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12.1 Introduction

Deep Learning Networks (DLN) are inspired from the hierarchical organization of
neurons and synapses in the human brain and are an important class of machine
learning algorithms. Since its inception, it has been widely adopted in multifarious
recognition tasks. Lately, DLNs have redefined the state of the art for many
cognitive applications including computer vision [1], speech recognition [2], and
natural language processing [2] across various application domains. For instance,
Baidu’s Deep Speech 2 recently demonstrated English and Mandarin language
recognition at par to human capabilities. Google’s DeepMind recently defeated
AlphaGo world champion. Tesla is using deep learning powered vision, sonar and
radar processing in their self-driving systems. Also, deep learning is being adopted
for ever-more tasks, for example, face recognition by Facebook, data analytics by
IBM, recommender systems by Amazon, and so on.

DLN performance (accuracy) is a strong function of the network scale. Hence,
the network size has been commensurate with the target accuracy and the problem
complexity. LeCun et al. used Convolutional Neural Networks (CNN) for handwrit-
ten digits classification using 1 million parameters in 1998 [3]. In 2012, Krizhevsky
et al. used a CNN with 60 million parameters for object classification having 1000
classes [4]. Deepface used 120 million parameters to classify human faces [5]. In
a nutshell, large DLN models are preferred by Machine Learning practitioners and
this necessitates developing efficient systems to power DLNs.

Lately, conventional computing systems which are primarily based on von-
Neumann computing model have been extensively used in cognitive applications
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and have shown fascinating results across many domains. Majority of the current
DLN implementations are done on Graphic Processing Units (GPUs) owing to their
ability to deal with intensive parallel computations. For example, Tesla’s DLNs
uses in-vehicle GPU based supercomputers. Facebook is using GPUs to power its
machine learning algorithms. It seems appealing that systems based on conventional
computing styles like GPUs are addressing the computational needs of DLNs and
hence seems to be an ideal choice for accelerating DLN for cognitive applications.
The observation and the inference are correct but this simple treatment of facts veil
the skyrocketed power and memory requirements driving the modern computing
systems which is many orders higher than human brain.

There has been recent research to work around the memory bottlenecks in GPUs
by using techniques such as data batching and virtualized DLNs [6]. However,
the latency requirements can be unsuitable for real-time applications. Previous
works have also used specialized hardware for DLN acceleration [7]. This work
underscores the memory access associated power requirements and shows that
the DRAM accesses account for significant power consumption. Consequently, the
DLN performance on conventional computing systems is presently limited by the
memory and power bottlenecks. Hence, with complex, bigger, and deeper networks
that can achieve brain-like cognitive capabilities being developed, there is a dire
need to develop brain-like energy-efficient architectures that can drive them.

These power and memory bottlenecks in the conventional computing systems
are primarily a consequence of the mismatch between the conventional com-
puting systems and computing patterns involved in these cognitive applications.
MOS transistors, being on/off switches, have served as an ideal match to the
abstractions of switching functions and Boolean logic, which (together with von
Neumann architecture) form the underpinnings of modern computing. While cur-
rent computing platforms are well suited to applications that involve arithmetic
computations and storing and retrieving large amounts of data, they are known to
be highly inefficient—requiring orders of magnitude more energy consumption—
for performing tasks that humans routinely perform, such as visual recognition,
semantic analysis, and reasoning. This inefficiency stems from the realization
of neuron and synapse functionality by translating the underlying mathematical
functions to Boolean logic gates and subsequently to transistors, resulting in
hundreds of transistors to mimic a single neuron/synapses. In this chapter we will
review typical von-Neumann computing based CMOS architectures used for DLN
implementations and demonstrate the manner in which spintronic crossbar array
based “in-memory” computing platforms can lead to more compact and energy-
efficient implementations.

12.2 Neural Network Basics

DLNs are feed-forward networks where the computational units—the neurons are
connected to neurons in other layers through programmable connections termed
as synapses. Figure 12.1a shows an NN with one hidden layer. DLNs are usually
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Fig. 12.1 (a) Feedforward NN consists of neurons in one layer connected to another layer through
programmable synaptic weights, (b) IF spiking neuron computing model: x is the input spike train
and v is the neuron membrane potential. The neuron generates an output spike y whenever v crosses
the threshold voltage vth

