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Dedicated to
Ying Wang and Dennis Healy,

inspiring members of our harmonic analysis family
and lost to us when they were so young.



ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental
relationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

vii



viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory
Fast algorithms Spectral estimation
Gabor theory and applications Speech processing
Image processing Time-frequency and time-scale analysis
Numerical partial differential equations Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.



ANHA Series Preface ix

The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’étre of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor



Preface

The chapters in this Vol. 5 have at least one author who spoke at the February Fourier
Talks during the period 2014-2016. Volumes 1-4 cover the February Fourier Talks
during the period 2002-2013.

The February Fourier Talks (FFT)

The FFTs were initiated in 2002 and 2003 as small meetings on harmonic analysis
and applications, held at the University of Maryland, College Park. There were no
FFTs in 2004 and 2005. The Norbert Wiener Center (NWC) for Harmonic Analysis
and Applications was founded in 2004 in the Department of Mathematics at the
university, and, since 2006, the FFT has been organized by the NWC. The FFT
has developed into a major annual conference that brings together applied and pure
harmonic analysts along with scientists and engineers from universities, industry,
and government for an intense and enriching 2-day meeting.
The goals of the FFT are the following:

* To offer a forum for applied and pure harmonic analysts to present their latest
cutting-edge research to scientists working not only in the academic community
but also in industry and government agencies;

* To give harmonic analysts the opportunity to hear from government and industry
scientists about the latest problems in need of mathematical formulation and
solution;

» To provide government and industry scientists with exposure to the latest research
in harmonic analysis;

* To introduce young mathematicians and scientists to applied and pure harmonic
analysis;

* To build bridges between pure harmonic analysis and applications thereof.

xi



xii Preface

These goals stem from our belief that many of the problems arising in engineer-
ing today are directly related to the process of making pure mathematics applicable.
The Norbert Wiener Center sees the FFT as the ideal venue to enhance this process
in a constructive and creative way. Furthermore, we believe that our vision is shared
by the scientific community, as shown by the steady growth of the FFT over the
years.

The FFT is formatted as a 2-day single-track meeting consisting of 30-minute
talks as well as the following:

* Norbert Wiener Distinguished Lecturer Series;
¢ General Interest Keynote Address;

e Norbert Wiener Colloquium;

¢ Graduate and Postdoctoral Poster Session.

The talks are given by experts in applied and pure harmonic analysis, including
academic researchers and invited scientists from industry and government agencies.

The Norbert Wiener Distinguished Lecture caps the technical talks of the first
day. It is given by a senior harmonic analyst, whose vision and depth through the
years have had profound impact on our field. In contrast to the highly technical
day sessions, the Keynote Address is aimed at a general public audience and
highlights the role of mathematics, in general, and harmonic analysis, in particular.
Furthermore, this address can be seen as an opportunity for practitioners in a
specific area to present mathematical problems that they encounter in their work.
The concluding lecture of each FFT, our Norbert Wiener Colloquium, features a
mathematical talk by a renowned applied or pure harmonic analyst. The objective
of the Norbert Wiener Colloquium is to give an overview of a particular problem
or a new challenge in the field. We include here a list of speakers for these three
lectures.

Distinguished Keynote Colloquium
* Robert Calderbank * Peter Carr * Richard Baraniuk
* Ronald Coifman » Barry Cipra * Rama Chellappa
* Ingrid Daubechies » James Coddington * Margaret Cheney
* Ronald DeVore * Nathan Crone * Charles Fefferman
* Richard Kadison e Ali Hirsa * Robert Fefferman
e Peter Lax e Mario Livio * Gerald Folland
» Elias Stein *  William Noel * Christopher Heil
* Gilbert Strang * Steven Schiff * Peter Jones
* Mark Stopfer * Thomas Strohmer
* Frederick Williams * Victor Wickerhauser

In 2013, the February Fourier Talks was followed by a workshop on phaseless
reconstruction, also hosted by the Norbert Wiener Center and intellectually in the
spirit of the FFT.



Preface xiii

The Norbert Wiener Center

The Norbert Wiener Center for Harmonic Analysis and Applications provides a
national focus for the broad area of applied harmonic analysis. Its theoretical
underpinnings form the technological basis for many applications. Further, the
applications themselves impel the study of fundamental harmonic analysis issues
in topics such as signal and image processing, machine learning, data mining,
waveform design, and dimension reduction.

The Norbert Wiener Center reflects the importance of integrating new mathemat-
ical technologies and algorithms in the context of current industrial and academic
needs and problems.

The Norbert Wiener Center has three goals:

» Research activities in harmonic analysis and applications;
* Education—undergraduate to postdoctoral;
* Interaction within the international harmonic analysis community.

We believe that educating the next generation of harmonic analysts, with a strong
understanding of the foundations of the field and a grasp of the problems arising in
applications, is important for a high-level and productive industrial, government,
and academic workforce.

The Norbert Wiener Center website: www.norbertwiener.umd.edu

The Structure of the Volumes

To some extent, the four parts for each of these volumes are artificial placeholders
for all the diverse chapters. It is an organizational convenience that reflects major
areas in harmonic analysis and its applications, and it is also a means to highlight
significant modern thrusts in harmonic analysis. Each part includes an introduction
that describes the chapters therein.

Volume 1 Volume 2
I Sampling Theory V Measure Theory
II Remote Sensing VI Filtering
IIT Mathematics of Data Processing VII Operator Theory

IV Applications of Data Processing VIII Biomathematics


www.norbertwiener.umd.edu

Xiv

Volume 3

IX Special Topics in
Harmonic Analysis
X Applications and Algorithms in the
Physical Sciences
XI Gabor Theory
XII RADAR and Communications:
Design, Theory, and Applications

Volume 5

XVII Theoretical Harmonic Analysis
XVIII Image and Signal Processing
XIX Quantization
XX Algorithms and Representations

Preface

Volume 4

XIII Theoretical Harmonic Analysis
XIV Sparsity

XV Signal Processing and Sampling
XVI Spectral Analysis and Correlation
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Part XVII
Theoretical Harmonic Analysis

Real analysis, harmonic analysis, and representation theory have all been present
and well represented at the FFT conferences over the years. This volume contains
contributions from three utmost distinguished researchers (and their collaborators)
in these areas.

The Heisenberg group is intimately connected with the quantum mechanics.
More recently it has been recognized as a central tool in time-frequency signal
processing. Folland’s chapter presents a framework for analysis and of the discrete
Heisenberg group based on a direct integral decomposition of its irreducible
representations on L?(R). The author shows in the rational case the Zak transform
represents the unitary operators of time and frequency shifts as a collection of finite
dimensional unitary matrices of same size acting independently on spaces indexed
by points of a 2-dimensional square. To illustrate this result, consider the simpler
case of integer time and frequency shifts. In this case the unitary shifts commute
and the Zak transform diagonalizes simultaneously these operators. The irrational
case is more complicated and the author shows that the inequivalent representations
cannot be indexed by Lebesgue measurable sets.

Grafakos’ chapter on fractional differentiation is a beautiful exposition of a hard
core real analysis problem. We all take for granted the Leibniz’s product rule of
differentiation and the Holder inequality. When put together, they control the L!
norm of a higher order derivative of a product of two functions by dual L’ norms
of lower order derivatives. The question the author studies is what happens if the
regular derivative is replaced by a fractional derivative defined using the Fourier
transform. In his chapter he elegantly summarizes the state of affair for this problem
and presents the sharpest result for a Kato-Ponce type inequality.

The chapter by Farsi, Gillaspy, Kang, and Packer presents an overview of
C*-algebras theory based wavelet constructions. The Cuntz C*-algebras represen-
tations had been shown to be closely related to construction of Multi Resolution
Analysis (MRA) orthonormal wavelets. The current chapter starts with a survey
of these known results. Next the authors consider several ways to generalize these
results by using C*-algebras associated to higher-rank graphs. Their construction
generalizes previous approaches using graph Laplacian wavelets and MRA. One tar-
geted application is the spatial traffic analysis on k-graphs in network engineering.



Time-Frequency Analysis and Representations
of the Discrete Heisenberg Group

Gerald B. Folland

Abstract The operators [0, (j, k, )f]() = ™ “le* @k f(t 4 j) on L*(R) constitute
a representation of the discrete Heisenberg group. We investigate how this represen-
tation decomposes as a direct integral of irreducible representations. The answer is
quite different depending on whether w is rational or irrational, and in the latter case
it provides illustrations of some interesting pathological phenomena.

Keywords Discrete Heisenberg group ¢ Unitary representations * Direct integral
decompositions

1 Introduction

Among the most basic operators in signal analysis are the translations in time and
frequency space, also known as translations and modulations: these are the unitary
operators Ty and M, (x,y € R) on L*(R) defined by

Tf() =f+x),  Mf@) =ef(@). (1

Since T.M, = e*"™M,T,, the collection of operators {*"“M,T, : x,y,z € R}
forms a group. If one considers the group structure in the abstract, one is led to the
(real) Heisenberg group H, which is R? equipped with the group law

)Y, ) =@+x, y+y, 2+ 7 + 1),
2
()C, Y, Z)_l = (_x7 -y, —z+ xy)

More precisely, the group generated by the translations and modulations consists
of the image of H under the unitary representation R : H — U(L*(R)) defined by
R(x,y,z) = €*"“M,T,, that is,

G.B. Folland (<)
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
e-mail: folland @uw.edu

© Springer International Publishing AG 2017 3
R. Balan et al. (eds.), Excursions in Harmonic Analysis, Volume 5,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-54711-4_1
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4 G.B. Folland

R(x.y, 2f (1) = €5V f (1 + x). 3)

The representation R is irreducible, i.e., there are no nontrivial closed subspaces
of L*(R) that are invariant under it. Indeed, suppose f, g € L*>(R) and g | R(x,y, 2)f
for all x, y, z. Then

0= (R(x.y.0)f.g) = / (1 + )50 dr

for all x, y. By Fourier uniqueness, f(t + x)g(r) = 0 for a.e. (x, ). Taking the abolute
square of both sides and integrating first in x and then in #, we see that ||f||2|/g|l. = 0,
that is, either f = 0 or g = 0.

For future reference we note that there is a more symmetric way to describe the
group law of H. Namely, let Hbe R3 equipped with the group law

€y Y. )=+ y+y. 2+ 7 + 1 —w)), @
6, y,2)7" = (=x, =y, —2).

It is easy to check that the map (x,y,z) — (x,y,z+ %xy) is an isomorphism from H
to H.

Ever since Gabor’s fundamental paper [4], it has been of interest to study the
discrete group of operators generated by the translations and modulations by integer
multiples of some fundamental quantities 7 and w, that is, Tj; and My, withj, k € Z.
(Note that since Tj;My, = "My, T;,, the scalars needed here to fill out the
group are ¢>™* with z an integer multiple of Tw.) The abstract group structure in this
situation is that of the discrete Heisenberg group H, which is Z* equipped with the
group law (2) — but we shall write elements of H as (j, k, /) rather than (x, y, z).

By rescaling the real line, we may and shall assume that t = 1. Thus, for a given
> 0, we are considering the unitary representation o, of H on L?>(R) defined by
00 (. k. 1) = €™My, T, that is,

00k, Df (1) = XT@l2miokt (o ). 5

The representations g, in contrast to R, are highly reducible, and it is natural
to ask how they decompose into irreducible representations. These decompositions
involve not direct sums but direct integrals, a concept that we shall review briefly
in section 2. When w is rational, the solution to this problem turns out to be a
nice exercise in Fourier analysis that involves one of the signal analysts’ favorite
devices, the Zak transform; we shall present it in section 3. When w is irrational,
however, one has to confront the fact that H is a “non-type-I”’ group, which means
that its representation theory displays various pathologies (see Folland [3]). One
of them is that the set of unitary equivalence classes of irreducible representations
is geometrically bizarre and cannot, in general, be used as a parameter space
for direct integral decompositions. Another one is that it may be possible to
express a representation as a direct integral of irreducibles in many completely
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different ways. The analysis of our representations g,, in section 4 provides easily
accessible illustrations of these phenomena. In particular, we recover some results
of Kawakami [7] concerning the non-uniqueness, in a way that is simpler and more
transparent than his original constructions.

Some terminology: we shall be concerned only with unitary, strongly continuous
representations of locally compact groups G on separable Hilbert spaces. Two
representations 7 and 7’ of G on Hilbert spaces H and 3’ are equivalent if there is
a unitary operator U : H — H that intertwines them, i.e., Un(g) = n/(g)U for all
g € G, inthis case, we write w ~ 7. Let Z be the center of G. If 7 is a representation
of G such that Z acts by scalar multiples of the identity. i.e., 7(z) = y(z)I where
x:Z — U() ={¢ e C:|¢] =1} (this always happens if 7 is irreducible, by
Schur’s lemma), y is called the central character of .

The center of the discrete Heisenberg group H is {(0,0,/) : [ € Z}, and the
central character of the representation g, defined by (5) is y,(I) = **®!. The
decomposition of g, into irreducibles will involve only irreducible representations
with the same central character. This is true on general grounds, but we will verify
it by explicit calculations.

2 Direct Integrals

The general theory of direct integrals of Hilbert spaces and operators on them
involves some measure-theoretic technicalities that need not concern us; for our
purposes the following will suffice. Suppose {H, : « € R"} is a family of separable
Hilbert spaces with inner products (-,-), parametrized by an n-tuple « of real
variables. We assume that the J(, are all continuously embedded in a topological
vector space V and that there is a family of vectors {¢} : @ € R", j € J} inV
(where J is a suitable index set) that depend continuously on «, such that for each
o, {ef : j € J} is an orthonormal basis for H,. For any Borel set A C R”, we then
define the direct integral

®
J{:/ Heo do
A

to be the set of all f : A — 'V such that

(1) f(a) € Hyforalla € A;

(ii) foreachj,a — (f(®), e}")a is Borel measurable;
(i) 1717 = [ 1@ do < .

(The integrand in (iii) is measurable since |f(a)|? = Zj I{f. €] )a |.) We identify
two functions f and g in H if f(«) = g(«) for Lebesgue-almost every «; H is then
easily seen to be a Hilbert space.
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If the HH, all coincide with a fixed Hilbert space Hy, we may take V = H,
and {¢]'} = {e;} to be a fixed orthonormal basis for Ho, and f/fB Hy da is simply

L*(A, H(y), the space of square-integrable J{,-valued functions on A.
Now suppose that for each o, T, is a unitary operator on H,, depending
measurably on « in the sense that (Tae}", ef)q is Borel measurable for all j, k. It

is easy to check that if f is in [ :B Hg do then so is a — T,[f(«)], so we can define

the direct integral
®
T = / T, do
A

to be the unitary operator on |, A® Hy da given by

[Tf1(e) = Ta[f ()]

Finally, if m, is a unitary representation of a locally compact group G on H,
for each o € A, depending measurably on « in the sense described above, we
obtain the direct integral representation |, A® 7o do of G on |, A@ H, da by applying
this construction to each family of operators 7,(g), g € G.

3 The Rational Case

We begin our analysis of the representations g,, of H defined by (5).

The simplest situation is where w is a positive integer p. In this case the central
character of g, is trivial, so that g,(j, k,/) depends only on j and k, and g, is
effectively a representation of the group Z2. The irreducible representations of this
group, or of H with trivial central character, are the one-dimensional ones, that is,
the characters

Yuw Gk D) = Yun( k) = ¥R, ©)

(Here we may regard u and v as elements of R or of R/Z as convenience dictates;
the same understanding will apply in similar situations below.)

The operation that relates @), to the characters y,, is the Zak transform, the map
Z from (reasonable) functions on R to functions on R? defined by

2f(u,v) = Y e ™f (v —n). (7

nez

Note that for m € Z,

Zf(u + m,v) = Zf (u, v), Zf (u, v + m) = ¥ MLf (u, v),
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so Zf is determined by its values on [0, 1) x [0, 1). Moreover, by the Parseval identity,

! ! 2 ! 2 2
/0 /0 12 (. v)] dudv=;/o F(w— )| dv=[Rvm| d,

so Z is an isometry from L*(R) to L*([0, 1])? that is easily seen to be surjective,
hence unitary. Finally, since 0,(j, k, )f (1) = ¢***'f(t + j), a simple calculation
shows that

20y (i, k. Df (u, v) = VL (1, 0) = Yupo (o ks DZS (u, v).

But this says that Z intertwines g, with the direct integral

®
/ Xupv dudv
[0,1)x[0,1)

(acting on L*([0,1)?) = f[ffl)x[o’l) Cdudv). By the rescaling v + v/p, this is
equivalent to

&)
/ Xuvdudv.
[0.1)x[0.p)

Finally, by the periodicity of x,, in # and v, this integral over [0, 1) x [0, p) is the
direct sum of p copies of the integral over [0, 1)2, or, more naturally, of the integral
over (R/Z)?. In short, we have proved:

Theorem 1 If p is a positive integer, o, is equivalent to the direct sum of p
copies of the direct integral f(g J7)2 Xuw dudv, where x,, is the one-dimensional
representation defined by (6).

The situation where  is rational but not integral is similar but not quite so
simple. For the rest of this section we assume that ® = p/q where p and ¢ are
relatively prime positive integers with ¢ > 1. In this case we have 0,(0,0,]) = I
when ¢ divides [, so g, is really a representation of the quotient group of H in
which the central variable / is taken to be an integer modulo g. It is easy to obtain
a complete list of irreducible representations of this group (up to equivalence) with
central character ¢! by an application of the “Mackey machine.” The details are
worked out in Folland [3, §6.8]; here, we shall just quote the results.

For u € R, let

Hy=1{f:Z— C:f(m+nqg) = e " (m) for all m,n € Z}. (®)

Any f € H, is completely determined by its values at 1,...,q (or any set of g
consecutive integers), so J, is g-dimensional. The norm on it is defined in the
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obvious way: [[f||> = YS! If(m)> (= S pt? [f(m)|? for any M). Observe that this
family of Hilbert spaces satisfies the conditions in section 2: we can take V to be
[°°(Z) and define ¢! for j = 1,...,q by €/(m) = e > if m = j + nq and
ef(m) = 0if m # jmod g.

Now let v be another real number. We define the representation 7, of H on
H, by

”u,v(L k, l)f(m) — 6271i(p/q)leZnik[v—(p/q)m]f(m _]) (9)

(This formula for m,,, depends only on v; the u-dependence comes from the space
on which it acts.) A proof of the following result can be found in Folland [3, §6.8]:

Proposition 1 Suppose p and q are relatively prime positive integers with g > 1.
The representations 1, of H defined by (8) and (9) are irreducible, and every
irreducible representation of H with central character e¥™'?/9! is equivalent to one
of them.

It is obvious that 7, = 3,/ if ' = u mod ¢~'Z, and in this case Tyy = Ty o
if v/ = v mod Z. However, up to equivalence even more is true: m,, ~ 7, if
W = uand v = v mod ¢g~'Z. Indeed, in this case we can write v/ = v + (r/q)
for some r € Z, and hence v/ = v + n(p/q) mod Z for some n € Z. (Indeed, since
p and g are relatively prime, there are integers a and b with ap + bg = 1, so that
v = v +ar(p/q) + br.) Then v = 7, y4n(p/q), and it is easily verified that the
map Uf(m) = f(m + n) intertwines 7, (/g With m,,. Hence:

Corollary 1 The equivalence class of m,, depends only on the image of (u,v) in
(R/q™'Z)?. In this way, the set of equivalence classes of irreducible representa-
tions of H with central character ¢*™ P/ is in one-to-one correspondence with

R/q~'2)%

With this result in hand, the direct integral decomposition of g,/, into irreducibles
takes almost exactly the same form as Theorem 1: g,/ is the direct sum of p copies
of the integral of the m,,, over a complete set of equivalence classes. To derive this
result, it will be convenient to start from the other end by building the direct integral
in question. We begin by considering the direct integral

® ®
T, = / Ty du = / T, du,
[0,1/9) R/g—1Z

which acts on the Hilbert space
®
H= Hydu
R/q™Z

= {f c(R/q'Z) X Z — C: f(u,m + kq) = e " *"f (u, m), Ifllg¢ < oo}
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where

g 1/q
2 — Zd.
=3 | i

An element of J{ is, in essence, a g-tuple of 1/g-periodic functions of u. We wish
to trade such a g-tuple in for a single 1-periodic function of u. To this end, observe
that if f € H, we have 2™/ "kDuf (y m 4 kq) = > ™f (u, m), so the latter function
(call it f;,, (1)) depends only on the residue of m modulo g. It is 1-periodic in u, and its
Fourier coefficients (defined by f,,(u) = ), Cnne™ ™) are nonzero only for n = m
mod g since f(u, m) is 1/g-periodic. We define T : H — L*(R/Z) by

q q
TFw) =g ') fulw) =q7"> ) ™ f (u.m). (10)
1 1

By the preceding remarks, the sum could be taken over any set of g consecutive
integers, and the terms in this sum are pairwise orthogonal. Hence

: 2 —1 ! : 2 . /a 2 2
| rr ai= g Z/O Gt m) dMZZ/o ) du = 113

so T is an isometry. In fact it is unitary: if g € L?>(R/Z) has the Fourier series
3 ez cve?™™, we group the v’s according to their residues mod g and get

q
g(u) — Z eZnimu Zcm+nq62nithu — Tf(l/l),

m=1 nez

where f(u,m) = q"/2 Y cnge™™ ™" for all m € Z (not just m = 1,..., ). This f
does indeed belong to J, for

Flu,m+ kq) = ¢'? Z Cont (g€ = q'? Z Cernqezm(n—k)qu
' — e—zmk’;uf(w m).
We now transfer the representation 7, to L?>(R/Z) by means of T, that is, we set
TG k1) = Ty (. k, )T
Since

[T[U (iv kv l)f] (M, I’I’l) = eZni(p/q)leZHik[U—(p/q)m]f(u, m _j)’
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for g(u) = 3" ¢, ¥ we have

q
[fiv (j, k, l)g] (M) — eZni(p/q)l Z Z cm_j+nq62ni[mu+k(v—wm)+nqu]'

m=1 n€z

By the observation following (10), we can replace m by m 4 j while still summing
from 1 to g, so using the fact that ¢27"4%/9% = |, we see that

[, (. k. D gl ()

q
= 2l intin) 3 el § g, 2o/t

m=1 ne€z

= 2/ U=t ol gy (1 )k).

Since the representations ,,, are 1-periodic in v, and their equivalence classes
are 1/g-periodic in v, the same is true of m, and hence of 7,. As the reader may
verify, the intertwinings for 7, are given by the operators M,, defined by

M, f () = e"™f (u). (11)

More precisely, if v/ = v mod g~'Z, we have (as before) v/ = v + n(p/g) mod Z
for some n € Z, and

fﬁv-{-n(p/q)(].a k, l)Mn = Mn’ﬁv(]-a k, l) (12)
Next, we form the direct integral
&
1= T, dv,

[0.p/9)

which acts on L?>((R/Z) x [0,p/q)) (we take the variable of integration to be the
second variable in this product) by

[11G. k. DRI v) = TG k. DTG V)], (13)
that is,
[T1G. k. DA}, v) = 2D D — k(p /), v). (14)

To put this into final form and remove the slightly artificial use of the interval
[0,p/q), we extend functions defined on (R/Z) x [0,p/q) to (R/Z) x R by the
prescription
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h(u, v + n(p/q)) = ™ h(u, v) = [M,h](u, v) (ne?), (15)

where M, is defined by (11) and it is understood that M, acts in the first variable.
Note that the extension of 4 is accomplished by initially taking v € [0, p/q) in (15),
but once this is done, (15) holds for all v € R. In view of (12), this extension is
compatible with the formula (13); that is, for v € [0,p/q) and n € Z,

Totn(p/o) U, k. DIAC, v + n(p/@))] = Totnip/q) sk DMulh(-, v)]
= My[7, (. k. D[h(- v)].
Thus we may, and shall, consider the representation IT as acting on functions on
R? that are 1-periodic in the first variable, quasi-periodic in the second variable
according to (15), and square-integrable on [0, 1) x [0, p/q), with the action now

given by (14) for all u,v € R. But now we can use (15) to give this a final
reformulation:

[T1(, k, D)h] (u, v) = €2ni[(p/q)l+j(u—k(p/q))+kv]h(u —k(p/q).v)
= I (M) — k(p/q). v) (16)
= TR R — K(p/q), v + j(p/q))-

It is now a simple matter to relate IT to our original representation g,/, by a
rescaling of the Zak transform. Namely, with Z given by (7), we define

g f(,0) = (q/p)"*2f (u, (q/p)V) = (a/p)"* D _ ™™ F((a/p)v — n).

n€zZ

Thus Z,/, maps functions on R functions on R? that are 1-periodic in the first
variable and satisfy (15), and it is unitary from L*(R) to L*([0,1) x [0,p/q)).
Moreover,

[Z’p/qu/q (. k, Df](u, v)

— (q/p)l/Z ZeZm’(p/q)leZni[k(v—n(p/q))+nu]f((q/p)v —n +])
JASVA

= eZni(p/‘])leZHikap/qf(u —kp/9) v + 0/ )
= [T1G. k, DZp/f 1(u, v).

In short, Z,/, intertwines g,/, with II, so these representations are equiv-
alent. Moreover, by the 1/g-periodicity of the equivalence class of 7, in v,

= f[ffp /) v dv is equivalent to the direct sum of p copies of f[ff 1/g) v dv, and

the latter representation in turn is equivalent to f[ff 1/g)? Tuw dudv. We have proved:
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Theorem 2 If p and q are relatively prime positive integers with q > 1, the
representation 0,4 is equivalent to the direct sum of p copies of the direct integral
f[g? 1/g2 Tuw dudv, where 1, , is the representation defined by (8) and (9). In this
integral, the integrand m,, ranges over a complete set of inequivalent irreducible
representations of H with central character ¢*™'®/9!,

4 The Irrational Case

In this section w will denote a fixed positive irrational number, and our goal is
again to analyze the decomposition of the representation o, of H defined by (5) into
irreducibles. The problem of classifying all the equivalence classes of irreducible
representations of H with central character ¢?*®! in a concrete way is completely
intractable (see Folland [3, §6.8] for a fuller explanation of this issue), but we do
not need all of them. To get started, it will suffice to consider the following one-
parameter family of representations, which is analogous to the family {m, ,} in the
rational case. To wit, for v € R we define the representation o, of H on />(Z) by

[0 G. k. Df)(m) = 27T f (m — ). a7

Proposition 2 The representations o, are all irreducible. Moreover, 6, ~ 0, if
and only if v/ = v mod 7. + wZ.

Proof Suppose V is a nonzero o,-invariant subspace of (Z) and 0 # f € V. If
g LV, thenforallj, k € Z,

0= (0,(i.k, 0)f, &) = ™™ Y~ e R (m — j)g(m).

Since f(-—)g(-) € I'(Z), the function ¢;(0) = 3, e~ 2" f(m—j)g(m) is continuous
on R/Z, and it vanishes at 8 = wk for all k. Since w is irrational, {wk : k € Z} is
dense in R/Z; hence, ¢; vanishes identically, so its Fourier coefficients f (m— 7)g(m)
are all zero. This being true for all j, it follows that g = 0, so V = [>(Z). Thus o, is
irreducible.

The standard basis vectors e,(m) = &, for [*(Z) are eigenvectors for the
operators o, (0, k, 0) with eigenvalues ¢**=¢" Thus if v/ # v mod Z + wZ,
the operators o,/ (0, k, 0) and 0, (0, k, 0) have different eigenvalues, and so o,/ % 0.
On the other hand, if v/ = v + n + wp (n, p € Z), then obviously o,y = Oy+awp»> and
it is easily checked that the operator U,f(m) = f(m + p) intertwines o, 1, and oy,
SO Oy ~ Oy. |

Proposition 3 (Baggett [1]) If w > 0 is irrational and o, is given by (17),

2}
Ow ~ / 0, dv. (18)

[0,0)
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Proof The direct integral 0 = f[gB ) Ov dv acts on L([0, w) x Z) (with respect to
Lebesgue measure times counting measure) by

O'(i, k, l)g(l), m) — e2niw182ﬂik(v—mw)g(v’ m —j)

We identify R with [0, w) x Z by cutting up R into disjoint intervals of length 1 and
dilating them by a factor of w, and thereby define the unitary map U : L*(R) —
L*([0, w) x Z) by

Uf(v,m) = o~ ?f(w™ v — m).

A simple calculation then shows that Ug,, (j, k, 1) = o(j, k, ) U, so o, ~ 0. O

Thus we have a simple-looking direct integral decomposition of g, into irre-
ducibles. Unlike the integrals for the rational case in Theorems 1 and 2, however,
the representations o, in (18) are not all inequivalent, and there is no Lebesgue
measurable way to separate out the equivalence classes to obtain an integral over
inequivalent representations with multiplicities. We can, of course, use the fact that
0y = Oy4, for n € Z to reduce to integrals over [0, o) with « < 1 or over R/Z.
But by Proposition 2, the equivalence classes for the o,’s are given by the cosets of
(Z + wZ)/7Z in R/Z, and none of the cross-sections for these cosets are Lebesgue
measurable. Indeed, these are essentially the classic examples of non-measurable
sets. (Most textbooks use Q rather than Z + wZ to build examples, but any subgroup
of R whose image in R/Z is countably infinite will serve the purpose.)

We now turn to the question of non-uniqueness.

The representation o, of H is the restriction to H of an irreducible representation
R,, of the real Heisenberg group H, a close relative of the representation R defined
by (3):

R, (x, v, 2)f (t) = R(x, wy, w2)f (f) = @22 (¢ 4 x).

If ® is an automorphism of H that leaves the center pointwise fixed, then R, o ® is
another irreducible representation of H with the same central character ¢>"“%. But
irreducible representations of H with nontrivial central character are completely
determined up to equivalence by that character: this is the Stone-von Neumann
theorem (see Folland [2, §1.5] or [3, §6.7]). Thus R, o ® ~ R,,.

Now, if @ preserves the discrete subgroup H, we also have g, o ® ~ g, and
hence

® ®
/ ovdvagwfvgwo@w[ g, 0 ®dv.
[0.0) [0.0)

The point is that each of the representations o, o ® may be inequivalent to all of
the representations o,, in which case we have two entirely different direct integral
decompositions of g,.
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We are going to analyze this phenomenon for the group of automorphisms of H
arising from an action of the group SL(2, R) of 2 x 2 real matrices of determinant 1
on H. Our standard notation for elements of SL(2, R) will be

A= (‘Cl z) (ad — be = 1),

and for future reference we record a couple of simple facts about the subgroup
SL(2,7) of matrices in SL(2, R) with integer entries.

Lemma 1 Suppose A = (%) € SL(2,Z). Then:

a. a and b are relatively prime.
b. ac and bd cannot both be odd.

Proof (a) Any number that divides a and b also divides ad — bc. (b) If ac and bd are
odd, then a, b, ¢, d are all odd and hence ad — bc is even. O

In terms of the symmetric form H of H with the group law (4), the action of
SL(2,R) is simply its natural action on the first pair of variables: for A = (¢%) €
SL(2,R),

EA(x,y, z) = (ax + by, cx + dy, 7).

The condition detA = 1 is precisely what is needed to guarantee that the quantity
xy’ — yx' (the signed area of the parallelogram spanned by (x, y) and (x’,y’)) in the
group law (4) is preserved and hence that @, is an automorphism of H. For our
purposes we need to transport this action of SL(2,R) to the group H with group
law (2) by conjugating with the isomorphism (x,y,z) — (x,y,z + %xy) from H to
H;; the reader may verify that the (somewhat uglier) result is

Dy(x,y,2) = (ax + by, ecx+dy, z+ %(acx2 + 2bcxy + bdyz)). (19)

Incidentally, the operators that intertwine R,, and R,, o ®4 are essentially given by
the metaplectic representation p of SL(2,R) = Sp(1,R) on L*(R); see Folland [2,
§4.2] for a detailed description of . More precisely, (t(A) intertwines R and Ro ®;
the corresponding intertwiner for R, and R, o @4 is i, (A) = Dw,u(A)D;l, where
Duf(1) = o' *f(0™"1).

When does @, preserve the discrete subgroup H? To preserve the integer lattice
in the first two variables, it is necessary and sufficient that A € SL(2,7Z), but the
annoying factor of % in (19) creates a problem in the third variable — fortunately,
a minor one. By Lemma 1(b), at least one of ac and bd must be even, so there are
three possibilities. If both are even, ®4|H is an automorphism of H. If ac (resp. bd)
is odd, it is an isomorphism from H to H’ (resp. H”), where

H ={G.kD):jkeZ l€lZ 20=jmod2},
H” = {(i.k.]):jk € Z, | € 37, 2l = kmod 2}.
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But the formula (17) for o,(j, k, [) makes perfectly good sense when [ is a half-
integer and thus defines a representation of H' or H”. Hence, in all cases o, o @4 is
an irreducible representation of H.

Theorem 3 Suppose A = (%) and A’ = (‘Cl: Z:) are in SL(2,7).

a. If(d,b') = £(a,b), then 0, 0 Oy ~ 01, 0 Dy,

b. If (d/,b') # £(a,b), then o,y 0o Dy # 7, 0 Oy forall v, v’ € R.

Proof (a): It is easily checked that if (@', b)) = %(a,b), then B = A’A™! has the
form + (} ?) for some r € Z, and 0, o @4/ ~ o1, o D4 if and only if o, 0 Dy ~
0+,. The reader may verify that the intertwining operator that implements the latter
relation is

Uf(m) — enirwm2¥2nirvmf(:|:m).

(This is related to the metaplectic operator pu,(+B), which is given by

1o (EB)f (1) = 77" f(&1).)
(b): The operator o, o ®4(j, k, [) has the form

[Ov (qDA(iv kv l))f](m) = C(Cl, bv c, d’ja kv lv m)f(m - Clj - bk)

where C(a, b, c,d,j, k, 1, m) is a complex number of absolute value 1. Thus, if aj +
bk = 0, the standard basis e,(m) = 8,,, (n € Z) for I>(Z) consists of eigenvectors
for o, 0 4(J, k, [). On the other hand, if aj + bk # 0, 0, o ®4(j, k, ) is a weighted
shift operator with weights of absolute value 1, so it has no eigenvectors. (If f were
an eigenvector, it would satisfy |f(m)| = |f(m + n)| for every n that is a multiple of
aj + bk, which is impossible for f € [*(Z).) But by Lemma 1(a), if (¢, ') # +(a, b)
we have b’ /d’ # b/a, so the equations ax+by = 0 and a’x+b'y = 0 define different
lines in the xy-plane. It follows that if @j + bk = 0 and (j, k) # (0,0), 0, 0 ®4(j, k, )
has an eigenbasis and o,» o D4/ (j, k, [) does not, so these operators are not unitarily
equivalent. O

It remains to make two more remarks to complete the picture. First, concerning
the case (d’,b') = (—a, —b): we have 6_, ~ 0,,—,, and v > @ — v is a bijection on
(0, w), so the replacement of v by —v does not affect the set of equivalence classes
in the direct integral f[ffw) 0,0®4 dv. Second, if a and b are relatively prime integers,

there always exist integers c and d such that ad—bc = 1 and hence (? Z) e SL(2,7).

In summary, we have found an infinite family of direct integral decompositions
of 0. involving sets of irreducible representations coming from completely disjoint
sets of equivalence classes, parametrized by pairs of relatively prime integers (a, b)
modulo the equivalence (—a, —b) ~ (a, D).

In [7], S. Kawakami constructed two families of irreducible representations of H
that he denoted by U@aA) and v@dn (o e R \Q; gq.d € Z; A, r € R) and showed
that o, is equivalent to the direct integrals f[ffw) U@4X d), and f[ff y V@4 dr for

all ¢, d € Z. (Actually, Kawakami’s formula for V@47 on [7, p. 559] needs a small
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correction; as it stands, it defines an antirepresentation rather than a representation.)
Kawakami derived these results from more general constructions of representations
of certain non-regular semi-direct product groups in [5] and [6], which use some
abstract machinery appropriate to this situation.

Straightforward calculations show that U©-%* and V(©-4") are equivalent to our
representations o, o CIDAq and o, o ®p,, respectively, where

—q —1 1—-d
Thus Kawakami’s results are special cases of ours. Our efficient use of the SL(2, Z)

action yields a simple new derivation of them as well as an even larger family of
different direct integral decompositions of g,,.

References

1. L.W. Baggett, Processing a radar signal and representations of the discrete Heisenberg group.
Collog. Math. 60/61, 195-203 (1990)

2. G.B. Folland, Harmonic Analysis in Phase Space (Princeton University Press, Princeton, NJ,
1989)

3. G.B. Folland, A Course in Abstract Harmonic Analysis, 2nd edn. (CRC Press, Boca Raton, FL,
2015)

4. D. Gabor, Theory of communication. J. Inst. Electr. Eng. 93(11I), 429-457 (1946)

5. S. Kawakami, Irreducible representations of some non-regular semi-direct product groups.
Math. Jpn. 26, 667-693 (1981)

6. S. Kawakami, On decompositions of some factor representations. Math. Jpn. 27, 521-534
(1982)

7. S. Kawakami, Representations of the discrete Heisenberg group. Math. Jpn. 27, 551-564 (1982)
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functions, not in the pointwise sense, but on Lebesgue spaces whose indices satisfy
Holder’s inequality

Keywords Kato-Ponce inequality e bilinear operators ¢ Riesz and Bessel

potentials

1991 Mathematics Subject Classification. Primary 42B20. Secondary 35Axx.

1 Introduction

We recall Leibniz’s product rule of differentiation
" (m
(" =2 ( k)f””‘k)g“) ()
k=0

which is valid for C" functions f, g on the real line. Here g® denotes the kth
derivative of the function g on the line. This rule can be extended to functions of

n variables. For a given multiindex o = (a1, ..., a,) € (ZT U {0})" we set
%! 9%
9% = 9 ... g F = )
f ! " x4 0,

The nth dimensional extension of the Leibniz rule (2) is
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o _
(fg) =Y ( ﬁ)@“ Py (97 g) )
B<a
where 8 < a means f; < o forallj=1,...,n, and

al _for) an:" a;!
(ﬂ)‘(ﬂl) (ﬂ) Hge—ar ¥

Identity (3) can be used to control the Lebesgue norm of 90%(fg) in terms of
Lebesgue norms of partial derivatives of f and g via Holder’s inequality:

I1FGlr®my < 1Fllr@n | Gllzawe

where 0 < p,g,r <ocand 1/r=1/p+ 1/q.

Unlike convolution, which captures the smoothness of its smoother input,
multiplication inherits the smoothness of the rougher function. In this note we study
the smoothness of the product of two functions of equal smoothness. The results
we prove are quantitative and we measure smoothness in terms of Sobolev spaces.
We focus on a version of (3) in which the multiindex « is replaced by a non-integer
positive number, for instance a fractional power. Fractional powers are defined in
terms of the Fourier transform.

We denote by S(R”") the space of all rapidly decreasing functions on R”, called
Schwartz functions. The Fourier transform of an integrable function f on R” (in
particular of a Schwartz function) is defined by

76 = [ e
and its inverse Fourier transform is defined by
£® =59

for all £ € R". The Laplacian of a C> function f on R”" is defined by

n
_ 2
Af =D 0f
j=1
and this can be expressed in terms of the Fourier transform as follows:

Af = (— 47?57 (©)) 7. 4)

Identity (4) can be used to define fractional derivatives of f as follows: given
s > 0 define
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APf = (x| (E)”

and
F() = (1= AY2() = ((1+ 472 [E2)%F (&))"

The operators A*? and J* = (1 — A)*/? are called the Riesz potential and Bessel
potential on R”, respectively. Heuristically speaking, A%/?f is the “sth derivative" of
f, while J*(f) “captures” all derivatives of all f of orders up to and including s.

Concerning J*, in [14], Kato and Ponce obtained the commutator estimate

19°69) —FU'Direy < C[IVF oo |97 8l oy + I gy Nesoqmer |
for 1 < p < oo ands > 0, where V is the n-dimensional gradient, f, g are Schwartz
functions, and C is a constant depending on n, p, and s. This estimate was motivated
by a question stated in Remark 4:1 in Kato’s work [13].

Using the Riesz potential D° = (—A)*?, Kenig, Ponce, and Vega [16] obtained
the related estimate

ID°[fg] = fD°g — gD'f || < Cls.s1.52. 7. p @D | 1 1 D8l o -

where s = s; + s, for s, s;,5, € (0,1),and 1 < p,q,r < 00 suchthat% = 117 + %
Instead of the original statement given by Kato and Ponce, the following variant
is known in the literature as the Kato-Ponce inequality (also fractional Leibniz rule)

196 sy = C[ Il ey I°8sn oy + WS I lglliny] )

1 1 1 1 1
> — — < < < <
where s 0 and PR + T T m + ) for 1 14 oo, 1 P1,.q92 oo,

1 < pr,q1 < oo and C = C(s,n,r,p1,p2,q1,q2). It is important to note that in
the preceding formulation the L° norm does not fall on the terms with the Bessel
potential. There is an analogous Kato-Ponce version of (5) in which the Bessel
potential is replaced by the Riesz potential

1D () sy = C[ Il ey 108l oy + 1D e I8l ey | €6)

and the indices are as before. In this note we study (5) and (6) focusing on (6).
There are further generalizations of the aforementioned Kato-Ponce inequalities.
For instance, Muscalu, Pipher, Tao, and Thiele [18] extended this inequality to allow
for partial fractional derivatives in R2. Bernicot, Maldonado, Moen, and Naibo
[1] proved the Kato-Ponce inequality in weighted Lebesgue spaces under certain
restrictions on the weights. The last authors also extended the Kato-Ponce inequality
to indices r < 1 under the assumption s > n. Additional work on the Kato-Ponce
inequality was done by Christ and Weinstein [3], Gulisashvili and Kon [12], and
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Cordero and Zucco [6], present a way to obtain the homogeneous inequality from
the inhomogeneous via a limiting process. There is also a discussion about the Kato-
Ponce inequality in [8].

When r > 1 inequality (5) is valid for all s > 0 but when » < 1 the author and
Oh [9] showed that there is a restriction s > n/r — n. Moreover, there is an example
that inequality (5) fails for s < n/r — n. This restriction in the case r < 1 was
independently obtained by Muscalu and Schlag [17].

2 The counterexample

In this section we provide an example to determine the range of r < 1 for which
D*(fg) can lie in L"(R") and in particular (6) can hold.
We set

@) = glx) = 72,
Then

feo) = e

and for s > 0 we have

(=8)2(f)(x) = (27)° [ (M) @) lgpre i ax = ) / e g gy,
Rn

R

We now consider two cases: (a) s is an even integer. In this case we have that
(—=A)*(fg) is a Schwartz function and thus it has fast decay at infinity. (b) s is
not an even integer. In the second case (—A)*/?(fg) is given by multiplication on the
Fourier transform side by ¢ |€|* and thus it is given by convolving e~ with the
distribution

s -+
NS
T —3) s :
2) w2

s

Notice that e=™I"” % W, is the convolution of a Schwartz function with a tempered
distribution and thus it is a smooth function with at most polynomial growth at
infinity [7]. Thus e 4 W; is a smooth and bounded function on any compact set.

Next we study the decay of this function as |x| — oo. To do so, we introduce a
nonnegative function ¢ with support contained in |x| < 2 and equal to 1 on the ball
|x| < 1. Then we have

e W, = eI« oW, + eI (1—¢)W;.
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First we notice that for |x| > 10 we have

(1= )W, e ()| =

—Nn—Ss —I|X— 2
/R (1= )" ey

> |esl y[ e gy
[yl=1

_ |2
= |Csn|/| 1>1 |y| e bl dy

[x—yl<1

el € [ oy DI

lx—yl=1

IV

\Y

c/ |x|—n—S 3

As for the other term, for |x| > 10 and for N = [s] 4+ 1 we have

/ Y e
Iyl=2

|Sll

e
- /Lvsz [e-“-y|2 - lﬂ;@( x)y ]¢(y) lfvi( )
+|;/|2<:N ay(‘f;” )() o POW |y|( Y‘;d
= |y|=21v:+1/|»|<2 {ﬁ’(ey;!”"'z)( 6,) s |(y| é)ndy
+ 2 87(6;77 )() R yllfl(‘_;)

lyI<N

where 6, € [0, 1]. Notice that

(")) = Py e,

where P, is a polynomial of n variables depending on y. Also |x — 6,y| >

hence 0” (e_”"'z)(x — 6,y) has exponential decay at infinity, while the integral

[y[~™"
Y
|y|§2<l>(y)y E) y

21

31,
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is absolutely convergent when |y| = N + 1 = [s] + 2 > s + 1 which is equivalent
to N —s —n > —n. Moreover, for |y| < [s] + 1, the quantities

¢y |y|_s:n dy = / y |y|_5:n dy + f ¢y’ |y|_‘v:n dy
<2 I'(=3) p=t” T(=3) 1<lyl<2 =3

are finite constants in view of the following observation: If |y| is odd, then the
displayed expression below is zero, while if |y| = 2m is an even integer, we have

b= ( ) Jo = ( ) 1/2
4 —dy = )’d - .. = yd T o, o
/Msly r-5 “ /sn—l‘” ) T /s"—l(p ?)m—3r=5)

and this is a well-defined constant, since the entire function I'(—w)~! has simple
zeros at the positive integers and thus (m —w)~'T'(—w) ™! is also entire in w for any
m < |w|. An important observation here is that w = s/2 is not an integer, since s is
not an even integer, hence m can never be equal to w = s/2.

The outcome of this discussion is that e~ % ¢W; is a smooth function that
decays exponentially as |x| — oo. Combining this result with the corresponding
obtained for e % (1 — ¢)W;, we deduce that

|(e—n|‘\2 * Wy)(.x)| > x|
as |x| — oo, provided s is not an even integer.

Finally, this assertion is not valid if s is an even integer, since in this case we have
that

=A@ = (32 8) - (Do) @)
=1 j=1

s/2 times

has obviously exponential decay at infinity, as obtained by a direct differentiation.

The preceding calculation imposes a restriction on the p for which (—A)*?(fg)
lies in L”(R"). In fact the simple example f(x) = g(x) = e~ /2 introduced at
the beginning of this section provides a situation in which f, g, (—A)*?(f), and
(=A)*/?(g) lie in all the L? spaces for p; > 1 when s > 0, but (=A)*2(fg) lies in
L"(R") only if

(—s —n)r < —n,

that is, when r > nLJH Thus, when 1 < py, p2, 41,92 < oo and

1 1 1 1 1
+
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the inequality (6) fails when

n

r < .
n—+s

Obviously, since » > 1/2, so this restriction is relevant only when 0 < s < n. Recall
that Bernicot, Maldonado, Moen, and Naibo [1] showed that (6) holds when s > n,
so this work fills in the gap 0 < s < n.

3 The sharp Kato-Ponce inequalities and preliminaries

The following theorem is contained in the joint article of the author with Seungly
Oh [9]. In this section we discuss some preliminary facts needed to prove the first
inequality below.

Theorem 1 Let% <r<oo, 1 <pi,prqi.qa < oosatisﬁié = [%l—i_qil = piz_|_q_12'

Given s > max (0, g — n) or s € 2N, there exists C = C(n,s,r,p1,q1,P2,92) < 00
such that for all f, g € S(R") we have

I1D* () | 1wy < C[”DSf”m(R")”g”m ®nH + “f”U’z(R")”Dsg”L‘lZ(R")]’ (M
”‘,s(fg)”L’(R”) =C [“f”m (R”)”‘,Sg”L‘il ®YH T ”JSf”U’Z(R")”g”L@(R”)] )
Moreover if r < 1 and any one of the indices p1, pa, q1, q» is equal to 1, then (7)

and (8) hold when the L"(R") norms on the left-hand side of the inequalities are
replaced by the L*°(R") quasi-norm.

We remark that the statement above does not include the endpoints L' x L>® —
LV [® x L' — L1 and L® x L® — L*®. However, the endpoint case p; =
P2 = q1 = q» = r = oo was completed by Bourgain and Li [2]. An earlier version
of this endpoint inequality was obtained by Grafakos, Maldonado, and Naibo [11].

As a consequence of (8) we obtain Holder’s inequality for Sobolev spaces. We
have

Corollary 1 Lets > 0, = <r <00, 1 <p,q < oo satisfy % = 117—1— %]. Then there
exists C = C(n, s, p,q) < oo such that for all f, g € S(R") we have

I G ey = CI Sl ey 18| o ey - ©)

We note that (9) is an easy consequence of (8), since

Il = CIPSf Nl

for 1 < p < o0.
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In the rest of this section we discuss some background material needed to prove
Theorem 1. First we recall the classical multiplier result of Coifman and Meyer [4]
(see also [5]) for the case r > 1 and its extension to the case » < 1 by Grafakos and
Torres [10] and independently by Kenig and Stein [15].

Theorem A Let m € L™ (R?") be smooth away from the origin. Suppose that there

exists a constant A > 0 satisfying

0208 m(E, )| < A (€] + )~ 1P (10)

forall £,n € R" with |§] + |n| # 0 and a, p € Z" multi-indices with |«|, || <
2n + 1. Then the bilinear operator

T = [ me nF @R ds an,
defined for all f, g € S(R"), satisfies

1T ey = €@ G 7, A) If 1l ey 18 1 0 )

where % <r<oo 1 <p,qg=<ooand % = L 4 L Furthermore, when either p

or q is equal to 1, then the L"(R") norm on left-hand side can be replaced by the
L"*°(R") norm.

In the sequel we will use the notation W,(x) = "W (x/f) whent > O and x € R".
The following result will be of use to us.

Theorem 2 Let m € 7" \ {0} and ¥(x) = ¥ (x + m) for some Schwartz function
Y whose Fourier transform is supported in the annulus 1/2 < |§| < 2. Let Aj(f) =
W,—; x f. Then there is a constant C,, such that for 1 < p < oo we have

H( IA(f)I) ey = G+ max (o, = D7) ey (1)

There also exists C, < 00 such that for all f € L'(R"),

l(Ziamr)’

JEZ

L1.00(R?) < C,In(1 + |m|)Hf||L1 R (12)

Proof We recall the following form of the Littlewood-Paley theorem: Suppose that
W is an integrable function on R” that satisfies

> IwEIEP < B (13)

jez
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and

Sup Z/ |‘I’2*f(x -y - ‘Ifzfj(x)|dx <B (14)
yeR"\ {0} jez [x|=2[y|

Then there exists a constant C, < oo such that forall 1 < p < oo and all f in
L’ (RY),

=

U’(R”) (15)

(X 1800P)

jez

e = CrBmax (p. (p = D7) ||

where A;(f) = W, * f. There also exists a C/, < oo such that for all f in L' (R"),

I(Ziampr)’

jez

< CB|f | - (16)

Ll.OO(Rn) -

We make a few remarks about the proof. Clearly the required estimate holds
when p = 2 in view of (13). To obtain estimate (16) and thus the case p # 2, we
define an operator T acting on functions on R” as follows:

T(H)(x) = {A;(H)]; -
The inequalities (15) and (16) we wish to prove say simply that T is a bounded
operator from I7(R",C) to L”(R",{?) and from L'(R",C) to L'*°(R", {?). We

indicated that this statement is true when p = 2, and therefore the first hypothesis of

Theorem 4.6.1 in [7] is satisfied. We now observe that the operator T can be written
in the form

iw={ [ ww-msl = [ ke-nrona.

j
where for each x € R", K (x) is a bounded linear operator from C to £ given by
K@(a) = {9 (@)a};. (17)

- 1
We clearly have that |K(x) |, = (X, 1W,-(x)|*)?, and to be able to apply
Theorem 4.6.1 in [7] we need to know that

/| . |Kx—y) — K@), pdx <GB, y#0. (18)
x|>2]y
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We clearly have

1

\Wu—w—h@h%z=(§]wNu—w—wwaﬁy

ez

IA

D Wamir =) = Wy ()|

jez

and so condition (14) implies (18).
Note

U(E) = g E)em.

The fact that {ﬁ\ is supported in the annulus 1/2 < |£] < 2 implies condition (13) for
V. We now focus on condition (14) for W.
We fix a nonzero y in R" and j € Z. We look at

/ | Wy (x — y) — Wy (x) | dx =/ 2y (2x =2y +m)— Y (Zx+ m)|dx
[x[=2yl [x[=2y|
Changing variables we can write the above as
b= [ ey -l = [ a2 - v
el =21yl lx—m|=2/+1]y|

Case 1: 2 > 2 |m| |y|™". In this case we estimate ; by

C Cc
- dx + / ——dx
/|x—m|22f+ly| (1 + |x — 2y|)r+2 l—m| =21y (1 4 |x])nt2

C C
= — dx+ / — dx
/|x+zfy—m|zy+1y| (1 + [x[)r+2 lem| =21y (14 [x])t2

Suppose that x lies in the domain of integration of the first integral. Then
J J Jt1 J 1 J 1 J
bl =l + 2y —m| = 2|yl = |m| = 27 y| = 2yl = 5 Pyl = S 2yl
If x lies in the domain of integration of the second integral, then

, , 1. 3.
[l =[x —m| = |m| = 27 y| — |m| = 27|y — 5 2= 22Dl
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In both cases we have

c C 1 C,
1'52/ ——dx < — ——dx < ——,
! Wiz 2y (14 [x])m+2 2yl Jre (1 + [x])n*! 2yl

and clearly

Y L=< Y =G

Ji Yly=2|ml Ji 2yl=2

Case 2: |y|~! < 2/ < 2|m||y|™". The number of j’s in this case are O(In |m]).
Thus, uniformly bounding /; by a constant, we obtain

S LG +nm)).
j1<2y]<2lm]

Case 3.2 < |y|™!. In this case we have

! c

<2J _ .
=2 T = 2y

[ (x—2y) —y ()| = ‘/O PVy(x—2ty)-ydt

Integrating over x € R” gives the bound /; < C, 2/|y|. Thus, we obtain

> =G

J2lyl=1

Overall, we obtain the bound C, In(1 + |m|) for (14), which yields the desired
statement using the Littlewood-Paley theorem.

4 The proof of the homogeneous inequality (7)

In this section we prove the homogeneous inequality (7) of Theorem 1.

Proof We fix a function P e S(R") such that 6(5) = 1 on |¢|] < 1 and which is
supported in |£]| < 2. We define another function

() = D(E) — D(28)

and we note that W is supported on the annulus {§ : 1/2 < |§] < 2} and satisfies

Y Wt =1

keZ

forall £ #£ 0.
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Given f, g € S(R"), we decompose D*[fg] as follows:

DUl = [ [ 16+ niF@Rmem g an

N /Rn /Rn &+ 0l (Z @(2/’5)}(5)) (Z @(2k,7)§(,7)) 2TIERT gg g

jez. keZ.

= I [f, gl(x) + I2[f, g](x) + TI3[f. g](x) .

where

mrdw =Y ¥ [ [ g+ nrberarevetneme s

JEZ kik<j—2
Mo =3 Y [ [ le+arSeiafe e name " dedy
keZ jij<k—2 Y R" /R"
[f, gl(x) = Z Z / / |& + n|s\’I}(2—j$)’f\(5)@(2—kn)/g\(n)62ni(5+n).xdi_.dn‘
kez jilj—k|<1 IR R

For IT;, we can write

I [f, gl(x) = /R" /l;" {Z @(2—_1'5)6(2—1'4—277)@"‘7”'} 5?‘(5)?(7])527[1’@"'7])% dt dn.

s
= €]

In I, the variable & dominates 1 and so the ratio |E|:;|TZ|X vanishes only at the origin

in R?". It is easy to verify that the expression in the square bracket above is a
bilinear Coifman-Meyer multiplier, hence Theorem A implies that IT; [f, g] satisfies
the inequality

ITLIf. gl < CID Sl NIl

and thus (7) holds for this term. The argument for IT, is identical under the apparent
symmetry and one obtains

ITLIf. gl < Cllfllr2 1D°8 ez -

For I13[f, g], note that the summation in j is finite, we may only focus on one
term, say j = k and in this case it suffices to show estimate (7) for the term

19)

) /R ) /R g+ P PR Y@ R dE dn

kEZ

L (R?)
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When s € 2N, (19) can be written as

Jo I

The expression in the bracket above belongs to Coifman-Meyer class, i.e., it
satisfies (10), so the claimed inequality is a consequence of Theorem A in this case.
When s is not an even integer we argue differently. In this case, the estimate for I3
requires a more careful analysis. We consider the following cases:

Casel: 4 <r<oo,1<pg<ocori=<r<I1,1=<p,q<oo.

In this case, we may have the strong L” norm on the left-hand side of (7) when
p,q > 1 or the weak L™ norm instead when either p or ¢ is equal to 1. In view of
Theorem A and Theorem 2, the strategy for the proof in both of these subcases will
be identical. For simplicity, we will only prove the estimate with a strong L" norm
on the left-hand side.

Notice that when |£], || < 2- 2%, then | + n| < 272 and thus

Z - |—;|:7|S QW™ ) F(E)Dg(n)e*™ T d dyy
keZ

L' (R™)

PR+ =1

on the support of the integral giving I13. In view of this we may write

L[/ g1(x)
- f \ / e+l P@TEFE P R d d
keZ
= f n [ e nPRQTE + )P QOO V@ MR T dg dy
keZ
=22 / [ 0,27 + ) PQTEFE T D (e d diy
kez /R IR
=22 22"k/ f 8,272 + M IEF OV DE e 0 dg an,
kez " JRY
where

U(E) = E70E)
D(8) = [EF D)
Now the function £ +— a(2_2’§) is supported in [—8, 8]" and can be expressed in

terms of its Fourier series multiplied by the characteristic function of the set [—8, 8]",
denoted y[—ggj.
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_— g 2mi m
QQ27E+m) = Y e ET g (€ + ),

mezZr

where

1 e i
Cn = / YRy T dy
16" Ji_gqp

It is an easy calculation that
= O0((1 + |m)™"™") (20)

as |m| — oo and ¢}, is uniformly bounded for all m € Z. This calculation is similar
to the one in Section 2. ~
Due to the support of W and W, we also have

sy (& + MBET(n) = TET(),

so that the characteristic function may be omitted from the integrand. Using this
identity, we write IT3[f, g](x) as

— 22s ZZan/ / Z C;\‘ne%(E‘i‘ﬂ)m\’l}(s)}\(zks)@(n)ﬁg(zkn)eznizk(g—kn).x di_« d’7

keZ mezZ"

=2 )" ) A OWAT D)W,

mezZ" kEZ

where A}’ is the Littlewood-Paley operator given by multiplication on the Fourier
transform side by €272 616 W(27%¢), while A7 is the Littlewood-Paley operator

given by multiplication on the Fourier side by 22 g $(2_k§' ). Both Littlewood-
Paley operators have the form:

/ 2ROk =) + fem)f ) dy

for some Schwartz function ® whose Fourier transform is supported in some
annulus centered at zero.
Let r« = min(r, 1). Taking the L" norm of the right-hand side above, we obtain

P

> AP ATD () ()

keZ

ID[felllys < > le,l™

mezZ"

L"(R")
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Ix Ix

< Y lel | > 1armP Y IAR D)
mezn keZ eyl | kez LiRY)
whenever 1 + 1 = % By Theorem 2, the preceding expression is bounded by a

P a
constant multiple of

> e @ + [mD P (I 15 1Dl s

mezZ"

if 1 < p,q < oo and the preceding series converges in view of (20) and of the
assumption r4(n + s) > n. This concludes Case 1.

Case2: 1 <r < oo, (p,q) € {(r,00), (c0,r)}
In this case we use an argument inspired by Christ and Weinstein [3]. We have

ITL3[f, 81l - gry < C(r.m) E |A;(TT3[f, gD
jez
L' (R")

The summand in j above can be estimated as follows:
ATI5[f, gl (x)

= /R ; /R g+ PQIE+0) Y B FOFETEF ) 2TEH dg ay

k>j—2

= f , /Rn P E + ) TQHERE) Y 2RI @ D) STE D dg
k>j—2

=2y z—ks’Aj[Ak(f)&?(ng)](x)
k>j—2

<2 ( > 2—2’“‘) ( PRI GISR ) (’“)’2)
k>j—2 k=j=2

fcm(z \g[mmmg)]@r) |

k>j—2

where

U,(6) = £ T (E)
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and

ANE) = T, EFE).

Thus we have

(ST

1M1l < Con9)| | 23 [Bitan A5 @]

JEZ keZ
r

We apply [7, Proposition 4.6.4] to extend {FA\i]}keZ from L" — L'¢* to L'{* —
L'0?¢% for 1 < r < oo. This gives

ITLIF, gl < Crons) (Z |AF) &(ngnz)

keZ o

< C(r,n,s)|sup Ap(D’g)
keZ

(Z |Ak(f)|2)
LOO

keZ

L

< C(r.n.s)sup | A(D'®) | oo IF 1
keZ
< C(ron, 9)|| W= 1D gl oo I 11

This proves the case when (p, g) = (r, o0) while the case (p, q) = (oo, r) follows
by symmetry. O

5 Final remarks

We make a few comments about the inhomogeneous Kato-Ponce inequality (7).
It can be obtained from the corresponding homogeneous inequality (8) via the
following observation

IPf e = 1 = AY*f e = Ifllw + (=AY Q1)

which is valid for 1 < p < oo and s > 0.
Then in the case where r > 1 we may use (21) and Holder’s inequality

Wfgllzr < Il llgllze

for j = 1,2 to obtain (8). In the case r < 1 another argument is needed, similar to
that given in Section 4.
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Inequalities (7) and (8) are also valid for complex values of s with nonnegative

real part. This is an easy consequence of fact that the functions

€. A+ 1gPH"?

for ¢ real are L” Fourier multipliers for 1 < p < oo. Finally, it is worth noting that
the inequality (7) fails when s < 0; see [9].
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Wavelets and Graph C*-Algebras

Carla Farsi, Elizabeth Gillaspy, Sooran Kang, and Judith Packer

Abstract Here we give an overview on the connection between wavelet theory and
representation theory for graph C*-algebras, including the higher-rank graph C*-
algebras of A. Kumjian and D. Pask. Many authors have studied different aspects
of this connection over the last 20 years, and we begin this paper with a survey
of the known results. We then discuss several new ways to generalize these results
and obtain wavelets associated to representations of higher-rank graphs. In Farsi et
al. (J Math Anal Appl 425:241-270, 2015), we introduced the “cubical wavelets”
associated to a higher-rank graph. Here, we generalize this construction to build
wavelets of arbitrary shapes. We also present a different but related construction
of wavelets associated to a higher-rank graph, which we anticipate will have
applications to traffic analysis on networks. Finally, we generalize the spectral
graph wavelets of Hammond et al. (Appl Comput Harmon Anal 30:129-150, 2011)
to higher-rank graphs, giving a third family of wavelets associated to higher-rank
graphs.
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1 Introduction

Wavelets were developed by S. Mallat, Y. Meyer, 1. Daubechies, A. Grossman,
and J. Mallet in the late 1980s [40] and early 1990s as functions on L?(R") that
were well localized in either the “time” or “frequency” domain, and thus could be
used to form an orthonormal basis for L?(IR") that behaved well under compression
algorithms, for the purpose of signal or image storage. Mallat and Meyer developed
a very important algorithm, the so-called multiresolution analysis algorithm, as a
way to construct the so-called father wavelets and mother wavelets on L?(R) from
associated “filter functions” [40, 58].

Beginning with the initial work of O. Bratteli and P. Jorgensen in the mid-1990s,
which gave a relationship between multiresolution analyses for wavelets on L*(R)
and certain types of representations of the Cuntz algebra Oy, the representations of
certain graph C*-algebras and the constructions of wavelets on L?(IR) were shown to
be related. To be more precise, in 1996, Bratteli and Jorgensen first announced in [4]
that there was a correspondence between dilation-translation wavelets of scale N on
L*(R) constructed via the multiresolution analyses of Mallat and Meyer, and certain
representations of the Cuntz algebra Oy. Later, together with D. Dutkay, Jorgensen
extended this analysis to describe wavelets on L?-spaces corresponding to certain
inflated fractal sets [15] constructed from iterated function systems. The material
used to form these wavelets also gave rise to representations of Oy. Recently,
in [16], Dutkay and Jorgensen were able to relate representations of the Cuntz
algebra of Oy that they termed “monic” to representations on L? spaces of other
non-Euclidean spaces carrying more locally defined branching operations related
to dilations. The form that monic representations take has similarities to earlier
representations of Oy coming from classical wavelet theory.

