
Chapter 15
Data Analytics in Quantum
Paradigm: An Introduction

Arpita Maitra, Subhamoy Maitra, and Asim K. Pal

15.1 Introduction

The basic model of classical computers was initially visualized by Alan Turing,
Von Neumann, and several other researchers in the 1930s and the decade after that.
However the model of computers, that Turing or Neumann studied, are limited by
classical physics and thus termed as classical computers. Till the end of nineteenth
century, most scientists believed that Newtonian laws governing the motion of
material bodies and Maxwell’s theory of electromagnetism are the fundamental
areas of physics. However, the discovery of X-rays and electrons towards the end of
that century finally helped the physicists to understand quantum mechanics around
1925. The limitation of classical mechanics could be understood clearly after that. In
1982, Richard Feynman presented the seminal idea of a universal quantum simulator
or more informally, a quantum computer.

Informally speaking, a quantum system of more than one particles can be
explained by a Hilbert space whose dimension is exponentially large in the number
of particles. Thus, one naturally expects that a quantum system can efficiently
solve a problem that may require exponential time on a classical computer. During
the 1980s, the initial works by Deutsch-Jozsa [12] and Grover [17] could explain
quantum algorithms that are exponentially faster than the classical ones. Most
importantly, in 1994, Shor discovered that in quantum paradigm, factorization and
discrete log problems can be efficiently solved [37]. This result had a major impact
in classical cryptography. This is because, there are lot of public key cryptosystems
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that are based on these two tools. The internet communication as a whole, including
the online banking system, depends on the security of these. Thus, in the field of
public key cryptography, this warranted for cryptographic primitives that can resist
attacks even with the existence of quantum computers. While commercial quantum
computers are still elusive, the recent developments in the area of experimental
physics are gaining huge momentum as evident from the award of Nobel prize
for Physics in 2012 to Wineland and Haroche for “ground-breaking experimental
methods that enable measuring and manipulation of individual quantum systems,”
a study on the particle of light, the photon. The Nobel prize in Physics, 2016,
is awarded to Thouless, Haldane, and Kosterlitz for “theoretical discoveries of
topological phase transitions and topological phases of matter.” These results might
have importance towards actual implementation of a quantum computer. Thus it
shows that this domain of research is indeed one of the top priorities in international
scientific community.

Data analytics is the technology of investigating raw data towards obtaining
valid conclusions regarding relevant information. Such techniques are exploited by
organizations to identify better business decisions towards verifying or disproving
the models they study. As these algorithms, in many cases, require high complexity,
it would always be interesting to investigate whether one can have more efficient
solutions in the quantum domain. Consider the example of a share market. There
we require huge computation in short time, need to communicate those data quickly
among different parties, and at the same time the data security has to be considered
with priority. While the data communication and security issues may be handled
as a part where much competition might not be involved, each of the companies
will be interested to have a better forecast than the other. Towards a better forecast,
which is the main purpose of data analytics, one requires to have huge statistical
calculations, which finally boils down to arithmetic, algebraic, combinatorial, and
symbolic computations. Thus, the main question here is whether we can have better
computational facilities in quantum paradigm. This is the focus of this material. At
the same time, we also touch a few issues in communication and security domain
that are relevant in data analytics and where the quantum paradigm has efficient
tools to offer.

Before proceeding further, let us present brief introductory materials. For detailed
technical understanding, one may refer to [29].

15.1.1 Basics of a Qubit and the Algebra

As a bit (0 or 1) is the basic element of a classical computer, the quantum bit (called
the qubit) is the fundamental element in the quantum paradigm, whose physical
counterpart is a photon. A qubit is represented as

˛j0i C ˇj1i;
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where ˛; ˇ 2 C (i.e., complex numbers), and j˛j2 C jˇj2 D 1. If one measures the
qubit in fj0i; j1ig basis, then j0i is observed with probability j˛j2, and j1i with jˇj2.
The original state gets destroyed after the observation and collapse to the observed
state.

That is, the qubits j0i; j1i are the quantum counterparts of the classical bits 0; 1.

