
Chapter 32
Flutter and Limit Cycle Oscillation Suppression Using Linear
and Nonlinear Tuned Vibration Absorbers

E. Verstraelen, G. Kerschen, and G. Dimitriadis

Abstract Aircraft are more than ever pushed to their limits for performance reasons. Consequently, they become
increasingly nonlinear and they are more prone to undergo aeroelastic limit cycle oscillations. Structural nonlinearities affect
aircraft such as the F-16, which can undergo store-induced limit cycle oscillations (LCOs). Furthermore, transonic buzz can
lead to LCOs because of moving shock waves in transonic flight conditions on many aircraft.

This study presents a numerical investigation of passive LCO suppression on a typical aeroelastic system with pitch and
plunge degrees of freedom and a hardening stiffness nonlinearity. The absorber used is made of a piezoelectric patch glued
to the plunge springs and connected to a resistor and an inductance forming a RLC circuit. A mechanical tuned mass damper
absorber of similar configuration is also considered. The piezoelectric absorber features significant advantages in terms of
size, weight and tuning convenience.

The results show that both types of absorber increase the linear flutter speed of the system in a similar fashion but, when
optimal, they lead to a sub-critical bifurcation while a super-critical bifurcation was observed without absorber. Finally, it is
shown that the addition of a properly tuned nonlinear spring (mechanical absorber) or capacitor (piezoelectric absorber) can
restore the super-criticality of the bifurcation. The tuning of the nonlinearity is carried out using numerical continuation.

Keywords Aeroelasticity • Limit cycle oscillation • Bifurcation • Piezoelectric • Nonlinear tuned vibration absorber

32.1 Introduction

Flutter is a dangerous aeroelastic mechanism arising from the coalescence of two or more system modes in the presence of
an airflow. The phenomenon can lead to a reduction of the aircraft’s flight envelope or even necessitate a re-design of the
structure. In some cases, nonlinearities present in the aircraft’s structure or in the airflow can cause limit cycle oscillations
(LCOs) at airspeeds much lower the flutter speed. Among these nonlinearities, freeplay, transonic buzz and store-induced
limit cycle oscillations are the most common.

An alternative to aircraft re-design could be the use of mitigation techniques. Active control using control surface or
piezoelectric patches can significantly delay these oscillations [1–5]. Alternatively, passive methods such as the nonlinear
energy sink [6–9] or the linear tuned vibration absorber (LTVA) [10–12] and its nonlinear version, the nonlinear tuned
vibration absorber (NLTVA) [11, 13], can also have a substantial beneficial effect.

In this paper, we study mechanical and electromechanical linear and nonlinear passive vibration absorbers in order to
increase a nonlinear aeroelastic system’s linear flutter speed and LCO onset speed. The linear flutter speed, which is the
linear equivalent of the Hopf bifurcation speed and is defined as the airspeed where the damping of one of the linearised
system modes becomes negative, can be increased by means of a properly tuned linear absorber. Conversely, the LCO onset
speed, defined as the first airspeed where LCOs can be observed, is equal to the flutter speed in a linear system but can be
significantly smaller in the presence of nonlinearities. The LCO onset speed can be increased by means of properly tuned
nonlinearities in the absorbers.

The mechanical linear and nonlinear tuned vibration absorbers (MLTVA and MNLTVA) are made of a mass-spring-
dashpot subsystem that is attached to the primary structure. Previous studies showed that such a mechanical linear absorber
can drastically increase the linear flutter speed of the system but can also lead to an area of bi-stability that would be
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dangerous in real life applications [10–13]. In this work, we demonstrate that adding nonlinearity to the absorber’s stiffness
can suppress bi-stable phenomena. Malher et al. already demonstrated this beneficial effect of the nonlinear absorber
however, they did not investigate the possible presence of isolated solutions [13].

