
Chapter 7
Ultra-Low-Power Biomedical Circuit Design
and Optimization: Catching the Don’t Cares

Xin Li, Ronald D. (Shawn) Blanton, Pulkit Grover, and Donald E. Thomas

7.1 Introduction

As reported by United Nations and US Census Bureau, the US population has
enormously grown during the past several decades, climbing from 209 million in
1970 to 310 million in 2010. Most importantly, the percentage of senior citizens
(more than 65-year old) is expected to reach 21.28% in 2050. With the rapid
booming of senior citizen population, the expenditure of healthcare continuously
increases at a rate of 5–10% per year in the USA. Such a trend is also observed
worldwide over a large number of other countries.

To reduce healthcare cost while simultaneously delivering high-quality health
services, developing new portable and/or implantable biomedical devices is of great
importance. Billions of US dollars could be saved by reforming today’s healthcare
infrastructure with these biomedical devices for various medical applications
[8, 24]:

• Health monitoring: Health condition should be reliably monitored for each
person to predict and diagnose chronic diseases at the very early stage. For
instance, ECG signals can be continuously measured and automatically classified
by a portable biomedical device to diagnose arrhythmia [3, 19, 29].

• Clinical treatment: Clinical therapy should be reliably delivered for each patient
for both preventative care and disease treatment. Taking neuroprosthesis as an
example, brain signals are sensed and decoded by an implantable device to con-
trol the prosthesis of a patient with neurological disorder [5, 11, 13, 21, 22, 26].
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Towards these goals, miniaturized portable and/or implantable biomedical cir-
cuits must be designed and deployed to reliably sense, process, and transmit a
large amount of physiological data with extremely low-power consumption. These
circuits must carry several important “features”:

• High accuracy: A biomedical device must accurately generate the desired output,
such as diagnosis result for arrhythmia [3, 19, 29], and movement direction and
velocity for neuroprosthesis [5, 11, 13, 21, 22, 26], that is not contaminated
by artifacts, errors, and noises originated from human body and/or external
environment [6, 17, 25].

• Small latency: The response of a biomedical device must be sufficiently fast for
a number of real-time applications such as vital sign monitoring [7, 31] and
deep brain stimulation [9, 18]. In these cases, physiological data must be locally
processed within the biomedical device to ensure fast response time, especially
when a reliable wired or wireless communication channel is not available to
transmit the data to an external device (e.g., smart phone, cloud server, etc.)
for remote processing. Even in the cases where data transmission is possible
such as neuroprosthesis control [5, 11, 13, 21, 22, 26], the raw data must be
locally processed and compressed before transmission in order to minimize the
communication energy.

• Low power: To facilitate a portable and/or implantable device to continuously
operate over a long time without recharging the battery, its power consumption
must be minimized. Especially for the implantable applications where power
consumption is highly constrained (e.g., less than 100 �W), it is necessary
to design an application-specific circuit, instead of relying on general-purpose
microprocessors, to meet the tight power budget [12, 15, 16, 27, 28, 30, 32].

• Flexible reconfigurability: Reconfigurability is needed to customize a biomedical
device for different patients and/or different usage scenarios. For instance, the
movement decoder of neuroprosthesis should be retrained every day to accom-
modate the time-varying characteristics of neural sources, recording electrodes
and environmental conditions [26]. It, in turn, requires a reconfigurable circuit
implementation that can be customized every day.

The aforementioned features, however, are considered to be mutually exclusive
today. Taking neuroprosthesis as an example, executing a sophisticated movement
decoding algorithm is overly power hungry for portable and/or implantable applica-
tions. For this reason, renovating the healthcare infrastructure with portable and/or
implantable biomedical devices requires an even higher standard of performance
than what can be offered by today’s circuit technology.

In this chapter, we discuss a radically new design framework to seamlessly
integrate data processing algorithms and their customized circuit implementations
for co-optimization. The proposed framework could bring about numerous oppor-
tunities to substantially improve the performance of biomedical circuits. From this
point of view, it offers a fundamental infrastructure that enables next-generation
biomedical circuit design and optimization for many emerging applications.
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7.2 How Can We Beat the State of the Art?

