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Big Data Management in Neural Implants:
The Neuromorphic Approach
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14.1 Introduction: Brain as a Source of Big Data

In the age of the Internet of Things (IoT) with millions of interconnected sensors
spewing out data, we are facing a data deluge—there is a need for solutions
to store and process this data. A unique set of IoT applications relates to the
human body—in particular wearables and implantables to collect data from the
human brain for neuroscientific research, prostheses or medical interventions [1–
6]. The study of the human brain is one of the most important frontiers in science
research today—there is a lot of emphasis on this with several billion dollar
efforts worldwide to understand more about the brain [7, 8]. To get an idea about
the scale of data generated by the brain, we first note from anatomy that the
average adult human cortex has approximately 1011 neurons, widely regarded as the
fundamental computational unit of the brain, with 1014 synapses or interconnections
[9]. Assuming average cortical firing rates (a neural firing or discharge refers to a
digital like pulse also called a spike or action potential) of 1–10 Hz [10], the human
brain is generating at least 1011 spikes or events per second and about 1014 synaptic
operations per second. Assigning an unique address or identifier to each neuron
would need baddr D log2.1011/ � 35 bits—hence, the data rate generated by the
brain is a whopping 3:5 Terabits/second. To put this in perspective, the exponential
growth of data has put internet data in the exascale ( 1018 bits). One human brain
can generate approximately the same amount of data in 106 s or 50 days! Of course,
this is an extreme case and we are not aiming to store all the neural firings of a
human brain over his or her lifetime (at least not at this moment) and neither do we
currently possess the technology to access this data (but we are constantly striving
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Fig. 14.1 The brain as a
source of big data: a single
human brain generates data at
a rate of 3:5 Terabits/second.
The total data can reach
exabyte scale within a year
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to record data from more neurons and this is one of the prime goals of the Brain
initiative)—but this helps to give an idea about the scale of the problem. Figure 14.1
shows the rapid scaling of data generated from a single human brain over time.

Just like any other application related to big-data, the problems of storage and
manipulation exist in this data generated by the brain. However, an added problem
stems in this case from the strict power dissipation requirement of electronics
implanted within the brain to collect the data. Any electronics in contact with
the cortical tissue cannot generate heat larger than 80 mW/cm2 [11, 12] to avoid
damaging the neural tissue (temperature rise less than 1 ıC). Instead of implants,
another option is to collect data non-invasively through EEG from the scalp—
however, EEG provides a highly filtered (both spatially and temporally) picture of
the brain activity and is not informative enough for activities with many degrees
of freedom such as upper limb prostheses [13, 14]. Therefore, in the rest of this
chapter, we only consider the case of neural recording from implanted electrodes
that can provide enough information for dexterous motor control.

14.2 The Nature of Neural Data

The signals recorded by neural implants are obtained typically through microelec-
trode arrays such as the Utah or Michigan arrays [15–17]. The neural signals can
be broadly divided into two categories—(1) Local Field Potentials (LFP) that are
1–10 mV in amplitude occupying a bandwidth of 1–100 Hz produced by combined
activity of groups of neurons and (2) neural spikes or action potentials which are
much smaller (10–100 �V in amplitude) but occupy a much larger bandwidth of
� 0:2–5 kHz. While both signals have useful information [18, 19], most of the
studies on neural prosthetics that require fine motor manipulation typically use
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Fig. 14.2 A neural spike
recorded from the pre-frontal
cortex of a rat. Neural spikes
typically have a small
amplitude � 10–100 �V
while occupying a large
bandwidth of � 0:2–5 kHz
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neural spikes [20–23]. In this chapter, we will therefore focus on neural recording
systems for sensing and transmitting neural spikes. Unlike LFP signals where the
amplitude is informative, it is believed that spikes are like digital signals [24]
where the amplitude is non-informative but the timing and firing rate of spikes are
important. An example of a spike recorded from pre-frontal cortex of a rat is shown
in Fig. 14.2.

