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Abstract Consistent reconstruction is a method for estimating a signal from a
collection of linear measurements that have been corrupted by uniform noise. We
prove upper bounds on general error moments for consistent reconstruction, and
we establish general admissibility conditions on the sampling distributions used for
consistent reconstruction. This extends previous work in Powell and Whitehouse
(Found Comput Math 16:395–423, 2016) that addressed mean squared error in the
setting of unit-norm sampling distributions.
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1 Introduction

Consistent reconstruction is a method for estimating a signal x 2 R
d from a

collection of linear measurements that have been corrupted by uniform noise or,
more generally, bounded noise. Estimation with uniform noise arises naturally in
quantization problems in signal processing, especially in connection with dithering
and the uniform noise model [7, 11]. Consistent reconstruction has been used as a
signal recovery method for memoryless scalar quantization [1, 2, 4, 11, 13], Sigma-
Delta quantization [12], and compressed sensing [5, 6, 9]. See [10] for background
and motivation on consistent reconstruction and estimation with uniform noise.

Let x 2 R
d be an unknown signal and let f'ngNnD1 � R

d be a given spanning
set for Rd that is used to make linear measurements hx; 'ni of x. We consider the
problem of recovering an estimate for x from the noisy measurements

qn D hx; 'ni C �n; 1 � n � N; (1)
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where f�ngNnD1 are independent uniform random variables on Œ�ı; ı�. For the setting
of this chapter, the collection f'ngNnD1 is known but randomly generated, the noise
level ı > 0 is fixed and known, whereas x and the noise f�ngNnD1 are both unknown.
We focus on the situation when f'ngNnD1 are independent versions of a random vector
' 2 R

d whose distribution we refer to as the sampling distribution.
Consistent reconstruction seeks an estimateex for the unknown signal x that is

consistent with the knowledge that the noise is bounded in Œ�ı; ı�. Specifically,
consistent reconstruction produces an estimate ex 2 R

d for x by selecting any
solution of the linear feasibility problem

jhex; 'ni � qnj � ı; 1 � n � N: (2)

There are generally infinitely many solutions to this feasibility problem. In this
chapter, we mainly focus on the worst case error associated to consistent recon-
struction.

1.1 Worst case error

To describe the worst case error of consistent reconstruction, note that ifex is any
solution to (2), then the error .ex � x/ lies in each of the closed convex sets

En D ˚

u 2 R
d W jhu; 'ni � �nj � ı

�

: (3)

The intersection of the sets En forms the following error polytope:

PN D
N
\

nD1
En; (4)

which is the set of all possible errors associated to consistent reconstruction (2). The
worst case error WN associated to consistent reconstruction is thus defined by

WN D max fkuk W u 2 PNg ; (5)

where k � k denotes the Euclidean norm on R
d.

1.2 Background

The main results in [10] proved error bounds for the expected worst case error
squared EŒ.WN/

2� of consistent reconstruction when the sampling vectors f'ngNnD1
are drawn at random from a suitable probability distribution on the unit sphere Sd�1.

The work in [10] considered sampling vectors f'ngNnD1 � S
d�1 that are

independently drawn instances of a unit-norm random vector ' that satisfies the
following admissibility condition:
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9˛ � 1; 9 0 < s � 1; 8 0 � t � 1; 8x 2 S
d�1; PrŒ jhx; 'ij � t� � ˛ts: (6)

See Section 5 of [10] for further discussion of the admissibility condition (6). For
example, if ' is uniformly distributed on S

d�1, then ' satisfies (6) with s D 1 and

˛ D 2�. d2 /p
��. d�1

2 /
. On the other hand, if ' has a point mass, then ' does not satisfy (6).

Suppose that f'ngNnD1 � S
d�1 are independently drawn at random according

to a distribution that satisfies the admissibility condition (6). Theorem 5.5 and
Corollary 5.6 in [10] prove that there exist absolute constants c1; c2 > 0 such that if

N � c2d ln.32.2˛/1=s/;

then the expected worst case error squared for consistent reconstruction satisfies

EŒ.WN/
2� � c1ı2d2.2˛/1=s ln2.16.2˛/1=s/

.N C 1/.N C 2/
:

Moreover, in the special case when f'NgNnD1 are drawn independently at random
according to the uniform distribution on S

d�1, Theorem 6.1 and Corollary 6.2 in
[10] proved a refined error bound with a constant that has cubic dependence on the
dimension

EŒ.WN/
2� � cı2d3

N2
:

For perspective, it is known that mean squared error rates of order 1=N2 are
generally optimal for estimation with uniform noise, see [11].