Initially, the wavelet function or functions were made into an orthonormal basis
by applying translation and dilation operators to a fixed family of functions, even
in Dutkay and Jorgensen’s inflated fractal space setting. However, already the
term “wavelet” had come to have a broader meaning as being a function or finite
collection of functions on a measure space (X, i) that could be used to construct
either an orthonormal basis or frame basis of L?(X, 1) by means of operators
connected to algebraic or geometric information relating to (X, ().

In 1996, A. Jonsson described collections of functions on certain finite fractal
spaces that he defined as wavelets, with the motivating example being Haar wavelets
restricted to the Cantor set [30]. Indeed, Jonsson had been inspired by the fact that
the Haar wavelets, which are discontinuous on [0, 1], are in fact continuous when
restricted to the fractal Cantor set, and therefore can be viewed as a very well-
behaved orthonormal basis giving a great deal of information about the topological
structure of the fractal involved. Also in 1996, just slightly before Jonsson’s work,
R. Strichartz analyzed wavelets on Sierpinski gasket fractals in [59], and noted that
since fractals built up from affine iterated function systems such as the Sierpinski
gasket fractal had locally defined translations, isometries, and dilations, they were
good candidates for an orthonormal basis of wavelets. Strichartz’s wavelets were
defined by constructing an orthonormal basis from functions that at each stage of
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the iteration building the fractal had certain properties (such as local constance)
holding in a piecewise fashion [59].

With Jonsson’s and Strichartz’s constructions in mind, but starting from an
operator-algebraic viewpoint, in 2011, M. Marcolli and A. Paolucci looked at
representations of the Cuntz-Krieger C*-algebras (O, on certain L?-spaces, and
showed that one could construct generalized “wavelet” families, by using the
isometries and partial isometries naturally generating the C*-algebras O, to operate
on the zero-order and first-order scaling functions and wavelet functions, thus
providing the orthonormal basis for the Hilbert space in question. The Cuntz-
Krieger C*-algebras O, are C*-algebras generated by partial isometries, where the
relations between the isometries are determined by the matrix A; interpreting the
matrix A as the adjacency matrix of a graph allows us to view the Cuntz-Krieger
C*-algebras as graph algebras. Thus, in the wavelet constructions of Marcolli
and Paolucci, the partial isometries coming from the graph algebra act in a sense
similar to the localized dilations and isometries observed by Strichartz in [59].
More precisely, by showing that it was possible to represent certain Cuntz-Krieger
C*-algebras on L?-spaces associated to non-inflated fractal spaces, Marcolli and
Paolucci related the work of Bratteli and Jorgensen and Dutkay and Jorgensen to the
work of Jonsson and Strichartz. Moreover, they showed that in this setting, certain
families related to Jonsson’s wavelets could be constructed by acting on the so-
called scaling functions and wavelets by partial isometries geometrically related to
the directed graph in question.

In this paper, in addition to giving a broad overview of this area, we will discuss
several new ways to generalize these results and obtain wavelets associated to
representations of directed graphs and higher-rank graphs. For a given directed
graph E, the graph C*-algebra C*(FE) is the universal C*-algebra generated by a
collection of projections associated to the vertices and partial isometries associated
to the edges that satisfy certain relations, called the Cuntz-Krieger relations. It has
been shown that graph C*-algebras not only generalize Cuntz-Krieger algebras, but
they also include (up to Morita equivalence) a fairly wide class of C*-algebras
such as the AF-algebras, Kirchberg algebras with free K;-group, and various
noncommutative algebras of functions on quantum spaces. One of the benefits of
studying graph C*-algebras is that very abstract properties of C*-algebras can be
visualized via concrete characteristics of underlying graphs. See the details in the
book “Graph Algebras” by Iain Raeburn [48] and the references therein.

Higher-rank graphs, also called k-graphs, were introduced in [35] by Kumjian
and Pask as higher-dimensional analogues of directed graphs, and they provide
a combinatorial model to study the higher-dimensional Cuntz-Krieger algebras of
Robertson and Steger [51, 52]. Since then, k-graph C*-algebras have been studied
by many authors and have provided many examples of various classifiable C*-
algebras, and the study of fine structures and invariants of k-graph C*-algebras can
be found in [8, 18, 32, 44, 49, 50, 53, 54, 56, 57]. Also, k-graph C*-algebras provide
many examples of non-self-adjoint algebras and examples of crossed products.
(See [7, 13, 14, 19, 21, 33, 47]). Recently, twisted k-graph C*-algebras have been
developed in [36-39, 55]; these provide many important examples of C*-algebras
including noncommutative tori. Moreover, specific examples of dynamical systems
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on k-graph C*-algebras have been studied in [42, 43], and the study of KMS states
with gauge dynamics can be found in [23-27]. Furthermore, the works in [45, 46]
show that k-graph C*-algebras can be realized as noncommutative manifolds and
have the potential to enrich the study of noncommutative geometry.

The first examples of directed graph algebras are the Cuntz C*-algebras Oy
defined for any integer N > 2, which are generated by N isometries satisfying some
elementary relations. In the late 1990s it was realized by Bratteli and Jorgensen [4, 5]
that the theory of multiresolution analyses for wavelets and the theory of certain
representations of Oy could be connected through filter functions, or quadrature
mirror filters, as they are sometimes called. We review this relationship in Section 2,
since this was the first historical connection between wavelets and C*-algebras.
In this section, we also relate the filter functions associated to fractals coming
from affine iterated function systems, as first defined by Dutkay and Jorgensen
in [15], as well as certain kinds of representations of Oy defined by Bratteli and
Jorgensen called monic representations, as all three of these representations of Oy
(those coming from [5], from [15], and from [16]) correspond to what we call
a Cuniz-like family of functions on T. Certain forms of monic representations,
when moved to Lz—spaces of Cantor sets associated to Oy, can be viewed as
examples of semibranching function systems, and thus are precursors of the types of
representations of Cuntz-Krieger algebras studied by Marcolli and Paolucci in [41].
In Section 3 we give an overview of the work of Marcolli and Paolucci from [41],
discussing semibranching function systems satisfying a Cuntz-Krieger condition
and the representations of Cuntz-Krieger C*-algebras on the L>-spaces of fractals.
We state the main theorem of Marcolli and Paolucci from [41] on the construction
of wavelets on these spaces, which generalizes the constructions of Jonsson and
Strichartz, but we omit the proof of their theorem. However, we give the proof that,
given any Markov probability measure on the fractal space Ky associated to Oy,
there exist an associated representation of Oy and a family of related wavelets.
In Section 4, we review the definition of directed graph algebras and also review
C*-algebras associated to finite higher-rank graphs (first defined by Kumjian and
Pask in [35]) and then generalize the notion of semibranching function systems to
higher-rank graph algebras via the definition of A-semibranching function systems,
first introduced in [20]. In Section 5, we use the representations arising from A-
semibranching function systems to construct wavelets of an arbitrary rectangular
shape on the L?-space of the infinite path space A of any finite strongly connected
k-graph A. In so doing we generalize a main theorem from [20] and answer in the
affirmative a question posed to one of us by Aidan Sims. In Section 6, motivated
by the work of Marcolli and Paolucci for wavelets associated to Cuntz-Krieger
C*-algebras, we discuss the use of k-graph wavelets in the construction of (finite-
dimensional) families of wavelets that can hopefully be used in traffic analysis on
networks, and also discuss generalizations of wavelets on the vertex space of a k-
graph that can be viewed as eigenvectors of the (discrete) Laplacian on this vertex
space. We analyze the wavelets and the wavelet transform in this case, thereby
generalizing some results of Hammond, Vanderghynst, and Gribonval from [29].

This work was partially supported by a grant from the Simons Foundation
(#316981 to Judith Packer).
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2 (C*-Algebras and Work by Bratteli and Jorgensen and
Dutkay and Jorgensen on Representations of Oy

We begin by giving a very brief overview of C*-algebras and several important
constructions in C*-algebras that will prove important in what follows. Readers
interested in further detail can examine B. Blackadar’s book [3] (to give just one
reference).

Definition 2.1 A C*-algebra is a Banach algebra which we shall denote by A that
has assigned to it an involution * such that the norm of A satisfies the so-called
C*-identity:

la*all = |a|? Va e A.

By a celebrated theorem of I. Gelfand and M. Naimark, every C*-algebra can
be represented faithfully as a Banach *-subalgebra of the algebra of all bounded
operators on a Hilbert space.

C*-algebras have a variety of important and very useful applications in mathematics
and physics. C*-algebras can be used to study the structure of topological spaces,
as well as the algebraic and representation-theoretic structure of locally compact
topological groups. Indeed, C*-algebras provide one framework for a mathematical
theory of quantum mechanics, with observables and states being described precisely
in terms of self-adjoint operators and mathematical states on C*-algebras. When
there are also symmetry groups involved in the physical system, the theory of C*-
algebras allows these symmetries to be incorporated into the theoretical framework
as well.

In this paper, we will mainly be concerned with C*-algebras constructed from
various relations arising from directed graphs and higher-rank graphs. These are
combinatorial objects satisfying certain algebraic relations that are most easily
represented by projections and partial isometries acting on a Hilbert space. The
C*-algebras that we will study will also contain within them certain naturally
defined commutative C*-algebras, as fixed points of a canonical gauge action. These
commutative C*-algebras can be realized as continuous functions on Cantor sets of
various types, and under appropriate conditions there are measures on the Cantor
sets, and associated representations of the C*-algebras being studied on the L>-
spaces of the Cantor sets. These will be the representations that we shall study,
but we will first briefly review the notion of C*-algebras characterized by universal
properties.

Definition 2.2 ([3]) Let G be a (countable) set of generators, closed under an
involution *, and R(G) a set of algebraic relations on the elements of G, which
have as a restriction that it must be possible to realize R(G) among operators
on a Hilbert space . It is also required that R(G) must place an upper bound
on the norm of each generator when realized as an operator. A representation
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(7, H) of the pair (G,R(G)) is amap # : G — B(H) such that the collection
{m(g) : g € G} satisfies all the relations of R(G). The smallest C*-subalgebra of
B(H) containing {7t (g) : g € G} is called a C*-algebra that represents (G, R(G));
we denote this C*-algebra by A,,. A representation (77, Hyy) of (G, R(G)) is said to
be universal and A, is called the universal C*-algebra associated to (G, R(G))
if for every representation (7, H) of the pair (G, R(G)) there is a x-homomorphism
p: Ay, — Ay satistying

m(g) = pomy(g), VgeG.

The general theory found in Blackadar [3] can be used to show that this universal
C*-algebra exists, and is unique (the bounded-norm condition is used in the
existence proof).

Example 2.3 Let G = {u,u*,v,v*} and fix A € T with 1 = €@, « € [0,1). Let
R(G) consist of the following three identities, where I denotes the identity operator

in B(H):

1) wu* =u*u=1.
2) vw*=v*v=1.
3) uv = Avu.

We note that relations (1) and (2) together with the C*-norm condition force |u| =
lv| = 1. When A # 1, relation (3) implies the universal C*-algebra involved
is noncommutative, and our universal C*-algebra in this case is the well-known
noncommutative torus A,.

Example 2.4 Fix N > 1 and let G = {50,585, ,Sn—1,5y_,}. Let R(G) consist of
the relations

(1) sfsi=1,0<i<N-1

(2) s75i=0,0<i#j<N-—1
3) si87 + 5285 + - Fsy—1sy_y =1

Again the first collection of relations (1) implies that ||s;|| = 1, 0 <i < N —1,
and also imply that the s; will be isometries and the s} will be partial isometries,
0 < i < N — 1.! The universal C*-algebra constructed via these generators and
relations was first discovered by J. Cuntz in the late 1970s. Therefore it is called the
Cuntz algebra and is commonly denoted by Oy.

We now wish to examine several different families of representations of Oy that
take on a related form on the Hilbert space L?(T) where T is equipped with Haar
measure. These types of representations were first studied by Bratteli and Jorgensen
in [4] and [5], who found that certain of these representations could be formed from
wavelet filter functions. They also appear as representations coming from inflated

IRecall that an isometry in B(#) is an operator T such that 7*T = I; a partial isometry S satisfies
S = §8*S. A projection in B(H) is an operator that is both self-adjoint and idempotent.
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fractal wavelet filters and the recently defined monic representations of Dutkay and
Jorgensen [15, 16, respectively].

We now discuss a common theme for all of the representations of Oy mentioned
above, as was first done by Bratteli and Jorgensen in [5]. Fix N > 1, and suppose
a collection of N essentially bounded measurable functions {hg, hy,--- ,hy—1} C
L*>(T) is given. We define bounded operators {T,-}f.\’z_o1 on L?*(T) associated to the
functions {hg, hy, -+, hy—1} by

(T:£)(2) = h(EE), (1)

and we ask the question: when do the {T;}_ ! give a representation of Oy on L?(T)?

We first compute that for i € Zy = {0,1,...,N — 1}, the adjoint of each T; is
given by

@ =y Y E@k©) @

w€eT:wN=z

If we denote the N (measurable) branches of the N root function by 7,: T —T,
where

2mi(t+))
N

Gz=e"") =¢ ,t€[0,1) and j€ Zy,

then we can rewrite our formula for 77" as:

N—1

(7@ = + Y MEEEGE). G
=0

(Note we have chosen specific branches for the N root functions, but in our formula
for the adjoint 77" we could have taken any measurable branches and obtained the
same result.)

We now give necessary and sufficient conditions on the functions {hy, A1, ..., iy—1},
as stated in [5], that the {Ti}fy:_ol generate a representation of Oy.
Proposition 2.5 Fix N > 1, let {#}¥7} < L°(T) and define {T;}¥-' as in

Equation (1). Then the operators {Ti}gvzo1 give a representation of the Cuntz algebra
if and only if the map
()

VN

Z =

“)

0<ij<N—1

is a map from T into the unitary N x N matrices for almost all z € T.
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Proof See Section 1 of Bratteli and Jorgensen’s seminal paper [5] for more details
on this. o

The above proposition motivates the next definition:

Definition 2.6 Let {hj}j.vz_o1 be a subset of L°(T). We say that this family is a
Cuntz-like family if the matrix of Equation (4) is unitary for almost all z € T.

Bratteli and Jorgensen were the first to note, in [4], that certain wavelets on
L*(R), the so-called multiresolution analysis wavelets, could be used to construct
representations of the Cuntz algebra Oy, by examining the filter function families,
and showing that they were “Cuntz-like.” Their representations used low- and
high-pass filters associated to the wavelets to construct the related isometries as
above. Filter functions on the circle T are used to define wavelets in the frequency
domain (see [58] for an excellent exposition). We thus give our initial definitions
of “dilation-translation wavelet families” in the frequency domain rather than the
time domain. We note that we restrict ourselves to integer dilations on L?(IR); more
general dilation matrices giving rise to unitary dilations on L*>(R?) are described in
the Strichartz article [58].

Fix an integer N > 1. Define the operator D of dilation by N on L*(R) by:

D(f)(r) = v/N.f(N1) for f € L*(R).
and define the translation operator 7 on L*(R) by
T(f)(1) =f(t—1) for feL*(R), andletT, =T°, v € Z.

Let F denote the Fourier transform on L? (R) defined by

F(f)x) = /}R f(ne* ™.
Set
D = FDF* and T = FTF*.
Then
1
VN

Definition 2.7 A wavelet family in the frequency domain for dilation by N > 1
is a subset {®} U {W¥;,--- , ¥,,} C L? (R) such that

D) (x) = f(]fv) and T (f) (x) = e 2" (x) for f e L2 (R).

(T, (®): ve ZYUDT,(¥): 1<i<m, jeN, veZ 5)
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is an orthonormal basis for L? (R). If m = N — 1 and the set (5) is an orthonormal
basis for L? (R), the family {®}U{W¥,--- , Uy_;} is called an orthonormal wavelet
family for dilation by N.

In other words, wavelet families are finite subsets of the unit ball of a Hilbert
space L?(IR) that, when acted on by specific operators (in this case unitary operators
corresponding to dilation and translation), give rise to a basis for the Hilbert space.

A fundamental algorithm for constructing wavelet families is the concept of
multiresolution analysis (MRA) developed by Mallat and Meyer in [40], and key
tools for constructing the MRAs are filter functions for dilation by N.

Definition 2.8 Let N be a positive integer greater than 1. A low-pass filter m;

for dilation by N is a function my : T — C which satisfies the following

conditions:

(i) mo(1) = /N (“low-pass condition”)

(11) ZZZ;S |m0 (Zezﬁﬂ) |2 =N a.e.

(iii) myg is Holder continuous at 1;

(iv) (Cohen’s condition) my is nonzero in a sufficiently large neighborhood of 1
(e.g., it is sufficient that my be nonzero on the image of [—ﬁ ﬁ] under the
exponential map from R to T).

Sometimes in the above definition, condition (iv) Cohen’s condition is dropped and
thus frame wavelets are produced instead of orthonormal wavelets; these situations
can be studied further in Bratteli and Jorgensen’s book [6].

Given a low-pass filter my for dilation by N, we can naturally view mg as a Z-
periodic function on R by identifying T with [0, 1) and extending Z-periodically.
Then there is a canonical way to construct a “scaling function” associated to the
filter mgy. We set

® (x) =ﬁ[%}

i=1

Then the infinite product defining @ converges a.e. and gives an element of
L? (R). We call ® a scaling function in the frequency domain for dilation by
N. (The function F~!(®) = ¢ is the scaling function in the sense of the original
definition.)

Given a low-pass filter m( and the associated scaling function @ for dilation by
N, then if we have N — 1 other functions defined on T which satisfy appropriate
conditions described in the definition that follows, we can construct the additional
members of a wavelet family for dilation by N.

Definition 2.9 Let N be a positive integer greater than 1, and let my be a low-
pass filter for dilation by N satisfying all the conditions of Definition 2.8. A set
of essentially bounded measurable Z-periodic functions m,my, -+ , my—; defined
on R are called high-pass filters associated to my, if
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s 2mil 2mil L.
E mi(zeN)mj(zeN) = §;;N for 0< i,j <N-—-1.
=0

Given a low-pass filter mg, it is always possible to find measurable
functions my,my,--- ,my—; that serve as high-pass filters to my. The functions
my, my,--- ,my—; can then be seen as Z-periodic functions on R as well. The
connection between filter functions and wavelet families was provided by Mallat
and Meyer for N = 2 in [40] and then extended to more general dilation matrices.
We consider only integer dilations N > 1, and rely on the exposition of both
Strichartz [58] and Bratteli and Jorgensen [6] in the material that follows below:

Theorem 2.10 ([40], Section 1.5 of [58], [6]) Let N be a positive integer greater
than 1, let (mg, my, - -+ ,my—1) be a classical system of low and associated high-pass
filters for dilation by N, where my satisfies all the conditions of Definition 2.8, and
let @ be the scaling function in the frequency domain constructed from my as above.
Then

{@} | J{W =D (m®), ¥, =D (m®), -+, Wy =D (my_1®)} (6)

is an orthonormal wavelet family in the frequency domain for dilation by N.
The wavelets {¥;, W,, ---, Wy_1} are called the “wavelets” in the frequency
domain for dilation by N. If Cohen’s condition is satisfied, the family (6) is
an orthonormal wavelet family. (Again, the functions {y; = F '(¥),yp =
F N (W), ¥n_1 = F Y (Wy_1)} form the “wavelets” in the original sense of
the definition.)

Remark 2.11 Tt follows that filter systems are very important in the construction of
wavelets arising from a multiresolution analysis. In their proof of the result above,
Bratteli and Jorgensen used a representation of the Cuntz algebra Oy arising from
the filter system.

It is then clear the filter conditions expressed as above can just be formulated as
stating that the functions {mg, m1,--- , my—;} can be used to construct the following
function mapping z € R/Z = T into the N x N unitary matrices over C, given by

the formula
2mil
(o)

T :

0<jL<N—1

Z =

(7

and therefore give a Cuntz-like family in the sense of Definition 2.6. As noted
earlier, Bratteli and Jorgensen proved that the operators {Si}f":_()l defined on L*(T)
by

(SiE) @) = mi(2EE), ®)



Wavelets and Graph C*-Algebras 45

for§ € I*(T), ze T and i =0,1,--- ,N — 1, satisfy the relations

SIS =81, ©)

N—1
dosisE =1, (10)
i=0

which we saw in Proposition 2.5; and thus we obtain exactly the Cuntz relations for
the Cuntz algebra Oy.

This gives the Bratteli-Jorgensen mapping from a wavelet family {®} | J {1,
.-+, Wy_;} in L*(R) arising from a multiresolution analysis into a representations
of ON.

We now recall the inflated fractal wavelets of Dutkay and Jorgensen [15],
which also have a multiresolution analysis structure, and therefore also have related
generalized filter functions that will satisfy Definition 2.6 and a weakened low-pass
condition. Thus, these filter functions will also give rise to representations of Oy on
L?*(T). We review here only the case where the fractals embed inside [0, 1], although
the work in [15] generalizes to fractals sitting inside [0, 1]¢ constructed from affine
iterated function systems. We note that a fine survey of the relationship between
quadrature mirror filters of all types and representations of Oy can be found in the
recent paper [17].

Fix an integer N > 1. Recall that Zy = {0, 1,--- ,N—1}; let B C Zy be a proper
subset of Zy. Recall from [28] that there is a unique fractal set F C [0, 1] satisfying

1
F = —[F+1i]).
LG+
i€B
The Hausdorff dimension of F is known to be logy(|B|) [28, Theorem 1 of
Section 5.3].

Definition 2.12 ([15]) Let N, B C N, and F be as described above. We define the
inflated fractal set R associated to F by:

R=JUUNIEF+v).

JEZ vEZL

The Hausdorff measure p of dimension logy(|B]), restricted to R C R, gives
a Borel measure on R, but it is not a Radon measure on R, because bounded
measurable subsets of R need not have finite p-measure. A dilation operator D
and translation operators {T, : v € Z} on L*(R, 1) are defined as follows: for
[ e (R, p),

D(f)(x) = V/|BIf (Nx),
T, (f)(x) = f(x — v).
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There is a natural multiresolution analysis (MRA) structure on L?>(R, 1), which
can be described as follows. We define a scaling function or “father wavelet” ¢ by
¢ = yr. Translates of ¢ are orthonormal, and we define the core subspace Vj of the
MRA to be the closure of their span,

Vo = span{Ty(¢) : v € Z}.

Forj € Z, set V; = D/(Vp). It was shown in Proposition 2.8 of [15] (using slightly
different notation) that UjeZ V; is dense in L*(R, ) and ﬂjeZ V; = {0}. The
inclusion V; C V4 follows from the fact that

1
¢ =—= ) DIi(¢). 1)
V1Bl ;

We note that the refinement equation (11) above gives a weakened low-pass filter
for dilation by N, defined by h(z) = > _.cp ﬁz" for z € T. It is weakened in that
conditions (i) and (iv) of Definition 2.8 will not be satisfied in general, but it will
satisfy

> W) =N forzeT,

{w: whN=z}

and hy(z) will be nonzero in a neighborhood of z = 1. Using linear algebra, it
is then possible to find N — 1 corresponding “high-pass” filters {hy, hy, -+, hy—1}
defined as Laurent polynomials in z (see Theorem 3.4 of [12] for details) such
that the condition of Definition 2.6 is satisfied for the family {hg, Ay, -, hy—1},
and one thus obtains a representation of Oy to go along with the wavelet family.
Moreover, the high-pass filters {4, - - - , hy—; } are constructed in such a way to allow
one to construct a subset {Y{, ¥, -+, ¥n_1} of Wy = V| © Vj that serves as the
generalized wavelet family for L?(R, v) in the sense that

{(DT,(Y;): 1 <i<N-—1 and j,v e Z}

form an orthonormal basis for L?(R, v). See [15] and [12] for further details on this
construction.

Finally we wish to briefly discuss the relationship of the above representations of
Oy coming from Cuntz-like families of functions, to the monic representations of
Oy defined by Dutkay and Jorgensen in [16].

Fix an integer N > 1. Let Ky denote the infinite product space ]_[fil Zy, which
has the topological structure of the Cantor set. Denote by o the one-sided shift
on Ky :

o ((()2)) = (+D)2, (12)
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and let oy, k € Zy denote the inverse branches to o :
o (()2)) = (kiviz--+ij--) (13)

Definition 2.13 ([16]) A monic system is a pair (i, {f;}iez,), Where u is a finite
Borel measure on Ky and {f;};cz, are functions on Ky such that for j € Zy, p o
(0j)7!' << pand

d(jo (o))"

I
m = Ifil", (14)

and the functions {f;} have the property that

[i(x)| # 0, u—ae.x e gj(Ky).

A monic system is called nonnegative if f; > 0 for all j € Zy.

Given a monic system (i, {f;}iez, ), in [16] Dutkay and Jorgensen associated to
it a representation of the Cuntz algebra Oy on L?(Ky, jt) defined by:

Si(E)(x) = fix)-Eoo(x) for§ € L*(Ky,p) andj € Zy,

and they proved that this representation is what they termed a monic representation
(c.f. Theorem 2.7 of [16] for details).
Recall we have amap ¢ : Ky — T defined by

iy b
(iR = T

We also have an inverse map 6 : T — Ky where 0(e*™) = (i), for 1 =

Zjﬁl 1% Although the rational numbers admit more than one N-adic expansion,
such anomalies form a set of measure 0 in T. With respect to this correspondence,

the map o looks like 7, where 7(z) = z", and the maps o; correspond to the maps

.L,j(62mt) — e2m v, ie.

too = tot and gjor = tog; for 0<j< N-—1.

So, if the measure y on Ky is equal to Haar measure v on Ky (thought of as an
infinite product of the cyclic groups Zy), a monic system of functions {f;};cz, on
(Kn, v) gives a collection of functions {h; = f; 0 0};ez, on T.

The most relevant aspect of Dutkay and Jorgensen’s work on monic representa-
tions to this paper is that, using the fact that (Ky, v) can be measure-theoretically
identified with (T, vr), where v is Haar measure on the circle group T, by using the
maps 6 and ¢ defined above, it is possible to identify a system of essentially bounded
functions {h; = f; o 9}_§V=_01 on T, and one can check that these functions will satisfy
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the condition of Definition 2.6. The key relevant point in the proof of this is that by
Theorem 2.9 of [16], the support of each f; is precisely o;(Ky), and |£;((j; j?'il) ?=N
on its support, so that the support of each #; is precisely ;(T), with |h;(z)| = VN
for z € 7;(T) and O otherwise. It therefore follows that monic systems of functions
on (Ky,v) moved over to T via the map 6 all give rise to Cuntz-like systems of
functions on T. However, these monic systems will only give rise to filter functions
(and hence to classical wavelets) in isolated conditions (e.g., for N = 2 it is possible
to obtain the Shannon wavelet via a monic system of two functions that is equivalent
to the filter functions mo(z) = /2y, and m;(z) = /2y, , where E; is the image
of [0, }T) U [%, 1] under the exponential map from [0, 1] to T, and E| is the image in
T of 3. 3)).

Further analysis of monic representations can be found in [16]. We mention them
here because they are the closest analog in the Cuntz C*-algebra case to the sorts of
representations of the higher-rank graph algebras that are used to construct wavelets
in [20].

3 Marcolli-Paolucci Wavelets

In the 2011 article [41], Marcolli and Paolucci constructed representations of (finite)
Cuntz-Krieger C*-algebras on Lz—spaces of certain fractals, and then in certain cases
went on to define wavelets generalizing the wavelets of A. Jonsson [30]. We recall
their basic constructions.

Definition 3.1 Fix aninteger N > 1. LetA = (A,- J)iJ Zn be an N x N matrix whose
entries A;j take on only values in {0, 1}. The Cuntz-Krieger C*-algebra O, is the
universal C*-algebra generated by partial isometries {7}};cz, satisfying

N—1
T/T, = ) ATT), (15)
Jj=0
T'T; = 0 fori#j, (16)
and
N—1
ZT,-T;* =L 17)
i=0

We note that these Cuntz-Krieger C*-algebras O, are examples of C*-algebras
associated to certain special finite directed graphs, namely, those directed graphs
admitting at most one edge with source v and range w for any pair of vertices (v, w).
Indeed (cf. [48], Remark 2.8) one can show that the directed graph in this case
would have N vertices in a set ES, labeled E = {vo, v1,--- ,vy—1}, with edge set
E\ = {eq € Z} : A;; = 1}; there is a (directed) edge e(;;, beginning at v,
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and ending at v; iff A;; = 1. The matrix A then becomes the vertex matrix of the
associated directed graph. In the case where A is the matrix that has 1 in every entry,
the C*-algebra O, is exactly the Cuntz algebra Oy.

As had been done previously by K. Kawamura [34], Marcolli and Paolucci
constructed representations of O4 by employing the method of “semibranching
function systems.” We note for completeness that the semibranching function
systems of Kawamura [34] were for the most part defined on finite Euclidean spaces,
e.g. the unit interval [0, 1], whereas the semibranching function systems used by
Marcolli and Paolucci [41] were mainly defined on Cantor sets.

Definition 3.2 (c.f. [34, 41] Definition 2.1, [1] Theorem 2.22) Let (X, ) be a
measure space and let {D;};cz, be a collection of y-measurable sets and {o; : D; —
X}iezy a collection of p-measurable maps. Let A be an N x N {0, 1}-matrix. The
family of maps {o;}iez, is called a semibranching function system on (X, u) with
coding map o : X — X if the following conditions hold:

1. Fori € Zy, set R; = 0;(D;). Then we have
WX\ Uiezy R) =0 and p(R;NR;) =0 for i # .
2. Fori € Zy, we have y o 0; << p and

d(p o 0;)

> 0, p —a.e.on D, (18)
dp

3. Fori € Zy and a.e. x € D;, we have
oooi(x) = x.

4. (Cuntz-Krieger (C-K) condition:) For i,j € Zy, it(D;A Ua, =1 Rj) = 0.

Example 3.3 ([34]) Take N > 1, (X,u) = (T,v) where v is Haar measure on
T. D; = Tfori € Zy. and 0j(z = e2') = ¢V for 1 € [0, 1); then R; = {e>"" :
te s, "FTL)} With the coding map given by o(z) = zV, we obtain a semibranching
function system satisfying the (C-K) condition for the N x N matrix consisting of
all 1’s.

Example 3.4 ([41] Proposition 2.6) Take N > 1, and fix an N x N {0, 1}-matrix A.
Let Ay C [172,[Zn]; be defined by

Ay = {(lllzlj) : Aijij_;,_] =1 for j € N}
Marcolli and Paolucci have shown that, using the N-adic expansion map, A4 can
be embedded in [0, 1] as a fractal set and thus has a corresponding Hausdorff

probability measure 4 defined on its Borel subsets. For each i € Zy, let

D; = {(iyiz--+ij---) : Ay = 1} C Ay,
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and define o; for j € Zy by
0j:D; — Apy: 0j ((hig--+ig-+-)) = (irlp - +dg--+).
Then
R; :=0;(Dj) = {(irip -+ ix--+) : (iyip+--ig---) € Dj},
and denoting by o the one-sided shift on A4 :
o (i ig++)) = (aiz -+ dggr - )

we have that o o 0j(x) = x for x € D; and j € Zy. Marcolli and Paolucci show in
Section 2.1 of [41] that this data gives a semibranching function system satisfying
the (C-K) condition on (A, i4). If A is the matrix consisting entirely of s, we
obtain a monic system in the sense of [16]. Moreover, in this case, D; = Ky for all
i €Zyand R; = Z(l) = {(lj)j.il 0= l}

Kawamura and then Marcolli and Paolucci observed the following relationship
between semibranching function systems satisfying the (C-K) condition and repre-
sentations of Oy :

Proposition 3.5 (c.f. [41] Proposition 2.5) Fix a non-trivial N x N {0, 1}-matrix A
with A;; = 1 foralli € Zy. Let (X, t) be a measure space, and let {D;}ez,, {0i :
D; — X}iez, and {R; = 0,(D;)}iez, be a semibranching function system satisfying
the (C-K) condition on (X, &) with coding map o : X — X. For each i € Zy define
Si i LP(X, ) — L*(X, ) by

d(p o 0i)

—(U(x)))_%g(o(x)) for £ € L*(X, ) and x € X.
dp

S = a0 (

Then the family {S;}icz, of partial isometries satisfies the Cuntz-Krieger relations
Equations (15), (16), and (17), and therefore generates a representation of the
Cuntz-Krieger algebra Oy.

We now discuss the construction of wavelets for Cuntz-Krieger C*-algebras as
developed by Marcolli and Paolucci. In the setting of Example 3.4, suppose in
addition that the matrix A is irreducible, i.e. for every pair (i,j) € Zy X Zy there
exists n € N with A7; # 0.

In this case, Marcolli and Paolucci proved that the Hausdorff measure
on A4 is exactly the probability measure associated to the normalized Perron-
Frobenius eigenvector of A. Namely, suppose (po,p1,--.,Pn—1) 1S a vector in
(0, 00)" satistying Y-y pi = 1, and such that

A(vaplv cee va—l)T = P(A)(PO,PI, T va—l)Tv



Wavelets and Graph C*-Algebras 51

where p(A) is the spectral radius of A. (The existence of such a vector
(Pos .. .,pn—1), called the Perron-Frobenius eigenvector of A, follows from the
irreducibility of A.) Then we have:

Theorem 3.6 ([41], Theorem 2.17) Let N > 1 be fixed, and suppose that A
is an irreducible {0, 1}-matrix. Let {o; : D; — R;} with o : Ay — A4 be
the semibranching function system satisfying the (C-K) condition associated to
(Aa, ta) as in Example 3.4. Then the Hausdorff measure [y on Ay is exactly the
probability measure associated to the Perron-Frobenius eigenvector (po, . . .,pN—1)
of A. To be precise, fori € Zy, pus(R;)) = p; and

d(p o o) = N%_ ae. on D,

du

where 84 is the Hausdorff dimension of A, and the spectral radius p(A) of A is
equal to N%.

Given an irreducible {0, 1}-matrix A as in Theorem 3.6, Marcolli and Paolucci
were able to construct families of O4-wavelets on L2(A 4, it4) generalizing splines.
We describe their construction here (see also Section 3 of [41]). For the purposes of
this survey, we concentrate here on the wavelets whose scaling functions or “father
wavelets” are constant on the subsets R; of A4.

We denote by V), the (finite-dimensional) subspace of L>(A 4, t4) given by

Vo = Span{yg, : i € Zy}.

Foreachk, 0 <k <N —1,let Dy = {j: Ay = 1}, and let d; = |D|. Enumerate
the elements of Dy by setting Dy = {np < n; < --+ < ng—1}. For each k € Zy,
define the following inner product on C% :

di—1
(). ODYPr = Y Xyipuy-

J=0

where (p,,) are the appropriate coefficients of the Perron-Frobenius eigenvector of
A. We now define vectors {cj'k : 0<j<d—1 0 <k < N — 1}, where
J* = (cj'k, ) ..,CZZZI), such that for each k € Zy,{c* : 0 < j < d; — 1} is an
orthonormal basis for C%~! with respect to the inner product (-, -) p, so that

e =cOF for 0<,0' <dy—1and k € Zy,
and for each fixed k € Zy,

span{cf 1 1 <j<dy—1} = {(1,1,---, )}t

with respect to the inner product (-, -) pr defined above.



52 C. Farsi et al.

We now note that we can write each set Ry as a disjoint union:

di—1
Ry = U Rigny)
=0

where
R[knj] = {(l]lzln) € AA L= k and ih = nj}.
Thus in terms of characteristic functions,

di—1

AR, = Z ARy, for k € Zy.
j=0

Now for each k € Zy we define functions {f/** }fg)l on A, by

di—1

1 .
= Z CQkXR[knl] ().

Aoy =
\/p_k =0

We note that each function ff’k is wa-measurable. Also, for each k € Zy,

dr—1 k di—1 0.k

1 0.k C? €
= — ke = =Y AR = —= 1R
\/P_k; J4 [kng] g [kng] \/p—k k

Pk
is a scalar multiple of yp,, since the vector %k is a constant vector. It follows that

span{f® 3L = span{yr S = Va.

We are now nearly ready to state our simplified version of the main theorem
on wavelets in [41]. First, a definition: Fix an integer n > 1. We say that a word
W= Wwiwy W, Iin ]_[Z=1 Zy is admissible for our {0, 1}-matrix A if, forall 1 <i <
n—1, we have A, ., = 1. If w is admissible, we write S,, for the partial isometry
in B(L?(A4, () given by

Sy = Sy, Sy -+ S

We also remark that in order to be consistent with standard notation from mul-
tiresolution analysis theory and also with our notation for the higher-rank graph
C*-algebra wavelets, we have changed the notation for the orthogonal subspaces
from the original notation used in [41].
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Theorem 3.7 ([41], Theorem 3.2) Fix N > 1. Let A be an N x N, irreducible,
{0, 1}-matrix, let (A4, a) be the associated fractal space with Hausdorff measure,
and let {0; : Dj — Rj}jezy and o be the associated semibranching function
system satisfying the (C-K) condition defined on (A4, jta). Let {Sk}rez, be the set
of operators on L*(A 4, (a) given by the formula in Proposition 3.5. Let {f'* : k €
Zy, 0 <j < dy — 1} be the functions on A, defined in the above paragraphs. For
k € Zy, let

¢ = 11
Define
Wy = span{f* ke Zy, 1 <j<di_i};

W, = spanS,,(F*) : k € Zy.1 <j < dy—1 andw is an admissible word of length n.
Then the subspaces Vo and {W,}°2, are mutually pairwise orthogonal in
L*>(Ap, pta) and

L*(A4, jt4) = span (Vo &) [éWn]) .

n=0

The ¢ are called the scaling functions (or “father wavelets”) and the f/** are
called the wavelets (or “mother wavelets”) for the system.

Since the proof of the above theorem can be read in [41], we do not include
it here. However, as we did in the second paragraph of Section 4 of [20], we do
wish to remark upon the fact that the emphasis on the Perron-Frobenius measure in
[41] does not appear to be crucial for the construction of the orthogonal subspaces.
To illustrate this further, we now construct wavelets for Oy corresponding to any
Markov measure on Ky, and here we will include the proof so as to illustrate
our techniques. Note also that by taking tensor products, the wavelets below will
produce wavelets on k-graph algebras of tensor-product type, for example, in
On ® Oy, as studied in Example 3.8 of [32].

Recall from Section 2 that Ky is the infinite product space ]_[fil Zy which can
be realized as the Cantor set. Let o and {0}z, be the one-sided shift on Ky and
its inverse branches given in (12) and (13). Following Example 3.11 of [16], fix
{pi € (0,1) : i € Zy}, with ZiGZN pi = 1, and define the Markov measure

w(Z(iriy-++in) = [ pi-
j=1
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where i; € Zy for 1 <j <n, and
Z(iyp o 1y) = {(xpxg-eoxje0) Xy =0, Xp =iy, , Xy = Iy}

As described at the end of Example 3.4, for the N x N matrix consisting of all 1’s,
the standard semibranching function system on Ky satisfying the (C-K) condition is
given by {o0; : D; = R;}icz,, Where 0 : Ky — Ky satisfies D; = Ky foralli € Zy
and R; = Z(i).

Theorem 3.8 Fix N > 1, let {p;}=)! be a collection of positive numbers with

Zf:ol pi = 1, and let | be the associated Markov Borel probability measure on
(Ky, 1) defined as above. Fori € Zy, let {o; : Ky — R; = Z(i)} and 0 : Ky — Ky
be the associated semibranching function system satisfying the (C-K) condition
associated to the N x N matrix of all 1's, and define S; € B(L>(Ky, it)) by

Si(NW) = xzayWp; > f (@ (w)).

Then as in Theorem 3.7, there are scaling functions {gz’)k}fc\’:—é C L*(Ky, ) and
“wavelets” {Yjx 1 k € Zy, 1 <j < N — 1} such that setting

Vo = span{¢y : k € Zy},
Wo = spani{yjr 1k €Zy, 1 <j<N—1} and
W, = span{S,,(Yjx) 1k € Zy, 1 <j<N—1, w aword of length n} for n>1,

we obtain

L*(Ky, jt) = span (Vo &) [@ Wn]) .

n=0

Proof Following the method of Theorem 3.7, we define an inner product on CV by
setting

(()j. 09)j) = Z)Tj'yj “Dj- 19)

€Ty
For fixed k € Zy, we let ¢®* be the vector in CV defined by
A= (1,1, 1),
and let {d*}i<jen—1, with dF = (C]Zk)leZN, be any orthonormal basis for

{(1,1,---, 1)}J- with respect to the inner product (19). For fixed k € Zy, define
functions {f/* : 0 <j < N — 1} on Ky by:

frx) = CQkXZ(ke) (x).

1 N—1
NS
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Note that f* is a normalized version of xz)(x). We claim that setting

Pi(x) = fO*(x) for k € Zy,
and

Vi) = fFx)forl <k <N—1land1<j<N-1,

we will obtain a wavelet family for L?>(Ky, ) where p is the Markov measure
determined by

1(ZGiria i) = [ pi-

j=1

We first note that if i; # i, the integral
¢i1¢_i2duf
Ky
is a scalar multiple of the integral

/ Xz (X) X z(in) (X)d 1

Kn

and this latter integral is equal to zero because the functions in question have disjoint
support.
We also remark that for 1 <j <N — 1 and k € Zy,

N-1
ZCJg'sz = 0.
=0

Multiplying by p; we get:

N—1 N—1
Z C‘]ékpzpk =0, so that / [ZCZkXZ(kZ) (x)]d,u =0.
=0 Ky = =0

We can write this as:

N—1

. [ S s oo,

{=0

[ Yix()pe(x)dp = 0 for 1 <j < N—1.
Kn
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We now check and calculate:
= =
S = Si(—=Y Frzan)® = —= Y Sz @)
J <\/p_k62=£ l ) \/P_kg £

= |
= — Z & X2y () —= xzkey (0 (x))

VPr = VPi
= j_de Xzike) (%)

LetVy = span{¢;: i € Zy} and let
Wo = span{yji: k€Zy, 1 <j<N—-1}.
We have shown Vy L. W,. We now define
Wi = span{S;(Vjx) i, k€ Zy, 1 <j <N—1}.
A straightforward calculation shows that {S;(Vjx) 1 i, k € Zy, 1 <j <N —1}is
an orthonormal set of functions.
We prove now that (Vy & Wy) L W.

Let us first fix pairs (j, k) and (', k') withk, ¥ € Zyand 1 <j, j/ < N — 1. Fix
i € Zy. Then

[ stowieta = — [ | J_Zdz Xzttt (090

1

_ an [TZC] )(Z(zk[)(x)]

1 N—1 ]
X yzwer@du
P Wgo

N—1 N—1

1 1 ik 7k
= 5 T e O Siwbrer et e xzan (Ddp
! £=0 /=0

N—1
1 1 k i/ k/ 1 / k/
= — Siw S N pame dp = —=pipibiy ———» ¢
N Pi A/DkP¥ KNg Lok (o JPi Z
{ [ N
/ k/ M k
—pipiip &, —— E ¢ pr = 0,
T /P Nt

since Z];:_OI é’kpg =0forl <j<N-1.
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It follows that
Wy L W.

We now show that Vy L W,.Fixi € Zy. Let?, k € Zy and fixj € {1,2,--- ,N—1}.
Then:

1
(00, Sy (Yjn)) = — ; Xz() (%) I wziine dp

1
Jp ffz

N ey
= m Z / 1260 O Kz ()

N—
= Z/ CJ Xz(ke) (X)d
v/ zP/Pk =0

N—
= \/_ Z ¢ P/Pkm

PiPiPr ;)

N—
= pfpk[ pe]
SN/ ; ¢

In order for this value to have a chance of being nonzero we need i = . But even if
that happens we get:

(@i, Si(Yj0)) =

|_|

de] e (L D)o,

which is equal to 0 for j € Zy\{0}. Thus ) is orthogonal to W;.
We now prove by induction that if for every n > 0 we define

W, = span{S,,(¥;x) : wisaword of lengthn, ke Zyand 1 <j <N —1},

then for all n > 0,
Wit [Vo &) @ Wk]

We have proven this for n = 0 directly. We now assume it is true for £ = n and prove
itis true for £ = n+ 1, i.e. let us prove that W, 1, is orthogonal to [Vo @ @”H Wil].
We first note that if w is a word of length n 4+ 2 and w’ is a word of length s where
Il <s<n+l,andif K,k € Zy and 1 < j,j/ < N — 1, then there are unique
i,i’ € Zy such that
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(Sw(Win)s Sw (W ko N 2wy = (SiSwy (W10 Sir St (Wi i) 12Ky o)

where w) is a word of length n+ 1 and w/1 isaword of length s—1for0 <s—1 < n.
This then is equal to

(SWI (wj.k)’ S?Si/Swﬁ (Wj’,k’))Lz(KN,u);
since S;(Y)(W) = xzq) (x)pl._l/zlﬂa(x)), one can check that

SEW)w) = pi > (iw).

It follows that S7'Sy = 6; 71. If i = i’ so that S¥Sy = I, we obtain:

(SW(WJJC)’ SW/ (Wj’,k'))Lz(KN,y,) = (Swl (Wj.k)v Sw/1 (Wj’,k'»Lz(KN,u)»

which is equal to 0 by the induction hypothesis.
Thus, in either case,

n+l1
Wasz L[ W]
k=1

Now suppose ¥/ € Wy, wis aword of lengthn + 2,k € Zyand1 <j <N —1.
Then,
N—1

1 ik
(Wids Sw Wy e N 2k ) = (ﬁgd X2ty Sw(Wy ko)) 12k ) -

Write w = iyis -+ - iy41in42. Then

Sw(xzwey) = SuSiy -+ Siyp,(Xzwr)) = mXZ(i1i2~-~i,,+1in+zk’e/)7
so that
=
<ﬁ ; & xzwty Sw(Wy 1)) 12 (k)
1 L= >
= ) (ng XZ(ket)» CJ@/ )(Z((ili2-~-i,,+1i,l+2k%’))LZ(KN.m

[T2 VP VPR =502
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N—1 N—1
1 1 T i
= Z Z Skir 80 () Xz)s € XZ((irinmingrin 4ok O)) 12 Ky p)
l—lg:% p,_iv ,_pkpk/ =~ s n n s
1 M
= k. Z(CJ XZ(kiz)» C](/ XZ(ivip- t+1l+zk’[’))L2(’( ION
1—[n+2\/— \/me/ t %) n n N,
This quantity will only be nonzero if k = ij; in this case we get:
Wik Su W) S
j.ks ' k' )1 L2 (K, =
J wl¥j (KN, I—[n+2 ﬁ W
N_
Z<Cl XZ(iria)» CJZ’ XZ((irin~ ln+1tn+zl</f’)>L2(KNH)
=0
_ 1 1
[T, i, VPuP¥

Z/I; C]z/ Xz(mz)(x))(z((mz ln+1ln+zk’5’)(x)d:“

1 n+2 N—1
_ ‘,il Cj/,k’
- e ([T X T
[T vPi T =0

N n+2 N—1
—_c{’h(n )1 dF e = 0
i v=1 =0

So in all cases, (V. Sw(¥y 1)) 2ky ) = 0, and we have Wy L W.

Finally, we want to show that W,4», L1 V. Let ¢ € )V, be fixed and let
Sw(Wyx) € Wygo for w = iyiy -+ iypr a word of length n + 2 and k' € Zy, j €
{1,2,--- ,N —1}. Then

1
(¢k7S (I//"_k/)> 2 [
WATJT L?(Ky,p) «/[)_k
n+2 1 N—1
i k/
Ha ( ) " Xzliriziprinaak ML
[ ERR
1 n+2
= Voui | X o
~/ PkPK <1_[ \/p_,l, g Ky % (1821 in 42K 0)
1 n+2 1 n+2

11 J—)‘g"“[nptv]m’zcﬂ’m
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n+2 N—1

S e A 1 d %, =
—8k,,lﬁk¢ﬁ[gm];w P =0,

It follows that W, +» L V), and we have proved the desired result by induction. O

Remark 3.9 Notice that the proof of Theorem 3.8 also extends to any other measure
with shift operators having constant Radon-Nykodym derivative on cylinder sets.

4 (C*-Algebras Corresponding to Directed Graphs and
Higher-Rank Graphs

4.1 Directed Graphs, Higher-Rank Graphs, and C*-Algebras

A directed graph E consists of a countable collection of vertices E* and edges E'
with range and source maps r,s : E! — E°. We view an edge e as being directed
from its source s(e) to its range r(e). A path is a string of edges eje; ... e, where
s(e;) = r(ej41) fori = 1,2,...,n— 1. The length of a path is the number of edges
in the string. As mentioned in the introduction, the graph C*-algebra C*(E) is the
universal C*-algebra generated by a set of projections {p, : v € E°} and a set of
partial isometries {s, : e € E'} that satisfy the Cuntz-Krieger relations. (These are
relations (CK1)—(CK4) in (21) below).

Higher-rank graphs, also called k-graphs, are higher-dimensional analogues of
directed graphs. By definition, a higher-rank graph is a small category A with a
functor d from the set A of morphisms to N satisfying the factorization property
:if d(A) = m + n, then there exist unique o, 8 € A such that d(o) = m, d(B) = n,
and A = aB.> Note that we write {e;, ..., e} for the standard basis of N*. We often
call a morphism A € A a path (or an element) in A, and call A° := d~'(0) the set
of vertices of A; then the factorization property gives us range and source maps
r.s: A — A% Forv,w e A” and n € N¥, we write

vA'"'wi={A e A:dA) =nr(d) =v,s(A) = w}.

Thus A € vA”"w means that A, is a path that starts at w, ends at v, and has shape n.
Given two paths A, v € A, we can think of A as a k-cube in a k-colored graph as in
the next example.

Example 4.1 Consider the following two 2-colored graphs I'} on the left and I", on
the right. In both graphs, the dashed edges are red and the solid edges are blue. (The
sphere-like 2-graph picture below is taken from [36] and we would like to thank

2We think of N¥ as a category with one object, namely 0, and with composition of morphisms
given by addition.
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them for sharing their picture). We will explain how I', I'; give rise to 2-graphs A;;
the degree functor d : A; — N? will count the number of red and blue edges in a

path A € A;.
.&
/

f \*L<’

fo \

AC

\A»N‘

Depending on the choice of factorization rules, these 2-colored graphs can give
rise to several different 2-graphs.

There is only one 2-graph A with the 2-colored graph I'|; the factorization rules
of A are given by

hb =df, ha=de, gb=cf, and ga = ce.
Note that the path /b has degree e; + e; = (1,1) € N2, The factorization rule

hb = df means that the element hb = df of A can be understood as the following
square; the 2-graph A has four such squares (paths, or elements).

b
w 0
h f
| S
d

However, on I',, there are two 2-graphs A, and Aj associated to the 2-colored
graph I';. The factorization rules for A, are given by

fie=e¢fi and fre = efs.

The factorization rules for A are given by

fie=-¢ef, and fre = efi.

We leave it to the reader to check that both choices of factorization rules give rise
to a well-defined functor d : A; — N? satisfying the factorization property, where
d(A) = (m, n) implies that the path A contains m red edges and n blue edges.

We say that A is finite if A" is finite for all n € N¥ and is strongly connected
if vAw # @ for all v, w € A®. We say that k-graph has no sources if vA¢ # @ for
all v € A% and for all 1 < i < k. Note that we only consider finite k-graphs with no
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sources in this section. Define an infinite path in A to be a morphism from €2; to
A. To be more precise, consider the set

Qi :={(p.q) e N'x N : p < g}.

Then Q; is a k-graph with Q¥ = N¥; the range and source maps r,s : Q; — Nf
given by r(p, q) := p and s(p, q) := ¢; and the degree functor d given by d(p, q) =
g — p- Note that the composition is given by (p, ¢)(¢, m) = (p,m) and 4 has no
sources. An infinite path in a k-graph A is a k-graph morphism x : Q; — A and
the infinite path space A is the collection of all infinite paths. The space A* is
equipped with a compact open topology generated by the cylinder sets {Z(1) : A €
A}, where

Z(A) = {x € A% : x(0,d(A)) = A}

For p € N¥, there is a shift map o” on A® given by o” (x)(m, n) = x(m + p.n + p)
for x € A®°. For more details on the above constructions, see Section 2 of [35].

For each 1 < i < k, we write A; for the vertex matrices for A, where the
entries A;(v,w) are the number of paths from w to v with degree ¢;. Because of
the factorization property, the vertex matrices A; commute, and if A is strongly
connected, Lemma 4.1 of [26] establishes that there is a unique positive normalized
Perron-Frobenius eigenvector for the matrices A;. The Perron-Frobenius eigenvector
xA is the unique vector x* € (0,oo)|A0‘ with £!-norm 1 which is a common
eigenvector of the matrices A;. It is well known now (see [26] Theorem 8.1) that for
a strongly connected finite k-graph A, there is a unique Borel probability measure
M on A®°, called the Perron-Frobenius measure, such that

M(Z(V) = p(A)™"Wxl,) forall A €A, (20)

where p(A) = (p(A1), ..., p(Ar)). See [26] for the construction of the measure M.
For a finite k-graph with no sources, the Cuntz-Krieger C*-algebra C*(A), often
called a k-graph C*-algebra, is a universal C*-algebra generated by a collection of
partial isometries {z) : A € A} satisfying the following Cuntz-Krieger relations:
(CK1){t, : v € A°} is a family of mutually orthogonal projections,
(CK2)t,t5 = t,) whenever s(u) = r(1),
(CK3)t%1, = ty(y) for all ., and @1

(CK4) forallv € A and n € N¥, we have 1, = Z nay.
AEVA"

Also we can show that

C*(A) =span{nry : A, v € A,s(A) = s(v)}.
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4.2 A-Semibranching Function Systems and Representations
of C*(A)

We briefly review the definition of a A-semibranching function system given in [20],
then discuss the recent results in [20].

Compare the following definition with the definition of a semibranching function
system given in Definition 3.2.

Definition 4.2 Let A be a finite k-graph and let (X, 1) be a measure space. A A-
semibranching function system on (X, u) is a collection {D; },ea of measurable
subsets of X, together with a family of prefixing maps {7} : Dy — X} ep, and a
family of coding maps {t™ : X — X},,ent, such that

(a) For each m € N, the family {r; : d(1) = m} is a semibranching function
system, with coding map 7.

(b) Ifv € A, then 1, = id, and u(D,) > 0.

(¢) LetRy, = 13D;.Foreach A € A,v € s(A)A, we have R, C D, (up to a set of
measure 0), and

)Ty = Typa.cC.

(Note that this implies that up to a set of measure 0, Dy, = D, whenever s(1) =
r(v)).

(d) The coding maps satisfy " o t" = t”*" for any m,n € N¥. (Note that this
implies that the coding maps pairwise commute.)

Remark 4.3 (1) The key condition of a A-semibranching function system is the
condition (c). The immediate consequence is that Dy = D) and R, C R,
forall A € A. Also for A,v € A, if s(A) = r(v), then x € R, if and only if
x € Ry and ™ (x) € R,.

(2) When E is a finite directed graph, the definition of an E-semibranching function
system in Definition 4.2 is not equivalent to the semibranching function system
of E in Definition 3.2. First of all, the set of domains {D, : ¢ € E} in
Definition 3.2 neither have to be mutually disjoint nor the union to be the
whole space X up to a set of measure zero. But since Definition 4.2(b) requires
that D, = R, for v € E°, the condition (a) of Definition 4.2 implies that
wD, ND,) = wRy NR,) = 0forv # w, and u(X \ U,ep Rv) =
WX\ Uyego Dy) = 0. As seen in Remark 4.3, D, = Dy for any ¢ € E,
and hence u(D, N Dy) = 0if s(e) # s(f).

(3) It turned out that the conditions of Definition 4.2 are a lot stronger than what we
expected. In particular, when we have a finite directed graph E, the conditions
of Definition 4.2 imply what is called condition (C-K) in [6]:

D, = UR* forall ve Eandm e N

e€E™
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up to a measure zero set. The condition (C-K) was assumed in Theorem 2.22
in [6] to obtain a representation of C*(A) on L>(X, 1), where a semibranching
function system is given on the measure space (X, ().

Example 4.4 Let A be a strongly connected finite k-graph. As seen before, there is
a Borel probability measure M on A® given by the formula of (20). To construct
a A-semibranching function system on (A*°, M), we define, for A € A, prefixing
maps o3, : Z(s(1)) = Z(A) by

05 (x) = Ax,
where we denote by y := Ax the unique infinite path y : Q; — A such that

y((0,d(1))) = A and %P (y) = x.
For m € N* we define the coding maps 0™ : A® — A® by

o™ (x) = x(m, 00).

Then {0 }1ep With {o"},,ent form a A-semibranching function system on (A°°, M)
as shown in Proposition 3.4 of [20].

When a k-graph A is finite and has no sources, one of the main theorems of [20],
Theorem 3.5, says that the operators S, associated to a A-semibranching function
system on a measure space (X, ;) given by

SAE(X) 1= xR, (O)( Doy (2P () 2E (TP () (22)
generate a representation of C*(A) on L?(X, i), where

_dpomn)
du

P

™

is positive a.e. on D .

In addition, if we have a strongly connected finite k-graph A, then the A-
semibranching function system of Example 4.4 on the Borel probability measure
space (A®, M) gives rise to a representation of C*(A) on L>(A®, M) which is
faithful if and only if A is aperiodic. (See Theorem 3.6 of [20]).

Moreover, if the vertex matrices A; associated to a strongly connected finite k-
graph A are all {0, 1}-matrices, then we can construct A-semibranching function
systems on a fractal subspace X of [0, 1]. In particular, let N = |A°| and label the
vertices of A by the integers, 0,1,...,N — 1. Let p(A) denote the spectral radius
of the product A := A;...A. Then consider the embedding W : A*® — [0,1]
given by interpreting the sequence of vertices of a given infinite path as an N-
adic decimal. Then X = W(A®) is a Cantor-type fractal subspace of [0, 1] and
the Hausdorff measure p on X is given by the Borel probability measure M on A*°
via W. The prefixing maps {7, } and coding maps {z%*} on (X, 1) are induced from
the prefixing maps {0, } and coding maps {6} on (A*°, M) given in Example 4.4.
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Moreover, if s denotes the Hausdorff dimension of X, we have

11np(A)
g= -

NB = p(A), d s= .
p(A), an k InN

See Section 3.2 of [20] for further details.

5 Wavelets on L>(A®°, M)

Let A be a strongly connected finite k-graph. As seen in the previous section, there
is a Borel probability measure M on the infinite path space A® given by, for A € A,

M(Z(L) = p(A)~“Dxl,).

where p(A) = (p(A;))1<i<x and x* is the unimodular Perron-Frobenius eigenvector
of A. We now proceed to generalize the wavelet decomposition of L?>(A°, M)
that we constructed in Section 4 of [20]. In that paper, we built an orthonormal
decomposition of L*(A®, M), which we termed a wavelet decomposition, follow-
ing Section 3 of [41]. Here, our wavelet decomposition is constructed by applying
(some of) the operators S) of Example 4.4 and Equation (22) to a basic family
of functions in L2(A®, M). Instead of choosing the finite paths A whose degrees
are associated to k-cubes, we will construct them from isometries given by paths
whose degrees are given by k-rectangles. One way to interpret our main result below
(Theorem 5.2) is to say that for any rectangle (jj.ja,....jx) € N¥ with no zero
entries, the cofinal set {n- (ji,Js. ....jx) : n € N} C N gives rise to an orthonormal
decomposition of L?(A%°, M).

While we can use the same procedure to obtain a family of orthonormal functions
in L>(X, 1) whenever we have a A-semibranching function system on (X, i), we
cannot establish in general that this orthonormal decomposition densely spans
L*(X,t) — we have no analogue of Lemma 5.1 for general A-semibranching
function systems. Moreover, by Corollary 3.12 of [20], every A-semibranching
function system on A® with constant Radon-Nikodym derivative is endowed with
the Perron-Frobenius measure M. Thus, in this section, we restrict ourselves to the
case of (A®°, M). We also note that our proofs in this section follow the same ideas
found in the proof of Theorem 3.2 of [41].

For a path A € A, let ®; denote the characteristic function of Z(1) € A®.
Recall that M is the unique Borel probability measure on A satisfying our desired
properties. For the rest of this section, we fix a k-tuple

(il9j25 tee 7jk) € Nk

all of whose coordinates are positive integers.
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Lemma 5.1 Let A be a strongly connected k-graph and fix J = (j1,j2,...,Jk) €
(Z)*. Then the span of the set

§/ =140, :d(A) = (n-ji,n-jr,...,n-j) for somen € N}

is dense in L*(A®, M).

Proof Let u € A. We will show that we can write ®, as a linear combination of
functions from S”.

Suppose d(p) = (my,...,m). Letm = min{N > 0:N-j;—m; >0 for 1<
i<kj,andletn = (m-j;,m-j,...,m-ji) —d(u). Let

Co={AeA:r(d) =s(u),dA) =n}.

In words, C,, consists of the paths that we could append to u such that uA € §7:if
A € C,, then the product A is defined and

d(pA) = d(p) +dA) = (m-ji.m-ja, ....m-ji).

Similarly, since d(ud) = d(ur’) = (m-ji,....,m-ji) = mJ, if x € Z(uA) N
Z(uA') then the fact that x(0, mJ) is well defined implies that

x(0,m)) = pd = pud => 1 =1

It follows that if A # A" € C,, then Z(uA) N Z(uA’) = @. Since every infinite path
x € Z(u) has a well-defined “first segment” of shape (m - ji,...,m - ji) — namely
x(0,mJ) —every x € Z() must live in Z(uA) for precisely one A € C,,. Thus, we
can write Z(u) as a disjoint union,

zw = ||z,

AEC,

It follows that ®, = ercu © .1, so the span of functions in §/ includes the
characteristic functions of cylinder sets. Since the cylinder sets Z(x) form a basis
for the topology on A* with respect to which M is a Borel measure, it follows that
the span of 87 is dense in L2(A®°, M) as claimed. O

Since the span of the functions in $” is dense in L?>(A >, M), we will show how
to decompose span S’ as an orthogonal direct sum,

o0
Span s/ = Voa @ @VV]JA,
j=0
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where V, o will be equal to the subspace spanned by the functions {®, : v € A%},
We then will construct V\/JJ  foreach j > 1 from the functions in W({. A and (some of)

the operators S discussed in Section 3 of [20]. The construction of W({, A generalizes
that given in Section 4 of [20], which in turn was similar to that given in Section 3
of [41] for the case of a directed graph.

We recall from [20] that the functions {®, : v € A°} form an orthogonal set in
L*(A®, M), whose span includes those functions that are constant on A:

[ 0,0, dM = §,,M(Z(v)) = §,,.x",
AOC

and

Y e,m=1

veEAD

Thus, the set {—=0, : v € A%} is an orthonormal set in S/. We define
Vi

1

To construct WY, , let v € A° be arbitrary. Let
0,A Y

O, :ve A’

Vo.a 1= span{

Di ={AeA:dA) =Jand r(A) = v},

and write d’ for |D| (note that by our hypothesis that A is a finite k-graph we have
d) < o0).
Define an inner product on C% by

(T.0) = Y vrwap(A) Tl (23)
€D
and let {c’"’”}ff;ll be an orthonormal basis for the orthogonal complement of
(1,...,1) € C% with respect to this inner product. Let ™ be the unique vector
of norm one with respect to this inner product with (equal) positive entries that is a
multiple of (1,...,1) € C%. Thus, {¢"*}*_, is an orthonormal basis for C% .
We explain the importance of (1,...,1) € C% further. We index the A’s in D{) :

D‘z{ = {)"I»AZ""Adﬂ}'

We need to stress here that

d
> 0, =0,
j=1
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In this way, we have identified ®, with (1,1,---,1) € C . (When we do
this, we identify ®,, with (1,0,0,---,0), ®,, with (0,1,0,---,0), and @)Adj with

0,0,0,---,1) € C.)
Now, for each pair (m, v) with 0 <m < d’/ — 1 and v a vertex in A°, define

fm,v — Z CT"U®A.

