
Chapter 13
In-Memory Data Compression Using ReRAMs

Debjyoti Bhattacharjee and Anupam Chattopadhyay

The fast decline of Moore’s law is paving the way for a new set of emerging
technology devices that offer improved reliability, performance, endurance, and
energy-efficiency. Resistive Random Access Memories (ReRAMs) have emerged
as one of the most promising technologies for logic and memory applications [1].
ReRAMs are non-volatile, ultra compact memories with low leakage power and
high endurance. Large passive crossbar arrays can be realized by means of devices
such as a select device in series to a switch (1S1R) or a Complementary Resistive
Switch (CRS), to prevent parasitic currents [2]. 1S1R-based devices offer non-
destructive readout, unlike CRS-based devices in which readouts are destructive,
which makes 1S1R devices suitable for implementation of logic.

Internet-of-things (IoT) is an umbrella term encompassing a wide range of
applications and diverse devices, that generally share two common characteristics—
connectivity and low energy requirements. Irrespective of the specific network
topology, bit rates and communication standards, a considerable amount of energy
budget of the IoT nodes is allocated for communication. The energy consumed by
the communication sub-system is more or less directly proportional to the amount of
data transmitted or received. Therefore, it is of paramount importance to compress
the data before transmission.

LZ77 is a lossless compression technique, introduced by Abraham Lempel and
Jacob Ziv [3]. LZ77 along with LZ78 forms the basis for multiple variations such as
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LZW, LZSS, LZMA, and others. In addition, it forms the core of several ubiquitous
compression schemes such as GIF, DEFLATE, etc. LZ77 was awarded as an IEEE
Milestone in 2004.

This chapter is devoted to the introduction of an in-memory computing architec-
ture using ReRAM crossbar arrays and how various functions can be realized using
the architecture. We demonstrate a low-area implementation of LZ77 compression
algorithm using the ReRAM based in-memory architecture. In Sect. 13.2, the
ReRAM based VLIW Architecture for in-Memory comPuting (ReVAMP) archi-
tecture is introduced. In Sects. 13.2.1 and 13.2.2, realization of identity comparator
and priority multiplexer is presented using ReVAMP. In Sect. 13.3, we present the
details of compression using LZ77 algorithm on ReVAMP and the performance
of the proposed implementation is analyzed. Section 13.5 presents a review of the
existing works in the domain of in-memory computing using ReRAMs.

13.1 LZ77 Compression Algorithm

LZ77 is a lossless compression algorithm that forms the basis of multiple other com-
pression algorithms [3]. In LZ77, compression is achieved by replacing repeated
occurrences of data with reference to a single copy of that data that existed earlier
in the uncompressed data stream. Such a match is encoded as a length-distance
pair of numbers. This implies that the next length number of characters match the
characters at distance characters behind it in the uncompressed scheme. The term
length is also referred to as offset. The pseudo-code for LZ77 compression is shown
in Algorithm 1.

LZ77 uses a sliding window data structure to find matches. The sliding window
is divided into two parts, namely the Look-ahead buffer and the Dictionary buffer.
The Dictionary buffer stores the most recent uncompressed data stream that is used
to look for matches. The Look-ahead buffer contains the uncompressed data stream
that is yet to be encoded. The larger the sliding window is, the encoder searches for
finding longer matches, but it adds to the overhead of higher number of comparisons
required for finding the longest prefix. Determining the longest prefix is the major

Algorithm 1 LZ77 compression algorithm pseudo-code

1 Fill Look-ahead buffer from input ;
2 while Look-ahead buffer is not empty do
3 Find longest prefix p of view starting in Look-ahead buffer;
4 offset := position of p in window;
5 length := number of characters in p;
6 X := first char after p in view;
7 Output (offset, length, X);
8 Add length+1 chars to the Look-ahead buffer;
9 end
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Table 13.1 LZ77 compression of string aacaacbcabaaac with dictionary buffer size 8 and Look-
ahead buffer size 6

Dictionary Look-ahead
Sl#

8 7 6 5 4 3 2 1 0 1 2 3 4 5
Output

1 a a c a a c (0,0,a)

2 a a c a a c b (1,1,c)

3 a a c a a c b c a (3,3,b)

4 a a c a a c b c a b a a a (5,2,b)

5 c a a c b c a b a a a c (7,2,a)

6 c b c a b a a a c (8,1,$)

computation in the LZ77 algorithm. To determine individual match in characters
in Look-ahead buffer and Dictionary buffer, identity comparator is needed. For
determining the correct values of offset, length and X, priority multiplexers would
be needed, with the priority based on the length of the match.