1.3 Overview and main results

The error bounds for consistent reconstruction in [10] only considered the mean
squared error EŒ.WN/

2� and only considered the admissibility condition (6) in the
setting of unit-norm random vectors (for example, this excludes the case of Gaussian
random vectors). The main contributions of this chapter are two-fold:

1. We prove bounds on general error moments EŒ.WN/
p� for consistent reconstruc-

tion. Our main results show that the error decreases like EŒ.WN/
p� � 1=Np; as

the number of measurements N increases.
2. We establish a general admissibility condition on the sampling distribution that

does not require ' to be unit-norm.

In Section 2, we prove our first main result, Theorem 1, which gives upper bounds
on EŒ.WN/

p� for unit-norm sampling distributions. Section 3 builds on Theorem 1
and proves our second main result, Theorem 2, for general sampling distributions
that need not be unit-norm.
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2 Error moments for consistent reconstruction: unit-norm
distributions

In this section we prove our first main result, Theorem 1. Theorem 1 extends
Theorem 5.5 in [10] to the setting of general error moments EŒ.WN/

p�. In this
section, we assume that the sampling vectors f'ngNnD1 are unit-norm and satisfy the
admissibility condition (6). We shall later remove the unit-norm requirement from
the admissibility condition in Section 3.

2.1 Consistent reconstruction and coverage problems

We begin by recalling a useful connection between consistent reconstruction and a
problem on covering the sphere by random sets.

Definition 1 Let f'ngNnD1 be a set of unit-norm vectors and let f�ngNnD1 � Œ�ı; ı�.
For each � > 0, define

Bn .�/ D B.'n; �n; �/ D
�

u 2 S
d�1 W hu; 'ni > �n C ı

�
or hu; 'ni < �n � ı

�

�

D ˚

u 2 S
d�1 W j�hu; 'ni � �nj > ı

�

: (7)

In our setting, the sets Bn.�/ are random subsets of S
d�1 because f'ngNnD1 and

f�ngNnD1 are random.
Note that each Bn .�/ can be expressed as a union of two (possibly empty)

antipodal open spherical caps of different sizes

Bn .�/ D Cap
�

'n; �
C
n

� [ Cap
��'n; ��

n

�

; (8)

where the angular radii �C
n and ��

n are given by

�C
n D

8

<

:

arccos
�

ıC�n
�

�

; if ı C �n < �;

0; otherwise,

and

��
n D

8

<

:

arccos
�

ı��n
�

�

; if ı � �n < �;
0; otherwise.
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The following lemma shows a connection between consistent reconstruction and
the problem of covering the unit sphere by the random sets Bn.�/, see Lemma 4.1
in [10].

Lemma 1 For all � > 0, the worst case error satisfies

Pr ŒWN > �� � Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

: (9)

The following lemmas collect upper bounds on Pr
h

S
d�1 6� SN

nD1 Bn .�/
i

that

are spread out over various parts of [10].

Lemma 2 If � � 4ı, then

Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

� 4d�1.4s˛/N
	

ı

�


sN�dC1
: (10)

Lemma 2 was shown in equation (5.9) in [10].

Lemma 3 If 0 � � � 4.2˛/1=sı, then

Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

�
N
X

kD0
q.k; d � 1; ˛; s/

 

N

k

!

	

1 � �

4ı.2˛/1=s


N�k 	
�

4ı.2˛/1=s


k

; (11)

where q.k; d � 1; ˛; s/ satisfies

q.k; d � 1; ˛; s/ � 1; (12)

and

k � 2d ln.16.2˛/1=s/

ln.4=3/
H) q.k; d � 1; ˛; s/ �

	

3

4


k=2

: (13)

The bound (11) appears in (5.12) in [10]. The bound (12) follows from (5.11) in
[10], and the bound (13) appears in Step VI in the proof of Theorem 5.5 in [10].
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2.2 Error moment bounds

We now prove our first main result that provides error moment bounds for consistent
reconstruction.