AED)

Note that by our definition of the measure M on A®°, since for 1 <m < dﬂ — 1, the

vectors ¢V are orthogonal to (1, ..., 1) in the inner product (23), we have
/ [t dM = cK””M(Z()L))
A A€D)
— Zcmvp(A)( =1 seeny x(/\)
AED)
=0

for each (m, v) with m > 1. On the other hand, if m = 0, it is easy to see that
-y @,
AreD]
is a constant multiple of ®,, since cgv = cl/v forA, M € D/, and ZAGDJ 0, =
®,. Moreover, the arguments of Lemma 5.1 tell us that ® @,V = 8 v0O, for any

A A with d(A) = d(A') = (i, ....jx). Consequently, if A € Di,)t’ € D/, for
v # v/, we have ®,®),, = 0. It follows that

AOO

AGD{

= Su,u’gm,m/

since the vectors {¢"-U} form an orthonormal set with respect to the inner prod-
uct (23). Thus, the functions {f”*¥} are an orthonormal set in L?>(A >, M). We define

W&A =span{f™’ v e A% 1l <m<d —1}.

Note that V) 4 is orthogonal to W({. A- To see this, let g € Vo be arbitrary, so
8= ,en0 8O, with g, € C for all v. Then
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[ s = Y brue, 3 & M@0

veVy AeDﬁ’

=0,

since ZAGD% "M (Z(L)) = 0 for all fixed v, and 1 < m < dJ — 1. Thus, g is
orthogonal to every basis element /™ of Wy , .

The basis {f™" : v € A1 <m< di — 1} for W({,A generalizes the analogue
for k-graphs of the graph wavelets of [41], as described in Section 4 of [20]. As the
following Theorem shows, by shifting these functions using the operators

{S, : d(X) = nJ for some n € N},
we obtain an orthonormal basis for L2(A®, M). Thus, each J € (Z1)* gives

a different family of k-graph wavelets associated to the representation of C*(A)
described in Theorem 3.5 of [20].

Theorem 5.2 (Compare to Theorem 4.2 of [20]) Let A be a strongly connected
finite k-graph and fix J € (Z7)*. For each fixed j € Nt and v € A°, let

Cl,={AeA:s() =v.dQA) =jJ},

and let S, be the operator on L*>(A®°, M) described in Theorem 3.5 of [20]; for
§ e LX(A®. M),

$HE(@) = 0, (0)p(A)*D2E (0P (x)).
Then
Sif™:veA’ rec,1<m=<d -1}

v

. . J J . .
is an orthonormal set. Moreover, if A € Gy we G, for0 <i<j, wehave
/ Sf™US v dM = 0 for 1 <m,m’ < a —1.
AOO

It follows that defining

W/, =span{Sf™" v e A% 1 e

j J.v?limfdi_l}y

for j > 1, we obtain an orthonormal decomposition

o0
L*(A®,M) =5pan &/ =V ® @VVJJA

j=0
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Proof We first observe that if s(A) = v, then
S =) At p(h) ey,

neD]

because the Radon-Nikodym derivatives ®,, are constant on Z(s(A)) for each A €
A, thanks to Proposition 3.4 of [20]. In particular, if d(A) = 0, then S, ™" = f™.
Thus, if d(A) = d(A') = (j-j1,....JJji), the factorization property and the fact that
dAp) =dAwW) =G+ 1) ji,...,(G+ 1) -ji) forevery u € Dim,u' € Di()&)
implies that

©1u Oy = 8 w8,y forall u € DYy, ' € D).

In particular, S;f™S,.,f™*" = 0 unless A = A’ (and hence v = v’). Moreover,

[ SIS = Y oy M)

;/,EDJ

= D e p(Ay

WED!

= 8m,m’ s

by the definition of the vectors ", since d(i) = (ji. )2, . ... ji) foreach pu € D’.

Now, suppose A € Cy . Observe that Spf™"f""*" is nonzero only when v’ =
r(1), and also that

(SJ”I'”)(x)]W(x) — Z szfvp(A)d(l)/Z(aAM(x) Z W@M/(x).

neD] Web,

Note that @, ()0, (x) # 0if x = Ay = p'y for some y,y’ € A, and A € C{
implies d(A) = J = d(u’). So the factorization property implies that 4’ = A, and
hence we obtain

/ ST M = Y G () P MZ ()
ACO

HEDY

_ o (A)—d(l)/z Z Cmvp(A) d(u) S(#)
HED]

=0.

Thus, W , is orthogonal to WY , .
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In more generality, suppose that A € 7,1 € C/,,, j > i > 1. We observe that

Saf™ Sy f™ V" is nonzero only when A = A/v with v € ij so we have

Sf™USp = S (Suf ™) Safm

Consequently,
/ Saf™" Syef " dM = / Sy (Suf ™) Sy f " dM
A A
- / (Suf™)S Suf "V dM
AOO
= [ s am
AOO

= 3 e p(AY O Mz (o)
neDy

_ C:,:,l/_v/p(A)—d(v)/Z Z CZI,U'O(A)—d(M)x:QH)
nen]

=0.

Thus, the sets VV/J  are mutually orthogonal as claimed.
We now need to show that L2(A®, M) = VoA ® @;0 VVJJ A~ We will do this by
showing that

o0
§" € Vor & P Wi
j=0

We first note thatif A € A and d(A) = (j1,j2,--- ,Jji), then ©) € Vp o @@j’io VVJJA
Let 7(A) = v, so that A € D. Write A = A; for some specific i € {1,2,---,d’}.
We identify ©,, with (0,0, ..., I(in i, spot),0,0,...,0) =¢; € Cér

As we observed above, identifying ©,, with ¢; induces an isomorphism between
the (finite-dimensional) Hilbert spaces

span{©,, Oy, -++, Oy, } C L2 (A™, M)
and C% equipped with the inner product (23). By using this isomorphism, we can

. . . d&! . .
identify the function f™" = 37.*, c}""®;,, with the vector (ch_’k)i € C%. This
identification allows us to write
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-1

0y, = C(Oy, CO’U)®U + Z (@, S

m=1

for some C € C, using the orthonormality of the basis {¢"” }3’:2—01_ In other words,
Oy, € Vo ® Wy, It follows that ©, € Voo @ Wy, forall A € A such that

d(A) = (1. j2. o Ji)-
We now assume that for 1 <j <m, if A € A and d(1) = jJ, then for any vertex
we A,

m—1
$1(Oy) € Vor @ P W/,: and (24)
j=0

m—1
Oy €Vop @ @VV]JA (25)

=0

We have already established the base case m = 1.
Let us use induction to show thatif Ay € A and d(A¢) = (m + 1)J, then

©2 € Vor & P W/r. and $3,(©,) €Vor & PW/y
j=0 j=0

Fix a vertex w € A°. Let us calculate, using our standard formulas for our
representation of C*(A) on L>(A%°, M),

$10(0w(x)) = B3,(0)(p(A)"4/2)0,, (7™ (x)).
We first note: for this to have any chance of being nonzero, we need x € Z(4¢) and
a®) (x) must be in Z(w). In other words, s(A9) = w. So we obtain: S;,(®,,) is a
constant multiple of ®,, if w = s(¢), and S;,(0,,) = 0if w # s(Ao).

So, assuming that w = s(A¢), we have that S,,(®,,) is a constant multiple of
Xz = ©3,. Using the factorization property, now write Ao = A4, with s(A,) =
s(Ag) = wand

dAr) = Grojase o)
and
dAy) = (m-ji,m-ja, -+ ,m-ji).
Recall

S = Sur = SuSi,-
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By our induction hypothesis,

m—1
51,(04) € Von & W/,
j=0
Therefore we can write
m—1
Sl\z(@w) = 80 + Zh’
j=0

where gy € Voo and h; € )/VJJA for0 <j<m—1.So,
m—1 m—1
$10(Oy) = Sy, (80 + Zhj) = S),(80) + ) Su, (k).

J=0 j=0

We have proved directly that S, (go) € Vo © Wo.a, and it follows from the
definition of W/, that

Sai(h) € Wiy for 0<j<m—1.
It follows that
$10(0.) € Vor & P W/,
j=0
Since Sy, (®s1y)) is a constant multiple of ®,,, we have that
Oy, € Vor @ @Wf,\
J=0
as desired. It follows that the spanning set
o0
5" CVor @ @W/A
j=0

and thus by Lemma 5.1,

o0
L*(A®, M) = Vya EB@VVJJA
j=0
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We now partially answer a question posed by A. Sims, who asked about the
importance of the shape (j,, . . . ,J) of the “cubical wavelets” introduced in [20]. As
we have now shown, we can construct wavelets of any non-trivial rectangular shape,
not only cubes. Sims also asked if there was a relationship between the dimension
of the spaces VVJJ » and the fixed rectangular shape J = (ji, ..., ji). The answer is

“Not necessarily.” We recall that for v € A°,
D) ={XeA:dQ) = (ji,jo, - .jx) and r(1) = v},

and d) = |Dj|. The dimension of the wavelet space W/, is equal to

> (@ -.

veAD
Since each @/ depends on both v € Ag and (jy, 2, ,ji) € [NT], the dimensions
obviously could change with different choices of degrees. On the other hand, if you
take a degree that is £ times another degree (ji,J2,-- ,jix) , it would be interesting

to check whether or not the wavelet space of level 0 corresponding to £J, WS{A, is
equal to

—1
D wWis-

j=0

We also observe that, since j; > 1 V i, the factorization property implies that

every A € Di is associated to A € D(Ul’1 """ 1), namely, A = Aqv. In other words,
A1 = A(0,(1,...,1)) is the initial segment of A of shape (1,...,1). Thus, d/ >

.........

VU, = Y 0, eCh

vipuveD)

C%; then we can complete this orthonormal set to form the orthonormal basis for
C% that we use to construct the wavelet functions fmr.

In other words, whenever J > (1, 1, ..., 1), not only can we form a wavelet basis
for L*(A*°, M) by starting with paths of shape J, but we can use the data of the
(1,..., 1)-wavelets as the foundation for the J-shape wavelets.

Example 5.3 Here we consider the example introduced in Example 4.1 (and
denoted by Aj there) and compute some wavelets in this case. The corresponding
2-colored graph is given as the following;

F @vf/:\’ e
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and our factorization rules are:
Jfre =efi and fie = ef

By these factorization rules, we see that any particular infinite path in x € A® can
be chosen to be of the form

efilefize izt

Setting “color 1” to be red and dashed, and “color 2” to be blue and solid, the two
incidence matrices of this 2-graph are 1 x 1 and we have (A1) = (1), (A2) = (2).
Therefore the Perron Frobenius-measure on cylinder sets is:

M(Z(e)) =1, M(Z(ef})) = 1/2, M(Z(efie)) = 1/2, M(Z(efief;)) = 1/4, etc,

where i,j € {1,2}.
Using Theorem 3.5 of [20], we construct isometries S., S;, and Sp on
L*(A>®, M) satisfying

S;Se = SpSp = SpSp =1,
SeS; = SpSh + SpSp, = 1.
and finally
SeSpi = SpSe and SeSp = S Se.

Fix §¢ € L*(A®°,M) and x = ef, ef,,efs, -+, where i; € {1,2}. Note that our
factorization rules imply that x = f; yiefi,+1€fi;+1 ..., where the addition in the
subscript of f is taken modulo 2.

We define

S.(E)(x) = xz(0 012228 (01 0%) = E(efyi11efisr16fir1 )
Sp(E) @) = xz¢) 1772226 (0O Vx) = 2" y740) O (efiyrefiyr )
Sp(E) () = Xz (W)1°2225(0 V) = 22 25 WE (efir1€fiz )

We further calculate:
SEE®) = xzay@17122"2¢ (ex) = E(efy r1€fir16fiytr )
SEE®) = 2776 (fix) = 27 2E(ehefy riefuriefir o)
SEE®) = 2776 (h) = 27 2E(efiefy riefiiefiir o).

One can easily verify that the partial isometries satisfy the appropriate commu-
tation relations.
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We now construct wavelets for this example, using the method of Theorem 5.2.
Recall M is the Perron-Frobenius measure on A°°, and define ¢ to be the constant
function 1 on A®°. Take

(jl’jZ) = (1’ 1),

and let

V= Xzeh) — Xz(ep)-

By using the main theorem of this section or direct calculation we verify that

U i) : 2 e AdQ) = ()}

J=0

is an orthonormal basis for L>(A®°, M).

Example 5.4 In this example we describe how to construct the wavelets of this
section for the Ledrappier 2-graph introduced in [43].
The skeleton of this 2-graph is

If we define “color 1” to be blue and solid, and “color 2” red and dashed, the
adjacency matrices are

1001 1010
A = 1001 Ay = 1010
0110 0101
0110 0101

Thus, there is a unique choice of factorization rules, since for each blue-red path
(of length 2) between vertices v and w, there is exactly one red-blue path of length
2 between v and w.
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For this 2-graph, one can check that p(A;) = p(A;) = 2 and that x* =
(1, 1,1,1). Let J = (1,2); then

Dil = {acc, ace, aej, aeh, dhm, dho, djb, dji}.

Similarly, dii = § for all i, and the inner product (19) is given by

8

- o 1 _

(x.y) = 3 ijyj~
j=1

Thus, for each i, an orthonormal basis {¢™" }ZF , for the orthogonal complement
of T € C% is given by

" = (4,-4,0,0,0,0,0,0)  ¢*" =(0,0,4,—4,0,0,0,0)

' =(0,0,0,0,4,-4,0,0) " =(0,0,0,0,0,0,4,—4)

AV =4/2(2,2,-2,-2,0,0,0,0) & =+/2(0,0,0,0,2,2,-2,-2)
M =(2,2,2,2,-2,-2,-2,-2).

We will not list all of the 28 functions in W, ; associated to the vectors {¢"™"};
however, we observe that

fl,vl = 40,00 — 40 400 f4*vl = 4®djb — 4®dji;
f5,v1 = 2\/§(®acc + Ouce — Open — ®a€j)'

6 Traffic Analysis Wavelets on £2(A°) for a Finite Strongly
Connected k-Graph A, and Wavelets from Spectral Graph
Theory

Crovella and Kolaczyk argue in [11] that many crucial problems facing network
engineers can profitably be approached using wavelets that reflect the structure of
the underlying graph. They give axioms that such graph wavelets must satisfy and
provide some examples; Marcolli and Paolucci use semibranching function systems
to construct another example of graph wavelets in [41].

We begin this section by showing how to construct, from a A-semibranching
function system, a family of wavelets on a higher-rank graph A which meets the
specifications given in Section IV.A of [11]. In other words, our wavelets g’ of
Section 6.1 are orthonormal functions supported on the vertices A° of the k-graph
A, which have finite support and zero integral. We thus hope that these wavelets will
be of use for spatial traffic analysis on k-graphs, or, more generally, on networks
with k different types of links.
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In a complementary perspective to the graph wavelets discussed in [11], Ham-
mond, Vandergheynst, and Gribonval use the graph Laplacian in [22] to construct
wavelets on graphs. We show in Section 6.2 how to extend their construction to
higher-rank graphs, and we compare the wavelets thus constructed with the wavelets
from Section 5 and Section 6.1.

6.1 Wavelets for Spatial Traffic Analysis

Suppose that A is a finite strongly connected k-graph. Fix v € A° once and for all;
for every vertex w € A, fix a “preferred path” A,, € vAw. We will use the Perron-
Frobenius eigenvector x* of A, and the vector p(A) € (0, co)* of eigenvalues of the
adjacency matrices A;, to construct our traffic analysis wavelets.

For each J € N¥, let
Dy ={AevA :d(d) =Jand A = A,3)}.
Observe that D; might be empty. We will assume that we can (and have) chosen our
preferred paths A,, so that, for at least one J € N¥, |D;| > 2.
If |D;| > 2, define an inner product on C? by

(B.9) = Y Tawap(A) xly, (26)

A€EDy

and let {(cf{"l) AeD; }lf;‘l_ ! be an orthonormal basis for the orthogonal complement of

(1,...,1) € CP with respect to this inner product.
Define a measure » on A° by a variation on counting measure: if £ C A°, set

BE) =Y p(A) ™ Mxl.

weE

For each (m,J) with J € N¥, |Dy| > 1, and m < |Dy| — 1, define g"/ € L*>(A°, D)
by

magon ) 00 dAy) #J
") = % A d(Ay) =T

m,J

Since the vectors ¢ are orthogonal to (1, ..., 1) in the inner product (26), we have

mJ g~ m,J ~
[ ds = 3 g i)

weA®
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= Z i p(A)x)

wid, €Dy

=0

for each (m, J). Moreover, if g™/ (w)g"'/' (w) # 0, we must have d(A,,) = J = J';
it follows that

YN [ It Jom'J —J A
[T = Y )
A

wil, €Dy

= 870/ 8mm

since the vectors {¢™’} form an orthonormal set with respect to the inner prod-
uct (26).

In other words, {g"/},,.; is an orthonormal set in L?(A°, 7). However, we observe
that the wavelets g™/ will not span L?(A°, ¥); at most, we will have | A°| — 1 vectors
g™, which occurs when all the preferred paths A,, are in the same D;. In this case,
{g"™'},, U {f} is an orthonormal basis for L?>(A°, ), where f is the constant function

1
=—— = (p(AN)HV2.
f(w) 500 (o(A)")

As an example, we consider the Ledrappier 2-graph of Example 5.4. Define v :=
vy and observe that every vertex v; admits two paths A; € vA3Dy;, so we can
choose one of these for our “preferred paths” A,, := A;. In this case, g™/ = 0
unless J = (1, 2); if we set

D = (4,-4,0,0), 1D =(0,0,4,-4), A1 =12(2,2,-2,-2),

then the vectors {¢”(1:2},, form an orthonormal basis for the orthogonal comple-
ment of (1, 1, 1, 1) with respect to the inner product

4 4

- . ANl 1 —

(X, )’) = leiylip(/\)( b 2)x{)\i = ﬁ Zx/\iy/\i'
i=1

i=1

Thus, our wavelets g”(1-?) are given by

4, w = V1 4, w = V3
g 00 =1 4 w=rv g = 1§ —4w =,
0, else. 0, else.

2\/1 W = V] Or Uy

3.(1.2) _
w) =
& ) —2«/5, W = V3 Or V4.
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Since |A°| = 4 and all of the functions g”(? are orthogonal (in L?(A°, 1)) to each
other and to the constant function f(w) = (p(A)12)/2 = 2/2, the set {g"()},,U
{f} is an orthonormal basis for L2(A°, D).

6.2 Wavelets on £*(A") Coming from Spectral Graph Theory

In this section we extend the definition of the graph Laplacian given by Hammond,
Vandergheynst, and Gribonval in [22] to define a Laplacian for higher-rank graphs.
For a graph (or k-graph) on N vertices, the (higher-rank) graph Laplacian is an N x N
positive definite matrix. While the construction of the higher-rank graph Laplacian,
given in Definition 6.1 below, differs slightly from that of the graph Laplacian of
[22], the two matrices share many of the same structural properties. Consequently,
the majority of the results from [22] apply to the higher-rank graph Laplacian as
well, with nearly verbatim proofs. Thus, we include very few proofs in this section,
instead referring the reader to [22].

There are many definitions of the graph Laplacian in the literature (cf. [2, 10, 31]);
using the graph Laplacian to construct wavelets is also common.

Our definition of the k-graph Laplacian more closely parallels those of [2, 10]
than that of [22], because the latter requires that the vertex matrix of the graph be
symmetric. While this is always the case for an undirected graph, it is rarely the case
for a k-graph, so we have chosen to define the k-graph Laplacian following the lines
indicated in [2, 10]. We observe that in the case when the vertex matrices are indeed
symmetric, the definitions in [22] and [2] of the graph Laplacian coincide.

Definition 6.1 (see [2, Definition 4.2], [10]) Let A be a finite k-graph with N =
|A°| vertices. For each 1 <5 < k, let Nj = |A%| be the number of edges of color s.

..........

+1 if r(ej) # s(e;) and r(ej) = v;
m; ;=4 —1if r(e;) # s(e;) and s(ej) = v;
0 otherwise

We then define the Laplacian A, of A to be

k
Ay =) MM].

s=1

Remark 6.2 When k = 1 and both definitions apply, Proposition 4.8 of [2] tells us
that Definition 6.1 agrees with the definition of the graph Laplacian given in [22].

Furthermore, each summand MSMST is a positive definite symmetric matrix; it
follows (cf. [9]) that A, has an orthonormal basis of eigenvectors and that the
eigenvalues of A, are all nonnegative.
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Hammond, Vandergheynst, and Gribonval point out in [22] that the graph
wavelets they describe can be viewed as arising from the graph Laplacian in
the same way that continuous wavelets arise from the one-dimensional Laplacian
operator d?/dx?. By slightly modifying the normalizations and definitions to make
them consistent with our previous formulas for the Fourier transform, we obtain that
the set of functions {¢*™®* : w € R} used to define the Fourier transform on R are
also eigenfunctions of the Laplacian d”/dx?; thus, one could interpret the inverse
Fourier transform

10 = [ Fwremdo

as providing the coefficients of f with respect to the eigenfunctions of the Laplacian.
We define the higher-rank graph Fourier transform analogously.

To be precise, let {;}_, be a basis of eigenvectors for A, .

Henceforth, we assume that we have ordered the eigenvalues A,..., Ay such
that

AL <A <Az < Ay

The higher-rank graph Fourier transform of a functionf € C (A?) is the function
f € C(A") given by

No

FO) = (Be.f) =D Be(mf ().

n=1

The motivation for the following definition comes from the calculations in
Section 5.2 of [22]. Specific choices for wavelet kernels, and motivations for these
choices, can be found in Section 8 of the same article.

Definition 6.3 Let A be a finite k-graph. A wavelet kernel is a function g : R — R
such that

1. gis (M + 1)-times continuously differentiable for some M € N, and g™ (0) =:
C#0;

2. On a neighborhood of 0, g is “well approximated” (as in Lemma 5.4 of [22]) by
cxM, where ¢ = C/M!;

3. LW gy = ¢, < o0
Given a wavelet kernel g, the k-graph wavelet operator 7, = g(A,) acts on

f € C(A%) by

N

N
T,()(m) =Y gA)f OFe(m) = Y g(he)v(n)b(m)f ().

=1 L,n=1



82 C. Farsi et al.

For any t € R we also have a time scaling T; given by

N
Ti(f) = g(AN(f) =m = Y g(tA)f (OB (m).

(=1

For each k-graph wavelet operator T, and each t € R we obtain a family
{Yernh<n<y of higher-rank graph wavelets: If §, € C(A") is the indicator
function at the nth vertex of A,

N
Veun = Ti8y =m > Y g(the) vy (m) e (m).
(=1

Proposition 6.4 (/22, Lemma 5.1]) Suppose g : R — R is a wavelet kernel and
g(0) = 0. Then every function f € C(A°) can be reconstructed from {Wg s n}rn:

_ 1 J o (‘// ,t,nsf)
fm i [ty

S n=1
Proof Recall that

N

N
Weinf) =D Vean@F @) = D (thn) V() V() (€)
=1

L,m=1
since the eigenvectors vy, are real-valued. Thus,

N

N
D Wern ) Vern®) = Y FO(EAR)G(EA}) 05 (£) U ()T () (k)

n=1 JjLmn=1

N
= Y FO-(EAN) V(005 (k)

,m=1

since the orthonormality of the eigenvectors {v;,,},, implies that

(U 5) = ) () Tj(n) = 8.



Wavelets and Graph C*-Algebras 83

It follows that

al N
OO (wgl,nxf) _ - - e g(l‘/\m)2
[ e = 3 e [ S

{,m=1

R 00 Am 2
= i [

e’} 2
= i [ au = Y imiwc.

u

The symmetry of the Fourier transform implies that f(k) = ), f (m) U, (k), which
finishes the proof. O

Our hypothesis that the wavelet kernel g be well approximated by cx" for some
M € N ensures that the wavelet v, , is nearly zero on vertices more than M steps
away from n. In other words, the wavelets v/, , , are localized near the vertex n. The
proof of this result is identical to that given in [22] for the case k = 1.

Proposition 6.5 (/22, Theorem 5.5]) Ifd(m,n) > M, and if there exists Y € R such
that g™V (x)| is uniformly bounded for x € [0, Ay, then there exist constants
D, " such that for all t < min{?’, "'},

1pg.t,n(m) <Dt
[Wernl =

Example 6.6 We now construct spectral k-graph wavelets for the Ledrappier 2-
graph of Example 5.4. Ordering the edges alphabetically, and assigning “color 1" to
the blue, solid edges and “color 2” to the red, dashed edges, we obtain

01 0 0 000 —1 101 0 0 0 00
M1_0—11—11000 M, = 00-11-11 00
00 0 0—-101 0 100 0 1 —1-10
00 —-11 00-11 00010010
Thus,
Ap = MM + MoM]
2 -1 0 —1 2 —1-10 4 -2 —1-1
-1 4 —-1=2 N -1 4 -2-1| |[-28 -3-3
0 —1 2 —1 —-1-24 1| |-1-36 =2

—-1-2-14 0 -1-12 -1-3-26
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Computing the eigenvalues and eigenvectors (to two decimal places of accuracy),
we obtain

A1 =0,A, =5.17,A3 = 10.83, 14, = 8
and

0= (1,1,1,1), v =(—0.85,0.15,0.35,0.35),
U3 = (—.15,0.85,-0.35,—0.35), vs = (0,0, —0.71,0.71).

Then the wavelets ¥, , in £>(A°) are given by

4
Veun(m) =Y g(tAe)0e(n) v (m).

=1

As in [22], one possible wavelet kernel (with N = 2) is

X2, 0<x<l1
gr) =3 5+ 1lx—62+x, 1 <x<?2
4572, x>2

Observe that g(x) > 0V x> 0.

To distinguish these wavelets v, ,, from those of Section 6.1, we observe that
(for fixed ¢ € R) each of the four wavelets v, , is supported on all four vertices of
the Ledrappier 2-graph.
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Part XVIII
Image and Signal Processing

Harmonic analysis has always been among the most important tools of image and
signal processing. Despite all the recent developments in machine learning and
neural networks, this is still the case and well illustrated by the present chapter.

We begin this chapter with a beautiful application of harmonic spectral methods
to cancer research, as proposed by Mark Kon and Louise Raphael. In their paper,
they adapt novel machine learning methods to regularize noisy and incomplete
information. This is an important problem, studied widely in the area of supervised
learning. To obtain their major results, Kon and Raphael utilize two types of
techniques: local averaging of feature vectors on graphs, and support vector
regression. Results are stated in the form of four main theorems, which present
the pattern of bias-variance trade-off and the existence of a unique minimum for
the estimation error in the regularization parameter. The authors also analyze the
reconstruction accuracy for functions on graphs. They illustrate the strength of their
approach on a case study in cancer genetics, with the aim of obtaining a novel
prediction of cancer metastasis.

Robert S. Rand, Ronald G. Resmini, and David W. Allen present another
fundamental example of the importance of methods arising in the context of
harmonic analysis for applications in image and signal processing. In their paper,
they analyze the intimate mixing phenomenon, which is a non-linear combination
of endmember spectra. The traditional physics-based approach is augmented here by
the use of generalized kernel fully constrained least squares optimization problems.
The result of this approach is a novel algorithm which provides a way to adaptively
estimate the mixture model most appropriate to the degree of non-linearity occurring
at a given location in a given scene. The strength of this approach is validated with
a dedicated laboratory experiment on hypespectral microscope imagery data.

In the last paper in this chapter, David A. Schug, Glenn R. Easley, and Dianne
P. O’Leary present an important application of directional representations, such as
those arising in the context of curvelets and composite wavelets, to problems in
photogrammetry and tracking. In their work, they present a novel and promising
approach to solve these problems, based on the use of wavelet and shearlet inspired
edge detection algorithms for 3-dimensional imagery data formed. The edge
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detection is then employed in the tracking methodology proposed by the authors
and described in detail in this paper. The resulting techniques are well adapted to
particular applications involving rigid motions and flat backgrounds, and perform
well under such challenges as changing light conditions.



Precise State Tracking Using Three-Dimensional
Edge Detection

David A. Schug, Glenn R. Easley, and Dianne P. O’Leary

Abstract An important goal in applications such as photogrammetry is precise
kinematic state estimation (position, orientation, and velocity) of complex moving
objects, given a sequence of images. Currently, no method achieves the precision
and accuracy of manual tracking under difficult real-world conditions. In this work,
we describe a promising new direction of research that processes the 3D datacube
formed from the sequence of images and uses edge detectors to validate position
hypotheses. We propose a variety of new 3D edge/surface detectors, including
new variants of wavelet- and shearlet-based detectors and hybrid 3D detectors
that provide computational efficiency. The edge detectors tend to produce broad
edges, increasing the uncertainty in the state estimates. We overcome this limitation
by finding the best match of the edge image from the 3D data to edge images
derived from different state hypotheses. We demonstrate that our new 3D state
trackers outperform those that only use 2D information, even under the challenge of
changing lighting conditions.

Keywords State tracking ¢ Edge detection * Kinematic state estimation from
video ¢ Surface detectors * Wavelet edge detectors ¢ Shearlet edge detectors

1 Introduction

When cameras record a sequence of observations of an object moving in the field
of view, we can try to track that object precisely. Complex object motion and
complicated shape increase the difficulty of this type of tracking. Multiple target

D.A. Schug
NAWCAD, Patuxent River, MD, USA
e-mail: david.schug@navy.mil

G.R. Easley
MITRE, 7515 Colshire Drive, McLean, VA 22102, USA
e-mail: geasley @mitre.org

D.P. O’Leary (<)

Computer Science Department and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742, USA

e-mail: oleary @cs.umd.edu

© Springer International Publishing AG 2017 89
R. Balan et al. (eds.), Excursions in Harmonic Analysis, Volume 5,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-54711-4_4


mailto:david.schug@navy.mil
mailto:geasley@mitre.org
mailto:oleary@cs.umd.edu

90 D.A. Schug et al.

Fig. 1 Circular and
bowtie-shaped features on
objects to be tracked.

features on the object can be selected, as shown in Figure 1, in order to accurately
fit the geometry and represent motion through space. It is important to have enough
features to reliably represent the object and the motion, which means, for example,
additional features if the object has fins or sharp curves. Other factors, including
noise, clutter, and illumination variations, also make tracking difficult, since these
change image intensities in complicated ways. In addition, low contrast image
intensities make it difficult to discern an image feature from the background.

Very precise tracking is needed in photogrammetry, where the goal is to estimate
the three-dimensional rigid-body kinematics of objects. With precision, we are
concerned with a deviation from the target center that is relatively constant from
frame to frame. A nearly constant deviation is more precise. Estimation accuracy
will refer to the particular magnitude of deviation from a chosen standard. For real-
world data, the chosen standard will depend on how well a human can estimate the
image feature’s center point. Typical tolerances require the object state parameters
to be measurable to within one inch for Cartesian position and within one degree for
Euler rotations. Tracking in 2D image space must therefore be accurate to within
2 pixels on average. Tracking accuracy will also depend on the camera’s resolution
influenced by the distance and orientation of the image feature with respect to the
camera’s field of view, and the camera’s specific performance characteristics.

1.1 Previous Work in Tracking

Most methods that aim to estimate the kinematic state are feature-based searches
that minimize a cost function that generates the sum of squared distances between
chosen projected points and their corresponding observations from a particular
image sequence (see [24] for more details). In practice, a two-dimensional feature
tracker such as the Kanade-Lucas tracker [16] or other correlation based methods
are used to collect observations while maintaining required correspondences with
the chosen locations on the three-dimensional object.
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Good techniques for general tracking include those provided by Lee et al. [14]
and subspace methods for face tracking such as those in [1, 4] and [28]. Video-based
tracking methods such as those provided in [11, 32] and [15] are also effective.
Despite substantial progress in tracking algorithms, however, no single method has
achieved the precision of manual tracking in photogrammetry. Most approaches to
this particular kind of tracking problem have made use of edge detectors. Meaning-
ful changes in edges are the fundamental criteria for distinguishing image features
from the background. This is because the tracker can use the boundary of the feature
to precisely register its orientation and position. At first glance, this may seem to
be a complete solution to this tracking problem, but edge detectors can produce
an estimated edge that is nonuniform in thickness, making it difficult to estimate
critical attributes of the feature, such as its center and its velocity. In this work we
use the edge detector to validate position estimates rather than to infer them.

1.2 Previous Work in Edge Detection

Traditional edge detection is performed with a single image I recorded at positions
P ={Gj,i =1,....,m, j = 1,...,n}. Given a threshold & > 0, the output of
the edge detection process is a set of edge locations P € P and an edge image Ig
defined by

.. 1 (i,)) € Pg,
Ig(i,j) = 1
EED =00 (i) e PP M

Mathematically, we define
Pp={peP:|VIp)| =h}. )

The image gradient VI(p) cannot be computed exactly, and edge detection algo-
rithms differ in how they approximate this quantity.

There are many approaches to edge detection, including one based on computing
eigenvalues of an autocovariance matrix to discover when the power spectrum of a
function is slowly decreasing [5]. Perhaps the most widely used 2D edge detector
is that due to Canny [3]. It is based on approximating the image gradient through
convolution of the image with a filter formed from the derivative of a Gaussian. The
algorithm depends on a single parameter o, the standard deviation of the Gaussian

0. (x,y) = exp (—(* + %)/ (267)), 3)

which effectively sets the scale for the smoothing of the image. The Canny algorithm
is quite fast and is effective for simple shapes if o, is tuned to the image and the noise
conditions, but this is not always possible. Figure 2 shows the results of applying
MATLAB’s edge algorithm using the Canny edge detector with various choices of



92

True Image

Canny, sigma = 2.0

N /“—L

s gl 7 ¢\ ,-J-*R

S TS S
AW R I
£

Noisy Image

Canny, sigma = 4.0

A=A,

/
/

/ ~
- "\__,_;
’ ':{LJ i/J :\wl;
NS Y s

/I ‘Il l:‘
Y A& AT

D.A. Schug et al.

Canny: default

R AN e A
e a5
R e R
OSE ST
R NCAE =
?.\C‘WM;& L

{\
|
O
e {
‘-\_\_-;
| N

Fig. 2 Results of MATLAB’s edge algorithm using the Canny edge detector with various choices
of sigma. The pixel values in the true image are in the range [0, 1], and the standard deviation of

the added noise is 0.4.

o, to the noisy image shown in the top center. Smoothing at a single scale, i.e., with
a single value of o, makes it difficult to balance noise suppression with feature loss.

A further complication comes from choosing the correct thresholds that separate
image features from the background or noise. Often one must manually adjust
parameters until the method produces helpful results. The end result can be
acceptable, but the level of human intervention is not satisfactory for automatic

tracking applications.

A 2D wavelet edge detector [18, 19] overcomes the single-scale smoothing limi-
tation of the Canny algorithm. The wavelet transform [29] provides a representation
of an image using a set of basis functions that resolve detail at multiple scales
and thus can reveal edge information at various levels of smoothing. Very efficient
numerical implementations of the wavelet transform [17] make it practical. It can be
much more effective than the Canny algorithm for complicated shapes, but because
the wavelets are isotropic, it still has difficulty distinguishing close edges, crossing
edges, and sharp changes in edge curvature. To resolve such cases, basis functions
that have a sharp directional orientation are needed. One solution is to replace the
scalable collection of isotropic Gaussian filters g,, used in the Canny algorithm with
a family of steerable and scalable anisotropic Gaussian filters [8]

1/2 —1/2

Gaywo(x1,32) = a; " a; "“Ro G(a; 'x1,a5 'x2),
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where aj,a; > 0, Ry is the rotation matrix for angle 6, and G is a Gaussian
basis function parametrized by a; 'x; and a; 'x,. The design and implementation of
such filters is computationally involved, and the justification is essentially intuitive,
lacking theory to prescribe parameters that best capture edges.

The shearlet transform provides this theory [13]. It provides a sparse directional
representation [13, 30] key to obtaining a good edge detector. It is an invertible
transform that relies on a set of analyzing functions (directionally oriented filters)
that partition the frequency space at different scales and orientations. Knowing from
mathematical analysis how the magnitudes at the edges change in this representation
with respect to scale and shear (see [12] and [10]), a method for detecting edges
and their orientation was given in [30]. The result is an improved capability to
successfully detect subtle intensity differences and complicated object shapes.

All of these 2D methods have 3D counterparts that can be used for movies,
sequences of images. Monga and Deriche [21] developed one of the first 3D Canny
detectors, using separable Gaussians for smoothing. They applied their method to
magnetic resonance and echographic volumetric data. Monga and Benayoun [20]
extended the state of the art mathematically by using partial derivatives to treat the
3D image as a hypersurface in 4-dimensional space. They computed the curvatures
at designated edge points using the partial derivatives of the image but did not obtain
directional information. Brejl and Sonka [2] designed a directional 3D edge detector.
Weiping and Hauzhong [27] used 3D wavelets to detect cerebral vessels in magnetic
resonance angiograms (MRA). In [25] and [23], we proposed using the 3D shearlet
transform for edge/surface detection and demonstrated its advantages over other
methods in distinguishing high-curvature edges in low SNR conditions. It should be
pointed out that this early 3D shearlet-based edge detector [25] is different from the
one proposed in this work, which makes more explicit use of the analytic properties
of the shearlet transform at surfaces and edges.

We believe that edge detection is much improved by including the time dimen-
sion, so we use 3D detectors. Previously, 3D detectors for tracking have been investi-
gated in [6] and [31]. However, these are only for point features and are not suitable
for our purpose. Another breakthrough in our approach is to make use of robust
sparse and directional filtering concepts such as those provided in [6, 24], and [31].

1.3 Outline and Contributions

In Section 2, we discuss the tracking problem and the data. We then make several
contributions.

» Section 3 focusses on new 3D edge detectors.

— We develop new variants of 3D wavelet- and shearlet-based edge detection
algorithms. We present a new 3D shearlet transform algorithm that is better
suited to edge/surface detection than the version developed in [22]. This new
algorithm exploits the theory provided in [9] and contains extensions as well



94 D.A. Schug et al.

as important improvements over the algorithms developed in [30] for the
purpose of feature tracking.

— With efficiency in mind, we devise inexpensive but effective hybrids, combin-
ing results of 2D wavelet, shearlet, or Canny edge detectors on x —y, y — ¢,
and x — 7 slices, where x and y are spacial dimensions and 7 denotes time.

— We demonstrate the effectiveness of these edge detection algorithms, but show
that they are not adequate for precise tracking.

* In Section 4 we propose a totally new approach to tracking, using edge detectors
to validate rather than generate state hypotheses, thus avoiding the uncertainty
imposed by broad estimates of edges, and in Section 5 we demonstrate the
effectiveness of our tracking ideas.

We draw conclusions in Section 6.

The edge detection algorithms described here were used by us in [26]. MATLAB
software implementing these algorithms is available at http://www.cs.umd.edu/
users/oleary/software.

2 The Data

The tracking problem starts with an observed image sequence (movie) that captures
2D snapshot information about 3D objects moving in the camera’s field of view. We
present two test problems that illustrate some of the difficulties in tracking a single
feature from Figure 1. Tracking of multiple features can be done in parallel.

For our first test problem, a camera records a movie of a 3D ball of radius r
whose position in the sequence of 2D images describes a circular orbit at radius R
about the center pixel. Each image frame in the movie looks like a white disk on a
black background, moved via translation, with the center (x;, y;) of the disk at time
1;, relative to the center of the image, given by

x; = |[Rcos(a(t))], 4)
yj = [Rsin(a(t)]. )

where a(#)) is the angle defining the position of the object at time ¢.
Three frames from the resulting orbiting ball movie are shown in Figure 3. We
chose the diameter of the disk to be an odd number of pixels so that in generating

the data we can center it on the nearest pixel. The movie Iis stored in an m x m x £
array, with m> = 1572 pixels per frame and £ = 30 frames. We generate the frames

Fig. 3 Three frames from the
orbiting ball movie. - n n
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Fig. 4 Patch containing the disk (left) is inserted into a black background to create a noise-free

frame of the movie (right).
..

Fig. 5 Three frames from an orbiting bow-tie movie with rotation and illumination changes.

P4

Fig. 6 Patches containing a bow-tie (left), a rotated bow-tie (middle), and a shaded rotated bow-tie
(right).

of the movie by inserting a (2r 4+ 3) x (2r + 3) patch of pixels containing the disk
into a black (zero) frame of size m x m, as shown in Figure 4.

Our second test problem, with sample frames shown in Figure 5, is generated in
a similar way, but uses a bow-tie patch, shown in Figure 6 (left), that orbits about
the center of the frame but also rotates about its own center point, as illustrated
in Figure 6 (middle). To perform rotation, we remap each pixel in the patch to its
rotated position using bilinear interpolation. We also use this example to investigate
changes in illumination. This is accomplished by generating a row vector g of
increasing values in the range [0.05, 2] with dimension equal to that of the patch.
The illumination matrix is then defined as L. = g’ g. The shaded object is obtained
by elementwise multiplication of the patch P by L:

S=P. xL. 6)

This is performed after rotation and produces a result like that shown on the right in
Figure 6.

We assume that we know the position of the object in the first frame of the
movie. To study the robustness of our algorithms, we add white noise (independent
normally distributed samples for each pixel) to the frames. We use our methods to
estimate the position of the center of the ball or bow-tie and, for the bow-tie, its
rotation angle, as a function of time. It is useful (but more difficult) to estimate the
velocity of the object, too. In the next section we introduce 3D edge detectors that
provide an important tool in making these estimates.
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3 3D Edge Detectors

In this section we provide a brief description of how the 3D Canny, 3D wavelet, new
3D shearlet, and the new hybrid edge detectors identify edges.

The edge estimates produced by any of these algorithms can be refined by two
well-known methods discussed in standard texts. Nonmaximal suppression labels
a voxel as an element of the edge surface if its estimated gradient magnitude
is at least & and if the magnitude is greater than at least one of its neighboring
pairs. This can be applied in 3D or, to save time, in 2D, comparing each pixel
to its neighboring pairs in the compass directions N-S, E-W, NE-SW, and NW-
SE. Hysteresis thresholding identifies a voxel as a strong edge voxel if its gradient
magnitude is greater than a threshold 4. It is also identified as an edge voxel if it
is connected to a strong edge and its gradient magnitude is larger than a threshold
hio, and larger than the magnitude of each of its two neighbors in at least one of the
compass directions. This, too, can be applied in 2D or 3D.

3.1 3D Canny Edge Detection

The 3D Canny algorithm (Algorithm 1) makes use of the 3D Gaussian low pass
filter

g’ = exp (—(* +y* + )/ (20%)), @)

where o is the standard deviation for the Gaussian. After convolution with this filter,
it then uses convolution with a discretization of the partial derivatives dg,", dg;",
and dg?,? to estimate derivatives of the smoothed image sequence. It operates at a
single scale, determined by the choice of o, and produces estimates of the derivatives

at the voxel centers.

Algorithm 1 The 3D Canny Edge Detection Algorithm.

: Input: Raw image sequence Tand parameter 0.

. Output: (Vix, Viy, Vi,), estimates of the gradient for each pixel in the input.
: Compute the smoothed sequence I, =1 gp.

: Compute horizontal derivative estimate VL = iv * dggg.

: Compute vertical derivative estimate Viy =1, * dgf,g.

A N AW =

: Compute time derivative estimate Vi, = L * dgff,’ .
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3.2 3D Wavelet Edge Detection

A wavelet representation is a multiscale representation that allows us to overcome
the problem of choosing an appropriate scale parameter o. Given a function f in
L*(R?) and an appropriate well-localized mother wavelet function ¥ € L*(R?), we
define the continuous wavelet transform of f to be

Wyf(a,t) = a! /R]f(x) v (a_l(x — t)) dx,

where @ > 0 and + € R?3. The analysis functions (wavelets) are ¥,,(x) =
a 'y (cf1 (x— t)) .

If f on R3 is smooth except for a discontinuity at x, € R?, the wavelet transform
Wy f(a,t) decays rapidly as a — 0 everywhere, except where ¢ is near xo. Hence,
the wavelet transform is able to signal the location of the singularity of f through its
asymptotic decay at fine scales.

We discretize the wavelet transform and write V,(x) = a~ ' (—x/a), so that
the wavelet transform can be expressed as the convolution product Wyf(a,t) =
fx @a (r). As a mother wavelet, we use a Sobel-like filter (instead of the Gaussian
derivative used in Canny) to estimate the gradient and repeatedly apply a smoothing
matrix to effectively dilate 1/~f by an amount dependent on the number of iterations
£, obtaining lh. This means we can concisely write the implementation as f 1}@ for
L=1,2,...,n4.

Stacking each plane of the filter side-by-side reveals the contents for the
horizontal, vertical, and time filters:

00 0[10—1[00 ©
GP=110-120-2/10-1], 8)
00 0[10-1[00 0

0 10/ 1 2 10 10
G’=1|0 00[ 0 0 00 00|, 9)
0-10/-1-2-1{0-10

010000/ 0—1 ©
GP=|121/000-1-2-1|. (10)
010000 0—1 0

After the image gradient is estimated using these filters, the wavelet edge detection
algorithm repeatedly rescales by convolving the gradient components with a
weighted average filter
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111121111
GP=|121242[121], an
111121111

choosing to save either the previous estimate or the new one, depending on which
has smaller magnitude. This is summarized in Algorithm 2. Note that notation in
the description of the algorithm emphasizes the approximate gradient aspects rather
than the wavelet aspects.

The conditional re-enforcement in steps 7 and 8 emphasizes edge locations based
on the change between adjacent scales. For both wavelets and shearlets, the local
Lipschitz regularity of a point determines the decay of the magnitude of the response
as a function of scale [7, 17]. The coefficients are likely to increase slowly with £
when the Lipschitz regularity is positive (i.e., an edge point) and increase rapidly
when the Lipschitz regularity is negative (i.e., a noise point). Thus the choice is
meant to strengthen the influence of edges and weaken the influence of noise.

Algorithm 2 The 3D Wavelet Edge Detection Algorithm.

1: Input: Raw image sequence 1 and number of levels ng.

2: Output: (Vﬂ”‘/), Vﬁ"” Rvii ), estimates of the gradient for each pixel in the input.

3: Compute the basic horizontal derivative estimate Vi¥ =1x G3P, the basic vertical derivative
estimate VI =T * G;” and the time derivative estimate VIi? =TGP,

: forlevel{ =1,...,n,do

Compute the horizontal derivative estimate VI\” = VI{ ™" % G32.

Similarly, compute the vertical and time derivative estimates Vi;l) and Vi;l) .

A A

Modify the horizontal derivative estimate Vil by choosing (for each point in P) the
minimum magnitude component from either VI or from the smoothed estimate VI\".

®

Similarly, compute the vertical and time derivative estimates Viﬁz) and Vi;z).
9: end for

3.3 3D Shearlet Edge Detector

In shearlet analysis, we refine the wavelet analysis by, at each level, identifying
components corresponding to different regions in frequency space.

The 3D shearlet transform implementation we have developed, like the 3D
wavelet transform developed here, repeatedly rescales the gradient components, but
at each scale it also partitions the frequency domain into a number of subdomains

( )| c 2 1 U 1 2
=12 113) 1 a  2a 2a¢ al’

A} N2a
4

m

— 8| = (12)
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Fig. 7 The support of a 3D shearlet in the frequency domain witha = 1/4 and s; = s, = 0 (left)
and a = 1/16, s; = 0.5, and s, = 0.7 (right).

Each subdomain, illustrated in Figure 7, is a pair of hyper-trapezoids, symmetric
with respect to the origin, oriented according to the slope parameters s; and s,, and
more elongated as a — 0.

Shearlet analyzing functions are defined as

_1 —
Vasisaa(X) = | det My, |72 W(MMTSZ (x—1)

where

a —al/zsl —ail/zxz
MaS1S2 =10 472 0 5
0 0 al/?

and the mapping

Swa(a, $1, 82, t) = (fv Wa,sw.z,t)

defines the continuous shearlet transform of f for a > 0 and t € R3. (See [9] for
a complete description as the technical issues in the construction are extensive.)
The matrix M, s, is a product of a dilation matrix dependent on a and shearing
matrices. Creating filters wffz whose frequency response produces the appropriate
hyper-trapezoidal restrictions when combined with a wavelet filtering is done by
extending the corresponding 2D filters w, ¢ constructed in [30]. The subscript d is
an index used to replace the dependency of the window function on s; and s,. The
integer d ranges between 1 and n,, where ny indicates the total number of directional
components for a scale we index by £. An additional weighting correction is applied
to each wfiz to guarantee that the summation of all n; components is a delta function.
The continuous shearlet transform of f can then essentially be calculated as f *
(Ve * wfﬁ) ford{ =1,...,npandd = 1,...,ng. Thus, we can extend our wavelet
transform algorithm to be a shearlet transform algorithm by doing an additional loop

with a convolution dependent on w3).
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Let £2 be a region in R? with boundary denoted by 52 and let y;,j = 1,2,...,m
be the smooth boundary segments of 062, assumed to have positive Gaussian
curvature at every point. If B is a function that is one for every point in 2 and
zero elsewhere, then we know from [9] that:

o Ifr ¢ 082, then

lim aNSHyB(a,si,52,50,t) =0 forall N > 0.

a—0

 If7 €32\ UL, y; and (s1, 52) does not correspond to the normal direction of 92
at ¢, then

lim_ aNSHyB(a,s1,52,50,t) =0 forall N > 0.
a—0

o Ifre 082\ UL, yj and (s1,$2) = (51,52) corresponds to the normal direction of
082 attort € UL,y and (s1, 52) corresponds to one of the two normal directions
of 02 at ¢, then

lim+ a_lS”}-[wB(a, s1,82,1) # 0.
a—>0

* Ifp € y;and (s1, 52) does not correspond to the normal directions of 042 at ¢, then
|SHyB(a, s1,52,1)| < Ca*?.

The above result essentially says that the continuous shearlet transform of a
bounded region with piecewise smooth boundary has rapid decay everywhere,
except when the location variable ¢ is on the surface and the shearing variables
correspond to the normal orientation, in which case it decays like O(a) as a — 0.

Our idea is that, at each level, for each shearlet region, we reinforce components
that seem to be decaying at the proper rate by checking if the magnitude at a given
position is between a and «~! times the previous value. This comparison method is
a significant improvement over the simple comparison concept originally conceived
in [30] as this reduces thickening of the nominated edge points and increases
efficiency.

Our shearlet edge detection algorithm, summarized in Algorithm 3, resembles
the wavelet algorithm, but there is an inner loop at each scale that enhances the
estimated derivative magnitude when an edge aligns with a shearlet filter wfﬁ.

3.4 3D Hybrid Wavelet and Shearlet Edge Detectors

Our experimental results show that the 3D wavelet and 3D shearlet edge detectors
are quite effective but quite expensive. Therefore, we developed 3D hybrid wavelet-
Canny and 3D hybrid shearlet-Canny edge detectors. These methods use 2D wavelet
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or 2D shearlet methods to process each image, producing estimates of the x and y
derivatives. The time derivative estimate is then taken from the 3D Canny algorithm.
We summarize this process in Algorithm 4. There may be an advantage in averaging
the Canny estimate for each horizontal and vertical derivative with the wavelet or
shearlet estimate; if not, then the algorithm can be made more efficient by omitting
the horizontal and vertical computations in the 3D Canny step.

Similarly, we developed edge detectors based on repeated use of 2D wavelet (or
shearlet) edge detectors to compute 3D estimates as shown in Algorithm 5.

All of these algorithms are economical, and some proved quite effective.

Algorithm 3 The 3D Shearlet Edge Detection Algorithm.

1: Input: Raw image sequence 1 and number of levels ny and parameter @ € [0, 1].

2: Output: (VL,, Viy, V1,), estimates of the gradient for each pixel in the input.

3: Compute the basic horizontal derivative estimate Vix =T1x% Gf(D .

4: Similarly, compute the basic vertical and time derivative estimates Viy =T* GiD and Vi, =

1% GP.

5: Precompute the shearing filters wZ,IZ

6: forlevel £ =1,...,n, do

7:  Compute the horizontal derivative estimate Vit = VI, * G3P.

8:  Similarly, compute the vertical and time derivative estimates Vi)(j_l) and Vi§+”.

9: Initialize A, = A, = A, = 0.
10 for directiond = 1,...,n do
11: Add into A, any element of VI, * wjfz whose magnitude is between o and @' times

VT wfﬁ.

12: Update Ay and A, similarly.
13:  end for

14 Add A, to VI
15:  Update VI, and VI, similarly.
16: end for

Algorithm 4 The 3D Hybrid Wavelet-Canny (or Shearlet-Canny) Edge Detection
Algorithm.

1: Input: Raw image sequence I and number of levels n;.

2: Output: (VI,, Viy, VI,), estimates of the gradient for each pixel in the input.

3: Compute horizontal and vertical derivative estimates VI, and Viy by applying the 2D wavelet
(or 2D shearlet) edge detector to each frame in the sequence 1 using ny levels.

4: CONInpute a time derivative estimate Vi, by applying the 3D Canny edge detection algorithm
to L.
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C3 w2 W3

oA i~ 'i\./lll

\ A A PaN
S2 S3 HWC

HSC HWW HSS

Fig. 8 Results of edge detectors on the rotating bow-tie movie, with standard deviation of noise
0.2. The methods are denoted as Canny (C), Wavelet (W), and Shearlet (S), 2D and 3D, the original
frame (FbF), and Hybrid (H).

3.5 Performance of the Edge Detectors

To illustrate the potential of these edge detectors for tracking moving objects, we
do a simple comparison of their performance. Figs. 8, 9, and 10 show results for the
fifth frame of the rotating bow-tie movie with various noise levels. The movie frame
is labeled FbF (frame-by-frame), and the results from Canny-2D (C2), Canny-3D
(C3), Wavelet (W2 and W3), Shearlet (S2 and S3), and the hybrid algorithms (HWC,
HSC, HWW, HSS) are also shown. We see that all of the algorithms are reliable
when the SNR is high, but for low SNR, the 3D wavelet and shearlet algorithms are
most reliable. Unfortunately, the algorithms can produce very broad edge estimates
and can lose detail at sharp corners. This makes it very difficult to determine the
precise location of a feature from the raw output of the edge detectors, so next we
consider how to use this output more effectively in tracking.
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Fig. 9 Results of edge detectors on rotating the bow-tie movie, with standard deviation of noise

0.6.

Algorithm 5 The 3D Hybrid Wavelet-Wavelet (or Shearlet-Shearlet) Edge Detec-

tion Algorithm.

1: Input: Raw image sequence I and number of levels r,.

2: Output: (VI,, Viy, VI,), estimates of the gradient for each pixel in the input.

3: Apply the 2D wavelet (or 2D shearlet) edge detector to each frame (xy slice) in the sequence 1
using 7 levels to obtain horizontal and vertical derivative estimates k1, = VI, and h;, = VI,.
4: Similarly, apply the 2D wavelet (or 2D shearlet) edge detector to each xt slice in the sequence

to obtain horizontal and time derivative estimates ko, = VI, and hy, = VI,.

5: Apply the 2D wavelet (or 2D shearlet) edge detector to each y slice in the sequence to obtain

vertical and time derivative estimates h3, = Viy and hy, = VI,

6: Compute derivative estimates VI, = %(h 1+ o), Viy = %(h Iy + h3y), and Vi, = %(hZ, +

h3t)~




104 D.A. Schug et al.

C3 w2 W3

S2 S3 HWC

HSC HWW HSS

Fig. 10 Results of edge detectors on the rotating bow-tie movie, with standard deviation of noise
1.0.

4 From Edge Detection to Tracking

A tracking algorithm must determine the trajectory of the track object as it moves
from frame to frame. For simplicity, we consider translation first and discuss object
rotation later.

We tailor our algorithm to our photogrammetric application; since we have an
image of the object to be tracked, we can make use of this information to avoid any
need to identify features, and this is a significant advantage.

Assume that we are trying to determine the movement of the object between two
particular frames, frame k — 1 and frame k. Assume that the center of the object in
frame k — 1 is (i,j). We denote the displacement as Ax; in the horizontal direction
and Ay in the vertical direction and drop the subscript £ when it is clear from
context. Our first approach is to perform an exhaustive search for Ax and Ay by
considering all possible positions of the patch of pixels defining the object, and
testing to see which trial position best matches the data from the movie. In practice,
velocity bounds can be used to limit the search, and in this study we only test integer
displacement values between —2 and 2 for i and j, giving 25 possible positions.

For each trial position, we have two sets of data: D(i), which is the data from
the original movie I, and D(i,,), where i,, is the movie I with the kth frame replaced
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by one with the patch in its trial position. To find the correct position of the feature,
we want to minimize the difference between the two sets of data, so we use a cost
function

f(@,) = |D@) — DA,)]|. (13)

A natural choice of norm is the square root of the sum of squares of the elements,
but other choices are possible. _

We also have a choice of the function D. The most obvious choice is D(I) = I. In
this case f measures how the pixel values change when we replace the kth frame by
the patched frame. Preservation of (noisy) pixel values is not our objective, however;
we want to preserve edges. We propose, therefore, that D denote the edge image
sequence produced by one of our edge detectors. In this case, f measures how much
the edges change between the original movie and the patched movie. We generate
the patched frame in the same way we generate our test examples, by overwriting
pixels in the kth frame by the patch positioned at (i + Ax,j + Ay).

If the object is also rotating, then we need to measure the cost function at various
values of A#, the change in rotation angle since the previous frame, as well as Ax
and Ay. In our experiments, we tested values A0 = —2,—1,0, 1, 2 degrees, making
a total of 125 possible positions and rotations per frame. We found that our methods
worked better if we added noise to the patch, comparable to that in the original
movie, before inserting it into the kth frame of the movie.

We summarize our tracking method in Algorithm 6. There are two important
observations to be made concerning the cost of the algorithm.

First, increasing the number of possible values of the A quantities quickly
raises the expense of the exhaustive search algorithm. More sophisticated numerical
optimization algorithms (steepest descent, Newton-like methods) can be used, but
since our functions are non-differentiable and highly nonconvex, we did not have
much success with them. One advantage of our admittedly primitive optimization
approach is that it is quite easy to parallelize.

Second, there is a very important cost savings to be made. Rather than running
the edge detector on the full image sequence, we can use a smaller submovie formed
from a limited number of frames around frame k and a limited number of pixels
within each frame, those near (i,j), since the effects on the edge detectors due
to introducing the patch are primarily local. Making use of the submovie greatly
reduces the cost of each trial.

From the computed A values, we can compute the magnitude of the planar
velocity of the object at frame £,



106 D.A. Schug et al.

Algorithm 6 Tracking Using Edge Detection.
1: D denotes the output of one of our edge detectors.
2: Input: Image sequence 1 with £ frames, noise estimate, patch P, shading vector g, and initial
patch location.
3: Output: Estimates of patch motion Ax, Ay, and A6 for each frame.
4: Initialize Ax; = Ay; = A6 = 0.
5: Add noise to the patch P.
6: fork =2:1do
7
8

Record Axy = Ay, = Af; = 0 as the best guess so far.
fordd =—2:1:2do

9: Rotate the patch by angle df: P, = imrotate(P, df).

10: Compute shaded patch S = P,.. * (g’ g).

11: fordx=—-2:1:2do

12: fordy=—-2:1:2do

13: The current trial location is the patch location at frame k — 1 plus (dx, dy).

14: Replace frame k of the image sequence 1 with a frame containing the patch S at
the trial location, obtaining ip.

15: if |[DA) — D(ip)|| (calculated using the relevant subimage sequence) is smaller
than all previous values for frame k then

16: Set Ax; = dx, Ay, = dy, and A6, = df.

17: end if

18: end for

19: end for

20:  end for

21:  Replace the patch P by rotating it by A6;.

22: end for

loe] = \/Ax; + Ay?, (14)

and the direction of the planar velocity,

A
¢r = arctan (A—yk) . (15)

Xk

However, ¢y is quite sensitive to errors in Ax; and Ayy.

S [Experimental Results

Experiments were conducted to help understand and characterize how well our edge
detectors work in tracking.

We used the difficult case of a spiraling shaded bow-tie with various amounts of
noise added. For each standard deviation of the noise, we replicated the experiment
4 times, measuring the average error in single-frame tracking for frames 2 through
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Mean tracking error: position

0.3 T T T
std=0.0
0.25 std=0.2
—6— std=0.4
0.2
0.15
0.1
0.05 D
0
c2 C3 w2 W3 S2 S3 FbF HWC HSC HWW

e e Ny W

0
Cc2 C3 w2 W3 S2 S3 FbF HW HSC HWW

Fig. 11 Average error in position estimate (unit = pixel) for tracking a spiraling, rotating, shaded
bowtie with noise. The dotted lines indicate the minimum error for each noise level.

26. The results are shown in Figs. 11, 12, and 13. If the standard deviation of
the noise is 0.0, all of the edge detectors yielded perfect tracking. As the noise
level increased, all algorithms except Canny-2D performed quite well, but the
most reliable algorithms were Canny-3D, Wavelet-3D, Hybrid Wavelet-Canny, and
Hybrid Wavelet-Wavelet for our particular set of experiments.

6 Conclusions

We have developed new variants of 3D wavelet- and shearlet-based edge detectors
and new hybrid detectors that provide 3D information using only 2D wavelet or
shearlet transforms. We demonstrated the effectiveness of these algorithms for
edge detection. Our wavelet edge detectors try to filter noise from the gradient
estimates, while our shearlet detectors reinforce gradients that change with scale
at the expected rate. A variety of other implementations are possible, and some
may perform better than these. All of these methods could be improved by
tuning parameters and by applying standard post-processing techniques such as
nonmaximal suppression or hysteresis thresholding.
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Mean error: velocity
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—O6— std=1.0

Fig. 12 Average error in velocity estimate (unit = pixel / frame) for tracking a spiraling, rotating,
shaded bowtie with noise.

We then developed algorithms for tracking objects moving under translation and
rotation, using edge detectors to validate position estimates. All of the methods
tested, except Canny-2D, give low error in position, velocity, and rotation angle esti-
mates in moderate noise. These methods are well adapted to particular applications
involving rigid motion and flat backgrounds.

Transformations other than translation and rotation could be included in future
work. Expansions and contractions of the patch would account for movement toward
and away from the camera. We could also allow for roll and yaw of a 3D feature
with known shape. Also, by fitting the patch to the object, our assumption of flat
background could be removed.
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Mean error: rotation angle

c2 C3 W2 W3 S2 S3 FbF HWC HSC HWW

Fig. 13 Average error in rotation angle estimate (unit = degree) for tracking a spiraling, rotating,
shaded bowtie with noise.
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Approaches for Characterizing Nonlinear
Mixtures in Hyperspectral Imagery

Robert S. Rand, Ronald G. Resmini, and David W. Allen

Abstract This study considers a physics-based and a kernel-based approach for
characterizing pixels in a scene that may be linear (areal mixed) or nonlinear (inti-
mately mixed). The physics-based method is based on earlier studies that indicate
nonlinear mixtures in reflectance space are approximately linear in albedo space.
The approach converts reflectance to single scattering albedo (SSA) according to
Hapke theory assuming bidirectional scattering at nadir look angles and uses a
constrained linear model on the computed albedo values. The kernel-based method
is motivated by the same idea, but uses a kernel that seeks to capture the linear
behavior of albedo in nonlinear mixtures of materials. The behavior of the kernel
method is dependent on the value of a parameter, gamma. Validation of the two
approaches is performed using laboratory data.

Keywords Nonlinear mixtures ¢ Kernel-based methods ¢ Single scattering
albedo ¢ Hapke theory ¢ Hyperspectral

1 Introduction

Much consideration has been given in the past to linear mixing models, which are
appropriate in cases where materials are presumed to be non-overlapping (areal)
and can be mathematically expressed as a linear combination spectral endmembers,
where the weights in the combination are associated with the abundances of each
material. The endmembers are spectra (hopefully) representing unique materials in
a given image such as water, soil, and vegetation. Abundances are the percentage of
each endmember within a given pixel. However, there is no reason to presume that
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such a model is appropriate in the case of intimately mixed materials that are likely
to exhibit nonlinear spectral mixing behavior. For example, granular materials, such
as soils, are often intimate mixtures of numerous different inorganic and organic
substances, where the scattering of light and other nonlinear processes occur.