The qubit j0i can be represented as

�
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0

�
and j1i can be represented as

�
0

1

�
. The

superposition of j0i; j1i, i.e., ˛j0iCˇj1i can be written as ˛
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where ˛; ˇ 2 C, j˛j2 C jˇj2 D 1.
Based on this definition, one may theoretically pack infinite amount of infor-

mation in a single qubit. However, it is not clear how to extract such information.
Further in actual implementation of quantum circuits, it might not be possible to
perfectly create a qubit for any ˛; ˇ. Nevertheless, it is clear that a single qubit may
contain huge information compared to a bit.

The basic algebra relating to more than one qubits can be interpreted as tensor
products. Thus, consider tensor product of two qubits as
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D ˛1˛2j00i C ˛1ˇ2j01i C ˇ1˛2j10i C ˇ1ˇ2j11i. That is,
.˛1j0i C ˇ1j1i/˝ .˛2j0i C ˇ2j1i/ D ˛1˛2j00i C ˛1ˇ2j01i C ˇ1˛2j10iC
ˇ1ˇ2j11i.

However, any 2-qubit state may not always be decomposed as above. Consider
the state �1j00i C �2j11i with �1 ¤ 0; �2 ¤ 0. This can never be written as
.˛1j0i Cˇ1j1i/˝ .˛2j0i Cˇ2j1i/. This phenomenon is described as entanglement.
An example of maximally entangled state is j00iCj11ip

2
, which is an example of Bell

states or EPR pairs. We will later explain how to produce such entangled states and
why they are important in quantum information.

15.1.2 Quantum Gates

Now let us briefly describe the quantum gates. Such gates are basic primitives in
building a quantum computer. A quantum gate can be considered as a reversible
circuit having n qubits as inputs and n qubits as outputs. Mathematically, they can
be seen as 2n �2n unitary matrices where the elements are complex numbers. Let us
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first present a few examples of single input single output quantum gates. In matrix

Quantum input Quantum gate Quantum output

˛j0i C ˇj1i X ˇj0i C ˛j1i
˛j0i C ˇj1i Z ˛j0i � ˇj1i
˛j0i C ˇj1i H ˛ j0iCj1ip

2
C ˇ j0i�j1ip

2

form, the gate operations are as follows.

• X gate:
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Note that ˛Cˇp
2

j0i C ˛�ˇp
2

j1i D ˛ j0iCj1ip
2

C ˇ j0i�j1ip
2

.
The 2-input 2-output quantum gates can be seen as 4 � 4 unitary matrices. An

example is the CNOT gate which works as follows: j00i ! j00i, j01i ! j01i,

j10i ! j11i, j11i ! j10i. The related matrix is

2
664
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3
775 :

As an application of these gates, let us describe the circuit in Fig. 15.1 to create
certain entangled states as follows: jˇ00i D j00iCj11ip

2
, jˇ01i D j01iCj10ip

2
, jˇ10i D

j00i�j11ip
2

, and jˇ11i D j01i�j10ip
2

.

15.1.3 No Cloning

While it is very easy to copy an unknown classical bit (i.e., either 0 or 1), it is
now well known that it is not possible to copy an unknown qubit. This result is
known as the “no cloning theorem” and was initially noted in [13, 43]. It has a huge
implications in quantum computing, quantum information, quantum cryptography,
and related fields.

Fig. 15.1 Quantum circuit
for creating entangled state

|βxy〉
x

y

H .
⊕
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The basic outline of the proof is as follows. Consider a quantum slot machine
with two slots labeled A and B. Here A is the data slot set in a pure unknown quantum
state j i whereas B is target slot set in a pure state jsi where A will be copied. Let
there exist a unitary operator which does the copying procedure. Mathematically, it
is written as U.j ijsi/ D j ij i. Note that, U being a unitary operator, UU� D I,
where .U�/ij D Uji, transpose of the matrix and scalar complex conjugate for each
element. Let this copying procedure work for two particular pure states, j i and
j�i. Then we have

U.j ijsi/ D j ij i;U.j�ijsi/ D j�ij�i:

From the inner product: hsjh jU�Uj�ijsi D h jh jj�ij�i. This implies h j�i D
.h j�i/2.