Theorem 1 Suppose that f'ngNnD1 � S
d�1 are independently drawn at random

according to a distribution that satisfies the admissibility condition (6) with
parameters ˛ � 1 and 0 < s � 1. If p 2 N and N � .d C p/=s, then the pth
error moment for consistent reconstruction satisfies

EŒ.WN/
p� � C 0 ıp

0

@

p
Y

jD1
.N C j/

1

A

�1

C C 00 ıp
	

1

2


N

; (14)

where

C 0 D C0
p;˛;s D 2p.4.2˛/1=s/p

	

2d ln.16.2˛/1=s/

ln.4=3/
C p


p
 1
X

kD1
.k C 1/p�1.3=4/k=2

!

;

and

C 00 D C00
p;˛;s;d D 2p.32.2˛/1=s/pCd�1:

Proof We proceed by directly building on the proof of Theorem 5.5 in [10].
Step 1. We need to compute

EŒ.WN/
p� D p

Z 1

0

�p�1 PrŒWN > ��d�: (15)

By Lemma 1, we have

EŒ.WN/
p� � p

Z 1

0

�p�1 Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

d�: (16)

Thus, it suffices to bound the integral on right side of (16).
Step 2. We shall bound the integral in (16) by breaking it up into three separate

integrals. We begin by estimating the integral in the range 0 � � � 4ı.2˛/1=s:
Using (11) and a change of variables gives

p
Z 4ı.2˛/1=s

0
�p�1 Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

d�
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� p
N
X

kD0
q.k; d�1; ˛; s/

 

N

k

!

Z 4ı.2˛/1=s

0
�p�1

	

1� �

4ı.2˛/1=s


N�k 	 �

4ı.2˛/1=s


k

d�

D p
N
X

kD0
q.k; d � 1; ˛; s/

 

N

k

!

�

4ı.2˛/1=s
�p
Z 1

0
vkCp�1.1 � v/N�kdv

D p
�

4ı.2˛/1=s
�p N
X

kD0
q.k; d � 1; ˛; s/

 

N

k

!

.N � k/Š.k C p � 1/Š
.N C p/Š

D p
�

4ı.2˛/1=s
�p

0

@

p
Y

jD1
.N C j/

1

A

�1 "
N
X

kD0

.k C p � 1/Š
kŠ

q.k; d � 1; ˛; s/
#

: (17)

Here, we used the property of the beta function that

Z 1

0

vkCp�1.1 � v/N�kdv D .N � k/Š.k C p � 1/Š
.N C p/Š

: (18)

It remains to bound the sum
PN

kD0
.kCp�1/Š

kŠ q.k; d�1; ˛; s/ in (17). We will bound
this sum by breaking it up into two separate sums, in an analogous manner to Step
VI in the proof of Theorem 5.5 in [10]. Let

K D
$

2d ln.16.2˛/1=s/

ln.4=3/

%

: (19)

Since q.k; d � 1; ˛; s/ � 1, we have

K
X

kD0

.k C p � 1/Š
kŠ

q.k; d � 1; ˛; s/ �
K
X

kD0
.K C p � 1/p�1 � .K C p/p: (20)

Using (13) we have

N
X

kDKC1

.k C p � 1/Š
kŠ

q.k; d � 1; ˛; s/ �
1
X

kDKC1

.k C p � 1/Š
kŠ

	

3

4


k=2

�
1
X

kDKC1
.k C p � 1/p�1

	

3

4


k=2

D
1
X

kD1
.k C K C p � 1/p�1

	

3

4


.kCK/=2
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� .K C p/p�1
1
X

kD0
.k C 1/p�1

	

3

4


k=2

D .K C p/p�1Sp; (21)

where Sp D P1
kD1.k C 1/p�1.3=4/k=2 satisfies 1 < Sp < 1.

By (20) and (21) we have

N
X

kD0

.k C p � 1/Š
kŠ

q.k; d � 1; ˛; s/ � .K C p/p.1C Sp/ � 2.K C p/p Sp: (22)

Combining (17) and (22) yields

p
Z 4ı.2˛/1=s

0

�p�1 Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

d�

� 2p.4ı.2˛/1=s/p.K C p/pSp

0

@

p
Y

jD1
.N C j/

1

A

�1

: (23)

Step 3. Next, we bound the integral (16) in the range 4ı.2˛/1=s � � � 8ı.2˛/1=s.
By Lemma 2 we know that in this range of �,

Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

� .16.2˛/1=s/d�1
	

1

2


N

:

Thus

p
Z 8ı.2˛/1=s

4ı.2˛/1=s
�p�1 Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

d�

� p.16.2˛/1=s/d�1
	

1

2


N Z 8ı.2˛/1=s

4ı.2˛/1=s
�p�1d�

� ıp.16.2˛/1=s/dCp�1
	

1

2


N

: (24)