characterized by multiple such hidden layers. Depending on the type of connectivity,
a DLN can either be fully connected (Multi-Layer Perceptron) or have sparse
connectivity (Convolutional Neural Network). The net input a neuron receives is the
weighted summation of its inputs. Thus, a neuron computation involves a weight
fetch from a memory (SRAM) followed by a multiply-and-accumulate (MAC)
operation for every input it receives. Once, all the inputs have been processed for
the above-mentioned operations, a non-linear computation is done to compute the
neuron’s output activation potential. This output then acts as the input for the next
layer neurons.
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DLN architectures discussed above have achieved record-breaking results for
many classification problems but the substantial computational cost of training
and running deep networks have motivated the research for the more biologically
plausible NN version called Spiking Neural Networks (SNN). In recent years, deep
SNNs have become an increasingly active field of research which is primarily
motivated by the extremely energy-efficient cognitive processing in human brain.
Driven by brain-like event-driven computations, SNNs involve data processing in
an input-triggered fashion. Unlike conventional ANNs where a vector is given at the
input layer once and the corresponding output is produced after processing through
several layers of the network, SNNs require the input to be encoded as a spike train.
At a particular instant, each spike is propagated through the layers of the network
while the neurons accumulate the spikes over time causing the output neuron to fire
or spike. Thus, the spike information is used to communicate between the layers
of the network. Figure 12.1b describes the functionality of an Integrate-Fire (IF)
spiking neuron. Note that more bio-plausible models also include a leak-term in the
membrane potential which causes it to decay in the absence of spikes.

12.3 General Purpose Computing Architecture

In this section we describe a general purpose architecture to implement SNNs. It
involves an SRAM which stores the SNN weights and inputs and a computation
core to perform the neuronal computations. Figure 12.2 shows the block diagram
of the architecture and the logical dataflow between the constituent blocks. The
SRAM memory stores the input data (image pixel values and weights) for the trained
SNN. Efficient data movement is achieved by buffering the input data—image data
and weight data in FIFOs. Image and weight data are read from SRAM memory
and processed by an array of Neuron Units (NUs). The NUs keep accumulating
weights depending on the input spikes, until all the inputs for a particular neuron
are processed. After this, the NUs produce the output spikes which are written back
to the SRAM.

Here we discuss the logical dataflow involved between the different components
for a time-step in SNN computation. Input data read from the SRAM is stored
into the Input FIFO to stream across the NU array as all the neurons in a layer
share the same inputs. Corresponding to the input data, weight data are fetched
from the SRAM and stored into the weight FIFOs for temporal reuse by the NUs.
Each NU receives the weights from its dedicated weight FIFO. The input FIFO
is flushed and new set of data are read from SRAM and put in the Input FIFO,
after the input processing is finished. Similarly, the weight FIFO gets flushed, new
weights read from SRAM and stored into weight FIFO, once the weight processing
finishes. When all the computations for the neurons currently scheduled into the
NUs are done, the next set of neurons are scheduled into the NUs, corresponding
weights read from SRAM into their respective weight FIFOs. Each NU performs
“accumulate-and-fire” operation. The NUs are connected in a serial fashion to allow
data streaming from Input FIFO to the rightmost NU.



12 Efficient Neuromorphic Systems: Prospects and Perspectives 265

FIFO FIFO FIFO FIFO FIFO
F

IF
O

C
O

N
T

R
O

L
R

E
G

IS
T

E
S

NU NU NU NU NU

to SRAM MEMORY

SRAM 
MEMORY

F
IF

O

Fig. 12.2 General purpose computing architecture—logical dataflow and the constituent blocks

The neuron computations are done layer wise—read the inputs and weights
from SRAM, compute all the outputs corresponding to the first layer, store back
the outputs in SRAM and proceed to the next layer. Within a layer neurons are
temporally scheduled in the NUs. First, the output computations for the first set
of ‘N’ neurons are done, then the next set of ‘N’ neurons from the same layer are
scheduled in the NU and this goes on until all the neurons in the current layer have
been evaluated. Hence, we temporally map different layers of the neural network
and different neurons within a layer to compute the entire neural network for a
given input data.

For a typical fully connected network, the memory component of energy
consumption (access + leakage) on this architecture is more than 50% on an
average across various computing workloads. As discussed before, the general
purpose computing frameworks have separate processing (core) and data storage
components (SRAM). The volume of data to process has drastically increased with
increasing DLN size. The DLN size has been ever-increasing to get better accuracy
and solve more complex recognition tasks. Consequently, data movement between
core and memory has been increasing and is becoming one of the most critical
performance and energy bottlenecks in these computing systems. On one hand,
this limits the research community to use sub-optimal architectures for solving
the recognition problems and on the other hand this impedes their deployment on
mobile computing platforms which are energy limited.

