novel communication protocol to integrate
ROS-enabled robots with the Internet-of-Things for cloud robotics. We designed and
developed ROSLink protocol that allows to access any ROS-enabled robot through
the Internet. We have specified the message set of the protocol and used JSON seri-
alization between the different ends of the system. ROSLink performance was tested
on the cloud on Internet and was shown to be efficient and reliable for controlling
robots through the cloud.

It can be noticed from the chapter outcomes that ROSLink is a lightweight and
effective solution to integrateROS-enabled robotswith the Internet ofThings.Having
the server implemented into a publicly accessible cloud makes it possible to map any
robot to any user in a seamless fashion through the Internet. There is no need for NAT
translation as in solutions based on a robot-side server, like ROSBridge and others.
Furthermore, the high-speed connections available today’s Internet and sufficient
bandwidth is an enabling factor for providing high quality of services for applications
deployed with ROSLink. In fact, ROSLink has a lightweight overhead (including
both header and payload size) and thus it does not consume much bandwidth over
the network, which makes it scalable. The evaluation study discussed the impact of
network on the performance for different networks’ configurations.

We are currently working on extending the performance evaluation study for
considering the closed loop control, namely with a PID controller for altitude and
position control of a drone over ROSLink. We also aim at improving the security
measures of ROSLink by using authentication and encryption of message to prevent
possible attacks like impersonation and authorized access to robots.

Acknowledgements This work is supported by the Dronemap project entitled “DroneMap: A
Cloud Robotics System for Unmanned Aerial Vehicles in Surveillance Applications” under the
grant number 35-157 from King Abdul Aziz City for Science and Technology (KACST), and
supported by Prince Sultan University. In addition, the authors would like to thank the Robotics and
Internet of Things (RIoT) Unit at Prince Sultan University’s Innovation Center for their support to
this work. The authors would like also to thank Gaitech Robotics in China for their support to this
work.

References

1. Kuffner, J. 2010. Cloud-enabled robots. In IEEE-RAS International Conference on Humanoid
Robots. IEEE.

ROSLink: Bridging ROS with the Internet-of-Things … 283

2. Chaari, R., F. Ellouze, A. Koubaa, B. Qureshi, N. Pereira, H. Youssef, and E. Tovar. 2016.
Cyber-physical systems clouds: A survey. Computer Networks 108: 260–278. http://www.
sciencedirect.com/science/article/pii/S1389128616302699.

3. Qureshi, B., andA.Koubaa. 2014. Five traits of performance enhancement using cloud robotics:
A survey. Procedia Computer Science 37: 220–227. http://www.sciencedirect.com/science/
article/pii/S1877050914009983.

4. Quigley,M., K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R.Wheeler, andA.Y.Ng. 2009.
Ros: an open-source robot operating system. In ICRA Workshop on Open Source Software.

5. Casini, M., A. Garulli, A. Giannitrapani, and A. Vicino. 2014. A remote lab for experiments
with a team of mobile robots. Sensors 14: 16486–16507.

6. Pitzer, B., S. Osentoski, G. Jay, C. Crick, and O.C. Jenkins. 2012. Pr2 remote lab: An envi-
ronment for remote development and experimentation. In IEEE International Conference on
Robotics and Automation (ICRA).

7. Casañ, G.A., E. Cervera, A.A.Moughlbay, J. Alemany, and P.Martinet. 2015. Ros-based online
robot programming for remote education and training. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), 6101–6106.

8. Esteller-Curto, R., E. Cervera, A.P. del Pobil, and R. Marin. 2012. Proposal of a rest-based
architecture server to control a robot. In 2012 Sixth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, 708–710.

9. Arumugam, R., V.R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F.F. Kong, A.S. Kumar, K.D.
Meng, and G.W. Kit. Davinci: A cloud computing framework for service robots. In 2010 IEEE
International Conference on Robotics and Automation, 3084–3089.

10. Narita, M., S. Okabe, Y. Kato, Y. Murakwa, K. Okabayashi, and S. Kanda. 2013. Reliable
cloud-based robot services. In 39th Annual Conference of the IEEE Industrial Electronics
Society.

11. Crick, C., G.T. Jay, S. Osentoski, B. Pitzer, and O.C. Jenkins. 2011. rosbridge: ROS for
Non-ROS Users. In International Symposium on Robotics Research (ISRR 2011). AZ, USA:
Flagstaff.

12. Koubâa, A. 2015. ROS As a Service: Web Services for Robot Operating System. Journal of
Software Engineering for Robotics 6 (1).

13. MAVLink Micro Air Vehicle Communication Protocol. 2016. http://qgroundcontrol.org/
mavlink/start. Accessed 7 Jun 2016.

14. Osentoski, S., G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O.C. Jenkins. 2011. Robots as
web services: Reproducible experimentation and application development using rosjs. In 2011
IEEE International Conference on Robotics and Automation (ICRA), 6078–6083.

15. The JSON Data Interchange Format, First edition ed. ECMA International. 2013. http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

16. ROSLink Message Specification Set. 2016. http://wiki.coins-lab.org/roslink/
ROSLINKCommonMessageSet.pdf. Accessed 22 Oct 2016.

17. Koubaa, A., B. Qureshi, M.-F. Sriti, Y. Javed, and E. Tovar. 2016. Dronemap planner: A
service-oriented cloud-based management system for the internet-of-drones. In The 32nd ACM
Symposium on Applied Computing.

18. Dronemap Planner Demos. 2016. http://wiki.coins-lab.org/index.php?title=Dronemap.
Accessed 6 Nov 2016.

19. Telerobot. 2016. http://telerobot.mech.uwa.edu.au/Telerobot/index.html Accessed 10 May
2016.

20. Marín, R., P. Sanz, andA. del Pobil. 2003. The uji online robot: An education and training expe-
rience. Autonomous Robots 15 (3): 283–297. http://dx.doi.org/10.1023/A:1026220621431.

http://www.sciencedirect.com/science/article/pii/S1389128616302699
http://www.sciencedirect.com/science/article/pii/S1389128616302699
http://www.sciencedirect.com/science/article/pii/S1877050914009983
http://www.sciencedirect.com/science/article/pii/S1877050914009983
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://wiki.coins-lab.org/roslink/ROSLINKCommonMessageSet.pdf
http://wiki.coins-lab.org/roslink/ROSLINKCommonMessageSet.pdf
http://wiki.coins-lab.org/index.php?title=Dronemap
http://telerobot.mech.uwa.edu.au/Telerobot/index.html
http://dx.doi.org/10.1023/A:1026220621431

ROS and Docker

Ruffin White and Henrik Christensen

Abstract In this tutorial chapter we’ll cover the growing intersection between ROS
and Docker, showcasing new development tools and strategies to advance robotic
software design and deployment within a ROS/Gazebo context by utilizing advances
in Linux containers. Tutorial examples here will focus on robotics software devel-
opment for education, research, and industry, specifically: constructing repeatable
and reproducible environments, leveraging software defined networking, as well as
running and shipping portable ROS applications.

Keywords ROS · Docker · Repeatability · Reproducibility · Node networking ·
Portable deployment · Distributed computing

1 Introduction

The ROS ecosystem builds from a fast growing, open source, continuously evolving
community of newly released distros, updated dependencies, and deprecated pack-
ages. This can prove troublesome for teaching, developing or even publishing while
using any ROS code-base. Additionally, practitioners in the multidisciplinary field of
robotics are certainly not solely composed of trained software engineers. Building,
running and shipping complex ROS apps and services can be a daunting endeavor for
non-experts, presenting a formidable learning curve encountered by those proceeding
beyond beginner tutorials.

Robotics still lacks a suitable work flowwith respect to continuous integration and
test verification [3, 4]. Issues with repeatable and reproducible environmental setups
can make developing robotics software with collaborators non trivial, discouraging
code-reuse thus promptingmuch unnecessary reinvention.Many however are finding
the use of Docker to be a helpful tool to tackle these challenges [2, 8].

R. White (B) · H. Christensen
Contextual Robotics Institute, University of California,
9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
e-mail: rwhitema@eng.ucsd.edu
URL: http://jacobsschool.ucsd.edu/contextualrobotics

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_9

285

286 R. White and H. Christensen

One of the largest robotic planning projects, MoveIt! [7], now uses ROS with
Docker as a tool for continuous integration and collaboration between maintainers.
Containers have enabled theMoveIt! community to perform faster andmore frequent
tests with the same CI resources, as well as enabling maintainers to build patches and
review pull requests for various releases and branches without cross contaminating
their own development environments.

Additionally, new projects such as Secure ROS (SROS) have also found uses for
containers. SROS is an addition to the ROS API and ecosystem to support modern
cryptography and securitymeasures to improve the state of security for future robotics
subsystems [9]. SROS currently uses Docker to distribute portable run-time and
development environments, inviting the community to quickly interact and contribute
with the latest progress of the project.1

In work with maritime autonomy [6], authors utilize containers as a means to
deploy experimental algorithms to autonomous robotic systems. The methods pre-
sented enable the Naval Surface Warfare Center to minimize the level of effort and
lead time required to repeatedly re-baseline unmanned underwater vehicles, high
cost equipment that is also time-shared among many other research groups. Authors
show results of a quickly-deployable, easily reconfigurable, and vehicle-agnostic
autonomy solution that helps maximize the usage of limited resources.

The topics and examples covered to address the listed challenges are overviewed,
ordered in steadily advancing complexity, and are intended to guide the reader from
novice to well informed. However to best apprehend the material presented, readers
should have prior developer level experience with ROS, e.g. building packages from
source. Having a basic user level acquaintance with Docker, e.g. being familiar with
at least the most common Docker CLI commands, e.g. docker pull, build,
run, may also helpful but not required.

1.1 Overview

• Background: What is Docker? What are Linux Containers vs. Virtual Machines?
What is the dependency matrix from hell? What are the official ROS and Gazebo
DockerHub repos? What role can Docker play in robotics and how does its devel-
opment mirror what is accruing in the web development community?

• Setup: What minimum requirements are needed? Is my OS and hardware sup-
ported? How can I download various releases of ROS using Docker?

• Examples:

– Education | Container and Image Basics: How can Docker soften the learning
curve for ROS and Gazebo by simplifying the setup process? How can the
community share working examples or reproduce broken ones for collaborative

1http://wiki.ros.org/SROS/Installation/Docker.

http://wiki.ros.org/SROS/Installation/Docker

ROS and Docker 287

debugging? How can containers provide fail-fast learn-fast disposable work-
spaces, encouraging experimentation without hesitation?

– Industry | Networking and Deployment: How can nodes be distributed across
machines without local access or VPNs? How can compose files encapsulate
the start-up of complex launch procedures?

– Research | Using Devices and Peripherals: How can GPUs and hardware
peripherals bemounted for deep learning and perception tasks? How can images
serve to archive code alongside publications? How can we quickly collaborate
with others by sharing complex compilation setups?

• Notes: What are some caveats, best practices, and suggested third party tools to
watch out for?

2 Background

Over the last few years an insurgence of Linux containers has taken root in the
world of software development. Linux containers themselves have existed for some
time, but until recently creating and managing them has not always been simple or
straightforward.

However, thanks in part to improved tooling and a simplified user experience
offered by growing open source projects such as Docker, this method of building
and distributing software is beginning to change how we work and collaborate. And
with the establishment of the Open Container Initiative, a open governance structure
formed under the auspices of the Linux Foundation and backed by much of the
web industry, open industry standards around container formats and runtimes will
inevitably continue to mature.

ALinux container is basically an operating-system-level virtualizationmethod for
runningmultiple isolated Linux systems on a control host using a single Linux kernel,
offering an environment similar to a Virtual Machine, but without the overhead that
comeswith running a separate kernel and simulating all the hardware and networking.
Simply speaking, containers sit between the spectrum of chroots and VMs, being
slightly closer to the former.

Docker implements a client-server system where the Docker daemon (or engine)
runs on a host and it is accessed via a client. The client, which may or may not be
on the same host, can control an engine (or even a swarm of engines on multiple
hosts) to spawn, manage, and network multiple containers. Containers run from a
thin writable layer on top of a specified image, where an image is a list of read-
only layers that represent filesystem differences. A container’s writable layer can be
committed to construct a new read-only image, while common read-only layers can
be shared across images.

288 R. White and H. Christensen

During the ROS release of Jade Turtle in 2015, Open Source Robotic Foundation
(OSRF) and authors collaborated to publish an Official Docker Hub repository for
ROS2 andGazebo3 [8]. TheseDockerized images are intended to provide a simplified
and consistent foundation to build and deploy robotic applications. Built from the
official Ubuntu image and OSRF’s official Debian packages, the images serve as a
quick and secure vector for releases.

Developing such complex robotic systems with cutting edge implementations of
newly published algorithms remains challenging, as repeatability and reproducibility
of robotic software can fall to the wayside in the race to innovate and satisfy the ever
growing dependency matrix from hell–the various permutations of architectures,
peripherals, and libraries that exist in robotics. With the added difficulty in coding,
tuning and deploying multiple software components that span many engineering
disciplines, amore collaborative approach becomes attractive.However, the technical
difficulties in sharing and maintaining a collection of software over multiple robots
and platforms has for some time exceeded the time and effort that many smaller labs
and businesses could afford.

With the advance and standardization of software containers, roboticists are
primed to acquire a host of improved developer tooling for building and shipping
software. To help alleviate the growing pains and technical challenges of adopting
new practices, we have focused on providing an official resource for using ROS with
these new technologies.

3 Setup

3.1 Requirements

For this tutorial we’ll be leveraging many of the modern features found in recent
releases of the Docker engine, as well as additional tools surrounding the larger
Docker ecosystem. The exact versions used while authoring these examples are
shownbelow, however later versions should also function sincemanyof these features
are now quite stable and have matured.

1 $ docker -v
2 Docker version 1.11.1, build 5604cbe
3 $ docker-compose -v
4 docker-compose version 1.6.2, build 4d72027

Optional requirements include a local installationofROSon the samemachineyou
plan to have host your Docker engine/install, since all our encountered

2https://hub.docker.com/_/ros/.
3https://hub.docker.com/_/gazebo/.

https://hub.docker.com/_/ros/
https://hub.docker.com/_/gazebo/.

ROS and Docker 289

examples will be “containerized”. Since a demonstration interconnecting ROS from
the host will be provided, a matching ROS installation may be useful for using GUI’s
and visualizations. Note however that any mention of a required host operating sys-
tem has been omitted, because, unlike ROS, Docker can be easily installed on many
distributions that support any modern Linux kernel (current minimum 3.10). Mac-
OSX and MS-Windows are also Docker supported, but require a VM to service a
running Linux kernel, however this and the general 64-bit requirement may change.
A host installation of a recent LTS such as Ubuntu 14.04 or 16.04 is advised, espe-
cially if you wish to install the only other optional requirement–Nadia driver and
nvidia-docker4 plugin for improved performance of the ros_caffe example
using CUDA enabled hardware.

3.2 Installation

You can follow the proscribed and up-to-date installation instructions5 for your OS
from Docker’s Document website, or if your distribution supports deb/rpm, you may
use the script provided by Docker to install the engine (compose installed sepa-
rately6):

curl − fsSLhttps : //get.docker.com/ | sh
sudoservicedockerrestart

Additionally, to avoid sudo while commanding Docker, you may choose to add
your user to the docker Unix group. Take care however, as the Docker group is
equivalent to root. After installing Docker, you’ll want to install Docker-compose
from the same documentation website, permitting you to succinctly describe and
launch our later examples using short yaml compose files. To test Docker, and down-
load some useful images for later, you needn’t run more than this command from
line 1:

4https://github.com/NVIDIA/nvidia-docker.
5https://docs.docker.com/linux/step_one/.
6https://docs.docker.com/compose/.

https://github.com/NVIDIA/nvidia-docker
https://docs.docker.com/linux/step_one/
https://docs.docker.com/compose/

290 R. White and H. Christensen

1 $ docker run -it --rm ros roscore
2 Unable to find image ’ros:latest’ locally
3 latest: Pulling from library/ros
4 943c334059c7: Pull complete
5 ...
6 f9b3f610dc9c: Pull complete
7 Digest: sha256:e1c7...c2b1
8 Status: Downloaded newer image for ros:latest
9 ... logging to /root/.ros/log/ab44...0002/roslaunch-c6619a48f368-1.log

10 Checking log directory for disk usage. This may take awhile.
11 Press Ctrl-C to interrupt
12 Done checking log file disk usage. Usage is <1GB.
13 started roslaunch server http://c6619a48f368:35403/
14 ros_comm version 1.11.19
15 SUMMARY
16 ========
17 PARAMETERS
18 * /rosdistro: indigo
19 ...

You should see an output very similar to the above, where Docker simply runs
roscore from the ros:latest image. If theDocker engine can not find this image locally,
it will automatically pull what it needs from DockerHub. Once roscore is running,
and because we’ve specified this session to be interactive and clean up afterward,
you can kill roscore, and thereby stop and remove the originating container using
Ctrl-C.

3.3 Building

Before we proceedwith any examples, let’s take amoment to walk through aDocker-
file used to build the tagged images you just downloaded. The hierarchy of available
official tags is keyed to the most common ROS meta-packages, designed to have
small disk footprints and simple configurations:

• ros-core: minimal bare-bones ROS install
• ros-base: basic libraries (tagged with distro name, newest LTS as latest)
• robot: basic install for robot platforms
• perception: basic install for perception tasks

The rest of the common meta-packages such as desktop and desktop-full
are hosted on automatic build repos under OSRF’s DockerHub profile. These last
meta-packages include graphical libraries and hook to a host of other large dependen-
cies such as X11, X server, etc. In the interest of keeping the official library images
lean and secure, the desktop images are just hosted by OSRF.

ROS and Docker 291

1 # This is an auto generated Dockerfile for ros:indigo-ros-core
2 # generated from

templates/docker_images/create_ros_core_image.Dockerfile.em↪→

3 # generated on 2016-04-26 21:55:54 +0000
4 FROM ubuntu:trusty
5 MAINTAINER Tully Foote tfoote+buildfarm@osrfoundation.org

First thing you’ll notice is the auto generated comments that specify the date the
Dockerfile was generated as well as the template used to derive it. There are many
ROS Dockerfiles, one for each tagged image under the official DockerHub repo, so
a template engine is used to generate and maintain all the Dockerfiles within the
osrf/docker_images7 GitHub repo. The template engine itself is made available at
the osrf/docker_templates,8 providing a means to programmatically generate custom
ROSrelatedDockerfiles, to be simultaneously leveragedwithin the secondgeneration
ROS build farm using Docker.

The final two lines, 4 and 5, define the originating parent image and maintainer
contact information. Currently all ROS images are built from LTS Ubuntu images
also provided by theOfficialDockerHubLibrary.Note here that theOSminor version
number is not necessarily specified. This permits the Official ROS images to quickly
rebuildwith the latestminor release updates to theUbuntu image. It iswise to consider
this compromise of abstraction vs. specificity, e.g. with ROS version dependent code-
base; defining only FROM rosmay break the application upon the next LTS release,
bumping up the implicit latest tag.

7 # setup environment
8 RUN locale-gen en_US.UTF-8
9 ENV LANG en_US.UTF-8

10

11 # setup keys
12 RUN apt-key adv --keyserver ha.pool.sks-keyservers.net --recv-keys

421C365BD9FF1F717815A3895523BAEEB01FA116↪→

13

14 # setup sources.list
15 RUN echo "deb http://packages.ros.org/ros/ubuntu trusty main" >

/etc/apt/sources.list.d/ros-latest.list↪→

Above we see the basic ROS installation setup for Ubuntu. The base image used
derives from a modified version of Ubuntu’s Cloud Images, rather than the full
desktop install, so we need to configure some locales and expected variables for
ROS environments. Here we also use a key-server with a high-availability server
pool to add the ROS repository credentials. Note that a Dockerfile should be written
to help mitigate any man-in-the-middle attacks during the build process: using https;

7https://github.com/osrf/docker_images.
8https://github.com/osrf/docker_templates.

https://github.com/osrf/docker_images
https://github.com/osrf/docker_templates

292 R. White and H. Christensen

importing PGP keys full fingerprints to check package signing; embedding check
sums directly in the Dockerfile if PGP signing is not provided.

17 # install bootstrap tools
18 RUN apt-get update && apt-get install --no-install-recommends -y \
19 python-rosdep \
20 python-rosinstall \
21 python-vcstools \
22 && rm -rf /var/lib/apt/lists/*
23

24 # bootstrap rosdep
25 RUN rosdep init \
26 && rosdep update

Next, some Python dependencies are bootstrapped for the rosdep tool. Note the
style that every apt-get update/install is written on the same line and
superseded with rm -rf /var/lib/apt/lists/*. This is roughly the oppo-
site of apt-get update since it ensures that the resulting layer doesn’t include the
extra∼8MB of APT package list data. This also enforces appropriate apt-get update
usage, preventing images from containing stale package listing data.

28 # install ros packages
29 ENV ROS_DISTRO indigo
30 RUN apt-get update && apt-get install -y \
31 ros-indigo-ros-core=1.1.4-0* \
32 && rm -rf /var/lib/apt/lists/*

Now we finally install the particular ROS meta package that the deriving image
is tagged for. Here we intend that rebuilding the same Dockerfile should result in
the same version of the image being packaged. And an official repo Dockerfile will
serve as a base image for all those preceding, so being version explicit is valuable to
the repeatability and transparency of the builds.

If an installation version can not be satisfied, the build should fail outright, pre-
venting an inadvertent rebuild of a Dockerfile containing something other than what
is given by its tag. For dependent packages installed by apt there’s usually no need to
pin them to a version, but this is something you may want to consider. An additional
benefit to pinning the version is this provides the maintainer a chance to preserve and
break the build cachewhere needed, when for instance updating a packagewith a ver-
sion bump. Updating of environment variables within Dockerfiles is also sometimes
used for the same purpose.

ROS and Docker 293

34 # setup entrypoint
35 COPY ./ros_entrypoint.sh /
36

37 ENTRYPOINT ["/ros_entrypoint.sh"]
38 CMD ["bash"]

Lastly, the default entrypoint is configured and then the default run command
defined. Here, the entrypoint simply sources ROS’s own setup script, as shown below.
The entrypoint can be amended to source your own ROS workspace, enabling brief
Docker run commands to launch your own ROS package.

1 #!/bin/bash
2 set -e
3

4 # setup ros environment
5 source "/opt/ros/$ROS_DISTRO/setup.bash"
6 exec "$@"

4 Examples

Now let’s cover some example use cases for using Docker with ROS. All example
code and detailed tutorials will be made freely available in the corresponding public
GitHub repo.9

4.1 Education

Let’s take the scenario that you are the instructor for a robotics course utilizing
ROS. It’s just the beginning of the course, but you would like to give the students
a working ROS tutorial to keep them engaged. However you’d also like to prevent
the first half of the lecture and following office hours from diverging into an arduous
ROS install-fest. We’ll make an optimistic assumption your students already have a
working Linux or VM install with Docker, but not necessarily a homogeneous set of
releases or distributions. However, we’d also like to avoid breaking anything in any
way, due in part to their other coursework dependencies and setups.

9https://github.com/ruffsl/ros_docker_demos.

https://github.com/ruffsl/ros_docker_demos

294 R. White and H. Christensen

Let’s begin by giving the students a small Dockerfile to build our example:

1 FROM ros:indigo
2 RUN apt-get update && apt-get install -y \
3 build-essential \
4 && rm -rf /var/lib/apt/lists/
5 ENV CATKIN_WS=/root/catkin_ws
6 RUN rm /bin/sh \
7 && ln -s /bin/bash /bin/sh

Here we’ll start from an official ROS image and install the dependencies we know
the students will need. The official images cater to runtime deployments, but can be
easily extended for our build requirements. We’ll also define our catkin workspace
directory, as well as switch to bash for sourcing the environment needed with catkin.
One could instead COPY and RUN an executable bash script in the Docker build
context, that being same directory as the Dockerfile, but we’ll swap the shell to keep
everything self-contained in the Dockerfile.

8 RUN source /ros_entrypoint.sh \
9 && mkdir -p $CATKIN_WS/src \

10 && cd $CATKIN_WS/src \
11 && catkin_init_workspace \
12 && git clone https://github.com/ros/ros_tutorials.git \
13 && touch ros_tutorials/turtlesim/CATKIN_IGNORE

Next we’ll show the students how to create a catkin workspace and clone the
source for the example. Note that we’re ignoring one package, as we’ve omitted to
download and install any large GUI desktop dependencies such as QT.

14 RUN source /ros_entrypoint.sh \
15 && cd $CATKIN_WS \
16 && catkin_make
17 RUN sed -i \
18 ’/source "\/opt\/ros\/$ROS_DISTRO\/setup.bash"/a source

"\$CATKIN_WS\/devel\/setup.bash"’ \↪→

19 /ros_entrypoint.sh

Finally we’ll build the tutorial package and include the setup of our catkin
workspace into the original entrypoint. Students can then be instructed to start with
the following two commands in the same path they’ve saved the Dockerfile:

ROS and Docker 295

1 $ docker build --tag=ros:tutorials .
2 Sending build context to Docker daemon 2.56 kB
3 Step 1 : FROM ros:indigo
4 ---> e7ccb7b11eeb
5 ...
6 Successfully built f2cc5810fb94
7 $ docker run -it ros:tutorials bash -c "roscore & rosrun

roscpp_tutorials listener & rosrun roscpp_tutorials talker"↪→

8 ...
9 [INFO] [1462299420.261297314]: hello world 5

10 [INFO] [1462299420.261495662]: I heard: [hello world 5]
11 [INFO] [1462299420.361333784]: hello world 6
12 ^C[INFO] [1462299420.361548617]: I heard: [hello world 6]
13 [rosout-1] killing on exit

From here, students can swap out the URLs for their own repositories and append
additional dependencies. Should students encounter any build or runtime errors,
Dockerfiles and/or images could be shared (from Git Hub and/or Docker Hub) with
the instructor or other peers on say answers.ros.org to serve as a minimal exam-
ple, capable of quickly replicating the errors encountered for further collaborative
debugging.

What we’ve shown so far has been a rather structured work-flow from build
to runtime, however containers also offer a more interactive and dynamic work-
flow as well. As shown from this tutorial video,10 we can interact with containers
directly. A container can persist beyond the life cycle of its starting process, and is
not removed until the docker daemon is directed to do so. Naming or keeping track
of your containers affords you the use of isolated ephemeral work-spaces in which
to experiment or test, stopping and restarting them as needed.

Note that you should avoid using containers to store a system state or files you
wish to preserve. Instead, a developer may work within a container iteratively, pro-
gressively building the larger application in increments and taking periodic respites
to commit the state of their container/progress to a newly tagged image layer. This
could be seen as a form of state wide revision control, with save points allowing the
developer to reverse changes by simply spawning a new container from a previous
layer. All the while the developer could also consolidate his progress by noting the
setup procedure within a new Dockerfile, testing and comparing it against the linage
of working scratchwork images.

4.2 Industry

In our previous education example, it was evident how we simply spawned all the
tutorial nodes for a single bash process. When this process (PID 1) is killed, the con-

10https://youtu.be/9xqekKwzmV8.

https://youtu.be/9xqekKwzmV8

296 R. White and H. Christensen

tainer is also killed. This explains the popular convention of keeping to one process
per container, as it is indicative to modern paradigm of microservices architecture,
etc. This is handy should we desire the life-cycles of certain deployed ROS nodes to
be longer than others. Let’s revisit the previous example utilizing software defined
networking to interlink the same ROS nodes and services, only now, running from
separate containers.

Within a newdirectory,foo, we’ll create a file named docker-compose.yml:

1 version: ’2’
2

3 services:
4 master:
5 image: ros:indigo
6 environment:
7 - "ROS_HOSTNAME=master.foo_default"
8 command: roscore
9

10 talker:
11 build: talker/.
12 environment:
13 - "ROS_HOSTNAME=talker.foo_default"
14 - "ROS_MASTER_URI=http://master.foo_default:11311"
15 command: rosrun roscpp_tutorials talker
16

17 listener:
18 build: listener/.
19 environment:
20 - "ROS_HOSTNAME=listener.foo_default"
21 - "ROS_MASTER_URI=http://master.foo_default:11311"
22 command: rosrun roscpp_tutorials listener

With this compose file, we have encapsulated the entire setup and structure of our
simple set of ROS ’microservices’. Here, each service, (master, talker, listener), will
spawn a new container named appropriately, originating from the image designated
or Dockerfiles specified in the build field. Notice that the environment fields
configure the ROS network variables to match each service’s domain name under
the foo_default network named by our project’s directory. The foo_default
name-space can be omitted, as the defaultDNS resolutionwithin thefoo_default
will resolve using the local service or container names. Still, remaining explicit helps
avoid collisions while adding host enabled DNS resolution (later on) over multiple
Docker networks.

Before starting up the project, we’ll also copy the same Dockerfile from the
previous example into the project’s talker and listener sub-directories. With
this, we can start up the project detached, and then monitor the logs as below:

ROS and Docker 297

1 ~/foo$ docker-compose up -d
2 Creating foo_master_1
3 Creating foo_listener_1
4 Creating foo_talker_1
5

6 ~/foo$ docker-compose logs
7 Attaching to foo_talker_1, foo_master_1, foo_listener_1
8 ...
9 talker_1 | [INFO] [1462307688.323794165]: hello world 42

10 listener_1 | [INFO] [1462307688.324099631]: I heard: [hello world 42]

Now let’s consider the example where we’d like to upgrade the ROS distro release
used for just our talker service, leaving the rest of our ROS nodes running and
uninterrupted. We’ll use Docker-compose to recreate our new talker service:

12 ~/foo$ docker exec -it foo_talker_1 printenv ROS_DISTRO
13 indigo
14

15 ~/foo$ sed -i -- ’s/indigo/jade/g’ talker/Dockerfile
16

17 ~/foo$ docker-compose up -d --build --force-recreate talker
18 Building talker
19 Step 1 : FROM ros:jade
20 ...
21 Successfully built 3608a3e9e788
22 Recreating foo_talker_1
23

24 ~/foo$ docker exec -it foo_talker_1 printenv ROS_DISTRO
25 jade

Here we first check the ROS release used in the container, and change the version
used in the originating Dockerfile for the talker service. Next we use some shorthand
flags to inform Docker-compose to re-bring-up the talker service by recreating a new
talker container by rebuilding the talker image. We then check the ROS distro again
and see the reflected update. You may also go back to docker compose logs and find
that the counter in the published message has been reset.

From here on we can abstract our interaction with the docker engine, and instead
point our client towards a Docker Swarm,11 a method for one client to spin up con-
tainers from a cluster of Docker engines. Normally a tool such as Docker Machine12

can be used to bootstrap a swarm and define a swarmmaster. This entails provisioning
and networking engines from multiple hosts together, such that requested containers
can be load balanced across the swarm, and containers running from different hosts
can securely communicate.

11https://docs.docker.com/swarm.
12https://docs.docker.com/machine.

https://docs.docker.com/swarm
https://docs.docker.com/machine

298 R. White and H. Christensen

4.3 Research

Up to this point, we’ve considered relatively benign Docker enabled ROS projects
where our build dependencies were fairly shallow, simply those accrued through
default apt-get, and run time dependencies without any external hardware. How-
ever, this is not always the case when an original project builds from fairly new and
evolving research. Let’s assume for the moment you’re a computer vision researcher,
and a component of your experiment utilises ROS for image acquisition and trans-
port culminating into live published classification probabilities from a trained deep
convolutional neural network (CNN). Your bleeding edge CNN relies on a specific
release of parallel programming libraries, not to mention the supporting GPU and
imaging capture peripheral hardware.

Here we’ll demonstrate the reuse of existing public Dockerfiles to quickly obtain
a running setup, stringing together the latest published images with preconfigured
installations of CUDA/CUDNN, and meticulous source build configurations for
Caffe [5]. Specifically we’ll use a Caffe image from a Docker Hub provided by
the community. This image then-in-turn builds from a CUDA/CUDNN image from
NVIDIA, that then-in-turn uses the official Ubuntu image on Docker Hub. All nec-
essary Dockerfiles are made available through the respective Docker Hub repos, so
that you may build the stack locally if you choose (Fig. 1).

However, in the interest of build time and demonstration, we literally build
FROM those before us. This involves a small modification and addition to the Dock-
erfile for ros-core. By simply redirecting the parent image structure of theDocker-
file to point to the end-chain image, with each image in the prior chain encompassing
a component of our requirements, we can easily customize and concatenate the lot
to describe and construct an environment that contains just what we need.

For brevity, detailed and updated documentation/Dockerfiles are kept to same
repository as the ros-caffe project.13 A link to a video demonstration14 can also be
found at the project repo. Shownherewill be the notable key-points in pulling/running
the image classification node from your own Docker machine.

First we’ll modify the ros-core Dockerfile to build from an image with Caffe
built using CUDA/CUDNN, in this case we’ll use a popular set of maintained auto-
mated build repos from Kai Arulkumaran [1]:

1 FROM kaixhin/cuda-caffe

Next we’ll amend the RUN command that installs ROS packages to include the
additional ROS dependencies for our ros_caffe example package:

13https://github.com/ruffsl/ros_caffe.
14https://youtu.be/T8ZnnTpriC0.

https://github.com/ruffsl/ros_caffe
https://youtu.be/T8ZnnTpriC0

ROS and Docker 299

Fig. 1 A visual of the base image inheritance for the ros_caffe:gpu image

24 # install ros packages
25 RUN apt-get update && apt-get install -y \
26 ros-${ROS_DISTRO}-ros-core \
27 ros-${ROS_DISTRO}-usb-cam \
28 ros-${ROS_DISTRO}-rosbridge-server \
29 ros-${ROS_DISTRO}-roswww \
30 ros-${ROS_DISTRO}-mjpeg-server \
31 ros-${ROS_DISTRO}-dynamic-reconfigure \
32 python-twisted \
33 python-catkin-tools && \
34 rm -rf /var/lib/apt/lists/*

Note the reuse of theROS_DISTROvariablewithin theDockerfile.Whenbuilding
from the official ROS image, this helps makes your Dockerfile more adaptable,
allowing for easy reuse and migration to the next ROS release, just by updating the
base image reference.

40 # setup catkin workspace
41 ENV CATKIN_WS=/root/catkin_ws
42 RUN mkdir -p $CATKIN_WS/src
43 WORKDIR $CATKIN_WS/src
44

45 # clone ros-caffe project
46 RUN git clone https://github.com/ruffsl/ros_caffe.git
47

48 # Replacing shell with bash for later source, catkin build commands
49 RUN mv /bin/sh /bin/sh-old && \
50 ln -s /bin/bash /bin/sh
51

52 # build ros-caffe ros wrapper
53 WORKDIR $CATKIN_WS
54 ENV TERM xterm
55 ENV PYTHONIOENCODING UTF-8
56 RUN source "/opt/ros/$ROS_DISTRO/setup.bash" && \
57 catkin build --no-status && \
58 ldconfig

Finally, we can simply clone and build the catkin package. Note the use of
WORKDIR to execute RUN commands from the proper directories, avoiding the need

300 R. White and H. Christensen

to hard-code the paths in the command. The optional variables and arguments around
the catkin build command are used to clear a few warnings and printing behaviors
the catkin tool has while running from a basic terminal session.

Now that we know how this is all built, let’s skip ahead to running the example.
You’ll first need to clone the project’s git repo and then download the caffe model
to acquire the necessary files to run the example network, as explained in the project
README on the github repo. We can then launch the node by using the run com-
mand to pull the necessary images from the project’s automated build repo onDocker
Hub. The run script within the docker folder shows an example of using the GPU
version:

1 nvidia-docker run \
2 -it \
3 --publish 8080:8080 \
4 --publish 8085:8085 \
5 --publish 9090:9090 \
6 --volume="${PWD}/../ros_caffe/data:

/root/catkin_ws/src/ros_caffe/ros_caffe/data" \↪→

7 --device /dev/video0:/dev/video0 \
8 ruffsl/ros_caffe:gpu roslaunch ros_caffe_web ros_caffe_web.launch

The Nvidia Docker plug-in is a simple wrapper function around Docker’s own
run call, injecting additional arguments that include mounting the device hardware
and driver directories. This permits our CUDA code to function easily within the
container without necessarily baking the version specific Nvidia driver within the
image itself. You can easily see all implicit properties affected by using the docker
inspect command with the name of the container generated and notice devices
such as /dev/nvidia0 and mounted volume driver named after your graphics
driver version. Be sure you have enough available VRAM, about 500MB to load this
network.You can check yourmemory usage usingnvidia-smi. If you don’t have a
GPU, then youmay simply alter the above commandby changingnvidia-docker
to just docker, as well as swapping the :gpu image tag with :cpu.

The rest of the command is relatively clear; specifying the port mapping for the
container to expose web ros interface through localhost as well as mounting the
volume including our downloaded caffe model. The device argument here is used
to provide the container with a video capture device; one can just as easily mount
/dev/bus/usb or /dev/joy0 for other such peripherals. Lastly we specify the
image name and roslaunch command. Note that we can use this command as is since
we’ve modified the image’s entrypoint to source our workspace as well.

Once the ros-caffe node is running, we can redirect our browser to the local URL15

to see a live video feed of the current published image and label prediction from the
neural network as shown in Fig. 2.

15http://127.0.0.1:8085/ros_caffe_web/index.html.

http://127.0.0.1:8085/ros_caffe_web/index.html

ROS and Docker 301

Fig. 2 A simple ros-caffe
web interface with live video
stream and current predicted
labels, published from
containerized nodes with
GPU and webcamera device
access

4.4 Graphical Interfaces

One particular aspect routinely utilized by the ROS community includes all the
tools used to introspect and debug robotic software through the use of graphical
interfaces, such as rqt, Rviz, or gzviewer . Although using graphical interfaces is
perhaps outside of the original use case of Docker, it is perfectly possible and in-fact
relatively viable for many applications. Thanks to Linux’s pervasive use of the files
system for everything, including video and audio devices, we can expose what we
need from the host system to the container.

Although the easiest means of permitting the use of a GUI may be to simply
use the host’s installation of ROS or Gazebo, as demonstrated in this video,16 and
thus set the master URI or server address to connect to the containers via virtual
networking and DNS containers described earlier, it may be necessary to run a GUI
from within the container, be it custom dependencies or accelerated graphics. There
are of course a plethora of solutions for various requirements and containers, ranging
from display tunneling over SSH, VNC client server sessions, or directly mounting
X-server unix sockets and forwarded alsa or pulseaudio connections. Each method
of course comes with its own pros and cons, and in light of this evolving frontier,
the reader is encouraged to read on ROSWiki’s Docker page17 in order to follow the
latest tutorials and resources.

Below is a brief example of the turtlebot demo using Gazebo and RVIZ GUIs
via X Server sockets and graphical acceleration from within a container. First we’ll

16https://youtu.be/P__phnA57LM.
17http://wiki.ros.org/docker.

https://youtu.be/P__phnA57LM
http://wiki.ros.org/docker

302 R. White and H. Christensen

Fig. 3 An example of containerized GUI windows rendered from within the host’s desktop
environment

build from OSRF’s ROS image using the desktop-full tag, as this will have the
Gazebo and RVIZ pre-installed. Then we’ll add the turtlebot packages, the necessary
world models, and custom launch file (Fig. 3).

1 FROM osrf/ros:kinetic-desktop-full
2

3 # install turtlebot simulator
4 RUN apt-get update && apt-get install -y \
5 ros-${ROS_DISTRO}-turtlebot* \
6 && rm -rf /var/lib/apt/lists/*
7

8 # Getting models from[http://gazebosim.org/models/]. This may take a few
seconds.↪→

9 RUN gzserver --verbose --iters 1
/opt/ros/${ROS_DISTRO}/share/turtlebot_gazebo/
worlds/playground.world

↪→

↪→

10

11 # install custom launchfile
12 ADD my_turtlebot_simulator.launch /

Note the single iteration of gzserver with the default turtlebot world used to
prefetch the model from the web and into the image. This helps cuts Gazebo’s
start-up time, saving each deriving container from downloading and initializing the
needed model database at runtime. The launchfile here is relatively basic, launching
the simulation, the visualisation, and a user control interface:

ROS and Docker 303

1 <launch>
2 <include file="$(find

turtlebot_gazebo)/launch/turtlebot_world.launch" />↪→

3 <include file="$(find
turtlebot_teleop)/launch/keyboard_teleop.launch" />↪→

4 <include file="$(find
turtlebot_rviz_launchers)/launch/view_robot.launch" />↪→

5 </launch>

For hardware acceleration using discreet graphic for Intel, we’ll need to also add
some common Mesa libraries:

14 # Add Intel display support by installing Mesa libraries
15 RUN apt-get update && apt-get install -y \
16 libgl1-mesa-glx \
17 libgl1-mesa-dri \
18 && rm -rf /var/lib/apt/lists/*

For hardware acceleration using dedicated graphics for Nvidia, we’ll need to add
some hooks and variables instead for the nvidia-docker plugin:

14 # Add Nvidia display support by including nvidia-docker hooks
15 LABEL com.nvidia.volumes.needed="nvidia_driver"
16 ENV PATH /usr/local/nvidia/bin:${PATH}
17 ENV LD_LIBRARY_PATH

/usr/local/nvidia/lib:/usr/local/nvidia/lib64:${LD_LIBRARY_PATH}↪→

Note how any deviations between the two setups was left to the last few lines of
the Dockerfile, specifically any layers of the image that will no longer be hardware
agnostic. This enables you to share as much of the common previous layers between
the two tags as possible, saving disk space, and shortening build times by reusing the
cache. Finally we can launch GUI containers by permitting access to the X Server,
then mounting the Direct Rendering Infrastructure and unix socket:

1 xhost +local:root
2

3 # Run container with necessary Xorg and DRI mounts
4 docker run -it \
5 --env="DISPLAY" \
6 --env="QT_X11_NO_MITSHM=1" \
7 --device=/dev/dri:/dev/dri \
8 --volume=/tmp/.X11-unix:/tmp/.X11-unix \
9 ros:turtlebot-intel \

10 roslaunch my_turtlebot_simulator.launch
11

12 xhost -local:root

304 R. White and H. Christensen

The environment variables are used to inform GUIs of the display to use, as well
as fix a subtle QT rendering issue. For Nvidia, things look much the same, except
for use of the nvidia-docker plugin to add the needed device and volume arguments:

1 xhost +local:root
2

3 # Run container with necessary Xorg and GPU mounts
4 nvidia-docker run -it \
5 --env="DISPLAY" \
6 --env="QT_X11_NO_MITSHM=1" \
7 --volume=/tmp/.X11-unix:/tmp/.X11-unix \
8 ros:turtlebot-nvidia \
9 roslaunch my_turtlebot_simulator.launch

10

11 xhost -local:root

You can view an example using this method from the previous linked demo video
for ros-caffe, or a older GUI demo video18 now made simpler via the nvidia-plugin
for qualitative evaluation.

5 Notes

As you take further advantage of the growing Docker ecosystem for your robotics
applications, you may find certain methods and third-party tools useful in continuing
simplifying or becoming more efficient in common development tasks while using
Docker. Here we’ll cover just a few helpful practices and tools most relevant for ROS
users.

5.1 Best Practices and Caveats

There are many best practices to consider while using Docker, and as with any new
technology or paradigm,we need to know the gotchas.Whilemuch is revealedwithin
Docker’s own tutorial documentation and helpful postswithin the community,19 there
are a few subjects that are more pertinent to ROS users than others.

ROS is a relatively large ‘stack’ as compared to other commonly used code-
bases with Docker, such as smaller lightweight web stacks. If the objective is to
distribute and share Robotics based images using ROS, it’s worthwhile to be mindful
of the size of the images you generate to be bandwidth considerate. There are many
ways to mitigate bloat from an image through careful thought while structuring the

18https://youtu.be/djLKmDMsdxM.
19https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/.

https://youtu.be/djLKmDMsdxM
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

ROS and Docker 305

Dockerfile. Some of this was described while going over the official ROSDockerfile,
such as always removing temporary files before completion of a layer generated from
each Docker command.

However there are a few other caveats to consider concerning how a layer is
constructed. One being to never change the permissions of a file inside a Docker-
file unless unavoidable; consider using the entrypoint script to make the changes if
necessary for runtime. Although a git/Docker comparison could be made, Docker
only notes what files have changed, not necessarily how the files have been modified
inside the layer. This causes Docker to replicate/replace the files while creating a
new layer, potentially doubling the size if you’re modifying large files, or potentially
worse, every file.

Another way keep disk size down can be to flatten the image, or certain spans of
layers. This however prevents the sharing of intermediate layers among commonly
derived images, a method Docker uses to minimize the overall disk usage. Flattening
images also only helps in squashing large modifications to image files, but does
nothing if the squashed file system is just inherently large.

When building Dockerfiles, you’ll want to be considerate of the build context, i.e.
the parent folder of the Dockerfile itself. For example, it’s best to build a Dockerfile
from a folder that includes just the files and folders you’d like to ADD or COPY into
the image. This is because the docker client will tar/compressing the directory (and
all subdirectories) where you executed the build and send it to the docker daemon.
Although files that are not referenced to will not be included in the image, building a
Dockerfile from say your /root/, /home/ or /tmp/ directory for example would
be unwise, as the amount of unnecessary data sent to the daemon would slow/kill
the build. A .dockerignore could also be used to avoid this side effect.

Finally, a docker container should not necessarily be thought of as a complete
virtual environment. As opposed to VM’s with their own hypervized kernel and
start-up processes, the only process that runs within the container is that which you
command. This means that there is no system init, up-start or system starting syslog,
cron jobs and daemons, or even reaping orphaned zombie processes. This is usually
ok, as a container’s life cycle is quite short and we normally only want to execute
what we specify. However, if you intend to use containers as a more full fledged
system requiring say proper signals handling, consider using minimal init system
for Linux containers such as dumb-init.20 For most cases with ROS users, roslaunch
does a rather good job signalling child processes and thus serves as a fine anchor
for a container’s PID 1, and so simply running multiple ROS nodes per container is
reasonable. For those more concerned using custom launch alternatives, a relevant
post here21 expands on this subject further.

20https://github.com/Yelp/dumb-init.
21https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem.

https://github.com/Yelp/dumb-init
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem

306 R. White and H. Christensen

5.2 Transparent Proxy

One task you may find yourself preforming frequently while building and tweaking
images, especially if debugging say minimum dependency sets, is downloading and
installing packages. This is sometimes a painful endeavor, made even more so if
your network bandwidth is all but extraordinary, or your corporation works behind
custom proxy and time is short. One way around this is to leverage Docker’s shared
networking and utilize a proxy container. Squid-in-a-can22 is one such example of a
simple transparent squid proxy within a Docker container.

This services every other Docker container, including containers used during the
build process while generating image layers, a local cache of any frequent http traffic.
By easily changing the configuration file, you can leverage any of the more advanced
squid proxy features, while avoiding the tedious install and setup of a proper squid
server on various hosts’ distribution.

5.3 Docker DNS Resolver

We’ve shown before how ROS nodes running from separate containers within a
common software defined network can communicate utilising domain names given
to containers and resolved by Docker’s internal DNS. Communicating to the same
containers from the host through the default bridge network is also possible, although
not as straightforward without the host having similar access to the software defined
network’s local DNS.We can quickly circumvent this issue as we did with the proxy,
by running the required service from another container within the same network. In
this case we can use a simple DNS server such as Resolvable23 to help the local host
resolve container domain names within the virtual network.

One word of caution: one should avoid using domain names that could collide, as
in the case of running two instances of the industry networking example on the same
Docker engine, e.g. two sets of roscores and nodes on different project networks, say
foo and bar. If we were to then include a Resolvable container into each project,
the use of local domain names such as master or talker could then collide for
the host, whereas explicit domain naming including the project’s network post-fix
such as foo_default would still properly resolve.

22https://github.com/jpetazzo/squid-in-a-can.
23https://github.com/gliderlabs/resolvable.

https://github.com/jpetazzo/squid-in-a-can
https://github.com/gliderlabs/resolvable

ROS and Docker 307

References

1. Arulkumaran, K. 2015. Kaixhin/dockerfiles. https://github.com/Kaixhin/dockerfiles.
2. Boettiger, C. 2015. An introduction to docker for reproducible research. SIGOPS Operating

Systems Review 49 (1): 71–79. doi:10.1145/2723872.2723882.
3. Bonsignorio, F., andA.P. del Pobil. 2015. TowardReplicable andMeasurableRoboticsResearch.

IEEERobotics&AutomationMagazine 22 (3): 32–35. http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7254310.

4. Guglielmelli, E. 2015. Research Reproducibility and Performance Evaluation for Dependable
Robots. IEEE Robotics & Automation Magazine 22 (3): 4–4. http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7254300.

5. Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T.
Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093.

6. Mabry, R., J. Ardonne, J. Weaver, D. Lucas, and M. Bays. 2016. Maritime autonomy in a box:
Building a quickly-deployable autonomy solution using the docker container environment. In
IEEE Oceans.

7. Sucan, I.A., and S. Chitta. Moveit! http://moveit.ros.org.
8. White, R. 2015. ROS + Docker: Enabling repeatable, reproducible and deployable robotic soft-

ware via containers. ROSCon, Hamburg Germany. https://vimeo.com/142150815.
9. White, R., M. Quigley, and H. Christensen. 2016. SROS: Securing ROS over the wire, in the

graph, and through the kernel. InHumanoidsWorkshop: TowardsHumanoidRobotsOS.Cancun,
Mexico.

Author Biographies

Ruffin White is a Ph.D. student in the Contextual Robotics Institute at UC San Diego, under the
direction of Dr. Henrik Christensen. Having earned his Masters of Computer Science at the Insti-
tute for Robotics and Intelligent Machines, Georgia Tech, he remains an active contributor to ROS
and collaborator with the Open Source Robotics Foundation. His research interests include mobile
robotic mapping, with a focus on semantic understanding for SLAM and navigation, as well as
advancing repeatable and reproducible research in the field of robotics by improving development
tools for robotic software.

Dr. Henrik I. Christensen is a Professor of Computer Science at Dept. of Computer Science
and Engineering UC San Diego. He is also the director of the Institute for Contextual Robotics.
Prior to UC San Diego he was the founding director of the Institute for Robotics and Intelligent
machines (IRIM) at Georgia Institute of Technology (2006–2016). Dr. Christensen does research
on systems integration, human-robot interaction, mapping and robot vision. He has published
more than 300 contributions across AI, robotics and vision. His research has a strong emphasis on
“real problems with real solutions.” A problem needs a theoretical model, implementation, eval-
uation, and translation to the real world.

https://github.com/Kaixhin/dockerfiles
http://dx.doi.org/10.1145/2723872.2723882
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7254310
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7254310
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7254300
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7254300
http://arxiv.org/abs/1408.5093
http://moveit.ros.org
https://vimeo.com/142150815

A ROS Package for Dynamic Bandwidth
Management in Multi-robot Systems

Ricardo Emerson Julio and Guilherme Sousa Bastos

Abstract Communication is an important component in robotic systems. The appli-
cation goals such as, finding a victim or teleoperate a robot in an obstacle avoid-
ing application, may get affected if there are problems in communication between
system agents. The developed package, dynamic_bandwidth_manager (DBM), was
designed to maximize bandwidth usage in multi-robot systems. DBM controls the
rate that a node publishes a topic, managing different channels where commands,
sensory data and video frames are exchanged. In this tutorial chapter, we present
several important concepts that are crucial to work with robot communication using
ROS: (1) how the increasing number of robots makes an impact on communication,
(2) the ROS communication layer (topics and services using TCP and UDP), (3) how
to analyze the bandwidth consumption in a system developed in ROS, and (4) how
use DBM to manage bandwidth usage. A detailed tutorial on developed package is
presented. It shows howDBM is designed in order to prioritize communication chan-
nels according to environment events and how the most important topics gets more
bandwidth from the system. This tutorial was developed under Ubuntu 15.04 and
for ROS Jade version. All presented components are published on our ROS package
repository: http://wiki.ros.org/dynamic_bandwidth_manager.

Keywords Multi-robot · Dynamic bandwidth management · Communication

1 Introduction

Multi-robot systems can be used for a set of tasks such as rescue operations [1, 2],
large-scale explorations [3], and other tasks that can be subdivided between multiple
robots [4]. Communication is an important component that merits careful consid-

R.E. Julio (B) · G.S. Bastos
System Engineering and Information Technology Institute—IESTI, Federal University of
Itajubá—UNIFEI, Av. BPS, 1303, Pinheirinho, Itajubá, MG CEP: 37500-903, Brazil
e-mail: ricardoej@gmail.com
URL: http://www.unifei.edu.br

G.S. Bastos
e-mail: sousa@unifei.edu.br

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_10

309

http://wiki.ros.org/dynamic_bandwidth_manager

310 R.E. Julio and G.S. Bastos

eration in a multi-robot system. The number of packets transmitted between agents
of a system can increase as the number of sensors, actuators, and additional robots,
increases as well [5].

A teleoperation system is a good example that illustrates data transmission
between agents. In that sort of system, an user or an automated control device can
control a swarm of mobile robots [6, 7] directly driving the robotic motor or sending
targets for the robots. The important issue in this example is that a video streaming is
transmitted to a control device while a system operator remotely controls the robots.
Therefore, the number of transmitted packets is increased when the number of robots
increases or when there is a video quality improvement, which may affect the system
performance in a bandwidth constrained environment. For this reason, bandwidth is
a important component that must be considered. A loss of packets may occur when
the number of packets in transmission is greater than available bandwidth. Thus, the
frequency of all sensors should be adjusted to not exceed the available bandwidth.
The task of adjusting the communication rates can be challenging; in a static solution,
the frequencies cannot be adjusted when there is a change in the environment or in
the available bandwidth.

In such systems it may not be necessary to transmit data from sensors all the
time and in same frequency. Considering the teleoperation example, if the robot is
stopped or away from an obstacle, the operator does not need constant updating of
the robot camera image. Thus, the frequency of video streaming can be decreased
whenever the robot speed decreases or when no obstacles are close to the robot. In
other words, the frequency of sensor can be decreased if there is nothing relevant to
the task occurring at that time in the environment [8].

The dynamic_bandwidth_manager (DBM) [9] package was designed to provide
a way of controlling the frequency that a topic publishes data. DBM can be applied
to any topic in the system and the frequencies are calculated based on topic priorities.
It helps developers to create topics with dynamic frequencies that will depend on
changes in the environment, such as available bandwidth and interesting events of a
task (speed, distance to obstacles and so forth).

However, how are related speed and distance to obstacles to the bandwidth? In
a system developed using ROS, sensory data are sent using topics. Usually, these
topics publish data with a static frequency calculated using a design parameter and
it does not change if changes occur in robots environment. If a robot is stopped in
a teleoperation application, may not be necessary publish its camera image for a
central computer. In a restricted bandwidth system it may be prohibitive to send data
unnecessarily, being other robots get affected.

A dynamic solution to the presented problem is presented in this chapter; topics
that send sensor data to other elements may have their frequencies dynamically
adjusted by the system. Environment events such as speed and distance to obstacles
can be used to set topic priorities and define which of themmay have more frequency
at a given time.

As an example, we may consider a scenario with three robots in an application
of identifying victims in disaster areas. Each robot moves through the area reading
information from environment such as camera images. All information is sent to a

A ROS Package for Dynamic Bandwidth Management … 311

Fig. 1 Scenario in an application of identifying victims in disaster areas

remote central for monitoring where human operators assist in victim identification
task using the information sent by the robots. The presented scenario is shown in
Fig. 1. In this example, a desired communication rate of camera images formaximum
application efficiency is 16Hz for each robot [10]. In other words, each robot must
send data read by the camera 16 times every second. This communication rate ensures
that the human operator can teleoperate the robot through the disaster area avoiding
obstacles and the monitoring system can predict with greater certainty the presence
and location of victims in the area monitored by the camera of the robot.

In this example, the system is used in an environment with bandwidth restrictions.
The network supports sending just 30 messages per second in total (considering
messages of all robots). Sharing bandwidth equally, each robot sends data in a fre-
quency of 10Hz. This 10Hz baud rate allows a user teleoperate a robot to identify
a victim, but with a lower level of accuracy (the higher the frequency, greater the
accuracy and lower the error in robot teleoperation). Thus, the user can teleoperate a
robot, but he is subject to restrictions in the video sent by the robot. This degradation
in the video quality may lead collision with obstacles or failure to identify a victim
(Fig. 2).

As described above, bandwidth restrictions can impact the effectiveness of a solu-
tion. Set a static frequency of 10Hz for all robots prevents communication exceeds
the maximum bandwidth available, but it does not allow a robot find a victim with
maximum accuracy even if other robots are far from that goal. In this case, the system
could reduce the sending frequency of robots that have not yet detected any victim

312 R.E. Julio and G.S. Bastos

Fig. 2 Static communication rates in an application of identifying victims in disaster areas

to the minimum acceptable frequency. This allows a higher frequency for the robot
that found a victim and now need to find its exact location.

A key contribution of this chapter is the development of the DBM package where
someconcepts about robot communication usingROSwill be presented.Theproblem
of using several topics in an environmentwith bandwidth constraint will be addressed
and a feasible solution for managing topics in order to minimize this problem is
discussed.

After a brief discussion about the motivation of this chapter, we will introduce
the following topics:

• A summary of ROS publish-subscribe mechanism is provided as essential back-
ground information for the understanding of the problem;

• A review about how the increasing number of robots (or topics) impacts on com-
munication in an environment with bandwidth constraint;

• A simple example on monitoring bandwidth consumption in a ROS-based system;
• A discussion on topics frequency control to maximize bandwidth usage or avoid
loss of communication;

• All components of DBM architecture with their interactions description;
• A case study on how to use the developed package in an teleoperation application
using a simulated environment;

• And, a discussion about the results.

2 ROS Topics

As discussed in [11], topics are named buses over which nodes exchange messages.
Topics have anonymous publish/subscribe semantics, which decouples the produc-
tion of information from its consumption. In general, nodes are not aware of who
they are communicating with. Instead, nodes that are interested in data subscribe to

A ROS Package for Dynamic Bandwidth Management … 313

the relevant topic; nodes that generate data publish to the relevant topic. There can
be multiple publishers and subscribers to a topic.

Each topic is strongly typed by the ROS message type used to publish to it and
nodes can only receive messages with a matching type. The Master does not enforce
type consistency among the publishers, but subscribers will not establish message
transport unless the types match. Furthermore, all ROS clients check to make sure
that an MD51 computed from the .msg files match. This check ensures that the ROS
Nodes were compiled from consistent code bases.

ROS currently supports TCP/IP-based and UDP-based message transport. The
TCP/IP-based transport is known as TCPROS and streams message data over persis-
tent TCP/IP connections. TCPROS is the default transport used in ROS, which is the
only transport that client libraries are required to support. The UDP-based transport,
which is known as UDPROS, is currently supported only in roscpp and separates
messages into UDP packets.

ROS nodes negotiate the desired transport at runtime. For example, if a node
prefersUDPROS transport but the other node does not support it, the system fallbacks
on TCPROS transport. This negotiation model enables new transports to be added
over time as compelling use cases arise.

Topics are intended for unidirectional, streaming communication. Nodes that need
to perform remote procedure calls (i.e. receive a response to a request) should use ser-
vices instead. There is also the Parameter Server [12] for maintaining small amounts
of state.

The ROS Master acts as a nameservice in the ROS. It stores topics and services
registration information for ROS nodes. Nodes communicate with the Master to
report their registration information. As these nodes communicate with the Master,
they can receive information about other registered nodes and make connections as
appropriate. TheMasterwill alsomake callbacks to these nodeswhen this registration
information changes, which allows nodes to dynamically create connections as new
nodes are run.

It is important to make clear that nodes connect to other nodes directly; theMaster
only provides lookup information, much like a DNS server. Nodes that subscribe to
a topic will request connections from nodes that publish that topic, and will establish
that connection over an agreed upon connection protocol. In other words, when a
node receives data from a topic, this communication does not pass through the ROS
Master.

3 Bandwidth Consumption in Topics Publishing

Publishing topics with large messages such as camera images can cause problems
in a ROS-based system. The system performance can be impaired if the amount of
information transmitted over the network is larger than the available bandwidth. In

1MD5 (Message-DigestAlgorithm5) is a cryptographic hash function producing a 128-bit (16-byte)
hash value commonly used to verify data integrity.

314 R.E. Julio and G.S. Bastos

this case, loss or delay in delivery of messages can occur, causing loss of information
that can be crucial for the proper functioning of the system. But can we see howmuch
bandwidth the topic is using? And how large messages overload the network in a
ROS-based system? In this section we will show how to use the rostopic bw and
rostopic hz to display the bandwidth and the publishing rate of a topic, how large
messages can overload a system with bandwidth restrictions and how DBM can help
avoid this problem.

3.1 Publishing Camera Images in ROS

Every time a message is published on a ROS topic and a subscriber is running on a
remote machine, data are transmitted over the network. These data consume part of
available bandwidth for the application and depending on the size of messages and
transmission frequency, communication can exceed the available bandwidth causing
delay or loss of information.

This behavior can be shown publishing camera images to other nodes in the
system. Camera images are used as an example because it is simple to simulate
using a laptop with a webcam and has a significant message size, but other types of
message may have the same problem such as PointCloud, LaserScan, etc.

The usb_cam_node interfaces with standard USB cameras (e.g. the Logitech
Quickcam) using libusb_cam and publishes images as a ROS message of type sen-
sor_msgs::Image (http://docs.ros.org/api/sensor_msgs/html/msg/Image.html) using
the image_transport (http://wiki.ros.org/image_transport) package. In this example,
we will use this node to publish camera images.

The usb_cam can easily be installed on a Ubuntu 15.04 distribution using ROS
Jade. The most updated information about usb_cam package can be found on the
usb_cam wiki page (http://wiki.ros.org/usb_cam). There are some steps to installing
and running usb_cam:

1. Install ROS (follow the latest instructions on the ROS installation page) (http://
wiki.ros.org/ROS/Installation).

2. Download usb_cam package to catkin src folder (i.e. /catkin_ws/src):

$ g i t c l one h t t p s : / / g i t hub . com / bosch−ros−pkg / usb_cam
~/ ca tk in_ws / s r c / usb_cam

3. Build the downloaded package:

$ cd ~/ ca tk in_ws /
$ ca tk in_make

4. Setup the environment:

$ source ~/ ca tk in_ws / deve l / s e t up . bash

http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://wiki.ros.org/image_transport
http://wiki.ros.org/usb_cam
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Installation

A ROS Package for Dynamic Bandwidth Management … 315

5. Run usb_cam_node:

$ r o s l a unch usb_cam usb_cam−t e s t . l aunch

Using image_view node we can see camera video published by usb_cam_node.
This may be done running the following command (note that we are subscribing in
compressed2 image transport mode). Access the image_view wiki page (http://wiki.
ros.org/image_view) for more information about the package.

$ r o s r un image_view image_view
image : = / usb_cam / image_raw
_ image_ t r a n s po r t := compressed

3.2 Monitoring Bandwidth Usage in ROS

Monitoring the bandwidth consumed by topics is an important task in robot systems
that rely on communication. The rostopic bw tool displays the bandwidth used by
a topic and rostopic hz displays its publishing rate. It is important to note that, as
shown in rostopic documentation page (http://wiki.ros.org/rostopic), the bandwidth
reported by rostopic bw is the received bandwidth. If there are network connectivity
issues, or rostopic cannot keep up with the publisher, the reported number may be
lower than the actual bandwidth.

The bandwidth concumption of the compressed camera topic published by
usb_cam_node is given by the following commands:

1. Displays the bandwidth used by camera topic (Fig. 3):

$ r o s t o p i c bw / usb_cam / image_raw / compressed

2. Displays the publishing rate of camera topic (Fig. 4):

$ r o s t o p i c hz / usb_cam / image_raw / compressed

As shown in Fig. 3 and using a camera resolution of 640 × 480, the mean size
of camera image message is approximately 18KB (see field “mean” on rostopic
bw result). The default framerate of the usb_cam_node is 30 FPS, i.e. the data is
published using a frequency of 30Hz (as can be seen in Fig. 4). It means that the
average bandwidth consumption of the topic /usb_cam/image_raw/compressed is
approximately 570KB/s, as also described in field “average” on rostopic bw result.

2The image_transport package provides transparent support for transporting images in low-
bandwidth compressed formats such as PNG and JPEG. Thus, the image with any compression
is published, for example, in a topic /usb_cam/image_raw and the compressed image using PNG
or JPEG in a topic /usb_cam/image_raw/compressed. Follow this link http://wiki.ros.org/image_
transport for more information about raw and compressed images in ROS.

http://wiki.ros.org/image_view
http://wiki.ros.org/image_view
http://wiki.ros.org/rostopic
http://wiki.ros.org/image_transport
http://wiki.ros.org/image_transport

316 R.E. Julio and G.S. Bastos

Fig. 3 Result of rostopic bw command

Fig. 4 Result of rostopic hz command

As we can see, bandwidth consumption of only one topic publishing compressed
camera images with a resolution of 640 × 480 to a frequency of 30Hz is 570KB/s. If
the number of topics publishing camera images in the system increases, the available
bandwidth can be exceeded. Table1 shows the bandwidth consumption in a system
with four camera image topics.

If the robots communicate via a WiFi network using 802.11b Wifi standards,
their corresponding maximum speeds is 11Mbps, i.e. 1375KB/s. If the number of

A ROS Package for Dynamic Bandwidth Management … 317

Table 1 Bandwidth
consumption in a network
with more camera image
topics

Topics number Bandwidth consumption
(KB/s)

1 570

2 1140

3 1710

4 2280

Fig. 5 Bandwidth
consumption and available
bandwidth in a network with
more camera image topics

1 2 3 4
0

500

1,000

1,500

2,000

2,500

Numberofrobots

B
an

dw
id
th

(K
B
/s
)

Bandwidth Consumption
Available Bandwidth

robots publishing camera images increases there may be a network overhead in the
system. Figure5 shows the bandwidth consumption on a camera image topic when
the number of robots or topics in the system increases. As we can see, if the number
of robots is greater than 2, the use of bandwidth exceeds the available bandwidth and
this can lead to communication problems.

This example shows, in a simple way, how sending information using ROS topics
can overload the network. Thus, it is necessary to develop strategies to manage the
publication rate of topics in order to avoid this problem.

3.3 Install DBM Package

The step-by-step instructions for installing DBM are shown bellow. Before you
start, PuLP package must be installed before DBM package. PuLP is a library
for the Python scripting language that enables users to describe mathematical
programs [13]. It is used by default_optimizer_node to solve the linear optimiza-
tion problem described in Sect. 4.2. To install PuLP follow the instructions on
the PuLP installation page (https://pythonhosted.org/PuLP/main/installing_pulp_
at_home.html).

https://pythonhosted.org/PuLP/main/installing_pulp_at_home.html
https://pythonhosted.org/PuLP/main/installing_pulp_at_home.html

318 R.E. Julio and G.S. Bastos

1. Download DBM package to catkin src folder (i.e. /catkin_ws/src):

$ g i t c l one
h t t p s : / / g i t hub . com / r i c a r d o e j / dynamic_bandwidth_

manager ~ / ca tk in_ws / s r c / dynamic_bandwidth_manager

2. Build the downloaded package:

$ cd ~/ ca tk in_ws /
$ ca tk in_make

3. Setup the environment:

$ source ~/ ca tk in_ws / deve l / s e t up . bash

3.4 Using DBM to Manage Bandwidth Consumption

The dynamic_bandwidth_manager (DBM) [9] package was designed to provide a
way of controlling the frequency that a topic publishes data. It helps developers to
create topics with dynamic frequencies that will depend on the topic priority at a
given time. To show how this package works, we will use the example with camera
images to manage the bandwidth consumption using DBM. The detailed architecture
of the package is defined in the following sections.

After install DBM, we need a set of topics that should be controlled by DBM.
Figure5 shows that 3 topics publishing compressed camera images can exceeds
available bandwidth in a system using a network with a maximum speed of 11Mpps.

Thus, in order to test DBM we will use a system with 3 topics publishing com-
pressed camera images in different machines with a webcam (machines A, B and C)
and a network with available bandwidth of 11Mbps. The available bandwidth can be
configured using parameters in DBM. So, in this example, we need not worry about
the network specifications. A fourth machine (Master) must run the ROS Master
and image_view node so we can see the published images. Figure6 shows how the
system should be designed.

There are some steps to configure the environment:

1. Run the ROS Master in machine Master:

$ r o s c o r e

2. Setup network following this link http://wiki.ros.org/ROS/NetworkSetup.
3. Download usb_cam package to machines A, B and C as described in Sect. 3.1.
4. Edit file usb_cam-test.launch to remap image_raw topic name using the machine

name (A, B and C). A good explanation about names remapping can be found
in http://wiki.ros.org/roslaunch/XML/remap. Use the name /[machine_name]/
usb_cam/image_raw.

5. Run usb_cam_node in machines A, B and C:

http://wiki.ros.org/ROS/NetworkSetup
http://wiki.ros.org/roslaunch/XML/remap

A ROS Package for Dynamic Bandwidth Management … 319

Fig. 6 System design of the DBM example

$ r o s l a unch usb_cam usb_cam−t e s t . l aunch

6. Run image_view in machine Master for all three topics (run each command in a
different terminal):

$ r o s r un image_view image_view
image : = / machineA / usb_cam / image_raw
_ image_ t r a n s po r t := compressed

$ ro s r un image_view image_view
image : = / machineB / usb_cam / image_raw
_ image_ t r a n s po r t := compressed

$ ro s r un image_view image_view
image : = / machineC / usb_cam / image_raw
_ image_ t r a n s po r t := compressed

You should now be able to view the images of the three cameras in each of the
image_view running on Master machine. Follow the steps in Sect. 3.1 to check the
frequency of topics and consumed bandwidth. The values should be approximately
as described in Table1.

NOTE: If you can not build an environment with 3 different machines, DBM
provides a node that publishes messages with a predetermined size. It is important
to note that as this message published only simulates a message, you can not view
the images using image_view. Thus, the 3 machines with a webcam can be replaced
running the following command in different terminals:

$ r o s r un dynamic_bandwidth_manager
f ake_message_pub l i she r_node . py
topic_name : = / [machine_name] / usb_cam / image_raw

320 R.E. Julio and G.S. Bastos

_message_s ize_ in_kb :=18
_max_rate :=30

DBM dbm_bridge_node subscribes in a topic that has to be managed and con-
trols its frequency based on a topic priority defined in Parameter Server. Run one
dbm_bridge_node for each published topic (in machines A, B and C) with the com-
mand bellow:

$ r o s r un dynamic_bandwidth_manager dbm_bridge_node . py
_topic_name : = / [machine_name] / usb_cam / image_raw
_min_frequency :=1
_max_frequency :=30

Where _topic_name is the topic name, _min_frequency is theminimum frequency
and _max_frequency is the maximum frequency at the topic will be published.

We need configure the available bandwidth in 11Mbps as defined in our previous
example. This can be done using a parameter in Parameter Server. The following
sections will further explain all the parameters used in the DBM. At this point we
need only run the following command:

$ rosparam s e t / dbm / max_bandwidth_in_mbit 11

NOTE: DBM takes into account only topics that have subscribers running on
remote machines. If you are running dbm_bridge_node using only one machine the
following command should be executed:

$ rosparam s e t / dbm / manage_ l o c a l _ s ub s c r i b e r s true

Finally, default_optimizer_node solves the linear optimization problem described
in Sect. 4.2 calculating a topic frequency based on topic priority. Run default_
optimizer_node with the command:

$ r o s r un dynamic_bandwidth_manager d e f a u l t _ op t im i z e r _ nod e . py

Running the command rostopic list we can see that three other topics were created
with name /[machine_name]/usb_cam/image_raw/optimized. This optimized topic
publishes the same data butwith a frequencymanaged byDBM.Using the commands
rostopic bw and rostopic hzwe can see the bandwidth consumption and the frequency
of each optimized topic. Table2 shows this values (with approximate values).

As can be seen, the frequency of each topic is set to 24Hz in order to not exceed
the available bandwidth. The bandwidth consumed by all optimized topics is about

Table 2 Bandwidth consumption and frequencies using DBM

Topic Bandwidth consumption
(KB/s)

Frequency (Hz)

machineA 442 24

machineB 442 24

machineC 442 24

A ROS Package for Dynamic Bandwidth Management … 321

Table 3 Bandwidth consumption and frequencies using DBM with changes in priority

Topic Priority Bandwidth
consumption (KB/s)

Frequency (Hz)

machineA 1.0 18 30

machineB 1.0 552 30

machineC 0.0 552 1

1330KB/s. That is, the consumed bandwidth did not exceed the available bandwidth
of 1375KB/s.

3.5 Changing Topic Priorities

DBM sets the frequencies based on topic priorities. The most priority topic gets a
higher frequency. The priority of a topic can be changed by setting a parameter in the
Parameter Server. Run the following commands to change the priority of the topics
on machine A and machine B to 1 and 0 to machine C:

$ rosparam s e t / machineA / usb_cam / image_raw / dbm / p r i o r i t y 1
$ rosparam s e t / machineB / usb_cam / image_raw / dbm / p r i o r i t y 1
$ rosparam s e t / machineC / usb_cam / image_raw / dbm / p r i o r i t y 0

Table3 shows the priority, bandwidth consumption and the frequency of each
optimized topic after changing the topic priorities.

As we can see, the frequencies of topics in machine A and machine B are set to
the maximum frequency configured for the topics, 30Hz. The priority of topic on
machine C is 0, so the frequency is set to the minimum value, 1Hz. This allows that
the most priority topics gets a higher frequency while the topics with lower priorities
have their frequencies adjusted to low values. A video demonstration of this example
can be found in [14].

This section shows an example of how DBM controls the frequency that a topic
publishes data in order to avoid the system exceeds the available bandwidth. The
following sections present more detailed architecture of the package and how prior-
ities may be based on environment events.

4 Event-Based Bandwidth Optimization

In this section we explore a strategy to optimize bandwidth consumption of ROS
topics. We will begin with a definition of topic priority based on environment events.
Therefore, this priority is applied to a linear optimization problem in order to define
the best frequency for each topic managed by the developed package.

322 R.E. Julio and G.S. Bastos

4.1 Event-Based Topic Priority

The topic frequencies may be dynamically controlled by the environment state and
available bandwidth. This approach is built upon the assumption that the communi-
cation rate of a topic depends on how important the topic is at a given time.

In the application of identifying victims described above, the systemmay provide
a frequency for each robot. A robot that identifies a nearby victim must send best
camera images to enable the user identify the exact location of the victim and operate
it while avoiding obstacles. Thus, the system decreases the frequency of other robots
and increases the frequency of robots that need most at this moment. Thereby, the
victim position is found more accurately and the rescue team does not waste time.

In this case, bandwidth optimization is made according to the requested require-
ments, considering the more important environment events to the task execution.
Figure7 shows the frequencies of each robot when the Robot 2 finds a victim. At
this time, the Robot 1 and the Robot 3 do not have any evidence of victims in theirs
monitoring area. Therefore, they can have their frequency adjusted to lower values.

In DBM package, this behavior was implemented by assigning a priority for each
topic based on environment events. Thus, the priority can be modeled as a function
of environment events and represents how important a topic is for the application.
These events are modeled depending on the application where the package is being
used.

Using teleoperation as an example, when an operator remotely controls a set of
robots based on images sent by a camera, we can define the robot speed and the
distance of obstacles as environment events. Thus, if the robot speed increases and
the distance of the obstacles decreases, the priority of the topic that represents the
camera sensor increases.

The priority pi of the communication channel ci is calculated as a function of
the environment events ei that affect this communication channel, such as speed,
distance to obstacles, time to collision, and so for (Eq.1).

pi = f (e1, e2, . . . , en). (1)

Fig. 7 Dynamic communication rates in an application of identifying victims in disaster areas

A ROS Package for Dynamic Bandwidth Management … 323

The result of that function is normalized to values in the range [0 : 1], as shown
in Eq. (2), where 1 is the highest priority, which represents that the communica-
tion channel must use the higher frequency within the bounds established by the
application and the available bandwidth. Thus, p′

i at a given time can be defined by
[9]:

p′
i = pi .wi

c∑

k=1
pk .wk

, (2)

where c is the communication channels andwi themessage size of the communication
channels.

This normalization ensures that the message size is taken into account in the
calculation of frequencies. Without this adjustment, the optimizer does not assign
frequencies in proportion to the priority, generating inconsistent results with the
package goal.

4.2 Bandwidth Management Based on Topic Priority

As described in previous section, each topic has a priority defined by environment
events such as speed and distance to obstacles. But, how does the system calculate
a frequency for managed topics based on its priority? DBM package implements a
default strategy using a linear optimization problem as described in this section and
in [9]. There are other works exploring this problem as in [8, 15].

The total bandwidth consumed by all managed channels is constrained by the
total bandwidth available to the system, as described in Eq. (3):

n∑

i=1

wi . fi ≤ Bmax , (3)

where

• wi is the message size sent by channel i ,
• fi is the sending frequency of the channel i ,
• Bmax is the total bandwidth available for the system,
• n is the number of managed communication channels.

All frequencies fi are bounded with a minimum and a maximum value fimin and
fimax . Communication channels may be maximized in order to increase the avail-
able bandwidth to the application. The priority p′

i define which channels are more
important at a given time to the application and need to get more resources from the
bandwidth. This is achieved by adjusting the bounds fimin and fimax according to the
value of p′

i . If a channel has a priority p′
i = 1 the bounds of frequency fi should be

calculated close to the maximum (fimax). In other words, the new value of minimum
frequency f ′

imin
is a function of p′

i . Thus, f
′
imin

can be defined by:

324 R.E. Julio and G.S. Bastos

f ′
imin

= (fimax − fimin)p
′
i + fimin . (4)

The Eq. (4) defines a minimum value to the frequency fi at a given time based on
pi . If the priority pi = 0 the frequency is bounded with the minimum and maximum
values defined by a channel. While the priority increases, the lower limit for the
frequency is close to the maximum, making the system enable a greater bandwidth
to the channel.

The frequencies of each managed channel will be formulated as a linear optimiza-
tion problem. Thus, the problem formulation becomes:

maximize
n∑

i=1

wi . fi

subject to
n∑

i=1

wi . fi ≤ Bmax

fi ≥ f ′
imin

fi ≤ fimax .

(5)

However, in some cases, there is no solution for the problem and the system
informs it to the designer. Typically, in this case, the maximum bandwidth available
to the system should be increased.

5 DBM Package Description

This section provides a brief explanation of DBM package. We describe the basic
architecture and give an overview to the main classes and nodes. Thus, a flow chart
with the basic operation of the package is presented. All DBM source code can be
found in [16].

A dynamic frequency strategy for ROS topics is discussed and some examples
are shown using the main classes. Finally, some issues about on how to extend the
package are discussed.

5.1 Package Architecture

Package architecture is divided into four libraries: (DBMPublisher,DBMSubscriber,
DBMOptimizer, and DBMRate); and into two nodes: (default_optimizer_node, and
dbm_bridge_node).

• DBMPublisher is a class that inherits ros::Publisher, receives a minimum and a
maximum frequency, and creates a managed topic;

A ROS Package for Dynamic Bandwidth Management … 325

Fig. 8 Creating a topic
using DBMPublisher

Fig. 9 Subscribing in a
topic using DBMSubscriber

• DBMSubscriber is used to subscribe in a managed topic created by DBMPub-
lisher;

• DBMOptimizer enables creation of optimization strategies;
• DBMRate helps to run loops with a dynamic rate stored in Parameter Server;
• default_optimizer_node solves a linear optimization problem Sect. 4.2 calculat-
ing a topic frequency based on topic priority.

• dbm_bridge_node allows the use of DBM into existing projects without changing
their source code.

A node that publishes messages using a managed frequency creates a topic using
DBMPublisher and informs the frequency limits (minimum and maximum values).
All system parameters are created in Parameter Server when the package is creating
a managed topic. Figure8 shows the behavior of the library when creating a topic
using DBMPublisher.

In order to perform a dynamic bandwidth management, the system should take in
consideration that the message length can change and do not treat it as a static value.
Whenever a message is sent by a managed channel, the DBMPublisher checks if
the size has changed and changes the parameter for the channel. Thus, the size of
messages sent through the communication channels can dynamically change.

Another node subscribes in topic using DBMSubscriber class. If the node is run-
ningon the samemachinewhere the topic is published thenDBMPublisher subscribes
in a full-rate topic.3 Otherwise, the topic with a managed sending frequency is used
(Fig. 9).

The default_optimizer_node, or any other node that is implementing an opti-
mization strategy using DBMOptimizer, runs the optimization algorithm in a rate

3A full-rate topic is a topic with no optimization and publishes massages in a maximum frequency
configured for the topic.

326 R.E. Julio and G.S. Bastos

Fig. 10 Update of
frequencies by the optimizer

configured in the parameter /dbm/optimization_rate_in_seconds and updates the top-
ics frequencies in Parameter Server. Any node which is publishing a managed topic
is notified and updates its communication rate (Fig. 10).

Figure11 shows a summary of the package operation as described above.

5.2 Dynamic Frequency in a ROS Topic

In ROS, communication channels are represented by topics; through them sensor
data are sent to other system elements. The code below shows the creation of a
rescue_node that publishes a topic called camera/image using ROS class ros::Rate
to control the topic frequency:

Listing 1.1 Using ros::Rate in camera/image topic

! / usr / b in / env py thon
l i c e n s e removed f o r b r e v i t y
import rospy
from sensor_msgs . msg import Image

def g e t _ r e s c u e _ i n f o () :
Re turns t h e camera image message

def run () :
pub = rospy . P ub l i s h e r (’ / camera / image ’ ,

Image , queue_s i ze =10)
rospy . i n i t _ n o d e (’ re scue_node ’ , anonymous=True)
r a t e = rospy . Rate (15) # S t a t i c f r equency o f 15 hz

A ROS Package for Dynamic Bandwidth Management … 327

Fig. 11 Summary of the package basic operation

328 R.E. Julio and G.S. Bastos

while not rospy . i s_shu tdown () :
message = g e t _ r e s c u e _ i n f o ()
pub . p ub l i s h (message)
r a t e . s l e e p ()

i f _ _name_ _ == ’_ _main_ _ ’ :
t ry :

run ()
except rospy . ROSIn t e r rup tExcep t i on :

pass

In ROS topic frequencies can be controlled by ros::Rate class. However, this class
makes a static rate control which has to be chosen in development time. Thus, an
application developed with the default ros::Rate class does not allow a dynamic topic
frequency. In other words, when using ros::Rate, the frequency configured for the
topic is hard-coded and there is no alternative to change it in execution time.

To create a dynamic management system for topic frequencies in ROS, it is nec-
essary to implement other strategies to control topic frequencies. DBM provides a
DBMRate class which maintains a dynamic rate (stored in Parameter Server) for a
loop. This class was built inheriting all features provided by ros::Rate. Thus, any fix
or improvement implemented in base class is automatically incorporated.

The parameter name that contains the frequency value is reported during the object
construction and a parameter is created in Parameter Server. Every time that sleep()
method is invoked, the frequency value is updated and the loop delay time is adjusted.
Figure12 shows a schema with a basic operation of DBMRate class.

The main issue with this approach is the amount of calls to Parameter Server. To
solve this problem, frequency values are stored using Cached Parameters, providing
a local cache of the parameter. Using these versions, Parameter Server is informed
that this node would like to be notified when the parameter is changed, and prevents

Fig. 12 DBMRate basic schema

A ROS Package for Dynamic Bandwidth Management … 329

the node from having to re-lookup the value with the parameter server on subsequent
calls. Using cached parameters are a significant speed increase (after the first call),
but should be used sparingly to avoid overloading the master. Cached parameters are
also currently less reliable in the case of intermittent connection problems between
node and master [11].