The linear model is constructed as linear combination of the spectra from mul-
tiple endmembers. It is basically a statistical linear regression model that has been
posed in a number of ways with variations that impose either physical or sparseness
constraints [1-7]. Image pixels are labeled as containing one, two, or perhaps
many endmembers. Many approaches begin with a full linear model containing all
possible variables (endmembers) and subsequently eliminate variables that do not
contribute to the statistical significance (e.g., using an F-statistic) of the model [8].
Other approaches are basically step-wise regression, where the process begins with
a pair of variables (endmembers) and adds variables if they contribute significantly
to the model [6, 8].

The intimate mixing phenomenon is nonlinear. In reflectance space it involves a
nonlinear combination of spectra from multiple endmembers. An intimate mixture
model can be described by nonlinear functions, which are justified by Hapke
scattering theory [9] and photometric phase functions [10]. This approach can be
used to convert reflectance to Single Scattering Albedo (SSA). Prior results have
shown up to 30% improvement in measurements over the linear mixing model when
intimate mixtures are present [11]. Success was also achieved in efforts using a
Constrained Energy Minimization (CEM) method and other linear methods applied
to SSA data [12-14].

Kernel functions have also been introduced as a way to generalize linear
algorithms to nonlinear data [15, 16]. In the case of detection and classification
applications, kernel functions can induce high dimensional feature spaces. In these
spaces, previously non-separable classes can be made linearly separable. Thus,
linear methods can be applied in this new feature space that provides nonlinear
boundaries back in the original data space. Another example is the kernel Principal
Component Analysis (PCA) method [17]. The kernel, in this case, is not used to
induce a high dimensional space, but is used to better match the data structure
through nonlinear mappings. It is in this mode that kernels can be used to produce
nonlinear mixing results while essentially using a linear mixture model. What is
more appealing is that the physics suggests that such a method is ideal if one can
model the kernel correctly.

The drawback with the earlier kernel algorithms for classification and detection
is that they produced abundance estimates that do not meet the non-negativity
and sum-to-one constraints. This was solved by the development of a Kernel
Fully Constrained Least Squares (KFCLS) which computes kernel based abundance
estimates to meet the physical abundance constraints [18]. Further investigation of
the KFCLS method has resulted in (1) the development of a generalized kernel for
areal (linear) and intimate (nonlinear) mixtures [19] and (2) an adaptive kernel-
based technique for mapping areal and intimate mixtures [20]. The generalized
kernel and adaptive technique provides a way to adaptively estimate a mixture model
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suitable to the degree of nonlinearity that may be occurring at each pixel in a scene.
This is important because a scene may contain both areal and intimate mixtures and
we don’t always know a priori which model is appropriate on a pixel-by-pixel basis.
This situation was investigated further by Broadwater and Banerjee [21]. Building
upon this work, a study investigating the behavior of the generalized KFCLS and
adaptive kernel-based techniques was performed using both user-defined and SVDD
automatically generated endmembers [22].

Research using laboratory data recently compared the performance of the
generalized KFCLS applied to reflectance spectra with the Fully Constrained Least
Squares (FCLS) method applied to spectra converted to SSA [23]. One of the
conclusions of this effort was that similar accuracy in abundance estimates can be
achieved using the SSA-based method, but with much faster computation time.

In the current study, we further this understanding by investigating both
phenomenology-based SSA and mathematical-based kernel methods focused on
laboratory data. The laboratory experiment is performed on highly controlled data
containing pre-determined nonlinear mixtures of two materials.

2 Methodology

2.1 Fully Constrained Least Squares

The Fully Constrained Least Squares (FCLS) [7] mixing model for spectral mixtures
can be written as

N
x = Ea, with two constraints: a; > 0 and E = 1 (1)
=

where x is an L x [ vector containing the spectral signature of the current image
pixel, a is an N x [ vector containing the estimated abundances (the ith entry
represents the abundance value @;), and E is an L x N matrix containing the
endmember signatures (the ith column contains the ith endmember spectrum). The
number of endmembers in the model is denoted by N and the number of bands in
the spectra is denoted by L.

The FCLS method has been quite successful in the past for modeling linear
mixing phenomenology. For our purposes, we will be using FCLS in two ways:
The method will be used as a benchmark to compare with the proposed nonlinear
methods; and the method will also be used in one of the nonlinear approaches, where
we will apply the FCLS to spectra that has been converted to SSA, as discussed
immediately, below.
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2.2 Proposed Method 1: Fully Constrained Least Squares
(FCLS) Applied to Single Scattering Albedo Spectra

As just mentioned, previous studies indicate that intimate (nonlinear) mixtures
in reflectance space are approximately linear in albedo space. Accordingly, we
investigate this behavior by applying a linear mixing method on albedo; specifically,
by applying the FCLS method on data that’s been converted to SSA. Conversion
to SSA is described in Resmini et al. (1996) [12] and Resmini (1997) [13] (both
studies following Hapke (1993) [9]; and Mustard and Pieters (1987) [10]) assuming
the reflectance spectra are bidirectional. SSA spectra were also generated assuming
the input reflectance spectra are hemispherical-directional. The expressions to
transform reflectance spectra to SSA are given by Egs. (2) and (3) for bi-directional
(bd) reflectance and for hemispherical-directional (hd) reflectance, respectively. In
the derivation of both expressions, phase angle is large enough that the opposition
effect is assumed negligible.

0.5 2
[0 + wPT2 4 (L0 + 4.0p1gT) (1L0=T) | = (o + @) T
=10 — @)
(1.0 4+ 4.0upl)

— 10 S ;
e== _((1.0+2.0Mr)) ®)

In (2) and (3), @ is the single scattering albedo; I" is the reflectance factor
(see Section 2.1, Hapke [9]), po is the cosine of the angle of incidence of the
illumination, and p is the cosine of the viewing angle. Note that one reflectance
is calculated as described previously in Section 2.1 though two different equations
are used to generate the two sets of SSA spectra.

Subsequently, we refer to this approach as simply the “SSA method.” The
conversion of reflectance spectra to SSA using (2) and (3) is very fast as compared
to the Generalized Kernel Least Squares (GKLS) method.

2.3 Proposed Method 2: Generalized Kernel Fully Constrained
Least Squares

In previous work, a kernel-based mixing model was developed by Broadwater,
Chellappa, and Banerjee [18], where the method estimates the abundances of a
mixture using the expression

~ o1 ~ ~ ~
a=arg mmi (K (x,x) —2a’'K (E,x) + a'K (E,E) a) , st a;>0, V; @&
a



Approaches for Characterizing Nonlinear Mixtures in Hyperspectral Imagery 117

where @ is the estimator for the abundance vector and E is the matrix of endmembers
and, discussed above for (1). A quadratic programming method is used to calculate
the abundance estimates and enforce the non-negativity constraint. The choice of
kernel determines how well this method will respond to different types of mixing.
Choosing the linear kernel K(x,y)=xX'y is ideal for modeling linear mixtures;
however, it is not a suitable kernel for intimate mixtures. A physics-inspired kernel
has also been proposed and was shown to provide significantly improved behavior
to model nonlinear mixtures [21]. The study concluded that although each kernel
provides good results for the type of mixing intended, only one kernel or the other
could be used, for either areal mixtures or intimate mixtures, but not both.

Broadwater and Banerjee further developed this approach into a generalized
method for adaptive areal and intimate mixtures [19, 20]. They attempt to simulate
Hapke theory for SSA, making use of the kernel:

K, (xy)=(1—e™) (1-e) ®)

The kernel in (5) can be used for either areal or intimate mixtures through use of
the appropriate y. K, (x,y) approximates linear mixing whenever y is very small. If
y is large, then K, (x, y) approximates intimate mixing in cases when the reflectance
occurring from intimate mixing is modeled as

w

r= Tt ) [H (W, ) H(w, o)l (6)

where r is the reflectance vector, H is Chandrasekhar’s function for isotropic
scattering, w is the average single-scattering albedo vector, Lt is the cosine of the
angle of incidence, and p is the cosine of the angle of emergence [10].

The computation is similar in form to (4) except the minimization is done
according to

~ 1 . ~ ~
y = argmin_ (K, (x,x) —2a, 'K, (E,x) +a, K(E,E) a,), st >0, V;
v
(N

where @, is the abundance estimate and K, (x,y) is the kernel evaluated with the
parameter y value. A numerical optimization based on the golden search method
is used to minimize (7) [24]. An implementation of this generalized method is
investigated, which we refer to as Generalized Kernel Least Squares (GKLS).

The GKLS method described by (7) at least theoretically has the ability to
respond differently to differing degrees of nonlinearity. It attempts to automate the
selection of y, seeking to minimize the model’s Root Mean Square Error (RMSE)
to select the best gamma and compute more precise estimates of abundance.

The GKLS is also very compute intensive; therefore, as an alternative to automat-
ing the selection of y, we also investigate a fixed-gamma GKLS implementation,
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where the y in (5) is chosen manually. This approach is much faster to compute;
however, it comes at the disadvantage of losing flexibility to respond to different
degrees of nonlinearity on a pixel-by-pixel basis.

3 Description of Experiment

A laboratory experiment is performed in this study to validate the proposed
approach. Two granular materials were custom fabricated and mechanically mixed
to form intimate mixtures. The materials are spherical beads of didymium glass
and soda-lime glass, both ranging in particle size from 63 pm to 125 wm. The
mixtures, which exhibit largely nonlinear spectral mixing, were then observed
with a visible/near-infrared (VNIR; 400-900 nm) hyperspectral imaging (HSI)
microscope.

In a configuration as shown in Figure 1, the glass bead mixtures were measured
using the Resonon Pika II imaging spectrometer with a Xenoplan 1.4/23-0902
objective lens [26-28]. The device is a pushbroom sensor with a slit aperture, thus
the need for a translation table to move the sample to facilitate hyperspectral image
cube formation. Though capable of acquiring 240 bands from 400 to 900 nm,
the sensor was configured to acquire 80 bands by binning (spectrally by three)
resulting in a sampling interval of 6.25 nm and high signal-to-noise ratio spectra.
The instrument is mounted nadir-looking at a mechanical translation table on which
the sample to be imaged is placed. The height of the sensor above the table is
user selectable; a height was chosen such that all mixtures are captured in the
same scene thus the data have a ground sample distance of 75 pm/pixel. Four
quartz-tungsten-halogen (QTH) lamps are used for illumination approximating a
hemispherical-directional illumination/viewing geometry. Sensor and translation
table operation, data acquisition, and data calibration are achieved by software
that runs on a laptop computer. Calibration consists of a measurement of dark
frame data (i.e., acquiring a cube with the lens cap on) and a measurement of
a polytetrafluoroethylene (PTFE) reference plaque (large enough to entirely fill
the field-of-view). Then, for each HSI cube measured, the sensor’s software first
subtracts the dark data and then uses the PTFE data (also dark subtracted) to ratio
the spectral measurements to give relative reflectance (also known as reflectance
factor: Hapke, [9] Schott [29]).

The mixtures are prepared and measured according to volume. Three binary
mixtures (and the two endmembers) are constructed and emplaced in the wells
of a 96-well sample plate: 0/100%, 25/75%, 50/50%, 80/20%, and 100/0% of
didymium/soda-lime (percentages by volume). This was done as follows: Five cells
of a 96-well sample plate, spray-painted flat black, were filled with the various
glass bead mixtures; this is shown in Figure 2. The volume of each cell is 330 pL
(0.33 mL). This is a data set with only nonlinear spectral mixing; the glass beads,
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Fig. 1 Photograph of the
VNIR HSI microscope. The
Resonon Pika II is shown
with the Xenoplan
1.4/23-0902 objective

lens [25].

MRS Note also lights, translation table, and computer.

Pika Il Normal Color Composite Image

R:540.88 nm, G: 549.44, B:458.00 nm, 2% linear stretch

Fig. 2 (Left) 35 mm digital single-lens reflex (DSLR) camera photograph of the 96-well plate
containing the glass beads. (Right) A Pika II normal color composite image (2% linear stretch of
the bands used in the red-green-blue [RGB] image). All percentages are by volume of glass bead
type indicated. Spillage onto the plate is evident in the photo on the /eft but not in the image on the
right. Changing the stretch of the Pika II imagery will reveal the spillage [25].

didymium, and soda-lime are translucent. Their chemical composition, densities,
and particle size range are well known. Note that the glass bead particle size range
is much larger than the VNIR wavelengths used in this analysis. The glass beads and
their mixtures display subtle, though interesting, gonioapparent changes in color.
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(a) (b)

Fig. 3 RGB composite images of the hypercube used in the experiment trials showing in (a) the
training regions and in (b) the test regions.
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Fig. 4 Mean spectra for the three endmembers (DiDy, Lime, and Dark-Background) are shown.

Although many data cubes were acquired, we focus here on the analysis of one
cube comprised of 640 samples, 500 lines, and 75 bands ranging from 434.0 nm to
885.0 nm. Of the 80 bands acquired the first 5 were discarded due to noise content.

Training and test data were extracted from the selected hyperspectral cube.
Figure 3 shows polygons defining the training and test regions drawn on top of
a Red-Green-Blue (RGB) color composite of this cube. For training, three training
endmembers are defined: DiDy (100%), Lime (100%), and Background. The spectra
within the small training polygon regions were extracted. Averages of the spectra
in the regions were used as endmember spectra for the three methods under
investigation. For purposes of testing the performance of the algorithm, five regions
were extracted, corresponding to the five mixtures 100% DiDy, 75/25% DiDy/Lime,
50/50% DiDy/Lime, 25/75% DiDy/Lime, and 0/100% DiDy/Lime. Two additional
test regions of background spectra were extracted. The training regions are shown
in Figure 3a and the test regions are shown in Figure 3b. Note that none of these test
regions overlapped the training regions. The spectra of the training endmembers are
shown in Figure 4.
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The image-derived training endmembers, as just described, are used to inves-
tigate the three methods described in Section 2: (1) FCLS applied in reflectance
space; (2) GKLS applied in reflectance space; and (3) FCLS applied in SSA space.
For the purposes of conciseness in reporting results, these methods henceforth will
be referred to as the FCLS, GKLS, and SSA methods, respectively.

Numerous factors affect the performance of the methods. Three factors affecting
the performance of all the methods are (1) the number the endmembers used in a
model; (2) how well these endmembers span the space in which the mixing occurs;
and (3) the Root Mean Square Error (RMSE) threshold for eliminating bad fits
between the observed and model-estimated spectra. In addition, the GKLS method
uses a kernel parameter “G” for y that determines the nonlinear behavior introduced
by the model’s kernel. We test the GKLS method at fixed values of y: G = 0.1, 0.5,
1.0, 2.0, 3.0, 4.0, 5.0, and 6.0, as well as the automated GKLS. For the SSA method,
performance might be affected by the type SSA conversion: Hemispherical or Bi-
Directional. If Bi-Directional, the input and output angles are other factors. In our
case, we report on the results for an SSA conversion made assuming bi-directional
reflectance with nadir input and output angles. We also tried the SSA conversions at
other angles, but we didn’t notice any noteworthy difference.

The experiment trials were made on the entire scene. Both qualitative results
(shown by pictures of the entire scene) and quantitative results (applied in the test
regions) are given.

4 Results

The results for the experiment are shown in Figs. 5, 6, and 7, as well as Tables 1 and
2. Figure 5 shows RGB Color Abundance Maps for four of the trials (Red = DiDy,
Green = Lime, Blue = Background). Qualitatively, Figure 5a, b shows poor
correspondence to the known mixtures shown in Figure 2. Figure 5c, d shows much
better correspondence to the known mixtures shown in Figure 2. The variations in
color within the discs containing the three mixtures (75/25, 50/50/ and 25/75) is
noteworthy. These variations indicate the methods are detecting notable variance
in the abundance proportions. This is in spite of the experiment goals to prepare
mixture proportions that are as uniform as possible. There is little reason to doubt
that these variations are real and that the methods (particularly, GKLS and SSA) are
responding correctly. Static clinging and other inter-particle interactions can easily
account for the clumping and variations observed.

Table 1 lists the average estimated abundances for the FCLS, GKLS, and SSA
methods in the five test regions. Figure 6 shows these results graphically. The “truth”
(actual physically measured) percent by volume of DiDy for these regions varied
slightly from the goal of 100%, 75%, 50%, 25%, and 0%. In reality, these were
measured as 100%, 78.8%, 50.5%, 24.2%, and 0% for DiDy100, DiD075, DiDy050,
DiDy025, and DiDy000, respectively. Results for the GKLS method using a fixed y
parameter of G =0.1,G=0.5,G=1.0,G=2.0,G=3.0,G=4.0,G=5.0,and
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© (@

Fig. 5 RGB composite images showing Color Abundance Maps for four of the trials
(Red = DiDy, Green = Lime, Blue = Background). (a) FCLS method (Linear) and (b) GKLS
at y-parameter G = 0.1 (Linear) show poor correspondence to the known mixtures shown in
Figure 2. (¢) GKLS at y-parameter G = 5.0 (Nonlinear) and (d) SSA method (Nonlinear) show
much better correspondence to the known mixtures.

100.00 -
DiDy 100%
3 \ DIDy 75%, Lime 25%
E 7500 +——e
8 —_—
E -
o
-
2 5000 - —
3 ~~— DiDy 50%, Lime 50%
o DiDy 25%. Lime 75%
5 2500 -
5
-9
0.00 Lime 100%
FCLS y=01 05 1.0 20 30 40 50 y=6 SSA
Method (FCLS, y of GKLS, and SSA)

Fig. 6 A graph of the results listed in Table 1 for the FCLS, GKLS, and SSA methods is displayed.

G = 6.0 are given. This table shows FCLS to be poor at predicting the abundances
for DiDy075 (93.11% vs. 78.8%) and DiDy050 (74.97% vs. 50.5%), as well as
very poor at predicting DiDy025 (63.88% vs. 24.2%). The results of GKLS for
small gamma agree with theoretical expectations of approximately a linear model.
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Fig. 7 The observed and estimated mixture spectra (averaged) of the 50/50% region using the
FCLS, GKLS, and SSA methods. The y-axis of (a) FCLS method and (b) GKLS method with
y-parameter G = 5 is in reflectance units with a range 0.0-1.0; the y-axis of (¢) SSA method is in

albedo units with a range 0.0-1.0.

Specifically, the prediction of GKLS at G = 0.1 is almost exactly the same as the
FCLS method. Out of the eight gamma values tested, GKLS at G = 5.0 provides
the closest prediction for DiDy50 (49.08% vs. 50.5%) and is only slightly worse at
predicting the correct abundance than GKLS at G = 6.0.
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Table 2 Model diagnostics: The Root Mean Square Error (RMSE) results of the fit between the
estimated and observed spectral mixtures are listed for selected points in the scene.

(x, y) DiDy% FCLS GKLSG =5 GKLSG =6 SSA

(585,248) 100% 0.0141 0.0293 0.0369 0.0315
(400,228) 75% 0.0245 0.0244 0.0248 0.0351
(418,239) 75% 0.0183 0.0177 0.0324 0.0262
(405,251) 75% 0.0179 0.0196 0.0205 0.0255
(324,049) 50% 0.0357 0.0225 0.0222 0.0129
(313, 062) 50% 0.0359 0.0318 0.0390 0.0118
(328, 067) 50% 0.0333 0.0294 0.0533 0.0223
(223,314) 25% 0.0526 0.0380 0.0379 0.0140
(224,327) 25% 0.0495 0.0383 0.0384 0.0186
(246,330) 25% 0.0420 0.0289 0.0636 0.0121

The first column lists the location and planned percentage mix of DiDy for these points. The actual
physically measured mixes were 100%, 78.8%, 50.5%, 24.2%, and 0.0%
Bold values indicate the minimum RMSE value for each of the designated pixel locations

Figure 7 shows the observed and estimated mixture (averaged) spectra of the
50/50% region using the FCLS, GKLS, and SSA methods. Visually, we can see
both the GKLS (G = 5) and SSA methods provide a better fit as compared to the
FCLS method.

Table 2 lists the Root Mean Square Error (RMSE) of the fit between the estimated
and observed spectral mixtures for selected points in the scene. Except for DiDy
at 25% (0.242), the RMSE errors for FCLS were not considerably larger than
the errors for the other methods. Yet we know FCLS is poorly predicting the
known abundances for these samples. We conclude RMSE is not necessarily a good
indicator of a method’s accuracy to predict abundance. As far as the GKLS method
is concerned, in most cases, a y-parameter of G = 5.0 provides a better fit than
G = 6.0. Noting that G = 5 provides a better prediction of abundance as compared
to GKLS at the other values of y and also provides a smaller RMSE as compared to
GKLS at G = 6.0, we henceforth consider G = 5.0 to provide the best GKLS result.

In Tables 1 and 2, the results also show (unfortunately) the automated implemen-
tation of the GKLS method, which attempts to select the most appropriate gamma
based on achieving a minimum of the model’s RMSE, was not as successful as the
fixed gamma GKLS (G = 3, 4, 5, or 6) for estimating the correct abundance. This
automated GKLS method attempts to select the most appropriate gamma based on
achieving a minimum of the model’s RMSE. We conclude the RMSE metric seems
to respond to a mixture being linear or nonlinear, but unfortunately, it is not a reliable
metric to determine the degree of nonlinear behavior. RMSE could not be used to
achieve the most accurate estimate of abundance. Consequently, RMSE cannot be
considered effective for implementing an automated GKLS.
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5 Concluding Remarks

This study has investigated the use of a Generalized Kernel Least Squares (GKLS)
method applied to reflectance data, and a Single Scattering Albedo (SSA) method
for nonlinear mixture analysis. In the case of the SSA method, a Fully Constrained
Least Squares (FCLS) method is applied to data that has been converted from
reflectance space to SSA space. Our baseline method was the FCLS method applied
to reflectance data. Our hypothesis is that, for intimate (nonlinear) mixtures, both
of these methods will provide improved modeling and abundance estimates as
compared to the baseline FCLS method.

Overall the results for our laboratory experiment indicate the FCLS method has
a poor capability for modeling intimate mixtures. In contrast, both the GKLS and
SSA methods do a much better job. Whether or not one is better than the other is not
conclusive. However, we conclude that our hypothesis is confirmed and that both
of these methods provide a better estimate of abundance for mixtures exhibiting
nonlinearity. For the laboratory experiment of known abundance quantities, the
SSA and GKLS methods responded well to the nonlinearity present in a mixture of
materials and provided better estimates of abundance than the linear FCLS method
for the DiDy and Lime materials.

The GKLS parameter “gamma” determines the degree of nonlinear behavior
exhibited by the GKLS method and affects its accuracy for estimating abundances.
The automated GKLS method attempts to select the most appropriate gamma based
on achieving a minimum of the model’s RMSE. We conclude the RMSE metric
seems to respond to a mixture being linear and nonlinear, but unfortunately it is not
a reliable metric to determine the degree of nonlinear behavior. It could not be used
to achieve the most accurate estimate of abundance and it is not recommended as a
metric to automate the GKLS method.

For mixtures known to be nonlinear: A fixed gamma implementation of GKLS
with G = 5 or 6 provides a good estimate of abundance. The fixed gamma GKLS
and the SSA methods can be computed in approximately the same amount of
time and provide approximately the same accuracy for estimating abundances. The
automated GKLS was much slower to compute and did not achieve better accuracy.
Further work has since been performed by the authors that elaborate on these results
in an expanded study with additional experiments [30].
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An Application of Spectral Regularization to
Machine Learning and Cancer Classification

Mark Kon and Louise A. Raphael

Abstract We adapt supervised statistical machine learning methods to regular-
ize noisy unsupervised feature vectors. Theorems on two graph-based denoising
approaches taken from numerical analysis and harmonic spectral methods are
discussed. A feature vector X = (xi,...,x,) = {xq}’;=1 is viewed as a function f(q)
on its index set. This function can be regularized or smoothed using a graph/metric
structure on the index set. This smoothing can involve a penalty functional on
feature vectors analogous to those in statistical learning. Our regularization of
feature vectors is independent of their role in subsequent supervised learning tasks.
An application is given to cancer prediction/classification in computational biology.

Keywords statistical learning * kernel methods ¢ regularization * cancer classifi-
cation

1 Introduction

Regularization of noisy and partial information is an important problem in machine
learning, studied widely in the area of supervised learning. We will use methods
parallel to such supervised regularization, to denoise (unsupervised) input feature
(data) vectors X = (x1,...,x,) using prior information. We will illustrate this by
regularizing feature vectors, using adaptations of two standard function denoising
methods, local averaging (from numerical analysis) and support vector regression
(from the theory of Tikhonov regularization).

In general the set of indices {1,...,p} (the index space) of a feature vector
X = (x1,...,Xp) is an ordered set without additional structure. However, in high
dimension (p >> 1) there are often helpful prior structures. If the index space is
discrete with a notion of proximity (e.g., with a metric or a graph/network structure),
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feature vectors become functions on a graph or metric structure G, often satisfying
some notions of continuity. This viewpoint can improve denoising feature vectors
and thus their subsequent classification. We give an example in gene expression
analysis for cancer classification using the set of human genes (genome) as the index
space for feature vectors. There the network structure is based on prior knowledge
of interactions of genes via their protein products’ interactions.

1.1 Machine Learning

In machine learning (ML) classification, feature vectors x = (xi, ... ,x,) (numbers
characterizing an object, e.g. a cancer sample) are mapped by a classification
function f(x) into appropriate classes y = 1,...,k (e.g., cancer subtypes). The
function f is learned from a training set T = (x;, y;);—, of sample feature vectors x;
and their (correct) classes y;. This function can ultimately be tested when it is applied
to new feature vectors X, and its reliability (e.g., percentage correct) in predicting
their classes y is ascertained.

Constructing a classification function y & f(x) for noisy and partial information
is a central problem in ML. There are two major branches: supervised learning
involves learning a class predictor function f(x) from the examples in T above. Reg-
ularization in supervised learning chooses better f(x) by combining the information
in T with additional prior (supervised) knowledge (e.g., that f is smooth). When a
penalty for non-adherence to this prior information (e.g., smoothness) is involved,
this is known as Tikhonov regularization [26]. Local averaging methods to enforce
continuity/smoothness of functions include kernel smoothing and local averaging

Unsupervised learning finds structure in the (unclassified) training inputs {x;}"_,
themselves, with no information on their classes y;. For high dimension p such
structures can be complicated. In computational biology it is not unusual for
p = 10° indices to exist, each index representing a gene, location in the genome, or
protein.

Feature data x (e.g., gene expression level vectors) are often unreliable and
noisy, and ML classification methods have often reached limiting accuracies on
some widely studied benchmark ML datasets. We propose the use of unsupervised
regularization, incorporation of prior structural information on feature vectors x
without reference to their classes y. Some potentially useful applications involve
denoising of feature vectors x using Tikhonov and other regularization methods,
kernel smoothing, and local averaging methods adapted from those used to regular-
ize functions f : R” — R in supervised machine learning [9].

This approach can be used to adapt Lagrangian optimization functionals and
other inference methods from supervised learning, as well as denoising methods
in functional/numerical analysis for functions on R”. It treats feature vectors
{x4 }Z=1 as functions of their indices ¢, and imposes continuity and other regularity
constraints with respect to graph or other proximity measures in g. Two standard
regularization methods on R?, local averaging and support vector regression, are
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adapted here to unsupervised methods. This produces improved feature vectors
and consequently better classification/regression using these in supervised classi-
fication tasks. We finish with an example in gene expression analysis for cancer
classification with the genome as index space for feature vectors representing gene
expression. We view noise in data as a source of complexity — feature vector
regularization denoises by seeking less complex data forms.

1.2 Approach

Our approach to unsupervised regularization of noisy feature vectors x =

(x1,...,xp) typically assumes high data dimensionality p. We assume a prior
graph (network) structure G with nodes formed by the (fixed) feature index set
V = {1,...,p}. The edge weights {w,},rev are based on prior information about

the objects (e.g., genes) representing the feature index values ¢ € V, and their
mutual relations. Our unsupervised regularization is a pre-processing step preparing
feature vectors that are de-noised for training in subsequent ML classification tasks
(e.g., identifying/predicting cancer subtypes). The regularization quality can be
benchmarked by accuracy of such subsequent tasks.

1.3 Prior Work

Our theorems and application are motivated by the research of a number of
mathematicians and computational biologists.

Local averaging over adjacent data locations has often been used to maximally
quench noise (variance) and minimally add bias (systematic error) to data vectors.
It has been used by computational biologists Ideker et al. [2, 12, 15] and Kasif et al.
[13] on gene expression data — see also Section 3 below.

The approach of Ideker et al. [2, 12] uses supervised methods (with known cancer
classes y combined with measured gene expression patterns X) to identify groups
of genes over which it helps to average gene expression signals x,. This involves
inputting a full training dataset (including class information) rather than just feature
vectors. Local cluster averaging (i.e., combining and averaging gene expressions)
is done using the protein-protein interaction (PPI) network. This network is a
structure with the human genes as nodes, based on chemical interactions of
their protein products. This method shows effectiveness of imposing closeness
structures on feature indices (e.g., genes), here with supervised methods. The
supervised index clusters are based on knowing classifications of tumor samples
as metastatic/nonmetastatic so as to maximally differentiate feature vectors x in the
two classes for later testing. The methods of Kasif et al. [13] used averaging based
on biochemical pathway membership of genes.
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A spectral approach to denoising gene expression was used by Rapaport and Vert
[18, 29], and Belkin [1]. The approach of [18, 29] imposed structural constraints on
gene expression feature vectors using prior known similarities in expressions among
genes, to form a graph/network structure on them. This denoised the vectors based
on smoothness constraints using spectral projections of the graph Laplacian. We will
extend this type of smoothing to other adaptations of supervised function denoising
methods.

Regularization of noisy high dimensional data has been studied widely in
the functional and numerical analysis literature; see Tikhonov [26], Vapnik [28],
Hastie and Tibshirani [9]. Kernel smoothing is standard for estimating or denoising
real valued functions f, either fully or partially defined. The estimated function’s
required level of smoothness is usually determined by a single parameter. Support
vector regression and some types of Tikhonov regularization use kernel smoothing
in a principled optimization procedure, using the kernel function K(x,y) of a
reproducing kernel Hilbert space.

Tikhonov regularization is important in supervised statistical machine learning.
When partial information about a function f(x) is known, the ill-posed problem
of inverting this to a unique estimate of f is solved by adding a regularization
requirement minimizing an expression in f, usually involving a norm (Vapnik [28]).
The ideas of Tikhonov were extended by Krukovskii [11], who showed that if f(x)
is fully measured after it is perturbed into a noisy version fj(x), then regularizing
fi can largely recover f(x), reducing error fi — f. This was made precise as an
asymptotic statement illustrating the proper scaling of the regularization with the
size of the error.

Tikhonov’s work on regularizing ill-posed problems was seminal and related to
both of the above methods (averaging and support vector regression). More recent
work in regularization methods based on this includes work ranging from Nashed
and Wahba [16], Cuker and Smale [4], Vapnik [28], Hastie and Tibshirani [9, 25],
Scholkopf and Smola [22], Smola and Kondor [23] to DX Zhou [31].

Our work extends some of the above seminal ideas. We illustrate the methods on
the benchmark cancer metastasis data sets of Wang et al. [30] and van de Vijver et al.
[27]. These are widely studied in computational biology as a context for supervised
learning related to cancer prediction and classification. Our example of denoising
their gene expression is based on regularization using a protein-protein interaction
(PPI) network.

1.4 Paper Contents

In Section 2 we state four major theorems on two regularization approaches (local
averaging and support vector regularization). These indicate conditions where
regularization improves denoising accuracy. We show that as the regularization
parameter (say «) increases, accuracy generically improves and then decreases.
For the second (support vector regression) method we also give “smoothness”
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conditions on the underlying (pre-noisy) feature vector f for it to be amenable
to regularization when contaminated by noise €g(q). The regularization process
effectively diminishes high frequency components of the true signal f (increasing
estimation bias error) in exchange for a reduction in noise (decrease in variance
error). Proofs of two theorems are sketched.

In Section 3 we show this method for pre-processing feature vectors improves
classification accuracy in subsequent supervised learning tasks. The task is predict-
ing cancer metastasis using gene expression feature vectors, with a graph structure
on genes based on PPI. The data are from the above breast cancer studies ([27, 30]).

2 Denoising Theorems

Within the larger class of regularization methods, we will discuss here two graph-
based adaptations of standard regularization approaches for denoising functions
f:RP - R.

A standard numerical analysis method for denoising a (fully or partially)
measured function f(x) (x € RP) is to average (smooth) f over adjacent loca-
tions. This is done, for example, in regularization of noisy photo images using
blurring (e.g., Gaussian convolution) or penalty functional (Tikhonov) regulariza-
tions. Convolution-based regularization of functions on R” is standard in image
processing, where blurring (softening) an image improves visual information. See
S. Geman et al [7] for regularization of images and also Coifman and Donoho [3],
Coifman [24].

On a general graph G (analogous to definitions on R”), let f(g) be a function
on the graph G (i.e., on its vertices ¢ € V), forming a feature vector x, = f(q).
We assume the measured values fi(q) = f(q) + n(g) of f are contaminated by
variability 7(g), which can represent noise or measurement inconsistencies. Thus
f(g) is a underlying (true) signal, with f;(¢) a measured approximation. Our goal
is a regularization R, (f;) of the perturbed f; (with regularization parameter «), to
optimally recover f(g). Thus we want R, (f1) = R, (f) + Ry () to quench error 1 by
minimizing R, (n) (reducing variance) and minimally bias (systematically change)
the original f in the regularized signal R, (f).

In this type of bias-variance tradeoff, the error is often U-shaped in the regu-
larization parameter «. For small «, a learning algorithm learns too many nuances
from its data. It will typically overfit and be thrown off by noise (leading to high
variance error in estimates), interpreting noise as a function signal. However it will
typically have low systematic averaged error (low bias). With large regularization o
a learning algorithm imports high prior information on structure of the underlying
function f(x), and is less sensitive to noise (thus low variance) but may impose
systematic error (high bias) on resulting estimates. A good supervised learning
method properly balances this tradeoff between bias and variance, on R? or any
proximity structure. We will discuss theorems (analogous to those for supervised
denoising on R”) on unsupervised feature vector regularization, here assuming
graph structures on indices.
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Our theorems will present the pattern of bias-variance tradeoff, and existence
of a unique minimum for L? estimation error in the regularization parameter. This
is done for two denoising methods: local averaging and support vector regression
(SVR), assuming graph structures on feature vector indices. We also show that for
appropriate prior knowledge on f (here smoothness with respect to the prior graph
structure) both methods give good results.

We show that reconstruction accuracy for functions on graphs is non-monotonic,
first increasing and then decreasing in «, with best accuracy at an intermediate
regularization. Feature vector regularization inherits from Tikhonov denoising on
RP, the same non-monotonicity of reconstruction accuracy - the best is at a finite
positive value «. We view noise as a source of complexity, and regularization
denoises by transforming feature vectors into more useful ones.

Local averaging of feature vector entries x, = f(g) with their (graph) neigh-
boring entries cancels out noise, thereby reinforcing similarity of neighbors and
canceling individually high errors. When the feature vector forms a visual image this
can be done assuming adjacent pixels (feature indices) have close illumination levels
(feature values). The bias from blurring is more than offset by the variance reduction
(noise averaging). There is an optimal amount of blurring (too little or too much
will reduce recovery). On R? this is the foundation of Haar wavelet methods for
piecewise constant function approximation (e.g. [14]). Our second method, support
vector regression (SVR) on feature vectors, uses a penalty functional like those in
statistical learning for supervised functions f : R? — R, based on the index set
graph structure. SVR in the graph case regularizes feature vectors using the same
Tikhonov-type regularization used for R” functions.

Note the accuracy of SVR regularization/denoising of feature vectors cannot
be measured directly, since noise is unknown. One way to test effectiveness is
measuring performance of the regularized data when they are used in the training
and testing of subsequent supervised learning tasks (Section 3).

2.1 Statements of Theorems

We consider regularization of feature vectors x = (xi, ..., x,) on finite graph struc-
tures G on (large) index sets V = {1,...,p}. The L?>(V) norm will measure error
between the underlying f(g) and recovery R, (f1) of its perturbation fj = f + 5. The
theorems below will assume noise 7(q) = €g(q), where g(g) are standard N (0, 1)
normal random variables that are independent and identically distributed (iid).

The graph structure on the index set represents prior expected similarity between
features (e.g., gene-gene similarity). We will show good graph structures yield
good regularized recoveries of feature vectors X = (xi,...,x,), with x, = f(q).
As the regularization level increases, the error of recovering the underlying (pre-
noisy) feature vector f from regularizing the perturbed vector f; first decreases,
as variance is reduced while bias remains controlled. The error then increases,
as bias increases beyond benefits of variance reduction. Our theorems show that
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regularization/denoising approaches can be applied just as well to unsupervised data
using prior graph structure data. The two regularization methods considered here
are local averaging and support vector regression, modified to accommodate graph
structures for feature vectors.

2.1.1 Method 1: Local averaging on a graph

We consider local averaging as a regularization approach. A graph G = (V,E)
consists of vertices v € V together with edges e¢; € E, with e; connecting
vertices i and j. The edges are associated with non-negative weights w;; representing
vertex similarity. In some cases we denote the vertex set as G when there is no
ambiguity. We view feature vectors X = (xi,...,x,) that are indexed by the graph
G, i.e., by its vertices V = 1,...,p, as functions {f(q) = x,},ec. The norm is
If112 = X 4€G f%(q) unless stated otherwise. We consider the underlying (noise-
free) feature vector f(q) perturbed by noise or other effects, giving measured values
f(q) + €g(q) = fi(q), with noise n(g) = €g(q). We seek a regularization operation
R, (with « the regularization parameter) such that the regularized feature vector
Ry f1(q) approximately recovers f.

Thus f(q) = x, is a real-valued function of ¢ € G. The perturbation €g(g) is
generated from an independent standard N(0, 1) Gaussian g(g) for each ¢ € G. We
will cluster features x, (more properly the indices ¢g) into a collection Cl; = {a,i}f/:1

ke
of clusters forming a partition | J a; = G. The partitions are hierarchical, so that
i=1
each for each ' < 1, ay; is a union of sets of the form a,;. Equivalently let .7, be the
finite o-field of sets generated by Cl, above. Then for ' > ¢, we have .%, C Zy.

Here the discrete parameter + = 1,...7T is a regularization parameter, corre-
sponding to the (hierarchical) level of clustering. We will cluster-average fi(q)
to obtain the averaged function R,fi = fi,(q) = E(f1(¢)|.%;). The latter is the
(probabilistic) conditional expectation of f; with respect to o-field .%,. We will
always assume that Cl, is a (proper) subpartition of Cl,_;. A sequence of o-fields
{%#;}; in which %, is a refinement of .%,_ is known as a filtration.

We note that decreasing t represents fewer (larger) clusters and greater regular-
ization. The increasing number k; of clusters with ¢ represents less regularization for
larger ¢. The highest regularization is at + = 1 (assumed to have k; = 1 clusters).
The lowest regularization is at + = T (with k; = p clusters, i.e., one cluster per
feature).

We define f; = E(f|.%), and g, = E(g|.-%;). We form the regularization of the
noisy fi = f(g) + €g(g) by cluster-averaging it to obtain

R:(fi) = E(fil#)

Below and henceforth [E represents ordinary expectation (with respect to the
random family g(g)) (note f is not random) while E(:|.%;) represents a conditional
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expectation (cluster-average) of the argument function, defined above. By conven-
tionE[|-[|*> =E (|| - |*), and the norm ||-|| = ||-||> denotes L? norm unless otherwise
specified.

To study the relationship between cluster size and regularization, we need a basic

Lemma 1 The error e of regularization of the level t cluster approximation satisfies

e(CL1) = fii = f1I” = E(IE(F(q) + eg(@)|F) — 1)

=E(Ifi(@) + eg(@ = fI?) = Ifi = fI” + €E (llg(@)°) - (1)

This lemma separates expected error into bias error ||f, — f||*> and variance error
€’E||g:(¢)]1>. Note here and below that when clustering level 7 is fixed we will denote
the clusters a;; as a;.

Theorem 1 (Graph structures for feature vector averaging) Let x, = fi(q) =
f(q) + €g(q) be a noisy feature vector associated with signal f(q), with g(q) ~
N(0, 1) independent standard Gaussian noise for each q in a graph G. For fixed
clustering level t and signal f, let Cl; = {a,-}ff:] denote a clustering of G yielding a
regularization f, = E(fi|-%,) of f1.

Then the estimation error is

E([fie = f1I) = E(V(IF)) + ke, 2

where the conditional variance V(f|.%,) is the size-averaged variance of f(q) over
the family Cl, of clusters {ai}f’zl:

ki
V7)) =Y V(@) hgea) il 3)
i=1

with k, = |Cl,| the number of clusters.

The conditional variance is equivalent to the weighted sum of the variances x; =
f(g) of features in the feature vector within each cluster a; of features, weighted by
the number |a;| of features.

The corollaries below refer to a fixed feature vector f (thus a fixed index set), and
a fixed regularization level ¢ (number of clusters k;).

Corollary 1 Assume a fixed feature vector f(q) and regularization level t (i.e., fixed
number k; of feature clusters) on the index space G. The error E(||fi; — f||?) is then
reduced by any clustering Cl, that is improved, as measured by reduced conditional
variability V(f|. ;) of f (with respect to the corresponding finite o-field #,.)



An Application of Spectral Regularization to Machine Learning and Cancer. . . 137

Corollary 2 For fixed f and regularization level t, optimal (minimal) error cluster-
ing divides the features into k; groups such that the weighted variances V{x,}qeq; of
individual groups (weighted by the cluster sizes |a;|) sum to the smallest total.

Corollary 3 Assume a fixed underlying feature vector f(q), regularization level t,
and a fixed mapping of graph structure G (weight matrix W = {w;}) to clustering
F6.. As graph structure G varies, regularization error ||fi, — f||*> is monotone
decreasing in V(f) — E(V(f|-Zc.,)), i.e., the relative regularity provided to the
underlying f by G, where V(f) = V(f|.Zc.r) is the variance of f(q).

(Recall final level T clustering has clusters all of size 1). We now focus on
variable sizes and numbers k; of clusters, or equivalently variable regularization
levels t. We will show that, for a variety of potential graph structures G imposed
on a feature vector f (with G not necessarily tuned to make f smooth), clustering
regularization can nevertheless help recover f from its noisy perturbation fi.
However this must be done with a level of regularization that will cancel enough
noise without introducing too much bias.

As the clustering parameter ¢ decreases (smaller cluster count k;), regularization
increases, and at some point k, = k; , is optimal. At this regularization level the bias
||f —f||? cancels the variance €2||g;||> optimally. (Here f; = E(f|.%,) is the averaged
version of the underlying signal f, while g; is the locally averaged noise.) The level
Imin 1S the point where error is minimized. Decreasing ¢ (so ¢ < tpin and k; < k),
allows increased bias to take over, and error again begins to increase. Generically
then, in terms of increasing ¢, total error ||f; — f]| decreases monotonically for r <
tmin, and increases for ¢ > f.,;,. This is made precise in

Theorem 2 (Optimal regularization for feature vector averaging) Consider all
underlying feature vectors (feature functions) x, = f(q) whose index values q form
finite graphs G, together with filtrations {L%},T:] on each graph. Assume also that
the filtrations F, are chosen so that the conditional expectations f; = E(f|.%,)
satisfy the uniformity condition

W =fIl = Wfirr = fll =K@ (=0,1,....7) “)

on their errors ||f; — f||, with K(t) a fixed positive function. Assume also that
the hierarchical clusterings {Cl;}o<,<7 generating each filtration {Z}o<;<r have
cardinalities satisfying

|Cl41]| > d|Cl &)

for some d > 1.

For such f, let fi = f(q) + €g(q) be perturbations (with g(q) the above Gaussian
noise), and fi; = E(fi|.%#;) be the cluster-averaged sequence (in regularization
parameter t) for recovering f(q). If 1/€ and T (and hence |G|) are sufficiently large,
then with probability p arbitrarily close to 1, the approximation error ||fi; — f|| of
the regularized feature vector decreases for small t and increases for large t.
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Thus the minimum error is achieved for a positive value of the regularization
parameter t, with the same probability p approaching 1.

Proof (Sketch)
Recall we define the noise 7(g) = €g(gq). The proof of this theorem requires a

Lemma 2 On any graph G, let {.%,}1<i<r be a set filtration with corresponding
clustering Cl, for each t, with |Cl,| the number of clusters at level t. Assume
|Cli+1| = d|Cly| for some fixed d > 1. Letting 1,(q) = E(n(q)|-F:), then uniformly
over all such graphs G and filtrations (and over |Cl,|)

ZE(nl) = VICH + 0 (1/VIEH)  (C1] — o0).

and
1
= V(n ) = o). (6)
€

Recall ||-|| = ||-||» is the L? norm unless otherwise specified. The Lemma’s proof
uses properties of the chi squared distribution, probabilistic bounds on expectation
and variance, and some gamma function identities of Graham et al. [8].

A sketch of the remainder of the proof of Theorem 2 involves the following
identity. With the same definitions as in Lemma 2,

71l = el = Werr = f1 = W = FII = Whrerry = FII = e = £l
< Wowr = A1 = W =1+ e+ Nl @)
which follows by writing fi;, — f = f; + n, — f.

We will use the first inequality in (7) to show that ||fie+1) — fll — Ifir — f]l is
increasing for large . By Lemma 2, it can be shown that (for d as in (5)),

| 1
Bl =E () = (Va—1) Vicl]+0 ( @)

and

1 2 2
SVl = D = VUl + 5 Vndl) = 0(1)  (ICL| — o0).
€ € €

From this some calculations show

P(Ifierny =fIl = W = £l <0) < PUnetall = limell = 2If1l < 0) = P(B; < 0).

where

Bi = [neall = llmell = 21711
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However, bounding P(B; < 0) shows that given a #; sufficiently large,
2L

P(B; <0 forsomet > 1) < ZP(B, <0) =< Z —
=1 =1 (\/c_i— 1) |CLy|

®)

for a universal constant L uniform over all graphs G and cluster sizes k;. This is
sufficient to prove that the error increases for large ¢ with high probability as desired.

For small t = 0, 1,2, ... we combine the bound (4) with the second inequality
in (7), giving

Wrarn == W =FI < Worr =FI = W = £+ Imeseall + Dlel
= e ll + llmell = K @), )

which can be used to prove that error is decreasing for sufficiently small # < 1,
if € is sufficiently small (recall n = €g). This together with the result for large ¢
completes a sketch of the proof.

2.1.2 Method 2: Support vector regression/regularization on a graph

Let f be a real-valued function on a domain D C RP. Let the operator A sample f, so
that Af =y = (y1,...,yn) Where y; = f(x;) + ¢; are perturbed values of f at a fixed
finite subset {x,»}fv=1 C D, with errors €;. The vector y is noisy partial information
about f, and the problem of recovering f from y is ill-posed. This can be solved
using Tikhonov regularization [26]. The given data {(x;, y;)}/—, are fitted, typically
in the least squares sense by f, and at the same time solutions with large norms ||f[|%
are penalized. The norm || - ||x = || - || is taken in a Hilbert space H of functions on
domain D. It is assumed H is a reproducing kernel Hilbert space (RKHS), i.e., that
there is a unique kernel function K(x,y), (x,y € D) with the reproducing property
that for all f € H and all fixed x € D,

Jx) = (KX, ).f())n

Above the dot represents the active variable in the inner product. It is also required
that K be positive definite, i.e., that for any fixed finite set {X;}; C D, K;; = K(x;, X;)
is a positive matrix. We denote the regular L? norm as || - || = || - ||;2. Tikhonov
regularization solves the penalized minimization problem

N
f = arginf Z(f) = arginf (Z (i = f (%)) + A mli) : (10)
feH fen \'D
The norm | - ||g is an RKHS norm typically based on a Sobolev or Gaussian

kernel K (see below). The kernel can be selected to penalize large oscillations
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in f. The regularization in f can serve to “fill in” missing information (the given
measurements y; = f(X;) are not taken at all points x € D) or regularize against
additive noise €g(x).

To develop an analogous regularization for feature vectors x, = fi(g) (as
functions on a graph-structured index set G = {1,...,p}) we adapt the above
Tikhonov functional. Again the feature vector X = (x1,...,x,) is a function

x; = f(gq). We want to incorporate prior information on which pairs of features
g and r are similar, i.e., when f(¢q) and f(r) should be close. With the same function
and noise model as earlier, the measured feature is x, = fi(q) = f(q) + €g(q).

The previously mentioned RKHS formulation carries over fully to functions like
fi1(g) on graphs. The regularization serves to diminish the noise in f; on the graph.
Note f(g) is known for all ¢ (there are no missing values), which does not change
the problem in principle from that on R?.

We “regularize out” noise €g(g) by minimizing penalized error (10), obtaining a
support vector regression estimate f‘ , defined by

f=Rf= arg min () = arg min > (i) — h(@)* + AllA|;
€ qeG

= argmin {||fi — hl* + AllAll7} - (11)
heH

Define the canonical operator K with kernel K (g, ) on G, so that for any function
h(q) on G, (Kh)(q) = )_,c; K(g.r)h(r). As an operator the reproducing kernel can
be K = ¢4 (Gaussian kernel) or K = 1+ A)_‘V/ 2 (Sobolev kernel) among others,
with A the graph Laplacian on G. Note the reproducing kernel K and inner product
(,-Yg = (-, )k are chosen to have the same reproducing property as on R”, namely
that for any graph function 4(g),

h(g) = (K(q.).h())u = D _ K(q. h(r).

reG

The graph Laplacian is defined as A = D — W. The adjacency matrix W = (wy)
has entries w;; equal to the edge weight between indices 7, j € G. Additionally D =
diag(d;) is the diagonal matrix with entry d; equal to the weighted degree of vertex
i,ie.,d = Zj w;j. By assumption w;; = 0.

Both of the above kernels K are smoothness-enforcing. Specifically the norms
(penalties) ||f|lz = |Iflx they induce are large for “non-smooth” f on G. Since
graph size |G| is finite, H will include all real functions on G (as with any norm on
a space of finite cardinality); see [21]. For the following theorem we assume either
of the above (Gaussian or Sobolev) kernels K, and more generally any kernel of
the form K = u(A), where u is a real-valued non-increasing function. The matrix
operator (A) is defined by the matrix operator calculus, so if A is defined by the
eigenvalue-eigenvector pairs A ~ {(v;, u;)}_,, then u(A) ~ {((v;), u;)}"_,. Thus

=1
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if v; are the eigenvalues of A, then u; = w(v;) are the eigenvalues of K. We define
w; = 1/; to be the eigenvalues of K~' (so that w; increases with the frequency v;
of the Laplacian), and the operator

Ly =(K+ 1)K, (12)

Below we will show that 4 = L,f; minimizes (11) and thus is the recovery
approximation of the underlying feature vector f. We write Ly w = L, to make
dependence of the smoothing operator L, on the graph structure W explicit. We will
view the approximation error || L, wf1—f || ;2 as a function of the prior graph structure
W for fixed feature vector f plus noise.

An optimized graph structure (weight matrix) W for graph G will connect node
pairs ¢, r such that x, = f(g) and x,, = f(r) tend to have similar values. For example,
if g, r represent genes, this might be known because their expressions f(g) and f(r)
are correlated based on prior measurements, or from tables of known interactions
between their protein products.

Equivalently, the graph structure W is optimized if f tends to be smooth with
respect to this structure on G. In this case f(g) has primarily low Laplacian
frequencies (with respect to G), i.e. its primary eigenfunction components have low
eigenvalues. On the other hand, since the noise €g has no structure with respect to G,
it will have higher frequency components. Thus the signal f(g) and the noise €g(g),
being in primarily different frequency bands, can be teased apart using spectral
projections of the Laplacian.

In the theorem below note the underlying (true) feature vector f(q) is fixed, since
it arises from a measurement. We wish to adjust the graph structure (weight matrix
W) on G so as to optimally recover f.

Since the operator L, on L*(G) depends on the weight matrix, we will write
L, = Ly . Below we will define a useful measure of the low frequency content
of the feature function f(g) with respect to G to be ||f||> — [|(1 — Lw.)f]1? (see (16)
and (17) and the discussion following). In the Theorem and a sketch of a proof
below we will need to distinguish this G-based low frequency content of f, against
the intrinsic low frequency content of G itself. The latter (see below) will be defined
as [|L, wU(q)||*, where U(q) = Y, u;i(q) is the (finite) sum of all eigenfunctions
of A. The proof below defines the terminology of low and high frequency content
more carefully.

We have

Theorem 3 (Graph structures for SVR feature vector regularization) Con-
sider a noisy feature vector X having components x, = fi(q) = f(q) + €g(q),
with the last two terms representing signal and noise, and the index values q
forming a graph G. Assume g(q) are iid and N(0, 1), and that f is fixed with
Ifll. = 1. On G, assume a fixed reproducing kernel Hilbert space H of real-
valued functions with kernel K = u(A), with  a decreasing function such as
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K = e P2 (Gaussian) or K = (1 + A)™*/? (Sobolev). Let fi)(q) be the support
vector regression approximation of f, minimizing (11), and assume A remains fixed.

As the selected weighted graph structure W on G varies, the approximation error
is a decreasing function of the smoothness (in terms of the variable W) of the fixed
underlying feature vector f. Specifically:

(a) for a measured x = fi(q) on G, the expected feature vector regularization error
E (||LA,Wf1 —f||2) is decreasing in the smoothness |f||* — ||(1 — Ly w)f||? (i.e.,
low frequency content) of f, if we vary the graph structure W without changing
(intrinsic) graph low frequency content. The latter is defined as ||Ly.wU(q)|%
where U(q) = Y, u;i(q) is the (finite) sum of the orthonormal eigenfunctions
of A.

(b) the graph low frequency content is also given by the trace

L U = (1 + A/ p(A) 72 (13)

with K = w(A) = e~ for the Gaussian kernel and u(A) = (1 + A)™*/2 for
the Sobolev kernel of order s/2.

Note above we have defined 1 /11(A) = A (A)~!. Note also that the relationship
between the L? and K norms can be summarized by ||f||x = ||K~'/?f]|,2. Hence
when K = u(A) = (1 + A)™/2, we have |f|lx = [|((1 + A)**f||, which is a
Sobolev norm of order s/2.

Proof (Sketch)
The proof of part (a) adapts methods from Tikhonov regularization on R” to
functions on the index graph G, using the regularization functional (11).

Let f(g) be the unperturbed (true) feature vector. We are assuming iid standard
Gaussian noise g(g) for each ¢ € G, with perturbed function f(q) + €g(q) = x,,
and € the noise intensity. The graph Tikhonov functional can be optimized using the
same methods as for functions on R” (see [9], Section 5.8) yielding

f =1L =ful@ =) anK(g.n),

rev
with
a=(K+1)"fi.
Putting these together gives
f=Ka= (K+M'Kfi = Lifi: (14)
see (12). As above K(g,r) is the reproducing kernel defining the Hilbert norm

Il - llz = |- llx as in the regularization functional (11) (see [21]). The expected error
(averaged over noise €g(g)) of the regularized noisy feature vector fi; = L,f(q) is

(see (1))
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E (Ifix = f13) = E(ILif + eLig — f1I3) = IIf — LafI* + €E (IILagllI?) . (15)

As above we abbreviate L, = L, w when dependence on W is not important.
Assume that the eigenvalues and (orthonormal) eigenfunctions of K are u; =
1/w; and u;(g), respectively. Let the coefficients f; be defined from the orthonormal

expansion f(q) = Ziﬁui(q)'

Then
fu=Lf=K+MN)'Kf = Xi:fiﬁui(q)
and
A—L)f =Y f A ui(q).
i R

Note that in fact the error in (15) can be parsed as the sum of bias and variance

h(e. 2) = lfin —f13 = 11 = LfI? + €E (ILagll?)

M_FGZZ; =Ep + Ey.
~ (wid + 1) ~ (Ao + 1)°

The bias error
Eg = |If — LifI* = (1 — LyfIP

2 (wid)?
= % = " ra) (16)

1

with

@A {1 ifw> 1/2

S . )
(wid + 1) 0 ifow, K 1/4
Thus according to (16) and (17), the regularization parameter 1/ is an approximate
(smoothed) spectral cut-off for the sum defining ||f — Ly wf 12
Above Ep is small if f is smooth with respect to G, i.e., if f has primarily low
frequency components, frequencies w; satisfying w;A < 1, or w; < 1/A for an
appropriate choice of A in (11). This occurs if the graph structure G (the weight
matrix W) is appropriately well-matched to prior knowledge about f, i.e., with high
edge weights w,, for index pairs g, r for which f(q) ~ f(r).
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In addition the second (variance error) term

Ey = €E(|Lgl’) = € Z FPET =) s(w) (18)

i
with

S0 = 1 1 ife < 1/a (19)
T Qe+ 1) |0 it 1A

Note the noise g(g) will be largely diminished by the regularization operator if f is
sufficiently smooth, so that 1/ can be made small without increasing bias error Ep
in (16). This is because for such A, Ey will have more higher frequency components
w; relative to the cut-off 1/4 (w; > 1/1), which will then be cut off due to the soft
thresholding in (19). In fact the above-defined low frequency content ||L,U||? of G
exactly equals the variance error term E (||L;Lg(q)||2) = Ey/é€?, the expected low
frequency component of g(g).

The bias error term Ez = |f — L, wf||* also depends on the graph structure of
G, and it represents the high frequency content (w; 3> 1/1) of f with respect to this
structure. Thus the full error Eg + Ey is monotone decreasing in the smoothness
If 112 = Ilf — La.wf %, if W varies without changing the graph low frequency content,
i.e., keeping Ey constant.

Part (b) follows directly from the definition of the regularization operator L in
terms of the kernel K in equation (12). Namely,

LU = 1) La@? = 1Y+ )™ piui(g) |

_ i
- Z (A + pi)?
=u(l 4+ A/pu(A)~ (20)

since p; are eigenvalues of jt(A). This completes a proof sketch.

The distinction between low frequency content of the graph G and of the function
f (on G) can be clarified through equations (16) and (17). First consider the low
frequency content of f, which by (16) is

FIP = I = Laws 1P = D_f7 (1= r(hay)) Q1)
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Since

1 ifw,- < 1/)L

1—r (/\a)l) = s
0 ifw; > 1/A

we see that only low frequency components of f (i.e. f; for w; small) are contained
in (21). On the other hand, the low frequency content of the graph G refers to the
the number of eigenvalues w; (frequencies) that are small. Specifically (Theorem 3
part (b)), this equals

— _ 1
ILUI? =t +2/pA) 2 =) A+ Au) 2 =) ——— =Y s(oy),
i 7 Qo+ 1) i
with s as in (19). Thus only small eigenvalues w; < 1/A are represented in the sum.
Theorem 3 thus states that among connection weight matrices W yielding a fixed

trace above in (13) the error is a monotone decreasing function of

f2
1-L LD I —
[[(1 = Ly wfll Ei : O+ )
(recall ||f|l, = 1). Since as shown above the regularizer L, is essentially a low

pass filter, the quality of recovering f from L, f; requires the majority of the spectral
content w; of f to lie below the spectral cut-off 1/A, while the majority of the noise
g(g) lies above this. This determines the optimal location of 1/, i.e., so that bias
error Eg is not too large, while variance error Ey is also controlled. The optimal A
minimizes

Eg + Ev = ||(1 = L)f|I” + €E (||L:gll?) -
Bias as measured by loss of high frequency content
(1= LA = MK + D)7

in f should be minimized conditioned on the smallest surviving low frequency
content ||eL; g||* of the noise (variance).

Finally we address a question parallel to the one in Theorem 2, regarding when
a positive (nontrivial) regularization A > 0 improves the estimate L, f; of f.

Theorem 4 (Optimal regularization for SVR feature vector regression) For a
fixed graph structure G and variable A, the error ||(1 — Ly)f||?

(a) attains a minimum at a positive value A = A of the regularization parameter
A
(b) decreases for A > 0 sufficiently small and increases for A sufficiently large.

Proofs of above theorems will appear elsewhere [6].
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3 Application: Using Prior Information to Form Graphs

3.1 Gene Expression

Our application involves denoising gene expression feature vectors X = (xi, ..., x,)
subsequently used in (predictive) classification of tumors as metastatic or non-
metastatic. See Table 1 for a sample of Wang et al.’s [30] unnormalized gene
expression data. The quality of denoising is demonstrated by improvement of
subsequent prediction of the metastatic/non-metastatic classes y in a test set. We
exploit the underlying structure of the p > 5, 000 feature indices i (genes) in feature
vectors X. These genes (and thus indices) form a graph structure with weights w;;
determined by whether the protein products of genes i and j interact chemically.

Genetics background. A strand of human DNA has 3 billion nucleotide bases
consisting of the nucleotides A, C, G, and T. Genes are made of DNA and code for
gene products, namely ribonucleic acid (RNA) and, downstream, proteins, which
have specific biological functions. The central dogma of biology [17] summarizes
the flow of information from DNA to RNA to proteins and their functions.

Humans have more than 20,000 protein-coding genes. Only about 1.5% of the
genome (full DNA letter sequence) codes for proteins, while the rest consists of
non-coding RNA genes, introns, and other DNA that we will not consider. Gene
expression is the process by which gene information is used to make proteins.
Expression levels for individual genes (measuring their RNA production) give their
activity level in their translation to proteins. RNASeq gene expression technology
is used to measure these levels; thousands of gene expression levels are taken at
once. These so-called high-throughput methods allow collection of large amounts of
data at relatively low cost. Protein-protein interaction (PPI) experiments measure
when pairs of proteins tend to bind together to carry out their biological functions.
This (prior) information is listed in a PPI database. This is used to produce a graph
(network) on the set of gene indices so that indices (genes) i, j are connected if their
protein products interact.

Cancer is a genetic disease caused primarily by DNA mutations. The purpose
of the present application is to study effectiveness of predicting cancer outcomes
(metastasis/no metastasis) based on gene expression feature vectors.

We have implemented the above models of feature vector regularization (denois-
ing) to gene expression feature vectors X = (xi,...,x,) taken from tumor samples
in two studies. The denoising quality was tested by importing the denoised data into
a training/testing algorithm for metastasis prediction and determining the quality
of the prediction. The graph structure on the genome (set of human genes) based
on PPI (see above) forms the index set graph for our feature vectors. Clustering
on the network was accomplished by the GraClus [5] software, a computational
graph clustering tool. This produced our increasing sequence of partitions of the
genome. There are limitations to grouping genes via PPI interactions in this manner,
as functionally related protein pairs sometimes correspond to gene pairs that do not
have strictly correlated expressions.
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One of the goals of the benchmark works of Wang et al. [30] and van de Vijver
et al [27] on breast cancer was to predict metastatic breast cancer recurrence within
a five year period, based on yes/no predictive classifications using gene expression.
Of the 286 breast cancer cases in the Wang dataset, 93 metastasized, while, of the
295 patients in van de Vijver dataset, 79 metastasized. The PPI network for the
genes we used was compiled from two databases, Reactome [10] and iRefIndex
[19] (also see [20]). Our experiment used 5,747 genes in the Wang dataset (with
70,353 documented PPI interactions), and 5,310 genes (with 67,342 interactions)
for the van de Vijver dataset.

We applied the local averaging and support vector regression denoising (pre-
processing) methods to these cancer datasets. The numbers of gene clusters m
in the local averaging study were 64, 128, 256, 512, 1024, and 2048 and max,
the latter denoting the total number of genes, i.e., such that each gene forms its
own cluster. The denoised datasets were subsequently used in training and testing
machine learning (support vector machine, SVM) predictions. The predictions were
of metastasis/no metastasis for both the Wang and the van de Vijver studies. We
compared our results on the denoised training and test set against predictions
obtained using the original data sets. The metric of prediction quality used was
the area under the receiver operating characteristic (AUROC) curve. AUROC is
a number between 0 and 1 measuring the accuracy of a binary classifier on a
dataset. This is done in terms of numbers of correct/incorrect positive and negative
predictions, as a function of a decision threshold and averaged over it. Our results
showed that prediction of metastasis was improved when compared with the same
methods using individual gene features (i.e., for which the number of clusters is
greater than 5000).

In the training and testing with both original and denoised data, we used 5-fold
cross-validation. Thus 1/5 of samples were randomly chosen and reserved as test
data, while 4/5 formed training data. The classifier was a support vector machine
(SVM), trained on the expression values as predictors of the known outcomes of
the training set. The trained classifier was then tested for correctness of metastasis
prediction on the remaining (test) samples. Standard deviations were calculated by
repeating this cross-validation 200 times with different random 4/5-1/5 splits to
produce separate training and test data.