Example 1 To facilitate understanding of the algorithm, we present an example for
encoding the string aacaacbcabaaac. Table 13.1 demonstrates the encoding of the
string using a dictionary buffer size of 8 and a Look-ahead buffer size of 6. The
encoded output is shown in the last column of the table, is of the form (distance,
length, next character X). It should be noted that the distance is relative to the
right edge of the dictionary buffer. The buffers operate on the principle of a sliding
window, i.e. the data stream to be compressed is pushed left into the buffer. As noted
in the algorithm, the shift is equal to the length of the match found in the dictionary,
and a further position.

Initially, the dictionary buffer is empty and there are no matches, hence (0,0,a)
is the output. The next character a in the Look-ahead buffer is a match with one
character at distance 1 in the dictionary buffer, and hence the output is (1,1,c). At
distance 3, three characters match the left most three characters of the Look-ahead
buffer, and thus the output is (3,3,b). In the following step, two characters at distance
5 match the two left-most character of Look-ahead buffer, so the output is (5,2,b). In
this step, two characters match and the output is (7,2,a). In the last step, the output
is (8,1,$) as the last character c of the uncompressed string matches and to signify
the end of string, $ symbol is used.

13.2 ReVAMP Architecture for In-Memory Computing

In this section, we explain the general purpose in-memory computing platform,
ReVAMP, introduced in [4]. We also demonstrate how comparator and priority
multiplexer can be realized using instructions of ReVAMP.

The ReVAMP architecture, presented in Fig. 13.1, utilizes two ReRAM crossbar
memories with light weight peripheral circuitry. A ReRAM crossbar memory
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Fig. 13.1 ReVAMP architecture [4]

Fig. 13.2 ReVAMP
instruction set

Read wl

Apply wl s ws wb (v valwD−1) . . . (v val0)

consists of multiple 1S1R ReRAM devices [5], arranged in the form of a cross-
bar [6]. Like conventional RAM arrays, ReRAM memories are accessed as wD-bit
wide words.

One of the memory arrays is used as instruction memory (IM). The IM is
used as regular memory, with the program counter (PC) being used to access
the next instruction. The other array is used as data storage and computation
memory (DCM). In the DCM, in-memory computation using ReRAM devices takes
place.

Each ReRAM device has two input terminals, namely the wordline wl and
bitline bl. The internal resistive state Z of the ReRAM acts as a third input and
stored bit. The next state of the device Zn can be expressed as Boolean majority
function with three inputs, with the bitline input inverted, as shown in the following
equation.

Zn D M3.Z; wl; bl/

This forms the fundamental logic operation that can be realized using ReRAM
devices. Using the intrinsic function Zn, inversion operation can be realized. Since
majority and inversion operation form a functionally complete set, any Boolean
function can be realized using the Zn.

The ReVAMP architecture has a three-stage pipeline with Instruction Fetch (IF),
Instruction Decode (ID), and Execute (EX) stages. The ReVAMP architecture can
be programmed using two instructions—Read and Apply, with the format shown in
Fig. 13.2.
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Fig. 13.3 A ReRAM
crossbar array with two
wordlines and three bitlines

w1 s10 s11 s12

w0 s20 s21 s22

b0 b1 b2

Read instruction reads a specified word, wl from the DCM and stores it in the
Data Memory Register (DMR). The read out word, available in the DMR, can be
used as input by the next instruction.

The Apply instruction is used for computation in the DCM. The address wl
specifies the word in the DCM that will be computed upon. A bit flag s chooses
whether the inputs will be from primary input register (PIR) or DMR. Two-bit flag
ws is used to select the wordline input—11 selects ‘1’, 10 selects ‘0’, 00 selects wb
bit within the chosen data source for use as wordline input while 01 is an invalid
value for ws. Pairs .v; val/ are used to specify individual bitline inputs. Bit flag v

indicates if the input is NOP or a valid input. Similar to wb, bits val specifies the bit
within the chosen data source for use as bitline input.