The electrical linear and nonlinear tuned vibration absorbers (ELTVA and ENLTVA) are made of piezoelectric (PZT)
patches glued to the primary system and connected to a circuit with an inductance and a resistance, forming a RLC circuit.
The potential of these passive absorbers has been demonstrated for forced vibration mitigation [14, 15] (PZT shunting) but
to the authors’ knowledge, none of the studies considered the case of flutter. Again, we demonstrate that the addition of a
nonlinear capacitor to the absorber can suppress bi-stable phenomena caused by the linear absorber and the primary system’s
nonlinearity.

The effect of these linear and nonlinear, mechanical and electrical tuned vibration absorbers is assessed numerically on a
classical wing with pitch and plunge degrees-of-freedom (DOFs) and a hardening nonlinearity in the pitch DOF. The model
used and all the parameter values are based on an experiment that is currently being built at the wind tunnel lab of the
university of Liège (Belgium). The study is conducted in three parts. First, the optimal linear flutter speed of the aeroelastic
system coupled to both types of linear absorbers is considered. Then, the effect of the optimal absorbers on the pre-critical
response of the linearised system is assessed. Finally, nonlinear analysis is performed using linear and nonlinear absorbers
in order to analyse their effect on the LCO onset speed of the system.

32.2 Aeroelastic System

Figure 32.1 depicts the typical aeroelastic system, called the primary system, considered in this study. It consists of a rigid
symmetric wing with chord c D 200 mm and span s D 1000 mm attached to springs and dashpots that provide elastic
degrees of freedom in pitch (� ) and plunge (h). The system respectively features rotational and translational inertia I� & mh,
stiffness k� & kh, damping c� & ch and a static imbalance S. The flexural axis is located at a distance xf D 0:35c from the
leading edge. All the system parameters are linear apart from the stiffness in pitch which follows a cubic hardening curve of
coefficient k�;3 so that the total stiffness in pitch is given by k� � C k�;3�3. This system, whose parameters values are given
in Table 32.1, is an approximation of an experimental apparatus that is being built at the University of Liège. Without any
mitigation device the flutter speed of the wing is U�

0 D 17:5 m/s.
The first vibration absorber considered is the mechanical absorber (Fig. 32.1a), which serves as a reference as its

capabilities have already been demonstrated [10–12]. It consists of a mass mltva attached to the wing at a distance xltva

from the flexural axis by means of a spring and a dashpot of stiffness and damping kltva and cltva respectively. The mass ratio
mltva of this absorber is varied from 1 to 8% of the mass of the primary system while the only position considered is xltva D 0

i.e. the absorber is located on the flexural axis of the wing and therefore only affects the plunge. This absorber configuration
adds a DOF y that measures the displacement of the absorber’s mass. A nonlinear version of this absorber with a cubic
stiffness of coefficient knl;3 is also considered so that the total absorber stiffness force is given by .y � h/kltva C knl;3.y � h/3.
Throughout the paper, the mechanical absorber is called MLTVA when the nonlinear coefficient knl;3 is equal to zero and
MNLTVA when it is different from zero.

Alternatively, the electromechanical absorber (Fig. 32.1b) consists of a RL electrical circuit with resistance R and
inductance L coupled to the plunge springs by up to eight PI255 piezoelectric patches of capacitance Cpzt D 87:5 nF and
coupling coefficient ˇpzt D 7500 C/m per PZT patch. In this configuration, the LTVA capacitance Cltva D Npzt � Cpzt and the
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Fig. 32.1 Aeroelastic system with different absorbers. (a) Mechanical LTVA. (b) Electrical LTVA
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Table 32.1 Characteristics of
the system