Listing 1.2 shows the node rescue_node created in code Listing 1.1 using DBM-
Rate class. Topic frequency will be adjusted by changing a parameter stored in
Parameter Server named /camera/image/dbm/frequency/current_value.

Listing 1.2 Using DBMRate in rescue_info topic

! / usr / b in / env py thon
l i c e n s e removed f o r b r e v i t y
import rospy
from sensor_msgs . msg import Image

def g e t _ r e s c u e _ i n f o () :
Re turns t h e camera image message

def run () :
pub = rospy . P ub l i s h e r (’ / camera / image ’ ,

Image , queue_s i ze =10)
rospy . i n i t _ n o d e (’ re scue_node ’ , anonymous=True)

Crea te s a dynamic r a t e w i th key name
’ / camera / image ’ , minimum f r equency o f 10hz ,
maximum f r equency o f 24 hz and d e f a u l t
f r equency o f 24 hz
r a t e = DBMRate (’ / camera / image ’ , 10 , 24 , 24)
while not rospy . i s_shu tdown () :

message = g e t _ r e s c u e _ i n f o ()
pub . p ub l i s h (message)
r a t e . s l e e p ()

i f _ _name_ _ == ’_ _main_ _ ’ :
t ry :

run ()
except rospy . ROSIn t e r rup tExcep t i on :

pass

5.3 Creating a New Managed Topic with DBM

In ROS, topics are created using ros::Publisher class. This class registers the topic
in Master and provides the publish method responsible for messages publishing in

330 R.E. Julio and G.S. Bastos

this topic. However, as can be seen in code Listing 1.1, the control of the topic rate
is done manually in a loop.

DBMPublisher allows to publish topic messages with a dynamic frequency. This
class uses DBMRate and receives a minimum and a maximum frequency, and a
method returning amessage to be sent. Thus, publication ofmessages is automatically
made in accordance with the frequency parameter stored in Parameter Server.

Listing 1.3 creates the same node shown in previous code Listing 1.2, but using
DBMPublisher class. Themain difference is that there is no longer a need for a loop to
send topic messages.When start()method is invoked, it receives a function returning
a message to be published by the topic (getRescueInfomethod in this example) and,
internally, DBMPublisher class publishes messages in configured frequency.

Listing 1.3 Using DBMPublisher in rescue_info topic

! / usr / b in / env py thon
l i c e n s e removed f o r b r e v i t y
import rospy
import dynamic_bandwidth_manager
from sensor_msgs . msg import Image

def g e t _ r e s c u e _ i n f o () :
Re turns t h e camera image message

def run () :
Minimum f r equency o f 10 hz and maximum
f r equency o f 24 hz
pub = dynamic_bandwidth_manager . DBMPublisher (

’ / camera / image ’ , Image , 10 , 24)
rospy . i n i t _ n o d e (’ re scue_node ’ , anonymous=True)

S t a r t s message pub l i s h i n g wi th a f r equency
s t o r e d in Parameter Se rve r
pub . s t a r t (g e t _ r e s c u e _ i n f o)

i f _ _name_ _ == ’_ _main_ _ ’ :
t ry :

run ()
except rospy . ROSIn t e r rup tExcep t i on :

pass

5.4 Using DBM in an Existing Package

Section5.3 shows how to create newmanaged topics with DBMPublisher class. But,
how do use DBM in existent packages without changes in source code? To address

A ROS Package for Dynamic Bandwidth Management … 331

this issue, DBM provides the node dbm_bridge_node. With this node it is possible to
control topics frequencies of existent packages without changes on its source code.

DBM dbm_bridge_node subscribes in a full-rate topic that has to be managed and
publishes the received data in a managed rate topic [/topic_name]/optimized. This
optimized topic works on the same way that the topic created by DBMPublisher.

An explanation about how use dbm_bridge_node is presented in Sect. 3.4. DBM
does not make any changes in the full-rate topic. The dbm_bridge_node only pub-
lishes the data received from the full-rate topic at a managed rate.

5.5 Implementing Other Optimization Strategies

For independence of the optimization algorithm used in the library, a module that
deals with bandwidth optimization was created. DBMOptimizer is a ROS library
that helps to create more complex strategies for the frequency optimization problem.
This module performs the optimization algorithm at each instant as defined by /db-
m/optimization_rate_in_seconds and stores the result of the calculated frequencies
in the parameter [topic_name]/dbm/frequency/current_value. This last parameter is
used byDBMPublisher to recover the topic frequency. Thus, optimization algorithms
used by DBM can be replaced without library changes. A researcher can implement
new optimization strategies independently and use them to calculate the frequencies
of managed topics.

This work implements default_optimizer_node using DBMOptimizer, which
makes the frequency optimization according to Sect. 4.2. The following code shows
an optimization strategy using DBMOptimizer Listing 1.4:

Listing 1.4 Optimization strategy using DBMOptimizer

! / usr / b in / env py thon

import rospy
import dynamic_bandwidth_manager
import pulp
import numpy as np

def op t im i ze (managed_topics) :
Runs o p t im i z a t i o n and r e t u r n s a d i c t i o n a r y
[topic_name : f r equency] (t h e managed_topics
parameter has a l i s t w i th a l l managed t o p i c s

i f _ _name_ _ == ’_ _main_ _ ’ :
t ry :

rospy . i n i t _ n o d e (’ d e f a u l t _ o p t im i z e r ’ ,
anonymous=True)
op t im i z e r = dynamic_bandwidth_manager

332 R.E. Julio and G.S. Bastos

. DBMOptimizer (op t im i ze)
o p t im i z e r . s t a r t ()

except rospy . ROSIn t e r rup tExcep t i on : pass

In this example, a new optimization algorithm is created using the DBMOpti-
mizer. The method optimize(managed_topics) implements an optimization strategy
of the topics frequencies. This method receives as a parameter a list with all topic
names managed by DBM and returns a dictionary [topic_name: frequency] with
the calculated frequencies. This method is executed automatically by DBM and the
frequencies are updated in Parameter Server.

5.6 Local Topics Management

DBM makes a topic frequency adjustment in runtime using environment events. It
allows a bandwidth management and sets more bandwidth to most important topics
at amoment. However, the question is: how tomanage topics that send onlymessages
to other nodes that are running on the samemachine? In such cases, the topic does not
have any impact on bandwidth utilization and should be ignored by the optimization
algorithm.

In order to address this problem, DBMOptimizer decides which topics should be
managed by the system at a given time checking that there are no external nodes
communicating with the topic. If there is no external node registered in the topic, it
is not treated as a managed topic and has its frequency set to maximum value.

Another important issue is when there are nodes running on different machines
registered on the same topic and at least one of them is running on a machine where
the topic is being published. For example, node 1 and node 2 are running onmachines
A and B, respectively, and they are subscribed on /camera topic. This topic is being
published by the node 3 which is also running on machine B. Figure13 illustrates
this example.

Fig. 13 Problem with local topics

A ROS Package for Dynamic Bandwidth Management … 333

Fig. 14 Managing remote and local topics

Node 2 receives /camera information, however it is not under bandwidth restric-
tions (it is running on the same machine where the topic is being published).
Thus, full-rate sensor stream should still be available for local processing/log-
ging. To address this issue, DBM creates two topics for each managed com-
munication channel: a full-rate topic ([topic_name]) and an optimized rate topic
([topic_name/optimized]).

The decision on which topic subscribe is implemented by DBMSubscriber. If a
node is running on the samemachine where the topic is being published, it subscribes
on the full-rate topic. In the other case, where the topic is being published from a
remotemachine, the node subscribes on themanaged topic. Figure14 shows a scheme
illustrating the behavior described above.

5.7 System Parameters

System parameters are a set of parameters used to improve package customization
allowing DBM adapt to new applications without the need to change its source code.
The parameters are stored in Parameter Server and are shared between nodes. The
system parameters are described below:

• /dbm/topics: List names of all topics that have nodes running on remote
machines. It is updated by DBMOptimizer every time that optimization algorithm
runs;

334 R.E. Julio and G.S. Bastos

• [topic_name]/dbm/ f requency/current_value: Current [topic_name] fre-
quency;

• [topic_name]/dbm/ f requency/min: Min frequency for [topic_name] topic;
• [topic_name]/dbm/ f requency/max : Max frequency for [topic_name] topic;
• [topic_name]/dbm/priori t y: Current priority for [topic_name] topic;
• [topic_name]/dbm/message_si ze_in_bytes: Message size of [topic_name]
topic;

• /dbm/max_bandwidth_in_mbit : Total bandwidth of the system;
• /dbm/max_bandwidth_utili zation: Percentage of available bandwidth for
application (values between [0 : 100]);

• /dbm/optimization_rate_in_seconds: The rate at which the optimization
algorithm is executed.

In an application, theremay bemessages being transmitted on the network that are
not managed by the DBM. Services and other unmanaged topics can be used, as well
as other types of communication between system elements. Examples of unmanaged
communications may be allocating tasks to the robots, commands or any other type
of feature that depends on the use of the network. In such cases, the bandwidth of the
system defined by the /dbm/max_bandwidth_in_mbit should not be fully utilized by
themanaged topics and a portion of this bandwidth should be reserved for unmanaged
communications. This can be done by parameter /dbm/max_bandwidth_utilization
ensuring that only part of the total bandwidth is used in the calculation of topic
frequencies.

6 Experimental Validation

In this section, and as described in [9], we will discuss about a teleoperation
application with dynamic bandwidth management using DBM. In a teleoperation
application, an user or an automated control device can control a swarm of mobile
robots [6, 7] directly driving the robotic motor or sending targets for the robots. In
this example, an user will send targets through commands for the robot (turn left,
go ahead, and so forth) while viewing the camera image on a remote computer. The
main goal is obstacle avoiding. The target’s message size is negligible for the appli-
cation and does not impact in bandwidth utilization. Thus, to simplify the problem,
commands sent by the operator to the robots will be disregarded in this example. The
important issue in this example is that a video streaming is transmitted to a control
device while a system operator remotely controls the robots.

The example was developed in a simulated environment running inmachines with
webcams. Teleoperation is a reasonable case study because it has well defined ele-
ments with a clear instance of how communication may depend on the environment.
Applications of teleoperation have been useful in a lot of problems using robots [17].
Setoodeh in [18] describes a conventional teleoperation systemwith five distinct ele-
ments: human operator, master device, controller and communication channel, slave

A ROS Package for Dynamic Bandwidth Management … 335

Fig. 15 Teleoperation application

robot, and the environment. The human operator uses themaster device tomanipulate
the environment through the slave robot. Communication and controllers coordinate
the operation using communication channels (Fig. 15).

In our application, two robots (R1 and R2) are controlled by a human operator
using a workstation representing the master device. Communication channels are
used to send position and other commands from master to slave and feedback visual
information from slave to master. Images of robot camera are sent to the master
device where the human operator is controlling the robots. The operator controls
the robots manipulating their velocity and direction. In order to do it, the operator
must receive visual feedback, which means sufficient information to distinguish the
obstacles in the environment. Chen et al. in [10], demonstrated that people had
difficulty maintaining spatial orientation in a remote environment with a reduced
bandwidth. If the rate of image transmission decreases, the operator may not be able
to avoid obstacles. If the rate increases to the bandwidth limit, commands sent to the
robot may get lost (or arrive late) with the loss of packets in the network.

6.1 Communication Channels

The communication channel between the human operator and the robot is essential
for an effective perception of the remote environment [19]. The quality of video
feeds in which a teleoperator relies on for remote perception may degraded and the
operators performance in distance and size estimation may get compromised with
low bandwidth [20]. Chen et al. in [10], studied common forms of video degradation
caused by low bandwidth, which includes reduced frame rate (frames per second or
fps).

336 R.E. Julio and G.S. Bastos

Table 4 Library system settings

camera/dbm/ f requency/min 1Hz

camera/dbm/ f requency/max 16Hz

camera/dbm/message_si ze_in_bytes 84000; 21000

/dbm/max_bandwidth_in_mbit 11Mbps

/dbm/max_bandwidth_utili zation 100%

/dbm/optimization_rate_in_seconds 1s

Chen et al. [10] shows that the minimum video frame rate to avoid degraded
video is 10Hz. Higher FRs such as 16Hz are suggested to some applications such
as navigation. So, in this work, we will create a communication channel for image
camera (topic camera) with 1Hz to the minimum frequency (representing cases
where the operator does not need to manipulate the robot due to the stability in
the environment) and 16Hz to the maximum frequency. The imaging resolution of
the robot cameras is assumed to be 640 × 480 for R1 and 160 × 120 for R2, which
implies that each frame would be of size 84 and 21KBytes, respectively [15]. The
application uses an available bandwidth of 11Mbps. This represents a data transfer
rate of 1375KBps (Table4).

6.2 Environment Events

Section4 describes the event-based priority where a priority is calculated for each
channel. This priority is based on environment events that affect the importance of
a channel to the system. In our teleoperation application, distance to obstacles and
speed are environment events that will be monitored in order to calculate the priority
for the camera’s image topic. The operator needs more visual feedback when driving
at a higher speed or close to obstacles.

Mansour et al. [15] define that the maximum distance detected by the sensors on
the robots is 200cm, and the maximum speed is 50cm/s. In this simulation, we will
define the same parameters in order to get real values in the simulated environment.
Thus, the priority based on distance to obstacles and speed will be defined by the
functions:

tc = distance

speed
(6)

pcamera =

⎧
⎪⎨

⎪⎩

1, if tc < 3

0, if tc > 20
20−tc
17 , otherwise.

(7)

A ROS Package for Dynamic Bandwidth Management … 337

Equation (7) defines the priority as a function of the expected time before colli-
sion as defined by (6). There are other ways to calculate the priority and the function
describing environment events for the same application. They are modelled depend-
ing on where the library is being used.

6.3 Bandwidth Management

The default_optimizer_node runs the linear optimization problem each one second as
described in parameter /dbm/optimization_rate_in_seconds. We compare the results
of the suggested algorithm with one other fixed rate algorithm. The static algo-
rithm divides the available bandwidth among the robots in proportion to the size of
the messages. Thus, with an available bandwidth of 1375KBps (11Mbps), R1 gets
1100KBps and R2 gets 275KBps. Respecting bandwidth limits, camera topic will
send messages on a frequency of 13Hz.

In order to evaluate the proposed bandwidth management algorithm, we present
some results from the simulation using the dynamic bandwidth management library
in Table5 and Fig. 16. The systemprioritizes the communication channels by increas-
ing the frequency and providing greater bandwidth which is close to the maximum
available (11Mbpps) in all simulation times (Table6).

Step 1 shows how the library sets a greater frequency to the most important
communication channels while ensuring maximum use of the bandwidth available
to the system. Robot R1 has a estimated collision time of 20s and robot R2 has a
greater priority because its estimated collision time is 10 s. The library has assigned
the maximum frequency for the robot R2 and in order to utilize the maximum of
available bandwidth, has assigned 12.37Hz for the robot R1.

Table 5 Frequencies in teleoperation application

Step Robot 1 (R1) Robot 2 (R2)

tc (s) pcamera f (Hz) tc (s) pcamera f (Hz)

1 20 0.00 12.37 10 0.59 16

2 30 0.00 12.37 20 0.00 16

3 6 0.82 16 100 0.00 1.48

4 10 0.59 16 ∞ 0.00 1.48

5 5 0.88 16 ∞ 0.00 1.48

6 15 0.29 13 15 0.29 13.48

7 2.5 1.00 16 ∞ 0.00 1.48

8 36 0.00 12.37 10 0.59 16

9 40 0.00 12.37 7 0.76 16

10 50 0.00 12.37 3 1.00 16

338 R.E. Julio and G.S. Bastos

Fig. 16 Priorities in
teleoperation application

0 2 4 6 8 10

0

5

10

15

P=0 P=0

P=0.82
P=0.59

P=0.88

P=0.29

P=1

P=0
P=0

P=0

P=0.59
P=0

P=0
P=0

P=0

P=0.29

P=0

P=0.59
P=0.76

P=1

Step

F
re
qu

en
cy

(H
z)

Robot 1
Robot 2

Table 6 Bandwidth used by all communication channels

Step R1 R2

tc (s) Bandwidth (%) tc (s) Bandwidth (%)

1 20 75.56 10 24.44

2 30 75.56 20 24.44

3 6 97.75 100 2.25

4 10 97.75 ∞ 2.25

5 5 97.75 ∞ 2.25

6 15 79.42 15 20.58

7 2.5 97.75 ∞ 2.25

8 36 75.56 10 24.44

9 40 75.56 7 24.44

10 50 75.56 3 24.44

Step 2 shows a simulation with P1 = 0; P2 = 0; f1 = 12.37Hz; f2 = 16Hz. This
shows a case where the frequencies are not proportional to the priorities but the
results are correct since the objective of the proposed algorithm is to maximize the
bandwidth utilized by all communication channels (Eq.5). However, considering the
application scenario, a division of the frequency proportional to the priorities might
be suitable. Thus, a simple modification of the proposed algorithm can divide the
bandwidth among the communication channels when the priorities are equal to zero.
Therefore, the frequencies in Step 2 can be recalculated to f1 = 13 and f2 = 13Hz.

Steps 3, 4, 5 and 7 show cases where the R1 is close to an obstacle and the robot
R2 is stopped. Thus, frequency of the robot R2 can be reduced since it is not being
operated and there is no risk of collision and robot R1 can be operated withmaximum
visual feedback(f1 = 16; f2 = 1.48Hz). Step 6 shows a case where priorities are equal
and the allocated frequencies are divided between the robots.

A ROS Package for Dynamic Bandwidth Management … 339

Steps 8, 9 and 10 show cases where the priorities of robot R2 are greater than
priorities of robot R1. In this cases, system assigned a greater frequency to robot R2

allowing it to be operated with a higher quality of information.
The total bandwidth used for the communication channels in all simulation time

is equal to the total bandwidth available to the system (11Mbps). Raise the use of
bandwidth for the maximum prevents the waste of resources without exceed the
bandwidth limits.

In static algorithm, robot frequencies are 13Hz in all simulation times. This value
is greater than the minimum defined by [10] but always lower than the frequency
of 16Hz, suggested for this type of application. Best results are achieved by DBM.
Only the robots with priority P = 0 obtained a frequency less than 13Hz and, inmost
simulation times, the robot with the highest priority obtained a frequency of 16Hz,
providing a better visual feedback and helping the operator to take the decisions and
avoid obstacles.

7 Conclusion

This chapter presented a dynamic bandwidth management library for multi-robots
systems. The system prioritizes communication channels according to environment
events and offers greater bandwidth for the most important channels. A case study on
how to use the library was presented and a comparison between a static algorithm and
the proposed algorithmwas shown. A video demonstration of the application running
can be found in our in DBM wiki page (http://wiki.ros.org/dynamic_bandwidth_
manager) [21] and online at https://youtu.be/9nRitwtnBj8.

Some of the upcoming challenges will be to create a better real-time capability of
the system. The proposed library runs the bandwidth management algorithm using a
fixed rate. Thereby, rapid changes in the environment or situations inwhich the robots
find themselves may require faster response to ensure the system is not applying
bandwidth limits that are out-of-date with respect to the robots situations.

As developed in this work, the library does assume that the total bandwidth is
known beforehand. This can degrade the system performance in practical settings,
for instance with wireless links, whose bandwidth depends on the physical loca-
tion of the nodes and the obstacles present in the environment. Experiments in real
scenarios (and not simply in a simulated one, as done in this chapter) would be there-
fore expected to validate the approximation of considering the bandwidth known
beforehand.

http://wiki.ros.org/dynamic_bandwidth_manager
http://wiki.ros.org/dynamic_bandwidth_manager
https://youtu.be/9nRitwtnBj8

340 R.E. Julio and G.S. Bastos

References

1. Casper, Jennifer, and Robin R. Murphy. 2003. Human-robot interactions during the robot-
assisted urban search and rescue response at the World Trade Center. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics 33 (3): 367–385.

2. Hiroaki, Kitano. 2000. Robocup rescue: A grand challenge for multi-agent systems. In Pro-
ceedings of the fourth international conference on multiagent systems, 2000, 5–12. New York:
IEEE.

3. Rekleitis, Ioannis, Gregory Dudek, and Evangelos Milios. 2001. Multi-robot collaboration for
robust exploration. Annals of Mathematics and Articial Intelligence 31 (1–4): 7–40.

4. Lima, Pedro U., and Luis M. Custodio. 2005. Multi-robot systems. In Innovations in robot
mobility and control, 1–64. Heidelberg: Springer.

5. Balch, Tucker, and Ronald C. Arkin. 1994. Communication in reactive multiagent robotic
systems. In Autonomous Robots 1.1, 27–52. Dordrecht: Kluwer Academic Publishers.

6. Fong, Terrence, Charles Thorpe, and Charles Baur. 2003. Multi-robot remote driving with
collaborative control. IEEE Transactions on Industrial Electronics 50 (4): 699–704.

7. Tsuyoshi, Suzuki, et al. 1996. Teleoperation of multiple robots through the Internet. In 5th
IEEE international workshop on, robot and human communication, 1996, 84–89. New York:
IEEE.

8. Chadi, Mansour, et al. 2011. Event-based dynamic bandwidth management for teleoperation.
In 2011 IEEE international conference on, robotics and biomimetics (ROBIO), 229–233. New
York: IEEE.

9. Julio, Ricardo E, and Guilherme S, Bastos. 2015. Dynamic bandwidth management library
for multi-robot systems. In 2015 IEEE/RSJ international conference on, intelligent robots and
systems (IROS), 2585–2590. New York: IEEE.

10. Chen, Jessie YC., Ellen C, Haas, and Michael J, Barnes. 2007. Human performance issues
and user interface design for teleoperated robots. In IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 37.6, 1231–1245.

11. Wiki ROS. http://wiki.ros.org/.
12. ROS Parameter Server. http://wiki.ros.org/Parameter%20Server.
13. Mitchell, Stuart, Michael, OSullivan, and Iain, Dunning. 2011. PuLP: a linear program-

ming toolkit for python. In The University of Auckland, Auckland, New Zealand. http://www.
optimization-online.org/DB_FILE/2011/09/3178.pdf.

14. DBM Video Demonstration. https://youtu.be/9nRitwtnBj8.
15. Mansour,Chadi, et al. 2012.Dynamic bandwidthmanagement for teleoperationof collaborative

robots. In 2012 IEEE international conference on robotics and biomimetics (ROBIO), 1861–
1866. New York: IEEE.

16. DBM Source Code. https://github.com/ricardoej/dynamic_bandwidth_manager.
17. Sheridan, Thomas B. 1992. Telerobotics, automation, and human supervisory control. Cam-

bridge: MIT press.
18. Sirouspour, Shahin, and Peyman, Setoodeh. 2005.Multi-operator/multi-robot teleoperation: an

adaptive nonlinear control approach. In: 2005 IEEE/RSJ international conference on intelligent
robots and systems, 2005, (IROS 2005), 1576–1581. New York: IEEE.

19. French, Jon, Thomas G, Ghirardelli, and Jennifer, Swoboda. 2003. The effect of bandwidth
on operator control of an unmanned ground vehicle. In The interservice/industry training,
simulation and education conference (I/ITSEC), Vol. 2003. NTSA.

20. Van Erp, Jan B.F., and Pieter Padmos. 2003. Image parameters for driving with indirect viewing
systems. Ergonomics 46: 1471–1499.

21. DBM Wiki. http://wiki.ros.org/dynamic_bandwidth_manager.

http://wiki.ros.org/
http://wiki.ros.org/Parameter%20Server
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
https://youtu.be/9nRitwtnBj8
https://github.com/ricardoej/dynamic_bandwidth_manager
http://wiki.ros.org/dynamic_bandwidth_manager

A ROS Package for Dynamic Bandwidth Management … 341

Ricardo Emerson Julio Studied Computer Science at Federal University of Lavras (UFLA). He
did his M.Sc. in Science and Computing Technology working in the System Engineering and
Information Technology Institute (IESTI), Federal University of Itajuba (UNIFEI). Nowadays, he
is a PhD Student in Electrical Engineering at UNIFEI. His research focuses on multi-agent sys-
tems, robotics, communication and ROS. He is an expert on software development and program-
ming with 8 years of industrial experience working in mining area.

Guilherme Sousa Bastos Studied Electrical Engineering at Federal University of Itajuba
(UNIFEI), M.Sc. in Electrical Engineering at UNIFEI, and PhD in Electronic and Computation
Engineering at Aeronautics Institute of Technology (ITA), with part of doctorate done at Aus-
tralian Centre for Field Robotics (ACFR). Nowadays, he is associate professor at UNIFEI and
coordinator of Computer Science and Technology. He has experience in Electrical Engineering
and Automation of Electrical and Industrial Processes, acting on the following subjects: electrical
hydro plants, mining automation, optimization, system integration and modeling, decision mak-
ing, autonomous robotics, machine learning, discrete events systems, and thermography.

Part IV
Service Robots and Fields Experimental

An Autonomous Companion UAV
for the SpaceBot Cup Competition 2015

Christopher-Eyk Hrabia, Martin Berger, Axel Hessler, Stephan Wypler,
Jan Brehmer, Simon Matern and Sahin Albayrak

Abstract In this use case chapter, we summarize our experience during the
development of an autonomous UAV for the German DLR Spacebot Cup robot com-
petition. The autarkic UAV is designed as a companion robot for a ground robot sup-
porting it with fast environment exploration and object localisation. On the basis of
ROS Indigowe employed, extended and developed several ROSpackages to build the
intelligence of the UAV to let it fly autonomously and act meaningfully as an explorer
to disclose the environment map and locate the target objects. Besides presenting
our experiences and explaining our design decisions the chapter includes detailed
descriptions of our hardware and software system as well as further references that

C.-E. Hrabia (B) · M. Berger · A. Hessler · J. Brehmer · S. Albayrak
DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7,
10587 Berlin, Germany
e-mail: christopher-eyk.hrabia@dai-labor.de
URL: https://www.dai-labor.de/

M. Berger
e-mail: martin.berger@dai-labor.de
URL: https://www.dai-labor.de/

A. Hessler
e-mail: axel.hessler@dai-labor.de
URL: https://www.dai-labor.de/

J. Brehmer
e-mail: jan.brehmer@dai-labor.de
URL: https://www.dai-labor.de/

S. Albayrak
e-mail: sahin.albayrak@dai-labor.de
URL: https://www.dai-labor.de/

S. Wypler · S. Matern
Technische Universität Berlin, Ernst-Reuter-Platz 7,
10587 Berlin, Germany
e-mail: s.wypler@online.de

S. Matern
e-mail: simon.matern@campus.tu-berlin.de

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_11

345

346 C.-E. Hrabia et al.

provide a foundation for developing own autonomous UAV resolving complex tasks
using ROS. A special focus is given on the navigation with SLAM and visual odom-
etry, object localisation, collision avoidance, exploration and high level planning and
decision making. Extended and developed packages are available for download, see
footnotes in the respective sections of the chapter.

Keywords Unmanned aerial vehicle ·Autonomous systems · Exploration · Simul-
taneous localisation andmapping ·Decisionmaking ·Planning ·Object localisation ·
Collision avoidance

1 Introduction

In the German national competition SpaceBot Cup 2015 autonomous robot systems
were challenged to find objects in an artificial indoor environment simulating space
exploration. Two of these objects had to be collected, carried to a third object, and
assembled together to build a device which has be turned on in order to complete the
task.1

In the 2015 event the ground rover of team SEAR (Small Exploration Assistant
Rover) from the Institute of Aeronautics and Astronautics of the Technische Univer-
sität Berlin [1] was supplemented by an autonomous unmanned aerial vehicle (UAV)
developed by the Distributed Artificial Intelligence Lab (DAI).

The developed ground rover features a manipulator to perform all grasping tasks
and is assisted by the UAV in exploration and object localisation. Hence, mapping
the unknown environment and locating the objects are the main tasks of the accom-
panying UAV.

The aerial system can take advantage of its capabilities of being faster than a
ground based system and having less issues with rough and dangerous terrain. For
this reason it was the concept of providing an autonomous UAV, that rapidly explores
the environment, gathering as much information as possible and providing it to the
rover as a foundation for efficient path and mission planning.

The multi-rotor UAV is based on a commercial assembly kit including a low
level flight controller that is extended with additional sensors and a higher-level
computation platform. All intelligence and advanced software modules are used and
developed within the Robot Operating System (ROS) environment.

The UAV executes its mission in a completely autonomous fashion and does not
rely on remote processing at all. The system comprises the following features:

• Higher-level position control and path planning
• Monocular simultaneous localisation and mapping based on ORB-SLAM [2]
• Vision-based ground odometry based on an extended PX4Flow sensor [3]

1Complete task description in German at http://www.dlr.de/rd/Portaldata/28/Resources/
dokumente/rr/AufgabenbeschreibungSpaceBotCup2015.pdf.

http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/rr/AufgabenbeschreibungSpaceBotCup2015.pdf
http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/rr/AufgabenbeschreibungSpaceBotCup2015.pdf

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 347

• Object detection using BLOB detection or convolutional neural networks [4]
• Collision avoidance with sonar sensors and potential fields algorithm [5]
• UAV attribute focused exploration module
• Behaviour-based planner for decision making and mission control

The above components have been realized by students and researchers of the
DAI-Lab in teaching courses, as bachelor or master theses or part of PhD theses.
Moreover, a regular development exchange has been carried out with the corre-
sponding students and researchers of the Aeronautics and Astronautics department
that worked on the ground rover on similar challenges.

In this chapter we are focusing on the UAV companion robot and present our
work in a case study with detailed descriptions of our system parts, components
and solutions including hardware and software. Furthermore, we describe our obser-
vations and challenges encountered during development and testing of the system,
especially issues encountered with erratic components, failing hardware and compo-
nents not performing as good as expected. Providing a reusable foundation for other
researchers in order to support our goal of fostering further research in the domain
of autonomous unmanned aerial vehicles.

We explicitly include information and references that is sometimes excluded from
publications such as source code, the exact amount of autonomy and extend of remote
processing (or lack of it).

The remainder of the chapter is structured as follows. Section2 discusses related
work in the context of the developed systems as well as the provided information of
other authors. Sections3 and 4 provide information about our hardware and software
architecture. Here, the software architecture gives a general view on our system and
should be read before going in details of following more specific sections. Section5
explains our navigation subsystem consisting of SLAM (simultaneous localisation
andmapping) and visual odometry. This section covers also the evaluation and selec-
tion process of a suitable SLAM package. The following Sect. 6 elaborates two alter-
native object detection and localisation approaches we have developed for the Space-
Bot Cup competition. Section7 presents background about our collision avoidance
system. After, Sect. 8 goes into detail about several possible exploration strategies
we have evaluated in order to determine the most suitable one for our use case. In
Sect. 9 we briefly introduce a new hybrid decision making and planning package
that allows for goal-driven, behaviour-based control of robots. This is followed by
a short section about the collaboration and communication from our UAV with the
other ground robot of our University team. After discussing the general results and
limitations of our approach in Sect. 11, we summarise our chapter and highlight
future tasks in the last Sect. 12.

348 C.-E. Hrabia et al.

2 Related Work

In the field of aerial robotics several platforms and software frameworks have been
proposed for different purposes during the last years. In this section try to focus on
platform and architecture descriptions for UAVs that have to autonomously solve
similar tasks regarding exploration, object detection, mapping and localisation and
touch on the essential components for autonomous flight and mission execution.

With the exception of [6], where ROS is only used as an interface, the works
included here use ROS as a framework for their software implementation.

Tomic et al. [7, 8] describe a software and hardware framework for autonomous
execution of urban search and rescue missions. Their descriptions are quite com-
prehensive giving a detailed view on their hardware and software architecture, even
from different vantage points. They feature a fully autonomous UAV using a popular
copter base, Pelican,2 and describe specific implemented features like navigation
by keyframes, topological maps and visual odometry as well as giving background
and recommendations on most crucial aspects of autonomous flight such as sensor
synchronisation, registration, localisation and much more. One highlight is that they
employ stereo vision, speed up using an FPGA, so they do not rely solely on (2D/3D)
LiDAR as many other solutions. Also it appears that all relevant design decisions
are sufficiently motivated, many details needed to reproduce certain experiments
are given, the mathematical background for key features is given and surprising or
important results are stressed throughout. It one of themost complete workswe could
find, only it does not explicitly point to locations where the described modules can
be acquired from, especially the custom ones, and so called mission-dependent mod-
ules (e.g. domain feature recognition) are not explained since they were presumably
deemed to be out of focus.

A description of a more high-end hardware architecture is presented in [9]. The
authors describe their hardware and software architecture for autonomous exploration
using a sophisticated copter platformandhigh-end (for amobile system) components.
They give an overview of their hardware architecture, mention the most important
components and give some experimental results on localisation and odometry. The
software architecture is not described in depth and developed packages are not linked
in the publication.

Loianno et al. [6] describe a system that is comprised of consumer grade products:
A commercially available multicopter platform and a smartphone that handles all
the necessary high level computation for mission planning, state estimation and
navigation using the build-in sensors of the copter and the phone. The software is
implemented as an application (“App”) for the Android smart phone. According
to the publication ROS is only used as a transport (interface) variant for sending
commands and receiving data.

During the first instance of the SpaceBot Cup in 2013, also at least two teams
already deployed a UAV in attempt to aid their earthbound vehicles in their mission.

2manufactured by Ascending Technologies.

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 349

Although the systems are not described in detail and may not be fully autonomous,
they are included here, since they were deployed for the same task. For 2013 The
Chemnitz University Robotics Team [10] used the commercially available quadrotor
platformParrotARDrone2.0.Without hardwaremodifications this platformcanonly
do limited on-board processing, so it was basically used as a flying camera, hovering
above at a fixed position while streaming a video feed to a remote station on site that
ran the mission logic and controlled the crafts position. Although the copter relies
on a working communication link, it was designed to be purely optional, thus not
mission critical if the link is unstable or failing. The image was also streamed back to
the ground station for mission monitoring and intervention. Also another contestant,
Team Spacebot 21, deployed a Parrot AR Drone during the contest in 2013 and
apparently further prepared a hexacopter for the event of 2015, but no description of
their systems could be found.

In summary, the level of detail for the descriptions varies greatly. This is may be
due to the space constraints imposed by the publication format.

However, none of the surveyed publications did provide a full software stack
in ROS that could easily be integrated and adapted for use on one’s own copter
platform(s). While for example [6] Loianno et al. describe a nice complete system
comprised of consumer grade products, to our disappointment the authors do neither
explicitly link to the advertised App (or even a demo) nor was it easily discoverable
on the net.

Although there are some high quality, detailed descriptions of hardware and soft-
ware platforms for autonomous UAVs available, often either some crucial imple-
mentation details are missing or the code for software modules that are described on
a high level is not available.

3 Hardware Description

The main objective of our hardware concept was having a modular prototyping
platform with enough payload for an advanced computation systems as well as a
couple of sensors together with a reasonable flight time. Furthermore, we tried to
reuse existing hardware in the lab, to limit expenses, and keep the system handleable
in indoor environments. The system and its general setup is illustrated in Fig. 1.

Since our focus is not on mechanical or electrical engineering, we based our
efforts on a commercially available hexacopter self-assembly kit from MikroKopter
(MK Hexa XL3). The modular design simplified required extensions. We removed
the battery cage and added 4 levels below the centre platform of the kit, separated
with brass threaded hex spacers. It was required to replace the original battery cage,
made from rubber spacers and thin carbon fibre plates, to have a more solid and
robust base for the additional payload below. The level platforms were made from

3http://wiki.mikrokopter.de/en/HexaKopter.

http://wiki.mikrokopter.de/en/HexaKopter

350 C.-E. Hrabia et al.

Fig. 1 The UAV hardware, setup and live in the competition environment

fiberglass for simple plain levels or 3d-printed for special mounts. In case of the
computation level the platform is directly shaped by the board itself.

The first layer below the centre is still the battery mount, the second layer holds
the computation platform, the third layer holds an additional IMU-sensor (Sparkfun
Razor IMU 9DOF) and the lowest layer contains all optical sensors.

The original flight controller (Flight-Ctrl V2.5) is used for basic low level control
of balancing the UAV and managing the motor speed controllers (ESC). The flight
control is remotely controlled by a more powerful computation device. Since our
research focus is not on low-level control, it is also suitable to use other available
flight controllers like the 3DR Pixhawk. The only requirement is support for external
control of pitch, roll, yaw and thrust, respectively relative horizontal and vertical
motion, through an API.

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 351

During our research for a small scale and powerful computation board we came
across the Intel NUC platform, which is actually made for consumer desktops or
media centres. The NUCmainboards are small (less than 10cm in square), compara-
ble light-weight, provide decent computation power togetherwith plenty of extension
ports. Furthermore, they can be directly powered by a 4s-LiPo-Battery as they sup-
port power supplies providing 12–19V. The most powerful NUC version available
at that time was the D54250WYB, which provides a dual-core CPU (Intel Core
i5-4250U) with up to 2,6GHz in turbo mode. The current available NUC genera-
tion has even better performance and also includes a version with an Intel Core i7
CPU. We equipped our NUC board with 16GB of RAM, 60GB mSATA SSD and a
mini-PCI-E Intel Dual Band Wireless-AC 7260 card.

Due to the required autonomous navigation capabilities, not relying on any exter-
nal tracking system, the UAV has two visual sensors for autonomous navigation on
the lowest layer. The first sensor provides input for the SLAM component and is a
monocular industrial grade camera with global shutter and high frame rate (Matrix
Vision mvBlueFox GC200w) with a 2mm fisheye lens (Lensagon BF2M2020). The
camera is attached to a tiltable mount allowing for a static 45◦ camera angle. The
second sensor is looking to the ground and is a Pixhawk PX4FLOW module that
provides optical odometry measurements [3]. The PX4FLOW sensor is accompa-
nied with an additional external ultrasonic range sensor (Devantech SRF08) pointing
towards the ground. The additional range sensor and IMU are required to compensate
the weak performance of the PX4Flow, further details are given in Sect. 5.4.

The competition scenario should not have many obstacles in our intended flight
altitude of ~2m, actually almost exclusively pillars to support the roof structure, thus
we decided to use three lightweight ultrasonic range sensors (Devantech SRF02) for
collision avoidance. The sensors are attached to the protection cage of the UAV on
the extension axis of the three forward facing arms. All ultrasonic range sensors are
connected to theNUCUSBbuswith aDevantechUSB I2C adapter.More demanding
scenarios may require the use of more such sensors or it may be necessary replace or
augment them with a 2D laser range scanner, to get more detailed information about
surrounding obstacles. The protection cage of the UAV is build from kite rubber
connectors, fiberglass rods for the circular structure and carbon fiber rods for the
inner structure.

Our basic system without a battery and the protection cage weights 2030g. The
protection cage adds 280g and our 6600mAh 4s LiPo battery 710g, resulting in
3020g all in all, while providing approximately 15min autonomous flight time.

4 Software Architecture

The abstracted major components of our system and the directed information flow
is visualised in Fig. 2. The shown abstract components are consisting of several
sub modules. The UAV is perceiving its environment through several sensor compo-
nents that are handling the low-level communicationwith external hardwaremodules

352 C.-E. Hrabia et al.

Fig. 2 The abstract UAV software architecture

and taking care of general post-processing.Most of the sensor data and its processing
is related to the autonomous localisation and navigation. For this reason the naviga-
tion component is fusing all the available data after it was further processed in two
distinct sub-systems for SLAM and optical-flow based odometry. The resulting map
and location information as well as some of the sensor data is also used in the object
localisation, high-level behaviour and decision making/planning components.

The object localisation is trying to recognize and locate the target objects in the
competition environment. The decision making/planning component is selecting the
current running high-level behaviour based on all available information from the
navigation, object localisation, the flight controller and the range sensors, as well
as from the constraints of the behaviours themselves. Depended on the executed
behaviour, like collision avoidance, exploration or emergency landing the navigation
component is instructed with new target positions. Hence, the navigation component
is monitoring the current state and controlling the low-level flight controller with new
target values for pitch, roll, yaw and thrust in order to reach the desired position. The
actual motor control runs on the flight controller, while the motor speed is controlled
by external speed controllers.

The abstract architecture is further detailed in the ROS architecture, see Fig. 3,
showing the components including the relevant packages, mainly used topics, ser-
vices and actions.

This architecture shows a common ROS approach of providing continuously gen-
erated information (e.g. sensor data) as topics, direct commands and requests (e.g.
setting new targets) as services and long running requests (e.g. path following) as
actions, using the ROS actionlib. All shown components and packages correspond to
one ROS node. If nothing else is stated we used the ROS modules of version Indigo.
Most information related to the core challenges of autonomous navigation and object
localisation is exchanged and maintained using the tf package.

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 353

Fig. 3 The UAS ROS software architecture. Visualized are packages, components and service,
action and topic interfaces. Each package or subcomponent corresponds to a node instance in the
running system, except the behaviour subcomponents inside the uav_behaviour package

354 C.-E. Hrabia et al.

All higher-level behaviour is controlled by our decision making and planning
framework RHB Planner (ROS Hybrid Behaviour Planner). The individual behav-
iours for start, land, emergency-landing, collision avoidance and exploration are
using provided base classes of this framework and are running on one node. The
RHB Planner is also supporting a distributed node architecture for the behaviours,
but we did not take advantage of it because of the computationally simple nature of
most behaviours. Nevertheless, the generalised implementations of the more com-
plex tasks of collision avoidance and exploration are separated in own packages with
corresponding nodes.

The external monitoring of the UAV is realised with rqt and its common plugins
for visualisation and interaction as well as some custom plugins for controlling
the position_controller and decision making and planning component. The provided
controls are just enabling external intervention by the human but are strictly optional.

For accessing themonocular camerawe are using aROSpackage from theGRASP
Laboratory.4

Independent of theROSsoftware stack runningonx86main computingplatform is
the software of theMikroKopter FlightCtrl and thePX4Flowmodule.Both embedded
systems are interfaced through RS232 usb converters and their ROS wrappers in the
packagesmikrokopter and px-ros-pkg. Sensor data is pushed by the external systems
after an initial request and collected by the ROS wrappers.

The MikroKopter FlightCtrl firmware already contains features for providing
sensor information through the serial interface as well as receiving pitch, roll, yaw
and thrust commands amongst other external control commands. We extended the
existing firmware in several ways in order enable compilation in Linux environment,
sensor debug streamwithout time limited subscription, added a direct setter for thrust
and new remote commands for arming/disarming, calibration and beeping. Our fork
of Version V2.00a and V2.12a is available online.5

Due to several problems with the PX4Flow sensor, see Sect. 5.1 for more details,
we forked the firmware6 as well as the corresponding ROS package.7 We changed
the PX4Flow firmware in order to get more raw data from the optical flow calcula-
tion, disable the sonar and process additional MAVLink messages provided by the
PX4Flow. Furthermore, the firmware fork also includes our adjusted settings as well
as an alternative sonar filtering.

For the communication with the ultrasonic range sensors of type SRF02 and
SRF08 and the interaction with the MikroKopter flight controller we developed new
ROS packages.8

4https://github.com/KumarRobotics/bluefox2.git and
https://github.com/KumarRobotics/camera_base.git.
5https://github.com/cehberlin/MikroKopterFlightController.
6https://github.com/cehberlin/Flow.
7https://github.com/cehberlin/px-ros-pkg.
8https://github.com/DAInamite/srf_serial and https://github.com/DAInamite/mikrokopter_node.

https://github.com/KumarRobotics/bluefox2.git
https://github.com/KumarRobotics/camera_base.git
https://github.com/cehberlin/MikroKopterFlightController
https://github.com/cehberlin/Flow
https://github.com/cehberlin/px-ros-pkg
https://github.com/DAInamite/srf_serial
https://github.com/DAInamite/mikrokopter_node

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 355

More details of the developed or extended modules and related ROS packages for
navigation, autonomous behaviour (including decision making and planning) and
object detection are given in the following sections.

5 Navigation

Autonomous navigation in unknown unstructured environment without any external
localisation systems like GPS is one of the most challenging problems for UAV,
especially if only onboard resources are available to the flying system.

Our approach is combining twomethods for the localisation, we use the PX4Flow
sensor module as a vision based odometry and a monocular SLAM for additional
localisation information as well as creating a map. The advantage of this approach
is that the odometry information, calculated from the downwards looking camera’s
optical flow, fused with the data from a gyroscope and an ultrasonic range sensor for
scaling, is available on a higher frame rate and without initialisation period, but is
prone to drifts in long-term.Whereas the SLAMprovidesmore accurate information,
but needs time for initialisation and can lose tracking. Hence, the odometry provides
a backup system in case SLAM loses tracking. Moreover, using an external device
(PX4Flow) for the odometry image processing has the advantage of reducing the
computational load on the main computation system. An alternative solution could
directly use one oremore additional cameras for optical flowandodometry estimation
without a special sensor as the PX4Flow. This could be done for instance by applying
libvisio2 or fovis through available ROS wrappers visio29 and fovis_ros.10 However,
such an approach would generate more processing load on the main system.

In our configuration with the PX4Flow and SLAM we achieved ∼40Hz update
rate for the integrated odometry localisation and ∼30Hz for the SLAM localisation,
while the map is updated with ∼10Hz.

Next we describe the required adjustments of the visual odometry sensor
PX4FLOW in order to get suitable velocity data, continued by a section about the
used SLAM library and our extensions, after explaining how we fused the localisa-
tion information from both methods and finally explaining how we have controlled
the position of the UAV.

5.1 Odometry

Different than expected the PX4FLOW did not provide the promised performance
and had to be modified in several ways to generate reasonable odometry estimates in

9http://wiki.ros.org/viso2.
10http://wiki.ros.org/fovis_ros.

http://wiki.ros.org/viso2
http://wiki.ros.org/fovis_ros

356 C.-E. Hrabia et al.

our test environment. The implemented modifications are explained in the following.
In fact we received very unreliable and imprecise odometry measurements during

our empirical tests on the UAV. For improving the performance we first replaced
the original 16mm (tele-) lens with a 6mm (normal-) lens to get a better optical
flow performance close to the ground. This is especially a problem during start and
landing, as well as supporting faster movements. Second, we disabled the included
ultrasonic range sensor and added another external ultrasonic range sensor (Devan-
tech SRF08) with a wider beam and more robust measures, because of heavy noise
and unexpected peak errors with the original one. In consequence, we modified the
PX4FLOW firmware (see Sect. 4 for references) to provide all required information
to calculate metric velocities externally. It would have also been possible to integrate
the alternative sensor in the PX4Flow board itself, but due to time constraints and
better control of the whole process, we decided to move this computation together
with an alternative filtering (lowpass and median filter) of the range sensor, as well
as the fusion with an alternative IMU, to the main computation board. This addi-
tional IMU board (Sparkfun Razor IMU 9DOF) was required because the PX4Flow
did not provide a valid absolute orientation after integration, which is caused by
the very simple filtering mechanisms of the only included gyroscope. Here, it was
not possible to replace it with the sensors of MikroKopter flight controller, as the
board does not include a magnetometer and would not have been able to provide
accurate orientation data, too. Instead the additional IMU board enabled us to use
3D accelerometer, gyroscope and magnetometer for orientation estimation.

The resulting odometry information, that is velocity-estimates for all six dimen-
sions (x, y, z, pitch, roll, yaw) and the distance to ground, is integrated over time into
a relative position and published as transforms (tf) from the optical_flow_to_tf node
of the position_controller package, see also Fig. 3 in Sect. 4. The coordinate frame
origin is given by the starting position of the system.

5.2 Localisation and Mapping

One of the most challenging problems of developing an autonomous UAV that does
not rely on any external tracking system or computation resources is finding an
appropriate SLAM algorithm that can be executed on the very limited onboard com-
putation resources together with all other system components. Since our focus is not
on further advancing the state of the art in SLAM research we evaluated existing
ROS solutions in order to find a suitable one that we can use as a foundation for
our own extensions. In doing so we especially focus on a fast and reliable initiali-
sation, a robust localisation with good failure recovery (recovery after lost tracking)
in dynamic environment with changing light conditions and sparse features. All that
is favoured over the mapping capabilities. This is motivated by our approach of
enabling autonomous navigation in 6D (translation and orientation) in the first place,
while in the second place the created map is considered. The created map has a minor
priority since prior knowledge of the competition area would also allow for simple

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 357

exploration based on the area size, starting point and safety offsets. We evaluated
the different algorithms with recorded sensor data of simulations as well as real
experiments where we manually estimated the ground truth. All experiments have
been executed with best knowledge from the provided documentation and calibrated
sensors.

In comparison to many existing solutions, see also Sect. 2, we could not rely
on a 2D laser scanner as an input sensor, because of the unstructured competition
environment without surrounding walls near by. Using a 3D laser scanner was not
possible due to financial limitations in our project. Furthermore, we determined that
laser scanners have problems in detecting the black molleton fabric that was used to
limit the competition area. In consequence it would only be possible to detect the
border obstacles from max. 1m distance, independent of the actual maximum range
of the sensor.

Hence, our initial idea was using a ASUS Xtion RGBD sensor together with
the RGBDSLAM V2 [11] instead of a laser scanner or RGB camera. This was
based on the selection and positive experience of the rover sub-team in the first
execution of the competition in 2013. In this context we have also evaluated the
alternative package rtabmap SLAM [12]. Both packages allow configuring different
feature detection and feature matching algorithms. In comparison to RGBDSLAM
V2, RTAB-MAP supports several sub maps that are created on a new initialisation
after lost tracking. Such sub maps allow for a stepwise recovery and are fused by the
algorithm later on. RGBDSLAM V2 would require getting back to the latest valid
position and orientation for recovery. This is a clear disadvantage especially for an
alwaysmoving aerial system. However, in our empirical test the pure localisation and
mapping performance of both algorithms was similar after tuning the configuration
appropriately.

Unfortunately we figured out that the required OpenNi 2 driver together with
the corresponding ROS package for accessing the raw data of the RGBD sensor is
generating very high load on our system. In fact, just receiving the raw unprocessed
RGBD data from the sensor in ROS was giving 47.5% load on our two core system,
in comparison the later selected RGB camera is just creating 7% CPU load. We did
some experiments with different configurations and disabled preprocessing, but have
not been able to reduce the load significantly. Due to the high load it was not possible
to run any of the existing RGBD-based SLAM solutions with an appropriate frame
rate and without quickly loosing tracking during motion. Though an RGBD SLAM
solutionwould have been suitable for our indoor scenario, it is limiting the portability
of the system to other applications in outdoor environment, since RGBD sensors are
strongly affected by sunlight.

In consequence we tested other available SLAM solutions that are able to oper-
ate with RGB cameras as alternative sensor. The RGB sensor has also the advan-
tage of having a higher detection range. Here, we especially looked upon monoc-
ular approaches since we expected less load, if only one image per frame has to
be processed. Table1 summarises general properties and our experiences with dif-
ferent algorithms. The direct gradient-based method used in LSD SLAM [13] has
the advantage of generating more denser maps, while the indirect ORB SLAM [2]

358 C.-E. Hrabia et al.

Table 1 Comparison matrix of monocular SLAM packages. The numbers indicate the ranked
position as qualitative comparison from 1–3, 1 being better
Package/
algorithm

Type Map type Initialisation Recovery Position
quality

Orientation
quality

System
load

Map
quality

ORB
SLAM [2]

Indirect Feature
point cloud

1 1 1 1 2 2

LSD
SLAM [13]

Direct Semi-dense
depth

2 2 3 3 3 1

SVO
SLAM [14]

Semi-direct Feature
point cloud

3 3 2 2 1 3

and the semi-direct (feature-based combinedwith visual odometry) SVOSLAM [14]
only provide very coarse point cloud maps build from detected features. However,
both LSD SLAM and SVO SLAM had difficulties in getting a valid initialisation and
have frequently lost tracking, resulting in bad position and orientation estimations.
In contrast ORB SLAM is able to quickly initialise, small movements in hovering
position are enough, and holds the tracking robustly, while recovering very fast once
it is lost in situations without many features or very fast movements. Therefore, we
selected the ORB_SLAM package [2] that was providing stable and fast localisa-
tion on our system, resulting in update rates of ∼30Hz for the SLAM localisation
and ∼10Hz for the mapping. We empirically determined the following ORB SLAM
configuration that differs from the provided default: 1000 features per image, 1.2
scale factor between levels in the scale pyramid, fast threshold of 10, enabling the
Harris score and the motion model. Especially switching from the FAST score to
the Harris score improved the performance in environments with sparse features and
monotonic textures.

Even though the package provided a good foundation, it was missing several fea-
tures. For this reason we developed some extensions, which are available online in
a forked repository.11 The original package is available, too.12 Here, we incorpo-
rated an additional topic for state information, disabled the processing of topics if
they are not subscribed (especially useful for several debug topics), improved the
general memory management (the original includes several memory leaks) and inte-
grated amodule for extendedmap generation. The last extension allows for exporting
octree-based maps and occupancy maps through topics and services. The octree rep-
resentation is calculated from the feature point cloud of the internal ORB SLAM
map representation. The occupancy map is created from the octree-based map by
projecting all voxels in a height range (slice through the map) into a plane. In our
case it was sufficient to use static limits to eliminate all points from ceiling and floor.

However, this extension has potential for many optimisations and extensions, for
instance all calculation could benefit from caching and reusing former created maps
instead of recalculating entire maps or a more sophisticated solution for detecting
floor and ceilingwould simplify a reuse in other scenarios. Additionally, an extension
allowing to create new maps on lost tracking and fuse them later, like supported

11https://github.com/cehberlin/ORB_SLAM.
12https://github.com/raulmur/ORB_SLAM.

https://github.com/cehberlin/ORB_SLAM
https://github.com/raulmur/ORB_SLAM

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 359

Fig. 4 The SLAM and odometry execution process flow

by RTAB-MAP, would increase the robustness and applicability of the algorithm.
Furthermore, we plan to improve the new version 2 of ORB SLAM.13 The new
version also supports stereo camera setups that may be manageable from the load
perspective on the current NUC generation.

5.3 SLAM and Odometry

The used SLAM module and the position calculated from the integrated odometry
data provide two distinct coordinate frames. The slam_odom_manager is listening
to created tf-transformations of both navigation submodules and creates a fused
transformation from them. This also requires valid static transformations from the
sensors to the base frame of the robot. In this context, the slam_odom_manager
is also monitoring the state of the modules in order to react to a changed SLAM
state, e.g. successful initialisation, lost tracking or when tracking is recovered, by
recording transformations between the distinct coordinate frames and switching or
adjusting the currently used master coordinate frame that forms the base for the
resulting output transformation of the slam_odom_manager. This transformation is
the reference frame for the position_controller.

Due to the fact thatwe are only using amonocular SLAMthe resulting position and
map are not scaled in real world units. The problem can be addressed by determining
the scale based on available metrical sensor data, as shown by Engel et al. [15]. In our
solution the challenge is addressed by using the odometry data, which is scaled based
on the absolute ground distance from the ultrasonic range sensor, as a reference in
an initial stage of the mission in order to get a suitable conversation from the SLAM
coordinate frame to the real world.

The execution flow of the process of the slam_odom_manager is illustrated in
Fig. 4. Here, the shown parallel process execution is repeated from the dotted line

13https://github.com/raulmur/ORB_SLAM2.

https://github.com/raulmur/ORB_SLAM2

360 C.-E. Hrabia et al.

once SLAM has recovered. The general idea is to get robust short-term localisation
from odometry, while getting long-term localisation from SLAM. This is based on
the experimentally verified assumption that the visual odometry of the PX4Flow has
an increasing error over time due to repeated integration, but no initialisation stage.
Whereas the SLAM is considered as less robust in short-term, since it can loose
tracking and need a initialisation stage with a moved camera, but it is more robust in
long-term, because it is able to utilize loop-closures. In order to avoid jumps in the
position control of the UAV after the transition from SLAM localisation to odometry
localisation and vice versa the position controller PID controllers are reinitialised at
the handover.

5.4 Position Controller

The position_controller package is responsible for the high-level flightcontrol of the
UAV. The module is available online.14 It finally generates pitch, roll, yaw and thrust
commands for the flight controller based on the given input positions or path. The
package is separated into three submodules or nodes.Alreadymentionedwas theopti-
cal_flow_to_tf module that converts odometry information into tf-transformations.
The path_follower is a meta-controller of the position_controller_tf that controls the
execution of flight paths containing a sequence of target positions. The core module
that calculates the flight control commands is the position_controller_tf. Therefore,
it monitors the velocity, the distance to ground and the x-y-position of the system
based on received tf-transformations. The control of the targeted positions in space
is realised with a chain of two PID-controllers for acceleration and velocity for each
of the four controllable parameters. Since the balance of the vehicle is maintained
by the low-level flight controller, the controller does only influence roll and pitch in
order to move in x-y-directions, while yaw is controlled in order to hold a desired
heading. All controllers can be configured with several constraints for defining max-
imum change rates and velocities. The PID implementation and configuration make
use of the control_toolbox package, but we used an own fork of the official code
base15 to integrate some bugfixes as well as some own extensions that allow for an
easier configuration using ROS services.

Furthermore, the controller includes a special landing routine for a soft and smooth
landing, which is activated if the target distance to ground is set to 0. This routine
calculates a target velocity based on the estimated exponential decreasing time-to-
contact as presented in [16].

14https://github.com/DAInamite/uav_position_controller.
15https://github.com/cehberlin/control_toolbox.

https://github.com/DAInamite/uav_position_controller
https://github.com/cehberlin/control_toolbox

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 361

Fig. 5 The target objects. From left to right: battery pack, plastic cup and base object

6 Object Detection and Localisation

Besides autonomous flight and navigation in unknown terrain, another important
key capability of the UAV is the detection of the mission’s target objects. Providing
additional knowledge of the terrain and the objects’ positions to the ground vehicle
enables quick and efficient path planning. This results in a faster completion of the
search, carry and assembly tasks. In the scenario at hand three target objects had
to be found. The objects are colour coded and their exact shape and dimensions
are known: A yellow battery pack, a (slightly transparent) blue plastic cup and the
red base object, see illustration in Fig. 5. Colours, dimensions and weights for these
objects were known beforehand.

Two different approaches have been developed and evaluated to detect these
objects: A simple blob detection and a convolutional neural network based detec-
tion and localisation. Besides that, other object recognition frameworks were eval-
uated regarding their applicability to the task: Tabletop Object Recognition,16

LINE-MOD17 and Textured Object Detection.18 Albeit, neither detection rates nor
computational complexity allowed for their use on the UAV in the given scenario.
The detection rates were generally not sufficient and tend to fail in case that vital
constraints are violated (e.g. no flat surface can be detected, or the vertical orientation
of trained objects is limited).

The lessons learned and two developed approaches are detailed in the following
subsections. The discussed implementations are available online.19

6.1 Blob Detection

Motivated by the colour coded mission objects, a simple blob detection approach
seemed admissible. Hence, we used a simple thresholding for the primary colours in

16http://wg-perception.github.io/tabletop/index.html#tabletop.
17http://wg-perception.github.io/linemod/index.html#line-mod.
18http://wg-perception.github.io/tod/index.html#tod.
19https://github.com/DAInamite/uav_object_localisation.

http://wg-perception.github.io/tabletop/index.html#tabletop
http://wg-perception.github.io/linemod/index.html#line-mod
http://wg-perception.github.io/tod/index.html#tod
https://github.com/DAInamite/uav_object_localisation

362 C.-E. Hrabia et al.

Fig. 6 Exemplary image showing prevalence of colours and intermediate processing result for the
battery

the image to get regions of interest for the objects to be detected.Consecutive contours
of the resulting connected areas are extracted and analysed, using some properties of
the objects such as their expected projected shapes. The implementation is applying
the OpenCV framework in version 2.4.8.

First the image is converted to HSV colour space. In the thresholding step, the
image is simply clipped to the interesting part of the hue-channel associated with
each object’s expected colour. The thresholds for each object were manually tuned
with a custom rqt interface during the preparation sessions of the competition.

After the thresholding, the image is opened (erode followed by a dilate) to get
rid of small artefacts and smoothen the borders of the resulting areas. Then the
contours of the thresholded image are extracted (findContours) and the detected
contours are simplified using the Douglas–Peucker algorithm (approxPolyDP). The
resulting simplified contours are checked for certain properties to be considered a
valid detection (Fig. 6).

Although the employed method is rather simplistic, with correctly tuned thresh-
olds, it is able to detect a good amount of objects in our test sets (footage from
recordings made during flight with rosbag20) of about 99%, while only generating a
low number of false positives (0.3%), see Table 2 for more details.

20http://wiki.ros.org/rosbag.

http://wiki.ros.org/rosbag

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 363

Table 2 Results of blob based detection over image sets extracted from recorded test flights

Image set Correctly found objects Incorrectly found objects False positives

Base 686 6 13

Base and cup 1303 2 0

Battery 1174 0 6

Batt. and base 1407 12 2

Batt., base and cup 1359 3 0

Batt. and cup 1069 0 8

Cup 524 0 8

Fig. 7 Original network structure of LeNet-5 (top) and resulting network structure for the detection
task (bottom)

6.2 Convolutional Neural Network

Convolutional neural networks gained a lot of popularity for generic object detection
tasks. For the problem at hand, the tiny-cnn library21 has been selected. Basically
the original LeNet-5 network architecture and properties were used (although layer
F6 has been omitted), see Fig. 7.

LeNet-5 was originally designed to solve the MNIST [17] Optical Character
Recognition (OCR) challenge where single handwritten digits had to be recognized.
The images are grey-scale, 28 × 28 pixel in size and are usually padded to 32 × 32
pixel which is the default input size of the LeNet5. The example implementation
employed Levenberg- Marquardt gradient descend with 2nd order update, mean-
squared-error loss function, approximate tanh activation function and consisted of
6 layers: 5 × 5 convolution with 6 feature maps, 2 × 2 average pooling, partially

21https://github.com/nyanp/tiny-cnn.

https://github.com/nyanp/tiny-cnn

364 C.-E. Hrabia et al.

connected 5 × 5 convolution with 16 feature maps, 2 × 2 average pooling and again
a 5 × 5 convolution layer producing 120 outputs which are fed into a fully connected
layer with 10 outputs, one for each digit. This approach was selected as it builds upon
a time-proven and for today’s standards quite small codebase allowing it to perform
fast enough on the UAV.More sophisticated approaches for scene labeling or generic
object detection methods may easily exceed the processing time requirements and
computational constraints of the platform.

In order to adapt the LeNet-5 architecture to our use case we tested various mod-
ifications. At first the input colour depth was extended to support also RGB, HSV
and YUV (as well as YCrCb) colour spaces or components thereof while keeping the
rest of the network architecture as described above, except for the last layer output
which was reduced to three neurons, one for each object class. Of course, increasing
the input depth increases time needed for training as well as classification but this
is most likely outweighed by the benefits that the colour channels provide, because
colour is expected to be a key characteristic of the mostly textureless target objects.

Camera images with a resolution of 640x480 pixels are down-scaled and stretched
vertically to fill the quadratic input. Stretching was preferred over truncating because
it does not reduce the field of view and therefore maintains the search area as large as
possible. Features extractors inside the network will be established during training so
it can be expected that the vertical distortion will not affect the network performance
because it is trained with similar stretched images. Apparently the objects do not
incorporate enough structural information to learn a usable abstraction at down-
scaled image size. Although the CNNwas able to achieve high success rates (close to
100%) and high enough frame rates on the images from the test set, those results were
overall highly over-fitted and not usable in practice, since apparently the classifier
learned mostly features from the background instead of the depicted object. The
image of the objects only cover a comparatively small number of pixels so that the
background could have a similar pattern by accident. This fact is especially noticeable
with grey-scale images under low light conditions and seemed to support the decision
of using coloured images. Next, we determined the best-suited colour representation
while increasing the networks’s size only slightly from 36 × 36 to 48 × 48 pixels.

Results using three different popular colour spaces were quite similar - with a
slight advantage of RGB and YUV over HSV. Though the resulting classifiers were
still overfitting and training results remained unusable in practise. The advantages
of the mentioned colour representations may arise from the fact that they use a
combination of 2 (YUV) or 3 (RGB) channels to represent colour tone (instead of
HSV having only one), which results in more features extracted from chromaticity.
RGB and YUV might also be superior in this case because the object colours match
different channels of those representations and thus result in good contrast in these
respective channels which is beneficial for feature extraction and may aid learning.
Also image normalization did not improve detection rate. In case of local contrast
adjustment the results got worse, maybe because distracting background details were
amplified. Combinations with more channels like HUV, RGBUV, and others resulted
in only marginal improvements. In consequence, they could not justify the additional
computation.

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 365

In order to make the objects easier to recognize they need to be depicted larger
so that they contain at least a minimum amount of structure in the analysed image.
Therefore, the input size has to be sufficiently large and networks with input image
dimensions of 127 × 127 pixels were successfully tested. Overfitting was reduced
drastically and the solution started to become much better with respect to correct-
ness yielding false positive rates of less than 15%. Unfortunately, the performance
degraded vastly so that this solution was not applicable on the UAV. During testing
of larger and deeper networks with up to 4 convolutional layers and larger pooling
cardinality it turned out that the performance did not improve any more but training
time increased considerably.

Furthermore, shallower networks with less feature extracting convolutional ker-
nels and layers were tried. Also, the input size was reduced to an amount that was
computationally feasible on the UAV but still preserved the most significant features
of objects like edges when they are not too small. 80 × 60 pixels appeared to be the
best size. This is also preserving the camera image aspect ratio.

Experiments showed that two convolutional layers (C1 and C2, C2 partially con-
nected) were sufficient (removing the third convolutional layer had no significant
impact on accuracy) and that the Multi Layer Perceptron (MLP) can already be fed
with a larger feature map from the second pooling layer. This MLP is now 3 layers
deep having the first of them (P1) only partially connected to increase learning speed
and break symmetry.

However, poor performance on background imageswithout objects still remained.
This was changed by reducing the last layer output size back to three neurons (one per
object) and adding negative (empty) sample images to the training set. Previously at
least one class was correct for each image (either base, battery, cup or background).
This was changed so that when a background image was trained, none of the three
classes got positive feedback but the expected value at each of them was set to be
minimal (–1 in a range from –1 to 1). This seemed to counter the observed overfitting.

Nevertheless, testing the network that was trained with images containing only
a single object or no object at all on images showing multiple objects belonging to
different classes did not yield the desired results: Instead of showing high activation
for each and every object present in the image, the network decided for one of them,
leaving the activation for the second object in the picture not significantly higher
than those corresponding to an object that is not present in the frame. A possible
alternative, which we did not evaluate, would have been to have a binary classifier
for each object and afterwards combine their results. We instead addressed this,
by altering the training to support any combination of objects. The final network
architecture is illustrated in Fig. 7 (bottom).

To further improve detection results, make them more robust and ease automatic
evaluation, purely synthetic images were generated from the MORSE Simulation
and added to the training sets as well as placing rendered objects on random struc-
tured images from websearches (mostly sand, rocks and similar textures). This way
it was possible to get ground truth more easily since it is readily accessible in the
generating context instead of manually adding object position labels to the cap-
tured images. Sample statistics after training are listed in Table3 and overall similar

366 C.-E. Hrabia et al.

Table 3 Confusion matrix of CNN after 52 epochs of training (94.4% accuracy)

True\detected None Base Battery Base
and
batt.

Cup Base
and
cup

Batt.
and
cup

All
three

Sum

None 572 0 4 0 3 0 0 0 579

Base 1 557 0 0 0 11 0 0 569

Battery 14 0 566 0 0 0 0 0 580

Base and batt. 9 33 4 538 3 2 0 1 590

Cup 4 0 0 0 600 0 2 0 606

Base and cup 0 3 0 0 4 553 0 5 565

Batt. and cup 0 0 3 0 58 0 505 0 566

All three 0 1 0 22 9 55 9 505 601

Sum 600 594 577 560 677 621 516 511

accuracy (~94%)was observedwith a larger number of images fromdifferent sources
(captures, rendered and composite images).

6.3 Object Localisation and Results

Due to the fact that the CNN only reports the presence of objects in the provided
image and not its particular position, we implemented a sliding window approach
to localise them. About 30% overlap of consecutive image regions was used for
this purpose and splitting any region with a positive detection up into 9 overlapping
subregions until the object is no longer found or a sufficient accuracy is reached. Even
then the detection may be focused on any salient part of the object (not necessarily its
centre) which introduces a certain error into the localisation. However, this process
of localising the object within the image makes the approach too computationally
complex to be effectively used on the UAV at this point, although it provides some
room for trade-offs between time spent and resulting accuracy. Since the detection
has to run integrated with all the other computations on the UAV platform and the
localisation within the image is crucial for the map projection, we decided to mainly
rely on the simpler but efficient blob detection approach.

The localisation of the objects can be estimated efficiently using the blob detection
approach. The centre position of the detected object as a localisationwithin the image
is given as a result of the detection. This centre position is further transformed into the
world frame by projecting a ray from the camera origin, applying a pinhole camera
model, into the xy-plane. The calculation is simplified through the assumption of
having a flat ground and just considering the current altitude of the UAV. All frame
conversations are based on the handy ROS tf package, here the projection vector is
converted into the world frame resulting in the estimated object localisation in world
coordinates.

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 367

Future work could explore automatic learning of the object positions using CNN
in order to reduce the overhead of the image localisation as well as investigating a
combination of CNN as a first stage and using the blob detecting for localisation in a
second stage, or running them side-by-side if (likely) they make different errors and
the detections can be combined or validated. Moreover, the actual localisation could
benefit from a consideration of the terrain model provided by the SLAM map.

7 Collision Avoidance and Path Planning

In order to guarantee a safe flight during the competition the UAV needs methods
for collision avoidance and path planning.

The term collision avoidance subsumes a number of techniques, which protect the
UAV from direct threats. During the flight the sensors will recognize local obstacles
and the collision avoidance will calculate a safe flight direction once a possible
hazardous situation is determined.

Path planning algorithms usually use a map to plan a path to a desired target
position. The calculated path consists of way points that can be headed for and is
preferably optimal to save time and energy.

For unexplored and thus unpopulated regions in the map paths to the target loca-
tions are initially planned without considering possible obstructions. In this case
local collision avoidance prevents the UAV from colliding with obstacles as they are
encountered.

The available ROS navigation stack22 is targeting ground vehicle only and more
complex as needed in the assessable navigation scenario of the SpaceBotCup. For this
reason a computationally lightweight solution was implemented, which is explained
in the following subsections.

7.1 Collision Avoidance

Collision avoidance can be achieved using Potential Fields. The Potential Fields
approach can be envisioned as an imaginary force field of attracting and rejecting
forces that theUAV is surroundedwith. The target position generates a force of attrac-
tion and obstacles push the UAV away. A new heading can be calculated by means
of simple vector addition. The following equation is describing this relationship:

F(q) = FAtt (q) +
n∑

i=1

FRepi (q)

22http://wiki.ros.org/navigation.

http://wiki.ros.org/navigation

368 C.-E. Hrabia et al.

q is the actual position of the UAV, FAtt (q) is a vector, which shows the direction of

the target, and
n∑

i=1
FRepi (q)describes the repulsion of all obstacles in the environment.

F(q) is the resulting vector, i.e. the heading the UAV should use to move.
The following functions (from Li et al. (2012) [18]) can be used to calculate

attracting and rejecting forces:

FRepi (q) =
⎧
⎨

⎩
−η(

1

‖qobs − q‖ − 1

q0
)

1

‖qobs − q‖2
qobs − q

‖qobs − q‖ i f ‖qobs − q‖ < q0

0 i f ‖qobs − q‖ ≥ q0

FAtt (q) =
⎧
⎨

⎩

ζ(qgoal − q) i f ‖q − qgoal‖ ≤ d

dζ
qgoal − q

‖q − qgoal‖ i f ‖q − qgoal‖ > d

q0, d, ζ and η are parameters that can be used to adjust attraction and rejection. qobs
represents the position of an obstacle and ‖ · ‖ is the Euclidean norm.

Hence, Potential Fields efficiently calculates a heading of the UAV that leads
away from th obstacles and, at best, directly points to the target.

It may happen that attracting and rejecting forces cancel out. In this case the UAV
is caught in a local minimum. In order to address this problem the potential fields
approach can be combined with path planning, as presented in the next subsection.

7.2 Path Planning

Having a map of the environment that splits the space into discrete segments allows
applying search algorithms for path planning to find the shortest path in the graph.
Suitable representations for this kind of purpose are Occupancy Grid [19], which
divide the two-dimensional space into squares and rectangles, and Octomaps [20],
which provide a volumetric representation of space in the form of cubes or voxels.

In our architecture we applied D* Lite as the path planning algorithm. D* Lite
is a incremental heuristic search algorithm that has been developed by Likhachev
und Keonig [21]. D* Lite repeatedly determines shortest paths between the current
position of the system and the goal position as the edge costs of a graph change while
the UAV moves towards the goal.

7.3 Summary

For the considered scenario it is sufficient to use Potential Fields to successfully
navigate the mission area. If the UAV moves to close to an obstacle, Potential Fields
will calculate the necessary evasive manoeuvres. We can ignore the problems arising

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 369

Fig. 8 The behavior of the
collision avoidance in
simulation

from local minima since there is only a small number of obstacles in the altitude the
UAV operates in and these obstacles are not having particularly complex shapes.

However, we applyD*Lite to always have a valid flight path under the assumption
that the UAV’s positions is adequately tracked. Changing the resolution of the map
allows to adjust the computational load caused by D* Lite. Providing more spare
computation time enables other modules to execute more intensive calculations.

The separation of local and global planner has also been proposed byDu et al. [22].
This results in faster reaction times and optimal path planning. As a consequence,
collision avoidance and path planning are both passive in our architecture as long as
no obstacle is detected. During this normal execution the targeted path is calculated
by the exploration node and given to the path_follower.When the collision avoidance
becomes active (i.e. theUAV is in the influence sphere of a potential field) the original
path will be overwritten by a new pose, namely the avoidance heading, to master the
urgent danger (see also Fig. 8). After, the path planning module is triggered, if the
potential fields approach has not yet sufficiently resolved the approaching collision,
in order to provide a suitable path to the target considering the obstacle.

8 Autonomous Exploration of Unknown Areas

A main task of the UAV is exploration, which means mapping the environment
and navigating to unknown areas. This section describes the analysis and evaluation
of a set of exploration strategies with the goal to use the best one in our UAV
software. The quality of an exploration strategy can be measured in the time it needs
to cover a specified area, the required computation power and the precision of the

370 C.-E. Hrabia et al.

resulting map. Since the UAV has a very limited time of flight of roughly 15min, a
rapid exploration with low computation requirements is preferred and map precision
analysis is omitted.

8.1 Simulation

For the purpose of gathering performance data on the exploration strategies for com-
parison, a simulation environment has been developed, capable of representing the
UAVand its field of view in aflat 40m × 30mworldwithout obstacles except the lim-
iting outer walls. The UAV flies with a speed of 0.2m s−1 and rotates 5 ◦ s−1. Explo-
ration modules can be switched flexibly due to a minimalistic, ROS-like interface:
Exploration is a function getting the current robot configuration (PoseStamped
via TransformListener) and a world representation (OccupancyGrid from
the SLAM service) and returning the next best view, i.e. favoured robot configura-
tion (Pose). The general handling of the exploration process, like further passing
on the target poses to the path_follower is handled in a simple collision avoidance
behaviour, which makes use of the package discussed in this section.

The strategy performance is logged inmatters ofmap coverage over time, distance
flown, rotations made and time needed to discover the whole world. Additionally,
in each simulation run three objects are randomly placed in the world and their
discovery times are logged.

8.2 Exploration Strategies

Five exploration strategies have been examined, of which a typical path is shown in
Fig. 9 each.Random flight (9a) makes the UAV steer straight until a wall is reached.
Then it proceeds in a random angle, until there are nomore frontier cells.Concentric
circles (9b) is a rather static strategy,whichmakes theUAVflyanenlarging spiral path
around the starting point. If awall is reached, the circular path is given up and replaced
through a temporary wall-following behaviour. The SRT (9c) method presented in
[23] builds a Sensor-based RandomTree by probing the local safe area for unexplored
cells and returning to the previous one when there are none left. The utility-based
frontier approach (9d) is similar to Yamauchi’s frontier-based exploration [24],
but uses a utility function to decide which frontier to visit based on distance and
information gain. Similar work has been done in [25, 26]. A variant with penalised
rotation has also been tested (9e), addressing the general problematic performance of
determining or handling the orientation with SLAM and odometry. The last strategy
uses a genetic algorithm for sampling (9f). The algorithm mutates and recombines
a pool of randomly generated, frontier-based robot configuration samples over a fixed
number of generations. The mutation creates a new sample by a normally distributed
random alteration of position and orientation. The recombination yields a sample

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 371

(a) Random flight (b) Concentric circles (c) SRT

(d) Frontier utility (e) Rotation penalty (f) Sampling-based

Fig. 9 Typical exploration paths

with position and orientation taken from two different random samples. In the end of
each generation step, a fixed number of best samples is selected by following utility
function U .

U := C

max(tR, tT)

The function estimates the expected information gain (newly discovered cells C
assuming flat ground and a given camera setup) per time needed to reach this con-
figuration, with tR and tT being rotation time and translation time respectively.

8.3 Evaluation and Results

On each strategy data has been collected over 100 runs each with the same pool of
random-generated starting scenarios, consisting of an initial robot configuration and
three object positions. Figure10 shows the average proportion of visited cells over
time for all strategies.

The “ideal exploration” rate is the theoretical value of the UAV flying straight
through unknown area at maximum allowed speed. The utility-based frontier
approach finishes first taking 50min on average. On the other hand, the sampling-
based strategy shows the highest exploration rate in the early phase of exploration,
finding the objects first and having covered the most area after 10min.

Nevertheless, the evolutionary non-deterministic sampling algorithm requires
more computational resources even if the processed generations are limited, see

372 C.-E. Hrabia et al.

Fig. 10 Exploration progress over time

Table 4 Computation time
for one waypoint in average
over the full exploration area

Strategy Average computation time in ms

Sampling-based 1271

Frontier utility 28

Concentric circles 0

Random flight 7

SRT 3

Table4 for a comparison. Hence, the utility-based frontier approach is the preferred
exploration strategy for our setup in SpaceBot Cup, because it combines a fast explo-
ration with reasonable requirements of computation performance. The implemented
ROSpackage uav_exploration including the specific simulation environment is avail-
able online.23

9 Autonomous Behaviour

Developing systems that are able to react appropriately to unforeseen changes while
still pursuing its intended goals is challenging. As discussed in [27], adaptivity in
general, and fast and flexible decision making and planning in particular, are cru-
cial capabilities for autonomous robots. Especially in the Robot Operating System
(ROS) community [28] developers are so far mostly using pre-scripted, non-adaptive
methods of describing the high-level robot behaviours or tasks. A popular package
is SMACH that allows to build hierarchical and concurrent state machines (HSM)
[29]. All kind of state machine based approaches have the problem that a decision

23https://github.com/DAInamite/uav_exploration.git.

https://github.com/DAInamite/uav_exploration.git

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 373

or reaction can only be given if a state transition was already modelled in advance.
Behaviour trees, available in the pi_trees package [30], are an alternative that allows
for more dynamic rules. More flexible is the BDI-based implementation Cogni-
TAO [31] available in the decision_making package. The concept is more suitable
for uncertain environments because the execution sequence is not fixed and the selec-
tion of behaviours (plans) is based on conditions. Nevertheless, it is still difficult to
define mission or maintenance goals and there exist only simple protocols for plan
selection.

In order to provide a flexible, adaptive and goal-driven alternative we are working
on a new hybrid approach with tight ROS integration that incorporates features from
reactive behaviour networks and STRIPS-like planning. Even though, such a system
can perform less optimal, it will support execution in dynamic environments.

The behaviour network itself strongly supports the idea of an adaptive robotic
system by being

• opportunistic and trying to perform the best-suited action at any time even if the
symbolic planner cannot handle the situation and does not find a suitable plan;

• light-weight in terms of computational complexity;
• performing well in dynamic and partially observable environments under the
assumption that actions taken at one point in time do not block decision paths
in the future.

The first expansion stage of our concept, called ROS Hybrid Behaviour Planner -
RHBP, is going to be advanced in future for instance with extended multi-robot sup-
port, incorporating learning and more hierarchical layers. The current architecture
of our implementation contains three core layers: the behaviour network itself repre-
sented by its distributed components, the symbolic planner and a manager module.
It is available online.24

The manager module supports and manages the distributed execution of several
behaviours on different machines within the robot. Furthermore, it is monitoring and
supervising the behaviour network by interpreting the provided plan and influencing
the behaviour network accordingly.

The following subsections provide required background in order to understand our
framework and implement autonomous behaviour with it. Furthermore, the imple-
mented UAV behaviours are presented.

9.1 Behaviour-Network Base

The behaviour network layer is based on the concepts of Jung et al. [32] and Maes
et al. [33], but incorporates other recent ideas from Allgeuer et al. [34], in particular
supporting concurrent behaviour execution, non-binary preconditions and effects.

24https://github.com/DAInamite/rhbp.

https://github.com/DAInamite/rhbp

374 C.-E. Hrabia et al.

condition

activator sensor

behaviour
preconditions

effectseffect

goal

conditions
1..*

1

0..*

10..*

1

Fig. 11 Behaviour network components

The main components of the network are behaviours representing tasks or actions
that are able to interact with the environment by sensing and acting. Behaviours
and goals both use condition objects composed of activator and sensor to model
their environmental runtime requirements, see Fig. 11. The network of behaviours is
created from the dependencies encoded in wishes based on preconditions and effects.

Each behaviour expresses its satisfaction with the world state (current sensor
values) with wishes. A wish is related to a sensor and uses a real value [–1,1] to
indicate both the strength and direction of a desired change, 0 indicates complete
satisfaction.Greater absolute values express a stronger desire, by convention negative
values correspond to a decrease, positive values to an increase.

Effects model the expected influence to available sensors (the environment) of
every behaviour similar to wishes.

Goals describe desired conditions of the system, their implementation is similar
to behaviours except that they do not have an execution state or model effects on the
network. Therefore, goals incorporate conditions that allow for the determination of
their satisfaction and express wishes exactly like behaviours do. Furthermore, goals
are either permanent and remain active in the system as maintenance goals, or are
achievement goals that are deactivated after fulfilment.

Sensorsmodel the source of information for the behaviour network and buffer and
provide the latest sensor measurements. Virtual sensors can also be used to model the
world state, for instance the number of detected target objects. The type of the sensor
value is arbitrary, but to form a condition a matching pair of sensor and activator
must be combined.

Due to the fact that raw sensor values can be of arbitrary type they need to be
mapped into the behaviour network by activators. Activators compute a utility score
(precondition satisfaction) from sensor values using an internal mapping function.
The separation of sensor and activator fosters the reuse of code and allows also the
abstract integration of algorithms usingmore complexmapping functions like poten-
tial fields. Our implementation already comes with basic activators for expressing a
threshold-based and a linearmappingof one-dimensional sensors.Multi-dimensional
types can either be integrated by custom activators that provide a normalisation func-
tion or by splitting its dimensions into multiple one-dimensional sensors.

The key characteristics and capabilities of a behaviour network are defined by the
way activation is computed from sensor readings and the behaviour/goal interaction.
Behaviours are selected for execution based on a utility function that determines a
real number behaviour score, called activation. There are multiple sources of activa-
tion, negative values correspond to inhibition. If the total activation of a behaviour

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 375

reaches the execution threshold and all preconditions are fulfilled the planner selects
it for execution, several behaviours can be executed in parallel. The behaviour net-
work calculation is repeated in fixed frequency that can be adjusted according to the
application requirements.

At every iteration all activation sources are summed to a temporary value called
activation step for every behaviour. After the activation step has been computed for
every behaviour it is added to the current activation of the behaviour reduced by
an activation decay factor. The decay reduces the activation that had been accumu-
lated over time if the behaviour does not fit the situation any more and prevents the
activation value from becoming indefinitely large.