We introduce the notations used for the implementation of the logic operations on
ReRAM crossbars. Figure 13.3 shows a ReRAM array with two wordlines and three
bitlines. Input w1 and w0 are the wordline inputs while b2, b1, and b0 are the bitline
inputs. The variable sij represents the internal states of device at wordline i and
bitline j. Input ‘1’, ‘0’, and 0 represent V/2, �V/2, and GND, respectively. From the
perspective of logic, inputs ‘1’ and ‘0’ represent Boolean logic 1 and 0, respectively,
while input 0 represents no-operation. In a readout phase, the presence of a 5 �A
current is considered as Boolean logic 1 while absence of current is interpreted as
Boolean logic 0.

Figure 13.4 shows how a 32-bit word can be loaded into the DCM using the
ReVAMP instructions. The word w31W0, available in the PIR, is loaded into the DCM
by using an Apply instruction. This loads the words in inverted form in word i,
as shown in Fig. 13.4a. In the next cycle, the inverted word is read out from word
i using Read instruction, which stores it in the DMR. Another Apply instruction
is used to write the word in non-inverted form to word j, by selecting writing the
contents of the DMR as shown in Fig. 13.4c. The reader should understand the
equivalence of the ReVAMP instructions and the representation of the crossbar
operations, since these notations will be used interchangeably.

Figure 13.5 presents realization of basic Boolean functions. Figure 13.5a shows
how an array can be reset to 0, irrespective of its contents. This is true because
M3.x; 0; :1/ D 0. To compute AND of two inputs, the first input is loaded into
the array and then the negated second input is applied to the bitlines with ‘0’ as
wordline input, because M3.0; a; :.:b// D a:b. Similarly, OR of two inputs can be
computed, by changing the wordline input to ‘1’, since M3.0; a; :.:b// D a C b.
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Fig. 13.4 Loading a word
into DCM (a) Load word in
inverted form, (b) Read out
inverted word and (c) Write
word in non-inverted form

0 0 ... 0

`1’ 0 0 ... 0

w31 w30 w0

0 0 ... 0

`1’ w31 w30 ... w0

0 0 0

`1’ 0 0 ... 0

w31 w30 ... w0

w31 w30 w0

w31 w30 w0

w31 w30 ... w0

(a) Load word in inverted form (b) Read out inverted word

(c)  Write word in non-inverted form

Fig. 13.5 Realization of
basic Boolean functions

(a) Reset (b) AND (c) OR
‘0’ x x ‘0’ a1 a0 ‘1’ a1.b1 a0.b0

‘1’ ‘1’ ¬b1 ¬b0 ¬b1 ¬b0

0 0 a1.b1 a0.b0 a1+b1 a0+b0

This concludes the description of the ReVAMP architecture and basics of logic
function realization using it. In the following subsections, we present the realization
for identity comparator and priority multiplexer, which are required for LZ77
compression.

13.2.1 Comparator Design

An identity comparator compares the value of the inputs and generates a HIGH
output only when both the inputs are identical, otherwise the output is LOW. An
identity comparator for 4-bit values can be represented by the following equation:

c4 D .a0 ˇ b0/:.a1 ˇ b1/:.a2 ˇ b2/:.a3 ˇ b3/ (13.1)

a ˇ b D a:b C a C b (13.2)

where ai and bi represent the ith bits of input data signals a and b, respectively. a
represents the negated value of Boolean variable a. Operators :, C, and ˇ represent
Boolean AND, OR, and XNOR operations, respectively. The XNOR operation can
be expressed in terms of AND and OR operations as shown in (13.2).

Without loss of generality, we demonstrate the implementation of identity
comparator using ReRAM arrays, for 4-bit inputs, as shown in Fig. 13.6. The grayed
wordline represents the read out word.

