
Chapter 3
Least-squares-solver Based Machine Learning
Accelerator for Real-time Data Analytics in
Smart Buildings

Hantao Huang and Hao Yu

3.1 Introduction

Among various energy consumers, it is reported that over 70% electricity is
consumed by more than 79 million residential buildings and 5 million commercial
buildings in the USA [1]. There is an increasing need to develop cyber-physical
energy management system (EMS) for modern buildings composed of both micro-
grid and smart IoT hardware [2]. For smart energy management system, collecting
information from IoT devices can help recognize energy consumption profile and
perform accurately load forecasting with consideration of occupants behavior. As
such, load balance can be achieved based on demand-response strategy for better
energy efficiency [3].

One direct application of demand-response strategy in energy management
system (EMS) is the real-time dynamic electricity price [4] based on the demand.
An accurate load forecasting can help schedule the energy demand to reduce the
electricity cost. However, energy data analytics for load forecasting is challenging
since it is greatly affected by occupants behavior and environmental factors [5].
Occupants behavior is of random nature and very hard to predict [6]. Using real-
time sensed data from occupation location, power meters and various sensors can
capture occupants behavior for more accurate data analytics. However,uploading
data to the cloud and processing backend take latency and edge device such as smart-
gateway is computational resource limited. Therefore, a computationally efficient

H. Huang
Nanyang Technological University, 50 Nanyang Avenue, Block S3.2, Level B2,
Singapore 639798, Singapore

H. Yu (�)
School of Electrical and Electronic Engineering, Nanyang Technological University,
50 Nanyang Avenue, Block S3.2, Level B2, Singapore 639798, Singapore
e-mail: haoyu@ntu.edu.sg

© Springer International Publishing AG 2017
A. Chattopadhyay et al. (eds.), Emerging Technology and Architecture
for Big-data Analytics, DOI 10.1007/978-3-319-54840-1_3

51

mailto:haoyu@ntu.edu.sg

52 H. Huang and H. Yu

data analytics (machine learning algorithm) is greatly needed for real-time smart
building energy management system.

Machine learning algorithms can be broadly classified into: supervised learning,
unsupervised learning, and reinforcement learning [7]. Supervised learning based
neural network is widely applied for energy data analytics. Supervised learning
will learn the connection between two subset of data, inputs and outputs, to build
a model. Two central problems under supervised learning are classification and
regression. Both problems share the same goal to build a mode to predict the
output based on the input. However, the difference between two problems is the
fact the dependent attribute (output) is categorical for classification and numerical
for regressions [8].

In the smart building EMS, the pre-trained model from machine learning
algorithms will be loaded in the embedded system to perform data analytics such as
short-term load forecasting. However, previous works [3, 9, 10] have limitations in
twofold. Firstly, since various factors affect load forecasting, the pre-trained model
cannot be adjusted with the new arrival data. Moreover, traditional supporting vector
machine and neural network based algorithms [3] consume large hardware resource
to analyze energy data with poor efficiency and latency. Secondly, previous energy
data analytics [9, 10] ignores the real-time occupant profile, whose distribution
at different functionalized location (office, resting area, kitchen, etc.) can signifi-
cantly affect the short-term energy load forecasting accuracy. As such, the energy
management system of building towards comfort and energy-efficiency is still not
optimized.

In this work, we present a fast machine learning accelerator for smart building
data analytics. A computational efficient machine learning is developed using a
regularized least-squares solver with incremental square-root-free Cholesky fac-
torization. A scalable and parameterized hardware architecture is developed in
a pipeline and parallel fashion for both regularized least-squares and matrix-
vector multiplication. With the high utilization of the FPGA hardware resource,
our implementation has 128-PE in parallel operated at 50-MHz. Experimental
results have shown that the proposed machine-learning accelerator (on FPGA) has
good forecasting accuracy with an average speed-up of 4:56� and 89:05�, when
compared to general CPU and embedded CPU. Moreover , 450:2�, 261:9� and
98:92� energy saving can be achieved comparing to general CPU, embedded CPU
and GPU.

The rest of this chapter is organized as follows. The Internet of Things (IoT)
based smart-grid and smart building are presented in Sect. 3.2. The machine
learning algorithm based on least-squares and backwards propagation is discussed in
Sect. 3.3. Then Sect. 3.4 elaborates the Cholesky decomposition based least-squares
solver. In Sect. 3.5, detailed implementation on FPGA hardware is elaborated.
Experimental results regarding accuracy, speed-up, and energy consumption by
FPGA implementation are presented in Sect. 3.6 with conclusion drawn in Sect. 3.7.

3 Least-squares-solver Based Machine Learning Accelerator 53

3.2 IoT System Based Smart Building

3.2.1 Smart-Grid Architecture

The overall Internet of Things (IoT) based smart-grid and smart building system is
illustrated in Fig. 3.1. The key components from smart gird are the two-directional
main electricity power grid and additional renewable energy based electricity power
grid. By utilizing smart-grid, customers cannot only buy electricity from main power
grid but also sell electricity from renewable solar energy to generate profits with
dynamic prices. Smart building is the main element of the smart-grid for power
consumption. Therefore, accurately predicting the energy demand of building can
support the balance between supply and demand of smart-grid.

