
Chapter 1
Scaling the Java Virtual Machine
on a Many-Core System

Karthik Ganesan, Yao-Min Chen, and Xiaochen Pan

1.1 Introduction

Today, many big data applications use the Java SE platform [13], also called
Java Virtual Machine (JVM), as the run-time environment. Examples of such
applications include Hadoop Map Reduce [1], Apache Spark [3], and several graph
processing platforms [2, 11]. In this chapter, we call these applications the JVM
applications. Such applications can benefit from modern multicore servers with
large memory capacity and the memory bandwidth needed to access it. However,
with the enormous amount of data to process, it is still a challenging mission for
the JVM platform to scale well with respect to the needs of big data applications.
Since the JVM is a multithreaded application, one needs to ensure that the JVM
performance can scale well with the number of threads. Therefore, it is important to
understand and improve performance and scalability of JVM applications on these
multicore systems.

To be able to scale JVM applications most efficiently, the JVM and the various
libraries must be scalable across multiple cores/processors and be capable of
handling heap sizes that can potentially run into a few hundred gigabytes for some
applications. While such scaling can be achieved by scaling-out (multiple JVMs)
or scaling-up (single JVM), each approach has its own advantages, disadvantages,
and performance implications. Scaling-up, also known as vertical scaling, can be
very challenging compared to scaling-out (also known as horizontal scaling), but
also has a great potential to be resource efficient and opens up the possibility

K. Ganesan
Oracle Corporation, 5300 Riata Park Court Building A, Austin, TX 78727, USA
e-mail: karthik.ganesan@oracle.com

Y.-M. Chen (�) • X. Pan
Oracle Corporation, 4180 Network Circle, Santa Clara, CA 95054, USA
e-mail: yaomin.chen@oracle.com; deb.pan@oracle.com

© Springer International Publishing AG 2017
A. Chattopadhyay et al. (eds.), Emerging Technology and Architecture
for Big-data Analytics, DOI 10.1007/978-3-319-54840-1_1

3

mailto:karthik.ganesan@oracle.com
mailto:yaomin.chen@oracle.com
mailto:deb.pan@oracle.com

4 K. Ganesan et al.

for features like multi-tenancy. If done correctly, scaling-up usually can achieve
higher CPU utilization, putting the servers operating in a more resource and energy
efficient state. In this work, we restrict ourselves to the challenges of scaling-up on
enterprise-grade systems to provide a focused scope. We elaborate on the various
performance bottlenecks that ensue when we try to scale up a single JVM to multiple
cores/processors, discuss the potential performance degradation that can come out
of these bottlenecks, provide solutions to alleviate these bottlenecks, and evaluate
their effectiveness using a representative Java workload.

To facilitate our performance study we have chosen a business analytics work-
load written in the Java language because Java is one of the most popular
programming languages with many existing applications built on it. Optimizing
JVM for a representative Java workload would benefit many JVM applications
running on the same platform. Towards this purpose, we have selected the LArge
Memory Business Data Analytics (LAMBDA) workload. It is derived from the
SPECjbb2013 benchmark,1;2 developed by Standard Performance Evaluation Cor-
poration (SPEC) to measure Java server performance based on the latest features
of Java [15]. It is a server side benchmark that models a world-wide supermarket
company with multiple point-of-sale stations, multiple suppliers, and a headquarter
office which manages customer data. The workload stores all its retail business data
in memory (Java heap) without interacting with an external database that stores data
on disks. For our study we modify the benchmark in such a way as to scale to very
large Java heaps (hundreds of GBs). We condition its run parameter setting so that
it will not suffer from an abnormal scaling issue due to inventory depletion.

As an example, Fig. 1.1 shows the throughput performance scaling on our
workload as we increase the number of SPARC T5 CPU cores from one to 16.3 By

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

Throughput Scaling over 16 Cores

Throughput scaling factor (measured) Throughput scaling factor (perfect scaling)

Fig. 1.1 Single JVM scaling on a SPARC T5 server, running the LAMBDA workload

1The use of SPECjbb2013 benchmark conforms to SPEC Fair Use Rule [16] for research use.
2The SPECjbb2013 benchmark has been retired by SPEC.
3Experimental setup for this study is described in Sect. 1.2.3.

1 Scaling the Java Virtual Machine on a Many-Core System 5

0

2

4

6

8

10

1 2 3 4 5 6 7 8
Number of sockets

Throughput Scaling over 8 Sockets

Throught scaling factor (measured) Throughput scaling factor (perfect scaling)

Fig. 1.2 Single JVM scaling on a SPARC M6 server with JDK8 Build 95

contrast, the top (“perfect scaling”) curve shows the ideal case where the throughput
increases linearly with the number of cores. In reality, there is likely certain system
level, OS, Java VM, or application bottleneck to prevent the applications from
scaling linearly. And quite often it is a combination of multiple factors that causes
the scaling to be non-linear. The main goal of the work described in this chapter is
to facilitate application scaling to be as close to linear as possible.

As an example of sub-optimal scaling, Fig. 1.2 shows the throughput perfor-
mance scaling on our workload as we increase the number of SPARC M6 CPU
nsockets from one to eight.4 There are eight processors (“sockets”) on an M6-8
server, and we can run the workload subject to using only the first N sockets. By
contrast, the top (“perfect scaling”) curve shows the ideal case where the throughput
increases linearly with the number of sockets. Below, we discuss briefly the common
factors that lead to sub-optimal scaling. We will expand on the key ideas later in this
chapter.