Primary system

Wing chord c 200 mm

Wing span s 1000 mm

Flexural axis position xf 0.35c

Pitch inertia I� 0.005 kg m2

Pitch stiffness k� 20 Nm/rad

Pitch damping c� 0.019 Mm s/rad

Pitch nonlinear stiffness k3;� 600 Nm/rad3

Static imbalance S 0.028 kg m

Plunge inertia mh 2.8910 kg

Plunge stiffness kh 6000 N/m

Plunge damping ch 2.63 N s/m

Mechanical NLTVA

Mass ratio mltva 1–8%

Absorber position xltva 0

Stiffness kltva Optimised for each mltva

Damping cltva Optimised for each mltva

Frequency fltva
1

2�

q
kltva
mltva

Damping ratio �ltva
cltva

2
p

kltvamltva

Nonlinear coefficient knl;3 [0–800]�kltva N/m3

Electrical NLTVA

Amount of patches Npzt 1 - 8

Coupling factor ˇltva Npzt � 7500 C/m

Capacitance Cltva Npzt � 87:5 nF

Inductance L Optimised for each Npzt

Resistance R Optimised for each Npzt

Frequency fltva
1

2�

q
1

LC

Damping ratio �ltva
R

2
p

L=C

Nonlinear coefficient Cnl;3 [0–8 � 106� � 1=Cltva V/C3

LTVA coupling coefficient ˇltva D Npzt �ˇpzt of the absorber are the product of the number of patches Npzt and the individual
capacitance and coupling coefficient of the patches. This absorber configuration adds a DOF q, the charge in the electrical
circuit, to the system. A nonlinear version of this absorber with a cubic capacitive term Cnl;3 is also considered so that the
capacitive tension in the circuit is given by 1

Cltva
q C Cnl;3q3. Throughout the paper, the electromechanical absorber is called

ELTVA when the nonlinear coefficient Cnl;3 is equal to zero and ENLTVA when it is different from zero.
Assuming small displacements, the structural equations of motion of the system coupled to a MNLTVA at xltva D 0 are

given by
8<
:

mRh C S R� C ch Ph C cltva.Ph � Py/ C khh C kltva.h � y/ C knl;3.h � y/3 D Fext;h

SRh C I�
R� C c�

P� C k� � C k�;3�3 D Fext;�

mltva Ry C cltva.Py � Ph/ C kltva.y � h/ C knl;3.y � h/3 D 0

(32.1)

and the equations of motion of the system coupled to a ENLTVA are written as

8̂
<
:̂

mRh C S R� C ch Ph C khh C ˇltvaq D Fext;h

I�
R� C SRh C c�

P� C k� � C k�;3�3 D Fext;�

LRq C RPq C 1
Cltva

q C ˇltvah C Cnl;3q3 D 0

(32.2)

where Fext;h and Fext;� correspond to plunge and pitch aerodynamic loads that can be computed using any unsteady
aerodynamic formulation. In both cases, the linear absorber is recovered by setting Cnl;3 or knl;3 to zero. The equations
of motion of the system with a mechanical and an electrical absorber are very similar as the inductance plays the role of the
inertia, the resistance of the damping and the capacitance of the stiffness. The only difference between the two absorbers lies
in their coupling to the primary system.
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Assuming a linear attached airflow and unsteady aerodynamics based on the Wagner function [16], the aeroelastic
equations of motion of the coupled system subject to an air stream of density � and airspeed U are given by

Px D Qx C fnl D
0
@

�M�1.C C �UD/ �M�1.E C �U2F/ ��U3M�1W
I3�3 03�3 04�3

04�3 W1 UW2

1
A x C k�;3�3 �

0
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0
@

0

1

0

1
A

07�1

1
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where x D ŒPz z w�T is the state vector that comprises z, the structural DOFs of the system with an absorber,
and w D Œw1 w2 w3 w4�, the aerodynamic state vector that models the memory effect of the wake. The structural DOFs
of the system are written z D Œh � y� when a mechanical absorber is considered and z D Œh � q� when an electrical absorber
is used. Matrix C is the structural damping matrix, �UD is the aerodynamic damping matrix, E is the structural stiffness
matrix, �U2F is the aerodynamic stiffness matrix, W is the aerodynamic state matrix, W1 and W2 are the aerodynamic state
matrices, A is the structural mass matrix, �B is the aerodynamic mass matrix and M is defined as M D A C �B. All those
matrices are given in Appendix.