The size of the SRAM needed scales directly with the network size and the net-
work size is a strong function of target accuracy and problem complexity. AlexNet
[4], for instance, contains 5 convolutional layers with 2 fully connected layers and
uses 2.3 million weights. The more recent VGG-16 [1] contains 16 convolution
layers and 3 fully connected layers and uses 14.7 million weights. However, larger
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memories lead to increased power consumption due to increased memory access and
leakage power and the memory component of energy (access + leakage) is typically
higher than the computation component. Eventually, the memory-driven limitations
affect the size of DLN that can be used. To work around these bottlenecks, Machine
Learning practitioners must use less desirable DLN architectures (e.g., smaller
number of layers and neurons). Additionally, memory imposed bandwidth also
limits the number of NUs one can have in the NU-array for neuronal computations.
Hence it is imperative to develop innovative architectures which addresses the rigid
memory limitations of general purpose frameworks used towards DLN acceleration.

12.4 Underlying Device Physics

Before we present “In-Memory” computing architectures based on spintronic
technologies that can potentially alleviate the memory-bandwidth limitations of
conventional CMOS based neuromorphic architectures, let us discuss the underlying
device physics of such emerging technologies that can provide a direct mapping to
synaptic and neural functionalities.

Let us first illustrate the device structure and principle of operation of a Magnetic
Tunnel Junction (MTJ: Fig. 12.3a) [8]. The MTJ consists of two ferromagnets (FMs)
separated by a tunneling oxide barrier (MgO). The magnetization direction of one
of the layers (denoted by “pinned” layer, PL) is magnetically hardened so that it
serves as the reference layer. The magnetization of the “free” layer (FL), can be
manipulated by an input charge current. The MTJ is characterized by two stable
resistance states, namely the low-resistance parallel (P) configuration (“free” and
“pinned” layer magnetizations are parallel) and the high-resistance anti-parallel
(AP) configuration (“free” and “pinned” layer magnetizations are anti-parallel).
The MTJ can be switched between the two stable states by charge current flow
through the stack due to spin-transfer torque (STT) effect generated by charge
current flowing through the “pinned” layer [9]. Recent experiments have shown
that such an MTJ structure with in-plane magnetic anisotropy (IMA) can also be
switched by a charge current flowing through a heavy-metal (HM) underlayer due to
the injection of spins (whose polarization is transverse to the direction of both spin
and charge current) at the FL-HM interface (assuming spin-Hall effect [10] to be
the dominant underlying physical phenomenon). Such HM induced MTJ switching
has been proven to be more energy efficient than STT induced switching [11, 12].
Further, it opens up the possibility of device structures that can exhibit decoupled
“write” and “read” current paths, as will be explained in later sections. It is also
worth noting here that at non-zero temperature, the magnetization dynamics of the
MTJ is characterized by thermal noise, which can be accounted for by an additional
thermal field. In the presence of thermal noise, the switching behavior of the MTJ
due to the flow of a charge current through the “pinned” layer, during the “write”
cycle, is stochastic in nature and the probability of switching increases with increase
in the magnitude of input current [13].
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Fig. 12.3 (a) Magnetic tunnel junction consists of two nanomagnets separated by a spacer, (b)
spin-orbit torque induced domain wall motion due to charge current flowing through a heavy-metal
(HM) underlayer

In addition to monodomain magnets discussed above, we will also utilize
multi-domain magnets having a domain wall separating oppositely polarized mag-
netic domains. Recent experiments on magnetic nanostrips of Pt/CoFe/MgO and
Ta/CoFe/MgO have revealed high domain wall velocities due to charge current
densities that are two orders of magnitude lower than that achievable by con-
ventional spin-transfer torque (STT) [14, 15]. Additionally, domain wall motion
was observed to be against the direction of electron flow (i.e., in the direction of
current flow) in multilayer structures with Pt as the underlayer, thereby suggesting
that current induced spin-orbit torque is the main mechanism of domain wall
motion in such multilayer structures (with negligible contribution from conventional
STT). In such magnetic heterostructures with high perpendicular magnetocrystalline
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anisotropy (PMA), spin orbit coupling and broken inversion symmetry leads to
the stabilization of homochiral domain walls through the Dzyaloshinskii-Moriya
exchange interaction (DMI). Such interfacial DMI at the FM-HM interface leads to
the formation of a Néel domain wall with specific chirality. The DMI strength in
such structures with HM underlayers has been observed to be sufficiently strong
to impose a Néel wall configuration in FMs where conventional magnetostatics
would have yielded a Bloch configuration [14, 15]. As shown in Fig. 12.3b, when
an in-plane charge current is injected through the HM, a transverse spin-current is
generated due to deflection of opposite spin-polarizations on the top and bottom
surfaces of the HM due to spin-Hall effect. The accumulated spins at the FM-HM
interface leads to DMI stabilized Néel domain wall motion [14, 15]. The direction
of domain wall motion is in the direction of charge current flow and the final
magnetization of the ferromagnet is given by the cross-product of the direction of
injected spins at the FM-HM interface and the magnetization direction of the FM at
the domain wall location.