After behaviour execution the activation value is reset to 0. Behaviours are not
expected to finish instantaneously and multiple behaviours are allowed to run con-
currently, if they are not having conflicting effects.

9.2 Symbolic Planner Extension

The activation calculation is influenced by the symbolic planner based on the index
position of the particular behaviour in the planned execution sequence. In order to
allow for a quick replacement of the plannerwe based our interface on thewidely used
Planning Domain Definition Language (PDDL) in version 2.1. Hence, a majority of
existing planners can be used.

For our implementation we developed a ROS Python wrapper for the Metric-
FF [35] planner, a version of FF extended by numerical fluents and in the current
version also conditional effects. It meets all our requirements (negated predicates,
numeric fluents, equality, conditional effects) and due to its heuristic nature favours
fast results over optimality. In fact the wrapper is only responsible for appropriate
result interpretation and execution handling.

The actual mapping and translation between the domain PDDL and the resulting
plan is part of the manager. The PDDL generation on entity level is done automati-
cally by the behaviour, activator andgoal objects themselves through adefined service
interface. Moreover, the manager monitors time constraints defined in behaviours,
re-plans in case of timeouts, new available behaviours or if the behaviour network
execution order deviates from the proposed plan. This ensures that replanning is only
executed if really necessary and keeps as much freedom as possible for the behaviour
network layer for fast response and adaption.

The manager also handles multiple existing goals of a mission by selecting appro-
priate goals at the right time depending on available information, for example if goals
can not be reached in the moment.

376 C.-E. Hrabia et al.

9.3 ROS-Integration

All components of the RHBP are based on the ROS messaging architecture and are
using ROS services and topics for communication. Every component of the behav-
iour network, like a behaviour or sensor, is automatically registered to the manager
node and reports its current status accordingly, for details see Fig. 12. The appli-
cation specific implementation is simplified through provided interfaces and base
classes for all behaviour network components that are extended by the application
developer and completed by filling hooks, like start and stop of a behaviour. The
class constructor automatically uses registration methods and announces available
components to the manager. The ROS sensor integration is inspired by Allgeuer et
al. [34] and implemented using the concept of virtual sensors. This means sensors
are subscribed to ROS topics and updated by the offered publish-subscribe system.

For each registered component a proxy object is instantiated in the manager to
serve as data source for the actual planning process where the activation is computed
based on the relationships arising from the reported wishes and effects. Besides the
status service offered by behaviours and goals there are a number of management
services available to influence the execution, see Fig. 12.

Due to the distributed ROS architecture the whole system works even across the
physical boundaries of individual robots on a distributed system.

Furthermore, RHBP comes with generic implementations that directly support
simple single dimensional topic types for numbers and booleans to enable direct
integration of existing sensors by just configuring the topic name. Moreover, activa-
tors for some common ROS types are provided as well and are going to be extended
in future.

manager

behaviour proxies

goal proxies

AddBehaviour()

RemoveBehaviour()

RemoveGoal()

AddGoal()

Pause()

Resume()

ForceStart()

behaviour

GetStatus()

Start()

Stop()

PDDL()

Activate()

Priority ()

ExecutionTimeout()

goal

GetStatus()

PDDL()

Activate()

Priority ()

rqt GUI

Fig. 12 ROS services used by the behaviour network components arrows indicate the call direction

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 377

9.4 SpaceBot Cup UAV Behaviours

In Sect. 4 the behaviours for addressing the SpaceBot Cup challenge have already
beenmentioned from the architectural point of view.As being said, themore complex
algorithms and computations for exploration and collision avoidance are separated
into own packages, already discussed in Sects. 7 and 8.

In order to implement the desired behaviour we implemented the behaviourmodel
illustrated in Fig. 13. In order to do so the provided behaviour base class have been
extended for the individual behaviours. Available sensors and abstracted information
of the system have been integrated as virtual sensors into the RHBP framework. For
that it was necessary to implement some special sensor wrappers, which extract the
needed information from complex ROS message types, like poses (TFs). Further-
more, a special distance activator was implemented to determine the activation in the
network based on a geometry_msgs.msg.Pose and a desired target pose. The explo-
ration sensor is a wrapper for the exploration module that describes the completeness
of the exploration.

The realisedUAVcapabilities are to take off and land (regularly at the landing zone
after the mission is completed, the time is over, or the battery is depleted or anywhere
else in emergency situations), select a position to move to (performed by exploration
or return-to-home behaviour and overridden by the obstacle avoidance), and move

timeout
sensor

voltage
sensor

pose
sensor

collision
sensor

start
behaviour

land
behaviour

emergency
land

behaviour

go home
behaviour

exploration
behaviour

collision
avoidance
behaviour

height
sensor

exploration
sensor

used capacity
sensor

started
goal

landed
goal

explored
goal

Fig. 13 SpaceBot Cup Planning Scenario Black arrows indicate (pre-) conditions. Solid black
arrows () indicate desire for high value, dashed arrows () desire for low value. Green
arrows () mean positive correlation (increase, become true), red arrows () indicate neg-
ative correlation (decrease, become false). Pose sensor values encode distance from home

378 C.-E. Hrabia et al.

to the selected location while maintaining constant altitude over ground. While it is
operating, the UAV continuously maps the terrain and searches for objects. Theses
activities do not need to be turned on or off explicitly. Given the initial situation that
the aircraft is fully charged, on the ground, at the landing zone (also referred to as
“home”), and the mission starts, the network will activate the start behaviour first and
then cycle between exploration (which retrieves a target location) and, if required,
collision avoidance, (thereby mapping the terrain and scanning for objects) until it
runs out of battery or completed its exploration mission. Finally, it will select the
home location as target, move there and land.

10 Teamwork

The basic idea that the UAV is the flying eye of the rover only makes sense when
both vehicles communicate about map disclosure and object positions. In an ideal
both vehicles would send their map update to each other and each vehicle would
merge the update with the own existing OctoMap.

Due to the limited computational power of the UAV and due to the fact that the
UAV moves much faster than the rover, we finally decided to only let the UAV send
map updates and known object positions to the rover.

Finally, we simplified our approach in the way, that the rover knows the initial
offset to the UAV (where it has been positioned before start relative to the rover’s
position). The UAV sends object positions in its own coordinate system. Using the
tf transformation the rover can now mark the objects in its own map.

For the realization of the team communication we base on the ROS multimas-
ter_fkie package together with the master_discovery_fkie and master_sync_fkie
packages. This enables having several independent ROS cores in one local area
network. The master_discovery node multicast messaging can be used as we are in
the same subnet. Hence, the UAV is publishing the coordinates of discovered objects
as tf, which can be received and transferred in the independent ROS system of the
rover.

A still open challenge is the fusion of the two independent OctoMaps in order
to iteratively update a common map of both robots. This is probably a computa-
tion intensive task and for this reason is planned to be realised within the ground
station. An alternative approach would be merging the two-dimensional occupancy
maps instead, for instance with the not further evaluated solution in the package
map_merging [36].

11 Results

Several results specific to individual modules or insights gained during the devel-
opment of them have been presented and discussed in the module related sections

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 379

before, for instance for navigation, exploration and object localisation. In the follow-
ing we are considering the common capability set and limitations of our approach.

In general the developed UAV is able to autonomously start, land, hover on a
position, follow given trajectories and detect the target objects of the mission. More-
over, the paths or trajectories are generated by the exploration module and collisions
are avoided with the potential field approach, while the whole process is controlled
by a high-level goal-oriented decision-making and planning component. The capa-
bilities have been empirically tested in simulation, laboratory environment and the
contest itself. The navigation and the object localisation performed robustly in the
very unstructured environment without feature-rich textures.

The finally integrated system with the above presented components is success-
fully running onboard of our hardware platform, with the CPU having almost 100%
load. However, the system is responsive and able to execute all modules in an appro-
priate refresh rate. Moreover, some modules, like SLAM are still having potential
for performance improvements.

Table5 provides a more detailed overview about the produced load and update
rates on our two core system (max. 200% load). Thememory usage can be neglected,
the whole system consumes less than 1GB with an initial map. However, the table
illustrates that most CPU load is generated by the processing of the visual camera
data in the object detection and localisation and mapping.

Before we tested our system on the hardware platform as well as for speeding
up the development of individual modules we have extensively used the MORSE
simulation environment in version 1.3-1 [37]. Due to the 3D engine and high level

Table 5 Comparison of node CPU consumption and update frequencies. The separated categories
group the nodes into sensors/actors, navigation, object localisation and higher-level behaviour (top
to bottom)

Node CPU Load in % Update frequency in Hz

mikrokopter 3 50

px4flow 2 40

sonar_sensors 2 25

bluefox_camera 7 30

slam_odom_manager 1 30

orb_slam 85 30

position_controller 6 24

optical_flow_to_tf 2 40

path_follower 1 5

object_detection_blob 78 3

object_localisation_estimator 4 3

exploration 6 5

collision_avoidance 2 25

uav_behaviours and planning 1 1

380 C.-E. Hrabia et al.

sensor interfaces of the simulation environment we have been able to even test the
computer vision related SLAM and object localisation modules. For testing modules
based on the PX4FLOW as well as the lower level MikroKopter control we imple-
mented custom actuators and sensors that provide or receive data in the same ROS
message formats as the originals. Accordingly, we have been able to remap ROS
topics provided by the simulator to the actual names in our hardware configuration
in order to simulate our mission. Due to the limited hardware capabilities of our UAV
the complete ROS software stack can also be executed together with the simulation
environment on a common business notebook (Lenovo Thinkpad T440s with Intel
Corei7, 16GBRAM, SSD and integrated graphics) providing similar performance as
the actual hardware. MORSE has been favoured over alternative simulation environ-
ments, like Gazebo, because it has already been used by our partners implementing
the rover robot. Furthermore, MORSE is very easy to extend, due to its Python and
Blender origin, for instance complex 3D models can be imported and added easily
in Blender.

As expected the system performs very well in simulation, because of noise-free
sensor data and a less dynamical environment. Nevertheless, our real system has
some limitations and open issues, we want to discuss in the following.

The altitude hold performance is suffering from the low resolution thrust control
of the flight controller (8bit for the full motor speed range). Thus the PID controller
running in the position controller has problems in keeping the altitude without ongo-
ing regulations, since the thrust difference between two values can be too large.

The contest itself was executed in two stages having a qualification stage and the
final competition. The qualification was hold in a smaller arena with simplified and
separated tasks for the robots. During the preparation as well as the two parts of
the competition we experienced several defects and problems. In particular we had
massive problems with the used flight controller, which had hardware problems on
several of our boards resulting in temporary IMUacceleration inversions of the z-axis.
In consequence our system needed to survive some heavy crashes, even one in the
qualification run, which could be fixed by replacing rotors, arms and the 3D-printed
platform parts.

In that sense, we do not recommend to use the MikroKopter FlightCtrl we
have used for future developments and rather propose alternative solutions like the
PIXHAWK platform.

Furthermore, we are not satisfied with the orientation estimation of our odometry
subsystem based on the PX4Flow and the additional IMU. The integrated orientation
from the PX4Flow gyroscope is drifting over time and the IMU together with the
used package razor_imu_9dof is suffering from fast movements resulting in bad
performance. Here, this could be simplified by replacing the flight controller with one
that is already coming with a well configured orientation estimation. An alternative
approach could also usemore advanced sensor fusion andfiltering in order to improve
the orientation estimation with existing sensors, for instance by applying a Kalman
filter.

As well related to the navigation subsystem is the SLAM and odometry com-
bination, here our approach is working in general, but is sometimes not as robust

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 381

as required. In particular the scale estimation of the monocular SLAM is prone to
errors resulting in drifts due to the uncertain reference from the odometry. Unex-
pected problems during the scale determination result in a deviated scale reference
for the SLAM. Future improvements could consider a continuous scale update, using
an ongoing feedback loop during successful SLAM tracking, special initialisation
flight routines or even completely resolve the issue be replacing themonocular SLAM
with a stereo-vision-based approach.

12 Conclusion

The intention of this chapter was to provide reference, insights and lessons learned
on the development of an autarkic UAV on the basis of the ROS framework. The
chapter exploits the DLR Spacebot Cup scenario for the exploration of unknown
terrain without an external tracking system. The UAV is thought as assistance robot
for an autonomous ground rover that is capable of grasping larger objects from the
ground. The UAV is more agile than the rover thus acting as supplemental sense of
the ground vehicle, aiming at map disclosure and object detection.

We use ROS on the UAV as middleware and at the same time make use of the
rich ROS module repository together with own ROS modules to create our own
architecture that is able to control the UAV in a mission-oriented way. Some ROS
modules could be used out-of-the-box, but other existingmodules have been extended
and adapted to our needs (e.g. ORB_SLAM and px-ros-pkg). An instance of this
architecture is deployed on extended but still limited hardware (in terms of CPU and
RAM) on the UAV alone and bridges multiple sensor inputs, computational control
to actuator outputs.

Our architecture makes extensive use of the ROS architecture patterns topic, ser-
vice and action. Topics are generally used as intended as means for unidirectional
data transfer, e.g. continuously reading ultrasonic sensors and streaming the data
to the collision avoidance. Services provide responses, so we use them to change
states or explicitly retrieve information from other nodes, e.g. for setting a new target
and its confirmation or getting waypoints from the exploration_node. Long-running
tasks with periodic feedback are realised with the actionlib, for instance the path
following.

Except the necessary standard ROS packages, our architecture comprises of about
25 ROS packages including dependencies so far as shown in Sect. 4, classified as
Sensor/Actor for hardware connectivity and control, Behaviour and Planning for
high-level control, navigation for UAVflight control, Object Localisation asmission-
specific code and Infrastructure for commonly used functionality.

As the focus in this book is on ROS we can summarize our experience with ROS
as extremely satisfying when executing our system (also from the background that
we have used other frameworks and developed our own agent-oriented middleware
earlier already). The ROS-based system runs stable and works as expected. We have

382 C.-E. Hrabia et al.

been able to prove that it is possible to develop an autarkic UAV with higher level
capabilities using the ROS ecosystem.

However, always when we are confronted with hardware and the real world more
problems arise. Although the flying base is robust we could not prevent it from
transport damage or from mischief during crashes. Although we are using sensors
that are embedded a thousand times in other technical systems they will conk out
when mounted on a UAV. Although, many people work with PIDs and develop and
use SLAM algorithms, there is still a lot to be done, e.g. tuning a PID takes time and
in terms of SLAM the jury is still out.

For future work we will focus on high-level and mission-guided control as well
as further advancing our autonomous navigation capabilities, while addressing new
application beyond the SpaceBot Cup.

Meanwhile, we can assess that multi-rotor systems and other smaller aerial vehi-
cles can fly. But this is only a small part of what the customers want in all application
areas of UAV, from agriculture to logistics. Mission-guided control from our point of
viewmeans the user can concentrate on the parameters, goal and success of amission,
without struggling with collision avoidance and stability during flight. In terms of
ROS, this means that we are working on ROS packages that contain a generic exten-
sion for mission specific tasks, that can easily be integrated into behaviour planning,
execution and control, and that can easily monitored by human operators.

Acknowledgements The presented work was partially funded by the German Aerospace Center
(DLR) with funds from the Federal Ministry of Economics and Technology (BMWi) on the basis
of a decision of the German Bundestag (Grant No: 50RA1420).

References

1. Kryza, L, S. Kapitola, C. Avsar, and K. Briess. 2015. Developing technologies for space on a
terrestrial system: A cost effective approach for planetary robotics research. In 1st syposium
on space educational acitvities, Padova, Italy.

2. Mur-Artal, R, J.M.M. Montiel, and J.D. Tardós. 2015. ORB-SLAM: A versatile and accurate
monocular SLAM system. CoRR. arXiv:abs/1502.00956.

3. Honegger, D., L. Meier, P. Tanskanen, and M. Pollefeys. 2013. An open source and open
hardware embedded metric optical flow CMOS camera for indoor and outdoor applications.
In 2013 IEEE international conference on robotics and automation (ICRA) 1736–1741.

4. Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86 (11): 2278–2324.

5. Li, G., A. Yamashita, H. Asama, and Y. Tamura. 2012. An efficient improved artificial potential
field based regression search method for robot path planning. In 2012 international conference
on Mechatronics and automation (ICMA), 1227–1232.

6. Loianno, G., Y. Mulgaonkar, C. Brunner, D. Ahuja, A. Ramanandan, M. Chari, S. Diaz, and V.
Kumar. 2015. Smartphones power flying robots. In 2015 IEEE/RSJ international conference
on intelligent robots and systems (IROS), 1256–1263.

7. Tomic, T., K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa,
and D. Burschka. 2012. Toward a fully autonomous UAV: Research platform for indoor and
outdoor urban search and rescue. IEEE Robotics Automation Magazine 19 (3): 46–56.

http://arxiv.org/abs/abs/1502.00956

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 383

8. Schmid, K., P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller. 2014. Autonomous vision-based
micro air vehicle for indoor and outdoor navigation. Journal of Field Robotics 31 (4): 537–570.

9. Beul, M., N. Krombach, Y. Zhong, D. Droeschel, M. Nieuwenhuisen, and S. Behnke. 2015.
A high-performance MAV for autonomous navigation in complex 3d environments. In 2015
international conference on unmanned aircraft systems (ICUAS), 1241–1250. IEEE:NewYork.

10. Sunderhauf, N., P. Neubert, M. Truschzinski, D. Wunschel, J. Poschmann, S. Lange, and P.
Protzel. 2014. Phobos and deimos on mars - two autonomous robots for the DLR spacebot
cup. In The 12th international symposium on artificial intelligence, robotics and automation
in space (i-SAIRAS’14), Montreal, Canada, The Canadian Space Agency (CSA-ASC).

11. Endres, F., J. Hess, J. Sturm, D. Cremers, and W. Burgard. 2014. 3-d mapping with an RGB-d
camera. IEEE Transactions on Robotics 30 (1): 177–187.

12. Labbe, M., and F. Michaud. 2014. Online global loop closure detection for large-scale multi-
session graph-based SLAM. In Proceedings of the IEEE/RSJ international conference on intel-
ligent robots and systems, 2661–2666.

13. Engel, J., T. Schöps, and D. Cremers. 2014. LSD-SLAM: large-scale direct monocular SLAM.
In Computer vision – ECCV 2014: 13th European conference, Zurich, Switzerland, September
6–12, 2014, Proceedings, Part II, 834–849. Springer International Publishing, Cham.

14. Forster, C., M. Pizzoli, and D. Scaramuzza. 2014. SVO: Fast semi-direct monocular visual
odometry. In IEEE international conference on robotics and automation (ICRA).

15. Engel, J., J. Sturm, and D. Cremers. 2014. Scale-aware navigation of a low-cost quadrocopter
with a monocular camera. Robotics and Autonomous Systems 62 (11): 1646–1656.

16. Izzo, D., and G. de Croon. 2012. Landing with time-to-contact and ventral optic flow estimates.
Journal of Guidance, Control, and Dynamics 35 (4): 1362–1367.

17. Deng, L. 2012. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine 29 (6): 141–142.

18. Li, G., A. Yamashita, H. Asama, and Y. Tamura. 2012. An efficient improved artificial potential
field based regression searchmethod for robot path planning. In: 2012 international conference
on Mechatronics and automation (ICMA), 1227–1232. New York: IEEE

19. Thrun, S., D. Fox, and W. Burgard. 2005. Probabilistic robotics. Cambridge: The MIT Press.
20. Hornung, A., K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. 2013. Octomap: An

efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34 (3):
189–206.

21. Koenig, S., and M. Likhachev. 2005. Fast replanning for navigation in unknown terrain. IEEE
Transactions on Robotics 21 (3): 354–363.

22. Du, Z., D. Qu, F. Xu, and D. Xu. 2007. A hybrid approach for mobile robot path planning in
dynamic environments. In IEEE international conference on robotics and biomimetics, 2007.
ROBIO 2007, 1058–1063. New York: IEEE.

23. Oriolo, G., M. Vendittelli, L. Freda, and G. Troso. 2004. The SRT method: Randomized strate-
gies for exploration. In 2004 IEEE international conference on robotics and automation, 2004.
Proceedings. ICRA’04, vol. 5, 4688–4694. New York: IEEE.

24. Yamauchi, B. 1997. A frontier-based approach for autonomous exploration. In Proceedings of
the 1997 IEEE international symposium on computational intelligence in robotics and automa-
tion, 1997. CIRA’97, 146–151. New York: IEEE

25. Surmann, H., A. Nüchter, and J. Hertzberg. 2003. An autonomous mobile robot with a 3D
laser range finder for 3D exploration and digitalization of indoor environments. Robotics and
Autonomous Systems 45 (3): 181–198.

26. Tovar, B., L. Munoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda, R. Monroy, and S.
Hutchinson. 2006. Planning exploration strategies for simultaneous localization and mapping.
Robotics and Autonomous Systems 54 (4): 314–331.

27. Hrabia, C.E., N. Masuch, and S. Albayrak. 2015. A metrics framework for quantifying auton-
omy in complex systems. In Multiagent System Technologies: 13th German Conference,
MATES 2015, Cottbus, Germany, September 28–30, 2015, Revised Selected Papers, 22–41.
Springer International Publishing, Cham.

384 C.-E. Hrabia et al.

28. Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng. 2009.
Ros: An open-source robot operating system. In ICRA Workshop on Open Source Software
3 (3.2): 5. Kobe.

29. Bohren, J., and S. Cousins. 2010. The SMACH high-level executive [ros news]. IEEE Robotics
Automation Magazine 17 (4): 18–20.

30. Goebel R.P. 2014. ROS by example: Packages and programs For advanced robot behaviors. Pi
Robot Production, vol. 2, 61–88. Lulu.com.

31. CogniTeam Ltd. Cognitao (think as one). [Online]. Available: http://www.cogniteam.com/
cognitao.html.

32. Jung, D. 1998. An architecture for cooperation among autonomous agents. PhD thesis, Uni-
versity of South Australia.

33. Maes, P. 1989. How to do the right thing. Connection Science 1 (3): 291–323.
34. Allgeuer, P., S. Behnke. 2013. Hierarchical and state-based architectures for robot behavior

planning and control. In Proceedings of 8th Workshop on Humanoid Soccer Robots, IEEE-RAS
International Conference on Humanoid Robots, Atlanta, USA.

35. Hoffmann, J. 2002. Extending FF to numerical state variables. In Proceedings of the 15th
European conference on artificial intelligence, 571–575. New York: Wiley.

36. Yan, Z., L. Fabresse, J. Laval, and N. Bouraqadi. 2014. Team size optimization for multi-
robot exploration. In Proceedings of the 4th international conference on simulation, modeling,
and programming for autonomous robots (SIMPAR 2014), Bergamo, Italy (October 2014),
438–449.

37. Echeverria, G., N. Lassabe, A. Degroote, and S. Lemaignan. 2011. Modular open robots simu-
lation engine: MORSE. In Proceedings of the 2011 IEEE international conference on robotics
and automation.

Author Biographies

M.Sc. Christopher-Eyk Hrabia received a degree in computer science from the Technische
Universität Berlin (TUB) in 2012. After he gained some international experience as a software
engineer, he started his scientific career at DAI-Lab of TUB. He researches in the field of multi-
agent and multi-robot system with a focus on high-level control of autonomous, adaptive and
self-organizing unmanned aerial vehicles. Moreover, he developed and contributed to several ROS
packages and is using ROS for student courses conducted by him. Together with Martin Berger
he led the SpaceBot Cup UAV-Team of the DAI-Lab.

Dipl. Ing. Martin Berger after receiving his diploma in computer science in 2012, started as
research assistant at DAI-Lab. He is involved in several student projects that teach practical appli-
cation of robotics in competitive settings. He is a member of the RoboCup team DAInamite and
frequently participates in international and national robot competitions.

Dr. Axel Hessler is head of the Cognitive Architectures working group at DAI-Lab. He received
his doctor degree in computer science for research in intelligent software agents and multi-agent
systems and how they can fast and easily developed and applied in various applicational areas.
Currently he is investigating the correlation between software agents, physical agents and human
agents.

M.Sc. Stephan Wypler is working as a software engineer in the industry, after he finished his
Computer Science (M.S.) at the TUB in 2016. During his M.S. degree he was a core member of
the SpaceBot Cup UAV-Team of the DAI-Lab and developed core modules for the higher-level
planning, autonomous behaviour and object localisation.

http://www.cogniteam.com/cognitao.html
http://www.cogniteam.com/cognitao.html

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015 385

B.Sc. Jan Brehmer is currently studying Computer Science (M.S.) at the TUB. For his B.S.
degree he researched autonomous exploration strategies for UAVs at the DAI-Lab. Formerly, he
assisted as a tutor at the department for software engineering and theoretical computer science.

B.Sc. Simon Matern is currently studying Computer Science (M.S.) at the TUB. He was working
on the collision avoidance algorithms for the UAV in his final project of his B.S. degree.

Prof. Dr.-Ing. Habil. Sahin Albayrak is the head of the chair Agent Technologies in Busi-
ness Applications and Telecommunication. He is the founder and head of the DAI-Lab, currently
employing about one hundred researchers and support staff.

Development of an RFID Inventory Robot
(AdvanRobot)

Marc Morenza-Cinos, Victor Casamayor-Pujol, Jordi Soler-Busquets,
José Luis Sanz, Roberto Guzmán and Rafael Pous

Abstract AdvanRobot proposes a new robot for inventorying and locating all the
products inside a retail store without the need of installing any fixed infrastructure.
The patent pending robot combines a laser-guided autonomous robotic base with a
Radio Frequency Identification (RFID) payload composed of several RFID readers
and antennas, as well as a 3D camera. AdvanRobot is able not only to replace human
operators, but to dramatically increase the efficiency and accuracy in providing inven-
tory, while also adding the capacity to produce storemaps and product location. Some
important benefit of the inventory capabilities of AdvanRobot are the reduction in
stock-outs, which can cause a drop in sales and are the most important source of
frustration for customers; the reduction of the number of items per reference maxi-
mizing the number of references per square meter; and reducing the cost of capital
due to overstocking [1, 7]. Another important economic benefit expected from the
inventorying and location capabilities of the robot is the ability to efficiently prepare

M. Morenza-Cinos (B) · V. Casamayor-Pujol · J. Soler-Busquets · R. Pous
Universtitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain
e-mail: marc.morenza@upf.edu
URL: http://ubicalab.upf.edu

V. Casamayor-Pujol
e-mail: victor.casamayor@upf.edu
URL: http://ubicalab.upf.edu

J. Soler-Busquets
e-mail: jordi.solerb@upf.edu
URL: http://ubicalab.upf.edu

R. Pous
e-mail: rafael.pous@upf.edu
URL: http://ubicalab.upf.edu

J.L. Sanz
Keonn Technologies S.L., Pere IV 78-84, 08005 Barcelona, Spain
e-mail: jlsanz@keonn.com
URL: http://www.keonn.com

R. Guzmán
Robotnik Automation S.L.L., Ciudad de Barcelona 3-A, 46988 Valencia, Spain
e-mail: rguzman@robotnik.es
URL: http://www.robotnik.eu

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_12

387

388 M. Morenza-Cinos et al.

on-line orders from the closest store to the customer, allowing retailers to compete
with the likes of Amazon (a.k.a. omnichannel retail). Additionally, the robot enables
to: produce a 3D model of the store; detect misplaced items; and assist customers
and staff in finding products (wayfinding).

Keywords Professional service robots · Inventory robots · Autonomous robots ·
RFID · ROS

1 Introduction

In this chapter a solution for smart retail that combines robotics and Radio Frequency
IDentification (RFID) technology is presented.

Traditional retail (a.k.a. “brick-and-mortar” retail) is facing fierce competition
from on-line retail. While traditional retail still keeps some advantages (e.g. physical
contact with the products or immediate fulfillment), on-line retail continues to offer
more and more advantages that are increasingly appealing to customers (e.g. easy to
find products, no stock outs, in depth information, recommendations, user opinions,
social networks integration, etc.) Also, on-line retail has at its disposal a wealth of
data about its customers’ clickstream that can be leveraged through sophisticated
analysis to offer personalized and targeted websites against which a generic “one
model fits all” physical stores cannot compete. As a result, on-line retail is growing
with double digits, while many retailers continue to close physical stores.

RFID offers an opportunity for traditional retailers to fight back. If every product
in the retail store is tagged with RFID, it is given an Electronic Product Code (EPC),
which is universally unique for each item. By placing RFID equipment at the store
every relevant event of the product can be detected. Many leading retailers such
as Kohl’s, Decathlon, Inditex or Marks and Spencers have already deployed RFID
technology in their stores.

The most obvious, and most common, application of RFID in the store is for
inventory. Most commonly, RFID-based inventories are done by using handheld
RFID readers, that store associates use to scan every shelf, rack and fixture in the
store. A typical fashion store in a typical shopping mall of about 1.000m2, and
about 10.000 items can be completely inventoried by a single associate in under 60
minutes. The same process using barcode technology would typically require a team
of 3–5 persons working for one or two full days (double or triple counts are typically
necessary in this case to reach an acceptable accuracy).

However, although the theoretical accuracy of RFID inventory using handheld
readers is above 99%, retailers using this method report actual accuracies of between
80 and 90%. The difference lies in human errors. Inventory taking is a very tedious
process, and the staff doing it frequently forget a shelf, an aisle, or an entire section.
The layout of a retail store is typically not regular, and it is very easy, especially in
larger stores, for associates to get confused and believe that they have already scanned
a part of the store when they in fact have not. Also, the repetitivemovements involved

Development of an RFID Inventory Robot (AdvanRobot) 389

in scanning the store have been linked to injuries, raising an issue of health in the
work place.

Whenever humans are faced with tedious repetitive physical tasks, robots are the
ideal candidates to overtake them, especially when there are health risks involved.
Keonn Technologies, a manufacturer of RFID solutions for the retail sector, had the
idea to combine a standard robotic base with an RFID payload composed of standard
components to create a robotic inventory system for the retail store. The idea included
some important insights on how to couple the navigation and the RFID systems to
increase efficiency and the accuracy of the inventory process. In 2013 Keonn filed a
patent and presented the first commercial prototype of an RFID inventory robot at the
RFID Journal Live 2013 show, where it was selected as the winner of the “Coolest
demo award” [15]. Since 2013 Keonn has taken the latest versions of AdvanRobot
to the same show, where it has raised a lot of interest among retailers and in the
RFID industry in general. During this time, Keonn, with the collaboration of the
Ubiquitous Computing Applications Lab (UbiCA Lab) at Pompeu Fabra University,
and the robotics company Robotnik has continuously improved the product, tested it
extensively in large retail stores around the world, and established agreements with
some of the most important players in the RFID for retail industry. AdvanRobot is
the only robotic system for inventory designed by a multidisciplinary team of RFID
specialists, robotics specialists, and academia. The resulting product, AdvanRobot,
is now a part of Keonn’s portfolio of RFID solutions for retail.

AdvanRobot is able to inventory a very large store during the 10–12h in which a
store is normally closed. For the same job, at least 4 associates with RFID handheld
readers would be required, making the Return on Investment (ROI) very high. Addi-
tionally, AdvanRobot never forgets a shelf, an aisle or a section, and the measured
accuracy has always been above 99.5% of all tagged products in the store. In fact,
AdvanRobot is the most accurate instrument to perform an inventory.

In addition, AdvanRobot is able to provide not only inventory but also the location
of the products on the store layout and a 3D model of the store. This is considered
of high value for retailers to detect misplaced items, to help customers find products
and associates fulfill on-line orders.

In this chapter, the following topics are covered:

• First, we present a background section on RFID technology and its applications
to retail.

• Second, AdvanRobot’s overview is given including its design and architecture,
analyzing the specific navigation strategies for inventorying a store and finishing
with the human-robot interaction.

• Third, a short introduction to AdvanRobot simulation is provided.
• Fourth, we describe the results of the tests carried out in actual retail environments.
• Fifth, ongoing developments are explained. We introduce a framework for the
exploration and mapping of 3D environments. The ROS package is named
cam_exploration and the code is publicly available atUbiCALab’s github account.1

1https://github.com/UbiCALab/cam_exploration.

https://github.com/UbiCALab/cam_exploration

390 M. Morenza-Cinos et al.

• Sixth, we discuss the developments considered for future versions of AdvanRobot.

Due to the nature of the project some of the core packages of AdvanRobot are
not publicly available. Nonetheless, a set of packages for a basic simulation are
available.2

A video3 of AdvanRobot in a store introduces its operation and main features.

2 Background

2.1 RFID Technology

The central component of RFID technology is the RFID tag, composed of a chip
mounted on a low cost antenna (usually made from etched aluminium). When an
RFID reader sends an interrogating wave, all tags within the reach of the reader’s
antenna respondwith a unique code, which the reader communicates through a wired
or wireless network to an information system that makes use of this code for a given
application. Figure1 illustrates the different components of a typical RFID system.

Inmost cases,RFID tags are passive, andobtain the energy to respondby rectifying
the interrogating signal wave. In some cases, besides a code, the RFID tag has a
limited amount of user memory.

RFID technology has been around for decades now.However, it was not until 1999
when the AutoID Center at MIT redefined the frequency, the protocols and the code
standards [16], that RFID started to become a widely adopted technology, especially
in the retail sector. These standards were later acquired and are now managed by
GS1,4 the global organization also managing commercial barcode standards.

As opposed to previous standards that use the low and high frequency bands (LF
and HF), the new standard uses the ultra high frequency band (UHF) [6]. The band in
Europe (ETSI standard) is from 865.6 to 867.6MHz, and in the USA (FCC standard)
from 902 to 920MHz.

An RFID reader in the UHF band can read tags at a distance of up to 10m
as opposed to less than 2m in the LF and HF bands. RFID antennas have beam
widths normally between 30 and 90◦. In a typical scenario the reader can identify
hundreds, sometimes thousands of tags simultaneously, for which the Gen2 protocol
[4] incorporates anticollision protocols allowing read rates of hundreds of tags per
second.

The weight and battery constraints of handheld RFID readers limit the maximum
power and in consequence the read range to between one and two meters. A robotic
system, on the other hand carries a high capacity battery, which can operate several
readers at full power, each connected to several antennas, each of them with a read

2https://github.com/UbiCALab/advanrobot.
3https://youtu.be/V72Ep4s9T4o.
4http://www.gs1.org/.

https://github.com/UbiCALab/advanrobot
https://youtu.be/V72Ep4s9T4o
http://www.gs1.org/

Development of an RFID Inventory Robot (AdvanRobot) 391

Fig. 1 Components of a typical RFID system. The Reader interrogates the environment by sending
an RF signal through the Antennas. Tags, attached to products, reply with their unique identifier.
The Reader communicates the data to an Information System for its exploitation

range of between 2–5m. In consequence, a robotic RFID inventory system can have
the equivalent reading capability of 10–20 handheld readers.

2.2 Inventory Systems

Due to errors, theft, misplacements and other reasons, actual inventories diverge
significantly from theoretical inventories in the shop floor, typically by 10–20% [8].
Most retailers will use barcodes for inventorying, but inventories based on barcodes
are expensive, disruptive, can only be done every few months, and their accuracy is
typically no higher than 95%. This situation results in frequent stock outs, frustrated
customers, expensive preventive overstocking, and in the impossibility to source
on-line orders directly from the stores, which would allow retailers to effectively
compete with online retailers [14]. In contrast, RFID-based inventories are much
more affordable, non disruptive, and the accuracy is usually above 99%.

There are several options to inventory a store based on RFID technology. First,
handheld RFID devices may be used to accurately take inventory of objects tagged
with RFID tags. Second, ceiling mounted readers with fixed or steerable beam anten-
nas can be used to inventory RFID-tagged objects. Third, smart shelves or fixtures,
incorporating RFID antennas and readers can be used to continuously inventory the
objects they contain, as long as they are tagged with RFID. And fourth, autonomous
robots [13] or UAVs [17] can be used to inventory all objects in a space, also using
RFID tagging.

Handheld readers cannot, by themselves, provide any information about the loca-
tion of the objects within the space being inventoried, while the other three methods

392 M. Morenza-Cinos et al.

Table 1 Comparison of RFID inventory methods

Method Location
accuracy

Inventory
frequency

Fixed
infrastructure

Hardware cost Labor cost

Handheld
reader

No location Every few
days or weeks

No Very low High

Ceiling
mounted
readers

2m Every few
minutes

Yes High None

Smart shelves
and fixtures

50cm Every few
seconds

Yes Very high None

Autonomous
robot

2m Every day No Low Very low

can provide location with different degrees of accuracy. The first and fourth methods
can provide frequent but non continuous inventory, while the second and third can
provide quasi real time inventory (a.k.a. “near” time inventory). The first and fourth
methods do not require any fixed infrastructure installation, and the second and third
methods do. The four methods also differ in the cost of hardware and the cost of
labor they require. Table1 summarizes the above comparison.

3 AdvanRobot Overview

AdvanRobot is an autonomous mobile robot that takes inventory of RFID labeled
products in large retail stores. Therefore, by using AdvanRobot, taking inventory
becomes an automatized task. In addition, complementary features revealed after
its initial concept, for instance the location of the RFID labeled products and the
generation of 3Dmaps of the environment. This section is developed as follows: first,
the AdvanRobot is described detailing its design and characteristics; second, a high-
level overview of the system architecture is given; third, the navigation strategies for
inventorying a store are defined; and finally, the human-robot interaction is detailed.

3.1 Design

AdvanRobot is designed in two main systems: the robotic base and the payload.
Briefly, the robotic base is a ROS based autonomous mobile robotic base that is in
charge of satisfying all the requirements that the payload needs for inventorying. It
provides power, a safe and reliable navigation, and connectivitywith the environment.
The payload is the system in charge of performing the main task of the robot which
is taking inventory.

Development of an RFID Inventory Robot (AdvanRobot) 393

In addition, it incorporates a web interface for the human robot interaction that
can run in any web browser. This interface allows the interaction with the user from
a very high-level simplifying all tasks and ensuring that everything runs as required.
The Human-robot interface is detailed in Sect. 3.4.3.

3.1.1 Robotic Base

The robotic base is the model RB-1 manufactured by Robotnik.5 It is a circular
base with differential wheels allowing an excellent maneuverability in narrow aisles
since its turning radius is 0. Moreover, it has a load capacity of 50kg and provides
high stability and damping. However, note that the RB-1 base used includes ad-hoc
modifications. The base consists of three subsystems: the traction subsystem; the
brain; and the power subsystem.

The traction subsystem includes two motorized and encoded wheels powered
by servomotors, three omni-directional wheels, and two dampers for stability and
overcoming floor irregularities. Due to its traction configuration it has differential
drive capabilities. In addition, it has an emergency push (e-stop) button that cuts the
servomotors power and immediately stops the robot.

Secondly, the brain, composed by the computer and electronics subsystem is
in charge of controlling and connecting all the robot parts and providing all the
intelligence required. Its main devices are the computer, a router that provides an
access point for external connections and the sensors. The only embedded sensor is an
IMUwith two gyroscopes, an accelerometer and a compass. The RB-1 base also uses
peripheral sensors: an optical (RGB) and depth (D) camera (RGBD camera) placed
on top of the payload in order to detect obstacles, and a laser range finder. Finally it is
also prepared for the installation of sonars in order to avoid those obstacles that can
not be detected by the laser range finder or the RGBD camera such as mirrors, black
surfaces andhighly translucentmaterialswhich canbe present in target environments.
All the peripheral sensors connectors are easily accessible for their connection and
disconnection.

Finally, the power subsystem consists of a lithium iron phosphate battery that
provides more than 11h of autonomy. It also includes a battery management system
(BMS)which controls the charging and discharging of the battery, and the electronics
for recharging on a charging station.

5http://wiki.ros.org/Robots/RB-1_BASE.

http://wiki.ros.org/Robots/RB-1_BASE

394 M. Morenza-Cinos et al.

3.1.2 RFID Payload

The RFID payload is the system in charge of taking inventory. It consists of three
main parts:

First, AdvanRobot is equipped with 3 RFID readers,6 which control 4 antennas
each. However the robot can work with different configurations, using 1–3 readers
combined with RFID multiplexers to control all the antennas.

Second, AdvanRobot mounts 6 RFID antennas per side, summing up a total of 12
RFID antennas.7 The antennas are placed side by side in a way such that their reading
areas overlap. In this fashion, there is a minimization of blind spots in what regards
RFID readings. Hence, there is a degree of redundancy in the RFID subsystem. This
is paramount in order to ensure a critical inventory accuracy. In the configuration
shown in Fig. 2, AdvanRobot is equipped with the RFID antennas aforementioned.
However, other types of antennas can be used in order to achieve different reading
behaviors and scanning patterns.

Last, the structural subsystem, with the main aim of providing a physical support
to the former: the RFID antennas and the RFID readers, in addition, the structural
subsystem is foldable. AdvanRobot has been designed to read tags up to 2.75m. As
a result its height is slightly above 2m. Therefore, the possibility of being folded
implies the ability to traverse any door at the same time as being high enough to read
all the products in a store.

Besides, the RGBD camera is linked to the top of the RFID payload. The reason
for that is the maximization of the usable field of view of the camera. In what regards
obstacle avoidance, this is crucial. For a safe navigation, AdvanRobot should detect
any obstacle up to its height. This is better achieved observing the environment from
the uppermost location of the payload.

3.1.3 Interconnection

Both parts are interconnected by twoUSB ports for the RGBD cameras; an RJ45 port
to interface the RFID system; and a connection for power supply. This connections
are accessible through a small door in a side of the payload making the assembly
and disassembly a very easy procedure.

3.1.4 Comparison with Other RFID Robots

A comparative analysis is done based on the information available regarding other
commercial RFID-equipped robots. At the moment, such information is not exten-
sive. The comparison highlights the features that are explicitly different between the
involved robots, which to our knowledge are:

6http://keonn.com/rfid-components/readers/advanreader-150.html.
7http://keonn.com/rfid-components/antennas/advantenna-p22.html.

http://keonn.com/rfid-components/readers/advanreader-150.html
http://keonn.com/rfid-components/antennas/advantenna-p22.html

Development of an RFID Inventory Robot (AdvanRobot) 395

Fig. 2 AdvanRobot in operation in a store. At the bottom, the lower circular part is the robotic
base. On top of it, the RFID system, which is foldable. Finally, at the top of the RFID system the
RGBD camera for obstacle detection

• Tory8 manufactured by MetraLabs
• StockBot9 manufactured by PAL Robotics

From a structural point of view, both, AdvanRobot and Tory have a circular foot-
print of 25cm radius, however, StockBot’s footprint is not circular and its equiva-
lent footprint radius is 35cm. This directly impacts the minimum size of the aisles
where the robot can navigate, limiting its versatility in some environments. Regarding
height, AdvanRobot is above the others, but it can be folded.

With respect to the battery autonomy, Tory states providing 14h, Stockbot 8h and
AdvanRobot 11h. In addition, Advanrobot is the one that recharges the battery in a
shorter amount of time, it requires 2h while the StockBot needs 4h and Tory from
3 to 6h for a complete charge. The robots operational availability is defined as the
ratio between the time the robot is working and the total robot time (working plus
charging time). Therefore, AdvanRobot accounts for an operational availability of
84.6%, Tory of 70% and Stockbot of 66,6%. For instance, AdvanRobot would be
operative for 84.6h over a complete period of 100h. The remaining 15.4h would be
used for battery charging.

Focusingon theRFIDsystem,StockBot has 8 integratedRFIDantennas,Toryonly
mentions that it has integrated RFID antennas. AdvanRobot uses 12 antennas which

8http://www.metralabs.com/en/shopping-rfid-robot.
9http://pal-robotics.com/ca/products/stockbot.

http://www.metralabs.com/en/shopping-rfid-robot
http://pal-robotics.com/ca/products/stockbot

396 M. Morenza-Cinos et al.

Table 2 Summary of the comparative analysis of commercial inventory robots

AdvanRobot Tory StockBot

Height (cm) 208 150 190

Equivalent footprint
radius (cm)

25 25 35

Battery autonomy (h) 11 14 8

Charging time (h) 2 6 4

Operational
availability (%)

84.6 70.0 66.6

RFID system 1–3 readers 12
antennas

Not specified 2 readers 8 antennas

characteristics can be selected among different options and from 1 to 3 readers upon
application and user request. Thus, AdvanRobot provides an excellent versatility to
adapt the RFID system to the environment.

Finally, to the best of our knowledge and from an operational point of view,
AdvanRobot is the only one that is prepared to work by zones inside a shop floor.
Such feature is explained in Sect. 3.4. Table2 summarizes the analysis.

3.2 Architecture

The high-level architecture of the robot consists of 5 main blocks: User; Interface;
Taskmanager; Navigation; andRFID. Figure3 shows a schematic of the architecture.
The Interface allows the communication between the user and the robot, it is themain
component of the human-robot interaction. The Task manager basically translates
the user requests into a set of actions. The Navigation block receives the actions and
transforms them in commands for the movement of the robot. At the same time,
the RFID system reads surrounding tags. The Navigation and RFID blocks interact
in order to succeed in the selected task. The details of Navigation and RFID are
explained in Sect. 3.3. Besides, the architecture follows the modularity of the robot’s

Fig. 3 System’s high-level architecture. Solid arrows indicate control while dashed arrows indicate
control feedback. RFID plays a critical role in Navigation decisions in order to accomplish accuracy
and time constraints

Development of an RFID Inventory Robot (AdvanRobot) 397

design. The Navigation block corresponds to the autonomous base control and the
RFID block to the RFID payload.

3.2.1 Task Manager

The Task Manager is implemented in a node named task_manager. It is the middle-
ware that translates high-level user orders to lower-level control commands. It has
been created in order to dispatch and monitor the tasks that the robot has to perform
from a user perspective, meaning that it operates at a higher-level than the Navigation
and RFID blocks.

task_manager communicates with the interface via ROS Services,10 in which the
parameters of the service are the selected task and its options. Shortly, the node
performs two main operations.

First it keeps the state for the robot, which is communicated to the user. Hence, the
user knows the selected action status and progress. Additionally, the state prevents
any interaction through the interface that could interfere with the current task. This
state assignation allows the robot to work as a simplified finite state machine.

Second, it executes the selected task actions, using the ROS actionlib stack.11 By
means of actionlib, the node monitors the task, and if required it can also preempt
the actions.

Also, task_manager is subscribed to other nodes that publish the state of relevant
parts of the robot. This has two main benefits. On one hand, ROS message passing
facilitates monitoring all the relevant information, from the state of the RFID readers
to the temperature of the motors. On the other hand, the task_manager is the node
that centralizes all the information and presents it to the user in a comprehensible
way via the interface.

3.3 Navigation

AdvanRobot uses the ROS navigation stack12 for a safe navigation in retail envi-
ronments. AdvanRobot is configured to navigate in any wheelchair accessible retail
space which are those comprised by aisles equal or greater than 70cm [5, 9]. It uses
a range laser finder for simultaneous localization and mapping, widely known as
SLAM [2] and an additional RGBD camera for obstacle detection in 3 dimensions.
It is sonar-ready for the detection of mirrors and materials not reflective to light-
spectrum. Before deploying AdvanRobot, an environment survey identifies potential
risks for navigation and determines the need to use sonars, which can be plugged
and played to clear the identified risks.

10http://wiki.ros.org/Services.
11http://wiki.ros.org/actionlib.
12http://wiki.ros.org/navigation.

http://wiki.ros.org/Services
http://wiki.ros.org/actionlib
http://wiki.ros.org/navigation

398 M. Morenza-Cinos et al.

Fig. 4 Building blocks of
AdvanRobot’s navigation. In
Italic, the names of the ROS
nodes involved in each of the
sub-blocks

The navigation consists of a preparatory human assisted stage and a fully
autonomous stage. The first is needed to get a baseline of the environment and it
is called Recognition stage. During the Recognition stage AdvanRobot generates
a map and records key spots for later navigation. Once the Recognition stage is
completed successfully AdvanRobot is ready for the Inventory stagewhen the actual
autonomous inventory taking is performed. In both stages RFID observations are
used as inputs to support the optimal performance of AdvanRobot. Figure4 shows
schematically the Navigation parts explained next.

3.3.1 Recognition Stage

The aim of the recognition stage is providing a guided observation of the environment
to AdvanRobot. By doing so, AdvanRobot learns the map of the zone intended for
inventory and, by listening to theRFID readings, records the key spotswhere products
are present. In practice, an operator brings AdvanRobot to a zone’s initial spot and
using a remote control moves AdvanRobot close to the products to inventory. At the
same time, a map is generated using ROS gmapping13 and key spots are recorded by
a purpose-developed ROS package: the goal_profiler.

3.3.2 Inventory Stage

AdvanRobot performs inventory taking during the Inventory stage. Simultaneously,
it does a pre-computation of RFID reads as a preparation for the latter offline location
computation. The Inventory stage is triggered and controlled by themission_manager
node.

Following the trigger of an inventory, the key spots recorded during the Recog-
nition stage start to be dispatched in the form of navigation goals. In order to
optimally dispatch navigation goals during the inventory stage, a ROS node, the
goal_dispatcher, monitors the progress of navigation and rearranges the goals online.

13http://wiki.ros.org/gmapping.

http://wiki.ros.org/gmapping

Development of an RFID Inventory Robot (AdvanRobot) 399

Fig. 5 Rqt_diagram of the navigation controller node

For instance, if a key spot is visited unexpectedly due to path re-planning its corre-
sponding navigation goals are cleared and not dispatched again.

Given a navigation goal, linear and angular velocities sent to the motors controller
are commanded by the rfid_navigation_controller node, whichmonitors the progress
of RFID reads in order to compute the following velocities. The navigation_control
nodemodulates the output ofmove_base14 in order to get the best inventory accuracy
in the least time possible. For instance, if AdvanRobot moves at its maximum speed,
which is 0.4m/s, in an environment with a high density of RFID labeled products, the
RFID system has no time to identify all the products. Thus, the navigation needs an
added control layer that takes into account the progress of RFID reads. Otherwise,
inventory accuracy requirements are not met. Figure5 shows the rqt diagram that
relates the navigation_control node to the the move_base node. In addition, the
node location_precompute matches RFID reads to the corresponding identification
antenna pose using ROS transforms15 lookups. Each RFID read is stored along with
the antenna pose at the time of the identification for a posterior location computation.
The computation of location is an ongoing development explained in Sect. 6.2

3.3.3 Integration

Linking properly the output of the Recognition stage to the subsequent Inventory
stages is addressed by themission_manager node. A key system design feature is that
AdvanRobot follows a divide and conquer strategy to conduct inventory missions.
An important learning from field experience is that it is preferable to define zones of
less than 1000m2 instead of working with a single larger zone. This is explained by

14http://wiki.ros.org/move_base.
15http://wiki.ros.org/tf.

http://wiki.ros.org/move_base
http://wiki.ros.org/tf

400 M. Morenza-Cinos et al.

three main reasons. The first, the ease of operation by the user in case an inventory of
a specific zone or set of zones is needed. This has been validatedwith users during on-
site pilots. The second, a less demanding computational cost. Working with big and
precise maps implies a high computational cost. The third, a convenient modularity
facing considerable layout changes and the consequent need of a re-recognition.
Hence, AdvanRobot is designed to work by zones, following a divide and conquer
strategy.

Given a set of zones, any combination is eligible and is defined as an Inventory
mission. An Inventorymission comprises a set of consecutive Inventory stages. In this
way, the user can select the zones to inventory as needed.Working with a set of zones
requires a proper management of the Recognition stage output, which are maps and
goals. For each zone, a pair map and set of goals is kept. Thus, an Inventory mission
requires dispatching the proper map and goals in the appropriate order and timing
to the navigation layer. The mission_manager is the ROS node that performs the
tasks of triggering and monitoring Inventory stages according to a defined Inventory
mission.

The divide and conquer strategy is implemented placing a zone identifier at the
beginning of each defined zone. The zone identifier is the reference for AdvanRobot
to know the actual zone. At the moment, the zone identifier is a QR code which
is detected by the RGBD camera using the ROS package ar_track_alvar.16 The
automatic identification of zones enables the user to perform the recognition stage and
afterwards launch an inventory mission without assistance. As well, zone identifiers
are used by AdvanRobot to perform map transitions autonomously, commanded by
the mission_manager, since they define the relations between zones. Furthermore,
QR codes can be used as a support to AdvanRobot’s location recovery and correction,
which is discussed in Sect. 3.3.4.

An essential feature for a user is knowing when the Recognition stage needs to
be rerun. By using ROS navigation stack properly, AdvanRobot is able to adapt to
changes in the layout. However, if layout changes are significant, AdvanRobot may
not be able to output a reliable localization and Inventory missions can fail. With
the purpose of computing the need of rerunning a Recognition stage an algorithm is
run by the node layout_watchdog. The algorithm uses as inputs mainly but not only
the success and time to reach goals and the reliability of the localization during the
mission.

3.3.4 Challenges

Exploration. The main challenge of the Recognition stage is suppressing the need
of human assistance. For that, exploration has been considered and preliminary tests
conducted. However, in retail environments, which are generally a big extension of
interconnected aisles, the time to complete an unassisted exploration is prohibitive.
Compared to an unassisted exploration, the actual approach has twomain advantages:

16http://wiki.ros.org/ar_track_alvar.

http://wiki.ros.org/ar_track_alvar

Development of an RFID Inventory Robot (AdvanRobot) 401

optimizing the time it takes to recognize a zone; and empowering a user with an easy
way to define the interesting zones for inventory. The latter, if doing unassisted
exploration would require a posterior manual intervention or the addition of beacons
for the robot to identify the interest zones. The ideal case would be that of a non
human assisted exploration, but assisted by beacons or other technologies. Possible
means for assisting explorations without human intervention include those discussed
next for supporting localization.

At themoment, exploration is under testing, see Sect. 6.1. The exploration is being
developed with the combined aim of granting AdvanRobot enhanced autonomy and
producing 3D maps.

Localization Robustness. AdvanRobot requires a good accuracy in localization in
both the Recognition stage and the Inventory stage in order to complete its tasks.
During the Recognition stage AdvanRobot does not know the map of the environ-
ment, hence, it is executing a SLAMalgorithm. It has been noticed that in very regular
environments and large open spaces the localization of AdvanRobot is not reliable
enough to generate faithful maps. Moreover, at the beginning of the Inventory stage,
AdvanRobot needs to deal with the problem known as kidnapping [3]. To cope with
this issues landmarks can act as absolute positioning references. Accordingly, the
actual implementation makes use of QR codes. However, the detection of QR codes
relies on a direct line of sight and lighting. Alternative means to support localiza-
tion include laser reflectors, Bluetooth beacons and Battery-Assisted Passive (BAP)
RFID tags.

Robustness to layout changes. Significant layout changes (or the accumulation of
minor layout changes) can impact significantly the performance of AdvanRobot. In
front of such changes AdvanRobot may not be able to reliably localize itself in the
environment and fail to complete a mission.When this happens, not only the mission
failure consequences have to be assumed but also the Recognition stage needs to
be rerun. An interesting challenge is granting AdvanRobot with the capability of
modifying the maps and goals of a zone at the same time it is running the Inventory
stage. Hence, after several inventory iterations of a zone therewould be no divergence
from the original observations to the actual layout, which is the case at themoment. In
practice, at every Inventory stage, the zone’s Recognition stage observations would
be updated and the impact of cumulative layout changes minimized. This would be
equivalent to an assisted exploration, being the assistance the previous observations
of the zone. In this way, there would only exist the need for a very first human assisted
Recognition stage.

Inventory and Location Navigation Strategies. At the moment, the navigation is
optimized for the compromise between time and inventory accuracy. However, a
precise RFID location requires constraints to be met in terms of navigation [11].
Combining inventory and location constraints in a single navigation strategy is one
of the main challenges to navigation control. After, it follows the addition of con-
straints for a complete 3D mapping of the environment. Combining optimally the

402 M. Morenza-Cinos et al.

constraints for inventory, location and 3D mapping would optimize the valuable
outputs of AdvanRobot and, at the same time, minimize the time invested in the
commission.

3.4 Human-Robot Interaction

Human-AdvanRobot interaction mainly consists of two operational procedures that
simplify the user experience and minimize human errors. Both operational proce-
dures are guided and executed by means of a control interface described next.

The first procedure empowers the user to launch a Recognition stage in order to
create a map of the environment and get a set of indicative goals to follow when
doing inventory. The second procedure lets a user launch the inventory of a sequence
of selected zones, called Inventory mission. The second procedure can be scheduled
and managed remotely.

The specific challenges and specifications related to human-robot interface are
explained. AdvanRobot is a system that is specially suitable for large stores. Never-
theless, taking inventory of the whole store in a single mission is not always possible
due to time constraints.Moreover, the usermight request to take the inventory of only
a collection of specific products. To cope with this, two key aspects of AdvanRobot
operations are introduced:

• The division of the shop floor.
The shop floor is separated in zones complying with the following:

– Zones should contain a family or a set of related families of products.
– Zones should be between 750m2 and 1500m2.
– Zones should encompass easily identifiable architectonic features. For instance,
it is no recommendable defining a zone as an island of hangers in the middle of
a store. This is due to the problems that can arise in referencing the zone and
the robot localization robustness.

Therefore, for each of the zones the robot keeps a separatemap interlinkedwith the
other zones’ maps. The reason for this has been discussed previously in Sect. 3.3.

• Zones are identified using visual cues, in this case QR codes.
The linking and identification of defined zones is done using QR codes placed at
the start and at the end of each zone. Noteworthy, the end of a zone is always the
beginning of the following zone. Consequently, all the zones are interlinked and
any sequence of zones can be selected for inventorying.

This two key aspects allow the user to easily select zones for inventorying and
recognition. If the layout of the shop floor has changed considerably and the re-
recognition of a zone is required, only the specific zone will need to be re-recognized
saving AdvanRobot time as opposed to having to re-recognize the whole area (the
sum of all the individual zones). And the user can identify such zone easily since it
is marked at its beginning and end by a QR code.

Development of an RFID Inventory Robot (AdvanRobot) 403

3.4.1 Launching the Recognition Stage

In order to launch the Recognition stage the user sequence of steps to follow is:

• Place the robot in front of the starting QR code of the zone. Doing so, AdvanRobot
recognizes which zone is about to be recognized and informs the user on the
interface for confirmation.

• By means of the human-robot interface the recognition is launched pressing the
button Start Recognition.

• Guide the robot through the zone’s interest spots, those intended for inventorying.
While it is being guided, AdvanRobot records key spots where it is reading RFID
tags. Later, the key spots are used to guide the inventory mission.

• When the RGBD camera detects the final QR of the zone, the interface pops up the
options Finish Recognition and Continue Recognition. The first allows the user to
end the process, the second is used to resume the guiding process in case, even the
final QR has been detected, it is not yet over.

• If the option Finish Recognition is pressed, the map and key spots are stored and
the Recognition stage processes stopped.

3.4.2 Launching an Inventory Mission

There are two procedures to start an Inventory mission. The first, which minimizes
the user intervention, starts and ends AdvanRobot at its charging station. Given that
the human-robot interface is a web application it can be accessed remotely. This
empowers the user to launch Inventory missions programatically and remotely. The
second is used when the user requires starting an inventory at a specific zone:

• Place the robot in front of the starting QR code of the first zone.
• Select the list of zones that AdvanRobot that comprise the Inventory mission.
• Bymeans of the human-robot interface the Inventory mission is launched pressing
the button Start Inventory.

• From this moment AdvanRobot is completely autonomous and its status and
progress can be monitored on the human-robot interface.

3.4.3 Human-Robot Interface

The robot’s interface allows the user to interact with the robot in an intuitive and
painless manner and it provides feedback of its status and progress. Figure6 shows
a snapshot of the human-robot interface.

The interface guides the user along a sequence of steps that ensure the robot is
prepared for the selected task. For instance, it gives guidelines to the user about the
proper placement of the robot in front of a QR code, or it notifies the user to pull the
e-stop button when it is needed.

404 M. Morenza-Cinos et al.

Fig. 6 AdvanRobot
interface

Once all the steps have been successfully completed by the user following the
interface guidelines, the specific selected task and its parameters are communicated
to the task_manager node (see Sect. 3.2.1) by means of ROS Services. During the
task commission, the interface provides feedback by showing the progress of the task
to the user. For instance, during the Recognition stage the interface shows the map
together with the key spots that are being recorded; and when the robot is performing
an Inventory mission it shows the progress of RFID readings and the progress of the
mission itself.

In addition, the interface includes other relevant indicators. For instance, the snap-
shot of the interface, shown in Fig. 6, indicates that the robot is fully charged with
the green circle on the bottom right corner and properly connected to internet with
the white symbol on the bottom left corner. Also, it shows that the robot and the
RFID systems are connected, and the robot status is IDLE, hence, any task can be
triggered by the user.

Development of an RFID Inventory Robot (AdvanRobot) 405

The human-robot interface is aweb application built usingHTML5 and Javascript.
The communication with the ROSMaster is accomplished using rosbridge_suite,17 a
meta-package that provides the definition and implementation of a protocol for ROS
interaction with non-ROS programs. Rosbridge is implemented using WebSocket as
a transport layer and provides an API which uses JSON for data interchange. Finally,
it also uses the ROS package web_video_server18 for streaming the video of the
RGBD camera.

3.4.4 Challenges

In a large retail store there are WIFI blind spots. Therefore, the connectivity with
the robot through an infrastructure network can be lost unexpectedly. In case a user
needs to interface the robot and the infrastructure connection is not available, without
a backup connection the interaction becomes impossible.

In order to guarantee a responsive connection at any store location, the robot
includes two wireless links: one a as client and the other as an access point. Usually,
the robot is linked to the infrastructure network as a client, enabling its remote access
and control. Moreover, the robot periodically uploads to the cloud relevant mission
and status data, keeping a historical log that can be reviewed even when the robot
is not online. In case the infrastructure network is not available in order to control
or to know the robot status, AdvanRobot can be interfaced by means of its access
point. As opposed to the infrastructure connection, this is available as long as the
user stays within the robot’s WIFI range. The roaming between links is performed
automatically by the robot’s interface, giving always priority to the robot’s access
point.

Hence, there is a valuable degree of redundancy in the robot’s connectivity.

4 Simulation

The end-to-end simulation of the system has been set up using ROS and Gazebo.
Simulation has been used for the validation of functionality in terms of navigation,
operations and human-robot interaction. Yet, a realistic simulation of RFID is not
available given its physical model is complex. RFID electromagnetic propagation
suffers strongly frommultipath effect, which means the RFID signal rebounds and is
attenuated multiple times depending on the characteristics of the scenario. Modeling
such behavior means taking into account each and every item and its characteristics
within the reach of every single electromagnetic wave. At RFID frequencies not
even raytracing produces satisfactory results. Only a full finite-element simulation
of the entire environment, prohibitive from a computational cost point of view, would
output reasonable simulation results.

17http://wiki.ros.org/rosbridge_suite.
18http://wiki.ros.org/web_video_server.

http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/web_video_server

406 M. Morenza-Cinos et al.

Fig. 7 Simulation of AdvanRobot at the moment of initiating an Inventory mission. On the left, a
view of AdvanRobot standing in front of an initial QR. On the right, the corresponding view on the
interface

Even though an RFID sensor is included for simulation in Gazebo, it is not imple-
mented considering all the RFID simulation complexities. In conclusion, it is not
possible with the available tools to simulate a realistic target scenario for the use
case.

Accordingly, the simulation engine used for the RFID reads is not a physical but
a probabilistic one. In this manner, only the throughput of RFID reads can be set to
behave analogous to reality,whichworks for the validation of the codingof navigation
strategies but not for the validation of their convenience regarding inventory accuracy
and time. Hence, the validation and tuning of navigation strategies for an optimal
compromise between inventory accuracy and time can only be performed in actual
physical scenarios.

A set of packages for a basic simulation of the system can be found in the
UbiCALab github repository19 and a snapshot of the simulation is shown in Fig. 7.

5 Experimental Results

AdvanRobot has been tested periodically in retail environments in every design iter-
ation. The last version of AdvanRobot has been validated for a duration of 2 months
at a retailer’s facility as the preparation for a subsequent pilot. The validation tar-
geted AdvanRobot’s navigation on the shop floor; AdvanRobot’s RFID identification
accuracy; and the operation by store associates after a training.

19https://github.com/UbiCALab/advanrobot.

https://github.com/UbiCALab/advanrobot

Development of an RFID Inventory Robot (AdvanRobot) 407

Table 3 Maximum and
minimum inventory times of
the complete store throughout
several iterations

Minimum time 23:41:33

Distance (m) 4, 485

Effective speed (m/s) 0.052

Maximum time 31:50:51

Distance (m) 5, 422

Effective speed (m/s) 0.047

5.1 Navigation Validation

The navigation in a retail environment is not trivial due to the characteristics of
shop floors. The main concerns at start have been the validity of the layout for a
robust localization of the robot; floor materials and discontinuities; the ability to plan
optimally paths; the effective speed of an inventory given the intricate configuration
of aisles; and the effectiveness and negotiation of navigation commands.AdvanRobot
has been in operation 8h per night for 40 nights in a 7500m2 store. Table3 shows
the maximum and minimum inventory times of the complete store throughout the
iterations. The effective speed of AdvanRobot at inventorying is roughly 0.05m/s,
which is satisfactory but still the main figure to improve. The effective speed is
compromised by the constraints of the RFID system and, at the same time, by the
complexity of the layout for navigation.

None of the initial concerns were found critical in completing inventory missions.
However, the robustness of localization is sometimes compromised by the lack of
structural features to robot’s observations reach. This is not a matter of installing
more powerful sensors for location - a longer range laser - since it is usual for the
robot on the shop floor to end up surrounded by expositor furniture.While the impact
of this has not been critical to the day, it is considered a key aspect to improve. There
are two main approaches to tackle localization robustness. On one hand, improving
localization algorithms. On the other hand, providing localization algorithms with
additional observations of the environment.

5.2 RFID Identification Accuracy

Measuring inventory accuracy requires a baseline for comparison. The ideal case
is that of manually counting each RFID label, which is known in retail as fiscal
inventory. This seldom happens throughout a year given the workforce needed to
count up to hundreds of thousands of items, a usual amount in a big retail mall.
Consequently, a less demanding baseline in terms of man-hours is used. Currently,
retailers use RFID handheld inventory devices for stock counting. Therefore, one of
the references to compute the robot’s accuracy is the output of handheld devices.
Moreover, retailers generally keep an inventory record which is an estimation based

408 M. Morenza-Cinos et al.

Table 4 AdvanRobot and handheld comparative accuracy

Product type AdvanRobot’s
accuracy

Handheld accuracy
(%)

Amount of RFID
labels

Men’s wear 99.80 77.90 39,671

Women’s wear 99.90 44.10 22,277

Women’s underwear 99.54 72.77 8,778

Men’s underwear 99.43 88.91 1,055

Jeans 99.85 99.51 2,027

Table 5 AdvanRobot accuracy comparing to estimated inventory record

Estimated inventory
count

Robot count matching Robot count in excess Accuracy (%)

209,465 162,335 12,025 78.7

on items inputs and outputs but not on actual counts of stock on the shop floor. Even
such kind of estimated inventory records diverge from reality quickly over time, they
are still a good baseline for an arbitrated accuracy comparison. In conclusion, the
two baselines that are used to measure the robot’s accuracy are handheld devices and
estimated inventory records.

In order tomeasure the accuracy using the output of handheld devices, the baseline
is computed as the sum set of items identified by AdvanRobot and by the handheld in
a given zone. Table4 shows results for a set of tests at selected zones. It is noticeable
a higher AdvanRobot accuracy in all the compared cases. Interestingly, in the case of
Women’s wear the handheld accuracy is significantly lower. Likely, the explanation
for that is human error during handheld inventory taking. One of themain advantages
of using a robot for inventory taking is preventing such oversights.

Besides, AdvanRobot’s accuracy was measured using an estimated inventory
record of the whole retail store as baseline. In this case, the baseline itself is less
accurate, which has an impact on the robot’s measured accuracy. One of the main
reasons are items that are reported to be at the shop floor but are actually at back
stores not visited by the robot. Note that estimated inventory records report stock
keeping units (SKU’s) and quantities (count) instead of unique item identifiers. This
means that the comparison is not direct. Table5 shows the accuracy of AdvanRobot
measured at a store with more than 200.000 RFID labeled items. The column Robot
count matching shows the count of product SKU’s identified by the robot matching
the estimated inventory count. The column Robot count in excess shows the amount
of references identified by the robot with a count higher than estimated. The accuracy
measure is considered satisfactory by the retailer given the nature of the baseline,
which is itself divergent from actual stock. Interestingly, the data set showed an
excess of 19.938 references identified by the robot and not present in the estimated

Development of an RFID Inventory Robot (AdvanRobot) 409

inventory record. This means that the robot identified product references that were
not known to the estimated inventory record for some unidentified reason.

In conclusion, the validation of RFID identification accuracy results successful
in all the cases. Noticeably, AdvanRobot always outputs an accuracy above 99.5%.
This is even more remarkable given the environment is highly dense in terms of
RFID labeled products. In the exposed case there were over 200.000 RFID labeled
items on a 7500m2 surface.

5.3 Operation by Store Associates

The suitability of the operational design and the usability of the human-robot inter-
face is of utmost importance. For that, AdvanRobot was handed to store associates
for its use for a month during the pilot’s preparation after a training. On the opera-
tional side it is noteworthy the users flexibility requirements. Each user has its own
specifications depending on the details of the use case. For instance, the use of zones
has proven useful in some cases while it was not necessary in others. A convenient
approach is using amodular design ready for a quick customization. Since AdvanRo-
bot is designed operationally based on a divide and conquer strategy, adjustments on
the field are easy and quick to apply. A more complex question is human-robot inter-
action since potential operators include non-skilled associates. For that, the design
of a user-friendly mobile app for AdvanRobot’s control and monitoring is crucial.
We have noticed an initial steep learning curve mainly due to the lack of familiarity
with advanced technology and a consequent low acceptance. Thus, while the inter-
face has not presented remarkable issues, a good communication strategy to aid in
the acceptance of a robotic solution on a shop floor is key for the success in its
deployment.

6 Ongoing Developments

6.1 Exploration for 3D Mapping

Building a 3D model of an environment can be done with robots equipped with
RGBD cameras. Combined with the ability to locate products, it opens the door to a
range of interesting possibilities such as measuring the impact of the placement of
products, furniture and their combination in the sales; building a virtual store with
the aim to link the offline to the online world; or verifying the layout, planogram
and signage of a store. For this reasons, the generation of 3D maps is a use case of
interest to potential users.

410 M. Morenza-Cinos et al.

Fig. 8 Gazebo simulation of
an exploration using the
exploration framework. The
green cells represent the
frontier between the known
and the unknown space. The
red arrow points at the
exploration goal selected

Currently, 3D mapping is working by means of the ROS package rtabmap_ros20

and the exploration for 3D mapping has been validated in simulation. Given the
amount of factors that influence the output of an exploration, a ROS exploration
framework has been developed in order to provide a fast and easy way of measuring
the performance of different exploration approaches.

With the aim of generating a complete 3D map of the environment it is required
sweeping all the space of interest. For that, a proper exploration strategy has to
be applied. By using a 3 dimensional exploration, it is assured the completeness
of observations of the space needed to generate the 3D map. Note that while the
exploration considers the 3 dimensions of the space, the navigation is limited to 2
dimensions.

A number of mature techniques exist tackling the robot exploration problem.
One family is the frontier-based exploration which has long been exploited since its
introduction in [18]. Frontiers are regions on the boundary between open space and
unexplored space. By selecting a certain frontier as exploration target, the complete
environment exploration is ensured. The exploration framework is intended for the
frontier-based exploration technique (Fig. 8).

The setup for the simulation using the developed framework includes two RGBD
cameras. The second camera introduces an extra source of point clouds from a differ-
ent perspective. Hence, objects are scanned from more than a single pose leveraging
the 3D models. Furthermore, extra cameras are also beneficial for navigation pur-
poses as the consequent increment of the field of view adds valuable redundancy to
obstacle detection. The addition of more cameras is considered as they supply extra
observation sources, beneficial for the completion and resolution of the 3D model.

20http://wiki.ros.org/rtabmap_ros.

http://wiki.ros.org/rtabmap_ros

Development of an RFID Inventory Robot (AdvanRobot) 411

Fig. 9 Main cam_exploration structure with its main libraries

6.1.1 ROS Package: Exploration Framework

As exploration for 3Dmapping is a novel paradigm, the needs for versatility in testing
different strategies is a key requirement. Hence, to choose the appropriate sequence
of 2D navigation goals, a frontier based navigation framework has been developed as
a ROS package (cam_exploration), which is publicly available at UbiCALab github
account, see fn. 4.

Themain source of information used for the exploration is the projection ofRGBD
camera point clouds on the ground. This is achieved using rtabmap_ros, a package
based on the work presented in [10]. Basically, the package provides a whole SLAM
implementation for point cloud data.

The data flow starts with the RGBD readings from the sensors which are published
as ROS point cloud messages. This messages are used by rtabmap node to build a 3D
model and to compute its projection on the ground as a map. This allows the differen-
tiation of unexplored regions and explored ones. At this point, the cam_exploration
node uses the projection on the ground for exploration.

The cam_exploration code structure is shown in Fig. 9with the developed libraries
it contains. All themap related information is handled by themap_server library. The
node also provides visual information of its state using markers, which are handled
by the marker_publisher library. To keep track of the robot location and handle the
interaction with the move_base node, the robot_motion library is used.

An important feature of this framework is its modularity. The main strategic
decisions of an exploration that can be configured are:

• Replanning. To decide whether to send a new goal for exploration, a set of replan-
ning conditions are used. Each condition represents a situation when it is desirable
to send a new goal. Such conditions can be combined between them, so that their
combination is what actually determines whether to send the new navigation goal.
The combination method is an OR operation, so if any condition is met, the robot
should send a new goal. This prevents the robot from getting stuck and takes profit

412 M. Morenza-Cinos et al.

of the information received while heading to the goal.
The current implementation includes the following replanning conditions:

– not_moving: The robot is currently not heading to any goal.
– too_much_time_near_goal: Spending too much time near the goal. It votes for
replanning if the robot has spent some time near its current goal and it is properly
oriented with the goal.

– isolated_goal: The goal is not close to any frontier. It is activated when none of
the cells in an arbitrary large neighborhood of the goal corresponds to a frontier.

• Frontier evaluation. The main policy to be studied in frontier-based exploration
is the choice of the goal frontier among the complete set of frontiers. To achieve
that, a cost function is usually defined taking into account some criteria. Frontier
evaluation methods are defined which can be combined in a weighted sum to
provide the final evaluation. The implemented frontier evaluation functions are:

– Maximum size (max_size). It favors larger frontiers over smaller ones.
– Minimumeuclideandistance (min_euclidian_distance). It favors frontierswhich
are closer to the robot position, regardless of the obstacles in between.

– Minimum A∗ distance (min_astar_distance). The A∗ algorithm is intended to
find a minimal cost path from a start point to a goal point in a grid. This optimal
path ismeasured for each frontier from the robot’s location and used as a distance
measure. The function favors the frontiers with shorter distances in this sense.

• Goal selection. After a frontier is selected as the next exploration target, choosing
a proper 2D navigation goal is not trivial. Specially, when working with projected
point clouds. The actual 2D navigation goal is selected such that it is within the
selected frontier and the robot cameras face the unexplored zone. The current
implementation uses the frontier middle point (mid_point). In practice, any func-
tion can be used to select the frontier point. A likely to consider function is the
closest frontier point to the robot location.

All the options can be configured in the parameter server, so a simple YAML can
be used to describe the exploration strategy in use.

6.1.2 ROS API

Following, the node main subscriptions, publications and parameters are described.
Note that the actual 3D map is published by rtabmap node.

Subscribed Topics.

• /proj_map (nav_msgs/OccupancyGrid)
Incoming map from rtabmap consisting in 3D camera point cloud projections.

Published Topics.

• /goal_padding (visualization_msgs/Marker)
Region considered as the goal neighbourhood for robot-goal proximity purposes.

Development of an RFID Inventory Robot (AdvanRobot) 413

• /goal_frontier (visualization_msgs/Marker)
Target frontier.

• /goal_marker (visualization_msgs/Marker)
Selected goal point.

Parameters.

• /cam_exploration/frontier_value/functions (list(string), default: [])
List of frontier evaluation functions to be used. Possible values are max_size,
min_euclidian_distance and min_astar_distance.

• /cam_exploration/ < function> /weight (double, default: 1.0)
Value used to weight the function < function >.

• /cam_exploration/min_euclidian_distance/dispersion (double, default: 1.0)
Degree of locality of the function min_euclidian_distance.

• /cam_exploration/min_astar_distance/dispersion (double, default: 1.0)
Degree of locality of the function min_astar_distance.

• /cam_exploration/minimum_frontier_size (int, default: 15)
Minimum number of cells of a frontier to be considered a target candidate.

• /cam_exploration/goal_selector/type (string, default: “mid_point”)
Way of choosing one of the target frontier points for target point. Only mid_point
is implemented.

• /cam_exploration/distance_to_goal (double, default: 1.0)
Distance between the actual 2D navigation goal target frontier point. Should be
close to the usual distance from the robot footprint to the nearest 3D camera point
cloud projection point.

• /cam_exploration/replaning/conditions (list(string), default: [])
List of replanning conditions to be applied. Possible options are not_moving,
too_much_time_near_goal and isolated_goal.

• /cam_exploration/too_much_time_near_goal/time_threshold (double, default:
0.3)
Maximum time in seconds allowed for the robot to be near a goal in
too_much_time_near_goal replanning condition.

• /cam_exploration/too_much_time_near_goal/distance_threshold (double,
default: 0.5)
Minimum distance from the goal at which the robot is considered to be near it in
too_much_time_near_goal replanning condition.

• /cam_exploration/too_much_time_near_goal/orientation_threshold (double,
default: 0.5)
Maximum orientation difference between the one of the robot and the one of the
goal, to allow replanning in too_much_time_near_goal replanning condition.

• /cam_exploration/isolated_goal/depth (int, default: 5)
Minimum rectangular distance from the goal to its nearest frontier allowedwithout
replanning in idolated_goal replanning condition.

414 M. Morenza-Cinos et al.

6.2 Location of RFID Items

Location of RFID labeled items is an actual topic of interest [12] and robotics con-
tribution is paramount since it allows identification of items from multiple locations
and knowing precisely the coordinates of that locations. Combining the latter with
the detection model of the RFID sensor and applying proper probabilistic algorithms
can output reasonable locations of the RFID labeled items. At the moment, an algo-
rithm for the location of items is under validation. The estimated accuracy of the
location algorithm is between 1 and 2m, which is expected to be improved. The
basic idea for the improvement of the accuracy is using extended detection instances
and enhanced observations of the environment. For that, a precise location algorithm
is being explored.

7 Future Work

In this section, a set of features in an exploratory or early development stage are
discussed.

7.1 Collaborative Inventorying

Themaximumarea that theAdvanRobot can cover in a night shift is highly dependent
on product density, and the complexity of the store layout. In sections with a lot of
products per square meter AdvanRobot must slow down to allow enough time for
the RFID system to read the thousands of tags that may be visible to the robot from a
single pose.Another limiting factormay be sectionswith very narrowand/or irregular
aisles, in which the effective speed of AdvanRobot is reduced.

As a result, each section of the store will require a minimum time for AdvanRobot
to inventory. It may happen that a single robot is not able to inventory the entire store
in a day. In this case there are two options: to complete the inventory in several days,
or to employ a multi-robot network. Several robots may benefit from machine to
machine communication to complete the inventory. This approach is not only more
general and flexible, but also much more robust, as one robot may complete the job
of another robot that might have malfunctioned or run out of battery.

7.2 UAVs and AdvanRobot Collaborative System

AdvanRobot achieves a 99.5% accuracy taking inventory in shop floors that are
compliant with its navigation requirements. In order to extend the target scenarios,

Development of an RFID Inventory Robot (AdvanRobot) 415

Table 6 Impact of introducing UAVs in the system

AdvanRobot UAVs Combined impact

Autonomy High Low Mobile charging
station

Maneuverability
(DOF)

2.5 6 World observations
enhanced. Reading
height > 2.75m

Passage width (cm) >70 ≶70 Target scenarios
extended

Reading throughput High Low Accuracy > 99.5%

for instance to warehouses and distribution centers, and aiming at higher accuracy
rates the collaboration with UAVs is considered.

When the AdvanRobot and UAVs will be working together, it is foreseen that the
AdvanRobot will read most of the RFID tags due to its very high reading throughput,
which makes it very efficient at inventorying dense environments. Oppositely, while
a drone can reach places that AdvanRobot cannot reach, its reading throughput is
much lower since the RFID system it can load and supply cannot be as powerful as
that of the robot.

On the other hand, the UAV can inventory areas that are not accessible to the
AdvanRobot: aisles narrower than 70cm and shelves higher than 250cm. Also, by
observing the environment from a higher point of view, it can provide additional
information to the navigation system for planning and exploration. Accordingly, the
overall mission efficiency can be increased.

In addition, the robot can act as a charging station to UAVs. Usually UAVs have
a limited autonomy due their limited payload capacity which implies low-capacity
batteries. Hence, using the AdvanRobot as a mobile charging station can improve
the operational availability of UAVs.

Table6 summarizes the benefits of a collaborative system combining robots and
UAVs.

7.3 Applications Derived from Product Location

The location of items on a map of the store enables the development of valuable
applications both for customers and retailers. First, by knowing the location of an
item it is possible to detect if this is misplaced. Item misplacement is a source of
frustration for customers and implies a cost for retailers. An unknown misplaced
item can be considered as stolen. Second, the location of items can be used to guide
customers and associates to find easily a product or to produce an optimal path to find
a set of products. This is commonly known as wayfinding and its output can reduce
greatly the time needed for picking the products of orders placed online. Last, given

416 M. Morenza-Cinos et al.

the location of items, it is possible to analyze the profitability of products placements.
For instance, a heat map of sales for a given product in different locations can be
generated.

7.4 Simulation

Performing an end-to-end simulation of the system including the RFID propagation
and detection model is a matter of interest. For the time-being, there is no Gazebo
plugin for the faithful simulation of an RFID system due to its complexity. Thus,
bringing forward RFID simulation in Gazebo is an interesting topic to work on in
the future.

References

1. Bertolini, M., G. Ferretti, G. Vignali, and A. Volpi. 2013. Reducing out of stock, shrinkage and
overstock through RFID in the fresh food supply chain: Evidence from an Italian retail pilot.
International Journal of RF Technologies 4 (2): 107–125.

2. Durrant-Whyte, H., and T. Bailey. 2006. Simultaneous localization and mapping: Part I. IEEE
Robotics Automation Magazine 13 (2): 99–110.

3. Engelson, S.P. 2000. Passive map learning and visual place recognition. Ph.D. thesis, Yale
University.

4. EPCglobal: EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID, Specification
for RFID Air Interface, Protocol for Communications at 860 MHz 960 MHz, Version 2.0.1
Ratified. 2015. http://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf.

5. European Commission: Proposal for a directive of the European parliament and of the council
on the approximation of the laws, regulations and administrative provisions of themember states
as regards the accessibility requirements for products and services. 2015. http://ec.europa.eu/
social/BlobServlet?docId=14813&langId=en.

6. GS1. 2014. Regulatory status for using RFID in the EPC Gen 2 band (860 to 960 MHz) of the
UHF spectrum.

7. Hardgrave, B.C., J. Aloysius, and S. Goyal. 2009. Does RFID improve inventory accuracy? A
preliminary analysis. International Journal of RF Technologies: Research and Applications 1
(1): 44–56.

8. Heese, H.S. 2007. Inventory record inaccuracy, double marginalization, and RFID adoption.
Production and Operations Management 16 (5): 542–553.

9. House of Representatives of the United States of America. 1990. Americans with Disabilities
Act of 1990. http://www.gs1.org/docs/epc/UHF_Regulations.pdf.

