
Chapter 11
Energy Efficient Spiking Neural Network Design
with RRAM Devices

Yu Wang, Tianqi Tang, Boxun Li, Lixue Xia, and Huazhong Yang

11.1 Introduction

The explosion of big data brings huge demands for higher processing speed, lower
power consumption, and better scalability of computing systems. However, the
traditional “scaling down” method is approaching its limit, making it more and more
difficult for CMOS-based computing systems to achieve considerable performance
improvements from device scaling [1]. Moreover, from the architecture level,
the memory bandwidth required by high-performance CPUs has also increased
beyond what conventional memory architectures can efficiently provide, leading to
an ever-increasing memory wall [2] challenge to the efficiency of von Neumann
architecture. In this way, new technologies, from both the device level and the
architecture level, are required to overcome these challenges.

The spiking neural network (SNN) is an emerging computing model, as shown
in Fig. 11.1, which encodes and processes information with time-encoded neural
signals [3]. As a bio-inspired architecture abstracted from actual neural system,
SNN not only provides a promising solution to deal with cognitive tasks, such as
the object detection and speech recognition, but also inspires new computational
paradigms beyond the von Neumann architecture and boolean logics, which can
drastically promote the performance and efficiency of computing systems [4, 5].
However, an energy efficient hardware implementation and the difficulty of training
the model remain as two important impediments that limit the application of SNN.

On the one hand, we need an applicable computing platform to utilize the poten-
tial ability of SNN. IBM [6] proposes a neurosynaptic core named TrueNorth. To
mimic the ultra-low-power processing of brain, TrueNorth uses several approaches
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Fig. 11.1 Spiking neural network

to reduce the power consumption. Specifically, TrueNorth uses digital messages
between neurons to reduce the communication overhead and event-driven strategy to
further save the energy computation [5]. However, the CMOS based implementation
still has some limitations that are hard to avoid, while some RRAMs’ inherent
advantages can overcome these difficulties. First, on-chip SRAM, where the synapse
information is stored, is a kind of volatile memory with considerable leakage
power, while RRAM is non-volatile with very low leakage power [7]. Another
limitation is that TrueNorth may still need adders to provide the addition operation
of neuron function, but RRAM crossbar can do the addition, or the matrix–
vector multiplication, with ultra-high energy efficiency by naturally combining the
computation and memory together [8–10]. Consequently, RRAM shows potential
on implementing low-power spiking neural network.

On the other hand, from the perspective of algorithm, the efficient training of
SNN and mapping a trained SNN onto neuromorphic hardware present unique
challenges. Recent work of SNN mainly focuses on increasing the scalability
and level of realism in neural simulation by modeling and simulating thousands
to billions of neurons in biological real time [11, 12]. These techniques provide
promising tools to study the brain but few of them support practical cognitive
applications, such as the handwritten digit recognition. Even TrueNorth [13] uses
seven kinds of applications to verify its performance, but the training and mapping
methods for spike-oriented network are not discussed in detail. In other words,
the mapping problem and efficient training method for SNN, especially for the
real-world applications, to achieve an acceptable cognitive performance is severely
demanded. Moreover, SNN can also be used for brain system simulation. For
example, IBM made the cat cortex simulation (with �109 neurons and � 1013

synapses) on Blue Gene supercomputer cluster (with 147,456 CPUs and 144 TB
memory) [14]. And such applications in the field of biological researches are out of
discussion in this chapter.
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These two problems are always coupled together and only by overcoming these
two challenges can we actually utilize the full power of SNN for real-time data
processing applications. In this chapter we discuss these two problems with the
RRAM based system architecture and two different offline training algorithms of
SNN. We use the MNIST digit recognition task [15] as an application example for
the real-time classification. The goal of this chapter is to design an RRAM-based
SNN system with higher classification accuracy and to analyze its strengths and
weaknesses compared with other possible implementations.

The rest of this chapter is organized as follows:

• Section 11.2 introduces the background knowledge, including SNN and RRAM.
• Section 11.3 compares different models of spiking neural networks for practical

cognitive tasks, including the Spike Timing Dependent Plasticity (STDP), the
Remote Supervised Method (ReSuMe), and the latest Neural Sampling Learning
Scheme. We show that the neural sampling method which transfers the ANN
to SNN is promising for real-word applications while STDP and ReSuMe can
NOT be used alone in the classification task since both of them are unsupervised
learning method.