12.5 Proposals for Spintronic Neuromimetic Devices

The building blocks of the brain (neurons and synapses), as well as artificial models
thereof, are fundamentally different from the switching functions and Boolean logic
gates that CMOS transistors naturally realize. The significant disparity between
the brain and corresponding CMOS implementations results in area and power
consumptions that are orders of magnitude higher than that involved in the brain. For
example, almost 20 transistors would be required to implement the functionality of a
single analog spiking neuron [16]. On the other hand, digital neurons would require
area and power hungry multipliers and adders to compute the weighted summation
of inputs. The situation is even worse for a synapse, where storing even a single-bit
weight would require a 6-T/8-T SRAM cell [17]. To realize networks comprising
billions of neurons and connectivity levels exceeding 10,000 synapses per neuron,
nanoelectronic devices that can more naturally and efficiently mimic synaptic and
neural functionalities are imperative.

Recent discoveries in spintronics have brought forward a set of device phenom-
ena that can provide a direct mapping of neuronal and synaptic computations, laying
the foundation for a quantum leap in the efficiency of neuromorphic computing.
Consider the computational units in an ANN. Inputs to the neuron get multiplied
by stored synaptic weights and are subsequently summed up and passed through
a thresholding function. As shown in Fig. 12.4, the synaptic functionality can be
implemented using a device structure composed of a Magnetic Tunnel Junction
(MTJ) where the “free” layer is a domain wall motion based magnetic strip (DWM).
A DWM is a ferromagnet with oppositely polarized magnetic domains separated by
a transition region termed as domain wall (DW). In the device shown in Fig. 12.4, the
position of the domain wall encodes the conductance of the MTJ, which represents
the synaptic weight. Therefore, the read current represents the product of the input
(read voltage) and synaptic weight (conductance).
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Fig. 12.4 Magnetic bilayer structure (DW-MTJ) as a spintronic synapse

As mentioned in the previous section, recent experiments on ferromagnet-heavy
metal (HM) bilayers have provided a promising mechanism for efficient control
of domain wall (DW) motion using current densities that can be �100� lower
than conventional spin-transfer torque driven DW motion [18]. Inspired by this
development, the proposed device (shown in Fig. 12.4) is a magnetic heterostructure
that also includes a Heavy Metal (HM) where a current flowing through the HM can
be used for deterministic control of DW motion and hence, the MTJ conductance
[18]. We will refer to this device as DW-MTJ for the rest of this chapter and
demonstrate its application to realizing neural and synaptic units.

Let us next consider the neuron computation in ANNs, which involves sum-
mation of synaptic inputs and performing a thresholding operation on the result.
Figure 12.5 [18] shows how the DW-MTJ device discussed above, together with
a reference MTJ and a single transistor, can be used to realize this computation.
The DW-MTJ together with the Reference MTJ (Fig. 12.5) forms a resistive divider
network. Input synaptic current is fed into the HM layer, moves the domain wall,
and changes the MTJ conductance, thereby causing a variation in the output current
provided by the transistor, which represents the neuron output.

A more biologically realistic neural computing model in comparison to the
artificial neuron is the spiking neuron model. Such a neuron receives input spikes
and generates an output spike only when its membrane potential crosses a threshold.
The neuron’s membrane potential increases on the arrival of an input spike and
leaks back to its resting potential in the absence of a spike. Interestingly, the
magnetization dynamics of an MTJ offers a direct mapping to the functionality
of such spiking neurons (Fig. 12.6). Incoming synaptic current flowing from the
“free” to the “pinned” layer gets spin-polarized by the “pinned” layer and causes
the “free” layer magnetization to be oriented parallel to the “pinned” layer. As
shown in Fig. 12.6, when input spikes are transmitted to the MTJ, the magnetization
or the conductance of the MTJ starts “integrating.” However, upon removal of the
stimulus the magnetization starts “leaking” back. The MTJ conductance increases
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Fig. 12.5 Spintronic device (DW-MTJ) as an artificial neuron