Local averaging: The number of clusters m plays the role of a bandwidth
parameter in smoothing. As m increased, the performance on both datasets first
improved and then deteriorated. The optimal number of clusters was either 1024 or
2048. This means that the denoised (cluster-averaged) feature vectors represented
data more accurately than raw expression features (m = max). In general the area
under the ROC curve for classifiers predicting metastasis was improved by our
clustering-based smoothing method from 53.4% to 73.0% and from 66.0% to 71.2%
for the Wang and van de Vijver datasets, respectively. Details are listed in Table 2.

Support Vector Regression (SVR): For SVR we used the normalized diffusion
(Gaussian) kernel K with three parameters. The first is the diffusion parameter
(so that the graph kernel K = e~#4). The regularization parameter C is defined



An Application of Spectral Regularization to Machine Learning and Cancer. . . 149

Table 2 Cluster-based averaging on Wang and van de Vijver breast cancer datasets. First column
m is number of clusters. ko is the average size of each cluster, obtained by dividing total number
of genes in each dataset by number of clusters. Numbers are mean values and those in parentheses
are standard deviations based on 200 tests using 5-fold cross validation.

m Wang van de Vijver
ko AUROC ko AUROC

64 89.8 0.658 (0.014) 83.0 0.687 (0.014)
128 449 0.680 (0.015) 41.5 0.705 (0.013)
256 224 0.692 (0.019) 20.7 0.689 (0.016)
512 11.2 0.684 (0.019) 10.4 0.686 (0.021)
1024 5.6 0.708 (0.019) 5.2 0.712 (0.019)
2048 2.8 0.730 (0.017) 2.6 0.500 (0.038)
MAX 1.0 0.534 (0.044) 1.0 0.660 (0.027)

as ﬁ, with n the sample size and A the Tikhonov regularization parameter.
Our implementation of SVR (used on gene data) replaced the squared error loss
V(f.h) =) secfi(@) — h(g))? in the Tikhonov regularization functional (11). The
error measure used instead was the p-hinge loss function, given as

Vain (1) = D _(If () — h(@)| — p)+

q€G

a ifa>0 .
where a4 = ~ Here the parameter p controls the sensitivity of the
0 otherwise.

loss. This loss function guarantees that prediction errors f(q) —h(g) between +p are
fully tolerated.

Here both C and B are smoothness parameters: as C decreases (so A increases)
and as B increases, there is an added smoothness constraint on the optimizer f of the
Tikhonov functional (11). In this simulation we have kept C (and thus 1) constant,
and varied the bandwidth parameter 8. As a local minimum in error was achieved
when C = 1 and p = .05, we used these values in Table 3, where performance
versus the smoothness constraint of the diffusion kernel bandwidth 8 is listed. The
best performing classifier can obtain 74.2% and 74.1% AUROC for the Wang and
van de Vijver datasets, respectively. Table 3 shows the performance of the SVR
method.

We note that the improved classification performance here is based on an
unsupervised method for processing (denoising) feature vectors x. This is distinct,
for example, from standard (supervised) feature selection methods, which depend
on knowing the classes y; of all feature vectors x; in machine training. Unsupervised
regularization of feature vectors is possible either before or after supervised feature
selection, and can also be used without it. The method does not depend on the
classes and is independent of the machine M later trained and used on the data.
Since the method is useful independently of any dimensional reductions, these
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Table 3 Performances of SVR smoothing on Wang and van de Vijver breast
cancer datasets. First column S is the diffusion kernel bandwidth parameter.
We use the parameters C = 1 and p = 0.05. Numbers are mean values, and
numbers in parentheses are standard deviations using 200 tests with 5-fold cross
validation. When 8 = 0, the diffusion kernel is the identity operator. As the
kernel standard deviation B increases, the number of neighboring features in
the averaging increases. Similarly to cluster-based averaging, denoised feature
vectors then contain less noise but have a more biased signal.

8 Wang van de Vijver
AUROC AUROC

0.01 0.735 (0.013) 0.738 (0.011)
0.05 0.736  (0.013)) 0.738 (0.010)
0.1 0.738 (0.014) 0.737 (0.010)
0.5 0.742 (0.014) 0.737 (0.010)
1.0 0.741 (0.014) 0.740 (0.010)
2.0 0.735 (0.014) 0.738 (0.010)
0 0.534 (0.044) 0.660 (0.027)

improvements will supplement those of standard dimensional reduction methods.
That is, our unsupervised regularization and subsequent feature selection are
independent and deal with different parts of of classifier construction.

4 Conclusion

We have studied unsupervised smoothing/regularization methods for feature vectors
in machine learning. These parallel the same methods in standard machine learning,
Tikhonov regularization, and in function denoising methods such as local averaging
using wavelets. This is done viewing feature vectors as functions on their indices,
and adapting methods from real function regularization. We have illustrated this
approach with two methods, using adaptations of local averaging and support vector
regression, to regularize feature vectors. We apply these methods to cancer data
regularization and their then to subsequent predictions of cancer metastasis/non-
metastasis on such data. The improvement from regularization is accomplished
entirely without knowing the cancer classes (metastatic/non-metastatic) of the
training or test data.
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Part XIX
Quantization

Analog-to-digital (A/D) is the model in which signals are represented by bit streams
to provide effective storage, transmission, and processing. In the simplest terms
it is a two-step process: linear sampling along the lines of the classical sampling
theorem (Shannon’s name is invoked, but it goes back to Cauchy in the 1840s) and
quantization, a type of non-linear sampling, where the sampled data is assigned
a value from a fixed finite hard-wired alphabet. There is also post-processing
in the form of encoding and compression. In fact, the goal is reconstruction of
the given signal from the quantized and compressed available data. An important
quantization scheme, published in 1963 in the IEEE literature by Inose and Yasuda
and now called £ A quantization, invokes feedback mechanisms in order to mitigate
various noises in many physical environments. One of the major influences, that
escalated the mathematical influence in modern quantization theory, was the paper
by Daubechies and DeVore in the Annals of Math. (2003).

The setting for Inose-Yasuda and Daubechies-DeVore was the space of band-
limited functions. Independently, and for more traditional A/D, Goyal, Kovacevic,
and Vetterli introduced finite frame theory into the subject of quantization, because
of the intrinsic noise reduction capability of frames and the inherent user-friendly
computational advantage of finite tight frames. Then, it became natural to do £ A
quantization in the setting of finite frames. Further, compressive sensing or sampling
became a staple in the subject for the several reasons, not the least of which was the
aforementioned non-linear sampling step.

There has been an explosion of activity in this area in the past 10 years, and some
of the leaders and deepest contributors are the authors of these three chapters in this
section.

The chapter by Boufounos, Rane, and Mansour takes quantization as a starting
point and generalizes the idea in the direction of embeddings of one signal space to
another. The goal is to go beyond the raison d’étre of approximating the actual signal
in the encoding stage by preserving underlying information in the signal as it may be
related to other signals affecting it. The technology is wonderful in that geometry
and compressive sensing interleave necessarily and naturally. The exposition is a
lucid presentation of what has been done and the starting point of their fascinating
new theory.
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The chapter by Chou and Giintiirk is a sequel to the deep analysis and concept
of distributed noise-shaping of their previous work in Constructive Approximation
(2016). In this chapter they begin with a beautiful exposition of their published
theory in 2016, which itself has Giintiirk’s profound work on beta encoding as
background. Then, they provide the all important performance evaluation for the
class of finite group frames, that includes finite Fourier frames and harmonic frames;
and they conclude with analysis of the infinite dimensional case of band-limited
functions. The interplay of topics is compelling and creative.

The chapter by Lee, Powell, and Whitehouse is a tour-de-force encompassing
brilliant analytic technology and addressing fundamental problems of consistent
reconstruction in quantization. The authors prove essential error bounds on error
moments arising in consistent reconstruction, going beyond the mean-square theory
they had already resolved. The proofs are not for the faint of heart, but the centrality
of the problem they have solved provides hope for actual implementation at a very
high level, as some of their implementations imply.



Embedding-Based Representation of Signal
Geometry

Petros T. Boufounos, Shantanu Rane, and Hassan Mansour

Abstract Low-dimensional embeddings have emerged as a key component in
modern signal processing theory and practice. In particular, embeddings transform
signals in a way that preserves their geometric relationship but makes processing
more convenient. The literature has, for the most part, focused on lowering the
dimensionality of the signal space while preserving distances between signals.
However, there has also been work exploring the effects of quantization, as well
as on transforming geometric quantities, such as distances and inner products, to
metrics easier to compute on modern computers, such as the Hamming distance.

Embeddings are particularly suited for modern signal processing applications, in
which the fidelity of information represented by the signals is of interest, instead
of the fidelity of the signal itself. Most typically, this information is encoded in
the relationship of the signal to other signals and templates, as encapsulated in the
geometry of the signal space. Thus, embeddings are very good tools to capture the
geometry, while reducing the processing burden.

In this chapter, we provide a concise overview of the area, including foundational
results and recent developments. Our goal is to expose the field to a wider
community, to provide, as much as possible, a unifying view of the literature, and
to demonstrate the usefulness and applicability of the results.

Keywords Dimensionality reduction * Distance-preserving embeddings ¢ Near-
est neighbors

1 Introduction

Signal representation theory and practice has primarily focused on how to best
represent or approximate signals, while incurring the smallest possible distortion.
Advances such as frames, compressive sensing, and sparse approximations have all
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been applied in improving the representation accuracy or sampling complexity using
a fidelity metric as the principal figure of merit. On the other hand, as computation
becomes more prevalent, signal representations are increasingly important in infer-
ence and estimation applications. Such applications typically exploit the geometry
of the signal space, usually captured mathematically by norms and inner products. In
these cases, the representation should faithfully preserve the geometry of the signal
space, but not necessarily the signals themselves.

This chapter explores embeddings as a signal representation mechanism that pre-
serves the geometry of the signal space. Embeddings are transformations from one
signal space to another—the embedding space—which exactly or approximately
preserve signal geometry. The use of an embedding is beneficial if the transfor-
mation provides some convenience in its use. For example, the embedding space
might have significantly lower dimensionality than the signal space, might allow for
easier computation of certain quantities, or might enable efficient transmission by
quantizing in the embedding space.

In this chapter, we explore several aspects of embedding design. We start with
the foundational work by Johnson and Lindenstrauss [40], and continue with
more recent developments. We describe embeddings that preserve distances, inner
products, and angles between signals, while reducing the dimension and the bit-rate.
We also describe embedding design strategies, both data-agnostic and universal, as
well as learning-based and data-driven. Our discussion also explores the effect of
quantization, which becomes necessary when the embeddings are used to reduce
the bit-rate of the representation.

Our goal is to expose the field to a wide community and show that embeddings
are essential data processing tools. In our exposition, we attempt to provide, as
much as possible, a unifying view of the literature. However, we remark that recent
advances have reinvigorated research in this area, often making such unification
elusive.

1.1 Notation

In the remainder of the chapter, we use regular typeface, e.g., x and y, to denote
scalar quantities. Lowercase boldface such as x denotes vectors and uppercase
boldface such as A denotes matrices. The m™ element of vector x is denoted using
X,- Functions are denoted using regular lowercase typefaces, e.g., g(-). Unless
explicitly noted, all functions are scalar functions of one variable. In abuse of
notation, a vector input to such functions, e.g., g(x) means that the function is
applied element-wise to all the elements of x. Sets and vector spaces are denoted
using calligraphic fonts, e.g., #, .7

1.2 Outline

The next section describes distance-preserving embeddings. Starting with general
definitions and foundational results, the section explores embedding design
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strategies—both data-agnostic and data-driven—and discusses the nature of
distance-preserving guarantees. Section 3 examines embeddings that preserve
angles and inner products, including kernel inner products. Quantization strategies
and the effects of quantization on the embedding guarantees are discussed in Sec. 4.
Section 5 provides a higher-level discussion and concludes the chapter.

2 Preserving Distances

The best-known embeddings preserve the geometry of the space by preserving
the distance between signals. In this section, we examine distance-preserving
embeddings, and explore some ways to design their distance-preserving properties.

2.1 Randomized Linear Embeddings

An embedding is a transformation of a set of signals in a high-dimensional space to a
(typically) lower-dimensional one such that some aspects of the geometry of the set
are preserved, as depicted in Figure 1. Since the set geometry is preserved, distance
computations can be performed directly on the low-dimensional—and often low
bit-rate—embeddings, rather than the underlying signals. For the purposes of this
chapter, we define an embedding as follows.

Definition 1 A functionf : . — # is a (g, 8, €) embedding of .& into # if, for
all x, x' € .7, it satisfies

(1=8)g(dsr(x.X)) —€ <dy (f®).fX)) = (1 +8)g (dr(x.X)) +e. (D

In this definition, g : R — R is an invertible function mapping distances in
. to distances in # and § and € quantify, respectively, the multiplicative and the
additive ambiguity of the mapping. We will often refer to g(-) as the distance map
and to f(-) as the embedding map. In most known embeddings, such as the ones

d(xy) = g(d( fx), A¥)))

Lpoints

log L
dimensions

Fig. 1 Distance-preserving embeddings approximately preserve a function g(-) of the distance,
allowing distances to be computed in a space that (typically) has fewer dimensions or has other
desirable properties.
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discussed in this section, the distance map is the identity g(d) = d or a simple
scaling. The similarity metrics d (-, ) and d- (-, -) are typically distances, but could
also be correlations, divergences, or other functions capturing signal geometry and
similarity!.

The best known embeddings are the Johnson-Lindenstrauss (JL) embed-
dings [40]. These are functions f : . — RM from a finite set of signals . C RV
to an M-dimensional vector space such that, given two signals x and x’ in .%, their
images satisfy:

(1=8)x=xX3 < IFx) — )3 < A +8)|Ix —x'|3. )

In other words, these embeddings preserve Euclidean, i.e., £, distances of point
clouds within a small factor, measured by &, and using the identity as a distance

map.
In the context of Def. 1, a JL embedding is a (g, §,0) embedding of squared
Euclidean distances—d.»(x,x) = |x — X[ and dy (f(x),f(X) = |f(x) —

f(x)||5—with an identity distance map g;(d) = d. In this context, the JL theorem
can be stated as:

Theorem 1 Given § € (0,1) and a set ¥ C RN of #(.) = L points and M =
O(8721nL), there exists a Lipschitzmap f : RY — RM that is a (g;, §, 0) embedding
of &, with g1(d) = d, d (x,X') = |x=X'||5 and dy (f (x).f (X)) = |f(x) —f X)[5.

Johnson and Lindenstrauss demonstrated that a distance-preserving embedding,
as described above, exists in a space of dimension M = 02 log L), where L
is the number of signals in .# (its cardinality) and § the desired tolerance in the
embedding. Remarkably, M is independent of N, the dimensionality of the signal set
7. Subsequent work showed that it is straightforward to compute such embeddings
using a linear mapping. In particular, the function f(x) = Ax, where A isan M x N
matrix whose entries are drawn randomly from specific distributions, satisfies (2)
for all x,x’ € . with probability 1 — clelogL_CzszM , for some universal constants
c1, ¢z, where the probability is with respect to the measure of A. Commonly used
distributions for the entries of A are i.i.d. Gaussian, i.i.d. Rademacher, or i.i.d.
uniform [1, 25]. More recent work has shown that the embedding dimensionality
M = O(82log L) is also necessary, making these constructions tight [38].

Most proofs involve constructing a randomized map such that (1) holds with very
high probability on a pair of points x,x’ € .. Using a concentration of measure
argument, such as Hoeffding’s inequality or a Chernoff bound, it can typically be
shown that the guarantee fails with probability that decays exponentially with the
number of measurements, i.e., with the dimensionality of the embedding space M =

ITechnically, we could incorporate g(-) into d.s~ (-, *) and remove it from this definition. However,
we choose to make it explicit here and consider it a distortion to be explicitly analyzed. In an abuse
of nomenclature, we generally refer to d(-, -) as distance, even if in some cases it is not strictly a
distance metric but might be an inner product, or another geometric quantity of interest.
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dim(%#’). In other words, the embedding fails on a pair of points with probability
bounded by £2(e "?9)), where w(§, €) is an increasing function of € and § that
quantifies the concentration of measure exhibited by the randomized construction.

Once the embedding guarantee is established for a pair of signals, a union bound
or chaining argument can be used to extend it to a finite set of signals. If the set .
is finite, containing L points, then the probability that the embedding fails is upper
bounded by 2(L?e™Mv09)) = Q(e2loel=Mw(B.9)) which decreases exponentially
with M, as long as M = O(logL).

More recently, in the context of compressive sensing, such linear embeddings
have been shown to embed infinite sets of signals. For example, the restricted
isometry property (RIP) is an embedding of K-sparse signals and has been shown
to be achievable with M = O(K log %) [10, 23, 50]. A near equivalence of RIP with
the JL lemma has also been established: an RIP matrix with its columns randomly
multiplied with +1 will satisfy the JL lemma [41]. Similar properties have been
shown for other signal set models, such as more general unions of subspaces and
manifolds [9, 11, 12, 21, 28, 29, 50].

Typically, these generalizations are established by first proving that the embed-
ding holds in a sufficiently dense point cloud on the signal set and exploiting
linearity and smoothness to extend it to all the points of the set. The resulting
guarantee uses the covering number of the set, i.e., its Kolmogorov complexity—
instead of the number of points L—to measure the complexity of the set and
determine the dimensionality required of the projection. A fairly general exposition
of this approach, as well as generalizations for non-smooth embedding maps can be
found in [20].

An alternative characterization of the complexity of . is its Gaussian width.

Definition 2 Given a set . C RV, the quantity
W) =E { sup gTX} , 3)
X€.¥

where the expectation is taken over g ~ .A47(0,I) is called the Gaussian width of .7 .

The Gaussian width of a set can sometimes be easier to characterize than its
Kolmogorov complexity, although the latter can be bounded by the former [28].

Beyond the discussion above, in the remainder of this chapter, we defer on the
rigorous development required to extend embedding guarantees to hold for infinite
signal sets. Nevertheless, in many cases we will mention if such generalizations are
possible or exist in the literature.

2.2 Embedding Map Design

One of the key elements in the embedding definition (1) is the embedding map g(-).
The JL guarantee in (2) implies an embedding map g(d) = d, that does not distort
the distance measure. However, it is often desirable to introduce such distortions
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and understand their effect. For example, if the interest is in preserving only local
distances, the distance map can be used to describe and characterize the distance
preserving properties of the embedding [17, 19, 20].

A general approach to embedding design would use g(-) to derive an embedding
function f(-), possibly randomized, that achieves (1) given sufficient dimensionality
of the embedding space % . Unfortunately, such a design is still an open problem.
Furthermore, an arbitrary g(-) is not always possible. For example, any realizable
g(-) satisfies a generalized subadditivity property [20].

Instead, [20] demonstrates a general probabilistic approach to designing the
embedding function f(-) and deriving the embedding map. The mapping function
takes the formy = f(x) = h(Ax+w), where the elements of A are randomly chosen
from an i.i.d. distribution and the elements of the dither w are chosen from an i.i.d.
distribution uniform in [0, 1). The embedding is designed through A(z), a bounded
periodic scalar function with period 1, applied element-wise to its argument. The
Fourier series coefficients of A(-) are denoted using Hy and i = sup, h(t) — inf, h(%).

Theorem 2 ([20], Thm.4.1) Consider a set .~ of Q points in RN, measured using
y = h(Ax + w), with A, w, and h(t) as above. With probability greater than 1 —

€

2
1897 2Miq yhe following holds
1 12
gd)—e = —y=y, = 2@ +e @
for all pairs x,x' € . and their corresponding measurements'y,y', where

g(d) =2 |He (1 — ¢u(2k|d)) ©)
k

defines the distance map of the embedding.

In the theorem above, ¢;(I|d) is a characteristic function depending on the density
of A. For example, if the elements of A are drawn from an i.i.d. Normal distribution,
then the characteristic function is ¢(§|d) = ¢y 00202y (§) = 10045 and the
distance map becomes

gld) =2 ) |Hi? (1= 27, (©)
k

with d measuring the £, distance.

If, instead, elements of A are drawn from an i.i.d. Cauchy distribution with
zero location parameter and scale parameter y, then the characteristic function is
¢i(€]d) = e~ and the corresponding distance map is

g(d) =2 |Hi*(1 — 77 %), (7
k

with d in this case measuring the £, distance.
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The guarantee in Thm. 2 is about embedding the £; or ¢, distance into £3. By
taking the square root, the guarantee can be provided for embedding into ¢, instead.

Corollary 1 ([20], Cor.4.1) Consider the signal set ., defined and measured as
4
in Thm. 2. With probability greater than 1 — e QizM(E) the following holds

_ 1 o~
ﬂm—es;ﬁmy—ymsgwy+e ®)

for all pairs x, X' € . and their corresponding measurements'y,y', where g(d) =

V&(a).

2.3 Distance-preserving properties of the map

Typically, when designing a distance map, it is desirable to understand how accurate
the embedding is in representing distances. In particular, embedding guarantees, as
stated above and in the literature, bound how much the distance in the embedding
space might deviate from the true distance between the signals.

However, in practice, embeddings are used as a proxy for the true distance of the
signals. Given two signals, x and x’, and their embedding distance, dy (f (x),f (X)),
a natural estimate of the true signal distance is [19, 20]

dy =g (dy (F®).f(X))), )

assuming g(-) is differentiable. Thus, the approximation guarantee is often more
useful when stated with respect to the estimate, d ».

€+ 8dy (f(x).f(x'))
g (dv) '

An important component of this guarantee is its dependence on the gradient of
the embedding map g'(-) around the distance of the signals. In regions where the
embedding map is flatter, the ambiguity is higher. In hindsight, this is expected:
estimates of a variable observed through a non-linear map and observation ambigu-
ity are less accurate at regions of the map that are flatter.

Figure 2 demonstrates this effect using a (g, 0, €) embedding as an example. The
solid line in the left figure depicts the distance map g(-). The two dashed lines depict
the upper and lower bounds of the guarantee, separated by € above and below the
distance map. In other words, the vertical ambiguity is constant across the range of
d.». The figure also shows two example points on which the embedding distance is
computed, dy and d',. The corresponding estimates of the true signal distance are
g ' (dy) and g7 (d’y), respectively. However, the ambiguity of these estimates is

[dy —do(x,x)| < (10)



162 P.T. Boufounos et al.

Embedding ¢3 Distances

1
0.0 0.5 1.0 1.5 2.0
Signal /5 Distances

Fig. 2 Effect of the gradient of the distance map on the distance ambiguity of the embedding.
(left) Even though the vertical ambiguity is constant across the distance map, the corresponding
horizontal ambiguity varies significantly, depending on the slope of the map. (right) Example
embedding exhibiting similar behavior as described by the map on the left.

significantly higher for dy than for d’,, because of the difference in slope of g(-) at
the corresponding points. Simulations using an actual embedding design exhibiting
the same behavior are shown on the right-hand side.

Embedding maps designed using the approach in Sec. 2.2 eventually saturate and
become flat beyond a certain signal distance. Thus, the ambiguity becomes infinite;
the embedding does not preserve distances beyond a range. Given an embedding
map h(-), this range can be controlled by the scaling parameters of the distribution
of A, such as o and y in (6) and (7), respectively. The same parameters also scale
the gradient of the embedding, thus controlling the ambiguity, as described in (10).
In other words, varying the scale parameters is equivalent to navigating a trade-
off between smaller ambiguity while representing a smaller range of distances, and
greater ambiguity while representing a larger range of distances. In fact, similar
trade-offs are possible with any embedding function, simply by scaling the argument
and replacing f(x) with f(ax) for any a > 0.

The distance preserving ambiguity described above characterizes distance preser-
vation through g(-) along a full range of distances. However, it is often sufficient
to only guarantee the locality of the embedding, i.e., that small distances remain
small and larger distances do not become too small. Recent work has attempted
to define locality in the context of binary embeddings [46, Def.2.3], as well as,
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implicitly, in the context of learning an embedding for classification [31, Eq. (6)].
In the same spirit, guarantees on using JL embeddings for classification have been
recently established, assuming specific signal models. In particular, in [7] it is shown
that separated convex ellipsoids remain separated when randomly projected to a
space with sufficiently high dimensionality. However, an appropriate and useful
characterization of locality is still a pending question.

One important property of the embeddings described so far is their universality.
Their randomized construction does not take the data into account. The guarantees
hold with very high probability on any set of points . to be embedded, as long as
the set complexity is known. Thus, there is no adversarial selection of the data for
which the embedding will fail, assuming the data set is generated independently of
the embedding. The next section explores embeddings designed while taking sample
data into account, their advantages, as well as their disadvantages.

2.4 Learning the Embedding Map

A key advantage of the embeddings described above is their universality and
the simplicity in computing them. However, it is often advantageous to tune the
embedding to an application using available training data. The main assumption is
that the training data is representative of the data to be observed by the application;
tuning the embedding to the data should provide an embedding that performs well
on all future data on which the embedding will be used.

Inspired by the JL lemma, recent work [31, 54] demonstrates that given a set of
Lpoints .¥ = {x; € RV, i = 1,..., L} as training data, it is possible to formulate
a convex optimization problem and determine a linear embedding map, f(x) = AX,
that preserves the squared Euclidean distance. The resulting map provides a (g;, 6, 0)
embedding. The problem can be formulated to either minimize the dimensionality
of the embedding space under a fixed multiplicative distortion § or minimize the
distortion given a fixed embedding dimensionality.

In formulating the problem, the objects of interest are not the signals x; but
their differences x; — x;. Thanks to the linearity of the map, to guarantee a 1 & §
multiplicative ambiguity it is sufficient to guarantee a § distortion of the normalized

difference ||;i__;f||2. Thus, the formulation starts with the secant set
i—Xj

X,‘—X]‘

2 = Vij = ,Xi,XjEy,l.#j (11)

lIxi — Xll2
The map f(x) = Ax satisfies the guarantee for all v;; € 2 if
[lAv; 13 = [Ivyll3] < 8, (12)

where, by construction, ||v;[|5 = 1 for all i, ;.
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The squared norm can be expressed as a quadratic form [|Avy[3 = vjATAv;
which is linear in P = AT A. Furthermore, if A € R¥*V_ then P, which is positive
semidefinite, has rank(P) = M. Thus, the P corresponding to the embedding that
satisfies (12) for all pairs i # j with the minimum number of measurements can be
found using the following optimization [31]:

P =arg min rank(P) (13)
PT=P>0
subject to |V5PVU — 1] <6 foralli#j.
This is a non-convex and combinatorially complex program. To solve it, [31]

proposes the relaxation of the rank using the nuclear norm, which results in the
following polynomial-time semidefinite program:

/I;zarg min ||P||« (14)
PT’=P>0
subject to |V§PV,~J' — 1| <éforalli#j.

Alternatively, [54] modifies the formulation to determine the optimal § using
a fixed number of measurements M, also adding an energy constraint on the
coefficients of the matrix A. The resulting problem constrains both the rank and
the trace norm of P.

~

P =arg min max |V§PV,']- -1 (15)
PT=P>0 i#
subject to rank(P) < M and ||P||« < b, (16)

where b is the energy constraint. Using a game-theoretic formulation, [54] also
derives an algorithm to solve (16) with performance guarantees. It is also shown
that the performance of the embedding can be guaranteed on new data, similar to
the training set, using a continuity argument similar to the one in [10].

As mentioned in Sec. 2.3, a notion of semantic locality is also introduced in [31],
in the context of classification. In particular, for elements i and j from the training
data that belong in the same class, the embedding should guarantee that their
distances do not increase significantly but does not need to limit how much they
may shrink. On the other hand, if elements i and j belong to different classes, the
embedding should guarantee that their distances do not shrink significantly but
may allow them to grow unconstrained. Under those conditions, the embedding
guarantees that each cluster stays together, even though two different clusters may
separate from each other. Thus, classification is still possible in the embedded data.
The resulting optimization is less constrained than (15).
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P= arg min ||P|« (I7)
P’ =P>0

subject to Vngij > 1 —§ for all i # j in different classes.

ViTij,j < 1+ § for all i # j in the same class.

In all the formulations above, A can be determined from P using a simple
factorization. For example, the economy-sized singular value decomposition is
P = UXU’, where U € R¥M has orthonormal columns and ¥ € RM*M ig
diagonal. The embedding can be computed using A=Jx'/2r,

3 Preserving Inner Products, Angles, and Correlations

The embeddings discussed in the previous section are designed to preserve distances
between signals in the embedding space. However, in a number of problems, inner
products and correlations should be preserved instead. In this section we consider
how distance embeddings can be used to preserve regular inner products and kernel
inner products, as well as how binary and phase embeddings can be used to preserve
normalized correlations, i.e., angles, without preserving distances.

3.1 Inner Product Embeddings

When the signal and the embedding spaces are inner product spaces, then the inner
product can be determined using the signal distances that are preserved. The inner
product of the measurements (y,y’) can be derived from the ¢3 difference of the
measurements, ||y —y’||3. Specifically,

_ IylE+ Y15 =Ny =I5
2 :

ly =¥l = Iyl3 + 1y = 2{y.¥') = (v.¥)
(18)

When all these norms are preserved by the embedding, it is straightforward to show
that JL-type random projections satisfy [2]

[y.¥') — (x.x)| < 8(lIx[I3 + IX'[I3) (19)

With a little more care, exploiting the linearity of the embedding, a tighter bound
can be derived [27]

ly.y) = (v.¥)| < 8lIxl2lIX'|2 (20)
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In addition to standard inner products, appropriately designed embeddings
can also be used to approximate kernel inner products. Kernel inner product
embeddings were first introduced in [51] and significantly generalized in [17, 20].
Common kernels include the Gaussian K(x,x') = eIxX13/9" and the Laplacian
K(x,x') = e’ Since computing those kernels relies on computing distances,
the development in Sec.1 could be used to directly estimate the distance and
compute the kernel. However, the resulting ambiguity would manifest itself in the
exponent, making it difficult to characterize and control.

Instead, guarantees based on computing the inner product in the embedding
domain can be derived, exploiting the design approach in Sec.2.2. Similarly to
standard inner products, establishing the guarantees relies on (18). However, the
difficulty lies in bounding [ly||3 which is necessary, in addition to the distance
between y and y'. When using the embedding design in Thm. 2, it is straightforward
to show that, in the embedding space,

1
DHP —e < V3 < DO IHP + e @n
k k

€2
with probability greater than 1 — 2¢'°€27"%  Thus, if dy (y,y') = |ly — ¥'|I3 in

Def. 1, and substituting (4) and (21) in (18), we can show that the embedding can be
designed to approximate a kernel.

Theorem 3 (Thm. 4.4 in [20]) Consider a set .¥ of Q points in RN, measured
using y = h(Ax + w), with A, w, and h(t) as in Thm. 2. With probability greater

€2
than 1 — &' 0=5M the following holds
1
K(d)—e = {y.¥) =K(d) + ¢ (22)

for all pairs x,x' € . and their corresponding measurements'y,y', where

K(d) =" |H*¢i(k|d) (23)

k

defines the kernel of the embedding.

Thus, to embed a Gaussian kernel and linear combinations of it, it suffices to
draw the elements of A from an i.i.d. Gaussian distribution. Alternatively, to embed
a Laplacian kernel and linear combinations of it, the elements of A should be drawn
from a Cauchy distribution. The resulting kernels will be described by plugging the
corresponding ¢ (-|d) in (23), in a similar manner as in (6) and (7):

K(d) — Z |Hk|2g—2(n6dk)2 (24)
k

K(d) = |H[e 7 (25)
k
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where A is generated using an i.i.d. zero-mean Gaussian distribution with variance
o2 or an i.i.d. Cauchy distribution with scale parameter y and d is the {5 or the £,
distance between signals, respectively.

3.2 Angle Embeddings

Another geometric quantity of interest in a number of applications is the angle
between signals.

1 X/
d,(x,x') = —arccos ﬂ (26)
m [Ix[l211x"]]2

The cosine of the angle is the correlation coefficient of the signals, i.e., their inner
product normalized by their respective norms.

Since JL-type embeddings preserve distances and inner products, it is expected
that they should preserve angles as well. A tighter bound than a naive application
of the definition and the bounds of the previous section was shown in [30] in the
context of sparse signals and the RIP. Specifically,

Theorem 4 (Adapted from Thm. 1 and Remark 1 in [30]) Consider an embed-
ding satisfying the RIP for K-sparse vectors with RIP constant § < 1/3. For any
K-sparse x and X' with the same support, such that d,(x,x’) < 1/2 then the angle
between the embedded vectors 'y, and 'y’ satisfies

— V38 <d (x,X) —d(y,y) <38 (27)
= |d (x.x) —d(y.y)| < V35 (28)

This result can be used to derive a generalized notion of the RIP, linking the inner
product of the embeddings with the geometry of the signals in the signal space [30,
Cor. 1].

More recently, an embedding was derived in the context of 1-bit CS, explicitly
preserving only angles of signals, not their inner products or magnitudes [37]. In
particular, the embedding map

y =/(x) = sign(Ax), (29)

where A has i.i.d. Normally distributed, entries maps the signals to an M-
dimensional binary space, denoted %", in which the normalized Hamming
distance, defined as dy(y.y') = (3_,, ym ® ¥,,)/M, is the natural metric.

In [37] it is shown that (29) preserves the angle between signals in the
normalized Hamming distance between the measurements, making it a Binary e-
stable embedding
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Definition 3 Lete € [0, 1) amappingf : . — %M is a Binary e-stable embedding
(BeSE) of . if for all x,x’ € .7,

dé (X’ X/) —€= dH(y7 y/) = dl (Xv X/) + €. (30)

In other words, a BeSE is a (g;, 0, €) embedding according to Def. 1, withd o = d,
and dy = dy. While the result has been developed for K-sparse vectors, it
is straightforward to show that it holds for finite sets of L points using M =
O(e%logL).

Theorem 5 (Adapted from Thm. 3 in [37]) Let A € RN be a matrix generated
from an i.i.d. Normal distribution and . be a set of L points. The map (29) is a
BeSE of . with probability greater than 1 — 2¢*(°2 P=e’M)

Subsequent work [3, 46—49] demonstrated variations of this result for infinite
signal sets, as a function of their mean width, with varying dependence on e.
Furthermore, with some constraints on the signals, it can also be shown for more
general matrix ensembles, with elements drawn from subgaussian distributions.

The generalization of the sign function to complex numbers is the phase. As
expected in hindsight, similar to sign measurements, phase measurements of the
form

y = Z(Ax) €29

can also provide stable angle embeddings [14—16]. In particular, if two signals x, x’
in a finite set # of size L are measured with a complex random Gaussian matrix,
the expected value of the m™ element of the measured phase difference is equal to

E {)4 (ei(y’”_y;7)> H =nd/(x,X), (32)

Note that this way of calculating the phase difference naturally takes phase wrapping
into account.

Similarly to the concentration of measure proofs so far, Hoeffding’s inequality
bounds the probability that the average of M random variables |/(e/0mn)|
deviates from (32). A natural distance metric in the embedding space is

phdse(y Y) - Z‘ z(ym—y,,,) ‘ (33)

Using the union bound on L? point pairs, a stable embedding guarantee follows

Theorem 6 ([16]) Consider a finite set . of L points measured using (31), with
A € CM™*N consisting of i.i.d elements drawn from the standard complex normal
distribution. With probability greater than 1 — 262108 L=2*M fp, following holds for
all x,x' € . and corresponding measurements'y,y € RM.
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Fig. 3 Comparison of BeSE 1
(red) with continuous angle
embedding (blue) for the
same number of
measurements. The
continuous embedding
becomes tighter as signals
become more similar. As
expected, the binary
embedding has higher
ambiguity for the same
number of measurements.

- Binary embedding
- Angle embedding
0.5 1
Signal Distance

Embedding Distance

|dphase (yv y/) - dé (X7 X/)| <€ (34)

A complex-valued measurement matrix A is necessary here. If A only contains
real elements, the information in y is essentially the sign of the measurement—0 and
m for positive and negative measurements, respectively. In that case, the embed-
ding becomes a BeSE. Furthermore, even though the embedding has an additive
ambiguity—i.e., is a (g, 0, €) embedding—it is conjectured that a multiplicative
ambiguity guarantee should be possible to derive—i.e., that it is, in fact, a (g;, 8, 0)
embedding [16].

Figure 3 compares the performance of this embedding with the BeSE, and
demonstrates that, as expected, it exhibits lower ambiguity for the same number of
measurements M. Furthermore, it shows that the becomes tighter as signals become
similar, supporting the conjecture that a multiplicative-only ambiguity exists.

4 Quantized Embeddings

Quite frequently, the embedding is performed not simply as a dimensionality
reduction, but as a compression method. In those cases, the quantity of interest is
not the embedding dimensionality, but the number of bits it uses. Therefore, it is
necessary to understand how quantization affects the embedding performance, and
what the quantizer design trade-offs are.

4.1 Quantization of Continuous Embeddings

Although quantization of some embeddings can be analyzed using the periodic
embedding framework we describe above, it is often more convenient, especially in
the case of high-rate quantization, to consider it separately, as an additional step after
the projection. The following development closely follows [20] and the references
within.
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In particular, consider a (g, §, €) embedding which is subsequently quantized
using an M-dimensional vector quantizer Q(-). We assume the quantization error
is bounded, i.e., d(Q(x),x) < Ep. The triangle inequality, |dy (f(x),f(W)) —
dyw (Q(f(x)), O(f(W)))| < 2Ey, implies that the quantized embedding guarantee
becomes a (g, §, € + 2Ep) embedding, with guarantee

(1 =08)g(ds(x,y)) —€ —2Ep
< dy (QU (%)), Q(f(y))) =
(1+8)g(ds(x.y)) + € +2Eg. (35)

Theorem 7 (Thm. 3.3 in [20]) Consider a (g, 8, €) embedding f(-) and a quantizer
QO(:) with worst case quantization error Eg, then the quantized embedding, Q(f(-)),
isa(g,d,€ + 2Ep) embedding.

In the specific case of a uniform scalar quantizer with quantization interval A,
the M-dimensional quantization £, error is bounded by E, < VMA /2, assuming
the quantizer is designed such that it does not saturate or such that the saturation
error is negligible. The interval of the quantizer is a function of the number of bits
B used per coefficient A = 278¥1S, where § is the saturation level of the quantizer.
Given a fixed rate to be used by the embedding, R = MB, the guarantee becomes

(1-8)g(ds(x,y) —e—27 1+ V/MS
< 10(Fx) — Q(F ()2 <
(1+8)g(ds(x.y) +e+2 0T J/MS. (36)

Note that the ~/M factor can often be removed, depending on the normalization of
the embedding.

Of course, £, is not always the appropriate fidelity metric. If the d(-,-)
corresponds to the £; distance, the quantization error is bounded by Eyp < MA/2.
Again, with care in the normalization, the M factor can be removed. If, instead, the
£~ norm is desired, the quantization error is bounded by Ey < A/2.

One of the issues to consider in designing quantized embeddings using a uniform
scalar quantizer is the trade-off between the number of bits per dimension and the
total number of dimensions used. Since R = MB, increasing the number of bits
per dimension B under a fixed bit budget R requires decreasing the number of
dimensions M. While the former reduces the error due to quantization, the latter
will typically increase the uncertainty in the embedding by increasing § and €.

In the case of randomized embeddings, this trade-off can be quantified through
the function w(e,§). Given a fixed probability lower bound to guarantee the
embedding, then M = £2(1/w(e, 8)). Since w(-,-) is an increasing function of €
and §, which quantify the ambiguity of the embedding, reducing M increases this
ambiguity. On the other hand, the quantization ambiguity, given by 2~ t25M
decreases with M.
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Fig. 4 Illustration of the bits vs. measurements trade-off for quantized JL embeddings. (a) A
sketch of the trade-off between bits per coefficient and embedding dimension given a fixed bit-
rate for quantized JL embeddings. The error due to the JL ambiguity § also depends on the norm of
the signals being compared, thus affecting the true optimum in practice. Constants were arbitrarily
selected for illustration purposes; the true optimum also depends on the true value of the constants.
(b) Three different simulation examples using the same M = 256, quantized at 2, 4, and 32 bits
per dimension, consuming R = 512, 1024, and 8192 bits, respectively. As expected, the 32 bit
embedding performs best, but at a significant rate penalty. (c) Three simulation examples using rate
R = 256, quantized at 2, 4, and 32 bits per dimension, requiring M = 128, 64, and 8 dimensions,
respectively. As evident, quantizing at 32 bits per coefficient is now suboptimal; the JL-type error
due to § dominates. In this example, 4 bits per coefficient quantization seems to provide the best
trade-off overall.

This trade-off is explored, for example, in the context of quantized JL. embed-
dings in [43, 53]. In particular, randomly generated JL embeddings exhibit ambigu-
ity § ~ 1/+/M. On the other hand, the quantization error scales as Eg ~278 ~
271/M " An illustrative example is shown in Figure 4(a): as more bits are used per
measurement the ambiguity due to quantization decreases; since fewer measure-
ments are used, the ambiguity due to the embedding’s § increases. Figure 4(b)
and (c) further demonstrates this using a simulation experiment. In practice, the
optimum depends on assumptions on the signal distance and assumptions about the
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constants of proportionality. The same issue exists for non-uniform quantizers and
for vector quantizers, manifested with different constants but with the same order
of magnitude effects (e.g., see [36]), as well as other embeddings, such as phase
embeddings [14]. Unfortunately, other than experimentation with sample data, there
is no known principled way to determine the optimal point in the trade-off.

In addition to the generic guarantees above, it is often possible to provide more
explicit guarantees under certain conditions. For example, the 1-bit embedding
guarantees in Sec. 3.2 were explicitly established from the embedding map. More
recently, [34] draws similarities with the Buffon’s needle problem to provide
a tighter bound on the ¢; embedding distance of quantized dithered JL-type
embeddings

Theorem 8 (Adapted from Prop.2 in [34]) Let ./ C RY be a set of L points.
Consider the map

y=f(x) = Q(Ax + W), (37)

where A € RN has elements drawn from an i.i.d., standard Normal distribution,
the dither w € RM has elements drawn from an i.i.d. distribution, uniform in [0, €],
and Q¢ () is an infinite uniform quantizer with interval €.

Given0 < § < 1, € > 0, and M > C872L, then, with probability greater than
1 — ¢“"M the map (37) satisfies

/

C
(1=8)lx —x[l2 —ces < A—/IHY—}’/lll S+ 8Ix—x2+ces  (38)

for all pairs of points x,x' € ..

A key insight in this result is the switch to the £; norm in the embedding space,
instead of the £, norm used by the JL lemma and earlier results.

4.2 Universal Quantization and Embeddings

In contrast to conventional quantization analysis, universal scalar quantization, first
introduced in [13], fundamentally revisits scalar quantization and redesigns the
quantizer to have non-contiguous quantization regions. Unfortunately the discontin-
uous quantization regions render some of the tools introduced in Sec. 4 impractical.
Fortunately, analysis based on the design described in Sec. 2.2 can be used instead.

A universal embedding also relies on a JL-style projection, followed by scaling,
dithering, and scalar quantization:

y =f(x) = 0(A™' (Ax + w)), (39)
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Fig. 5 (a) This non-monotonic quantization function Q(-) allows for universal rate-efficient
scalar quantization. This function is equivalent to using a classical multibit scalar quantizer, and
preserving only the least significant bits while discarding all other bits. 1-bit shown on top, multi-bit
shown on bottom (b) The embedding map g(d) and its bounds produced by the 1-bit quantization
function in (a). (c) Experimental verification of the embedding for small and large A at high (left)
and low (right) bit-rates.

where A is a M x N random matrix with .4 (0, o%)-distributed, i.i.d. elements, A~! a
scaling factor, w a length-M dither vector with i.i.d. elements, uniformly distributed
in [0, 22 A], and Q(-) a B-bit scalar quantizer operating element-wise on its input.
The key component is a modified B-bit scalar quantizer. Fitting the analysis of
Thm. 2, the quantizer is designed to be a periodic function with non-contiguous
quantization intervals, as shown in Figure 5(a) for B = 1 and 2. The quantizer can
be thought of as a regular uniform quantizer, computing a multi-bit representation
of a signal and preserving only the least significant bits (LSB) of the representation.
For example, for a 1-bit quantizer, scalar values in [2/,2] + 1) quantize to 1 and
scalar values in [2] + 1,2(/ 4 1)), for any integer /, quantize to 0. If Q(-) is a 1-bit
quantizer, this method encodes using as many bits as the rows of A, i.e., M bits.
This form of quantization, first proposed in [13] in the context of frame
expansions and first used in an embedding in [18] is extensively analyzed in [20].

Theorem 9 (Adapted from Thm. 3.2 in [18]) Consider a set ¥ C RY with L
points embedded using (39), as described above. For all x,xX' € .7, the embedding
satisfies

gx—=yl) —e<du(y.y) <g(x—yll,) +e. (40)

with probability 1 — 2¢*1°¢ L=2EM ity respect to the measure of A and w. In (40),
dy(-,-) is the Hamming distance of the embedded signals, the function f(-) is as
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specified in (39), and g(d) is the map

| (e’

g =5-) ————. 41
2 ;) (m(i +1/2))°
Furthermore, the distance map g(d) can be bounded using
(d) > 1 1 _(«”/%2)2 42)
s =5"3° ’
1 4 _( mad
o) < 2 — 2 () 43)
2 n?

(d) < mi 20d 1 (a4
min —— =],

s = Vz a2

as shown in Figure 5(b).

The upper bound (44) also provides a very good approximation of the embed-
ding, as also evident in the figure. The map is approximately linear for small d and
becomes constant, equal to 1/2, exponentially fast as d exceeds a threshold Dy. The
slope of the linear section is determined by the parameter ratio o/ A, thus specifying
the distance threshold Dy ~ A./7/2+/20. In other words, the embedding ensures
that the Hamming distance of the embedded signals is approximately proportional to
the £, distance between the original signals, as long as that £, distance was smaller
than Dy. Distances greater than D, are shrunk to Hamming distance &~ 1/2. In other
words, the embedding can only reveal that the distance is greater than approximately
Dy but not how much greater.

This embedding enables a trade-off between the threshold Dy and the slope of
the linear part, which determines its ambiguity through (10). Assuming the linear
approximation in (44), it is straightforward to show that the ratio of the range
of distances preserved, as measured through Dy, to the ambiguity in preserving
distances in the linear part, as measured through (44) remains constant as the
embedding parameters A and o change keeping a fixed embedding dimension M,
and, therefore, a fixed rate R = M. In contrast to the trade-off depicted in Figure 4,
both Dy and the slope of the linear part are straightforward to compute and do not
depend on difficult-to-characterize constants.

Figure 5(c) illustrates how the embedding behaves in simulations for smaller
(red) and larger (blue) A and for higher (left) and lower (right) bit-rates. The figure
plots the embedding (Hamming) distance as a function of the signal distance for
randomly generated pairs of signals. The thickness of the curve is quantified by e,
whereas the slope of the upward sloping part is quantified by A.

In addition to 1-bit universal embedding for finite signal sets, [20] generalizes
the guarantees to infinite sets and to multi-bit embeddings. Of course, multibit
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embeddings re-introduce a similar trade-off as in Figure4, which has not been
explored in the literature.

In addition to the embedding properties, information-theoretic arguments can be
used to guarantee that universal embeddings can preserve the query privacy [18, 39].
This can be a very useful property in implementing secure protocols for signal-based
querying and retrieval in privacy-sensitive applications [52].

5 Discussion

As evident from the discussion above, embeddings can play a significant role in
modern data processing systems. In this chapter, we have only presented a selective
overview of the area, some important results, and pointers for further reading.
However, increasing demand for efficient data processing has reinvigorated the field,
leading to a flurry of new results in a number of interesting directions.

While we have only discussed £, distance and angle embeddings in their
various forms, there exist embeddings for more exotic distance metrics, such as
the edit distance [6, 8, 42, 44]. Furthermore, while JL. embeddings and the RIP
preserve £, distances, there is a large body of work in preserving other similarity
measurements, such as £, distances for various p’s [32, 35, 36, 45, 46]. It should
be noted that in some cases, such as embedding the £; distance into a smaller
£, space, such embeddings have been proven impossible [22]. Still, even in such
cases, embeddings have been developed that hold with high, but not exponentially
decreasing, probability [32].

A principal motivation for dimensionality reduction is often a reduction in
computational complexity. However, the cost of storing and using a dense, fully
randomized, embedding matrix can often be prohibitive. Fast transforms have been
developed in a number of cases [4, 24, 57], enabling efficient computation of the
transform, often without explicitly storing the matrix but using an algorithm, such
as the fast Fourier transform (FFT). Still, even when the computation is efficient and
the cost of storing the matrix is mitigated, the complexity of using the embedding
for very large data retrieval can sometimes be daunting. While the dimensionality
reduction definitely helps, the amount of the data, i.e., the number of data points,
can be such that search is impossible even if the complexity is linear in the amount
of data.

In such cases, locality-sensitive hashing (LSH) methods—which significantly
reduce the computational complexity of near-neighbor computation—can be very
helpful [5, 26, 33]. These methods are intimately connected to randomized embed-
dings. The LSH literature shares a lot of the tools, especially with quantized
embeddings, such as randomized projections, dithering, and quantization. The goal,
however, is different. Given a query point, LSH will return its near neighbors very
efficiently, using O(1) computation. This efficiency comes at a cost: no attempt is
made to represent the distances between neighbors. When LSH is used to compare
signals it only provides a binary decision, namely whether the distance between the
signals is smaller than a radius or not. There is no guarantee that further information
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will be preserved. Thus, LSH may not be suitable for applications that require more
accurate distance information. Still, the similarity of the methods suggests that some
of the quantized embedding designs can be used as LSH functions. While there are
examples of such use, [39], this is still an underdeveloped connection, especially
for recent embedding designs. Techniques that learn a hash, such as spectral
hashing [56] and LDAHash[55], also have strong similarities with embeddings and
embedding learning.

Of course, this is a rich topic and it is impossible to exhaustively cover in this
chapter. Our hope is that our development exposes the basic principles, some of the
foundational work, and some interesting recent developments. Our goal is to expose
embeddings to a wider community, establishing them as an important tool, essential
in the belt of any data scientist.
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Distributed Noise-Shaping Quantization:
II. Classical Frames

Evan Chou and C. Sinan Giintiirk

Abstract This chapter constitutes the second part in a series of papers on dis-
tributed noise-shaping quantization. In the first part, the main concept of distributed
noise shaping was introduced and the performance of distributed beta encoding
coupled with reconstruction via beta duals was analyzed for random frames (Chou
and Giintiirk, Constr Approx 44(1):1-22,2016). In this second part, the performance
of the same method is analyzed for several classical examples of deterministic
frames. Particular consideration is given to Fourier frames and frames used in
analog-to-digital conversion. It is shown in all these examples that entropic rate-
distortion performance is achievable.

Keywords Finite frames * quantization * A/D conversion * noise shaping * beta
encoding ¢ beta duals.

1 Introduction

The “analysis formulation” for the quantization problem (in short, the analysis
problem) associated to any given frame seeks to find out how well signals can be
approximated after quantizing signal measurements that are taken using this frame
(see, e.g., [9]). More concretely, let @ := (¢4)qe; be a (finite) frame in a real or
complex (finite dimensional) Hilbert space .7# with inner-product (-, -) and norm || -
I, and L > 2 be a given integer representing the number of quantization levels to be
used. The analysis distortion 2,(®, L) (see [6]) is formally defined by the quantity

X = Z‘h\”&

o€l

inf{ sup inf : (Yq) is any dual frame of @ and |&7| = L; .
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Here .o/ stands for the quantization alphabet, i.e. any subset of the underlying field
F (which equals R or C) of L elements.

As it was described in [6] (albeit with slightly differing notation), the analysis
distortion corresponds to a practical encoding-decoding scenario: The encoder
chooses o/ and quantizes the signal measurements ({x, ¢,))qes; to generate the
discrete output (¢y)qes in <7, knowing that the decoder will produce the approx-
imation ) g, ¥, where ¥ := (¥ )eer is some dual frame of @. In this sense, the
quantization alphabet ./ and the dual frame ¥ are available to both the encoder and
the decoder. .« and ¥ should be seen as system parameters which can be optimized
but must remain fixed for all signals x in the unit ball of .7°. The analysis distortion
then measures the best achievable reconstruction error bound (over all .27 and ¥)
that is valid uniformly for all x.

It is easy to see that the analysis distortion is invariant under scaling and unitary
transformations. More precisely, given any frame @ := (@y)ges in 7, unitary
transformation U : J# — %, and nonzero scalar ¢ € [F, we have

Du(cUD, L) = Do(®, L)

where cU® stands for the frame (cUgy )¢ in 745. Hence it is always possible to
reduce the discussion of the analysis distortion of frames to that of matrices (finite
or infinite) as it was done in [6] which focused on random matrices. In this paper it
will be more convenient for us to maintain the general framework of Hilbert spaces
to allow for the possibility of working with examples of frames that are not naturally
presented as matrices.

The rate-distortion performance of any quantization method is constrained by
universal entropic (or volumetric) bounds. For the analysis distortion, we have (see,
e.g., [6])

Du(®,L) > LN (1)

for all frames @ in R¢ of size |I| =: N, and all L. One of the main results of [6] is
that if the ¢, are chosen independently from the standard Gaussian distribution on
R4, then for any 1 > 0, the event

{@a(cb,L) < VAL~ forall 1L > 2} @)

holds with probability at least 1 — exp(—cn’N), provided d and N/d are sufficiently
large (depending only on 7). Of course, with the observation made in the previous
paragraph concerning unitary invariance, (1) and (2) continue to hold in any d-
dimensional real Hilbert space .7 where the standard Gaussian distribution may
be defined by means of any orthonormal basis of 7.

Complex Hilbert spaces were not studied in [6] but can be handled with relatively
straightforward modifications which we will introduce in this paper (see Section 2
and the Appendix). Note, in particular, that the universal lower bound (1) needs to be
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replaced by L™V/? for the complex case; this can be seen by porting the Lebesgue
measure on R? on to C¢ and repeating the volume-covering argument given in [6].

1.1 Statement of the Main Results

This is the second part in an ongoing series of works on distributed noise-shaping
quantization. In the first paper [6], the analysis distortion bound in (2) was achieved
by means of a general algorithmic framework called distributed noise-shaping,
and in particular, using the method of distributed beta encoding coupled with
reconstruction via beta duals. In this second paper we will apply this method to
some classical examples of deterministic frames.

The frames that we will consider in this paper fall into a general category we call
unitarily generated frames. In essence, this means that the index set / can be chosen

as Zy or Z depending on the size of the frame, and there exists a unitary operator U
on .7 such that

@n = Upn— 3)

for all n € 1. (See Section 4 for the technical definition.) Well-known examples that
fall into this category include Fourier frames, real harmonic frames, and frames of
(uniform) translates.

The main result of this paper in the case of unitarily generated frames of size
N in d dimensions, assuming N is a multiple of d and a certain technical condition
satisfied by Fourier frames, is that

L™Nd  ifF=RandL > 2,

W(P.L) < Nd~"-
Z(®.1) 5 (o) WL~/ if F = Cand L > 4,

“)

where c(¢g) is a constant that is independent of N and L (see Theorem 2).
Generically, ¢(¢o) is of order v/d. Note that the bound in (4) behaves better than
the one in (2), and considering (1), it is essentially optimal.

The case of infinite dimensional Hilbert spaces requires some modifications
and we only consider the classical problem of analog-to-digital conversion of
bandlimited functions via uniform sampling and reconstruction by interpolation.
With the help of the beta dual machinery, first we establish a new sampling theorem,
and then we show that for uniform sampling of real-valued bandlimited functions
with oversampling ratio A, the analysis distortion can be bounded by CAL™**!
which is the infinite dimensional analog of (4) (see Section 5).
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2 Background and Review of Methodology

In this section we will review the general theory of noise-shaping quantizers as well
as the particular method of distributed beta encoding and beta duals. Further details
on the methodology can be found in [6].

2.1 Basics of Noise Shaping for Frames

The main principle of noise-shaping quantization is to arrange for the quantization
error (the quantization “noise”) to be close to the kernel of the reconstruction
operator. For concreteness we assume here that [ is a finite index set, but the
principle extends to infinite dimensional cases with suitable modifications. Given
the measurements y, := (x,¢q), @ € I, of a signal x € JZ using a frame @ :=
(¢ )aer, a noise-shaping quantizer seeks to find a solution (i, ¢) to the equation

y—q=Hu (5)

where y := (y,) € F!, g :== (qu) € &', H : F' — T/ is a linear operator
called the “noise transfer operator” of the noise-shaping quantizer, and u € F’ is
an auxiliary variable, often called the “state vector.” Sigma-delta (X' A) modulators
constitute the most important example of traditional noise-shaping quantizers (see
[10] for an engineering perspective, [7, 8] for mathematical expositions, and [2, 9]
for applications to finite frames).

Given any dual frame ¥ := () of @, we then have

X — Z%xwa = Z(Hu)awa = Zua’wf/ (6)

o€l o€l a’el

where

%7/ = Z Ha,a”@”ﬁx

o€l

and H has the matrix representation (H, ). Noise-shaping quantizers are typically
designed to keep ||u#||co small. Ideally ||u||oo should be controlled independently of
|1]; such a scheme is called stable. With stability, the error representation (6) results
in the effective bound

< Nulloo 1™ leso 1y ©)

X = ZQQI//O(

o€l
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where W : {*(I) — 7 is the operator given by

v (u) = Zuaw(f.

o€l

Picking an orthogonal basis for ¢, we may identify the frame ¥ with a matrix
(which we may also denote by ¥) whose columns consist of the coefficients of ¥/,
in this basis. Then we have ¥# = WH and the operator norm || ¥ ||yoc (1) 2 equals
the matrix norm ||V H || so—2-

With the objective of minimizing the error bound (7), the main question is then
how to choose H and the dual frame ¥ while ensuring stability of u. In the next
subsection we will review a particular choice of H and ¥ that was proposed in
[6], namely the noise transfer operator of distributed beta encoding and the beta
dual of @, respectively. To ensure stability, we will employ the common toolkit
known as the greedy quantizer, which was also used in [6]. The small but necessary
modifications for complex-valued measurements are explained in the Appendix
where a general form of the greedy quantizer which results in some additional
improvements is also given.

2.2 Distributed Beta Encoding and Beta Duals of Frames

For any given frame @ := (¢q)oer in S, pick a partition [T := (Iy, ..., [,—1) of I
where N := |I| > p > d := dim(%¢), and for each j in

p]:=A{0,....p—1},

pick a scalar 8; € I with magnitude at least 1 and a bijection o; : [N;] — I; where
N; denotes |/;|. Define

g = Z B " wo,my: J € Ip]-

nelN]

Suppose (¢ j)g_l is itself a frame for 5. Let (nj)g_l be any dual frame of (Q)g_1
and define a new collection of vectors ¥ := (Vg )aes Via

WOj(n) = ﬂj_nr]j; ne []vj]9 .] € [p]

Then ¥ is a dual of @ because

Z<x7 Qoot)‘/fa = Z Z <x7 ﬁao_,-(n))l/fa_,-(n)

ael jelp) nelNy]



184 E. Chou and C.S. Giintiirk

=YD B o)

J€lp] neNj]

=Y (.4

Jj€lp]
=x.

We assume that (ni)g_l is chosen to be the canonical dual of (Cj)g_l, denoted
by (E_;)g_l. Suppressing the underlying partition I7, the bijections (o;), and the
values (B;), we then call ¥ the beta dual of ®@. We also say that (Zj)g_l is the
beta condensation of @. (See [6] for a more general definition of condensation of
frames.)

The concept of beta duals is inherently tied with what we call distributed beta
encoding. This is a noise-shaping quantization method which is carried out via the
system of difference equations

Yoyin) — Gojn) = Uoy(m) — Bjlhoyin—1)» 1 € [Nj], j € [p], (®)

where for notational convenience we set Ugi(—1) ‘= 0. In other words, the noise-
transfer operator H has a block-diagonal matrix representation (see [6]).

The significance of distributed beta encoding coupled with beta duals for
reconstruction lies in the following calculation:

X — Z%z Yo = Z Z (ij(n) - qu(n))waj(n)

el j€lp] nev;]
=Y | D (o — Bitoyu1)B" | &
Jj€lpl \n€[Nj]
=D to-h; G ©
J€lpl

Let A; be the lower frame bound of (¢ j)g_l, that is,

31 )P = Agllxl? forallx € .
Jj€lp]

Then, as is well known in frame theory, we have

Y ag| < llallo/ /A foralla e F. (10)
jelp]
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(In frame theory terminology, this result is a consequence of the fact that if 7, T*,
and S := T*T denote the analysis, the synthesis, and the frame operators for (¢ j)g_l,

respectively, then S™!T* is the synthesis operator for (E;)g_l with norm equal to
|S~1/2|| = 1//A¢.) Combining (9) and (10), it follows that

< ||u||ooﬂ—N*+1F, (10
v o

where B4 := min;|B;|, N« := min; N;. Note that N, < N/p but there always exists
a partition [T that achieves N = |N/p]. As in [6] we will assume this is the case.
In fact, in all of the examples considered in this paper p will divide N and all the §;
will be equal to a common positive real number that we will call 8.

We show in the Appendix that

X_Z‘Ioﬂ//a

o€l

—Nj+1
Uoy(N;—1)B; )

e for F = R, the condition 8 + ||y|co/8 < L is sufficient to guarantee that (8) is
solvable with ||u]|c < & and g € <7/’ for some &/ C R, |2/| = L, and

+ for F = C, the condition B + ||y|leo/8 < [~/L] is sufficient to guarantee that (8)
is solvable with ||u]eo < +/28 and ¢ € &' for some &7 C C, |.«/| = L.

Since B > 1, the above sufficient condition for the complex case can only be
invoked if L > 4. However, L = 3 can also be employed using a different quantizer.
We show in the Appendix that (8) is solvable for any B < 4/3. Note that 8 < /L is
a necessary condition for the complex case due to the entropic lower bound L=/
for the analysis distortion. Currently we do not know if the gap from 4 /3 to +/3 can
be closed for L = 3. Also see [1] where the case L = 3 appears for § = 1.

In order to bound Z,(®, L) via (11), a two-level strategy can be executed: At
the basic level, the system parameters § and § should be chosen optimally, i.e.
so as to minimize §87V*T!, subject to one of the sufficient stability conditions
above. At the more advanced level, the partition I7 and the bijections ((rj)g_l should
also be seen as system parameters that can be chosen optimally so as to minimize
1/ \/A_; . In other words, the beta condensation frame (¢ j)g_l should be made as
tight as possible. This second stage of optimization was not invoked for random
frames in [6] (except for the value of p) and it will not be invoked for the classical
examples considered in this paper either because natural partition choices will work
near optimally; however, in other specific examples there may be need to consider
it. Here note that A; implicitly depends on B too, but for the examples we will study
in this paper this dependence will not play a critical role.

It is worth noting that the case § = 1 with p = 1 corresponds to first-order
X' A quantization which has been studied in depth for finite frames [2]. The second
level of optimization that arises in this case has been found to relate to the traveling
salesman problem [11]. Higher-order X' A schemes perform better but they remain
sub-optimal in the rate-distortion sense.
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3 Warm up: Beta Duals of Finite Fourier Frames

Let 7 := C¢ be equipped with the Euclidean inner-product. For any N > d,
the standard finite Fourier frame Zy 4 1= (¢a) ~! of size N is given in Cartesian
coordinates by

1 .
Puk = ﬁezﬂmkﬂv; ne[N]: k € [d].

For simplicity, we assume in this paper that N is a multiple of d. With this
assumption, we set p := d, Nj := Ny := N/d for all j € [d], and

0j(n) := jN« +n; j € [d]; n € [N4].

