
Chapter 16
Expected Present and Final Value of an
Annuity when some Non-Central Moments of
the Capitalization Factor are Unknown:
Theory and an Application using R

Salvador Cruz Rambaud, Fabrizio Maturo and Ana María Sánchez Pérez

Abstract The aim of this chapter is the development of three approaches for obtain-

ing the value of an n-payment annuity, with payments of 1 unit each, when the interest

rate is random. To calculate the value of these annuities, we are going to assume that

only some non-central moments of the capitalization factor are known. The first tech-

nique consists in using a tetraparametric function which depends on the arctangent

function. The second expression is derived from the so-called quadratic discount-

ing whereas the third approach is based on the approximation of the mathematical

expectation of the ratio of two random variables by Mood et al. (1974). A compari-

son of these methodologies through an application, using the R statistical software,

shows that all of them lead to different results.

Keywords Annuity ⋅ Random interest rate ⋅ Tetraparametric function ⋅ Discount

factor ⋅ Mood et al. approximation

16.1 Introduction

This work aims to determine an approximate expression to obtain the present, or

final, value of an annuity when the interest rate is random. In annuities assessment,

fixing the interest rate has a great relevance because even small changes can result
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in major changes in the total annuity value. Thus, the determination of the interest

rate value must be carried out as accurately as possible (Cruz Rambaud and Sánchez

Pérez 2016; Cruz Rambaud et al. 2015).

Under the traditional approach, interest rates have been treated deterministically.

In certainty contexts, the use of a single possible value for each period may be enough

(Villalón et al. 2009). However, for those operations developed in uncertain environ-

ments, it is more reasonable the formulation of potential scenarios, which are subse-

quently reduced to one by statistical treatment (Cruz Rambaud and Valls Martínez

2002).

The determination of the interest rate value must be based on the current situation,

as well as on its possible future evolution, of both the company and its environment.

In this way, if prospects are unfavorable, interest rates must be higher, compared

to more favorable situations, and hence the operation value is reduced as a conse-

quence of the risk attached to it. However, in most cases, determining the interest

rate of a financial operation is subject to the risk propensity/aversion of the agent to

be responsible for the assessment (Suárez Suárez 2005). In this sense, the adopted

interest rate would be affected by a degree of subjectivity that may over/undervalue

the project.

We will consider the interest rate as a random variable which is represented as

X. Therefore, the capitalization factor, 1 + i (Mira Navarro 2014), is also a random

variable represented asU. Obviously, it is verified thatU = 1 + X, so the relationship

between means and standard deviations of both variables is:

𝜇U = 1 + 𝜇X

and

𝜎U = 𝜎X .

As a result, if X is defined in an interval [a, b], U will be in the interval

[1 + a, 1 + b]. Henceforth, when the mean and standard deviation are mentioned

we will refer to the random variable U, unless otherwise specified.

In this case, the final value of an n-payment annuity, with payments of 1 unit each,

made at the end of every year (annuity-immediate), valued at the rate X = U − 1,

would be the following random variable:

sn U−1 = 1 + U + U2 +⋯ + Un−1
. (16.1)

Thus, its expected value is:

E(sn U−1) = E(1) + E(U) + E(U2) +⋯ + E(Un−1) = 1 + 𝜇 + 𝜇2 +⋯ + 𝜇n−1.

On the other hand, the final expected value of an n-payment annuity, with pay-

ments of 1 unit each, made at the beginning of every year (annuity-due), valued at

the rate X, would be:
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E(s̈n U−1) = E(U) + E(U2) +⋯ + E(Un) = 𝜇 + 𝜇2 +⋯ + 𝜇n, (16.2)

where

𝜇r = E(Ur)

is the moment of order r with respect to the origin of the random variable U. In the

case that the random variable is discrete, it adopts the following expression:

𝜇r = E(Ur) =
k∑

i=1
piuri , (16.3)

where pi is the probability that the random variable takes the value ui. In the contin-

uous case, the expression of the moment of order r is:

𝜇r = E(Ur) =

umax

∫
umin

uf (u)du, (16.4)

for all values of r, being f (u) the density function of the random variable U. On the

other hand, the mean of order r is defined as the r-th root of the moment of order r
which, in the discrete case, adopts the following expression:

mr =

( k∑

i=1
piuri

)1∕r

, (16.5)

whereas in the continuous case, the expression of the mean of order r is:

mr =
⎛
⎜
⎜⎝

umax

∫
umin

urf (u)du
⎞
⎟
⎟⎠

1∕r

, (16.6)

for all values of r.
Below, we are going to study the limit L of the mean of order r, when r tends to

+∞:

L ∶= lim
r→+∞

mr. (16.7)

To do this, take into account that the sequence {mr}+∞r=−∞ and, in general, the func-

tion g(x) = mx, being −∞ < x < +∞, is increasing since, according to the inequality

of Lyapunov, for 1 < r < s, it is verified that [E(Ur)]1∕r ≤ [E(Us)]1∕s. Moreover, as

umax (maximum value of the random variable U) is an upper bound of g(x), we can

deduce that mr has a limit at infinity which will be denoted by L.
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Obviously, L ≤ umax. Let us suppose L < umax. In this case, there would be a u0,

such that L < u0 < umax. Below, we decompose the integral which definesmr in other

two as follows:

mr =
(

∫
u0

umin

urf (u)du + ∫
umax

u0
urf (u)du

)1∕r

>

(

∫
umax

u0
urf (u)du

)1∕r

>

>

(
ur0 ∫

umax

u0
f (u)du

)1∕r

= u0k1∕r,

where the density function’s integral between u0 and umax, ∫ umax
u0

f (u)du, has been

represented by k. Clearly, it is verified that 0 < k < 1. So,

L = lim
r→+∞

mr ≥ u0 lim
r→+∞

k1∕r = u0 ⋅ 1 = u0,

in contradiction with the fact that L < u0. Therefore, one has:

L = lim
r→+∞

mr = umax. (16.8)

Analogously, it would be shown that l ∶= lim
r→−∞

mr = umin. Consequently, the

function mx, −∞ < x < +∞, has a horizontal asymptote at y = umin and another one

at y = umax, so it changes its concavity (or its convexity), which means having, at

least, an inflection point.

In this chapter we will analyze the mathematical expression of the present and

final expected value of an n-payment annuity, with payments of 1 unit each, made

at the end/beginning of every year (annuity-immediate and annuity-due), whose cal-

culation entails a random interest rate. Specifically, in this work these expected val-

ues are analyzed when only some non-central moments of the capitalization factor

are known. In Sect. 16.2, an approach on the basis of a tetraparametric function is

studied. On the other hand, in Sect. 16.3, it is developed an approach by using the

so-defined quadratic discounting. In Sect. 16.4, the expression to calculate the value

of an annuity is by employing the approximate formula by Mood et al. (1974). In

Sect. 16.5, we present a practical example using the R statistical software. Finally,

Sect. 16.6 summarizes and concludes.

16.2 The Tetraparametric Function Approach

As a result of the reasoning shown in Sect. 16.1, the curve which represents the mean

of order r is an increasing function of r which can be seen in Fig. 16.1. Thus, if Q
denotes the quadratic mean, or mean of order 2, H is the harmonic mean, or mean
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Fig. 16.1 Graphical

representation of the mean of

order r (Calot 1974)

of order −1, and G is the geometric mean or mean of order 0, we have the relations

shown in Fig. 16.1.

In effect, according to the Lyapunov inequality (Fisz 1963), if the moments of

order r of a random variable X exist for arbitrary values of r, it is verified the follow-

ing inequality:

𝜇
1∕r
r ≤ 𝜇

1∕(r+1)
r+1 ; (16.9)

thus, it is verified the following relationship between the corresponding means of

order r and r + 1:

mr ≤ mr+1. (16.10)

Consequently, the curve representing the mean of order r can be fitted to the fol-

lowing tetraparametric function which exhibits its same shape:

g(r) = a ⋅ arctan(br + c) + d, (16.11)

where, in a beginning, a and b are parameters greater than 0. Under these circum-

stances, we have:

lim
r→+∞

g(r) = a𝜋
2
+ d = umax

and

lim
r→−∞

g(r) = −a𝜋
2
+ d = umin.