1. Sharing of data objects. When shared objects that are rarely written to are
cached locally, they have the potential to reduce space requirements and increase
efficiency. But, the same shared objects can become a bottleneck when being
frequently written to, incurring remote memory access latency in the order of
hundreds of CPU cycles. Here, a remote memory access can mean accessing the
memory not affined to the local CPU, as in a Non-Uniform Memory Access
(NUMA) system [5], or accessing a cache that is not affined to the local
core, in both cases resulting in a migratory data access pattern [8]. Localized
implementations of such shared data objects have proven to be very helpful in
improving scalability. A case study that we use to explain this is the concurrent
hash map initialization that uses a shared random seed to randomize the layout
of hash maps. This shared random seed object causes major synchronization
overhead when scaling an application like LAMBDA which creates many
transient hash maps.

4Experimental setup for this study is described in Sect. 1.2.3.

6 K. Ganesan et al.

2. Application and system software locks. On large systems with many cores, locks
in both user code and system libraries for serialized implementations can be
equally lethal in disrupting application scaling. Even standard system calls like
malloc in libc library tend to have serial portions which are protected by per-
process locks. When the same system call is invoked concurrently by multiple
threads of same process on a many-core system, these locks around serial por-
tions of implementation become a critical bottleneck. Special implementations of
memory allocator libraries like MT hot allocators [18] are available to alleviate
such bottlenecks.

3. Concurrency framework. Another major challenge involved in scaling is due
to inefficient implementations of concurrency frameworks and collection data
structures (e.g., concurrent hash maps) using low level Java concurrency control
constructs. Utilizing concurrency utilities like JSR166 [10] that provide high
quality scalable implementations of concurrent collections and frameworks has a
significant potential to improve scalability of applications. One such example is
performance improvement of 57% for a workload like LAMBDA derived out of
a standard benchmark when using JSR166.

4. Garbage collection. As a many-core system is often provisioned with a propor-
tionally large amount of memory, another major challenge in scaling a single
JVM on a large enterprise system involves efficiently scaling the Garbage
Collection (GC) algorithm to handle huge heap sizes. From our experience,
garbage collection pause times (stop-the-world young generation collections) can
have a significant effect on the response time of application transactions. These
pause times typically tend to be proportional to the nursery size of the Java
heap. To reduce the pause times, one solution is to eliminate serial portions of
GC phases, parallelizing them to remove such bottlenecks. One such case study
includes improvements to the G1 GC [6] to handle large heaps and a parallelized
implementation of “Free Cset” phase of G1, which has the potential to improve
the throughput and response time on a large SPARC system.

5. NUMA. The time spent collecting garbage can be compounded due to remote
memory accesses on a NUMA based system if the GC algorithm is oblivious
to the NUMA characteristics of the system. Within a processor, some cache
memories closest to the core can have lower memory access latencies compared
to others and similarly across processors of a large enterprise system, some
memory banks that are closest to the processor can have lower access latencies
compared to remote memory banks. Thus, incorporating the NUMA awareness
into the GC algorithm can potentially improve scalability. Most of the scaling
bottlenecks that arise out of locks on a large system also tend to become worse
on NUMA systems as most of the memory accesses to lock variables end up
being remote memory accesses.

The different scalability optimizations discussed in this chapter are accomplished
by improving the system software like the Operating System or the Java Virtual
Machine instead of changing the application code. The rest of the chapter is

1 Scaling the Java Virtual Machine on a Many-Core System 7

organized as follows: Sect. 1.2 provides the background including the methodolo-
gies and tools used in the study and the experimental setup. Section 1.3 addresses
the sharing of data objects. Section 1.4 describes the scaling of memory allocators.
Section 1.5 expounds on the effective usage of concurrency API. Section 1.6
elaborates on scalable Garbage Collection. Section 1.7 discusses scalability issues
in NUMA systems and Sect. 1.8 concludes with future directions.

1.2 Background

The scaling study is often an iterative process as shown in Fig. 1.3. Each iteration
consists of four phases: workload characterization, bottleneck identification, per-
formance optimization, and performance evaluation. The goal of each iteration is
to remove one or more performance bottlenecks to improve performance. It is an
iterative process because a bottleneck may hide other performance issues. When
the bottleneck is removed, performance scaling may still be limited by another
bottleneck or improvement opportunities which were previously overshadowed by
the removed bottleneck.

1. Workload characterization. Each iteration starts with characterization using
a representative workload. Section 1.2.1 describes selecting a representative
workload for this purpose. During workload characterization, performance tools
are used in monitoring and capturing key run-time status information and
statistics. Performance tools will be described in more detail in Sect. 1.2.2. The
result of the characterization is a collection of profiles that can be used in the
bottleneck identification phase.

2. Bottleneck identification. This phase typically involves modeling, hypothesis
testing, and empirical analysis. Here, a bottleneck refers to the cause, or limiting
factor, for sub-optimal scaling. The bottleneck often points to, but is not limited
to, inefficient process, thread or task synchronization, an inferior algorithm or
sub-optimal design and code implementation.

3. Performance optimization. Once a bottleneck is identified in the previous phase,
in the current phase we try to work out an alternative design or implementation to
alleviate the bottleneck. Several possible implementations may be proposed and
a comparative study can be conducted to select the best alternative. This phase
itself can be an iterative process where several alternatives are evaluated either
through analysis or through actual prototyping and subsequent testing.

Workload
Characterizat�on

Bo�leneck
Ident�f�cat�on

Performance
Opt�mizat�on

Performance
Evaluat�onApps Opt�mized

Performance

Fig. 1.3 Iterative process for performance scaling: (1) workload characterization, (2) bottleneck
identification, (3) performance optimization, and (4) performance evaluation

8 K. Ganesan et al.

4. Performance evaluation. With the implementation from the performance opti-
mization work in the previous phase, we evaluate whether the performance
scaling goal is achieved. If the goal is not yet reached even with the current
optimization, we go back to the workload characterization phase and start another
iteration.

