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Accelerating Data Analytics Kernels
with Heterogeneous Computing
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2.1 Introduction

The past decade has witnessed an unprecedented and exponential growth in the
amount of data being produced, stored, transported, processed, and displayed. The
journey of zettabyte of data from the myriad of end-user devices in the form of
PCs, tablets, smart phones through the ubiquitous wired/wireless communication
infrastructure to the enormous data centers forms the backbone of computing today.
Efficient processing of this huge amount of data is of paramount importance. The
underlying computing platform architecture plays a critical role in enabling efficient
data analytics solutions.

Computing systems made an irreversible transition towards multi-core archi-
tectures in early 2000. As of now, homogeneous multi-cores are prevalent in all
computing systems starting from smart phones to PCs to enterprise servers. Unfor-
tunately, homogeneous multi-cores cannot provide the desired performance and
energy-efficiency for diverse application domains. A promising alternative design
is heterogeneous multi-core architecture where cores with different functional
characteristics (CPU, GPU, FPGA, etc.) and/or performance-energy characteristics
(simple versus complex micro-architecture) co-exist on the same die or in the same
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system. Given an application, only the cores that best fit the application can be
exploited leading to faster and power-efficient computing.

Another reason behind the emergence of the heterogeneous computing is the
thermal design power constraint [14, 24, 25, 28, 31–33]. While the number of cores
on die continues to increase due to Moore’s Law [23], the failure of Dennard
scaling [11] has led to rising power density that forces a significant fraction of
the cores to be kept powered down at any point in time. This phenomenon, known
as the “Dark Silicon” [12], provides opportunities for heterogeneous computing as
only the appropriate cores need to switch on for efficient processing under thermal
constraints.

Heterogeneous computing architectures can be broadly classified into two
categories: performance heterogeneity and functional heterogeneity. Performance
heterogeneous multi-core architectures consist of cores with different power-
performance characteristics but all sharing the same instruction-set architecture.
The difference stems from distinct micro-architectural features such as in-order
core versus out-of-order core. The complex cores can provide better performance
at the cost of higher power consumption, while the simpler cores exhibit low-
power behavior alongside lower performance. This is also known as single-ISA
heterogeneous multi-core architecture [18] or asymmetric multi-core architecture.
The advantage of this approach is that the same binary executable can run on
all different core types depending on the context and no additional programming
effort is required. Examples of commercial performance heterogeneous multi-cores
include ARM big.LITTLE [13] integrating high-performance out-of-order cores
with low-power in-order cores, nVidia Kal-El (brand name Tegra3) [26] consisting
of four high-performance cores with one low-power core, and more recently
Wearable Processing Unit (WPU) from Ineda consisting of cores with varying
power-performance characteristics [16]. An instance of the ARM big.LITTLE
architecture integrating quad-core ARM Cortex-A15 (big core) and quad-core ARM
Cortex-A7 (small core) appears in the Samsung Exynos 5 Octa SoC driving high-
end Samsung Galaxy S4 and S5 smart phones.

As mentioned earlier, a large class of heterogeneous multi-cores comprise
of cores with different functionality. This is fairly common in the embedded
space where a multiprocessor system-on-chip (MPSoC) consists of general-
purpose processor cores, GPU, DSP, and various hardware accelerators (e.g., video
encoder/decoder). The heterogeneity is introduced here to meet the performance
demand under stringent power budget. For example, 3G mobile phone receiver
requires 35–40 giga operations per second (GOPS) at 1W budget, which is
impossible to achieve without custom designed ASIC accelerator [10]. Similarly,
embedded GPUs are ubiquitous today in mobile platforms to enable not only
mobile 3D gaming but also general-purpose computing on GPU for data-parallel
(DLP) compute-intensive tasks such as voice recognition, speech processing, image
processing, gesture recognition, and so on.

Heterogeneous computing systems, however, present a number of unique chal-
lenges. For heterogeneous multi-cores where the cores have the same instruction-set
architecture (ISA) but different micro-architecture [18], the issue is to identify
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at runtime the core that best matches the computation in the current context.
For heterogeneous multi-cores consisting of cores with different functionality, for
example CPU, GPU, and FPGAs, the difficulty lies in porting computational kernels
of data analytics applications to the different computing elements. While high-
level programming languages such as C, C++, Java are ubiquitous for CPUs,
they are not sufficient to expose the large-scale parallelism required for GPUs
and FPGAs. However, improving productivity demands fast implementation of
computational kernels from high-level programming languages to heterogeneous
computing elements. In this chapter, we will focus on acceleration of data analytics
kernels on field programmable gate arrays (FPGAs).

With the advantages of reconfigurability, customization, and energy efficiency,
FPGAs are widely used in embedded domains such as automotive, wireless
communications, etc. that demand high performance with low energy consump-
tion. As the capacity keeps increasing together with better power efficiency
(e.g., 16 nm UltraScale+ from Xilinx and 14 nm Stratix 10 from Altera), FPGAs
become an attractive solution to high-performance computing domains such as data-
centers [35]. However, complex hardware programming model (Verilog or VHDL)
hinders its acceptance to average developers and it makes FPGA development a
time-consuming process even as the time-to-market constraints continue to tighten.

To improve FPGA productivity and abstract hardware development using com-
plex programming models, both academia [3, 7] and industry [2, 40, 43] have
spent efforts on developing high-level synthesis (HLS) tools that enable auto-
mated translation of applications written in high-level specifications (e.g., C/C++,
SystemC) to register-transfer level (RTL). Via various optimizations in the form
of pragmas/directives (for example, loop unrolling, pipelining, array partitioning),
HLS tools have the ability to explore diverse hardware architectures. However, this
makes it non-trivial to select appropriate options to generate a high-quality hardware
design on an FPGA due to the large optimization design space and non-negligible
HLS runtime.

Therefore, several works [1, 22, 29, 34, 37, 39, 45] have been proposed using
compiler-assisted static analysis approaches, similar to the HLS tools, to predict
accelerator performance and explore the large design space. However, the static
analysis approach suffers from its inherently conservative dependence analy-
sis [3, 7, 38]. It might lead to false dependences between operations and limit
the exploitable parallelism on accelerators, ultimately introducing inaccuracies
in the predicted performance. Moreover, some works rely on HLS tools to improve
the prediction accuracy by obtaining performance for a few design points and
extrapolating for the rest. The time spent by their methods ranges from minutes to
hours and is affected by design space, and number of design points to be synthesized
with HLS tools.