10. Labbe, M., and F. Michaud. 2014. Online global loop closure detection for large-scale multi-
session graph-based SLAM. In Proceedings of the IEEE/RSJ international conference on intel-
ligent robots and systems, 2661–2666.

11. Miesen, R., F. Kirsch, and M. Vossiek. 2013. UHF RFID Localization based on synthetic
apertures. IEEE Transactions on Automation Science and Engineering 10 (3): 807–815.

12. NASA. 2016. RFID-enabled autonomous logisticsmanagement (realm) (RFID logistics aware-
ness). http://www.nasa.gov/mission_pages/station/research/experiments/2137.html.

13. Nur, K., M. Morenza-Cinos, A. Carreras, and R. Pous. 2015. Projection of RFID-Obtained
product information on a retail stores indoor panoramas. IEEE Intelligent Systems 30 (6):
30–37. Nov.

http://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
http://ec.europa.eu/social/BlobServlet?docId=14813&langId=en
http://ec.europa.eu/social/BlobServlet?docId=14813&langId=en
http://www.gs1.org/docs/epc/UHF_Regulations.pdf
http://www.nasa.gov/mission_pages/station/research/experiments/2137.html

Development of an RFID Inventory Robot (AdvanRobot) 417

14. Rekik, Y., E. Sahin, and Y. Dallery. 2009. Inventory inaccuracy in retail stores due to theft: An
analysis of the benefits of RFID. International Journal of Production Economics 118 (1), 189–
198. http://www.sciencedirect.com/science/article/pii/S0925527308002648. (Special Section
on Problems and models of inventories selected papers of the fourteenth International sympo-
sium on inventories).

15. RFID Journal. 2013. Tag-reading robot wins RFID journal’s coolest demo contest. http://www.
rfidjournal.com/articles/view?10670.

16. Sarma, S., D. Brock, and D. Engels. 2001. Radio frequency identification and the electronic
product code. IEEE Micro 21 (6): 50–54. Nov.

17. Wang, J., E. Schluntz,B.Otis, andT.Deyle. 2015.Anewvision for smart objects and the internet
of things:Mobile robots and long-range UHFRFID sensor tags. CoRR. arXiv:abs/1507.02373.

18. Yamauchi, B. 1997. A frontier-based approach for autonomous exploration. InCIRA, 146–151.
New York: IEEE Computer Society.

Author Biographies

Marc Morenza-Cinos is a PhD candidate at Universitat Pompeu Fabra. His research interests
include Robotics, Wireless Communication and Data Mining. Morenza-Cinos has an MSc in Infor-
mation and Communication Technologies from Universitat Politcnica de Catalunya. Contact him
at marc.morenza@upf.edu.

Victor Casamayor-Pujol is a PhD candidate at Universitat Pompeu Fabra. His research interests
include Robotics, Artificial Intelligence and Aerospace. Casamayor-Pujol has a MSc in Intelligent
Interactive Systems from Universitat Pompeu Fabra and a MS in Space Systems Engineering from
Institut Superieur de l’Aeronautique et l’Espace. Contact him at victor.casamayor@upf.edu

Jordi Soler-Busquets is a Robotics MsC student at Universitat Politcnica de Catalunya. His aca-
demic interests include Machine Learning and Robotics. Contact him at jordi.solerb@upf.edu

José Luis Sanz is Industrial Designer at Keonn Technologies. His career has been developed
between Conceptual Design and Industrial Design and development for manufacturing. José Luis
has a degree in Industrial Design Engineering from Jaume I University in Castelln, a degree in
Design from Universitat Politcnica de Catalunya in Barcelona and a posgraduate in Composite
Materials from Eurecat Technological Center.

Roberto Guzmán owns the degrees of Computer Science Engineer (Physical Systems Branch)
and MSc in CAD/CAM, and has been Lecturer and Researcher in the Robotics area of the Depart-
ment of Systems Engineering and Automation of the Polytechnic University of Valencia and the
Department of Process Control and Regulation of the FernUniversitt Hagen (Germany). During
the years 2000 and 2001 he has been R&D Director in Althea Productos Industriales. He runs
Robotnik since 2002. Contact him at rguzman@robotnik.es.

Rafael Pous is an associate professor at Universitat Pompeu Fabra. His research interests include
Ubiquitous Computing, Retail Technologies and Antenna Design. Pous has a PhD degree in Elec-
trical Engineering from University of California at Berkeley. Contact him at rafael.pous@upf.edu.

http://www.sciencedirect.com/science/article/pii/S0925527308002648
http://www.rfidjournal.com/articles/view?10670
http://www.rfidjournal.com/articles/view?10670
http://arxiv.org/abs/abs/1507.02373

Robotnik—Professional Service Robotics
Applications with ROS (2)

Roberto Guzmán, Román Navarro, Miquel Cantero
and Jorge Ariño

Abstract This chapter summarizes newexperiences in usingROS in the deployment
of Real-World professional service robotics applications. These include climbing
mobile robot forwindmill inspection, amobilemanipulator for general purpose appli-
cations, a mobile autonomous guided car and a robot for the detection/measurement
of surface defects and cracks in tunnels. It focuses on the application development
of the ROS modules, tools, components applied, and on the lessons learned in the
development process.

Keywords Professional service robotics with ROS ·Robots for inspection · Service
robotics · Autonomous robots ·Mobile robots ·Mobile manipulators · RB1 · RB1-
Base

1 Contributions of the Book Chapter

ROS has become a standard for the development of advanced robot systems. Accord-
ing to the statistics presented in the ROS metrics report [1] that measures statistics
relatedwith awareness, membership, engagement, and codemetrics. The community
is also growing exponentially.

This chapter describes a number of professional service robotics applications
developed in ROS. The number of robots using ROS in professional service robot-
ics is continuously growing. However, even the ROS community and the number
robotics startups are using ROS in their developments rise, the number of publicly
documented Real-World applications and in particular in product development and
commercialization is still relatively low.

R. Guzmán (B) · R. Navarro · M. Cantero · J. Ariño
Robotnik Automation, SLL, Ciutat de Barcelona, 3A, P.I. Fte. del Jarro,
46988 Paterna, Valencia, Spain
e-mail: rguzman@robotnik.es
URL: http://www.robotnik.eu

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_13

419

420 R. Guzmán et al.

This chapter presents as main contribution the description of four real products
that use ROS, detailing the principal challenges found from the point of view of a
ROS developer.

2 ELIOT: Climbing Robot for Windmill Inspection

Eliot is a climbing robot developed to address windmill maintenance. Maintenance
of a windmill includes cleaning windmill shafts, painting blades, oil changes, tomog-
raphy images shafts, and other tasks. Eliot was developed for Eliot Systems [2] a
company that has patented several automated solutions for the cleaning and inspec-
tion of the windmill. The inspection robot makes use of a patented solution to climb
metallic surfaces using magnetic tracks.

The robot climbs in semi-autonomous or teleoperated mode to the top of the
windmill mast, takes detailed pictures with a high-res camera of cracks on the blades.
Elliot uses thermal imaging to process the information from the cracks. The robot
also able to mount several payloads to perform NDTmeasurement operations on the
mast itself. Here is a brief summary of system, work done, different components,
packages (used and developed), and the developedHMIwith problems found (Fig. 1).

Due to the nature of the project and associatedNDA(NonDistributionAgreement)
with the end user, the packages of this robot are not available. Some of the packages
used (non protected) are listed below.

Fig. 1 ELIOT robot platform

Robotnik—Professional Service Robotics Applications with ROS (2) 421

multimaster_fkie: https://github.com/fkie/multimaster_fkie
a ROS meta-package that offers a complete solution for using ROS with
multicores.

summit_xl_sim: https://github.com/RobotnikAutomation/summit_xl_sim
a simulation package for robots of the Summit family.

summit_xl_common: https://github.com/RobotnikAutomation/summit_xl_common
common packages (pad, navigation, localization, etc.) of the summit robot.

imu_tools: https://github.com/ccny-ros-pkg/imu_tools
a set of IMU-related filters and visualizers. The imu_filter_madgwick was
used to filter the raw imu data from the arduimu. The meta-package includes
also a plugin for the visualization of the imu in rviz.

robotnik_arduimu: https://github.com/RobotnikAutomation/robotnik_arduimu
ROS package for the Arduimu Board. Needs an adapted ArduIMU firmware
that provides the raw data to be filtered externally.

gps_common: http://wiki.ros.org/gps_common
a package that provides common GPS-processing routines. The gpsd_client
was used to read and procss the gps data.

robotnik_gyro: https://github.com/RobotnikAutomation/robotnik_gyro
reads a gyroscope, a device used together with the internal IMU gyros.

axis_camera: https://github.com/RobotnikAutomation/axis_camera
containsRobotnik basic Python drivers for accessing anAxis camera’sMJPG
stream based on axis_camera ROS driver. Also provides control for PTZ
cameras.

2.1 Brief Description of the System

This section focuses on Eliot Preview. Preview is the name of the smallest robot
model developed by Eliot Systems with the purpose of inspection of towers and
blades of windmills. The company has developed several robots with different sizes
and functionality, in this case, they selected Robotnik for the development of this
unit.

2.2 Robot Configuration

The robot mounts two reinforced tracks with a set of magnets that are able to stick
to the metallic tower mast. The robot has an autonomy of 4h and is able to climb
at speeds of 200mm/s. The weight of the robot is <50kg. The robot traction was
designed in a way that generates an electric brake in case of power loss. The standard
operation permits this system to descend at a controlled low speed in this case (Fig. 2).

https://github.com/fkie/multimaster_fkie
https://github.com/RobotnikAutomation/summit_xl_sim
https://github.com/RobotnikAutomation/summit_xl_common
https://github.com/ccny-ros-pkg/imu_tools
https://github.com/RobotnikAutomation/robotnik_arduimu
http://wiki.ros.org/gps_common
https://github.com/RobotnikAutomation/robotnik_gyro
https://github.com/RobotnikAutomation/axis_camera

422 R. Guzmán et al.

Fig. 2 ELIOT robot platform, different prototypes

2.3 Robot Sensors

Eliot Preview mounts a standard set of sensors for outdoor mobile robot platforms.
These sensors include inertial measurement unit, wheel encoders and GPS. Other
than the standard sensors it mounts specialty sensors which includes an inclinometer
(provides a redundantmeasurement of the robot pose angles for climbing), and a high
quality PTZ camera (for vision based inspection of the blades). The robot mounts a
set of lights to illuminate operation areas and for visibility seen from a distance.

2.4 Communications

The robot is wirelessly operated from a distances of 100–200m. As there is always
LOS1 between the base station and the robot, communication was established with
standard WiFi devices with high gain antennas. A redundant channel was imple-
mented in order to get control of the traction in case of failure of the CPU or standard
communication channel.

2.5 HMI

The HMI was implemented in a laptop running a web server, the multimaster meta-
package, the pad and joystick controller, to safely tele-operate the robot.

In short summary, the html interface has 3 tabs:

• main: cameras, sensors and robot state

1Line Of Sight.

Robotnik—Professional Service Robotics Applications with ROS (2) 423

Fig. 3 ELIOT control tab of the web HMI

• configuration: parameters, max angles, ranges, autonomous control, etc.
• robot control: motion interface for the operator

The main screen allows the user to get detailed images from the areas of interest
and permits the control of the pan-tilt-zoom. The interface allows the camera to
predefined points or can be set to a programmable home position. The HMI has
specific controls to store videos and pictures of the ongoing mission. It contains
functions to download the files and manage subfolders. The main interface shows
coloured markers to inform status of the IMU, battery and IMU temperature. These
values are monitored and raise alarm in case they critical status flagged with red. The
exact measured values are also available in the main screen (Fig. 3).

The configuration screen permits the activation/de-activation of the IMU/
inclinometer based control (this can be useful in special circumstances, e.g. when
the robot needs to perform pure horizontal motion). Other parameters are angle
limits, tilting limits, horizontal offset and minimum rotation radius, which can be
programmed also from this screen.

2.6 Challenges

The main challenges in the development of Eliot are related to safety of the robot
and operators. The robot kinematic configuration allows it to adapt to different tower
radiuses and to climb different types of towers. A critical issue has been to keep the
appropriate climbing angle for each condition. The magnet tracks allow the robot
to climb the tower in almost any angle, but complete free motion is less safer than
climbing at controlled angles. Without appropriate control, poor teleoperation of the
robot may end in a fall from a dangerous height.

In order to guarantee a safe climb and a safe movement around the tower, the
robot inclination was monitored with a redundant system using an IMU and an
inclinometer. A state machine was defined which controlled the robot angle and

424 R. Guzmán et al.

allowed to stop its motion if safety limits were exceeded. The internal control system
is in charge of keeping the correct variable ranges which allows the robot to be
commanded to climb up and down in autonomous mode.

There are wide range of applications on windmills that require height safety
products, including vertical access to masts and access to the external elements of
the wind turbine. Standard windmill infrastructure includes a set of height safety
products that permit easy installation of a safety rope in the windmill mast. Eliot
can therefore benefit from additional safety, a measure that was a common practice
during testing and development phase of the robot.

Another important design decision was related with the robot reliability. The
system was designed fault-tolerant in order to avoid the need to send a person to pick
it up from the mast. The fault tolerance starts from the set of two tracks with double
line of magnets and double motor traction. In case of a motor failure, the robot is
still able to climb up and down.

Several options were considered to communicate the HMI with the robot. The
selected configuration used one master in the HMI and one master in the robot, they
communicate through the multimaster_fkie [3] package, that offers a set of nodes to
establish and manage a multi-master network. The advantage of this configuration
is that both nodes are independent, and can operate even in case of complete loss of
the communication.

Deploying this kind of network is relatively easy using this package and requires
only a minimal configuration (by default, all the topics are shared between the differ-
ent masters, but it can be changed to reduce the bandwidth charge). Once the system
is deployed, the communication between topics and services of the different net-
works are completely transparent. It seems like the system is running on a common
network with the advantage a master could die without fatal consequences for the
other masters (Fig. 4).

Fig. 4 Example diagram of the multi-master architecture

Robotnik—Professional Service Robotics Applications with ROS (2) 425

The communication system was made redundant. While the standard robot tele-
operation is done via wifi, the robot permits a higher priority communication channel
that permits the remote control of the robot even during CPU failure.

Similar to other professional service robotics applications, the use of ROS proved
to be the right choice allowing easy development and reliable behaviour of the pro-
vided software components.

3 RB-1: A Mobile Manipulator for General Purpose
Applications

The demand of indoor mobile robots and mobile manipulator applications has con-
tinuously been growing, from inspection to measurement and logistics. The IFR [4]
predicts exponential rise in applications in upcoming years. The purpose is to address
the widest application range with the objective of providing a robust and industrial
grade solution. Under these objectives, Robotnik developed the RB-1 BASE and the
RB-1 mobile manipulator.

RB-1 is a modular robot composed of a mobile robot base, robotic torso with a
linear axis, pan-tilt head and a lightweight Kinova [5] robot arm with gripper.

This section presents a description of the robot, some real applications already
implemented, and focuses on the different components and packages used/developed.

The main topics involved in this development are: URDF/Xacro [6], Gazebo [7],
MoveIt [8], teb_local_planner [9].

The simulation packages for the RB1 can be found in:

https://github.com/RobotnikAutomation/rb1_common

https://github.com/RobotnikAutomation/rb1_sim

https://github.com/RobotnikAutomation/mico_common

https://github.com/RobotnikAutomation/mico_sim

The simulation packages for the RB1 BASE robot can be found in:

https://github.com/RobotnikAutomation/rb1_base_common

https://github.com/RobotnikAutomation/rb1_base_sim

The ROS version used is Indigo running on Ubuntu 14.04. The controller should
have an i7 processor with at least 8GB RAM.

3.1 Brief Description of the System

RB-1 was designed to address the research and application development market of
general purpose mobile manipulation.

https://github.com/RobotnikAutomation/rb1_common
https://github.com/RobotnikAutomation/rb1_sim
https://github.com/RobotnikAutomation/mico_common
https://github.com/RobotnikAutomation/mico_sim
https://github.com/RobotnikAutomation/rb1_base_common
https://github.com/RobotnikAutomation/rb1_base_sim

426 R. Guzmán et al.

Weight 75 kg

Payload 2 kg

Total DOF 12/13

Arm DOF 6

Hand DOF 2/3

Gripper DOF 1

Head DOF 2

Torso DOF 1

Communication Wifi /
ethernet

Fig. 5 RB-1 general purpose mobile manipulator

RB-1 can integrate the Kinova Mico or Jaco arms. Both are 6-DOF that can
incorporate a 2 or 3 fingers gripper. These arms designed for assistive robotics and
improve the quality of life of people with disabilities. They are extremely robust
and provide very interesting functionalities for mobile manipulation which will be
described next.

The software of the robot includes a control system, a tracking system (laser-
based), a navigation system, as well as a HMI user interface for diagnostics and
remote control.

The robot integrates a 2-DOF pan-tilt for the perception of the environment by an
included RGBD (for Red, Green, Blue plus Depth) sensor and an additional RGBD
sensor in the base. The RGBD sensors have various applications on the robot. The
head sensor can be used to recognize and localize objects around it. It can also be used
for navigation and location purposes by using benchmarks or using newRGBDSlam
algorithms. The RGBD sensor in themobile robot base is used for obstacle avoidance
and to identify the robot charger location and autonomous docking (Fig. 5).

The mobile base is also sold separately for general purpose application devel-
opment but principally for logistics. The RB-1 base platform is a differential robot
developed for industrial grade applications indoors. The platform can carry up to
75kg in its latest version, with a speed of 1.75m/s, autonomy of 10h and integrates
a wide range of lasers, allowing a field of view of 270◦ (Fig. 6).

The RB-1 Base robot mounts two traction servomotors in a differential config-
uration. The base weight is distributed in the traction wheels via an independant
suspension system and on omnidirectional castors, arranged for a stable footprint.
The access to the main components, battery and controller has been designed in
boxes that have front side (battery) or rear side (control box) access. This design
simplifies manufacturing but also maintenance allowing fast and simple component

Robotnik—Professional Service Robotics Applications with ROS (2) 427

Fig. 6 RB-1 base platform

Fig. 7 RB-1 description

replacement. The battery is mounted in the robot bottom to reduce the height of the
center of gravity. The battery includes contacts and electronics to dock to the robot
self-recharging station.

3.2 Main Topics Covered

This section describes the different components and software packages used and
developed.

3.2.1 URDF/Xacro

Sources: rb1_description
For robot simulation, themodel description is required. Every robot part is distrib-

uted in different urdf files and assembled in the main robot file,
e.g. rb1_robot_mico_3fg.urdf.xacro. This package integrates urdf/xacro files of the
mico and jaco arms (Fig. 7).

428 R. Guzmán et al.

$ roslaunch rb1_description rb1_mico_3fg_rviz.launch

Fig. 8 RB-1 Gazebo

3.2.2 Gazebo

Sources: rb1_sim/rb1_gazebo, rb1_sim/rb1_control (mico_sim/mico_arm_control
mico_sim/mico_arm_gazebo)

Packages developed to simulate the robot in Gazebo (Fig. 8).

$ roslaunch rb1_gazebo rb1.launch

3.2.3 Moveit

Sources: rb1_common/rb1_mico_3fg_moveit_config, rb1_common/rb1_jaco_3fg_
moveit_config, mico_common/mico_moveit_config

Moveit config packages of the robot with different arms and grippers. The
rb1 moveit packages use the robotnik_trajectory_suite/robotnik_trajectory_control
as a package to coordinate FollowJointTrajectory action between different sets
of controllers that do not follow the ros control standard. On the contrary, the
mico_moveit_config package makes use of the ROS controller type: “effort_
controllers/JointTrajectoryController”. For simulation, both controllers can be used,
however the JointTrajectoryController, results have smooth motions and simplifies
the adjustments of axes PID gains (Fig. 9).

Robotnik—Professional Service Robotics Applications with ROS (2) 429

Fig. 9 RB-1 MoveIt!

$ roslaunch rb1_sim_bringup gazebo_moveit_trajectory.launch

3.2.4 Navigation

Sources: rb1_sim/rb1_gazebo, rb1_sim/rb1_control, rb1_base_sim/rb1_base_2dnav
The rb1_gazebo package includes simulation of the robot and environment

in gazebo. The rb1_base_2dnav package implements several configurations of
the move_base stack using different local planner plugins. It uses the default
base_local_planner/TrajectoryPlannerROS (trajectory rollout) and allows also the
new teb_local_planner [9]. This planner uses an underlying method called Time
Elastic Band which produced optimized trajectories in the local costmap in as a dif-
ference with the default approach. The TEB planner optimizes the trajectory with
respect to trajectory execution time, separation from obstacles and compliance with
kinodynamic constraints during runtime.

The rb1_base_2dnav package includes pre-configured launch files to create maps
and to localize using amcl [10] (Fig. 10).

$ roslaunch rb1_gazebo rb1_office.launch

$ roslaunch rb1_base_2dnav rb1_base_gmapping.launch

430 R. Guzmán et al.

Fig. 10 RB-1 navigation

$ roslaunch rb1_base_2dnav move_base_amcl_teb.launch

3.3 Challenges

The main challenge addressed in the robot design was related with the actuator
selection. Thefirst design used a robot armdevelopedwithDynamixel PROactuators.
This kept the system with as few references as possible, we also decided to use this
kind of actuator in themobile base (2× 200W), torso elevation and head pan-tilt unit.
However, the Dynamixel PRO actuator electronics do not allow regenerative brake
which makes the servomotor inadequate for industrial traction applications. The first
units had special heaters and fans mounted on the traction motors to overcome the
problem. The performance was not as expected and the cost of the hardware was high
compared to brushless motors used in other Robotnik products. The performance
of the heavier 7-DOF arm with cycloidal gearboxes, compared to the advanced
lightweightKinova armswith harmonic drive gearboxes, was the key factor to change
the servo motors.

Another unexpected problem was detected when the first Kinova robot arm was
mounted on the RB-1. The Kinova controller implements a homing sequence that is
intended to be commanded from the device joystick via a software application. It is
possible to change the homing sequence since the arm joints have absolute encoders
and use an initialization algorithm. This sequence was not accessible via the robot
api and could not be changed. The original homing sequence makes the arm collide
with the robot head, so it was necessary to find a way to change it. Kinova provided
a firmware update to overcome this limitation.

Robotnik—Professional Service Robotics Applications with ROS (2) 431

The final challenge to mention was the development of the docking station algo-
rithm. The objective of this algorithm is to guide the robot towards the self-recharging
station so that it can autonomously recharge the battery. The robot has to follow the
landmarks (in this case QR-codes) on the docking station until the battery charging
plates are in contact with the charger pins. The mechanism has some compliance to
adapt to positioning inaccuracies but the algorithm needs to be correctly tuned to
dock accurately 100% of the time. The current algorithm makes use of visual servo-
ing to perform the correct tracking in a two stage approximation and its development
took an unexpected effort.

4 RBCAR: A Mobile Autonomous Guided Car

In the last years a number of autonomous person transport applications have emerged.
From early adopters to the latest developments of Google, Tesla and Toyota, the
progressive introduction still requires the overcoming of technical and regulatory
barriers.

The mobile robot RBCARwas designed with the purpose of providing a low-cost
autonomous car driving platform for application development and R&D. The robot
provides the modular automation of an electric car with a full set of sensors, traction
control, direction and brakes. RBCAR uses Ackerman kinematics. The traction is
controlled by an AC motor with incremental encoder and the direction through a
power steering system with an absolute encoder (Fig. 11).

With the configuration of suitable sensors, the robot can navigate autonomously,
teleoperated with a joystick or a steering wheel, as an electric vehicle.

This part describes the software developed, how ROS has been used in the robot
software implementation (simulation, control and navigation) and how a new 3D
sensor from Hokuyo has been used and integrated in the robot navigation.

Fig. 11 RBCAR robot

432 R. Guzmán et al.

The main topics covered in this section are: URDF/Xacro [6], Gazebo [7]. The
simulation packages for the RBCAR robot can be found in:

https://github.com/RobotnikAutomation/rbcar_common

https://github.com/RobotnikAutomation/rbcar_sim

https://github.com/RobotnikAutomation/robotnik_purepursuit_planner

The rbcar_common repository contains all the common packages needed by the
simulated and real robot.

• rbcar_description

– It contains the urdf, meshes, and other elements needed in the description are
contained here.

• rbcar_pad

– This package allows controlling the robot using a joystick or game-pad, by
sending the messages received through the joystick input, correctly adapted, to
the correct command topic.

The rbcar_sim is composed of the following packages:

• rbcar_control

– This package contains all the configuration files needed to simulate the motor
controllers in Gazebo (using skid_steering plugin).

• rbcar_gazebo

– This contains the launch and config files to launch Gazebo with the robot.

• rbcar_robot_control

– This is the robot’s Gazebo plug-in controller. It implements the control of the
ackerman kinematics of the robot, controlling the traction and steering motors.
This component publishes the robot’s odometry.

• rbcar_sim_bringup

– This contains several launch files in order to launch some or all the components
of the robot.

The robotnik_purepursuit_planner is composed by the following packages:

• robotnik_purepursuit_planner

– ROS meta-package implements the pure pursuit algorithm for mobile robots.

• robotnik_pp_msgs

– This contains the messages and actions definition (GoTo action).

• robotnik_pp_planner

https://github.com/RobotnikAutomation/rbcar_common
https://github.com/RobotnikAutomation/rbcar_sim
https://github.com/RobotnikAutomation/robotnik_purepursuit_planner

Robotnik—Professional Service Robotics Applications with ROS (2) 433

Fig. 12 RBCAR robot software architecture

– This is the component that performs the navigation. It contains functions to
add/delete waypoints, to preprocess a path and the pure pursuit algorithm and
state machine to follow a path (Fig. 12).

4.1 Brief Description of the System

The mobile robot RBCAR is based on a common design of electric vehicle with
Ackermann steering. The robot can be controlled automatically or inmanualmode. In
automatic mode, the robot can receive ackermann_msgs/AckermannDriveStamped
either from an external joystick or from an autonomous robot planner as the one
provided with the robotnik_purepursuit_planner metapackage. In manual mode the
robot is operated exactly as an electric car. In addition to the traction and direction
controllers, the RBCAR basic equipment includes distributed modbus input/outputs,
safety electronics to handle the e-stop, 2D/3D hokuyo laser range finder option and
a wide range of GPS options (Fig. 13).

434 R. Guzmán et al.

Weight 700 kg
(with batteries)

Dimensions 2660 mm x 1230 mm x 1720 mm

Payload 2 persons + 150 Kg on the box

Speed 32 Km/h

Motor 3.3 kW AC 48V

Autonomy 70 Km

Brakes Hydraulic

Body ABS thermoformed

Frame Galvanized Welded Steel

Max. climbing angle 25%

Controller ROS PC with Linux

Communication Wifi / ethernet

Fig. 13 RBCAR autonomous robot main technical specifications

4.2 Main Topics Covered

4.2.1 URDF/Xacro

The rbcar_description package contains the urdf and xacro files of the robot
model. The main robot file: robots/rbcar.urdf.xacro, integrates the robot chassis
fromurdf/bases/rbcar_base.urdf.xacro and thewheels fromurdf/wheels/suspension_
wheel.urdf.xacro (Fig. 14).

Themodelling of the suspension system is based on the ackermann_vehiclemodel
by Jean-Baptiste Passot [11]. In the kinematic chain of each wheel a linear joint type
is added with specific parameters of damping and friction of the shock absorber.
Even these axes are passive, it is possible to set the JointEffortController with no
references (zero position reference), thus allowing the PID controller parameters to
model the system response (Fig. 15).

$ roslaunch rbcar_description rbcar_rviz.launch

4.2.2 Gazebo

Sources: rbcar_sim/rbcar_gazebo, rbcar_sim/rbcar_control, rbcar_sim/rbcar_robot_
control

The above packages were developed to simulate the robot in Gazebo [7]. These
packages set the motor controllers and configuration to run the platform in the sim-

Robotnik—Professional Service Robotics Applications with ROS (2) 435

Fig. 14 RBCAR description

Fig. 15 RBCAR tf tree

$ roslaunch rbcar_sim_bringup rbcar_complete.launch

ulator. It is an example of how the Ackermann kinematics can be set in Gazebo
(Fig. 16).

4.2.3 Navigation

The package “robotnik_purepursuit_planner” implements thePurePursuit algorithm
either for Ackermann or Differential robots. The robot package is now also compati-
ble with the teb_local_planner, that is able to plan correctly for Ackermann steering.

436 R. Guzmán et al.

Fig. 16 RBCAR Gazebo

In order to test the following path algorithm with the purepursuit algorithm, the
purepursuit node needs to be launched.

$ roslaunch rbcar_sim_bringup purepursuit.launch

Then the path marker node from the robotnik_pp_planner needs to be launched to
allow the user to define waypoints interactively and send path following commands
in the ROS visualization tool.

$ roslaunch rbcar_sim_bringup purepursuit_marker.launch

Launch the RVIZ to visualize and send the trajectories to the robot.

$ rosrun rviz rviz

In the Displays menu, add the InteractiveMarkers with the topic /path_marker/
update. After that you will see a red marker in front of the robot. By clicking with
the right button, a context menu appears offering the options to add waypoints at
different speeds, to delete waypoints, to save the path or to make the robot follow
the path, interrupt it, or make it execute backwards (Fig. 17).

This will test the robot navigation with the teb planner (Fig. 18):

Robotnik—Professional Service Robotics Applications with ROS (2) 437

Fig. 17 RBCAR Interactive marker path definition in RVIZ

Fig. 18 RBCAR Path following in the simulated environment

$ roslaunch rbcar_sim_bringup rbcar_complete_gs.launch

$ roslaunch rbcar_navigation move_base_amcl_teb.launch

4.3 Challenges

One challenge to mention during development of the RBCAR was related with the
automation of the steering axis. A servomotor is installed to act as the electric power
steering in a vehicle that has a pure mechanical steering mechanism. The steering
axis is controlled in position using the internal PID of the servo amplifier, that needs
to be correctly tuned to adapt to different ground frictions and robot payload. The
steering system mounts two encoders, an absolute encoder to define the orientation
of the wheels and an incremental encoder in the actuation motor.

The braking distance was the next challenge. The electric vehicle mounts a pedal
brake that actuates the fourwheel hydraulic brakes.Without actuation of the hydraulic
brake, the traction servo amplifier has braking distances that can reach 15mat themax
speed of 32km/h. For some applications this is not good enough, so an automatic
brake was developed that is now sold as an option for the RBCAR. The design,
manufacturing, adjustment and programming of this extra brake was the most time
consuming task of the whole project.

438 R. Guzmán et al.

5 ROBO-SPECT: Robot for the Detection
and Measurement of Surface Defects
and Cracks in Tunnels

Theassessment of structural integrity of existing civil structures is of great importance
to identify and determine its reliability levels on the ability to carry existing and
future loads and fulfil its task having in mind human life, financial, maintenance and
operational risks [12].

The objective ofROBO-SPECT is to provide an automated, faster and reliable tun-
nel inspection and assessment solution that can combine in one pass both inspection
and detailed structural assessment that does not interfere with tunnel traffic. ROBO-
SPECT is co-funded by the European Commission under FP7-ICT-Robotics [13].

Driven by the tunnel inspection industry, ROBO-SPECT proposes an advanced
mobile manipulator with navigation capabilities in tunnels in order to automatically
scan the intrados for detection of potential defects on the surface, measurement of
radial deformations in the cross-section,measuring distances betweenparallel cracks,
measure cracks and open joints that may impact the tunnel stability. The proposed
solution allows in one pass, both the inspection and structural assessment of tunnels.
Intelligent control and robotics tools are interwoven to set an automatic robotic arm
manipulation and an autonomous vehicle navigation to minimize human interaction.
This way, the structural condition and safety of a tunnel is assessed automatically,
reliably and quickly.

The ROBO-SPECT project integrates a range of technologies including vision
systems, NDT measurement of cracks, structural assessment, HMI, etc. The work
carried on by Robotnik is related with the mobile robot control, navigation and
communications (Fig. 19).

This part describes the software developed for this robot, how ROS has been used
in the robot software implementation (simulation, navigation and control).

Most of the packages developed for the project can be found at https://github.
com/RobospectEU.

Fig. 19 ROBO-SPECT robot initial concept and the robot prototype during first trial in a tunnel

https://github.com/RobospectEU
https://github.com/RobospectEU

Robotnik—Professional Service Robotics Applications with ROS (2) 439

Fig. 20 ROBO-SPECT sensors for control and navigation

Common packages: https://github.com/RobospectEU/robospect_common
Simulation packages: https://github.com/RobospectEU/robospect_sim

5.1 Brief Description of the System

The goal in ROBO-SPECT is to offer an autonomous and automated system for
concrete transportation tunnels that will provide efficient structural inspection and
an accurate structural assessment in one pass.

The mobile robotic platform (vehicle and crane) consists on an industrial wheeled
robotic system able to extend an automated crane to the dimensions of most common
tunnels. The vehicle chosen is the Genie Z30/20N [14], a 6.5m height articulated
crane vehicle, able to move on roads and flat surfaces.

This platform was adapted and modified in order to be automated and controlled
through ROS (Fig. 20).

For control purposes the following sensors and devices were installed into the
vehicle:

• Two incremental encoders for traction control and one absolute multi-turn encoder
for the steering control to control the mobile platform.

https://github.com/RobospectEU/robospect_common
https://github.com/RobospectEU/robospect_sim

440 R. Guzmán et al.

• Two absolute multi-turn encoder, 4 internal (embedded in the pistons) linear
encoders and 1 external linear encoder to control the crane.

• One Programmable Logic Controller for the low-level control of the vehicle.

For navigation purposes the vehicle was equipped with several navigation sensors
installed in the vehicle in different positions due to their different use. The following
sensors were introduced:

• Two SICK S3000 laser systems for obstacle avoidance and safety of the vehicle,
one in the front and the other in the rear of the robot. The working distance is
∼50m.

• One pan-tilt-zoom camera on the front for teleoperation of the vehicle. Its image
is transmitted to the HMI interface in the control station.

• One SICK NAV200 laser to detect the artificial landmarks inside the tunnel. The
NAV200 calculates its own position and orientation on the basis of fixed reflectors
positioned in the environment. Its maximum range is 30m, but in operational
conditions where a minimum of 3 landmarks are needed for detection, the range
is about 20m.

• One gyroscope CRG20 system to improve the odometry of the robot.

5.2 Main Topics Covered

5.2.1 URDF/Xacro

Sources: robospect_common/robospect_description
The Robospect URDF description contains all joints and links according to the

vehicle specification and other elements like a robotic arm and a pan-tilt camera. All
the data is in the package robospect_description.

The robot model tries to follow a modular structure. Components like the base,
crane, arm and cameras are defined in the folder urdf, while the whole robot model
is defined in the folder robots. This structure allows building different configurations
easily and with a package that is more understandable (Fig. 21).

$ roslaunch robospect_description robospect_rviz.launch

For a more detailed description it is recommendable to use the rqt_tf_tree tool in
order to visualize the tree of links and how they are interconnected (Fig. 22).

5.2.2 Gazebo

Sources: robospect_sim

Robotnik—Professional Service Robotics Applications with ROS (2) 441

Fig. 21 Robot model visualized with RVIZ and the node joint_state_publisher to test all the joints

Fig. 22 Robospect simulation in Gazebo in a test environment

$ roslaunch robospect_sim_bringup robospect_complete.launch

5.2.3 Localization and Navigation

The localization of the vehicle is provided by the NAV200 and the installation of
reflective beacons in the tunnel area (Fig. 23).

This localization system was chosen for the following reasons:

• The symmetry of the tunnels does not allow standard SLAM algorithms to work
properly.

• Good accuracy. The theoretical position accuracy of the sensor is between ±4
and ±25mm, depending on the beacons distribution and the number of them that
sensor is detecting.

• Out-of-the-box system, robust and easy to configure.

442 R. Guzmán et al.

Fig. 23 Robot localization system used in the tunnels

Fig. 24 Robot localization and navigation tests

Using the on-board navigation sensors and installed landmarks (beacons) in the
tunnels, the navigation will focus on tracking the tunnel wall at a defined distance,
commonly between 1 and 2m. The location of the landmarks will be in the range of
15m between, being commonly 3–4 marks visible from the vehicle in any time.

AROS driver for theNAV200 [15] was developed to communicate with the sensor
and provide the transform between map and odom.

For the navigation through the tunnels, an algorithm was implemented to follow
the tunnel wall at a desired distance from the wall. This approach was necessary
since the vision system needs to be at the same approximated distance from the wall
in order to make its algorithms work while detecting cracks and defects successfully.

The package developed [16] uses the scan data from the lasers to calculate the
target position and command the vehicle controller (Fig. 24).

Robotnik—Professional Service Robotics Applications with ROS (2) 443

Fig. 25 Robot MoveIt! configuration.

5.2.4 Crane Control with MoveIt!

The selected crane has a configuration which allows to cover most of the tunnel types
of the ROBO-SPECT project. It is a 6 DOF systemwith independent motion of every
joint (axis). Due to the limitation of the hydraulic on-board system (main pump), the
joints move one-by-one. It means that the crane path will be the combination of
independent joint motion.

A package [17] based on MoveIt was developed to solve the forward and inverse
kinematics of the crane (Fig. 25).

$ roslaunch robospect_moveit_config demo.launch

5.3 Challenges

5.3.1 Vehicle Automation

The automation of an hydraulic-actuated machine turned out to be a real challenge.
These kind of machines are not intended for automated control due to the lack of a
smooth actuation. Despite the installation of accurate sensors to measure the position
of every joint, the control of these joints with on/off actuators makes it really difficult
to reach the target position with minimum deviation.

444 R. Guzmán et al.

Fig. 26 Robospect crane joints configuration

A huge effort with the electronic design was also needed in order to make possible
this adaptation of the machine functionality. Some reverse engineering becomes
essential for this purpose.

Special mention is required with regard to the low level coding of the machine’s
behaviour. Debugging and tuning the program has been proved to be one of the most
time consuming tasks.

5.3.2 Localization

Providing an accurate, reliable and repetitive position estimation in this type of
environment was an important point of the project.

The adopted technology has been proved satisfactory, but there are some limita-
tions we had to deal with:

• Pre-installation of the reflective beacons. The installation of many beacons was
needed. For a very accurate position estimation of the beacons, a total station is
required.

• Field of view limitation. The Nav200 is a 360◦ sensor that uses all the measure-
ments to improve the localization. Due to the vehicle configuration, the location of
the device blocks the detection of the backwards beacons. This restriction implies

Robotnik—Professional Service Robotics Applications with ROS (2) 445

the installation of more reflectors (increasing the cost) and the reduction of the
accuracy.

• The slope of the terrain. If the road is not flat, the farthest reflectors (inside the
detection area) are not detected unless we increase the height of the reflective area
(Fig. 26).

6 Summary

This chapter describes four projects where ROS is an integral part of a professional,
commercial robotics solution: a climbing mobile robot for windmill inspection, a
mobile manipulator for general purpose applications, a mobile autonomous guided
car and a robot for the detection/measurement of surface defects and cracks in tunnels.
ROS has been used as the main architecture in all the developed systems, and the
developed packages and software architecture has been described in detail in previous
sections.

A number of challenges have been found and described, many of them not directly
related with the software development, but with robot and operator safety issues,
design of fault tolerant and redundant systems, actuators or firmware functionali-
ties, process control/automation related problems or lack of process or component
information.

Some challenges were related with the ROS architecture or the development itself
and a number of lessons have been learnt that will be summarized next. A lot of
details of the packages have been discovered, but this summary is about general
characteristics.

The first lesson is about the system robustness. ROS has proven to be reliable and
fault tolerant in all the mentioned applications. In most cases it is used in a daily
bases and once the system is working, the number of failures is really low.

A second lesson is about the utility of the system simulation. By simulating
the robot and environment (process) it is possible to speed up the development by
the parallelization of the hardware and software development. However, creating
realistic simulation environments in Gazebo is not an easy task. It always implies a
high cost in manpower and in many cases it is not possible to get the desired result.
The limitations are both from a wrong configuration (and lack of documentation)
or due to bugs or model limitations of Gazebo. Even so, it is usually possible to
model the system up to a certain level, thus making possible the validation of some
functionalities, while many others have to be validated with the real robot.

The communication middleware is in current ROS version2 has turned out to be
a limitation. In some cases, configuring a multi-master network allowed the sys-
tem operation in case of communication loss, but even in this case, communication
problems arise, specially related with the service connections and action services.

2Replaced by DDS in ROS 2.

446 R. Guzmán et al.

As ROS is a distributed system, it requires a correct design in the distribution
of nodes in the architecture. This design allows a development that can be easily
distributed among a community of developers and at the same time a much easier
future system maintenance.

ROS still has some limitations at the user interface level. rqt is a useful tool for
engineers but it does not ease the development of professional user interfaces (at
least in a documented and simple way). The interfaces developed have in common
a basic appearance, specially compared with other systems where there is a wide
range of libraries that facilitate the development.

Finally, despite the drawbacks, our experience has been extremely positive in the
four examples given, but also in all products we have developed in the past. We
therefore encourage all prospective ROS users to give ROS a try as the advantages
are enormous compared with just a few drawbacks.

References

1. Foote, T. Community Metrics Report - Reporting on July 2015 - Comparisons are to August
2014 Report.

2. Eliot Systems. http://www.eliotsystems.com/en/index.php.
3. multimaster_fkie. 2016. Retrieved from http://wiki.ros.org/multimaster_fkie.
4. IFR. 2016. Retrieved from http://www.ifr.org/service-robots/.
5. Kinova. http://www.kinovarobotics.com/.
6. URDF Unified Robot Description Format. 2015. Retrieved from http://wiki.ros.org/urdf.
7. Gazebo. 2016. Retrieved from http://gazebosim.org/.
8. MoveIt! (2016). Retrieved from http://moveit.ros.org/.
9. teb local planner. 2016. Retrieved from http://wiki.ros.org/teb_local_planner.
10. amcl Adaptive Monte Carlo Localization. 2016. Retrieved from http://wiki.ros.org/amcl.
11. ackermann_vehicle model. 2016. Retrieved from https://github.com/jbpassot/ackermann_

vehicle.
12. Rücker et al. 2006. Federal Institute of Materials Research and Testing (BAM), Division VII.2

Buildings and Structures, Unter den Eichen 87, 12205 Berlin, Germany - SAMCOFinal Report
2006, A Guideline for the Assessment of Existing Structures.

13. Robo-spect EU. 2016. Retrieved from http://www.robo-spect.eu/.
14. Genie Z30/20N. http://www.genielift.com/en/products/boom-lifts/articulating-booms-

electric/z3020n/index.htm.
15. Xacro. http://wiki.ros.org/xacro.
16. NAV200. https://github.com/RobotnikAutomation/nav200_laser.
17. robospect_planner. https://github.com/RobospectEU/robospect_planner.
18. robospect_moveit_config. https://github.com/RobospectEU/robospect_common/tree/master/

robospect_moveit_config.

Author Biographies

Mr. Roberto Guzmán (rguzman@robotnik.es) earned the degrees of Computer Science Engi-
neer (Physical Systems Branch) and MSc in CAD/CAM, and has been Lecturer and Researcher in
the Robotics area of the Department of Systems Engineering and Automation of the Polytechnic

http://www.eliotsystems.com/en/index.php
http://wiki.ros.org/multimaster_fkie
http://www.ifr.org/service-robots/
http://www.kinovarobotics.com/
http://wiki.ros.org/urdf
http://gazebosim.org/
http://moveit.ros.org/
http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/amcl
https://github.com/jbpassot/ackermann_vehicle
https://github.com/jbpassot/ackermann_vehicle
http://www.robo-spect.eu/
http://www.genielift.com/en/products/boom-lifts/articulating-booms-electric/z3020n/index.htm
http://www.genielift.com/en/products/boom-lifts/articulating-booms-electric/z3020n/index.htm
http://wiki.ros.org/xacro
https://github.com/RobotnikAutomation/nav200_laser
https://github.com/RobospectEU/robospect_planner
https://github.com/RobospectEU/robospect_common/tree/master/robospect_moveit_config
https://github.com/RobospectEU/robospect_common/tree/master/robospect_moveit_config

Robotnik—Professional Service Robotics Applications with ROS (2) 447

University of Valencia and the Department of Process Control and Regulation of the FernUniver-
sität Hagen (Germany). During the years 2000 and 2001 he has been R&D Director in “Althea
Productos Industriales”. He runs Robotnik since 2002.

Mr. Román Navarro (rnavarro@robotnik.es) earned the degree of Computer Science Engineer
(Industrial branch) at the Polytechnic University of Valencia. He has worked at Robotnik since
2006 as software engineer and in the R&D department.

Mr. Miquel Cantero (mcantero@robotnik.es) earned the degree of Industrial Engineering (spe-
cialized in automation and electronics) by the Polytechnic University of Valencia. He has worked
in Robotnik’s engineering department since 2014, also collaborating with R&D and european
projects FP7 and H2020.

Mr. Jorge Ariño (jarino@robotnik.es) earned the degree of Computer Science Engineer (Indus-
trial branch) at the Polytechnic University of Valencia. He has worked at Robotnik since 2014 as
software engineer and in the R&D department.

Using ROS in Multi-robot Systems:
Experiences and Lessons Learned
from Real-World Field Tests

Mario Garzón, João Valente, Juan Jesús Roldán, David Garzón-Ramos,
Jorge de León, Antonio Barrientos and Jaime del Cerro

Abstract This chapter presents a series of experiences and lessons learned during
several implementations and real-world tests of ROS-based Multi-Robot Systems.
It also describes, analyses and compares several ROS components relevant for these
applications, taking into account the scenarios where they can be used. Also, some
general issues of importance of Multi-Robot Systems on real-world, such as soft-
ware and communications architectures, types of information shared are described
in detail. Finally, the difficulties and specific challenges that arose when using a
Multi-Robot Systems for any application will be discussed.

Keywords Multi-robot systems · Field robotics · ROS for multi-robot systems ·
Robot cooperation

M. Garzón (B) · J. Valente · J.J. Roldán · D. Garzón-Ramos · J. de León ·
A. Barrientos · J. del Cerro
Centro De Automática y Robótica, UPM-CSIC, Calle José Gutiérrez Abascal, 2,
28006 Madrid, Spain
e-mail: ma.garzon@upm.es

J. Valente
e-mail: joao.valente@upm.es

J.J. Roldán
e-mail: jj.roldan@upm.es

D. Garzón-Ramos
e-mail: dgarzon@etsii.upm.es

J. de León
e-mail: jorge.deleon@upm.es

A. Barrientos
e-mail: antonio.barrientos@upm.es

J. del Cerro
e-mail: j.cerro@upm.es

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_14

449

450 M. Garzón et al.

1 Introduction

Nowadays, one of the main challenges for the robotics community is to take robots
out of the laboratories and use them in real-life applications. Although a large amount
of resources have been directed in this direction, the challenge remains. Furthermore,
whenworkingwithmulti-robot systems (MRS), evenmore complications arise. ROS
has been a very useful tool in this regard. It has allowed the increase ofmaturity levels,
and has placed itself in the centre of many robotics developments.

This chapter does not intend to enhance the benefits of ROS in field robotics
since its advantages are well known. Instead, its objective is to provide a survey of
experiences and lessons learned during several implementation and real-world tests
of ROS-based MRS, in a variety of applications, such as: surveillance/security [14],
search and rescue [15], environmental measurements [31] and agriculture [2]. The
chapter also will describe, analyse and compare several other relevant components
for these applications, some examples are: ROS multi-master packages, approaches
to multi-robot integration, choice in network communication technologies, wireless
sensor networks, etc. The analysis will also take into account the different types of
scenarios where they can be used.

Researchers interested inmulti-robot systems represent an inherently diverse com-
munity1 because several competences are needed in this field, ranging frommodeling
MRS [22], design and use of the heterogeneity [27], bio-inspiration and swarm intel-
ligence [8], optimal control and optimization methods [12], control architectures
and scalability [35], motion planning, coordination [13] and cooperative decision
making [19], just to list a few.

As the number of different robotic applications increases, it becomes more and
more common to involve different types of robots simultaneously. This results in
several advantages for perception systems compared to a setting that involves only
one single robot because richer information may become available. In order to ben-
efit from these advantages, several challenges need to be addressed. First, when
using more than one robot, it becomes necessary to fuse information obtained from
individual robots. Second, use of different types of robotic platforms often requires
consideration of a broader variety of sensor types with different sensing modali-
ties, and thus, different types of measurements. In this chapter, we will discuss how
these challenges can be addressed in practical applications, particularly for estima-
tion and mapping scenarios. This discussion will cover simultaneous consideration
of different levels of uncertainties, a sound representation of underlying domains,
and cooperation of multiple heterogeneous agents in large-scale map building. The
presented methodology will involve directional and robust statistics, and use of opti-
mization based estimation approaches

In order to summarize the contents of this chapter, a brief description of the topics
covered is presented next:

1http://multirobotsystems.org/.

http://multirobotsystems.org/

Using ROS in Multi-robot Systems: Experiences and Lessons … 451

• First, a background section on multi-robot systems is presented. It describes some
of characteristics as well classifications that can be made according to different
aspects or the MRS.

• Then, some general aspects of any multi-robot software architecture will be
described and immediately after that, some considerations about the different tech-
nologies for communication in a MRS.

• The next section is focused on a comparative description of the different multi-
master packages available on the ROS repositories.

• After that, a few applications of MRS using ROS that have been developed by
the authors are presented, in all cases the proposed solution and the software
architecture used is described.

• Finally, the chapter concludes with a series of lessons learned as well as some of
the issues that need to be solved in order to facilitate the use of ROS based MRS
in any application.

2 Background

Multi-robot systems can be defined as a group of robotic agents coordinated in order
to perform a particular task, which may not be achievable by a single robot or can
be optimized if performed by a group [16]. This means that an analysis of the task
is required in order to determine whether or not to use a MRS. This analysis should
be focused on finding a possible increase in efficiency obtained when using a MRS
instead of a single robot system for a given task [6]. This background section presents
a summary of classifications for the MRS according to characteristics or typologies,
taking into account the size of the team, level of cooperation, morphology and the
type of task performed. Taxonomy and definitions named in this section were taken
from studies of several authors [1, 9, 17].

2.1 Classification by Size of the Team

One of the simplest classifications that can be made in aMRS is based on the number
of agents composing the system. In this case four groups can be identified:

• Single Unit Although technically they are notMRS, it can be said that theminimal
number of agents is one.

• Two Units Systems is the minimum number of robots required to form a team.
Two unit teams are usually focused on tasks that a single robot can not achieve by
itself or to obtain complementary capabilities.

• Multi-unit Systems refers to teams with several members but where the number
of units is relatively small with respect to the area/task required. It is perhaps the

452 M. Garzón et al.

most common type of team, and therefore with the most varying types of robots,
strategies and applications.

• Swarms refers to a team of robots in which the number of members is very large,
even unbounded. Usually robots in these numbers have limited capabilities and
they achieve their goals by emerging behaviours. Moreover, these type of teams
should be highly robust to changes in the number of members.

Also, when regarding the size of the team, a different classification can be made.
Not taking into account the number of team members but the capacity of the team
to re-organize itself when this number changes. In this case, there are three different
categories.

• Static Arrangement The configuration is fixed and the task can not be achieved if
one of the agents is lost. It is the most simple case and is usually the configuration
for Two Units Systems.

• Coordinated Re-Arrangement In this case, it is possible to modify the number
of robots in the team. But any change of this type will require an intermediate step,
such as re-negotiation or reconfiguration of the mission. Therefore each robot is
assigned with a new task or set of tasks.

• Dynamic Arrangement This is the most complex configuration. The number of
robots can change and the mission should continue without any re-assignments
of tasks. This means that MRS should autonomously detect that one of its mem-
bers has left and dynamically adapt the behaviour of the remaining members to
achieve the main goal. This is the most common case for robot swarms. It is also
used by some Multi-Unit Systems but it may result in a very complex additional
arrangement sub-task.

2.2 Classification by Morphology and Capabilities
of the Robots

The morphology of a robot refers to different aspects: The mechanical description,
locomotion type and kinematics of the robot. Each one of those aspects, in combi-
nation with the computing and processing power of the robot, define the capabilities
of the robot. This means that a classification of robots or MRS according to their
morphology will intrinsically involve their capabilities. Knowing this, it is possible
to define three different categories.

• Identical The members of theMRS are homogeneous in both their mechanics and
their capabilities. This does not mean that all robots perform the same task, but
rather that all tasks in the mission can be assigned to any of the team members,
and that they can be replaced by any other team member.

• Homogeneous The members of the MRS have similar morphology or capabilities
but not exactly the same. This means that the members of the team can perform
the same task up to some extent. Whereas some of the capabilities are exclusive to

Using ROS in Multi-robot Systems: Experiences and Lessons … 453

a limited sub-group of the team. For instance a team of wheeled robots that have
some sensors in common but not all the same. To summarize, this means that if
one of the teammembers is removed, the mission can be only partially completed.

• Heterogeneous Members of the MRS differ in both morphology, capabilities or
locomotion techniques. Typical examples areMRS consisting on aerial and ground
robots. In contrast with the previous categories, the mission can not be completed
if one of the members is removed.

2.3 Classification by Level of Coordination

This classification defines different levels of coordination and interaction between
the robots in a MRS. This type of classification has been widely studied and the
categories presented here have been used in [11, 20].

A summary of the classification by level of coordination is presented on Fig. 1.
In this schema, the first level of separation is based on whether or not the robots are
aware that they are cooperating within a MRS. Even if robots in a team are unaware
of each other, it is possible to obtain cooperative, or at least coordinated, tasks. On
the other hand, when the robots have knowledge of each other, three different sub-
groups are defined according to their level of coordination. In this case, coordination
refers to the ability of a robot to take into account the actions executed by the other
robots. When there is coordination, it can be of two types, strong or weak depending
on whether or not the coordination is implicit, meaning that it follows a set of pre-
defined rules for coordination (strongly coordinated) or they obtain an emerging or
reactive coordination (weakly coordinated). Finally, the organization of the MRS
should also be taken into account. This differentiation is based on the capacity of
eachmember to take autonomous decisions onwhich actions to perform.Again, three

UnawareAware

Strongly
Coordinated

Weakly
Coordinated

Not
Coordinated

Strongly
Centralized

Weakly
Centralized

Distributed

Knowledge

Organization

Coordination

Fig. 1 MRS Classification by level of coordination

454 M. Garzón et al.

different categories are found [7]: distributed coordination, where each robot decides
their task autonomously; strongly centralized systems, where the decisions on the
actions of all robots in the team are taken by a single leader; and weakly centralized,
whereMRS’s have hierarchical architectures which are locally centralized or there is
only one agent taking the decision, but the role of leader can change from one robot
to another at different moments or situations.

3 Multi-robot Software Architecture

The software architecture, which can be defined as a depiction of the system that aids
in the understanding of how the system will behave,2 is one of the most important
components of any complex robotic system. This is even more evident when using
a team of robots.

The design of a software architecture is a complete area of study itself [29],
therefore it is out of the scope of this chapter. Rather, the objective of this section is
to describe someof the characteristics neededwhenworkingwithmulti robot systems
under ROS. The ROS core is one of the main components of the computational graph
used by ROS, its definition can be taken from the ROS Wiki, at http://wiki.ros.org/
Master: “The ROS Master provides naming and registration services to the rest of
the nodes in the ROS system. It tracks publishers and subscribers to topics as well
as services. The role of the Master is to enable individual ROS nodes to locate one
another. Once these nodes have located each other they communicate with each other
peer-to-peer.”

As it is well known, most of the applications using ROS use a centralized ROS
Master, either because they are intended to be used on a single robot, or because they
need to have a common point for processing the information. Moreover, namespaces
are usually the main tool used for differentiation between different sub-systems of a
large application. Nevertheless, in MRS set-up, the naming of the nodes, topics and
parameters becomes more complex and may result in duplicities, high computing
costs, large demand for communications, delay in the processes and other problems
related to the system handling by an overloaded single ROS master.

Different software architectures have been designed for each one of the applica-
tions described in this chapter. However, they have many things in common. Mainly
the objective of these designs was to enhance the ROS framework. Moreover, they
are based on the communication between several ROS masters. For most cases: one
for the base-station, and another of each of the robots on the system.

Figure2 shows an example of multi-master software architecture, in this case
developed for a signal search multi-robot system [14]. It uses a single base station,
which is mainly used for visualization and control purposes. Themainmodules, such
as target detection, autonomous navigation or other high level tasks are executed on
board each robot. Moreover, in order to control the communications between the

2http://www.sei.cmu.edu/architecture/.

http://wiki.ros.org/Master
http://wiki.ros.org/Master
http://www.sei.cmu.edu/architecture/

Using ROS in Multi-robot Systems: Experiences and Lessons … 455

Fig. 2 Example of a software architecture for a cooperative signal search application

robots and the base station, two gateways, sensing and interpreter are used on each
robot.

Another important characteristic for this architecture is themodularity. Themulti-
master schema facilitates the execution of themission and reduces the required band-
width for communications. Moreover, as shown in Fig. 2, a main-master runs on the
base station and there is also one secondary master on each robot. This configura-
tion also increases the robustness of the solution, because all the processes or ROS
nodes of each robot are controlled by a ROS-master running on the same computer,
or with a wired Ethernet connection. As result of the distributed management, new
connections can be established and the parameter server is available although other
ROS masters have not started up, shuts down, or they are no longer available due to
communication issues. Furthermore, this facilitates supervision and re-spawning in
case of failure.

The communication between the base station and the robots is improved also
by using a multi-master schema. Even tough communication between ROS nodes is
point-to-point, and therefore high volume data is kept inside the robot (e.g. odometry,
IMU or GPS, point clouds, laser scans, navigation data). The housekeeping data,
required to control such a high number of topics and nodes, when controlled by a
single master, may introduce delays or possible data loss in high value data (e.g.
robot positions, target detection, mission state).

4 Communications for MRS

Communication is a key issuewhen dealingwithmulti-robot systems. Independently
of considering centralized or decentralized solutions, there is always a strong need
of communicating with and among the robots and the control station.

456 M. Garzón et al.

Table 1 Communication technologies comparison

Requirements Wi-Fi Wimax LTE ZigBee

Bandwidth ≤7Gbpsa ≤140Mbps ≤300Mbpsb 250Kbps

Range over 1Km No Yes (up to 50Km) Yes* No

Mobility Yes Yes Yes Yes

Low latency Yes Yes Yes No

Unlicensed operating Yes Yes No Yes

*LTE can cover unlimited ranges
aTheoretical maximum. Due to channel contention, real max. is between 1.7 and 2.5Gbps
bDepends on network provider (See https://opensignal.com/reports/2016/11/state-of-lte)

Most MRS use wireless communications in order to avoid restrictions on the
movements of the agents. Therefore, the robustness of the communications in terms
of bandwidth, range or latency turns out to be a crucial aspect when evaluating the
overall system performance. The most simple form of communication is a point-
to-point scheme, where the MRS agents send information directly to its receiver.
However, this approach is only suitable when the number of components of the
MRS is low, because when working with a considerable number of robots, channel
saturation can be easily reached and delays or other problems arise. More complex
approaches, such as one-to-many or many-to-many schemas are also widely used.
Furthermore, a very common schema is based on exchanging information between
robots that are near to each other, although they require an extra process to find which
other robots are near, and sometimes combine them with simple rules.

The application of the MRS defines the two main communication requirements,
which are range and bandwidth and consequently the possible technical solution
to use. Currently, several existing wireless technologies are available in the market
with an affordable cost. Someexamples areWi-Fi (IEEE802.11a/b/g/n/ac standards),
Worldwide interoperability forMicrowaveAccess network known asWiMAX (IEEE
802.16), 3G or 4G LTE, ZigBee. Table1 summarizes the main features of the men-
tioned technologies considering their possible use in MRS.

Considering the applications presented in this chapter, which require large areas
to be covered (near to 1Km) Wimax and LTE technologies are the most adequate
a-priori. Nevertheless, from an economical point of view, the cost of equipment,
licenses or the services provider make them unsuitable. Wi-Fi solutions, on the other
hand, aremuchmore interesting in this regard.Moreover,most computers anddevices
use Wi-Fi, therefore there is no need of additional bridge devices. Furthermore, the
problem of distance range can be solved by adding repeaters or range extenders.

Usually, the communication systems for MRS have most of their power at a fixed
or semi-mobile location near the base-station, because of power consumption and
the size of the antenna at the control station this is rarely a problem, whereas they
may be severely restricted in the robots. This means that the size of the on board
antennas depends on the size of the robots and the environment where they are going

https://opensignal.com/reports/2016/11/state-of-lte

Using ROS in Multi-robot Systems: Experiences and Lessons … 457

to operate. Moreover, the weight could be a problem, mainly when dealing with
aerial vehicles with a very restricted payload.

Bandwidth may be a very important issue when working with MRS, the number
of nodes, topics and the information exchanges can grow exponentially when the size
of the MRS increases. Nevertheless, in most applications each robot relies on an on
board computer. This computer usually hosts the nodes publishing most of the large
data, which is usually raw sensor data such as: laser, cameras, odometers, inertial
measurements, etc. Moreover, the same computer also hosts most of the nodes that
use that information (different control levels, navigation, etc.). Thismeans that higher
bandwidth is required inside the robotwhereas among the robots the communications
may be less intensive, only sending high level commands and reduced telemetry
or mission status reports. This leads to the necessity of designing a good software
architecture so as to keep the large data exchange inside the robot, reduce the amount
of communications between the robots and therefore require less bandwidth from
the communication systems.

Considering the previous example, each robot is endowed with an on board wire-
less router. An additional router is used in the control station. This solution allows
isolating the internal and external communication of each robot. In order to com-
municate the routers among them, a solution based on wireless distribution system
(WDS) has been chosen. WDS allows a wireless network to be expanded using mul-
tiple access points without the traditional requirement for a wired backbone to link
them. Another notable advantage of WDS over other solutions is that it preserves
the MAC addresses of clients across linked access points.

This solution not only enables the communication among the robots and con-
trol station but also extends the range of the communications using the routers on
the robots as relays. Nevertheless, it introduces some restrictions. Thus, the maxi-
mumwireless effective throughput may be halved after the first retransmission (hop)
was made, although dual band/radio APs may avoid this problem, by connecting to
clients on one band/radio, and making a WDS network link with the other. More-
over, dynamically assigned and rotated encryption keys are usually not supported in
a WDS connection. This means that dynamic Wi-Fi Protected Access (WPA) and
other dynamic key assignment technology in most cases cannot be used, though
WPA using pre-shared keys is possible. This lack of standardization lead to a strong
recommendation of using the same, or very similar, routers models in every robot.

4.1 Relationship with Multi-robot Classification

It is not an easy task to correlate the feasible communication technologies used
and the type of multi-robot in which it will be applied. In principle, any type of
communication could be used for any type of multi-robot system. However, some
considerations can be made. It should be remarked that, the choice of which commu-
nication technology to use is highly dependent on the application, moreover, possible
selections according to the scenario or application were described above.

458 M. Garzón et al.

Clearly Wi-Fi is the most flexible solution, due to its characteristics and cost, it
can be used for any size or configuration of MRS. Wimax, due to its high cost, does
not seem as a good selection for swarms, but can be used in both two and multi-
unit systems, mainly in large scenarios where there is a line of sight between all the
components of the MRS. Furthermore, since this technology allows high bandwidth
data transmission, it can be used for any organization of MRS. LTE on the other
hand, because of its point-multipoint, network based nature, is recommended for
very large scenarios, where there is no line of sight between the elements or when
other technologies can not be used. Depending on the configuration LTE can also be
used for two-unit and also for multi-unit systems, but in no case is it a good option
for swarms. Finally ZigBee, can be used for two or multi-unit systems only if the
amount of data transmitted is very low, however, due to its low cost, it may be a good
choice for swarms, and distributed systems when they are used in indoors scenarios,
and where the amount of data exchanged by each robot is usually low.

5 A Brief Review of ROS Multi-master Packages

In a first approach, using multi-master architectures in order to implement MRS in
ROS is not completely necessary. A single Master node can store and manage the
information of active nodes, topics, and services as well as the configuration parame-
ters among several interconnected robots. Correctly defining, naming and including
name-spaces for all components of the ROS computing graph can be enough tomain-
tain the structure required in several simulated and real MRS applications. This may
be the case for applications where the MRS is composed by robots that do not have
high complexity, or on board computing power, and therefore each one of the robots
have a small number of nodes and the communications are ensured at all times with
a good bandwidth. When these conditions are not met, some issues could lead to the
malfunction of the MRS; accordingly, the probability of failure grows exponentially
when the MRS has an increasing number of robots.

MRS applied to field robotics have usually heterogeneous and complex robots.
Moreover, they are used in large scenarios where communications can not be com-
pletely guaranteed. In addition to this, due to the conditions of environment and the
task assigned to each robot, there may be a situation where one of the members is
out of range or even has a failure. This situation, in combination with all those pre-
viously mentioned, makes it necessary to outline more robust and efficient approach
for handling MRS.

The main issue will be how to preserve the capabilities and services offered by the
ROSmaster and at the same time avoid the weaknesses of a centralized management.
It is in this situation where the multi-master approach arises as a natural solution.
Each robot in the MRS can keep its own ROS master and at the same time it can also
exchange information with other components of the MRS.

This section presents a brief overview about some tools that can be used for
implementing MRS using the multi-master approach in ROS. Since early ROS dis-

Using ROS in Multi-robot Systems: Experiences and Lessons … 459

tributions, the multi-master problem has been addressed by the ROS community.
Nevertheless it is a not well explored area due to the large infrastructure required,
the amount of equipment needed and the incoming difficulties related to set-up a big
number of robots for MRS testing.

Many of the proposed multi-master approaches have taken advantage of the feed-
back provided by the community as well as the concepts, technologies and function-
alities provided by ROS as they evolve with each release of a new distribution. For
instance, multimaster_experimental3 is a set of tools that enable the communication
among different masters through a “foreign_relay” node. This node subscribes to a
topic in the foreign master and publishes it in the local one, where the data can be
locally distributed among multiple subscribers without increasing bandwidth con-
sumption across the MRS. The main drawback of this package comes from its static
configuration and the strong restriction of only one topic to be relayed.

The multimaster4 package goes a step further allowing to register multiple local
topics and services into a foreign master and vice-versa. Its main difficulty is that
the remote master needs to be manually addressed before launching the package,
and it may cause a high load network communications due to the constant commu-
nication among foreign nodes. The socrob_multicast5 provides a multicast library
with series of functionalities that uses the Adaptive Time Division Multiple Access
(Adaptive-TDMA) scheme to enable the master communication between multiple
masters within the robot network. In wifi_comm6 a MRS communication library is
developed. This library is based on the link state routing protocol OLSR and the for-
eign_relay node from themultimaster_experimental package. Unlike its predecessor,
it offers a discovery method to get information related to available neighbours and
easy functionalities to open and closed “foreign_relays” among different masters.
However, those packages are no longer maintained nor supported and therefore they
are not recommended for new ROS users. Its usage should be restricted to systems
that are not able to migrate to newer ROS distributions.

Nowadays, there are three packages that have taken the best of previous solu-
tions and developed efficient multi-master architectures for MRS which continues
to be active and available: adhoc_communication,7 multimaster_fkie8 and rocon_
multimaster.9 Each one of three currently available packages will be described in the
remainder of this section.

Table2 summarizes themulti-master packages available for eachROSdistribution
and Table3 shows the status for each one of them. It should be noted that the status of
each package was determined taking into account the activity in their repositories as
well as the information included in their Ros Wiki at the time of writing this chapter.

3http://wiki.ros.org/multimaster_experimental.
4http://wiki.ros.org/multimaster.
5http://wiki.ros.org/socrob_multicast.
6http://wiki.ros.org/wifi_comm.
7http://wiki.ros.org/adhoc_communication.
8http://wiki.ros.org/multimaster_fkie.
9http://wiki.ros.org/rocon_multimaster.

http://wiki.ros.org/multimaster_experimental
http://wiki.ros.org/multimaster
http://wiki.ros.org/socrob_multicast
http://wiki.ros.org/wifi_comm
http://wiki.ros.org/adhoc_communication
http://wiki.ros.org/multimaster_fkie
http://wiki.ros.org/rocon_multimaster

460 M. Garzón et al.

Table 2 Multi-master packages in ROS distributions

Package/distribution Kinect Jade Indigo Hydro Groovy Fuerte Electric

multimaster_experimental X X X

multimaster X X

socrob_multicast X

wifi_comm X

adhoc_communication X X

multimaster_fkie X X X X X X

rocon_multimaster X X X X

Table 3 Status of multi-master packages: (N) None, (P) Poor, (O) Normal, (H) High

Package Active Documented Tutorials

multimaster_experimental N N N

multimaster N P N

socrob_multicast N O N

wifi_comm N O O

adhoc_communication P O N

multimaster_fkie H H H

rocon_multimaster O H H

5.1 adhoc_communication

This package is based on the idea of using ad hoc networks as well as ad hoc rout-
ing protocols in order to establish communications among different ROS masters.
This configuration allows to achieve communication with agents located outside the
immediate neighbourhood (local network). This topology provides a good flexibility
when working with MRS networks that are constantly changing their topology.
Moreover, this solution offers three suitable levels of information exchange: uni-
cast, multicast and broadcast. In unicast level (one-to-one), the data is transmitted
directly and only to a destination robot. In multicast level (one-to-many), every robot
has its own multicast group and other robots can join it, then the data is sent to all
members of the group. Finally, in broadcast level the data is spread throughout the
whole network.

Nevertheless, this package has critical drawbacks related to its implementation
in the ROS architecture. First, the communication among masters is acquired by
stand-alone interfacing through raw sockets implementations. For this reason, the
node needs to be executed with super user privileges, which is not desirable, even
less for new ROS users. Furthermore, the solution is implemented at user level
instead of kernel level. Thus, the bandwidth is limited and it is not as fast as TCP/IP
approaches. Finally, the package has no full compatibility with all ROS messages.

Using ROS in Multi-robot Systems: Experiences and Lessons … 461

If the type of message that is required is not implemented yet, the user must adapt
the communication protocol and then build the message by himself.

5.2 multimaster_fkie

The multimaster_fkie is a fully compatible multi-master implementation for topic
and services transactions. The most remarkable feature of this package relies in its
simplicity. Thismeans that all ROS architecture run unmodified,moreover, no special
API or libraries need to be linked in order to start the MRS communications. The
robots can be configured as independent agents and the multi-master extension can
be turned on or off without any advertising to the rest of the system. Furthermore,
for interested users, the package provides a GUI for topic and service management
among all masters in the network. Therefore, this solution is an easy and fast way
to configure a multi-master, and it includes the capability of selecting which topics
and services should be shared and to whom they will be shared with.

The architecture of this package is based on the implementation of two addi-
tional nodes: master discovery and master synchronization. They can be configured
in unicast, multicast and zeroconf models (i.e. protocol for automatic service dis-
covering in a network). Multicast is the most recommended due to the possibility
of distributing the MRS in smaller groups of robots that only share the information
required by the sub-group. First, themaster discovery node is continuously scanning
and advertising to the group about its local master state while it is receiving the same
information from other reachable masters in the network. When a state change is
advertised by themaster discovery, themaster synchronization node is triggered and
the local master requests the information to the foreign node and synchronizes it into
its own topic or service.

This implementation has also some drawbacks caused by the continuous master
state scanning and the delay between changes in advertising as well as information
exchange. High rates for fast topic synchronization could lead to a significant load
for the local master and increasing the synchronization issue derived from the delay.
Furthermore, the package does not involve any namespace handling. This means
that if there are nodes, topics or services with the same name, even if they are in
different robots, some problems or malfunctioning of the multi-master system can
appear. For that reason this package is useful for developments that require an easy
plug-and-play solution although it may not offer a high level of robustness.

5.3 rocon_multimaster

The Robotics in Concert project could be one of the most ambitious and complete
solutions forMRS in ROS. The rocon stack has a great number of tools that addresses
problems related to high level orchestration (i.e., management of several kind of

462 M. Garzón et al.

heterogeneous services) in MRS. It is conceived as a multi-robot framework running
on the top of the interactions aiming to establish a centralizedworkspace to coordinate
a robotised solution with features as wireless connectivity, multi-service handling,
robot scheduling, software sharing and, lately, human interactions too.

Due to the high abstraction level in the rocon project, its multi-master approach
named rocon_multimaster is not as simple as the multimaster_fkie package. The
rocon solution is based on a gateway model for information exchange and hubs to
coordinate MRS. Instead of communicating all the masters, they are organized in
groups with a central hub where the gateway is located. Hence, a more organized and
secure architecture is achieved keeping large information trespassing inside the hub,
but with the possibility of communicating to other instances inside other hubs or in
the user level. Also, this package has implemented the automatic service discovery
through zeroconf. Themain drawback behind this project is caused by its complexity.
Since this solution is intended to be used in large scale implementations, they require
several steps of parametrization and configuration before fully activating the multi-
master system. Hence, this package is more useful for large scale projects with time
to set-up a more robust multi-master system.

6 Example Applications for MRS and ROS

This section presents a series of ROS real world applications of MRS. In each case a
small description of the problem addressed is presented. Also, the proposed solution,
including the type of MRS used and a simplified schema of the software architecture
used in each case are also presented. Three different applications are presented,
the first one is based only on ground robots, and is used for search and rescue
missions. The second one is an air-ground heterogeneous system used for monitoring
environmental variables in green houses and the last one is composed only of air
robots performing aerial surveys, photography and mosaicking which is intended for
crop monitoring and weeding tasks.

6.1 MRS for Search and Rescue

The use of robots for search and rescue tasks has acquired importance after the
attack on the World Trade Centre in 2001. Since then, there have been a total of 34
interventions that have performed this type of robots in three different domains: land,
sea and air [24]. Using robots in this scenarios can provide a remote presence for
the rescue teams, they can reach much further than the 3 to 4 meters a camera wand
or telescopic mono-pod can offer. Moreover, they can offer important information
about the situation in places where there is not enough space or where it is not safe
enough for humans or dogs.

Using ROS in Multi-robot Systems: Experiences and Lessons … 463

There are thirteen types of missions for search and rescue robots: search, recon-
naissance and mapping, rubble removal, structure inspection, in situ medical assess-
ment and intervention, medically sensitive extrication and evacuation of casualties,
acting as a mobile beacon or repeater, serving as a surrogate for a team member,
adaptive shoring, providing logistic support, victim recovery, estimation of debris
volume and types and direct intervention. Until the year 2014, the robots deployed
in search and rescue tasks did not have the capabilities for mapping the scenario or
applying computer vision. In fact, only four of these robots had enough autonomy
for performing waypoint navigation.

Rescue robots must be small enough and robust to work in extreme terrains and
under hard conditions. UGVs (Unmanned Ground Vehicles) must move through
irregular voids, work in small openings and sometimes operate in extreme heat or
explosive atmospheres. UMVs (Unmanned Marine Vehicles) may have to work in
marine currents avoiding floating debris. UAVs (Unmanned Air Vehicles) may have
to overcome unpredictable buffeting and wind shears.

Also, rescue robots typically work in GPS and wireless denied environments.
The material density of the buildings interferes in GPS and other signals used by
the robots that work inside them. The power of wireless communications can be
increased, but this leads to making the robots larger to carry the power devices, and
they can become too large to be used in these scenarios.

Problem Description. The system presented in this section results from the expe-
rience of the SARRUS Team in the euRathlon 2015 challenge. Some of the authors
were part of SARRUS Team and are specialized in search and rescue tasks.

The main goal of euRathlon 2015 challenge was to encourage the development of
robotic solutions for disaster support in the sea, air and land domains. Consequently,
the organizers proposed a series of challenges in realistic scenarios, in order to
evaluate the performance of the unmanned vehicles for every domain. SARRUS
team took part in the two single domain land trials defined by the organization:

• Land Trial (L1): Reconnaissance in urban structure.
• Land Trial (L2): Mobile manipulation.

Both of them were designed to evaluate four significant capabilities for carrying
out rescue operations with UGVs:

• 2D Mapping: Ability to generate a digital representation of the environment that
can be used in other tasks.

• Object Recognition: Perception, classification and localization of OPIs (Objects
of Potential Interest).

• Object Manipulation: Ability to manipulate objects.
• ObstacleAvoidance:Ability of theUGVtoperforma taskwhile avoiding collisions
with static and dynamic obstacles.

The trials should be done with the highest autonomy possible and reducing human
interventions to only exceptional cases. However, strong safety constraints should
be maintained and the time slot is only 45min. Furthermore, live information about

464 M. Garzón et al.

Fig. 3 Graphic description of trial L2

state, position and images should be transmitted to the control station. In the first
trial, the robot must enter the building and find a safe path to the machine room.
Also, the robot should create a map of the inside of the building and detect OPIs
to determine whether or not the entrance is blocked. For the second trial, the robot
should detect some pipes and inspect if they are closed or not. Then, open valves
must be closed by the robot. Those pipes could be found both inside and outside the
building.

Figure3 shows a diagram of Land Trial L2.

Solution Description. As mentioned before, GPS signals and wireless communica-
tion may fail inside the buildings. Additionally, the humidity and salinity of environ-
ment can attenuate the wireless signals. Therefore, the communications during the
challenge were far from optimal.

To solve the wireless communication issues, the SARRUS Team used a MRS
composed of two homogeneous ground robots in both trials. This solution provides
several advantages, different tasks can be allocated to each robot, but they can be
exchanged if necessary, also one of the robots can provide external imagery of the
situation of the other one while performing complex tasks. Moreover, the communi-
cations range can be extended by using one of the robots as a communication relay.
Also, the information of sensors on both robots makes it possible to build better maps
of the environment.

The robots chosen for the search and rescue tasks are based on the SummitXL®ro-
botic platform by Robotnik®. They have skid-steering kinematics based on four
high efficiency motors. The robots can move autonomously or can be teleoperated

Using ROS in Multi-robot Systems: Experiences and Lessons … 465

Fig. 4 The Summit XL®robotic platform with the sensors

by using video feed from an on-board camera. Furthermore, they are equipped with
a small embedded PC, which runs the data processing and navigation algorithms
autonomously.

The robots havemultiple sensors. The odometry is provided by the encoders of the
wheels and a high precision angular sensor assembled inside the chassis. A Hokuyo
UTM-30LX-EW laser range finder is installed on the platform, it can scan a 270◦
semicircular field, with a guaranteed range from 0.1 to 30m and a maximum output
frequency of 40Hz. It is placed in the central part of the robot at 60 cm over the
ground. A Novatel OEM-4 GPS engine is also used; it offers a position accuracy
of centimeters and a measurement frequency of 2Hz. RS232 serial communication
is used to read the incoming data and send correction commands. The engine is
complemented with an ANT-A72GOLA-TW GPS antenna. A MicroStrain 3DM-
GX3 25 high-performance miniature Attitude Heading Reference System (AHRS)
is mounted inside the robot. It combines accelerometers, gyroscopes and magne-
tometers in the three axes, with temperature sensors and an embedded processor to
provide orientation and angular velocity, as well as inertial measurements. Addition-
ally, a Pan-Tilt-Zoom camera (PTZ) is placed in the front of the robot and provides
video in real-time.

An image of the one of the robots with all the aforementioned equipment mounted
is shown in Fig. 4.

Figure5 shows themulti-master software architecture developed for this scenario.
The base station is used for visualization and control purposes, whereas the main
modules, are executed on the robots. Moreover, autonomous navigation or other high
level tasks are executed on board each robot.

466 M. Garzón et al.

Ground Robot 1

LIDAR Kinect GPS + IMU

Ground SensorsNaviga on
Stack

Computer (ROS master)

Sensor
ControllerPath planner

Mission Planner

Wired connec on
Wireless connec on

Sensors

Robots

Computer

ROS nodes

Ground Robot 2

Ground SensorsNaviga on
Stack

LIDAR Kinect GPS + IMU

ROS

Fig. 5 Software architecture of the MRS for search and rescue

The modularity of the architecture, allows changing any module. Moreover, the
multi-master schema facilitates the execution of the mission and reduces the required
bandwidth for communications. Furthermore, a main-master runs on the base station
and there is also one secondary master on each robot.

This configuration also increases the robustness of the solution, because all the
processes or ROS nodes of each robot are controlled by a ROS-master running on the
same computer, and can be more easily supervised or re-spawned in case of failure.

The central computer allows for the sending of commands to the robots (move,
change between master and slave mode, cancel mission and take picture). Addition-
ally, it is used to supervise the state of the mission (each robot’s position, detections,
etc.) and it can obtain the image feed from any of the robots. The additional com-
puters are used to launch all the processes that run on board the UGV (i.e. drivers,
localization, navigation, etc.). Moreover, those commands and the feedback are sent
and received to/from each robot independently, thus enhancing the robustness of the
complete system.

Communications. A base station was designed and implemented in order to control
and monitor the execution of the mission. Its main component is the operator GUI,
and it also includes three additional components, used to remotelymonitor each robot
in the fleet, and if needed, take control or stop it. The monitor stations can run on
the same computer as the main GUI or they can be executed on different machines.
Also, an omnidirectional high gain antenna (17dB) was placed at the control station
in order to increase range and bandwidth of the communications.

Using ROS in Multi-robot Systems: Experiences and Lessons … 467

Fig. 6 Communications set-up. There is an internal network on each robot, and another one on the
base station. Also, each sub-network has its corresponding ROS Master. The connection between
the base station and the UGVs is done usingWi-Fi. The background image shows the robots during
a test on euRathlon 2015

An internal Local Area Network (LAN) runs on each robot in order to speed-
up the communications. The on-board computer and all the other Ethernet-based
devices (e.g. Laser scanner, Ethernet cameras, etc.) are connected to this LAN. In
order to communicate with the base station, a wireless router is installed into each
robot. Those routers are configured, using WDS protocols, as wireless clients of a
higher level WAN in which the base station is found.

Additionally the routers on board the robots can serve as signal relays. By doing so,
the robots that are further away form thebase station can still be reached. Furthermore,
a ROS multi-master architecture has been used in order to minimize the bandwidth.
This configuration helps to reduce the effects of delay or package losses usually
present inWi-Fi networks. In addition, two amplifiers of 9dB were installed in each
router with an unitary gain antenna.

On the base station side, all the computers are connected using Ethernet cables
to a wireless router, that is enhanced with a directional antenna in order to provide
coverage to the whole field. The antenna has a range of 200m and an aperture of
120◦ and it is allocated next to the base station in one of the corners of the field. An
image showing the architecture and its implementation is shown in Fig. 6.

For safety, a take over systemwas configured in each robot, just in case that all the
networks fall down, the operator could control the robot manually and in a different
bandwidth: FM 72MHz.

468 M. Garzón et al.

Classification and Multi-master Configuration. The main multi-master character-
istics required by the MRS for search and rescue can be listed as:

• An easy set-up procedure in order to be able for replacing some of the UGV’s in
a failure situation during the competition.

• A low computational load with the aim of avoiding to use resources needed by
vision and Guidance, Navigation and Control (GNC) algorithms.

• Robustness against the entrance and leave of agents due to intermittent communi-
cations.

As it was detailed in the previous section, the most suitable package for this
requirements was multimaster_fkie, so it was used to establish the information
exchange between agents. Moreover, it has been successfully implemented in field
robotics [4] for ROS-based MRS communication. Finally, the classification of this
multi-robot system is as follows:

• By size: The system is a Two-unit system, and they have a static arrangement,
because both robots are needed in order to complete the full mission. Moreover,
in case of failure of one of them, the other robot was able to keep operating, but
without the communication relay it will not be capable of entering the building
and completing the mission.

• By Morphology: In this case the multi-robot system is Homogeneous because
although both robots are from the same type, they are not equipped with the same
sensors and actuators. Furthermore, as seen on Fig. 6, the configuration of the
communication, and placement of the antennas, was different, having one repeater
and one end-point.