At each iteration, Amdahl’s law [9] is put to practice in the following sense.
The goal of many-core scaling is to minimize the serial portion of the execution
and maximize the degree of parallelism (DOP) whenever parallel execution is
possible. For applications running on enterprise servers, the problem can be solved
by resolving issues in the hardware and the software levels. At the hardware level,
multiple hardware threads can share an execution pipeline and when a thread is
stalled from loading data from memory, other threads can proceed with useful
instruction execution in the pipeline. Similarly, at the software level, multiple
software threads are mapped to these hardware threads by the operating system in a
time-shared fashion. To achieve maximum efficiency, sufficient number of software
threads or processes are needed to keep feeding sequences of instructions to ensure
that the processing pipelines are busy. A software thread or process being blocked
(such as when waiting for a lock) can lead to reduction in parallelism. Similarly,
shared hardware resources can potentially reduce parallelism in execution due to
hardware constraints. While the problem, as defined above, consists of software-
level and hardware-level issues, in this chapter we focus on the software-level issues
and consider the hardware micro-architecture as a given constraint to our solution
space.

The iterative process continues until the performance scaling goal is reached or
adjusted to reflect what is actually feasible.

1.2.1 Workload Selection

In order to expose effectively the scaling bottlenecks of Java libraries and the JVM,
one needs to use a Java workload that can scale to multiple processors and large
heap sizes from within a single JVM without any inherent scaling problems in the
application design. It is also desirable to use a workload that is sensitive to GC
pause times as the garbage collector is one of the components that is most difficult
to scale when it comes to using large heap sizes and multiple processors. We have
found the LAMBDA workload quite suitable for this investigation. The workload
implements a usage model based on a world-wide supermarket company with an
IT infrastructure that handles a mix of point-of-sale requests, online purchases,
and data-mining operations. It exercises modern Java features and other important
performance elements, including the latest data formats (XML), communication
using compression, and messaging with security. It utilizes features such as the
fork-join pool framework and concurrent hash maps, and is very effective in
exercising JVM components such as Garbage Collector by tracking response times
as small as 10 ms in granularity. It also provides support for virtualization and cloud
environments.

1 Scaling the Java Virtual Machine on a Many-Core System 9

The workload is designed to be inherently scalable, both horizontally and
vertically using the run modes called multi-JVM and composite modes respectively.
It contains various aspects of e-commerce software, yet no database system is
used. As a result, the benchmark is very easy to install and use. The workload
produces two final performance metrics: maximum throughput (operations per
second) and weighted throughput (operations per second) under response time
constraint. Maximum throughput is defined as the maximum achievable injection
rate on the System under Test (SUT) until it becomes unsettled. Similarly weighted
throughput is defined as the geometric mean of maximum achievable Injection Rates
(IR) for a set of response time Service Level Agreements (SLAs) of 10, 50, 100,
200, and 500 ms using the 99th percentile data. The maximum throughput metric is a
good measurement of maximum processing capacity, while the weighted throughput
gives good indication of the responsiveness of the application running on a server.

1.2.2 Performance Analysis Tools

To study application performance scaling, performance observability tools are
needed to illustrate what happens inside a system when running a workload. The
performance tools used for our study include Java GC logs, Solaris operating
system utilities including cpustat, prstat, mpstat, lockstat, and the Solaris Studio
Performance Analyzer.

1. GC logs. The logs are very vital in understanding the time spent in garbage
collection, allowing us to specify correctly JVM settings targeting the most
efficient way to run the workload achieving the least overhead from GC pauses
when scaling to multiple cores/processors. An example segment is shown in
Fig. 1.4, for the G1 GC [6]. There, we see the breakdown of a stop-the-world
(STW) GC event that lasts 0.369 s. The total pause time is divided into four parts:
Parallel Time, Code Root Fixup, Clear, and Other. The parallel time represents
the time spent in the parallel processing by the 25 GC worker threads. The other
parts comprise the serial phase of the STW pause. As seen in the example,
Parallel Time and Other are further divided into subcomponents, for which
statistics are reported. At the end of the log, we also see the heap occupancy
changes from 50.2 GB to 3223 MB. The last line describes that the total user
time spent by all GC threads consists of 8.10 s in user land and 0.01 s in the
system (kernel), while the elapsed real time is 0.37 s.

2. cpustat. The Solaris cpustat [12] utility on SPARC uses hardware counters to
provide hardware level profiling information such as cache miss rates, accesses
to local/remote memory, and memory bandwidth used. These statistics are
invaluable in identifying bottlenecks in the system and ensure that we use the
system to the fullest potential. Cpustat provides critical information such as
system utilization in terms of cycles per instruction (CPI) and its reciprocal
instructions per cycle (IPC) statistics, instruction mix, branch prediction related

10 K. Ganesan et al.

Fig. 1.4 Example of a segment in the Garbage Collector (GC) log showing (1) total GC pause
time; (2) time spent in the parallel phase and the number GC worker threads; (3) amounts of time
spent in the Code Root Fixup and Clear CT, respectively; (4) amount of time spent in the other part
of serial phase; and (5) reduction in heap occupancy due to the GC

Fig. 1.5 An example of cpustat output that shows utilization related statistics. In the figure, we
only show the System Utilization section, where CPI, IPC, and Core Utilization are reported

statistics, cache and TLB miss rates, and other memory hierarchy related statis-
tics. Figure 1.5 shows a partial cpustat output that provides system utilization
related statistics.