Note that x D x2 has only two solutions: x D 0 and x D 1. Thus we get either
j i D j�i or inner product of them equals to zero, i.e., j i and j�i are orthogonal
to each other. This implies that a cloning device can only clone orthogonal states.
Therefore a general quantum cloning device is impossible. For example, given that
the unknown state is one of j0i, j0iCj1ip

2
, two nonorthogonal states, it is not possible

to clone the state without knowing which one it is.
This provides certain advantages as well as disadvantages. The advantages are

in the domain of quantum cryptography, where by the laws of physics copying an
unknown qubit is not possible. However, in terms of copying or saving unknown
quantum data, this is actually a potential disadvantage. At the same time, it should
be clearly explained that given a known quantum state, it is always possible to
copy it. This is because, for a known quantum state, we know how to create it
deterministically and thus it is possible to reproduce it with the same circuit.

For explaining with an example, one may refer to Fig. 15.2. If an unknown
qubit j�i is either j0i or j1i, then it will be copied perfectly without creating any
disturbance to j�i. However, if j�i D j0iCj1ip

2
, say, then at the output we will get

entangled state j00iCj11ip
2

. Thus copying is not successful here.
This concept can also be applied towards distinguishing quantum states. Given

two orthogonal states fj i; j ?ig, it is possible to distinguish them with certainty.
For example, the pair of states

fj0i; j1igI

⊕

·|μ〉: control qubit

|0〉: target qubit
}may be entangled

Fig. 15.2 Explanation of no cloning with a simple circuit
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are orthogonal and can be certainly distinguished.
However, two non-orthogonal quantum states, this is not possible. For example,

given the two states are j0i, j0iCj1ip
2

, which are nonorthogonal, it is not possible to
exactly identify each one with certainty. These ideas are back-bone to the famous
BB84 Quantum Key Distribution (QKD) protocol [4].

15.2 A Brief Overview of Advantages in Quantum Paradigm

Next we like to briefly mention a couple of areas where the frameworks based on
quantum physics provide advantageous situations over the classical domain. We will
consider one example each in the domain of communication as well as computation.

15.2.1 Teleportation

Teleportation is one of the important ideas that shows the strength of quantum model
over the classical model [5]. Given a sharing of a pair of entangled states by the two
parties at distant locations, one just needs to send two classical bits of information
to send an unknown quantum state (this may contain information corresponding to
infinitely many bits) from one side to another side (Fig. 15.3).

As an example take jˇxyi D jˇ00i, G the CNOT gate, i.e., j00i ! j00i, j01i !
j01i, j10i ! j11i, j11i ! j10i. Further consider A D H;B D XM2 ;C D ZM1 .

Alice⇑
Bob⇓ |y 〉

|bxy〉 {
G

|y 〉
A M1

M2

B C

↑ ↑ ↑ ↑ ↑
|y0〉 |y1〉 |y2〉 |y3〉 |y4〉

Fig. 15.3 Quantum circuit for Teleporting a qubit
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This will provide the basic teleportation circuit. As a simple extension, one can use
any jˇxyi, G as CNOT and A D H;B D XM2˚x;C D ZM1˚y. The step by step
explanation for teleportation is as follows.

• j 0i D j ijˇ00i D .˛j0i C ˇj1i/ .j00iCj11i/p
2

• j 1i D ˛j0i .j00iCj11i/p
2

C ˇj1i .j10iCj01i/p
2

• j 2i D ˛ j0iCj1ip
2

.j00iCj11i/p
2

C ˇ j0i�j1ip
2

.j10iCj01i/p
2

D 1
2
.j00i.˛j0i C ˇj1i/ C

j01i.ˇj0i C ˛j1i/C j10i.˛j0i � ˇj1i/ � j11i.ˇj0i � ˛j1i//
• Observe 00, nothing to do. Observe 01, apply X. Observe 10, apply Z. Observe
11, apply both X;Z.

The importance of this technique in data analytics is that if two different places may
share entangled particles, then it is possible to send a huge amount of information
(in fact theoretically infinite) by just communicating two classical bits. Again, one
important issue to be noted is that, even if we manage to transport a qubit, in case it
is unknown, it might not be possible to extract the relevant information from that.