In this chapter, we attempt to address the following fundamental question: How can
we further push the limit of accuracy, latency, power, and reconfigurability to meet
the challenging performance required for portable and/or implantable biomedical
applications? Historically, algorithm and circuit designs have been considered
as two separate steps. Namely, a biomedical data processing algorithm is first
developed and validated by its software implementation (e.g., MATLAB, CCC,
etc.). Next, a circuit is designed to implement the given algorithm. Such a two-step
strategy suffers from several major limitations that motivate us to fundamentally
rethink the conventional wisdom in this area.

First, since the biomedical data processing algorithms are particularly developed
and tuned for their software implementations, they are not fully optimized for
circuit implementations. Ideally, data processing algorithms should be customized
to mitigate the non-idealities induced by circuit implementations (e.g., nonlinear
distortion of analog front-end, quantization error of digital computing, etc.). Second,
while a circuit implementation inevitably introduces various non-idealities, these
non-idealities can be classified into two broad categories: (1) critical non-idealities
that may significantly distort the output of a biomedical circuit, and (2) non-critical
non-idealities that can be effectively mitigated or even completely eliminated by the
data processing algorithm. A good circuit implementation should optimally budget
the available resources (e.g., power) to maximally reduce the critical non-idealities
rather than the non-critical ones.

Motivated by these observations, we propose to develop a radically new design
framework to seamlessly integrate data processing algorithms and their customized
circuit implementations for co-optimization, as shown in Fig. 7.1. Our core idea is
to view a biomedical circuit, along with the data processing algorithm implemented
by the circuit, as an information processing system. We develop an information-
theoretic metric, referred to as information processing capacity (IPC) that extends
the conventional communication notion of channel capacity to our application of
biomedical data sensing, processing, and transmission. IPC quantitatively measures
the amount of information that can be processed by the circuit. Intuitively, IPC is
directly correlated to the accuracy of the circuit implementation. If a circuit can
accurately process the input data and generate the desired output, its IPC is high.
Otherwise, its IPC is low. In the extreme case, if a circuit cannot generate any
meaningful output due to large errors, its IPC reaches the lowest value zero.

IPC can efficiently distinguish critical vs. non-critical non-idealities. It is strongly
dependent on the critical non-idealities that distort the output, and is independent
of the non-critical non-idealities that can be eliminated by the data processing
algorithm. Hence, it serves as an excellent “quality” metric that we should maximize
in order to determine the optimal data processing algorithm and the corresponding
circuit implementation subject to a set of design constraints (e.g., latency, power,
reconfigurability, etc.).



162 X. Li et al.

Co-optimization based on an 
information theoretic framework

Circuit design (optimally reduce critical non-idealities that 
cannot be tolerated by data processing algorithm)

Algorithm design (optimally mitigate non-idealities induced 
by circuit implementation)

Design constraints

Accuracy, latency, power and reconfigurability

Fig. 7.1 An information-theoretic framework is proposed to co-optimize data processing algo-
rithms and their customized circuit implementations for higher accuracy, smaller latency, lower
power, and better reconfigurability of biomedical devices

It is important to note that our proposed design framework is not simply to
combine algorithm and circuit designs. Instead, we aim to develop new methodolo-
gies that would profoundly revise today’s data processing algorithms and integrated
circuit designs for biomedical applications. In particular, our proposed information-
theoretic framework can optimally explore the tradeoffs between accuracy, latency,
power, and reconfigurability over all hierarchical levels from algorithm design to
circuit implementation. From this point of view, the proposed framework based
on IPC offers a fundamental infrastructure that enables next-generation biomedical
circuit design and optimization for numerous emerging applications.

7.3 Information Processing Capacity

In this section, we describe an information-theoretic metric, IPC, to quantitatively
measure the amount of information that can be processed by a biomedical circuit.
It serves as a “quality” measure, when we co-optimize the algorithms and circuits
for data sensing, processing, and transmission of biomedical devices. It, in turn,
facilitates us to achieve superior accuracy, latency, power, and reconfigurability over
the conventional design strategies.