Step 1: Word a is read out and an inverted copy of the word is created.
Step 2: Similar to step 1, another copy of a is created.
Step 3: In this step, ai:bi is computed in the by reading out and applying b via
the bitlines and ‘0’ as wordline input, since M3.a; 0; bi/ D ai:bi.
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a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0

‘1’ 0 0 0 0 a3 �b3 a2 �b2 a1 �b1 a0 �b0
0 0 0 0 ‘0’ a3+b3 a2+b2 a1+b1 a0+b0
a3 a2 a1 a0 ‘1’ ‘1’ ‘1’ ‘1’

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0
a3 a2 a1 a0 a3 �b3 a2 �b2 a1 �b1 a0 �b0

‘1’ 0 0 0 0 ‘1’ 0 0 0 0
a3 a2 a1 a0 a2 �b2 a0 �b0

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0

‘0’ a3 a2 a1 a0 ‘0’ a3 �b3 a2 �b2 a1 �b1 a0 �b0
a3 a2 a1 a0 0 a2 �b2 0 a0 �b0
b3 b2 b1 b0 a2 �b2 a0 �b0

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0
a3.b3 a2.b2 a1.b1 a0.b0 ‘0’ (a3 �b3).(a2 �b2) a2 �b2 (a1 �b1).(a0 �b0) a0 �b0

‘1’ a3 a2 a1 a0 0 a2 �b2 0 a0 �b0
b3 b2 b1 b0 (a1 �b1).(a0 �b0)

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0

‘0’ a3.b3 a2.b2 a1.b1 a0.b0 E4 a2 �b2 (a1 �b1).(a0 �b0) a0 �b0
a3+b3 a2+b2 a1+b1 a0+b0 0 a2 �b2 0 a0 �b0
a3+b3 a2+b2 a1+b1 a0+b0

Fig. 13.6 Four bit identity comparator realization

Step 4: ai C bi; 0 � i � 3 is computed in the by reading out and applying b via
the bitlines and ‘1’ as wordline input, since M3.ai; 1; bi/ D ai C bi.
Step 5: The intermediate term ai C bi is read out and ORed with corresponding
ai:bi to compute ai ˇ bi. This completes completion of XNOR computation. It
should be noted that as long as the number of bits in the word is less than wD,
the bitwise XNOR of the words a and b can be computed using fixed number of
steps.
Step 6: The word holding the intermediate results ai C bi is reset to 0.
Step 7: Now, the computed XNOR terms are combined together using an AND-
reduction tree, as shown in Fig. 13.7. XNOR terms a2 ˇ b2 and a0 ˇ b0 are read
out and stored in inverted forms.
Step 8: The inverted XNOR terms are read out and ANDed with the appropriate
ai ˇ bi terms.
Step 9–10: The last two steps are similar to Step 7–8 and compute the final
identity comparator result E4.
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Fig. 13.7 AND-reduction
tree for identity comparator a3  b3 a2  b2 a1  b1 a0  b0

AND

AND

AND

13.2.1.1 Analysis

Each step except Step 6 involves a read operation followed by a computation—
which implies a Read instruction followed by an Apply instruction and therefore
requires two cycles. For computation of the bit-wise XOR, ten cycles are required.
One cycle is required to reset the word holding the intermediate term. For the AND-
reduction tree, there are dlog2 ne levels, where n is the number of bits in the inputs.
Each level requires four cycles, therefore the reduction tree computation requires
4dlog2 ne cycles. Thus, an n-bit (n � wD) identity comparator would require 11 C
4dlog2 ne cycles to be realized on ReVAMP architecture.

13.2.2 Priority Multiplexer Design

A priority multiplexer selects from one of the n data signals, based on the n control
signals, which have a predefined priority. Basically, the priority multiplexer selects
input signal ak, if control signal sk is ‘1’ and none of the other control signals with
priority more than sk are ‘1’. If none of the select signals are ‘1’, then the output
is invalid. A 4-bit priority multiplexer is represented by the truth table in Fig. 13.8b
and the following equations.

p4 D s3:a3 C s3:s2:a2 C s3:s2:s1:a1 C s3:s2:s1:s0:a0 (13.3)

V D s0 C s1 C s2 C s3 (13.4)

where sj and ak represent the control and data signals, respectively. Priority of
control signal sj is greater than sk, if j < k. The output signal valid V is ‘1’ when the
output is valid, otherwise it is low.

