
Chapter 1
Semi-Active Base Isolation of Civil Engineering Structures Based
on Optimal Viscous Damping and Zero Dynamic Stiffness

Felix Weber, Hans Distl, and Christian Braun

Abstract Spherical friction pendulums (FP) represent the common approach to isolate civil engineering structures against
earthquake excitation. As these devices are passive and friction damping is nonlinear the optimal friction coefficient for
minimum absolute acceleration of the building depends on the peak ground acceleration (PGA). Therefore, the common
procedure is to optimize the friction coefficient for the PGA of the design basis earthquake (DBE) and to verify by simulations
that the absolute structural acceleration for the maximum considered earthquake (MCE) is within a tolerable limit which is far
from optimal. In order to overcome this drawback of passive FPs, a semi-active FP based on real-time controlled oil damper
with the use of the collocated bearing displacement only is described in this paper. Four different semi-active control laws
are presented that target to produce controlled dynamic stiffness depending on the actual bearing displacement amplitude
in order to control the isolation period in real-time. The desired damping is formulated based on optimal viscous damping
taking into account the passive lubricated friction of the spherical surface. The four control laws are compared in terms of
absolute structural acceleration, bearing force, bearing displacement and residual bearing displacement. The results point
out that the approach of zero dynamic stiffness at center position of the slider and nominal stiffness at design displacement
of the FP improves the isolation of the structure within the entire PGA range significantly and at the same time minimize
maximum bearing force, maximum bearing displacement and maximum residual bearing displacement.

Keywords Control • Damping • Seismic • Semi-active • Negative stiffness

1.1 Introduction

Spherical friction pendulums (FP) are widely used to significantly reduce the absolute structural acceleration due to ground
excitation by their effective radius that shifts the fundamental time period of the isolated structure into the region of
attenuation and their friction damping that augments the damping of the structure [1]. The inherent drawback of FPs is
that friction damping is nonlinear whereby the optimal friction coefficient depends on the displacement amplitude of the FP
and consequently peak ground acceleration (PGA) [2]. The common approach is therefore to optimize the friction coefficient
for the PGA of the design basis earthquake (DBE) and, subsequently, to check if the absolute structural acceleration due to
the maximum credible earthquake (MCE) is acceptable. In addition, it must be checked if the isolation of the structure at very
small PGAs is acceptable from the comfort point of view since the constant friction coefficient being optimal for the PGA of
the DBE may lead to clamping effects in the FP whereby the relative motion stops in the FP and consequently the structural
absolute acceleration is equal to the ground acceleration. In order to overcome these drawbacks of FPs several types of
adaptive FPs have been developed: FPs with several sliding surfaces with different friction coefficients and effective radii [3]
and pendulums that are extended by an external active or semi-active actuator such as hydraulic cylinders and controllable
dampers on the basis of oil dampers with controlled bypass valve or magnetorheological fluids [4–7]. Controllable dampers

F. Weber (�)
Maurer Switzerland GmbH, Neptunstrasse 25, 8032 Zurich, Switzerland
e-mail: F.Weber@maurer.eu

H. Distl
Maurer Söhne Engineering GmbH & Co. KG, Frankfurter Ring 193, 80807 Munich, Germany
e-mail: Distl@maurer.eu

C. Braun
MAURER SE, Frankfurter Ring 193, 80807 Munich, Germany
e-mail: Braun@maurer.eu

© The Society for Experimental Mechanics, Inc. 2017
J. Caicedo, S. Pakzad (eds.), Dynamics of Civil Structures, Volume 2, Conference Proceedings
of the Society for Experimental Mechanics Series, DOI 10.1007/978-3-319-54777-0_1

1

mailto:F.Weber@maurer.eu
mailto:Distl@maurer.eu
mailto:Braun@maurer.eu


2 F. Weber et al.

are seen to provide a promising solution as the resulting closed-loop is unconditionally stable and their power consumption is
very low compared to hydraulic actuators. This paper describes a novel approach of a semi-active isolator with the following
main features:

• controlled dynamic stiffness depending on the actual displacement amplitude of the pendulum,
• optimum viscous damping, and
• collocated control based on one displacement sensor.