In this work, we predict accelerator performance by leveraging a dynamic
analysis approach and exploit run-time information to detect true dependences
between operations. As our approach obviates the invocation of HLS tools, it
enables rapid design space exploration (DSE). In particular, our contributions are
two-fold:
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• We propose Lin-Analyzer, a high-level analysis tool, to predict FPGA per-
formance accurately according to different optimizations (loop unrolling, loop
pipelining, and array partitioning) and perform rapid DSE. As Lin-Analyzer does
not generate any RTL implementations, its prediction and DSE are fast.

• Lin-Analyzer has the potential to identify bottlenecks of hardware architectures
with different optimizations enabled. It can facilitate hardware development with
HLS tools and designers can better understand where the performance impact
comes from when applying diverse optimizations.

The goal of Lin-Analyzer is to explore a large design space at an early stage and
suggest the best suited optimization pragma combination for an application mapping
on FPGAs. With the recommended pragma combination, a HLS tool should be
invoked to generate the final synthesized accelerator. Experimental evaluation with
different computational kernels from the data analytics applications confirms that
Lin-Analyzer returns the optimal recommendation and its runtime varies from
seconds to minutes with complex design spaces. This provides an easy translation
path towards acceleration of data analytics kernels on heterogeneous computing
systems featuring FPGAs.

2.2 Motivation

As the complexity of accelerator designs continues to rise, the traditional time-
consuming manual RTL design flow is unable to satisfy the increasingly strict
time-to-market constraints. Hence, design flows based on HLS tools such as Xilinx
Vivado HLS [43] that start from high-level specifications (e.g., C/C++/SystemC)
and automatically convert them to RTL implementations become an attractive
solution to designers.

The HLS tools typically provide optimization options in the form of pragmas/di-
rectives to generate hardware architectures with different performance/area trade-
offs. Pragma options like loop unrolling, loop pipelining, and array partitioning
have the most significant impact on hardware performance and area [8, 21, 44].
Loop unrolling is a technique to exploit instruction-level parallelism inside loop
iterations, while loop pipelining enables different loop iterations to run in parallel.
Array partitioning is used to alleviate memory bandwidth constraints by allowing
multiple data reads or writes to be completed in one cycle.

However, this diverse set of pragma options necessitate designers to explore
a large design space to select the appropriate set of pragma settings that meets
performance and area constraints in the system. The large design space created
by the multitude of available pragma settings makes the design space exploration
a significantly time-consuming work, especially due to the non-negligible runtime
of HLS tools using the DSE step. We highlight the time complexity of this step by
using the example of Convolution3D kernel, typically used in big data domain.
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Listing 2.1 Convolution3D kernel
. . .
/ * C o n s t a n t v a l u e s o f a window f i l t e r : { c11 , . . . , c21 , . . . , c33 } * /
loop_1 : f o r ( i = 1 ; i < N�1; i ++) {

loop_2 : f o r ( j = 1 ; j < M�1; j ++) {
loop_3 : f o r ( k = 1 ; k < K�1; k ++) {

b [ i ] [ j ] [ k ]= c11 * a [ i �1][ j �1][k�1]+
c13 * a [ i + 1 ] [ j �1][k�1]+ c21 * a [ i �1][ j �1][k�1]+
c23 * a [ i + 1 ] [ j �1][k�1]+ c31 * a [ i �1][ j �1][k�1]+
c33 * a [ i + 1 ] [ j �1][k�1]+ c12 * a [ i ] [ j �1][ k ]+
c22 * a [ i ] [ j ] [ k ]+ c32 * a [ i ] [ j + 1 ] [ k ]+
c11 * a [ i �1][ j �1][ k +1]+ c13 * a [ i + 1 ] [ j �1][ k +1]+
c21 * a [ i �1][ j ] [ k +1]+ c23 * a [ i + 1 ] [ j ] [ k +1]+
c31 * a [ i �1][ j + 1 ] [ k +1]+ c33 * a [ i + 1 ] [ j + 1 ] [ k + 1 ] ;

}
}

}

Table 2.1 HLS runtime of Convolution3D

Input size Loop pipelining Loop unrolling Array partitioning HLS runtime

32*32*32 Disabled loop_3 factor:30 a, cyclic, 2 b, cyclic, 2 44.25 s

loop_3, yes loop_3 factor:15 a, cyclic, 16 b, cyclic, 16 1.78 h

loop_3, yes loop_3 factor:16 a, cyclic, 16 b, cyclic, 16 3.25 h

Table 2.2 Exploration time of convolution 3D: exhausted vs. Lin-Analyzer

Input size Design space
Exploration time

Exhaustive HLS-based DSE Lin-Analyzer

32*32*32 120 10 daysa 29.30 s
aFor few design points with complex pragmas, the HLS tool takes a long time and thus we stop the
program after 10 days

Listing 2.1 shows the Convolution3D kernel. We use a commercial HLS tool,
Xilinx Vivado HLS [43], to generate an FPGA-based accelerator for this kernel
with different pragma combinations and observe the runtime for this step, as shown
in Table 2.1. It is noteworthy that the runtime varies from seconds to hours for
different choices of pragmas. As the internal workings of the Vivado HLS tool is
not available publicly, we do not know the exact reasons behind this highly variable
synthesis time. Other techniques proposed in the existing literature, such as [29],
that depend on automatic HLS-based design space exploration are also limited by
this long HLS runtime.

Next, we perform an extensive design space exploration for this kernel using the
Vivado HLS tool by trying the exhaustive combination of pragma settings. Table 2.2
shows the runtime for this step. It can be observed that even for a relatively smaller
input size of .32 � 32 � 32/, HLS-based DSE takes more than 10 days.
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However, in order to find good-quality hardware accelerator designs, it is
imperative to perform the DSE step rapidly and reliably. This provides design-
ers with important information about the accelerators, such as FPGA perfor-
mance/area/power at an early design stage. For these reasons, we develop Lin-
Analyzer, a pre-RTL, high-level analysis tool for FPGA-based accelerators. The
proposed tool can rapidly and reliably predict the effect of various pragma settings
and combinations on the resulting accelerator’s performance and area. As shown in
the last column of Table 2.2, Lin-Analyzer can perform the same DSE as the HLS-
based DSE, but in the order of seconds versus days. In the next section, we describe
the framework of our proposed tool.