3. prstat and mpstat. Solaris prstat and mpstat utilities [12] provide resource
utilization and context switch information dynamically to identify phase behavior
and time spent in system calls in the workload. This information is very useful
in finding bottlenecks in the operating system. Figures 1.6 and 1.7 are examples
of a prstat and mpstat output, respectively. The prstat utility looks at resource
usage from the process point of view. In Fig. 1.6, it shows that at time instant
2:13:11 the JVM process, with process ID 1472, uses 63 GB of memory, 90%
of CPU, and 799 threads while running the workload. However, at time 2:24:33,

1 Scaling the Java Virtual Machine on a Many-Core System 11

Fig. 1.6 An example of prstat output that shows dynamic process resource usage information. In
(a), the JVM process (PID 1472) is on cpu4 and uses 90% of the CPU. By contrast, in (b) the
process goes into GC and uses 5.8% of cpu2

Fig. 1.7 An example of mpstat output. In (a) we show the dynamic system activities when the
processor set (ID 0) is busy. In (b) we show the activities when the processor set is fairly idle

the same process has gone into the garbage collection phase, resulting in CPU
usage dropped to 5.8% and the number of threads reduced to 475. By contrast,
rather than looking at a process, mpstat takes the view from a vCPU (hardware
thread) or a set of vCPUs. In Fig. 1.7 the dynamic resource utilization and
system activities of a “processor set” is shown. The processor set, with ID
0, consists of 64 vCPUs. The statistics are taken during a sampling interval,
typically one second or 5 s. One can contrast the difference in system activities
and resource usage taken during a normal running phase (Fig. 1.7a) and during a
GC phase (Fig. 1.7b).

4. lockstat and plockstat. Lockstat [12] helps us to identify the time spent spinning
on system locks and plockstat [12] provides the same information regarding
user locks enabling us to understand the scaling overhead that is coming out of
spinning on locks. The plockstat utility provides information in three categories:
mutex block, mutex spin, and mutex unsuccessful spin. For each category it lists
the time (in nanoseconds) in descending order of the locks. Therefore, on the
top of the list is the lock that consumes the most time. Figure 1.8 shows an
example of plockstat output, where we only extract the lock on the top from
each category. For the mutex block category, the lock at address 0x10015ef00
was called 19 times during the capturing interval (1 s for this example). It was

12 K. Ganesan et al.

Fig. 1.8 An example of plockstat output, where we show the statistics from three types of locks

called by “libumem.so.1‘umem_cache_alloc+0x50” and consumed 66258 ns of
CPU time. The locks in the other categories, mutex spin and mutex unsuccessful
spin, can be understood similarly.

5. Solaris studio performance analyzer. Lastly, Solaris Studio Performance Ana-
lyzer [14] provides insights into program execution by showing the most
frequently executed functions, caller-callee information along with a timeline
view of the dynamic events in the execution. This information about the code
is also augmented with hardware counter based profiling information helping
to identify bottlenecks in the code. In Fig. 1.9, we show a profile taken while
running the LAMBDA workload. From the profile we can identify hot methods
that use a lot of CPU time. The hot methods can be further analyzed using the
call tree graph, such as the example shown in Fig. 1.10.

1.2.3 Experimental Setup

Two hardware platforms are used in our study. The first is a two-socket system
based on the SPARC T5 [7] processor (Fig. 1.11), the fifth generation multicore
microprocessor of Oracle’s SPARC T-Series family. The processor has a clock
frequency of 3.6 GHz, 8 MB of shared last level (L3) cache, and 16 cores where
each core has eight hardware threads, providing a total of 128 hardware threads,
also known as virtual CPUs (vCPUs), per processor. The SPARC T5-2 system used
in our study has two SPARC T5 processors, giving a total of 256 vCPUs available
for application use. The SPARC T5-2 server runs Solaris 11 as its operating system.
Solaris provides a configuration utility (“psrset”) to condition an application to use

1 Scaling the Java Virtual Machine on a Many-Core System 13

Fig. 1.9 An example of Oracle Solaris Studio Performer Analyzer profile, where we show the
methods ranked by exclusive cpu time

Fig. 1.10 An example of Oracle Solaris Studio Performer Analyzer call tree graph

only a subset of vCPUs. Our experimental setup includes running the LAMBDA
workload on configurations of 1 core (8 vCPUs), 2 cores (16 vCPUs), 4 cores (32
vCPUs), 8 cores (64 vCPUs), 1 socket (16 cores/128 vCPUs), and 2 sockets (32
cores/256 vCPUs).

The second hardware platform is an eight-socket SPARC M6-8 system that is
based on the SPARC M6 [17] processor (Fig. 1.12). The SPARC M6 processor has
a clock frequency of 3.6 GHz, 48 MB of L3 cache, and 12 cores. Same as SPARC
T5, each M6 core has eight hardware threads. This gives a total of 96 vCPUs per

14 K. Ganesan et al.

Fig. 1.11 SPARC T5
processor [7]

Fig. 1.12 SPARC M6 processor [17]

processor socket, for a total of 768 vCPUs for the full M6-8 system. The SPARC
M6-8 server runs Solaris 11. Our setup includes running the LAMBDA workload on
configurations of 1 socket (12 cores/96 vCPUs), 2 sockets (24 cores/192 vCPUs), 4
sockets (48 cores/384 vCPUs), and 8 sockets (96 cores/384 vCPUs).

Several JDK versions have been used in the study. We will call out the specific
versions in the sections to follow.

1 Scaling the Java Virtual Machine on a Many-Core System 15

1.3 Thread-Local Data Objects

A globally shared data object when protected by locks on the critical path of
application leads to the serial part of Amdahl’s law. This causes less than perfect
scaling. To improve degree of parallelism, the strategy is to “unshare” such data
objects that cannot be efficiently shared. Whenever possible, we try to use data
objects that are local to the thread, and not shared with other threads. This can be
more subtle than it sounds, as the following case study demonstrates.