Also we set B; = B for all j € [p], where B is a real number greater than 1 to be
determined later. Then the beta condensation of .Zy 4 is computed explicitly to be

—n 1 wij .
é‘j,k = Z ﬂ (pgj(")'k = ﬁWkez jk/d; J S [d], k S [d],
n€[N«]

where

Wy 1= Z (/g_ICZHik/N)n; ke [d]

n€[N«]

This formula shows that the beta condensation of a finite Fourier frame (with
the parameters we have used) is actually a weighted discrete Fourier system (which
is a basis if and only if all w; are nonzero). It is now straightforward to compute
the frame bounds. Indeed (x, {;) can be seen as the jth Discrete Fourier Transform
(DFT) coefficient of (kak)g’_l so that (either by Parseval’s identity or by explicit
calculation) we have

DU P =D el

Jeldl keld]
Note that for any complex number |z| < 1 and any m > 1, we have

1—z|
>
1+ |z]

I4z4- 47" =

'l—z’" (12)

11—z

so that

1_ —1
min fwe| = b

=: Cg. 13
keld g1 7 (19
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Hence the lower frame bound A; of ()" satisfies
A = C3. (14)

In light of the discussion of the previous section, we can now proceed with the
optimization of system parameters. For all x € C? such that ||x||, < 1, we have
I¥llco < 1 so that for any L > 4 we can employ a quantization alphabet o C C
with at most L elements, guaranteeing |[ulloo < ~/28, where B and § must satisfy

the condition 8 + 1/8 < | +/L]. For any such 8 and 8, it follows from (11) that
Du(Fna. L) < V2dC5 5p7 T (15)

In order to choose the special values of § and 8, we employ the following elementary
lemma whose proof we leave as an exercise (for a nearly identical version, see [6,
Lemma 3.2]):

Lemmal Forany K > 2and o > 1, let B := K(e + 1)/(a + 2) and § :=
(¢ +2)/K.Then 8 > 4/3, B+ 1/8 =K, and

§pet <e(a + K. (16)

Furthermore, Cg as defined by (13) satisfies CEI <7

We use this lemma for K := |+/L] and o := N/d. Injecting the resulting
bound (16) and the bound CEI < 7 in (15), we arrive at the following near-optimal
result:

Theorem 1 Suppose N is a multiple of d. Then for any number of quantization
levels L > 4, the analysis distortion of the finite Fourier frame of N elements in C?
satisfies

Du(Fna, L) < Te/2d (%/ + 1) L\/ZJ—N/d‘

Remark 1 The above theorem is actually still valid for L < 3 but it does not offer a
useful bound since then we have Lﬁj = 1. For L = 3 we may instead invoke
the triangular alphabet </ and the associated quantization rule described in the
Appendix for which we may set 8 := (%)17& for any ¢ € (0,1). It can then be
checked that

4\ ~(-oN/d
D Frnas3) <o Va (5) .

We omit the details. This is the only upper bound we know for L = 3 that is

exponentially small in N/d; however, it does not match the entropic lower bound
of 37N/,
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4 Generalization: Unitarily Generated Frames

A general method of constructing uniform tight frames based on frame paths was
introduced in [4] in connection with analyzing the performance of ¥ A quantization
for finite frames. In this section, first we will slightly extend this frame construction
method to include a larger class of frames, and then bound the analysis distortion of
these frames using distributed beta encoding.

4.1 Unitary frame paths

Let 77 := C? be equipped with the Euclidean inner-product and §2 be a d x d Her-
mitian matrix. Consider the 1-parameter group of unitary operators on .7 given by

U, := ¥ 1 e R,
and for any ¢y € C¢ of unit norm, let
O 1= U;vupo; n=20,...,N—1.

The curve {t > Uy : t € [0, 1]} is called a unitary frame path if ® := (¢,)) "
yields a frame for infinitely many N > d. We also say that @ is unitarily generated.

Assume £2 has d distinct integer eigenvalues Ao, . .., A4—; which are also distinct
modulo N. Let us denote the corresponding normalized eigenvectors of §2 by
Vg, . .., Vg—1. This collection gives us an orthogonal basis of .7#. Now note that

(Vi @n) = (79 Ny, gg) = 7N (0 go); n € [N], k € [d],

so that

Dol =Y | Dt v (i )

ne[N] n€[N] |keld]
= Y > v (v x) vk @o) (o, ) Y HHTRN
ke[d] l€[d] n€[N]
= N 37 10 v o, v 2,
keld]
where in the last equality we have used the assumption that A, ..., A4 are distinct

modulo N.
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With this identity, it now follows that

N (min g0, vk>|2) P < 3 1ol <N (max g0, vk>|2) WP an
keld) o keld)

Hence we see that (¢,)) ™! is a frame if and only if (g, v) # 0 for all k € [d]. We
also see (as in [4]) that (¢,)) ~1 is a unit-norm tight frame if and only |{¢o, v¢)| =
1/+/d for all k. Note that the frame condition is generic, i.e. the set of ¢, which
yield a frame is an open dense subset of .7#. In contrast, the condition for tightness
of the frame is quite strict, corresponding to a nowhere dense set of ¢y.

Remark 2 The above argument continues to hold under the weaker assumption that
all pairwise differences A; — A; are integers and are nonzero modulo N if [ # k.
In other words, it is possible to shift all the eigenvalues by a common real value
without changing the frame property. Note that (U,) is 1-periodic in # if and only if
all the eigenvalues are integers in which case the frame path is a closed curve.

Remark 3 Note that the finite Fourier frame of the previous section corresponds to
the case when §2 is the diagonal matrix with the diagonal entries 0,...,d — 1 and
wo=(1,...,1)//4d.

More generally, we may pick any J C [N] of cardinality d to form the diagonal
entries Ao, . .., A4—; (in increasing order) of a diagonal matrix £2. The resulting tight
frame can be characterized equivalently as the restriction of the finite Fourier basis
of CN to the space of timelimited vectors 7 := {x € CV : supp(x) C J}.

By duality we can also consider the space of discrete bandlimited vectors B, :=
{x € L*(Zy) : supp(X) C J}. For any ¢ such that supp(@y) = J, the system
(¢n)nez, defined via translating ¢, i.e. by setting @,x := @o(k — n), k,n € Zy,
constitute a unitarily generated frame for %;.

Unitarily generated frames in R?. If the Hermitian £2 is such that all of its entries
are purely imaginary, i.e., i£2 is a real, skew-symmetric matrix, then (U;) reduces to
a group of real, orthogonal matrices. Then (¢,)) " is a unitarily generated frame in
R? provided ¢y € R and (¢, vi) # O for all k € [d]. Note that the eigenvectors
(vx) would still need to be considered as vectors in C.

The simplest nontrivial example is in R?. Two examples are worth mentioning:

First, we may consider 2 := B := (_01 0) Here the eigenvalues 1 and —1 of £2 are

distinct modulo N if only if N > 3. We may also consider £2 := B/2 = (_32 162)
for which the condition in Remark 2 is satisfied for all N > 2. This frame is actually
the semicircle frame in R? (see [4, 6]).

The harmonic frames in R for d = 2m are obtained by setting £2 to be the block
diagonal matrix with the blocks B,2B,...,mB, and eigenvalues {+1,..., +m}.
Again we require N > d + 1 as a frame condition. Ford = 2m 4+ 1,a1 x 1“0
block” is added resulting in the eigenvalues {0, £1, ..., k}. See [4] for additional
information.
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4.2 Beta Duals of Unitarily Generated Frames

Let ((p,,)g' ~! be a unitarily generated frame in F? as described in Section 4.1 where
2, (A)&!, and (vx)d~! have the same meaning as before. Let d < p < N. For
simplicity, we assume that N is a multiple of p, and set N, := N; := N/p for all
J € [p]. As in Section 3, we set 0j(n) := jNy« + n,n € [Ni], and B; = g > 1 for all
J € [p]. Then the beta condensation of the frame ((pn)g' ~1is given by

Gi= D B 0o = Y wie P (go, viuis j € [pl,

n€E[Nx] keld]
where
wi =y (BTN ke [d].
NEN«
Assuming the stronger hypothesis that Ao, ..., A, are distinct modulo p, or more
generally, that
A; — A are integers and nonzero modulo p if [ # k, (18)

we have

DG =D D wie P (o, v (x, i)

JElp] J€lp] |keld]

=P ) 106 v Pl{go, vid Plwil>

keld]

Using (12), we have |wi| > Cg = (1 — B71)/(1 + B~!) as before, so we find that
the lower frame bound A; of (¢ j)ffl satisfies

A = pCy (kném [{@o. Uk>|2) :

The rest of the discussion where we bound the analysis distortion of @ is the
same as before. Namely, we invoke (11) and follow the same procedure as in the
case of finite Fourier frames of Section 3, starting from (14). In addition, for F = R
we may employ a quantizer in R for all L > 2 where we can set K = L and the state
vector satisfies ||#||oo < 8. The result is summarized in the following theorem:

Theorem 2 Suppose N is a multiple of p where p > d, and @ is a unitarily
generated frame in B¢ such that (18) holds. Then we have
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N ﬁLﬁJ—N/P if F=CandL > 4
(@) <Te( T )elpo) 1 VTN, =2,
D( )<7e(p+ )C(‘PO) { L~N/p, if F=RandL > 2,

where

-1
c(po) := (1m nd|(§0o,vk)|) .

i
<k<

Of course, a bound for the case L = 3 can also be given as in the previous section.

5 An Infinite-Dimensional Case: Bandlimited Functions on R

Discussing quantized frame representations in infinite dimensional Hilbert spaces
requires special care due to the fact that the coefficient sequence (gy)qes is not in
£2(I) (and therefore the reconstruction is not guaranteed to be of finite norm) unless
g, = 0 for all but finitely many «. Of course, for this to happen, 0 would need to be
a permissible quantization level in .7 in the first place. Then the problem becomes
similar to a finite dimensional one with one main difference: the finite dimensional
subspace from which a quantized approximation is sought would need to be either
specified a priori, or determined a posteriori by means of the quantization algorithm
itself.

Another approach is to relax the Hilbertian frame setting and consider frame-
like representations in other suitable normed spaces and with a different sense of
convergence, as well as the possibility of approximation by quantized represen-
tations from outside these spaces. Indeed this is the sense in which the classical
oversampled quantization problem of bandlimited functions on R has been studied
mathematically [7, 8]. A general (and highly nontrivial) theory for quantization for
frames in Banach spaces was also developed in [5]. In this short section we will only
be concerned with the case of uniform sampling of bandlimited functions where it
will be possible for us to work from scratch.

The analysis distortion of sampling. Let %, be the space of bounded continuous
functions x on R for which the (distributional) Fourier transform X is supported
in [—£2, £2]. This space contains the classical Paley-Wiener space PWg, which
comes with an additional square-integrability constraint. (PWy, is therefore a Hilbert
space with respect to the standard inner-product on L*(R).) We equip HBg with
the L*°-norm which is more suitable for quantization. The celebrated Shannon-
Nyquist sampling theorem (in the context of %) says that any x € B can
be recovered perfectly from its samples (x(kt))iez via a pointwise absolutely
convergent expansion

x(t) =) x(kr)y(t - kr), (19)

kEZ
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where 7 < Tqq 1= ﬁ and v is any function of rapid decay on R such that

L, ¢ < 2,

1
0, €] = 27

V() = (20)

We will say that such a ¥ is (§2, t)-admissible. The value p := 1/t is called the
sampling rate, and p.i 1= 1/7cq = 282 is called the critical (or Nyquist) sampling
rate. The oversampling ratio given by

1Y Terit

A= = 21
Perit T

corresponds to the “redundancy” of the sampling operator @, : Bo — {*°(Z)
where

(D.x); = x(kT), k € Z.

Let us say that a collection of bounded continuous functions ¥ := (V¥ )rez on R
is quantization admissible if ) ¢y, converges (pointwise absolutely) to a bounded
function whenever ¢ € £°°(Z). Let us also say that ¥ is dual to @, on Ay, if, in
addition, we have

x=Y (PP = Y x(k)yy forall x € Bg. (22)

k€L kEZ

where again the convergence is understood to be pointwise and absolute. This
equation generalizes the concept of frame and the classical sampling formula (19)
where the v are tZ-translations of a fixed function. The analog of analysis
distortion associated to @, on Ay, for L levels of quantization, now denoted by
Du(P,|Bg, L) is then naturally defined to be

x— unﬂk

ke€Z

infg sup inf : Wis dual to @, on Bg and || =Ly .

Ixlloo<1 9€ /%

oo

Beta dual of the sampling operator. Note that in the context of PW(; this sampling
operator can be realized in terms of the unitarily generated frame consisting of the
tZ-translations of a fixed sinc kernel. The following construction mimicks the beta
dual machinery of Sections 2 and 4. Since our setup is not Hilbertian, we will take
a direct approach in our construction.

Given T < Tgip, let A 1= [A] — 1 = [tei/7] — 1 and 7, := A.7. Note that
A > Ay > land t < 74 < T3 For any given B > 1, consider the operators

Tf := Y B7f(+n1),

n€[Ax]
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Sfi=f—pB7Y(+1), and
Rf =) B7Mf(+nr)

n=0

on L°°(R) where they are also clearly bounded. All three operators represent
convolution operators with distributional kernels and it is evident after inspecting
their Fourier multipliers that RS inverts 7. Avoiding distributions, we can check this
fact directly. Indeed, for any f € L°°(R), we have

RSTf = R(f — B*f(- + 1)) = .

All three operators enjoy a crucial property which is stronger than their continuity
on L (R): Whenever a function series Y f; converges pointwise absolutely (but not
necessarily uniformly) to a bounded function, we have

R Z fi = Z Rf; (similarly for S and T), (23)

where the latter series also converges pointwise absolutely. To see this, simply note
that the iterated series

ZIB—A*n Z lfk(t + nl’*)|
n=0 k

is convergent for all #; hence, it is justified to change the order of summation that is
required to prove (23).

Let ¥, be (£2, t,)-admissible. Given any x € Ay, it is clear that Tx € A, as
well, and we can apply Shannon’s sampling theorem to Tx with the reconstruction
filter ¥, on the sampling grid t.Z to obtain

Tx = T« Z Z B x(jte + n7) | Vi (- — jT4).
JEZ \n€[rx]

We apply RS to both sides of this equation. Using (23) and noting translation
invariance of RS, we obtain

x=3 0 > 2 ((ef + W) T RSP~ jTa). (24)

JEZ ne€[A«]

We now set ¥ := RSV, and define ¥ := (Y¥)rez by

Vhwjbn 7= T Y —Jjta)i J € Z, n € [As].
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Then (24) says nothing but that ¥ is dual to @, on Ay,. It is easy to see that ¥ also
has rapid decay so that ¥ is a quantization-admissible dual.

For the quantization process, we employ the same distributed beta encoding
approach as before, and this time, set yx := x(k1), 0j(n) := A4j +n,

Yoj(n) — doj(n) = Ugj(n) — ﬂuaj(n—l); JEZ, ne [A*],

with gj(—1) := 0 so that

X= Y @t BT — ) = BT gy T (£ — i),

JEZ n€hy] €z

and therefore

< B ulloe C(¥), (25)

x= Y @i

ke€Z

[e.]

where

CW) = | Yl (- —jra)l

JEZ oo

A

> TeRS[s (- — jr)|

JEZ.

e ¢]

A

IRSlloosco | D Taltru(- = jTa)|

JEZ oo

B+1
HC(W*)- (26)

Note that 7, is near 7 in a uniform manner; for example, it is easy to show that
we have T4 € [Teit/2, Terie)- This allows us to choose 1, purely as a function of £2
via ¥« (1) 1= 2V« 0(82¢) for a fixed ¥ 0. Consequently, we may replace C (/) by
a universal constant independent of £2.

Assuming we are only concerned with real-valued functions and employing a

quantization alphabet of L levels requiring 8 + 1/§ < L, we may set 8 and § in (25)
as indicated by Lemma 1. The end result now reads

IA

Do(P,| B, L) < AL™THHL,

The modifications for complex-valued bandlimited functions would be the same as
before.
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6 Concluding Remarks

We have not touched upon many classical frames that are popular in theory and
practice, such as non-harmonic Fourier frames, frames of irregular sampling and
interleaved sampling, Gabor frames, and filter bank frames. Gabor frames are
generated by two unitary transformations, modulation and translation, which do
not commute. Sub-optimal results can be obtained in a straightforward manner by
focusing on only one of the generators and applying the basic beta dual machinery.
However, additional work (e.g., on the noise transfer operator) may be necessary in
order to exploit all of the redundancy present in a Gabor frame. Similar comments
are applicable for filter bank frames as well.

Appendix: Greedy Quantizer for Complex Measurements

In this section we will provide a generalization of the complex-valued X' A
quantization algorithm given in [3, Proposition 3.1] and the greedy noise-shaping
quantization algorithm given in [6, Theorem 2.1]. The result, which is applicable to
both real and complex quantization alphabets, offers nontrivial improvements in the
complex case, thanks to the use of general semi-norms to measure closeness.

Lemma 2 Let o/ be a quantization alphabet in C, By« be the closed unit ball of a
semi-norm ||« on C treated as a vector space over R, and H := (H,, jn)nme[n) be an
N x N real-valued lower-triangular matrix with unit diagonal. Suppose there exist
positive real numbers |, 8, vy such that

and
+ 8 max Hyml < y. (28)
n HE[N]%I =¥

Then for any y € CN such that |y,|« < u for all n € [N], there exist ¢ € </ and
u € CN such that

y—q = Hu

where |u,|« < 8 for all n € [N].

Proof The proof of this result is yet another adaptation of a well-known induction
argument. By our assumption on H, we are seeking to satisfy the equations
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U, = (yn - ZHH.mum) —qn (29)

m<n

for all n € [N].

Since |yolx < p < y, (27) implies that there exist gy € 7 and uy € §B« such
that uy + go = yo. Hence (29) is satisfied for n = 0 and |ug|« < 6.

For the induction step, assume that |u,,|« < § for all m < n, and let

Wy 1= Yn — E Hn,mum-

m<n

Using sub-additivity and homogeneity of | - |« followed by the condition given
in (28), we get

Wals < 48 [ Huml <3

m<n

hence, because of (27) again, there exist g, € < and u,, € §B such that u, + ¢, =
Wy, 1.€. (29) holds. O

Special known cases. There are certainly many ways to choose .27 and |-|. We first
note two important special cases of practical importance. Here L denotes |.<7|.

(R) Real arithmetic progression
This quantizer uses &7 1= @ s ;= {(-L+2[—1)§ : 1 <1 <L} C R, i.e.the
origin-symmetric arithmetic progression of length L and spacing 2§ along with
|z« := |N(z)|. Then By is the infinite vertical strip {z : |[R(z)| < 1} and (27)
holds for y := L§. Using the algorithm in Lemma 2, y € R" results in u € RY,
and ||y|lco < w implies ||u]lco < & so that the setup becomes identical to that
of [6].

(C) Complex square lattice quantizer
This quantizer assumes L = K? for some positive integer K and sets .7 :=
g s + 190k s C Calong with |z]« := max(|N(z)], | (z)]). B« can be identified
with [—1, 1]? (as a subset R?) so that (27) is valid for y := K§. Since |z|« <
Izl < V2|z|« for any z € C, |[yloo < p implies |y,|x < p for all n and
Lemma 2 then yields [|u] oo < +/28.
When K is even, the resulting .7 has no real points and it may be desirable to
require that y € RV always yields g € R". In this case, we may instead use the
slightly larger alphabet .o := o s + i1 for which L = K(K + 1). This
choice indeed corresponds to the one made in [3]. Another natural possibility
in this case is to use the 1-norm in R? coupled with the diamond lattice as
shown in Figure 1 for K = 2.
Note that for the square (or diamond) lattice quantizer of K2 levels, using the
Euclidean norm | - | on C would be sub-optimal. Indeed, the largest value of y

that can be used in (27) is y = %8.
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Fig. 1 Lattice covering for
the 1-norm in R? where
L=4andy = 24.

Fig. 2 Three identical
hexagons at scale § covering
a larger hexagon at scale

y = %8 compared to three
identical circular discs at
scale § covering a larger
circular disc at scale

— 2

Hexagonal norm for a tri-level complex alphabet. It is natural to ask if a complex
quantization alphabet .7 with fewer than 4 levels can be used in connection with the
noise-shaping quantization algorithm of Lemma 2. For L = 3, we may set </ to be
the vertices of an equilateral triangle in C centered at the origin. If the Euclidean
norm is used, then it is not difficult to prove that the largest value of y that can be
used in (27)is y = %8 (see Figure 2 for a demonstration of this covering). In this
case, [[ylloo = p yields [lufloo < 8.

An alternative we have found useful is to employ the norm | - |« induced by
a regular hexagonal body whose sides are aligned with the sides of the triangle.
Then, as shown in Figure 2, we can attain y = %8. By choosing the scale of the
hexagonal body suitably, we can ensure |z], < |z| < «%lzl;,= so that ||yllec < 1

implies |y,|« < u for all n, and therefore Lemma 2 yields ||u|co < %8. Despite

the increase in the bound for |||, there is a sizable gain in the “expansion factor”
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y/8 from % to %. This gain is crucial for beta encoding because any 8 up to this

expansion factor is admissible for stability via Lemma 2 provided <7, y, and § are
suitably scaled to meet (27) and (28) simultaneously.
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Consistent Reconstruction: Error Moments and
Sampling Distributions

Chang-Hsin Lee, Alexander M. Powell, and J. Tyler Whitehouse

Abstract Consistent reconstruction is a method for estimating a signal from a
collection of linear measurements that have been corrupted by uniform noise. We
prove upper bounds on general error moments for consistent reconstruction, and
we establish general admissibility conditions on the sampling distributions used for
consistent reconstruction. This extends previous work in Powell and Whitehouse
(Found Comput Math 16:395-423, 2016) that addressed mean squared error in the
setting of unit-norm sampling distributions.

Keywords Consistent reconstruction * Estimation with uniform noise

1 Introduction

Consistent reconstruction is a method for estimating a signal x € R? from a
collection of linear measurements that have been corrupted by uniform noise or,
more generally, bounded noise. Estimation with uniform noise arises naturally in
quantization problems in signal processing, especially in connection with dithering
and the uniform noise model [7, 11]. Consistent reconstruction has been used as a
signal recovery method for memoryless scalar quantization [1, 2, 4, 11, 13], Sigma-
Delta quantization [12], and compressed sensing [5, 6, 9]. See [10] for background
and motivation on consistent reconstruction and estimation with uniform noise.

Let x € R be an unknown signal and let {p,}"_, C R be a given spanning
set for R? that is used to make linear measurements {x, ¢,) of x. We consider the
problem of recovering an estimate for x from the noisy measurements

qn:(x,‘pn>+€n’ ISnSNv (1)
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where {€,}"_, are independent uniform random variables on [—§, §]. For the setting
of this chapter, the collection {(p,,}ﬁ’zl is known but randomly generated, the noise
level § > 0 is fixed and known, whereas x and the noise {¢, f;’:l are both unknown.
We focus on the situation when {¢, }Q’Zl are independent versions of a random vector
¢ € RY whose distribution we refer to as the sampling distribution.

Consistent reconstruction seeks an estimate X for the unknown signal x that is
consistent with the knowledge that the noise is bounded in [—§, §]. Specifically,
consistent reconstruction produces an estimate X € R? for x by selecting any
solution of the linear feasibility problem

|5, @) —qul <8, 1 <n<N. Q)

There are generally infinitely many solutions to this feasibility problem. In this
chapter, we mainly focus on the worst case error associated to consistent recon-
struction.

1.1 Worst case error

To describe the worst case error of consistent reconstruction, note that if X' is any
solution to (2), then the error (X — x) lies in each of the closed convex sets

E,={ueR: [(u,g,) — €| <8}. (3)

The intersection of the sets E,, forms the following error polytope:

N
Py =) En. )
=1

which is the set of all possible errors associated to consistent reconstruction (2). The
worst case error Wy associated to consistent reconstruction is thus defined by

Wy = max {||u|| : u € Py}, (5)

where || - || denotes the Euclidean norm on R

1.2 Background

The main results in [10] proved error bounds for the expected worst case error
squared E[(Wy)?] of consistent reconstruction when the sampling vectors {¢,}"_,
are drawn at random from a suitable probability distribution on the unit sphere S~!.

The work in [10] considered sampling vectors {@,})_, C S?!' that are
independently drawn instances of a unit-norm random vector ¢ that satisfies the
following admissibility condition:
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Ju>1,30<s<1, YVO<tr<1, VxeS™!, Prf|{x,¢)|<f<arf. (6)

See Section 5 of [10] for further discussion of the admissibility condition (6). For

example, if ¢ is uniformly distributed on S?~!, then ¢ satisfies (6) with s = 1 and
or (4

« = Jerc

Suppose that {@,}_, C S?"! are independently drawn at random according

to a distribution that satisfies the admissibility condition (6). Theorem 5.5 and

Corollary 5.6 in [10] prove that there exist absolute constants ¢, ¢; > 0 such that if

On the other hand, if ¢ has a point mass, then ¢ does not satisfy (6).

N > ¢,d In(32(2x)'/%),
then the expected worst case error squared for consistent reconstruction satisfies

c182d*(2a)'/* In?(16(2a) /%)

2
E[(Wy)?] < (N+ 1)(N +2)

Moreover, in the special case when {(,a,\/}nNz1 are drawn independently at random
according to the uniform distribution on S¢~!, Theorem 6.1 and Corollary 6.2 in
[10] proved a refined error bound with a constant that has cubic dependence on the
dimension

c8:d®

E[(Wy)?] < T

For perspective, it is known that mean squared error rates of order 1/N? are
generally optimal for estimation with uniform noise, see [11].

1.3 Overview and main results

The error bounds for consistent reconstruction in [10] only considered the mean
squared error E[(Wy)?] and only considered the admissibility condition (6) in the
setting of unit-norm random vectors (for example, this excludes the case of Gaussian
random vectors). The main contributions of this chapter are two-fold:

1. We prove bounds on general error moments E[(Wy)?] for consistent reconstruc-
tion. Our main results show that the error decreases like E[(Wy)?] < 1/NP, as
the number of measurements N increases.

2. We establish a general admissibility condition on the sampling distribution that
does not require ¢ to be unit-norm.

In Section 2, we prove our first main result, Theorem 1, which gives upper bounds
on E[(Wy)P] for unit-norm sampling distributions. Section 3 builds on Theorem 1
and proves our second main result, Theorem 2, for general sampling distributions
that need not be unit-norm.
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2 Error moments for consistent reconstruction: unit-norm
distributions

In this section we prove our first main result, Theorem 1. Theorem 1 extends
Theorem 5.5 in [10] to the setting of general error moments E[(Wy)?]. In this
section, we assume that the sampling vectors {,}_, are unit-norm and satisfy the
admissibility condition (6). We shall later remove the unit-norm requirement from
the admissibility condition in Section 3.

2.1 Consistent reconstruction and coverage problems

We begin by recalling a useful connection between consistent reconstruction and a
problem on covering the sphere by random sets.

Definition 1 Let {¢,}"_, be a set of unit-norm vectors and let {¢,}_, C [-$,4].

For each A > 0, define

B,(A) = B(gp, €, A) = Jue S (u,0,) > 6";_ 5 or (u, ,) < 6";8
= {u e ST M u, @) — €4] > 5}. @)

In our setting, the sets B,(A) are random subsets of S9! because {¢,}_, and
{e.}"_, are random.

Note that each B, (1) can be expressed as a union of two (possibly empty)
antipodal open spherical caps of different sizes

B, (A) = Cap (¢, 6,7) U Cap (—¢.. 6, ) . ®)

where the angular radii 6,7 and 6, are given by

o arccos(‘HTe”), ifé§+e¢, <A,

0, otherwise,
and

o — arccos(‘s_Te”>, if§—¢, <A,

0, otherwise.
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The following lemma shows a connection between consistent reconstruction and
the problem of covering the unit sphere by the random sets B, (1), see Lemma 4.1
in [10].

Lemma 1 For all A > 0, the worst case error satisfies

N
Pr[Wy > A] < Pr |:Sd_1 ¢ B, (A)} . 9)

n=1

The following lemmas collect upper bounds on Pr [Sd_l ¢ Ui:,: 1 Bu ()L)] that
are spread out over various parts of [10].

Lemma 2 IfA > 46, then

N $ sN—d+1
Pr [S‘H ¢ B, (A)} < 47 ()N (X) . (10)

n=1

Lemma 2 was shown in equation (5.9) in [10].

Lemma 3 If0 < A < 4(2x)'/*§, then

N
Pr [S"" ¢ B, (A)]

n=1

N N A N—k A k
fzq("""l’“’”(k)(“m) (wwa) - v

k=0
where q(k,d — 1, «, 5) satisfies
qglk,d—1,a,5) <1, (12)
and

. In(16(20)'/*)

3\ K/2
> In(4/3) = qgk,d—1,a,5) < (Z) . (13)

The bound (11) appears in (5.12) in [10]. The bound (12) follows from (5.11) in
[10], and the bound (13) appears in Step VI in the proof of Theorem 5.5 in [10].
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2.2 Error moment bounds

We now prove our first main result that provides error moment bounds for consistent
reconstruction.

Theorem 1 Suppose that {¢,}"_, C S*"' are independently drawn at random
according to a distribution that satisfies the admissibility condition (6) with
parameters « > 1 and 0 < s < 1. Ifp € Nand N > (d + p)/s, then the pth
error moment for consistent reconstruction satisfies

—1

)4 N
E(Wyl1< & | [[ov+)] +c"s (%) : (14)

J=1

where

2d In(16(2x) /%)
C'=C ., =2p(4Q2w)' ") (— ) ( (k + 1)~ 1(3/4)k/2)
In(4/3) ;

and
C"=C),.q=2p(32Q2a) Y+t

Proof We proceed by directly building on the proof of Theorem 5.5 in [10].
Step 1. We need to compute

E[(Wy)] = p / ” AP7UPr[Wy > A]dA. (15)
0

By Lemma 1, we have

) N
E[(Wy)'] < p /0 2P [Sd—‘ 7z B (x)} da. (16)
n=1

Thus, it suffices to bound the integral on right side of (16).
Step 2. We shall bound the integral in (16) by breaking it up into three separate
integrals. We begin by estimating the integral in the range 0 < A < 48(2a)'/5.
Using (11) and a change of variables gives

48(2a) Y/ N
p/ Alpr s g | ) Ba(A) | da
0

n=1
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N 482a)'/s N—k k
N A A
E : _ p=lfq__ = _
Spk=0q(k’d l.a,s)(k)/o A (1 45(2a)1/s) (45(2a)1/s) dA

N 1
=p Z qtk,d —1,a,s) (1;,) (48(2a)1/5)p / VP (1 — )N Ry
k=0 0

N
~ . ~ NYWN=-R!k+p-1)!
_p(48(2a)1 ) k;q(k,d La,s)(,() (N +p)!

p
=p (4500)")" (H(N +j)) [Z Cxr =D a— 1.0, s)} (17
j=1

Here, we used the property of the beta function that

1
ktp—1 N—k (N !k +p—1)!
/Ov P11 — vV dy 5o (18)

It remains to bound the sum Zi’ 0 (k+” _1) 'q(k d—1,a,s)in (17). We will bound
this sum by breaking it up into two separate sums, in an analogous manner to Step
VI in the proof of Theorem 5.5 in [10]. Let

_ | 2dIn(16(2a)'/*) (19
N In(4/3) ‘
Since g(k,d — 1,,5) < 1, we have
(k+ ¢ p—1 4
Z (kd Las) <Y (K+p—1y~' <(K+pP. (20
k=0
Using (13) we have
N 00 k/2
k+p—1) k+p—1! (3
Z Tq(k,d—l,oz,s)s Z —a |3
k=K+1 k=K+1
00 3\ /2
< _1yl Z
= > G- (3)
k=K+1

00 3\ k+K)/2
=Y (k+K+p—1y"! (Z)
k=1
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< —1 - n—1 3 b2
<K+ S+ 1y (Z)

k=0

= (K +p)'S,, 1)

where S, = Y 02, (k + 1)P71(3/4)"/? satisfies 1 < S, < oo.

By (20) and (21) we have
L (k+p—1)!
Yo dkd = Las) < (K +pP(1+5,) <2K+p)'S,. (22
k=0 '

Combining (17) and (22) yields

48(2a)'/s N
p / tpe st g () B, (V) | dA
0

n=1

-1
4

<2p@5Q)" YK +prs, [[[v+0] - @3

J=1

Step 3. Next, we bound the integral (16) in the range 48(2a)'/* < A < 85(2a)'/*.
By Lemma 2 we know that in this range of A,

Pr |:Sd_1 ¢ LNJBn (A):| < (16(2) /%) (E)N.
- 2

n=1

Thus

85(2w)!/s N
p [ A s g | B, () | dA
4,

8Qa)!/s n=1

1\V 88(2a) /s
< p(16(2e) /5y (—) / )
4

2 5(20()1/;-

N
< 87(16(2a)"/5)d+r=1 (%) . (24)

Step 4. We next bound the integral (16) in the range A > 88(2«)'/*. By Lemma 2
we know that in this range of A,
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d—1 N d—1 N $ N
Pr |:S ¢ UBn(A):| < 47 () (X) .

n=1
It follows that when N > (d + p)/s,

0o N
P /8 AP~!Pr [S"“ ¢ B, (A)} dA

5(2a) /s =1

< p- 4d—l (4sa)N5SN—d+l /OO AP_SN—HJ_ZdA
85(2ar)!/s

= p- 4971 (g5 q)NgN—dH] ((88(2a)1/s)p—sN+d—l)

sSN—p—d+1

1

N
<p- 8 (32a) Myt (5) :

Combining (16), (23), (24), and (25) completes the proof.

Theorem 1 yields the following corollary.

207

(25)

Corollary 1 Suppose that {¢, y=1 C S are independently drawn at random
according to a distribution that satisfies the admissibility condition (6) with

parameters @ > 1 and0 < s < 1. Ifp € Nand
2 C// 4 d
N>max{— |In{ — ] +2pIn P ,ﬂ )
In2 (o4 eln2 s

—1

then

P
E(Wy)] <208 | [[+i | .

J=1

where C',C" are as in Theorem 1.

Proof In view of Theorem 1, it suffices to show that if N satisfies (26) then

-1
14

1 N
c’ (5) <c(]]w+)

J=1

(26)

27
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Equivalently, it suffices to show

C// 14
In (F) + Y In(N +j) <N In2.
j=1

To begin, note that

Vx>0, In(x) <x—1,

NIn2 4
In(N) = ln( 4n ) +1In (%)
p n
Nln2 4p
< —1+In{—
4p In2
NIn2 4

21 + In p .

4p eln?2

Next, use (29) and N > (d + p)/s > max{p, 2} to obtain

p . P ]
YN+ =) [m(zv) +1In (1 + Nﬂ

j=1 j=1
<pln(N)+pIn2
< 2pIn(N)

Nln2 4p
< 2pl .
-2 +ep n(ean)

In view of (30), to show (28) it suffices to have

m( ) Y2 o () <2
n{— n n-z.
c 2 P\ gn2 ) =

gives

Since (31) holds by the assumption (26), this completes the proof.

C.-H. Lee et al.

(28)

(29)

(30)

€2y

We conclude this section with some perspective on the dimension dependence of
the constant C’ in Theorem 1 and Corollary 1. We consider the special case when
¢ is uniformly distributed on the unit-sphere S*~! with 4 > 3. In this case, one
may take s = 1 and ¢ = S N (/) R (6), see Example 5.1 in [10], and the

V7T ((d—1)/2)

P
constant C’ is of order (d 2In d) . Here, the logarithmic factor Ind is an artifact of

the general setting of Theorem 1. In particular, for p = 2 the refined analysis in
Theorem 6.1 and Corollary 6.2 of [10] shows that the factor Ind can be removed
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when ¢ is uniformly distributed on the unit-sphere S*~!. A similar analysis extends
to moments with general values of p € N and shows that the factor Ind can be
replaced by an absolute constant that is independent of d.

3 Error moments for consistent reconstruction: general
distributions

In Section 2 we proved bounds on the pth error moment for consistent reconstruction
when the measurements are made using i.i.d. copies of a unit-norm random vector
XS S?-1 In this section, we relax the unit-norm constraint to accommodate more
general distributions.

3.1 General admissibility condition

Definition 2 We shall say that a random vector ¢ € R satisfies the general
admissibility condition if the following conditions hold:

* ¢ = ay, where a is a non-negative random variable, ¥ is a unit-norm random
vector, and a and ¥ are independent.

* 1 satisfies the admissibility condition (6).

e 3C > 0 such that

VYA >0, APrfad <1]<C. (32)

e r, = Prla > 1] satisfies 0 < r, < 1.

Example 1 A sufficient condition for the small-ball inequality (32) to hold is when
a is an absolutely continuous random variable whose probability density function f
is in L>°(R). In this case, for each A > 0,

1/2
Prlad < 1] = Pr [a < %] =) f(a)da < —|lf/|x|°°.

This shows that a large class of probability distributions satisfy the conditions in
Definition 2. For example, if ¢ is a random vector whose entries are i.i.d zero mean
Gaussian random variables, then ¢ satisfies the conditions in Definition 2.

In Definition 2, there would be no loss of generality if @ were scaled differently
so that 0 < Pr[a > T] < 1 for some T > 0. In particular, suppose that ¢, = a,V¥,
with 0 < Prla, > T] < 1, and g, = (x, ¢,) + €, with ¢, uniformly distributed on
[, 8]. Then'X € R? satisfies
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|&.¢n) —qul <8 ifandonlyif [T ¢,)—q)l <6

where ¢, = ¢,/T = d,y, and a, = a,/T and ¢}, = (x, ¢,) + €}, where €, = €,/T
is uniformly distributed on [—§’, 8] with §' = §/T.

3.2 Coverage problems revisited

Suppose that {@, }2’:1 are i.i.d. versions of a random vector ¢ that satisfies the
conditions of Definition 2. In particular, ¢, = a,V,,, where {a,,}fyzl i.i.d. versions of
arandom variable a, and {1,,}_, are i.i.d. versions of a random vector v. Similar to
Lemma 1, the worst case error Wy for consistent reconstruction can be bounded by

N
Pr[Wy > A] < Pr [Sdl ¢ B(wn,en,anl)j| : (33)

n=1

where B(Y,, €,, a,A) is defined using (7).

3.2.1 Conditioning and a bound by caps witha, =1
The following lemma bounds (33) by coverage probabilities involving caps with

a, = 1.

Lemma 4 Suppose {¢, nN=1, with ¢, = a,\W,, are i.i.d. versions of a random vector

¢ that satisfies the conditions of Definition 2. Then

N
Pr [Sdl ¢ U B(Wn» €n, al1)\')i|
n=1

N J
<> Pr [Sd—l ¢ B(l//n,e,,,k):| bino(j, N, r) + (1 — r)V, (34)
j=1

n=1

where
N\ . .
bino(j, N, r) = ( _)r’(l —r)N_f,
J

and r = r, = Prla > 1] is as in Definition 2.
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Proof Let _Z; y denote the event that exactly j elements of {a,})_, satisfy a, > 1.
Since the {a,}"_, are independent versions of the random variable a,

Pr[_Zin] = (IJV) (Prfa > 1]Y (1 — Prfa > 1)V
= (?)""(1 — N7 = bino(j, N, r).

Thus,

n=1

N
Pr [gd—l ¢ | B anx)}

N N
— ZPr [Sd“ Z UB(llfn,en,an/\)
j=0

n=1

/,«.N} b 7]

N N
= ZPr |:Sd_1 ¢ UB(t/fn,en,ank)‘ /,,N} bino(j, N, r). (35)

j=0 n=1

By (7), when a, > 1 we have B(Y,,, €,, a,A) D B(Y,, €,, ). Thus for 1 <j <N,

/jw}
/jw}

J
=pris¢( B(l//n,en,/\):| : (36)

N
Pr [Sd_l ¢ | Bn, €. anh)

n=1

/j_N} <Pr|S'¢ | ) B enanh)

{n:a,>1}

<Pr Sd_1¢ U B(Yry, €n, 1)

{n:a,>1}

n=1

where the last equality holds because {an}nN:, are i.i.d. random variables that are

independent of the i.i.d. random vectors {wn}ﬁlvzl . Forj = 0, we use the trivial bound

Pris™ ¢ | ) BWwend)| Fin| =L

{n:a,>1}

Combining (35) and (36) completes the proof.
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To bound the binomial terms in Lemma 4 it will be useful to recall Hoeffding’s
inequality for Bernoulli random variables. If 0 < p < 1 and m < Np, then

m

> " bino(j. N p) < exp (_2 (Np — m)? /N) : 37)
j=0

3.2.2 Covering and discretization

A useful technique for bounding coverage probabilities such as (33) is to discretize

the problem by discretizing the sphere SY~! with an e-net, see [3]. In this section,

we briefly recall necessary aspects of this discretization method as used in [10].
Recall that a set .4, C S~ ! is a geodesic e-net for S~ if

Vx e S* !, 3ze 4, suchthat arccos({x,z)) <e.

For the remainder of this section, let .#; be a geodesic €- net of cardinality

d—1
#(H) < (2) |

It is well known that geodesic e-nets of such cardinality exist, e.g., see
Lemma 13.1.1 in [8] or Section 2.2 in [10].
Recalling (8), define the shrunken bi-cap T, [B(V,, €,, a,1)] by

Te [B(Yn, €4, auA)] = Cap (Y, Te(6;5)) U Cap (=, Te(6)))
where

0—e, iff>c¢;

T.(0) =
© %0, if0<60 <e.

Similar to equations (5.4) and (5.5) in [10], the coverage probability (33) can be
discretized as follows:

n=1 n=1

N N
Pr [Sd_‘ 72 UB(wn,en,ank)j| <Pr |}/V ¢ |- [B(I/f,,,En,anl)]j|

d-1 N
< (§) ( sup Pr [z ¢ T. [B(lﬁn,Gman/\)]]) L)

€ zeSd—1
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Similar to equation (5.6) in [10], one has that

B(Yn. €, anA) O {u € ST ()| > 2 }

ayA
and
d—1 28
T [B(Wn, €n,anA)] D qu € ST 1 [(u, Yu)| > ) +e;.
This gives

Pr [Z 47, [B(wn,en,anm] <P [|<z, vl < 2

o ei|. (39)

3.3 Moment bounds for general distributions

We now state our next main theorem.

Theorem 2 Suppose that {go,,}nNzl are i.i.d. versions of a random vector ¢ that
satisfies the conditions of Definition 2. Let r = r, = Prla > 1] be as in Definition 2.

If

. 2d+p)
- ST

N (40)

then the pth error moment for consistent reconstruction satisfies

28 \? Nr/2 2 1 N
E[(Wy)'] < pC’ (F) O (z) L AN 4 e (5) ,
r

where C', C" are as in Theorem 1, A is defined by (42) and (57), and C""' is defined
by (60) and (57).

Proof As in Theorem 1 we shall use (15). In view of (33), we need to estimate

00 N
E[(WnY'] <p /0 A Pr [S‘H ¢ UB(wn,en,anx)} dh. @D

n=1
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Step 1. We begin by estimating the integral in (41) over the range 0 < A < AS§,
where

2Y+3C s+1
and A =4(2K") " . (42)

A= max{Ao, Al}, with Ag =
o

and K” is defined in (57).
By Lemma 4 we have

A8 N
p / AP~ pr |:Sd“ 7 UB(l//n,en,an/\):| dA
0

n=1

fp/() AP ZPr [Sd‘ ¢ UB(t//n,en,)t):| bino(j, N, r)dA

n=1

[Nr/2]

AS
=p / Pl Z Pr [S" lg UB(wn,en,A)] bino(j, N, r)dA (43)
0
—l—p/ At Z Pr |:Sd_ UB(l//n,en,)L)i| bino(j, N, r)dA. (44)
j=[Nr/2]

Hoeffding’s inequality and the trivial bound Pr [Sd_l 04 Ui;:l By, €, )L)] <1
can be used to bound (43) as follows:

AS [Nr/2]
p/ pra Z Pr |:Sd g UB(l//n,en,A)j| bino(j, N, r)dA
0

j=0 n=1
A$ [Nr/2]

§p/ plat Z bino(j, N, r) | dA

0 o

A§
2

<p(e™/? / AP=tan

() )
= 8 AP N2, (45)

To bound the integral in (44), recall (40) and note that if j satisfies (d + p)/s <
[Nr/2] <j < N, then the bounds on (16) obtained in the proof of Theorem 1 give

that

A8 J
p[ AP~ pr [S"‘l ¢ B(w,,,e,,,/\)} dA
0 n=1
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00 J
E p[ Ap_l PI' Sd_l ¢ U B(wm €ns A’) dl
0
n=1

p -1 i

1 J

<Cés j+ 1 + ' (—)
c'sp 1y

< c'sr | = 46

=7 + (2) (46)

where C’ and C” are as in Theorem 1.

Using (46), along with Z;VZO bino(j, N, r) = 1, one may bound (44) as follows:

N A8 J
Py i A7~ pr |:S‘H ¢ UB(%,en,x)} bino(j, N, r)dA

j=Tnr/2]

n=1

N ’op 1 j
<p Y_ bino(iN.7) [C,S +C"sp (5) }

P
J=INr/2] /

b ol N2 &
D /! _ : .
<pé |:(Nr)l’ +C (2) :| E bino(j, N, r)

J=[Nr/2]

) p 1 Nr/2
p / 7
<pé |:C (_Nr) + C (2) :| . 47)

Applying the bounds (45) and (47) to (43) and (44) gives

A$ N
p/ AP~Lpr |:Sd_1 04 UB(l//n,en,anl):| dA
0

n=1
s 28 P Nr/2
<& APeN2 4 pl' | =) 4+ pCsP | = ) (48)
Nr 2

Step 2. We next estimate the integral in (41) over the range A > A§. By (38)
and (39) we have

N
Pr [Sd_l ¢ U B(l/fn, €n, an/x):|

n=1

g\ %! 26 N
< (—) ( sup Pr[|<z, < 2 +D L @)
€ zeSd—1 ank
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We therefore need to bound Pr[|(z, ¥,)| < é—i + €.

For the remainder of this step set

A_(a)# 4s\H 25 (1) (45C\ 50
~\c X T T ) e

where C, «, s are the parameters in (6) and Definition (2). By (42), note that A >
A8 > Ay 6 implies that 0 < € < 1/4.
For any z € S*! we have

28
Pr [|(Z, V)| < +e€
apA

n

+e} _ Pr[|<z,wn>|s 20
a,A

n

a, > Ai| Prla, > A] (51)

28+
€
A

+ Pr [I(z, Yl <

a, < Ai| Pra, < A].
(52)

Aan

We now bound the terms appearing in (51). Recall that A > A§ implies that
45/(AL) = 2¢ < 1/2. By our choice of € in (50), and using the admissibility
assumption (6), for each A > A§ one has

26
Pr[|<z,wn>| <23
a,A

n

a, > Ai| Prla, > A]

< Pr|[(z, ¥u)

26
|§H+E

a >Ai| Pr[a, > A]

48
=P -
|1l < 55

a, > A:| Prla, > A]

r 48
< Pr|(z, ¥u)| = H}
48\*
<a (H) . (53)

To bound (52), note that by (32) one has Pr[a, < A] < CA, and thus

26
a,A

Pr[|<z,1/fn>| <2

a, < A} Prla, < A] < Prla < A] < CA. 54)

Using the bounds (53) and (54) in (51) and (52) gives

Pr [I(z, V)l < azi + e} <a (:—i)‘ + CA. (55)



Consistent Reconstruction: Error Moments and Sampling Distributions 217

Since our choice of A in (50) gives

AN
“Nax) =%

ei| <2CA=2C (%)“1‘ (‘l—g)s+l . (56)

Thus, combining (49) and (56) gives

Pr | sé-! ;zLNJB(w €n, ) <(§)d_1 2c(3)”1‘
ns ~n» n — € C

n=1

we have

Pr[uz, o< 24

n

48\ 7
(%)

To simplify notation, let

K = (16(%)S 1)d_l and K//zzc(%)“ " (57)

oo A as\H "
Pr|:Sd ‘gZUB(%,emank)}fK (4—5) [K (A) }

n=1

so that

(l+l

=K' (K")N (48)( ). (58)

A

Since 0 < s < land 0 < r < 1, note that (40) implies (=4 —p +1) > 2.
By (58) we have

00 N
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Since (42) implies that K” (%)H{1 < 1/2, it follows that
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where
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Combining (41), (48) and (59) completes the proof.

Similar to Corollary 1, the following corollary of Theorem 2 shows that E[(Wy)?]
is at most of order 1/N? when N is sufficiently large.

Corollary 2 Let {(p,,}i:’:l be as in Theorem 2. There exist constants Cy, Cy > 0 such
that

Cy8P
Nr

VN > (Cy, E[(WN)p] < (61)

The constants Cy, Cy depend on ., s, C, p, d.

3.4 Numerical experiment

This section illustrates Theorem 2 with a numerical experiment.

Letx = (2,7) and § = 5. Given N > 3, let {e,})_, C R? be independent
random vectors with i.i.d. N(0,1) entries. Let {g,}\_, be defined as in (1).
Since there infinitely many different solutions X to the consistent reconstruction
condition (2), we select the minimal norm estimate by
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Fig. 1 Log-log plot of E(N, 2) versus N, see Section 3.4.

¥ = argmin ,ep2|z|*  subjectto  [(z.@n) —qu| <8, 1<n<N. (62

We repeat this experiment 20 times and let E(N, p) denote the average value of
X — x||P. Figures 1 and 2 show log-log plots of E(N, p) versus N for p = 2 and
p = 5. For comparison, these respective figures also show log-log plots of 3/N?
and 20/N? versus N. In particular, E(N, p) appears to decay like 1/N?, as predicted
by the worst case error bounds in Theorem 2.
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Fig. 2 Log-log plot of E(N, 5) versus N, see Section 3.4.
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Part XX
Algorithms and Representations

The chapters in this part cover the design and use of efficient representation methods
for signals. In addition, algorithms to obtain such representations are also proposed
in some of the following chapters. In particular, the topics covered in this part
include the application of frames in the processing of psychoacoustic signals, the
construction of a special class of wavelets filter banks, and a Fast Fourier Transform
for approximating fractal signals.

In the first chapter, Peter Balazs, Nicki Holihaus, Thibaud Necciari, and Diana
Steova give a survey of finite frame theory and filter banks. Subsequently, they
proceed to show how finite frames and filter banks provide a very flexible framework
for the processing of psychoacoustics signals. At the same time the chapter offers
applied harmonic analysts a brief introduction to psychoacoustics signal processing.

In the second chapter, Youngmi Hur gives an overview of an algebraic geometry
method for the construction of wavelet filter banks. In particular, she shows how the
Quillen-Suslin Theorem together with the polyphase representation of a filter bank
can be used to construct (redundant) wavelet filter banks. In the process, she also
offers some algorithms for the construction of these filter banks.

Chapter three by Jan Ernst proposes a generic scheme for constructing signal
representations that are quasi-invariant to perturbations of the domain. A motivation
for this construction can be found in the invariance of topological properties of
sets under homeomorphisms. The chapter also includes computational methods for
applications of this construction to problems in image processing and computer
vision.

In the final chapter of this part, Calvin Hotchkiss and Eric S. Weber consider
signals defined on finite approximations of a fractal generated by an iterated
functions system. Using appropriately chosen sets of frequencies from a second
iterated functions system, they obtain an orthonormal basis for signals defined on
the finite approximations of the underlying fractal. They show that this orthonormal
basis gives rise to a fractal analog of the classical Discrete Fourier Transform. As a
result they develop a theory of a Fast Fourier Transform for signals defined on these
finite approximations to the fractal set.



Frame Theory for Signal Processing in
Psychoacoustics

Peter Balazs, Nicki Holighaus, Thibaud Necciari, and Diana Stoeva

Abstract This review chapter aims to strengthen the link between frame theory and
signal processing tasks in psychoacoustics. On the one side, the basic concepts of
frame theory are presented and some proofs are provided to explain those concepts
in some detail. The goal is to reveal to hearing scientists how this mathematical
theory could be relevant for their research. In particular, we focus on frame theory
in a filter bank approach, which is probably the most relevant view point for audio
signal processing. On the other side, basic psychoacoustic concepts are presented to
stimulate mathematicians to apply their knowledge in this field.

Keywords ERB e« Bark ¢ Gammatone ¢ Frame ¢ Gabor frame ¢ Masking
Pattern * Amount of masking ¢ Frame Operator ¢ Perfect reconstruction ¢ Large
Time-Frequency Analysis Toolbox ¢ (LTFAT) ¢ Uniform filterbank ¢ AUDlet
Irrelevance Filter ¢ Frame multipliers ¢ Alias ¢ Analysis ® Synthesis ¢ Dual *
Parseval frame ¢ Z-transform ¢ Impulse response

1 Introduction

In the fields of audio signal processing and hearing research, continuous research
efforts are dedicated to the development of optimal representations of sound signals,
suited for particular applications. However, each application and each of these two
disciplines has specific requirements with respect to optimality of the transform.
For researchers in audio signal processing, an optimal signal representation
should allow to extract, process, and re-synthesize relevant information, and avoid
any useless inflation of the data, while at the same time being easily interpretable.
In addition, although not a formal requirement, but being motivated by the fact that
most audio signals are targeted at humans, the representation should take human
auditory perception into account. Common tools used in signal processing are linear
time-frequency analysis methods that are mostly implemented as filter banks.
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For hearing scientists, an optimal signal representation should allow to extract the
perceptually relevant information in order to better understand sound perception. In
other terms, the representation should reflect the peripheral “internal” representation
of sounds in the human auditory system. The tools used in hearing research are com-
putational models of the auditory system. Those models come in various flavors but
their initial steps in the analysis process usually consist in several parallel bandpass
filters followed by one or more nonlinear and signal-dependent processing stages.
The first stage, implemented as a (linear) filter bank, aims to account for the spectro-
temporal analysis performed in the cochlea. The subsequent nonlinear stages aim
to account for the various nonlinearities that occur in the periphery (e.g., cochlear
compression) and at more central processing stages of the nervous system (e.g.,
neural adaptation). A popular auditory model, for instance, is the compressive gam-
machirp filter bank (see Sec.2.2). In this model, a linear prototype filter is followed
by a nonlinear and level-dependent compensation filter to account for cochlear
compression. Because auditory models are mostly intended as perceptual analysis
tools, they do not feature a synthesis stage, i.e. they are not necessarily invertible.
Note that a few models do allow for an approximate reconstruction, though.

It becomes clear that filter banks play a central role in hearing research and audio
signal processing alike, although the requirements of the two disciplines differ. This
divergence of the requirements, in particular the need for signal-dependent nonlinear
processing in auditory models, may contrast with the needs of signal processing
applications. But even within each of those fields, demands for the properties of
transforms are diverse, as becoming evident by the many already existing methods.
Therefore, it can be expected that the perfect signal representation, i.e. one that
would have all desired properties for arbitrary applications in one or even both fields,
does not exist.

This manuscript demonstrates how frame theory can be considered a particularly
useful conceptual background for scientists in both hearing and audio processing,
and presents some first motivating applications. Frames provide the following
general properties: perfect reconstruction, stability, redundancy, and a signal-
independent, linear inversion procedure. In particular, frame theory can be used
to analyze any filter bank, thereby providing useful insight into its structure and
properties. In practice, if a filter bank construction (i.e., including both the analysis
and synthesis filter banks) satisfies the frame condition (see Sec. 4), it benefits from
all the frame properties mentioned above. Why are those properties essential to
researchers in audio signal processing and hearing science?

Perfect reconstruction property: With the possible exception of frequencies
outside the audible range, a non-adaptive analysis filter bank, i.e. one that is
general, not signal-dependent, has no means of determining and extracting exactly
the perceptually relevant information. For such an extraction, signal-dependent
information would be crucial. Therefore, the only way to ensure that a linear, signal-
independent analysis stage', possibly followed by a nonlinear processing stage,

! As given by any fixed analysis filter bank.
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captures all perceptually relevant signal components is to ensure that it does not lose
any information at all. This, in fact, is equivalent to being perfectly invertible, i.e.
having a perfect reconstruction property. Thus, this property benefits the user even
when reconstruction is not intended per-se. Note that in general “being perfectly
invertible” need not necessarily imply that a concrete inversion procedure is known.
In the frame case, a constructive method exists, though.

Stability: For sound processing, stability is essential in the sense that, for the
analysis stage, when two signals are similar (i.e., their difference is small), the
difference between their corresponding analysis coefficients should also be small.
For the synthesis stage, a signal reconstructed from slightly distorted coefficients
should be relatively close to the original signal, that is the one reconstructed from
undistorted coefficients. From an energy point of view, signals which are similar
in energy should provide analysis coefficients whose energy is also similar. So
the respective energies remain roughly proportional. In particular, considering a
signal mixture, the combination of stability and linearity ensures that every signal
component is represented and weighted according to its original energy. In other
terms, individual signal components are represented proportional to their energy,
which is very important for, e.g., visualization. Even in a perceptual analysis, where
inaudible components should not be visualized equally to audible components
having the same energy, this stability property is important. To illustrate this, recall
that the nonlinear post-processing stages in auditory models are signal dependent.
That is, also the inaudible information can be essential to properly characterize the
nonlinearity. For instance, consider again the setup of the compressive gammachirp
model where an intermediate representation is obtained through the application of
a linear analysis filter bank to the input signal. The result of this linear transform
determines the shape of the subsequent nonlinear compensation filter. Note that the
whole intermediate representation is used. Consequently, the proper estimation of
the nonlinearity crucially relies on the signal representation being accurate, i.e. all
signal components being represented and appropriately weighted. This accurateness
comes for free if the analysis filter bank forms a frame.

Signal-independent, linear inversion: A consistent (i.e., signal-independent)
inversion procedure is of great benefit in signal processing applications. It implies
that a single algorithm/implementation can perform all the necessary synthesis
tasks. For nonlinear representations, finding a signal-independent procedure which
provides a stable reconstruction is a highly nontrivial affair, if it is at all possible.
With linear representations, such a procedure is easier to determine and this can be
seen as an advantage of the linearity. The linearity provided by the reconstruction
algorithm also significantly simplifies separation tasks. In a linear representation,
a separation in the coefficient (time-frequency) domain, i.e. before synthesis, is
equivalent to a separation in the signal domain. Such a property is highly relevant,
for instance, to computational auditory scene analysis systems that, to some extent,
are sound source separators (see Sec. 2.4).

Redundancy: Representations which are sampled at critical density are often
unsuitable for visualization, since they lead to a low resolution, which may lead
to many distinct signal components being integrated into a single coefficient of
the transform. Thus, the individual coefficients may contain information from a
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lot of different sources, which makes them hard to interpret. Still, the whole
set of coefficients captures all the desired signal information if (and only if) the
transform is invertible. Redundancy provides higher resolution and so components
that are separated in time or in frequency can be separated in the transform domain.
Furthermore, redundant representations are smoother and therefore easier to read
than their critically sampled counterparts.

Moreover, redundant representations provide some resistance against noise and
errors. This is in contrast to non-redundant systems, where distortions cannot be
compensated for. This is used for de-noising approaches. In particular, if a signal
is synthesized in a straightforward way from noisy (redundant) coefficients, the
synthesis process has the tendency to reduce the energy of the noise, i.e. there is
some noise cancellation.

Besides the above properties, which are direct consequences of the frame
inequalities, the generality of frame theory enables the consideration of additional
important properties. In the setting of perceptually motivated audio signal analysis
and processing, these include:

Perceptual relevance: We have stressed that the only way to ensure that all
perceptually relevant information is kept is to accurately capture all the information
by using a stable and perfectly invertible system for analysis. However, in an audi-
tory model or in perceptually motivated signal processing, perceptually irrelevant
components should be discarded at some point. If only a linear signal processing
framework is desired, this can be achieved by applying a perceptual weighting? and
a masking model, see Sec.2. If a nonlinear auditory model like the compressive
gammachirp filter bank is used, recall that the nonlinear stage is mostly determined
by the coefficients at the output of the linear stage. Therefore, all information should
be kept up to the nonlinear stage. In other words, discarding information already in
the analysis stage might falsify the estimation of the nonlinear stage, thereby result-
ing in an incorrect perceptual analysis. We want to stress here the importance of
being able to selectively discard unnecessary information, in contrast to information
being involuntarily lost during the analysis and/or synthesis procedures.

A flexible signal processing framework: All stable and invertible filter banks
form a frame and therefore benefit from the frame properties discussed above. In
addition, using filter banks that are frames allows for flexibility. For instance, one
can gradually tune the signal representation such as the time-frequency resolution,
analysis filters’ shape and bandwidth, frequency scale, sampling density etc., while
at the same time retaining the crucial frame properties. It can be tremendously useful
to provide a single and adaptable framework that allows to switch model parameters
and/or transition between them. By staying in the common general setting of filter
bank frames, the linear filter bank analysis in an auditory model or signal processing
scheme can be seen as an exchangeable, practically self-contained block in the
scheme. Thus, the filter bank parameters, e.g. those mentioned before, can be
tuned by scientists according to their preference, without the need to redesign the

2Different frequency ranges are given varying importance in the auditory system
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remainder of the model/scheme. Such a common background leads to results being
more comparable across research projects and thus benefits not only the individual
researcher, but also the whole field. Two main advantages of a common background
are the following: first, the properties and parameters of various models can be easily
interpreted and compared across contributions; second, by the adaption of a linear
model to obtain a nonlinear model the new model parameters remain interpretable.

Ease of integration: Filter banks are already a common tool in both hearing
science and signal processing. Integrating a filter bank frame into an existing
analysis/processing framework will often only require minor modifications of
existing approaches. Thus, frames provide a theoretically sound foundation without
the need to fundamentally re-design the remainder of your analysis (or processing)
framework.

In some cases, you might already implicitly use frames without knowing it. In
that case, we provide here the conceptual background necessary to unlock the full
potential of your method.

The rest of this chapter is organized as follows: In Section 2, we provide basic
information about the human auditory system and introduce some psychoacoustic
concepts. In Section 3 we present the basics of frame theory providing the main
definitions and a few crucial mathematical statements. In Section 4 we provide
some details on filter bank frames. The chapter concludes with Section 5 where
some examples are given for the application of frame theory to signal processing in
psychoacoustics.

2 The auditory analysis of sounds

This section provides a brief introduction to the human auditory system. Important
concepts that are relevant to the problems treated in this chapter are then introduced,
namely auditory filtering and auditory masking. For a more complete description of
the hearing organ, the interested reader is referred to, e.g., [32, 73].

2.1 Ear’s anatomy

The human ear is a very sensitive and complex organ whose function is to transform
pressure variations in the air into the percept of sound. To do so, sound waves must
be converted into a form interpretable by the brain, specifically into neural action
potentials. Figure 1 shows a simplified view of the ear’s anatomy. Incoming sound
waves are guided by the pinna into the ear canal and cause the eardrum to vibrate.
Eardrum vibrations are then transmitted to the cochlea by three tiny bones that
constitute the ossicular chain: the malleus, incus, and stapes. The ossicular chain
acts as an impedance matcher. Its function is to ensure efficient transmission of
pressure variations in the air into pressure variations in the fluids present in the
cochlea. The cochlea is the most important part of the auditory system because it is
where pressure variations are converted into neural action potentials.
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Fig. 1 Anatomy of the human ear with a schematic view of the unrolled cochlea. Adapted
from [52].

The cochlea is a rolled-up tube filled with fluids and divided along its length
by two membranes, the Reissner’s membrane and basilar membrane (BM). A
schematic view of the unrolled cochlea is shown in Figurel (the Reissner’s
membrane is not represented). It is the response of the BM to pressure variations
transmitted through the ossicular chain that is of primary importance. Because the
mechanical properties of the BM vary across its lengths (precisely, there is a grada-
tion of stiffness from base to apex), BM stimulation results in a complex movement
of the membrane. In case of a sinusoidal stimulation, this movement is described as
a traveling wave. The position of the peak in the pattern of vibration depends on the
frequency of the stimulation. High-frequency sounds produce maximum displace-
ment of the BM near the base with little movement on the rest of the membrane.
Low-frequency sounds rather produce a pattern of vibration which extends all the
way along the BM but reaches a maximum before the apex. The frequency that gives
the maximum response at a particular point on the BM is called the “characteristic
frequency” (CF) of that point. In case of a broadband stimulation (e.g., an impulsive
sound like a click), all points on the BM will oscillate. In short, the BM separates
out the spectral components of a sound similar to a Fourier analyzer.