15.2.2 Deutsch-Jozsa Algorithm

Deutsch-Jozsa algorithm [12] is possibly the first clear example that demonstrates
quantum parallelism over the standard classical model. Take a Boolean function
f W f0; 1gn ! f0; 1g. A function f is constant if f .x/ D c for all x 2 f0; 1gn,
c 2 f0; 1g. Further f is called balanced if f .x/ D 0 for 2n�1 inputs and f .x/ D 1

for the rest of 2n�1 inputs. Given the function f as a black box, which is either
constant or balanced, we need an algorithm, that can answer which one this is. It
is clear that a classical algorithm needs to check the function for at least 2n�1 C 1

inputs in worst case to come to a decision. Quantum algorithm can solve this with
only one input. Note that given a classical circuit f , there is a quantum circuit of
comparable efficiency which computes the transformation Uf that takes input like
jx; yi and produces output like jx; y ˚ f .x/i (Fig. 15.4).

The step by step operations of the technique can be described as follows.

• j 0i D j0i˝nj1i

Fig. 15.4 Quantum circuit to
implement Deutsch-Jozsa
algorithm

|0〉

|1〉

n

H

H⊗n H⊗n M

y

x x

y⊕ f (x)

Uf

↑ ↑ ↑ ↑
|y0〉 |y1〉 |y2〉 |y3〉
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• j 1i D P
x2f0;1gn

jxip
2n

h j0i�j1ip
2

i

• j 2i D P
x2f0;1gn

.�1/f .x/jxip
2n

h j0i�j1ip
2

i

• j 3i D P
z2f0;1gn

P
x2f0;1gn

.�1/x�z˚f .x/jzi
2n

h j0i�j1ip
2

i
• Measurement: all zero state implies that the function is constant, otherwise it is

balanced.

The importance of explaining this algorithm in the context of data analytics
is that it is often important to distinguish between two objects very efficiently.
The example of Deutsch-Jozsa algorithm [12] demonstrates that it is significantly
efficient compared to the classical domain.

At this point we like to present two important aspects of Deutsch-Jozsa algo-
rithm [12] in terms of data analytics and machine learning. First of all, one must note
that we can obtain the equal superposition of all 2n many n-bit states just by using
n many Hadamard gates. For this, note the first part of j 1i which is

P
x2f0;1gn

jxip
2n .

This provides an exponential advantage in quantum domain as in the classical
domain we cannot access all the 2n many n-bit patterns efficiently. The second point
is related to machine learning. As we have discussed, we may have the circuit of
f available as a black-box and we like to learn several properties of the function
efficiently. In this direction, Walsh transform is an important tool. What we obtain
as the output of the Deutsch-Jozsa algorithm just before measurement is j 3i and

the first part of this is
P

z2f0;1gn

P
x2f0;1gn

.�1/x�z˚f .x/jzi
2n . Note that, the Walsh spectrum

of the Boolean function f at a point z is defined as Wf .z/ D P
x2f0;1gn.�1/x�z˚f .x/.

That is,
P

z2f0;1gn

P
x2f0;1gn

.�1/x�z˚f .x/jzi
2n D P

z2f0;1gn
Wf .z/
2n jzi. This means that using

such an algorithm, we can efficiently obtain a transform domain spectrum of the
function, which is not achievable in classical domain.

Testing several properties of Boolean functions in classical as well as quantum
paradigm is an interesting area of research in property testing [6], which are in
turn useful in learning theory. There are several interesting properties of Boolean
functions, mostly in the area of coding theory and cryptology, that need to be tested
efficiently. However, in many of the cases, the efficient algorithms are elusive. The
Deutsch-Jozsa Algorithm [12] is the first step in this area in quantum computational
model. In a larger view, the details of various quantum algorithms can be obtained
from [32].

15.3 Preliminaries of Quantum Cryptography

In any commercial environment, confidentiality of data is one of the most important
issues. Due to Shor’s result [37] on efficient factorization as well as solving discrete
logarithm in quantum domain, classical public key cryptography will be completely
broken in case a quantum computer can actually be built. One must note that many
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of the commercial security systems, including banking, are based on algorithms
whose security are promised by hardness of factorization or discrete log problems.
In this regard, we present a few basic issues in classical and quantum cryptography
that must be explained in any data centric environment.