Hash map is a frequently used data structure in Java programming. To minimize
the probability of collision in hashing, JDK 7u6 introduced an alternative hash map
implementation that adds randomness in the initiation of each HashMap object.
More precisely, the alternative hashing introduced in JDK 7u6 includes a feature
to randomize the layout of individual map instances. This is accomplished by
generating a random mask value per hash map. However, the implementation in JDK
7u6 uses a shared random seed to randomize the layout of hash maps. This shared
random seed object causes significant synchronization overhead when scaling an
application like LAMBDA which creates many transient hash maps during the run.
Using Solaris Studio Analyzer profiles, we observed that for an experiment run
with 48 cores of M6, CPUs were saturated and 97% of CPU time was spent in the
java.util.Random.nextInt() function achieving less than 15% of the system’s pro-
jected performance. The problem came out of java.util.Random.nextInt() updating
global state, causing synchronization overhead as shown in Fig. 1.13.

Fig. 1.13 Scaling bottleneck due to java.util.Random.nextInt

16 K. Ganesan et al.

S
ca

lin
g

F
ac

to
r

Fig. 1.14 LAMBDA Scaling with ThreadLocalRandom on M6 platform

The OpenJDK bug JDK-8006593 tracks the aforementioned issue and uses a
thread-local random number generator, ThreadLocalRandom to resolve the prob-
lem, thereby eliminating the synchronization overhead and improving performance
of the LAMBDA workload significantly. When using the ThreadLocalRandom
class, a generated random number is isolated to the current thread. In particular,
the random number generator is initialized with an internally generated seed.
In Fig. 1.14, we can see that the 1-to-4 processor scaling improved significantly
from a scaling factor of 1.83 (when using java.util.Random) to 3.61 (when using
java.util.concurrent.ThreadLocalRandom). The same performance fix improves the
performance of a 96-core 8-processor large M6 system by 4.26 times.

1.4 Memory Allocators

Many in-memory business data analytics applications allocate and deallocate
memory frequently. While Java uses an internal heap and most of the allocations
happen within this heap, there are components of applications that end up allocating
outside the Java heap using native memory allocators provided by the operating
system. One such commonly seen component would be native code, which are
code parts written specific to a hardware and operating system platform accessed
using the Java Native Interface. Native code uses system malloc() to dynamically
allocate memory. Many business analytics applications use crypto functionality for
security purposes and most of the implementations for crypto functions are hand
optimized native code which allocates memory outside the Java heap. Similarly,
network I/O components are also frequently implemented to allocate and access
memory outside the Java heap. In business analytics applications, we see many such
crypto and network I/O functions used regularly resulting in calls to the OS system
call malloc() from within the JVM.

Most modern operating systems, like Solaris, have a heap segment, which allows
for dynamic allocation of space during run time using system calls such as malloc().
When such a previously allocated object is deallocated, the space used by the object

1 Scaling the Java Virtual Machine on a Many-Core System 17

can be reused. For the most efficient allocation and reuse of space, the solution is
to maintain a heap inventory (alloc/free list) stored in a set of data structures in
the process address space. In this way, calling free() does not return the memory
back to the system; it is put in the free-list. The traditional implementation (such
as the default memory allocator in libc) protects the entire inventory using a single
per-process lock. Calls to memory allocation and de-allocation routines manipulate
this set of data structures while holding the lock. This single lock causes a potential
performance bottleneck when we scale a single JVM to a large number of cores
and the target Java application has malloc() calls from components like network
I/O or crypto. When we profiled the LAMBDA workload using Solaris Studio
Analyzer, we found that the malloc() calls were showing higher than expected CPU
time. A further investigation using the lockstat and plockstat tools revealed a highly
contended lock called the depot lock. The depot lock protects the heap inventory
of free pages. This motivated us to explore scalable implementations of memory
allocators.

A set of newer memory allocators, called Multi-Thread (MT) Hot allocators [18],
partition the inventory and the associated locks into arrays to reduce the contention
on the inventory. A value derived from the caller’s CPU ID is used as an index into
the array. It is worth noting that a slight side effect of this approach is that it can
cause more memory usage. This happens because instead of a single free-list of
memory, we now have a disjoint set of free-lists. This tends to require more space
since we will have to ensure each free-list has sufficient memory to avoid run-time
allocation failures.

The libumem [4] memory allocator is an MT-Hot allocator included in Solaris.
To evaluate the improvement from this allocator, we use the LD_PRELOAD
environment variable to preload this library, there by malloc() implementation in this
library is used over the default implementation in the libc library. The improvement
in performance seen when using libumem over libc is shown in Fig. 1.15. With
the MT-hot allocator, the performance in terms of throughput increases by 106%,
213%, and 478% for 8-core (half processor), 16-core (1 processor), and 32-core

%
 Im

pr
ov

em
en

t
in

 th
ro

ug
hp

ut

Fig. 1.15 LAMBDA workload throughput improvement with MT-hot alloc over libc malloc() on
T5-2

18 K. Ganesan et al.

(2 processors) configurations, respectively, on T5-2 in comparison to malloc() in
libc. Note that while JVM uses mmap(), instead of malloc(), for allocation of its
garbage-collectable heap region, the JNI part of JVM does use malloc(), especially
for the crypto and security related processing. The workload LAMBDA has a
significant part of operation in crypto and security, so the effect of MT Hot allocator
is quite significant. After switching to an MT-Hot allocator, the hottest observed
lock “depot lock” in the memory allocator disappeared and reduced the time spent
in locks by a factor of 21. This confirmed the necessity of an MT-Hot memory
allocator for successful scaling.