• Section 11.4 shows an RRAM-based implementation of SNN architecture. Two
different specific networks, i.e. (1) STDP cascaded with three-layered ANN and
(2) four-layered SNN transferred from full-connected ANN, are built and mapped
to our system. The RRAM implementation mainly includes an RRAM crossbar
array working as network synapses, an analog design of the spiking neuron, an
input encoding scheme, and a mapping algorithm to configure the RRAM-based
spiking neural network. And these elements will be described separately.

• In Sect. 11.5, a case study of digit recognition tasks is introduced to evaluate
the performance of RRAM-based SNN. We compare the power efficiency and
recognition performance of SNN and the RRAM-based artificial neural network
(ANN). The experiment results show that ANN can beat SNN on the recognition
accuracy, while SNN usually requires less power consumption. Based on these
results, we discuss the possibility of using boosting methods, which combine
some weak SNN learners together, to further enhance the recognition accuracy
for real-world application.

11.2 Preliminaries

11.2.1 Spike Neurons

The neuron is the basic building block of SNN. Different mathematical models of
spiking neurons have been explored with different levels of computational efficiency
and biological plausibility [16]. The model of Leaky Integrate and Fire (LIF)
[17] is one of the most widely used models for its computing efficiency. In this
model, a one-order differential function determines the state variable V.t/ and a
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Fig. 11.2 Analog LIF neuron

threshold function determines whether the neuron spikes and then resets. And it is
described as:

V.t/ D
(

ˇ � V.t � 1/ C Vin.t/ when V < Vth

Vresetandsetaspike when V � Vth

(11.1)

where V.t/ is the state variable and ˇ is the leaky parameter; Vth is the threshold
state which the state variable makes comparison with and once exceeding, the state
variable will reset to Vreset.

An analog LIF neuron implementation is shown in Fig. 11.2: the integrator
calculates the state of the neuron V.t/ and the RC works as the leaky path. When
V.t/ > Vth, the transistor will be conducted and V.t/ will be reset.

11.2.2 RRAM Device Characteristics

Figure 11.3a shows a 2D filament model of HfOx based RRAM device [18]. The
model is a sandwich structure with a resistive layer between two metal electrodes.
The conductance is exponentially dependent on the tunneling gap (d). Therefore, we
will take advantage of the variable conductance of the RRAM device by setting the
value of tunneling gap d. For the HfOx based RRAM device, the I–V relationship
can be empirically expressed as follows [18]:

I D I0 � exp

�
� d

d0

�
� sin h

�
V

V0

�
(11.2)

where d is the average tunneling gap distance. I0 (�1 mA), d0 (�0.25 nm) and V0

(�0.25 V) are fitting parameters through experiments. When V << V0, there exists
the approximation that sinh. V

V0
/ � V

V0
. The I–V relationship is linear under this

condition. In this work, we will scale down the RRAM voltage to under 0.1 V in
order to take advantage of the approximately linear I–V relationship.
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Fig. 11.3 (a) Physical model of the HfOx based RRAM. The resistance of the RRAM device is
determined by the tunneling gap distance d, and d will evolve due to the filed and thermally driven
oxygen ion migration. (b) Structure of the RRAM Crossbar Array

As shown in Fig. 11.3b, the relationship between the input voltage vector (Vi)
and output voltage vector (Vo) can be expressed as follows [19]:

Vo;j D
X

k

ck;j � Vi;k (11.3)

where k (k = 1; 2; : : : ; N) and j (j = 1; 2; : : : ; M) are the index numbers of input and
output ports, and the matrix parameter ck;j can be represented by the conductivity of
the RRAM device (gk;j) and the load resistors (gs) as:

ck;j D gk;j

gs C
NP

lD1

gk;l

(11.4)

The continuous variable resistance states of RRAM devices enable a wide range
of weight matrices that can be represented by the crossbar. The precision of RRAM
crossbar based computation may be limited by non-ideal factors, such as process
variations, IR drop [20], drifting of RRAM resistance [21], etc. However, SNN only
requires low precision of single synaptic value, meanwhile the binary input and LIF
operation also alleviate the precision requirement of matrix vector multiplication.
Therefore, the RRAM crossbar array is a promising component to realize matrix–
vector multiplication for synapse weight computation in neural networks.
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11.3 Training Scheme of SNN