• By Level of coordination: This system is Unaware, because most of the tasks and
high level decisions were controlled by an operator. Moreover, as shown in Fig. 5,
the base station computer receives and process the information from all robots.

6.2 MRS for Environmental Measurements

Another important application for MRS is environmental monitoring: not only for
ground, marine or aerial vehicles, but also for heterogeneous fleets. The literature
contains proposals about the acquisition of meteorological information [30], the
control and monitoring of greenhouse gases [3] and contaminant clouds [34] among
others.

The application described in this section is related to the use of an heterogeneous
MRS in greenhouses. This is a promising application for MRS for various reasons:
full availability all day and night, work under hazardous conditions and acquisition
of complete and valuable information. The literature addresses some proposals for
automating tasks related to climate control, crop surveillance, infestation and disease
detection, planting and harvesting. The works described in this section, on the other
hand, are focused on environmental monitoring as they address the measurement

Using ROS in Multi-robot Systems: Experiences and Lessons … 469

of several variables of greenhouses: e.g. air temperature, air humidity, luminosity,
ground temperature, ground humidity and carbon dioxide concentration. This task
is very useful for controlling the crop conditions and the traceability of products.

The autonomous environmental monitoring systems for greenhouses can be
divided in two categories: on the one hand, those based on Wireless Sensor Net-
works (WSNs) and, on the other hand, those based on mobile robots. The first group
covers the majority of cases, but the second one is rising in recent years. The WSNs
are efficient, modular and fault tolerant, but the motes are fixed and this fact limits
their spatial resolution and may increase their costs. Meanwhile, the robotic systems
can move in the greenhouse, place the sensors in the required locations and perform
more “complex” tasks. However, the robots are not capable of takingmeasures simul-
taneously at various points, therefore the time rate of the measurements is limited.
Moreover, the difficulties inherent to any mobile and complex system should also be
considered.

Description of the Solution. The MRS application presented is an heterogeneous
Two-unitMRS that results from the combination of two systems developed separately
for this task. The first one is based on an air robot [26] whereas the second uses a
ground robot [28]. It is clear that the ground robot is the best alternative tomeasure the
ground properties, because it can access easier points of interest (e.g. it can dig holes,
deploy sensors, take measures and collect samples). Additionally, this robot is more
robust and has much more battery endurance allowing it to perform a continuous
operation. The aerial robot, on the other hand, is a better choice for measuring the
air variables, the reason for this is that it can reach practically any point of three-
dimensional space. Moreover, it provides an ability of moving and taking measures
over and between the plants. The air-ground system was developed by means of
incremental steps: i.e. the development of new components independently and their
integration in the whole system. In the referredmulti-robot sensory system, the aerial
platform was developed first, the ground later and the integration of them was the
final step.

The ROS architecture of this multi-robot sensory system is shown in Fig. 7. As
shown, a WLAN is required to connect all the robots and devices, while a central
computer is used to collect, process and store the environmental data. During the
experiments, a single ROS master was executed in this computer, where the mission
ismonitored and controlled, because the aerial robot useddoes not have the possibility
of running its own ROS master, therefore a multi-master architecture will not be a
good choice in this case.

The UAV employed as aerial sensor platform is a Parrot AR.Drone 2.0 (see
Fig. 8a). This quad-rotor has a size of 525 × 515 × 120mm and a weight between
0.38 and 0.42 kg depending on the hull. The battery endurance changes from 12
to 24min according to the chosen battery. It has an embedded computer with an
autopilot controller and a router to generate or connect to Wi-Fi networks.

This UAV is connected to the WLAN and controlled by the central computer. In
order to control and monitor the UAV, the ardrone autonomy10 package was used. It

10http://wiki.ros.org/ardrone_autonomy.

http://wiki.ros.org/ardrone_autonomy

470 M. Garzón et al.

ROS

Computer (ROS master)

Ground
Temperature

Ground
Humidity

Air Temperature
/ Humidity Luminosity CO2

Concentra on

Arduino UNO

Ground Robot

Raspberry Pi

Aerial Sensors

Ground Sensors

Sensor
Controller

Ground Robot
GNC

Path planner

Mission Planner

Aerial Robot
Aerial Robot

GNC

Wired connec on

Wireless connec on

Sensors

Robots

Controllers

Computer

ROS nodes

Fig. 7 Software architecture of the MRS for environmental measurements

is a widely used ROS driver for AR.Drone 1.0 and 2.0 quad-copters. This package
allows for the control of the movements by means of speed commands and provides
full telemetry: e.g. position, orientation, speed, acceleration, altitude, battery level,
motor power as well as the image feedback from the cameras on board the UAV and
tum ardrone [10].

The following sensors are carried by the UAV:

• Air temperature and humidity sensor: RHT03.
• Luminosity sensor: TSL2561.
• Carbon dioxide concentration: MG811.

The integration of these sensors in the systemwas carried out by using aRaspberry
Pi model B+. This computer works with Raspbian Wheezy and ROS Hydro. A ROS
node written in Python was designed in order to read the data of sensors. It should
be pointed out that in order to manage physical pins of Raspberry Pi it is necessary
either to assign super user privileges to the program or modify the port’s permissions
to allow a normal users to access them. The operation of the node is quite simple and
works as follows: First of all, it configures the controller pins, defines the parameters
of sensors and creates the publishers for the readings. Then, the code starts a loopwith
frequency of 1Hz, where the measures of the sensors are collected and published.

The UGV employed as ground sensor platform is a Robotnik Summit XL (see
Fig. 8b). The manufactures provides low level control and teleoperate ROS packages
for this robot. The autonomous navigation is based on themove_base package which
is the standard ROS navigation schema described in previous sections.

The following sensors are carried by the UGV:

Using ROS in Multi-robot Systems: Experiences and Lessons … 471

(a) Air Robot (b) Ground Robot

Fig. 8 Parrot AR.Drone 2.0 (Fig. 8a) and Robotnik Summit XL (Fig. 8b) with the sensors in agri-
cultural environments

• Ground temperature (measured at distance): MLX90614.
• Ground humidity (measured in contact): SEN92355P.

The integration of these sensors in the system is performed through an Arduino
UNO. This micro-controller is connected via USB to the computer of Summit XL
and integrated in the ROS architecture by using rosserial package. The MLX90614
sensor is connected to the controller via I2C and uses 5V, ground, SDA and SCL
pins. Meanwhile, the SEN92355P sensor is connected to 5V, ground, and analogue
input pins.

A ROS node was written in Arduino environment and C language. In order to get
the readings of the sensors and publish them as ROS topics. This program is also
straight forward, it initializes the pins, the serial port and the ROS publishers in the
set-up function. Then, in the loop function, the program controls the deployment of
themoisture sensor in the soil, collects and publishesmeasures of ground temperature
and humidity, and controls the collecting of the moisture sensor. Each loop of the
program spends around 40 s to obtain a measure, mainly because of the time needed
for deploying and collecting the sensors.

As mentioned before and shown in Fig. 9, two alternatives for integrating the sen-
sors in the multi-robot sensory system have been studied and implemented: use an
Arduino UNO in the ground robot and a Raspberry Pi in the aerial robot. This elec-
tion is not arbitrary, but is based on our experience working with micro-controllers,
sensors and actuators under the ROS environment. In the ground robot, the Arduino
UNO is a powerful choice, because the main works can be performed by the robot
computer reducing the costs of the system. Additionally, the integration of Arduino
UNO in ROS architectures as a node is easy. On the other hand, in the aerial robot, the
Raspberry Pi is the a suitable choice, because it is able to perform all the works with-
out the support of robot computer. It should be considered that the robot controller
has a limited performance and does not work under ROS, which advises against the
direct integration of sensors.

472 M. Garzón et al.

(a) Air sensor platform (b) Ground sensor platform

Fig. 9 Air sensor platform with Raspberry Pi, RHT03 temperature and humidity sensor, TSL2561
luminosity sensor and MG811 carbon dioxide sensor (Fig. 9a), and ground sensor platform with
Arduino UNO, MLX90614 distance temperature sensor, SEN92355P contact moisture sensor and
the mechanism for deploying and collecting them (Fig. 9b)

In general, Raspberry Pi presents some advantages over Arduino controllers, such
as its connectivity and direct integrationwith ROS. Regarding the connectivity, Rasp-
berry Pi can connect to WLANs by means of a simple Wi-Fi/USB module (in fact,
the recent Raspberry Pi 3 has internal modules for Wi-Fi and Bluetooth), while
Arduino UNO requires external Wi-Fi, Bluetooth or ZigBee shields. Furthermore,
considering the integration with ROS, the Raspberry is able to run a Linux operating
system (e.g. Raspbian and, in recent models, Ubuntu) with a ROS installation, but
the Arduino UNO is only able to behave as a ROS node by using the serial port and a
host node. However, Arduino may satisfy the requirements with more efficiency than
Raspberry Pi in certain scenarios, mainly when direct handling of motors or other
active sensors is involved, because power handling may be an issue and may cause
unexpected reboots or failures. Moreover, timing and/or synchronization issues may
appear when using high level operative systems.

These works show the potential of ROS in MRS for environmental monitoring
applications. The main contribution of ROS in these scenarios is the ability to inte-
grate and coordinate different robots to accomplish a commonmission. Additionally,
a wide range of sensors can be integrated in the architecture by means of controllers
such as Raspberry Pi andArduino. Finally, themeasures of different sensors on board

Using ROS in Multi-robot Systems: Experiences and Lessons … 473

Fig. 10 The maps of temperature, humidity, luminosity and carbon dioxide concentration obtained
with the aerial sensory system in our previous work [26]

different robots can be referred to certain locations and times, what is useful to build
maps of environmental variables as the shown in Fig. 10.

Classification and Multi-master Configuration. For this use-case, as aforemen-
tioned, there is a single master ROS configuration, because the aerial robot does not
have the capacity of running its master on board. The classification for this MRS is
as follows:

• By size: As with the previous use-case, this MRS is a Two-unit system, and they
have an static arrangement.

• By Morphology: This multi-robot system is Heterogeneous because it is com-
posed by an aerial and a ground robot.

• By Level of coordination: This system is aware and weakly coordinated, because
the aerial platform should react to the movements of the terrestrial robot.

6.3 MRS for Aerial Surveys

Nowadays small Unmanned Aerial Vehicles (UAVs) are employed in Precision Agri-
culture (PA) for crop observation, map generation through aerial surveys and some
other related tasks. The traditional imagery services such as satellites, manned air-
crafts or ground sensors were found unsuitable according to the ongoing require-
ments: Satellites images have limited resolution; the manned aircrafts are expensive;
and the ground sensors are inefficient.

474 M. Garzón et al.

The small UAVs are a great promise due to the high availability and low cost. The
maps are usually built by stitching a set of geo-referenced images through mosaick-
ing procedures. These high-resolution images can detail out the information about
biophysical and several other parameters of the crop field. Nevertheless, the aerial
surveys are currently applied to other applications, for instance, archaeology [5],
rangeland monitoring [25], among others.

Description of the Problem. One of the most researched tasks in agriculture is the
localization and removal of undesired plants that may grow and spread out in crop
fields. Thisweeding task is usually accomplishedwith local chemical inputs delivered
by ground machines. The precise geo-referenced location of the undesired weed is
obtained fromhigh resolution images generated throughmosaicking procedures after
the aerial surveys.

The problem addressed here is how to survey a wide area by using small team
of UAVs with limited battery endurance. Therefore, the mission must be accom-
plished in the shortest amount of time. The aerial survey is usually subject to a set of
workspace restrictions, such as the take-off and landing positions as well as a safety
distance between elements of the fleet. Moreover, it has to avoid no-fly zones.

Description of the Solution. The solution is based on the use of a multi-unit iden-
tical MRS, composed of several small UAVs in combination with an optimization
algorithm for multi-robot coverage path planning (CPP) [32].

The system integrates different technologies in order to provide users with an
embedded and fully capable tool. It has been made up of in a set of elements inter-
connected among them: air robots, payload and communication resources, as well
as other avionics.

The type of aerial vehicle chosen was a quad-rotor. Aerial outdoor missions set
up several requirements for the drone. For example, the camera (and lenses) should
fit with the vehicle’s plate-holder, considering also the security of the assembly. It
implies not only an adequate mechanical conception but also the redistribution of
the engine power, that should be able to hold up the additional weight. At the same
time, this power should be managed in such a way that maintains the vehicle as
much stable as possible. Besides, the adequate image acquisition clearly depends on
the frame’s steadiness and vibration reduction, that should be also provided by the
correct engine distribution, control and election.

The solution proposed is based on the use of Ascending technologies (ASCTEC)
quad-rotors because it was found that theirUAVs covermost of the previously defined
requisites. Moreover, the ROS packages of drivers and controllers for those robots
have a very good state ofmaturity. TheASCTEC drivers available online11 concern to
the low-level system of those systems. A complete and comprehensive aerial system
can be designed from the scratch based on those packages taking advantage of the
base navigation functionalities. The aerial platforms from the aerial survey fleet are
depicted in Fig. 11. For further information about aerial surveys carry out, please
refer to the work of Valente et al. (2013) [33].

11http://wiki.ros.org/asctec_drivers.

http://wiki.ros.org/asctec_drivers

Using ROS in Multi-robot Systems: Experiences and Lessons … 475

Fig. 11 The ASCTEC UAVs used for the aerial surveys: The hummingbird and the pelican models

Computer (ROS master)

Sensor
ControllerPath planner

Mission Planner

Camera GPS + IMU

Aerial Robot 1

Aerial SensorsAerial Robot
GNC

Camera GPS + IMU

Aerial Robot 2

Aerial SensorsAerial Robot
GNC

Camera GPS + IMU

Aerial Robot 3

Aerial SensorsAerial Robot
GNC

ROS

Wired connec on
Wireless connec on

Sensors

Robots

Computer

ROS nodes

Fig. 12 Software architecture of the MRS for aerial surveys

As was done with the other applications presented in this section, a ROS-based
node architecture was designed in order to achieve a fully functional MRS aerial
remote sensing system. The node architecture design is shown in Fig. 12.

There is a central computer (in the base station) that works as master node. Each
aerial robot connects to the central computer via a ZigBee channel allocated on
the 2.4GHz wireless frequency band. This dual-band channel enables data from/to
the aerial robots, e.g., receives navigation data, sends way-points. The images can be
acquired and stored on board (high resolution) or remotely (low resolution). Onboard
storing of the images means that the images are saved to an internal SD card, whereas
remotely stored means that they are forwarded to the central computer using a Wi-Fi
connection.

476 M. Garzón et al.

Fig. 13 The High-level ROS nodes from the aerial system are indicated by a light blue rectan-
gle. The nodes are AMP (Aerial Mission Planner), Stitching on (image mosaicking in real time),
Stitching off (image mosaicking pos-flight)

The designed solution is reliable enough to carry out the aerial survey with a team
of several aerial robots. Nevertheless, if it is possible to increase the coordination
level of the system by using a multi-master ROS system. This will allow the system
to continue working even if there is a sudden peer-to-peer loss in communication,
because the aerial robot behaving as master node will be able to replace another robot
in the mission. If there is a communication failure, the aerial robot involved will fly
back to its starting position and land.

Finally, the ROS-based node architecture is completed with two high-level nodes:
An Aerial Mission Planner (AMP) or Mission planner in Fig. 12 and the Mosaicking
nodes, i.e., Stitching on-line and off-line. (See Fig. 13). It can be noticed that the
communication between the AMP, the Stitching off-line nodes and the rest of the
nodes is obtained through a ROS service. Since the aerial mission planner computes
the aerial robots trajectories off-line there is no need to have a synchronous commu-
nication channel. On the other hand, a ROS publisher and subscriber communication
strategy is used if real time stitching and visualization is required. Using this sys-
tem, a high-resolution map is created through the following procedure: 1. The user
introduces the field and mission parameters, and enables one of the two the Stitching
modes; 2. AMP computes the coverage path and publishes a list of way-points. That
list will be divided by the number of quadrotors; 3. Aerial survey: The image and
the navigation data is published; 4. Image and navigation data subscription and a
high-resolution image is published in real-time or after successfully completing the
mission.

Classification and Multi-master Configuration. As with the previous use-case, the
aerial robots cannot run ROS nodes or execute a master ROS on board, therefore the
solution uses a single ROS master configuration. The classification for this MRS is
as follows:

Using ROS in Multi-robot Systems: Experiences and Lessons … 477

• By size: This MRS is multi-unit system, composed by two or three UAVs and
they have a coordinated re-arrangement, because in order to change the number
of robots it is necessary to re-define the coverage trajectory for all of them.

• By Morphology: This multi-robot system is Identical, because all robots have the
same capabilities, and they can be exchanged or replaced without limiting the full
operability of the system.

• By Level of coordination: This system is aware and, strongly coordinated, and
strongly centralized. Because all the planning is done in the central computer, and
the robots only execute their given missions.

7 Lesson Learned and Issues to Overcome

As aforementioned, MRS can be used in a wide variety of applications. Therefore,
there are several issues or difficulties specific for each application. Those may arise
from the required task, the complexity of the systems used or the scenario where it
should be performed. The issues regarding very specific tasks or scenarios have been
left out of this discussion because they may differ a lot from each other and they are
outside the scope of this chapter.

Nonetheless, there are some challenges that are common for most MRS applica-
tions. Basically, they are divided into several groups that will be described next.

Task Allocation and Coordination. One of the main characteristics of a MRS is
that it should operate, and be considered as a single entity. This means that the
autonomy of the system does not depend only on each robot but also on the group
itself. There are two main task related to the group as a whole, sub-task allocation or
distribution and group coordination or supervision. The first one is usually executed
at the beginning of the mission while coordination and supervision are executed
through all the mission.

One of the main difficulties of task allocation is that it should seek for an efficient
use of all the resources in the fleet. Although someMRS require a human intervention
in order to assign or modify the sub-task that each agent needs to accomplish. When
this process is automated, the MRS increases its capabilities and therefore it can use
their resources in a more efficient manner. However, the autonomous task allocation
can be very complex and computationally expensive. Moreover, coordination and
supervision are highly dependent on the task allocation, because when it is correctly
executed it will result in less adjustments and therefore it facilitates the work of the
supervisor, even if it is a human being and not an autonomous agent. Several different
techniques have been developed to achieve this goal and they will not be described
in this chapter. The reader can refer to the work of Khamis et al. (2015) [21] where
the most important techniques to solve the task allocation issue are described.

Communications. Communications between all members of a MRS, including the
non-mobile agents (e.g. base station) are amain requirement for the correct operation
of any MRS. Some of the technologies used for this task are explained in detail in
Sect. 4.

478 M. Garzón et al.

The difficulty regarding the communications is not only given by the schema
or technology used, but on how to guarantee that the information will reach its
destination or how the system will react when some losses to communications are
present. To solve this, it is necessary to use techniques that provide robustness against
possible packages losses or delays. An example of this is found in the work of
Hernandez et al. (2014) [18] where each robot in a patrolling system updates its
information when it reaches a given point. But, it can continue operating with its
current state if it does not receive any new data, and updates its state as soon as it
receives the incoming information. Moreover, other works have proposed package
routing techniques that take into account range or bandwidth limitations in order to
ensure that the data arrives at its destination [23].

Contrary to what might be thought, increasing the height of the antenna by using a
mast is not the solution, since it introduces vibrations aswell as losses on the cable that
connects the antenna to router or amplifier. Furthermore, using high gain antennas
on the mobile robots can also lead to lost of communication because those usually
provide a narrow lobe angles which may be unable to reach the area of influence of
the main antenna. Therefore, a low-gain omnidirectional antenna (but with a wide
lobe angle in their radiation pattern) on board the robots turned out to provide better
performance while working together with a directional high power antenna in the
base station. If the base station is allocated in the centre of the scenario instead of
the border, an omnidirectional one should be used but it will considerably affect the
effective range.

Type of information exchanged. Another important factor when working with a
MRS is in regard to the information that needs to be shared between members of
the team. It is very important to correctly define whether raw or post-processed data
may be shared. Also, communications can be unicast, broadcast or multicast. In gen-
eral terms, it is always preferable to share the least amount of raw data possible.
The reason for this is that, transmitting raw data not only increases the bandwidth
requirements, but it will also introduces delays or other timing issues which can lead
to instabilities in the control loops. This is even more evident in Wi-Fi networks,
that are characterized by having relatively high latencies. However, the payload and
computing capacities of the robots also need to be taken into account, because If
processing the data on board will take longer than transmitting it, or if this com-
putational load may cause failures in other tasks of the controller, then it obviously
should be avoided.

Time Synchronization. One of the most common issues when working with dif-
ferent onboard computers and ROS masters is the time differences that may appear.
Since usually during field tests the robots are not connected to the internet, GPS time
synchronization is a very good choice when available, and it can be used in combi-
nation with a local network time protocol server installed in one of the computers
of the MRS, this is much more evident when working with battery operated robots,
and even more if multi-master approaches are used.

Standardizing Names and Namespaces. When working with MRS in real world
test, the number of nodes being executed is usually very high. This means that

Using ROS in Multi-robot Systems: Experiences and Lessons … 479

Fig. 14 Namespaces hierarchical structure

correctly naming the nodes and their respective parameters, services and topics may
be critical. By standardizing the naming of the nodes and correctly using namespaces
many launching errors can be avoided, and detecting failures and re-spawning nodes
becomes a much more easy task. Even more, creating scripts for setting parameters
as well checklists of the steps required to launch the complete system is highly
recommended, as it will largely facilitate debugging tasks. For the different MRS
presented on Sect. 6, the same namespace practice was used and it is depicted in
Fig. 14.

The namespacing proposed has a hierarchical structure, with the robot name at the
higher level, then the different sub-systems, such as localization or object recognition.
The next level contains the names of the nodes and the lower level corresponds to the
name of the topics. Furthermore, it is a good practice to try keeping lower elements
of the structure (i.e. nodes and topics names) as common as possible, changing only
the high level namespaces.

Autonomous Supervision. The autonomous supervision and alerting of the nodes
and or topics that may have failed can be a very useful tool in order to improve the
operator’s awareness about the state of the fleet. This is a challenge that the ROS com-
munity is trying to solve, for example with the/statistics features introduced in ROS
Indigo and the ARNI package12 that uses and extends this information, comparing it
against a set of reference values and allowing to run optional countermeasures when
a deviation from the reference is detected. This functionalities can help working in
large projects such as those presented in this chapter, where for instance, during
many of the experiments it was found that one of the sensors stopped sending mea-
surements, or that a node has failed and it took the operators a large amount of time
to realize this situation.

8 Conclusions

The field experiments pointed some facts that are relevant for MRS. For instance, the
number ofROSnodes running is usually very high. Therefore, it is necessary to define
a software architecture. Moreover, the communication system is also the key issue
for supporting any MRS application. Taking into account the communications when

12http://wiki.ros.org/arni.

http://wiki.ros.org/arni

480 M. Garzón et al.

defining the software architecture and vice-versa will render in a better performance
of both of them.

Communicationswas perhaps themost recurrent issue in all the systemspresented.
Even though this has been widely studied, when working on real scenarios, there will
be always some conditions that will slow down or cause failures in communications.
To solve this, the MRS should be able to support short-term communication losses.
If working on critical scenarios, backup and recovery systems should be included so
as to prevent any damage to the equipment or the scenario where the task is being
carried out.

Finally, it should be said that, although it is clear that by usingMRS it is possible to
speed up a given task or tackle more complicated ones, the difficulties and additional
challenges that arose when using a MRS should be analysed. As shown in this
chapter, the use of a fleet of robots considerably increases the required complexity of
the communications and software architecture, and this additional issues should be
taken into account when deciding whether or not use a MRS for any given mission.

References

1. Arai, T., E. Pagello, and L.E. Parker. 2002. Guest editorial advances in multirobot systems.
IEEE Transactions on Robotics and Automation 18 (5): 655–661.

2. Barrientos, A., J. Colorado, J.d. Cerro, A. Martinez, C. Rossi, Sanz D, and Valente J. 2011.
Aerial remote sensing in agriculture: A practical approach to area coverage and path planning
for fleets of mini aerial robots. Journal of Field Robotics 28 (5): 667–689. doi:10.1002/rob.
20403.

3. Berman, E.S., M. Fladeland, J. Liem, R. Kolyer, andM. Gupta. 2012. Greenhouse gas analyzer
for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial
vehicle. Sensors and Actuators B: Chemical 169: 128–135.

4. Brüggemann, B., D. Wildermuth, and F.E. Schneider. 2016. Search and Retrieval of Human
Casualties in Outdoor Environments with Unmanned Ground Systems—System Overview
and Lessons Learned from ELROB 2014, 533–546. Cham: Springer International Publishing.
doi:10.1007/978-3-319-27702-8_35.

5. Brumana, R., D. Oreni, L. Van Hecke, L. Barazzetti, M. Previtali, F. Roncoroni, and R. Valente.
2013. Combined geometric and thermal analysis fromuav platforms for archaeological heritage
documentation. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences II-5/W1, 49–54. http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/
II-5-W1/49/2013/.

6. Cai, Y., and S.X. Yang. 2012. A survey on multi-robot systems. World Automation Congress
(WAC) 2012: 1–6.

7. Cao, Y.U., A.S. Fukunaga, and A. Kahng. 1997. Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots 4 (1): 7–27. doi:10.1023/A:1008855018923.

8. Dorigo, M., D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari,
M. Bonani, M. Brambilla, A. Brutschy, et al. 2013. Swarmanoid: a novel concept for the study
of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20 (4): 60–71.

9. Dudek, G., M.R.M. Jenkin, E. Milios, and D. Wilkes. 1996. A taxonomy for multi-agent
robotics. Autonomous Robots 3 (4): 375–397. doi:10.1007/BF00240651.

10. Engel, J., J. Sturm, and D. Cremers. 2014. Scale-aware navigation of a low-cost quadrocopter
with a monocular camera. Robotics and Autonomous Systems 62 (11): 1646–1656.

http://dx.doi.org/10.1002/rob.20403
http://dx.doi.org/10.1002/rob.20403
http://dx.doi.org/10.1007/978-3-319-27702-8_35
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W1/49/2013/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W1/49/2013/
http://dx.doi.org/10.1023/A:1008855018923
http://dx.doi.org/10.1007/BF00240651

Using ROS in Multi-robot Systems: Experiences and Lessons … 481

11. Farinelli, A., L. Iocchi, and D. Nardi. 2004. Multirobot systems: a classification focused on
coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34
(5): 2015–2028.

12. Fu, Y., X. Wang, H. Zhu, and Y. Yu. 2016. Parameters optimization of multi-uav formation
control method based on artificial physics. In 2016 35th Chinese Control Conference (CCC),
2614–2619.

13. Garzón-Ramos, D., M.G. Oviedo, and A. Barrientos. 2016. Protección multi-robot de
infraestructuras: Un enfoque cooperativo para entornos con información limitada. In XXXVII
Jornadas de Automática.

14. Garzón, M., J.a. Valente, J.J. Roldán, L. Cancar, A. Barrientos, and J. Del Cerro. 2015. A
multirobot system for distributed area coverage and signal searching in large outdoor scenarios.
Journal of Field Robotics, n/a–n/a. doi:10.1002/rob.21636.

15. Garzón, M., J. Valente, D. Zapata, and A. Barrientos. 2013. An aerial-ground robotic system
for navigation and obstacle mapping in large outdoor areas. Sensors 13 (1): 1247–1267. http://
www.mdpi.com/1424-8220/13/1/1247.

16. Gautam, A., and S. Mohan. 2012. A review of research in multi-robot systems. In 2012 IEEE
7th International Conference on Industrial and Information Systems (ICIIS), 1–5.

17. Gerkey, B.P., and M.J. Matarić. 2004. A formal analysis and taxonomy of task allocation in
multi-robot systems. The International Journal of Robotics Research 23 (9): 939–954. http://
ijr.sagepub.com/content/23/9/939.abstract.

18. Hernández, E., A. Barrientos, and J. del Cerro. 2014. Selective smooth fictitious play: An
approach based on game theory for patrolling infrastructures with a multi-robot system. Expert
Systems with Applications 41 (6): 2897–2913. http://www.sciencedirect.com/science/article/
pii/S0957417413008403.

19. Hernández, E., J. del Cerro, and A. Barrientos. 2013. Game theory models for multi-robot
patrolling of infrastructures. International Journal of Advanced Robotic Systems 10.

20. Iocchi, L., D. Nardi, and M. Salerno. 2001. Reactivity and Deliberation: A Survey on Multi-
Robot Systems. Balancing Reactivity and Social Deliberation in Multi-Agent Systems: From
RoboCup to Real-World Applications, 9–32. Berlin: Springer. doi:10.1007/3-540-44568-4_2.

21. Khamis, A., A. Hussein, and A. Elmogy. 2015. Multi-robot Task Allocation: A Review of the
State-of-the-Art. Cooperative Robots and Sensor Networks, 31–51. Cham: Springer Interna-
tional Publishing. doi:10.1007/978-3-319-18299-5_2.

22. Mohammed, A., F. Stolzenburg, and U. Furbach. 2010.Multi-robot systems: Modeling, speci-
fication, and model checking. INTECH Open Access Publisher.

23. Mosteo, A.R., L. Montano, and M.G. Lagoudakis. 2008. Multi-robot routing under limited
communication range. IEEE International Conference on Robotics and Automation, ICRA
2008, 1531–1536.

24. Murphy, R.R. 2014. Disaster Robotics. Cambridge: The MIT Press.
25. Rango, A., A. Laliberte, J.E. Herrick, C. Winters, K. Havstad, C. Steele, and D. Browning.

2009. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring,
and management. Journal of Applied Remote Sensing 3: 033542.

26. Roldán, J.J., G. Joossen, D. Sanz, J. del Cerro, andA. Barrientos. 2015.Mini-uav based sensory
system for measuring environmental variables in greenhouses. Sensors 15 (2): 3334–3350.

27. Roldán, J.J., P.Garcia-Aunon,M.Garzón, J. de León, J. del Cerro, andA.Barrientos. 2016.Het-
erogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors
16 (7): 1018. http://www.mdpi.com/1424-8220/16/7/1018.

28. Ruiz-Larrea, A., J.J. Roldán, M. Garzón, J. del Cerro, and A. Barrientos. 2016. A ugv approach
to measure the ground properties of greenhouses. Robot 2015: Second Iberian Robotics Con-
ference, 3–13. Springer.

29. Shaw,M., andD.Garlan. 1996. Software Architecture: Perspectives on anEmergingDiscipline.
Englewood Cliffs: Prentice Hall. Prentice Hall Ordering Information.

30. Spiess, T., J. Bange, M. Buschmann, and P. Vörsmann. 2007. First application of the meteoro-
logical mini-uav’m2av’. Meteorologische Zeitschrift 16 (2): 159–169.

http://dx.doi.org/10.1002/rob.21636
http://www.mdpi.com/1424-8220/13/1/1247
http://www.mdpi.com/1424-8220/13/1/1247
http://ijr.sagepub.com/content/23/9/939.abstract
http://ijr.sagepub.com/content/23/9/939.abstract
http://www.sciencedirect.com/science/article/pii/S0957417413008403
http://www.sciencedirect.com/science/article/pii/S0957417413008403
http://dx.doi.org/10.1007/3-540-44568-4_2
http://dx.doi.org/10.1007/978-3-319-18299-5_2
http://www.mdpi.com/1424-8220/16/7/1018

482 M. Garzón et al.

31. Valente, J.a., D. Sanz, A. Barrientos, J.d. Cerro, A. Ribeiro, and C. Rossi. 2011. An air-ground
wireless sensor network for crop monitoring. Sensors 11 (6): 6088. http://www.mdpi.com/
1424-8220/11/6/6088.

32. Valente, J., J. Del Cerro, A. Barrientos, and D. Sanz. 2013. Aerial coverage optimization in
precision agriculture management: A musical harmony inspired approach. Computers and
Electronics in Agriculture 99: 153–159.

33. Valente, J., D. Sanz, J. Del Cerro, A. Barrientos, and M.Á. de Frutos. 2013. Near-optimal
coverage trajectories for image mosaicing using a mini quad-rotor over irregular-shaped fields.
Precision Agriculture 14 (1): 115–132.

34. White, B.A., A. Tsourdos, I. Ashokaraj, S. Subchan, and R. Żbikowski. 2008. Contaminant
cloud boundary monitoring using network of uav sensors. Sensors Journal, IEEE 8 (10): 1681–
1692.

35. Yim, M., W.M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G.S. Chirikjian.
2007.Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEERobotics
Automation Magazine 14 (1): 43–52.

Author Biographies

Mario Garzón was born in Pasto, Colombia, in 1983. He is a researcher at the Robotics and
Cybernetics research group at Centro de Automática y Robótica (CAR UPM-CSIC). He received
the Electronics Engineer degree from Escuela Colombiana de Ingeniería in 2005 and both Msc
and PhD degrees in Automation and Robotics from Universidad Politécnica de Madrid (UPM) in
2011 and 2016 respectively. He was also visiting researcher at INRIA (e-Motion team project) in
Grenoble, France in the years 2013 and 2014.

His main research interest is field robotics, specifically on navigation and cooperation between
heterogeneous mobile robots as well as the detection and prediction of pedestrian trajectories. He
has also worked on Bio-Inspired robotics, computer vision, machine learning and data mining.

João Valente (Lisbon, Portugal, 1982) received is M.Sc. in Electrical and Computer Engineering
from the New University of Lisbon in 2008, and both M.Sc and PhD. in Automation and Robotics
from the Polytechnic University of Madrid, in 2011 and 2014, respectively. Moreover, from 2007
to 2008 he was a junior researcher in the Intelligent Systems for Emergencies and Civil defence
Laboratory, from the University of Rome “La Sapienza”. He was a researcher in the Robotics and
Cybernetics group from the CAR UPM-CSIC from 2008 to 2014. He was also visiting researcher
in USA (2012), at the robotics and intelligent systems lab from the City College of New York,
and in Belgium (2014), at IRIDIA from Universit’e Libre de Bruxelles. His research interests are
field robotics, aerial robots, remote sensing, path and mission planning. Currently, he is visiting
professor and researcher at the Universidad Carlos III de Madrid.

Juan Jesús Roldán (1988, Almería-Spain) studied BSc+MSc on Industrial Engineering (2006-
2012) and MSc on Automation and Robotics (2013-2014) in Technical University of Madrid
(UPM). He has researched about emergency detection and management in multirotors, surveil-
lance of large fields with multiple robots and ground and aerial robots applied to environmen-
tal monitoring in greenhouses. Currently, he is a Ph.D. candidate of Centre for Automation and
Robotics (CAR, UPM-CSIC) and Airbus Defence and Space, whose research is focused on the
multi-UAV coordination and control interfaces.

David Garzón-Ramos was born in Pasto, Colombia in 1990. He received his Electronic Engineer
degree from the Universidad Nacional de Colombia (UN) in 2014. Then, he carried out his mas-
ter’s studies on Automation and Robotics in the Universidad Politécnica de Madrid (UPM) and

http://www.mdpi.com/1424-8220/11/6/6088
http://www.mdpi.com/1424-8220/11/6/6088

Using ROS in Multi-robot Systems: Experiences and Lessons … 483

Engineering - Industrial Automation in the Universidad Nacional de Colombia (UN) until 2016.
His research activities started in 2011 as undergraduate research assistant in the Optical Properties
of Materials (UN) research group. From 2014 to 2016 he did an internship in the Aerospace and
Control Systems Section from SENER Ingeniería y Sistemas, S.A. In 2015 he joined to the Robot-
ics and Cybernetics (UPM) group as post-graduate research assistant. Currently, he is a PhD can-
didate of Centre for Automation and Robotics (CAR, UPM-CSIC) and his main research interests
(non-exhaustive) are aimed to Unmanned Ground Vehicles (UGVs), Multi-Robot systems (MRS)
and Guidance, Navigation, and Control (GNC).

Jorge de León was born in Barcelona in 1988. He received the Bachelor Degree in Industrial
Electronics from University of La Laguna in 2013 and the Msc in Automation and Robotics from
the Technical University of Madrid (UPM) in 2015. His main research interests are focused on
designing new mobile robots and algorithms for searching and surveillance missions.

He is currently a researcher at the Robotics and Cybernetics research group of the Centre for
Automatic and Robotic (CAR UPM-CSIC) where he is developing his PhD thesis.

Antonio Barrientos received the MSc Engineer degree in Automatic and Electronic from the
Polytechnic University of Madrid in 1982, and the PhD in Robotics by the same University in
1986. In 2002 he obtained de MSc Degree in Biomedical Engineering by Universidad Nacional
de Educación a Distancia. Since 1988 he is Professor on robotics, computers and control engineer-
ing at the Polytechnic University of Madrid. He has worked for more than 30 years in robotics,
developing industrial and service robots for different areas.

His main interests are in air and ground field robotics. He is author of several textbooks in
Robotics and Manufacturing automation, and also is co-author of more than 100 scientific papers
in journals and conferences. Ha has been director o co-director of more than 20 PhD thesis in
the area of robotics. Currently he is the head of the Robotics and Cybernetics research group of
the Centre for Automatic and Robotics in the Technical University of Madrid - Spanish National
Research Council.

Jaime del Cerro received his Ph.D. degree in Robotics and Computer vision at Polytechnic Uni-
versity of Madrid at 2007. He currently teaches Robotics, Guidance, Navigation and Control of
autonomous robots and system programming in this University and also collaborates at UNIR
(Universidad International de la Rioja) in the master of Management of Technological projects.
He has participated in several European Framework projects and projects funded by ESA (Euro-
pean Space Agency) and EDA (European Defense Agency) as well as commercial agreements
with relevant national companies.

Part V
Perception and Sensing

Autonomous Navigation in a Warehouse
with a Cognitive Micro Aerial Vehicle

Marius Beul, Nicola Krombach, Matthias Nieuwenhuisen,
David Droeschel and Sven Behnke

Abstract Micro aerial vehicles (MAVs), such as multirotors, are envisioned for
autonomous inventory-taking in large warehouses. Fully autonomous operation of
MAVs in such complex 3D environments requires real-time state estimation, obstacle
detection, mapping, and navigation planning. To this end, we employ a cognitive
MAV equipped with multiple sensors including a dual 3D laser scanner, three stereo
camera pairs, an IMU, an RFID reader, and a powerful onboard computer running the
ROSmiddleware. Taskswith hard real-time requirements such as attitude control and
state estimation are processed on a PixhawkAutopilot, which communicates with the
main computer via theMAVLink protocol. In this chapter, we describe our integrated
system for autonomous MAV-based inventory in warehouses. We detail the involved
components and evaluate our system with the real autonomous MAV in a realistic
scenario. We also report lessons learned during field testing.

Keywords MAV · Multimodal sensor setup · 3D laser scanner · Sensor fusion ·
Autonomy

1 Introduction

Micro aerial vehicles (MAVs) are enjoying increasing popularity, both in research
and in applications such as aerial photography, inspection, surveillance, and search
and rescue missions. Most MAVs are remotely controlled by a human operator or
follow global navigation satellite system (GNSS) waypoints in obstacle-free heights.
For autonomous navigation in complex 3D environments, sufficient onboard sensors
and computing power are needed in order to perceive and avoid obstacles, build 3D
maps of the environment, and plan flight trajectories.

M. Beul (B) · N. Krombach · M. Nieuwenhuisen · D. Droeschel · S. Behnke
Autonomous Intelligent Systems Group, University of Bonn,
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
e-mail: mbeul@ais.uni-bonn.de
URL: http://www.ais.uni-bonn.de

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_15

487

488 M. Beul et al.

In this chapter, we present a use case for indoor MAV operation employing the
ROS infrastructure: autonomous warehouse inventory. For this purpose, we built
an MAV with a multimodal omnidirectional sensor setup, a fast onboard computer,
and a robust data link. The sensors include a lightweight dual 3D laser scanner,
three stereo cameras, and a radio-frequency identification (RFID) reader module.
All components are lightweight and hence well suited for MAVs. Our MAV can
localize itself in indoor environments fusing visual odometry and 3D laser scan
registration to a 3D map. It avoids static and dynamic obstacles perceived with the
onboard sensors reliably.

On theMAV, we employ ROS Indigo Igloo as middleware on top of Ubuntu 14.04
to facilitate fast development through a modular software design. This allows us to
transfer technology between multiple MAVs, e.g., built for outdoor mapping [6], and
ground robots, e.g., in a space exploration scenario [30]. Furthermore, ROS allows
for an easy and flexible connection with several ground control stations.

After a discussion of related work in the next section, we will briefly describe our
MAV. Our perception pipeline is explained in Sect. 4, putting special emphasis on
the cameras (Sect. 4.2) and laser scanner (Sect. 4.3). We then outline our mapping
approach in Sect. 5 and describe the localization and state estimation capabilities in
Sect. 6. The navigation pipeline is detailed in Sect. 7. Section8 describes the user
interfaces. The MAV system is experimentally evaluated in Sect. 9. We conclude the
chapter with a discussion of lessons learned in Sect. 10.

2 Related Work

In recent years, manyMAVswith onboard environment sensing and navigation plan-
ning have been developed. Due to the limited payload of MAVs, most approaches
to obstacle avoidance are camera-based [8, 17, 21, 24, 26, 28, 29, 33]. Approaches
using monocular cameras to detect obstacles require translational movement in order
to perceive the same surface points from different perspectives. In order to estimate
depth of object points instantaneously, stereo cameras are used onMAVs, e.g., in the
works of Schmid et al. [29] and Park and Kim [24]. Tripathi et al. [33] use stereo
cameras for reactive collision avoidance. The limited field of view (FoV) of cam-
eras poses a problem when flying in constrained spaces where close obstacles can
surround the MAV.

To overcome these limitations, some MAVs are equipped with multiple (stereo)
cameras. Schauwecker and Zell [28] use two stereo cameras, one oriented forward,
the other backward. Moore et al. [20] use a ring of small cameras to achieve an
omnidirectional view in the horizontal plane, but rely on optical flow for velocity
control, centering, and heading stabilization only.

Grzonka et al. [11] use a 2D laser scanner to localize the MAV in environments
with structures in flight altitude and to avoid obstacles. This limits obstacle avoidance
to the measurement plane of the laser scanner. Other groups combine laser scanners
and visual obstacle detection [13, 14, 32]. Still, their perceptual field is limited to

Autonomous Navigation in a Warehouse … 489

the apex angle of the stereo camera (facing forward), and the mostly horizontal 2D
measurement plane of the scanner. They do not perceive obstacles above or below this
region or behind the vehicle. We allow omnidirectional 4D movements (3D position
and yaw) of our MAV, thus we have to take obstacles in all directions into account.
The proposed MAV extends our own previous work [6], an MAV with a 3D laser
scanner and two wide-angle stereo camera pairs. Another MAV with a sensor setup
that allows omnidirectional obstacle perception is described by Chambers et al. [3].
We significantly increase field of view and bandwidth of the onboard cameras, add
a second laser scanner to measure simultaneously in orthogonal directions, and use
a faster onboard computer.

In combination with accurate pose estimation, laser scanners are used to build 3D
maps. Fossel et al. [9], for example, use Hector SLAM [15] for registering horizontal
2D laser scans and OctoMap [12] to build a three-dimensional occupancy model of
the environment at the measured heights. Morris et al. [22] follow a similar approach
and in addition use visual features to aid state estimation. Still, perceived information
about environmental structures is constrained to lie on the 2Dmeasurement planes of
the moved scanner. In contrast, we use a continuously rotating laser scanner that does
not only allow for capturing 3D measurements without moving, but also provides
omnidirectional obstacle sensing at comparably high frame rates (4Hz in our setup).

To the knowledge of the authors, there exist no scientific works regarding MAV-
based stocktaking. However, it is worth mentioning that the proposed system was
developed for the German BMWi funded Autonomics for Industry 4.0 project Inven-
tAIRy [7]. Furthermore, the company DroneScan [25] recently demonstrated first
results of MAV-based inventory.

3 System Overview

Our MAV design is a hexarotor with a 1.24m diameter frame surrounding the rotor
plane. The total weight is 5.0kg. The thrust-to-weight ratio is approximately 1.5.
Figure1 shows our MAV in an indoor environment. While fragile equipment like
computer and laser scanner lies in the core of the MAV, the frame protects the rotors
and is used for mounting multiple sensors. For sensor data processing and navigation
planning, we use an unboxed Gigabyte GB-BXi7-4770R as the onboard processing
system. The small board is equipped with an Intel Core i7-4770R quadcore CPU,
16GB DDR3-memory, and a 480GB SSD.

For state estimation, obstacle detection, localization, and mapping, our MAV is
equipped with a multimodal sensor setup. Figure2 gives an overview of the installed
sensors. The vision system of our MAV features a ring of six Ximea MQ013MG-E2
1.3M Pixel USB 3.0 cameras, yielding an omnidirectional FoV. The cameras are
used for visual odometry and for the detection of visual features like AprilTags [23].

We use two rotating Hokuyo UST-20LX laser scanners with orthogonal measure-
ment planes to achieve a comprehensive perception of the MAV surroundings. Each
laser scanner provides distance measurements of up to 20m with 270◦ apex angle.

490 M. Beul et al.

Fig. 1 Our MAV has been designed for inventory and short-range inspection tasks in indoor envi-
ronments. Reliable perception of obstacles in the surrounding is key for safe operation

Fig. 2 Scheme of the sensors, actuators, computers, and bus systems on our MAV. We use high-
bandwidth USB 3.0 connections for the cameras due to the high data rates, and lower-bandwidth
buses for flight control and RFID reader. The dashed line indicates a wireless connection

Autonomous Navigation in a Warehouse … 491

The 3D laser is used for obstacle perception and 6D self-localization in a 3Dmap. An
RFID reader module allows for the fast detection of passive RFID tags that identify
storage places and warehouse stock.

For high-level navigation tasks, we employ ROS as middleware on the onboard
computer and on ground control stations. For low-level velocity and attitude con-
trol, the MAV is equipped with a Pixhawk Autopilot flight control unit [19] that
also contains gyroscopes, accelerometers, a compass, a barometer, and an optional
GNSS receiver. We modified its firmware to meet our requirements. In contrast to
the original implementation, we control theMAV by egocentric1 velocity commands
calculated by the onboard PC. Hence, we need a reliable egocentric velocity esti-
mate, independent from allocentric2 measurements, i.e., compass orientation. Our
state estimation filter, which estimates 3D positions, 3D velocities, and 3D accelera-
tions, integrates—in addition to the measurements already considered in the original
implementation—external sources provided by the onboard PC. These include visual
odometry velocities and laser-based localization.

To achieve high camera frame rates at full resolution, we connect the cameras via
three hubs, one per stereo pair, to a dedicated USB 3.0 bus of the onboard computer.
Onboard components with lower bandwidth requirements, i.e. the flight control unit
and the laser scanner rotator, are connected to a second USB 2.0 bus. The Pixhawk
Autopilot is connected twice. The first connection via an USB-to-serial converter
provides the telemetry and control connection according to the MAVLink protocol
[18]. The second connection is inactive during flight and is only used for debugging
and firmware updates of the Pixhawk Autopilot on the ground. Figure2 illustrates
our onboard USB setup.

While our MAV frame also supports the use of 15” propellers, we use six
MK3644/24 motors (111g each) with 14” propellers to generate thrust. Turnigy 5S,
10Ah, 35C batteries power the MAV, including all periphery. The batteries weight
1.28kg each and are hot-swappable. Thus, it is not necessary to shut down the onboard
computer while changing batteries.

Real-time debugging and control of onboard functions with our ground control
stations is crucial for the efficient development of algorithms. To ensure seamless
operation, we use two Ubiquity Networks Bullet BM5HP WiFi adapters. They are
configured towork inWirelessDistributionSystem (WDS)TransparentBridgeMode
to behave as if a wired connection would be present. Our network setup is also shown
in Fig. 2.

4 Perception

We use the ROS packages tf, robot_state_publisher, and urdf to incor-
porate the physical sensors, mounted on the MAV, into our software. The trans-
formations for the robot model are first estimated from a coarse CAD model

1The egocentric frame lies in the center of the MAV.
2The allocentric “world” frame is a globally fixed frame in the warehouse.

492 M. Beul et al.

(a) Triple stereo configuration (b) Omnidirectional configuration

Fig. 3 Mounting of the cameras in a triple stereo and b omnidirectional configuration. Config-
uration a facilitates the usage of available standard stereo methods. In configuration b cameras
have partial image overlap with both neighboring cameras. This allows the development of truly
omnidirectional vision methods

(Figs. 3 and 6), and later calibrated by sensor-specific methods which are described
in the respective subsections. In the following, we detail the sensors used on the
MAV, and describe how they are incorporated into our ROS infrastructure.

4.1 Accelerometers, Gyros, Compass, and Barometer

Low-level sensors like accelerometers, gyros, compass, and barometer are part of the
Pixhawk Autopilot to ensure real-time processing of these—in relation to, i.e., USB
interface latency—comparatively fast sensors. For a fast transient response, state
estimation—detailed in Sect. 6—runs directly on the Pixhawk Autopilot. Hence, raw
data of accelerometers, gyros, compass and barometer is only fed to the main com-
puter for logging purposes (e.g.,sensor_msgs/ImuROSmessage), but processed
directly on the flight control unit. The filtered results are also transferred to the
onboard PC with the MAVLink protocol and published on ROS topics by our ROS-
MAVLink communication node which is based on mavlink_ros.3

4.2 Cameras

We use six Ximea MQ013MG-E2 global-shutter monochrome USB 3.0 cameras
(22.5g each) for visual perception. The camera configuration can be easily switched

3http://github.com/mavlink/mavlink_ros.

http://github.com/mavlink/mavlink_ros

Autonomous Navigation in a Warehouse … 493

Fig. 4 To cope with unavoidable vibrations during flights, our camera mounts are equipped with
vibration dampers. The left mount is for stereo configuration, the right mount for omnidirectional
camera configuration

from three stereo-pairs (Fig. 3a) to an omnidirectional configuration including all six
cameras (Fig. 3b). While the stereo configuration facilitates the usage of available
standard stereo methods, the latter allows the deployment of truly omnidirectional
visionmethods that have not been addressed bymany researchers yet. Themountings
are detailed in Fig. 4. We use vibration dampers to isolate the cameras from high
frequency oscillations caused by the imbalance of the propellers. Each mounting—
including dampers—weights 11.5g.

In combination with Lensagon BF2M2020S23 fisheye lenses with 195◦ apex
angle (25g each), an omnidirectional FoV can be obtained. The use of multiple cam-
era pairs not only facilitates omnidirectional obstacle perception, but also provides
redundancy. So if, e.g., theMAV points one camera-pair towards featureless surfaces
or the sky, the others are still able to perceive the environment.

Communication and Control

With every pair of stereo cameras sharing a passive USB 3.0 HUB, we achieve frame
rates of up to 55 fps, depending on exposure timings. All cameras are synchronized
by hardware triggering. When data from all cameras has been received, the next
frame is triggered. This enables us to achieve adaptive high frame rates which results
in data rates of up to 200MB/s. Figure5 shows an image obtained during flight.

The communication with all six cameras is performed by a single driver node
that processes all images. The node acts as a wrapper for the Ximea xiAPI4

API. Missing on-camera functionalities, e.g., gamma correction and rectification,
are performed directly in this node and the enhanced fisheye and rectified images
are published on ROS topics, accordingly. We use the dynamic_reconfigure
ROS package to set the camera and acquisition parameters, e.g. exposure time,
gain, frequency, and auto-exposure, dynamically during runtime. Additionally, the
user has the choice to employ different image enhancement techniques, as listed
in Table1. The image correction and rectification is performed on the original
10-bit images during readout, using a pre-generated look-up table. By using the

4https://www.ximea.com/support/wiki/apis/XiAPI.

https://www.ximea.com/support/wiki/apis/XiAPI

494 M. Beul et al.

Fig. 5 Fisheye camera image of one of the onboard cameras. Due to the large FoV, the frame is
slightly visible in the stereo configuration.We address this issue by eithermasking or by rectification
which removes these artifacts

Table 1 Available pixel-wise operations for image I

Image transformation Operation

Gamma Iout = c · I
1
γ

in

Logarithmic Iout = c · log(1 + Iin)

Contrast-stretching Iout = 1

1+
(

m
Iin

)E

10-to-8-bit conversion Iout = Iin � 2

None Iout = Iin

The parameters, including gamma γ, scaling constant c, mid-line m, and slope control E , can be
changed during runtime using, e.g., rqt_reconfigure

dynamic_reconfigure server, the look-up table can be recalculated if the cor-
rection parameters are changed by the user. The processed images are published
as sensor_msgs/Imagemessages, together with downsampled rectified images
and corresponding sensor_msgs/CameraInfo info messages. For efficiency
reasons, the driver can write camera Bag files directly to the disk, bypassing the ROS
communication infrastructure.

Autonomous Navigation in a Warehouse … 495

Calibration and Rectification

Each stereo camera pair is calibrated intrinsically and extrinsically, using the epipolar
equidistantmodel [1] especially developed for fisheye camera calibration. It uses a 3D
calibration target with point markers on three orthogonal planes (see Fig. 6b), which
is observed from different distances and angles during calibration. The approximate
positions of the 3D point markers have to be known. In an offline calibration run,
the intrinsic and extrinsic calibration parameters are estimated together with the 3D
coordinates of the calibration target by bundle adjustment, formulated as least squares
problem. The user can select different applicable projection and distortion models
in the calibration toolbox. For modeling the projection of our fisheye cameras, we
employ the epipolar equidistant model, that describes the projection of a spherical
image onto a plane as shown in Fig. 6a. The lens distortion is described using a
third-order Chebyshev polynomial. For image rectification with horizontal epipolar
lines, we pregenerate look-up tables to allow for fast online processing during flight.
Furthermore, to improve computational efficiency, the images are downsampled to
half the resolution during rectification. The overall time needed for the rectification
of one image is approximately 1ms. Timings for different resolutions are listed in
Table2. Overall, we obtain a reprojection error of 0.75 pixels and estimate a baseline
of 53.362cm.

(a) Laserscanners Photo (b) Laserscanners CAD

Fig. 6 Photo and CAD drawing of our 3D laser scanner with the FoV of the individual 2D laser
scanners (blue). a Scanner 1 (right), and scanner 2 (left) have different FoVs. The Hokuyo 2D laser
scanners are mounted on a bearing and rotated around the red axis. b Scanner 1 is rotated to the
back of the image plane to show the 270◦ opening angle of the scanner. Scanner 2 is in the front,
showing the twisted scan plane

Table 2 Rectification
runtime

Target image resolution Time per image (ms)

1280 × 1024 4

640 × 512 1

320 × 256 0.7

496 M. Beul et al.

4.3 Laser Scanner

Our custom-built 3D laser perceives the environment around theMAV at a frequency
of 2Hz. The sensor combines two Hokuyo UST-20LX laser range finders mounted
on a link. A Robotis Dynamixel MX-28 servo actuator rotates the link around the
vertical axis with one revolution per second, yielding an spherical FoV. The servo
actuator measures the angular position of the laser range finders with 0.088◦ reso-
lution. Figure6 depicts the scanner arrangement, showing that one scanning plane
is parallel to the axis of rotation while the other is twisted by 45◦ to obtain denser
measurements in a ±45◦ vertical × 360◦ horizontal FoV. This arrangement results
in a small upward pointing cylindrical blind spot of the first scanner and conical,
upward and downward pointing blinds spot for the twisted scanner. Hence, this setup
maximizes the FoV and obtains many measurements in flight height. Since the blind
spot is closed by copter attitude changes, it does not degrade mapping or obstacle
detection in our scenario. Furthermore, due to the large FoV of 270◦ within the scan
planes, a half rotation of the link produces a 3D scan in almost all directions.

(a) Fisheye camera model (b) 3D point target

(c) Raw image (d) Rectified image

Each 2D laser range finder has a scanning frequency of 40Hzwith 1,080measure-
ments per scan plane resulting in 43,200 measurements per second. Figure7 shows
resulting point clouds of the environment perceived by each laser and the combined
point cloud. Each scanner weights 143g (without cables). The whole sensor assem-
bly weights 420g including motor, a network switch, and a slip ring allowing for

Autonomous Navigation in a Warehouse … 497

(a) Laser scanner 1 (b) Laser scanner 2 (c) Combined scans

Fig. 7 Point clouds from the rotating 3D laser scanner. While the individual scanners show sub-
stantial blind spots, nearly no occlusions occur in the combined scan. b Especially laser scanner
2 shows a large blind spot above the MAV caused by the limited opening angle and the twisted
mounting position. See also Fig. 6. The axes represent the pose of the MAV. Color encodes height

continuous rotation. For communication with the two individual laser scanners, we
employ the driver provided by the ROS urg_node package.

The wide FoV of the laser scanner inherently leads to many measurements on
the MAV itself. Considering the complex structure of the MAV, with moving parts
like propellers, we remove measurements that belong to the robot’s body. This so-
called self filter approximates the model of the MAV by a cylinder with the diameter
and height of the MAV. Furthermore, we use a modified shadow filter—based on
the ROS laser_filters package—to remove not only incorrect measurements
at the edges of the geometry, but also erroneous measurements caused by the fast
rotating propellers. Filtering results are shown in Fig. 8.

The absolute position of the laser relative to base_link is calibrated manually.
The length of the link, the 2D laser scanners are mounted on, is crucial for scan
consistency. Since it is only approximately known, we iteratively tune this parameter.

(a) Unfiltered (b) Self filter (c) Self and shadow filter

Fig. 8 Demonstration of the employed scan filters. A 3D scan assembled from one half rotation of
the 3D laser scanner is shown from a top-view. Color encodes height. The MAV (depicted by the
axes) passes the obstacle on the left. The red points close to the MAV are spurious measurements
caused by theMAV itself and the occluded transition between the obstacle and theMAV. aUnfiltered
3D scan. b Filtered 3D scan using the self filter only. Spurious measurements remain. c Filtered 3D
scan using self filter and modified shadowing filter. Spurious measurements are removed

498 M. Beul et al.

By visualizing all single scanlines of a whole 3D scan in RViz, the parameter can be
adjusted, until walls and ceilings have low variance.

We construct an MAV-centric multiresolution grid map that is used to accumulate
sensor measurements [4]. We first register newly acquired 3D scans with the so
far accumulated map and then update the map with the registered 3D scan. The
map is utilized by our path planning and obstacle avoidance algorithms described in
subsequent sections.

3D Scan Assembly

When assembling 3D scans from raw laser scans, we account for the rotation of the
scanner w.r.t. theMAV and for the motion of theMAV during acquisition. Thus, scan
assembling mainly consists of two steps.

First, measurements of individual scan lines are undistorted with regards to
the rotation of the 2D laser scanner around the servo rotation axis (red axis in
Fig. 6). Here, the rotation between the acquisition of two scan lines is distrib-
uted over the measurements by using spherical linear interpolation provided by
laser_geometry/LaserProjection.

Second, we compensate for the motion of the MAV during acquisition of a full
3D scan. To this end, we incorporate a motion estimate from the low-level filters
running on the Pixhawk incorporating inertial measurement unit (IMU) and visual
odometry measurements. The 6D motion estimate is used to assemble the individual
2D scan lines of each half rotation to a 3D scan.

Local Multiresolution Map

The assembled 3D scans are aggregated in a local multiresolution grid map [4].
Local multiresolution maps have a high resolution close to the robot and a lower
resolution farther away. Each grid cell represents both occupancy information and
the most recent individual distance measurements. The measurements of each cell
are summarized in a surface element (surfel) by the sample mean covariance (cf.
Fig. 9). Compared to uniform grid-based maps, multiresolution leads to the use of
fewer grid cells—without losing relevant information—and consequently results in
lower computational costs. Figure9 shows an example of our local multiresolution
grid-based map.

Registration Approach

We register each newly acquired 3D scan with the local multiresolution map of the
environment with our surfel-based registration method [4]. Instead of considering
each point individually, we represent the 3D scan as local multiresolution grid and
match surfels. A newly acquired scan (scene) is aligned to the local multiresolution
map (model) by finding a rigid 6 degree-of-freedom (DoF) transformation T (θ) that
best aligns the scene surfels to the model surfels.

Compared to dense RGB-D images [31] or high-resolution static 3D laser scans
used in our previous work [27], 3D scans obtained from our laser scanner are much
sparser. We cope with this sparsity through probabilistic assignments of surfels dur-
ing the registration process. Observations are described by amixturemodel, avoiding

Autonomous Navigation in a Warehouse … 499

(a) 3D scan (b) Multiresolution grid

(c) Surfel (d) Aggregated 3D points

Fig. 9 Local multiresolution grid map. a The 3D scan acquired with our continuously rotating laser
scanner, ceiling removed for better visibility. b The multiresolution grid structure of the map. Cell
size (indicated by color) increases with the distance from the robot. c For every grid cell a surfel
summarizes the 3D points in the cell. Color encodes the orientation of the surfel. d 3D points stored
in the local multiresolution map. Color encodes height from ground

hard associations between surfels. The transformation T (θ) is recovered by expecta-
tion maximization (EM), where the E-Step finds new surfel assignments based on the
last estimation of θ and the M-step optimizes θ based on the last assignments. This
optimization is efficiently performed using the Levenberg–Marquardt (LM) method
as in [31]. By summarizing measurements in surfels, and therefore considering sig-
nificantly less elements for registration, we gain efficiency. When matching surfels,
we choose the finest common resolution available between both maps to achieve
accuracy.

500 M. Beul et al.

Fig. 10 RFID sensor. The MAV is equipped with a lightweight RFID antenna (left) and a small
RFID reader module (right), connected to the onboard PC via USB. The RFID system is used to
map positions of RFID tags in the allocentric map attached to shelves or inventory

4.4 Radio-Frequency Identification

We inventory stock either by visually perceiving and mapping attached April Tags
(Sect. 6.3) or by locating attached RFID Tags. To read RFID tags placed on shelves
or inventory, our MAV is equipped with a ThingMagic M6e RFID module and an
unboxed SkyeTek SP-AN-04-UF-BB6LP directional antenna (Fig. 10). The module
can detect RFID tags at distances up to several meters, depending on transmit power.
AROSnode, based on theThingMagicMercury API,5 decodes theRFID readings
and converts them to ROS messages containing a header, the detected ID as string,
and a signal strength indicator. Together with the MAV pose, these messages could
be sent to a warehouse management system (WMS). To this end, we project received
RFID detections into the allocentric warehouse map by means of a simple sensor
model for visualization purposes.

5 Mapping

For fast estimation of the MAV motion, we incorporate IMU and visual odome-
try measurements into velocity and pose estimates. While these estimates allow
us to control the MAV and to track its pose over a short period of time, they are
prone to drift and thus are not suitable for localization on the time scale of a mis-
sion. Furthermore, they do not provide a fixed allocentric frame for the definition
of mission-relevant poses independent from the MAV. Thus, we build an allocen-
tric map by means of laser-based simultaneous localization and mapping (SLAM)
before mission execution and employ laser-based pose tracking w.r.t. this map during
autonomous operation.

This allocentric map is built by aligning multiple local multiresolution maps,
acquired from different view poses [5]. We model the different view poses as nodes

5http://www.thingmagic.com/index.php/mercuryapi.

http://www.thingmagic.com/index.php/mercuryapi

Autonomous Navigation in a Warehouse … 501

in a graph G = (V, E) that are connected by edges. A node consists of the local
multiresolution map from the corresponding view pose. Each edge in the graph
models a spatial constraint between two nodes.

After adding a new 3D scan to the local multiresolution map as described in
Sect. 4.3, the local map is registered towards the previous node in the graph using
the multiresolution surfel registration with probabilistic assignments [4]. A new
node is generated for the current local map, if the MAV moved sufficiently far.
The registration result x j

i between a new node vi and the previous node v j is a spatial
constraint that we maintain as values of edges ei j ∈ E . In addition to edges between
the previous node and the current node, we add spatial constraints between close-by
view poses that are not in temporal sequence.

On each scan update, we check for one new constraint between the current refer-
ence vref and other nodes vcmp. We determine a probability

pchk(vcmp) = N (
d(xref, xcmp); 0,σ2

d

)

that depends on the linear distance d(xref, xcmp) between the view poses xref and xcmp.
According to pchk(v), we choose a node v from the graph and determine a spatial
constraint between the nodes using our surfel registration method.

From the graph of spatial constraints, we infer the probability of the trajectory
estimate given all relative pose observations

p(V | E) ∝
∏
ei j∈E

p(x j
i | xi , x j).

Each spatial constraint is a normally distributed estimate with mean and covariance
determined by our probabilistic registration method. This pose graph optimization
is efficiently solved using the libg2o ROS package by Kuemmerle et al. [16],
yielding maximum likelihood estimates of the view poses xi .

After the MAV has traversed the environment, the allocentric map is built from
the optimized pose graph by merging all local surfel maps. Here, we use surfels with

Fig. 11 SLAM point cloud. Left Resulting point cloud after pose graph optimization acquired by
a manual flight along a warehouse aisle (color depicts height). Right Photo of the mapped aisle

502 M. Beul et al.

uniform resolution. Figure11 shows an example map acquired from a flight through
a warehouse aisle. Our mapping pipeline is available as open-source ROS-based
package.6

6 Localization and State Estimation

In order to navigate in indoor and outdoor environments, robust localization and state
estimation, especially in GNSS-denied environments, is crucial. Our multimodal
localization and state estimation pipeline exploits the specific characteristics of all
sensors in terms of, e.g., accuracy and speed.

6.1 Triple Stereo Visual Odometry

Our visual odometry estimation is based on the ROS viso2 package that wraps the
visual odometry library LIBVISO2 [10], a fast feature-based method for monocular
and stereo cameras. The approach does not require a motion model. The only pre-
requisites are that the input images are rectified and the extrinsic camera calibration
is known.

We rectify the fisheye images with the method epipolar image rectification on
a plane with an equidistant model as proposed by Abraham and Förstner [1]. The
resolution of the rectified images is 640 × 512. The rectified image pairs are fed into
three instances of viso2 running in parallel—one for each stereo camera pair—to
obtain three velocity estimates.

Similar to other feature-based methods, viso2 extracts and matches features
over subsequent stereo frames and estimates the camera motion by minimizing the
reprojection error. Four types of features (corners and blobs of two polarities) are
detected using 5 × 5 filters and non-maximum suppression. Feature similarity is
computed by sparse horizontal and vertical Sobel filters. As shown in Fig. 12, feature
associations are searched in small prediction windows between frames and along
epipolar lines between the stereo pairs and matches are only accepted if a circular
match across two adjacent frames and the two cameras can be established. Based
on all found circle matches, Geiger et al. [10] estimate the camera motion by mini-
mizing the reprojection error using Gauss-Newton optimization in combination with
RANSAC for outlier removal.

The estimated 3D velocities from the three stereo pairs are utilized in the state
estimation pipeline. We weight each velocity estimate according to the number of
correspondences that are tracked. When the number of features falls below a thresh-
old, e.g. due to featureless or overexposed scenes, the weight is set to zero. In this

6https://github.com/AIS-Bonn/mrs_laser_map.

https://github.com/AIS-Bonn/mrs_laser_map

Autonomous Navigation in a Warehouse … 503

Fig. 12 Circular matching of feature points by viso2[10]: starting from a feature detected in the
current left image (lower left), a windowed correspondence search (blue box) is performed on the
previous left image (upper left). If a match has been found, it is matched along the epipolar line to
the previous right image and from there to the current right image. The best match for this feature
is searched along the epipolar line in the current left image. The match is accepted only if the loop
is closed

(a) Front stereo pair (b) Back-left stereo pair (c) Back-right stereo pair

Fig. 13 Triple stereo visual odometry. While the forward facing camera tracks few features due
to fast forward motion, the remaining stereo pairs can still estimate reliable feature correspon-
dences. Correspondences within one stereo pair are colored blue. Feature correspondences tracked
by viso2. RANSAC is used for outlier detection. Inliers are colored green, outliers are colored
red

way, we obtain visual odometry even if two cameras fail at the same time. Moreover,
especially at fast forward motions where the feature correspondence search with the
frontal camera is challenging, the estimates of the lateral cameras allow for proper
motion estimation, as shown in Fig. 13.

The independent odometry estimates are published in thebase_link coordinate
frame.As the transformation from the camera coordinate systems to thebase_link
is static, it is looked up once at the beginning by using the TransformListener of the
ROS tf package.

504 M. Beul et al.

6.2 Laser-Based Pose Tracking

In order to localize the robot in GNSS-denied environments, e.g., indoor environ-
ments, in an allocentric frame, we register local multiresolution maps to a global
map employing multiresolution surfel registration (MRSR) [4]. In small environ-
ments, suitable maps can be built from the takeoff position before a mission. In
larger environments, we perform laser-based SLAM (cf. Sect. 5).

Since the laser scanner acquires 3D scans with a relatively low rate of 2Hz, we
incorporate the egomotion estimate from the visual odometry and measurements
from the IMU to track the pose of the MAV. The egomotion estimate is used as a
prior for the motion between two consecutive 3D scans. In detail, we track the pose
hypothesis by alternating the prediction of the MAVmovement given the filter result
and alignment of the current local multiresolution map towards the allocentric map
of the environment.

To align the current local map with the allocentric map, we also use the surfel-
based registration described in Sect. 4.3. The allocentric localization is triggered after
a new 3D scan has been registered with and added to the local multiresolution map.
We update the allocentric robot pose with the resulting registration transform. To
achieve real-time performance of the localization module, we only track one pose
hypothesis. We assume that the initial pose of the MAV is known, either by starting
from a predefined pose, or by means of manually setting the pose. Figure14 shows
the registration of a 3D scan to the map and an estimated 6D trajectory.

The resulting robot pose estimate is used as a measurement update in a lower-
level state estimation filter. We propagate this allocentric pose over time with visual

Fig. 14 Laser-based localization. A laser scan aggregated over 500ms (red) is matched to an
allocentric map (green) to track the MAV pose (black). The yellow dots depict the tracked MAV
trajectory

Autonomous Navigation in a Warehouse … 505

Fig. 15 AprilTag detections. Left Detected AprilTags in the rectified camera image with corre-
sponding ID. Right Poses of the tag detections projected into the allocentric map with the MAV
pose estimate before filtering. The colors correspond to the tag IDs. Black arrows depict mission
view poses

odometry and IMU to obtain allocentrically consistent pose and velocity estimates
at a sufficiently high rate for planning and control.

6.3 AprilTag Detection

In order to improve the indoor localization of our MAV in environments with repet-
itive structures, e.g., warehouses, and to localize tagged objects, we augment the
environment with AprilTags. These tags can be robustly detected in real time with
the wide-angle cameras. Figure15 shows the detection of AprilTags with 164mm
edge length. The algorithm is able to detect and locate tags in distances of 0.5 to
5.0m. The computation time is 10ms per image. We build maps of AprilTags in
an allocentric frame by mapping with known poses based on laser-based localiza-
tion. Figure15 also shows the resulting map after an example flight based on the
observations from all six cameras.

6.4 State Estimation Filter

We use two filters for state estimation: A low-level extended Kalman filter (EKF)
fuses measurements from accelerometers, gyros, and compass to one 6D attitude
and acceleration estimate. The second, higher-level, filter fuses linear acceleration,
velocity, and position information to a state estimate that includes 3D position. The
low-level filter is suppliedwith the PixhawkAutopilot. The higher-level filter extends

506 M. Beul et al.

the original Pixhawk Autopilot position estimator by incorporating all the sensors
present on the MAV into one state.

Here, we predict the state:

x =
⎛
⎝
px py pz
vx vy vz
ax ay az

⎞
⎠ ,

consisting of 3D position p, 3D velocity v, and 3D acceleration a under the assump-
tion of uniform acceleration

pk = pk−1 + vk−1 · dt + 1

2
ak · dt2,

vk = vk−1 + ak · dt,
ak = ak−1.

If sensor measurements are available, the state is corrected accordingly. For 1D
velocity estimates vk,sens , coming from, e.g., visual odometry, the state correction is

vk = vk−1 + (vk,sens − vk−1) · w · dt,
ak = ak−1 + (vk,sens − vk−1) · w2 · dt2.

Here,w is a weighting factor that indicates the reliability of the inputs. Table3 shows
the measurements that contribute to the filter result. Egocentric measurements are
first transformed into the allocentric frame by the attitude estimate. We determined
the weighting factors by iterative tuning.

This predictor/corrector design offers the following advantages. It

• delivers fast transient responses,
• works in GNSS-denied environments, and
• does not accumulate drift.

Table 3 Information sources for the state filter

Information Update rate
(Hz)

Frame Weighting
factor

Source Type Dim.

Attitude EKF Lin.
Acceleration

3D 250 egocentric 20

Visual odometry Velocity 3D 15 egocentric 0–2

GNSS Velocity 3D 10 allocentric 2

Barometer Position 1D 250 allocentric 0.5

Laser pose tracking Position 3D 2 allocentric 2

GNSS Position 3D 10 allocentric 1

Autonomous Navigation in a Warehouse … 507

As can be seen in Fig. 2, we use a USB-to-serial converter to communicate with
the Pixhawk Autopilot. We use the maximum rate of 921,600 baud to achieve a
measurement frequency of up to 250Hz for attitude, velocity, and position updates.

7 Navigation

To facilitate efficient and safe operations without or with only small human inter-
action, we employ the multilayered navigation approach illustrated in Fig. 16. Each
layer operates in a frequency suitable for the specific task and on a correspondingly
updated and accurate environment representation. From top to bottom these layers
are: Mission planning, allocentric path planning, egocentric path planning, reactive
collision avoidance, and low-level control. The planning frequency increases from
top to bottom, whereas the level of abstraction decreases.

Fig. 16 Our navigation pipeline consist of five hierarchy levels. From top to bottom, the planning
frequency increases, whereas the level of abstraction decreases

508 M. Beul et al.

Fig. 17 Mission planning in semantic map. Based on warehouse parameters like shelf and storage
unit dimensions, aisle width, etc., a semantic map of the shelves is generated. Dark red dots depict
storage units. Left An operator can command coverage tours to scan complete shelves (red path in
left aisle), flights to specific storage locations (black path to right aisle), or a combination as part of
a more complex flight plan. Right To aid initial mission and path planning, we derive an OctoMap
from the semantic map (color encodes height)

7.1 Mission Planning

The layout of large warehouses follows often a very structured pattern. Large shop
floors are filled with shelves, containing standardized storage units, e.g., capable to
store exactly one EUR-pallet of size 80 × 120cm. Thus, on the topmost layer, we
describe equal parts of a warehouse by number of shelves, unit height, and the num-
bers of units in horizontal and vertical direction. If the storage unit IDs are assigned
in a systematic way, we can derive a mapping between storage unit coordinates, scan
positions, and IDs automatically. Figure17 depicts such a model. We derive an initial
OctoMap from the model for navigation planning. For development and debugging,
flight plans containing flights to individual storage units and coverage paths forwhole
shelves can be assembled using an RViz-based interface. In real-world applications,
IDs of shelves or units to inspect will be provided by a warehouse management
system (WMS).

Coverage paths to inventory shelves are generated from a user-defined distance
to the shelf and the sensor apex angles. A 10% overlap between scans allows detect-
ing visual tags that could be cropped otherwise and mitigates the effects of small
deviations from the flight altitude.

For missions involving flights to multiple individual storage units, we formulate
the mission as traveling salesman problem (TSP). After calculating all pair-wise
edge weights, the cost-optimal sequence of view poses is determined by means of
Concorde [2], a fast TSP solver.

In order to define missions independent from a strictly structured
warehouse model, an operator can define arbitrary 4D view poses in RViz using
interactive_markers. A context menu at every marker allows to set a marker

Autonomous Navigation in a Warehouse … 509

to the currentMAVpose—this is especially useful to teach-inmissions duringmanual
flight—and to modify, add, or remove view poses.

7.2 Path Planning

The next layer when descending the planning hierarchy is a global path planner.
This layer plans globally consistent plans, based on I) the SLAM-based environ-
ment model (as OctoMap), discretized to grid cells with 0.5m edge length, II) the
current pose estimate of theMAV as nav_msgs/Odometry, and III) the next mis-
sion waypoint, including 3D position and yaw represented as geometry_msgs/
PoseStamped. Planning frequency is 0.2Hz and we use the A* algorithm to find
cost-optimal paths.

In our application domain, most obstacles not represented in the allocentric map
can be avoided locally, without the need for global replanning. Hence, it is sufficient
to replan globally every five seconds to keep the local deviations of the planner
synchronized to the global plan and to prevent the MAV from getting stuck in a
local minimum that the local planner cannot escape due to its restricted view of the
environment.

As via-points that are not mission critical can be blocked by locally perceived
obstacles, it is not sufficient to send the next waypoint of the global path to the local
planning layers. Instead, the input to the local planner is the complete global plan,
which allows for skipping blocked via-points. The global path is cost-optimal with
respect to the allocentric map. Hence, the path costs of the global path are a lower
bound to path costs for plans refined based on newly acquired sensor information—
mostly dynamic and static previously unknown obstacles. Locally shorter plans on
lower layers with a local view on the map are not taken as they may yield globally
suboptimal paths. Also, mission goals are not skipped as the local planner has to
reach these exactly. If this is not possible, the mission planning has to resolve this
failure condition.

7.3 Local Multiresolution Path Planning

On the local path planning layer, we employ a 3D local multiresolution path planner.
This layer plans based on the allocentric path from the global path planner and local
distance measurements which have been aggregated in a 3D local multiresolution
map. It refines the global path according to the actual situation. The resulting more
detailed trajectory is fed to the potential field-based reactive obstacle avoidance layer
on the next level.

To resemble the relative accuracy of onboard sensors—i.e., they measure the
vicinity of the robot more accurate and with higher density than distant space—we

510 M. Beul et al.

plan with a higher resolution close to the robot and with coarser resolutions with
increasing distance.

Local multiresolution for path planning is also motivated bymap dynamics. Since
the parts of the plan that are farther away from theMAVaremore likely to change, e.g.,
due to newly acquired sensormeasurements, it is reasonable to spendmore effort on a
more detailed plan in the close vicinity of the robot. Compared to uniform resolution,
our approach reduces planning time and makes frequent replanning feasible.

Our planner operates on grid-based robot-centric obstacle maps with higher reso-
lution in the center and decreasing resolution in the distance.We embed an undirected
graph into this grid and perform A* search from the center of the MAV-centered grid
to the goal. The edge costs are given by the base obstacle costs of the cells it is
connecting and its length given by the Euclidean distance between the cell centers.

An obstacle is modeled as a core with maximum costs, determined by obsta-
cle radius rF that is enlarged by the approximate robot radius rR , and a distance-
dependent part rD that models the uncertainty of farther-away perceptions and
motions with high costs. Added is a part with linearly decreasing costs with increas-
ing distance to the obstacle rS that theMAV shall avoid if possible. The integral of the
obstacle stays constant by reducing its maximum costs hmax with increasing radius.
For a distance d between a grid cell center and the obstacle center, the obstacle costs
hc are given by

hc(d) =
⎧⎨
⎩

hmax if d ≤ (rF + rD)

hmax
1−d−(rF+rD)

2∗(rF+rD)
if (rF + rD) < d < 3 ∗ (rF + rD)

0 otherwise
.

The local planner is coupled to the solution of the allocentric path planner by a
cost term ha , which is the shortest distance between a grid cell and any segment
of the allocentric plan (see Fig. 18). The total cost h for traversing a grid cell is
h = w1 · hc(d) + w2 · ha .

Fig. 18 The local plan (red) is coupledwith the allocentric plan (black) by a cost term that penalizes
deviations from the allocentric plan. The blue lines depict the deviation vectors at example points, the
star is the planner’s goal. The green circular obstacle is in the allocentric map, the gray rectangular
obstacle has to be surrounded based on the local map

Autonomous Navigation in a Warehouse … 511

The output of the local navigation layer is the next waypoint along the planned
path as geometry_msgs/PoseStamped in a robot-centric frame. This is fur-
ther processed by a PID-controller to generate egocentric 4D velocity commands
(vx , vy, vz, vyaw) published as geometry_msgs/TwistStamped. These com-
mands are the input to the reactive obstacle avoidance layer.

7.4 Reactive Local Obstacle Avoidance

For safe navigation in complex environments, fast reliable obstacle avoidance is
key. We developed a frequently updated local multiresolution obstacle map and a
local reactive potential field-based collision avoidance layer to cope with dynamic
and static obstacles. We transferred our previous work on obstacle perception and
collision avoidance from our outdoor mapping MAV [6] to the system presented in
this work.

To quickly react on obstacle perceptions, we use a version of the local multires-
olution obstacle map (cf. Sect. 4.3) that is updated at the laser scanner frequency of
10Hz. Obstacles represented in the map induce artificial repulsive forces to parts of
the MAV, pushing it into free space. Figure19 shows an example, where the MAV
avoids an approaching person and the ground. To take the MAV shape into account,
we discretize it into 32 cells and apply the force to each cell. The resulting force vector
and the velocity control vector from a higher navigation layer yield a velocity com-
mand that avoids obstacles, independent of localization. The obstacle avoidance layer
runs at 20Hz, equal to the frequency target velocities are sent to the low-level con-
trol layer. Velocity setpoints are published as geometry_msgs/PoseStamped

Fig. 19 The MAV is pushed away from an approaching person and the ground by potential field-
based obstacle avoidance. Red lines in the left figure depict forces induced by the local obstacle
map (cyan and yellow boxes, the yellow boxes depict the person) on the MAV

512 M. Beul et al.

and received from our ROS-MAVLink bridge node. The commands are sent to the
Pixhawk Autopilot via the MAVLink protocol over a serial bus.

7.5 Velocity Control

Low-level velocity control is executed on the Pixhawk Autopilot, which receives
4D velocity setpoints via the MAVLink protocol. For linear velocity control, we use
a modified Pixhawk Autopilot position control node. The node implements a PID-
controller which calculates a 3D thrust vector based on the 3D linear velocity error.
This leads to a 3D attitude and total thrust setpoint which is then used by lower-level
controllers.

We control the yaw Ψ of the MAV by a proportional controller Ψsetp = Ψ +
Kp · vyaw with Kp = 1. Although the controller does not integrate the yaw rate vyaw

and thus shows a steady-state error when used open loop, it is well behaved in terms
of steps in the resulting yaw setpoint Ψsetp. Since we close the loop regarding yaw
on a higher level, the described controller shows sufficient performance.

By limiting the maximum velocity setpoint received from the onboard computer
to 2m

s in horizontal direction, 1m
s in vertical direction, and 0.2 rad

s about yaw, even
critical errors in ROS subsystems do not lead to severe effects at lower control layers
on the MAV. We found these values to balance well between efficiency and safety in
our application. Especially low yaw rates allow the safety pilot to intervene before
the MAV rotates into an undesirable pose.

8 User Interfaces

8.1 Flight Operator Interfaces

Operating a complex robotic system in the field—especially for debugging and
testing—requires a visualization of the system state easily monitored in real time
and the possibility to quickly send the most important commands to the system.
These include, but are not limited to, switching between “manual”, “velocity con-
trolled”, and “fully autonomous” operation. Furthermore, the operator has the ability
to command the MAV to “fly to specific point” determined by an interactive
marker, and “stay at current pose”. The core visualization tool during flight is RViz,
extended with several application-specific views/plugins.