3.2.2 Smart Gateway for Real-Time Data Analytics

Smart gateway is the major control center, harboring the ability in storage and
computation. Our smart gateway will be BeagleBoard-xM. As Fig. 3.1 shows, smart
building is an IoT based system with various connected sensors. Environment
sensors can collect information on light intensity, humidity, and temperature and
send the data to micro-controller to understand environment. Energy sensor are used
to collect the current of each appliance and through smart sockets, on-off control can
be performed according to save energy. Moreover, occupancy provides information
about the activity of occupants and location base services such as lighting and air-
con can be provided accordingly. All these smart control is operated based on the
pattern defined in the micro-controller and learnt by supervised learning process.
Therefore, it is important to recognize (classify) the environment and occupants
behavior to respond accordingly for customized services. Moreover, accurately
predicting the energy demand of next minute or hour and then adjusting the supply

Appliances
Control

Environmental sensor

Energy sensors

Wi-Fi sensors

Wi-Fi
Communication

Module

Smart Sockets

Microcontroller
unit

consumption

Wi-Fi data

Appliance
Control

Machine
Learning

Accelertor

Smart Devices

Smart
Devices

Indoor
positioning

: ZigBee

: Wi-Fi

(MAC & RSSI)

Energy

Environmental

Data

Location based
Services

(BeagleBoard-xM)

Accelerator for Smart-grid
data analytics

ESS

Button Button Button

Power
Converter

SoC

Arbitrator

Room 2

Power Line

Communication Line

PV Array
Main Electrical

Power-grid

Agent Agent

Smart Meter

Switch

Smart Meter

Room 2
Switch

Room N
Switch

Smart Meter
Agent

Fig. 3.1 Internet of things (IoT) based smart-grid and smart building system with renewable solar
energy

54 H. Huang and H. Yu

are the key to achieve load balancing. However, due to the limited computation
resource of smart-gateway, an FPGA based machine learning accelerator is designed
to perform fast interference, model update, and re-train the machine learning model.

3.2.3 Problem Formulation for Data Analytics

In this chapter, data analytics refers to supervised machine learning, which is
classification problem and regression problem. The classification problem is used
for recognitions and regression problem is for prediction such as load forecasting.
Details of each problem formulation are shown as below.

Objective 1: Minimize the error rate of classification.

min e D
NX

i

xi=N

s:t: xi D f .fe1; fe2; : : :/ D f0; 1g
(3.1)

where f .�/ represents the trained model from training data and fe1; fe2: : : represent
input data for this model. xi D 0 represents the accurate prediction, xi D 1

represents the false prediction, and N represents the number of predictions.
Objective 2: Improve the accuracy of energy demand forecasting with time

interval t.

min er D
tD23X

tD0

.yt � f .Et; Mt; Tt//
2 (3.2)

where yt is actual energy demand at time t and f .Et; Mt; Tt/ is the model predicted
result with input features: energy consumption data Et, occupants motion profile
Mt and environmental Tt until time t. f .�/ is the machine learning trained model.
Once the new energy consumption data is ready, the machine learning model will
be re-trained with new arrival data to build up customized energy forecasting model.

3.3 Background on Neural Network Based Machine
Learning

In this section, the fundamental of neural network based machine learning is
introduced with comparison of two training methods.

Neural network (NN) is a family of network models inspired by biological neural
network to build the link for a large number of input–output data pair. It typically
has two computational phases: training phase and testing phase.

3 Least-squares-solver Based Machine Learning Accelerator 55

Table 3.1 A list of parameters definitions in machine learning

Parameter Elements Definitions

X [x11, x12, x13,. . . ,xNn] A set of n dimension data in N training samples

T [t11, t12, t13,. . . ,tNM] A set of M target classes in N training samples

H [h11, h12, h13,. . . ,hNL] A set of L hidden nodes in N training samples

A [a11, a12, a13,. . . ,anL] Input weight matrix between X and H

� [�11, �12, �13,. . . ,�LM] Output weight matrix between H and T

Y [y1, y2, y3,. . . ,yM] A set of M model outputs

ˇ N.A. Learning rate set by designers

– In the training phase, the weight coefficients of the neural network model are
first determined using training data by minimizing the squares of error difference
between trial solution and targeted data in a so-called `2-norm method.

– In the testing phase, the neural network model with determined weight coeffi-
cients is utilized for classification or calculation given the new input of data.

Formally, the detailed descriptions of each parameter are summarized in
Table 3.1. Given a neural network with n inputs and M outputs shown in Fig. 3.2, a
dataset .x1; t1/; .x2; t2/; : : :; .xN ; tN/ is composed of paired input data X and training
data T with N number of training samples, n dimensional input features and M
classes. During the training, one needs to minimize the `2-norm error function with
determined weights: A (at input layer) and � (at output layer):

E D jjT � F.A; � ; X/jj2 (3.3)

where F.�/ is the mapping function from the input to the output of the neural
network.

The output function of this neural network classifier is

Y D HF.A; � ; X/; Y D fy1; y2; : : :ymg
Label.X/ D arg max

i2f1;2;:::;mg
yi

(3.4)

where Y 2 R
N�m. Here N represents the number of testing samples. The index of

maximum value Y is found and identified as the predicted class.

3.3.1 Backward Propagation for Training

The first method to minimize the error function E is the Backward Propagation (BP)
method. As shown in Fig. 3.2a, the weights are firstly initially guessed for forward

56 H. Huang and H. Yu

Fig. 3.2 Trainings of neural network: (a) backward propagation; and (b) least-square solver

propagation. Based on the trial error, the weights are further calculated backward
with derivatives of weights calculated by

OE D
�

@E

@a11

;
@E

@a12

;
@E

@a13

: : :
@E

@aDL

�
(3.5)

where D is the output dimension of previous layer and L is the input dimension of
the next layer. For the current layer, each weight can be updated as

adl D adl � ˇ � @E

@adl
; d D 1; 2; : : :; D; l D 1; 2; : : :; L (3.6)

3 Least-squares-solver Based Machine Learning Accelerator 57

where ˇ is the learning constant that defines the step length of each iteration in the
negative gradient direction. Note that the BP method requires to store the derivatives
of each weight. It is expensive for hardware realization. More importantly, it may be
trapped on local minimal with long converging time. Hence, the BP based training
is usually performed off-line and has large latency when analyzing the real-time
sensed data.

3.3.2 Least-Squares Solver for Training

One can directly solve the least-squares problem using the least-squares solvers of
the `2-norm error function E [11–13]. As shown in Fig. 3.2b, the input weight A can
be first randomly assigned and one can directly solve output weight � as follows.

We first find the relationship between the hidden neural node and input training
data as

preH D XA C B; H D 1

1 C e�preH
(3.7)

where X 2 R
N�n. A 2 R

n�L and B 2 R
N�L is random generated input weight and

bias formed by aij and bij between Œ�1; 1�. N and n are the training size and the
dimension of training data, respectively. The output weight � is computed based on
pseudo-inverse .L < N/:

� D .HTH/�1HTT (3.8)

However, performing pseudo-inverse is also expensive for hardware realization.
The comparison of BP and least-squares solver can be summarized as follows.