1.5 Java Concurrency API

Ever since JDK 1.2, Java has included a standard set of collection classes called
the Java collections framework. A collection is an object that represents a group
of objects. Some of the fundamental and popularly used collections are dynamic
arrays, linked lists, trees, queues, and hashtables. The collections framework is
a unified architecture that enables storage and manipulation of the collections in
a standard way, independent of underlying implementation details. Some of the
benefits of the collections framework include reduced programming effort by pro-
viding data structures and algorithms for programmers to use, increased quality from
high performance implementation and enabling reusability and interoperability. The
collection framework is used extensively in almost every Java program these days.
While these pre-implemented collections make the job of writing single threaded
application so much easier, writing concurrent multithreaded programs is still a
difficult job. Java provided low level threading primitives such as synchronized
blocks, Object.wait and Object.notify, but these were too fine grained facilities
forcing programmers to implement high level concurrency primitives, which are
tediously hard to implement correctly and often were non-performant.

Later, a concurrency package, comprising several concurrency primitives and
many collection-related classes, as part of the JSR 166 [10] library, was devel-
oped. The library was aimed at providing high quality implementation of classes
to include atomic variables, special-purpose locks, barriers, semaphores, high
performant threading utilities like thread pools and various core collections like
queues and hashmaps designed and optimized for multithreaded programming. The
concurrency APIs developed by the JSR 166 working group were included as part
of the JDK 5.0. Since then both Java SE 6 and Java SE 7 releases introduced
updated versions of the JSR 166 APIs as well as several new additional APIs.
Availability of this library relieves the programmer from redundantly crafting these
utilities by hand, similar to what the collections framework did for data structures.
Our early evaluation of Java SE 7 found a major challenge in scaling from the
implementations of concurrent collection data structures (such as concurrent hash
maps) using low level Java concurrency control constructs. We explored utilizing
concurrency utilities from JSR 166, leveraging the scalable implementations of

1 Scaling the Java Virtual Machine on a Many-Core System 19

concurrent collections and frameworks and saw very significant improvement in the
scalability of applications. Specifically, the LAMBDA workload code uses the Java
class java.util.concurrent.ConcurrentHashMap. The efficiency of its underlying
implementation affects performance quite significantly. For example, comparing the
ConcurrentHashMap implementation of JDK8 over JDK7, there is an improvement
of about 57% in throughput due to the improved JSR 166 implementation.

1.6 Garbage Collection

Automatic Garbage Collection (GC) is the cornerstone of memory management
in Java enabling developers to allocate new objects without worrying about deal-
location. The Garbage Collector reclaims memory for reuse ensuring that there
are no memory leaks and also provides security from vulnerabilities in terms of
memory safety. But, automatic garbage collection comes at a small performance
cost for resolving these memory management issues. It is an important aspect of
real world enterprise application performance, as GC pause times translate into
unresponsiveness of an application. Shorter GC pauses will help the applications
to meet more stringent response time requirements. When heap sizes run into a few
hundred gigabytes on contemporary many-core servers, achieving low pause times
require the GC algorithm to scale efficiently with the number of cores. Even when
an application and the various dependent libraries are ensured to scale well without
any bottlenecks, it is important that the GC algorithm also scales well to achieve
scalable performance.

It may be intuitive to think that the garbage collector will identify and eliminate
dead objects. But, in reality it is more appropriate to say that the garbage collector
rather tracks the various live objects and copies them out, so that the remaining
space can be reclaimed. The reason that such an implementation is preferred in
the modern collectors is that, most of the objects die young and it is much faster
to copy the fewer remaining live objects out than tracking and reclaiming the
space of each of the dead objects. This will also give us a chance to compact the
remaining live objects ensuring a defragmented memory. Modern garbage collectors
have a generational approach to this problem, maintaining two or more allocation
regions (generations) with objects grouped into these regions based on their age. For
example, the G1 GC [6] reduces heap fragmentation by incremental parallel copying
of live objects from one or more sets of regions (called Collection Set or CSet in
short) into different new region(s) to achieve compaction. The G1 GC [6] tracks
references into regions using independent Remembered Sets (RSets). These RSets
enable parallel and independent collection of these regions because each region’s
RSet can be scanned independently for references into that region as opposed to
scanning the entire heap. The G1 GC has a multiphase complex algorithm that has
both parallel and serial code components contributing to Stop The World (STW)
evacuation pauses and concurrent collection cycles.

20 K. Ganesan et al.

With respect to the LAMBDA workload, pauses due to GC directly affect the
response time metric monitored by the benchmark. If the GC algorithm does not
scale well, long pauses will exceed the latency requirements of the benchmark
resulting in lower throughput. In our experiments with monitoring the LAMBDA
workload on an M6 server, we had some interesting observations. While at the
regular throughput phase of the benchmark run, the system CPUs were fully utilized
almost at 100%. By contrast, there was much more CPU headroom (75%) during a
GC phase, hinting at possible serial bottlenecks in Garbage Collection. By collecting
and analyzing code profiles using Solaris Studio Analyzer, the time the worker
threads of the LAMBDA workload spend waiting on conditional variables increase
from 3%, for a 12-core (single-processor) run, to to 16%, for a 96-core (8-processor)
run on M6. This time was mostly spent in lwp_cond_wait() waiting for the young
generation stop-the-world garbage collection, observed to be in sync with the
GC events based on a visual timeline review of Studio Analyzer profiles. Further
the call stack of the worker threads consists of the SafepointSynchronize::block()
function consuming 72% of time clearly pointing at the scalability issue in garbage
collection.