14.3 System Architectures for Neural Spike Recording
Systems: Neuromorphic Compression Schemes

The different blocks comprising a typical neural recording system are shown in
Fig. 14.3a. In a typical system, the neural signal is amplified by a low-noise amplifier
(LNA) [25–29], followed by an optional variable gain amplifier (VGA) and finally
an analog-digital converter (ADC) [29–32] before being transmitted wirelessly. We
can estimate the data rate for such a system under some mild assumptions. Denoting
the number of recording channels as Nchan, ADC sampling rate and bit resolution as
fADC and bADC, respectively, the data rate Rtyp of a typical neural implant is given by:

Rtyp D Nchan � fADC � bADC (14.1)

As an example, for moderate values of Nchan D 100, fADC D 20 kHz, and bADC D 10

bits, we get Rtyp D 20 Mbps—a huge data rate that will drain out an implant’s
battery in a matter of hours given typical power requirements of � 50–1000 pJ/bit
for wireless transmitters [33–36]. Hence, it is imperative to compress the data and
reduce the concomitant power dissipation so that the neural recording system can
be scaled in future to thousands or millions of channels. One possible way to do
this is to take inspiration from the brain—in the absence of the implant, the brain
would have processed the thousands of neural spikes recorded by the implant and
given a refined command to the next region. Similarly, we can also use electronics to
perform this signal processing on the implant, thus reducing the bandwidth of data
to be transmitted. Figure 14.3 shows three different modes of compression based on
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Fig. 14.3 Block diagram of a typical neural recording system which senses, digitizes and
wirelessly transmits the neural data. As an alternative to sending raw data, different neuromorphic
schemes may be used as shown to achieve different rates of compression. (a) Typical. (b) Mode 1.
(c) Mode 2. (d) Mode 3

the amount of signal processing kept on the implant. There is a trade-off in this case
between amount of extra area and energy expended on signal processing in-implant
versus the energy saved in reduced transmission. Clearly, it is not beneficial if the
added circuits for signal processing burn as much energy as the energy saved in
reduced data rate!

One way to perform the processing at very low energy/area overheads is to
use neuro-inspired analog circuits, sometimes also called ‘neuromorphic’ circuits
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following Carver Mead’s seminal paper [37]. Mead and others [38] have shown
that analog circuits require less energy and area than digital counterparts when
processing signals at a low resolution, typically � 8 bits. The brain also uses a
similar principle by computing using analog quantities such as charge, currents and
ionic concentrations and this is cited as one of the reasons for its power efficiency.
This is hence well suited for processing noisy sensory signals where precision is
limited by input signal to noise ratios. In the rest of the chapter, we will explore
several such schemes to compress neural recording data by extracting information
from it.

14.3.1 Compression Mode 1: Spike Detection

The first scheme is inspired by a communication protocol used in neuromorphic
chips. Several neuromorphic sensors and neural networks have been designed
using brain-inspired analog processing principles [39–44] while noise robust digital
pulses are used for communication [45, 46]. Since digital communication is much
faster (� 10 Gbps) than the average firing rate of a neuron (� 10 Hz), the firing
information of multiple neurons can be multiplexed on the same serial bus where
the identity of the source neuron is encoded in a simultaneously transmitted digital
address. This protocol is referred to as Address Event Representation (AER) and
allows neuromorphic spiking chips to communicate data from N neurons using only
log2.N/ wires.

The AER scheme can be adopted for neural implants as well since in many cases,
we are interested in only knowing the occurrence of spikes. In that case, circuits
are needed to distinguish spikes from background noise—these are called spike
detectors. Figure 14.3b denotes this scheme as Mode 1 with three possible variants.
The earliest instance of such detectors is based on simple thresholding circuits[24]
where it is assumed that the amplitude of the spike is larger than background noise
by a certain amount. A feedback loop is used to track the baseline noise level and
the spike detection threshold is set to a multiple of this value. However, this method
was found to produce high false positives in noisy conditions and hence an improved
detection method using a non-linear energy operator (NEO) has been proposed. The
NEO operator is defined as:

NEO.V/ D
�

dV

dt

�2

� d2V

dt2
� V (14.2)

Several analog implementations of the NEO scheme have been reported [47–50]
and an example of spike detection waveforms from the implementation in [47] is
shown in Fig. 14.4. We refer to this method as Mode 1-A.

The spike detection method discards all information about the amplitude and
shape of the neural spike—this information may, however, be useful at a later
stage to decide the identity of the source neuron. Hence, two other variants of
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Fig. 14.4 Input noisy neural signal and corresponding digital spike detection output from the
implementation in [47]. Only the detection result can be transmitted thus eliminating background
data

the previously mentioned detection scheme have been commonly used. In some
cases [51, 52], the authors use a regular spike detector to trigger the capture of a
pre-defined number of samples of the neural spike signal so that all the features
of the wave shape are retained for future extraction. We refer to this method as
Mode 1-B. The other prevalent approach is to extract the relevant features (such
as maximum, minimum, temporal width, derivative extrema) from the neural spike
waveform when triggered by the spike detector [36, 48, 53–56]. Only these features
are now digitized and transmitted providing a good trade-off between data reduction
and signal information retention. We refer to this as Mode 1-C.