Step 4. We next bound the integral (16) in the range � � 8ı.2˛/1=s. By Lemma 2
we know that in this range of �,
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Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

� 4d�1.4s˛/N
	

ı

�


sN�dC1
:

It follows that when N � .d C p/=s,

p
Z 1

8ı.2˛/1=s
�p�1 Pr

"

S
d�1 6�

N
[

nD1
Bn .�/

#

d�

� p � 4d�1.4s˛/NısN�dC1
Z 1

8ı.2˛/1=s
�p�sNCd�2d�

D p � 4d�1.4s˛/NısN�dC1
	

.8ı.2˛/1=s/p�sNCd�1

sN � p � d C 1




� p � ıp.32.2˛/1=s/pCd�1
	

1

2


N

: (25)

Combining (16), (23), (24), and (25) completes the proof.

Theorem 1 yields the following corollary.

Corollary 1 Suppose that f'ngNnD1 � S
d�1 are independently drawn at random

according to a distribution that satisfies the admissibility condition (6) with
parameters ˛ � 1 and 0 < s � 1. If p 2 N and

N � max

�

2

ln 2

�

ln

	

C00

C0




C 2p ln

	

4p

e ln 2


�

;
d C p

s

�

; (26)

then

EŒ.WN/
p� � 2C0ıp

0

@

p
Y

jD1
.N C j/

1

A

�1

; (27)

where C0;C00 are as in Theorem 1.

Proof In view of Theorem 1, it suffices to show that if N satisfies (26) then

C00
	

1

2


N

� C0
0

@

p
Y

jD1
.N C j/

1

A

�1

:
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Equivalently, it suffices to show

ln

	

C00

C0




C
p
X

jD1
ln.N C j/ � N ln 2: (28)

To begin, note that

8x > 0; ln.x/ � x � 1;

gives

ln.N/ D ln

	

N ln 2

4p




C ln

	

4p

ln 2




� N ln 2

4p
� 1C ln

	

4p

ln 2




D N ln 2

4p
C ln

	

4p

e ln 2




: (29)

Next, use (29) and N � .d C p/=s � maxfp; 2g to obtain

p
X

jD1
ln.N C j/ D

p
X

jD1

�

ln.N/C ln

	

1C j

N


�

� p ln.N/C p ln 2

� 2p ln.N/

� N ln 2

2
C 2p ln

	

4p

e ln 2




: (30)

In view of (30), to show (28) it suffices to have

ln

	

C00

C0




C N ln 2

2
C 2p ln

	

4p

e ln 2




� N ln 2: (31)

Since (31) holds by the assumption (26), this completes the proof.

We conclude this section with some perspective on the dimension dependence of
the constant C0 in Theorem 1 and Corollary 1. We consider the special case when
' is uniformly distributed on the unit-sphere S

d�1 with d � 3. In this case, one
may take s D 1 and ˛ D 2�.d=2/p

��..d�1/=2/ in (6), see Example 5.1 in [10], and the

constant C0 is of order
�

d
3
2 ln d

�p
. Here, the logarithmic factor ln d is an artifact of

the general setting of Theorem 1. In particular, for p D 2 the refined analysis in
Theorem 6.1 and Corollary 6.2 of [10] shows that the factor ln d can be removed
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when ' is uniformly distributed on the unit-sphere S
d�1. A similar analysis extends

to moments with general values of p 2 N and shows that the factor ln d can be
replaced by an absolute constant that is independent of d.

3 Error moments for consistent reconstruction: general
distributions

In Section 2 we proved bounds on the pth error moment for consistent reconstruction
when the measurements are made using i.i.d. copies of a unit-norm random vector
' 2 S

d�1. In this section, we relax the unit-norm constraint to accommodate more
general distributions.

3.1 General admissibility condition

Definition 2 We shall say that a random vector ' 2 R
d satisfies the general

admissibility condition if the following conditions hold:

• ' D a , where a is a non-negative random variable,  is a unit-norm random
vector, and a and  are independent.

•  satisfies the admissibility condition (6).
• 9C > 0 such that

8� > 0; �PrŒa� � 1� � C: (32)

• ra D PrŒa > 1� satisfies 0 < ra < 1.