7.3.1 Information-Theoretic Modeling

The IPC of a biomedical circuit can be mathematically modeled based on informa-
tion theory. Without loss of generality, we consider a biomedical circuit, including
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(a)

(b)

Circuit implementation for 
information processingInput Output yCKT

Ideal information
processing systemInput Output yIDEAL

Fig. 7.2 An information-theoretic framework is proposed to co-optimize data processing algo-
rithms and their customized circuit implementations for higher accuracy, smaller latency, lower
power, and better reconfigurability of biomedical devices. (a) circuit implementation with non-
idealities, and (b) ideal implementation

data sensing, processing, and transmission modules in general, as an information
processing system shown in Fig. 7.2a. Since the circuit implementation is not
perfect due to non-idealities, the aforementioned information processing system
may generate errors where its output yCKT deviates from the desired value.

To accurately characterize the “error” of the biomedical circuit, we further
consider an ideal information processing system that guarantees to provide the
correct output yIDEAL, as shown in Fig. 7.2b. In other words, the ideal system is
“conceptually” implemented with a circuit with “infinite” precision. It does not
carry any non-ideality and, hence, is error-free. The “difference” between yCKT and
yIDEAL indicates the non-idealities caused by the circuit implementation. However,
quantitatively measuring such a difference is non-trivial, since a biomedical circuit
can be applied to a broad range of usage scenarios (e.g., various physiological
signals, various users, various environmental conditions, etc.). The comparison
between yCKT and yIDEAL must cover all these scenarios where yCKT and yIDEAL are
not just two numerical numbers and, hence, we cannot compare their difference
by simply subtracting yCKT from yIDEAL. The information-theoretic metric, IPC,
quantitatively measures the “quality” of approximating yIDEAL by yCKT. To derive
the mathematical representation of IPC, we consider two different cases: (1) discrete
output and (2) continuous output.

First, if the outputs yCKT and yIDEAL are discrete values (e.g., the diagnosis result
of arrhythmia may be positive or negative), yCKT and yIDEAL can be modeled as
two discrete random variables to cover the uncertainties over all usage scenarios.
In general, we assume that yCKT and yIDEAL take M possible values fy1, y2, ���,
yMg. The statistics of these two random variables can be described by using their
joint probability mass function (PMF) pmf(yCKT, yIDEAL). Table 7.1 shows a simple
example for the binary random variables yCKT and yIDEAL (i.e., either TRUE or
FALSE) where their statistics are fully described by four probabilities: true positive
rate PTP, false negative rate PFN, false positive rate PFP, and true negative rate PTN.



164 X. Li et al.

Table 7.1 Confusion matrix
of a binary classifier

yCKT

True False

yIDEAL True PTP PFN

False PFP PTN

IPC is defined as the mutual information I(yCKT, yIDEAL) between yCKT and yIDEAL

[2, 4]:

I .yCKT; yIDEAL/ D
X

yCKT

X

yIDEAL

pmf .yCKT; yIDEAL/ � log

�
pmf .yCKT; yIDEAL/

pmf .yCKT/ � pmf .yIDEAL/

�
:

(7.1)

Intuitively, the IPC metric in (7.1) measures the amount of information carried
by yIDEAL that can be learned from yCKT. In one extreme case, if the circuit
implementation is perfect, yCKT is identical to yIDEAL and, hence, IPC reaches its
maximum. In the other extreme case, if yCKT does not follow yIDEAL at all due to
large errors, there is no information about yIDEAL that can be learned from yCKT and,
hence, IPC reaches its minimum (i.e., zero).

There are two important clarifications that should be made for IPC. First, instead
of directly measuring the information carried by the circuit output yCKT, we take
the ideal output yIDEAL as the “reference” and measure the information related
to yIDEAL. Since yIDEAL represents all the important information of interest, IPC
accurately captures our “goal” and ignores the “don’t cares.” This is the reason why
IPC can serve as an excellent quality metric to guide our proposed algorithm/circuit
co-optimization.