We can now derive the data rates R1�A, R1�B, and R1�C required by each of the
compression schemes. Denoting the number of biological neurons recorded by the
sensor as Nneu (different from Nchan), firing rates of each neuron as fbio we can write
the equations as:

R1�A D Nneu � fbio � dlog2.Nchan/e (14.3)

R1�B D Nneu � fbio � fADC � bADC � tspk (14.4)

R1�C D Nneu � fbio � Nf � bADC (14.5)

where tspk denotes the time span of the neural signal per spike transmitted in Mode
1-B, Nf denotes the number of features extracted in Mode 1-C and other variables
have same meaning as defined earlier. We can estimate the degree of compression
by assuming some nominal values of the parameters: Nneu D 200, fbio D 10 Hz,
tspk D 3 ms, Nf D 4, Nchan D 100, fADC D 20 kHz and bADC D 10 bits. Then the
three data rates become R1�A D 14 kbps, R1�B D 120 kbps and R1�C D 80 kbps.
Compared to the typical data rate, these modes offer a compression between � 100–
1000�.
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14.3.2 Compression Mode 2: Spike Sorting

The next possible scenario for compression is to use the features of the spike
waveform to separate or classify each different wave shape into its own category
representing a different source neuron. This method of assigning each distinct
neural spike shape recorded on the same channel one unique identifier is called
‘spike sorting’ [57, 58]. Each category, in which spikes have similar shape, is
believed to be generated by one neuron. The reasoning behind spike sorting is
that the shape of spikes generated by neurons and recorded by an electrode is
stereotypical, determined by the morphology of the dendritic trees of the neuron
and the transmission pathway to the electrode. It is therefore believed that the shape
of spikes from different neurons are distinct from each other and does not change
over time, or at least over a significant amount of time. Though some work has
demonstrated spike sorting may not be necessary for robust decoding performance
[59, 60], the majority of work today still uses spike sorting to squeeze out as much
information as possible from the neural recording implant.

Some authors have integrated a spike sorting classifier on the implant [61, 62].
While there are some implementations that have used supervised methods similar
to template matching [63], most other approaches [64, 65] use unsupervised
clustering techniques due to the advantage of not needing explicit training sessions.
Figure 14.5 depicts the typical steps involved in spike sorting. After sorting, only
the distinct identifier of the source neuron needs to be sent resulting in huge
compression. We can estimate this data rate in Mode 2 as:

R2 D Nneu � fbio � dlog2.Nneu/e (14.6)

where the symbols have the same meaning defined earlier. Using the same values of
the parameters used in the earlier Sect. 14.3.1, we can estimate the data rate for this
mode to be R2 D 16 kbps equivalent to a compression of � 1000� compared to a
typical case.

Fig. 14.5 The steps involved in spike sorting include feature extraction followed by unsupervised
clustering to separate the neural spikes into distinct categories according to their shape
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14.3.3 Compression Mode 3: Intention Decoding

The final and most advanced mode of compression is attained when the last stage
of signal processing—decoding intentions from the recorded multi-channel spike
train—is also integrated in the implant. This is shown in Fig. 14.3c as Mode 3. In
this chapter, we focus on systems for motor prosthesis only—hence, in this case,
intentions refer to ‘motor’ intentions or desire to move a limb. The fundamental of
current decoding algorithms can be referred back to the work done by Georgopoulos
and his colleagues [66, 67]. It is revealed in the experiment that the activity intensity
of some neurons in the motor cortex is tuned to be a sinusoidal function of the
movement direction of the arm with respect to a preferred direction where the
activity reaches its maximum. They therefore proposed to represent each neuron by
a vector indicating its preferred direction. The population vectors can be obtained
by linear combination of all preferred vectors in the group weighted by the firing
rate in the short time period of tens of millisecond, leading to a prediction on the
velocity of upcoming arm movement [68].

Current state-of-the-art decoding algorithms for mapping population activity into
motor intention can be categorized into two broad subgroups: inferential decoders
[69–71] and classifiers [1, 20, 72]. However, most of these algorithms are run using
bulky computers with wires connecting to the patient which impairs free movement
and are a risk for infection. Recently, some approaches have been proposed for
custom, low-power, compact hardware implementations of decoding algorithms
[73–75] of which only one has shown measured results from a low-power integrated
circuit [76] to decode motor intentions for dexterous finger movement as done in
[20]. In the rest of the chapter, we elaborate on the details of this design, show the
decoding performance and estimate achievable data compression using this scheme.