BP is a relative simple implementation by gradient descent objective function with
good performances. However, it suffers from the long training time and may get
stuck in the local optimal point. On the other hand, least-squares solver can learn
very fast, but pseudo-inverse is too expensive for calculating. Therefore, solving
`2-norm minimization efficiently becomes the bottleneck of the training process.

3.3.3 Feature Extraction with Behavior Cognition

Input features are very important to train an accurate machine learning model. In
this chapter, occupants behavior is analyzed based on the active occupant motion in
each room since it indicates the potential behavior of occupants in the room [14].
Rooms inside the same house have vastly different occupants behavior profiles due
to different functionalities. Therefore, we extracted behavior profiles for different

58 H. Huang and H. Yu

rooms, respectively. For each room i, there are four states represented by S for
occupants positioning:

S D

8
ˆ̂<

ˆ̂:

s1 W 0 no occupant in the room i
s2 W 0 �! 1 occupants entering the room i
s3 W 1 occupants in the room i
s4 W 1 �! 0 occupants leaving the room i

(3.9)

where motion state S is detected by indoor positioning system via WiFi data every
minute. The probability of occupants motion for room i can be expressed as:

Mi.t/ D Ti.s2/ C Ti.s3/

Ti
; t D 1; 2; 3; : : :; 96 (3.10)

where Ti.sj/ represents the time duration with corresponding state sj. Mi.t/ is
occupant motion probability of room i in Ti time interval. Figure 3.3 presents an
example of motion probability in different rooms. As a conclusion, all the features
and their descriptions for data analytics are summarized in Table 3.2.

Our work differs from previous works [15, 16] such as sequential learning or
recursive learning from two manifold. Firstly, the training data size in our work is
fixed size with adding new arrival data and removing old data. This is preferred
since environment and occupants change with several levels of seasonality [3]. Old
data from months ago tend to bias the new change of load demand. Secondly, our
learning algorithm focuses on tuning the size of neural network. Since training data
is changed, it is more effective to re-train the model than using sequential learning
method to update the out-dated model.

Fig. 3.3 Motion probability within 15 min interval in three different rooms (Living room, bed
room, and basement)

3 Least-squares-solver Based Machine Learning Accelerator 59

Table 3.2 Input features for short-term load forecasting

Inputs Descriptions

1 Date type: weekday is represented by 1 and weekend is represented by 0

2–25 Eg(d-7,t), Eg(d-6,t), Eg(d-5,t), Eg(d-4,t), Eg(d-3,t), Eg(d-2,t), Eg(d-1,t):
Energy of the 7 days preceding to the forecasted day at the same hour

26–121 Mo(d-7,t), Mo(d-6,t), Mo(d-5,t), Mo(d-4,t), Mo(d-3,t), Mo(d-2,t), Mo(d-1,t):
Occupants motion of the 7 days preceding to the forecasted day at the same
hour

122–169 Te(d-7,t), Te(d-6,t), Te(d-5,t), Te(d-4,t), Te(d-3,t), Te(d-2,t), Te(d-1,t):
Temperature and Humidity of the 7 days preceding to the forecasted day at
the same hour

169-t C(t), C(t-1), C(t-2),. . . ,: Prior to time t, new collected data temperature,
humanity, energy and occupants motion

3.4 Least-Squares Solver Based Training Algorithm

In this section, we firstly reformulate a regularized least-squares problem. Then
square-root-free Cholesky decomposition is discussed to reduce the complexity.
Final, an incremental least-squares method is introduced to further simplify the
operation to basic linear algebra subprograms (BLAS).

3.4.1 Regularized `2-Norm

Considering (3.8), a better generalized training method is to minimize the training
error and the norm of the output weights, which can be defined as a regularized
`2-norm as follows:

min jjH� � Tjj2 C �jj� jj2 (3.11)

where H is the hidden-layer output matrix generated from the Sigmoid function for
activation; and � is a user defined parameter that biases the training error and output
weights [11]. This problem can be reformulated as

min jj QH� � QTjj2

where QH D
�

Hp
�I

�
QT D

�
T
0

� (3.12)

where I 2 R
L�L and QH 2 R

.NCL/�L. This is a standard least-squares problem with
general solution:

� D . QHT QH/�1 QHT QT; QH 2 R
N�L (3.13)

60 H. Huang and H. Yu

where QT 2 R
.NCL/�M and M is the number of classes. The new training algorithm

is summarized in Algorithm 1. The complexity of solving output weight will be
reduced by the square-root-free Cholesky decomposition and incremental least-
squares solutions.

Algorithm 1 The proposed training algorithm of neuron network

Input: Training Set .xi; ti/; xi 2 Rn; ti 2 RM ; i D 1; : : :N, activation function G.ai; bi; xj/,
maximum number of hidden neuron node L and accepted training error �.

Output: Neuron Network output weight �

1: Randomly assign hidden-node parameters
.aij; bkj/; i D 1; 2; : : :; n; j D 1; : : :; l; k D 1; 2; : : :; NI

2: Calculate the hidden-layer output matrix H
preH D XA C B; H D 1=.1 C e�preH/

3: Form regularized `2-norm

QH D
�

Hp
�I

�
QT D

�
T
0

�

4: Calculate the output weight
� D . QHT QH/�1 QHT QT

5: IF (l � L or error > �)
Increase number of hidden node
l D l C 1, repeat from Step 1

6: ENDIF

3.4.2 Square-Root-Free Cholesky Decomposition

The main step for a direct solution of the training problem is the standard least-
squares problem of minimizing jj QT � QH� jj2. This can be the solution using SVD,
QR, and Cholesky decomposition. The computational cost of SVD, QR, or Cholesky
decomposition for the problem is O.4.N C L/L2 � 4

3
L3/, O.2.N C L/L2 � 2

3
L3/, and

O. 1
3
L3/, respectively [17]. Therefore, we use Cholesky decomposition to solve the

least-squares problem. Moreover, its incremental and symmetric property reduces
the computational cost and hence saves half of memory required [17]. Here, we
use HL to represent the matrix with L number of hidden neuron nodes, which
decomposes the symmetric positive definite matrix QHT QH into

QHT QH D QDQT (3.14)

where Q is a lower triangular matrix with diagonal elements qii D 1 and D is a
positive diagonal matrix. Such method can maintain the same space as Cholesky

3 Least-squares-solver Based Machine Learning Accelerator 61

factorization but avoid the extracting the square roots as the square root of Q is
resolved by diagonal matrix D [18].