Example 1 A sufficient condition for the small-ball inequality (32) to hold is when
a is an absolutely continuous random variable whose probability density function f
is in L1.R/. In this case, for each � > 0,

Pr Œa� � 1� D Pr

�

a � 1

�

�

D
Z 1=�

0

f .a/ da � kfk1
�

:

This shows that a large class of probability distributions satisfy the conditions in
Definition 2. For example, if ' is a random vector whose entries are i.i.d zero mean
Gaussian random variables, then ' satisfies the conditions in Definition 2.

In Definition 2, there would be no loss of generality if a were scaled differently
so that 0 < PrŒa > T� < 1 for some T > 0. In particular, suppose that 'n D an n

with 0 < PrŒan > T� < 1, and qn D hx; 'ni C �n with �n uniformly distributed on
Œ�ı; ı�. Thenex 2 R

d satisfies
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jhex; 'ni � qnj � ı if and only if jhex; '0
ni � q0

nj � ı0;

where '0
n D 'n=T D a0

n n and a0
n D an=T and q0

n D hx; '0
ni C �0

n, where �0
n D �n=T

is uniformly distributed on Œ�ı0; ı0� with ı0 D ı=T .

3.2 Coverage problems revisited

Suppose that f'ngNnD1 are i.i.d. versions of a random vector ' that satisfies the
conditions of Definition 2. In particular, 'n D an n, where fangNnD1 i.i.d. versions of
a random variable a, and f ngNnD1 are i.i.d. versions of a random vector  . Similar to
Lemma 1, the worst case error WN for consistent reconstruction can be bounded by

PrŒWN > �� � Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

; (33)

where B. n; �n; an�/ is defined using (7).

3.2.1 Conditioning and a bound by caps with an D 1

The following lemma bounds (33) by coverage probabilities involving caps with
an D 1.

Lemma 4 Suppose f'ngNnD1, with 'n D an n, are i.i.d. versions of a random vector
' that satisfies the conditions of Definition 2. Then

Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

�
N
X

jD1
Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

bino.j;N; r/C .1 � r/N ; (34)

where

bino.j;N; r/ D
 

N

j

!

rj.1 � r/N�j;

and r D ra D PrŒa > 1� is as in Definition 2.
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Proof Let Jj;N denote the event that exactly j elements of fangNnD1 satisfy an > 1.
Since the fangNnD1 are independent versions of the random variable a,

PrŒJj;N � D
 

N

j

!

.PrŒa > 1�/j.1 � PrŒa > 1�/N�j

D
 

N

j

!

rj.1 � r/N�j D bino.j;N; r/:

Thus,

Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

D
N
X

jD0
Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

ˇ

ˇ

ˇ

ˇ

ˇ

Jj;N

#

Pr


Jj;N
�

D
N
X

jD0
Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

ˇ

ˇ

ˇ

ˇ

ˇ

Jj;N

#

bino.j;N; r/: (35)

By (7), when an > 1 we have B. n; �n; an�/ � B. n; �n; �/. Thus for 1 � j � N,

Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

ˇ

ˇ

ˇ

ˇ

ˇ

Jj;N

#

� Pr

2

4S
d�1 6�

[

fnWan>1g
B. n; �n; an�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Jj;N

3

5

� Pr

2

4S
d�1 6�

[

fnWan>1g
B. n; �n; �/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Jj;N

3

5

D Pr

2

4S
d�1 6�

j
[

nD1
B. n; �n; �/

3

5 ; (36)

where the last equality holds because fangNnD1 are i.i.d. random variables that are
independent of the i.i.d. random vectors f ngNnD1. For j D 0, we use the trivial bound

Pr

2

4S
d�1 6�

[

fnWan>1g
B. n; �n; �/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Jj;N

3

5 � 1:

Combining (35) and (36) completes the proof.
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To bound the binomial terms in Lemma 4 it will be useful to recall Hoeffding’s
inequality for Bernoulli random variables. If 0 < p < 1 and m � Np, then

m
X

jD0
bino.j;N; p/ � exp

�

�2 .Np � m/2 =N
�

: (37)

3.2.2 Covering and discretization

A useful technique for bounding coverage probabilities such as (33) is to discretize
the problem by discretizing the sphere S

d�1 with an �-net, see [3]. In this section,
we briefly recall necessary aspects of this discretization method as used in [10].