32.3 Effect of the Absorber on the Flutter Speed

Figure 32.2a plots the relative flutter speed of the system defined as U�=U�
0 , the ratio between U�, the linear flutter speed of

the system with an optimally tuned LTVA and U�
0 D 17:5 m/s, the flutter speed of the primary system alone. The mechanical

absorber (blue) increases the flutter speed by 10 to 35% depending on the mass ratio while the electrical absorber (black)
is ineffective if too few PZT patches are used but can increase the flutter speed by up to 80% with 8 patches. Figure 32.2a,
b depict the optimal absorber frequency and damping as a function of the mass ratio or amount of PZT patches. The
mechanical absorber’s optimal frequency decreases and its optimal damping increases as the absorber becomes heavier;
the behaviour resembles Den Hartoog’s criterion for LTVA tuning in forced systems [17]. Conversely, with a ELTVA the
optimum frequency increases while Npzt � 4 then decreases, while the damping increases monotonously. Absorbers with
mltva D 4:2% and Npzt D 4 are studied in detail in the rest of the study. In these configurations, both absorbers increase the
flutter speed by 25% when optimally tuned.

Figure 32.3a plots the linear relative flutter speed of the system as a function of the absorber damping and frequency with a
MLTVA with mltva D 4:2%. Figure 32.3b depicts the same quantities for a ELTVA with Npzt D 4. In this case, both absorbers
increase the flutter speed by up to 25%. They lose their effectiveness smoothly as their damping is modified or when their
frequency is increased but very abruptly when their frequency is decreased. This phenomenon, due to the damping variation
with airspeed, is investigated in Sect. 32.4. The white line separates the area where the absorber has a detrimental effect
on the system. Mechanical absorbers with small frequency and damping reduce the frequency gap between the system’s
modes without providing any damping to the system, which reduces the flutter speed. Electrical absorbers without sufficient
damping have a similar effect.

In the rest of this work, only the optimal absorbers are studied in detail. The optimal mechanical absorber with mltva D
4:2% is tuned at fltva D 8:0732 Hz and �ltva D 7:9145% and the optimal electrical absorber with Npzt D 4 is tuned at
fltva D 8:1878 Hz and �ltva D 7:8085%. These parameters are very finely tuned in order to study the optimal absorber but
a detuning of 0.1 Hz in the absorber still leads to a significant increase in flutter speed and to detuning phenomena similar
to those observed in the rest of this work. A fine frequency tuning of the absorber should be possible in the wind tunnel by
slightly modifying the mass of the MLTVA or the inductance of the ELTVA.

32.4 Linear System Frequency and Damping Variation with Airspeed

Figure 32.4 depicts the frequency and damping variation with relative airspeed in the case where no LTVA is attached to the
system (grey), with an optimally tuned MLTVA (blue) and with an optimally tuned ELTVA (black). Figure 32.4a corresponds
to the frequency variation with airspeed, Fig. 32.4b plots the damping variation with airspeed while Fig. 32.4c is a zoom in the
purple rectangle of Fig. 32.4b. These figures are computed from linear stability analysis after linearizing the system around
the fixed point at the origin. The modes are named M0i for the reference system, Mei for the system with the ELTVA and Mmi

for the system with the MLTVA. The wind-off mode shapes and frequencies are described in Table 32.2.
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Fig. 32.2 Performance of different absorbers and their optimal tuning. The legend of subfigure (c) applies to all three subfigures. (a) Optimum
flutter speed. (b) Optimum absorber frequency. (c) Optimum absorber damping