QHT
L

QHL D � QHL�1 hL
�T� QHL�1 hL

�

D
� QHT

L�1
QHL�1 vL

vT
L g

�
(3.15)

where .vL; g/ is a new column generated from new data hT
LhL, compared to

QHT
L�1

QHL�1. Therefore, we can find

QLDLQT
L D

�
QL�1 0

zT
L 1

� �
DL�1 0

0 d

� �
QT

L�1 zL

0 1

�
(3.16)

Therefore, we can easily calculate the vector zL and scalar d for Cholesky decom-
position as

QL�1DL�1zL D vL; d D g � zT
LDL�1zL (3.17)

where QL and vL are known from (3.15), which means that we can continue to use
previous factorization result and only update according part. Algorithm 2 shows
more details on each step. Note that Q1 is 1 and D1 is QHT

1
QH1.

3.4.3 Incremental Least-Squares Solution

The optimal residual for least-squares problem QH� D T is defined as r:

r D T � QH�ls D . QH. QHT QH/�1 QHT � I/T (3.18)

Therefore, r is orthogonal to QH, where the projection of r to QH is

< r; QH >D TT. QH. QHT QH/�1 QHT � I/T QH D 0 (3.19)

Similarly, for every iteration of Cholesky decomposition, xl�1 is the least-squares
solution of T D QHƒl�1 � � with the same orthogonality principle, where ƒl is the
selected column sets for matrix QH. Therefore, we have

T D rl�1 C QHƒl�1 � xl�1

QHT
ƒl

QHƒl xl D QHT
ƒl

.rl�1 C QHƒl�1 � xl�1/
(3.20)

62 H. Huang and H. Yu

where xl�1 is the least-squares solution in the previous iteration. By utilizing
superposition property of linear systems, we can have

" QHT
ƒl

QHƒl xtp1

QHT
ƒl

QHƒl xtp2

#
D

" QHT
ƒl

rl�1

QHT
ƒl

QHƒl�1 � xl�1

#

xl D xtp1 C xtp2 D xtp1 C xl�1

(3.21)

where the second row of equation has a trivial solution of Œxl�1 0�T . Furthermore,
this indicates that the solution of xl is based on xl�1 and only xtp is required to be
computed out from the first row of (3.21), which can be expanded as

QHT
ƒl

QHƒl xtp1 D
" QHT

ƒl�1
rl�1

hT
l rl�1

#
D

�
0

hT
l rl�1

�
(3.22)

Due to the orthogonality between the optimal residual QHƒl�1 and rl�1, the dot
product becomes 0. This clearly indicates that the solution xtp1 is a sparse vector
with only one element. By substituting square-root-free Cholesky decomposition,
we can find

QTdxtp D hT
l rl�1 (3.23)

where xtp is the same as xtp1. The other part of Cholesky factorization Q for
multiplication of xtp1 is always 1 and hence is eliminated. The detailed algorithm
including Cholesky decomposition and incremental least-squares is shown in
Algorithm 2. By utilizing Cholesky decomposition and incremental least-squares
techniques, the computational complexity is reduced with only 4 basic linear algebra
operations per iterations.

3.5 Least-Squares Based Machine Learning Accelerator
Architecture

3.5.1 Overview of Computing Flow and Communication

The top level of proposed VLSI architecture for training and testing is shown in
Fig. 3.4. The description of this architecture will be introduced based on testing
flow. The complex control and data flow of the neural network training and testing
is enforced by a top level finite state machine (FSM) with synchronized and
customized local module controllers.

For the neural network training and testing, an asynchronous first-in first-out
(FIFO) is designed to collect data through AXI4 light from PCIe Gec3X8. Two
buffers are used to store rows of the training data X to perform ping-pong operations.

3 Least-squares-solver Based Machine Learning Accelerator 63

Algorithm 2 Fast incremental least-squares solution

Input: Activation matrix QHL, target matrix QT and number of hidden nodes L
Output: Neuron Network output weight x
1: Initialize r0 D QT, ƒ0 D ;, d D 0, x0 D 0, l D 1,
2: While jjrl�1jj22 � �2 or l � L
3: c.l/ D hT

l rl�1, ƒl D ƒl�1 [l
4: vl D QHT

ƒl
hl

5: Ql�1w D vl.1 W l � 1/. zl D w:=diag.Dl�1/

6: d D g � zT
l w

7: Ql =

�
Ql�1 0

zT
l 1

�
, Dl =

�
Dl�1 0

0 d

�

(Q1 D 1; D1 D h1 � hT
1)

8: QT
l xtp =

�
0

c.l/=d

�

9: xl D xl�1 C xtp, rl D rl�1 � QHƒl xtp, l D l C 1

10: END While

Fig. 3.4 Accelerator architecture for training and testing

These two buffers will be re-used when collecting the output weight data. To
maintain high training accuracy, floating point data is used with parallel fixed point
to floating point converter. As the number indicated on each block in Fig. 3.4, data
will be firstly collected through PCIe to DRAM and Block RAM. Block RAM is
used to control the core to indicate the read/write address of DRAM during the
training/testing process. The core will continuously read data from block RAM for
configurations and starting signal. Once data is ready in DRAM and the start signal
is asserted, the core will process computation for neural network testing or training
process. An implemented FPGA block design on Vivado is shown in Fig. 3.9.