We demonstrate how priority multiplexers for 4, 3, 2, and 1 input can be realized
simultaneously using ReRAMs, with the overall delay being determined by the
delay of the 4-input priority multiplexer computation. Let a, b, c, and d by the data
inputs and s1, s2, s3, and s4 be the select signals to the four priority multiplexers,
respectively. The initial steps of the computation is shown in Fig. 13.9. In Step 1,
the select signals are read out and an inverted copy is written back. In Step 2, the st

i

is ANDed with the appropriate data signal. From Steps 3–5, the st
i terms are ANDed
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s3s3s2

a0

a1

a2
a3

P4
4-

to
-1

(a)

s1ss1s0

s3 s2 s1 s0 P4 V

1 X X X a0 1

0 1 X X a1 1

0 0 1 X a2 1

0 0 0 1 a3 1

0 0 0 0 X 0

V

0(b)

Fig. 13.8 4-Input priority multiplexer. (a) Block diagram. (b) Truth table

with the appropriate intermediate AND terms. In Step 7, the wordline storing the
inverted select signals is reset. From Step 8 onwards, the final result of the priority
multiplexer Pn is computed by using an OR-reduction tree (similar to Fig. 13.7). To
compute the valid output V , another OR-reduction tree for the select signals would
be required.

In general, two cycles are required to compute and write the inverted select
signals. n steps are required to compute all the AND terms with each step involving
a Read and Apply instruction. The reset operation requires one cycle. Finally, the
OR-reduction tree requires 4dlog2 ne cycles, similar to the AND-reduction tree. For
the computation of the valid output signal, additional 4dlog2ne cycles would be
required. Therefore, an n-input priority multiplexer requires 3C2nC8dlog2ne cycles
to complete execution. For the specific case of 4-input priority multiplexer, 27 cycles
are required.

In the next section, we demonstrate how LZ77 compression can be realized using
logic operations on ReRAM. We will be required to use the comparator and priority
multiplexer designs introduced above for LZ77 compression.

13.3 LZ77 Compression Using ReVAMP

In this section, we present the implementation details of LZ77 on the ReVAMP
architecture. We assume word length wD of the ReVAMP architecture to be 32. For
the LZ77 compression, we assume each character to be 8-bits, since ASCII text
representation uses 8-bits. In addition, we consider the Dictionary buffer to hold
4-characters and Look-Ahead buffer to hold 5-character. Let the contents of the
Dictionary buffer and the Look-ahead buffer be as shown in Fig. 13.10.

The key computation in LZ77 is finding the longest prefix p of view starting in
Look-ahead buffer that is present in the dictionary buffer. Initially, the individual
characters are compared in the Look-ahead buffer and Dictionary buffer—sj

i is the
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Step 1

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
a3 a2 a1 a0 b3 b2 b1 c3 c2 d3

‘1’ 0 0 0 0 0 0 0 0 0 0

s13 s12 s11 s10 s13 s12 s11 s13 s12 s13

Step 2

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3 a2 a1 a0 b3 b2 b1 c3 c2 d3

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s13 s12 s11 s10 s23 s22 s21 s33 s32 s43

Step 3

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3.s13 a2.s12 a1.s11 a0.s10 b3.s23 b2.s22 b1.s21 c3.s33 c2.s32 d3.s43

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s13 s13 s13 s23 s23 s33

Step 4

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3.s13 a2.s12.s

1
3 a1.s11.s

1
3 a0.s10.s

1
3 b3.s23 b2.s22.s

2
3 b1.s21.s

2
3 c3.s33 c2.s32.s

3
3 d3.s43

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s12 s12 s22

Step 5

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3.s13 a2.s12.s

1
3 a1.s11.s

1
3.s

1
2 a0.s10.s

1
3 b3.s23 b2.s22.s

2
3 b1.s21.s

2
3.s

2
2 c3.s33 c2.s32.s

3
3 d3.s43

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s11

Step 6

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
a3.s13 a2.s12.s

1
3 a1.s11.s

1
3.s

1
2 a0.s10.s

1
3.s

1
1 b3.s23 b2.s22.s

2
3 b1.s21.s

2
3.s

2
2 c3.s33 c2.s32.s

3
3 d3.s43

‘0’ s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’