Second, IPC is different from other simple accuracy metrics that directly
measure the difference between yCKT and yIDEAL based on statistical expecta-
tions. To understand the reason, we consider the example in Fig. 7.3a for which
we may simply define the accuracy as the summation of the true positive rate
PTP and the true negative rate PTN. Fig. 7.3b shows how this accuracy met-
ric varies as a function of the false positive rate PFP and the false negative
rate PFN where the probabilities for yIDEAL to be TRUE and FALSE are set
to pmf(yIDEAL D TRUE) D 0.01 and pmf(yIDEAL D FALSE) D 0.99, respec-
tively. In this example, we set pmf(yIDEAL D TRUE) to be much less than
pmf(yIDEAL D FALSE) to mimic the practical scenarios where pmf(yIDEAL D TRUE)
and pmf(yIDEAL D FALSE) are highly unbalanced. For example, in the application
of arrhythmia diagnosis [3, 19, 29], the probably of being positive (i.e., with
arrhythmia) should be much less than the probability of being negative (i.e., without
arrhythmia), since arrhythmia is only carried by a small group of unhealthy patients
over the entire population.

Studying Fig. 7.3a, we observe that the simple accuracy metric heavily depends
on the false positive rate PFP, but weakly depends on the false negative rate PFN,
because the probability pmf(yIDEAL D TRUE) is extremely small. If we maximize
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Fig. 7.3 (a) The
conventional accuracy metric
is not appropriately
influenced by the false
negative rate PFN, if
pmf(yIDEAL D TRUE) is
much less than
pmf(yIDEAL D FALSE). (b)
The proposed IPC metric is
appropriately influenced by
both the false positive rate
PFP and the false negative rate
PFN, even if
pmf(yIDEAL D TRUE) and
pmf(yIDEAL D FALSE) are
highly unbalanced
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the aforementioned accuracy metric for algorithm/circuit co-optimization, it would
aggressively minimize the false positive rate PFP, thereby resulting in a large false
negative rate PFN. Consequently, a large portion of the unhealthy patients with
arrhythmia may be mistakenly diagnosed as healthy ones.

On the other hand, Fig. 7.3b shows the relation between our proposed IPC and
PFP and PFN. It can be observed that IPC is influenced by both PFP and PFN.
Hence, by maximizing IPC, we take both PFP and PFN into account. This simple
example demonstrates that when pmf(yIDEAL D TRUE) and pmf(yIDEAL D FALSE)
are highly unbalanced, IPC can appropriately guide our proposed algorithm/circuit
co-optimization, while the simple accuracy metric fails to work.

Finally, it is worth mentioning that if the outputs yCKT and yIDEAL are continuous
values (e.g., movement decoding for neuroprosthesis results in the velocity value
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that is continuous), yCKT and yIDEAL can be modeled as two continuous random
variables and their statistics can be described by the joint probability density
function pdf(yCKT, yIDEAL). In this case, IPC can again be defined as the mutual
information I(yCKT, yIDEAL) between yCKT and yIDEAL [2, 4]:

I .yCKT; yIDEAL/ D
Z C1

�1

Z �1

�1
pdf .yCKT; yIDEAL/ � log

�
pdf .yCKT; yIDEAL/

pdf .yCKT/ � pdf .yIDEAL/

�
:

(7.2)

In the following sub-sections, we will further discuss how IPC can be used for
design and optimization of biomedical circuits.

7.3.2 Soft Channel Selection

Soft channel selection is an important task that is facilitated by our proposed
algorithm/circuit co-optimization based on IPC. We consider the multi-channel
biomedical device in Fig. 7.4, where channel selection is one of the most important
tasks [1, 10, 23]. Appropriately selecting the important channels and removing the
unimportant ones can efficiently minimize the amount of data for sensing, process-
ing, and transmission, thereby substantially reducing the power consumption.

Today’s channel selection is typically considered as a binary decision: a channel
is either selected or not selected for recording. With the proposed information-
theoretic framework based on IPC, we are now able to make a “soft” decision
for each channel, referred to as soft channel selection. Namely, instead of simply
including or excluding a given channel, we can finely tune the resolution of the
channel (e.g., the number of bits required to represent the signal from the channel).
Intuitively, an important channel should be designed with high resolution, while an
unimportant channel can be designed with low resolution. The channel resolution
is directly correlated to the power consumption of both analog front-end (e.g.,

Data 
processing 
and learning

Sensor Filter ADCChannel 1

Sensor Filter ADCChannel 2

Sensor Filter ADCChannel N

Data sensing and conditioning

Fig. 7.4 A multi-channel biomedical device is shown to illustrate the application of soft channel
selection
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Fig. 7.5 The proposed soft
channel selection reduces the
power of the analog front-end
by up to 10� compared to the
conventional binary channel
selection
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sensors, analog filters, ADCs, etc.) and digital computing (e.g., digital filters, data
processors, etc.). It, in turn, facilitates us to optimally explore the tradeoff between
accuracy and power. In the extreme case, if the resolution of a channel is set to
0-bit, the channel is completely removed and it is equivalent to the conventional
binary channel selection in the literature.