64 H. Huang and H. Yu

Fig. 3.5 Detailed architecture for online learning

3.5.2 FPGA Accelerator Architecture

As mentioned in the Sect. 3.3, operations in neural network are performed serially
from one layer to the next. This dependency reduces the level of parallelism of
accelerator and requires more acceleration in each layer. In this chapter, a folded
architecture is proposed as shown in Fig. 3.5. Firstly, the input arbitrator will take
input training data and input weight. A pipeline stage is added for activation after
each multiplication result. Then depending on the mode of training and testing,
the input arbitrator will decide to take label or output weight. For testing process,
output weight is selected for calculation neural network output. For training, label
will be taken for output weight calculation based on Algorithm 2. To achieve similar
software-level accuracy, floating-point data is used during the computation process
and 8-bit fixed point is used for data storage.

3.5.3 `2-Norm Solver

As mentioned in the reformulated `2-norm Algorithm 2, Step 5 requires forward
substitutions. Figure 3.6 provides the detailed mapping for forward substitutions
on our proposed architecture. For the convenient purposes, we use QW D V to
represent Step 5, where Q is a triangular matrix. Figure 3.7 provides the detailed
equations in each PEs and stored intermediate values. To explore the maximum
level of parallelism, we can perform multiplication at the same time on each row
to compute wi; i ¤ 1 as shown in the right of Fig. 3.7. However, there is different
number of multiplication and accumulations required for different wi. In the first
round, to have the maximum level of parallelism, intuitively we require L�1 parallel

3 Least-squares-solver Based Machine Learning Accelerator 65

Fig. 3.6 Computing diagram of forward/backward substitution in L2-norm solver

Fig. 3.7 Detailed mapping of forward substitution

PEs to perform the multiplication. After knowing w2, we need L � 2 parallel PEs
for the same computations in the second round. However, if we add a shift register,
we can store the intermediate results in the shift register and take it with a decoder
of MUX. For example, if we have parallelism of 4 for L D 32, we can perform 8

times parallel computation for the round 1 and store them inside registers. This helps
improve the flexibility of the process elements (PEs) with better resource utilization.

66 H. Huang and H. Yu

Fig. 3.8 Computing diagram of matrix–vector multiplication

3.5.4 Matrix–Vector Multiplication

All the computation relating to vector operation is performed on processing
elements (PEs). Our designed PE is similar as [19] but features direct instruction
to perform vector–vector multiplications for neural network. Figure 3.8 gives an
example of vector–vector multiplication (dot product) for (3.7) with parallelism of
4. If the vector length is 8, the folding factor will be 2. The output from PE will be
accumulated twice based on the folding factor before sending out the vector–vector
multiplication result. The adder tree will be generated based on the parallelism
inside vector core. The output will be passed to scalar core for accumulations. In
the PE, there is a bus interface controller. It will control the multiplicand of PE and
pass the correct data based on the top control to PE.

3.6 Experiment Results

In this section, we firstly discuss the machine learning accelerator architecture and
resource usage. Then details of FPGA implementation with CAD flow are discussed.
The performance of proposed scalable architecture is evaluated for regression
problem and classification problem, respectively. Finally, the energy consumption
and speed-up of proposed accelerator are evaluated in comparison with CPU,
embedded CPU and GPU.

3.6.1 Experiment Setup and Benchmark

To verify our proposed architecture, we have implemented in on Xilinx Virtex 7
with PCI Express Gen3x8 [20]. The HDL code is synthesized using Synplify and

3 Least-squares-solver Based Machine Learning Accelerator 67

Fig. 3.9 Vivado block design for FPGA least-squares machine learning accelerator

Fig. 3.10 Training cycles at each step of the proposed training algorithm with different paral-
lelisms (N D 74; L D 38; M D 3 and n D 16)

the maximum operating frequency of the system is 53.1 MHz under 128 parallel
PEs. The critical path is identified as the floating-point division, where 9 stages of
pipeline are inserted for speedup. We develop three baselines (x86 CPU, ARM CPU,
and GPU) for performance comparisons.

Baseline 1: General Processing Unit (x86 CPU). The general CPU implementa-
tion is based on C program on a computer server with Intel Core -i5 3.20GHz core
and 8.0GB RAM.

Baseline 2: Embedded processor (ARM CPU). The embedded CPU (Beagle-
Board-xM) [21] is equipped with 1GHz ARM core and 512MB RAM. The
implementation is performed using C program under Ubuntu 14.04 system.

Baseline 3: Graphics Processing Unit (GPU). The GPU implementation is
performed by CUDA C program with cuBLAS library. A Nvidia GeForce GTX
970 is used for the acceleration of learning on neural network.

The dataset for residential load forecasting is collected by Singapore Energy
Research Institute (ERIAN). The dataset consists of 24-henergy consumptions,
occupants motion, and environmental records such as humidity and temperatures
from 2011 to 2015. Features for short-term load forecasting is summarized in
Table 3.2. Please note that we will perform hourly load forecasting using real-time
environmental data, occupants motion data, and previous hours and days energy
consumption data. Model will be retrained sequentially after each hour with new
generated training data.

68 H. Huang and H. Yu

3.6.2 FPGA Design Platform and CAD Flow

The ADM-PCIE-7V3 is a high-performance reconfigurable computing card
intended for high speed performance applications, featuring a Xilinx Virtex-7
FPGA. The key features of ADM-PCIE 7V3 are summarized as below [20]

– Compatible with Xilinx OpenCL compiler
– Supported by ADM-XRC Gen 3 SDK 1.7.0 or later and ADB3 Driver 1.4.15 or

later.
– PCIe Gen1/2/3 x1/2/4/8 capable
– Half-length, low-profile x8 PCIe form factor
– Two banks of DDR3 SDRAM SODIMM memory with ECC, rated at 1333 MT/s
– Two right angle SATA connectors (SATA3 capable)
– Two SFP+ sites capable of data rates up to 10 Gbps
– FPGA configurable over JTAG and BPI Flash
– XC7VX690T-2FFG1157C FPGA

The development platform is mainly on Vivado 14.4. The direct memory access
(DMA) bandwidth is 4.5GB/s. The DDR3 bandwidth is 1333 MT/s with 64 bits
width.