The spiking neural network faces a huge problem that it is difficult to train the
synaptic weights when applied in the real-world applications. In this section, we
compare different SNN training algorithms, including the Spike Timing Dependent
Plasticity (STDP), Remote Supervision Method (ReSuMe), and the latest Neural
Sampling learning scheme. We show that the neural sampling method which
transfers the ANN to SNN is promising for real-word applications while STDP and
ReSuMe can NOT be used alone in the classification task since both of them are
unsupervised learning method.

11.3.1 Spike Timing Dependent Plasticity (STDP)

Synapses connect neurons to each other and transmit signals between them. The
synaptic weights, which determine the connecting strength of neurons, are learnable.
Spike Timing Dependent Plasticity (STDP) [22] is an unsupervised learning rule
that updates the synaptic weights as a function of the relative spiking time of pre-
and post-synaptic neurons and the exponential window form of STDP is shown as:

�w D
8<
:

aC � wij.1 � wij/ � exp
�
� jtj�tij

�

�
if tj � ti

a� � wij.1 � wij/ � exp
�
� jtj�tij

�

�
if tj < ti

(11.5)

where wij is the synaptic weight between pre- and post-synapse neuron ni; nj; ti; tj
are the spiking time of neuron ni; nj; a is the maximum learning rate and � is
the time constant of the learning window. According to Eq. (11.5), the synaptic
weight is limited in the interval of Œ0; 1�. The learning rate is decided by the time
interval of ni; nj spiking: The closer between pre- and post-synaptic spikes, the larger
the learning rate. The weight update direction is decided by which neuron spikes
first: For the excitatory neuron, if the post-synaptic neuron nj spikes later than ni,
the synapse will be strengthened; otherwise, it will be decayed; for the inhibitory
neuron, vice versa. When every synaptic weight no longer changes or is set to 0/1,
the learning process is finished. As an unsupervised method, STDP is mainly used
as a feature extraction method. We cannot build a complete machine learning system
only based on STDP. A classifier is usually required for practical recognition tasks.
However, in our experiment, STDP method doesn’t demonstrate enough efficiency
of feature extraction. For example, we use the classic MNIST handwritten digit
dataset [15] to test the performance with a support vector machine (SVM) [23]
without a kernel, where two 50-dimension feature sets are extracted with STDP and
principal component analysis (PCA). The PCA-SVM method achieves a recognition
accuracy of 94% while the STDP-based method only reaches 91%. As PCA is
usually the baseline for evaluating the performance of feature extraction, STDP does
NOT demonstrate an efficient method for real-world cognitive applications or many
other machine learning tasks.
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11.3.2 Remote Supervision Method (ReSuMe)

Remote Supervision Method (ReSuMe) is a supervised learning method proposed
in [24]. The algorithm introduces a supervised spike train for each synapse while
training. The training process comes to an end if the post-synaptic spike train is
the same as the supervised spike train. However, ReSuMe faces the difficulty on
the pattern design of supervised spike trains and little guidance is offered on how to
define the differences between different spike train. Although some papers [25] have
attempted to build learning systems under ReSuMe learning algorithm, to the best
of our knowledge, we have NOT seen any efficient way to solve a real-world task.