1.2 Systems Under Consideration

1.2.1 Friction Pendulum

The common way to decouple the building/structure from the shaking ground is to support the building by FPs. The
effective radius Reff D R � h of the FP is selected to shift the time period T of the non-isolated structure from the region
of amplification, i.e. T is typically in the region 0.5–2.0 s, to the region of attenuation with associated isolation time period
Tiso of typically 3–4 s. Subsequent to the design of the effective radius the friction coefficient � of the sliding surface is
optimized for minimum absolute structural acceleration for given Tiso. As friction damping is nonlinear, the optimal value
of � depends on the bearing displacement amplitude and consequently on PGA. As a result, � is commonly optimized
for the PGA of the DBE. Finally, the structure with the designed FP is computed for the PGA due to the MCE to check if the
absolute structural acceleration resulting from the MCE is acceptable and to know the displacement capacity of the FP that
is required for the MCE.

1.2.2 Viscous Pendulum

In addition to the passive FP an “ideal” pendulum without friction but with linear viscous damping is considered as
benchmark for passive isolators. Its effective radius is equal to that of the FP to ensure the same isolation time period
Tiso. Its viscous damping coefficient c is optimized for minimum absolute structural acceleration. Thanks to the linear
behavior of viscous damping the optimization of c in independent of the bearing displacement amplitude and therefore
independent of PGA.

1.2.3 Semi-Active Isolator

The semi-active isolator consists of a passive FP and a semi-active damper that is installed between ground and top bearing
plate of the pendulum (Fig. 1.1). The design of the effective radius will be explained in the section “CONTROL LAW” as it
is related to the formulation of the control law. The sliding surface of the passive FP is lubricated to minimize the passive
and therefore uncontrollable friction damping of the semi-active isolator and thereby to maximize the controllability of
the total isolator force. The dissipative force of the semi-active damper is controlled by the electromagnetic bypass valve.
The desired control force is computed by the real-time controller based on the measured bearing displacement which is
identical to the relative motion between damper cylinder and damper piston. Based on the desired control force a force
tracking module computes the valve command signal such that the actual force of the semi-active damper tracks closely its
desired counterpart in real-time.

1.3 Modelling

Due to the large isolation time period Tiso D 3.5 s of the building with isolator the building may be modelled as a single
degree-of-freedom system [1]. The according equation of motion becomes

ms Rus C cs .Pus � Pu/ C ks .us � u/ D �ms Rug (1.1)
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Fig. 1.1 Schematic of structure with semi-active isolator

where ms, cs, ks denote the modal mass, the viscous damping coefficient and the stiffness of the building, Rus, Pus and us

denote the acceleration, velocity and displacement of the structure relative to the ground, Pu and u are the velocity and
displacement of the top bearing plate relative to the ground and Rug is the ground acceleration given by the accelerogram of
the El Centro North-South earthquake. The mass ms is determined by the typical vertical load of W D 6 MN on the isolator,
cs D 2 �s

p
ks ms is computed based on the damping ratio �s D 1% and ks D 24.15 MN/m is selected such that the natural

frequency of the building without isolator is 1 Hz representing a typical value for structures that require base isolation. The
equation of motion of the top plate of the isolator with mass m and with actual force f actual

semi�active of the semi-active oil damper is

m Ru C fh C W

Reff
u D cs .Pus � Pu/ C ks .us � u/ � f actual

semi�active � ms Rug (1.2)

where fh is the friction force of the curved sliding surface and W/Reff is the restoring stiffness due to the effective radius
Reff D R � h of the pendulum. The force fh is modelled by the hysteretic damper modelling approach [8]

fh D
�

kh u W pre � sliding
� W sign .Pu/ W sliding

(1.3)

where kh is the pre-sliding stiffness that is selected two orders of magnitude greater than W/Reff . In case of the passive
pendulum without any friction but linear viscous damping fh in (1.2) is replaced by the term copt Pu where copt denotes the
optimal viscous damping coefficient of the isolator.

1.4 Control Law

1.4.1 General Formulation

The desired active control force is formulated as follows

f desired
active D

�
kcontrol u C �

copt � c�

� Pu W c � c� � 0

kcontrol u W c � c� < 0
(1.4)
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in order to produce:

1. the controlled stiffness kcontrol that is controlled as function of the bearing displacement amplitude U to compensate
for the passive stiffness of the curved surface given by W/Reff and thereby produce zero dynamic stiffness by kcontrol < 0
for maximum decoupling of the structure from the ground, and

2. the controlled damping force
�
copt � c�

� Pu that dissipates the same amount of damping as resulting from optimal
linear viscous damping.