The primary system features two modes, M01 and M02. As the airspeed increases, the system frequencies approach each
other while the damping of mode M01 increases then decreases to cause flutter and the damping of mode M02 increases
monotonously. The addition of a MLTVA introduces a new mode with an intermediate wind-off frequency. In that case,
the damping of mode Mm3 increases monotonously, the damping of mode Mm2 increases, decreases, becomes almost zero
at point B then increases again while the damping of mode Mm1 increases at first then decreases to cause flutter. Any small
decrease in absorber frequency would make the mode Mm2 flutter at point B, hence the abrupt detuning observed in Fig. 32.3a,
while any small increase in absorber frequency would just reduce the flutter speed of mode Mm1 (point C) and increase the
damping of mode Mm2 at point B. The behaviour of the system with a ELTVA is very similar to that of the system with a
MLTVA. When optimally tuned, the coupled system has a mode Me2 whose damping nearly causes flutter at point A then
increases and a mode Me1 whose damping becomes negative at point C. Again, any small decrease in ELTVA frequency
would cause the system to flutter at point A, which explains the sensitivity of the system to a decrease in absorber frequency.

32.5 Bifurcation Analysis of the System with Linear Tuned Vibration Absorbers

The bifurcation diagrams in pitch amplitude of the system without absorber (grey), with an optimal MLTVA (blue) and
with an optimal ELTVA (black) are depicted in Fig. 32.5. These diagrams plot limit cycle amplitude in pitch against relative
airspeed and are computed using a numerical continuation technique based on finite differences [18]. Without absorber, the
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Fig. 32.4 Frequency and damping variation with airspeed of the system without absorber and with mechanical and electrical linear tuned vibration
absorbers. The legend in subfigure (a) applies to all three subfigures. (a) Frequency. (b) Damping. (c) Damping (zoom on the purple square)
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Table 32.2 Wind-off mode shapes of the system with and without absorber

Mode Wind-off frequency (Hz) Wind-off mode description

M01 7:01 In-phase mode, plunge dominated

M02 10:56 Out-of-phase mode, pitch dominated

Me1 6:55 All in-phase, plunge dominated

Me2 8:49 LTVA out-of-phase, LTVA dominated

Me3 10:60 Plunge out-of-phase, pitch dominated

Mm1 6:66 LTVA out-of-phase, plunge and LTVA dominated

Mm2 8:45 All in-phase, pitch and LTVA dominated

Mm3 10:63 Pitch out-of-phase, pitch dominated
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Fig. 32.5 Bifurcation diagram of the system with and without linear absorbers

system undergoes a supercritical Hopf bifurcation at relative airspeed 1, then the LCO amplitude increases monotonously
with airspeed. In this case, the linear flutter speed coincides with the LCO onset speed (smallest airspeed at which a LCO can
be observed) and the pitch nonlinearity has a beneficial effect because it prevents the oscillation amplitude from becoming
infinite at the flutter airspeed.

The bifurcation branch with a MTLVA (blue) is significantly different than that without absorber. The coupled system
undergoes a supercritical Hopf bifurcation at an airspeed of 1.25, then the amplitude increases with airspeed until 1.26 where
the branch folds back and becomes unstable. At U=U�

0 D 1:16, a second fold occurs, the branch becomes stable again and
its amplitude increases monotonously with airspeed. As a result, the relative LCO onset speed is only 1.16 and it no longer
coincides with the linear flutter speed of the system. The bifurcation branch of the system with a ELTVA is very similar. The
Hopf airspeed lies again at 1.25 but the two folds occur at 1.27 and 1.14. In this case, the LCO onset speed is only 1.14. For
both absorbers, the region between the Hopf and first fold is bi-stable, as there are two possible stable limit cycle oscillations,
one of low and of high amplitude. The region between the Hopf and the second fold is also bi-stable, as the system’s response
trajectories can be attracted by either the stable fixed point or the stable limit cycle.