The main challenge in cryptology in early seventies was how to decide on a secret
information between two parties over a public channel. The solution to this has been
proposed by Diffie and Hellman in 1976 [14]. The protocol is as follows.

• In public domain, the information about a suitable group G is made available.
For example, one can consider G D .Z�

p ; �/ where the elements are f1; : : : ; p�1g
and the multiplication is modulo p. The prime p should be very large, say of the
order of 1024 bits.

• Given the generator g (which is again known in public domain) and another
element h, it is hard (using a classical computer) to obtain i such that h D gi.
This is well known as Discrete Logarithm Problem (DLP).

• Thus, it is believed that in the classical paradigm, it is not easy to obtain
gab using ga; gb only (which are available to the adversary from the public
channel) without any knowledge of a; b. Here gab is used as the secret key for
further secured communication. That is, this secret key is the output of the key
distribution algorithm which will be secretly shared by the participating parties
after communication over a public channel.

Now let us describe the famous RSA cryptosystem [35]. The RSA cryptosystem has
been invented by Rivest, Shamir, and Adleman in 1977 and this is undoubtedly the
most popular public key cryptosystem which is used in various electronic commerce
protocols. The security of this cryptosystem relies on the difficulty of factoring a
number into its two constituent primes. In practice, the prime factors of interest will
be several hundred bits long. A modulus N D p�q of 1024 bits, for example, would
be common. Let us now briefly describe the scheme.

Key Generation Algorithm

• Choose primes p; q (generally same bit size, q < p < 2q)
• Construct modulus N D pq, and �.N/ D .p � 1/.q � 1/
• Set e; d such that d D e�1 mod �.N/
• Public key: .N; e/ and Private key: d

Encryption Algorithm: C D Me mod N
Decryption Algorithm: M D Cd mod N

The RSA cryptosystem relies on the efficiency of the following:

• finding two large primes p; q, and computing N D pq;
• computing d D e�1 mod �.N/ given N D pq and e;
• computing modular exponentiations Me mod N and Cd mod N.

While it is very clear that if one can factor the modulus N, then RSA can be
immediately broken, the other two security problems are the following.



322 A. Maitra et al.

• To compute d D e�1 mod �.N/ given N; e.
• To compute M D C1=e mod N given N; e;C [RSA Problem].

Naturally, in classical domain, there is no efficient algorithm to solve the above two
problems.

Till date, there is no efficient algorithm to solve DLP or RSA in classical
domain. However, in the famous work by Shor [37], it has been shown that both
these problems can be solved efficiently in quantum paradigm. This opens a new
area called post-quantum cryptography [31], where the cryptosystems are studied
considering that the adversary can attack the systems using quantum computers.
There are certain classical public key cryptosystems, for example, lattice based
and code based schemes for which no efficient quantum attack is known. However,
understanding these algorithms requires advanced background in mathematics and
computer science. Further, the commercial implementation of these schemes is not
as efficient as RSA.

On the other hand, Bennett and Brassard provided the idea of Quantum Key
Distribution [4] (QKD) where the physical laws are exploited towards the security
proof. This idea is quite elegant and easy to understand. More interestingly, while
the commercial quantum computers are still elusive, several QKD schemes have
already been implemented for commercial purposes [33, 34]. We now describe this
idea in more detail.

15.3.1 Quantum Key Distribution and the BB84 Protocol

Based on the above discussion, it is clear that the community needs a key distribution
scheme that can resist a quantum adversary. The famous BB84 [4] protocol
provides a secure quantum key distribution scheme which is secure under certain
assumptions. The scheme has received huge attention in the research community
as evident from its citation; it has also been implemented in commercial domain as
well.

Bennett and Brassard (the BB of BB84) initiated the seminal idea of QKD in
1979 based on the pioneering concept proposed by Wiesner in 1970. Both these
ideas have been published much later, i.e., the idea of Wiesner in 1983 [41] and that
of Bennet and Brassard in [3, 4]. The work published in 1984 [4] received more
prominence and that is why the 84 of BB84 comes. Interested readers may have
a look at [9] for a detailed history in this area. Informally speaking, the security
of BB84 protocol comes from no-cloning theorem and indistinguishability of non-
orthogonal quantum states. The basic steps of BB84 QKD may be described as
follows.