11.3.3 Neural Sampling Learning Scheme

The Neural Sampling learning scheme transforms the leaky Integrate-and-Fire (LIF)
neuron into a nonlinear function (named Siegert function) [26] which represents
the relationship between the input and output firing rate of a neuron, just as
shown in Fig. 11.4. Moreover, Neftci demonstrates that nonlinear function, which
is equivalent with LIF neuron, is satisfied with neural sampling conditions in [28]
and can be approximated to sigmoid function under certain condition. Therefore,
it can take advantage of contrastive divergence (CD), which is a classic algorithm
exploited in restricted Boltzmann machine (RBM) to train the network. Moreover,
the spiking RBM can be stacked into multi-layer to form the spiking deep belief
network (DBN), which has demonstrated satisfying performance. In [26], Connor
shows that a 784�500�500�10 spiking DBN achieves the recognition accuracy of
95:2% on MNIST dataset [15]. Recent research results show that it is unnecessary to
introduce the Siegert approximation when transferring ANN to SNN, it is better for
recognition accuracy if the ReLU neuron is introduced when training the original
artificial network. The experiment results [29] show that spiking ConvNet achieves
99.1% accuracy on MNIST dataset when including ReLU neurons for original
network training. The introduction of ReLU neuron makes it promising for high-
performance large-scaled SNN model because of the better recognition accuracy
for large-scaled ReLU-based artificial networks compared with Sigmoid-based (or
tanh-based) ones.

Fig. 11.4 Siegert approximation used in spiking neural network training [27]



252 Y. Wang et al.

In Sect. 11.4, we will make a hardware mapping of the spiking neural network
which is trained under (1) STDP + three-layer ANN classier, (2) neural sampling
learning method, to RRAM-based platform. The specific RRAM-based system is
only used for forward (inference) process, while the training process done on the
CPU platform will not be discussed in this work.

11.4 RRAM-Based Spiking Learning System

For an SNN system used for real-time classification applications, an offline training
scheme is needed to decide the weights of the neural networks, i.e. coefficients
in the crossbar matrix. To our best knowledge, there are two kinds of SNN
training methods to build up classification systems: (1) unsupervised SNN training
method, for example, Spike Timing Dependent Plasticity (STDP), is first introduced
for extracting features; then the supervised classifier is introduced to finish the
classification task. (2) First train an equivalent ANN using the gradient-based
method, then transfer ANN to SNN and map SNN to the RRAM-based system
for real-world applications. We design the two offline trained RRAM based SNN
systems based on these two training methods [27, 30], and show them in the
following subsections.

11.4.1 Unsupervised Feature Extraction + Supervised Classifier

As an unsupervised method, STDP is mainly used for feature extraction. We
cannot build a complete classification system only based on STDP. A classifier
is usually required for practical recognition tasks. Therefore, when mapping the
system onto hardware, just as shown in Fig. 11.5, a five-layer neural network system
is introduced: a two-layer spiking based neural network and a three-layer artificial
neural network.

The first two layer SNN is trained using an unsupervised learning rule: spike
timing dependent plasticity (STDP) [22], which updates the synaptic weights
according to relative spiking time of pre- and post-synaptic neurons. The learning
rate is decided by the time interval: the closer distance between pre- and post-
synaptic spikes, the larger the learning rate. The weight updating direction is decided
by which neuron spikes first: for the excitatory neuron, if the post-synaptic neuron
spikes later, the synapse will be strengthened; otherwise, it will be decreased. When
every synaptic weight no longer changes or is set to 0/1, the learning process is
finished.

There is a converting module between the two layer SNN and 3-layer ANN to
convert the spiking trains into the spike count vectors. Then the spike count vectors
are sent into the following layers of the network (the 3-layer ANN). We use a 3-layer
ANN as a classifier to process the features extracted from the input data by the
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Fig. 11.5 System structure of unsupervised feature extraction + supervised classifier: 2-layer
STDP based SNN + 3-layer ANN [27]

previous 2-layer SNN. We use the CMOS analog neuron in Sect. 11.2 for the LIF
neuron; and the RRAM crossbar for synaptic computation in both 2-layer SNN
(vector addition) and 3-layer ANN (matrix vector multiplication).

An experiment is made on MNIST digit recognition dataset to evaluate the
performance of such system framework. The training algorithm is implemented
on the CPU platform where LIF neurons are used in the first two layers and the
sigmoid neurons are used in the last three layers. For the testing process (forward
propagation of neural networks), we use circuit level simulation where the weight
matrix is mapped to RRAM-based crossbar. Since the input images are 28�28 sized
256-level gray images, the first layer has 784 input channels. The five-layer spiking
neural network system has five layers of neurons in all and the experiment result
with the network size of “784�100SNN+100�50�10ANN” shows the recognition
accuracy of 91.5% on CPU platform and 90% on RRAM-based crossbar model
(circuit simulation result). The performance is a little worse than that of the three-
layer ANN sized “784�100�10” with the recognition accuracy of 94.3% on CPU
platform and 92% on RRAM-based crossbar model (circuit simulation result).