2.3 Automated Design Space Exploration Flow

The automated design space exploration flow leverages the high-level FPGA-based
performance analysis tool, Lin-Analyzer [46], to correlate FPGA performance with
given optimization pragmas for a target kernel in the form of nested loops. With the
chosen pragma that leads to the best predicted FPGA performance within resource
constraints returned by Lin-Analyzer, the automated process invokes HLS tools to
generate an FPGA implementation with good quality. The overall framework is
shown in Fig. 2.1. The following subsections describe more details in Lin-Analyzer.

2.3.1 The Lin-Analyzer Framework

Lin-Analyzer is a high-level performance analysis tool for FPGA-based accelerators
without register-transfer-level (RTL) implementations. It leverages dynamic analy-
sis method and performs prediction on dynamic data dependence graphs (DDDGs)
generated from program traces. The definition of DDDG is given below.

Definition 1 A DDDG is a directed, acyclic graph G.VG; EG/, where VG D Vop

and EG D Er [ Em. Vop is the set containing all operation nodes in G. Edges in Er

represent data dependences between register nodes, while edges in Em denote data
dependences between memory load/store nodes.

As the DDDG is generated from a trace, basic blocks of the trace have been
merged. If we apply any scheduling algorithms on DDDG, operations can be
scheduled across basic blocks. The inherent feature of using dynamic execution

Lin-Analyzer

Design Space Exploration

Unrolling, 
pipelining, 
partitioning

Pragmas

FPGA 
Performance

Chosen 
Pragmas

HLS Tool FPGA 
Implementation

Fig. 2.1 The proposed automated design space exploration flow
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trace is that it automatically enables global code motion optimization. In contrast,
almost all of the current state-of-the-art HLS tools use static analysis and therefore,
need to leverage advanced scheduling algorithms such as System of Difference
Constraints (SDC) scheduling [4, 7, 43, 44] to perform global code optimization.
However, the inherent feature of the dynamic trace coupled with the dataflow
nature of accelerators makes DDDG a good candidate for modeling hardware
behavior [38].

With the DDDG, Lin-Analyzer mimics HLS tools and estimate performance of
FPGA-based accelerators directly from algorithms in high-level specifications such
as C/C++ without generating RTL implementations.

2.3.2 Framework Overview

Figure 2.2 shows the Lin-Analyzer framework. As we can see, Lin-Analyzer
consists of three stages: Instrumentation, DDDG Generation & Pre-optimizationi
and DDDG Scheduling. It starts from high-level specifications (C/C++) of an

DDDG

LLVM 
Bitcode

Instrumented 
LLVM IR

Profiling 
Library

Execution 
Engine

Dynamic 
Trace

C/C++

Instrumentation

Input data

DDDG
FPGA 

Resource 
Allocator

FPGA resource 
constraints

DDDG Scheduling

FPGA 
Performance

Instrumentation
Recording basic block frequency, loop 
bounds
Collecting dynamic trace including 
runtime instances of static instructions
Runtime instructions inside a trace 
contains information such as 
instruction IDs, opcodes, operands, 
memory address, basic block IDs etc.

Pre-optimizations:
Removing supporting instructions 
and their dependence
Removing shared load/store 
operations
Mapping each unique memory 
address to a memory bank 
(partitioning factor)
Functional unit bypassing
Tree-height reduction
… ...

DDDG 
Generation

Sub-trace 
Extraction

Pre-
optimizations

Optimized DDDG Generation

Unrolling, 
pipelining, 
partitioning

Pragmas

Scheduling Assumptions:
Hardware functional units 
associated with DDDG nodes: from 
the default setting of Vivado HLS
Each memory bank has two read 
ports and one write port
Resource constraints: DSP and 
BRAM

ASAP

ALAP

Without constraints

RC List 
Scheduling

With constraints

Fig. 2.2 The Lin-Analyzer framework
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algorithm with changes and optimizations. By inserting profiling functions into
the original codes, Lin-Analyzer collects dynamic trace in Instrumentation stage.
According to pragmas provided by users, Lin-Analyzer extracts a sub-trace from the
dynamic trace and builds a dynamic data dependence graph (DDDG) to represent
hardware accelerators. As initial DDDG usually contains unnecessary information
and needs to be optimized, Lin-Analyzer performs pre-optimizations on it and
creates a new DDDG. With the optimized DDDG, it schedules the nodes with
resource constraints and estimates performance of the FPGA-based accelerator for
the given algorithm. As the analysis is based on DDDG of the relevant sub-trace and
utilizes fast scheduling algorithm, runtime of Lin-Analyzer is small even for kernels
with relative large data size and complex pragma combination such as complete
loop unrolling, large array partitioning factors, and loop pipelining.

2.3.3 Instrumentation

A program trace of the kernel containing dynamic instance of static instructions
is required for DDDG generation. In this work, we utilize the Low-Level Virtual
Machine (LLVM) [19] to instrument programs and collect traces. LLVM leverages
passes to perform code analysis, optimization, and modification based on a machine-
independent intermediate representation (IR), which is a Static Single Assignment
(SSA) based representation.

Lin-Analyzer first converts an application in C/C++ into LLVM IR and
instrument the IR by inserting profiling functions. The profiling functions are
implemented in the Profiling Library and used to record basic block frequency
and trace information. With the instrumented LLVM IR, Lin-Analyzer invokes the
embedded Execution Engine, an LLVM Just-in-Time (JIT) compiler, to run the IR
with input data if available. After execution, a run-time trace is dumped into the
disk. The dynamic trace includes runtime instances of static instructions and detailed
information can be found in Fig. 2.2.