The bi-stability and the reduction in LCO onset speed are due to the detuning of the absorbers. The linear absorbers are
only effective when the amplitude is small, i.e. when the effects of the structural nonlinearity can be neglected. In that case,
they increase the relative Hopf speed of the coupled system to 1.25. If the oscillation amplitude is increased, the equivalent
linear stiffness of the primary system increases, which detunes the absorbers. The detuning of the absorbers due to the
structural nonlinearity in the primary system can cause limit cycle oscillations at airspeeds lower than the linear flutter speed,
which leads to a bi-stable region where LCOs or static solutions can exist depending on the initial conditions. In many real-
life applications, LCOs can not be tolerated. As a consequence, the performance of the systems with absorbers is determined
by the LCO onset speed rather than the linear flutter speed. With that in mind, the MLTVA increases the performance of the
system by only 16% while the ELTVA provides an improvement of only 14% while linear analysis predicted a performance
gain of 25%.
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32.6 Bifurcation Analysis of the System with Nonlinear Tuned Vibration Absorbers

The detuning of the linear absorbers that is causing the large bi-stable area can be countered by introducing a nonlinear
stiffness (MNLTVA) or capacitance (ENLTVA) to the respective LTVAs. This nonlinearity added to the absorbers allows
them to increase their equivalent stiffness to cancel the detuning. For the mechanical absorber, the stiffness force is given by
Fnl D kltva .y � h/ C knl;3 .y � h/3 with values of knl;3 ranging from 0 (linear absorber) to 800 � kltva.

Figure 32.6 depicts bifurcation diagrams of the system with MNLTVAs of nonlinear coefficient between 0 and 800�kltva.
These diagrams, computed using a numerical continuation algorithm based on a shooting method [18], are described as
follows.

• Figure 32.6a: knl;3 D 0 � kltva. This figure plots the bifurcation behaviour of the linear absorber that was studied in detail
in Sect. 32.5. The Hopf relative speed is increased to 1.25 however a large bi-stable area arises from the detuning of the
absorber. As a result, the LCO onset speed is equal to only 1.16, the relative airspeed of the fold B.

• Figure 32.6b: knl;3 D 20 � kltva. This absorber increases the relative LCO onset speed (fold B) to 1.161 because its
nonlinearity mitigates the detuning of the absorber to a certain extent but is not sufficiently large. At higher airspeeds, two
new fold bifurcations C and D arise at high amplitudes.

• Figure 32.6c: knl;3 D 60 � kltva. Increasing the NLTVA nonlinear coefficient delays the LCO onset speed slightly further
as the fold B is now located at an airspeed of 1.171. More importantly, the increased nonlinearity in the absorber reduces
the airspeed and amplitude of the folds C and D and therefore the airspeed at which the lower amplitude LCO branch
arises.

• Figure 32.6d: knl;3 D 70 � kltva. When the nonlinear coefficient reaches approximately 70 times the linear coefficient, the
folds at points D and A merge and disappear. There are now two separate limit cycle branches, one that appears at the
supercritical Hopf point and an isolated branch that closes in on itself. The folds B and C now lie on the isolated solution
branch and the LCO onset speed reaches 1.175.

• Figure 32.6e: knl;3 D 120 � kltva. Increasing the nonlinear coefficient further has very little effect on the main branch
however it reduces the span of the isolated solution branch. At this point, the relative LCO onset speed is equal to 1.201.
This isolated solution is dangerous because it is rather narrow and can easily be missed when performing continuation
without bifurcation tracking.

• Figure 32.6f: knl;3 D 130 � kltva. This nonlinear coefficient is sufficient to totally suppress the isolated solution branch.
As a result, the system now features a smooth super-critical bifurcation diagram with a nonlinear LCO onset speed that
coincides with the Hopf point and without any bi-stable regions. This is the optimal tuning of the nonlinear absorber.