An interesting point comes from the energy consumption part, we find out that
both ANN and SNN use the RRAM crossbar as the matrix vector multiplication
part, ANN will consume more power than SNN with similar or even smaller neuron
numbers. For example, the proposed “784�100SNN+100�50�10ANN” consumes
327.36 mW on RRAM while the power consumption increases to 2273.60 mW
when we directly use “784�100�10ANN.” The energy/power saving of SNN
comparing ANN mainly comes from the different coding basis. The input voltage of
SNN can be binary since it transforms the numerical information into the temporal
domain, so there is no need for SNN to hold a large voltage range to represent
multiple input states as implemented in ANN. ANN needs input voltages of 0.9 V,
but SNN can work with much lower voltage supply (0.1 V). On the other hand,
binary coding in SNN can avoid the usage of large number of AD/DA on the input
and output interfaces, and the AD/DA consumes considerable large portion of power
in the RRAM based NN systems [31].
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Fig. 11.6 System structure: transferring ANN to SNN—neural sampling method [30]

11.4.2 Transferring ANN to SNN: Neural Sampling Method

The neural sampling method provides a way to transfer ANN to SNN, thus offering
a useful training scheme on classification tasks. A equivalent transformation is
made between the nonlinear function (named Sigert function, which is similar to
sigmoid function) of ANN and the Leaky Integrate-and-Fire (LIF) neuron of SNN.
Therefore, it is possible to first train the ANN made up of the stacked Restricted
Boltzmann Machine (RBM) structure using Contrastive Divergence (CD) method.
In this way, a satisfying recognition accuracy of ANN can be first achieved. And
then, the spike-based stacked RBM network with the same synaptic weight matrices
can also be implemented for the classification tasks. The system structure is shown
in Fig. 11.6 [30].

Since spike trains propagate in the spiking neural network, original input x D
Œx1; : : : ; xN � should be mapped to spike trains X.t/ D ŒX1.t/; : : : ; XN.t/� before
running the test samples where Xi.t/ is a binary train with only two states 0/1. For
the ith input channel, the spike train is made of Nt spike pulses with each pulse width
T0, which implies that the spike train lasts for the length of time Nt � T0. Suppose the
spike number of all input channels during the given time Nt � T0 is Ns, then the spike
count Ni of the ith channel is allocated as:

Ni D
Nt�1X
kD0

Xi.kT0/ D round

 
Ns � viPN

kD1 vk

!
(11.6)

which implies

Ni

Ns
D viPN

iD1 vi

(11.7)

Then the Ni spikes of the ith channel is randomly set on the Nt time intervals. For
an ideal mapping, we would like to have Ni << Nt to keep the spike sparsity on
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Table 11.1 Important
parameters of the SNN
system

Network size 784 � 500 � 500 � 10

Number of input spike (Ns) 2000

Number of pulse interval (Nt) 128

Input pulse voltage (V) 1 V

The pulse width (T0) 1 ns

the time dimension. However, for the speed efficiency, we would like the running
time Nt � T0 to be short. Here, T0 is defined by the physical clock, i.e. the clock of
the pulse generator, which implies that we can only optimize Nt directly. Here, we
define the bit level of the input as

log

�
Nt

mean.Ni/

�
(11.8)

which evaluates the tradeoff between time efficiency and the accuracy performance.
We train the SNN with the size of 784 � 500 � 500 � 10. And the parameters

are shown in Table 11.1. The experiment results show that the recognition accuracy
of MNIST dataset is 95:4% on the CPU platform and 91:2% on the ideal RRAM-
based hardware implementation. The recognition performance decreases about 4%
because it is impossible to satisfy with Nt << Ns on the RRAM platform.

We show the results for recognition under different bit level quantization of
input signal and RRAM devices, together with RRAM process variation and input
signal fluctuation. The simulation results in Fig. 11.7a show that an 8-bit RRAM
device is able to realize a recognition accuracy of nearly 90%. The simulation
results in Fig. 11.7b show that the input signal above 6-bit level achieves satisfying
recognition accuracy (>85%). Based on the 8-bit RRAM result, different levels
of signal fluctuation are added on the 8-bit input signal. The result shown in
Fig. 11.7c demonstrates that the performance of accuracy just decreases 3% given
20% variation. Figure 11.7d shows that when RRAM device is made in 8-bit level
with the 6-bit level input, the performance does not decrease under 20% process
variation. The sparsity of the spike train leads to the system robustness, making it
insensitive to the input fluctuation and process variation.