By adding both equations, we deduce that 2d = umin + umax, from where we can

obtain the value of d:

d =
umin + umax

2
. (16.12)

On the other hand, by subtracting both equations, we obtain that 𝜋a = umax −
umin; thus, the parameter a is given by:

a =
umax − umin

𝜋
. (16.13)



238 S. Cruz Rambaud et al.

Observe that, as expected, a > 0. As g(1) = 𝜇1 and g(2) = 𝜇
1∕2
2 , one has:

a ⋅ arctan(b + c) + d = 𝜇1 (16.14)

and

a ⋅ arctan(2b + c) + d = 𝜇
1∕2
2 , (16.15)

from where

b + c = tan
𝜇1 − d

a
(16.16)

and

2b + c = tan
𝜇
1∕2
2 − d
a

. (16.17)

By subtracting the above two equations, we obtain:

b = tan
𝜇
1∕2
2 − d
a

− tan
𝜇1 − d

a
, (16.18)

which confirms that b > 0. Once determined a, b, c, and d, we can approximate the

final expected value of an n-payment annuity, with payments of 1 unit each, made at

the end/beginning of every year (annuity-immediate/annuity-due), valued at the rate

X, by the following expressions:

E(sn U−1) = 1 + m1 + (m2)2 +⋯ + (mn−1)n−1 ≈ 1 +
n−1∑

s=1
[a ⋅ arctan(bs + c) + d]s

(16.19)

and

E(s̈n U−1) = m1 + (m2)2 +⋯ + (mn)n ≈
n∑

s=1
[a ⋅ arctan(bs + c) + d]s. (16.20)

On the other hand, the present expected value of an n-payment annuity, with pay-

ments of 1 unit each, made at the end/beginning of every year (annuity-immediate/

annuity-due), valued at the rate X, respectively, would be as follows:

E(an U−1) = (m−1)−1 + (m−2)−2 +⋯ + (m−n)−n ≈
n∑

s=1
[a ⋅ arctan(−bs + c) + d]−s

(16.21)
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and

E(än U−1) = 1 + (m−1)−1 +⋯ + (m−(n−1))−(n−1) ≈ 1 +
n−1∑

s=1
[a ⋅ arctan(−bs + c) + d]−s.

(16.22)

16.3 The Quadratic Discounting Approach

The variable which represents the expected present value of an n-payment annuity,

with payments of 1 unit each, made at the end of every year (annuity-immediate),

valued at the rate X, by using the exponential discounting is the following one:

an X = (1 + X)−1 + (1 + X)−2 + (1 + X)−3 +⋯ + (1 + X)−n (16.23)

or, equivalently, an X = 1−(1+X)−n

X
. Below, we can simplify Eq. (16.23) by using the

McLaurin formula. Indeed, by expanding the expression (1 + X)−t, we have that:

(1 + X)−t = 1 − tX + (−t)(−t − 1)
2!

X2 −⋯ (16.24)

In this sum, by removing all terms from the third one, we obtain that (1 + X)−t ≈
1 − tX + t2+t

2
X2

, which means that the present value may be approximately esti-

mated by replacing the exponential by the quadratic discounting. Once made this

simplification, the present value of an n-payment annuity, with payments of 1 unit

each, made at the end of every year (annuity-immediate), valued at the rate X, can

be calculated by using the following approximation:

an X =
(
1 − X 12 + 1

2
X2

)
+

(
1 − 2X + 22 + 2

2
X2

)
+⋯ +

(
1 − nX + n2 + n

2
X2

)
.

(16.25)

By applying the formulas of the sum of n first natural numbers and that of their

squares, we have:

an X = n − n(n + 1)
2

X + n(n + 1)
4

(
1 + 2n + 1

3

)
X2

.