2.3.4 Optimized DDDG Generation

To perform analysis on whole dynamic trace is inefficient and slow, as trace typically
contains million or even billion of instruction instances. Therefore, Lin-Analyzer
only focuses on a subset of the trace and creates a DDDG for the sub-trace. Size
of the sub-trace is based on pragmas given by users. The initial generated DDDG
usually includes unnecessary operations and dependences, and is not good enough
to represent hardware accelerators. Thus, Lin-Analyzer performs pre-optimizations
on DDDGs before scheduling.
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2.3.4.1 Sub-trace Extraction

Size of a sub-trace is related to loop unrolling and loop pipelining pragmas. A
kernel in the form of a nested (perfectly or non-perfectly) loop can be represented
by L D fL1; ::; Li; ::; LKg with K loop levels and the innermost loop level is LK .
Users can apply loop unrolling pragma at any loop levels in L. Assume a given
unrolling factor tuple is fU1; ::; Ui; ::; UKg, where Ui is the factor of i-th loop
level. Lin-Analyzer extracts Ui iterations of Loop Li as the sub-trace if its inner
loops (fLiC1; LiC2; : : : ; LKg) are completely unrolled; otherwise, the sub-trace only
includes UK iterations of Loop LK .

According to Vivado HLS [43], the HLS tool only considers loop pipelining
when the pipelining pragma is applied at one loop level Li in L and all its inner
loops (L0 D fLiC1; LiC2; : : : ; LKg) are forced to be completely unrolled irrespective
of their unrolling factors. In this case, the sub-trace contains all instruction instances
of the inner loops L0. If Li is the innermost loop level (i D K), Lin-Analyzer extracts
UK iterations of LK as the sub-trace.

2.3.4.2 DDDG Generation & Pre-optimizations

Once the sub-trace is ready, Lin-Analyzer generates a dynamic data dependence
graph (DDDG) to represent the hardware accelerator.In our implementation, a node
in the DDDG represents a dynamic instance of an LLVM IR instruction, while an
edge represents register- or memory-dependence between nodes. We only consider
true dependences. Anti- or output-dependences are not included, as they could be
potentially eliminated by optimizations. As we work with dynamic traces, control
dependences are not considered.

The initial generated DDDG normally contains supporting instructions and
dependences between loop index variables, which cannot model hardware
accelerators properly [38]. Therefore, we perform several optimizations before
scheduling.

• Removing supporting instructions and their dependences: Some of the instruc-
tions in a nested loop are related to computation directly, while others are
supporting instructions that are used to keep computation in the correct sequence
such as instructions related to loop indices, instructions used to obtain memory
address of a pointer or based address of an array, etc. Those instructions
might potentially introduce true dependences that are not relevant to actual
computation, for example, dependence between loop index variables. To remove
those information in DDDG, Lin-Analyzer assigns zero latency to those nodes.

• Removing redundant load/store operations: A program might potentially contain
redundant memory accesses (load or store). This redundancy increases memory
(BRAM) bandwidth requirement of a hardware accelerator. To save memory
bandwidth, Lin-Analyzer removes redundant memory access operations.
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Fig. 2.3 Functional unit bypassing used in Vivado HLS when loop pipelining enabled

• Associating memory banks with memory addresses: In our implementation, we
assume a memory bank only allows one write and two reads at the same cycle.
To restrict the DDDG with the memory constraint, Lin-Analyzer maps each
unique address of load/store instructions to a memory bank index. The number
of memory banks supported is related to array partitioning factors provided by
users.

• Tree height reduction: An application might sometimes contain long expression
chains. To expose potential parallelism and reduce height of the chains, we
employ tree height reduction similar to Shao’s work [38].

• Functional unit bypassing: When applying loop pipelining and unrolling prag-
mas at the innermost loop level, we observe (through RTL simulation) that HLS
tool (Vivado HLS [43]) enables functional unit bypassing optimization, which
is shown in Fig. 2.3. The optimization bypasses output registers of pipelined
functional units and directly sends results to the next units connected. Lin-
Analyzer also enables similar optimization when users apply loop pipelining and
unrolling pragmas at the innermost loop level.

2.3.5 DDDG Scheduling

Lin-Analyzer leverages Resource-Constrained List Scheduling (RCLS) algorithm to
schedule nodes on a DDDG. The algorithm takes the optimized DDDG generated by
the previous stage and a priority list as inputs. The priority list is obtained from As-
Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP) scheduling policies.
The RCLS algorithm works with the following assumptions:

1. Nodes in the DDDG are associated with hardware functional units. Configura-
tions of those units follow the default setting of Vivado HLS such as functional
types, latencies, and resource consumption;

2. Data is stored into memory banks (FPGA BRAM) and each bank supports one
write and two reads at the same cycle;
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3. Nodes that are supporting instructions are removed by assigning zero latency;
4. As most of the accelerator designs are restricted by BRAM and DSP resource, in

current implementations, we only consider these two resource constraints.

Based on the above assumptions, Lin-Analyzer finds the minimum latency of the
DDDG utilizing ASAP policy, which only schedules a node with the condition that
all predecessors of the node are completed. ALAP policy schedules a node as late
as possible when its successors are all finished. RCLS scheduling takes timestamps
(a priority list) of nodes returned by ALAP scheduling as an input. Both ASAP and
ALAP have no resource limitation, which is infeasible. Therefore, Lin-Analyzer
leverages resource-constrained list scheduling policy to obtain a feasible schedule
of minimum latency within FPGA resource constraints.

The RCLS policy schedules a DDDG node with the following conditions:

• All predecessors of the node have been scheduled and completed;
• Among the unscheduled ready nodes, the node has the highest priority;
• There are sufficient FPGA resources for allocating the node.

The resource management (allocation and release) is provided by FPGA Resource
Allocator (FRA). To schedule a type T node, FRA checks if there exists an allocated
T functional unit available. If all T units are occupied and there are still sufficient
resources, FRA allocates a new T functional unit for the node and records its
occupied status; otherwise, the node is assigned with an available allocated T
functional unit. Functional units consist of pipelined and non-pipelined designs. In
this work, we utilize pipelined functional units for floating-point operations and
the rest uses non-pipelined units. For pipelined units, if a node using this kind of
unit is scheduled, the occupied pipelined unit will be released in the next cycle by
FRA. For non-pipelined unit, an occupied functional unit will be released only if the
associated node finishes.

When RCLS policy finishes scheduling all nodes in the DDDG, Lin-Analyzer
obtains the final schedule and execution latency of the DDDG. With the loop bounds
and latency of sub-trace, Lin-Analyzer predicts execution cycles of an FPGA-based
design for the kernel.

2.3.6 Enabling Design Space Exploration

Designers can use HLS tools to develop diverse hardware implementations
by inserting various optimization pragmas. The three prominent pragmas, loop
unrolling, loop pipelining, and array partitioning, have significant impact on FPGA
performance and resource consumption [9, 29]. Therefore, the three pragmas are
supported in this work and Lin-Analyzer enables rapid design space exploration
with this feature.