Typical views, possibly shown in parallel distributed to several computers, are:

• Allocentric view, showing mission and allocentric path planning, OctoMap, and
localization (similar to Fig. 20),

• Egocentric view, showing local obstacle map, local path planning, and reactive
obstacle avoidance (similar to Fig. 19 left),

Autonomous Navigation in a Warehouse … 513

Fig. 20 Flight operator view. The RViz-based operator command and control interface depicts in
the main window the allocentric obstacle map, theMAV pose (red shape), future mission waypoints
(black arrows), obstacle-induced forces (not visible here since the MAV is sufficiently far away
from obstacles), and 3D coordinates of detected AprilTags (clustered colored dots). Furthermore,
approximate positions of RFID tags can be shown (not shown here). Other windows show visual
AprilTag detections with corresponding ID in a rectified image (center-right) and the fisheye view
from one front camera (bottom-right). An operator can choose betweenmanual, velocity controlled,
and fully autonomous operation. Quick commands—that have been identified as being especially
useful during testing—include hovering at the current pose and skipping a waypoint

(a) Front stereo pair (b) Back-left stereo pair (c) Back-right stereo pair

Fig. 21 Visualization of the correspondences in the three stereo camera pairs. Correspondences
between one stereo pair are colored blue. Feature correspondences tracked by viso2 are colored
green (inliers) and red (outliers)

• Localization view, showing SLAM-map, 3D laser scans, and visual odometry
trajectories (similar to Fig. 14),

• Planning view, showing allocentric and egocentric path planning, and an overlay
of allocentric and egocentric maps (similar to Fig. 17), and

• Vision view, showing camera images, tracked features, tracked AprilTags and
visual odometry trajectories (similar to Fig. 21).

Whereas the allocentric and egocentric views are mainly used in field-testing
and actual mission execution, the localization and planning views are more

514 M. Beul et al.

subsystem-specific and used during development and debugging. The vision view
might be employed in both scenarios on demand.

Most nodes can be configured on-the-fly employing the dynamic_
reconfigure framework. This is particularly important to parameterize lower-
level systems, like the reactive obstacle avoidance and the camera system, but does
also help to activate and deactivate features in high-level components.

The capabilities of ROS are not only used during a mission, but also during prepa-
ration and follow-up. As described in Sect. 5, we create an initial map by manually
flying the MAV. During the manual flight, the MAV builds an allocentric map of
the environment which is later used for localization and for defining a mission. An
operator monitors the allocentric map using RViz to assure map coverage of the envi-
ronment.We use an editing tool for post-processing the map.7 The point cloud can be
moved and rotated. Furthermore, specific points can be deleted and the whole point
cloud can be aligned to a plane, e.g., the ground plane. We use this tool to align the
origin of the map with the ground level and to orient the map north—an important
prerequisite to maintain a common frame between laser pose tracking, IMU, and
compass measurements.

In preparation of a mission, we can define missions by either creating a job list
containing storage units and shelves to cover using an RViz plugin, shown in Fig. 17,
or by manually defining 4D view poses employing interactive_markers.
Furthermore, we use an interactive marker to set the initial pose of the MAV before
takeoff for pose tracking.

Repeatability of experiments is important for efficient debugging and testing.
Thus, we save user-defined missions (ordered set of 4D-waypoints) and can load
them for consecutive experiments. Loading and editing those stored missions have
turned out to significantly reduce the operator workload when testing the system,
reducing the idle time of the system and resulting in a much higher possible test
frequency.

We experienced that the time needed for preparation of a mission and/or adjust-
ing parameters and fixing bugs, often exceeds the actual time needed for the flight
itself. Furthermore, consecutive short flights with short landings in between are often
possible without restarting onboard systems. Thus, to minimize the time for mainte-
nance on ground, we do not restart the logging to Bag files. After successful mission
execution, we use the ROS tool MAV_bag_filter to cut out Bag file segments
containing individual flights and discard segments where the MAV status indicates
that it is not flying. In this way, we are able to (a) significantly reduce the size of the
Bag files and (b) minimize the amount of time needed for reviewing the data.

7Point cloud editor can be downloaded from http://www.ais.uni-bonn.de/videos/ROS_book_2016.

http://www.ais.uni-bonn.de/videos/ROS_book_2016

Autonomous Navigation in a Warehouse … 515

8.2 Safety Pilot Interfaces

While the flight operators monitor higher-level states of the MAV like proper initial-
ization of the SLAM system and correct mission planning, we rely on a safety pilot
to keep the MAV in a safe state during the whole mission. The safety pilot is able to
monitor all status information that is vital for safe operation of the MAV in real time.
This includes battery level, velocity setpoints, flight state, and many more. Incoming
MAVLink packages from the Pixhawk Autopilot are encapsulated in a ROSmessage
and sent to the ground control station over the wireless link. Here, the messages are
extracted and streamed to the local network via UDP. For real-time visualization
of the data streams, we employ the software QGroundcontrol.8 Since this commu-
nication pipeline works bidirectionally, the safety pilot is also able to adjust flight
parameters like, e.g., the maximum allowed vertical velocity during flight.

When an error occurs on a higher level or a subsystem fails, the safety pilot
can always switch off the control authority of the onboard computer and recover
the MAV. This can happen either with QGroundcontrol as well as with the manual
remote control. We use this feature also during manual start and landing of the MAV.
We manually start and land since we consider it to be safer than fully autonomous
operation near the ground. By switching the control authority from manual mode to
the onboard computer, we can totally eliminate the pilot in the loop. On the other
hand, since we are able to completely switch off the autonomy, we can even deal
with situations where the autonomy fails completely (e.g., if it should send velocity
setpoints of NAN).

9 Experiments and Evaluation

We evaluated the individual components of our MAV in simulation and flight exper-
iments in our lab. Furthermore, the integrated system was tested and demonstrated
in a warehouse of a logistics company to achieve a realistic test environment. In
addition to the evaluation results, we report lessons learned during development and
testing of the system.

9.1 Data Acquisition

Figure7 shows point clouds recorded with the 3D laser scanner. Due to the different
angular mounting of the 2D laser scanners (cf. Fig. 6), we minimize the blind spots in
the vicinity of the MAV. Occlusions, e.g., caused by the frame or propellers occur in

8http://qgroundcontrol.com.

http://qgroundcontrol.com

516 M. Beul et al.

Table 4 Camera frame rate
is limited by exposure time

Exposure time (ms) Frame rate (Hz)

40 17

23 25

17 30

3 50

different directions and can be compensated by measurements from different poses.
This results in an omnidirectional FoV with a minimal blind spot.

We estimated the accuracy of the Hokuyo UST-20LX and compared it to the
Hokuyo UTM-30LX-EW used in our previous work [6]. Indoors, both laser scan-
ners show the same accuracy of ∼ ±10mm when measuring a 0.5m distant object.
Outdoors, the accuracy of the UTM-30LX-EW stays the same, but the accuracy of
the Hokuyo UST-20LX degrades to ∼ ±35mm.

We evaluated the data acquisition speed of the synchronized cameras. Although
the maximum frame rate is up to 55 fps, it is limited by the exposure time of the
cameras. Table4 reports the resulting frame rates.

Figure21 shows a typical image set, captured during flight. It can be seen that
the visual odometry finds most correspondences correctly, but some false correspon-
dences are produced due to repetitive environment structures and strong illumination
differences. Nevertheless, due to the redundant structure and the correspondence-
dependent weighting, the visual odometry does not lose track, even if one instance
finds no correspondence at all. The computation time for visual odometry including
image rectification is 30ms per stereo camera image pair.

In order to evaluate the robustness of the filter, we measured the visual odometry
velocity while flying a sinusoidal trajectory. Only accelerometer, gyroscopes, and
one visual odometry estimate are used to correct the filter. Figure22 shows the visual

Fig. 22 Egocentric velocity estimate from visual odometry in forward direction and filter result

Autonomous Navigation in a Warehouse … 517

Fig. 23 RFID detections in a warehouse aisle. We map RFID tags during flight with the current
MAV pose and a predefined scanning distance. Left Photo of the scene. Each storage unit (red
circle) and every stock (green circle) is marked with RFID Tags. Right Representation of the scene
in RViz. The detections are depicted as blue spheres

odometry input and the filter result. Although the visual odometry loses track (at
t = 19 s and t = 28 s), the filter is able to bridge this information gap. In normal
operation, this gap would also be filled by other velocity estimates.

9.2 RFID Detection

RFID tags are detected and mapped in the allocentric map. Instead of using an
elaborated sensor model, we approximate the tag positions by a predefined offset
from the RFID antenna. This is sufficient to match tag readings to storage places.
For our specific case, we found an offset of 0.5m to be appropriate. Figure23 dis-
plays the detected tags, mounted on individual storage places during a mission in
the warehouse depicted in Fig. 11. It can be seen that the achievable accuracy lies
within the dimensions of one storage unit, capable of storing one EUR-pallet of size
80 × 120cm. Therefore our system is capable of performing a per-storage-unit attri-
bution of EUR-pallets.

9.3 Flight Time

We evaluated our system in flight experiments. When manually flying the MAV
indoors, we measured a flight time between 6 and 8min, depending on the flight
dynamics. This is sufficient for typical indoor inspection tasks (described in detail
in Sect. 9.6) and to scan one typical warehouse aisle with ∼50m length and ∼5m

518 M. Beul et al.

height with an average horizontal velocity of ∼0.5 m
s . Furthermore, the ability to

hot-swap batteries compensates for the relatively short flight time.

9.4 Electromagnetic Compatibility

Several components on the MAV emit radio waves. We evaluated the influence of
these components on each other by identifying the relevant frequencies in a series
of tests. Table5 gives an overview on the components and frequencies. Although
it does not show the exact emission spectrum, it provides initial information which
frequency ranges are prone to interference for further investigation.

Although our system is primarily built to work in GNSS-denied environments,
our MAV is equipped with an optional GNSS antenna for use in external stock. It
can be seen that the computer memory is working at the same clock frequency as
the GNSS sources. We found that it emits interference radiation preventing a stable
GNSS reception. Since we experienced strong interference especially with GPS, the
GNSS antenna was placed as far as possible from the jamming source to reduce
noise, which yielded sufficient reception of the GPS signal. We did not experience
other noteworthy interferences.

Benchmarking the WiFi network gives a real throughput of 7.5MB/s. Latency
analysis gives an average ping of 1.22ms ± 0.11ms. We aim for a fully autonomous
system, so no data has to be exchanged between the ground control stations and the
MAV in normal operation modes, except for a mission specification before takeoff
and data transfer to the ground station after landing. This benchmark shows that the
communication infrastructure enables the operators to visualize point clouds or even
view live video feeds with ∼2Hz for debugging purposes.

Table 5 MAV components
emitting and/or receiving
radio waves

Component Frequency (GHz)

GPS L1 1.57542

GPS L2 1.2276

GLONASS L1 1.6

Computer CPU 0.8 – 3.2

Computer memory 1.6

WiFi 5.15 – 5.725

Remote control 2.4

RFID UHF 0.865 – 0.869

0.902 – 0.928

Autonomous Navigation in a Warehouse … 519

Fig. 24 Localization result. The MAV trajectory (red arrows) is tracked by means of laser scan
registration, combinedwith visual odometry and IMUmeasurements. This yields 6Dpose estimates.
Shown is a flight through a warehouse aisle. In the side-view (left), the relation to the accurately
mapped storage units can be seen. In the top-down view (right), it can be seen that the pose is
tracked despite considerable self-similarity of the shelves. Map color encodes height

9.5 Mapping and Pose Tracking

We performed experiments with the integrated system. Figure24 shows the resulting
trajectory of our indoor localization experiment. We build a map with the onboard
laser sensors before mission start. During a mission, the 3D laser scans—aggregated
over 500ms—are registered to the map yielding a 6D pose estimate at 2Hz. The
resulting trajectory is globally consistent.

In order to assess the performance of our global registration and allocentric map-
ping approach, we tested our method on a dataset of the parking garage.9 Without
pose graph optimization, the trajectory aggregates drift which results in inconsisten-
cies, indicated by a misalignment of the walls. Our registration method with graph
optimization yields accurate results. Figure25 shows details of a map of a garage
environment. Here, even narrow structures like pipes can be identified in the globally
aligned 3D scans. For a detailed comparison with other registration methods see [6].

9.6 Navigation

We evaluated the autonomous navigation by flying missions in a warehouse. The
MAV visits several manually defined observation poses on different heights along a
shelf based on an allocentric map created with our SLAM approach. Figure20 shows

9Datasets recorded in-flight with an MAV are available at: http://www.ais.uni-bonn.de/mav_
mapping.

http://www.ais.uni-bonn.de/mav_mapping
http://www.ais.uni-bonn.de/mav_mapping

520 M. Beul et al.

Fig. 25 Impressions of the quality of the built 3D map. Environmental structures are consistently
mapped. Even details such as the narrow pipe structure and a cable canal (circled) are accurately
modeled. Color encodes the distance to the view-point

one example mission. The MAV successfully accomplished multiple missions with
a duration between ∼2 to 5min and a total trajectory length of ∼40 to 80m each.

To evaluate the local obstacle avoidance, we control the MAV with egocentric
velocity commands, i.e., a zero velocity setpoint for movements in the plane and
rotations, and a small descent velocity to keep the MAV close to the ground. The
obstacle avoidance keeps the MAV at a safe distance to the ground. Figure19 shows
an experiment where a person approaches the MAV. The MAV avoided all static and
dynamic obstacles based on the 3D laser scans.

A video showing autonomous mission execution and reactive obstacle avoidance
can be found on our website.10

10 Lessons Learned

The use of ROS was extremely valuable for development and evaluation of the
describedMAV system.We experienced theMAV to be a very complex mechatronic
system consisting of many individual hard- and software subsystems. Most subsys-
tems offer no redundancy and show a Single Point of Failure (SPOF) characteristic.

Due to the modular and transparent ROS framework, development and error treat-
ment was greatly simplified. Since the publish–subscribe pattern offers transparency,
the effort for error analysis was reduced to a minimum. Logging of data to Bag files
further simplifies error analysis.

The modular design and abstraction to ROS nodes facilitates the fast develop-
ment of software and allowed us to transfer technology between multiple MAVs
and even ground robots. Since the MAV is connected to several external hard- and
software components, the loose coupling via ROSmessages massively simplifies the

10http://www.ais.uni-bonn.de/videos/ROS_book_2016.

http://www.ais.uni-bonn.de/videos/ROS_book_2016

Autonomous Navigation in a Warehouse … 521

integration effort. Furthermore, we use standard message formats shipped with ROS
and relied on third-party modules whenever possible. This facilitates both replacing
submodules of the system with modules developed for other robots or even in other
research groups with often low adaptation effort and the maximum use of already
available ROS debugging and visualization tools.

Since ROS handles the transportation of messages, effortful data routing between
the MAV and ground stations as described in Sect. 8 is not required. Nevertheless,
since ROS is not real-time capable, we advice to use the tcpNoDelay transport
hint for nodes that are crucial for real-time control. We use the no delay transport
hint, e.g., regarding all communication with the Pixhawk autopilot.

Real-time visualization of data streams, especially camera images, laser scans,
and planned trajectorieswith, e.g., RViz, and rqt_plot, made it possible to develop
such a complex system. Real-time adjustment of crucial parameters like, e.g., camera
exposure time, using dynamic_reconfigure sped up the development phase
and also helped during evaluation.

During development of inherently unstable SPOF systems we made extensive use
of simulation technology like, e.g., Gazebo, where failures are permitted.

Development of sophisticated softwaremodules for, e.g., state estimation or action
planning, was facilitated by the extensive software library which is already shipped
with ROS. We rely on many standard components like drivers (e.g., urg_node for
the laser scanners) that otherwise would be costly to develop.

Representing a complex mechatronic system in software benefited from tools like
tf and robot_state_publisher. The kinematic tree represents not only stat-
ically calibrated nodes like base_link⇔ camera_1..6, but also dynamic rela-
tions like base_link ⇔ laser_scanner or base_link ⇔ map_origin.
By using the above mentioned ROS packages, we avert the cumbersome and error
prone manual track keeping of a variety of multidimensional transformations. We
want to advice here that although tf offers a transparent way to maintain transfor-
mations, to always check the tf tree for consistency with tools like view_frames.

We make extensive use of screen when operating the MAV. It proved to be
very useful to start the roscore and, when working with multiple operators, all
additional components in a respective screen session. Thus, if the WiFi connection
drops, all components are easily recoverable and screens can be exchanged between
operators.

When operating a complex robotic system in the field, it is inevitable to have
well-organized processes and a tested hardware setup to not waste valuable test-
ing time on site. In particular, clear responsibilities are important, e.g., who starts
which subsystems and is responsible for their configurations—including parameter
checking before takeoff and monitoring during flight. Furthermore, sufficient atten-
tion must be given to important infrastructure, like reliable networking and WiFi
connections, standardized software setups on workstations, wiring of all operator
station components, and if applicable, a directly available contact person on site to
organize important prerequisites as power or networking and solve problems in a
timely manner. The above mentioned precautions facilitate efficient usage of testing
time and maximize the benefits of operations in the field.

522 M. Beul et al.

11 Conclusions

In this chapter, we presented a cognitive MAV that is capable of semantically per-
ceiving its environment and planning inventory missions.

We approached this challenge by employing a multimodal omnidirectional sensor
setup to achieve situation awareness. The sensors have a high data rate for tracking
the MAV motion and for quick detection of changes in its environment.

Our ROS-based mapping and navigation pipeline allows for fully autonomous
flight even in GNSS-denied environments.

Ample onboard processing power in combination with a high bandwidth ground
connection leads to a system that is suitable to deploy and debug custom algorithms
and for conducting further research. The ability to hot-swap batteries and/or ground
power supply makes developing and testing highly efficient.

We showed the system robustness in multiple indoor experiments where the only
manual interactions were the starting and landing phases. Thus, the system is able to
inspect areas in a fully autonomous mission.

References

1. Abraham, S., and W. Förstner. 2005. Fish-eye-stereo calibration and epipolar rectification.
ISPRS Journal of Photogrammetry and Remote Sensing 59 (5): 278–288.

2. Applegate, D., R. Bixby, V. Chvatal, and W. Cook. 2006. Concorde TSP solver.
3. Chambers, A., S. Achar, S. Nuske, J. Rehder, B. Kitt, L. Chamberlain, J. Haines, S. Scherer,

and S. Singh. 2011. Perception for a river mapping robot. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

4. Droeschel, D., J. Stückler, and S. Behnke. 2014. Local multi-resolution representation for 6D
motion estimation and mapping with a continuously rotating 3D laser scanner. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA).

5. Droeschel, D., J. Stückler, and S. Behnke. 2014. Local multi-resolution surfel grids for MAV
motion estimation and 3D mapping. In Proceedings of the International Conference on Intel-
ligent Autonomous Systems (IAS).

6. Droeschel,D.,M.Nieuwenhuisen,M.Beul,D.Holz, J. Stückler, andS.Behnke. 2016.Multilay-
ered mapping and navigation for autonomous micro aerial vehicles. Journal of Field Robotics
33: 451–475.

7. Fiedler, M. 2016. Inventairy. http://www.inventairy.de/ [German].
8. Flores, G., S. Zhou, R. Lozano, and P. Castillo. 2014. A vision and GPS-based real-time tra-

jectory planning for a MAV in unknown and low-sunlight environments. Journal of Intelligent
& Robotic Systems 74 (1–2): 59–67.

9. Fossel, J., D. Hennes, D. Claes, S. Alers, and K. Tuyls. 2013. OctoSLAM: A 3D mapping
approach to situational awareness of unmanned aerial vehicles. In Proceedings of the Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS).

10. Geiger, A., J. Ziegler, and C. Stiller. 2011. StereoScan: Dense 3D reconstruction in real-time.
In IEEE Intelligent Vehicles Symposium.

11. Grzonka, S., G. Grisetti, and W. Burgard. 2012. A fully autonomous indoor quadrotor. IEEE
Transactions on Robotics 28 (1): 90–100.

12. Hornung, A., K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. 2013. OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots 34:
189–206.

http://www.inventairy.de/

Autonomous Navigation in a Warehouse … 523

13. Huh, S., D. Shim, and J. Kim. 2013. Integrated navigation system using camera and gim-
baled laser scanner for indoor and outdoor autonomous flight of UAVs. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

14. Jutzi, B.,M.Weinmann, and J.Meidow. 2014.Weighted data fusion forUAV-borne 3Dmapping
with camera and line laser scanner. International Journal of Image and Data Fusion.

15. Kohlbrecher, S., J. Meyer, O. von Stryk, and U. Klingauf. 2011. A flexible and scalable SLAM
system with full 3D motion estimation. In Proceedings of the IEEE International Symposium
on Safety, Security and Rescue Robotics (SSRR).

16. Kuemmerle, R., G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. 2011. G2o: A general
framework for graph optimization. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 3607–3613.

17. Magree, D., J.G. Mooney, and E.N. Johnson. 2014. Monocular visual mapping for obstacle
avoidance on UAVs. Journal of Intelligent & Robotic Systems 74 (1–2): 17–26.

18. Meier, L. 2015. Micro aerial vehicle link protocol (MAVLink). mavlink.org.
19. Meier, L., P. Tanskanen, L.Heng,G. Lee, F. Fraundorfer, andM.Pollefeys. 2012. PIXHAWK:A

micro aerial vehicle design for autonomous flight using onboard computer vision. Autonomous
Robots 33 (1–2): 21–39.

20. Moore, R., K. Dantu, G. Barrows, and R. Nagpal. 2014. Autonomous MAV guidance with a
lightweight omnidirectional vision sensor. InProceedings of the IEEE InternationalConference
on Robotics and Automation (ICRA).

21. Mori, T., and S. Scherer. 2013. First results in detecting and avoiding frontal obstacles from a
monocular camera for micro unmanned aerial vehicles. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

22. Morris, W., I. Dryanovski, J. Xiao, and S. Member. 2010. 3D indoor mapping for micro-UAVs
using hybrid range finders and multi-volume occupancy grids. In RSS 2010 workshop on RGB-
D: Advanced Reasoning with Depth Cameras.

23. Olson, E. 2011. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA).

24. Park, J., andY.Kim. 2014. 3Dshapemappingof obstacle using stereovision sensor onquadrotor
UAV. In AIAA Guidance, Navigation, and Control Conference.

25. Pons, J. 2016. DroneScan - Airborne Data Collection. http://www.dronescan.co/.
26. Ross, S., N. Melik-Barkhudarov, K.S. Shankar, A. Wendel, D. Dey, J.A. Bagnell, and

M. Hebert. 2013. Learning monocular reactive UAV control in cluttered natural environments.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

27. Schadler, M., J. Stückler, and S. Behnke. 2013. Multi-resolution surfel mapping and real-time
pose tracking using a continuously rotating 2D laser scanner. In Proceedings of the IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR).

28. Schauwecker, K., and A. Zell. 2014. On-board dual-stereo-vision for the navigation of an
autonomous MAV. Journal of Intelligent & Robotic Systems 74 (1–2): 1–16.

29. Schmid, K., P. Lutz, T. Tomic, E. Mair, and H. Hirschmüller. 2014. Autonomous vision-based
micro air vehicle for indoor and outdoor navigation. Journal of Field Robotics 31 (4): 537–570.

30. Schwarz, M., M. Beul, D. Droeschel, S. Schüller, A.S. Periyasamy, C. Lenz, M. Schreiber,
and S. Behnke. 2016. Supervised autonomy for exploration and mobile manipulation in rough
terrain with a centaur-like robot. Frontiers in Robotics and AI, Section Humanoid Robotics.

31. Stückler, J., and S. Behnke. 2014. Multi-resolution surfel maps for efficient dense 3Dmodeling
and tracking. Journal of Visual Communication and Image Representation 25 (1): 137–147.

32. Tomić, T., K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa,
and D. Burschka. 2012. Toward a fully autonomous UAV: Research platform for indoor and
outdoor urban search and rescue. IEEE Robotics & Automation Magazine 19 (3): 46–56.

33. Tripathi, A., G. Raja, and R. Padhi. 2014. Reactive collision avoidance of UAVs with stere-
ovision camera sensors using UKF. In Advances in Control and Optimization of Dynamical
Systems, 1119–1125.

http://mavlink.org
http://www.dronescan.co/

524 M. Beul et al.

Author Biographies

Marius Beul received his M.Sc. degree in Electrical Engineering in 2013 from Cologne Univer-
sity of Applied Sciences. Since October 2013, he works as a member of the scientific staff in the
Autonomous Intelligent Systems Group at the University of Bonn. His research interests include
Aerial Robotics, State Estimation, Path Planning and Control.

Nicola Krombach obtained her M.Sc. degree in Computer Science from Rheinische Friedrich-
Wilhelms Universität Bonn in 2016. Since March 2016, she is a researcher in the Autonomous
Intelligent Systems Group at the University of Bonn. Her research interests include image process-
ing and visual SLAM.

Matthias Nieuwenhuisen received his Diploma in Computer Science from Rheinische Friedrich-
Wilhelms Universität Bonn in 2009. Since May 2009, he is a researcher in the Autonomous Intel-
ligent Systems Group at the University of Bonn. His current research interests include path and
motion planning for MAVs.

David Droeschel received a M.Sc. degree in Autonomous Systems from the University of Applied
Sciences Bonn-Rhein-Sieg in 2009. Since May 2009, he is a researcher in the Autonomous Intel-
ligent Systems Group of the University of Bonn. His research interests include efficient 3D per-
ception and SLAM.

Sven Behnke received his Diploma in Computer Science from Martin-Luther-Universität Halle-
Wittenberg in 1997 and Ph.D. from Freie Universität Berlin in 2002. He worked in 2003 as post-
doctoral researcher at the International Computer Science Institute, Berkeley. From 2004 to 2008,
he headed the Humanoid Robots Group at Albert-Ludwigs-Universität Freiburg. Since 2008, he
is professor for Autonomous Intelligent Systems at the University of Bonn. His research interests
include cognitive robotics, computer vision, and machine learning.

Robots Perception Through 3D Point
Cloud Sensors

Marco Antonio Simões Teixeira, Higor Barbosa Santos,
André Schneider de Oliveira, Lucia Valeria Arruda
and Flavio Neves Jr.

Abstract This chapter brings a tutorial about use of Point Cloud data for the environ-
ment perception of mobile robots. Point Cloud is a powerful tool that gives robots
the ability to perceive the world around them through a dense measurement. One
advantage of this kind of sensor is the large measuring space, with faint or no
external light. Although there are several works about Point Clouds, only a few
of them speak about how this kind of information can be obtained and what can
be extracted. This chapter aims to fill this gap and clarify how Point Clouds can
be acquired, processed, transformed between coordinate systems and which these
information can be easily extracted using ROS and Matlab. The codes used in this
chapter are available in GitHub and can be found at https://github.com/air-lasca/
ros_book_point_cloud. The videos developed with the experiments can be seen on
YouTube, in Robot LASCA channel that can be accessed at https://www.youtube.
com/channel/UCtgnBqaodQAGtbh0HW9nJEA.

Keywords Point cloud · Matlab · ROS · Kinect and SR4000

M.A.S. Teixeira (B) · H.B. Santos · A.S. de Oliveira · L.V. Arruda · F. Neves Jr.
Federal University of Technology—Parana, Av. Sete de Setembro, 3165, Curitiba, Brazil
e-mail: marcoteixeira@alunos.utfpr.edu.br

H.B. Santos
e-mail: higorsantos@alunos.utfpr.edu.br

A.S. de Oliveira
e-mail: andreoliveira@utfpr.edu.br

L.V. Arruda
e-mail: lvrarruda@utfpr.edu.br

F. Neves Jr.
e-mail: neves@utfpr.edu.br

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_16

525

https://github.com/air-lasca/ros_book_point_cloud
https://github.com/air-lasca/ros_book_point_cloud
https://www.youtube.com/channel/UCtgnBqaodQAGtbh0HW9nJEA
https://www.youtube.com/channel/UCtgnBqaodQAGtbh0HW9nJEA

526 M.A.S. Teixeira et al.

1 Introduction

The Point Cloud data (PCD) can be considered as a 3D image, composed by a set
of points that enable us to identify its position in the axes X, Y and Z relative to
the sensor reference. There are several sensors able to obtain Point Cloud data, for
example, the Kinect sensor, SR400 sensor and LIDAR sensor.

Point Cloud has a great number of useful applications in robotics. In [1] they use
the PCD obtained with Kinect sensor to develop a Simultaneous Localization and
Mapping (SLAM). In other works you can also see the use of PCD in SLAM, as
in [2–4]. This kind of data can also be useful for working with Unmanned Aerial
Vehicles (UAVs). In [5] made a comparison between two different techniques to get
Point Cloud data being one of them to convert a 2D image into a 3D image. Other
studies related to PCD and UAV can be seen in [6–8].

The Robot Operating System (ROS) is able to work with the Point Cloud Library
(PCL) and thus has support to Point Cloud data through two types of messages:
sensor_msgs::PointCloud and sensor_msgs::PointCloud2. The PCD can be used in
complex applications such as those illustrated above, but it is first necessary that you
understand how to work with this type of information and how to manipulate it.

This work illustrates the use ofMatlab [9] for Point Cloud data processing through
the ROS. This software is capable to communicate with ROS and allow an easily
handling and processing the data obtained by sensors, because it is a high level pro-
gramming language (or script). The use of this tool brings great advantages because
allows inexperienced users to work with complex messages and the quick develop-
ment.

This chapter is divided into six subsections. The Sect. 2 presents the depth sensors
with focus on two sensors used in this tutorial, Kinect and SR4000. In section about
environment configuration will be presented the system configuration used in this
tutorial, as well as the detailed procedure of the sensors installation. In the section of
examples of use and processing will be explained how to get sensor data and perform
its processing, ensuring the correct transformation about coordinate systems.

All source codes shown in this tutorial can be found on GitHub at https://github.
com/air-lasca/ros_book_point_cloud address. A tutorial on how to download the
GitHub packages can be found in [10]. Packages are divided according to the name
of the sections belonging. For example, the package related to installing the sensor
SR4000 can be found in the folder
/ros_book_point_cloud/ConfigurationTheEnvornment/.

Videos for each experiment developed during this tutorial will are available on
YouTube, on the channel
https://www.youtube.com/channel/UCtgnBqaodQAGtbh0HW9nJEA as well as a
video showing the quality difference between used sensors.

https://github.com/air-lasca/ros_book_point_cloud
https://github.com/air-lasca/ros_book_point_cloud
https://www.youtube.com/channel/UCtgnBqaodQAGtbh0HW9nJEA

Robots Perception Through 3D Point Cloud Sensors 527

2 Background

This chapter makes use of various ROS packages and works with several concepts to
allow robot perception through 3D point cloud sensors. The most important concept
to understand which contains a Point Cloud message. Several libraries and packages
will be used in order to obtain and process the Point Cloud.

The Point Cloud Library (PCL) is an open project for processing of 2D/3D images
and floating point [11]. The Point Cloud data is a set of points containing three
coordinates (X, Y, Z) in a Cartesian plane. All points in this set form an image that
can be converted into 2D or 3D, allowing the navigation between the dots and the
depth perception.

ThePointCloud data can are obtained in the realworld by sensors, such as cameras
3D Time-of-Flight (ToF). These cameras work by emitting a modulated light wave
and observing its reflection. The changes between reflected and emitted waves are
measured and converted in a distance [12] (as shown in Fig. 1). The Point Cloud data
can also be obtained through others sensors such as sonar, laser, and other [13].

The Point Cloud data is presented in 2 different variables in ROS [14]. The dif-
ference between the two types of messages can be seen in Fig. 2 and is discussed
follows.

1. sensor_msgs::PointCloud: is the first version developed for ROS, composed by
a set of points that are represented by X-Y-Z coordinates in float format;

2. sensor_msgs::PointCloud2: is a novel way to build the Point Cloud data in a
set of points having n-D dimensions of different formats (such as integer, float,
double and others). This version allows, for example, adding an extra layer to
define the color of each point.

Fig. 1 3D ToF cameras (adapted from [12])

528 M.A.S. Teixeira et al.

sensor msgs::PointCloud
Time of sensor data

acquisition , coordinate
frame ID.

Header header

Array of 3d points. Each
Point32 should be
interpreted as a 3d point

in the frame given in the
header.

geometry_msgs/Point32 [] points

Each channel should have the
same number of elements as
points array ,

and the data in each channel
should correspond 1:1 with
each point.

Channel names in common
practice are listed in
ChannelFloat32 .msg.

ChannelFloat32 [] channels

sensor msgs::PointCloud2
Time of sensor data acquisition , and the

coordinate frame ID (for 3d points).
Header header

2D structure of the point cloud. If the
cloud is unordered , height is

1 and width is the length of the point
cloud.

uint32 height
uint32 width

Describes the channels and their layout in
the binary data blob.

PointField [] fields

bool is_bigendian # Is this data
bigendian ?

uint32 point_step # Length of a point in
bytes

uint32 row_step # Length of a row in
bytes

uint8[] data # Actual point data ,
size is (row_step*height)

bool is_dense # True if there are no
invalid points

Fig. 2 Difference between sensor_msgs::PointCloud and sensor_msgs::PointCloud2

3 Common Depth Sensors for Robot Perception

3.1 Microsoft Kinect

The Kinect sensor is widely used in robotics due to its low cost. It has a traditional
RGB camera with a resolution of 640× 480 and a camera 3D structured light with
a resolution of 320× 240 points. There are two models of Microsoft Kinect: the
Kinect 360 or Kinect 1 (first generation) and the Kinect One or Kinect 2 (second
generation), as shown in Fig. 3. In this tutorial, we will focus on Kinect 360 due to its
low cost and using standard USB 2.0 to have a larger compatibility with embedded
systems actually applied to robotic applications.

Table1 brings the main differences between the two models of Kinect. For Point
Cloud data, the main difference is the resolution of depth camera, because with

(a) Kinect 360
(version 1).

(b) Kinect One
(version 2).

Fig. 3 Different versions of Microsoft Kinect

Robots Perception Through 3D Point Cloud Sensors 529

Table 1 Comparison between the generations of Microsoft Kinect

Feature Kinect 1 (360) Kinect 2 (one)

Color camera 640× 480 @30 fps 1920× 1080 @30 fps

Depth camera 320× 240 512× 424

Max depth distance ∼4.5M ∼4.5M

Min depth distance 40cm 50cm

Horizontal field of view 57◦ 70◦

Vertical field of view 43◦ 60◦

higher the resolution is obtained a more detailed perception. On the other hand, with
a higher resolution is needed transmit more information and this can overburden
network traffic (mainly over Wi-Fi) in a architecture with multiple ROS node.

The original Kinect was developed for the Xbox 360 console in November 2010
with model number 1414. The model 1473 now has a Kinect-for-Xbox and Kinect-
for-Windows version. Kinect 2 was presented in November 2013. Other differences
can be found between the models, such as the serial number assigned to the compo-
nents. More differences about Kinect models can be found in [15]. The version used
for this tutorial is a version for the Xbox 360 console, with model number 1473.
There may be some divergence from the methods presented in the chapter with use
of another model.

3.2 SR4000

Other sensors can be used to catch the Point Cloud data and one of them is the SR4000
sensor. The company Mesa Imaging that in 2014 was bought by Heptagon Company
initially developed this sensor. The company’s data can be observed in [16].

The SR4000 sensor was developed with a focus on industry. It uses the Time-of-
Flight (ToF) technology to get data, similar to what happens with the Kinect One
sensor. A sensor photo can be seen in Fig. 4.

The sensor settings are shown in Table2. Contrary to what happens with Kinect,
the SR4000 does not have an integrated RGB camera and so it gives only the Point
Cloud data, without the extra layer with RGB. In contrast, the degree of confidence
of Point Cloud of SR4000 sensor is exceeds that of the Kinect.

530 M.A.S. Teixeira et al.

Fig. 4 SR4000 sensor

Table 2 SR4000 data-sheet

Feature SR4000

Depth camera 176× 144

Max depth distance ∼5M

Min depth distance 30cm

Horizontal field of view Standard: 43.6◦. Wide: 69◦

Vertical field of view Standard: 34◦. Wide: 56◦

The 3D ToF SR4000 camera can be acquired with standard or wide viewpoint.
The model used during this tutorial is a wide model, although the steps that will be
presented can be also followed for the standard model.

4 Configuring the Environment

This section aims to prepare the work environment with the tools used during the
tutorial. The main tools used are:

• Ubuntu 14.04 LTS;
• Ros Indigo Igloo.

Robot Operating System (ROS) is a system with several tools and libraries to
program robots, linked with commercial components and robots, in order to assist
in writing software for robots [17]. The ROS allows compatibility with multiple
operating systems (to see if your system is compatible, see [18]). The recommended

Robots Perception Through 3D Point Cloud Sensors 531

platform to use the ROS is the Ubuntu, which is a Linux open source system [19] con-
sidered stable. By the time of this tutorial, the latest version of Ubuntu is 16.04 LTS.

The version of Ubuntu used in this tutorial is 14.04 LTS because this has the Long
Time Support (LTS) and it is recommended for Ros Indigo Igloo. The download of
Linux Ubuntu can be found in [20] and a complete tutorial on how to install the
system is shown in [21].

There are several versions of the ROS, beingKinetic Kame themost recent version
at the moment of writing this paper. However the version used in this tutorial is the
Ros Indigo Igloo that is very stable. A complete tutorial on how to install Ros Indigo
Igloo can be found in [22].

In this section will be divided into four subsections. In subsection Kinect, the
sensor Kinect will be presented, as well as the types of sensors contained therein.
In the subsection Install Kinect, will be presented the procedure needed to use the
Kinect with ROS. In subsection SR4000, the sensor SR4000 and its settings will be
displayed. In subsection Install SR4000, will be presented the methods allowing the
use of the sensor with ROS.

4.1 Install Kinect

The used system configurations are:

• Ubuntu 14.04 LTS;
• Ros Indigo Igloo;
• Kinect 360 or Kinect 1, model 1473.

Packages freenect-camera [23] and freenect-launch [24] are used togetherwith the
libfreenect-dev driver [25] for the purpose of obtaining the data provided by a Kinect
sensor. This package has some modifications of the openni_launch[26] package and
runs based on libfreenect driver. Some examples of how to install Kinect 1 can be
found on the official ROS website or on other sites such as [27, 28].

To install freenect-launch, first is need to install the libfreenect-dev library. For
this, open the console and type:

1 $ s u d o apt - g e t i n s t a l l l i b f r e e n e c t - d e v

Next freenect-camera package and freenect-launch package will be installed. To
install freenect-camera package type:

1 $ s u d o apt - g e t i n s t a l l ros - i n d i g o - f r e e n e c t - c a m e r a

To install freenect-launch package type:

1 $ s u d o apt - g e t i n s t a l l ros - i n d i g o - f r e e n e c t - l a u n c h

Now the environment is ready for the Kinect. The previous two steps can be
skipped if you run the following command to install all the packages for the freenect

532 M.A.S. Teixeira et al.

even not all packages will be used. This procedure is only recommended for systems
that do not worry use of space on the disk, the code is:

1 $ s u d o apt - g e t i n s t a l l ros - i n d i g o - f r e e n e c t *

To test if everything is working correctly, type the console command.

1 $ r o s l a u n c h f r e e n e c t _ l a u n c h f r e e n e c t . l a u n c h

It is possible to occur the following error.

1 $ N o d e v i c e s c o n n e c t e d w a i t i n g f o r d e v i c e s t o
c o n n e c t

This error can occur because the ROS not be allowed to read the USB ports in the
computer, to solve this problem just type:

1 $ s u d o c h m o d - R 7 7 7 / d e v

If the problempersists, it may be because theKinect is not connected to an external
power supply. The charger used for this tutorial is similar to that shown in Fig. 5.
When the sensor is incorporated in a robot, it becomes possible to obtain energy
through a 12V battery.

Starter again the freenect_launcher command and a multitude of topics should
appear, the topics for the camera always start with the initial /camera/.

1 $ r o s t o p i c l i s t

Fig. 5 Converter used to
connect the Kinect on the
computer

Robots Perception Through 3D Point Cloud Sensors 533

If everything is correct, the following topics will be appear:

1. /camera/depth/points: this topic provides a set of points in sensor_msgs/Point-
Cloud2 format. While using PointCloud2 format, this topic does not provide
additional information such as the color inRGB format. Figure6 bring an example
from the topic;

2. /camera/depth_registered/points: this topic has a message such as sensor_
msgs/PointCloud2 fused to RGB camera data, forming a set of data known in
literature to as RGB-D. An image can be seen in Fig. 7.

3. /camera/rgb/image_color: this topic contains amessage like sensor_msgs/Image
that it is an RGB image. An example of this topic can be seen in Fig. 8.

To facilitate this work, several copies of launch file based on the original can be
created. To do this, the original launch file is copied to the new catkin/srs folder.
First, to copy the launch file to the desired folder, enter the command:

Fig. 6 An example from the
topic /camera/depth/points

Fig. 7 An example from the
topic /camera/depth_
registered/points

534 M.A.S. Teixeira et al.

Fig. 8 An example from the topic /camera/rgb/ image_color

1 <launch >
2 <include file=" (find freenect_launch)/launch/freenect.launch">
3 <arg name="rgb_processing" value="true" />
4 <arg name="ir_processing" value="false" />
5 <arg name="depth_processing" value="true" />
6 <arg name="depth_registered_processing" value="true" />
7 <arg name="disparity_processing" value="false" />
8 <arg name="disparity_registered_processing" value="false" />
9 </include >

10 </launch >

Fig. 9 kinect.launch

1 $ c p / o p t / r o s / i n d i g o / s h a r e / f r e e n e c t _ l a u n c h / l a u n c h /
f r e e n e c t . l a u n c h ~ / c a t k i n _ w s / s r c / k i n e c t . l a u n c h

A copy of freenect.launch can now be found in∼/catkin_ws/src. The file is edited
to minimize the number of topics displayed. Thus, eliminating the unnecessary use
of circulating data on the network and reduce the number of processing.

The file can be edit using the editor of your choice, for example the graphical
environment gedit, and with a nano in console environment. To edit the file created,
type the following command (changing the word editor by the name of the desired
editor).

1 $ e d i t o r ~ / c a t k i n _ w s / s r c / k i n e c t . l a u n c h

Edit the file in order to look like the following in Fig. 9.
Finally, to run the launch file created, simply type the command:

1 $ r o s l a u n c h ~ / c a t k i n _ w s / s r c / k i n e c t . l a u n c h

Nowyoucanhave access to themain topics providedby freenectandKinect sensor.
From now on, we will deal with the acquisition and processing of data. Examples
involving data collection and maintenance will be primarily developed using the

Robots Perception Through 3D Point Cloud Sensors 535

Fig. 10 Rviz window with the topic /camera/depth/points

Matlab tool, except in cases where it requires the need to develop some code in C or
creating launcher’s, as it has already occurred.

The Rviz is used to easily view the topics. The Rviz is a ROS tool with many
interesting features such as the ability to view the outputs of a topic. The Rviz will be
fully explored during this tutorial. To start, let us open Rviz by typing at the terminal:

1 $ r v i z

For everything to work properly, make sure that this kinect.launch has been ini-
tialized and that the Kinect is plugged into the computer. Now to open Rviz, click
the Add button, followed by choosing the tab by topic in the floating opened window.
Within this tab, you can see all the currently existing topics in ROS. Click /camera
then /depth, then in /points, select the PointCloud2 and click OK. InGlobal Options,
click in fixed frame, and select the option camera_link. After all these steps are carried
out, the PCD from the Kinect is successfully displayed as shown in Fig. 10.

Repeat the procedure to the topics /camera/depth_registered/points and /camera/
rgb/image_color. Explore the features of Rviz, switch between topics displayed, and
change the size of the dots among other activities, in order to better understand the
tool.

4.2 Install SR4000

To use the camera 3D ToF SR4000, the libmesasr-dev-1.0.14-748.amd64 [29] driver
was used along with the ROS swissranger_camera package [30]. This ROS package
is no longer in the official repositories of ROS, therefore it will be available during

536 M.A.S. Teixeira et al.

Table 3 Difference between drivers

Name Recommended system

libmesasr-dev-1.0.14-747.i386.deb 32 bits

libmesasr-dev-1.0.14-748.amd64.deb 64 bits

the tutorial at GitHub. If you prefer the package cob_camera_sensors can be used,
a tutorial on how to install can be found in [31] and how to use it for the SR4000
sensor can be found in [32].

For this session, it is necessary to download a specific folder from GitHub. A
tutorial on how to download all files can be viewed at Background. To download the
full project folder, open a Linux terminal and navigate to the chosen place where the
package will be saved, then type:

1 $ g i t c l o n e h t t p s : / / g i t h u b . c o m / air - l a s c a /
r o s _ b o o k _ p o i n t _ c l o u d

Inside this new folder, a folder for each subsection of this chapter has been cre-
ated. All files required for installation and SR4000 camera setup are located in the
/Configuringtheenvironment/.

The first step is installing the driver responsible for making the communica-
tion between the computer and the camera. This driver has two versions, one for
32-bit and other for 64-bit computers. The two drivers are available on GitHub of
this tutorial. Table3 establishes the recommended system for each driver.

The driver can also be found in the manufacturer’s page: http://hptg.com/indus-
trial/. In this page, navigate to the SR4000 camera and select the Downloads tab.
These can be installed in two ways, one of them is through a double click on the file,
and the second is through the command line in Linux terminal. To install from the
command line, open the terminal and type:

1 $ s u d o d p k g - i l i b m e s a s r - dev - $ < v e r s i o n > $. d e b

This driver is required to perform the communication between the camera and
the computer. After install this driver, the next step is to install the package swiss-
ranger_camera, this package makes the conversion of information from the camera
in understandable topics by ROS.

The package swissranger_camera is not more present in the official repository,
but a copywith slightmodifications is within the folder /Configuringtheenvironment/
InstallSR4000 with swissranger_camera name. To install the package, open a Linux
terminal and navigate to the /Configuringtheenvironment/InstallSR4000 folder, then
enter the command:

1 $ c p - R s w i s s r a n g e r _ c a m e r a ~ / c a t k i n _ w s / s r c /

This command generates a copy of the folder swissranger_camera to catkin_ws/
src. Once this is done, the next step is to compile the file, in a terminal type:

http://hptg.com/indus-trial/
http://hptg.com/indus-trial/

Robots Perception Through 3D Point Cloud Sensors 537

Fig. 11 Rviz window with sensor information SR4000

1 $ c d ~ / c a t k i n _ w s /
2 $ c a t k i n _ m a k e

If an error occurs permission, type:

1 $ c d ~ / c a t k i n _ w s / s r c /
2 $ s u d o c h m o d - R 7 7 7 s w i s s r a n g e r _ c a m e r a

Re-enter the command:

1 $ c d ~ / c a t k i n _ w s /
2 $ c a t k i n _ m a k e

All packages required to use the camera SR4000 are already installed and config-
ured. The next step is to connect the camera to a PC by USB interface. Remembering
as with Kinect, the camera needs an external source to run. A tutorial on how to plug
the camera to the computer can be found in [33].

With the camera connected to the computer, run the package swissranger_camera
and verify that occurred as expected. For this open a Linux terminal and type:

1 $ r o s l a u n c h s w i s s r a n g e r _ c a m e r a s r _ u s b . l a u n c h

The Rviz window, as shown in Fig. 11, should be opened. In this window, you can
view the Point Cloud data in the center, and in the right the same Point Cloud data
image in gray scale. The package swissranger_camera does this conversion and it is
a user option.

The following error can occur:

1 $ [1 4 6 3 6 9 5 5 4 8 . 8 4 2 6 7 9 1 7 1] : E x c e p t i o n t h r o w n w h i l e
c o n n e c t i n g t o t h e c a m e r a : [S R : : o p e n] : F a i l e d t o
o p e n d e v i c e !

538 M.A.S. Teixeira et al.

This error may be caused by the fact of the sensor is not connected to power.
Checks on the back of the sensor if the light is flashing green. If it is flashing, it
means that the sensor is working properly. Make sure the USB cable is connected
in the right place. Another cause for this failure can be the fact that the user does
not have sufficient permission to access the camera interface. Entering the following
command can easily solve this problem:

1 $ s u d o c h m o d 7 7 7 / d e v / t t y *

This command gives reading and writing permission for all tty devices connected
to the computer. If you knowwhich device, just replace tty* by the correct port name.
Then, again run the command:

1 $ r o s l a u n c h s w i s s r a n g e r _ c a m e r a s r _ u s b . l a u n c h

If everything goes well, the camera is already in place and ready for use. To avoid
the hassle of giving permission to the device at a time, you can add the command
∼/.bashrc. In this way, every time you open a new Linux terminal, the permissions
will be given and the device will be ready for use. To do this, type the command:

1 $ s u d o < e d i t o r > ~ / . b a s h r c

With open .bashrc file add at the end the following code.

1 $ s u d o c h m o d 7 7 7 / d e v / t t y *

We will develop a new custom launcher. If you install the package on a computer
running Linux server, it interesting disables the opening of Rviz, since the system
does not have graphics support. To copy the original launcher to our /catkin_ws/src,
type:

1 $ c p ~ / c a t k i n _ w s / s r c / s w i s s r a n g e r _ c a m e r a / l a u n c h /
s r _ u s b . l a u n c h ~ / c a t k i n _ w s / s r c / s r 4 0 0 0 . l a u n c h

This command copies the original launch file to the folder /catkin_ws/src with
the name of sr4000.launch. This code in the file can be seen in Fig. 12. The code
responsible for the sensor opening is between the fourth and seventh line. The lines
from nine to eleven have the codes responsible for opening the Rviz, if you want to
open the Rviz just remove the lines. The new launch file will look like the Fig. 13.
To test the launch file, type:

1 $ r o s l a u n c h ~ / c a t k i n _ w s / s r c / s r 4 0 0 0 . l a u n c h

In a new terminal, type:

1 $ r o s t o p i c l i s t

Note that several topics were created. It is noteworthy that the SR4000 camera
only has the type sensor 3D ToF. The content of other topics are nothing more than
the Point Cloud data with some kind of processing. Some of the topics deserve to be
highlighted, by providing interesting content and they are:

Robots Perception Through 3D Point Cloud Sensors 539

1 <!-- -*- mode: XML -*- -->
2

3 <launch >
4 <node pkg="swissranger_camera" type="swissranger_camera" name="swissranger"
5 output="screen" respawn="false">
6 <param name="auto_exposure" value="1" />
7 </node >
8

9 <!-- ROS visualizer -->
10 <node name="rviz" pkg="rviz" type="rviz" args="-d (find swissranger_camera

)/cfg/swissranger.rviz" />
11

12 </launch >

Fig. 12 sr_usb.launch

1 <launch >
2 <node pkg="swissranger_camera" type="swissranger_camera" name="swissranger"
3 output="screen" respawn="false">
4 <param name="auto_exposure" value="1" />
5 </node >
6 </launch >

Fig. 13 sr4000.launch

1. /swissranger/pointcloud_raw: this topic provides a message of type sensor_
msgs/PointCloud that can be considered one of the main topics. All other infor-
mation are processed from the Point Cloud data present in this topic;

2. /swissranger/pointcloud2_raw: this topic gives a message from sensor_msgs/
PointCloud2. The only difference between this topic and /swissranger/point-
cloud_raw is that this topic is in PointCloud2 format. In some situations, it is
necessary to use a message such as PointCloud1 and other PointCloud2 of mes-
sage type, having two topics to avoid the need for possible conversions. An exam-
ple of an image of both threads can be seen in Fig. 14;

Fig. 14 PointCloud2.
topic: /swissranger/point-
cloud2_raw message of
type: sensor_msgs/
PointCloud2

540 M.A.S. Teixeira et al.

Fig. 15 Image. topic: /swis-
sranger/distance/image_raw
message of type:
sensor_msgs/Image

3. /swissranger/distance/image_raw: this topic brings a message of sensor_msgs/
Image. This is a conversion of the Point Cloud data in to gray-scale, leaving dark
objects near and clear objects away. An example can be seen in Fig. 15;

4. /swissranger/confidence/image_raw: this topic provides a message of sen-
sor_msgs/Image. This topic is processed from the Point Cloud data. Jerky move-
ments leave a trail on the image, recording a movement. An example can be seen
in Fig. 16;

5. /swissranger/intensity/image_raw: This topic gives a message of sensor_msgs/
Image and it is processed from the Point Cloud data. This topic brings the image
intensity. A figure of this topic can be found in Fig. 17.

Fig. 16 Confidence. topic:
/swissranger/confidence/
image_raw message of type:
sensor_msgs/Image

Robots Perception Through 3D Point Cloud Sensors 541

5 Examples of Point Cloud Processing

This section aims to demonstrate and explain possible processing techniques to be
performed using the SR4000 sensor (the techniques in this section can be executed
also using Kinect). Matlab will be used to perform all processing and to view the
results. The results can also be viewed on Rviz if desired.

5.1 Commands in Matlab

This subsection aims to bring the main commands used during this chapter. The
commands explained here are from Matlab R2015a tool, conflicts can be appear if
the commands are used with other versions. First, the main commands involving
the PCL in Matlab will be explained. The methodology will be used as follows:
First, the explanation of the command, and then the command is used. The following
command closes the open connection to the ROS, if one is active.

1 r o s s h u t d o w n ;

The next command opens a communication with the ROS, providing information
such as the content of topics.

1 r o s i n i t ;

The command rossubscriber allows you to take the topic of reference, the variable
topic now becomes the chosen type, having the same format.

1 t o p i c = r o s s u b s c r i b e r (’ T o p i c N a m e ’) ;

The value variable receives the next data read by the topic in the message for-
mat, in the case of Point Cloud data, the format is sensor_msgs/PointCloud or
sensor_msgs/PointCloud2.

Fig. 17 Intensity. topic:
/swissranger/intensity/
image_raw message of type:
sensor_msgs/Image

542 M.A.S. Teixeira et al.

1 v a l u e = r e c e i v e (t o p i c) ;

The command readXYZ transfer for the xyzData only the coordinates of each point
contained in the Point Cloud data. This command is extremely important and widely
used, because without it, working with the message type sensor_msgs/PointCloud is
difficult enough.

1 x y z D a t a = r e a d X Y Z (p c l o u d) ;

The command scatter3 displays a picture containing the Point Cloud data, and
you can browse it in Matlab without the need to use the Rviz. This command only
works with variables of type sensor_msgs/PointCloud2.

1 s c a t t e r 3 (v a l u e) ;

Next command also enables the visualization of Point Cloud data in Matlab, but
different from what happens with the scatter3, this command allows you to view
data in XYZ matrix format.

1 s h o w P o i n t C l o u d (x y z D a t a) ;

The command rospublisher creates a variable that can be seen in the ROS. You
should specify the topic name and type of message, such as:
RosPub = rospublisher(’/pcl’,’sensor_msgs/PointCloud’).

1 R o s P u b = r o s p u b l i s h e r (’ T o p i c N a m e T ’ , ’ M e s s a g e T y p e ’)
;

Next command allows creating a variable the same type of existing message ROS,
simply specify the message name, such as:

1 m s g = r o s m e s s a g e (’ R o s P u b ’) ;

Also is possible to specify the message type, as:

1 m s g = r o s m e s s a g e (’ s e n s o r \ _ m s g s / P o i n t C l o u d ’)

Where the variable msg become a variable of type sensor_msgs/PointCloud.
It is also possible to place a sample in place on the variable name, for example:

1 m s g = r o s m e s s a g e (’ n a m e o f m e s s a g e ’) ;

The following command sends the contents of the variable created for the topic
created. After this command, it becomes possible to verify the ROS data sent, as in
Rviz if the format is compatible with the tool. An example use of this command is
send(RosPub,msg) that is being sent to the topic RosPub the existing content in the
msg variable.

1 s e n d (t o p i c c r e a t e d , m s g c r e a t e d) ;

Robots Perception Through 3D Point Cloud Sensors 543

5.2 ROS Subscriber with Matlab

The next step is the data collect and process step, as mentioning earlier, the tool used
for this isMatlab.Matlab allows direct communication with the Ros, and it facilitates
data post processing. First, to collect and display the results of Kinect sensor, open
Matlab and type the command like the Fig. 18.

The code will be briefly explained. The command in the first line closes the con-
nection to the ROS, if any old connection is still alive. In line two, a new connection
with the ROS is made, it is through this command becomes possible to visualize ROS
in Matlab. In line three the topic /camera/depth/points is transferred to the variable
topic, where it can be handled the same way as a topic. In line four, the variable
pcloud is receiving the next value read by the variable topic, in this case the variable
pcloud if has a variable of type sensor_msgs/PointCloud2 specifies the ROS. On line
five displays an image Pcl obtained from the sensor, the image is similar to the view
in Fig. 19.

The same command can be used for other messages from the Kinect, with slight
changes in time to display images. The codes for the data collection of topics /camera/
depth_registered/points and /camera/rgb/image_color can be seen in Fig. 20. The
result can be seen in Fig. 21. Note that different from what it has happened with
the topic /camera/depth/points, this figure has color. It is characteristic of Point-
Cloud2 and it allows adding a dimension in the data matrix containing any type of
information, such as color, which is the case.

The process changes to obtain data from the topic /camera/rgb/image_color, this is
because the message type is different. The message now is type sensor_msgs/Image.
One more step needs to be used to convert the collected message topic in an image
understandable by Matlab. The code with the explanations is show in Fig. 22, the
Fig. 23 brings the result.

The procedure for get the Point Cloud data inMatlab for sensor SR4000 is similar
to that used for the Kinect, because it is the same message type in ROS. The code
for this procedure can be seen in Fig. 24, the Fig. 25 brings the result.

For the data of the topics /swissranger/distance/image_ra, /swissranger/confi-
dence/image_raw and /swissranger/intensity/image_raw the procedure is the same
because all topics are the same type of message, which is the sensor_msgs/Image.
The code in Matlab to get the message of this type was introduced. Please see the
section or the package available on GitHub for this section.

It is desirable that the reader already knows how to initialize the Kinect sensor
or sensor SR4000, depending on which sensor the reader intends to use. The user

1 rosshutdown;
2 rosinit;
3 topic = rossubscriber(/camera/depth/points);
4 pcloud = receive(topic);
5 scatter3(pcloud);

Fig. 18 Command in Matlab to get the Point Cloud data from the topic /camera/depth/points

544 M.A.S. Teixeira et al.

Fig. 19 Viewer of Point Cloud from topic /camera/depth/points in Matlab

1 %Close the ROS communication
2 rosshutdown;
3 %Open the ROS communication
4 rosinit;
5 %transfer the topic for the variable depth_registered
6 depth_registered = rossubscriber(/camera/depth_registered/points);
7 %Receives the value of the topic
8 pcloud = receive(depth_registered);
9 %Displays data

10 scatter3(pcloud);

Fig. 20 Command in Matlab to get the Point Cloud data from the topic /camera/
depth_registered/points

must already know how to use Rviz to view the topics, know the difference between
the types of messages provided by the sensors and know which topic belong to each
sensor, and know how to get data in Matlab. If any of these ideas is not clear, please
review the corresponding section.

5.3 ROS Publishing with Matlab

This subsection aims to create a function that converts the array in XYZ format in a
message of type sensor_msgs/PointCloud. The function will be developed in Matlab

Robots Perception Through 3D Point Cloud Sensors 545

Fig. 21 Viewer of Point Cloud from topic /camera/depth_registered/points in Matlab

1 %Close the ROS communication
2 rosshutdown;
3 %Open the ROS communication
4 rosinit;
5 %transfer the topic for the variable image_color
6 image_color = rossubscriber(/camera/rgb/image_color);
7 %Receives the value of the topic
8 sensor_msgs_Image = receive(image_color);
9 %Read the Image data

10 imageFormatted = readImage(sensor_msgs_Image);
11 %View figure
12 imshow(imageFormatted);

Fig. 22 Command in Matlab to get the image from the topic /camera/rgb/image_color

Fig. 23 Viewer of image from topic /camera/rgb/image_color in Matlab

546 M.A.S. Teixeira et al.

1 %Close the ROS communication
2 rosshutdown;
3 %Open the ROS communication
4 rosinit;
5 %transfer the topic for the variable pointcloud_raw
6 pointcloud = rossubscriber(/swissranger/pointcloud2_raw);
7 %Receives the value of the topic
8 pcloud = receive(pointcloud);
9 %Displays data

10 scatter3(pcloud);

Fig. 24 Command in Matlab to get the Point Cloud data from the topic of SR4000 /swissranger/-
pointcloud_raw

Fig. 25 Viewer of Point Cloud from topic of SR4000 /swissranger/pointcloud_raw in Matlab

and it will be used for other experiments, so that the result of the experiments is
visible in Rviz.

For the experiments and tests presented in this subsection, SR4000 sensor shall
be used. First the function code will be presented in Fig. 26 after an explanation of
the code and how to use the function. An explanation of this function is given in
its header. It has as input the matrix containing the points on the XYZ format, the
desired name for the topic in ROS, the name of the reference and the time to leave
visible the topic.

Let us explanation about the code. Line 10 defines the function name, as well
as the input and output attributes. This function will have as output a message such
sensor_msgs/PointCloud containing conversion made of XYZ for the message. This
output is interesting in other situations.

Robots Perception Through 3D Point Cloud Sensors 547

1 %This function convert a NX3 array dimension in a message
2 %of type sensor_msgs / PointCloud understandable in ROS.
3 %xyz = Nx3 matrix:
4 %Nx1 = X;
5 %Nx2 = Y;
6 %Nx3 = Z;
7 % TopicName = topic name in ROS.
8 % FrameName = Name of reference , examples: map , World.
9 %Time = Time the topic had been visible.

10 function msg = XYZ_to_sensor_msgs_PointCloud (xyz ,TopicName ,FrameName ,Time)
11

12 xyzvalid = xyz(~isnan(xyz(:,1)) ,:);
13 PCL1mensage = rosmessage(geometry_msgs/Point32);
14 for i=1: size(xyzvalid ,1)
15 PCL1mensage(i).X = xyzvalid(i,1);
16 PCL1mensage(i).Y = xyzvalid(i,2);
17 PCL1mensage(i).Z = xyzvalid(i,3);
18 end
19

20 msg = rosmessage(sensor_msgs/PointCloud);
21 msg.Header.FrameId = FrameName;
22 msg.Points = PCL1mensage;
23 pub = rospublisher(strcat(/ ,TopicName), sensor_msgs/PointCloud);
24 send(pub ,msg);
25 pause(Time);
26 end

Fig. 26 Function XYZ_to_sensor_msgs_PointCloud

Line 12 removes undesirable values such as NaN, from the variable XYZ. These
values can arise when using the command readXYZ and a message of type sen-
sor_msgs/PointCloud2. The sensor possessed a defined resolution, but if some points
are not unavailable during the time of capture of information, the sensor returnsNaN.
This situation is not desirable since the array typically has a too high size, discarding
these points reduces the processing cost.

Line 13 creates a message of type geometry_msgs/Point32, to be able post a
message of type sensor_msgs/PointCloud it is necessary convert each point of XYZ
in a message type geometry_msgs/Point32, which is the activity of this function.

The Lines 14 to 18 create a repeating loop. This loop is intended to go through
the whole XYZ array and convert each set of points in a message type geome-
try_msgs/Point32.

Line 20 creates the message type sensor_msgs/PointCloud, this message will be
published in ROS and it will be the returning message. Line 21 defines the frame
according to the name sent to the function. Line 22 transfers the created variable
PCL1mensage of type geometry_msgs/Point32 for the message created in line 20.

Line 23 creates the visible topic in ROS with the name you specify when calling
the function. The topic is the type sensor_msgs/PointCloud. The 24 line sends the
created message to the topic, at this time the information processed by the function
will be available in ROS.

Line 25 breaks code execution. Refers to the desired pause time for the life topic.
This pause is necessary because as the topic has been created in the function when
the function end the topic die. A change in the code can be done if desired, by simply
remove the lines 23:24 and post the topic in your code.

548 M.A.S. Teixeira et al.

Fig. 27 Point Cloud data obtained of the topic /swissranger/pointcloud2_raw

Wewill test the created function.The function canbeobtained through the package
available on GitHub, or just copying the text previously provided in a text file, and
save itwithXYZ_to_sensor_msgs_PointCloud.m name in yourworkspace.With open
Matlab and function saved in your workspace and being recognized by Matlab, type
in the command window:

1 r o s s h u t d o w n ;
2 r o s i n i t ;

These commands can close any open communication with the ROS, and open a
new statement. We now get the Point Cloud data through a topic of ROS, for this
type:

1 t o p i c = r o s s u b s c r i b e r (’ / s w i s s r a n g e r / p o i n t c l o u d 2 \
_ r a w ’) ;

2 p c l o u d = r e c e i v e (t o p i c) ;

Replacing /swissranger/pointcloud2_raw by the desired topic, if you are using
the sensor SR4000 any changes need to do. Let us see the PCL before processing,
for this type the following command. A window appears with the PCL, similar to
Fig. 27.

1 s c a t t e r 3 (p c l o u d) ;

The next step is the extraction of the Point Cloud data points, for that enter:

1 x y z = r e a d X Y Z (p c l o u d) ;

Robots Perception Through 3D Point Cloud Sensors 549

Fig. 28 Point Cloud data created with the function XYZ_to_sensor_msgs_PointCloud and pub-
lished on the topic /PCL

The variable XYZ now has a NX3 array containing all the Point Cloud data points.
N refers to the resolution of the sensor by multiplying the number of lines multiplied
by columns. In the case of the sensor SR4000, N is equal to 176× 144 resulting in
25344 lines containing the XYZ data in each line.

The next step is to call the function for this type:

1 X Y Z _ t o _ s e n s o r _ m s g s _ P o i n t C l o u d (xyz , ’ P C L ’ , ’ m a p ’
, 5 0 0) ;

This command will call the function XYZ_to_sensor_msgs_PointCloud sending
our variableXYZ. The name set for the new topic is PCL and the desired orientation is
in reference to the map, lasting 500s. The choice of high duration time fact becomes
possible to display the topic in Rviz. Open Rviz, add the topic and change the
orientation of the application to map, something similar to Fig. 28 will appear.

In this subsection, read and re-create the Point Cloud data without any change
steps will be carried out. This methodology was used to illustrate the operation of
the function. In the next subsections, Point Cloud data will be modified before being
published.

5.4 Creating Markers

The Markers are a type of existing messages in ROS. It can be found isolated in a
single Marker as with message visualization_msgs/Marker [34] or a vector contain-
ing multiple Markers as with visualization_msgs/MarkerArray message [35]. The
Markers can be viewed in Rviz as with Point Cloud data [36], the conversion of
the Point Cloud data in Markers is very useful for robotics, mainly on the creation

550 M.A.S. Teixeira et al.

1 %create a marker
2 function [marker] = marker(x,y,z,r,g,b,type ,scale ,id,frame)
3

4 %Create a maker
5 marker = rosmessage(visualization_msgs/Marker);
6

7 %Set the type of the marker
8 marker.Type = type;
9

10 % Set the pose of the marker.
11 marker.Pose.Position.X = x;
12 marker.Pose.Position.Y = y;
13 marker.Pose.Position.Z = z;
14

15 %set the orientation of the marker
16 marker.Pose.Orientation.X = 0.0;
17 marker.Pose.Orientation.Y = 0.0;
18 marker.Pose.Orientation.Z = 0.0;
19 marker.Pose.Orientation.W = 1.0;
20

21 % Set the scale of the marker
22 marker.Scale.X = scale;
23 marker.Scale.Y = scale;
24 marker.Scale.Z = scale;
25

26 % Set a RGB color of the marker
27 marker.Color.R = r;
28 marker.Color.G = g;
29 marker.Color.B = b;
30

31 % Set the transparency
32 marker.Color.A = 1;
33

34 % Set the frame
35 marker.Header.FrameId = frame;
36

37 % Marker id
38 marker.Id = id;
39

40 end

Fig. 29 Function marker

of maps, the OctoMap [37] for example, can be considered a set of Markers. This
subsection is not intended to create aOctoMap, but to show the conversion of a Point
Cloud data in Markers.

We will create two functions in this subsection, a function to create an isolated
Maker and a function to convert Point Cloud data into Makers. It is interesting to
use two functions for ease of learning, as with an only function, the code would
become extensive. Let’s start with the code needed to create a single Maker as shown
in Fig. 29.

The function is annotated and explanatory. The result of the function is a single
Marker. The inputs function are x, y, z, r, g, b, type, side, id and frame referring:

1. x, y, z: Refers to the position of Marker in the case of a conversion of Point Cloud
data refers to existing data in the XYZ;

2. r, g, b: Refers to the color desired for the market, this color is in the RGB format;
3. type: Refers to the type of marker. The Marker can take various formats, the

Table4 brings the value of the variable type must assume for conversion to Point
Cloud data, together with the format of Marker;

Robots Perception Through 3D Point Cloud Sensors 551

Table 4 The variable type
value and corresponding
format

Type Format

0 Arrows

1 Cube

2 Sphere

3 Cylinder

4. scale: Refers to Marker size;
5. id: It refers to the number id theMarker assume, this number is important because

it is possible to modify a Marker already published in ROS;
6. frame: Refers to the orientation of the maker, the same type of reference used to

create a PointCloud.

Let us now create a function that transforms our XYZ data in Markers. Due to the
large number of parameters used to create the Maker, our function worked with fixed
values for color. The developed function is show in Fig. 30. This function creates
a message of type visualization_msgs/MarkerArray and converts each point of the
XYZ array in a Marker, and then adds the Marker into the created message. Finally,
the message publishes the result. The input parameters are XYZ, topicName, type,
scale, frame, numberPoints and time to refer you:

1. xyz: Refers to the coordinated input matrix containing type X, Y and Z;
2. topicName: Refers to the topic name published in ROS;
3. type: It refers to the type Marker the same as found in Table4;
4. scale: Refers to Marker size;
5. frame: Refers to the reference point;
6. numberPoints: Refers to the number that will be converted from XYZ data. As

the Marker occupies a size larger than a point of Point Cloud, it is not necessary
to convert all elements to Marker.

7. time: Refers to the time the topic is visible on the ROS.

Go to the experiment, copy the contents of the function and paste into a text document
in your workspace with convertPCLtoMarkersROS name, make sure it is set on your
path in Matlab. First, we have to get a xyz matrix for this type:

1 r o s s h u t d o w n ;
2 r o s i n i t ;
3 t o p i c = r o s s u b s c r i b e r (’ T o p i c _ N a m e _ P o i n t C l o u d 2 ’) ;
4 p c l o u d = r e c e i v e (t o p i c) ;
5 x y z = r e a d X Y Z (p c l o u d) ;

Now just call the function, enter the following code, changing the parameters if
you want:

1 c o n v e r t P C L t o M a r k e r s R O S (xyz , ’ M a r k e r s ’ , 1 , 0 . 0 8 , ’ m a p ’ ,
1 0 0 0 , 1 0) ;

Figure31 brings converted into a Point Cloud to Markers with different possible
types. The number of points used in the tests was 1500 and size of Markers was 0.08.

552 M.A.S. Teixeira et al.

1 % responsible function to create a Marker Array
2 function [Markers] = convertPCLtoMarkersROS(xyz ,topicName , type , scale , frame

, numberPoints ,time)
3

4 %Create topic
5 pub = rospublisher(strcat(/ ,topicName), visualization_msgs/MarkerArray);
6

7 %Creates MakeArray
8 markers = rosmessage(visualization_msgs/MarkerArray);
9

10 %Sets the loop jump
11 jump = round(size(xyz ,1)/numberPoints);
12

13 %Loop responsible for creating the Markers
14 contMarker = 1;
15 for i=1: jump:size(xyz ,1)
16 points(contMarker) = marker(xyz(i,1),xyz(i,2),xyz(i,3) ,1,1,1,type ,scale ,

contMarker ,frame);
17 contMarker = contMarker +1;
18 end
19

20 %Pass the vector for Markers
21 markers.Markers = points;
22

23 %Sends ROS
24 send(pub ,markers);
25

26 %Active time
27 pause(time);
28 end

Fig. 30 Function convertPCLtoMarkersROS

5.5 Filter XYZ Data

In some situations, we need parts of the Point Cloud data. This can happen when we
want to remove a wall for example, or when we want to work with only the nearest
points. In mobile robotics PCL can be used to obtain information about the distance
of an object and for that, you need to filter the PCL to decrease the noise number,
for example.

This subsection will bring developed a function in Matlab with of limiting the
Point Cloud data in one of the axes XYZ, or even in all three axes simultaneously.
Following the methodology already used in the chapter, it will first be presented to
function, followed by explanations of their development and code examples and then
actual use. The Rviz tool will be used to observe the results, for it will be used the
previously created function XYZ_to_sensor_msgs_PointCloud.

To develop the filter the find [38] command will be used. The find command lets
you search in an array indexes that satisfaction the condition desired. A filter sample
in the X-axis of a matrix on XYZ format can be seen in Fig. 32. Line 16 takes the all
indexes of matrix xyz that satisfy the condition. The condition is to have X between
[-1: 1]. In this way, I cut my Point Cloud data in the X-axis leaving a total of two
meters, one meter to the right and one meter left side of the center of the sensor. An
example of this code can be seen in Fig. 33.

The same filter can be used in any of the axes. The Y-axis is responsible for height,
having zero as the center respect to the sensor, the above of center it has a positive

Robots Perception Through 3D Point Cloud Sensors 553

(a) PCL used in this experiment.

(b) Conversion of PCL in Markers
of type Arrows.

(c) Conversion of PCL in Markers
of type Cube.

(d) Conversion of PCL in Markers
of type Sphere.

(e) Conversion of PCL in Markers
of type Cylinder.

Fig. 31 Rviz window with sensor information SR4000

554 M.A.S. Teixeira et al.

1 %ROS start
2 rosshutdown
3 rosinit(localhost)
4 %Get PCL
5 topic = rossubscriber(/swissranger/pointcloud2_raw);
6 pointcloud = receive(topic);
7 %Convert to XYZ matrix
8 xyz = readXYZ(pointcloud);
9 %Sets the filter size

10 xFilter = 1;
11 %Apply filter
12 index = find(xyz(:,1) >(xFilter *-1) & xyz(:,1)<xFilter);
13 %Create a new XYZ matrix
14 xyzFiltred = xyz(index , 1:3);
15 %Displays the result in Rviz
16 XYZ_to_sensor_msgs_PointCloud (xyzFiltred , xFilter , map ,10);

Fig. 32 XFilter

(a) Original PCL. (b) Filtered PCL

Fig. 33 Filter on the X axis

1 %ROS start
2 rosshutdown
3 rosinit(localhost)
4 %Get PCL
5 topic = rossubscriber(/swissranger/pointcloud2_raw);
6 pointcloud = receive(topic);
7 %Convert to XYZ matrix
8 xyz = readXYZ(pointcloud);
9 %Sets the filter size

10 yFilter = 1;
11 %Apply filter
12 index = find(xyz(:,2) >(yFilter *-1) & xyz(:,2)<yFilter);
13 %Create a new XYZ matrix
14 xyzFiltred = xyz(index , 1:3);
15 %Displays the result in Rviz
16 XYZ_to_sensor_msgs_PointCloud (xyzFiltred , yFilter , map ,10);

Fig. 34 YFilter

value and below the center is a negative value. The following code performs a filter
on the Y-axis can be seen in Fig. 34 and its result can be seen in Fig. 35.

Robots Perception Through 3D Point Cloud Sensors 555

(a) Original PCL. (b) Filtered PCL.

Fig. 35 Filter on the Y axis

1 %ROS start
2 rosshutdown
3 rosinit(localhost)
4

5 %Get PCL
6 topic = rossubscriber(/swissranger/pointcloud2_raw);
7 pointcloud = receive(topic);
8

9 %Convert to XYZ matrix
10 xyz = readXYZ(pointcloud);
11

12 %Sets the filter size
13 zFilter = 2;
14

15 %Apply filter
16 index = find(xyz(:,3)<zFilter);
17

18 %Create a new XYZ matrix
19 xyzFiltred = xyz(index , 1:3);
20

21 %Displays the result in Rviz
22 XYZ_to_sensor_msgs_PointCloud (xyzFiltred , zFilter , map ,10);

Fig. 36 ZFilter

The Z-axis is responsible for the distance from the object to the sensor. The
SR4000 sensor that is being used for the test has a maximum distance range of five
meters. Limit the Z-axis is important because eliminate any unwanted noise. Most
robots are designed to operate at a distance not far from your body, so you do not
need to work with all the Point Cloud data in these cases. The code for limiting the
Z axis can be seen in Fig. 36, the result of this code can be seen in Fig. 37.

It is also possible to develop a filter on all three axes. The following code shows
an example of how to do in Fig. 38.

556 M.A.S. Teixeira et al.

(a) Original PCL. (b) Filtered PCL.

Fig. 37 Filter on the Z axis

1 %ROS start
2 rosshutdown
3 rosinit(localhost)
4

5 %Get PCL
6 topic = rossubscriber(/swissranger/pointcloud2_raw);
7 pointcloud = receive(topic);
8

9 %Convert to XYZ matrix
10 xyz = readXYZ(pointcloud);
11

12 %Sets the filter size
13 xFilter = 0.5;
14 yFilter = 1;
15 zFilter = 1.8;
16

17 %Apply filter
18 index = find(xyz(:,1) >(xFilter *-1) & xyz(:,1)<xFilter & xyz(:,2) >(yFilter *-1)

& xyz(:,2)<yFilter & xyz(:,3)<zFilter);
19

20 %Create a new XYZ matrix
21 xyzFiltred = xyz(index , 1:3);
22

23 %Displays the result in Rviz
24 XYZ_to_sensor_msgs_PointCloud (xyzFiltred , xyzFilter , map ,10);

Fig. 38 XYZFilter

This code was defined that the new Point Cloud data told with a depth of 1.8m,
width of 0.5m to the left and right of the center and the height of 1m above and
below the center. The result of this code can be seen in Fig. 39.

5.6 Transformation

The sensor data need to be adjusted when used in robots. It is necessary that data be
provided in relation to the center robot, and the robot turn to be converted in relation

Robots Perception Through 3D Point Cloud Sensors 557

(a) Original PCD. (b) Filtered PCD.

(c) Original PCD view from the top. (d) Filtered PCD view from the top.

(e) Original PCD side view. (f) Filtered PCD side view.

Fig. 39 Filter on the Z axis

558 M.A.S. Teixeira et al.

1 %Receives tf
2 tftree = rostf;
3 pause (1);
4 %Creates a reference sr4000_link
5 tfSR4000 = rosmessage(geometry_msgs/TransformStamped);
6 tfSR4000.ChildFrameId = sr4000_link ;
7 tfSR4000.Header.FrameId = base_link ;
8 %Sets the distance between the robot and the sensor
9 tfSR4000.Transform.Translation.X = 0;

10 tfSR4000.Transform.Translation.Y = 1.5;
11 tfSR4000.Transform.Translation.Z = 0;
12 %Send the tf for ROS
13 tfSR4000.Header.Stamp = rostime(now);
14 sendTransform(tftree , tfSR4000)
15 pause (1);
16 %Creates a reference kinect_link
17 tfKinect = rosmessage(geometry_msgs/TransformStamped);
18 tfKinect.ChildFrameId = kinect_link ;
19 tfKinect.Header.FrameId = base_link ;
20 %Sets the distance between the robot and the sensor
21 tfKinect.Transform.Translation.X = 0;
22 tfKinect.Transform.Translation.Y = -1.5;
23 tfKinect.Transform.Translation.Z = 0;
24 %Send the tf for ROS
25 tfKinect.Header.Stamp = rostime(now);
26 sendTransform(tftree , tfKinect)
27 pause (1);

Fig. 40 createTF

to its position on the map. To make these adjustments, the ROS has a set of tools
called tf. These settings are nothing more than geometric calculations, converting the
position and the sensor rotation relative to the robot.

In this subsection, we will initialize the two cameras, Kinect and SR4000, and
add them to the same robot with a stipulated distance between them. First we need to
define all the transformations, in the center of the robot will be the name base_link,
the sensorKinect the nameKinect_link and the SR4000 sensor the name sr4000_link.
The code to create these transformations can be seen in Fig. 40.

The distance from the sensor SR4000 this sitting as +1.5m from the center of the
robot on the Y axis, i.e., above the center, while the Kinect sensor is sitting as−1.5m
from the center of the robot on the Y axis, i.e. below the center. You can view the
changes by rqt_tf_tree tool for that type in your terminal the command:

1 r o s r u n r q t _ t f _ t r e e r q t _ t f _ t r e e

A window as shown in Fig. 41 can be observed. Note that the two sensors are
connected to base_link, which is the center of the robot.

The next step is the start of the two sensors, for these start two launchers created
by typing:

1 r o s l a u n c h ~ / c a t k i n _ w s / s r c / k i n e c t . l a u n c h
2 r o s l a u n c h ~ / c a t k i n _ w s / s r c / s r 4 0 0 0 . l a u n c h

To apply the transformation, we must first change the reference sensor for refer-
ence to create, and then apply the transformation. This can be seen in Fig. 42. The
result of code can be observed in Fig. 43.

Robots Perception Through 3D Point Cloud Sensors 559

Fig. 41 Rqt tf tree

1 %ROS start
2 rosshutdown
3 rosinit(localhost)
4 %Creates the tf
5 criatTF ;
6 pause (1);
7 % Read the topics
8 kinect = rossubscriber(/camera/depth/points);
9 sr4000 = rossubscriber(/swissranger/pointcloud2_raw);

10 %Create new topics
11 pub = rospublisher(Kinect , sensor_msgs/PointCloud2);
12 pub2 = rospublisher(sr4000 , sensor_msgs/PointCloud2);
13

14 while true
15 %takes the Point Cloud and modify your reference
16 pointcloudKinect = receive(kinect);
17 pointcloudKinect.Header.FrameId = kinect_link ;
18 % Applies tf and publishes
19 pointcloudKinect2 = transform(tftree , base_link , pointcloudKinect);
20 send(pub ,pointcloudKinect2);
21 %takes the Point Cloud and modify your reference
22 pointcloudSR4000 = receive(sr4000);
23 pointcloudSR4000.Header.FrameId = sr4000_link ;
24 % Applies tf and publishes
25 pointcloudSR40002 = transform(tftree , base_link , pointcloudSR4000);
26 send(pub2 ,pointcloudSR40002);
27 pause (0.5);
28 end

Fig. 42 Apply TF

6 Conclusion

The Point Cloud can be used for various tasks in mobile robotics, for example for
mapping, for SLAMand evenwith the location reference. ThePointCloud can also be
used to identify the distance of objects or object recognition. However, for advanced
work with the Point Cloud, youmust first be able to use it in simple jobs. This tutorial
brought a set of techniques and tools that allow the reader to start its activities with

560 M.A.S. Teixeira et al.

Fig. 43 Transformation applied to Point Cloud data seen in RVIZ

the Point Cloud using Matlab. At the end, the reader will know everything you need
about the Point Cloud.

References

1. Oliver, A., S. Kang, B.C. Wünsche, and B. MacDonald. 2012. Using the kinect as a naviga-
tion sensor for mobile robotics. In Proceedings of the 27th conference on image and vision
computing New Zealand, CM, 509–514.

2. Endres, F., J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. 2012. An evaluation
of the RGB-d slam system. In 2012 IEEE international conference on robotics and automation
(ICRA), 1691–1696. New York: IEEE.

3. Whelan, T., M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. 2012. Kintin-
uous: Spatially extended kinectfusion.

4. Whelan, T., M. Kaess, J.J. Leonard, and J. McDonald. 2013. Deformation-based loop closure
for large scale dense RGB-D slam. In 2013 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 548–555. New York: IEEE.

5. Wallace, L., A. Lucieer, Z. Malenovskỳ, D. Turner, and P. Vopěnka. 2016. Assessment of forest
structure using two UAV techniques: A comparison of airborne laser scanning and structure
from motion (SFM) point clouds. Forests 7 (3): 62.

6. Wang, Q., L. Wu, Z. Xu, H. Tang, R. Wang, and F. Li. 2014. A progressive morphological filter
for point cloud extracted from UAV images. In IEEE international geoscience and remote
sensing symposium (IGARSS), 2014, 2023–2026. New York: IEEE.

7. Nagai, M., T. Chen, R. Shibasaki, H. Kumagai, and A. Ahmed. 2009. UAV-borne 3-d mapping
system by multisensor integration. IEEE Transactions on Geoscience and Remote Sensing 47
(3): 701–708.