The CAD flows for implementing the machine learning accelerator on the ADM-
PCIE 7V3 are illustrated in Fig. 3.11. The Xilinx CORE Generator System is first
used to generate the data memory macros that are mapped to the BRAM resources
on the FPGA. The generated NGC files contain both the design netlist, constraints
files and Verilog wrapper. Then, these files together with the RTL codes of the
machine learning accelerator are loaded to Synplify Premier for logic synthesis.

AXI4 Comm. DRAM Contr.
PCI-E core

.ngc

Block RAM

.ngc.ngcIP
package

.ngc.ngcLeast-squares
HDL

Synthesis Syn Lib

Vivado Synthesis

.edf .xdc .ncf

Ngdbuild, Map, par, bitgen .bit

.ucf.edf.ncf

Synopsys
Synplify
Premerier

Xilinx Vivado
Design Suit

Xilinx Core
Generator

Configure

ADM-PCIE 7V3

Fig. 3.11 CAD flows for implementing least-squares on ADM-PCIE 7V3

3 Least-squares-solver Based Machine Learning Accelerator 69

Fig. 3.12 Alpha-Data PCIe 7V3 FPGA board

Note that the floating-point arithmetic units used in our design are from the
Synopsys DesignWare library. The block RAM is denoted as black box for Synplify
synthesis. The EDF file stores the gate-level netlist in an electronic data interchange
format (EDIF), and the UCF file contains user-defined design constraints. Next, the
generated files are passed to Xilinx Vivado Design Suite to merge with other IP core
such as DRAM controller and PCI-E core. In the Vivado design environment, each
IP is packaged and connected. Then, we synthesize the whole design again under
Vivado environment. Specifically, the “ngbbuild” command reads in the netlist in
EDIF format and creates a native generic database (NGD) file that contains a logical
description of the design reduced to Xilinx NGD primitives and a description of
the original design hierarchy. The “map” command takes the NGD file, maps the
logic design to a specific Xilinx FPGA, and outputs the results to a native circuit
description (NCD) file. The “par” command takes the NCD file, places and routes
the design, and produces a new NCD file, which is then used by the “bitgen”
command for generating the bit file for FPGA programming. Figure 3.12 shows
Alpha-Data PCIe FPGA board.

3.6.3 Scalable and Parameterized Accelerator Architecture

The proposed accelerator architecture features great scalability for different applica-
tions. Table 3.3 shows all the user-defined parameters supported in our architecture.
At circuit level, users can adjust the stage of pipeline of each arithmetic to satisfy the
speed, area, and resource requirements. At architecture level, the parallelism of PE

70 H. Huang and H. Yu

Table 3.3 Tunable parameters on proposed architecture

Parameters Descriptions
Circuits {MAN EXP} Word-length of mantissa, exponent

{PA, PM , PD, PC} Pipe. stages of adder, mult, div and comp
Architectures P Parallelism of PE in VC

n Maximum signal dimensions

N Maximum training/test data size

H Maximum number of hidden nodes

Table 3.4 Resource
utilization under different
parallelism level (N D 512,
H D 1024, n D 512 and
50 Mhz clock)

Paral. LUT Block RAM DSP

8 52,614 (12%) 516 (35%) 51 (1.42%)

16 64,375 (14%) 516 (35%) 65 (1.81%)

32 89,320 (20%) 516 (35%) 96 (2.67%)

64 139,278 (32%) 516 (35%) 160 (4.44%)

128 236,092 (54%) 516 (35%) 288 (8.00%)

can be specified based on the hardware resource and speed requirement. The neural
network parameters n; N; H can be also reconfigured for specific applications.

Figure 3.10 shows the training cycles on each step on proposed training
algorithms for synthesized dataset. Different parallelism P is applied to show the
speed-up of each steps. The speed-up of 1st-layer for matrix–vector multiplication
is scaling up with the parallelism. The same speed-up improvement is also observed
in the Step 3, 4, and 9 in Algorithm 2, where the matrix–vector multiplication is the
dominant operation.

However, when the major operation is the division for the backward and
forward substitution, the speed-up is not that significant and tends to saturate
when the division becomes the bottleneck. We can also observe in Step 7, the
memory operations do not scale with parallelism. It clearly shows that matrix–
vector multiplication is the dominant operation in the training procedure (1st Layer,
Step 3, Step 4, and Step 9) and our proposed accelerator architecture is scalable to
dynamically increase the parallelism to adjust the speed-up.

The resource utilization under different parallelism is achieved from Xilinx ISE
after place and routing. From Table 3.4, we can observe that LUT and DSP are
almost linearly increasing with parallelism. However, Block RAM keeps constant
with increasing parallelism. This is because Block RAM is used for data buffer,
which is determined by other architecture parameters (N; H; n). Figure 3.13 shows
the layout view of the FPGA least-squares solver.

3 Least-squares-solver Based Machine Learning Accelerator 71

Fig. 3.13 Layout view of the FPGA with least-squares machine learning accelerator implemented

72 H. Huang and H. Yu

Table 3.5 UCI Dataset Specification and Accuracy

Benchmarks Data size Dim. Class Node No. Acc. (%)

Car 1728 6 4 256 90.90

Wine 178 13 3 1024 93.20

Dermatology 366 34 6 256 85.80

Zoo 101 16 7 256 90.00

Musk1 476 166 2 256 69.70

Conn. Bench 208 60 2 256 70

3.6.4 Performance for Data Classification

In this experiment, six datasets are trained and tested from UCI dataset [22], which
are wine, car, dermatology, zoo, musk and Connectionist Bench (Sonar, Mines vs.
Rocks). The details of each dataset are summarized in Table 3.5. The architecture
is set according to the training data set size and dimensions to demonstrate
the parameterized architecture. For example, N D 128.74/ represents that the
architecture parameter (training size) is 128 with the actual dataset wine size of
74. The accuracy of the machine learning is the same comparing to Matlab result
since the single floating-point data format is applied for the proposed architecture.