14.3.3.1 Algorithm: Extreme Learning Machine

The machine learning algorithm used in this work is the Extreme Learning Machine
(ELM) [77, 78]. It is a two-layer neural network (Fig. 14.6) where the first layer of
weights from inputs to hidden neurons (wij denotes weight from i-th input to j-th
hidden neuron) are fixed and random. Only the weights in the second layer from the
hidden neurons to output neurons need to be trained. Using ˇki to denote the weight
from the i-th hidden neuron to the k-th output neuron, we can express the k-th output
ok as:

ok D
LX
i

ˇkig.wi; x; bi/ D
LX
i

ˇkihi D hTˇk

wi; x 2 <DI ˇki; bi 2 <I h;ˇk 2 <L (14.7)
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Fig. 14.6 Extreme Learning Machine (ELM) is a two-layer neural network where the weights of
the first layer are random and fixed. Only second layer weights are tuned according to the task

where x denotes the D-dimensional input vector, h is the L-dimensional output of
the hidden layer, g./ is the non-linear activation function of the hidden layer and
bi denotes the bias of the i-th hidden layer neuron. One of the commonly used
activation functions is the additive node where hi D g.wT

i x C bi/ and g W < ! < is
any non-linear function with finitely many discontinuities. While the outputs ok can
be directly used for regression, for classification, we assign the input sample to the
class belonging to the output neuron with the highest value.

The second layer weights can be obtained by a direct solution instead of typically
used iterative methods such as back propagation for multi-layer neural networks—
hence, the training time for ELM based systems is much smaller. The output weights
for each of the C classes can be optimized separately by using the same hidden layer
values. Suppose there are p samples and let H denote the p � L hidden layer matrix
where each row stores the output of the hidden neurons for one sample. Further, let
Tk 2 <p denote the target or desired values for the k-th hidden neuron. Then, the
ideal weights Ǒ

k for the k-th hidden neuron is obtained as solution of the following
optimization problem [78]:

Ǒ
k D arg min

ˇk

kHˇk � Tkk2 C �kˇkk2 (14.8)
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where the second term in the equation is needed for regularization and � is
optimized on the validation set as a hyper-parameter. Closed form solutions to the
value of ˇk can be obtained in two different ways for the cases where the number of
training samples is less or more than the number of hidden neurons [78].

To apply this neural network to neural decoding, the authors use an approach
similar to [20] where the Artificial Neural Network is replaced by an ELM. The
ELM decodes the onset time as well as the type of movement from the asynchronous
neural spikes every Ts D 20 ms. First, instantaneous firing rate ri.tk/ at time tk of
each biological neuron is computed by counting the number of spikes in a time
window Tw D 100 ms. Then, the input feature vector to the ELM at time tk is
defined by:

x.tk/ D Œr1.tk/; r2.tk/ : : : rD.tk/� (14.9)

The total number of output neurons C in this case is equal to M C 1 where there
are M movement types and one extra neuron is used to classify the onset time
of movement. For training, the last output for onset time is trained on the entire
dataset while the others are trained only on neural data during movement. Also,
the last neuron is trained to solve a regression problem where the target function is
trapezoidal—it gradually rises from 0 to 1 to mimic the gradually increasing activity
of biological neuron ensembles. To reduce false positives in detecting movement
onset, further processing is done on this ‘primary’ output by voting across the
decision for several consecutive time samples [76] to produce the post-processed
output. Another special signal processing feature of the IC is ability to include time
delayed versions of neuronal activity as additional inputs to the ELM, i.e the number
of inputs D to the ELM may be larger than the number of biological neurons N. This
feature, referred to as Time-delay based dimension increase (TDBDI), is especially
useful for chronic implants where the signal quality from many probes degrades
with time due to scarring and fibrotic encapsulation.

The main reason for choosing the ELM algorithm is that most of the multiplica-
tions to be done in this architecture are the D � L random scalings in the first stage
which can be done in very low energy and area using analog neuromorphic circuits.
The mismatch induced errors [79] in analog circuits is not a problem in this case but
can be part of the random coefficients. To get high accuracy, the trainable weights of
the second stage can be implemented using digital circuits. However, this does not
degrade system level energy efficiency as long as D >> C which ensures that the
number of multiplications in second stage are much less than that in the first stage.
The circuit implementation of this algorithm is shown next.