• Figure 32.6g: knl;3 D 400 � kltva. Nonlinear absorber coefficients larger than the optimal turn the super-critical Hopf
bifurcation into sub-critical, which reduces the LCO onset speed but also increases the LCO onset amplitude. The higher
the nonlinear coefficient, the lower the LCO onset speed. Nevertheless, even at three times the optimal value, the relative
LCO onset speed is equal to 1.230 for this absorber which is much better than a LTVA.

• Figure 32.6h: knl;3 D 800 � kltva. Even at about six times the optimal value, this nonlinear absorber still features a relative
LCO onset speed of 1.203 which further proves the robustness of this absorber.

Similar phenomena are observed with an electromechanical vibration absorber. In this case, the capacitive tension is given
by VC D 1

Cltva
q C Cnl;3q3. The values of the nonlinear coefficient Cnl;3 are varied from 0 to 80 � 105 � 1

Cltva
. Theses values

of the nonlinear coefficient may seem extreme but in fact, they are not because the charge q in the absorber is very small.
Figure 32.7 depicts mostly the same phenomena as Fig. 32.6 for an electromechanical nonlinear absorber.

• Figure 32.7a–e: for nonlinear coefficients smaller than 7� 105 � 1
Cltva

, the absorber’s nonlinearity causes the appearance of
two additional folds at points C and D. As the nonlinear coefficient increases, the folds at points A and D merge, creating
an isolated branch when the nonlinear coefficient is sufficiently large. Increasing the nonlinear coefficient increases the
LCO onset speed and reduces the span of the isolated branch. Note that in Fig. 32.7e, the fold C has an airspeed smaller
than that of the Hopf point which means that between relative airspeeds of 1.219 and 1.248, only static solutions exist.

• Figure 32.7f corresponds to a nonlinear coefficient of 13 � 105 � 1
Cltva

, which is the optimal value for this system. This
nonlinearity is just sufficient to suppress the isola and the LCO onset speed coincides with the Hopf speed.

• Figure 32.7g, h: when the nonlinear capacity is higher than the optimal, the super-critical Hopf bifurcation is turned into
sub-critical, which leads to a large LCO onset amplitude. The system is not sensitive to the exact value of Cnl;3 as a
nonlinear coefficient about six times higher than the optimal one leads to a relative LCO onset speed of 1.195, which is
still much higher than the onset speed of the system with a linear absorber.
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Fig. 32.6 Bifurcation diagrams of the system with linear and nonlinear mechanical vibration absorbers. The legend in subfigure (a) applies to all
eight subfigures. (a) knl;3 D 0�kltva. (b) knl;3 D 20�kltva. (c) knl;3 D 60�kltva. (d) knl;3 D 70�kltva. (e) knl;3 D 120�kltva. (f) knl;3 D 130�kltva.
(g) knl;3 D 400 � kltva. (h) knl;3 D 800 � kltva

In summary, the addition of a properly tuned nonlinear stiffness term to the MLTVA or of a properly tuned nonlinear
capacitive term to the ELTVA increases the LCO onset speed to the linear flutter speed of the system and suppresses a
potentially dangerous bi-stable area. The LCO onset speed is quite sensitive to the absorber’s nonlinearity when it is smaller
than the optimal value, i.e. when the absorber is not capable of suppressing the isolated branch, but not so sensitive when it
is larger than the optimal value, which is encouraging for practical implementations.
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Fig. 32.7 Bifurcation diagrams of the system with linear and nonlinear electromechanical vibration absorbers. The legend in subfigure (a) applies
to all eight subfigures. (a) Cnl;3 D 0� 1

Cltva
. (b) Cnl;3 D 3�105� 1

Cltva
. (c) Cnl;3 D 6�105� 1

Cltva
. (d) Cnl;3 D 7�105� 1

Cltva
. (e) Cnl;3 D 12�105� 1

Cltva
.