by a specific amount for each spike and finally switches to the parallel (high-
conductance) state at the end of the fifth input spike (Fig. 12.6) (analogous to the
“spiking” of a biological neuron). Such a functionality can be exploited to build
MTJ based spiking neurons. Further, thermal noise inherent in such devices can
be exploited to perform probabilistic inference with stochastic spiking neurons
[19, 20]. The MTJ switches probabilistically depending on the magnitude of the
input synaptic current (Fig. 12.7). HM induced MTJ switching can significantly
further improve the energy efficiency of this process.

12.6 Crossbar based “In-Memory” Computing Architecture

While the proposed spintronic devices realize the primitive functions required
to implement individual neurons and synapses, realizing a multi-layer network
where spin-neurons and synapses are cascaded requires hybrid circuits that involve
spin devices and a few CMOS transistors. Furthermore, to support the broad
range of neuromorphic applications, there is a need to design computing fabrics
that can realize networks of varying sizes and topologies, and can perform both
training/learning and evaluation. In doing so, it is critical to ensure that the intrinsic
efficiency of spin neurons and synapses is preserved at the system level.
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Fig. 12.6 MTJ as a
leaky-integrate-fire spiking
neuron. The magnetization or
conductance integrates on
each spike and starts leaking
once the spike is removed
(a) Input current stimulus and
(b) MTJ conductance have
been shown as a function of
time

Note that the main computing kernel in a DLN is dot-product computation
between the inputs and corresponding synaptic weights for each neuron followed
by neuron processing. Figure 12.8 shows a possible design of such a spintronic
computing kernel that consists of a crossbar array of spin-synapses driving spin-
neurons. Input voltages applied across each row of the array result in the generation
of a weighted synaptic current (weights are spin-synapse conductances), which
is summed up and provided as input to each neuron along the column. CMOS
transistors operate as axons (gate voltage is modulated by a resistive divider network
consisting of a reference MTJ and the DW-MTJ). Note that the proposed processing
unit can be cascaded (the drain of each output transistor drives a row of the next
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Fig. 12.7 (a) Probabilistic
neural inference can be
performed by spin-Hall effect
induced MTJ switching in
presence of thermal noise, (b)
variation of MTJ switching
probability with magnitude of
input current for different
pulse width durations

crossbar array). Hence, this unit can be used as a building block to construct scalable
neuromorphic architectures and assists in implementing the dot-product computing
kernel that is an essential component of such neuromimetic algorithms.

Let us analyze the spin-based ANN design shown in Fig. 12.8 and determine its
advantages over a CMOS based implementation. In order to provide an intuitive
insight to the energy efficiency of the proposed system, let us consider a “spin-
neuron” with “free layer” dimensions of 80 nm � 20 nm. Micromagnetic simulations
indicate that a current of �10.6 �A can displace the domain wall between the two
extreme edges within 2 ns leading to a maximum energy consumption of 0:1 fJ
(including energy consumption during neuron “reset” operation). This is almost two
orders of magnitude lower in comparison to analog (�700 fJ) and digital (�832.6 fJ)
CMOS neuron designs in 45 nm technology [18]. Additionally, the synaptic resistive
crossbar array can be operated at ultra-low voltages of �100 mV due to the low
current requirements of the spin-neurons. In contrast, the crossbar arrays have to be
operated at a much higher voltage (�500 mV) to drive analog CMOS neurons. This
results in power (V2=R) savings by a factor �25� per synapse and thereby helps in
reducing the overall power consumption of the neuromorphic system.
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Fig. 12.8 Spintronic neuromorphic architecture (with DW-MTJ neurons and synapses) connecting
different layers of the neural network

12.7 Conclusions

In this chapter, we provided a vision for “in-memory computing” architectures
built on spintronic crossbars for neuromorphic computations. Crossbars alleviate
the memory-bandwidth associated performance limitations in DLN acceleration.
Additionally, it also removes the energy consumption associated with continuous
data transfer between a separate memory and the computation core which is
a dominant component of energy consumption in such data-intensive applica-
tions. Inner-product computing kernels based on spintronic crossbar arrays driving
magneto-metallic spintronic neurons can pave the way for compact and energy-
efficient neuromorphic architectures.
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