The desired optimal viscous damping coefficient copt is reduced by the viscous damping coefficient c� that is energy
equivalent to the friction damping of the lubricated curved surface [2]

c� � 4

�

� W

!iso U
(1.5)

in order to dissipate the cycle energy of optimal viscous damping. Since c� is inversely proportional to the displacement
amplitude U of the isolator, i.e. c� � U�1, c� may become greater than copt at small U which necessitates the distinction
of cases in (1.4). Notice that (1.5) represents an approximation because c� according to Eq. (1.5) is derived based on the
constant isolation radial frequency

!iso D
r

g

Reff
(1.6)

but the actual frequency of the bearing displacement due to earthquake excitation is time-variant and therefore not detectable
in real-time. However, the approximation (1.5) represents a good engineer’s solution as the actual frequency is in the
vicinity of ! iso. The actual force of the semi-active oil damper can only produce the dissipative forces of the desired active
control force f desired

active , that is

f actual
semi�active D

�
f desired
active W Pu f desired

active � 0

0 W Pu f desired
active < 0

(1.7)

The formulation (1.7) assumes that control force constraints such as minimum and maximum forces of the semi-active
oil damper and control force tracking errors do not exist. Hence, the formulation (1.7) of the semi-active force represents the
ideal behavior of a controllable damper.

1.4.2 Adaptive Controlled Stiffness

The maximum decoupling of the structure from the shaking ground and therefore minimum absolute structural acceleration
Rus C Rug is obtained from zero dynamic stiffness of the isolator [9]. Since the passive (and positive) stiffness of the isolator
is given by W/Reff , the controlled stiffness kcontrol must be negative to reduce the total stiffness ktotal of the isolator to zero
under dynamic operation. However, ktotal D 0 for the entire bearing displacement range could not re-center the structure
sufficiently. Hence, four adaptive stiffness control laws are suggested that produce zero dynamic stiffness either at U D 0 or
at U � Umax due to the MCE:

• Control law #1 (CL #1, Fig. 1.2a): The effective radius Reff of the curved surface is 50% of the nominal effective
radius Reff � no min al generating the targeted isolation time period Tiso D 3.5 s. The controlled stiffness is formulated to
produce ktotal D kcontrol C W/Reff D kR � eff � no min al D W/Reff � no min al at U D 0 and zero dynamic stiffness, i.e. ktotal D 0, at
U � Umax D 0.25 m. Between U D 0 and U D Umax the controlled stiffness is a linear function of U.

• Control law #2 (CL #2, Fig. 1.2b): The effective radius Reff of the curved surface is 50% of Reff � no min al. The controlled
stiffness is formulated to produce zero total stiffness at U D 0 and ktotal D W/Reff � no min al at U � Umax D 0.25 m. Between
U D 0 and U D Umax the controlled stiffness is a linear function of U.

• Control law #3 (CL #3, Fig. 1.3a): The effective radius Reff of the curved surface is equal to Reff � no min al. The controlled
stiffness is formulated to produce ktotal D W/Reff � no min al at U D 0 and zero dynamic stiffness at U � Umax D 0.25 m.
Between U D 0 and U D Umax the controlled stiffness is a linear function of U.
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Fig. 1.2 Controlled stiffness and total bearing stiffness due to (a) control law #1 and (b) control law #2
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Fig. 1.3 Controlled stiffness and total bearing stiffness due to (a) control law #3 and (b) control law #4

• Control law #4 (CL #4, Fig. 1.3b): The effective radius Reff of the curved surface is equal to Reff � no min al. The controlled
stiffness is formulated to produce zero dynamic stiffness at U D 0 and ktotal D W/Reff � nom at U � Umax D 0.25 m. Between
U D 0 and U D Umax the controlled stiffness is a linear function of U.