The power consumption of the system is mainly contributed by three parts: the
crossbar, the comparator, and the RmemCmem leaky path. The simulation results show
that the power consumption is about 3:5 mW on average. However, it takes Nt D 128

cycles with the physical clock T0 D 1 ns. Though input conversion from numeral
values to spike trains leads to about 100� clock rate decrease, the system is able
to complete the recognition task in real time (�1 �s/sample), thanks to the short
latency of RRAM device.
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Fig. 11.7 Recognition accuracy under (a) different bit-level of RRAM devices, (b) different bit-
level of input module, and (c) different degrees of input signal fluctuation, (d) different degrees of
process variation of RRAM devices [30]

11.4.3 Discussion on How to Boost the Accuracy of SNN

The experiment results in the above subsections show that the recognition accuracy
will decay after transferring an ANN to an SNN. However, due to the ultra-high
integration density of the RRAM devices and the 0/1 based interfaces of SNN, SNN
tends to consume much less circuit area and power compared with ANN. This result
inspires us that we may integrate multiple SNNs with the same or even less circuit
area and power consumption of ANN, and combine these SNNs together to boost
the accuracy and robustness of the SNN system.

Previously, an ensemble method [31] is proposed to boosting the accuracy
of RRAM-based ANN systems, named SAAB (Serial Array Adaptive Boosting),
which is inspired by the AdaBoost method [32]. The basic idea of AdaBoost, which
is also its major advantage, is to train a series of learners, such as ANNs or SNNs,
sequentially, and every time we train a new learner, we try to “force” the new learner
to pay more attention to the “hard” samples incorrectly classified by previous trained
learners in the training set. The proposed technique can improve the accuracy of
ANN by up to 13.05% on average and ensure the system performance under noisy
conditions in approximate computation applications.

SAAB boost the computation accuracy at the cost of consuming more power and
circuit area. As SNN usually consumes much less area and power compared with the
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ANN, there is a chance to integrate multiple SNNs under the same circuit resource
limitation of ANN. And these SNNs can be boosted together by the similar idea
of SAAB. However, the inherent attributions of SNN systems should be considered
when designing the boosting algorithm. According to our observation, there are two
types of errors in the SNN-based classification tasks: (1) a traditional type: more
than one neuron in the output layer spikes and the neuron spiking the most is not the
target neuron; and (2) a special type of SNN: no neuron in the output layer spikes; It
is interesting to observe that most of the wrong trials are the special type and it can
be reduced slightly when increasing the input spike counts. We regard such samples
as the difficult classifying cases. When seeking for the possibility to make up the
performance loss after transferring ANN to SNN with a boosting-based method,
this problem should be considered.

11.5 Conclusion

In this chapter, we first introduce the background knowledge of SNN and metal-
oxide resistive switching random-access memory (RRAM). Then, we compare
different training algorithms of SNN for real-world applications, and demonstrate
that the Neural Sampling method is much more effective than other methods.
We also explore the performance and energy efficiency by building the SNN-
based energy efficient system for real time classification with RRAM devices. We
implement different training algorithms of SNN, including Spiking Time Dependent
Plasticity (STDP) and Neural Sampling method. Our RRAM-based SNN systems
for these two training algorithms show good power efficiency and recognition
performance on real-time classification tasks, e.g., the MNIST digit recognition.
Finally, we discuss a possible direction to further improve the classification accuracy
by boosting multiple SNNs.

However, there are still many challenges remaining in this spiking neural network
structure. For example, the encoding mechanism from original data to spiking is
not quite clear. It perhaps has a huge effect on system performance and power
efficiency. Thus, how to design a proper encoding mechanism is one possible
method of improving the performance of the system. In addition, the non-ideal
circuit condition (e.g., the interconnection effect, the input variation) should be
considered for future RRAM-based system design.
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