14.3.3.2 Chip Architecture

The system architecture for the neuromorphic ELM chip is shown in Fig. 14.7. Since
biological firing rate are sparse, the AER protocol described in Sect. 14.3.1 is used
to send the neural spikes to a desired channel based on the address or identity of
the source neuron. Then, the input handling circuits (IHC) compute an average
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Fig. 14.7 Overall architecture of the ELM based decoder IC has a decoder to pass input spikes to
desired channel, input handling circuits (IHC) to calculate average firing rate of spikes as a feature,
a synapse array to create the random weighting of inputs needed in stage 1 of ELM and an array
of hidden neurons
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Fig. 14.8 (a) The IHC block comprises a counter and a moving average circuit to compute average
firing rate in digital domain. The DAC then converts the digital number to an analog current.
(b) The neuron is made of a current controlled oscillator (CCO) that clocks a counter (not shown)

firing rate using digital circuits in two steps (Fig. 14.8a). First, a counter estimates
instantaneous firing rates by counting the number of spikes in a time interval Ts.
Then a moving average circuit finds average firing rate in a time window Tw. This
digital number is then converted to an analog current IDAC using a digital to analog
converter (DAC) so that following steps can be implemented in the analog domain.
The major task of multiplication by a random number is performed by the synapse—
a current mirror comprising identical minimum sized transistors. Ideally, without
statistical variations, the current mirror would produce same output current as its
input. However, due to mismatch and sub-threshold operation of the transistors, the
output current from a mirror is given by:

Iout D e�VT =UT Iin (14.10)
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where �VT denotes threshold voltage mismatch between the two mirror transistors
and UT denotes thermal voltage. In this architecture, the diode connected transistor
for every row is shared while the synapse just consists of a single mirror transistor.
Hence, the weight of the synapse connecting i-th input to the j-th neuron is given by
wij D e�VT;ij=UT . The sum of these currents are obtained by just wiring the drains of
the mirror transistors together. Finally, this current is converted to the hidden layer
output by passing it through a neuron circuit shown in Fig. 14.8b. The neuron is a
current controlled oscillator (CCO) whose frequency of oscillation is given by:

fCCO D Iin � Ileak

Cf � VDD
(14.11)

This equation is valid as long as Iin << Irst where Irst denotes the reset current
flowing through transistor M3 when turned fully on. The current Ileak serves the
function of the bias term bi in Eq. (14.7). Similar to the weights wij, these also
follow a log-normal distribution. The digital pulses from the CCO are used to
clock a counter which is enabled along with the neuron for Ten seconds. Also, the
counter can be stopped at a digitally programmable count value hmax which provides
a saturating nonlinearity. Hence, the hidden layer output after the counter can be
expressed as:

h D fCCOTen if fCCOTen < hmax

D hmaxotherwise: (14.12)

14.3.3.3 Measurement Results

The chip described above was fabricated in 0:35 �m CMOS process. With 128 input
channels and 128 hidden neurons, the die size of this chip was 4:95 � 4:95mm2.
An example of the mismatch is shown in the variability in measured tuning curves
of the hidden neurons (Fig. 14.9) when the input spike frequency of only one

Fig. 14.9 Measured transfer
curves of the 128 hidden layer
neurons on the chip obtained
by sweeping the input spike
frequency of one of the
channels. The variation of the
curves is due to statistical
variations in the chip
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Fig. 14.10 (a) A map of the threshold variation across the 128 � 128 synaptic current mirror
transistors on one of the dies. (b) The weights due to mismatch fit a log-normal distribution as
expected

channel is varied. A more detailed characterization of the mismatch across the entire
synaptic array is shown in Fig. 14.10a. This figure is obtained by giving a fixed
input frequency to each channel one by one and recording the hidden neuron firing
frequency. These weights are fit to a log-normal distribution in Fig. 14.10b implying
an underlying gaussian distribution of �VT . Across eight different dies, the mean
of the gaussian distribution varies from �0:1 to 0:57 mV and the standard deviation
varies from 16:2 to 17:6 mV.