Loop Unrolling With this optimization, HLS tools can schedule instructions of
multiple loop iterations and exploit more instruction-level parallelism. To mimic
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the optimization on HLS tools, Lin-Analyzer properly selects size of sub-trace
according to unrolling factors as explained in Sect. 2.3.4.1 and predicts performance
on the optimized DDDG generated. Assume that designers provide loop unrolling
optimization with factor u, Lin-Analyzer extracts a sub-trace containing dynamic
instruction instances of u loop iterations and generates an initial un-optimized
DDDG. After pre-optimization in Sect. 2.3.4.2, Lin-Analyzer schedules nodes in
the new generated optimized DDDG with RCLS policy and obtains latency IL of
the sub-trace according to loop unrolling configuration. With loop bounds, unrolling
factor u and latency IL of the sub-trace, Lin-Analyzer predicts performance of the
FPGA-based accelerator.

Loop Pipelining Operations in a loop iteration i are executed in sequence. The
next iteration i C 1 of the loop can only start execution when all operations
inside the current loop iteration i are complete. Loop pipelining optimization
enables operations in the next loop iteration i C 1 begin execution without waiting
for the current loop iteration i to be finished. This concurrent execution manner
significantly improves performance of hardware accelerators. With pipelining
optimization enabled, performance of an accelerator is determined by an initiation
interval (II) of the loop. II is a constant clock cycle period required between the
start of two consecutive loop iterations. To predict performance of accelerators with
loop pipelining enabled, Lin-Analyzer does not perform scheduling and calculates
the minimum initiation interval (MII) to approximate the II instead. This can reduce
the size of sub-trace and help to reduce Lin-Analyzer’s runtime. The calculation of
MII is done by the following Eqs. (2.1)–(2.4),

MII D max.RecMII; ResMII/ (2.1)

ResMII D max.ResMIImem; ResMIIop/ (2.2)

ResMIImem D max
m

��
Rm

RPortsm

�
;

�
Wm

WPortsm

��
(2.3)

ResMIIop D max
n

��
Fop_Parn

Fop_usedn

��
(2.4)

where RecMII is the recurrence-constrained MII and ResMII is the resource-
constrained MII. ResMIImem is used to analyze MII that is restricted by memory
bandwidth, while ResMIIop is limited by number of floating-point hardware units.
The number of memory read and write operations of array m within a pipelined stage
are represented by Rm and Wm, respectively. The number of read and write ports of
array m depends on number of memory banks associated, which is related with
array partitioning factors. The available number of read and write ports of array m
are denoted by RPortsm and WPortsm, respectively. Fop_Parn and Fop_usedn are the
number of floating-point functional unit of type n returned by ALAP scheduling and
RCLS policy, respectively. Fop_Parn denotes the maximum number of functional
units that can run simultaneously without resource constraints.
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Fig. 2.4 Array partitioning example for three strategies with factor 2 [43]. For simplicity, the
partitioning factor used here is two

In this work, we use latency IL of the selected sub-trace as its pipeline depth.
With loop bounds, pipeline depth IL, and the estimated MII, Lin-Analyzer predicts
performance of the FPGA-based accelerator using the equation in [20].

Array Partitioning Data in FPGA-based accelerator is stored into one or multiple
memory banks which are composed of FPGA BRAM resource. As memory ports
per bank are limited, the number of read/write through the same bank at the same
cycle is restricted (we assume two-read and one-write ports per memory bank).
Accelerators might suffer from this memory bandwidth bottleneck. In Vivado HLS
[43], it supports array partitioning pragma to split data into multiple memory
banks to improve the bandwidth. The partitioning strategies include three types,
block, cyclic, and complete as shown in Fig. 2.4. To simulate array partitioning
optimization, Lin-Analyzer first maps addresses of load and store operations in the
DDDG to memory banks, and leverages FRA to keep track of read/write ports used
each bank and prevent RCLS scheduling from violating memory port constraints.
Memory bank number Bank_Nm related to array partitioning factor is calculated as
below,

Bank_Nm D
�

.addrm/=.dsizem=pf e/ if block

.addrm/ modulo .pf / if cyclic
(2.5)

where addrm represents a memory address of array m, sizem denotes array size
of m, and pf describes the partition factor. Memory-port constraint is released for
complete array partitioning, as the whole array is implemented with registers.

An Example Figures 2.5 and 2.6 show two examples to describe how Lin-Analyzer
estimates FPGA performance when given different pragmas. In the examples, the
fadd functional unit has 5-cycle latency and it is a pipelined design. Memory
operations (load and store) have 1-cycle latency. These FPGA node latencies follow
the default setting of Vivado HLS.
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… …
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds float* %A, i64 %indvars.iv
%tmp = load float* %arrayidx, align 4
%arrayidx2 = getelementptr inbounds float* %B, i64 %indvars.iv
%tmp1 = load float* %arrayidx2, align 4
%add = fadd float %tmp, %tmp1
%arrayidx4 = getelementptr inbounds float* %C, i64 %indvars.iv
%tmp2 = load float* %arrayidx4, align 4
%add5 = fadd float %tmp2, %add
store float %add5, float* %arrayidx4, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 16
br i1 %exitcond, label %for.end, label %for.body

%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds float* %A, i64 %indvars.iv
%tmp = load float* %arrayidx, align 4
%arrayidx2 = getelementptr inbounds float* %B, i64 %indvars.iv
%tmp1 = load float* %arrayidx2, align 4
%add = fadd float %tmp, %tmp1
%arrayidx4 = getelementptr inbounds float* %C, i64 %indvars.iv
%tmp2 = load float* %arrayidx4, align 4
%add5 = fadd float %tmp2, %add
store float %add5, float* %arrayidx4, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 16
br i1 %exitcond, label %for.end, label %for.body
… …