Step 7

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
a3.s13 a2.s12.s

1
3 a1.s11.s

1
3.s

1
2 a0.s10.s

1
3.s

1
1 b3.s23 b2.s22.s

2
3 b1.s21.s

2
3.s

2
2 c3.s33 b2.s22.s

2
3 d3.s43

‘1’ 0 0 0 0 0 0 0 0 0 s43
a2.s12.s

1
3 a0.s10.s

1
3.s

1
1 b2.s22.s

2
3 b2.s22.s

2
3

Fig. 13.9 Realization of priority multiplexer
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Fig. 13.10 Dictionary and
Look-ahead buffer

d4 d3 d2 d1 c1 c2 c3 c4 c5

Dictionary buffer Look-ahead buffer

Fig. 13.11 DCM layout

result of comparison of ith character in Look-ahead buffer and jth character in the
Dictionary buffer. This is followed by determining what are the series of characters
that match in the dictionary buffer—sjW1

i is 1, if characters from 1 to j positions in
the Look-ahead buffer matches the characters from location i in Dictionary buffer.
Using these results, the offset are determined. This is followed by determining the
length of the priority multiplexers—li indicates that a prefix of length i is present.
Using li, the outputs length and next character X is determined. Finally, the Dictio-
nary buffer is shifted appropriately, depending on the length of the longest prefix.

The computation in the ReVAMP architecture takes place in the Data and
Computation Memory (DCM). The layout of the DCM is shown in Fig. 13.11.
Word 0 holds the contents of the Dictionary buffer while word 1 and the first 8-bits
of word 2 act as Look-ahead buffer. In addition, word 2 holds results of character
comparisons. Word 3 holds the select signals for the priority multiplexers, priority
multiplexer outputs, and the valid bits. Word 3 holds constants 4, 3, 2, and 1 in
inverted forms and will also store the offset, length, and next character X that is
output by the algorithm. Finally, words 5–7 are used for computation.

To do so, we undertake the following sequence of operations. Compare the
characters to determine if a prefix of length 1 is present. s1

i D .di DD c1/; 1 �
i � 4.

Similarly, comparisons are undertaken to determine if prefix of length 2, 3, and 4
are present. Each set of comparisons to determine a prefix of certain length t can be
performed in parallel on the words 5–6 in the DCM, using the comparator realization
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Fig. 13.12 Offset computation using Priority multiplexers

present in subsection 13.2.1. Once the comparison is complete, the st
i terms are read

out and written in inverted form to the word 2. Then the words 5–6 are reset and the
next set of comparisons are performed.

This is followed by computation of all the terms sjW1
i , 4 � fi; jg � 1 in parallel.

The s4W1
4 requires the most number of cycles to be computed, equal to 8 cycles.

Finally, two cycles are need to read out the sjW1
i terms and write it to word 3 in non-

inverted form.

sjW1
i D sj

i:s
j�1
i : : : s2

i :s1
i (13.5)

Using the sjW1
i terms, the offset can be determined by using a series of priority

multiplexers as shown in Fig. 13.12 along with some additional computation for
the AND and ORs. The priority multiplexers are realized in parallel, by the steps
described in Sect. 13.2.2. Once the priority multiplexer computations are over, the
AND and OR terms are computed sequentially to compute “offset.” The computed
offset is written to word 4. The computation words 5–7 are reset once again.

For computation of “length,” a single priority multiplexer is used with select
signals li, as defined below.

l4 D s4W1
4 (13.6)

l3 D s3W1
4 C s3W1

3 (13.7)

l2 D s2W1
4 C s2W1

3 C s2W1
2 (13.8)

l1 D s1W1
4 C s1W1

3 C s1W1
2 C s1W1

1 (13.9)

The select signals are computed in parallel with li. This requires six cycles.
Additional cycles are required to read out li and store li. This is followed by
computation for the priority multiplexer to determine “length.”

In order to compute the output character X, another priority multiplexer compu-
tation is used, with li as select signals as shown in Fig. 13.13, similar to that for
computation of “length.” If there is no-match in the Dictionary buffer, then the valid
bit v is 0 and c1 is the next character X. Using this, we can determine the correct next
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Fig. 13.13 Computation of output “length” and character X
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Fig. 13.14 Dictionary buffer update

character. This completes computation of the output (offset, length, X) for this round
of the LZ77 algorithm. The computed output is readout using a Read instruction and
available in DMR to be read out.