Therefore,

E(an X) = n − n(n + 1)
2

E(X) + n(n + 1)
4

(
1 + 2n + 1

3

)
E(X2). (16.26)
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In the same way, the formula for the final value of an n-payment annuity, with

payments of 1 unit each, made at the end of every year (annuity-immediate), valued

at the rate X, after applying the aforementioned discount factor approach, would be

as follows:

sn X = n + (n − 1)n
2

X + (n − 1)n
4

(
1 + 2n − 1

3

)
X2

, (16.27)

from which

E(sn X) = n + (n − 1)n
2

E(X) + (n − 1)n
4

(
1 + 2n − 1

3

)
E(X2). (16.28)

In the case of an n-payment annuity, with payments of 1 unit each, made at the

beginning of every year (annuity-due), valued at the rate X, the expected present and

final values are given by:

E(än X) = n − (n − 1)n
2

E(X) + (n − 1)n
4

(
1 + 2n − 1

3

)
E(X2)

and

E(s̈n X) = n + n(n + 1)
2

E(X) + n(n + 1)
4

(
1 + 2n + 1

3

)
E(X2). (16.29)

16.4 The Mood et al. Approach

By using the approximate formula of the mathematical expectation of the ratio of

two random variables X and Y by Mood et al. (1974), introduced as well by Rice

(2006):

E
(X
Y

)
≈ E(X)

E(Y)
− cov(X,Y)

[E(Y)]2
+ E(X)

[E(Y)]3
var(Y), (16.30)

we can obtain the expression of the final expected value of an n-payment annuity,

with payments of 1 unit each, made at the end of every year (annuity-immediate),

valued at the rate X, as follows:

E(sn U−1) = E
(Un − 1
U − 1

)
≈

≈ E(Un − 1)
E(U − 1)

− cov(U − 1,Un − 1)
[E(U − 1)]2

+ E(Un − 1)
[E(U − 1)]3

var(U − 1).
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Thus, taking into account that (Fisz 1963):

var(U − 1) = var(U) = E(U2) − [E(U)]2 = 𝜇2 − 𝜇
2

and

cov(U − 1,Un − 1) = cov(U,Un) = E(Un+1) − E(Un)E(U) = 𝜇n+1 − 𝜇n𝜇,

we can write

E(sn U−1) ≈
𝜇n − 1
𝜇 − 1

−
𝜇n+1 − 𝜇n𝜇

(𝜇 − 1)2
+

𝜇n − 1
(𝜇 − 1)3

(𝜇2 − 𝜇
2). (16.31)

Analogously, the final expected value of an n-payment annuity, with payments of

1 unit each, made at the beginning of every year (annuity-due), valued at the rate X,

can be deduced. Indeed,

E(s̈n U−1) = E
(
Un−1 − U
U − 1

)
≈

≈ E(Un−1 − U)
E(U − 1)

− cov(Un+1 − U,U − 1)
[E(U − 1)]2

+ E(Un+1 − U)
[E(U − 1)]3

var(U − 1) =

=
𝜇n+1 − 𝜇

𝜇 − 1
−

𝜇n+2 − 𝜇n+1𝜇 − 𝜇2 + 𝜇
2

(𝜇 − 1)2
+

𝜇n+1 − 𝜇

(𝜇 − 1)3
(𝜇2 − 𝜇

2). (16.32)

The expected present value is:

E(an U−1) = E
( Un − 1
Un+1 − Un

)
≈ E(U − 1)

E(Un−1 − U)
− cov(Un+1 − Un

,Un − 1)
[E(Un+1 − Un)]2

+

+ E(Un − 1)
[E(Un+1 − Un)] 3

var(Un+1 − Un) =

= 𝜇 − 1
𝜇n+1 − 𝜇

−
𝜇2n+1 − 𝜇n+1𝜇n − 𝜇2n + 𝜇

2
n

(𝜇n+1 − 𝜇n)2
+

+
𝜇n − 1

(𝜇n+1 − 𝜇n)3
(𝜇2n+2 − 𝜇

2
n+1 + 𝜇2n − 𝜇

2
n − 2(𝜇2n+1 − 𝜇n+1𝜇n)),

in the case of an n-payment annuity, with payments of 1 unit each, made at the end

of every year (annuity-immediate), valued at the rate X, and
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E(än U−1) = E
(