To demonstrate the efficacy of our proposed soft channel selection, we consider
a preliminary example of movement decoding for neuroprosthesis, where our
objective is to decode the movement direction from electrocorticography (ECoG)
[26]. Fig. 7.5 compares the optimal IPC for both the conventional binary channel
selection and the proposed soft channel selection. Note that the proposed approach
successfully reduces the power of the analog front-end by up to 10�. It is important
to mention that the proposed idea of soft channel selection can be further extended
to other important applications such as data compression and transmission.

7.3.3 Robust Data Processing

To maximally reduce the power consumption for portable and/or implantable
applications, fixed-point arithmetic, instead of floating-point arithmetic, is often
adopted to implement data processing algorithms and the word length for fixed-
point computing must be aggressively minimized. While fixed-point arithmetic has
been extensively studied for digital signal processing during the past several decades
[14, 20], it is rarely explored for many emerging data processing tasks that involve
sophisticated learning algorithms (e.g., movement decoding for neuroprosthesis). It
remains an open question how to revise these algorithms to maximally tolerate the
quantization error posed by finite word length. Based upon IPC, data processing
algorithms can be completely redesigned to mitigate the quantization error so that
these algorithms can be mapped to fixed-point implementations with extremely low
resolution.
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Fig. 7.6 A data learning algorithm typically consists of two steps: feature extraction and classifi-
cation/regression

Fig. 7.7 The proposed data
learning algorithm reduces
the required word length by
2-bit, compared to the
conventional approach
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As shown in Fig. 7.6, a learning algorithm typically consists of two steps: (1)
feature extraction and (2) classification (e.g., to determine movement direction
for neuroprosthesis) and/or regression (e.g., to determine movement velocity for
neuroprosthesis). We propose to maximize the IPC metric of a classification or
regression engine subject to the constraint that all arithmetic operations for both
feature extraction and classification/regression are quantized. Our reformulated
learning algorithm solves a “robust” optimization problem to find the optimal,
quantized classifier or regressor that is least sensitive to quantization error. It, in turn,
offers superior performance over other conventional approaches where quantization
error is not explicitly considered within the learning process.

As an example for illustration purpose, we consider the classification prob-
lem of decoding the movement direction from electrocorticography (ECoG) for
neuroprosthesis. Fig. 7.7 shows the optimized IPC metric as a function of word
length. To achieve the same IPC, our proposed approach can reduce the word
length by 2-bit compared to the conventional classifier. Note that the word length of
fixed-point arithmetic is directly correlated to the power consumption of its circuit
implementation. Hence, reducing word length is of great importance for low-power
portable and/or implantable biomedical devices.
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7.4 Case Study: Brain–Computer Interface

Brain–computer interface (BCI) has been considered as a promising communica-
tion technique for patients with neuromuscular impairments. For instance, neural
prosthesis provides a direct control pathway from brain to external prosthesis
for paralyzed patients. It can offer substantially improved quality of life to these
patients. To create a neural prosthesis, we must appropriately measure the brain
signals and then accurately decode the movement information from the measured
signals [5, 11, 13, 21, 22, 26].

A variety of signal processing algorithms have been proposed for movement
decoding in the literature. Most of these algorithms first extract the important
features to compactly represent the information carried by the brain signals. Next,
the extracted features are provided to a classification and/or regression engine to
decode the movement information of interest. While most movement decoding
algorithms in the literature are implemented with software on microprocessors, there
is a strong need to migrate these algorithms to hardware in order to reduce the power
consumption for practical BCI applications.