For speed-up comparison, our architecture will not only compare to the time
consumed by least-squares solver (DS) training method, but also SVM [23] and BP
based method [24] on CPUs. For example, in dataset dermatology, the speed-up of
training time is lower comparing to CPU based solution when the parallelism is 2.
This is mainly due to the high clock speed of CPU. When the parallelism increases to
16, 4:70� speed-up can be achieved. For connectionist bench dataset, the speed-up
of proposed accelerator is as high as 24:86�, when compared to the least-squares
solver software solution on CPUs (Table 3.6). Furthermore, 801:20� and 25:55�
speed-up can be achieved comparing to BP and SVM on CPUs.

3.6.5 Performance for Load Forecasting

Figure 3.14 shows the residential load forecasting with FPGA and CPU implemen-
tation. Clearly, all the peaks period are captured. It also shows that approximation
by number representation (fixed point) will not degrade the overall performance.
To quantize the load forecasting performance, we use two metrics: root mean
square error (RMSE) and mean absolute percentage error (MAPE). Table 3.7 is
the summarized performance with comparison of SVM. We can observe that our
proposed accelerator has almost the same performance as CPU implementation. It
also shows an average of 31.85% and 15.4% improvement in average on MAPE and
RMSE comparing to SVM based load forecasting (Table 3.7).

3 Least-squares-solver Based Machine Learning Accelerator 73

Fig. 3.14 7-Day residential load forecasting by proposed architecture with comparison of CPU
implementation

Table 3.6 Parameterized and scalable architecture on different dataset with speed-up comparison
to CPU

Benchmarks FPGA (ms) CPU (ms) BP (ms) SVM (ms) Imp. (CPU)

Car 44.3 370 36,980 1182 8:35�
Wine 207.12 360 11,240 390 1:74�
Dermatology 19.45 160 17,450 400 8:23�
Zoo 22.21 360 5970 400 16:21�
Musk 24.09 180 340,690 3113 7:47�
Conn. Bench 14.48 360 11,630 371 24:86�

Table 3.7 Load forecasting accuracy comparison and accuracy improvement comparing to FPGA
results to SVM result

Machine Learning
MAPE RMSE

Max Min Avg Max Min Avg

NN FPGA 0:12 0:072 0:92 18:87 6:57 12:80

NN CPU 0:11 0:061 0:084 17:77 8:05 12:85

SVM 0:198 0:092 0:135 20:91 5:79 15:13

Imp. (CPU)(%) 4:28 �18:03 �9:52 �6:19 18:39 0:39

Imp. (SVM)(%) 41:01 21:74 31:85 9:76 �13:47 15:40

3.6.6 Performance Comparisons with Other Platforms

In the experiment, the maximum throughput of proposed architecture is
12.68 Gflops with 128 parallelism for matrix multiplication. This is slower
than GPU based implementation 59.78 Gflops but higher than x86 CPU based
implementation 5.38 Gflops.

74 H. Huang and H. Yu

Table 3.8 Proposed architecture performance in comparison with other computation platform

Platform Type Format Time (ms) Power (W) Energy Speed-up E. Imp.
x86 CPU Train Single 1646 84 138.26 J 2.59� 256.0�

Test 1.54 84 0.129 J 4.56� 450.2�
ARM CPU Train Single 32,550 2.5 81.38 J 51.22� 150.7�

Test 30.1 2.5 0.0753 J 89.05� 261.9�
GPU Train Single 10.99 145 1.594 J 0.017� 2.95�

Test 0.196 145 0.0284 J 0.580� 98.92�
FPGA Train SingleC Fixed 635.4 0.85 0.540 J – –

Test 0.338 0.85 0.287 mJ – –

To evaluate the energy consumptions, we calculate the energy for a given imple-
mentation by multiplying the peak power consumption of corresponding device.
Although this is pessimistic analysis, it is still very likely to reach due to intensive
memory and computation operations. Table 3.8 provides detailed comparisons
between different platforms. Our proposed accelerator on FPGA has the lowest
power consumption (0:85W) comparing to GPU implementation (145W), ARM
CPU (2:5W) and x86 CPU implementation (84W). For training process, although
GPU is the fastest implementation, our accelerator still has 2:59� and 51:22�
speed-up for training comparing to x86 CPU and ARM CPU implementations.
Furthermore, our proposed method shows 256:0�, 150:7�, and 2:95� energy saving
comparing to CPU, ARM CPU, and GPU based implementations for training
model. For testing process, it is mainly on matrix–vector multiplications. Therefore,
GPU based implementations provide better speed-up performance. However, our
proposed method still has and 4:56� and 89:05� speed-up for testing comparing to
x86 CPU and ARM CPU implementations. Moreover, our accelerator is the most
low-power platform with 450:1�, 261:9� and 98:92� energy saving comparing to
x86 CPU, ARM CPU and GPU based implementations. In summary, our proposed
accelerator provides a low-power and fast machine learning platform for smart-grid
data analytics.

3.7 Conclusion

This chapter presents a fast machine learning accelerator for real-time data analytics
in smart micro-grid of buildings with consideration of occupants behavior. An
incremental and square-root-free Cholesky factorization algorithm is introduced
with FPGA realization for training acceleration when analyzing the real-time sensed
data. Experimental results have shown that our proposed accelerator on Xilinx
Virtex-7 has a comparable forecasting accuracy with an average speed-up of 4:56�
and 89:05�, when compared to x86 CPU and ARM CPU for testing. Moreover,
450:2�, 261:9�, and 98:92� energy saving can be achieved comparing to x86 CPU,
ARM CPU, and GPU.

3 Least-squares-solver Based Machine Learning Accelerator 75

Acknowledgements This work is sponsored by grants from Singapore MOE Tier-2
(MOE2015-T2-2-013), NRF-ENIC-SERTD-SMES-NTUJTCI3C-2016 (WP4) and NRF-ENIC-
SERTD-SMES-NTUJTCI3C-2016 (WP5).