• One needs to transmit 0 or 1 securely.
• For this, one may consider the bases
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fj0i; j1igI
�
1p
2
.j0i C j1i/; 1p

2
.j0i � j1i/

�
:

• Choosing any one of the above bases, one may encode 0 to one qubit and 1 to the
other qubit in that basis.

• If only a single basis is used, then the attacker can measure in that basis to obtain
the information and reproduce.

• Thus Alice needs to encode randomly with more than one bases.
• Bob will also measure in random basis.
• Basis will match in a proportion of cases and from that the secret key will be

prepared.

This is the brief idea to obtain a secret key between two parties over an insecure
public channel using the BB84 [4] protocol. After obtaining the secret key, one may
use a symmetric key cryptosystem (for example, a stream cipher or a block cipher,
see [38] for details) for further communication in encrypted mode. One may refer
to [22] for state-of-the-art results of quantum cryptanalysis on symmetric ciphers,
though it is still not as havoc as it had been on classical public key schemes.

15.3.2 Secure Multi-Party Computation

Let us now consider another important aspect of cryptology that might be relevant in
data analytics. Take the example of an Automated Teller Machine (ATM) for money
transaction. This is a classic example of secure two or multi-party computation.
Due to such transactions and several other application domains which are related to
secure data handling, Secure Multi-Party Computation (SMC) has become a very
important research topic in data intensive areas. In a standard model of SMC, n
number of parties wish to compute a function f .x1; x2; : : : ; xn/ of their respective
inputs x1; x2; : : : ; xn, keeping the inputs secret from each other. Such computations
have wide applications in online auction, negotiation, electronic voting, etc. Yao’s
millionaire’s problem [44] is considered as one of the initial attempts in the domain
of SMC. Later, this has been studied extensively in classical domain (see [18] and
the references therein). The security of classical SMC usually comes from some
computational assumptions such as hardness of factorization of a large number.

In quantum domain, Lo [24] showed the impossibility for secure computation
in certain two-party scenario. For example, “one out of two parties secure com-
putation” means that only one out of two parties is allowed to know the output.
As a corollary to this result [24], it had been shown that one out of two oblivious
transfer is impossible in quantum paradigm. It has been claimed in [23] that given
an implementation of oblivious transfer, it is possible to securely evaluate any
polynomial time computable function without any additional primitive in classical
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domain. However, it seems that such a secure two-party computation might not
work in quantum domain. Hence, in case of two-party quantum computation,
some additional assumptions, such as the semi-honest third party, etc., have been
introduced to obtain the secure private comparison [40].

In [45], Yao had shown that any secure quantum bit commitment scheme can
be used to implement secure quantum oblivious transfer. However, Mayers [27]
and Lo et al [25] independently proved the insecurity of quantum bit commitment.
Very recently some relativistic protocols [26] have been proposed in the domain
of quantum SMC. Unfortunately, these techniques are still not very promising for
practical implementations. Thus, considering quantum adversaries, it might not
be possible to achieve SMC and in turn collaborative multi-party computation in
distributed environments without compromising the security.

15.4 Data Analytics: A Critical View of Quantum Paradigm

Given the background of certain developments in quantum paradigm over the
classical world, now let us get into some specific issues of data analytics. The first
point is, if we consider use of one qubit just as storing one bit of data, then that would
be a significant loss in terms of exploiting the much larger (theoretically infinite)
space of a qubit. On the other hand, for analysis of classical data, we may require to
consider new implementation of data storage that might add additional overhead as
data need to be presented in quantum platform. For example, consider the Deutsch-
Jozsa [12] algorithm. To apply this algorithm, we cannot use an n-input 1-output
Boolean function, but we require a form where the same function can be realized
as a function with equal number of input and output bits. Further the same circuit
must be implemented with quantum circuits so that the superposition of qubits can
be handled. These are the overheads that need to be considered.