The last step of peripheral processing is the conversion of BM vibrations into
neural action potentials. This is achieved by the inner hair cells that sit on top of the
BM. There are about 3500 inner hair cells along the length of the cochlea (~35 mm
in humans). The tip of each cell is covered with sensor hairs called stereocilia. The
base of each cell directly connects to auditory nerve fibers. When the BM vibrates,
the stereocilia are set in motion, which results in a bio-electrical process in the
inner hair cells and, finally, in the initiation of action potentials in auditory nerve
fibers. Those action potentials are then coded in the auditory nerve and conveyed to
the central system where they are further processed to end up in a sound percept.
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Because the response of auditory nerve fibers is also frequency specific and the
action potentials vary over time, the “internal representation” of a sound signal in
the auditory nerve can be likened to a time-frequency representation.

2.2 The auditory filters concept

Because of the frequency-to-place transformation (also called tonotopic organiza-
tion) in the cochlea, and the transmission of time-dependent neural signals, the BM
can be modeled in a first linear approximation as a bank of overlapping bandpass
filters, named “critical bands” or “auditory filters.” The center frequencies and
bandwidth of the auditory filters, respectively, approximate the CF and width of
excitation on the BM. Noteworthy, the width of excitation depends on level as well:
patterns become wider and asymmetric as sound level increases (e.g., [37]). Several
auditory filter models have been proposed based on the results from psychoacoustics
experiments on masking (see, e.g., [59] and Sec.2.3). A popular auditory filter
model is the gammatone filter [71] (see Figure 2). Although gammatone filters

Magnitude (dB)

Il Il
6000 8000 10000 12000
Frequency (Hz)

Fig. 2 A popular auditory filter model: the gammatone filter bank. The magnitude responses
(in dB) of 16 gammatone filters in the frequency range 300-8000 Hz are represented on a linear
frequency scale.
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do not capture the level dependency of the actual auditory filters, their ease of
implementation made them popular in audio signal processing (e.g., [90, 96]).
More realistic auditory filter models are, for instance, the roex and gammachirp
filters [37, 88]. Other level-dependent and more complex auditory filter banks
include, for example, the dual resonance nonlinear filter bank [58] or the dynamic
compressive gammachirp filter bank [49]. The two approaches in [49, 58] feature
a linear filter bank followed by a signal-dependent nonlinear stage. As mentioned
in the introduction, this is a particular way of describing a nonlinear system by
modifying a linear system. Finally, it is worth noting that besides psychoacoustic-
driven auditory models, mathematically founded models of the auditory periphery
have been proposed. Those include, for instance, the wavelet auditory model [12] or
the “EarWig” time-frequency distribution [67].

The bandwidth of the auditory filters has been determined based on psychoa-
coustic experiments. The estimation of bandwidth based on loudness perception
experiments gave rise to the concept of Bark bandwidth defined by [98]

BWpax =25+ 75 (1 +14x 10—652)0.69

ey
where & denotes the frequency and BW denotes the bandwidth, both in Hz.
Another popular concept is the equivalent rectangular bandwidth (ERB), that is the
bandwidth of a rectangular filter having the same peak output and energy as the
auditory filter. The estimations of ERBs are based on masking experiments. The
ERB is given by [37]

§
BWgrp = 24.7 + 965" 2)
BWgak and BWggg are commonly used in psychoacoustics and signal processing
to approximate the auditory spectral resolution at low to moderate sound pressure
levels (i.e., 30-70 dB) where the auditory filters’ shape remains symmetric and
constant. See, for example, [37, 88] for the variation of BWgrg with level.

Based on the concepts of Bark and ERB bandwidths, corresponding frequency
scales have been proposed to represent and analyze data on a scale related to
perception. To describe the different mappings between the linear frequency domain
and the nonlinear perceptual domain we introduce the function Fayp : € — AUD
where AUD is an auditory unit that depends on the scale. The Bark scale is [98]

Fgax (§) = 13 arctan(0.00076£) + 3.5 arctan(&/7500)> 3)

and the ERB scale is [37]

_ §
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Both auditory scales are connected to the ear’s anatomy. One AUD unit indeed
corresponds to a constant distance along the BM. 1 Bark corresponds to 1.3 mm
[32] while 1 ERB corresponds to 0.9 mm [37, 38].

2.3  Auditory masking

The phenomenon of masking is highly related to the spectro-temporal resolution
of the ear and has been the focus of many psychoacoustics studies over the last
70 years. Auditory masking refers to the increase in the detection threshold of a
sound signal (referred to as the “target”) due to the presence of another sound
(the “masker”). Masking is quantified by measuring the detection thresholds of
the target in presence and absence of the masker; the difference in thresholds
(in dB) thus corresponds to the amount of masking. In the literature, masking
has been extensively investigated in the spectral or temporal domain. The results
were used to develop models of spectral or temporal masking that are currently
implemented in audio applications like perceptual coding (e.g., [70, 76]) or sound
processing (e.g., [7, 41]. Only a few studies investigated masking in the joint
time-frequency domain. We present below some typical psychoacoustic results on
spectral, temporal, and spectro-temporal masking. For more results and discussion
on the origins of masking, the interested reader is referred to, e.g., [32, 62, 64].

In the following, we denote by &gy 73, Dy 13, and Ly 7y the frequency, duration,
and level, respectively, of masker or target. Those signal parameters are fixed by the
experimenter, i.e. they are known. The frequency shift between masker and target is
AE = &7 — &y and the time shift AT is defined as the onset delay between masker
and target. Finally, AM denotes the amount of masking in dB.

2.3.1 Spectral masking

To study spectral masking, masker and target are presented simultaneously (since
usually Dy, > Dry, this is equivalent to saying that 0 < AT < Dy — Dr) and
AE is varied. There are two ways to vary AE, either fix &7 and vary & or vice
versa. Similarly, one can fix Ly, and vary Ly or vice versa. In short, various types
of masking curves can be obtained depending on the signal parameters. A common
spectral masking curve is a masking pattern that represents Ly or AM as a function
of &7 or A¢ (see Figure 3). To measure masking patterns, &y, and Ly, are fixed and
AM is measured for various A&. Under the assumption that AM(§7) corresponds to
a certain ratio of masker-to-target energy at the output of the auditory filter centered
at &7, masking patterns measure the responses of the auditory filters centered at
the individual &7s. Thus, masking patterns can be used as indicator of the spectral
spread of masking of the masker or, in other terms, the spread of excitation of the
masker on the BM. This spectral spread can in turn be used to derive a masking
threshold, as used, for example, in audio codecs [70]. See also Sec. 5.2.
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Fig. 3 Masking patterns for narrow-band noise maskers of different levels and frequencies. Ly
(in dB SPL) is plotted as a function of &7 (in Hz) on a logarithmic scale. The gray dotted curve
indicates the threshold in quiet. The difference between any of the colored curves and the gray
curve thus corresponds to AM, as indicated by the arrow. Source: mean data for listeners JA and
AO in [63, Experiment 3, Figs. 5-6].

Figure 3 shows typical masking patterns measured for narrow-band noise
maskers of different levels (Ly; =45, 65, and 85 dB SPL, as indicated by the different
lines) and frequencies (&3; = 0.25, 1, and 4 kHz, as indicated by the different vertical
dashed lines). In this study, Dy, = Dr =200 ms. The masker was a 80-Hz-wide band
of Gaussian noise centered at &y,. The target was also a 80-Hz band of noise centered
at £7. The main properties to be observed here are:

(i) For a given masker (i.e., a pair of &y and Lys), AM is maximum for A¢ =0 and
decreases as | A£| increases. This reflects the decay of masker excitation on the
BM.

(i) Masking patterns broaden with increasing level. This reflects the broadening
of auditory filters with increasing level [37].

(iii) Masking patterns are broader at low than at high frequencies (see (1)—(2)). This
reflects the fact that the density of auditory filters is higher at low than at high
frequencies. Consequently, a masker with a given bandwidth will excite more
auditory filters at low frequencies.

2.3.2 Temporal masking

By analogy with spectral masking, temporal masking is measured by setting A§ =
0 and varying AT. Backward masking is observed for AT < 0, that is when the
target precedes the masker in time. Forward masking is observed for AT > Dy,
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that is when the target follows the masker. Backward masking is hardly observed
for AT < -20 ms and is mainly thought to result from attentional effects [32, 79].
In contrast, forward masking can be observed for AT > Dy, + 200 ms. Therefore,
in the following we focus on forward masking.

Typical forward masking curves are represented in Figure 4. The left panel shows
the effect of Ly, for &y = &7 = 4 kHz (mean data from [51]). In this study, masker
and target were sinusoids (Dy; = 300 ms, Dy = 20 ms). The main features to be
observed here are (i) the temporal decay of forward masking is a linear function
of log(AT) and (ii) the rate of this decay strongly depends on L. The right panel
shows the effect of Dy, for & = 2 kHz and Ly, = 60 dB SPL (mean data from [97]).
In this study, the masker was a pulse of uniformly masking noise (i.e., a broad-band
noise producing the same AM at all frequencies in the range 0-20 kHz, see [32]).
The target was a sinusoid with Dy = 5 ms. It can be seen that the AM (i.e., the
difference between the connected symbols and the star) at a given AT increases
with increasing Dy, at least for AT — Dy, < 100 ms. Finally, a comparison of
the two panels in Figure 4 for Ly, = 60 dB indicates that, for AT — Dy; < 50 ms,
the 300-ms sinusoidal masker (empty diamonds left) produces more masking than
the 200-ms broad-band noise masker (empty squares right). Despite the difference
in Dy, increasing the duration of the noise masker to 300 ms is not expected to
account for the difference in AM of up to 20 dB observed here [32, 97].

2.3.3 Time-frequency masking

Only a few studies measured spectro-temporal masking patterns, that is AT and
AE both systematically varied (e.g., [53, 79]). Those studies mostly involved long
(Dys > 100 ms) sinusoidal maskers. In other words, those studies provide data on the
time-frequency spread of masking for long and narrow-band maskers. In the context
of time-frequency decompositions, a set of elementary functions, or “atoms,” with
good localization in the time-frequency domain (i.e., short and narrow-band) is
usually chosen, see Sec.3. To best predict masking in the time-frequency decom-
positions of sounds, it seems intuitive to have data on the time-frequency spread of
masking for such elementary atoms, as this will provide a good match between the
masking model and the sound decomposition. This has been investigated in [64].
Precisely, spectral, forward, and time-frequency masking have been measured using
Gabor atoms of the form s;(f) = sin(2r&t + 7/4)e T with ' = 600 s~! as
masker and target. According to the definition of Gabor atoms in (7), the masker
was defined by sy(f) = J{e'™/ *g¢,.0}, where I denotes the imaginary part, with
a Gaussian window y (1) = e T and &y = 4 kHz. The masker level was fixed
at Ly = 80 dB. The target was defined by sp(t + AT) = J{el/4+2méraDy, 10}
with &7 = & + A£. The set of time-frequency conditions measured in [64] is
illustrated in Figure Sa. Because in this particular case we have &7AT € N, the
target term reduces to sp(t + AT) = J{e!™/ 4)y§T,_AT}. The mean masking data
are summarized in Figure 5b. These data, together with those collected by Laback
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Fig. 4 Temporal (forward) masking curves for sinusoidal (left) and broadband noise maskers
(right). L7 (in dB SPL) is plotted as a function of the temporal gap between masker offset and
target onset, i.e. AT — D)y, (in ms) on a logarithmic scale. Top panel: masking curves for various
Lys and Dy, = 300 ms (adapted from [51]). Bottom panel: masking curves for various Dys and Ly
=60 dB (adapted from [97]). Stars indicate the target thresholds in quiet.
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(a) Experimental conditions (b) Mean results
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Fig. 5 (a) Conditions measured in [64] illustrated in the time-Fgrp plane. The gray circle
symbolizes the masker atom sy, (¢). The blue circles symbolize the target atoms sz (¢ + AT). The
values of A§ were -4, -2, -1, 0, +1, +2, +4, and +6 Fggg. The values of AT were 0, 5, 10, 20, and
30 ms. (b) Mean data interpolated based on a cubic spline fit along the time-frequency plane. The
AT axis was sampled at a step of 1 ms and the A£ axis at a step of 0.25 Fgrg. For A¢ coordinates
outside the range of measurements a value of AM = 0 was used.

et al on the additivity of spectral [56] and temporal masking [55] for the same
Gabor atoms, constitute a crucial basis for the development of an accurate time-
frequency masking model to be used in audio applications like audio coding or
audio processing (see Sec. 5).

2.4 Computational auditory scene analysis

The term auditory scene analysis (ASA), introduced by Bregman [16], refers to
the perceptual organization of auditory events into auditory streams. It is assumed
that this perceptual organization constitutes the basis for the remarkable ability of
the auditory system to separate sound sources, especially in noisy environments. A
demonstration of this ability is the so-called cocktail party effect, i.e. when one is
able to concentrate on and follow a single speaker in a highly competing background
(e.g., many concurring speakers combined with cutlery and glass sounds). The term
computational auditory scene analysis (CASA) thus refers to the study of ASA by
computational means [92]. The CASA problem is closely related to the problem of
source separation. Generally speaking, CASA systems can be considered as percep-
tually motivated sound source separators. The basic work flow of a CASA system
is to first compute an auditory-based time-frequency transform (most systems use
a gammatone filter bank, but any auditory representation that allows reconstruction
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can be used, see Sec.5.1). Second, some acoustic features like periodicity, pitch,
amplitude, and frequency modulations are extracted so as to build the perceptive
organization (i.e. constitute the streams). Then, stream separation is achieved
using the so-called time-frequency masks. These masks are directly applied to the
perceptual representation; they retain the “target” regions (mask = 1) and suppress
the background (mask = 0). Those masks can be binary or real, see, e.g., [92, 96].
The target regions are then re-synthesized by applying the inverse transform to
obtain the signal of interest. Noteworthy, a perfect reconstruction transform is of
importance here. Furthermore, the linearity and stability of the transform allow a
separation of the audio streams directly in the transform domain. Most gammatone
filter banks implemented in CASA systems are only approximately invertible,
though. This is due to the fact that such systems implement gammatone filters in
the analysis stage and their time-reversed impulse responses in the synthesis stage.
This setting implies that the frequency response of the gammatone filter bank has an
all-pass characteristic and features no ripple (equivalently in the frame context, that
the system is tight, see 4.3). In practice, however, gammatone filter banks usually
consider only a limited range of frequencies (typically in the interval 0.1-4 kHz
for speech processing) and the frequency response features ripples if the filters’
density is not high enough. If a high density of filters is used, the audio quality of
the reconstruction is rather good [85, 96]. Still, the quality could be perfect by using
frame theory [66]. For instance, one could render the gammatone system tight (see
Proposition 2) or use its dual frame (see Sec. 3.1.2).

The use of binary masks in CASA is directly motivated by the phenomenon of
auditory masking explained above. However, time-frequency masking is hardly con-
sidered in CASA systems. As a final remark, an analogy can be established between
the (binary) masks used in CASA and the concept of frame multipliers defined in
Sec. 3.2. Specifically, the masks used in CASA systems correspond to the symbol
m in (15). This analogy is not considered in most CASA studies, though, and offers
the possibility for some future research connecting acoustics and frame multipliers.

3 Frame theory

What is an appropriate setting for the mathematical background of audio signal
processing? Since real-world signals are usually considered to have finite energy and
technically are represented as functions of some variable (e.g., time), it is natural to
think about them as elements of the space L?(IR). Roughly speaking, L?(R) contains
all functions x(z) with finite energy, i.e. with ||x|?> = f_-:)o |x(t)|>dt < oo. For
working with sampled signals, the analogue appropriate space is £>(K) (K denoting
a countable index set) which consists of the sequences ¢ = (ci)rex With finite
energy, i.e. [[c[|* = X ek lex]* < 0.

Both spaces L*>(R) and ¢*>(K) are Hilbert spaces and one may use the rich
theory ensured by the availability of an inner product, that serves as a measure of
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correlation, and is used to define orthogonality, of elements in the Hilbert space.
In particular, the inner product enables the representation of all functions in J# in
terms of their inner products with a set of reference functions: A standard approach
for such representations uses orthonormal bases (ONBs), see, e.g., [42]. Every
separable Hilbert space .77 has an ONB (ex)rex and every element x € 7 can
be written as

=) (rede (5)

keK

with uniqueness of the coefficients (x, e¢;), k € K. The convenience of this approach
is that there is a clear (and efficient) way for calculating the coefficients in the
representations using the same orthonormal sequence. Even more, the energy in
the coefficient domain (i.e., the square of the £2-norm) is exactly the energy of the
element x:

Z [(x, ex)|* = ||lx||*. (Parseval equality)
keK

Furthermore, the representation (5) is stable: if the coefficients ({x, e;))rex are
slightly changed to (a;)iex € €2, one obtains an element ¥ = D rek akek close
to the original one x.

However, the use of ONBs has several disadvantages. Often the construction of
orthonormal bases with some given side constraints is difficult or even impossible
(see below). “Small perturbation” of the orthonormal basis’ elements may destroy
the orthonormal structure [95]. Finally, the uniqueness of the coefficients in (5) leads
to a lack of exact reconstruction when some of these coefficients are lost or disturbed
during transmission.

This naturally leads to the question how the concept of ONBs could be gener-
alized to overcome those disadvantages. As an extension of the above-mentioned
Parseval equality for ONBs, one could consider inequalities instead of an equality,
i.e. boundedness from above and below (see Def.1). This leads to the concept
of frames, which was introduced by Duffin and Schaeffer [29] in 1952. It took
several decades for scientists to realize the importance and applicability of frames.
Popularized around the 90s in the wake of wavelet theory [26, 27, 43], frames
have seen increasing interest and extensive investigation by many researchers
ever since. Frame theory is both a beautiful abstract mathematical theory and
a concept applicable in many other disciplines, e.g., engineering, medicine, and
psychoacoustics, see Sec. 5.

Via frames, one can avoid the restrictions of ONBs while keeping their important
properties. Frames still allow perfect and stable reconstruction of all the elements
of the space, though the representation-formulas in general are not as simple as
the ones via an ONB (see Sec.3.1.2). Compared to orthonormal bases, the frame
property itself is much more stable under perturbations (see, e.g., [22, Sec. 15]).
Also, in contrast to orthonormal bases, frames allow redundancy which is desirable,
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e.g., in signal transmission, for reconstructing signals when some coefficients are
lost, and for noise reduction. Via redundant frames one has multiple representations
and this allows to choose appropriate coefficients fulfilling particular constraints,
e.g. when aiming at sparse representations. Furthermore, frames can be easier and
faster to construct than ONBs. Some advantageous side constraints can only be
fulfilled for frames. For example, Gabor frames provide convenient and efficient
signal processing tools, but good localization in both time and frequency can never
be achieved if the Gabor frame is an ONB or even a Riesz basis (cf. Balian-Low The-
orem, see, e.g., [22, Theor. 4.1.1]), while redundant Gabor frames for this purpose
are easily constructed (for example, using the Gaussian function). See Sec. 2.3.3 on
how good localization in time and frequency is important in masking experiments.

Some of the main properties of frames were already obtained in the first paper
[29]. For extensive presentation on frame theory, we refer to [17, 22, 40, 42].

In this section we collect the basics of frame theory relevant to the topic of the
current paper. All the statements presented here are well known. Proofs are given
just to make the paper self-contained, for convenience of the readers, and to facilitate
a better understanding of the mathematical concepts. They are mostly based on [22,
29, 40]. Throughout the rest of the section, .7 denotes a separable Hilbert space
with inner product (-, -), Id» - the identity operator on .77, K - a countable index
set, and @ (resp. ¥) - a sequence (¢y)rex (resp. (¥i)rex) With elements from 7.
The term operator is used for a linear mapping. Readers not familiar with Hilbert
space theory can simply assume 5 = L?(R) for the remainder of this section.

3.1 Frames: A Mathematical viewpoint

The frame concept extends naturally the Parseval equality permitting inequalities,
i.e., the ratio of the energy in the coefficient domain to the energy of the signal may
be bounded from above and below instead of being necessarily one:

Definition 1 A countable sequence @ = (¢ )rek is called a frame for the Hilbert
space J¢ if there exist positive constants A and B such that

A-lxlZe =D Hx g <B-|x|3e . Vx e (6)
keK

The constant A (resp. B) is called a lower (resp. upper) frame bound of ®@. A frame
is called right with frame bound A if A is both a lower and an upper frame bound. A
tight frame with bound 1 is called a Parseval frame.

Clearly, every ONB is a frame, but not vice versa. Frames can naturally be split
into two classes - the frames which still fulfill a basis-property, and the ones that do
not:
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Fig. 6 Examples in R2: ONB (a,b), Riesz basis (c,d), frame (e,f)
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Definition 2 A frame @ for 2 which is a Schauder basis® for . is called a
Riesz basis for 7. A frame for .Z which is not a Schauder basis for JZ is called
redundant (also called overcomplete).

Note that Riesz bases were introduced by Bari [11] in different but equivalent
ways. Riesz bases also extend ONBs, but contrary to frames, Riesz bases still
have the disadvantages resulting from the basis-property, as they do not allow
redundancy. For more on Riesz bases, see, e.g., [95]. As an illustration of the
concepts of ONBs, Riesz bases, and redundant frames in a simple setting, consider
examples in the Euclidean plane, see Figure 6.

3A sequence @ is called a Schauder basis for 7 if every element x € .# can be written as
X =Y ek Ck¢r with unique coefficients (c)rek-
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Note that in a finite dimensional Hilbert space, considering only finite sequences,
frames are precisely the complete sequences (see, e.g., [22, Sec. 1.1]), i.e., the
sequences which span the whole space. However, this is not the case in infinite-
dimensional Hilbert spaces - every frame is complete, but completeness is not
sufficient to establish the frame property [29]. For results focused on frames in finite
dimensional spaces, refer to [4, 19].

As non-trivial examples, let us mention a specific type of frames used often in
signal processing applications, namely Gabor frames. A Gabor system is comprised
of atoms of the form

8o (t) = Mg(t — 1), (7)

with function g € L?(R) called the (generating) window and with time- and
frequency-shift 7,w € R, respectively. To allow perfect and stable reconstruction,
the Gabor system (gu.¢)w.r)ek(cr?) 1S assumed to have the frame-property and
in this case is called a Gabor frame. Note that the analysis operator of a Gabor
frame corresponds to a sampled Short-Time-Fourier transform (see, e.g., [40]) also
referred to as Gabor transform.

Most commonly, regular Gabor frames are used; these are frames of the form
(grriez = (¢7"*g(- —la)), ., for some positive a and b satisfying necessarily
(but in general not sufficiently ) ab < 1. To mention a concrete example - for the
Gaussian g(¢) = e, the respective regular Gabor system (g ;). ez is a frame for
L*(R) if and only if ab < 1 (see, e.g., [40, Sec. 7.5] and the references therein).

Other possibilities include using alternative sampling structures, on subgroups
[94] or irregular sets [18]. If the window is allowed to change with time (or
frequency) one obtains the non-stationary Gabor transform [9]. There it becomes
apparent that frames allow to create adaptive and adapted transforms [10], while
still guaranteeing perfect reconstruction.

If not continuous but sampled signals are considered, Gabor theory works
similarly. Discrete Gabor frames can be defined in an analogue way, namely, frames
of the form (e**/™h[- —la]), ., o\ ., for b € £*(Z) with a,M € N, where
a/M < 1 is necessary for the frame property. For readers interested in the theory of
Gabor frames on ¢%(Z), see, e.g., [91]. For constructions of discrete Gabor frames
from Gabor frames for L?(R) through sampling, refer to [50, 80].

3.1.1 Frame-related operators

Given a frame @ for JZ, consider the following linear mappings:

Analysis operator : Cg : S — *(K), Cox := ({x, $))rex:
Synthesis operator : Do : 2(K) — 7, Do (ci)rek = Y rex kPi:
Frame operator:  S¢ : K — H, Sex:=DepCox =3 ,cx (x. &) P (8)
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These operators are tremendously important for the theoretical investigation of
frames as well as for signal processing. As one can observe, the analysis (resp.
synthesis, frame) operator corresponds to analyzing (resp. synthesizing, analyzing
and re-synthesizing) a signal. In the following statement the main properties of the
frame-related operators are listed.

Theorem 1 (e.g., [22, Sec. 5]) Let @ be a frame for S with frame bounds A and
B (A < B). Then the following holds.

(a) Cog is a bounded injective operator with bound ||Cqe || < ~/B.

(b) D¢ is a bounded surjective operator with bound |Dg || < /B and Dy = Cj.
(¢) So is a bounded bijective positive self-adjoint operator with ||Se¢|| < B.

(d) (Sg'dw)iex is a frame for S with frame bounds 1/B, 1/A.

Proof (a) By the frame inequalities (6) we have v/A||x|»» < |Coxl|l;2 < v/Bl|x|.
for every x € ; the upper inequality implies the boundedness and the lower one -
the injectivity, i.e. the operator is one-to-one.

(b) First show that Dy is well defined, i.e., that ), ., cx converges for every
(ci)rex € €%(K). Without loss of generality, for simplicity of the writing, we may
denote K as N. Fix arbitrary (c)ren € £2. Forevery p,q € N, p > g,

p q P
[ Z ki — ch¢k||9f
k=1 k=1

sup (Y cui )]

x€5 ||x|| e =1 k=q+1

sup (Y (a2 g x) )

x€5 ||x|l e =1 k=q+1 k=q+1

IA

P
VB( Y la)'? ——=o,
p.q—>00

k=qg+1

A

which implies that Y _, cx¢x converges in # as p — oo. Using the adjoint of Co,
for every (c)2, € €% and every y € JZ, one has that

(Ch o2y ) = (2. Coy) = D aly.de) = ) el ) = () cun y).
k=1 k=1 k=1

Therefore Dy = C}, implying also the boundedness of Dg.
For every x € 22, we have |D3x| 2 = [[Cox| e > VA]|x||, which implies (see,
e.g., [78, Theorem 4.15]) that Dy is surjective, i.e. it maps onto the whole space .77 .
(c) The boundedness and self-adjointness of S¢ follow from (a) and (b). Since
(Sox,x) = Y ek |(x, #x) |, So is positive and the frame inequalities (6) mean that

Allxll%4 < (Sox.x) < Bllx||%p. Vx € A )
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implying that 0 < ((Idz» — %qu)x, x) < %Hxﬂ?%ﬁ for all x € 7. Then the norm
of the bounded self-adjoint operator Id ;» — éSq; satisfies

1 1
[1d» — ES‘DH = sup  ((Idyr — E&p)x,JC) < <1,

x€ \Ixll e =1
which by the Neumann theorem (see, e.g., [45, Theor. 8.1]) implies that S¢ is
bijective.
(d) As a consequence of (c), S;l is bounded, self-adjoint, and positive. In the

language of partial ordering of self-adjoint operators (see, e.g., [45, Sec. 68]), (9)
can be written as

A-Idyy <S¢ <B-Id. (10)

Since Sz' is positive and commutes with Sp and Id -, one can multiply the
inequalities in (10) with S;l (see, e.g., [45, Prop. 68.9]) and obtain

1 1
—Idyy <S5' < —Idp,
B 9% =S0 = Jldr
which means that
1 2
—||x||% (S3'x.x) < < lll%. Vae . (11)

For every x € 7, denote y, = S;'x and use the fact that S, is self-adjoint to
obtain

D 1S5 B P =D 10w )P = (. Soys) = (S5'x.x).

keK keK

Now (11) completes the conclusion that (Sg' ¢ )rex is a frame for 7 with frame
bounds 1/B, 1/A. ]

3.1.2 Perfect reconstruction via frames

Here we consider one of the most important properties of frames, namely, the
possibility to have perfect reconstruction of all the elements in the space.

Theorem 2 (e.g., [40, Corol. 5.1.3]) Let @ be a frame for F€. Then there exists a
frame WV for F such that

x= ) (g = Y (x )V Vx € . (12)

keK keK
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Proof By Theorem 1(d), the sequence (S;'@i)rex is a frame for 7. Take ¥ :=
(Sz'd1)kek. Using the boundedness and the self-adjointness of Sg, for every
x € I,

Y=Y (¢S bk =S5 D (x. i) = Sp'Sox = x,

kEK keK kEK

Db =D (x5 So B = D (Se'x, ¢ = SoSp'x = x.

keK kEK kEK

a

Let @ be a frame for 5#. Any frame ¥ for Z, which satisfies (12), is called a
dual frame of @. By the above theorem, every frame has at least one dual frame,
namely, the sequence

(o' P)kek- (13)

called the canonical dual of @. When the frame is a Riesz basis, then the coefficient
representation is unique and thus there is only one dual frame, the canonical
dual. When the frame is redundant, then there are other dual frames different
from the canonical dual (see, e.g., [22, Lemma 5.6.1]), even infinitely many. This
provides multiple choices for the coefficients in the frame representations, which is
desirable in some applications (see, e.g., [10]). The canonical dual has a minimizing
property in the sense that the coefficients ({x,Sg'¢x))rex in the representation
X = Y iex(x S3'éi) ¢ have the minimal £2-norm compared to the coefficients
(ck)kex in all other possible representations x = ), ., cx¢x. However, for certain
applications other constraints are of interest - e.g. sparsity, efficient algorithms for
representations or particular shape restrictions on the dual window [72, 93]. The
canonical dual is not always efficient to calculate nor does it always have the desired
structure; in such cases other dual frames are of interest [15, 23, 57]. The particular
case of tight frames is very convenient for efficient reconstructions, because the
canonical dual is simple and does not require operator-inversion:

Corollary 1 (e.g. [22, Sec. 5.7]) The canonical dual of a tight frame (¢r)rex With
frame bound A is the sequence (%(ﬁk)ke;(.

Proof Let @ be a tight frame for S with frame bound A. It follows from (10) that
Se = A -1d and thus the canonical dual of @ is (S;'¢x)rex = (%q&k)kek. O

In acoustic applications, it can be of big advantage to not be forced to distinguish
between analysis and synthesis atoms. So, one may aim to do analysis and synthesis
with the same sequence as an analogue to the case with ONBs. However, such an
analysis-synthesis strategy would perfectly reconstruct all the elements of the space
if and only if this sequence is a Parseval frame:
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Proposition 1 (e.g., [22, Lemma 5.7.1]) The sequence @ satisfies

x=) (.. Yxe A, (14)

keK

if and only it is a Parseval frame for 7.

Proof Let @ be a Parseval frame for 7. By Corollary 1, the canonical dual of @ is
the same sequence @, which implies that (14) holds. Now assume that (14) holds.
Then for every x € J7,

x> = Qe )i x) = D x i) (o x) = Y [x. i)l

keK keK kEK

which means that @ is a Parseval frame for J7Z. ad

The above statement characterizes the sequences which provide recon-
structions exactly like ONBs - these are precisely the Parseval frames. A
trivial example of such a frame which is not an ONB is the sequence
(e1.e2/N2, 62/ 2, e3//3.e3/\/3,e3//3. ...), where (ex)g2, denotes an ONB for
. Clearly, any tight frame with frame bound A is easily converted into a Parseval
frame by dividing the frame elements by the square root of A. Given any frame, one
can always construct a Parseval frame as follows:

Proposition 2 (e.g. [22, Theor. 5.3.4]) Let @ be a frame for 7. Then S;l has a
positive square root and (S;l/ quk)keK forms a Parseval frame for €.

Proof Since Sz' is a bounded positive self-adjoint operator, there is a unique

bounded positive self-adjoint operator, which is denoted by S;l/ 2, with S;! =
S;l/ZS;l/z. Furthermore, S;l/z commutes with S¢. For every x € 7,

3 .85 0S5 P =55"7 Y (85" x. i) k=SS0, Px=85Spx = x.

keK keK

By Proposition 1 this means that (S;l/ 2¢k)keK is a Parseval frame for 7. O

Finally, note that frames guarantee stability. Let @ be a frame for 5 with frame
bounds A, B. Then v/Allx — y| < [l((x. ¢x)) — (. dDrex e < V/Bllx =y for
x,y € S, which implies that close signals lead to close analysis coefficients and
vice versa. Furthermore, the representations via @ and a dual frame ¥ is stable. If
a signal x is transmitted via the coefficients ({x, Y))rex but, during transmission,
the coefficients are slightly disturbed (i.e., modified to a sequence (ay)iex € £% with
small £2-difference), then by Theorem 1(b), the reconstructed signal y = ) ek UPr

will be close to.x: [x—yl| = || Xex ((x. ¥i) —aokexdell = VBI((x, Yi)—an)kex -
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3.2 Frame multipliers

Multipliers have been used implicitly for quite some time in applications, as
time-variant filters, see, e.g., [60]. The first systematic theoretical development
of Gabor multipliers appeared in [33]. An extension of the multiplier concept to
general frames in Hilbert spaces was done in [3] and it can be derived as an easy
consequence of Theorem 1:

Proposition 3 [3] Let @ and ¥ be frames for 57 and let m = (my)rex be a complex
scalar sequence in £°°(K). Then the series ), my{x, V)¢ converges for every
x € S and determines a bounded operator on 7.

Proof For every x € ., Theorem 1(a) implies that ({x,Vi))iex € >
and thus (m(x,Vx))iexk € €7, which by Theorem 1(b) implies that the
series ) cx My (x, Yi)¢r converges. Thus, the mapping M,, ¢y determined by
M, oux 1= Y cx Mi{x, Yi)@y is well defined on s# and furthermore linear. For
every x € S,

M0 Xl = Do (mi(x, Yi)kekll e < Do || - | (mi(x, Yie) ke |l 2

< Dol - lmlloo - ICwl - X[,

implying the boundedness of M, ¢ w. O
Due to the above proposition, frame multipliers can be defined as follows:

Definition 3 Given frames @ and ¥ for 7 and given complex scalar sequence
m = (m)rex € £>°(K), the operator M,, ¢ v determined by

M,,00% i= D milx, V)i, x € A, (15)

keK

is called a frame multiplier with a symbol m.

Thus, frame multipliers extend the frame operator, allowing different frames for
the analysis and synthesis step, and modification in between (for an illustration, see
Figure 7). However, in contrast to frame operators, multipliers in general lose the
bijectivity (as well as self-adjointness and positivity). For some applications it might
be necessary to invert multipliers, which brings the interest to bijective multipliers
and formulas for their inverses - for interested readers, we refer to [5, 82—-84] for
some investigation in this direction.

In the language of signal processing, Gabor filters [61] are a particular way to
do time-variant filtering. In fact, Gabor filters are nothing but frame multipliers
associated to a Gabor frame. A signal x is transformed to the time-frequency domain
(with a Gabor frame @), then modified there by point-wise multiplication with the
symbol m, followed by re-synthesis via some Gabor frame ¥ providing amodified
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TF representation of original signal Gabor mask: symbol of multiplier
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Fig. 7 An illustrative example to visualize a multiplier (taken from [5]). (TOP LEFT) The
time-frequency representation of the music signal f. (TOP RIGHT) The symbol m, found by
a (manual) estimation of the time-frequency region of the singer’s voice. (BOTTOM) Time-
frequency representation of M,, 7 yf.

signal. If some elements my, of the symbol m are zero, the corresponding coefficients
are removed, as sometimes used in applications like CASA or perceptual sparsity,
see Secs.2.4 and 5.2.

3.2.1 Implementation

In the finite-dimensional case, frames lend themselves easily to implementation in
computer codes [4]. The Large Time-Frequency Analysis Toolbox (LTFAT) [81],
see http:/Itfat.github.io/, is an open-source Matlab/Octave toolbox intended for
time-frequency analysis, synthesis and processing, including multipliers. It provides
robust and efficient implementations for a variety of frame-related operators for
generic frames and several special types, e.g. Gabor and filter bank frames.


http://ltfat.github.io/
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In a recent release, reported in [74], a “frames framework” was implemented,
which models the abstract frame concept in an object-oriented approach. In this
setting any algorithm can be designed to use a general frame. If a structured frame,
e.g. of Gabor or wavelet type, is used, more efficient algorithms are automatically
selected.

4 Filter bank frames: a signal processing viewpoint

Linear time-invariant filter banks (FB) are a classical signal analysis and processing
tool. Their general, potentially non-uniform structure provides the natural setting
for the design of flexible, frequency-adaptive time-frequency signal representations
[10]. In this section, we recall some basics of FB theory and consider the relation of
perfect reconstruction FBs to certain frame systems.

4.1 Basics of filter banks

In the following, we consider discrete signals with finite energy (x € (%(Z)),
interpreted as samples of a continuous signal, sampled at sampling frequency &,
i.e. the signal was sampled every 1/&; seconds. Bold italic letters indicate matrices
(upper case), e.g. G, and vectors (lower case), e.g. h. We denote by Wy = ¢*™/N the
Nth root of unity and by &; = &o[- — k] the (discrete) Dirac symbol, with §[n] = 1
for n = k and 0 otherwise. Observe that for ¢ = D/d we have

e . if j is a multiple of
wid — 2nijfifq _ § ¢ if jis a multiple of ¢ 16
Z b Z ¢ 0 otherwise. (16)
1=0 1=0
The z-transform maps a (discrete-)time domain signal x to its frequency domain
representation X by

Z xnl - X(@2) = Zx[n]z”, forall z € C.

nez

By setting z = > for £ € T, the z-transform equals the discrete-time Fourier
transform (DTFT). Note that the z-transform is uniquely determined by its values
on the complex unit circle [68]. It is easy to see that, 2 (§;) = zX, a property that
we will use later on.

The application of a filter to a signal x is given by the convolution of x with the
time domain representation, or impulse response h € £*>(Z) of the filter

) = xxhn) = x[llhln—1]. ¥ n € Z, 17
€7



250 P. Balazs et al.

or equivalently by multiplication in the frequency domain Y(z) = X(z)H(z), where
H(z) is the transfer function, or frequency domain representation, of the filter.
Furthermore define the downsampling and upsampling operators |4, 14 by

x[n/d] ifn € dZ,

la{x} [l =x[d-n] and 14 {x}[n] = )
0 otherwise.

(18)

Here, d € N is called the downsampling or upsampling factor, respectively. In the
frequency domain, the effect of down- and upsampling is the following [69]:

d—1
Z(a (D@ =d™ Y XKW and Z(1a D@ =X (19)

j=0

In words, downsampling a signal by d results in the dilation of its spectrum by
d and the addition of (d — 1) copies of the dilated spectrum. These copies of the
spectrum (the terms X (Wf,zl/ 4) for j # 0 in the sum above) are called aliasing terms.
Conversely, upsampling a signal by d results in the contraction of its spectrum by d.

An FB is a collection of analysis filters Hy(z), synthesis filters Gi(z), and
downsampling and upsampling factors di, k € {0,...,K}, see Figure 8. An FB
is called uniform, if all filters have the same downsampling factor, i.e. dy = D for
all k.

The sub-band components yi[n] of the system represented in Figure 8 are given
in the time domain by

yiln] = la, i * x} [n] (20)

The output signal is X[n] = Zf:o (gx* T4, {¥x}) [n]. When analyzing the properties
of a filter (bank), it is often useful to transform the expression for X to the frequency
domain. First, apply the z-transform to the output of a single analysis/synthesis
branch, obtaining

H(W§ 2)
Z (gex a0 ) = d ' X(Wg2), ... . X(Wg ') : Gi(2). (21)
Hk(ijilz)

Fig. 8 General structure of a
non-uniform
analysis-synthesis FB.
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where the down- and upsampling properties of the z-transform were applied, see
Eq.(19). Now let D = lcm(dy,...,dk), i.e. the least common multiple of the
downsampling factors, and D/dy = gi. Then (21) gives

Z (gx Yo i) @) = DT X(Wp2), ... . X(Wp D (2)Grl2),  (22)
where,
T
hi(2) = g1 - [Hk(z),O,--- L0, Hy(W2), 0, -+ .0, Hy(WS %) 0, ... ,0] .
N ——’ N ——’ N——
qk—lzeros qk—lzeros qk—lzeros

The relevance of this equality becomes clear if we use linearity of the z-transform to
obtain a frequency domain representation of the full FB output, also called the alias
domain representation [89]

K
X(2) =) Z (g% ta i) @)

k=0
Go(z)
= D' X(WD2),....X(WB~ )] [ho(). . ... hg(2)]
Gk (z)
=D X(WS2),....X(WE™'2)|H(2)G(z). (23)

where H(z) = [ho(2), ..., hkg(z)] is the D x (K + 1) alias component matrix [89]
and G(z) = [Go(2), . .., Gk (2)].

An FB system is undersampled, critically sampled, or oversampled, if R =
ZkK=0 dk_1 is smaller than, equal to, or larger than 1, respectively. Consequently, a
uniform FB is critically sampled if it has exactly D subbands. For a deeper treatment
of FBs, see, e.g., [54, 89].

Perfect reconstruction FBs: An FB is said to provide perfect reconstruction if
%[n] = x[n — I] for all x € ¢*(Z) and some fixed [ € Z. In the case when [ # 0,
the FB output is delayed by [. Using the alias domain representation of the FB, the
perfect reconstruction condition can be expressed as

HGz) Gk =7Z[po0---0]", (24)

for some [ € Z, as this condition is equivalent to X(z) = Z/X(z) = Z(x * §)(2).
From this vantage point the perfect reconstruction condition can be interpreted as
all the alias components (i.e., from the 2nd to D + 1-th) in H(z) being uniformly
canceled over all z € C by the synthesis filters G(z), while the first component
of H(z) remains constant over all z € C (up to a fixed power of 7). The perfect
reconstruction condition is of tremendous importance for determining whether an
FB, including both analysis and synthesis steps, provides perfect reconstruction.
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Fig. 9 The equivalent x[n]
uniform FB [1] corresponding ~ —>
to the non-uniform FB in

Figure 8. The terms H,El) and

G,(f) in (b) correspond to the
z-transforms of the terms h,(!)

and ) defined in (25 m m

Zﬁzf qr = d channels
0 0
HY(2) w1l

HY () 2]
) W 6 Ve

However, given a fixed analysis FB, the alias domain representation may fail
to provide straightforward or efficient ways to find suitable synthesis filters that
provide perfect reconstruction. It can sometimes be used to determine whether such
a system can exist, although the process is far from intuitive [46]. Consequently,
non-uniform perfect reconstruction FBs are still not completely investigated, and
thus frame theory may provide valuable new insights. However, for uniform FBs the
perfect reconstruction conditions have been largely treated in the literature [54, 89].
Therefore, before we indulge in the frame theory of FBs, we also show how a non-
uniform FB can be decomposed into its equivalent uniform FB. Such a uniform
equivalent of the FB always exists [1, 54] and can be obtained as shown in Figure 9
and described below.

4.2 The equivalent uniform filter bank

To construct the equivalent uniform FB to a general FB specified by analysis filters
Hy(z), synthesis filters Gy (z), and downsampling and upsampling factors di, k €
{0, ..., K}, start by denoting again D = lecm(dy, ..., dk). We first construct the
desired uniform FB, before showing that it is in fact equivalent to the given non-
uniform FB. For every filter A, g; in the non-uniform FB, introduce g, = D/d;
filters, given by specific delayed versions of Ay, g:

hOMn] = by 81, = b [n—1di]  and  gP[n] = gi % 8_1g, = g [n + Idi] . (25)
for!/ = 0,...,q; — 1. It is easily seen that convolution with §; equals translation

by k samples by just checking the definition of the convolution operation (17).
Consequently, the sub-band components are
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yO[n] = yelngi — 1) =4p L * 81g, +x3{nl, (26)
N— —

:=h,(<l)

where yy is the k-th sub-band component with respect to the non-uniform FB. Thus,
by grouping the corresponding g, sub-bands, we obtain

qr—1

sl = Y A o} 40
=0

In the frequency domain, the filters h,(f) O

are given by
Dy — ldk Dy — —ldy
H, ' (z) = 2%Hi(z) and G, (2) =z “Gi(2).

Similar to before, the output of the FB can be written as

K D—1qi—1

X@ =0 Y3 Y 6l (Whe) x (Whe)
k=0 j=0 =0
K D-—1 qk—1
=073 Y Gl (Whe) X (Whe) Y- wi @7)
k=0 j=0 1=0

To obtain the second equality, we have used that G(l)(z)H,((l) (W{)z) =
W% Gy (2)Hy (Wg kz). Insert Eq. (16) into (27) to obtain

K dy—1

X0 =03 Y 4Gi0H, (W{quz) X (W{Jq"z)

k=0 j=0

K
= D71 Y IX(Wpa)... . X(Wp' @A) Ge(2)
k=0

XWR2), ... . X(WE ') H(2) G(2), (28)

which is exactly the output of the non-uniform FB specified by the A4;’s, g;’s, and
dy’s, see (23). Therefore, we see that an equivalent uniform FB for every non-
uniform FB is obtained by decomposing each k-th channel of the non-uniform
system into g; channels. The uniform system then features Zf:o qr channels in
total with the downsampling factor D = lem(dy, . . ., dg) in all channels.
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4.3 Connection to Frame Theory

We will now describe in detail the connection between non-uniform FBs and frame
theory. The main difference to previous work in this direction, cf. [14, 20, 25, 34],
is that we do not restrict to the case of uniform FBs. The results in this section
are not new, but this presentation is their first appearance in the context of non-
uniform FBs. Besides using the equivalent uniform FB representation, see Figure 9,
we transfer results previously obtained for generalized shift-invariant systems [44,
77] and nonstationary Gabor systems [9, 47, 48] to the non-uniform FB setting.
For that purpose, we consider frames over the Hilbert space # = (2(Z) of finite
energy sequences. Moreover, we consider only FBs with a finite number K + 1 € N
of channels, a setup naturally satisfied in every real-world application. The central
observation linking FBs to frames is that the convolution can be expressed as an
inner product:

yi[n]l =da, {he x x} [n] = (x, li[ndy —])

where the bar denotes the complex conjugate. Hence, the sub-band components with
respect to the filters 4; and downsampling factors dj equal the frame coefficients

of the system @ = (hk [nd) — ])k . Note that the upper frame inequality, see

Eq. (6), is equivalent to the /;’s and di’s defining a system where bounded energy
of the input implies bounded energy of the output. We will investigate the frame
properties of this system by transference to the Fourier domain [8]; we consider

P = (E_ndkl/z;>k , where E{(E) = H;(e?*) denotes the Fourier transform of A;[—]

and the operator E,, denotes modulation, i.e. E_q /it(€) = Iy (§)e2mindié

If @ satisfies at least the upper frame inequality in Eq.(6), then the frame
operators S¢ and S are related by the matrix Fourier transform [2]:

where .#pr denotes the discrete-time Fourier transform. Since the matrix Fourier
transform is a unitary operation, the study of the frame properties of @ reduces to the
study of the operator S 3. In the context of FBs, the frame operator can be expressed
as the action of an FB with analysis filters A;’s, downsampling and upsampling
factors d;’s, and synthesis filters /;[—]. That is, the synthesis filters are given by
the time-reversed, conjugate impulse responses of the analysis filters. This is a very
common approach to FB synthesis. But note that it only gives perfect reconstruction
if the system constitutes a Parseval frame, see Prop. 1. The z-transform of a time-
reversed, conjugated signal is given by Z°(h[—])(z) = 2°(h)(1/z). Inserting this
into the alias domain representation of the FB (23) yields
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Ho(1/2)
S3X(2) = & [X(Wh2)---X(WE™'2)| H(z) : (29)
Hk(1/2)
or, restricted to the Fourier domain
Sax(ebrié) — [X(€2ni(E+O/D)) . X(eZni(E+(D71)/D))]%(S)’ (30)

with

HE) = ), Ao ©F = HE™) [H@ ), . @)

€29

for £ € T = R/Z. Here, we used 1/e27i® = 2™ for all € R. We call /% the
frequency response and J,, n = 1,-D — 1 the alias components of the FB.

Another way to derive Eq. (30) is by using the Walnut representation of the frame

operator for the nonstationary Gabor frame o = (E_ndkhAk) , first introduced in
k,n

[28] for the continuous case setting.

-~

Proposition 4 Let @ = (E—ndkhk , with Iy € L* (T) being (essentially)

bounded and dy, € N. Then the frame operator Sz admits the Walnut representation

K di—1
SeR(E) = Y > dy () (€ — ndYRE — nd, "), (32)
k=0 n=0

for almost every £ € T and all % € L*(T).

Proof By the definition of the frame operator, see Eq. (8), we have

Sx(§) = Z <3c\, ]Z(e—zrrindk$> @(5)6_2”i”dk5.

k.n
Note that
Z@v e—ZJriEndk]fl;)e—Zniéndk — Z gD—; (’x\;l;() [ndk]e—Zniéndk.
n€Z n€z
to get the result by applying Poisson’s summation formula, see, e.g., [40]. O

The sums in (32) can be reordered to obtain

D—1

N %6 —nD™) Y d ()i (E —nD),

n=0 k€K,
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where K, = {k € {0,...,K} : nD™' = jd;" for some j € N}. Inserting I’l\k(g) =
H (e?7€) and comparing the definition of %7, in (31), we can see that

3 (@i —nDY) = > H(@ O H (> ¢P0) = o4 (€)

k€K, k€K,

for almost every £ € T and all n = 0,...,D — 1. Hence, we recover the repre-
sentation of the frame operator as per (30), as expected. What makes Proposition 4
so interesting is that it facilitates the derivation of some important sufficient frame
conditions. The first is a generalization of the theory of painless non-orthogonal
expansions by Daubechies et al. [27], see also [9] for a direct proof.

~

Corollary 2 Let ® = (E—ndk/’lk , with iy € IA(T) and d; € N. Assume

)kE{O,...,K},nEZ R
forall0 <k < Ig,\there is Iy € T with |I| < d" and h(§) = 0 for almost every
& € T\ Ii. Then @ is a frame if and only if there are A, B such that

K
0<A=) di'llul> = < B < o, ae. (33)
k=0

I (§)

8k(§) = G

a.e. (34)

Proof First, note that the existence of the upper bound B is equivalent to f’z; €
L°°(T), for all k = 0,...,K. It is easy to see that under the assumptions given,
Eq. (32) equals

K
SER(E) =R(E) Y d |2 (§) = R(E) - A (£).

k=0
Hence, S5 is invertible if and only if .74 is bounded above and below, proving
the first part. Moreover, Sq_31 is given by pointwise multiplication with 1/.545 and

therefore, the elements of the canonical dual frame for ) , defined in Eq. (13), are
given by

_ ~ E—nd;l;c }/Z;c ~
STE_ .l = e =B g — = &
1) dk k % dk% gk
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In other words, recalling @(E) = H;(e?"i%), if the filters hy are strictly band-
limited, the downsampling factors dj are small and 0 < A < J% < B < 0 almost

everywhere, then we obtain a perfect reconstruction system with synthesis filters g
defined by

Gy(emity = )
H5(§)

The second, more general and more interesting condition can be likened to a
diagonal dominance result, i.e. if the main term 77 is stronger than the sum of the
magnitude of alias components J%,,n = 1, ..., D—1, then the FB analysis provided
by the filters h; and downsampling factors dy is invertible.

oys = _ ~ o 2
Proposition 5 Let & — (E_,ldkhk>ke{0 ~~~~~ ey uey Wil i € LX(T) and dy € N, If
there are 0 < A < B < oo with
K di—1
A< de WnlP© £ Y d @ -nd | =B 69
k=0 k=0 n=1

for almost every & € T, then ) forms a frame with frame bounds A, B.

Note that (35) impliest € L® (R) for all k& € {0,...,K}. Therefore,
Proposition 4 applies for any FB that satisfies (35). The proof of Proposition 5 is
somewhat lengthy and we omit it here. It is very similar to the proof of the analogous
conditions for Gabor and wavelet frames that can be found in [26] for the continuous
case. It can also be seen as a corollary of [24, Theorem 3.4], covering a more general
setting. A few things should be noted regarding Proposition 5.

(a) As mentioned before, this is a sort of diagonal dominance result. While the
sum Y K_ d 1|7 |?(§) corresponds to .7, we have

K di—1

2D 4 ]hk@)hk(s—ndkl)\— |ff|<s>

k=0 n=1 =

Sil}\ce, in fact, the finite number of channels guarantees the existence of B if and only
if iy € L°°(T), forallk = 0,.. ., K, the result implies that the FB analysis provided
by h’s and d’s is invertible, whenever

D—1
I — Z |7, = A > 0, almost everywhere.

n=1

(b) No explicit dual frame is provided by Proposition 5. So, while we can
determine invertibility quite easily, provided the Fourier transforms of the filters
can be computed, the actual inversion process is still up in the air. In fact, it
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is unclear whether there are synthesis filters g; such that the %;’s and g;’s form
a perfect reconstruction system with down-/upsampling factors d;. We consider
here two possible means of recovering the original signal X from the sub-band
components Y.

First, the equivalent unform FB, comprised of the filters h,(f), forl €{0,...,qr—
1}and allk € {0, --- , K}, with downsampling factor D = lem(dy : k € {0,...,K})
can be constructed. Since the non-uniform FB forms a frame, so does its uniform

equivalent and hence the existence of a dual FB g,(f), forl € {0,...,q;x — 1} and
all k € {0,---,K}, is guaranteed. Note that the g,(f) are not necessarily delayed

versions of g,(co), as it is the case for h,(cl). Then, the structure of the alias domain
representation in (23) with gz = [—] can be exploited [14] to obtain perfect
reconstruction synthesis. In the finite, discrete setting, i.e. when considering signals
in RE (Ch), a dual FB can be computed explicitly and efficiently by a generalization
of the methods presented by Strohmer [86], see also [75]. In practice, both the
storage and time efficiency of computing the dual uniform FB rely crucially on
D =lem(dy : kin{0,...,K}) being small, i.e. ), gx not being much larger than
K+ 1

If that is not the case, the frame property of @ = (E_"d"hk)ke{o Kinez

.....

guarantees the convergence of the Neumann series
o0

2 2 !
S-! = I- ————S5|, 36
¢ A0+Bog( Ap + By d)) 0)

where 0 < Ay < By < oo are the optimal frame bounds of @. Instead of computing
the elements of any dual frame explicitly, we can apply the inverse frame operator
to the FB output

K
X(z) = 85X(2) = Y Yiz")Hi(2), (37)
k=0

obtaining Sq‘slf( = X. This can be implemented with the frame algorithm [29, 39].
However, any frame operator is positive definite and self-adjoint, allowing for
extremely efficient implementation via the conjugate gradients (CG) [39, 87]
algorithm. In addition to a significant boost in efficiency compared to the frame
algorithm, the conjugate gradients algorithm does not require an estimate of the
optimal frame bounds Ay, By and convergence speed depends solely on the condition
number of Sz. It provides guaranteed, exact convergence in L steps for signals in
CL, where every step essentially comprises one analysis and one synthesis step with
the filters A, and gy = hi[—], respectively. If furthermore, 75 > Zfl):_l] |74,
then convergence speed can be further increased by preconditioning [6], considering
instead the operator defined by
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SoX(¥™) = A5(£)7'S5X (e27F).

More specifically, the CG algorithm is employed to solve the system Dgc = Spx
for x, given the coefficients c. Recall the analysis/synthesis operators Cy, Dy (see
Sec.3.1.1), associated to a frame @, which are equivalent to the analysis/synthesis
stages of the FB. The preconditioned case can be implemented most efficiently by
precomputing an approximate dual FB, defined by Gi(e*™) = J4(£) ™ Hi(e>™)
and solving instead

Dyc = F ' H(6)7'S5.%x = DyCox, where¥ = {gi[ndi — J}in,

for x, given the coefficients c. Algorithm 1 shows a pseudo-code implementation of
such a preconditioned CG scheme, available in the LTFAT Toolbox as the routine
ifilterbankiter.

S Frame Theory: Psychoacoustics-motivated Applications

5.1 A perfectly invertible, perceptually motivated filter bank

The concept of auditory filters lends itself nicely to the implementation as an
FB. As motivated in Sec. 1, it can be expected that many audio signal processing
applications greatly benefit from an invertible FB representation adapted to the
auditory time-frequency resolution. Despite the auditory system showing significant
nonlinear behavior, the results obtained through a linear representation are desirable
for being much more predictable than when accounting for nonlinear effects. We

Algorithm 1 Iterative synthesis: x = FBSYN"(c, (I, gk, di)i, A)
. Initialize xo =0,k =0
b <« DLpC
ro < b
: ho,po <10
repeat
g = Dy (Copo)
X1 <= X+ Qrpre
Tk1 <= Tk + g

M1 <= Tit1

(ri 1 u1)
B < [

P41 <l + Bk
k<—k+1
cuntil . <A

DX <X

PN DURLR

—— e
AR =l
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call such a system perceptually motivated FB, to distinguish from auditory FBs
that attempt to mimic the nonlinearities in the auditory system. Note that, as
mentioned in Section 2.2, the first step in many auditory FBs is the computation
of a perceptually motivated FB, see, e.g., [49]. The AUDIet FBs we present here
are a family of perceptually motivated FBs that satisfy a perfect reconstruction
property, offer flexible redundancy, and enable efficient implementation. They
were introduced in [65, 66] and an implementation is available in the LTFAT
Toolbox [81].

The AUDIet FB has a general non-uniform structure as presented in Figure 8 with
analysis filters Hy(z), synthesis filters Gi(z), and downsampling and upsampling
factors di. Considering only real-valued signals allows us to deal with symmetric
Zprs and process only the positive-frequency range. Therefore let K denote the
number of filters in the frequency range [fimin,fmax] N [0, /s/2[, where fiin > 0 to
Jmax < fs/2 and f;/2 is the Nyquist frequency, i.e. half the sampling frequency. If
Jmin > 0, this range includes an additional filter at the zero frequency. Furthermore,
another filter is always positioned at the Nyquist frequency to ensure that the full
frequency range is covered. Thus, all FBs below feature K + 1 filters in total and
their redundancy is given by R = dy' +2 3" f 2| di! 4 di', since coefficients in the
Ist to K — 1-th subbands are complex-valued.

The AUDlet filters Hy’s, k € {0,...,K} are constructed in the frequency
domain by

Hk(eZirrE) — FI:%W (fs . E _fk) (38)
Iy

where w(§) is a prototype filter shape with bandwidth 1 and center frequency 0.
Here, the shape factor I'y controls the effective bandwidth of H; and f; determines
its center frequency. The factor I', /2 ensures that all filters (i.e., for all k) have
the same energy. To obtain filters equidistantly spaced on a perceptual frequency
scale, the sets {f;} and {I';} are calculated using the corresponding Fayp and BWaup
formulas, see Table 1 for more information on the AUDIlet parameters and their

Table 1 Parameters of the perceptually motivated AUDlet FB

Parameter, Role Information

Siin minimum frequency in Hz Jmin € [0,£5/2[, fmin < fmax

JSinax maximum frequency in Hz Smax €]0.£5/2[, fmax > finin

fi center frequencies in Hz Frip(Faup(fo) + k/V)

K (essential) number of channels | K = V (Faup(max) — FAub (fain)) + (1 — 8o i)
\% channels per scale unit V= (FAUD()‘k+1) — FAUD(fk))_l, ke[l,K—2]
w frequency domain filter prototype| w € L2(T)

Ty dilation factors 7owBWaup (fv)s Fpw > 0 (default = 1)

H; filter transfer functions Hy(e¥™¢) = Fk_%w (%)

dy downsampling factors rdBW;UlD(Sk), ry > 0 (default non-uniform = 1)

R redundancy R=dy' + 2352 d7' + di!
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Fig. 10 Analyses of a female speech signal taken from the TIMIT database [36] by (left) the
AUDIet FB and (right) the gammatone FB using V = 6 filters per ERB (K = 201). It can be seen
that the two signal representations are very similar over the whole time-frequency plane.

relations. Since we emphasize inversion, the default analysis parameters are chosen
such that the filters H; and downsampling factors dj form a frame. As an example,
the AUDlet (a) and gammatone (b) analyses of a speech signal are represented in
Figure 10 using AUD = ERB and V = 6 filters per ERB. The filter prototype w for the
AUDIet was a Hann window. It can be seen that the two signal representations are
very similar over the whole time-frequency plane. Since the gammatone filter is an
acknowledged auditory filter model, this indicates that the time-frequency resolution
of the AUDIet approximates well the auditory resolution.

5.2  Perceptual Sparsity

As discussed in Sec.2.3 not all components of a sound are perceived. This effect
can be described by masking models and naturally leads to the following question:
Given a time-frequency representation or any representation linked to audio, how
can we apply that knowledge to only include audible coefficients in the synthesis?
In an attempt to answer this question, efforts were made to combine frame theory
and masking models into a concept called the Irrelevance Filter. This concept is
somehow linked to the currently very prominent sparsity and compressed sensing
approach, see, e.g., [31, 35] for an overview. To reduce the amount of non-zero
coefficients, the irrelevance filter uses a perceptual measure of sparsity, hence
perceptual sparsity. Perceptual and compressed sparsity can certainly be combined,
see e.g. [21]. Similar to the methods used in compressed sensing, a redundant
representation offers an advantage for perceptual sparsity as well, since the same
signal can be reconstructed from several sets of coefficients.

The concept of the irrelevance filter was first introduced in [30] and fully devel-
oped in [7]. It consists in removing the inaudible atoms in a Gabor transform while
causing no audible difference to the original sound after re-synthesis. Precisely, an
adaptive threshold function is calculated for each spectrum (i.e., at each time slice)
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Fig. 11 Example application of the irrelevance filter as implemented in [7] to a music signal
(excerpt from the song “Heart of Steel” from Manowar). (a) Squared magnitude of the Gabor
transform (in dB). (b) Binary mask estimated from the irrelevance threshold. White = 1, black =
0. (c) Squared magnitude (in dB) of the masked Gabor transform, i.e. the result of the point-wise
multiplication between the original transform and the binary mask. (d) Amplitudes (in dB) of the
irrelevance threshold (bold straight line) and original spectrum (dashed line) at a given time slice.

of the Gabor transform using a simple model of spectral masking (see Sec.2.3.1),
resulting in the so-called irrelevance threshold. Then, the amplitudes of all atoms
falling below the irrelevance threshold are set to zero and the inverse transform is
applied to the set of modified Gabor coefficients. This corresponds to an adaptive
Gabor frame multiplier with coefficients in {0, 1}. The application of the irrelevance
filter to a musical signal sampled at 16 kHz is shown in Figure 11. A Matlab
implementation of the algorithm proposed in [7] was used. All Gabor transform and
filter parameters were identical to those mentioned in [7]. Noteworthy, the offset
parameter o was set to -2.59 dB. In this particular example, about 48% components
were removed without causing any audible difference to the original sound after re-
synthesis (as judged by informal listening by the authors). A formal listening test
performed in [7] with 36 normal-hearing listeners and various musical and speech
signals indicated that, on average, 36% coefficients can be removed without causing
any audible artifact in the re-synthesis.
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The irrelevance filter as depicted here has shown very promising results but the
approach could be improved. Specifically, the main limitations of the algorithm
are the fixed resolution in the Gabor transform and the use of a simple spectral
masking model to predict masking in the time-frequency domain. Combining an
invertible perceptually motivated transform like the AUDIlet FB (Sec.5.1) with a
model of time-frequency masking (Sec.2.3.3) is expected to improve performance
of the filter. This is work in progress. Potential applications of perceptual sparsity
include, for instance:

1. Sound/Data Compression: For applications where perception is relevant, there is
no need to encode perceptually irrelevant information. Data that cannot be heard
should be simply omitted. A similar algorithm is, for example, used in the MP3
codec. If “over-masking” is used, i.e. the threshold is moved beyond the level of
relevance, a higher compression rate can be reached [70].

2. Sound Design: For the visualization of sounds the perceptually irrelevant part
can be disregarded. This is, for example, used for car sound design [13].

6 Conclusion

In this chapter, we have discussed some important concepts from hearing research
and perceptual audio signal processing, such as auditory masking and auditory
filter banks. Natural and important considerations served as a strong indicator that
frame theory provides a solid foundation for the design of robust representations for
perceptual signal analysis and processing. This connection was further reinforced by
exposing the similarity between some concepts arising naturally in frame theory and
signal processing, e.g. between frame multipliers and time-variant filters. Finally, we
have shown how frame theory can be used to analyze and implement invertible filter
banks, in a quite general setting where previous synthesis methods might fail or be
highly inefficient. The codes for Matlab/Octave to reproduce the results presented in
Secs. 3 and 5 in this chapter are available for download on the companion Webpage
https://www.kfs.oeaw.ac.at/frames_for_psychoacoustics.