References

1. L.D. Harvey, Energy and the New Reality 1: Energy Efficiency and the Demand for Energy
Services (Routledge, London, 2010)

2. H. Ziekow, C. Goebel, J. Strüker, H.-A. Jacobsen, The potential of smart home sensors in
forecasting household electricity demand, in 2013 IEEE International Conference on Smart
Grid Communications (SmartGridComm) (IEEE, New York, 2013), pp. 229–234

3. H.S. Hippert, C.E. Pedreira, R.C. Souza, Neural networks for short-term load forecasting: a
review and evaluation. IEEE Trans. Power Systems 16(1), 44–55 (2001)

4. W. Mielczarski, G. Michalik, M. Widjaja, Bidding strategies in electricity markets, in
Power Industry Computer Applications, 1999. PICA’99. Proceedings of the 21st 1999 IEEE
International Conference (IEEE, New York, 1999), pp. 71–76

5. E.A. Feinberg, D. Genethliou, Load forecasting, in Applied Mathematics for Restructured
Electric Power Systems (Springer, Berlin, 2005), pp. 269–285

6. C. Sandels, J. Widén, L. Nordström, Forecasting household consumer electricity load profiles
with a combined physical and behavioral approach. Appl. Energy 131, 267–278 (2014)

7. S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, D.D. Edwards, Artificial Intelligence: A Modern
Approach, vol. 2 (Prentice Hall, Upper Saddle River, NJ, 2003)

8. S. Theodoridis, K. Koutroumbas, Pattern recognition and neural networks, in Machine
Learning and Its Applications (Springer, Berlin, 2001), pp. 169–195

9. S. Li, P. Wang, L. Goel, Short-term load forecasting by wavelet transform and evolutionary
extreme learning machine. Electr. Power Syst. Res. 122, 96–103 (2015)

10. A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, R. Saidur, A review
on applications of ann and svm for building electrical energy consumption forecasting. Renew.
Sust. Energ. Rev. 33, 102–109 (2014)

11. G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications.
Neurocomputing 70(1), 489–501 (2006)

12. Y.-H. Pao, G.-H. Park, D.J. Sobajic, Backpropagation, part iv learning and
generalization characteristics of the random vector functional-link net. Neurocomputing
6(2), 163–180 (1994). [Online]. Available http://www.sciencedirect.com/science/article/pii/
0925231294900531

13. M.D. Martino, S. Fanelli, M. Protasi, A new improved online algorithm for multi-decisional
problems based on mlp-networks using a limited amount of information, in Proceedings of
1993 International Joint Conference on Neural Networks, 1993. IJCNN ’93-Nagoya, vol. 1
(1993), pp. 617–620

14. I. Richardson, M. Thomson, D. Infield, A high-resolution domestic building occupancy model
for energy demand simulations. Energy Buildings 40(8), 1560–1566 (2008)

15. N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate online
sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6),
1411–1423 (2006)

16. Y. Pang, S. Wang, Y. Peng, X. Peng, N.J. Fraser, P.H. Leong, A microcoded kernel recursive
least squares processor using fpga technology. ACM Trans. Reconfigurable Technol. Syst.
10(1), 5 (2016)

17. L.N. Trefethen, D. Bau III, Numerical Linear Algebra, vol. 50 (SIAM, Philadelphia, 1997)
18. A. Krishnamoorthy, D. Menon, Matrix inversion using cholesky decomposition. Preprint

(2011). arXiv:1111.4144

http://www.sciencedirect.com/science/article/pii/0925231294900531
http://www.sciencedirect.com/science/article/pii/0925231294900531

76 H. Huang and H. Yu

19. F. Ren, D. Marković, A configurable 12237 kS/s 12.8 mw sparse-approximation engine for
mobile data aggregation of compressively sampled physiological signals. IEEE J. Solid State
Circuits 51(1), 68–78 (2016)

20. Adm-pcie-7v3 [Online]. Available http://www.alpha-data.com/dcp/products.php?product=
adm-pcie-7v3 (2016)

21. Beagleboard-xm [Online]. Available http://beagleboard.org/beagleboard-xm (2015)
22. M. Lichman, UCI machine learning repository (2013). [Online]. Available http://archive.ics.

uci.edu/ml
23. J.A. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, J. Suykens,

T. Van Gestel, Least Squares Support Vector Machines, vol. 4 (World Scientific, Singapore,
2002)

24. R. Hecht-Nielsen, Theory of the backpropagation neural network, in International Joint
Conference on Neural Networks, 1989. IJCNN (IEEE, New York, 1989), pp. 593–605

http://www.alpha-data.com/dcp/products.php?product=adm-pcie-7v3
http://www.alpha-data.com/dcp/products.php?product=adm-pcie-7v3
http://beagleboard.org/beagleboard-xm
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	3 Least-squares-solver Based Machine Learning Acceleratorfor Real-time Data Analytics in Smart Buildings
	3.1 Introduction
	3.2 IoT System Based Smart Building
	3.2.1 Smart-Grid Architecture
	3.2.2 Smart Gateway for Real-Time Data Analytics
	3.2.3 Problem Formulation for Data Analytics

	3.3 Background on Neural Network Based Machine Learning
	3.3.1 Backward Propagation for Training
	3.3.2 Least-Squares Solver for Training
	3.3.3 Feature Extraction with Behavior Cognition

	3.4 Least-Squares Solver Based Training Algorithm
	3.4.1 Regularized 2-Norm
	3.4.2 Square-Root-Free Cholesky Decomposition
	3.4.3 Incremental Least-Squares Solution

	3.5 Least-Squares Based Machine Learning Accelerator Architecture
	3.5.1 Overview of Computing Flow and Communication
	3.5.2 FPGA Accelerator Architecture
	3.5.3 2-Norm Solver
	3.5.4 Matrix–Vector Multiplication

	3.6 Experiment Results
	3.6.1 Experiment Setup and Benchmark
	3.6.2 FPGA Design Platform and CAD Flow
	3.6.3 Scalable and Parameterized Accelerator Architecture
	3.6.4 Performance for Data Classification
	3.6.5 Performance for Load Forecasting
	3.6.6 Performance Comparisons with Other Platforms

	3.7 Conclusion
	References