Next let us come to the issue of structured and unstructured data. In classical
domain, if a data set with N elements are not sorted, then in worst case, we require
O.N/ search complexity to find a specific data. In quantum domain, the seminal
Grover’s algorithm [17] shows that this is possible in only O.

p
N/ effort. For a

huge unsorted data set, this is indeed a significant gain. However, in any efficient
database, the individual data elements are stored in a well-structured manner so
that one can identify a specific record in O.log N/ time. This is exponentially small
in comparison with both O.N/ and O.

p
N/ and thus, in such a scenario, quantum

computers may not be of significant advantage.

15.4.1 Related Quantum Algorithms

To achieve any kind of data analysis, we require several small primitives. Let us
first consider finding minimum or maximum from an unsorted list. Similar ideas as
in [17] can be applied to obtain minimum or maximum value from an unsorted list
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of size N in O.
p

N/ time as explained in [15] and [2], respectively. The work [20]
considers in detail quantum searching in ordered list and sorting. However, in
such a scenario where ordered lists are maintained, quantum algorithms do not
provide very significant improvements. Matrix related operations are necessary
elements in any kind of data analytics. Given n � n matrices, A;B;C, the matrix
product verification problem is to decide whether A � B D C. While the classical
domain algorithms must require �.n2/ time, we have O.n

5
3 / algorithm in quantum

domain [10]. Such algorithms heavily use results related to quantum walks [39]. In
a related direction, solution of a system of linear equations had naturally received
serious attention in quantum domain and there are interesting speed-up in several
cases. Further these results [19] have applications towards solving linear differential
equations, least square techniques and in general, in the domain of machine learning.
One may refer to [32] for a detailed description of quantum algorithms and then
compare their complexities with the classical counterparts.

While there are certain improvements in specific areas, the situation is not always
hopeful and a nice reference in this regard is [1], where Aaronson says

“Having spent half my life in quantum computing research, I still find it miraculous that
the laws of quantum physics let us solve any classical problems exponentially faster than
today’s computers seem able to solve them. So maybe it shouldn’t surprise us that, in
machine learning like anywhere else, Nature will still make us work for those speedups.”

One may also have a look at [8, 21] for very recent state-of-the-art discussions
on quantum supremacy. While most of the explanations do not provide a great
recommendation towards advantages of quantum machine learning, for some initial
understanding of this area from a positive viewpoint, one may refer to [42].

15.4.2 Database

The next relevant question is if we have significant development in the area of
quantum database. In this direction there are some initial concept papers such
as [36]. This work presents a novel database abstraction that allows to defer
the finalization of choices in transactions until an entity forces the choices by
observation in quantum terminology. Following the quantum mechanical idea, here
a transaction is in a quantum state, i.e., it could be one of many possible states or
might be a superposition. This is naturally undecided and unknown until observed
by some kind of measurement. Such an abstraction enables late binding of values
read from the database. The authors claimed that this helps in obtaining more
transactions to succeed in a situation with high contention. This scenario might
be useful for applications where the transactions compete for physical resources
represented by data items in the database, such as booking seats in an airline
or buying shares. However, these are more at the conceptual level, where actual
implementation related details cannot be exactly estimated.
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Let us now look at what happens when we are interested in a series of
computations which are possibly the most occurring phenomenon in practice.
Consider two scenarios, one from a static data set (structured) and another from
a dynamic data set where arbitrary search, addition, modification, and alteration are
allowed. In static case, the database is generally maintained in such a manner so
that the search efforts are always logarithmic. Now consider a little more complex
scenario, where the database grows or shrinks arbitrarily and the search and other
write operations are allowed in arbitrary sequence. Even in case of such dynamic
updations, we always try to maintain some well-known balanced tree structures.
Hence, in both the scenarios, we do not have any clear advantage in quantum
domain.