The main difference between CL #1 and CL #3 (and between CL #2 and CL #4) is that the maximum (positive) and
minimum (negative) controlled stiffness coefficients due to CL #1 (and CL #2) are only 50% of the maximum negative
controlled stiffness of CL #3 (and CL #4) due to the different designs of Reff for CL #1 (and CL #2) and CL #3 (and CL
#4). The control law leading to smaller controlled stiffness is more suitable for controllable dampers since the emulation
of large stiffness with semi-active dampers is inherently combined with the generation of damping that is larger than the
desired viscous damping given in (1.4) whereby the actual stiffness and damping of the actual semi-active force are far from
their desired counterparts. Detailed information on the emulation errors of desired stiffness and damping with controllable
dampers is beyond the scope of this paper but can found in [10]. The main difference between CL #1 (and CL #3) and CL
#2 (and CL #4) is that CL #1 (and CL #3) results in zero dynamic stiffness at U D Umax which improves the isolation of
the structure at large PGAs due to earthquakes between DBE and MCE while CL #2 (and CL #4) generate zero dynamic
stiffness at U D 0 which improves the isolation of the structure due to earthquakes up to DBE.
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1.5 Results

1.5.1 Optimized Friction Pendulums

The effective radius of the passive FP is designed to produce the targeted isolation time period Tiso D 3.5 s. Given this
effective radius the friction coefficient � is optimized for minimum max

�jRus C Rugj� for the PGA of the DBE that is assumed
to be 5 m/s2 (Fig. 1.4b). The optimization of � is also performed for PGA D 3.5 m/s2 and PGA D 6.5 m/s2 (Fig. 1.4a,
c) to demonstrate that the best performance of the optimized FP is only obtained at the PGA value used for optimization
highlighted by the green circles Fig. 1.4e.

1.5.2 Pendulum with Optimized Linear Viscous Damping

The effective radius of the pendulum is the same as for the FP in order to guarantee equal time periods. The viscous
damping coefficient is optimized for minimum max

�jRus C Rugj� (Fig. 1.4d) which does not depend on the PGA of the ground
acceleration as can be seen from the linear behavior of max

�jRus C Rugj� as function of PGA depicted in Fig. 1.4e.

1.5.3 Semi-Active Pendulum

The isolation performance in terms of absolute structural acceleration of the semi-active pendulum with passive friction of
1.5% (lubricated) resulting from the four suggested control laws is depicted in Fig. 1.5a. The main observations are:

• CL #1 and CL #2 perform better than CL #3 and CL #4 because the maximum controlled stiffness of CL #1 and CL #2
are only 50% of the maximum value due to CL #3 and CL #4 whereby the actual stiffness and actual damping produced
by the semi-active damper are closer to their desired counterparts for CL #1 and CL #2 than for CL #3 and CL #4; further
information on stiffness and damping emulations with semi-active dampers are available in [10].

• CL #1 performs better than CL #2 at large PGAs because CL #1 is formulated to produce zero dynamic stiffness at
U � Umax D 0.25 m whereas CL #2 outperforms CL #1 at smaller PGAs because CL #2 produces zero dynamic stiffness
at U D 0.

In order to select the “best performing control law” not only the maximum reduction of the absolute structural acceleration
should be considered but also the maximum force of the isolator (costs!, Fig. 1.5b), the maximum bearing displacement
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Fig. 1.6 Maximum displacements (a) and residual displacements (b) of all considered isolators

(costs!, Fig. 1.6a), the re-centering capability (Fig. 1.6b, re-centering error must not be larger than 50% of the bearing
displacement capacity, i.e. 50% of 250 mm) and the maximum force of the semi-active damper (costs!, Figs. 1.7 and 1.8).
The review of all these results reveals that CL #1 and CL #2 represent promising solutions. None of these two control laws
can be denoted as superior as the project specifications alone determine if CL #1 or CL #2 is more appropriate for the isolation
task, i.e. if the absolute structural acceleration should be minimized for PGAs corresponding to DBE and earthquakes beyond
of DBE (CL #1) or for PGAs corresponding to DBE and earthquakes below DBE (CL #2).

1.6 Summary

This paper presents a novel semi-active base isolator based on a pendulum with uncontrollable lubricated friction of 1.5%
and a semi-active oil damper in parallel. Four different control laws are formulated that target to control the total stiffness of
the semi-active isolator in real-time as function of the actual bearing displacement amplitude and to produce optimal viscous
damping. The numerical results demonstrate that the semi-active isolator significantly improves the isolation of the structure
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Fig. 1.7 Force displacement trajectories of (a) semi-active control force and (b) total force of semi-active isolator due to control law #1
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compared to optimized friction pendulums and a hypothetical pendulum without friction but optimal viscous damping. This
result is achieved without getting larger bearing displacements and forces and the re-centering requirement is also fulfilled
semi-active base isolator.
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