7.4.1 System Design

Fig. 7.8 shows a simplified block diagram for the proposed hardware implementa-
tion of BCI. It consists of three major components:

• Signal normalization: The magnitude of brain signals varies from subject to
subject and from channel to channel. Hence, representing brain signals by fixed-
point arithmetic requires a large word length (i.e., a large number of bits). In

Fig. 7.8 A simplified block diagram is shown for the proposed hardware implementation of BCI
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order to minimize the word length and, consequently, the power consumption for
fixed-point computation, we must appropriately normalize the brain signal from
each channel.

• Feature extraction: There are many different feature extraction approaches for
movement decoding of BCI. For instance, given the brain signal recorded from
a particular channel, we can apply discrete cosine transform (DCT) and consider
the DCT coefficients as the features for decoding [28].

• Classification: Once all features are extracted for multiple channels, they are
further combined to decode the movement information. For instance, all features
can be linearly combined by a linear classifier to determine the movement
direction of interest. Here, a variety of linear classification algorithms (e.g.,
linear discriminant analysis, support vector machine, etc.) can be used, where
the classifier training is performed offline. The on-chip classification engine
performs the multiply-and-accumulate operations to determine the final output
(i.e., the movement direction) from the features.

7.4.2 Experimental Results

We consider the ECoG data set collected from a human subject with tetraplegia
due to spinal cord injury [26]. The ECoG signals are recorded with a high-density
32-electrode grid over the hand and arm area of the left sensorimotor cortex. The
sampling frequency is 1.2 kHz. The human subject is able to voluntarily activate his
sensorimotor cortex using attempted movements.

Our objective is to decode the binary movement direction (i.e., left or right) from
a single trial that is 300 ms in length. The ECoG data set contains 70 trials for each
movement direction (i.e., 140 trials in total). For movement decoding, 7 important
channels with 6 features per channel (i.e., 42 features in total) are selected based
on the Fisher criterion. A linear classifier is trained and implemented with 8-bit
fixed-point arithmetic to decode the movement direction.

The BCI system is implemented with a Xilinx FPGA Zynq-7000 board. For
testing and comparison purposes, we further implement a reference design based on
the conventional technique [30]. In this sub-section, we compare the performance
between our proposed hardware implementation and the reference design.

We estimate the power and energy consumption for both the proposed and the
reference designs by using Xilinx Power Analyzer, where the clock frequency is
set to 0.5 MHz. Table 7.2 compares the power consumption for these two different
designs. Note that the proposed design achieves more than 56� energy reduction

Table 7.2 Power and energy
consumption per decoding
operation

Proposed design Reference design

Power (mW) 0:72 3:8

Runtime (ms) 1:094 11:71

Energy (�J) 0:787 44:5
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Table 7.3 Power
consumption of different
functional blocks for the
proposed design

Signal normalization (�W) 25.2

Feature extraction (�W) 690.2
Classification (�W) 2.6

Fig. 7.9 A Xilinx FPGA Zynq-7000 board is used to validate the proposed hardware design for
movement decoding of BCI

over the reference design. Table 7.3 further shows the power consumption for differ-
ent functional blocks of the proposed design. Note that feature extraction dominates
the overall power consumption for our proposed hardware implementation. Hence,
additional efforts should be pursued to further reduce the power consumption of
feature extraction in our future research.

To validate the proposed design on the Xilinx Zynq-7000 board, we first load our
hardware design to the FPGA chip through the programming interface. Next, the
ECoG data set is copied to an SD card that is connected to the Zynq-7000 board.
When running the movement decoding flow, a single trial of the ECoG signals is first
loaded to the SRAM block inside the FPGA chip. Next, these signals are passed to
the functional blocks of signal normalization, feature extraction and classification
for decoding. The decoding results are read back to an external computer through
an RS-232 serial port on the Zynq-7000 board so that we can verify the decoding
accuracy. Fig. 7.9 shows a photograph of the Xilinx FPGA Zynq-7000 board where
the RS-232 port and the programming interface are both highlighted.
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7.5 Summary

In this chapter, we describe a new design framework for ultra-low-power biomedical
circuits. The key idea is to co-optimize data processing algorithms and their circuit
implementations based on an information-theoretic metric: IPC. The proposed
design framework has been demonstrated by a case study of BCI. Our experimental
results show that the proposed design achieves more than 56� energy reduction over
a reference design. As an important aspect of our future research, we will further
apply the proposed design framework to other emerging biomedical applications.
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