G1 GC [6] provides a breakdown of the time spent in various phases to the user
via verbose GC logs. Analyzing these logs pointed to a major serial component
“Free Cset,” for which the processing time was proportional to the size of the heap
(mainly the nursery component responsible for the storage of the young objects).
This particular phase of the GC algorithm was not parallelized and some of the
considerations included the cost involved in thread creation for parallel execution.
While thread creation may be a major overhead and an overkill for small heaps,
such a cost can be amortized if the heap size is large and running into hundreds
of gigabytes. A parallelized implementation of the “Free Cset” phase was created
for testing purposes as part of the JDK bug JDK-8034842. We noticed that this
parallelized implementation for the “Free Cset” phase of G1 GC provided major
reduction in pause times for this phase for the LAMBDA workload. The pause times
for this phase went down from 230 ms to 37 ms for scaled runs on 8 processors (96
cores) of M6. The ongoing work in fully parallelizing the FreeCset phase is tracked
in the JDK bug report JDK-8034842. Also, we observed that a major part of the
scaling overhead that came out of garbage collection on large many-core systems
was from accesses to remote memory banks in a Non-Uniform Memory Access
(NUMA) system. We examine this impact further in the following subsection.

1.7 Non-uniform Memory Access (NUMA)

Most of the modern many-core systems are shared memory systems that have Non-
Uniform Memory Access (NUMA) latencies. Modern operating systems like Solaris
have memory (DRAM, cache) banks and CPUs classified into a hierarchy of locality
groups (lgroup). Each lgroup includes a set of CPU and memory banks, where the
leaf lgroups include the CPUs and memory banks that are closest to each other in

1 Scaling the Java Virtual Machine on a Many-Core System 21

Fig. 1.16 Machine with
single latency is represented
by only one lgroup

Fig. 1.17 Machine with multiple latency is represented by multiple lgroups

terms of access latency, with the hierarchy being organized similarly up to the root.
Figure 1.16 shows a typical system with a single memory latency, represented by
one lgroup. Figure 1.17 shows a system with multiple memory latencies, represented
by multiple lgroups. In this organization, the CPUs 1–3 belong to lgroup1 and will
have the least latency to access Memory I. Similarly, CPUs 4–6 to Memory II, CPUs
7–9 to Memory III, and CPUs 10–12 to Memory IV will have the least local access
latencies. When a CPU accesses a memory location that is outside its local lgroup,
a longer remote memory access latency will be incurred.

In systems with multiple lgroups, it would be most desirable to have the data
that is being accessed by the CPUs in their nearest lgroups, thus incurring shortest
access latencies. Due to high remote memory access latency, it is very important
that the operating system be aware of the NUMA characteristics of the underlying
hardware. Additionally, it is a major value add if the Garbage Collector in the Java
Virtual Machine is also engineered to take these characteristics into account. For
example, the initial allocation of space for each thread can be made so that it is
in the same lgroup as that of the CPU on which the thread is running. Secondly,
the GC algorithm can also make sure that when data is compacted or copied from
one generation to another, some preference can be given to ensure that the data
is not copied to a remote lgroup with respect to the thread that is most frequently
accessing the data. This will enable easier scaling across multiple cores and multiple
processors of large enterprise systems.

22 K. Ganesan et al.

To understand the impact of remote memory accesses on the performance of
garbage collector and the application, we profiled the LAMBDA workload with the
help of pmap and Solaris tools cpustat and busstat, breaking down the distribution
of heap/stack to various lgroups. The Solaris tool pmap provides a snapshot of
process data at a given point of time in terms of the number of pages, size of pages,
and the lgroup in which the pages are resident. This can be used to get a spatial
breakdown of the Java heap to various lgroups. The utility cpustat on SPARC uses
hardware counters to provide hardware level profiling information such as cache
miss rates and access latencies to local and remote memory banks. Similarly, the
busstat utility provides memory bandwidth usage information, again broken down at
memory bank/lgroup granularity. Our initial set of observations using pmap showed
that the heap was not distributed uniformly across the different lgroups and that a
few lgroups were used more frequently than the rest. Cpustat and bustat information
corroborated this observation, showing high access latencies and bandwidth usage
for these stressed set of lgroups.

To alleviate this, we tried using key JVM flags which provide hints to the
GC algorithm about memory locality. First, we found that the usage of the flag
-XX:+UseNUMAInterleaving can be indispensable in hinting to the JVM to dis-
tribute the heap equally across different lgroups and avoid bottlenecks that will arise
from data being concentrated on a few lgroups. While -XX:+UseNUMAInterleaving
will only avoid concentration of data in particular banks, flags like -XX:+UseNUMA
when used with Parallel Old Garbage Collector have the potential to tailor the
algorithm to be aware of NUMA characteristics and increase locality. Further, oper-
ating system flags like lpg_alloc_prefer in Solaris 11 and lgrp_mem_pset_aware
in Solaris 12, when set to true, hint to the OS to allocate large pages in the local
lgroup rather than allocating them in a remote lgroup. This can be very effective
in improving memory locality in scaled runs. The lpg_alloc_prefer flag, when set
to true can increase the throughput of the LAMBDA workload by about 65% on
the M6 platform, showing the importance of data locality. While ParallelOld is an
effective stop-the-world collector, concurrent garbage collectors like CMS and G1
GC [6] are most useful in real world response time critical application deployments.
The enhancement requests that track the implementation of NUMA awareness into
G1 GC and CMS GC are JDK-7005859 and JDK-6468290.