The dictionary buffer and the Look-ahead buffer need to be updated before the
next iteration of the LZ77 can begin. For updating each character in the dictionary
buffer, a priority multiplexer operation is used followed by an OR operation, with
an inverted input. The priority multiplexers and the corresponding inputs and select
signals are shown in Fig. 13.14. We should note that the valid bit v is computed
once, since the select signals to the priority multiplexers are identical. Once the new
character at a given position has been computed, the old character is reset in word 0
and the new character is written.

All the characters in the Dictionary buffer locations are reset to 0 and based on
the length output, the contents of the Look-ahead buffer are loaded via the PIR and
Apply instructions for the next iteration of LZ77 algorithm.
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13.4 Performance Estimation

About 375 cycles are required for each iteration of the LZ77 algorithm. Updating
the dictionary buffer requires 148 cycles while the initial comparisons along with
computation of the sjW1

i terms require 92 cycles. To estimate the performance, we
assume mature ReRAM technology with 1 ns access time, based on [7]. For the
uncompressed text aacaacbcabaaac given in Example 1, seven iterations would be
needed to compress it using the proposed implementation of LZ77 and 2.625 �s
would be required to complete all the iterations.

The area of the proposed implementation can be measured in terms of the
number of words required in DCM and IM. The proposed implementation requires
seven words only, with each word 32-bit wide in DCM. Assuming the DCM to be
addressed by 3-bits, each Apply instruction would require 201 bits and we assume
that the Read instruction is padded with 0 s to make it of the same length as the
Apply instruction. The proposed implementation requires �5.46 KB of memory for
storing the instructions, considering 32-bit aligned memory access.

13.5 Related Works

The majority of the work related to in-memory computing related to ReRAMs
can be broadly classified into three categories—dedicated circuit proposals, general
purpose computing architectures using ReRAMs, and design automation tools for
the architectures.

In [8], ReRAM cells were shown to be conditionally switchable sequential
logic devices, thereby allowing logic-in-memory operations directly. Feasibility
and performance of multiple logic-in-memory adder designs have been presented
in the recent literature by means of memristive simulations [9–11]. Level-1 and
Level-2 Binary Basic Linear Algebra Sub-routines (BiBLAS) were realized using
ReRAM crossbas arrays [12, 13]. Neuromorphic computing has also been realized
using ReRAMs [14–16]. Authors in [17] utilized the crossbar array as a Content-
Addressable Memory (CAM) structure similar to those earlier proposed in [18] for
realizing integer matrix multiplication.

A general approach to designing in-memory architecture for data-intensive
applications was presented in [19]. Gaillardon et al. [20] introduced a light weight
controller to enable general purpose computing using ReRAM arrays, using a bit-
serial operation mode with a single instruction. The ReVAMP architecture [4] has
two instructions and uses separate instruction and computation memories and allows
bit-level parallel operations, thereby offering considerable speedup over PLiM
computer [20].

Considerable amount of research has been undertaken for developing automation
tools related to logic synthesis and technology mapping using memristors. In [9],
the authors presented a basic methodology for computing Boolean functions using
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memristive devices. In [21], it has been shown that with two working memristors
which realize material implication, any Boolean expression can be computed.
In [22] and [23], logic synthesis solution for memristors that realize material
implication has been proposed. In [24], a compiler for flow for generating RM3

instructions, for the ReRAM based PLiM computer [20] for realization of Boolean
functions has been presented. In [25], heuristics for logic synthesis of MIG for two
variants of ReRAM has been proposed —one realizing material implication and
the other realizing majority function. In [25], the authors used a naïve technology
mapping with delay of 3k C c cycles, for an MIG with k levels and c number of
levels with ingoing complemented edges. In [26], the authors demonstrated logic
realization using memristive crossbar arrays using multi-bit adders and multipliers
as case studies. In [27], the authors proposed a delay optimal technology mapping
solution for memristive devices. Further, area-constrained technology mapping for
ReRAM devices was presented in [28].

13.6 Summary

This chapter introduced the ReVAMP in-memory computing architecture that
utilizes stateful logic operations on ReRAM crossbar arrays. Realizations of
comparator and priority multiplexer was presented using the ReVAMP instructions.
We presented implementation of LZ77 compression algorithm using the ReVAMP
instructions and analyzed the performance in terms of number of cycles and area in
terms of number of devices. Finally, we presented the landscape of research in the
field of in-memory computing using memristors.
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