0     %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1 %arrayidx = getelementptr inbounds float* %A, i64 %indvars.iv
2 %tmp = load float* %arrayidx, align 4
3 %arrayidx2 = getelementptr inbounds float* %B, i64 %indvars.iv
4 %tmp1 = load float* %arrayidx2, align 4
5 %add = fadd float %tmp, %tmp1
6 %arrayidx4 = getelementptr inbounds float* %C, i64 %indvars.iv
7 %tmp2 = load float* %arrayidx4, align 4
8 %add5 = fadd float %tmp2, %add
9 store float %add5, float* %arrayidx4, align 4
10 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
11 %exitcond = icmp eq i64 %indvars.iv.next, 16
12 br i1 %exitcond, label %for.end, label %for.body

for (i=0; i<N; i++) {
C[i] += A[i] + B[i]; 

}
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Fig. 2.5 An example without optimization pragma: 1 Lin-Analyzer instruments the source
code and generates dynamic trace; 2 Given loop unrolling factor uf (uf = 1, which means
no optimization), Lin-Analyzer extracts dynamic instruction instances of one loop iteration as
a sub-trace; 3 With the sub-trace, our tool generates an un-optimized DDDG to represent the
hardware accelerator; 4 Lin-Analyzer performs pre-optimizations on the un-optimized DDDG;
5 Lin-Analyzer performs RCLS scheduling on the optimized DDDG. Latency IL of the sub-trace

returned from the scheduling graph is 12 cycles and the total FPGA execution cycle of the loop is
.12 � N/ cycles, where N is the loop bound

Figure 2.5 shows the example without optimization, which means that loop
unrolling uf and array partitioning factors pf are equal to 1 and no loop pipelining
is enabled. In Fig. 2.5, the instructions in the sub-trace highlighted in green are
supporting instructions, which are used to keep computation being carried out in
the correct manner. Lin-Analyzer removes the supporting instructions by assigning
zero-latency as their edge weights. As we can see that, there is a true dependence
between Instruction 0 and 10, which are related to loop indices. This kind of
dependence is removed after performing optimization on an initial DDDG. With
the optimizations mentioned in Sect. 2.3.4.2, Lin-Analyzer schedules the DDDG
leveraging RCLS policy. The final scheduling graph is shown in Fig. 2.5. Array
A, B, and C consume only one memory bank (BRAM consumption depends
on their size) because of pf D 1 and can support two-read and one-write
operations simultaneously. Based on the scheduling, we know the latency of uf
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Fig. 2.6 An example with loop unrolling pragma (uf D 2): With a new optimization pragma 1 ,
Lin-Analyzer extracts a new sub-trace, creates an initial DDDG accordingly 2 , performs pre-
optimization to generate the optimized DDDG 3 , and schedules nodes on the DDDG. Latency IL
of the sub-trace returned from the scheduling graph is 13 cycles in this case and the total FPGA
execution cycle of the loop with unrolling factor uf D 2 is .13 � N=2/ cycles

loop iterations and Lin-Analyzer predicts its FPGA performance for this kernel
without optimization. In this example, the hardware accelerator uses one 32-bit fadd
functional unit, which consumes 2 DSPs.

Figure 2.6 shows the same example with loop unrolling enabled (uf D 2).
As the time spent on collecting the whole trace is a one-time cost, Lin-Analyzer
reuses the whole trace from the previous example and extracts a new sub-trace
according to loop unrolling pragma provided. With the new sub-trace, Lin-Analyzer
follows similar steps in the previous example and predicts performance of the
hardware accelerator with loop unrolling enabled without generating any RTL
implementations. In Fig. 2.6, Instruction 9 and 22 in blue are used to store data
in Array C. As we do not enable array partitioning pragma (pf D 1), Array C only
allows one write operation per cycle due to memory bank constraint and thus Lin-
Analyzer spends two cycles on Instruction 9 and 22. In this example, the hardware
accelerator shares one 32-bit fadd functional unit, which consumes 2 DSPs.

When we apply loop pipelining pragma on the example in Fig. 2.5, we follow
the same steps in the figure and calculate the initiation interval II with Eqs. (2.1)–
(2.4). In the example, there is no recurrence loop dependence and thus RecMII is 0.
The number of memory read and write operations (RA and WA) of Array A within
a pipelined stage from the figure is 1 for both. The available number of read and
write ports of Array A are 2 and 1, respectively. With Eq. (2.3) for Array A, we have
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d RA
RPortsA

e D d 1
2
e D 1, while d WA

WPortsA
e D d 1

1
e D 1. Data of Array B is the same

with that of A. For Array C, RC is 0, as there is no memory read. According to
Eq. (2.4), ResMIImem is 1, which means that the hardware accelerator with the given
configuration is not constrained by memory ports. The maximum number of fadd
functional unit Fop_Parfadd returned by ALAP scheduling is 1, and the number of
fadd functional unit Fop_usedfadd used in RCLS scheduling is 1. Based on Eq. (2.4),
we get ResMIIop D 1. We calculate MII D 1 with Eq. (2.1) and use its value to
approximate the II. The pipeline depth of the accelerator leverages the latency of
the sub-trace, which is IL D 12. Therefore, the total FPGA execution cycle of the
hardware accelerator with loop pipelining enabled is .II�.N�1/CIL D N�1C12 D
N C 11/ cycles. As we can see in Fig. 2.5, the two fadd instructions, 5.fadd and
8.fadd, can start execution at every 6 � i .i 2 Œ1; 2; : : :�/ cycles simultaneously and
thus with loop pipelining enabled, the hardware accelerator consumes two 32-bit
fadd functional units, which uses 4 DSPs.

From the above examples, Lin-Analyzer can explore different hardware archi-
tectures of a kernel rapidly by changing combinations of pragmas without any
RTL implementations. This ability makes Lin-Analyzer can explore and evaluate
a large design space of hardware implementations in the order of seconds to
minutes. However, similar to other works using dynamic analysis [15, 38, 41],
if different program inputs have significant impacts on behaviors of an application,
Lin-Analyzer might also suffer from inaccuracy when predicting performance. In
this case, selecting a representative input for generating trace is necessary and
crucial. Moreover, in current implementation, as Lin-Analyzer only optimizes for
FPGA performance, it tries to use available resources as much as possible if
necessary. Area-performance tradeoff in accelerator design will be included inside
our framework in future.

2.4 Acceleration of Data Analytics Kernels

The experiment is set up on a computer with an Intel Xeon CPU E5-2620 running at
2.10 GHz with 64 GB RAM and the OS used is Ubuntu 14.04. We leverage Xilinx
Vivado HLS version 2014.4 as the HLS tool and frequency of accelerators is set to
100MHz. Our target FPGA device is Xilinx ZC702 Evaluation Kit [43]. We select
four kernels related to big-data applications for evaluation.