1.8 Conclusion and Future Directions

We present an iterative process for performance scaling JVM applications on
many-core enterprise servers. This process consists of workload characterization,
bottleneck identification, performance optimization, and performance evaluation in
each iteration. As part of workload characterization, we first provide an overview
of the various tools that are provided as part of modern operating systems most
useful to profile the execution of workloads. We use a data analytics workload,
LAMBDA as an example to explain the process of performance scaling. We identify

1 Scaling the Java Virtual Machine on a Many-Core System 23

various bottlenecks in scaling this application such as synchronization overhead
due to shared objects, serial resource bottleneck in memory allocation, lack of
usage of high level concurrency primitives, serial implementations of Garbage
Collection phases, and uneven distribution of heap on a NUMA machine oblivious
to the NUMA characteristics by using the profiled data. We further discuss in
depth the root cause of each bottleneck and present solutions to address them.
These solutions include unsharing of shared objects, usage of multicore friendly
allocators such as MT-Hot allocators, high performance concurrency constructs as
in JSR166, parallelized implementation of Garbage Collection phases, and NUMA
aware garbage collection. Taken together, the overall improvement for the proposed
solutions is more than 16 times on an M6-8 server for the LAMBDA workload in
terms of maximum throughput.

Future directions include hardware accelerations to address scaling bottlenecks,
increased emphasis on the response time metric where GC performance and
scalability will be a key factor, and horizontal scaling aspects of big data analytics
where disk and network I/O will play crucial roles.

Acknowledgements We would like to thank Jan-Lung Sung, Pallab Bhattacharya, Staffan
Friberg, and other anonymous reviewers for their valuable feedback to improve the chapter.

References

1. Apache, Apache Hadoop (2017). Available: https://hadoop.apache.org
2. Apache Software Foundation, Apache Giraph (2016). Available https://giraph.apache.org
3. Apache Spark (2017). Available https://spark.apache.org
4. Oracle, Analyzing Memory Leaks Using the libumem Library [online]. https://docs.oracle.

com/cd/E19626-01/820-2496/geogv/index.html
5. W. Bolosky, R. Fitzgerald, M. Scott, Simple but effective techniques for numa memory

management. SIGOPS Oper. Syst. Rev. 23(5), 19–31 (1989)
6. D. Detlefs, C. Flood, S. Heller, T. Printezis, Garbage-first garbage collection, in Proceedings

of the 4th International Symposium on Memory Management (2004), pp. 37–48
7. J. Feehrer, S. Jairath, P. Loewenstein, R. Sivaramakrishnan, D. Smentek, S. Turullols,

A. Vahidsafa, The Oracle Sparc T5 16-core processor scales to eight sockets. IEEE Micro
33(2), 48–57 (2013)

8. K. Ganesan, L.K. John, Automatic generation of miniaturized synthetic proxies for target
applications to efficiently design multicore processors. IEEE Trans. Comput. 63(4), 833–846
(2014)

9. M.D. Hill, M.R. Marty, Amdahl’s law in the multicore era. Computer 41(07), 33–38 (2008)
10. D. Lea, Concurrency JSR-166 interest site (2014). http://gee.cs.oswego.edu/dl/concurrency-

interest/
11. Neo4j, Neo4j graph database (2017). Available https://neo4j.com
12. Oracle, Man pages section 1M: system Administration Commands (2016). [Online]. Available

http://www.oracle.com
13. Oracle Corporation, Java SE platform (2017). Available http://www.oracle.com/technetwork/

java/javase/overview/index.html
14. Oracle solaris studio performance analyzer (2014). http://docs.oracle.com/cd/E18659_01/html/

821\discretionary-1379/

https://hadoop.apache.org
https://giraph.apache.org
https://spark.apache.org
https://docs.oracle.com/cd/E19626-01/820-2496/geogv/index.html
https://docs.oracle.com/cd/E19626-01/820-2496/geogv/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
https://neo4j.com
http://www.oracle.com
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://docs.oracle.com/cd/E18659_01/html/821discretionary {-}{}{}1379/
http://docs.oracle.com/cd/E18659_01/html/821discretionary {-}{}{}1379/

24 K. Ganesan et al.

15. C. Pogue, A. Kumar, D. Tollefson, S. Realmuto, Specjbb2013 1.0: an overview, in Proceedings
of the 5th ACM/SPEC International Conference on Performance Engineering (2014), pp. 231–
232

16. Standard Performance Evaluation Corporation, Spec fair use rule. academic/research usage
(2015). [Online]. Available http://www.spec.org/fairuse.html#Academic

17. A. Vahidsafa, S. Bhutani, SPARC M6 oracle’s next generation processor for enterprise systems,
in Hotchips 25 (2013). [Online]. Available http://www.hotchips.org/wp-content/uploads/hc_
archives/hc25/HC25.90-Processors3-epub/HC25.27.920-SPARC-M6-Vahidsafa-Oracle.pdf

18. R.C. Weisner, How memory allocation affects performance in multithreaded programs
(2012). http://www.oracle.com/technetwork/articles/servers-storage-dev/mem\discretionary-
alloc\discretionary-1557798.html

http://www.spec.org/fairuse.html#Academic
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.90-Processors3-epub/HC25.27.920-SPARC-M6-Vahidsafa-Oracle.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.90-Processors3-epub/HC25.27.920-SPARC-M6-Vahidsafa-Oracle.pdf
http://www.oracle.com/technetwork/articles/servers-storage-dev/memdiscretionary {-}{}{}allocdiscretionary {-}{}{}1557798.html
http://www.oracle.com/technetwork/articles/servers-storage-dev/memdiscretionary {-}{}{}allocdiscretionary {-}{}{}1557798.html

	1 Scaling the Java Virtual Machine on a Many-Core System
	1.1 Introduction
	1.2 Background
	1.2.1 Workload Selection
	1.2.2 Performance Analysis Tools
	1.2.3 Experimental Setup

	1.3 Thread-Local Data Objects
	1.4 Memory Allocators
	1.5 Java Concurrency API
	1.6 Garbage Collection
	1.7 Non-uniform Memory Access (NUMA)
	1.8 Conclusion and Future Directions
	Appendix
	References