Un+1 − U
Un+1 − Un

)
≈ E(Un+1 − U)

E(Un+1 − Un)
− cov(Un+1 − Un

,Un+1 − U)
[E(Un+1 − Un)]2

+

+ E(Un+1 − U)
[E(Un+1 − Un)]3

var(Un+1 − Un) =

=
𝜇n+1 − 𝜇

𝜇n+1 − 𝜇n
−

𝜇2n+2 − 𝜇
2
n+1 − 2𝜇n+2 + 2𝜇n+1𝜇 + 𝜇2 − 𝜇

2

(𝜇n+1 − 𝜇n)2
+

+
𝜇n+1 − 𝜇

(𝜇n+1 − 𝜇n)3
(𝜇2n+2 − 𝜇

2
n+1 + 𝜇2n − 𝜇

2
n − 2(𝜇2n+1 − 𝜇n+1𝜇n)),

in the case of an n-payment annuity, with payments of 1 unit each, made at the begin-

ning of every year (annuity-due), valued at the rate X.

16.5 A Numerical Example of the Expected Final Value
of an Annuity by Developing R Functions

Next, we are going to calculate the expected final value of a 6-payment annuity,

with payments of 1 unit each, made at the end/beginning of every year (annuity-

immediate/ annuity-due) by employing the different expressions developed in this

chapter. The present value calculation has been omitted since it can be carried

out similarly. Following we present some R functions to perform the proposed

approaches. Because we supposed that only some non-central moments of the capi-

talization factor are known, the three different approaches have been applied:

∙ The tetraparametric function approach.

∙ The quadratic discounting approach.

∙ The Mood et al. approach.

To calculate the mean and variance, we consider the historical data of Table 16.1,

specifically the monthly updates of Euribor from January 2015 to April 2016.

Before applying our functions it is necessary to load the data and install two R

packages with the following codes:

d a t a=c ( 0 . 2 9 8 , 0 . 2 5 5 , 0 . 2 1 2 , 0 . 1 8 0 , 0 . 1 6 5 , 0 . 1 6 3 , 0 . 1 6 7 , 0 . 1 6 1 ,

0 . 1 5 4 , 0 . 1 2 8 , 0 . 0 7 9 , 0 . 0 5 9 , 0 . 0 4 2 , −0 . 0 0 8 , −0 . 0 1 2 , −0 . 0 0 2 )

i n s t a l l . p a c k a g e s ( " moments " )

l i b r a r y ( moments )

i n s t a l l . p a c k a g e s ( " l a b s t a t R " )

l i b r a r y ( l a b s t a t R )
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Table 16.1 Euribor (January

2015–April 2016). Source
Bank of Spain

Period % Euribor in 1 year

January 2015 0.298

February 2015 0.255

March 2015 0.212

April 2015 0.180

May 2015 0.165

June 2015 0.163

July 2015 0.167

August 2015 0.161

September 2015 0.154

October 2015 0.128

November 2015 0.079

December 2015 0.059

January 2016 0.042

February 2016 −0.008
March 2016 −0.012
April 2016 −0.002

Following a preliminary analysis, we obtain the following mean:

𝜇 = 1.12756398,

whereas the calculation of the standard deviation gives a value of

𝜎 = 0.008138746.

The minimum and the maximum values of the random variable U are:

umin = a = 0.988

and

umax = b = 1.298,

respectively.

The Tetraparametric Function Approach

To approximate the final expected value of an n-payment annuity, with payments

of 1 unit each, made at the end/beginning of every year (annuity-immediate/annuity-

due), valued at the rate X, we formulated two functions to reproduce Eqs. (16.19) and

(16.20). The first one computes the final expected value of an n-payment annuity,
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with payments of 1 unit each, made at the end of every year (annuity-immediate)

with random interest rates using the arctangent method:

F V _ p o s t _ a r t a n=f u n c t i o n ( da t a , y e a r s ) {

U=1+ d a t a

u1=mean (U)

v a r=sigma2 (U)

u2= s q r t ( v a r+u1 ^2 )

u_max=1+max ( d a t a )

u_min=1+min ( d a t a )

d=( u_min+u_max ) / 2

a =(u_max−u_min ) / p i

b=t a n ( x =(( u2−d ) / a ))− t a n ( x =(( u1−d ) / a ) )

c=t a n ( x =(( u1−d ) / a ))−b

appo=r e p (NA, y e a r s )

s=y e a r s −1

f o r ( i i n 0 : s ) { appo [ i +1]=( a∗ a t a n ( x=(b∗ i+c ) )+ d ) ^ i }

f i n a l _ v a l u e =sum ( appo )

r e t u r n ( f i n a l _ v a l u e )

}

The second function computes the final expected value of an n-payment annuity,

with payments of 1 unit each, made at the beginning of every year (annuity-due) with

random interest rates using the arctangent method:

F V _ p r e _ a r t a n=f u n c t i o n ( da t a , y e a r s ) {

U=1+ d a t a

u1=mean (U)

v a r=sigma2 (U)

u2= s q r t ( v a r+u1 ^2 )

u_min=1+min ( d a t a )

u_max=1+max ( d a t a )

d=( u_min+u_max ) / 2

a =(u_max−u_min ) / p i

b=t a n ( x =(( u2−d ) / a ))− t a n ( x =(( u1−d ) / a ) )

c=t a n ( x =(( u1−d ) / a ))−b

appo=r e p (NA, y e a r s )

f o r ( i i n 1 : y e a r s ) { appo [ i ]=( a∗ a t a n ( x=(b∗ i+c ) )+ d ) ^ i }

f i n a l _ v a l u e =sum ( appo )

r e t u r n ( f i n a l _ v a l u e )

}

Using the above codes, we get the following results:

> F V _ p o s t _ a r t a n ( da t a , 6 )

[ 1 ] 8 .491768

> F V _ p r e _ a r t a n ( d a t a , 6 )

[ 1 ] 9 .75462
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The Quadratic Discounting Approach

To use Eqs. (16.28) and (16.29) for computing the final value of an n-payment annu-

ity, with payments of 1 unit each, made at the end/beginning of every year (annuity-

immediate/annuity-due), valued at the rate X, we generate the two different codes:

FV_post_quad=f u n c t i o n ( da t a , y e a r s ) {

n=y e a r s

u=mean ( d a t a )

u2=mean ( d a t a ^2 )

f i n a l _ v a l u e =n+(n ∗( n −1 ) / 2 ) ∗ u+(n ∗( n −1 ) / 4 ) ∗ ( 1 + ( 2 ∗ n −1 ) / 3 ) ∗ u2

r e t u r n ( f i n a l _ v a l u e )

}

FV_pre_quad=f u n c t i o n ( da t a , y e a r s ) {

n=y e a r s

u=mean ( d a t a )

u2=mean ( d a t a ^2 )

f i n a l _ v a l u e =n+(n ∗( n + 1 ) / 2 ) ∗ u+(n ∗( n + 1 ) / 4 ) ∗ ( 1 + ( 2 ∗ n −1 ) / 3 ) ∗ u2

r e t u r n ( f i n a l _ v a l u e )

}

These functions applied to our data give the following results:

> FV_post_quad ( da t a , 6 )

[ 1 ] 8 .76782

> FV_pre_quad ( da t a , 6 )

[ 1 ] 9 .874948

The Approach of Mood et al.

The last method developed in this chapter is the approach by Mood et al.; according

to this perspective, we can approximate the final value of an n-payment annuity, with

payments of 1 unit each, made at the end of every year (annuity-immediate), valued

at the rate X = U − 1 Eq. (16.31), by using the following code:

FV_post_mood=f u n c t i o n ( da t a , y e a r s ) {

n=y e a r s

m=n+2

momenti=r e p (NA,m)

U=1+ d a t a

u=mean (U)

f o r ( i i n 1 :m) momenti [ i ]=moment (U,

c e n t r a l = FALSE , a b s o l u t e = FALSE , o r d e r =i )

f i n a l _ v a l u e =(( momenti [ n ] −1 ) / ( u−1))−
( ( momenti [ n+1]−u∗momenti [ n ] ) / ( ( u−1)^2))+