15.4.3 Text Mining

Text mining is an integral part of data analytics given the popularity of social
media. Consider a scenario involving text mining problem, which uses a bag of
words and unsupervised or semi-supervised clustering technique. In the simplest
situation, let there be N words in a given corpus (dictionary). Say, the topics are
to be extracted in an unsupervised manner from a set of n stories or documents.
Each document contains a set of words. Each topic can be seen as a distribution
over the set of words in the corpus and also a document can be considered to be a
distribution over the set of (unknown) k topics, where the value of k is determined
at the beginning depending on the granularity of the topics required. A simple (or
innermost iteration) requires going through the documents one by one, allocating
the words in the document to topics, while simultaneously modifying the probability
distributions of topics in the documents and words in the topics. Now consider just
one iteration only. There are two main steps: (1) to create the dictionary (in this case,
say the dictionary is fixed, cannot be modified), and (2) we can study one document
at a time. For each document, we can allocate each word to a topic and topics to
stories following the distributions. It is obvious to see that in classical computation
the fixed dictionary is best to be organized as a sorted array. Once this is done,
the search efforts are logarithmic in classical domain and we should not get any
immediate improvement in the quantum counterpart. In this regard, we also need to
refer to topic modeling. Given a corpus of words, topic modeling is more static in
nature. However, with time the database of the corpus has to go through changes
due to both additions and deletions. The corpus size will generally increase, along
with rapid increase in number of stories to be analyzed. Further, with more and
more computing capabilities, finer topics and sub-topics will have to be retrieved.
Here big data analysis may play an important role and related algorithms should be
evaluated in quantum paradigm.

Let us now refer to certain statistical analysis [7] in this domain on a classical
model. The idea of Latent Dirichlet allocation (LDA) is described here. This is based
on a generative probabilistic model for collections of discrete data, for example,
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text. LDA is a three-level hierarchical Bayesian model. Each item of a collection is
considered as a finite mixture over an underlying set of topics. These techniques can
be used in text classification. However, it is not very clear how these complex ideas
can be lifted in quantum domain. In a follow-up work [16], this has been extended
where the authors present a Markov chain Monte Carlo algorithm for inference
(for quantum speed-up for Monte Carlo methods, one may refer to [28]). This
algorithm is applied to analyze abstracts from scientific journals using Bayesian
model selection to identify the number of topics. Text mining is one of the most
important topics in the domain of analytics and thus this kind of scenarios need to be
explored in quantum domain. One may refer to [11] where several ideas of quantum
Markov chains are discussed from a different information-theoretic viewpoint and
it is not very clear how long it will take to connect ideas from machine learning
domain and the paradigm of quantum information to obtain meaningful commercial
results.

15.5 Conclusion: Google, PageRank, and Quantum
Advantage

In this review, we have taken an approach to present certain introductory issues in
quantum paradigm and then explained how they relate to basics of data analytics.
We described several aspects in the domain of computation, communication, and
security and pointed out why the computational part should receive prime attention.
In the quantum computational model, we have enumerated several significant
improvements over the classical counterpart, but the two main concerns that remain
are as follows.

• Can we fabricate a commercially viable quantum computer?
• (Even if we have a quantum computer) Can we have significant improvements in

computational complexity for algorithms related to data analytics?

Let us now conclude with a very practical and well-known problem in the domain
of data analytics that received a significant attention. This should help the reader
to form his/her own opinion regarding the impact of quantum computation on a
significant problem. The problem is related to PageRank. PageRank is an algorithm
used by Google Search to rank the websites through their search engine results. It
is a method of quantifying the importance of the web pages, i.e., PageRank may
be viewed as a metric proposed by Google’s owners Larry Page and Sergey Brin.
According to Google:

“PageRank works by counting the number and quality of links to a page to determine a
rough estimate of how important the website is. The underlying assumption is that more
important websites are likely to receive more links from other websites.”

Informally speaking, the PageRank algorithm heuristically provides a probability
distribution. This is used to represent the likelihood that an entity, randomly clicking
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on web links, will arrive at any particular page. It is very natural that this kind
of technique will require huge amount of computational resources and further
there will be continuous efforts in upgrading such strategies. Some parts of such
effort might involve a lot of “rough” heuristics where exact quantification in such
a complex environment might be very hard. In [30], it has been outlined that a
quantum version of Google’s famous search algorithm may be significantly faster.
However, till date it is not clearly understood how such quantum algorithms may
behave on a huge network. We have to wait and watch to experience how the
quantum algorithms will evolve to solve the complex problems of data analytics
in the coming days.
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