Recall that a set N� � S
d�1 is a geodesic �-net for Sd�1 if

8x 2 S
d�1; 9 z 2 N�; such that arccos.hx; zi/ � �:

For the remainder of this section, let N� be a geodesic �- net of cardinality

# .N�/ �
	

8

�


d�1
:

It is well known that geodesic �-nets of such cardinality exist, e.g., see
Lemma 13.1.1 in [8] or Section 2.2 in [10].

Recalling (8), define the shrunken bi-cap T� ŒB. n; �n; an�/� by

T� ŒB. n; �n; an�/� D Cap
�

 n;T�.�
C
n /
� [ Cap

�� n;T�.�
�
n /
�

;

where

T�.�/ D
(

� � �; if � � �I
0; if 0 � � � �:

Similar to equations (5.4) and (5.5) in [10], the coverage probability (33) can be
discretized as follows:

Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

� Pr

"

N� 6�
N
[

nD1
T� ŒB. n; �n; an�/�

#

�
	

8

�


d�1  
sup

z2Sd�1

Pr
h

z 62 T� ŒB. n; �n; an�/�
i

!N

: (38)
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Similar to equation (5.6) in [10], one has that

B. n; �n; an�/ �
�

u 2 S
d�1 W jhu;  nij > 2ı

an�

�

and

T� ŒB. n; �n; an�/� �
�

u 2 S
d�1 W jhu;  nij > 2ı

an�
C �

�

:

This gives

Pr

�

z 62 T� ŒB. n; �n; an�/�

�

� Pr

�

jhz;  nij � 2ı

an�
C �

�

: (39)

3.3 Moment bounds for general distributions

We now state our next main theorem.

Theorem 2 Suppose that f'ngNnD1 are i.i.d. versions of a random vector ' that
satisfies the conditions of Definition 2. Let r D ra D PrŒa > 1� be as in Definition 2.
If

N � 2.d C p/

sr
; (40)

then the pth error moment for consistent reconstruction satisfies

E Œ.WN/
p� � pC0

	

2ı

Nr


p

C pC00ıp
	

1

2


Nr=2

C ıp�pe�Nr2=2 C ıpC000
	

1

2


N

;

where C0;C00 are as in Theorem 1, � is defined by (42) and (57), and C000 is defined
by (60) and (57).

Proof As in Theorem 1 we shall use (15). In view of (33), we need to estimate

EŒ.WN/
p� � p

Z 1

0

�p�1 Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

d�: (41)
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Step 1. We begin by estimating the integral in (41) over the range 0 � � � �ı,
where

� D maxf�0;�1g; with �0 D 2sC3C
˛

and �1 D 4
�

2K00� sC1
s ; (42)

and K00 is defined in (57).
By Lemma 4 we have

p
Z �ı

0

�p�1 Pr

"

S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

d�

� p
Z �ı

0

�p�1
N
X

jD0
Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

bino.j;N; r/d�

D p
Z �ı

0

�p�1
bNr=2c
X

jD0
Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

bino.j;N; r/d� (43)

C p
Z �ı

0

�p�1
N
X

jDdNr=2e
Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

bino.j;N; r/d�: (44)

Hoeffding’s inequality and the trivial bound Pr
h

S
d�1 6� Sj

nD1 B. n; �n; �/
i

� 1

can be used to bound (43) as follows:

p
Z �ı

0

�p�1
bNr=2c
X

jD0
Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

bino.j;N; r/d�

� p
Z �ı

0

�p�1
0

@

bNr=2c
X

jD0
bino.j;N; r/

1

A d�

� p
�

e�Nr2=2
�

Z �ı

0

�p�1d�

D ıp�pe�Nr2=2: (45)

To bound the integral in (44), recall (40) and note that if j satisfies .d C p/=s �
dNr=2e � j � N, then the bounds on (16) obtained in the proof of Theorem 1 give
that

p
Z �ı

0

�p�1 Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

d�
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� p
Z 1

0

�p�1 Pr

"

S
d�1 6�

j
[

nD1
B. n; �n; �/

#

d�

� C0ıp
 

p
Y

lD1
.j C l/

!�1
C C00ıp

	

1

2


j

� C0ıp

jp
C C00ıp

	

1

2


j

; (46)

where C0 and C00 are as in Theorem 1.