8. Tao, W., Y. Lei, and P. Mooney. 2011. Dense point cloud extraction fromUAV captured images
in forest area. In 2011 IEEE international conference on spatial data mining and geographical
knowledge services (ICSDM), 389–392. New York: IEEE.

Robots Perception Through 3D Point Cloud Sensors 561

9. Matlab, “Matlab”. 2016. http://www.mathworks.com/products/matlab/.
10. GitHub. 2016. Installation from GitHub on debian. https://github.com/Singular/Sources/wiki/

Installation-from-GitHub-on-Debian.
11. PCL. 2016. What is PCL? Abr. http://pointclouds.org/about/.
12. Li, L. 2014. Time-of-flight camera–an introduction, Technical White Paper.
13. PCL. 2016. Module io, Abr. http://docs.pointclouds.org/trunk/group__io.html.
14. ROS. 2016. PCL overview, Abr. http://wiki.ros.org/pcl/Overview.
15. Kreylos. 2016. Kinect hacking. http://idav.ucdavis.edu/~okreylos/ResDev/Kinect/.
16. HEPTAGON. 2016. Our history. http://hptg.com/about-us/#history.
17. ROS. 2016. About ROS, Abr. http://www.ros.org/about-ros/.
18. ROS. 2016. ROS jade installation instructions, Abr. http://wiki.ros.org/ROS/Installation.
19. ubuntu. 2016. About ubuntu, Abr. http://www.ubuntu.com/about/about-ubuntu.
20. Ubuntu. 2016. Ubuntu 14.04.4 LTS (trusty Tahr), Abr. http://releases.ubuntu.com/14.04/.
21. Ubuntu. 2016. Install Ubuntu 16.04 LTS, Abr. http://www.ubuntu.com/download/desktop/

install-ubuntu-desktop.
22. ROS. 2016. Ubuntu install of ROS indigo, Abr. http://wiki.ros.org/indigo/Installation/Ubuntu.
23. ROS. 2016. freenect_camera. http://wiki.ros.org/freenect_camera.
24. ROS. 2016. freenect_launch. http://wiki.ros.org/freenect_launch.
25. UBUNTU. 2016. Package: libfreenect-dev (1:0.0.1+20101211+2-3). http://packages.ubuntu.

com/precise/libfreenect-dev.
26. ROS. 2016. openni_launch. http://wiki.ros.org/openni_launch.
27. Robot, B.R. 2016. Kinect basics. http://sdk.rethinkrobotics.com/wiki/Kinect_basics.
28. ROS. 2016. Kinect: Using microsoft kinect on the evarobot. http://wiki.ros.org/Robots/

evarobot/Tutorials/indigo/Kinect
29. HEPTAGON. 2016. Swissranger. http://hptg.com/industrial/.
30. ROS. 2016. swissranger_camera. http://wiki.ros.org/swissranger_camera.
31. ROS. 2016. cob_camera_sensors. http://wiki.ros.org/cob_camera_sensors.
32. ROS. 2016. Care-o-bot: Configuring and using the swissranger 3000 or 4000 depth sensor.

http://wiki.ros.org/cob_camera_sensors/Mesa_Swissranger.
33. M. imaging. 2016. Sr4000/sr4500usermanual. http://www.realtechsupport.org/UB/SR/range_

finding/SR4000_SR4500_Manual.pdf.
34. ROS. 2016. visualization_msgs/marker message. http://docs.ros.org/api/visualization_msgs/

html/msg/Marker.html.
35. ROS. 2016. visualization_msgs/markerarray message. http://docs.ros.org/api/visualization_

msgs/html/msg/MarkerArray.html.
36. ROS. 2016. The marker message. http://wiki.ros.org/rviz/DisplayTypes/Marker.
37. OctoMap. 2016. An efficient probabilistic 3d mapping framework based on octrees. http://

octomap.github.io/.
38. MathWorks. 2016. find. http://www.mathworks.com/help/matlab/ref/find.html.

http://www.mathworks.com/products/matlab/
https://github.com/Singular/Sources/wiki/Installation-from-GitHub-on-Debian
https://github.com/Singular/Sources/wiki/Installation-from-GitHub-on-Debian
http://pointclouds.org/about/
http://docs.pointclouds.org/trunk/group__io.html
http://wiki.ros.org/pcl/Overview
http://idav.ucdavis.edu/~okreylos/ResDev/Kinect/
http://hptg.com/about-us/#history
http://www.ros.org/about-ros/
http://wiki.ros.org/ROS/Installation
http://www.ubuntu.com/about/about-ubuntu
http://releases.ubuntu.com/14.04/
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/freenect_camera
http://wiki.ros.org/freenect_launch
http://packages.ubuntu.com/precise/libfreenect-dev
http://packages.ubuntu.com/precise/libfreenect-dev
http://wiki.ros.org/openni_launch
http://sdk.rethinkrobotics.com/wiki/Kinect_basics
http://wiki.ros.org/Robots/evarobot/Tutorials/indigo/Kinect
http://wiki.ros.org/Robots/evarobot/Tutorials/indigo/Kinect
http://hptg.com/industrial/
http://wiki.ros.org/swissranger_camera
http://wiki.ros.org/cob_camera_sensors
http://wiki.ros.org/cob_camera_sensors/Mesa_Swissranger
http://www.realtechsupport.org/UB/SR/range_finding/SR4000_SR4500_Manual.pdf
http://www.realtechsupport.org/UB/SR/range_finding/SR4000_SR4500_Manual.pdf
http://docs.ros.org/api/visualization_msgs/html/msg/Marker.html
http://docs.ros.org/api/visualization_msgs/html/msg/Marker.html
http://docs.ros.org/api/visualization_msgs/html/msg/MarkerArray.html
http://docs.ros.org/api/visualization_msgs/html/msg/MarkerArray.html
http://wiki.ros.org/rviz/DisplayTypes/Marker
http://octomap.github.io/
http://octomap.github.io/
http://www.mathworks.com/help/matlab/ref/find.html

Part VI
ROS Simulation Frameworks

Environment for the Dynamic Simulation
of ROS-Based UAVs

Alvaro Rogério Cantieri, André Schneider de Oliveira, Marco Aurélio
Wehrmeister, João Alberto Fabro and Marlon de Oliveira Vaz

Abstract The aim of this chapter is to explain how to use the Virtual Robot Exper-
imentation Platform (V-REP) simulation software with the Robot Operating System
(ROS) to create and collect signals and control a generic multirotor unmanned aerial
vehicle (UAV) in a simulation scene. This tutorial explains all the steps needed to
select an UAV model, assemble and configure the propellers, configure the dynamic
parameters, add sensors, and finally simulate the scene. The final part of the chapter
presents an example of how to use MATLAB to create control scripts using ROS and
also collect data from sensors such as accelerometers, gyroscopes, GPS, and laser
scanners.

Keywords Multirotor simulation ·MultirotorROS ·Hexacopter PID ·V-REPhexa-
copter

1 Introduction

Unmanned aerial vehicles (UAVs) are currently one of most interesting areas of
robotics, with many studies currently taking place in the scientific community. This
kind of research is popular because the vehicles and control electronics are becoming
increasingly smaller and cheaper. One common difficulty of working with UAVs is
the fragility of this type of aircraft. If a control strategy works badly, an accident can
occur and damage the vehicle. Another difficulty when beginning real tests with a
UAV is the need for a large controlled test area, which is not commonly accessible
for research labs and education centers. Virtual environments are a powerful tool for
UAV simulation and enable the careful assessment of new algorithms without the

A.R. Cantieri (B) · M. de Oliveira Vaz
Federal Institute of Parana, Rua Joao Negrao, 1285, Curitiba, Brazil
email: alvaro.cantieri@ifpr.edu.br
URL: http://www.utfpr.edu.br/

A.S. de Oliveira · M.A. Wehrmeister · J.A. Fabro
Federal University of Technology - Parana, Av. Sete de Setembro, 3165, Curitiba, Brazil

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_17

565

566 A.R. Cantieri et al.

Fig. 1 Main UAV topologies

risk of damage. This kind of software minimizes the time spent on tests and the risks
associated with them, making development more efficient.

This chapter presents the development of a virtual environment for dynamic UAV
simulation using the Virtual Robot Experimentation Platform (V-REP) simulation
software and Robot Operating System (ROS). This chapter is divided in five sections,
beginning with a basic review of multirotor flight and finishing with a summary of
all the steps needed to assemble and control a virtual multirotor aircraft.

Section2 presents some basic background regardingmultirotor aircraft movement
and flight, explaining the concepts of roll, pitch, yaw, and throttle. It also describes
how it is possible to create movement in the desired direction by changing the pro-
peller rotations.

Section3 presents the principal topologies of UAVs, focusing on multirotor or
multicopter aircraft (Fig. 1), and explaining their particular characteristics, assembly,
and propulsion forces. The objective is to present the basic concepts behind this kind
of aircraft and their flight, making it easier to understand the necessary actions for
motion control and stabilization.

Section4 introduces V-REP and shows how to create an environment scene and
a virtual UAV model fully compatible with ROS on V-REP, as shown in Fig. 2. The
step-by-step construction of an example model is shown, which includes the assem-
bly of the UAV frame, propeller and motor system, and sensors. Some important
considerations about the simulation software are discussed, showing the details of
the model manipulation and its configuration parameters.

Environment for the Dynamic Simulation of ROS-Based UAVs 567

Fig. 2 Virtual hexacopter style UAV

Fig. 3 Virtual environment to dynamic simulation of UAVs

The final section focuses on the interconnection between the virtual UAV and
ROS, with careful discussion about the design of the ROS nodes (publishers and
subscribers). The main objective of this section is to create nodes that are nearly
identical to the ones for real equipment with respect to the message type and its
update frequency. The simulation is based on a distributedPID stabilization controller
running on MATLAB scripts through ROS nodes. The control signals are presented
in V-REP’s simulation time graphs to express the UAV behavior during flight, as
shown in Fig. 3.

568 A.R. Cantieri et al.

2 Basic Multirotor Flight Concepts

Modeling the flight of a multirotor aircraft is a complex problem. It depends on the
kinematic and dynamic characteristics of the aircraft, which change for every new
model or configuration. In this tutorial chapter, the three-dimensional motion of the
aircraft is considered only in terms of the basic moves, roll, pitch, yaw, and throttle,
created by the difference in rotation of the propellers. The study of the dynamic
characteristics of the aircraft and how to create these characteristics in the model are
beyond the scope of this chapter.

To understand multirotor control and flight, we need first to understand the differ-
ent moves of a multirotor in space. The three angles of rotation, roll, pitch, and yaw,
are used to describe the aircraft’s orientation in space. Figure4 shows the orientation
of these axes relative to the center of the multirotor body.

The multirotor body rotates around these axes to move horizontally in space. For
instance, to make the aircraft move forward, we rotate the frame around the pitch
axis, elevating its back, which creates a force that pushes the aircraft forward. If the
multirotor body rotates around the roll axis, the aircraft will move sideways. Rotation
around the yaw axis reorients the front of the aircraft in another direction.

The vertical moves of the aircraft are an effect of an imbalance between gravity
and thrust.When these forces are equal, the aircraft stays static at the same altitude. To
make the multirotor go up, it is necessary to increase the velocity of all the propellers

Fig. 4 Roll, Pitch and Yaw

Environment for the Dynamic Simulation of ROS-Based UAVs 569

Fig. 5 Pitch rotation example

by the same amount. This increases the thrust and makes the aircraft gain altitude. In
contrast, to make the multirotor dive, we decrease the velocity of all the propellers,
making the thrust force smaller and allowing altitude to be lost.

All the spatialmoves of amultirotor aircraft are achieved by changing the propeller
rotation velocities. If the number of propellers of themultirotor configuration is even,
as on quadcopters, hexacopters, and octocopters, the moves are created by increasing
the velocity of the motors on one side and decreasing the velocity of those on the
other side. In practical situations, changes must be small to avoid the loss of flight
control and stability. Figure5 shows an example pitch rotation and its associated
move.

Yaw rotation occurs in a somewhat different way. This kind of rotation results
from the rotational torque created by the propellers of the aircraft. To prevent this
situation, multirotor aircraft are assembled such that the rotation of each rotor on the
frame compensates for another rotor that is located on the other side of the frame and
rotates in the opposite direction. This neutralizes the rotational torques and keeps
the yaw rotation at zero. Figure6 shows the propellers with the opposite rotation
directions to balance the rotational forces.

When we want to re-orientate the front of the aircraft in another direction, we
must create yaw rotation by increasing or decreasing the rotation of a specific group
of propellers. Figure7 shows this effect.

570 A.R. Cantieri et al.

Fig. 6 Rotational torques of created by the helices

Fig. 7 Unbalanced propellers velocity and yaw rotation of aircraft

3 Multirotor Configurations and Specific Characteristics

Several models of multirotors are available today, with many frame configurations
and specific characteristics. Themost commonmodels are quadcopters, hexacopters,
octocopters, tricopters, and V-tails. The several kinds of configurations, construction

Environment for the Dynamic Simulation of ROS-Based UAVs 571

Fig. 8 Tricopter multirotor example

materials, motors, helix and other components create a different flight performance
for each aircraft. The thrust force, payload, velocities, and other characteristics will
change for each aircraft, but in general, the fundamental characteristics like total
payload and external perturbation reaction capacity can be compared for different
basic multirotor configurations. This section briefly describes the most common
configurations and their fundamental characteristics.

The tricopter configuration is one of the cheaper assemblies and was popular for
some time. This configuration is shown in Fig. 8. It has an odd number of propellers,
demanding additional care to control yaw rotation. In all other cases, there are two
opposite rotating propellers canceling the rotational torque one of each other.

The two front propellers rotate in opposite directions, mutually canceling the
rotational torque. The back propeller does not have torque cancellation, and it is
hence necessary to create a counter-torque on the frame by rotating the propeller by
an appropriate angle. This is achieved by mounting this propeller on a horizontal
fixed servo-motor that turns the propeller to the necessary inclination. This kind of
problem can be fixed by adding a second back propeller on the frame on the same
axis, but directed towards the ground and rotating in the opposite direction. This
arrangement is called a Y-4 multirotor, and decreases the mechanical complexity of
the arrangement.

The currently most popular arrangement of propellers is the quadcopter. This con-
figuration provides good thrust force and stability, and its components are relatively
low cost. The quadcopter can be assembled in two different ways, in an “x” or “+”
arrangement. Figure 9 shows these two configurations.

Controlling themovement of a quadcopter is relatively simple because of itsmotor
symmetry. The energy consumed by four propellers is less than that consumed by
the hexacopter and octocopter configurations, but the thrust force is smaller for most
cases. Another disadvantage is the fact that if one propeller fails, the electronic flight
controller cannot stabilize the aircraft, resulting in a crash.

572 A.R. Cantieri et al.

Fig. 9 Quadricopter frames X and +

Fig. 10 Hexacopter frames X and +

The hexacopter is a good option for achieving higher thrust values and flight
stability. Like the quadcopter, a hexacopter can be assembled using x or + config-
urations, as shown in Fig. 10. The presence of six propellers assures better flight
security, because if one propeller fails, the others are able to maintain the thrust force
and balance necessary to avoid a loss of control. Although the power consumption is
greater than a quadcopter, the use of larger batteries can assure equivalent flight time,
as the thrust force of the six propellers can carry more weight. This weight capacity
also allows the use of a heavier sensor payload, which makes it a good choice for
scientific and research applications.

The octocopter is very similar to the hexacopter, but the eightmotors providemore
thrust force, and a better immunity to external perturbation. It can be assembled on

Environment for the Dynamic Simulation of ROS-Based UAVs 573

Fig. 11 Octocopter frame

Fig. 12 V- tail multirotor

x and + configurations, like the hexacopter and quadcopter. The eight propellers
consume a larger amount of energy than the other multirotor configurations, but this
disadvantage is compensated for by its flight stability, which makes it a good choice
for outdoor applications. Figure 11 shows common octocopter configurations.

A special case of a quadcopter is theV-tail configuration. In this kind ofmultirotor,
the two back propellers are inclined outside of the frame. This inclination offers some
additional acrobatic performance, but leads to lower power efficiency and air blow
interference between the two back propellers. Figure12 shows this model.

For all the above configurations except the V-tail, it is possible, for each upward-
facing propeller, to add another propeller pointing downward, resulting in a dual-

574 A.R. Cantieri et al.

propeller multirotor configuration. These configurations enable more stability and
thrust force, and have the additional advantage of helping the associated propellers
cancel the rotational torque. The problemwith this kind of configuration is the higher
cost of components and power consumption, making them less common.

4 Multirotor Model Creation and Scene Composition
in V-REP

V-REP is an abbreviation of the Virtual Robot Experimentation Platform, a software
platform created for professional robot systems development. The V-REP simulator
offers good flexibility, strong simulation tools, and a wide number of robot and
component models, which makes it an optimal choice for developing applications in
all robotic areas and a good alternative to other simulation software like theGAZEBO
simulator.

V-REP is available for Linux, Windows, and macOS operational systems. The
educational version is free to use, and can be download from the Coppelia Robotics
website (www.coppeliarobotics.com). For Linux users, is sufficient to download the
software and run it on a terminal using the “sh vrep.sh” command. When running,
the VREP interface will appear like the example in Fig. 13. This figure shows the
components of the interface such as the simulation window, menus, and other tools
used to created and run the simulation.

An interesting feature in this figure is the presence of some commercial robot
models in the model browser window. These models are created and offered in the

Fig. 13 V-REP interface

www.coppeliarobotics.com

Environment for the Dynamic Simulation of ROS-Based UAVs 575

Fig. 14 One complex scene

software by users or partners and provide a great opportunity to work with some
expensive robots without the necessity of purchasing a real one.

A good knowledge of all the tools, components, and resources available in the
software is important before beginning to work with V-REP. Reading the VREPUser
Manual and studying the basic tutorials available on software’s website are the best
ways to begin working with the software. For a better understanding of the actions
and steps shown in this tutorial, we strongly recommend this study before starting
the experiments [1].

To begin the hexacopter simulation, first the scene must be created and the desired
components must be included in it. A scene is the virtual environment of a simulation
on V-REP, which contains all the simulation elements, objects, and scripts that make
the simulation work. A default scene contains cameras and illumination objects as
well as the main script for the simulation. The main script is responsible for running
all the associated scripts for the simulation, and it is not supposed to be modified.
Environment objects can be added to the scene as static or dynamic objects. A
collection of object models is available in V-REP’s model menu. To add an object in
the scene, we can drag and drop the object model to locate it at the desired position.
Figure 14 shows a complex environment created in a scene with common V-REP
models.

The behavior of the model is described by its model script and properties. The
properties of one model are configurable by accessing the “Object Properties Tool-
box.” There are several configuration parameters available for each model, and we
strongly recommend reading the V-REP User Manual to understand them better. The
most relevant parameters for the example in this chapter are as follows:

• Collidable: Allows software collision detection for the selected object.

576 A.R. Cantieri et al.

Fig. 15 Toggle custom user interface button

• Measurable: Allows software minimum distance calculation for the selected mea-
surable object.

• Detectable: Allows proximity sensor detection for the selected detectable object.
• Renderable: Allows vision sensor detection for the selected renderable object.

Let us nowcreate the scenewith the necessary components to perform the example
simulation. To create it, the following tools are necessary:

• Four slider buttons to control the horizontal and vertical position of the hexacopter.
• Four graphs components to record the position data of the hexacopter.
• Four floating view components to show the data recorded by the graphs.
• The hexacopter model.

To create the slider button, click on the “Toggle customuser interface editmodule”
button on the toolbar. This button is shown in Fig. 15. The pop-up menu started by
this button is shown in Fig. 16.

We now create the buttons by clicking on the “Add new user interface,” setting
the cells to 10 × 4. This action will create a one-button model, as shown in Fig. 17.

To create a slider on the button base, click on the cells of one line holding the Ctrl
key to select them. Next, click on “Insert merged button” and select type “Slider.” On
the “Button label” box, enter the button label, which is “Throttle” for the first button.
Repeat these operations for the other three buttons, labeling them “Roll,” “Pitch,” and
“Yaw.” On the left side of the screen, the “Custom User Interface” window shows
the name of this button, in this case “UI.” This name can be changed by clicking on
the text, but for the example simulation, it must be retained, because the hexacopter

Environment for the Dynamic Simulation of ROS-Based UAVs 577

Fig. 16 Pop up menu

Fig. 17 Slider button model

578 A.R. Cantieri et al.

Fig. 18 Scene Object Properties window

script uses this name to get the values from these buttons. In this example, another
slider-button is needed to control themoves of the hexacopter. Repeat the steps above,
labeling these buttons “Height,” “Roll,” “Pitch,” and “Yaw.” The name of this button
is “UI0.” Now we create the graphs to record the hexacopter position data. This can
be done using

add–> graph

The graph will appear in the “Scene Hierarchy” window. Rename it to “Graph
Height.” To associate one data stream with this graph, click on the graph icon in the
“Scene Hierarchy” window. A “Scene Object Properties” box like the one shown
in Fig. 18 will appear. Click on “Add new data stream to record,” select the item
“Various: user defined” on the “Data Stream Type” button and select “User Data”

Environment for the Dynamic Simulation of ROS-Based UAVs 579

Fig. 19 Completed scene

on the “Object/Items to record” button. On the “Data stream record list” window,
rename the label “Data [User data]” to “Height _Desired [User data].” To finish, add
a new data record on the same graph and rename it “Height _Controlled [User data].”

Now it is necessary to associate the graph with a “floating view” window, where
the data will be drawn. Right click on the scene and click on

add–> floating view

A empty floating window will appear on the screen. To associate the graph with
this window, click on the window and click on

view–> associate view with selected graph

The graph must be selected in the scene to perform this association. This step
completes the creation of the height graph display window used in the example. To
complete the scene, repeat all the steps to create the other three graph windows for
showing the roll, pitch, and yaw data. After these steps, the basic scene is ready.
Figure19 shows the result of these actions.

Once the scene is ready, the virtualmultirotormodelmaybe created.Allmultirotor
models can be simulated in V-REP in a similar way if the motion characteristics of
each kind of aircraft are correctly considered.

The most common way to create this kind of model is by drawing it directly in
the simulator using primitive forms. We can also import a previously designed CAD
model, as done in this example. Some websites offer this kind of model for down-
load, like the Grabcad Community website [2], so it is easy to find some common

580 A.R. Cantieri et al.

configuration models for use in this kind of simulation. The other alternative is to
draw a specific model in CAD software and import it into V-REP.

Themodels drawn inV-REP provide better computational performance during the
simulation because of their low complexity. Nevertheless, the creation of a detailed
model can be laborious, and the task of importing a prepared CAD frame is attractive.
Currently, the CAD data formats supported by V-REP are OBJ, STL, DXF, 3DS, and
Collada Windows. This importation is made using

edit –> file –> import –> mesh

The frame models shown in Figs. 8, 9, 10, 11, and 12 are available in https://
sourceforge.net/projects/rosbook-2016-chapter-4/files/. All these models were cre-
ated in V-REP using simple form object tools (except the helix), and can be easily
extended to more complex models. For the initial simulation tests, they offer good
performance and are easy to use.

For the tutorial example, a CAD model of a hexacopter + configuration was
downloaded and imported inV-REP. This was done to keep the tutorial’s presentation
and use of the tools in V-REP simple.

The importedCADmodels are treated by the software as a single object composed
of non-pure non-convex forms, considered by V-REP to be the most complex kind
of object that can be simulated. A close inspection of this model shows that it is
composed of a large number of triangles assembled on a complex mesh. The more
detail this model has, the more triangles are needed to make it. Figure20 shows one
example of this composition in detail.

Fig. 20 Details of the model frame composition before triangle minimization

https://sourceforge.net/projects/rosbook-2016-chapter-4/files/
https://sourceforge.net/projects/rosbook-2016-chapter-4/files/

Environment for the Dynamic Simulation of ROS-Based UAVs 581

Fig. 21 Details of the model frame composition after triangle minimization

To minimize this effect, we can reduce the complexity of the frame using the
tools “decimate selected shape” and “extract inside selected shape,” both available
on the Edit menu. The first tool reduces the total number of triangles in the frame
by associating the triangles that belong to the same elements of the frame. This
leads to a loss of detail, but such a loss may not be significant when simulating
the mechanical behavior of the aircraft. This reduction can be greater or smaller
in magnitude according to the chosen parameter settings in the toolbox. For this
example, the default reduction of 20% downsizes the model from 16,029 to 3,205
triangles.

The second tool removes the triangles that compose the inner parts of the object
not visible in the simulation. After applying these tools in sequence, the final number
ofmodel triangles is reduced to 351. Figure 21 shows the frame after these operations
have been performed.

The next step is to associate the propellerswith the frame at their specific positions.
A propeller attached to the frame will create a force and torque on it according to
the reference frame position. The force is created in the propeller’s Z-direction,
and the torque is created in the XY-plane and applied to the center of mass of the
frame. Hence, for the hexacopter example, six upward forces are added to push the
aircraft up, and six torques make the aircraft rotates around its center of mass. If
the six forces are set to be the same value, the hexacopter stays at a relatively static
inclination but, without a control script, the random velocities present in the propeller

582 A.R. Cantieri et al.

Fig. 22 Changing the object translation step factor

scripts create unbalanced forces, and the hexacopter moves in a random direction. To
avoid undesired yaw rotation, it is necessary to put negative and positive signals in
the propeller scripts, depending on their position on the frame, just as for real aircraft
propeller rotation. Figure 25 shows the hexacopter frame and the six propellers before
they are attached to their positions, and the association details.

In the scene hierarchy, the six propellers are not part of the frame assembly. The
next step is to associate each onewith the frame by first selecting the desired propeller
and then the frame model and clicking on

edit –> make last selected object parent

After associating all the propellers with the frame, we can rename them for better
identification in the scene hierarchy. To do this, we simply double click on the object
name in the hierarchy list, change the name, and hit “Enter.” We must now put each
propeller in the correct position on the frame. We simply select the desired propeller
and click the “object shift item” toolbar button.

For a more precise positioning of the propeller, the step size translation parameter
can be reduced by clicking on

tools –> object manipulation settings

Here, the value was changed to 0.001, as shown in Fig. 22.
After all the propellers have been properly positioned, the example hexacopter

looks like the one in Fig. 23.
When the simulation is running, each propeller applies an upward force in the

frame position where it is allocated that is proportional to the speed signal set by the

Environment for the Dynamic Simulation of ROS-Based UAVs 583

Fig. 23 Assembled hexacopter

script. Thus, the mechanical behavior of the hexacopter will simulate the interactions
of the six propeller forces and external forces, such weight or inertial forces. To
achieve a simulation that is closer to reality, we must define the hexacopter weight
according to a real model. This is done by modifying the properties in the dialog box
“Rigid Body Dynamic Properties,” in

Tools –> Scene Object Proprieties –> Show Dynamic Properties Dialog

This dialog box, shown in Fig. 24 allows us to change the configuration of the
dynamic parameters of the object as necessary. We can specify model mass, change
the object inertia matrix, or set a specific material for its composition. The values
of these properties change the way the object behaves in certain situations during
the simulation. The calculation of the dynamic parameters is a complex issue and
beyond the scope of this chapter, but for practical purposes, we can define the mass
and center of mass for the hexacopter model. For this example, the mass was set to
0.5kg and the center of mass to x = 0, y = 0, and z = 0.5m from the origin of the
coordinate system. These values were based on a real hexacopter with characteristics
similar to the simulation model.

If these values are difficult to determine, the alternative is to use the software to
automatically calculate the parameters. The software is able to take a specific mass
for the model material and use it to calculate the values of the total mass, center of
mass, and inertia matrix. The calculation is performed only on a simplified model
mesh, and some differences between the calculated values and values of a real model
should always be expected. To simulate the dynamics characteristics and behavior of
the aircraft, a model that is closer to reality must be created, but for a great number

584 A.R. Cantieri et al.

Fig. 24 Shape dynamics properties dialog box

of experiments, such as testing artificial intelligence algorithms, image processing
based navigation, simultaneous localization and mapping, among others, this kind
of simplified aircraft model is usually adequate (Fig. 25).

To complete our model, is necessary to associate the sensors for the control and
application data achievement.V-REPhas a set of interesting sensormodels, including
accelerometers, gyroscopes, Global Positioning System (GPS), and some commer-
cial sensors such as laser scanners and Kinect. To use any of these sensors, it is only
necessary to add it to the scene and, if applicable, associate it with the aircraft frame.
For this example, some basic sensors were associated with the hexacopter frame: an
accelerometer, gyroscope, GPS, and laser pointer distance sensor, not all of which
were used for aircraft control. The laser range finder and gyroscope are sufficient
to control the vehicle position and stabilize the flight in this case, but other sensors
can be used to improve the control and movement capacities. The group of sensors
collects signals and sends them to the hexacopter control script in V-REP as well as
to ROS via the ROS node. Each of these sensors runs a specific script for its work. By

Environment for the Dynamic Simulation of ROS-Based UAVs 585

F
ig

.2
5

Sc
en
e
sh
ow

in
g
th
e
he
xa
co
pt
er

fr
am

e
pl
us

si
x
pr
op
el
le
rs

586 A.R. Cantieri et al.

Fig. 26 Sensors on the hexacopter frame

changing these scripts, a user is able to achieve some different measuring parameters
for a specific sensor, or even change its global operation.

Figure 26 shows the three selected sensors positioned at the center of the hexa-
copter frame. Each one of these sensors is represented as a small cube in the scene.
On the left side of the image, the hierarchical list of the hexacopter objects shows
the sensors and sensors scripts as a part of the frame. We now analyze the behavior
of the individual sensors by looking at the sensor scripts.

The first sensor we analyze is the GPS sensor. This sensor returns the value of the
spatial X, Y, and Z position related to the origin of the scene’s world coordinates. One
interesting point is that the script adds some “noise” to the position measurement
to simulate the position measurement error of a real GPS sensor. This sensor is not
based on a commercial model, but is a simple model provided by the software, so its
performance will not be close to real GPS systems. For specific experiments, more
accurate models probably will be needed.

The second sensor we consider is the accelerometer. This sensor calculates the
object acceleration about the X-, Y-, and Z-axes of the hexacopter frame. This sensor
does not add noise to the measured values like the GPS sensor does, but noise can be
added if necessary by changing its associated script, just as for all the other sensors
provided by the software.

The third sensor is the gyroscope. The gyroscope measures the angular velocity
of the object about the X-, Y-, and Z-axes and returns the results. These values are
essential for the correct operation of aircraft controller.

The laser range finder sensor is added to the base of the hexacopter frame, pointing
at the ground. The function of this sensor is to obtain the absolute height of the
aircraft. The laser pointer sensor measures the distance between the laser emitter and

Environment for the Dynamic Simulation of ROS-Based UAVs 587

the object that reflects the laser beam. In the MATLAB control script example, this
sensor is pointed toward the ground and returns the height of the aircraft.

To run a simulation of the scene, it is necessary to associate the V-REP control
scripts with the hexacopter model and the propellers. The scripts used in this example
are available in the book’s online repository. Download all the scripts, then copy and
paste the text associated with each element into the appropriate script. To open an
object script such as the one for the hexacopter, click on the object script icon present
in the scene hierarchy window. Replace all the text present in this script with that of
the downloaded one.

The hexacopter script implements a simple position control based on a PID algo-
rithm. The operation of this PID is not the focus of this chapter, but it is needed
to allow the hexacopter model to fly relatively in a stable manner and move during
the simulation. To change the position of the hexacopter, move the slider buttons of
the “Position controller.” Small changes are better at each change to avoid losing
control of the model. The second slider buttons allow us to set “perturbations” in the
hexacopter position to show the work of the PID algorithm when it searches for the
original position.

5 ROS Virtual Hexacopter Control

After creating the hexacopter virtual testing environment, it is necessary to make
the vehicle compatible with the ROS. The ROS is the communication tool between
the control nodes (i.e., any software, in this case MATLAB Simulink) and the real
or virtual vehicle. For this example, a set of ROS nodes was specified to provide
information about the propeller speeds, hexacopter linear and angular speed twists,
transformations between the reference systems, absolute position of the hexacopter
in the map, hexacopter position relative to the reference odometry (starting position),
and the laser sensor reading, which is responsible for determining the distance from
the ground. All these nodes are illustrated in the text below.

/hexacopter /ground_distance
/hexacopter / laserscan
/hexacopter /odom
/hexacopter /pose
/hexacopter / propeller1

/hexacopter / propeller2
/hexacopter / propeller3
/hexacopter / propeller4
/hexacopter / propeller5
/hexacopter / propeller6
/hexacopter / twist
/ rosout
/ rosout_agg
/ t f
/vrep / info

588 A.R. Cantieri et al.

Once the ROS nodes have been specified, it is necessary to create the V-REP script
to enable communication between them. Two functions are used to make the script
work with the ROS, one for the task of publishing (simExt ROS enablePublisher)
and the other for subscription (SimExt ROS enableSubscriber). A more detailed
description of these functions can be found in the simulator tutorials in [3, 4]. The
full script can be seen in the code below.

V-REP script for Hexarotor interface with ROS
if (sim_call_type == sim_childscriptcall_initialization) then

--- Start motor velocities
motor1 = 0
motor2 = 0
motor3 = 0
motor4 = 0
motor5 = 0
motor6 = 0

--- Create float signal with propeller velocities
simSetFloatSignal(’prop1 ’,motor1)
simSetFloatSignal(’prop2 ’,motor2)
simSetFloatSignal(’prop3 ’,motor3)
simSetFloatSignal(’prop4 ’,motor4)
simSetFloatSignal(’prop5 ’,motor5)
simSetFloatSignal(’prop6 ’,motor6)

--- Handles for sensors and frame
hexaHandle=simGetObjectHandle(’Hexacopter_ROS ’) --

hexarotor handle
hokuyoHandle = simGetObjectHandle(’Hokuyo ’) --

laserscan handle
acelHandle = simGetObjectHandle(’Accelerometer ’) --

accelerometer handle
gyroHandle = simGetObjectHandle(’GyroSensor ’) --

gyroscope handle
laserHandle = simGetObjectHandle(’LaserPointer_sensor ’) --

ground sensor handle

--- Reference handles
odomHandle = simGetObjectHandle(’odom’) -- odometry

reference
mapHandle = simGetObjectHandle(’map’) -- map reference

--- Create ROS subscribers for propellers velocities
simExtROS_enableSubscriber(’/hexacopter/propeller1 ’,1,

simros_strmcmd_set_float_signal ,-1,-1,’prop1 ’)
simExtROS_enableSubscriber(’/hexacopter/propeller2 ’,1,

simros_strmcmd_set_float_signal ,-1,-1,’prop2 ’)
simExtROS_enableSubscriber(’/hexacopter/propeller3 ’,1,

simros_strmcmd_set_float_signal ,-1,-1,’prop3 ’)
simExtROS_enableSubscriber(’/hexacopter/propeller4 ’,1,

simros_strmcmd_set_float_signal ,-1,-1,’prop4 ’)
simExtROS_enableSubscriber(’/hexacopter/propeller5 ’,1,

simros_strmcmd_set_float_signal ,-1,-1,’prop5 ’)
simExtROS_enableSubscriber(’/hexacopter/propeller6 ’,1,

simros_strmcmd_set_float_signal ,-1,-1,’prop6 ’)

--- Create ROS publishers for odometry , pose and ground sensor
simExtROS_enablePublisher (’/hexacopter/odom’,1,

simros_strmcmd_get_odom_data ,hexaHandle ,odomHandle ,’’)

Environment for the Dynamic Simulation of ROS-Based UAVs 589

simExtROS_enablePublisher (’/hexacopter/pose’,1,
simros_strmcmd_get_object_pose ,hexaHandle ,odomHandle ,’’)

simExtROS_enablePublisher (’/hexacopter/ground_distance ’,1,
simros_strmcmd_get_float_signal ,-1,-1,’laserPointerData ’)

--- Create ROs publishers for transformations
simExtROS_enablePublisher (’tf’,1,simros_strmcmd_get_transform ,

laserHandle ,hexaHandle ,’’)
simExtROS_enablePublisher (’tf’,1,simros_strmcmd_get_transform ,

gyroHandle ,hexaHandle ,’’)
simExtROS_enablePublisher (’tf’,1,simros_strmcmd_get_transform ,

acelHandle ,hexaHandle ,’’)
simExtROS_enablePublisher (’tf’,1,simros_strmcmd_get_transform ,

hokuyoHandle ,hexaHandle ,’’)
simExtROS_enablePublisher (’tf’,1,simros_strmcmd_get_transform ,

hexaHandle ,odomHandle ,’’)
simExtROS_enablePublisher (’tf’,1,simros_strmcmd_get_transform ,

odomHandle ,mapHandle ,’’)

end

In this script, the vehicle transformation sequence is also created, according to
the ROS standard specified in [5], which results in the transformation trees shown in
Fig. 28.

The ROS interface withMATLAB is performed using the Robotics Systems Tool-
box, available in the Simulink Toolbox, which is present in 2015 and later versions of
MATLAB, only for Linux operating systems. For more information about this topic,
see [6–8]. The toolbox consists of three building blocks, one to publish information
to the ROS (Publish), another to read information from the ROS (Subscribe), and
the last one to create messages (BlankMessage), as illustrated in Fig. 27 (Fig. 28).

The hexacopter can be operated using a set of read/write actions, performed by
Simulink on ROS, using the Robotics Systems Toolbox. The result is shown in
Figs. 29 and 30. These diagrams can be grouped into a subsystem that deals with
the connection interface of the virtual hexacopter using the ROS, represented by a

Fig. 27 Robotics System Toolbox

590 A.R. Cantieri et al.

F
ig

.2
8

H
ex
ac
op
te
r
fr
am

es
(R
O
S
T
Fs
)

Environment for the Dynamic Simulation of ROS-Based UAVs 591

Fig. 29 Matlab interface for ROS publishers and subscribers - 1

large block with outputs (actuators for the publishers) and inputs (subscribers for the
sensors).

The odometry represents the hexacopter position and orientation relative to the
initial position. This information is a nav type information (msgs/Odometry) to
ROS.

The orientation is expressed using a vector that consists of four elements (qx , qy,
qz, qw), used to extract the hexacopter orientation. The necessary calculations are
done by a Simulink block called MAT LAB f unction. In this block, a MATLAB
script was written to calculate the Euler angles, as presented below.

MATLAB script for conversion of quaternion to RPY angles
function [roll ,pitch ,yaw] = quat2eul(x,y,z,w)

% Convert the quaternion to a roll -pith -yaw
eul = quat2eul ([w,x,y,z]);
roll = eul(2);
pitch = eul(1);
yaw = eul(3);
end

592 A.R. Cantieri et al.

Fig. 30 Matlab interface for ROS publishers and subscribers - 2

To perform the hexacopter movements, another MATLAB function was written,
using the MAT LAB f unction. This is necessary to send the speed signals that
increase or decrease each propeller velocity depending on the desired motion. The
motion code for this example is shown below.

MATLAB script for Hexarotor
function [prop1 ,prop2 ,prop3 ,prop4 ,prop5 ,prop6] = hexarotor(roll ,

pitch , yaw , thrust)

hovering = 0.42;

thrust = thrust + hovering;

prop1 = thrust +0 -(pitch /2) +yaw;
prop2 = thrust +0 -(pitch /2) -yaw;
prop3 = thrust -roll +0 +yaw;
prop4 = thrust +0 +(pitch /2) -yaw;
prop5 = thrust +0 +(pitch /2) +yaw;
prop6 = thrust +roll +0 -yaw;

prop1=single(prop1);
prop2=single(prop2);
prop3=single(prop3);
prop4=single(prop4);
prop5=single(prop5);
prop6=single(prop6);

end

Environment for the Dynamic Simulation of ROS-Based UAVs 593

With the motion blocks generated, is next necessary to create a control script
mechanism to correct themotion stabilization of the aircraft model. For this example,
a classical PID controller was created in MATLAB. The objective of this example is
not to discuss the control algorithm project, but show how to create a virtual aircraft
in V-REP and perform flight control operations on it using MATLAB via ROS as a
basis for more complex experimentation. Hence, the principal task of this controller
is to set a fixed spatial position for the hexacopter without significant variation. This
is achieved by measuring the roll, pitch, yaw, and height and performing corrections
on the propellers to reduce the position and inclination error to zero. For the proposed
example, a height of 1m at the (x = 0, y = 0) position was set as the target. The
result of the control algorithm is shown in Fig. 31.

In the ROS context, the inclusion of all these nodes and topics results in the logical
structure shown in Fig. 32.

The velocity of the propellers is controlled in the MATLAB Simulink Toolbox.
One way to change this simulation example and make the hexacopter move from a
fixed point is by changing the code in this block. It is a good initial task to better
understand all the simulation parts and prepare for creating other kinds of applica-
tions.

6 Final Considerations

This chapter was meant to be a starting point for more complex applications. The
objective was to provide the minimal background necessary to enable the develop-
ment of a simulated simple multirotor virtual aircraft control, making it possible
for interested users to work with the tools without spending a long time learning
them. Because of this, all the examples were simplified, and the implementation
of real applications based on these tools will demand some additional work. All
the scenes and scripts created can be download in https://sourceforge.net/projects/
rosbook-2016-chapter-4/files/. The V-REP simulation software is a powerful tool
for developing several robot and automation simulations. The authors strongly rec-
ommend the study of V-REP’s manual, which is cited in the bibliography, and also
following the software tutorials before starting to work with more complex simula-
tions. The models, scripts, code, and other materials of interest used in this chapter
are accessible online in the book’s digital repository. Additional questions will be
accepted by the authors at any time.

https://sourceforge.net/projects/rosbook-2016-chapter-4/files/
https://sourceforge.net/projects/rosbook-2016-chapter-4/files/

594 A.R. Cantieri et al.

F
ig

.3
1

H
ex
ar
ot
or

co
nt
ro
lle

r
in

Si
m
ul
in
k

Environment for the Dynamic Simulation of ROS-Based UAVs 595

Fig. 32 ROS nodes for Simulink control of Hexarotor

References

1. Coppelia and Robotics. 2015. Virtual robot experimentation platform user manual version
3.3.0. Technical report, Coppelia Robotics. http://www.coppeliarobotics.com/helpFiles/

2. GrabCAd. 2016. GrabCAD Community Web Site GrabCAD. https://grabcad.com/library
3. Coppelia and Robotics. 2015. V-rep rosplugin publishers. Technical report, Coppelia Robotics.

http://www.coppeliarobotics.com/helpFiles/en/rosPublishers.htm
4. Coppelia andRobotics. 2015.V-rep rosplugin subscribers. Technical report, CoppeliaRobotics.

http://www.coppeliarobotics.com/helpFiles/en/rosSubscribers.htm
5. Meeussen, W. 2015. Coordinate Frames for Mobile Platforms Ros rep-105 coordinate frames

for mobile platforms. Technical report, Ros.org. http://www.ros.org/reps/rep-0105.html
6. Mathworks. 2016. Get Started with ROS in Simulink. Matlab Documentation, Mathworks.

http://www.mathworks.com/help/robotics/examples/get-started-with-ros-in-simulink.html
7. Corke, P. 2015. Integrating ros and matlab [ros topics]. IEEE Robotics Automation Magazine

22 (2): 18–20.

http://www.coppeliarobotics.com/helpFiles/
https://grabcad.com/library
http://www.coppeliarobotics.com/helpFiles/en/rosPublishers.htm
http://www.coppeliarobotics.com/helpFiles/en/rosSubscribers.htm
http://www.ros.org/reps/rep-0105.html
http://www.mathworks.com/help/robotics/examples/get-started-with-ros-in-simulink.html

596 A.R. Cantieri et al.

8. Mathworks. 2016. Get started with ros. Technical report, Mathworks. https://www.mathworks.
com/help/robotics/examples/get-started-with-ros.html

Author Biographies

Alvaro Rogério Cantieri has been an Associate Professor at the Federal Institute of Paraná
(IFPR) since 2010. He obtained his undergraduate degree and Master’s degree in electronic engi-
neering at the Federal University of Paraná 1994 and 2000, respectively. He is currently study-
ing for his Ph.D. in electrical engineering and industrial informatics at the Federal University of
Technology - Paraná (Brazil). He started his teaching career in 1998 in the basic technical forma-
tion course of the Politecnical Institute of Parana (Parana, Brazil) and worked as a Commercial
Director of the RovTec Engineering Company, focusing on electronic systems development. His
research interests include autonomous multirotor aircraft, image processing, and communications
systems.

André Schneider Oliveira obtained his undergraduate degree in computing engineering at the
Universidade of Itajaí Valley (2004), Master’s degree in mechanical engineering from Federal de
Santa Catarina University (2007), and Ph.D. degree in Automation Systems from Santa Catarina
University (2011). He works as an Associate Professor at the Federal University of Technology
- Paraná (Brazil). His research interests include robotics, automation, and mechatronics, mainly
navigation systems, control systems, and autonomous systems.

Marco Aurélio Wehrmeister received his Ph.D. degree in computer science from the Federal
University of Rio Grande do Sul (Brazil) and the University of Paderborn (Germany) in 2009
(double-degree). In 2009, he worked as a Lecturer and Postdoctoral Researcher for the Federal
University of Santa Catarina (Brazil). From 2010 to 2013, he worked as tenure-track Professor
with the Department of Computer Science of the Santa Catarina State University (Brazil). Since
2013, he has worked as a tenure-track Professor in the Department of Informatics of the Federal
University of Technology - Paraná (UTFPR, Brazil). From 2014 to 2016, he was Head of the MSc
course on Applied Computing at UTFPR.

João Alberto Fabro is an Associate Professor at the Federal University of Technology - Parana
(UTFPR), where he has worked since 2008. From 1998 to 2007, he was with the State University
of West-Parana. He has an undergraduate degree in informatics from the Federal University of
Paraná (1994), a Master’s degree in computing and electrical engineering from Campinas State
University (1996), a Ph.D. degree in electrical engineering and industrial informatics from UTFPR
(2003) and recently became a Postdoctoral Researcher at the Faculty of Engineering, University of
Porto, Portugal (2014). Has experience in computer science, especially computational intelligence,
and is actively researching the following subjects: computational intelligence (neural networks,
evolutionary computing, and fuzzy systems) and autonomous mobile robotics. Since 2009, has
participated in several robotics competitions in Brazil, Latin America, and the World Robocup
with both soccer robots and service robots.

Marlon de Oliveira Vaz obtained his undergraduate degree in computer science from the Pon-
tifical Catholic University (PUCPR -1998) and Master’s degree in mechanical engineering from
PUCPR (2003). He is now a Teacher at the Federal Institute of Parana and pursuing a Ph.D. in
electrical and computer engineering at the Federal University of Technology – Parana. He works
mainly in the following research areas: graphical computing, image processing, and educational
robotics.

https://www.mathworks.com/help/robotics/examples/get-started-with-ros.html
https://www.mathworks.com/help/robotics/examples/get-started-with-ros.html

Building Software System and Simulation
Environment for RoboCup MSL Soccer
Robots Based on ROS and Gazebo

Junhao Xiao, Dan Xiong, Weijia Yao, Qinghua Yu,
Huimin Lu and Zhiqiang Zheng

Abstract This chapter presents the lesson learned during constructing the software
system and simulation environment for our RoboCup Middle Size League (MSL)
robots. The software is built based on ROS, thus the advantages of ROS such as
modularity, portability and expansibility are inherited. The tools provided by ROS,
such as RVIZ, rosbag, rqt_graph just to name a few, can improve the efficiency
of development. Furthermore, the standard communication mechanism (topic and
service) and software organization method (package and meta-package) introduces
the opportunity for sharing codes among the RoboCup MSL community, which is a
fundamental issue to forming hybrid teams.As known, to evaluate new algorithms for
multi-robot collaboration on real robots is expensive, which can be done in a proper
simulation environment. Particularly, it would be nice if the ROS based software can
also be applied to control the simulated robots. As a result, the open source simulator
Gazebo is selected, which offers a convenient interface with ROS. In this case, a
Gazebo based simulation environment is constructed to visualize the robots and
simulate their motions. Furthermore, the simulation has also been used to evaluate
new multi-robot collaboration algorithms for our NuBot RoboCup MSL robot team.

Keywords Robot soccer · Gazebo · ROS · Multi-robot collaboration · Simulation

J. Xiao · D. Xiong · W. Yao · Q. Yu · H. Lu (B) · Z. Zheng
College of Mechatronics and Automation, National University
of Defense Technology, Changsha 410073, China
e-mail: lhmnew@nudt.edu.cn

J. Xiao
e-mail: junhao.xiao@ieee.org

D. Xiong
e-mail: xiongdan@nudt.edu.cn

W. Yao
e-mail: weijia.yao.nudt@gmail.com

Q. Yu
e-mail: yuqinghua163@163.com

Z. Zheng
e-mail: zqzheng@nudt.edu.cn

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_18

597

598 J. Xiao et al.

1 Introduction

RoboCup,1 short for Robot World Cup is an international initiative to foster the
research in artificial intelligence (AI) and mobile robotics, by offering a publicly
appealing, but formidable challenge. In other words, it is a perfect combination of
sport and technology, thus has attractedmany researchers and students. Since founded
in 1997, it has promoted the research field for almost two decades [1, 2]. The final
goal of RoboCup is that a team of fully autonomous humanoid soccer robots will
beat the human World Cup champion team by 2050 [3].

Besides soccer games, other competition stages have been introduced into
RoboCup along with its growth. As a result, the contest currently has six major com-
petition domains, namely RoboCup Soccer, RoboCup Rescue, RoboCup@Home,
RoboCup@Work, RoboCup Logistics League andRoboCupJunior, and each domain
has several leagues and sub-leagues. More information can be found in the Robot
World Cup book series published by Springer [4, 5].

For RoboCupmiddle size league (MSL), the robots can be designed freely as long
as they stay below a maximum size and a maximum weight. The game is played on
a carpet field at the size of 18m × 12m, with white lines and circles as landmarks
for localization. In the competition, all the robots are completely distributed and
autonomous, which means they must use their own on-board sensors to perceive the
environment and make decisions. According to the rules, wireless communication is
allowed to share information among a team of robots, which can help the cooperation
and coordination. Therefore, RoboCupMSL is a standard and challenging real-world
test bed for multi-robot control, robot vision and other relative research subjects.

As one league with the longest history among RoboCup, lots of scientific and
technical progresses have been achieved in RoboCupMSL, an overview can be found
in [6]. Its games are also becoming more and more fluent and fierce. For example,
the robots can actively handle the ball for stepping forwards, turning and stepping
backwards, can make dynamic long passes, and their velocity can reach about 5m/s,
etc. Therefore, in recent years, the RoboCupMSL final has been serving as the grand
finale of RoboCup, which gives the opportunity to all audiences and participants to
enjoy the game together. A typical competition scenario has been drawn in Fig. 1.
However, this brings lots of difficulties for new teams to catch-up, because it is not
easy and very time-consuming to design and implement a team of RoboCup MSL
soccer robots from the very beginning.

Since its birth in 2010, as an open source software, ROS has attracted a huge
number of robotic researchers and hobbyist, which have been serving as an active
and high-productive community to boost the development of ROS. The community
not only optimizes the code but also stands in the front of robotic research, i.e.,
implementations of state-of-the-art algorithms can be found in ROS. Therefore, ROS
is becoming the de facto standard for robotic software. Built under ROS, the robot
software components can be well and easily organized. Strictly speaking, the code

1http://www.robocup.org/.

http://www.robocup.org/

Building Software System and Simulation Environment … 599

Fig. 1 A typical scenario of the RoboCup MSL competition: a match between TU/e and NuBot in
RoboCup 2014 João Pessoa, Brazil

implementation can achieve high modularity and re-usability. Meanwhile, lots of
useful tools have been provided by ROS, which can ease data logging and sharing,
and code sharing among RoboCup MSL teams.

In April 2014, a question is raised among our team, i.e., whether ROS is suitable
for RoboCup MSL? As a result, we decided to drop our self-developed software
framework (more than 10 years development) and build the software system for our
soccer robot based on ROS. Then in July, we participated RoboCup 2014 with robots
with new “soul”. The competition brought two positive remarks. First, the software
was more robust than ever before. Second, the work was acknowledged by other
teams. In this paper, we will detail the ROS based software, and hope to provide
a valuable reference for building ROS based software for distributed multi-robot
systems.

In addition, to evaluate new algorithms for multi-robot collaboration using real
robots is very time consuming, which demands a high-fidelity simulation environ-
ment. Particularly, it would be of efficiency if the simulated robot has the same
control interface as the real robot. In fact, there are many robotic simulators either
commercially available or open source, such as V-REP [7], Gazebo [8], Webots [9],
LpzRobots [10], just to name a few. Detailed introduction and comparison of the
state-of-the-art robotics simulators can be found at [11, 12]. Among the simula-
tors, Gazebo offers a convenient interface, i.e., from the software interface point of
view, there is no difference between controlling a real robot and its Gazebo dummy.
In other words, the algorithms evaluated using the simulation environment can be
applied to the real robots without change. Therefore, we choose Gazebo to construct
the simulation environment.

600 J. Xiao et al.

This Chapter will cover the design and implementation of the software system,
simulation environment, and their interfaces for our RoboCup MSL robots. It is
based on our previous work of [13, 14]. The code has been made open source, with
the ROS based software can be accessed at https://github.com/nubot-nudt/nubot_
ws, while the simulator can be accessed at https://github.com/nubot-nudt/gazebo_
visual. A video showing a simulated match using our multi-robot simulator can be
found at https://youtu.be/rMuAZGf65AE. The remainder of the chapter consists of
the following topics:

• First, the background is introduced in Sect. 2.
• Second, a brief introduction of our NuBot multi-robot system is given in Sect. 3,
including the mechanical structure, the perception sensors and the electrical
system.

• Third, the ROS-based software is detailed in Sect. 4.
• Fourth, the Gazebo-based simulation environment is drawn in Sect. 5, with the
focus on how we designed the same control interface for the real robots and
simulated robots.

• Fifth, two short tutorials are given for single robot simulation and multi-robot
simulation in Sects. 6 and 7, respectively.

• A short conclusion is given in Sect. 8.

2 Background

It is not trivial to design robots for highly competitive and dynamic environments like
the RoboCup MSL, thus many hardware designs and software algorithms have been
proposed, see [6] for an overview. In this section, we try to give a brief introduction
fromwhich the readers can acquire more details about the achievements in RoboCup
MSL, and the efforts which have been done to cut down the difficulty in developing
RoboCup MSL robots. Our previous works will also be introduced in this section.

RoboCupMSL has achieved scientific results in robust design of mechanical sys-
tems, sensor-fusion, tracking, world modelling and distributed multi-robot coordi-
nation. A special issue named “Advances in intelligent robot design for the Robocup
MSL” was published in 2011 [15]. In this issue, the state-of-the-art research about
mechatronics and embedded robot design, vision and world modelling algorithms,
team coordination and strategy was presented. The paper [6] overviews the history
and the current state of the RoboCup MSL competition, which also presents a plan
to further boost scientific progress and to attract new teams to the league. Surveys
about team strategies, vision systems and visual perception algorithms in RoboCup
MSL can be found in [16–18].

Recently, some RoboCup trustees reported the history and state-of-the-art of
RoboCup soccer leagues, in which they had very positive comments on the RoboCup
MSL [19], e.g., “ThisMiddle Size League has hadmajor achievements during the last
few years. Middle Size League teams have developed software that allows amazing

https://github.com/nubot-nudt/nubot_ws
https://github.com/nubot-nudt/nubot_ws
https://github.com/nubot-nudt/gazebo_visual
https://github.com/nubot-nudt/gazebo_visual
https://youtu.be/rMuAZGf65AE

Building Software System and Simulation Environment … 601

forms of cooperation between robots. The passes are very accurate and some com-
plex, cooperatively made goals are scored after passing the ball, rather than just
out-dribbling an opponent and playing individually”. However, this brings lots of
difficulties for new teams to catch-up. As a result, the number of RoboCup MSL
teams has not rise for years. How to draw more teams to participate RoboCup MSL
and then make contributes to RoboCup MSL is becoming a major problem. Facing
this reality, the RoboCup MSL community has made efforts to reduce the difficulty
in implementing RoboCup MSL teams. For example:

• The launch of ROP (Robotic Open Platform) [20], it facilitates the release of
hardware designs of robots and modules under an open hardware license. In the
repository, the robots named Turtle of team Tech United have been fully released.

• Another remarkable propose is to design and implement an affordable platform
for RoboCup MSL, thus providing an easier starting point for any new team, i.e.,
the Turtle-5k project.2 With the support from the Tech United team, the TURTLE-
5k platform is developed based on the 2012 TURTLE robots, which has won
the RoboCup MSL world Champion. The Value Engineering method has been
employed to find out some the most cost part, where the cost could be reduced.

• Real-time efficient communication among robots is of key important for coop-
eration, the CAMBADA team [21] proposed a TDMA (Time Division Multiple
Address) based communication protocol, which is designed for real time data shar-
ing in a local network.CAMBADAalso implemented the communication protocol,
which is named real-time database tool (RTDB) [22, 23]. Furthermore, RTDB has
been made open source, and several teams are using it for communication.

Although RoboCup MSL teams have made significant achievements, there are
still some open problems and challenges in constructing a RoboCup MSL robot
team to play with human beings:

• The robot platform should have good performance in critical aspects such as top
speed and top accelerations, and be able to handle impacts. It should be easy to
assemble and maintain.

• It is necessary to improve the stability of the electrical system, and the extension
of sensors should be better supported.

• The robustness of the vision system should be improved to make it work reliably
in both indoor and outdoor environments with highly dynamic lighting conditions.

• The software framework should support code reusing and data sharing as much as
possible.

2http://www.turtle5k.org/.

http://www.turtle5k.org/

602 J. Xiao et al.

Fig. 2 The 5 generation NuBot robots

3 The NuBot Multi-robot System

Our NuBot team3 was founded in 2004. As shown in the Fig. 2, from the very begin-
ning, 5 generations robots have been created. It can be seen that, the NuBot robots
have been always using omni-directional vision system [24, 25], and have been
equipped with omni-directional chassis since the second generation [26]. We had
participated in RoboCup simulation and small size league (SSL) at first. Since 2006,
we have been participating RoboCup MSL actively, e.g., we have been to Bremen,
Germany (2006), Atlanta, USA (2007), Suzhou, China (2008), Graz, Austria (2009),
Singapore (2010), Eindhoven, Netherlands (2013), Joao Pessoa, Brazil (2014), and
Hefei, China (2015) [27]. We have been also participating RoboCup ChinaOpen
since it was launched in 2006. This chapter will present the software system and
simulation environment for the last generation robot.

3.1 Mechanical Platform

This section draws the mechanical platform of our NuBot soccer robots. When
designing the robot platform, there are several criteria to be considered. First, it
should comply with the rules and regulations of RoboCup MSL, namely, its size,
weight and safety concerns. Second, it should have good maneuverability in order to
play against others. Lastly, because malfunctions or failures are unavoidable during
the intensive and fierce RoboCup MSL games, the mechanical parts should embrace
high modularity such that they are easy to assemble and maintain. To fulfil these
requirements, The NuBot robots have been designed modularly as shown in Fig. 3.

Currently, the regular robot and the goalie robot are heterogeneous due to their
different tasks. For the regular robot, it should be able to do the same things as a
human soccer player, such asmoving, dribbling, passing and shooting. Therefore, the
mechanical platform is subdivided into three main modules as illustrated in Fig. 3a.

3http://nubot.trustie.net.

http://nubot.trustie.net

Building Software System and Simulation Environment … 603

Fig. 3 a The regular robot. b The goalie robot

• the base frame;
• the ball-handling mechanism;
• the electromagnet shooting system;

For the goalie robot, the ball-handling mechanism, the electromagnet shooting
device and the front vision system are removed, instead two RGB-D cameras are
integrated as shown in Fig. 3b. Furthermore, to increase the side acceleration, the
configuration of omni-directional wheels has also been modified.

In the below, we give a brief introduction to each part.

Base Frame The holonomic-wheeled platform, which is capable of carrying out
rotation and translation simultaneously and independently, has been used by most
RoboCup MSL teams [21, 28]. In the NuBot platform, our custom-designed omni-
directional wheel has been utilized, as illustrated in Fig. 4a. Four such omni-
directional wheels are uniformly arranged on the base as shown in Fig. 4. Despite
the added costs of extra weight and extra power consumption, the four-wheel-
configuration platform can generate more traction force than a normal three-wheel-
configuration one, thus can improve the maneuverability. For the goalie robot, its
main motion is side moving to defend coming balls. In this case, the configuration
of omni-directional wheels have been modified as shown in Fig. 4c.

Ball-HandlingMechanismThe ball-handlingmechanism enables the robot to catch
and dribble the football. As illustrated in Fig. 5, there are two symmetrical assem-
blies, each contains a wheel, a DC motor, a set of transmission bevel-gears, a linear
displacement transducer and a support mechanism. According to the gravity and
pressure from the support mechanism, the wheels are stuck to the ball when the ball
is in. Therefore, they can generate various friction forces to the ball, and make it

604 J. Xiao et al.

Fig. 4 a The custom designed omni-directional wheel. b Base for regular robots. c Base for the
goalie robot

Fig. 5 The ball-handing
mechanism of the NuBot

rotate in desired directions and speeds together with the soccer robot. During drib-
bling, the robot constantly adjusts the speed of the wheels, in order to maintain a
proper distance between the ball and the robot using a closed-loop control system.
This control system takes the distance between the ball and the robot as the feedback
signal, which is measured by the linear displacement transducers. As the ball moves
closer to the robot, the supporting mechanism will raise, then compress the trans-
ducer, otherwise the support mechanism will fall and stretch the transducer. This
system effectively solves the ball-handling control problem.

Electromagnet Shooting System The shooting system enables the robot to pass
and score, currently there are three ways to construct a shooting actuator, i.e., spring
mechanisms, pneumatic systems and solenoids electromagnet, an overview can be
seen in [29]. When using spring mechanisms, the shooting power is quite hard to
control. The pneumatic systems usually need a large gas tank to generate high pres-
sure to realize strong shooting, and the number of shots generally depends on the
size of the gas tank. As a result, most RoboCup MSL teams choose to use solenoid
electromagnet, whose shooting force can be high and is easier to control. Our custom-
designed solenoid electromagnet has been depicted in Fig. 6, it consists of a solenoid,
an electromagnet core, a shooting rod, and two linear actuators with potentiometer.
The shooting rod can be adjusted in height to allow for different shooting modes,

Building Software System and Simulation Environment … 605

Fig. 6 a The solenoids electromagnet. bMechanism of the shooting system

namely, flat shots for passing and lob shots for scoring. Twomodes are realized using
two linear actuators to move the hinge of the shooting rod to different positions. For
more detail, please refer to [13].

3.2 Visual Perception System

For RoboCup MSL robots, the visual perception system is of great importance as
they should be fully autonomous. There are three kind of visual perception sensors
in our system, namely an omni-directional vision system, a front vision system and
a RGB-D vision system. Among them, each robot has an omni-directional vision,
and each regular robot has an additional front vision, while the goalie robot has dual
RGB-D cameras, as shown in Fig. 3. Below a short introduction to the vision sensors
is given.

Omni-Directional Vision SystemAlmost all RoboCupMSL teams are using omni-
directional vision systems, which is composed of a convex mirror and a camera
pointing upward towards the mirror. The panoramic mirror plays the most important
impact on the imaging quality, especially on the distortion of the panoramic image.
Currently we are using the mirror designed by the team named Tech United Eind-
hoven [30], which has a relative simple profile, at the same time is easy to calibrate.

Front Vision The front vision system is an auxiliary sensors for the regular robots,
which is a low-cost USB camera and facing down upon the ground, as shown in
Fig. 3. With it, the robot can recognize and localize the ball with high accuracy when
the ball is close to the robot. The position of the ball is estimated based on the pinhole
camera projection model. It is of great significance for accurate ball catching and
dribbling.

606 J. Xiao et al.

Dual RGB-D Cameras In the current RoboCup MSL games, most of the goals are
achieved by lob shooting, so accurate estimation of the shooting touchdown-point
of the ball is fundamental for the goalie robot to defend these shoots. Although the
object’s 3D information can be acquired using the omni-directional vision system
and a front vision system together, the accuracy cannot be guaranteed because the
imaging resolution of the omni-directional vision is relative low due to its large
field of view (FoV). The Kinect 2 RGB-D camera can stream out color and depth
information simultaneously at the frame rate of 30 fps, whose sensing range is up to
8m. Therefore, it is an ideal sensor to obtain the 3D ball information for the goalie
robot. Thus, our goalie robot is equippedwith dual RGB-D cameras, as demonstrated
in Fig. 3, to recognize and localize the ball, estimate its moving trace and predict the
touchdown-point in 3D space.

3.3 Industrial Electrical System

As the RoboCup MSL game becomes more and more competitive and fierce, the
requirements on the robustness and reliability of the electronic system are also
increasing. To improve the robustness of our robot control system, the electrical
system of NuBot robots is designed based on the so called PC-based control technol-
ogy, whose block diagram has been drawn in Fig. 7. As can be seen, the system uses
an Ethernet-based field-bus system named EtherCAT [31, 32] to realize high-speed
communication between the industrial PC and the connected modules. All vision

Fig. 7 The electrical system based on PC control technology. The blue-dashed box represents
industrial PC and Ethernet-based field-bus, which are the core module of the PC-based control
technology

Building Software System and Simulation Environment … 607

and control algorithms are processed on the industrial PC. The industrial electrical
system has been used through 2014 Brazil and 2015 China international RoboCup
competitions, 2014 China RoboCup competition.

4 ROS-Based Software for NuBot Robots

The recent achievements in robotics make autonomous mobile robot play an increas-
ingly important role in daily life. However, it is difficult to develop a generic soft-
ware for different robots, e.g. it is usually difficult to reuse others’ code implements.
A solution named Robot Operating System (ROS), launched by Willow Garage
company, provides a set of software libraries and tools for building robot applica-
tions across multiple computing platforms. ROS has many advantages: ease of use,
high-efficiency, cross-platform, supporting multi-programming languages, distrib-
uted computing, code reusability, and is completely open source (BSD) and free
for others to use. We also use ROS to build our NuBot software. Furthermore, our
software is developed on Ubuntu, and it is also open source. For the current version,
the operating system is Ubuntu 14.04, and the ROS version is indigo.

The software framework, as shown in Fig. 8, is divided into 5 main parts:

1. the Prosilica Camera node and the OmniVision node;
2. the UVC Camera node and the FrontVision node;
3. the NuBot Control node;
4. the NuBot HWControl node;
5. the RTDB and the WorldModel node.

Fig. 8 The software framework based on ROS

608 J. Xiao et al.

Fig. 9 The goalie software framework based on ROS

For the goalie robot, four Kinect related nodes will replace the FrontVision node
and the UVCCamera node, i.e., a driver node and a 3D ball tracking node is required
for each Kinect, as shown in Fig. 9. These nodes will be described in the following
sub-sections.

4.1 The OmniVision Node

Perception is the base to realise the autonomous ability for mobile robots, such as
path planning, motion control, self localization, action decision and cooperation.
Omni-directional vision is one of the most important sensors for RoboCup MSL
soccer robots. The image is captured and published by the Prosilica Camera node.4

It takes less than 30 ms to perform the computation of below algorithms, so the
OmniVision node can be run in real-time.

Colour Segmentation andWhite Line-Points Detection The color lookup table is
calibrated off-line. Because of its simplicity and low computational requirements, it
is used to realize color segmentation. A typical panoramic image captured by our
omni-directional vision system is shown in Fig. 10a in a RoboCup MSL standard
field, the corresponding segmentation result is shown in Fig. 10b. As can be seen,
this method can be used to distinguish the ball, green field, black obstacles and white

4http://wiki.ros.org/prosilica_camera.

http://wiki.ros.org/prosilica_camera

Building Software System and Simulation Environment … 609

Fig. 10 a The image captured by our omni-directional vision system. b The result of color seg-
mentation for image in a, for the visualization purpose, the ball has been colored with pink and
obstacles have been colored with purple

line in the color-coded environment. To detect white line in the panoramic image, we
search for significant color variations along some scan lines because of the different
color values between the white lines and the green field. As shown in Fig. 10b, these
scan lines are radially arranged around the image center, and the red points represent
the resulted white line-points.

Self-localization To localize an autonomous mobile robot under a highly dynamic
structured environment is still a challenge. A matching optimization algorithm has
been employed to realize global localization and pose tracking for our soccer robots
accurately in real-time. A brief introduction is given below, see [33] for more detail.
As an off-line preprocessing step, 315 samples are acquired as the robot’s candidate
positions which are located uniformly in the field. Then, for the real-time global
localization, the orientation is obtained by an Motion Trackers instrument (MTi).
Afterwards, the match optimization localization algorithm is used to determine the
real pose among the samples. Once global localized, pose tracking phase is started,
where the encoders based odometry is used to obtain its coarse pose, and a Kalman
Filter is employed to fuse the odometry with the match optimization result. A typi-
cal localization result is illustrated in Fig. 11, during the experiment, the robot was
manually pushed to follow straight lines on the field, which is shown as black lines
in the figure. The red traces depict the localization result. The mean position error is
less than 6cm.

610 J. Xiao et al.

Fig. 11 The robot’s
self-localization results

4.2 The FrontVision Node and the Kinect Node

The FrontVision node processes the perspective image captured and published by the
UVC Camera node,5 and provides a more accurate ball position information when
the ball is in the near front of a regular robot. The node detects the ball using a color
segmentation algorithm and region growing algorithm similar to the OmniVision
node. Then we can estimate the ball position based on the following assumptions.
First, the ball is located on the ground. Second, the pinhole camera model is adopted
to calibrate camera interior and exterior parameters off-line. Lastly, the height of the
camera to the ground and its view direction is known.

3D information of the ball is of great significance for the goalie robot to intercept
lob shot balls. However, using the front vision system and the omni-directional vision
system to interpret depth information is difficult. Therefore, a dual RGB-D cameras
setup is employed to recognize and localize the ball, estimating its moving trace in
3D space. The OpenNI RGB-D camera driver, which has been integrated into ROS,
is employed for obtaining point clouds data in the Kinect driver node. Basic point
cloud processing, such as noise filtering and segmentation, is based on algorithms of
the Point Cloud Library (PCL) [34].

As shown in Fig. 12, in the 3D ball processing node, the same color segmentation
algorithm as that in the OmniVision node is used to obtain some candidate ball
regions. Then, the random sample consensus algorithm (RANSAC) [35] is used to
fit a spherical model to the shape of the 3D candidate ball regions. With the proposed
method, only a little number of candidate ball regions need to be fitted. Lastly, to
intercept the ball for the goalie, the 3D trajectory of the ball regarded as a parabola
curve is estimated and the touchdown-point in 3D space is also predicted in the 3D
ball processing node, using a similar algorithm as in [36]. In total, the node takes

5http://wiki.ros.org/uvc_camera.

http://wiki.ros.org/uvc_camera

Building Software System and Simulation Environment … 611

Fig. 12 The 3D ball processing data flow

about 30–40 ms to process a frame of RGB-D data, therefore can meet the real-time
requirement of highly dynamic RoboCup MSL games.

4.3 The NuBot Control Node

On top level of the controllers, the NuBot soccer robots typically adopt a three-layer
hierarchical structure. To be specific, the NuBot control node basically contains
strategy, path planning and trajectory tracking.

The design of soccer robots aims to fulfil all the tasks completely autonomously
and cooperatively.Therefore,multi-robot cooperationplays a central role inRoboCup
MSL. To allocate the roles of the robots and initiate the cooperation, a group intelli-
gence scheme is proposed to imitate the captain or the decision-maker in the compe-
tition, see [37] for detail. In our scheme, a hybrid distributed role allocationmethod is
employed, including role evaluation, role assignment and dynamic reassignment. The
soccer robot can select a proper role among the following set: attacker, defender and
others. While the roles are determined, each robot is motivated to perform the corre-
sponding tasks individually and autonomously, such as moving, defending, passing,
catching and dribbling.

Path planning and obstacle avoidance is still quite a challenge under highly
dynamic competition environments. To deal with it, an online path planning method
based on the subtargets method and B-spline curve is proposed [38]. Benefiting from
the proposed method, we can obtain a smooth path and realize real-time obstacle
avoidance at a relative high speed. The method can be summarized as follows:

• generating some via-points using the subtargets algorithm iteratively;
• obtaining a smooth path by using B-spline curve between via-points; and
• optimizing the planning path via actual constraints such as the maximal size of an
obstacle and the robot velocity and so on.

To track the planned path at a high speed with a quick dynamic response and low
tracking error, Model Predictive Control (MPC) is utilized, as MPC can easily take
into account the constraints and use the future information to optimize the current

612 J. Xiao et al.

Fig. 13 A typical path tracking result of the proposed controller. a The robot starts at control point
p0 to track the given trajectory, and finally stops at point p3. The reference trajectory and the real
trajectory is shown in a red curve and a blue curve, respectively. b The speed during the tracking,
which is bounded at 3.25m/s. c The tracking errors

output [26]. Firstly, a linear full-dynamic error model based on the kinematics model
of the soccer robot is obtained. Then, MPC is used to design the control law to
satisfy both the kinematics constraints and kinetics constraints. Meantime, Laguerre
Networks is used to design the MPC controller, in order to reduce the computational
time for the online application. As illustrated in Fig. 13, the robot can track the path
with a quick dynamic response and low tracking errors by our proposedMPC control
law.

4.4 The NuBot HWControl Node

On bottom level of the controllers, the NuBot HWControl node performs four main
tasks:

1. controlling the four motors of the base frame;
2. obtaining odometry information;

Building Software System and Simulation Environment … 613

3. controlling the ball-handling system; and
4. actuating the shooting system.

The ROS EtherCAT library for our robots is developed to exchange information
between the industrial PC and the actuators and sensors, e.g., AD module, I/O mod-
ule, Elmo controller, motor encoder, linear displacement sensor. The speed control
commands calculated in the NuBot Control node are sent to four Elmo motor con-
trollers of the base frame at 33Hz for realizing robot motion control. Meanwhile, the
motor encoder data are used to calculate odometry information, which are published
to the OmniVision node. For the third task, high control accuracy and high-stability
performance are achieved by feedback plus feedforward PD control for the active
ball-handing system. The relative distance between the robot and the ball measured
with two linear displacement sensors is regarded as feedback signal, and the robot
velocity is used as the feedforward signal. For the last task, the shooting system first
needs to be calibrated off-line. During competitions, the node adjusts the hinge of the
shooting rod to different heights according to the received commands: flat-shooting
or lob-shooting from the NuBot Control node. Furthermore, it can determine the
shooting strength according to the calibration results and kicks the ball out.

4.5 The WorldModel Node

The real-time database tool (RTDB) [22, 23] developed by the CAMBADA team is
used to realize the robot-to-robot communication. The information of the ball, the
obstacles and the robot itself provided by the OmniVision node, the Kinect node and
the FrontVision node are combined with the data communicated from teammates to
acquire a unifiedworld representation in theWorldModel node. The information from
its own sensors and other robots is of great significance for single-robot motion and
multi-robot cooperation. For example, every robot fuses all obtained ball information,
and only the robot with the shortest distance to ball should catch it and others should
move to appropriate positions; each robot achieves accurate positions of the obstacles
and obtains the positions of its teammates by communication, thus it can realize
accurate teammate and opponent identification, which is important for our robots to
perform man-to-man defense.

5 Gazebo Based Simulation System

In this paper, the open source simulator Gazebo [8] is employed to simulate the
motions of our soccer robots. The main reason to use Gazebo is that it offers a
convenient interface with ROS, which has been used to construct software for our
real robots, see Sect. 4 for detail. In addition, Gazebo also features 3D simulation,
multiple physics engines, high fidelity models, huge user base and etc. Therefore,

614 J. Xiao et al.

Table 1 Properties of the
robot model

Property Value

Mass 31kg

Moment of inertia
Izz = 2.86 kg · m2

Ixx = Iyy = Ixy = Ixz = Iyz = 0

Friction coefficient 0.1

Velocity decay Linear: 0. Angular: 0

Model plugin nubot_gazebo

the simulation system based on ROS and Gazebo can take advantage of many state-
of-the-art robotics algorithms and useful debugging tools built in ROS. It can also
benefit fromor contribute to the active development communities ofROS andGazebo
in terms of code reuse and project co-development.

The remainder of this section is organized as follows. Section5.1 introduces the
creation of simulation models and a simulation world. Section5.2 presents the real-
ization of a single robot’s basic motions by a Gazebo model plugin. Furthermore, in
Sect. 5.3, the model plugin is integrated with the real robot code so that several robot
models are able to reproduce real robots’ behavior. Finally, in Sect. 5.4, three tests
are conducted to validate the effectiveness of the simulation system.

5.1 Simulation Models and a Simulation World

Gazebo models, which consist of links, joints (optional), plugins (optional) and etc.,
are specified by SDF (Simulator Description Format)6 files. Besides, a simulation
world, which determines lighting, simulation step size, simulation frequency and
other simulation properties, is specified by a world file.

Simulation ModelsModels used in this simulation system include the NuBot robot
model, the soccer field model and the soccer ball model.

• Robot model: It is composed of a chassis link without any joint. Table1 lists
some important properties specified in the robot model SDF file. Besides, another
two important properties, mesh and collision that are used for visualization and
collision detection respectively, are illustrated in Fig. 14. They are drawn by the
open source 3D drawing tool SketchUp.7 Note that the collision element is not
a duplicate of the model’s exterior but a simplified cylinder with the same base
shape and height as the model exterior. Furthermore, we do not model the real
robot’s physical mechanisms, such as omni-directional wheels, ball-dribbling,
ball-kicking and omni-vision camera mechanisms. Therefore, this model does

6http://sdformat.org/.
7http://www.sketchup.com/.

http://sdformat.org/
http://www.sketchup.com/

Building Software System and Simulation Environment … 615

Fig. 14 Mesh and collision properties of the robot model. Left Mesh property; Right collision
property

Table 2 Properties of the
simulation world

Property Value

Physics engine Open dynamics engine

Max step size 0.007s

Gravity −9.8m/s2

not require any joints. The simplification is reasonable according to the simulation
purpose: to test multi-robot collaboration strategies and algorithms. Therefore the
emphasis of the simulation system is on the final effect of robot basic motions but
not the complicated physical processes involved. The physical mechanisms capa-
bilities are realized by a Gazebo model plugin that will be discussed in Sect. 5.2.

• Soccer field model: Images of the goal net, field ground and field lines, together
with OGRE material scripts8 are used to construct the field model. The field is
then scaled according to the 2015 RoboCup MSL rules. The collision elements
are composed of each parts’ corresponding geometry.

• Soccer ball model: The soccer ball model is built with the same attributes of a
defined FIFA (Fdration Internationale de Football Association) standard size 5
soccer ball that is played in RoboCup MSL. The pressure inside the model is
neglected and the collision element is a sphere of the same size of the soccer ball.

The SimulationWorld The world file specifies the simulation background, lighting,
camera pose, physics engines, simulation step size and etc. Some important properties
of the simulation world are listed in Table2. Finally, a simulation world with three
robots and a soccer ball is created, see Fig. 15.

8http://www.ogre3d.org/.

http://www.ogre3d.org/

616 J. Xiao et al.

Fig. 15 The simulation world, with three robots playing a ball

5.2 Basic Motions Realization

To realize a single robot’s basic motions, a Gazebo model plugin named
“nubot_gazebo” is written. A model plugin is a shared library that attached to a
specific model and inserted into the simulation. It can obtain and modify the states
of all the models in a simulation world.

Overview of the “nubot_gazebo” Plugin When “nubot_gazebo” plugin is loaded
at the beginning of a simulation process, its tasks include:

• Obtaining parameters of the soccer ball model’s name, ball-dribbling distance
threshold, ball-dribbling angle threshold and etc. from the ROS parameter server.

• Setting up ROS publishers, subscribers, service servers and a dynamic reconfigure
server.

• Binding model plugin update function that runs in every simulation iteration.

The model plugin starts running automatically when a robot model is spawned.
For example, when the robot model “bot1” is spawned, a computation graph shown
in Fig. 16 is created, which is visualized by the ROS tool rqt_graph. As can be seen,
there is only one node called “/gazebo”, which publishes (represented by an arrow
pointing outward) and subscribes (represented by an arrow pointing inward) several
topics enclosed by small rectangles. The topics inside the “gazebo” namespace are
created by a ROS package called gazebo_ros_pkgs, which provides wrappers around
the stand-alone Gazebo and thus enables Gazebo to make full use of ROS messages,
services and dynamic reconfigure. Those inside the “bot1” namespace are created by
themodel plugin. All the topic names are self-explanatory. For instance, messages on
the /bot1/nubotcontrol/velcmd topic are used to control the robot model’s velocity.

Building Software System and Simulation Environment … 617

Fig. 16 The computation graph of the model plugin

Although the physical mechanism of the omni-vision camera is not simulated, the
robotmodel is still able to obtain informationof othermodels’ positions andvelocities
by subscribing to the topic /gazebo/model_states. In addition, ball-dribbling and ball-
kicking are realized by calling corresponding ROS services. They will be discussed
in the following part.

Motion Realization A single robot’s basic motions include omni-directional loco-
motion, ball-dribbling and ball-kicking.

• Omni-directional locomotion: Gazebo’s built-in functions SetLinearVel and
SetAngularVel are used to make the robot model move in any direction given
any translation vector and rotation vector respectively.

• Ball-dribbling: If the distance between the robot and the soccer ball is within a
distance threshold and the angle from the robot front direction to the ball viewing
direction is alsowithin an angle threshold, then the dribble condition is satisfied and
the robot is able to dribble the ball. Under this condition, to realize ball-dribbling,
the soccer ball’s pose is directly and continuously set by Gazebo’s built-in function
to continually satisfy the dribble condition.

• Ball-kicking: Similarly, ball-kicking is realized by giving the soccer ball a specific
velocity at the start of the kicking process. There are two ways of kicking, e.g.,
the ground pass and the lob shot. For the ground pass, the soccer ball does not
lose contact with the ground so its initial velocity vector is calculated in the field
plane. As for the lob shot, the soccer ball is kicked into the air so its speed in the
up-direction should also be taken into account. Since the air resistance is trivial
compared with the gravity effect, it is reasonable to assume that the ball’s flight
path is a parabola.

Single RobotMotions Test To test single robot’s basic motions, four behavior states
are defined as follows: CHASE_BALL, DRIBBLE_BALL (including two sub-states
MOVE_BALL and ROTATE_BALL), KICK_BALL, and RESET. The robot model
performs these motions following the behavior states transfer graph as shown in
Fig. 17. The test results, as shown in Fig. 18 prove that the “nubot_gazebo” model
plugin realizes basic motions successfully.

618 J. Xiao et al.

Fig. 17 Single robot behavior states transfer graph

Fig. 18 Single robot simulation result. a Initial state; b CHASE_BALL state; c DRIBBLE_BALL
state; d KICK_BALL state

5.3 Model Plugin and Real Robot Code Integration

It would be better to use the same interface to control the real robots and the simulated
robots. In this case, themulti-robot collaboration algorithms could be evaluated using
the simulation system. Furthermore, the implementation can be directly applied to
the real robots without any modification. In other words, it is significant to integrate
the model plugin with the real robot code.

In the real robot code, there are eight nodes in total (see Fig. 8). Among them,
“world_model” and “nubot_control” are close related to multi-robot collaboration
and cooperation. In addition, there is a coach program which receives and visualizes
information from each robot and sends basic commands such as game-start, game-
stop, kick-off and corner-ball via RTDB.

To integrate the real robot code with the model plugin, the left five nodes which
are related to hardware should be replaced by the model plugin. This successful
replacement requires an appropriate interface, in otherwords, correct ROSmessages-
passing and services-calling between them. Finally, the data flow of the integration
of the real robot code and the model plugin is shown in Fig. 19. There are three
noticeable changes described as follows.