The authors in [76] have applied the IC for decoding flexion and extension of
fingers and wrist from neural activity recorded from the M1 region of a non-human
primate. The experiment with the monkey is described in detail in [20]. In brief,
monkeys are trained to move individual fingers and wrist based on visual input while
simultaneously, a single-unit recording device implanted in the motor cortex is used
to record the brain activity. This data contains information about the monkey’s motor
intention and is used for the decoding. The entire data set has experiments performed
on three monkeys. This pre-recorded data was fed into the IC and the hardware
performance has been benchmarked with software decoding results reported in [20].

Figure 14.11 shows an example of the decoding being performed—three different
trials are shown. The bottom part of the figure shows neural spikes obtained after
sorting from N D 40 M1 neurons. The middle panel shows the onset detection
while the top panel shows predicted movement type. The authors reported that the
decoding accuracy increases to � 96%, at par with software results, for a hidden
layer size of L D 60 neurons. It is also important to see how the decoding accuracy
degrades when less number of biological M1 neurons are available for recording.
This is shown in Fig. 14.12 for 8 different samples of the IC. It can be seen that
using delayed samples to increase dimension (TDBDI) helps in boosting decoding
accuracy for all samples. The result is specially significant when the number of M1
neurons is small. This clearly shows the benefit of TDBDI for chronic implants.
For this IC, the authors report a power dissipation of 414 nW for the case of D D 40
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Fig. 14.12 Using the time delayed samples for extra information helps in increasing decoding
accuracy especially when the number of biological M1 neurons is small. The results are verified
from 8 chips

and L D 60 resulting in an ultra-low energy per operation of 3:45 pJ/MAC where
MAC refers to multiply and accumulate. This is much smaller than recently reported
digital multiplier which requires 16–70 pJ/MAC [80–82].
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We can now estimate the amount of data compression achievable in this mode
of operation with an integrated neural decoder. In the beginning of a session, this
system needs to transmit the raw data rate of Rtyp or R1 or R2. This data is used for
training. Once trained however, the data rate R3 to be transmitted is given by:

R3 D fdeco � dlog2.C/e (14.13)

where C is the number of classes of movement and fdeco is the rate of classification.
As an example, for the case described earlier with fdeco D 50 Hz and C D 13,
R3 D 200 bps with a compression factor of 105 over Rtyp showing the huge potential
of compression obtainable this way.

14.4 Conclusion and Discussions

Implantable brain machine interfaces are an emerging area of research which can
be used by patients with motor disabilities to interact naturally with prosthetics or
devices such as wheelchairs. More broadly, neural implants can be used to treat
other neural diseases such as Parkinson’s, epilepsy or depression. In this chapter,
we showed the issue of scaling neural implants to thousands of channels in the
future stems from increasing wireless transmission rates of the order of 200 Mbps.
It was also shown that it is possible to achieve variable rates of compression from
10–105 by incorporating more processing steps into the implanted chip as opposed
to leaving it to the receiver module outside the body. To make this viable, the
processing has to be done in ultra low power so that the power budget of the implant
is not exceeded.

Neuromorphic or neuro-inspired analog circuits provide a viable alternative
for reducing power dissipation beyond what is achievable from current digital
circuits. In this chapter, we presented an extensive survey of the different levels
of compression that are achievable when integrating spike detection, sorting or
intention decoding within the neural implant. The most promising scheme for the
future large scale implants—intention decoding—is described in great detail starting
from the algorithm to chip architecture and details of sub-circuits. In the long term,
we envision that as brain sensing technologies mature so that thousands of neurons
can be simultaneously probed, integrated machine learners for intention decoding
will become a common feature for managing the ‘big data’ originating from neural
implants. However, to allow chronic or long-term recording using such devices,
some challenges still need to be overcome. One of the major issues in long-term
recordings is parameter drift such as change of probe impedance due to scarring or
gliosis. Though the current solution has a feature of TDBDI to counter this, there is
no automatic detection strategy of when to apply this and to which channels. This is
a topic that deserves more attention in future. Also, the current method of training
the machine learner used a trial structure where the time of movement was known—
in real life operation, there will not be any such precise temporal markers and
the training algorithm has to be modified to suit this. One promising possibility is
reinforcement learning based training [83] but more work is needed in this direction.
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Lastly, the current training paradigm used data from a monkey performing actual
movements. To move to a prosthetic control using imagined movements only, there
will be an aspect of visual feedback that will alter the neural data recorded by the
chip—a phenomenon referred to as ‘closed-loop’ decoder training. In this case, we
have to retrain the machine learner iteratively over several closed-loop experimental
trials and convergence of such training for ELM based decoders is an open avenue
for research.
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