( ( momenti [ n ] − 1 ) / ( ( u −1)^3 ) )∗

( momenti [2]−u ^2 )
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r e t u r n ( f i n a l _ v a l u e )

}

Analogously, the final value of an n-payment annuity, with payments of 1 unit

each, made at the beginning of every year (annuity-due), valued at the rateX = U − 1
Eq. (16.32), may be computed by:

FV_pre_mood=f u n c t i o n ( da t a , y e a r s ) {

n=y e a r s

m=n+2

momenti=r e p (NA,m)

U=1+ d a t a

u=mean (U)

f o r ( i i n 1 :m) momenti [ i ]=moment (U,

c e n t r a l = FALSE , a b s o l u t e = FALSE , o r d e r =i )

f i n a l _ v a l u e =(( momenti [ n+1]−u ) / ( u−1))−
( ( momenti [ n+2]−u∗momenti [ n+1]−momenti [2]+ u ^ 2 ) /

( ( u−1)^2))+

( ( momenti [ n+1]−u ) / ( ( u −1 ) ^ 3 ) ) ∗ ( momenti [2]−u ^2 )

r e t u r n ( f i n a l _ v a l u e )

}

Following our result (using data of Table 16.1):

> FV_post_mood ( da t a , 6 )

[ 1 ] 9 .072831

> FV_pre_mood ( da t a , 6 )

[ 1 ] 10 .59077

Our results show that the three similar give similar results. In summary, for the

final value of an n-payment annuity, with payments of 1 unit each, made at the end

of every year (annuity-immediate), valued at the rate X = U − 1, we obtain the fol-

lowing values:

∙ Tetraparametric function approach: 8.491.

∙ Quadratic discounting approach: 8.767.

∙ Mood et al. approach: 9.072.

Instead, for the final value of an n-payment annuity, with payments of 1 unit each,

made at the beginning of every year (annuity-due), valued at the rate X = U − 1, we

get:

∙ Tetraparametric function approach: 9.754.

∙ Quadratic discounting approach: 9.874.

∙ Mood et al. approach: 10.590.

We highlight that the final values of the Mood et al. approach are always the great-

est. However, we underline that the Mood et al. approach is based on the moments;

thus, the final value, computed with this last method, is strongly influenced by the
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distribution of the data. In this application, we assumed a normal distribution when

calculating the moments of the distribution; therefore, it is reasonable to infer that if

the data do not follow a normal distribution, we get very different results from those

obtained with the first two methods.

To highlight this concept, we simulate interest rates following a normal distribu-

tion and repeat our test with the following code:

> da ta <−rnorm ( n =365 ,m=0.31 , sd =0.075)

> F V _ p o s t _ a r t a n ( da t a , 6 )

[ 1 ] 13 .18

> F V _ p r e _ a r t a n ( d a t a , 6 )

[ 1 ] 17 .39

> FV_post_quad ( da t a , 6 )

[ 1 ] 14 .09

> FV_pre_quad ( da t a , 6 )

[ 1 ] 17 .33

> FV_post_mood ( da t a , 6 )

[ 1 ] 13 .20

> FV_pre_mood ( da t a , 6 )

[ 1 ] 17 .41

This simulation shows that, when we deal with interest rates following a normal

distribution, the approaches give similar results. However, the more the interest rate

are far from normality, the more the Mood et al. approach brings to results different

from the tetraparametric function method.

16.6 Conclusion

In this chapter we have presented three methodologies to obtain the value of an annu-

ity whose discount rate is a random variable. The first model is based on the curve

representing the mean of order r as a tetraparametric function. On the other hand,

the second model is based on the so-defined quadratic discounting, and the third

one uses the approximate formula of the expected value of the ratio of two random

variables. A comparison among these methodologies is presented with an R appli-

cation. We considered an n-payment annuity, with payments of 1 unit each, made at

the end/beginning of every year (annuity-immediate/annuity-due), valued at a ran-

dom interest rate. The comparison among the developed methodologies shows that

all lead to similar results.
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