• Coach communicates with each robot’s “world_model” node via ROS mes-
sages: for convenience and reliability, the communication between Coach and
“world_model” no longer requires RTDB in the simulation scenario. Instead, they
are able to send and receive ROS messages in one local computer. In particular,

Building Software System and Simulation Environment … 619

Fig. 19 The data flow graph
of the integration of the real
robot code and the model
plugin

each robot receives messages about game status from the Coach. However, the
Coach only receives the world model information from one selected robot. This
is because all the robot’s world model information is accurate and shared in the
simulation environment, there is no need for the Coach to obtain other robots’
world model information.

• An intermediary node (simulation interface) for communication among robots: in
the real world scenario, robots share their own strategies information with their
teammates by RTDB. However, as for simulation, it is neither practical nor nec-
essary to use RTDB as a communication measure since all robots are simulated in
one computer. Therefore, an intermediary node (simulation interface) subscribes
to messages on collaboration strategies from all robots and in return, publishes
new messages containing all the strategies information. So all the robots are able
to share the information without the use of RTDB network communication.
In addition, topic-name-prefixing is employed for simulation to distinguish dif-
ferent robots. Because all the robot models use the same model plugins and are
created into one simulation world, they cannot distinguish their own messages
and services from others. In this case, it is necessary for each model’s name to be
used as a prefix to their own topic names or service names. Therefore, the robots
can subscribe to their own topics or respond to their own services. These prefixes,
i.e., the model names, are obtained by a bash script to guarantee that each name
is mapped to the appropriate robot models as shown in Fig. 20. The bash scripts
also start the simulation interface node and spawn models for Gazebo. It works as
a mapping mechanism and a bridge between different separate components. This
helps isolate the real robot code from the simulation components so as to improve
the adaptability of the simulation system. In other words, different robot code can
be easily tested in this environment since it does not depend on the simulation.

• Gaussian noise: Gaussian noise is added to the position and velocity information
obtained by the robot model to mimic the real world situation.

620 J. Xiao et al.

Fig. 20 The functions of the bash script

Fig. 21 The computation graph of the simulation with two robot models

Finally, two robot models bot1 and bot2 are spawned into a simulation world and
the corresponding computation graph is shown in Fig. 21. Note that all the model
plugins are embedded in the /gazebo node and the topic names are all prefixed by
corresponding model names due to the mapping function of the bash script discussed
before.

5.4 Simulation of a Match

It is also possible to simulate a match of two simulated teams, which could be used
to evaluate new collaboration algorithms. Furthermore, machine learning algorithms
could be used to train the simulated robots during the simulatedmatch, and the trained

Building Software System and Simulation Environment … 621

Fig. 22 The overall structure of the configuration of two simulation teams

Fig. 23 The simulation of a soccer match by two robot teams

results can be then applied to the corresponding real robots. Figure22 shows the
overall structure of the setup. There are totally three computers to simulate a soccer
match between two robot teams. One of the computer is for Gazebo visualization
with model plugins to simulate the motions of each robot. The other computers are
used for running the real robot codes and their corresponding Coach programs. The
total computation involved has been distributed to three computers and therefore, the
simulation speed is fast enough to test the multi-robot coordination strategies in real
time. In addition, there is only one ROSmaster in computer A, which registers nodes,
services, topics and other ROS resources from all the three computers. Finally, the
simulation of a match (without goalie) is shown in Fig. 23.

6 Single Robot Simulation Tutorial

Note that the single_nubot_gazebo package can simulate only ONE robot
soccer player for RoboCup MSL. It is designed for demonstration of how the simu-
lation systemworks. However, it can be adapted for other purposes. If youwant to test
multi-robot cooperation strategies, please refer to the gazebo_visual package,
while the compilation in this tutorial is still useful. For further information, please
refer to our previous paper [14].

622 J. Xiao et al.

6.1 Get the Package

If you have git installed, you could use the below command to download the package:

$ git clone git@github.com:nubot -nudt/gazebo_visual .git

As an alternation, you could also go to https://github.com/nubot-nudt/single_nubot_
gazebo and download the package in zip format and extract it in your computer.

6.2 Environment Configuration

The recommended Operating Environment is Ubuntu 14.04 and ROS Jade with
Gazebo included. For more operating environment, please refer to the readme file at
https://github.com/nubot-nudt/single_nubot_gazebo.

ROS Jade has gazebo_ros_pkgs with it, so you don’t have to install the
package again. However, the following steps should be done to fix a bug in ROS Jade
related to Gazebo:

$ sudo gedit /opt/ros/jade/lib/gazebo_ros/gazebo

In this file, go to line 24 and delete the last ‘/’, i.e.,

setup_path=$(pkg -config --variable=prefix gazebo)/ share/gazebo/

is replaced with

setup_path=$(pkg -config --variable=prefix gazebo)/ share/gazebo

After these steps, try to run the command below to check if it is successful.

$ rosrun gazebo_ros gazebo

or

$ roslaunch gazebo_ros empty_world.launch

If either one is successful running, then you are ready for the following steps.

6.3 Package Compiling

(1) Go to the package root directory (single_nubot_gazebo), e.g.

$ cd ~/ single_nubot_gazebo

(2) If you already have CMakeLists.txt in the src folder, then you can skip
this step. If not, execute the commands below:

$ cd src
$ catkin_init_workspace
$ cd ..

https://github.com/nubot-nudt/single_nubot_gazebo
https://github.com/nubot-nudt/single_nubot_gazebo
https://github.com/nubot-nudt/single_nubot_gazebo

Building Software System and Simulation Environment … 623

(3) Configure the package using the command below. In this step, you may
encounter some errors related to Git. However, if you did not use Git, just ignore
them.

$./ configure

(4) Compiling the package, the simulation system is ready if the compiling is
completed done.

$ catkin_make

6.4 Package Overview

The robot movement is realized by a Gazebo model plugin called NubotGazebo
generated by source files nubot_gazebo.cc and nubot_gazebo.hh. Most
importantly, the essential part of the plugin is realizing three motions: omni-
directional locomotion, ball-dribbling and ball-kicking.

Basically, this plugin subscribes to topic /nubotcontrol/velcmd for omni-
directional movement, and subscribes to services /BallHandle and /Shoot for
ball-dribbling and ball-kicking, respectively. You can customize this code for your
robot based on these messages and services as a convenient interface. The types and
definitions of the topics and services are listed in Table3.

For the definition of /BallHandle service, when enable equals to a non-
zero number, a dribble request would be sent. If the robot meets the conditions to
dribble the ball, the service response BallIsHolding is true. For the definition
of /Shoot service, when ShootPos equals to -1, this is a ground pass. In this
case, strength is the initial speed you would like the soccer ball to have. When
ShootPos equals to 1, this is a lob shot. In this case, strength is useless since
the strength is calculated by the Gazebo plugin automatically and the soccer ball
would follow a parabola path to enter the goal area(only if the robot heads towards

Table 3 Topics and services

Topic/Service Type Definition

/nubotcontrol/velcmd nubot_common/VelCmd
float32 Vx
float32 Vy
float32 w

/BallHandle nubot_common/BallHandle
int64 enable

int64 BallIsHolding

/Shoot nubot_common/Shoot

int64 strength
int64 ShootPos

int64 ShootIsDone

624 J. Xiao et al.

the goal area). If the robot successfully kicks the ball even if it failed to goal, the
service response ShootIsDone is true.

There are three ways for a robot to dribble a ball, e.g.,

(a) Setting ball pose continually: this is the most accurate one; nubot would hardly
lose control of the ball, but the visual effect is not very good (the ball does not
rotate).

(b) Settingball secant velocity: this is less accurate thanmethod (a) butmore accurate
than method (c).

(c) Setting ball tangential velocity: this is the least accurate. If the robot moves fast,
such as 3 m/s, it would probably lose control of the ball. However, this method
achieves the best visual effect under low-speed condition.

For package single_nubot_gazebo, it uses method (c) for better visualiza-
tion effect. However, for package nubot_gazbeo, it uses method (a) for better
control of the soccer ball.

6.5 Single Robot Automatic Movement

The robot will do motions according to the state transfer graph shown in Fig. 17,
following the below steps:

(1) Go to the package root directory.
(2) source the setup.bash file:

$ source devel/setup.bash

(3) Using roslaunch to load the simulation world

$ roslaunch nubot_gazebo sdf_nubot.launch

Note: Step 2 should be performed every time to open a new terminal. Alternatively,
this command can be wrote into the ∼/.bashrc file so that step 2 is not required
when opening new terminal.

Finally, the robot will rotate and translate with a given trajectory, i.e., it accelerates
at a constant acceleration and stays at a constant speed after reaching the maximum
velocity.

You could click the Edit->Reset World from themenu (or press ctrl-shift-r)
to reset the simulation world so the robot would do the basic motions again.

When the robot reaches its final state (HOME), its motion can be controlled using
keyboard under $ rosrun nubot_gazebo nubot_teleop_keyboard.
You could also run $ rqt_graph to see the data flow chart of messags/topics.

Building Software System and Simulation Environment … 625

6.6 NuBotGazebo API

For the detailed information and usage of the NubotGazebo class, please refer to
the doc/ folder.

6.7 How You Could Use It to Do More Stuff

The main purpose of the simulation system is to test multi-robot collaboration algo-
rithms. As a precondition, the users have to know how to control the movement
of each robot in the simulation. The topic publishing and service calling could
be inferred by reading the source of keyboard controlling. In a word, to control
the movement of the robots requires publishing velocity commands on the topic
/nubotcontrol/velcmd. If the robot is close enough to the ball, dribble the
ball by calling the ROS service named /BallHandle and kick the ball by calling
the service named /Shoot. The types and definitions of theses topics and services
are presented in Table3.

7 Multi Robot Simulation Tutorial

7.1 Package Overview

The following three packages should be used together to simulate multi-robots
together. The nubot_ws and the conach4sim package can be downloaded at
https://github.com/nubot-nudt/nubot_ws and https://github.com/nubot-nudt/coach
4sim respectively.

package description
gazebo_visual For robot simulation and visualization
nubot_ws For robot controlling
coach4sim Game command sending

Qt has to be installed in order to use coach4sim. However, for those who do
not want to install Qt, a solution is to use ROS command line tools for sending game
commands:

$ rostopic pub -r 1 /nubot/receive_from_coach
nubot_common/CoachInfo"

MatchMode: 10
MatchType: 0"

https://github.com/nubot-nudt/nubot_ws
https://github.com/nubot-nudt/coach4sim
https://github.com/nubot-nudt/coach4sim

626 J. Xiao et al.

In the command, MatchMode is the current game command, MatchType is
the previous game command. The coding of the game commands is in core.hpp.
For quick reference:

enum MatchMode {
STOPROBOT = 0,
OUR_KICKOFF = 1,
OPP_KICKOFF = 2,
OUR_THROWIN = 3,
OPP_THROWIN = 4,
OUR_PENALTY = 5,
OPP_PENALTY = 6,
OUR_GOALKICK = 7,
OPP_GOALKICK = 8,
OUR_CORNERKICK = 9,
OPP_CORNERKICK = 10,
OUR_FREEKICK = 11,
OPP_FREEKICK = 12,
DROPBALL = 13,
STARTROBOT = 15,
PARKINGROBOT = 25,
TEST = 27

};

The robot movement is realized by a Gazebo model plugin which is called
NubotGazebo generated by source files nubot_gazebo.cc and nubot_
gazebo.hh. Basically the essential part of the plugin is realizing basic motions:
omni-directional locomotion, ball-dribbling and ball-kicking.

The plugin single_nubot_gazebo is similar to that in package single_
nubot_gazebo, i.e., it subscribes to the topic nubotcontrol/velcmd for
omnidirectional movement, and subscribes to the service BallHandle and Shoot
for ball-dribbling and ball-kicking, respectively. For package gazebo_visual,
there is a new topic named omnivision/OmniVisionInfo which contains
messages about the soccer ball and all the robots’ information such as position, veloc-
ity and etc. Since there may be multiple robots, the name of those topics and services
should be prefixed with the robot model names in order to be distinguished with
each other. For example, if a robot model’s name is nubot1, then the topic names
are /nubot1/nubotcontrol/velcmd and /nubot1/omnivision/Omni
VisionInfo and the service names would be /nubot1/BallHandle and
/nubot1/Shoot accordingly. The types and definitions of the topic nubot1/
omnivision/OmniVisionInfo is as:

Header header
BallInfo ballinfo
ObstaclesInfo obstacleinfo
RobotInfo [] robotinfo

As shown above, there are three new message types in the definition of the
omnivision/OmniVisionInfo topic, i.e., BallInfo, ObstaclesInfo
and RoboInfo. The field robotinfo is a vector. Before introducing the format

Building Software System and Simulation Environment … 627

of these messages, three other underlying message types Point2d, Ppoint and
Angle are listed below.

Point2d.msg , representing a 2-D point.
float32 x # x component
float32 y # y component

PPoint.msg , representing a 2-D point in polar coordinates.
float32 angle # angle against polar axis
float32 radius # distance from the origin

Angle.msg , representing the angle
float32 theta # angle of rotation

BallInfo.msg , representing the information about the ball
Header header # ROS header defined in std_msgs
int32 ballinfostate # the state of the ball information
Point2d pos # position in the global reference

frame
PPoint real_pos # relative position in the robot

body frame
Point2d velocity # velocity in the global reference

frame
bool pos_known # ball position is known (1) or not (0)
bool velocity_known # ball velocity is known (1) or not (0)

ObstaclesInfo.msg , representing the obstacles information
Header header # ROS header defined in std_msgs
Point2d [] pos # position in the global reference

frame
PPoint [] polar_pos # position in the polar frame , whose

origin is the center of the robot
and the polar axis
is along the kicking mechanism

RobotInfo.msg , representing teammates ’ information
Header header # ROS header defined in std_msgs
int32 AgentID # ID of the robot
int32 targetNum1 # robot ID to be assigned for target

position 1
int32 targetNum2 # robot ID to be assigned for target

position 2
int32 targetNum3 # robot ID to be assigned for target

position 3
int32 targetNum4 # robot ID to be assigned for target

position 4
int32 staticpassNum # in static pass , the passer ’s ID
int32 staticcatchNum # in static pass , the catcher ’s ID
Point2d pos # robot position in global coordinate

system
Angle heading # robot heading in global coordinate

system
float32 vrot # rotational velocity in the global

coordinate system
Point2d vtrans # linear velocity in the global

628 J. Xiao et al.

coordinate system
bool iskick # robot kicks the ball (1) or not(0)
bool isvalid # robot is valid (1) or not (0)
bool isstuck # robot is stuck (1) or not (0)
bool isdribble # robot dribbles the ball (1) or not(0)
char current_role # the current role
float32 role_time # time duration that the robot keeps

the role unchanged
Point2d target # target position

7.2 Configuration of Computer A and Computer B

The recommended way to run simulation is with two computers to run nubot_ws
and gazebo_visual separately, i.e., computer A runs gazebo_visual to dis-
play the movement of robots, while computer B runs nubot_ws to control the
virtual robots. In addition, computer B should also run the coach program for send-
ing game commands. Communication between computer A and computer B is via
ROS topics and services.

Following is an configuration example:

• Adding each other’s IP address in the /etc/hosts file;
• Run gazebo_visual in computer A;
• In computer B, export ROS_MASTER_URI and then run nubot_ws;
• In computer B, run the coach and send game command.

8 Conclusion

In summary,we have presented theROSbased software andGazebo based simulation
for our RoboCup MSL robots. ROS based software makes it easier to share data and
code among RoboCup MSL teams, and construct hybrid teams. Further, we have
also detailed the design of the interface between the robot software and simulation,
which brings the possibility to evaluate multi-robot collaboration algorithms using
the simulation.

We expect this work to be of value in the RoboCup MSL community. On the one
hand, the researchers can refer to our method to design both software and simulation
for RoboCupMSL robots, or even general robots. On the other hand, the NuBot sim-
ulation software can be used to simulate RoboCup MSL matches, which enables the
state-of-the-art machine learning algorithms to be used for multi-robot collaboration
training.

Lastly, the presented ROS based software and Gazebo based simulation can also
be employed for multi-robot collaboration researches more than RoboCup with little
modification.

Building Software System and Simulation Environment … 629

Acknowledgements Our work is supported by National Science Foundation of China (NO.
61403409 and NO. 61503401), China Postdoctoral Science Foundation (NO. 2014M562648), and
graduate school of National University of Defense Technology. All members of the NuBot research
group are gratefully acknowledged.

References

1. Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. 1997. Robocup: The robot world
cup initiative. In Proceedings of the first international conference on Autonomous agents, 340–
347. ACM.

2. Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. 1997. Robocup: A
challenge problem for AI. AI Magazine 18 (1): 73.

3. Kitano, H., M. Asada, I. Noda, and H. Matsubara. 1998. Robocup: robot world cup. IEEE
Robotics Automation Magazine 5: 30–36.

4. Almeida, L., J. Ji, G. Steinbauer, and S. Luke. 2016. RoboCup 2015: Robot World Cup XIX,
vol. 9513. Heidelberg: Springer.

5. Bianchi, R.A., H.L. Akin, S. Ramamoorthy, and K. Sugiura. 2015. RoboCup 2014: Robot
World Cup XVIII, vol. 8992. Heidelberg: Springer.

6. Soetens,R.,R. vandeMolengraft, andB.Cunha. 2014.Robocupmsl-history, accomplishments,
current status and challenges ahead. In RoboCup 2014: Robot World Cup XVIII, ed. R.A.C.
Bianchi, H.L. Akin, S. Ramamoorthy, and K. Sugiura, 624–635. Heidelberg: Springer.

7. Rohmer, E., S.P.N. Singh, andM. Freese. 2013. V-rep: A versatile and scalable robot simulation
framework. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 1321–
1326.

8. Koenig, N., and A. Howard. 2004. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings, vol. 3, 2149–2154. IEEE.

9. Michel, O. 1998. Webots: Symbiosis between virtual and real mobile robots. In the First
International Conference on Virtual Worlds, (London, UK), 254–263. Springer.

10. Der, R., and G. Martius. 2012. The LpzRobots Simulator. In The Playful Machine Ralf, ed. R.
Der, and G. Martius. Heidelberg: Springer.

11. Harris, A., and J.M. Conrad. 2011. Survey of popular robotics simulators, frameworks, and
toolkits. In 2011 Proceedings of IEEE Southeastcon, 243–249.

12. Castillo-Pizarro, P., T.V. Arredondo, and M. Torres-Torriti. 2010. Introductory survey to open-
source mobile robot simulation software. InRobotics Symposium and Intelligent RoboticMeet-
ing (LARS), 2010 Latin American, 150–155.

13. Xiong, D., J. Xiao, H. Lu, Z. Zeng, Q. Yu, K. Huang, X. Yi, Z. Zheng, C. Loughlin, and
C. Loughlin. 2016. The design of an intelligent soccer-playing robot. Industrial Robot: An
International Journal 43 (1).

14. Yao, W., W. Dai, J. Xiao, H. Lu, and Z. Zheng. 2015. A simulation system based on ros and
gazebo for robocup middle size league. In 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO), 54–59. IEEE.

15. Van De Molengraft, M., and O. Zweigle. 2011. Advances in intelligent robot design for the
robocup middle size league. Mechatronics 21 (2): 365.

16. Nadarajah, S., and K. Sundaraj. 2013. A survey on team strategies in robot soccer: team
strategies and role description. Artificial Intelligence Review 40 (3): 271–304.

17. Nadarajah, S., and K. Sundaraj. 2013. Vision in robot soccer: a review. Artificial Intelligence
Review 1–23.

18. Li, X., H. Lu, D. Xiong, H. Zhang, and Z. Zheng. 2013. A survey on visual perception for
RoboCup MSL soccer robots. International Journal of Advanced Robotic Systems 10 (110).

630 J. Xiao et al.

19. Nardi, D., I. Noda, F. Ribeiro, P. Stone, O. von Stryk, and M. Veloso. 2014. Robocup soccer
leagues. AI Magazine 35 (3): 77–85.

20. Lunenburg, J., R. Soetens, F. Schoenmakers, P. Metsemakers, R. van de Molengraft, and
M. Steinbuch. 2013. Sharing open hardware through rop, the robotic open platform. In Pro-
ceedings of 17th annual RoboCup International Symposium.

21. Neves, A.J., A.J. Pinho, A. Pereira, B. Cunha, D.A. Martins, F. Santos, G. Corrente, J.
Rodrigues, J. Silva, J.L. Azevedo, et al. 2010. CAMBADA soccer team: from robot architecture
to multiagent coordination. INTECH Open Access Publisher.

22. Santos, F., L. Almeida, P. Pedreiras, and L.S. Lopes. 2009. A real-time distributed soft-
ware infrastructure for cooperating mobile autonomous robots. In International Conference
on Advanced Robotics, 2009. ICAR 2009, 1–6. IEEE.

23. Santos, F., L. Almeida, and L.S. Lopes. 2008. Self-configuration of an adaptive TDMAwireless
communication protocol for teams of mobile robots. In IEEE International Conference on
Emerging Technologies and Factory Automation, 2008. ETFA 2008, 1197–1204. IEEE.

24. Lu, H., S. Yang, H. Zhang, and Z. Zheng. 2011. A robust omnidirectional vision sensor for
soccer robots. Mechatronics 21 (2): 373–389.

25. Lu, H., H. Zhang, J. Xiao, F. Liu, and Z. Zheng. 2008. Arbitrary ball recognition based on
omni-directional vision for soccer robots. In RoboCup 2008: Robot Soccer World Cup XII, ed.
L. Iocchi, H. Matsubara, A. Weitzenfeld, and C. Zhou, 133–144. Heidelberg: Springer.

26. Zeng, Z., H. Lu, and Z. Zheng. 2013. High-speed trajectory tracking based on model predic-
tive control for omni-directional mobile robots. In 2013 25th Chinese Control and Decision
Conference (CCDC), 3179–3184. IEEE.

27. Xiao, J., H. Lu, Z. Zeng, D. Xiong, Q. Yu, K. Huang, S. Cheng, X. Yang, W. Dai, J. Ren, et al.
2015. Nubot team description paper 2015. In Proceedings of RoboCup 2015, Hefei, China.

28. Rajaie,H.,O.Zweigle,K.Häussermann,U.-P.Käppeler,A.Tamke, andP.Levi. 2011.Hardware
design and distributed embedded control architecture of a mobile soccer robot. Mechatronics
21 (2): 455–468.

29. Zandsteeg, C. 2005. Design of a robocup shooting mechanism. University of Technology
Eindhoven.

30. Martinez, C.L., F. Schoenmakers, G.Naus, K.Meessen, Y.Douven, H. van de Loo, D. Bruijnen,
W. Aangenent, J. Groenen, B. vanNinhuijs, et al. 2014. Tech united eindhoven, winner robocup
2014 msl. In Robot Soccer World Cup, 60–69. Springer.

31. Jansen, D., and H. Buttner. 2004. Real-time ethernet: the ethercat solution. Computing and
Control Engineering 15 (1): 16–21.

32. Prytz, G. 2008. A performance analysis of EtherCAT and PROFINET IRT. In IEEE Inter-
national Conference on Emerging Technologies and Factory Automation, 2008. ETFA 2008,
408–415. IEEE.

33. Xiong, D., H. Lu, and Z. Zheng. 2012. A self-localization method based on omnidirectional
vision and mti for soccer robots. In 2012 10th World Congress on Intelligent Control and
Automation (WCICA), 3731–3736, IEEE.

34. Rusu, R.B., and S. Cousins. 2011. 3D is here: Point Cloud Library (PCL). In IEEE International
Conference on Robotics and Automation (ICRA), (Shanghai, China), 9–13 May 2011.

35. Schnabel, R., R. Wahl, and R. Klein. 2007. Efficient ransac for point-cloud shape detection.
Computer Graphics Forum 26 (2): 214–226.

36. Lu, H., Q. Yu, D. Xiong, J. Xiao, and Z. Zheng. 2014. Object motion estimation based on
hybrid vision for soccer robots in 3d space. In Proceedings of RoboCup Symposium 2014,
(Joao Pessoa, Brazil).

37. Wang, X., H. Zhang, H. Lu, and Z. Zheng. 2010. A new triple-based multi-robot system
architecture and application in soccer robots. In Intelligent Robotics and Applications, ed. H.
Liu, H. Ding, Z. Xiong, and X. Zhu, 105–115. Heidelberg: Springer.

38. Cheng, S., J.Xiao, andH.Lu. 2014.Real-time obstacle avoidance using subtargets andCubicB-
spline for mobile robots. In Proceedings of the IEEE International Conference on Information
and Automation (ICIA 2014), 634–639. IEEE.

Building Software System and Simulation Environment … 631

Author Biographies

Junhao Xiao (M’12) received his Bachelor of Engineering (2007) from National University of
Defense Technology (NUDT), Changsha, China, and his Ph.D. (2013) at the Institute of
Technical Aspects of Multimodal Systems (TAMS), Department Informatics, University of
Hamburg, Hamburg, Germany. Then he joined the Department of Automatic Control, NUDT
(2013) where he is an assistant professor on Robotics and Cybernetics. The focus of his research
lies on mobile robotics, especially on RoboCup Soccer robots, RoboCup Rescue robots, localiza-
tion, and mapping.

Dan Xiong is a Ph.D. student at National University of Defense Technology (NUDT). He received
his Bachelor of Engineering and Master of Engineering both from NUDT in 2010 and 2013,
respectively. His research focuses on image processing and RoboCup soccer robots.

Weijia Yao is a Master student at National University of Defense Technology (NUDT). He
received his Bachelor of Engineering from NUDT in 2015. He curretly focuses on multi-robot
coordination and collaboration.

Qinghua Yu is a Ph.D. student at National University of Defense Technology (NUDT). He
received his Bachelor of Engineering and Master of Engineering both from NUDT in 2011 and
2014, respectively. His research focuses on robot vision and RoboCup soccer robots.

Huimin Lu received his Bachelor of Engineering (2003), Master of Engineering (2006) and Ph.D.
(2010) from National University of Defense Technology (NUDT), Changsha, China. Then he
joined the Department of Automatic Control, NUDT (2010) where he is an associate professor
on Robotics and Cybernetics. The focus of his research lies on mobile robotics, especially on
RoboCup Soccer robots, RoboCup Rescue robots, omni-directional vision, and visual SLAM.

Zhiqiang Zheng received his Ph.D. (1994) from University of Liege, Liege, Belgium. Then he
joined the Department of Automatic Control, National University of Defense Technology where
he is a full professor on Robotics and Cybernetics. The focus of his research lies on mobile
robotics, especially on multi-robot coordination and collaboration.

VIKI—More Than a GUI for ROS

Robin Hoogervorst, Cees Trouwborst, Alex Kamphuis
and Matteo Fumagalli

Abstract This chapter introduces the open-source software VIKI. VIKI is a
software package that eases the configuration of complex robotic systems and behav-
ior byproviding an easyway to collect existingROSpackages andnodes intomodules
that provide coherent functionalities. This abstraction layer allows users to develop
behaviors in the form of a collection of interconnected modules. A GUI allows the
user to develop ROS-based software architectures by simple drag-and-drop of VIKI
modules, thus providing a visual overview of the setup as well as ease of reconfig-
uration. When a setup has been created, VIKI generates a roslaunch file by using
the information of this configuration, as well as the information from the module
definitions, which is then launched automatically. Distributed capabilities are also
guaranteed as VIKI enables the explicit configuration of roslaunch features in its
interface. In order to show the potential of VIKI, the chapter is organised in the form
of a tutorial which provides a technical overview of the software, installation instruc-
tions as well as three use-cases with increased difficulty. VIKI functions alongside
your ROS installation, and only uses ROS as a runtime dependency.

Keywords ROS · GUI · Abstraction layer · Modularity · Educational · Software
architecture

R. Hoogervorst · C. Trouwborst · A. Kamphuis
University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
e-mail: r.w.p.hoogervorst@student.utwente.nl

C. Trouwborst
e-mail: ceestrouwborst@gmail.com

A. Kamphuis
e-mail: kamphuis.alex@gmail.com

M. Fumagalli (B)
Aalborg University, A.C. Meyers Vænge 15, 2450 Copenhagen, Denmark
e-mail: M_fumagalli@m-tech.aau.dk

© Springer International Publishing AG 2017
A. Koubaa (ed.), Robot Operating System (ROS), Studies in Computational
Intelligence 707, DOI 10.1007/978-3-319-54927-9_19

633

634 R. Hoogervorst et al.

1 Introduction

One of the major advantages of using the Robot Operating System (ROS) [1] is the
possibility to exploit the modular features that it provides, thus allowing the user to
develop packages that are easy to install and highly reusable. These functionalities
allow the new generation of robot developers to build complex distributed systems
based on open source ROS packages in an easy and reliable manner. However, even
though single packages are usually easily installed and used, the development of
complex systems that use multiple existing packages remains a task that requires
experience andprior knowledgeof the tools necessary to properly set up and configure
the environment. This means that novice developers need to first grasp different
concepts, such as nodes, topics, topic types, and many more, before being able to
properly configure their system. Even for experienced users, it is often hard to reuse
packages efficiently. Reusing a package in a different experiment or setup requires
adding references to the package in a ROS launch file, adding lines for a large variety
of settings available to the packages used, while keeping overview of the different
communication channels used. It is very easy to lose a clear perspective through
several development iterations. To minimise this problem, different tools have been
developed and are used by ROS users for configuration and debugging as well as
for monitoring. These tools typically allow the visualization of the running setup.
This is helpful for the developers and users developing and testing combinations of
different ROS packages, but may yield complicated graphs. Additionally, these tools
do not provide the ability to make changes inside their graphical representation.

In order to reduce the complexity of creating and configuring large runtime sys-
tems with ROS, while still providing the functionality of reusability and modularity,
a new software package, namely VIKI (see Fig. 1), is proposed and presented in

Fig. 1 A screenshot of VIKI

VIKI—More Than a GUI for ROS 635

Fig. 2 The intention of the abstraction layers within VIKI is to build a configuration usingmodules,
while ROS is being used for runtime. The gray sections are within the abstraction layer of VIKI,
the white ones are within ROS

this chapter. VIKI aims at improving the ease of configuring the environment, thus
minimising the problems of complexity and loss of overview for the user. In order
to do this, VIKI adds a layer of abstraction which presents simplified information to
the end-users and developers and aGraphical User Interface (GUI) that allows clear
and intuitive visualization of the interconnection and communication throughout the
setup. By visualizing the modules, rather than all nodes, the visual overview can be
greatly simplified, while still viewing the information that is important. More pre-
cisely, the abstraction layer within VIKI utilizes meta-information about packages,
and allows for the combination of (parts of) packages. This is implemented in mod-
ules and can be visualized as seen in Fig. 2. The modules represent building blocks
with coherent functionality that can be combined more easily to ultimately define
the overall system behaviour. While VIKI abstracts the ROS packages inside the
modules, the running environment is still entirely based on these packages, keeping
the entire set of ROS functionalities unaltered. As a consequence, the user can reason
about the packages on a higher level of abstraction, allowing the user to focus on the
system architecture while using VIKI. In order to allow an easy and intuitive use of
its modules, VIKI employs extra metadata about the inputs, outputs and the packages
in order to provide visual connection of modules.

Besides that, VIKI provides a Graphical User Interface that allows to arrange
modules by dragging and dropping. This creates a visual overview of the setup,
which is easily adaptable for implementing and testing new control schemes. VIKI
gives the ability to adapt the arrangements easily and run them again. Because the
details of the package implementation are already dealt with in the abstraction, the
user can use this GUI also to reason at a higher level about the software.

Since the module description files provide extra information about the nodes,
VIKI can use this information to aid the user. Types of topics are specified inside
these module files and this prohibits the user from connecting wrong topic types to
each other. Besides that, the GUI can provide an instant overview of the inputs and
outputs that a module exposes, without consulting further documentation. Especially
for the starting ROS developer, this can help avoid confusion.

VIKI is opensource and released under an MIT license. The full code repository
can be found at https://www.github.com/UT-RAM/viki. Full documentation can be
found at http://viki.readthedocs.io.

https://www.github.com/UT-RAM/viki
http://viki.readthedocs.io

636 R. Hoogervorst et al.

The rest of this chapter is structured as follows. Section2 gives an overview of the
existing available applications that provide similar functionalities ofVIKI. Sections3
and 4 aid the reader in setting up VIKI and running some examples, respectively.
Section5 finally provides amore detailed technical overview of the internals of VIKI.

2 Background

2.1 Existing Software

Using ROS might involve using many different tools aiding in running an environ-
ment such as editors, compilers, make systems and package specific tools. Many of
these tools are console applications due to the fact that console applications are in
general easier to create and are sufficient to provide the experienced user with enough
power. Inexperienced users however may be daunted by console based applications
and therefore require a more visual experience.

Several existing ROS tools and packages provide such a visual experience for
very specific cases. An interesting and fairly complete example is rxDeveloper [2].
This software aims at a visual interface for building ROS launch files. Although
the package provides a very promising list of features, including the generation of
template files for both C++ and Python, it appears to have not received the attention
it deserved. The project wast last updated over 4 years ago for a currently deprecated
ROS version. Using unsupported software is not recommended as it usually leads to
unmaintainable setups for the research itself. Furthermore, for new ROS user it can
still be challenging to use and start with, since rxDeveloper relies on roslaunch files
and lacks tools for easy configuration of these packages.

Another package that comes close to the functionality of VIKI is BRIDE [3].
BRIDE looks similar to rxDeveloper, in the sense that it visualizes ROS nodes and
makes it easy to connect them. The tool seems to aim at a workflow that lets the
user design visually, and generate package code based on this visual design. Similar
to rxDeveloper, BRIDE does not benefit from active development or an active com-
munity. A major difference with respect to VIKI is that BRIDE places emphasis on
making it easier to create your own packages, while VIKI places emphasis on reuse
of already available modules and integration. In fact, BRIDE allows the generation
of ROS packages based on the design, while VIKI generates visual design based on
the available modules.

Another package worth mentioning is FKIENodeManager [4], which is intended
to be a GUI for managing ROS nodes, topics, services, parameters and launch files
present on multiple systems. It provides the user with a clear overview of running
nodes and can support the user in the design phase with its launch file editor. This
text editor has syntax highlighting and allows you to insert lines from templates. This
is the first big difference with VIKI, that allows connecting ROS packages through
a Drag-and-Drop workflow. Another difference is that VIKI allows for an additional

VIKI—More Than a GUI for ROS 637

layer of abstraction through the use of VIKI modules. In short: where FKIE node
manager can be used to get information on all the parts in a running system, VIKI
excels in designing system architecture by focusing on the connections between
functional blocks.

Besides these complete packages, there is a big number of visual tools available
for ROS. A few examples are presented in [5] and others can be found on ROS wiki
pages and scattered around the web [6, 7]. Most of the examples are robot specific
and therefore offer no advantage outside the use of that specific robot except possibly
for the reuse of code and structure. More general tools are often built in the ROS
GUI [8, 9] and focus on the visualization or control of a robot at runtime. It is worth
to note that for very specific use cases interesting packages are available, such as the
ROS GUI for Matlab (proprietary software) [10] that provides a way of connecting
to the ROS master through a Matlab GUI, and Linkbot Labs (proprietary software)
which uses small linkable robots to teach students how to program [11].

Manyof these tools provide functionalities that are compatiblewithVIKI.This can
be of great advantage when the user wants to use specific tools for different utilities.
One could, for example, load the roslaunch file that VIKI generates into FKIE node
manager, and useFKIE’s functionality for a runtime lower level overviewandmanage
launching nodes using that. This allows the user to design his or her environment
using VIKI on a high abstraction level, while using a low abstraction level during
runtime. This low-level overview could be useful for, for example, specific debugging
cases. Similarly, rqt can provide visualizations on a low-level scale, while VIKI is
used to design the top-level functionality. The user is free to switch between these
environments, and usingVIKI does not prohibit using the lower level tools at runtime.

3 ROS Environment Configuration

VIKI is a standalone application alongside the installation of ROS. The prerequi-
sites are that ROS is installed and a catkin workspace is available. Furthermore, it
is assumed that git and python 2 are installed. Further dependencies are installed
automatically by the provided self-configuring tool, making VIKI easy to set up.1

Further configuration depends on what modules are loaded into VIKI. As stated
earlier, a module uses (a set of) ROS packages. Some ROS packages require addi-
tional configuration, which is needed for VIKI modules that use these packages as
well. VIKI ensures that the modules provided in the core are either automatically
set up, or easy to set up by following the documentation. For more information visit
http://viki.readthedocs.io or follow the steps below.

The installation of VIKI is a process of two steps2:

1This configuration is based on version 0.2-Alice, released on 9 May 2016.
2Installation instructionsmight change in future releases. For themost recent installation instructions
on VIKI, read the instructions located in the github repository.

http://viki.readthedocs.io

638 R. Hoogervorst et al.

1. Clone the repository located at https://www.github.com/UT-RAM/viki into a
dedicated directory. The authors suggest to install VIKI inside the home folder,
although the user is free to choose any other preferred location.

2. Navigate to the installation folder in the command line and run:

./viki configure

This command starts a program that guide the user through the installation of
VIKI. The user will be asked to provide relevant information necessary for the
proper installation of VIKI, such as the installed ROS version and the location of
the catkin workspace. When in doubt regarding the entries, use the default value.

After the installation is completed, a desktop entry will be added such that it is
possible to launch VIKI using the Unity Dash. The options provided by the user at
the moment of the installation can be post-edited by editing config.json. The user is
suggested to visit the documentation [12] for further info and troubleshooting.

After completing the installation of VIKI, modules need to be added. By running
./viki add-module-repository core, VIKIwill install the coremodule repository inside
the root directory specified during installation. This is the location where future
VIKI modules will be added. When the command add-module-repository core is
ran, modules are installed by pulling the git repository github.com/UT-RAM/viki-
modules into the aforementioned directory. At completion of this step, VIKI will be
able to automatically find the modules and use the module files that are available in
there.

Verification of the installation is done by launching VIKI, as explained in the next
section. If any problem is encountered during installation, usually a quick search on
google may solve these issues. If you are running into any specific issues with VIKI,
do not hesitate to contact the developers on github or create an issue at the github
repository.

4 Testdriving VIKI

This section is a hands-on tutorial that will allow the reader to get acquainted with
VIKI and its functionalities by describing three test cases with increasing difficulty.
The first tutorial is based on the use of the well-known turtlesim. This is a 2D
simulation for a turtle robot. Here, the reader is instructed on how to launch and
play with the turtle from within VIKI. After that, a more realistic system is set-
up using VIKI, and the user is guided through launching an UAV (the Parrot A.R.
Drone is used as UAV) and controlling this with a controller or joystick. This specific
example is of course difficult to carry out without the proper hardware. However,
it proves how VIKI can handle this sort of task very well. The last section will
guide the reader in setting up networking capabilities for ROS by exploiting the
embedded functionalities of VIKI and its modules, which allow intuitive and easy
configuration of the networked software architecture. In this third tutorial, the same

https://www.github.com/UT-RAM/viki

VIKI—More Than a GUI for ROS 639

Fig. 3 Screenshot of VIKI’s interface. 1 The canvas: a container where you can build your project.
2 Module Palette: list of all available modules with descriptions. 3 Module specifics: it shows
information on the currently selected module. 4 Toolbar: buttons with program specific actions
such as save and open. 5 Run button: builds and launches your project. 6 Status pane: it shows
debug information on internal actions performed by VIKI

UAV is launched from one computer, while the controls are launched from another
device.

4.1 Turtlesim

This first tutorial is meant to guide the reader through launching the first project
with VIKI using the turtlesim. As a first step, VIKI has to be started. There are two
methods to do this:

• in a terminal, navigate to the installation folder of viki (bydefault /home/[user]/viki)
and execute:

./viki run

This launches the graphical interface of VIKI, which is illustrated in Fig. 3.
• launch VIKI from the Unity Dash, which is commonly used in Ubuntu to launch
application. During the installation of VIKI an entry is created in Unity Dash. By
clicking the dash icon in the upper-left corner of Ubuntu, it is possible to search
for VIKI. Note that Ubuntu may not refresh its dash immediately. Therefore, if the
VIKI icon is not present in the dash after installation, it may be required to log off
first and or to reboot.

640 R. Hoogervorst et al.

Fig. 4 The palette inside the
interface of VIKI after
entering ‘turtle’ in the search
bar

Fig. 5 The canvas in VIKI
after adding two loose
modules to it

For this tutorial, two modules are needed, namely the turtle simulator and the
module that interprets the keyboard input and sends it to the simulator. In order to
find an existing module, it is possible to make a search inside the palette (indicated
by number 2 in Fig. 3) by clicking in the textbox and entering e.g. “turtle”. By doing
this, two modules will be displayed, as shown in Fig. 4, namely:

• turtle_teleop_key
• turtlesim node

Now these modules can be clicked and dragged on to the canvas (indicated by 1
in Fig. 3). The result should look similar to Fig. 5.

Note that the two modules are still loose, meaning that no connection has yet
been made among the modules. In order to connect the modules, it is possible to
drag the output of one module, to the input of another. In the specific case addressed
by this tutorial, it is necessary to connect the output of turtle_teleop_key to the input
of turtlesim node, which can be done by dragging the teleop’s output node to the
turtle’s input node. An arrow will appear that indicates the direction of information.
It must be noted that it is not possible to start dragging from the turtle’s input node,
as VIKI is constructed in a way that the direction of information should be followed.

VIKI—More Than a GUI for ROS 641

After completing these steps, the setup is now ready. The user can now hit the
green run button on top of the screen, indicated by number 5 in Fig. 3. This will
open a new terminal providing some text feedback to the user, regarding the status
of the setup. More importantly in this tutorial, a window with a turtle in it should
also appear. By clicking at any point of the text window, it becomes possible to use
the arrow keys to control the turtle in the other window.

In order to close the turtlesim application, it is possible to select the terminal
window and press Ctrl + C, which will kill its processes. After gracefully shutting
down, the terminal windowwill disappear, and the user is free to run again the canvas
setup.

It is important to point out that after pressing the launch button, VIKI will actually
launch a seperate process in a new terminal window. In case something goes wrong
during launch, it is by default impossible to see what actually went wrong, since the
terminal closes automatically, due to the process finishing. This is due to the default
setting in Ubuntu. In order to avoid this, thus giving the user the possibility to check
the output of the processes that are displayed in the VIKI terminal, the following
procedure needs to be completed:

1. Open a terminal window
2. In the menubar, click on edit → Profile preferences. A configuration window

should now open up.
3. Click on the tab Title and command
4. The last option When command exists:, choose Hold the terminal open, instead

of Exit the terminal, as shown in Fig. 6

4.2 Flying the Parrot A.R. Drone

After the demonstration of the basic functionalities of VIKI in the previous section,
the reader is guided through a more advanced tutorial, showing the possibilities of
using of VIKI modules and system setup. The system that is chosen for this tutorial
is a Parrot A.R. Drone, as it is a commonly used platform for experimentation with
drones, as well as a commercially affordable system for educational purposes. In this
tutorial, the reader will be shown how to launch this drone and fly it with a joystick.
In the actual implementation of VIKI, out of the box packages are provided in the
form of existing VIKI modules. Whereas the desired module is not available yet in
the VIKI module repository, the user is invited to follow the documentation available
on http://viki.readthedocs.io.

In order to complete this part of the tutorial, the hardware necessary to launch the
system needs to be available and ready to be used. The Parrot A.R. Drone and the
joystick are the elements that need to be set up. Important information for a proper
configuration of the modules are the IP address of the drone, as well as the device
location of the joystick. In order to set up the drone, it must be turned on and the
computer running VIKI should be connected to its wireless network. This network

http://viki.readthedocs.io

642 R. Hoogervorst et al.

Fig. 6 Set the terminal window to hold open after launch to be able to read the errors that ROS
may raise during runtime

is usually called ardrone_xxxx, with xxxx being an identifier. If all is correct, the
default IP for it is 192.168.1.1. More complex network set ups are possible, but this
is out of the scope of this tutorial and will therefore not be covered hereafter.

The setup of the joystick requires the knowledge of the device name. This can be
discovered by opening a terminal and typing the command:
ls -al /dev/input |grep js.
This will provide a list of all the devices that are recognized as joystick by the
machine. Most likely, the joystick device will be listed as /dev/input/js0. In case
multiple joysticks are found, it is possible to test and find the correct joystick location
by using a program called jstest.

After setting up the hardware for this tutorial, the software architecture can be
designed in a similar manner as in the previous tutorial. The steps that are necessary
to do so are:

• launch VIKI
• drag the modules called Joystick node, Parrot A.R. Drone and Image view to the
canvas (Fig. 7)

• setup the desired connections as illustrated in Fig. 8: drag from the cmd_vel_joy
to the input cmd_vel of the Parrot A.R. Drone module.

VIKI—More Than a GUI for ROS 643

Fig. 7 The modules that are needed for launching the Parrot A.R. Drone

Fig. 8 Modules on the canvas connected in the right way

The Joystick node will read from the joystick and publishes cmd_velmessages on
the cmd_vel_joy topic. The Parrot A.R. Drone and Image viewmodules are wrappers
for existing ROS packages, providing functionality to launch the parrot and visualize
image topics respectively.

Note that while dragging, it is possible to see that this input of the Parrot
A.R. Drone turns green, while the reset, land and takeoff entry points turn red. VIKI
colours the in- and outputs while dragging based on topic type. This prohibits linking
wrong topics to each other. You should now also be able to drag the right topics from
the joystick module to the Parrot module. The Parrot module also provides an video
stream from its front camera. By linking this to the Image view module, VIKI will
show you this video stream to a window on your screen.

By click on the Joystick module, it is possible to configure the joystick parameters
(Fig. 9). On the right-hand side, in the properties panel (as indicated by 4 in Fig. 3),
you should see a set of possible parameters,mostly for configuring the buttons that the
user may like to use. The most important setting is the dev setting, which configures
the joystick device to be used. These parameters are for reference shown in Fig. 9.
Enter the address of the device previously discovered here.

The Parrot should be configured correctly by default. If this is not the case, it will
be necessary to reconfigure the software in order for the Parrot to respond to any
command. The ardrone autonomy package uses arguments to configure the drone.
These arguments can be set using VIKI as well. In order to do so, it is necessary
to select the Parrot module and click on add/edit arguments on the right column. A
window should open up, similar to the one of Fig. 10. Change the text field to “-ip
[ip]”, where the user needs to substitute the IP address of the ardrone in this field.

644 R. Hoogervorst et al.

Fig. 9 The properties panel
for the joystick, where dev
can be set to /dev/input/js0

Fig. 10 The arguments
panel in which extra launch
arguments for VIKI can be
added

Following these instructions should achieve proper setup of the necessary hard-
ware and VIKI software architecture. By pressing the big green RUN button it is
possible to launch the set up that has just been created. By doing so, a video stream
should pop-up displaying the videostream of the front camera of the A.R. Drone,
thus enabling an on-eye viewpoint when piloting. The user can finally save the con-
figuration.

VIKI—More Than a GUI for ROS 645

4.3 SSH

The previous two sections have guided the reader through setting up the VIKI canvas
and module configurations to launch an UAV using VIKI. In practical situations,
these UAVs are often controlled on a distributed system (e.g. an onboard computer
connected to a ground station). ROS provides the functionality to delegate launches
to other machines, using SSH. The GUI of VIKI has support to configure this and
automatically generate it as well, by exploiting the capabilities of the roslaunch
runtime layer.

This section is based on the documentation on distributed systems, that can be
found in the main documentation of VIKI. This section is split in two parts. The
first part covers the network configuration that needs to be applied to run a distrib-
uted system. This makes sure that the computers can reach each other using SSH.
The second part shows how to launch the complete software architecture from the
centralised VIKI canvas.

Network configuration: this section introduces the inexperienced user to configure
two computers on the same local network. In case a different setup has to be con-
figured, the user should make sure to access the PCs by hostname. More precisely,
this section guides the user through the setup of one master computer, which will
run VIKI, and a slave which will launch ROS nodes.

First of all, make sure the following prerequisites are satisfied:

• the computers used are connected on the same network where a wireless network-
ing adapter is also available.

• there is no firewall between the computers that may block the connections between
them. When on a local network, this is usually the case by default

• VIKI is installed on the master computer
• ROS is installed on both computers.3

For the computers to find each other, usually a DNS server is used. Since the
discussed setup does not use it, the hostnames have to be added by hand to the hosts
file of the computer, which takes care of resolving hostnames as well. To do so, it is
necessary to open a terminal and run these two seperate commands on each computer
to retrieve the local IP address and hostname:

• ifconfig: this will show, among other information, the IP address of the machine.
This is located at the inet addr field, under the adapter that you are using.

• hostname: this will print out a single line with the default hostname of your com-
puter.

This information needs to be known to each of the computers and can be added
to the /etc/hosts file. To do this, open up this file in an editor by, e.g.

3Note that ROS versions do not need to be the same, however VIKI is follows the ROS updates and
this might change in the future.

646 R. Hoogervorst et al.

sudo gedit /etc/hosts.

For each external host that needs to be reached from this computer, a line for that
computer has to be added.

If this is done correctly, it should now be possible to reach each other computer
from this one. This can be tested by typing ping < hostname >.

Once the hostnames are set up correctly, we can use specific capabilities of this
in VIKI. In case of any issue on this system configuration, the reader is invited to
make a quick search on the ROS documentation on distributed systems, or at the
VIKI documentation itself.

Launching distributed systems inside VIKI: in this last part of the tutorial, the
Parrot AR. Drone will be launched from inside VIKI, which is ran on the master
computer, while the parrot is connected to the slave PC.

In order to prepare the hardware to allow this tutorial to be executed, it is necessary
to make sure that the slace PC has both an ethernet adapter. If this is the case, perform
the following steps:

• connect the slave PC to your local network using the ethernet adapter
• connect the Parrot A.R. Drone to the slave PC using the wireless adapter.

At completion of the hardware connections, perform the following steps:

1. launch VIKI on the master
2. open the configuration from the previous section, including the modules for the

joystick node, parrot and image view.
3. Click the harddrive icon in the toolbar, Open Machine list, to show the list with

machines. A panel as shown in Fig. 11 should open up.
4. change the hostname to the hostname of your master PC by pressing the edit

sign in the corner to the right.
5. click on plus sign to add a machine, which should show a panel as in Fig. 12.
6. the name is used to reference this machine later on in VIKI. For hostname,

username and password, enter the necessary values to be able to connect to the
slave PC and click Save twice to go back to the main canvas.

7. click on the Parrot Module
8. on the right bar, click on Select Machine. This opens up a panel as in Fig. 13.
9. select the machine you just created
10. click Save changes.

The full configuration is now completed. Pressing the RUN button launches this
setup. The outcome of this tutorial should behave similarly as in the previous section,
with the difference that modules are now running on two different machines.

We understand that this specific example is difficult to copy without having the
proper hardware available, but to our believe it is necessary to include, as it proves
that VIKI is very capable of handling these kind of tasks.

VIKI—More Than a GUI for ROS 647

Fig. 11 The overview of
machines within VIKI. Note
that the ROSM AST ERU RI
can also be set here, as well
as viewing/editing the list of
remote machines

Fig. 12 The screen to add a
machine within VIKI

Fig. 13 The panel in which
a machine for a specific
module can be chosen

5 Technical Overview

This section provides a technical overview of VIKI and the components it is build
of, and it relates VIKI to the other tools putting VIKI in perspective with most of the
tools that are originally available by the ROS environment.

5.1 VIKI Architecture

From a broad perspective, VIKI can be considered as a tool that provides an interface
between the user and low-level software. It assists the user in interacting with ROS,

648 R. Hoogervorst et al.

Fig. 14 Overview of the
structure of VIKI in the
environment. The user
interacts with VIKI, while
VIKI interacts with ROS, git
and the File System to
provide the functionality

version control systems likegit andmercurial, and thefile system, as shown inFig. 14.
This allows users to use VIKI as an interface to configure, create environments and
start their projects, without requiring them to re implement or make explicit use
of these specific details and tools. In this context, ROS is used to launch the setup
and execute the software of the end user. Version Control is used for updating and
creating VIKI modules, and the file system is used for storing configurations and
finding available modules.

In this sense, VIKI aims to enhance, rather than replace other ROS tools. More
precisely, the authors aim at providing a tool that can be used by both new and
experienced ROS users, without affecting the options to use existing runtime tools,
such that the user can still take advantage of these.4 As Fig. 14 shows, VIKI is a level
of abstraction between the user and ROS, and not between ROS and the environment.
After the user presses the RUN button present inside the VIKI GUI interface, ROS is
launched using an automatically generated launch file. Note that this does not prevent
other applications to interact with the ROS-based software, thus making it possible
to use the developers’ preferred debugging and monitoring tools.

From a lower level, architectural point of view, the structure of VIKI is defined
by 4 distinct components; being the Command line interface (CLI), Graphical User
Interface (GUI), Configuration Component and the Backend Component. The archi-
tecture of these 4 components is shown in Fig. 15. The Backend handles all main
functionalities of VIKI. The user can access these functionalities by launching the
GUI. The GUI only provides an interface and does not handle any logic specific to
VIKI. In order to support the GUI, an CLI is provided to aid in small configura-
tion tasks. More preciseli, the CLI is used for configuration, installation of module
repositories and other support features. When the CLI has created the configuration,

4Note that VIKI is still under strong development after the first release. Some of the advanced ROS
tools, such as the multi-master, could not be yet fully integrated at the moment of reading this
chapter. For an update on the current status of the installation, the interested user may refer to the
online documentation.

VIKI—More Than a GUI for ROS 649

Fig. 15 Overview of the
internal structure of VIKI.
VIKI provides both a CLI
and GUI as interface for the
user. The backend handles
functionality using ROS and
the File System. The GUI
provides the interface to this
backend for the user. The
CLI is used for configuration,
to be used by the backend

the GUI runs using this configuration. When modifications need to be done by the
user, the CLI provides a quick and solid way to change allow these changes. The
configuration component is seperate and is used for internal configuration purposes.
It only stores information coming from the CLI and Backend, but does not provide
additional functionality.

5.2 Modules

One of the core concepts in VIKI are modules. For a user familiar with ROS it may
be difficult at first to differentiate between packages or nodes and VIKI’s modules.
This may be very well due to the deliberate design decision that a VIKImodule could
act as a single node, or as a package. The goal of a module is to provide coherent
functionality for a specific use case.

VIKI handles abstraction of ROS packages by providing these as modules, as
shown in Fig. 16. The first level shows available ROS packages. Using module
description files, the ROS packages are predefined for the end-user as modules.
Using VIKI, these modules can be arranged in a configuration file, which can be
processed to a ROS launch file, which will be launched using ROS. By predefining
essential information of these packages in the module description files, users can use
these modules directly.

Module description files are always named viki.xml and put into separate direc-
tories inside the ROS workspace. These description files are of the type XML.

A default module existing in VIKI for instance called twist_from_joy consists of
two nodes:

• the joy_node node from the joy package
• a custom node fly_from_joy that translates joy messages into sensible twist mes-
sages for the operation of, e.g., a multicopter.

650 R. Hoogervorst et al.

Fig. 16 Visual overview of the abstraction layer in VIKI. VIKI modules are build on top of ROS
packages, embedded with extra information. With these modules, a configuration file is built, which
is converted to a ROS launch file. This launch file is used by VIKI during runtime

Note that these two nodes are not in the same package, but are in the same module.
The user will thus, on first sight, only see one VIKImodule. This module provides

a single output which in the back end corresponds with a ROS topic on which the
twist messages are published. This is an important aspect of the back end: it leaves
the regular ROS structure completely intact. If one were to run a tool to visualize
the running nodes and active topics (e.g. rqt_graph) both nodes mentioned above
will be active and connected through a uniquely named relay node. This provides
experienceduserswith the possibility to leave their existingROSworkflowunaltered.

Even though modules may be a simplification of a sub-system within a desired
configuration of ROS nodes, VIKI allows to fully customize how these nodes are
launched by passing parameters, command line arguments or launch prefixes similar
to howROS launch does. In light of the desire to run certain nodes on other machines,
support for adding SSH required tags to a launch file has been implemented.

For most of the VIKI users, a complete combination of all possible functionalities
will not be provided in terms of available modules belonging to the VIKI module
library. Therefore, this requires the user to define custom modules where it is con-
sidered necessary. Creating a module is done by creating an XML file describing the
properties of the module. This XML file contains:

• Meta information, such as title and description.
• Inputs and outputs of the module. These provide the interface of the module and
are linked to the in- and outputs of executables.

• Executables, which are ROS nodes. These contain information about the node
such as the inputs, outputs and a set of default parameters to be used.

• Extra configuration options, which can be used to link executables internally or
add extra options.

VIKI—More Than a GUI for ROS 651

This information is stored in a viki.xml file using the XML format, and is placed in
the ROS workspace. An example of such a file is shown in listing 1. The next section
elaborates on the organisation of modules and how to increase the reusability. More
information about the internals of the XML file can be found in the documentation
online.

<!-- VIKI_MODULE -->
<module type="controller" id="simple_PID">

<meta>
<name>PID controller</name>
<description>

An example node with a PID controller
</description>

</meta>

<!-- The in- and outputs of the module as a whole. They are linked to
specific executables within the module -->↪→

<inputs>
<input type="ros_topic" name="pose" link="control_node/pose"
message_type="geometry_msgs/Pose" required="true" />↪→

</inputs>

<outputs>
<output type="ros_topic" name="command" link="control_node/setpoint"
message_type="geometry_msgs/Twist" required="false" />↪→

</outputs>

<executable id="control_node" pkg="PID" exec="node">
<inputs>

<input type="ros_topic" name="pose"
message_type="geometry_msgs/Pose" required="true" />↪→

</inputs>
<outputs>

<output type="ros_topic" name="setpoint"
message_type="geometry_msgs/Pose" required="false" />↪→

</outputs>
<params>

<param name="gain" default="2" type="realnumber" />
</params>

</executable>

<!-- Configuration of the module: a method to connect executables
within the module by default -->↪→

<configuration>
</configuration>

</module>

Listing 1: Possible contents of a viki.xml file that holds the information about
the ROS packages in the module.

652 R. Hoogervorst et al.

5.3 Modularity and Reusability

One of the main requirements in the design of VIKI is that the additional abstraction
layer should not conflict with the modularity that ROS packages and nodes offer. It
in fact stimulates the user to leverage the powerful ROS structure that is built around
reliable communication between independent nodes. Thanks to the ease of adding
modules to the system and connecting them to other modules by simply dragging-
and-dropping, VIKI promotes having modules that have a small, but well-defined
functionality (as the example module twist_from_joy demonstrates).

VIKI relies on two principles to maintain full modularity and promote code
reusability:

1. It uses existing communication infrastructure, thus relying on ROS topics, topic
name spaces and the ROS topic_tools to abstract the process of connecting nodes.

2. It requires no change to existing node logic. Combining existing nodes and pack-
ages into amodulewill never require developers to change the code of their nodes.
An additional XML-formatted file instructs VIKI on how to combine existing
nodes.

These principles not only guarantee thatVIKIwill always be compatiblewith existing
ROS infrastructure, but it greatly promotes abstracting projects in small, reusable
parts.

VIKI scans the specified ’root module directory’ recursively for viki.xml files on
startup. Thismeans allmodule definition files live in subfolders inside this root folder.
This gives the user flexibility on how to organise his or her personal modules. In order
to keep overview, VIKI encourages two seperate methods of locating module files.

To allow for modules to be shared and used between different developers, VIKI
introduces the concept ofmodule repositories. These are git repositories that include a
set of module description files. The second option is to include a viki.xml file directly
in the repository of aROSpackage. Parts of themodules used in projects can originate
from the original, open-source VIKI module repository, while other parts can be
located in a private repository for the project team. These built-in functionalities
prove that VIKI is designed with sharing well-defined, reusable modules in mind.

Thus, there are two different methods for sharing module description files, each
with their own goal.

• Using module repositories. VIKI makes it possible to add different module repos-
itories and manage these using version control. When a new module is required,
the user can create a new folder inside this repository and add a new viki.xml file to
this folder. This module file can use packages that are available on the system (e.g.
using apt-get), or include code for a small package itself inside a subfolder. This
approach is preferred when a binary installation of the ROS packages requires to
be added to a VIKI module, or when it is desired to combine nodes of several
packages into one module. When it is required to include a large package inside a
repository, it is encouraged to put this in a seperate repository and include this as

VIKI—More Than a GUI for ROS 653

a dependency in the description file, as this keeps module repositories small and
easy to use.

• Add viki.xml file to the ROS package. This is the preferred method when using the
ROS package directly from source when designing a VIKImodule specifically for
that package. Note that in this case, it is important that the ‘root module directory’
is specified as the root of the catkin workspace (in the config.json file), such that
all directories in the workspace are scanned.

All modules for the first method live within the viki_modules directory inside the
catkin workspace. A good use-case for these repositories would be a project inside a
research group. For this project, a new repository could be created which includes all
these module files. The users can easily pull these repositories from remote storage
locations and use them directly within VIKI to browse the different modules that are
available. This gives users inside this project a quick overview of what is already
available and the components that can be used directly.

5.4 GUI

Many tools within ROS are aimed at providing overview after the software has
launched (see Sect. 2.1). The VIKI GUI, on the other hand, aims at creating a visual
building space to compose projects and complex software architectures, while pro-
viding the user with a direct overview. This is done at the abstraction level of VIKI,
providing overview at a higher level.When detailed overview at ROS level is needed,
rqt_graph can still be used. While rqt_graph provides a graphical overview of all
nodes and topics after launch, VIKI provides this overview between a set of modules
with a subset of topics.

From within the GUI, all available modules are listed in a palette which can be
searched through quickly based on module name or description. From there modules
can easily be dragged onto the canvas and connected to other modules. The canvas
then provides a visual representation of the architecture. Modules can be connected
via dragging and dropping arrows representing data flow. TheGUIwill provide visual
feedback on which topic types match. For every module it is possible to edit settings
on the executable (ROS node) level.

TheGUI provides an all-in-one run button,which starts the created project. Behind
the scenes, VIKI generates a ROS launch file which is launched within a seperate
thread.While the steps fromGUI to launch are abstracted from the end-user, they are
easy to run independently. It is possible to generate a launch file using VIKI, copy
it to another computer and launch from there, provided that the ROS packages are
available.

654 R. Hoogervorst et al.

5.5 Future Goals

VIKI is under heavy development. At the time of writing, the latest version is 0.2,
which is the version this chapter is based on. The goal of VIKI is to reduce time
researchers, students, as well as software integrators spend on setting up a robotic
experiment. The vision behind the development of VIKI is to let users use it as a main
design tool, while still allowing ease of access and use of the most important tools
provided by ROS (and compatible with it), in order to boost the time of development
of complex behaviors for robots. For this reason, VIKI has been designed to be open-
source, and it is licenced5 under an MIT license. This has been chosen in order to
allow building a community around VIKI. To reach this goal, focus has to be put on
integrating VIKI, as well as enhancing the VIKI modules’ repository, with existing
ROS tools and packages that will guarantee better usability for the end user and more
functionality within VIKI.

Development of VIKI’s features will be based on the community and the feedback
that is provided. The authors find it important to interact with the users and focus
on building features that are requested most. Users can therefore obtain the required
information for development by getting into contact with the authors through github.

Among the major functinalities that are still under development, is the possibility
to use multi-master tools that allow full distribution of the ROS executables, while
minimising the use of the communication bandwidth. It has beenmentioned thatVIKI
has support for launching nodes using the distributed capabilities of ROS itself, but
the correct functioning at the current version requires the startup of one single ROS
core. Future goals on the short term include incorporating at least one method of
running multiple masters.

Besides that, future goals will also aim at better integration with the existing ROS
environment and improving the workflow during package and module development,
to ensure users are not bound to only use VIKI. Features that support this might
include automatic or interactive module generation and generating VIKI configu-
ration or modules based on launch files. Specific decisions on the implementation
of this will be discussed with the community and tailored to their needs, as already
mentioned before.

References

1. Quigley,Morgan et al. 2009. ROS: an open-source Robot Operating System. In ICRAWorkshop
on Open Source Software.

2. Muellers, Filip. 2012. rxDeveloper 1.3b with sourcecode generators. http://www.ros.org/news/
2012/04/rxdeveloper-13b-with-sourcecode-generators.html (visited on 17 April 2016).

3. BRIDE. BRICS Integrated Developement Environment. 2014. http://www.best-of-robotics.
org/bride/.

5At the moment of writing of this chapter.

http://www.ros.org/news/2012/04/rxdeveloper-13b-with-sourcecode-generators.html
http://www.ros.org/news/2012/04/rxdeveloper-13b-with-sourcecode-generators.html
http://www.best-of-robotics.org/bride/
http://www.best-of-robotics.org/bride/

VIKI—More Than a GUI for ROS 655

4. Fraunhofer FKIE. Node Manager FKIE. 2016. https://fkie.github.io/multimaster_fkie/node_
manager.html (visited on 13 May 2016).

5. Robotnik. ROS graphic user interfaces. 2013. http://www.robotnik.eu/ros-graphic-user-
interfaces/ (visited on 17 April 2016).

6. Price, John H. Creating a Graphical user Interface for Joint Position Control in Controlit!
https://robotcontrolit.com/documentation/gui_jpos (visited on 17 April 2016).

7. Stumm, Elena. 2010. ROS/Web based Grahical User Interface for the sFly Project.
Semester-Thesis. ETH Zurich. http://students.asl.ethz.ch/upl_pdf/289-report.pdf?aslsid=
c472f08de49967cf2e11840561d8175a.

8. Willow Garage. ROS GUI. 2012. http://www.willowgarage.com/blog/2012/10/21/ros-gui
(visited on 17 April 2016).

9. Kaestner, Ralf. 2016. Plugins Related to ROS TF Frames. https://github.com/ethz-asl/ros-tf-
plugins (visited on 17 April 2016).

10. James (Techsource Systems). ROS GUI. 2015. https://de.mathworks.com/matlabcentral/
fileexchange/50640-ros-gui (visited on 17 April 2016).

11. Linkbot. Linkbot Labs. 2016. http://www.barobo.com/downloads/ (visited on 17 April 2016).
12. Hoogervorst, Robin, Alex Kamphuis, and Cees Trouwborst. VIKI documentation. 2016. http://

viki.readthedocs.io (visited on 09 Sep 2016).

Author Biographies

Robin Hoogervorst is a Master student Computer Science at the University of Twente. He has
successfully completed the Bachelor Advanced Technology. Based on the research from his Bach-
elor Assignment, a paper called ‘Vision-IMU based collaborative control of a blind UAV’ has been
published on RED-UAS Mexico. His main interests are in the field of Software Engineering, more
specifically at creating solid and dynamic software which people love.

Cees Trouwborst is a Master student Systems and Control at the University of Twente, special-
izing in Robotics and Mechatronics. Before this, he finished the Bachelor Advanced Technology
with a bachelor thesis on “Control of Quadcopters for Collaborative Interaction”. His areas of
interest include autonomous systems, machine learning, Internet-of-Things and software architec-
ture.

Alex Kamphuis is a Mechanical Engineering student at the University of Twente. He was awarded
a bachelor of science degree in Advanced Technology after the completion of his thesis on the
‘implementation of the velocity obstacle principle for 3D dynamic obstacle avoidance in quad-
copter waypoint navigation’.
Since then he pursues a master of science degree at the multiscale mechanics group. Part of
his current research on sound propagation through granular media is conducted at the German
Aerospace center in Cologne. It entails cooperation with experienced researchers on topics such
as stress birefringence and zero gravity environments. As such he has performed experiments in
over 60 zero-g parabolas.
His other interests are running, reading and music.

Matteo Fumagalli is Assistant Professor in Mechatronics within the Department of Mechani-
cal and Manufacturing Engineering at Aalborg University. He received his M.Sc. in 2006 from
Politecnico di Milano, and his PhD at University of Genoa, where he worked in collaboration with
the IIT - Istituto Italiano di Tecnologia. He has been post-doc at the Robotics and Mechatron-
ics group of the University of Twente, where he carried out research on advanced robotic system
design and control.

https://fkie.github.io/multimaster_fkie/node_manager.html
https://fkie.github.io/multimaster_fkie/node_manager.html
http://www.robotnik.eu/ros-graphic-user-interfaces/
http://www.robotnik.eu/ros-graphic-user-interfaces/
https://robotcontrolit.com/documentation/gui_jpos
http://students.asl.ethz.ch/upl_pdf/289-report.pdf?aslsid=c472f08de49967cf2e11840561d8175a
http://students.asl.ethz.ch/upl_pdf/289-report.pdf?aslsid=c472f08de49967cf2e11840561d8175a
http://www.willowgarage.com/blog/2012/10/21/ros-gui
https://github.com/ethz-asl/ros-tf-plugins
https://github.com/ethz-asl/ros-tf-plugins
https://de.mathworks.com/matlabcentral/fileexchange/50640-ros-gui
https://de.mathworks.com/matlabcentral/fileexchange/50640-ros-gui
http://www.barobo.com/downloads/
http://viki.readthedocs.io
http://viki.readthedocs.io

	Acknowledgements
	Acknowledgements to Reviewers
	Contents
	Editor and Contributors
	Part I Control of UAVs
	Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating System
	1 Introduction
	2 Background
	2.1 Concepts of Receding Horizon Control
	2.2 Linear Model Predictive Control
	2.3 Nonlinear Model Predictive Control
	2.4 Linear Robust Model Predictive Control

	3 Model-Based Trajectory Tracking Controller for Multi-rotor System
	3.1 Multirotor System Model
	3.2 Linear MPC
	3.3 Nonlinear MPC

	4 Model-Based Trajectory Tracking Controller for Fixed-Wing UAVs
	4.1 Fixed-Wing Flight Dynamics and Identification
	4.2 Nonlinear MPC

	5 Conclusion
	References

	Designing Fuzzy Logic Controllers for ROS-Based Multirotors
	1 Introduction
	2 Brief Overview of Multirotors
	3 Fuzzy Control System for Hexacopters
	3.1 Brief Overview of Fuzzy Logic
	3.2 Overview of Hexacopter Movement Control System
	3.3 Example: Design of Vertical Movement and Hovering Controller

	4 Open-Source Package of ROS-Based Fuzzy Logic Control Systems
	4.1 Package Overview
	4.2 Configuring ROS Environment and Installing the Package
	4.3 Fuzzy Set Files
	4.4 Fuzzy Library Implementation
	4.5 Main Controller Implementation
	4.6 Command Interface Implementation
	4.7 Telemetry Implementation

	5 Virtual Experimentation Platform
	5.1 Introduction
	5.2 V-REP Basics
	5.3 Publishing ROS Topics
	5.4 Subscribing to ROS Topics
	5.5 Publishing Images from V-REP
	5.6 Running the Sample Scenarios

	6 Final Remarks
	References

	Flying Multiple UAVs Using ROS
	1 Introduction
	2 Target Platform
	3 Setup
	3.1 Setting PC Permissions
	3.2 Bitcraze Crazyflie PC Client
	3.3 Firmware
	3.4 Crazyflie ROS Stack

	4 Teleoperation of a Single Quadcopter
	4.1 Using an XBox360 Controller
	4.2 Add Support for Another Controller

	5 Teleoperation of Multiple UAVs
	5.1 Assigning a Unique Address
	5.2 Finding Good Communication Parameters
	5.3 ROS Usage (Multiple Crazyflies)

	6 Hovering
	6.1 Position Estimate
	6.2 ROS Usage (Single Crazyflie)
	6.3 ROS Usage (Multiple Crazyflies)

	7 Waypoint Following
	8 Troubleshooting
	9 Inside the crazyflie_ros Stack
	9.1 Overview
	9.2 crazyflie_cpp
	9.3 crazyflie_driver
	9.4 crazyflie_controller
	9.5 Possible Extensions

	10 Conclusion
	References

	Part II Control of Mobile Robots
	SkiROS---A Skill-Based Robot Control Platform on Top of ROS
	1 Introduction
	1.1 Environment Configuration

	2 Related Work
	3 Conceptual Overview
	3.1 Packages Structure
	3.2 World Model
	3.3 Skill Manager
	3.4 Task Manager
	3.5 Plugins
	3.6 Multiple Robots Control

	4 User Interface
	4.1 Edit, Execute and Monitor the Task
	4.2 Plan a Task
	4.3 Module Testing
	4.4 Edit the Scene

	5 Development
	5.1 Edit the Ontology
	5.2 Create a Primitive
	5.3 Create a Skill
	5.4 Create a Discrete Reasoner

	6 Task Planner
	6.1 Overview and Usage
	6.2 From Skills to PDDL
	6.3 Additional Features

	7 Application Example
	7.1 Overview
	7.2 Skills
	7.3 Primitives
	7.4 Results

	8 Conclusions
	References

	Control of Mobile Robots Using ActionLib
	1 Introduction
	2 ActionLib
	3 ROS Workspace Configuration
	4 Creating a PID Controller Using ActionLib
	4.1 Steps to Create the Controller
	4.2 Experimental Result of PID Controller

	5 Creating a Fuzzy Controller Using ActionLib
	5.1 Steps to Create the Controller
	5.2 Experimental Results of Fuzzy Controller

	6 Scheduled Fuzzy Controllers for Omnidirectional Motion of an Autonomous Inspection Robot
	7 Conclusion
	References

	Parametric Identification of the Dynamics of Mobile Robots and Its Application to the Tuning of Controllers in ROS
	1 Introduction
	2 Background
	2.1 Parametric Identification
	2.2 Mobile Robot Model

	3 ROS Packages for Identification of Robot Model
	3.1 Setting up a Catkin Workspace
	3.2 ros_control
	3.3 ros_controllers
	3.4 gazebo_ros_pkgs
	3.5 twil

	4 Testing the Installed Packages
	5 Implementation of Parametric Identification in ROS
	5.1 twil_description Package
	5.2 twil_controllers Package
	5.3 twil_ident Package

	6 Controller Design
	7 Conclusion
	References

	Online Trajectory Planning in ROS Under Kinodynamic Constraints with Timed-Elastic-Bands
	1 Introduction
	2 Theoretical Foundations of TEB
	2.1 Trajectory Representation and Optimization
	2.2 Closed-Loop Control
	2.3 Planning in Distinctive Topologies

	3 The teb_local_planner ROS Package
	3.1 Prerequisites and Installation
	3.2 Integration with ROS Navigation
	3.3 Included Cost Terms: Objectives and Penalties
	3.4 Robot Footprint for Optimization
	3.5 Obstacle Representations

	4 Testing Trajectory Optimization
	5 Creating a Mobile Robot in Stage Simulator
	5.1 Differential-Drive Robot
	5.2 Car-Like Robot

	6 Planning for a Differential-Drive Robot
	7 Planning for a Car-Like Robot
	8 Conclusion
	References

	Part III Integration of ROS with Internet and Distributed Systems
	ROSLink: Bridging ROS with the Internet-of-Things for Cloud Robotics
	1 Introduction
	2 Motivating Problems and Objectives
	2.1 Problem Statement
	2.2 Overview

	3 The ROSLink Protocol
	3.1 ROSLink System Architecture
	3.2 ROSLink Communication Protocol
	3.3 Integration of ROSLink Proxy in Dronemap Planner

	4 Experimental Validation
	5 Related Work
	6 Conclusion
	References

	ROS and Docker
	1 Introduction
	1.1 Overview

	2 Background
	3 Setup
	3.1 Requirements
	3.2 Installation
	3.3 Building

	4 Examples
	4.1 Education
	4.2 Industry
	4.3 Research
	4.4 Graphical Interfaces

	5 Notes
	5.1 Best Practices and Caveats
	5.2 Transparent Proxy
	5.3 Docker DNS Resolver

	References

	A ROS Package for Dynamic Bandwidth Management in Multi-robot Systems
	1 Introduction
	2 ROS Topics
	3 Bandwidth Consumption in Topics Publishing
	3.1 Publishing Camera Images in ROS
	3.2 Monitoring Bandwidth Usage in ROS
	3.3 Install DBM Package
	3.4 Using DBM to Manage Bandwidth Consumption
	3.5 Changing Topic Priorities

	4 Event-Based Bandwidth Optimization
	4.1 Event-Based Topic Priority
	4.2 Bandwidth Management Based on Topic Priority

	5 DBM Package Description
	5.1 Package Architecture
	5.2 Dynamic Frequency in a ROS Topic
	5.3 Creating a New Managed Topic with DBM
	5.4 Using DBM in an Existing Package
	5.5 Implementing Other Optimization Strategies
	5.6 Local Topics Management
	5.7 System Parameters

	6 Experimental Validation
	6.1 Communication Channels
	6.2 Environment Events
	6.3 Bandwidth Management

	7 Conclusion
	References

	Part IV Service Robots and Fields Experimental
	An Autonomous Companion UAV for the SpaceBot Cup Competition 2015
	1 Introduction
	2 Related Work
	3 Hardware Description
	4 Software Architecture
	5 Navigation
	5.1 Odometry
	5.2 Localisation and Mapping
	5.3 SLAM and Odometry
	5.4 Position Controller

	6 Object Detection and Localisation
	6.1 Blob Detection
	6.2 Convolutional Neural Network
	6.3 Object Localisation and Results

	7 Collision Avoidance and Path Planning
	7.1 Collision Avoidance
	7.2 Path Planning
	7.3 Summary

	8 Autonomous Exploration of Unknown Areas
	8.1 Simulation
	8.2 Exploration Strategies
	8.3 Evaluation and Results

	9 Autonomous Behaviour
	9.1 Behaviour-Network Base
	9.2 Symbolic Planner Extension
	9.3 ROS-Integration
	9.4 SpaceBot Cup UAV Behaviours

	10 Teamwork
	11 Results
	12 Conclusion
	References

	Development of an RFID Inventory Robot (AdvanRobot)
	1 Introduction
	2 Background
	2.1 RFID Technology
	2.2 Inventory Systems

	3 AdvanRobot Overview
	3.1 Design
	3.2 Architecture
	3.3 Navigation
	3.4 Human-Robot Interaction

	4 Simulation
	5 Experimental Results
	5.1 Navigation Validation
	5.2 RFID Identification Accuracy
	5.3 Operation by Store Associates

	6 Ongoing Developments
	6.1 Exploration for 3D Mapping
	6.2 Location of RFID Items

	7 Future Work
	7.1 Collaborative Inventorying
	7.2 UAVs and AdvanRobot Collaborative System
	7.3 Applications Derived from Product Location
	7.4 Simulation

	References

	Robotnik---Professional Service Robotics Applications with ROS (2)
	1 Contributions of the Book Chapter
	2 ELIOT: Climbing Robot for Windmill Inspection
	2.1 Brief Description of the System
	2.2 Robot Configuration
	2.3 Robot Sensors
	2.4 Communications
	2.5 HMI
	2.6 Challenges

	3 RB-1: A Mobile Manipulator for General Purpose Applications
	3.1 Brief Description of the System
	3.2 Main Topics Covered
	3.3 Challenges

	4 RBCAR: A Mobile Autonomous Guided Car
	4.1 Brief Description of the System
	4.2 Main Topics Covered
	4.3 Challenges

	5 ROBO-SPECT: Robot for the Detection and Measurement of Surface Defects and Cracks in Tunnels
	5.1 Brief Description of the System
	5.2 Main Topics Covered
	5.3 Challenges

	6 Summary
	References

	Using ROS in Multi-robot Systems: Experiences and Lessons Learned from Real-World Field Tests
	1 Introduction
	2 Background
	2.1 Classification by Size of the Team
	2.2 Classification by Morphology and Capabilities of the Robots
	2.3 Classification by Level of Coordination

	3 Multi-robot Software Architecture
	4 Communications for MRS
	4.1 Relationship with Multi-robot Classification

	5 A Brief Review of ROS Multi-master Packages
	5.1 adhoc_communication
	5.2 multimaster_fkie
	5.3 rocon_multimaster

	6 Example Applications for MRS and ROS
	6.1 MRS for Search and Rescue
	6.2 MRS for Environmental Measurements
	6.3 MRS for Aerial Surveys

	7 Lesson Learned and Issues to Overcome
	8 Conclusions
	References

	Part V Perception and Sensing
	15 Autonomous Navigation in a Warehouse with a Cognitive Micro Aerial Vehicle
	1 Introduction
	2 Related Work
	3 System Overview
	4 Perception
	4.1 Accelerometers, Gyros, Compass, and Barometer
	4.2 Cameras
	4.3 Laser Scanner
	4.4 Radio-Frequency Identification

	5 Mapping
	6 Localization and State Estimation
	6.1 Triple Stereo Visual Odometry
	6.2 Laser-Based Pose Tracking
	6.3 AprilTag Detection
	6.4 State Estimation Filter

	7 Navigation
	7.1 Mission Planning
	7.2 Path Planning
	7.3 Local Multiresolution Path Planning
	7.4 Reactive Local Obstacle Avoidance
	7.5 Velocity Control

	8 User Interfaces
	8.1 Flight Operator Interfaces
	8.2 Safety Pilot Interfaces

	9 Experiments and Evaluation
	9.1 Data Acquisition
	9.2 RFID Detection
	9.3 Flight Time
	9.4 Electromagnetic Compatibility
	9.5 Mapping and Pose Tracking
	9.6 Navigation

	10 Lessons Learned
	11 Conclusions
	References

	Robots Perception Through 3D Point Cloud Sensors
	1 Introduction
	2 Background
	3 Common Depth Sensors for Robot Perception
	3.1 Microsoft Kinect
	3.2 SR4000

	4 Configuring the Environment
	4.1 Install Kinect
	4.2 Install SR4000

	5 Examples of Point Cloud Processing
	5.1 Commands in Matlab
	5.2 ROS Subscriber with Matlab
	5.3 ROS Publishing with Matlab
	5.4 Creating Markers
	5.5 Filter XYZ Data
	5.6 Transformation

	6 Conclusion
	References

	Part VI ROS Simulation Frameworks
	Environment for the Dynamic Simulation of ROS-Based UAVs
	1 Introduction
	2 Basic Multirotor Flight Concepts
	3 Multirotor Configurations and Specific Characteristics
	4 Multirotor Model Creation and Scene Composition in V-REP
	5 ROS Virtual Hexacopter Control
	6 Final Considerations
	References

	Building Software System and Simulation Environment for RoboCup MSL Soccer Robots Based on ROS and Gazebo
	1 Introduction
	2 Background
	3 The NuBot Multi-robot System
	3.1 Mechanical Platform
	3.2 Visual Perception System
	3.3 Industrial Electrical System

	4 ROS-Based Software for NuBot Robots
	4.1 The OmniVision Node
	4.2 The FrontVision Node and the Kinect Node
	4.3 The NuBot Control Node
	4.4 The NuBot HWControl Node
	4.5 The WorldModel Node

	5 Gazebo Based Simulation System
	5.1 Simulation Models and a Simulation World
	5.2 Basic Motions Realization
	5.3 Model Plugin and Real Robot Code Integration
	5.4 Simulation of a Match

	6 Single Robot Simulation Tutorial
	6.1 Get the Package
	6.2 Environment Configuration
	6.3 Package Compiling
	6.4 Package Overview
	6.5 Single Robot Automatic Movement
	6.6 NuBotGazebo API
	6.7 How You Could Use It to Do More Stuff

	7 Multi Robot Simulation Tutorial
	7.1 Package Overview
	7.2 Configuration of Computer A and Computer B

	8 Conclusion
	References

	VIKI---More Than a GUI for ROS
	1 Introduction
	2 Background
	2.1 Existing Software

	3 ROS Environment Configuration
	4 Testdriving VIKI
	4.1 Turtlesim
	4.2 Flying the Parrot A.R. Drone
	4.3 SSH

	5 Technical Overview
	5.1 VIKI Architecture
	5.2 Modules
	5.3 Modularity and Reusability
	5.4 GUI
	5.5 Future Goals

	References