(f) (Cnl;3 D 13 � 105 � 1
Cltva

. g) (Cnl;3 D 40 � 105 � 1
Cltva

. h) Cnl;3 D 80 � 105 � 1
Cltva

32.7 Conclusions

This work shows numerically that an electrical linear tuned vibration absorber made of a RL circuit and PZT patches can
perform at least as well as a mechanical linear tuned vibration absorber. Both linear absorbers have a similar effect on
the system and lead to a substantial increase in linear flutter speed. On the other hand, a large bi-stable region, due to the
structural nonlinearity of the primary system, greatly reduces the nonlinear LCO onset speed of the system.
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The addition of a properly tuned nonlinear stiffness or capacity on the mechanical or electrical absorbers respectively
totally suppresses the bi-stable area. Finally, it must be noted that unlike the linear absorber parameters that require a very fine
tuning, the nonlinear parameters do not have a significant impact on the absorber performance provided they are sufficiently
large.
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Appendix: Structural and Aerodynamic Matrices of the System

Structural Matrices

The system structural matrices based on Eqs. (32.1) and (32.2), with parameters values from Table 32.1, are given by

A D
0
@

m S 0

S I� 0

0 0 0

1
A C Altva (32.3)

C D
0
@

ch 0 0

0 c� 0

0 0 0

1
A C Cltva (32.4)

E D
0
@

kh 0 0

0 k� 0

0 0 0

1
A C Eltva (32.5)

assuming small displacements and linear electromechanical coupling, the MLTVA and ELTVA equations are written as

MLTVA ELTVA

Altva mltva

0
@

0 0 0

0 0 0

0 0 1

1
A L

0
@

0 0 0

0 0 0

0 0 1

1
A

Cltva cltva

0
@

1 rltva �1

rltva r2
ltva rltva

�1 rltva 1

1
A R

0
@

0 0 0

0 0 0

0 0 1

1
A

Eltva kltva

0
@

1 rltva �1

rltva r2
ltva rltva

�1 rltva 1

1
A

0
B@

0 0 ˇltva

0 0 0

ˇltva 0 1
Cltva

1
CA

(32.6)

with rltva D 0 in this study.

Aerodynamic Matrices

The aerodynamic matrices that are used in Eq. (32.2) have been computed using linear unsteady aerodynamics based on
Wagner’s theory. The Wagner function is given by

ˆ.t/ D 1 � ‰1e�"1Ut=b � ‰2e�"2Ut=b (32.7)
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with ‰1 D 0:165, ‰2 D 0:335, "1 D 0:0455 and "2 D 0:3. The aerodynamic mass matrix is written as

B D b2

�
� ��ab

��ab �b2.1=8 C a2/

�
(32.8)

with a D xf =b. Then, the aerodynamic damping matrix is given by

D D �b2

�
0 1

0 �b.a � 1=2/

�
C 2�bˆ.0/

�
1 �b.a � 1=2/

�b.a C 1=2/ b2.a C 1=2/.a � 1=2/

�
(32.9)

and the stiffness matrix is written as

F D 2�bˆ.0/

�
0 1

0 �b.a C 1=2/

�
C 2�b P̂ .0/

�
1 �b.a � 1=2/

�b.a C 1=2/ b2.a C 1=2/.a � 1=2/

�
(32.10)

The aerodynamic state matrix is given by

W D 2�b

0
@

‚

�b.a C 1=2/‚

01�4

1
A (32.11)

with

‚ D

0
BB@

�‰1."1=b/2

�‰2."2=b/2

‰1"1=bŒ1 C "1.a � 1=2/�

‰2"2=bŒ1 C "2.a � 1=2/�

1
CCA

T

(32.12)

Finally, the aerodynamic state equations are given by

W1 D

0
BB@

1 0 0

1 0 0

0 1 0

0 1 0

1
CCA (32.13)

W2 D

0
BB@

�"1=b 0 0 0

0 �"2=b 0 0

0 0 �"1=b 0

0 0 0 �"2=b
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