• GEMM: This kernel is a generic matrix–matrix multiplication application
from Polybench Benchmark Suite [30]. It is widely used in machine learning
applications such as Convolutional Neural Network [36].

• KMeans: This kernel is a clustering algorithm, which is used extensively in data-
mining. It is modified from Rodinia Benchmark Suite [6].

• CONV2D & CONV3D: Convolution 2D/3D can be used to implement edge
detection and smoothing as a filter. It is an important computation in signal/image
processing, machine learning, and elsewhere [17, 42]. The two kernels are
adapted from Polybench Benchmarks Suite GPU version [30].
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2.4.1 Estimation Accuracy

Given loop unrolling, loop pipelining, and array partitioning pragmas, Lin-Analyzer
predicts FPGA performance for kernels in C/C++. As Vivado HLS is based on
static analysis, it might conservatively add false loop-carried dependences and
limit the exploitable parallelism of accelerators. To analyze estimation quality
of Lin-Analyzer, we describe prediction accuracy separately for different pragma
combinations.

2.4.1.1 Loop Unrolling and Loop Pipelining

Considering loop unrolling and loop pipelining pragmas, Fig. 2.7 shows the per-
formance (execution cycle counts) comparison of Lin-Analyzer and Vivado HLS
for GEMM, KMeans, CONV2D, and CONV3D kernels. The Y-axis denotes the
execution cycle counts of different configurations, while the X-axis describes
various configuration combinations consisting of loop unrolling and loop pipelining.
As we can see from the figure, the predicted performance from Lin-Analyzer
(the yellow dashed lines with triangles) matches the ones from Vivado HLS
(the green solid lines with stars) very closely for all four kernels. The average
difference between the execution cycle counts returned from Vivado HLS and the
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Fig. 2.7 Accuracy of Lin-Analyzer compared to Vivado HLS considering loop unrolling and loop
pipelining pragmas. (a) GEMM. (b) KMeans. (c) CONV2D. (d) CONV3D
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Table 2.3 Performance comparison with loop unrolling and loop pipelining enabled: Lin-
Analyzer vs. Vivado HLS

Benchmark GEMM KMeans CONV2D CONV3D

Difference (%) 3.25 3.78 1.63 3.75
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Fig. 2.8 Performance comparison with loop unrolling, loop pipelining, and array partitioning:
Lin-Analyzer vs. Vivado HLS for CONV3D. Due to false loop-carried dependences, Vivado HLS
generates inefficient designs, which leads to difference with predictions from Lin-Analyzer

ones estimated by Lin-Analyzer is calculated for the same configuration across all
combinations and shown in Table 2.3. From the table, Lin-Analyzer can predict
performance of FPGA-based accelerators with loop unrolling and loop pipelining
enabled within 4.0% difference across all four kernels, which is quite accurate.

2.4.1.2 Array Partitioning

Figure 2.8 demonstrates the result comparison between Lin-Analyzer and Vivado
HLS for CONV3D kernel with loop unrolling, loop pipelining, and array partitioning
enabled. In Fig. 2.8, we fix loop unrolling and loop pipelining configuration and
analyze performance when varying array partitioning factors. The Y-axis denotes
the execution cycle counts of different configurations, while the X-axis describes
different array partitioning factors applied varying from 1 to 16 in step of 2. (ui-Pj)
represents a configuration combination consisting of loop unrolling factor i applied
at the innermost loop level and loop pipelining applied at loop level j. Solid and
dashed lines represent results from Vivado HLS and Lin-Analyzer, respectively.

As a memory bank on FPGAs has limited ports, which potentially hinders HLS
tools to exploit more parallelism, array partitioning pragma is designed to split
data into multiple memory banks and increase memory bandwidth. This pragma
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usually works with loop unrolling or loop pipelining. In Fig. 2.8, performance
(the red solid line with stars, u3-P3-HLS) from Vivado HLS with configuration
u3-P3 remains constant when applying different array partitioning factors, which
means that increasing memory bandwidth has no impact on hardware performance.
The results from Lin-Analyzer (the red dashed line with stars, u3-P3-LIN) show
different behavior compared to Line u3-P3-HLS. It demonstrates that increasing
memory bandwidth can actually improve performance. The reason that leads to
the performance discrepancy of Vivado HLS and Lin-Analyzer can be explained
as follows. HLS tools rely on static analysis and perform conservative dependence
analysis. It might potentially add false loop-carried dependences. In the example
above, the false loop-carried dependences introduced by Vivado HLS leads to a
high recurrence II (RecII) values and the MII in Eq. (2.1) is dominated by RecII.
Therefore, increasing memory bandwidth in this case cannot help to exploit more
parallelism. As Lin-Analyzer relies on dynamic trace and all dependences are
known, Line u3-P3-LIN shows that increasing memory bandwidth can help to
reduce execution cycles of accelerators. A hand-written RTL code or enabling
dependence pragma to disable specific loop-carried dependence in HLS tools can
effectively improve hardware performance as predicted by Lin-Analyzer in Line u3-
P3-LIN. In addition, by simulating RTL codes generated by Vivado HLS, we find
that for some configurations with array partitioning enabled, there exist redundant
memory loads. This further deteriorates the hardware performance due to the
memory inefficiency in Vivado HLS designs when compared to optimized hand-
written RTL implementations.

Although results from the two might be different, Lin-Analyzer can accurately
predict the hardware performance trends with array partitioning enabled. Moreover,
Lin-Analyzer also can help designers to better understand design bottlenecks and
generate high-quality FPGA-based accelerators with HLS tools.

2.4.2 Rapid Design Space Exploration

As mentioned in Sect. 2.3, given various pragma combinations consisting of loop
unrolling, loop pipelining, and array partitioning, Lin-Analyzer can rapidly evaluate
hardware performance accordingly and enable design space exploration to find the
high-quality design point without generating RTL implementations. The design
space we consider is shown below,

• Loop unrolling factor: Its range includes divisors of loop bound N.
• Loop pipelining: Its range includes True and False.
• Array partitioning: The factor can vary from 1 to 16 in steps of 2. The partitioning

types are cyclic, block, and complete.