Using (46), along with
PN

jD0 bino.j;N; r/ D 1, one may bound (44) as follows:

p
N
X

jDdNr=2e

Z �ı

0

�p�1 Pr

"

S
d�1 6�

j
[

nD1
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p
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#

: (47)

Applying the bounds (45) and (47) to (43) and (44) gives

p
Z �ı

0

�p�1 Pr
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S
d�1 6�
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nD1
B. n; �n; an�/

#
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� ıp�pe�Nr2=2 C pC0
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C pC00ıp
	

1

2


Nr=2

: (48)

Step 2. We next estimate the integral in (41) over the range � � �ı. By (38)
and (39) we have

Pr


S
d�1 6�

N
[

nD1
B. n; �n; an�/

#

�
	

8

�


d�1  
sup

z2Sd�1

Pr

�

jhz;  nij � 2ı

an�
C �

�

!N

: (49)
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We therefore need to bound PrŒjhz;  nij � 2ı
an�

C ��.

For the remainder of this step set

A D
�˛

C

� 1
sC1

	

4ı

�


 s
sC1

and � D 2ı

A�
D
	

1

2


	

4ıC

�˛


 1
sC1

; (50)

where C; ˛; s are the parameters in (6) and Definition (2). By (42), note that � �
�ı � �0 ı implies that 0 < � � 1=4.

For any z 2 S
d�1 we have

Pr

�

jhz;  nij � 2ı

an�
C �

�

D Pr

�

jhz;  nij � 2ı

an�
C �

ˇ

ˇ

ˇ

ˇ

an > A

�

Pr Œan > A� (51)

C Pr

�

jhz;  nij � 2ı

an�
C �

ˇ

ˇ

ˇ

ˇ

an � A

�

Pr Œan � A� :

(52)

We now bound the terms appearing in (51). Recall that � � �ı implies that
4ı=.A�/ D 2� � 1=2. By our choice of � in (50), and using the admissibility
assumption (6), for each � � �ı one has

Pr
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an�
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ˇ
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4ı
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s

: (53)

To bound (52), note that by (32) one has Pr Œan � A� � CA, and thus

Pr

�

jhz;  nij � 2ı

an�
C �

ˇ

ˇ

ˇ

ˇ

an � A

�

Pr Œan � A� � Pr Œa � A� � CA: (54)

Using the bounds (53) and (54) in (51) and (52) gives

Pr
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jhz;  nij � 2ı

an�
C �
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� ˛

	

4ı
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C CA: (55)
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Since our choice of A in (50) gives

˛

	

4ı

A�


s

D CA;

we have
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an�
C �
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� 2CA D 2C
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4ı
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 s
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: (56)

Thus, combining (49) and (56) gives
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To simplify notation, let

K0 D
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d�1
and K00 D 2C

�˛
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; (57)

so that
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Since 0 < s � 1 and 0 < r < 1, note that (40) implies
�

sN�dC1
sC1 � p C 1

� � 2.
By (58) we have
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Since (42) implies that K00 � 4
�

�
s

sC1 � 1=2, it follows that
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d� � ıpC000
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where

C000 D pK04p
	

�

4


pC d�1
sC1

: (60)

Combining (41), (48) and (59) completes the proof.

Similar to Corollary 1, the following corollary of Theorem 2 shows that EŒ.WN/
p�

is at most of order 1=Np when N is sufficiently large.

Corollary 2 Let f'ngNnD1 be as in Theorem 2. There exist constants C1;C2 > 0 such
that

8N � C1; E Œ.WN/
p� � C2ıp

Np
: (61)

The constants C1;C2 depend on ˛; s;C; p; d.

3.4 Numerical experiment

This section illustrates Theorem 2 with a numerical experiment.
Let x D .2; �/ and ı D 1

10
. Given N � 3; let fengNnD1 � R

2 be independent
random vectors with i.i.d. N.0; 1/ entries. Let fqngNnD1 be defined as in (1).
Since there infinitely many different solutions ex to the consistent reconstruction
condition (2), we select the minimal norm estimate by
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Fig. 1 Log-log plot of E.N; 2/ versus N, see Section 3.4.

ex D argmin z2R2kzk2 subject to jhz; 'ni � qnj � ı; 1 � n � N: (62)

We repeat this experiment 20 times and let E.N; p/ denote the average value of
kex � xkp. Figures 1 and 2 show log-log plots of E.N; p/ versus N for p D 2 and
p D 5. For comparison, these respective figures also show log-log plots of 3=N2

and 20=N5 versus N. In particular, E.N; p/ appears to decay like 1=Np, as predicted
by the worst case error bounds in Theorem 2.
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Fig. 2 Log-log plot of E.N; 5/ versus N, see Section 3.4.
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