Table 2.4 demonstrates the design space exploration results with exhaustive
HLS-based method and Lin-Analyzer. Kernels considered in this work are listed
in Column 1. Number of loop levels and design space of each kernel are shown
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Table 2.4 Design space exploration results

Configuration Total DSE Time (s)

Lin-Analyzer

Benchmark Loop
levels

Design
space

Exhaustive Lin-Analyzer Exhaustive Profiling DSE Total

GEMM 3 85 1,1,2 1,1,2 36579.48 176.38 8.99 185.37

KMeans 2 136 (8,12,16),1,1 (8,12,16),1,1 3922.33 1.26 45.47 46.73

CONV2D 2 62 16,1,1 16,1,1 26573.13 5.48 17.28 22.76

CONV3D 3 65 16,1,2 16,1,2 21586.68 12.85 9.62 22.47

Configuration format is (array partitioning factor, loop unrolling factor, pipeline level)

in Column 2 and 3, respectively. To evaluate accuracy of DSE with Lin-Analyzer,
we leverage Vivado HLS to perform exhaustive DSE with the same design space
(shown as Exhaustive in Table 2.4) and record HLS exploration time and execution
cycles of the generated accelerator implementations.

The optimal design points of each kernel given by Exhaustive DSE and Lin-
Analyzer are shown in Column 4 and 5 in Table 2.4. The configuration format
used here is (array partitioning factor i, loop unrolling factor j, pipeline level k).
The pipeline level k means that a pipelining pragma is applied at loop level Lk.
Column 4 and 5 in Table 2.4 demonstrate that the configurations, which achieves
the best performance for each kernel within the design space given, recommended
by Exhaustive method and Lin-Analyzer are exactly the same.

The exploration time of Exhaustive method is shown in Column 6 in Table 2.4.
As Lin-Analyzer relies on dynamic trace, its exploration time consists of two parts:
Profiling and DSE. The Profiling part is the time spent on collecting dynamic trace,
which is a one-time overhead and can be amortized. The total exploration time of
DSE with Lin-Analyzer is shown in Column 9 in Table 2.4. Comparing Column
9 with 6, we can see that the exploration time needed by Lin-Analyzer is only
a fraction of the time using Exhaustive method while recommending the correct
configuration combinations. Exploration time speedup of each kernel normalized
to Exhaustive method is shown in Fig. 2.9. The results in Fig. 2.9 confirm that
Lin-Analyzer is capable to perform rapid architectural exploration and the average
speedup achieves 617X for the four kernels.

To evaluate the quality of the best design points (within the design space
considered) given by our automated DSE flow, we compare their execution time
of FPGA implementations with CPU-based performance for all the kernels. CPU-
based performance is obtained by running single-thread C implementations of the
same kernels on one Intel Xeon CPU E5-2620 at 2.1 GHz and one ARM Cortex-A15
core (from Odroid-XU3 [27]) at 2.0 GHz. We utilize ‘-O3’ as the GCC optimization
option. Besides, we also run OpenCL implementations for the four kernels using
4 Cortex-A15 from Odroid-XU3 [27]. The OpenCL implementations are obtained
from Polybench Benchmark Suite GPU version [30] and Rodinia Benchmark
Suite [6].
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Fig. 2.9 Exploration time speedup compared to exhaustive HLS-based DSE
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Fig. 2.10 Speedup of different implementations normalized to single-thread C design on one
ARM Cortex-A15 core. FPGA implementations, HLS-FPGA, leverage the best design points
returned by the proposed automated DSE framework. C-1-Xeon denotes single-thread C implemen-
tation on one Intel Xeon core, while OpenCL-4-A15 represents OpenCL implementations using
four ARM Cortex-A15 cores

The results are shown in Fig. 2.10. In the figure, we use C-1-Xeon, C-1-A15,
OpenCL-4-A15, and HLS-FPGA to denote the corresponding implementations.
For GEMM and KMeans, performance of HLS-FPGA can achieve around 1.6x
speedup compared to that of C-1-A15 and better than OpenCL-4-A15. Compared
to implementations on the high-end CPU, C-1-Xeon, performance of HLS-FPGA is
slightly slower. The reason for GEMM is that its II is dominated by memory band-
width. Due to the limited FPGA BRAM resource, we cannot leverage large array
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partitioning factors to increase memory bandwidth. For KMeans, as it can be easily
vectorized and has less computation operations compared to other kernels, CPU
and OpenCL implementations can be well optimized to match FPGA performance.
CONV2D and CONV3D have extensive memory reads and computations and there
is no dependence among different output data. However, they are memory-bound
kernels on the CPU, as the ratio between their arithmetic operations and memory
accesses is low [5]. In Fig. 2.10, due to the memory-bound problem, OpenCL-4-
A15 can not achieve good speedup compared to C-1-A15. However, HLS-FPGA
achieves around 40x speedup compared to C-1-A15 implementations and roughly
5x speedup compared with C-1-Xeon. The reason is that with array partitioning
enabled, Vivado HLS can exploit more instruction-level parallelism and utilize deep
pipelining. Thus, their FPGA implementations can instantiate lots of functional units
for computation and occupy up to 92% DSP resource. This demonstrates that the
design points returned by our automated DSE framework have high quality.

As Lin-Analyzer does not rely on HLS tools or generate any RTL implemen-
tations, its runtime scales linearly with more complex configuration combinations
(larger unrolling and partitioning factors, pipelining at higher loop levels, etc.). This
makes Lin-Analyzer be an attractive complementary tool for HLS to perform design
space exploration.

2.5 Conclusion

In this chapter, we focus on accelerating data analytics kernels on heterogeneous
computing systems featuring FPGAs. In particular, we present a toolchain, called
Lin-Analyzer, that allows easy but performance-efficient implementation of data
analytics kernels on FPGA-based accelerators. Lin-Analyzer relies on the dynamic
data dependence graph (DDDG) to avoid the false data dependences created by the
static analysis techniques used in most existing techniques including commercial
HLS tools. This results in an accurate performance estimation of FPGA-based
accelerators without resorting to time-consuming HLS runs. The tool also helps
in identifying design bottlenecks while exploring various pragmas such as loop
unrolling, pipelining, and array partitioning. Lastly, Lin-Analyzer can assist HLS
developers in identifying potential limitations of the HLS tool. Our experimental
evaluation with a number of data analytics kernels confirms the effectiveness of
Lin-Analyzer.
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