It is likely that readers of this contribution who are researchers in psychoacoustics
or audio signal processing have already used frames without being aware of the
fact. We hope that such readers will, to some extent, grasp the basic principles
of the rich mathematical background provided by frame theory and its importance
to fundamental issues of signal analysis and processing. With that knowledge, we
believe, they will be able to better understand the signal analysis tools they use and
might even be able to design new techniques that further elevate their research.

On the other hand, researchers in applied mathematics or signal processing have
been supplied with basic knowledge of some central psychoacoustics concepts. We
hope that our short excursion piqued their interest and will serve as a starting point
for applying their knowledge in the rich and various fields of psychoacoustics or
perceptual signal processing.
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A Flexible Scheme for Constructing
(Quasi-)Invariant Signal Representations

Jan Ernst

Abstract We describe a generic scheme for constructing signal representations
that are (quasi-)invariant to perturbations of the domain. It is motivated from first
principles and based on the preservation of topology under homeomorphisms. Under
certain assumptions the resulting models can be used as direct plug ins to render
an existing signal processing algorithm invariant. We show one concretization of
the general scheme and develop it into a computational procedure that leads to
applications in image processing and computer vision. The latter factorizes the
n—dimensional problem into an ensemble of one-dimensional problems, which in
turn can be reduced to proving the existence of paths in a graph. We show empirical
results on real-world data in two important problems in computer vision, template
matching and online tracking.

Keywords Invariance ¢ Quasi-invariance ¢ Shape matching ¢ Template match-
ing ¢ Tracking

1 Introduction

This work starts with a simple question:
“How do we get from A to B?”

Let us assume for now that A and B are geographical locations, for instance in a
city. Figure la shows a city map with two marked locations. Let us further assume
that we are a tourist who just newly arrived in the city and we are presently at
location A (e.g., the train station). We now would like to travel to location B (e.g.,
some attraction) and need directions. Asking bystanders, we may receive different
answers, such as: “To get to location B from here, you have to ”

1. “Move 3,142m towards bearing 193°”
2. “Follow this road until you see a three-story office building to your left, then take
the third right, follow through until you see the roundabout, . ..”
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(a) Euclidean: “3.0 km, (b) Topological: “Follow  (c) Functional: “Take bus
Bearing 193°” this road ...” #30,...”

Fig. 1 Three answers to the question: “How does one get from A to B?”

3. “Walk to bus stop Erlangen South, take bus #30 to Thon, exit on Wetterkreuz,
change to line #42, ...”

The resulting paths on the map are illustrated in figures la to 1c. Although all three
eventually lead to the same location B, they differ in the nature of their description.
The first answer is metric: it describes the relative location of A and B by their
Euclidean relation. The second answer has a fopological aspect: it does not care
about lengths and angles, but the topology of the underlying space as expressed
by observable signal components such as street names and intersections. The
third answer may be considered functional: it is formulated in terms of functional
components on top of the signal space (e.g., bus and train routes). Signal processing
algorithms often relate points in the signal space via descriptions of the first kind
(e.g., the Euclidean or other metrics).

The central premise of this work is to model the relation of two points based
on the signal connectedness between them, as in descriptions of the second
kind. Under certain assumptions, these models can then replace metric point
relations in an algorithm as a plug in. We will show that if this is done
properly, one gains invariance to perturbations of the signal’s domain.
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The rest of the chapter is structured as follows: We will first informally study the
properties of the Euclidean and topological descriptions in the next sections 1.1
to 1.2, with a brief excursion into the importance of invariance. This is followed
in section 1.3 by a discussion of the role of pairwise relations in algorithms and
how perturbations of the domain are commonly addressed. Section 2 formalizes
the concepts of invariance, uniqueness, and completeness of a representation based
on pairwise set representations. It can be skipped on first reading. Section 3 then
introduces an example model for a restricted family of signals, while section 4
extends it to a significantly larger class of real-world signals. The resulting continu-
ous model is then plugged into an existing algorithm in section 5 to demonstrate
the plug-in characteristic, yielding an invariant version of the algorithm. As the
model is formulated in the continuous domain, effort needs to be made in making it
amenable to computation. One possible instantiation of a discrete implementation is
sketched in Section 6, followed by results on two challenging real-world problems
in section 7.

1.1 Path Descriptions under Deformations

One way to examine the difference in the above metric and topological repre-
sentations is to expose the signal space to perturbations and see what happens.
Figure 2 shows our example city map under various transformations, such as in-

b

Fig. 2 Homeomorphic perturbations of the signal domain (starting left, clockwise): Original, in-
plane rotation, generic local deformation, non-uniform scaling.
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Reference pattern Target pattern

__A i

B
deformation

Fig. 3 The Euclidean and topological path descriptions under a homeomorphism.

plane rotation, local deformation, and non-uniform scaling. Now let’s look at the
paths under these transformation. Figure 3 illustrates the city map under a combined
shear and non-uniform scaling (accelerated plate tectonics to stay with the example).
The Euclidean description in the transformed frame now certainly leads to the wrong
location, as following the instruction “move 3,142m towards bearing 193°” is not
consistent with the new frame. The topological description, however, still leads
to the correct location in the transformed frame. All we are doing is to follow
landmarks according to a pre-defined sequence. If a particular road, for instance,
is now twice as long until we reach a “T”-intersection, we still can recognize that
we arrived at the intersection, although it takes twice as long. In other words, the
descriptions may be invariant to certain transformations of the domain.

1.2 The Importance of Invariants

Invariance plays a central role in computer vision and many other domains. An
invariant is a function of a signal that does not change its value when the signal
undergoes a particular transformation. The transformations are often considered to
be nuisance perturbations, i.e. they impede recovering the actual measurement of
interest. Common examples in computer vision of such perturbations are the per-
spectivity in the formation of images by pinhole cameras, the rotation and translation
of the domain of digital images and monotonic transforms of the image function due
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to illumination changes. Examples of corresponding invariants to these particular
perturbations are the cross ratio of points on the projective line under perspective
transforms, the Euclidean distance under translation of the domain and the pairwise
order relations of signal values under monotonic transforms of the signal’s range.
The importance of invariances amongst others lies in the fact that they provide a
basis for building higher-level algorithms from invariant low-level representations.
The idea is that the higher-level representation inherits the invariance properties
from the low-level representation if constructed properly. In practice it is often
challenging to find functions that are strictly invariant and practically useful at the
same time. The use of quasi-invariants has been introduced in computer vision by
[5, 6] to address this issue. While invariants have the strict requirement that they
are constant over the entire range of the perturbation parameter, quasi-invariants are
only expected to be close to constant for a limited range of the perturbation domain.
No strict mathematical model for quasi-invariants is available and the theoretical
characterization of quasi-invariants remains challenging [6, 24].

Examining the path descriptions, one notes that the Euclidean description is
invariant to translations of the domain, but not rotations or scaling. The topological
description is invariant at least to translations, rotations, scaling and shear (as illus-
trated in figure 3). As it is defined in terms of the topological structure of the signal
space, it is precisely invariant to transformations that do not change the space’s
topology. The largest set of such transformations is the set of homeomorphisms, i.e.
continuous bijections with continuous inverse.

1.3 Pairwise Relations in Signal Modeling

Pairwise point relations are at the heart of many algorithms that model properties
of signals, e.g. in detection or recognition tasks in optical images, image sequences,
or volumetric imaging. For instance in computer vision, one may want to model an
object by its visual appearance. Figure 4 shows an example image of an object under
a homeomorphism #. An algorithm now may depend on many pairs of locations
(A, B) on the object to be modeled. Under the perturbation H, A and B are mapped
into A’ = H(A) and B = H(B), respectively. Here we assume that A, B, and A’ are
known. The exact H is usually unknown a priori however, making the determination
of B’ given A’ challenging. Two common strategies to address this are:

Accept the uncertainty The idea is to treat H as a random variable and assume
that there is prior knowledge, e.g. in the form of a probability distribution over
the space of all possible #H. This prior is then used in defining a conditional
probability for the location of B” of the form P (B’|A’, A, B) as shown in figure 5.
Naturally, this introduces uncertainty, as the estimation of the position of B’ now
can assume a range of values. Whether this uncertainty is acceptable or not depends
on many factors, e.g. if the uncertainty can be compensated in the later stages of the
algorithm.
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Fig. 4 An example object image under a homeomorphism #.
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Fig. 5 Conditional probability of B’ based on model assumptions.

Estimate H Another means of dealing with the perturbations introduced by H is
to estimate them and then compensate for them. For instance, the popular concept
of detecting key points in the scale space of a signal yields a local estimate for
‘H [17, 18]. Low-level representations such as feature descriptors then compensate
locally for the estimated H and compute the subsequent algorithmic steps in a
frame that is normalized with respect to the estimated 7. This method supposes
that the perturbations can be estimated, at least locally. A common strategy is to
restrict / to a smaller class of parametric models, such as globally or locally affine
transformations. This limits the applicability of the approach to either 7 that are
globally affine (and thus ignoring the much larger class of homeomorphisms) or
modelling only small neighborhoods, where the locally affine assumption works
reasonably well. The latter effectively limits the scale at which models can be built
for solving signal problems if # is not affine over longer ranges.

An alternative that avoids uncertainty as well as the need to estimate 7 explicitly
is to relate A and B in a manner that is invariant to #. If one is able to find an
invariant way to get from B given A, then the impact of 7 is compensated by virtue
of the invariance. In the following we elaborate such invariant relations in general
and subsequently derive a specific example for common multi-dimensional signals.
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2 Invariance, Uniqueness, and Completeness

In the previous section we established that we may be able to relate locations
in an invariant manner. This section introduces and formalizes the properties of
invariance, completeness, and uniqueness of relations in the general case (i.e., with
or without a signal function). The following section 3 then introduces a limited class
of signals and studies invariant relations based on describing the space between
locations based on topological connectedness.

2.1 Definitions and Examples

Let the description be from the set A in the sense that there are functions A € A :
R" — {x : x € R"} that map points into sets. Further let § € @ : R" — R”" be the
family of perturbations that are under consideration (e.g., the set of all affinities or
all homeomorphisms #) and two points A,B € R”. In the following we will call
A(A) the feasible set of A given A.

Definition 1 A is forward invariant under @ if
V(A,B,1,0):B e A(A) = 6(B) € A(6(A)).
Definition 2 If all 6 € ® have an inverse, A is backward invariant under ® if
V(A,B,1,6) :B e A(A(A)) = 67(B) € A(A).

Definition 3 A is invariant under ® if it is forward invariant and backward
invariant or alternatively if the descriptions A and perturbations 8 commute:

V(A X,0) : 6(M(A)) = A(B(A)).

In order to avoid trivially invariant solutions such as A(x) = {@}, we consider
completeness:

Definition 4 Ais S—complete with respect to a set § C R” if
VA€ S,BeS),I1:BeA(A).

Definition 5 A is complete if it S—complete for § = R”".

In order to avoid trivially complete solutions such as A(x) = R”", we consider
uniqueness:
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Definition 6 A is unique if
VA, A AA)] <1

Note that the properties of completeness and uniqueness are independent of the set
of perturbations @. Before we elaborate in more detail how A may look in practice,
we have to realize that invariance comes at a cost: the properties of invariance,
uniqueness, and completeness may be jointly incompatible for some . As an
example one can consider the Euclidean distance relation in this framework by
letting

A {x—>x+8:6 R}

with the elements A§(x) := x+§. This particular set A is unique as any x is mapped
into x+ 6, a set of cardinality 1. It is also complete, which can be seen by considering
that there is a description Aj_, for each point pair:

(A.B) > 25 () =x+B-A

When it comes to invariance, one has to choose a family of perturbations ®. An
example is the family of translations in R":

'e® :{x—>x+t:teR"}.
Then for any A, A, 67, there is exactly one element in A§(A): A 4 §. Furthermore,

B'(AS(A) = 0'(A+8) =A+1+36
(O (A) =ASA+1) =A+1+36

i.e., the condition in definition 1 is met and A€ is invariant to translations. Another
example of perturbations is the family of uniform scalings:

0°c @ :{x —>sx:s€R}
For any A, A§, 0°, there is again exactly one element in A$(A): A + §. Furthermore,

0 05A) = 0°A+8) = s(A+35)
A(O°(A) = AS(A) = A+

Thus 6° and )Lg do not commute, violating the condition in definition 1 and A° is not
invariant to scale (and thus to homeomorphisms in general). In order to gain more
insight, we can play around with A¢ and see what happens. Let’s modify A° as such:

A {x > {x+58:5€R}:§ eR". (1)
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Fig. 6 Invariance of A° under uniform scaling ©°. The feasible sets Ag (A) and )Lg (sA) are shown
as gray lines.

In other words, instead of a single location as in the Euclidean distance relati_on, we
now allow the line through x along the direction § in the feasible set. Now A§(A) is
a set of cardinality larger than one, specifically

A(A) ={A+55:5€R}

Figure 6 illustrates this situation. Under the family of perturbations ©°, the
invariance of A° can again be tested via

0°(A5(A) = O°(A +58 :5€R)) = {sA + 556 :5 e R}
A5(0°(A)) = A(sA) = {sA+58:5€R}

The resulting sets are equivalent and consequently the modified A° is now invariant
to scaling. A€ is also complete as for any A, B there is a )L§ for which B € )LE(A),
specifically for § = B — A. It is, however, not unique any more as |[A§| > 1. In
summary, starting from the Euclidean distance relation under scalings, which is
complete and unique, but not invariant, we are able to derive a new relation that is
invariant and complete, but not unique. Is there a way to also make it unique? Let’s
start with the modified A° and select just one element § of the line, with § = |x|.
The new A°¢ then becomes

A x> x+x|8:8 Ry
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Table 1 Characteristics of the four representations under perturbation

A¢under O | A¢ under ©®5 | A° under ®5 | A¢ under ®F

Invariant yes no yes yes
Unique yes yes no yes
Complete yes yes yes no
S—Complete R"\ {0}
Then
O (AS(A) = (A +|AIS) = s(A+]|A|5)
A(6°(A) = Ae(sA) = s(A +|A[5).

Hence, A¢ is unique and invariant under O5. 1t is important to realize, however,
that it is not complete any more. To see this, consider that the representation for a
particular pair (A, B) is the element A, € A€ with

§ = % where [A| # 0, 2)

as B then is in the feasible set of A:
Be (A =A+|A|(B—A)/|A| =B.

Due to equation 2, any pair (0, B) has no representation Ag in A¢ and thus it is not
complete. It is, however, S—complete for R” \ {0} (and possibly subsets). Table 1
lists the properties for the various combinations of A and perturbations @ so far.

2.2 General Case

Are there always families of relations that are unique, complete, and invariant for
a given family of perturbations? Certainly not if @5 has no inverse, as no A could
be backward invariant and thus invariant. What about invertible perturbations? Let’s
look, for instance, at the set of all affinities with uniform scaling

O {x—>sx+t:5seR,teR"}
and an example pair forn = 2: A = (0,1), B = (!/,,! /») as illustrated in figure 7.

Without loss of generality we choose 6% € ©@* that transform A into A’ = (0, 2).
There are two such perturbations
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Fig. 7 Counterexample to the existence of invariant, complete, and unique A in the general case.
There are two 6 from the set of affinities with uniform scaling that transform A into the same A’,
but B into two different B’.

x — 2x

x—>x+(0,1)

and they transform B into B’ = (1,1) and B’ = ('/,.1'/5) respectively. Now we
assume that there is a representation A for which B is in the feasible set of A, i.e.
B € A(A). As the true perturbation is unknown, invariance of A would require that
{(1,1),("/2.1'/2)} is a subset of A(A’). This violates uniqueness, as |A(A")| > 2.
One can certainly choose to make A unique by removing all but one element, e.g.
A(A’) := {(1, 1)}. However, then it is not invariant any more, as forward invariance
for the tupel

(A’B!A90) = ((O’ 1)7 (1/271 /2),A,X —> X+ (01 1))

is violated: the perturbed B’ = (!/,,1'/,) is not an element of A(A") = {(1,1)}.
This shows that there is no A in general that is invariant, unique, and complete
without restricting the perturbations ®, and in particular not for homeomorphisms
as a superset of affinities.

This section introduced the concepts of invariance, uniqueness, and completeness
for representations of pairwise point relations. The next section will consider the
case where there is a signal, or more precisely, a vector-valued function R” — R”
on the domain and explore what that means for the representation A.

3 Invariant Relations in Line Drawings

The following will focus on a subset of all possible signals, the set of all
monochrome line drawings in R?. Figure 8 shows an example line drawing under
a homeomorphism H € ©". There are two locations A and B marked with their
transformed counterparts A’ = H(A) and B’ = H(B).
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Fig. 8 Line drawing under
Homeomorphism # with
three locations A,B, and C
marked. The green
highlighted path relates A and
B in terms of a topological
description.

Fig. 9 Line drawing with two paths from A to B marked in green and blue. Both the green and blue
path description individually may lead to other locations (marked by colored circles). However, B
is the only location that can be reached by the blue and the green path description simultaneously.

One description A from A to B may be transliterated as (indicated as green path
in figure 8): “Start from A and traverse a line, there will be an intersection of order
four. Follow the third branch counterclockwise and then follow the leftmost branch
in the next two intersections. Take the second right and then again the second right.
The next intersection is an element of the feasible set (which contains B).” The
same holds for A’ and B’, i.e. the existence of the same path can be ascertained in
the perturbed image. It does not matter how distorted the domain is, as long as there
are no tears or rips that would interrupt the path. Consequently, this path description
example is invariant for the pair (A, B) (figure 9). Is it also unique?

3.1 Uniqueness

Uniqueness would require that A(A) \ B = @. However, when one starts with a
different branch from A, one may end up in the location C instead, marked with
the red path in figure 8. There are no further paths consistent with the description,
thus the feasible set A(A) = {B,C} (and via invariance A(A") = {B’,C’}). In
other words, this particular A is not unique. One may certainly aim to make A
unique. As an example the above transliteration could be modified as (modification
emphasized): “Start from A and traverse a line, [...] The next intersection is an
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Fig. 10 Counterexample for
existence of invariant,
complete, and unique A
under homeomorphisms.

Fig. 11 From line drawings
to piecewise constant images.

element of the feasible set if the order of the intersection is three.” Only the green
path in figure 8 is consistent with the modified A, and thus only B is in its feasible
set, making the modified A unique.

However, in the general case uniqueness, completeness, and invariance cannot
be achieved for this class of signals. Consider, for instance, the line drawing in
figure 10. Due to symmetry, there is no unique way to describe a path from A to
B that is invariant under arbitrary homeomorphisms. One can certainly always look
at a more complex signal class and hope that uniqueness can be achieved there.
One example may be the class of piecewise constant images, as shown in figure 11.
The path description now would be: “Starting from A and following a path that has a
gray patch on its left and a red patch on its right, follow paths with these consecutive
left/right color attributes: (blue, red), (blue, yellow), (blue, brown), (blue, gray),
(orange, gray), (orange, blue), (. . ., blue). The next intersection will be an element of
the feasible set.” Although this description is now unique in our example, uniqueness
is not guaranteed for the general case either (as the set of line drawings is a subset of
the set of piecewise constant images). However, once we start looking pragmatically
at the set of natural images, the situation may not be as bleak. In the following
section 4, we will derive a particular implementation of our representation based on
topological connectedness that works well with natural images in practice.

3.2 Intersection of feasible sets

A generic scheme to deal with the potential lack of uniqueness is to use a multitude
of descriptions for the same pair (A, B). Figure 9 shows in addition to the first
description in green also the following description in blue: “Start from A and
traverse a line, there will be an intersection of order four. Take the second path
clockwise, then make a right, and three lefts. The next intersection is an element of
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the feasible set.” Both feasible sets contain two locations each, but their intersection
only contains B (and B’). More formally, based on individual path descriptions
Al ..., Ay, one can define the combined A as

A =(n) Ai
i=1

This scheme is motivated not so much from a principled perspective (as one could
always formally treat A as an “individual” description from the start, albeit a more
complex one), but from considerations on computational implementations that will
be elaborated later: an independent set of shorter path descriptions may be more
computationally efficient than one long description.

3.3 Completeness

An interesting case is now the completeness of a hypothetical A. We choose to
consider only A that are invariant under homeomorphisms. For completeness in
this example we need to consider R?. The simplest example of f is the constant
function, f = ¢. Any homeomorphism on the domain of f will not change that f is
constant everywhere. That implies that we are not gaining anything by using f for
the definition of A and we have no invariant, complete, and unique A as discussed in
section 2.2. One can now appeal to practical considerations from a signal processing
perspective and argue that not all parts of the signal are of equal importance. For
instance, homogeneous regions of the signal may not carry much information (they
carry some, such as “I am homogeneous”). Conversely, a signal region with high
entropy may be considered interesting. In terms of our representation this implies
that the modeling should focus on these interesting regions. In practice it may be
sufficient to find a representation that is invariant, unique, but only S—complete,
where the set S contains the relevant information for a particular problem.

Due to the lack of invariant, complete, and unique representations in the general
case, one always has to find a trade-off between them, which may be specific to
an application. The next section introduces a generic scheme in the continuous
domain that allows to strike different such trade-offs and for which efficient discrete
approximations are possible.

4 A Continuous Trace Model

This section introduces a practical representation A for common real-world signals.
Without loss of generality we look at natural images as a running example.
As alluded to earlier, we make a design choice at this point to factorize the
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B.f

Fig. 12 An image [ is spatially deformed by a homeomorphism H into the image I’. The points
A and B are mapped into A’ and B’, and the spatial curve y is mapped into the curve y’.

representation into a set of one-dimensional problems due to later computational
considerations. This is certainly not the only option and it is conceivable to pose the
model differently. The following sections introduce the model formally and discuss
its properties.

4.1 Definitions

Let I be a continuous image over the domain R2,ie. I : R? — R as shown in
figure 12. The image is perturbed by a spatial deformation, in the most general case
by a homeomorphism # : R? — R2. # is a continuous function with continuous
inverse and maps the image I into its perturbed version I’ = I o H~', where the
symbol “o” denotes function composition: (f o g)(x) := f(g(x)). Continuity implies
that there are no tears, rips, or rifts in the mapping and that the local neighborhood
structure is preserved between I and I'. Furthermore, the locations A and B in the
image I are mapped into the locations A’ = H(A) and B" = #(B) in the image I’
The goal is to find a way to relate A and B (and thus A’ and B’ ) by a description of
the image information between them that is invariant to H.

As pointed out in section 3, any such description cannot in general be unique
and complete at the same time. The particular choice of the description determines
the trade-off between uniqueness and completeness. The chosen approach in the
next sections is based on the supposition that it is more useful in practice to have
a complete description, i.e. to be able to describe all locations, even if it is not
unique, or ambiguous. Spurious ambiguities may additionally be resolved in higher-
level representations built on the presented framework, whereas it may be more
difficult to recover from an inability to describe certain locations. Accordingly, the
goal is to find a description for all possible B’, i.e. a complete description which
is then necessarily ambiguous for general signals. The challenge of minimizing
ambiguity is then addressed by potentially using all available image information
in the description by the intersection of feasible sets introduced in section 3.2.
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Fig. 13 An example profile trace under reparametrization of r.

4.2 Profile Trace

The continuous spatial curve y : [0,1] — R? as depicted in figure 12 connects
the locations A and B, i.e. the endpoints of the curve coincide with the locations,
respectively: y(0) = A, y(1) = B. Its equivalent in the transformed image under
the homeography H is ' = H o y. The spatially transformed curve y’ connects A’
and B, i.e. y'(0) = A’, y’(1) = B’. The images [ and I’ as function of the curves
y and y’, respectively, have the profiles 7,7’ : [0,1] — R, where t = I o y and
7’ = I' oy’ which shall be termed profile trace (or simply trace for short, as opposed
to the curve y). An example of a trace is shown in figure 13b and an example of a
curve is shown in figure 12. The traces have the property that T(r) = t/(r) at every
point r because

T(r) = "o y"()

=("oHoy)(r) 3)
(Ioy)(r)
t(r)

In other words, the profile traces ¢ do not change under smooth deformations .
This is not surprising however, as the perturbation 7 has been used explicitly in
the construction of the perturbed trace 7’. In general, certainly, the perturbation # is
not known a priori. Furthermore, equation 3 cannot immediately be used to construct
some invariant property that is measurable in the image, as the curve y’ itself is not
directly observable. A weaker, but ultimately more useful statement, is that there
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exists some curve y between A’ and B’ with the same trace T = I' o y = 7. This
is strictly a weaker criterion as the curves p and y’ are not necessarily one and the
same. The critical realization is summarized in the following proposition:

Proposition 1 The existence property of v (or y') is not a function of H and thus
invariant under H.

Now, the goal is to restrict the true location of B = H(B) given the image I’, a
profile trace 7, and the location A’ = H(A). The following holds with regard to the
location of B':

Proposition 2 A necessary condition for any C' being the true location C' = B’ is
the existence of a curve y such that 7(0) = A’, (1) = C' and that the resulting
trace T is equivalent to the trace t.

Another way of stating proposition 2 is to find an equivalent trace 7 up to some
reparametrization of the underlying curve y’. This is now the structure of our A and
its elements have the form

Ar(A) ={x: sty 1 y(0) = A, y(1) =x,loy = 1}. “

While the considerations in this section are purely in terms of existence, i.e.
not in terms of a particular computational approach, the structure of possible
computational solutions can already be seen: Proposition 2 decomposes the problem
of modeling the location of B into two components. The first component is an
enumeration of paths between two locations and the second component is the
establishing of equivalence between traces along these paths. This decomposition
allows to consider the path identity and trace equivalence separately. An important
consequence of this decomposition is that the spatial perturbations can largely be
modeled independently from other signal perturbations. Furthermore, the trace can
be designed specifically to address a given perturbation prior and specific trade-offs
between accuracy and run-time performance. This is exemplified in section 6.
Figure 13b shows an illustrative example of a profile trace, i.e. the function
T = (I o y)(r) between two locations A = y(0) and B = y(1). The abscissa of
the graph is the curve parameter r € [0, 1] and the ordinate is the value of the image
function I at the location y(r). The curve y itself is not shown, figure 12 serves as
an example. As shown above, the trace in the perturbed image I’, v/ = (I’ o y')(r),
is equivalent to T and thus has the same graph. Let 7 be the same curve as y’
up to a reparametrization of r, i.e. it is the same curve, but its speed varies. An
example of a reparametrization is illustrated in figure 13a. y also has the same
domain and range as y’. The domain of y’ is the interval [0, 1] and its range is
the set of locations in the image that it covers between A and B. The corresponding
traces T/ = 7 and T can then be understood as related by a dynamic time warp
[22]. Figure 13b shows the original trace t = I o y, as well as the corresponding
warped trace T = I’ o 9. It can be seen that the overall evolution of both graphs
is the same with one curve trailing or leading the other. In order to make practical
use of the trace model, proposition 2 requires that the equivalence between two
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traces T and 7 can be established. Naturally, this could be done by solving the
dynamic time warp problem for exact point-wise equivalence. However, this may
not be computationally favorable. An alternative is to relax the strict point-wise
equivalence between traces, preferably with a relaxation that is invariant to dynamic
time warps. The following section describes an example of such a relaxation based
on rank order consistency.

4.3 Invariance to Dynamic Warps

A countable set can be sorted according to a partial order relation. The rank of
each element after sorting is its ordered rank, or rank order. Under monotonic
transformation of the initial set, the rank order is retained, i.e. the rank order
is invariant to the transformation [23]. The transformation of interest here is
the dynamic time warp reparametrization of the curve y, whose monotonicity is
illustrated in figure 13a. Figure 13b shows the original trace and its perturbed
counterpart with the minima and maxima between A and B labeled sequentially
from one to seven. The bottom lines depict the coordinates of the extremal points
..... ,» respectively. The order of the extremal points with
respect to the coordinate  does not change between the original and the perturbed
trace. In other words, the sequence of extremal points is invariant to dynamic warps:

{Toy)(r,....r)} = {0 D), ... 1))} ©)

More importantly the coordinates r and r’ do not need to be known explicitly, as
the extrema can readily be estimated from the image profile, and the equivalence in
equation 5 can be verified just from the extrema. Informally this relaxed equivalence
states that two traces are equivalent, if their extremal points are the same and in
the same order. Any signal property that has a similar topological nature such as
zero crossings can be used in this way to define trace equivalence while being
invariant to spatial perturbations. With respect to proposition 2 and strict point-
wise equivalence, equation 5 is a necessary but not sufficient condition, i.e. it is
an equivalence that is less strict and it may increase the ambiguity of the location of
B. This is a trade-off between computational complexity and uniqueness.

In practice, signals undergo extraneous perturbations such as illumination change
and image noise. The next sections extend the trace model to address these in
more detail. Although it is not pursued in this work, it is in principle possible to
statistically model the equivalence in equation 5 to incorporate the effects of noise,
e.g. the likelihood of two extrema matching each other or the likelihood of two
extrema changing rank orders.
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(a) Non-linear monotonic transfer  (b) The original trace /oy (r) and its transformed counterpart
function between / and /’. I'o7(r).

Fig. 14 An example profile trace under non-linear monotonic illumination change.

4.4 Invariance to Monotonic lllumination Change

The previous section demonstrated how to achieve an equivalence function that
is invariant to dynamic warps of the curve . This section shows how to achieve
invariance to non-linear monotonic illumination changes by a similar argument
based on order consistency. Such changes in illumination arise due to a variety of
reasons, such as a changing scene lighting or dynamic CCD camera effects [21] and
they can be instantaneous or gradual [23]. Figure 14a shows a non-linear monotonic
transfer function between I and I’, and figure 14b shows its effect on the original
trace I o y as the perturbed trace I’ o p. For clarity of exposure in this example the
curve parametrization r is assumed to be the same, i.e. there is no dynamic warp.
As can be seen in the graphs, the values of the perturbed function change in a non-
linear fashion. On the left side of the graph, the values of the extremal points for
each trace are shown with the same ordering of the locations from left to right as
in the previous example. The order of the extremal values of the image function /,
when sorted from smallest to largest value for the original trace, is

(4,2,3,6,5,1,7).

By virtue of the monotonicity of the illumination change, the same order holds for
the perturbed trace. Consequently the rank order of the extremal values can define
trace equivalence. This equivalence will be invariant to monotonic illumination
change. Specifically, two traces are considered equivalent if the order of their
extremal points is the same.
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4.5 Generalized Texture Trace

The profile trace is defined in terms of the profile of the image, i.e. the image
I as a function of a spatial one-dimensional curve y. This allows the derivation
of invariant properties under the assumption that the image is transformed by a
spatial process. Also, the previous section has shown how to include invariance
to non-linear monotonic illumination change into the model. However, up to
this point the model is based on the image function along y which has two
practically significant issues. Firstly, in certain applications the image function
may have higher variability along the same curve between signal instances due
to presently unmodeled perturbations. These may include sampling effects, intra-
class variation, non-monotonic illumination change, and so on. Secondly, it does
not use information in the immediate neighborhood of the profile curve which could
be used to decrease the ambiguities of the model. This section proposes a formal
extension of the profile trace to include neighborhoods along the spatial curve in
order to decrease the ambiguity of the representation and to allow the incorporation
of further invariances. Let

F(xo) : {(x, I(x)) : ||lx —x0|| < s} —R" (6)

be a function that assigns a vector to each location xy on the curve y in the image
based on the image information in a neighborhood s. This definition of F' includes
a wide variety of functions such as convolutions with finite support, edge detection,
feature computations such as SIFT [15], SURF [4], etc. Informally, the idea is to
use local characteristics or texture properties of the image instead of just the image
profile in order to reduce ambiguities of the representation. This also allows another
layer of abstraction above the image function. In the case that the function F itself
is invariant to homeomorphisms, it can be incorporated into the trace definition
while maintaining homeomorphic invariance of the trace model in a straightforward
manner: Proposition 2 has to be modified such that the profile trace definition

t(r) = (I oy)(r)
is augmented by the definition of the fexture trace:
t(r) = (Foloy)(r) @)

A specific example of a homeomorphic invariant function F based on inflection
points is
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0  if X is minimum along y (xo)
1 ifxoi i | =

Fixgis 1 X0 Ts max1mun? along y (fO) @)
2 if X is saddle point along y - (x)

w

otherwise.

where y1(xo) denotes the normal of the curve y at xo. This simple example
considers infinitesimally small neighborhoods around each location on the curve
along the normal of the tangent. Due to the differential definition, the inflection
point properties are invariant to homeomorphisms. Additionally, due to the choice
of order relations in equation 8 (essentially “greater than left and right,” “smaller
than left and right,” etc.), this particular F is also invariant to monotonic changes of
the illumination.

However, many practically interesting choices for local texture models such
as SIFT are not homeomorphic invariant. They can still be employed, although
the full invariance of the model is then relinquished, yielding a quasi-invariant
representation. For a given choice of local texture model, the resulting extent of
quasi-invariance is typically related to the neighborhood size, i.e. the smaller the
neighborhood, the closer the representation comes to full invariance. The idea of
the generalized texture trace to include further invariances as well as to decrease
ambiguity will be employed and made concrete in the discrete texture trace of
section 6.

S Plugin for Metric Pairwise Relations

This section demonstrates how to plug in an invariant representation A into an
existing algorithm in order to render it invariant to a selected set of transformations.
Candidate algorithms need to use the Euclidean (or a related) metric in a pairwise
fashion (this precludes, for instance, algorithms that inherently model tuples of
points with size larger than two). Extensions of the presented model to beyond
pairwise models are conceivable, but not explored here. In order to demonstrate the
plug-in concept, we chose the well-known Generalized Hough Transform [3] for
detecting shapes in images. Figure 15 illustrates the basic idea of the Generalized
Hough Transform and algorithm 1 is a baseline version of the Hough algorithm.
The objective is to detect a known object in the presence of distractor objects and
perturbations of the domain. Initially, the reference object is trained, resulting in a
reference model. The training consists of enumerating all points A on the boundary
of the reference shape, choosing an arbitrary reference location B and storing their
difference vectors §; as the reference model. The §; are also called votes. In the
subsequent detection phase there is a set of shapes including the reference shape
and it is not known which point belongs to which shape. The detection proceeds by
applying all votes §; to all shape points C; and storing the location C; + §; for which
they vote.
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(a) Reference shape for training. (b) Target shape with distractor ob-
jects.

Fig. 15 Shape localization with the Hough transform. The foreground boundary points are marked
in green, the distractor points are marked in red, and the reference location is marked with a cross
in the reference shape. A selection of relations §; and their corresponding voting locations Vj; in
the target space are marked with blue arrows and black dots, respectively. The indices are omitted
for clarity of exposure.

Algorithm 1 Localization algorithm based on Euclidean distance

1: procedure GETPOINTRELATIONS(B, Ay, ..., Ay) > Get reference relations for B
2: fori<1,...,Ndo > Iterate over all data locations
3: 8 < B—A; > Store difference vector between B and A;
4: end for

5: end procedure

6:

7: procedure FINDLOCATION(S1, . ..,dy,Cy,...,Ck) > Find location in target
8: forj<«1,...,Kdo > Iterate over locations
9: fori<1,...,Ndo > Iterate over reference relations
10: Vi < A5, (C)) = C; + 6 > Gather vote for C; and §;
11: end for
12: end for
13: B« AGGREGATEVOTES({VU}) > Assign target location by aggregating votes

14: end procedure

Under mild assumptions on the nature of the reference shape and the distractor
shapes, there will be a concentration of votes in the vicinity of the true center
B’ of the reference shape. This concentration can be estimated by an aggregation
of the votes, for instance by a kernel density estimate or by discretizing the
voting domain. The basic voting scheme can be extended to include rotation,
scale, and other perturbations of the domain by modifying the voting space [3] or
extending to texture descriptors [11], but not easily to local perturbations such as
homeomorphisms. For the present discussion however, the basic algorithm suffices
to illustrate the analogy in the trace model.

Two steps of algorithm 1 need to be modified in order to plug in the new
representation. The first is in the training phase in line 3, the second in the detection
phase in line 10. For both steps, we interpret the Euclidean distance as a set relation
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Algorithm 2 Localization algorithm based on trace model

1: procedure GETPOINTRELATIONS(B,Aj,...,Ay) > Get reference relations for B
2 fori<1,..., N do > Iterate over all data locations
3 T; < {t(A:,B)} > Store all traces between B and A;
4 end for

5: end procedure
6.
7
8

: procedure FINDLOCATION(Ty, ..., 7Ty, Cy, ..., Ck) > Find location in target
forj<1,...,Kdo > Iterate over locations
9: fori<1,...,Ndo > Iterate over reference relations
10: Vi< A7:(C) =NA:(C), T€Ti > Gather vote for C; and 7; as in eq. 4
11: end for
12: end for
13: B <« AGGREGATEVOTES({VU}) > Assign target location by aggregating votes

14: end procedure

Table 2 Comparison of the initial Euclidean and the invariant algorithm as a result of
plugging in the trace relation

Euclidean algorithm Trace algorithm
Modeled entity | Two-dimensional shape Textured image patch
Observable Points on the boundary Points on the image patch
Model Euclidean relation of points to center | Trace relation of points to center
Localization | All points vote for center All points vote for center
location with all model location with all model
relations relations
Invariance Translations Homeomorphisms

as laid out earlier. In the Euclidean version, the first step in line 3 gathers the
parameters 6; <— B — A; as the representation of B given A; and the second step
in line 10 determines the feasible sets A5,(C;) = C; 4 §; of the estimated B given
each C; as the votes. Based on this interpretation we now plug in a different choice
of pairwise relation, such as the profile trace as presented in section 4.2. Algorithm 2
lists the steps with the changes to algorithm 1 marked in blue. Instead of the feasible
set A5(C;) of the Euclidean relation, we use A7;(C;) as the intersection of the
feasible sets (| A.(C;) of all traces. Table 2 summarizes the resulting properties
of the original Euclidean and the resulting invariant algorithm. This algorithm will
be used in the next section to represent an image patch as a basic signal component.

6 Discrete Approximation

In this section we derive a discrete approximation of the continuous texture trace
in eq. 7. In order to make the discrete solution computationally feasible, we have to
make trade-offs when it comes to invariance. Two different trade-offs are chosen,
one that results in full rotational invariance, one without full rotational invariance.
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After discretizing the continuous trace t into its discrete approximation ¢, we plug
it into algorithm 2. The resulting representation is then studied empirically in the
subsequent section 7 to validate its performance with real-world data.

Three obstacles need to be overcome to make the trace model practical:

Continuous Model All considerations so far have been under the assumption of a
continuous signal domain. Optical digital images are discretely sampled and under
the assumption of appropriate filtering, the original bandwidth-limited continuous
signal can be extracted. It is thus in principle possible to formulate a computational
approach to the trace model in the continuous domain (e.g., via spectral methods).
However, the approach taken in this work is rather to discretize the trace model
to achieve a practical computational approximation. The discretization is a coarse
approximation due to computational constraints and the performance may depend
on the discretization granularity. It is important to note that the proposed discretiza-
tion is not the only possible choice.

Lack of Completeness Not all point pairs can be described uniquely and invari-
antly, for instance in homogeneous signal regions. As pointed out earlier, homoge-
neous or otherwise ambiguous signal regions in practice often do not carry relevant
or discriminative information. For this reason we choose to pragmatically accept the
lack of completeness.

Lack of Uniqueness Path descriptions in real signals may be ambiguous. We
address this by enumerating all possible traces between two locations given pre-
defined bounds on the discrete representation length. This is in essence a complete
topological characterization of the space between the two locations and it minimizes
the ambiguity as much as possible within the bounds of the particular discretization
parameters.

We will only sketch the steps in the discretization as this section primarily serves
to demonstrate real-world implications of the overall scheme and the discretization
is an incidental necessity. More detail on the discretization, detailed empirical
evaluations on its effects on invariance and performance, and further applications
beyond the following can be found in [7].

6.1 Discretization of Curve y

The objective of the discretization is a computational procedure that, given two
locations A, B in the image, allows the extraction of the traces between them as well
as the determination of the feasible set of B’ given A and the trace. An example curve
for a trace is shown in figure 12. Figure 16a shows the first step, the discretization of
the domain into a regular set of discrete locations (marked in green). The curve then
is expressed in terms of only those locations, as shown in figures 16a—16d and the
relative spatial relations between two points on the curve are described by a discrete
set of local relations w; € 2 : {(x,y) — {0, 1}}. The relations y; are binary, i.e.
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Fig. 16 Steps in the discretization of the continuous trace model.

for any ordered pair of points (x, y) they either hold true or not. The last step of the
discretization of the curve y is to limit its discrete length to a finite number of steps
ng. The result is a discrete representation of y: A finite sequence of discrete relations
Wi as illustrated in figure 16b.

6.2 Quantization of Image Function

Quantizing the image function in the discrete trace model implies that each location
needs to be assigned a discrete label / € 2% based on the image function. According
to the generalization in section 4.5, any function may be used in a neighborhood
around y that is itself homeomorphic invariant or quasi-invariant. Functions with
larger support may be more robust to image noise due to averaging effects while
invariance to affine illumination changes may be achieved by using derivatives of
the image function. There is a rich set of processes that assign quantized labels
and also average over neighborhoods based on image derivatives, such as vector-
quantized SIFT features [16] or other texture features [17]. Care has to be taken
to account for the specific invariances of the texture features. In the following
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we experimented with two different local features based on SIFT: one, where we
compensate locally for orientation as estimated from the scale space, and one where
we don’t. These give rise to a rotation invariant and a rotation sensitive discrete
representation accordingly.

Given a particular texture descriptor, a label [ is assigned to a location y in the
following manner. Firstly the texture feature is computed in a neighborhood around
y and optionally compensated for the locally estimated orientation or other variants
of the texture feature. Secondly, the resulting vector is quantized into |.Ql| values
by the use of a fixed code book. The code book can be generated, for instance, by a
vector quantization scheme. In the following experiments, this is done via multiple
repetitions of k — means [14] and choosing the instantiation with the least error in a
large data set of images unrelated to the data in the results section.

6.3 Discretized Textured Trace

Putting everything together, a discrete texture trace then is defined as:

Definition 7 A discrete texture trace is a finite sequence of label-relationship pairs
t=((Lwpi:i=1,...,ng5) € 2'

of length n,. Given a starting location a it induces the feasible set of locations b
that are reachable from a via the trace 7. A location b is reachable by ¢ if there is a
sequence of intermediate locations (y;) such that

pi(@,y1) X a(y1,y2)% . .. X fyg (Yn—1,0)> 0

and the locations (a, yi, . .., y,,—1) have labels (I1, 5, ..., 1,,), respectively.

For a given input image, the locations y; are sampled over the image domain
with a fixed density. The discrete neighborhood structure and labeled landmarks
y induce a graph G = (E, V) with the relations p as edges E and the landmarks
as labeled nodes V. The problem of determining the feasible sets then can be
formulated as finding attributed paths in a graph. The set of attributed adjacency
matrices {W’” le e .Q“} of the graph G is defined as: wfj‘.‘ > 0 if the node i
of label / has node j of arbitrary label connected to it by relation . Then, according
to definition 7, the trace t = (I, u); of length ny relates the nodes a and b exactly if
there is an intermediate sequence ¥ = (yi, ..., y,,—1) such that

ng—1

— o, (D) (I)ng

R(a,Y.b) =w,, ( W(yk—l,yk)) W) > 0 9)
k=2
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Equation 9 yields a computational approach for determining the feasible set of a
trace ¢ given a location a. Specifically, the feasible set A,(a) is the set of all locations
b that a relates to via the trace ¢ and the above equation 9:

beA(a) < 3Y:R@aY,b)>0. (10)

The |.Q] | x |£2#| matrices W/* are large, but sparse and the existence of such
a sequence can be established efficiently via sparse matrix multiplication. This
concludes the derivation of a computable pairwise representation A, € A, which
will be used in the following experiments.

6.4 Patch Model

The remaining piece is how to model a part of an image or object given the trace
representation. We now plug the A, from the previous section into algorithm 2. As
discussed in section 5, we choose to represent an image region by one location on it
and its trace relation to other points in the sense of the Hough transform. As the set
of starting points A in algorithm 2 we simply choose all other locations in the image.
The traces between two locations already incorporate the entire space between
them, given the bounds on the representation length (in this case the maximum
number of steps n, taken). This amounts to a complete topological characterization
of the points’ neighborhood under a particular parametrization of the discretization
parameters.

More formally, let b be the central point of the image patch or object, and y; and
a; a set of locations sampled densely on the patch, as illustrated in figure 17. Then,
b is represented by the subset P C £27 of all traces that have b in their feasible set
for any location a on the patch with the locations y; as intermediate nodes:

teP <& 3Ja:be ra) (11)

The size of the subset P is the number of reference traces nyf = |P|, which depends
on the actual patch texture as well as the choice of discretization and sampling
parameters. Given a center location b, the set P fully represents all information about
the patch that can be expressed in the trace model with a given parametrization. The
center location is contained in the feasible set of all traces P and via the construction
of the (discrete) trace, this property is (quasi-) invariant to homeomorphisms. This
implies that a perturbed version of the patch will also have its perturbed center
location ¥ = H(b) in the feasible set of every trace in P given at least one
starting location «’. Conversely, candidates for " in a new image can be found by
enumerating all feasible sets for all starting locations within the image (or a region
of interest). Under the previous assumptions, the true b’ then has to be contained in
their intersection. Due to violations of the continuous assumptions and the particular
discretization choices, only quasi-invariance is retained in practice. As a result there
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Fig. 17 An image patch is modeled as the set of all traces that end in its center location b, starting
from any other location a; on the patch. This example with n; = 3 shows the intermediate locations
y; (two of them labeled), six selected start locations a;_¢ as well as seven traces. Each start node
and intermediate location has a texture label assigned to it in a small neighborhood, illustrated by
gray rectangles.

may be traces which do not have »’ in their feasible set, implying that the correct
location for b’ is in the feasible set of less than ny.f of the reference traces. In
order to address this, the following experimental section will use as candidates for
b’ locations that coincide with as many feasible sets as possible.

With this model for an image patch, we build a simple visual tracking algorithm
based on template matching. It includes an optional incremental model updating
mechanism that allows to model gradual changes of the tracked object through
a video. The updating is performed by keeping a histogram of likely traces over
time. Details of the tracking algorithm go beyond the scope of this chapter and are
presented in depth in [7].

7 Results

We present results from two types of experiments:

1. Matching of image patches when the images undergo perturbations. This is a
relevant application, for instance, in wide-baseline stereo or as a basic component
in more complex algorithms.

2. Visual tracking of objects through videos.

For the first set of experiments we use the rotation invariant as well as the rotation
sensitive version of the discretized texture trace. The rotation invariant texture trace
was not included in the tracking results, as in-plane rotation is addressed by the
incremental updating process and the rotation invariant texture trace has shown to
perform slightly worse if there is no significant inter-frame rotation.
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Fig. 18 Example synthetic
perturbations. Occlusions are
generated by randomly
replacing image blocks by
unrelated image blocks of
various sizes, smooth
deformations are generated
by multi-scale Perlin noise of
the domain with varying
magnitudes.

Occlusion Smooth deformation

7.1 Matching Image Patches

Figure 19a to 19d shows the likelihood that a patch can be detected under
perturbations as the detection rate over a population of experiments. The per-
turbations were sampled over a range of different settings and synthetic data to
improve statistical validity. Figure 18 shows example images. We compare to
the Geodesic Intensity Histogram (GIH, [12]) as a representative for the state of
the art in homeomorphic invariance in patch matching. The discretized texture
trace representations outperform the GIH significantly under noise and occlusion.
The reason for the discrepancy in the performance under noise may lie in the
construction of the GIH. Both GIH and texture trace use the image function in a
topological manner to define the patch representation. However, where the texture
trace averages at each point over neighborhoods in the texture label quantization,
which makes it more insensitive to noise, the GIH uses the image pixels directly
to extract the geodesic contours. The latter may be very prone to image noise. In
the case of occlusion, an explanation lies in the way two patches are compared. In
the GIH, a patch is defined by the histogram of gray values at a set of geodesic
distances from a common center, and two patches are compared via the y? distance
of their histograms. The y? distance is not robust to occlusion of its dimensions, i.e.
partial randomization of histogram entries. In contrast, the Hough algorithm has an
independent voting-like structure, where occlusion is gracefully handled implicitly.

Under local perturbation, the texture trace outperforms the GIH for all but
large perturbation magnitudes. At larger perturbations, it may suffer from the fixed
neighborhood size for the texture quantization, where the labels cannot be assigned
robustly any more as the perturbations within the neighborhood become too large.
Except for the case of rotation, the rotation invariant texture trace performs slightly
worse than the rotation sensitive trace. This is intuitively expected due to the trade
off in the representation when additional invariance is added: one gains invariance
towards one nuisance parameter, but potentially loses discriminative power for
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Fig. 19 Performance of rotation invariant and rotation sensitive discrete texture trace and the
geodesic intensity histogram under various perturbations.

the others. The rotation invariant trace has near perfect performance in the case
of rotation, demonstrating that it is indeed fully rotation invariant as designed
(figure 19).

7.2 Tracking

Four video sequences from the literature were used for the visual tracking results
with a wide array of perturbations, including motion blur, in- and out-of-plane
rotation, occlusions, and illumination change. The protocol from [20] was used,
adding to their comparison. The sequences “board,” “box,” “lemming,” and “liquor”
of [20] are evaluated by the PASCAL score [8] against the recent SPT [13] as well as
PROST [20], MIL [2], FragTrack [1], ORF[19], and GRAD [10]. The GIH method
was not included as it is unclear how to extend this method to incremental tracking.
The PASCAL score measures the percentage of frames where the ground truth and
detection overlap sufficiently to imply a correct detection. The results are shown
in table 3, where rsDTT denotes the rotation sensitive discrete texture trace. The
trace method has a consistently high score and is on par with the SPT with an
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Table 3 PASCAL score for the four PROST sequences [20]. The best and
second best method are highlighted in bold and underlined, respectively.
The rotation sensitive texture trace is on par with the best compared

method.

Method Average | “board” | “box” | “lemming” | “liquor”
PROST 80.4 75.0 90.6 | 70.5 85.4
MIL 49.2 67.9 24.5 |83.6 20.6
FragTrack 66.0 67.9 61.4 549 79.9
ORF 27.3 10.0 28.3 17.2 53.6
GRAD 88.9 94.3 91.8 |78.0 91.4
SPT 95.2 97.9 948 |88.1 100
rsDTT 95.5 99.3 93.1 |914 98.0
rsDTT one-shot | 86.6 96.4 71.3 81.3 914

overall PASCAL performance of 95.5%. It is important to realize that all of the high
performing compared methods such as SPT use machine learning as an integral part
of their representation.

7.3 One-Shot Tracking

In order to get a better empirical understanding of the quasi-invariance properties
of the texture trace representation, this section looks at the following question:
how far can one get in tracking with only using one frame for model building, i.e.
no continuous, incremental updating of the model? This one-shot tracking clearly
stresses the invariance properties of any representation as only the first frame of a
sequence is available during model building. The same tracking algorithm of the
previous section is used, just without model updating after the first frame.

The resulting performance for the four sequences is shown in table 3 as rsDTT
one-shot. When comparing the overall PASCAL performance of the one-shot
method to the compared methods, one can see that it already outperforms four
out of the six. In other words, with just using one initial frame and no elaborate
machine learning apparatus, the texture trace-based tracker already takes third place
out of seven, outperformed only by the GRAD and SPT methods. To illustrate the
performance of the one-shot tracking, we applied it to the “dudek” sequence [9].
Figure 20b shows the initial image with the reference location marked in green,
figure 20c the same image cropped to the given bounding box and several detections
of the algorithm throughout the sequence. As an observation, the detected center
point is always on the bridge of the nose between the eyes (as is the reference
location in the first frame). Figure 20b shows one frame within the sequence and
figure 20d the corresponding computed confidence map from the trace model. The
overall PASCAL performance on this sequence with the one shot tracking is 99.5%,
indicating that the detections are very precise.
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(b) Frame with detected maximum of confi-
dence map.

(c) Close up of detections and reference image (d) Confidence map (best viewed in color).
(top left)

Fig. 20 Visualization of the detection result and the confidence map of the one-shot tracking for
one frame of the “dudek” sequence [9]: (a) the reference location in the first frame, (b) one frame
from the middle of the sequence, and (c) the rsDTT confidence map based only on the first frame.

8 Conclusion and Outlook

We described a generic scheme for constructing invariant and quasi-invariant
signal representations based on topological connectedness and the preservation of
neighborhood structure. The choice of defining it in terms of set relations allows
the one-to-one transformation of certain algorithms based on metric relations into
an invariant domain, effectively including the invariances without extra effort.
Furthermore, we derived a particular instantiation, the trace model, and employed
it in two applications. The underlying principle of the trace model is the relation
of two signal locations by a description of the space between them based on one-
dimensional paths, regardless of the signal’s dimension. While this is only one
possible derivation, it is motivated primarily by computational efficiency due to the
factorization into a set of one-dimensional problems. The invariances of the specific
instantiation of the model can be tuned to application-specific requirements. We
demonstrate two versions of the trace model: one is rotation invariant, one is rotation
sensitive. The computational backbone for both is matrix multiplication, for which
there are efficient parallel implementations. Based on the discrete trace model we
have shown results for two important problems in computer vision: patch-matching
and visual tracking.
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The main practical challenge of the trace implementation remains computa-
tional complexity. Empirical performance analysis not presented here shows that
the representation greatly benefits from improving the discretization granularity,
particularly the trace length. However, computation time increases significantly
with the number of discretization steps. The model itself is highly parallelizable
due to the independence of individual traces. On the other hand, many traces share
redundant sub-paths which can be computed more efficiently as it is done here.

The trace model can readily be extended to higher-dimensional signals, such as
videos or sequences of image volumes.Outside of image processing and computer
vision, it may be used to substitute metrics in the sense of set relations in domains
that can be attributed with a similar topological structure, where invariance to local
deformations and robustness to occlusion of the domain is sought.
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Use of Quillen-Suslin Theorem for Laurent
Polynomials in Wavelet Filter Bank Design

Youngmi Hur*

Abstract In this chapter we give an overview of a method recently developed
for designing wavelet filter banks via the Quillen-Suslin Theorem for Laurent
polynomials. In this method, the Quillen-Suslin Theorem is used to transform
vectors with Laurent polynomial entries to other vectors with Laurent polynomial
entries so that the matrix analysis tools that were not readily available for the vectors
before the transformation can now be employed. As a result, a powerful and general
method for designing non-redundant wavelet filter banks is obtained. In particular,
the vanishing moments of the resulting wavelet filter banks can be controlled in
a very simple way, which is especially advantageous compared to other existing
methods for the multi-dimensional cases.

Keywords Laurent polynomials ¢ Multi-dimensional wavelets * Non-redundant
filter banks ¢ Polyphase representation ¢ Quillen-Suslin Theorem * Wavelet filter
banks

1 Introduction

In this chapter we provide an overview of a recent method in [15] for designing
non-redundant wavelet filter banks using the Quillen-Suslin Theorem for Laurent
polynomials, which is a well-known result in Algebraic Geometry. The method
works for any dimension but it would be the most useful for multi-dimensional
cases, where the problem of designing wavelet filter banks can be quite challenging.

Wavelet representation [18], along with Fourier representation, has been one of
the most commonly used data representations. Constructing 1-dimensional (1-D)
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wavelets is mostly well understood by now, but the situation is not the same for
the multi-dimensional (multi-D) case. Taking the tensor product of 1-D functions
is the most common approach, but the resulting separable wavelets have many
unavoidable limitations. In order to overcome these limitations, various non-tensor-
based approaches for constructing multi-D wavelets have been tried, but many of
these methods show limitations in various aspects as well. For example, some work
only for low spatial dimensions and cannot be easily extended to higher dimensions,
whereas others assume that the lowpass filters or refinable functions satisfy addi-
tional conditions such as the interpolatory condition (see, for example, [10, 12—14]
and the references therein). Therefore, the problem of constructing multi-D wavelets
is still very challenging and calls for new ideas and insights.

Constructing wavelet filter banks is often reduced to solving an associated
matrix problem with Laurent polynomial entries. Once the associated matrix
problem is obtained, the wavelet filter bank design problem can be solved by using
various techniques for the matrices with Laurent polynomial entries that have been
developed in many different branches of mathematics. The method we look at
in this chapter is based on a new way of applying the Quillen-Suslin Theorem
for Laurent polynomials to the matrix problem, and it presents some advantages
over the existing (both the tensor product and non-tensor-based) methods of multi-
D wavelet construction: it works for any spatial dimension and for any dilation
matrix, and it works without any additional assumptions, such as interpolatory
condition, on the initial lowpass filters. Furthermore, it provides a simple algorithm
for constructing wavelets with a prescribed number of vanishing moments.

2  Wavelet Filter Bank Design via Laurent Polynomial
Matrices

Filters f are (real-valued) functions defined on the integer grids Z". A filter bank
(FB) consists of the analysis bank, which is a collection of, say p, filters used to
analyze a given signal, and the synthesis bank, which is another (possibly different
but with the same cardinality) collection of filters used to synthesize the analyzed
coefficients or their modifications, depending on the application at hand, in order to
get back to the original signal or its variant. We consider a special kind of FB, where
one filter from each band is lowpass (i.e., Y ;. f(k) = /g where g = | det A| with
dilation matrix A), and all the other filters are highpass (i.e., ) ¢z f(k) = 0), and
we refer to such a FB as the wavelet FB. Only the FBs with finite impulse response
filters and with the perfect reconstruction property will be considered, and in such a
case we necessarily have p > g.
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2.1 Polyphase Representation and Wavelet FB Design

The connection between the wavelet FB design problem and the Laurent polynomial
matrix problem can be made via the polyphase decomposition [33]. Originally
introduced for computationally efficient implementation of various filtering oper-
ations, the polyphase decomposition provides a way to transform filters and signals
to vectors with Laurent polynomial entries, to which we refer as the polyphase
representation. In particular, for an analysis filter /2 and a synthesis filter g, and for
a dilation matrix A, the polyphase representation are given as the following Laurent
polynomial vectors of length ¢ = |det A| > 2:

H(z) = [Hy(2)..... Hy, (D),
G(2) =[Gy (), ..., Gy, (D],

respectively, where T is used for the transpose, H,(z) and G, (z) for the z-transform
of the subfilters h,(k) := h(Ak — v) and g, (k) := g(Ak + v), respectively, and
{vo :==0,...,v,1} =: I for a complete set of coset representatives of Z"/AZ"
containing 0.

In this setting, designing a FB is equivalent to finding a p x ¢ analysis matrix
A(z) and a ¢ x p synthesis matrix S(z) with S(z)A(z) = I,. In this case, the FB is
non-redundant if p = ¢, that is, if A(z) and S(z) are square. It is a wavelet FB if
the first row of A(z) and the first column of S(z) are the polyphase representation
of lowpass filters and all other rows of A(z) and all other columns of S(z) are the
polyphase representation of highpass filters.

Understanding properties of a wavelet FB in terms of the polyphase representa-
tion is important. We recall that the filter f is lowpass (resp. highpass) if and only if
Y over Fu(1) = /g (tesp. Y o F, (1) = 0), where 1 € R” is the vector of ones,
and the lowpass filter f has positive accuracy if and only if F, (1) = 1/,/g, for all
v € T (cf. [10]). For a filter f, the number of zeros of F(z)|,—.e at @ € T'*\{0},
where F(z) is the z-transform of the filter f, is referred to as the accuracy number
[28]. It is well known that the number of vanishing moments of each highpass filter
in a non-redundant wavelet FB is at least the minimum of the accuracy numbers of
the lowpass filters [S]. The number of vanishing moments is one of the important
criteria in determining the approximation power of a wavelet system [19].

2.2 Quillen-Suslin Theorem and Wavelet FB Design

A row vector of length ¢ with Laurent polynomial entries is called unimodular if
it has a right inverse, which is a column vector of length g. A unimodular column
vector is defined similarly.
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Example 1 A row vector

11T, 1, 11_,_, 1
H = \|l5 s s - 1
@ [2 24 +4 1% +4 RS +4] (1)
is unimodular, because [2,0,0,0]” is a right inverse of H(z). In fact, there are
infinitely many right inverses of H(z), and one of them is the column vector

[1_1 1 _, 1—1—1+5 1 1 1 1+1 1+1 1+1 i

SZI 8Z2 821 2 4 821 822 821Z2, 4 4Z1, 4 422, 4 42122 .
Clearly the former is simpler, but the latter may be preferred for a wavelet FB design
because the lowpass filter associated with it has larger accuracy number: it is 2,
whereas the one for the former is 0. O

More generally, a matrix with Laurent polynomial entries is called a unimodular
matrix if its maximal minors generate 1. The Quillen-Suslin Theorem (also referred
to as the unimodular completion), originally conjectured by J. P. Serre [26] and
proved after about 20 years [24, 29], is a well-known result in Algebraic Geometry,
and it asserts that any unimodular matrix over a polynomial ring can be completed
to an invertible square matrix. This result, together with its generalization to Laurent
polynomial ring [30] and their constructive and algorithmic proofs [1, 17, 23], has
been used in various other disciplines including Signal Processing as well [3, 16].
The following special case of the unimodular completion over Laurent polynomial
rings is used for the wavelet FB design method we look at in this chapter.

Theorem 1 (Quillen-Suslin Theorem for Laurent polynomials [30]) Ler D(z)
be a unimodular column vector of length q with Laurent polynomial entries. Then
there exists an invertible q X g matrix M(z) with Laurent polynomial entries such that

M(z)D(z) = [1,0,...,0]".

Although the above result can be useful in designing non-redundant wavelet FBs
(cf. [5]), there are still some important questions remained to be answered. For
example, obtaining a pair of lowpass filters with a prescribed number of accuracy
is a key step in such an approach, but this may not be straightforward to do so,
especially in multi-D cases, as we illustrate below for the 2-dimensional case.

Example 2 When n = 2, the lowpass filter associated with the linear box spline
has accuracy 2, and its polyphase representation is given as H(z) in (1) and thus,
as we saw in Example 1, it has a right inverse [2,0,0,0]”. But the lowpass filter
associated with [2,0,0, O]T has 0 accuracy and, as a result, it cannot be a lowpass
filter for a wavelet FB. Grobner bases techniques ([6, 20, 22]) can be used to give
the most general form of the right inverse for H(z):

2 g +1 541 't +1
0| 1 -2 1 0 1 0
ol 5”1(1) 0 - EMZ(Z) 2 - 5'43(1) 0
0 0 0 -2
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(implemented via the Maple package QuillenSuslin by Anna Fabianska), where
u1(z), u2(z), us(z) are any Laurent polynomials that are used as parameters. To find
a right inverse of H(z) with positive accuracy, one can choose specific Laurent
polynomials for parameters u(z), u»(z), u3(z), which is usually done by fixing the
total degree of Laurent polynomials and then increasing the total degree if needed
[8, 21, 25]. However, this approach may not be the best strategy, especially if one
looks for a right inverse for which the associated lowpass filter is supported in a
non-rectangular region. O

3 New Quillen-Suslin based Method for Designing Wavelet
FBs

In this section we discuss the main ingredients of the theory and algorithms in the
new Quillen-Suslin Theorem based method for designing wavelet FBs presented in
[15], and start our discussion by pointing out some motivation for the theory.

3.1 Motivation for the theory

For any lowpass filters 4 and g used for analysis and synthesis, respectively, their
polyphase representation H(z) and G(z) satisfy the following simple matrix identity:

[c() 1,] [ H() ] =1,

I, — G()H()

In fact, the above identity can be understood as a matrix-based interpretation of
Laplacian pyramid (LP) algorithms [4], which is widely used in Signal Processing
[9, 31, 32]. However, this matrix identity alone does not give a wavelet FB, because
the filters associated with the column vectors of the matrix I, in the synthesis
matrix [G(z) I q] are not highpass, even if the lowpass filters & and g are chosen
to have positive accuracy. If the lowpass filters have positive accuracy and they are
biorthogonal, i.e. H(z)G(z) = 1, then another synthesis matrix [ G(z) I, — G(z)H(z) ]
is available, and its use leads to the construction of wavelet FBs, as studied in [7, 11].
Actually, the most general LP synthesis matrix is known and it is

S1p(2) :=[G(2) + F(2)(1 — H(2)G(2)) I,— F(9)H({)].

where F(z) is any column vector of length g [2].

Another approach to design wavelet FBs based on LP algorithms is studied in
[10] for the case including when the lowpass filter & satisfies the interpolatory
condition. A lowpass filter is interpolatory if the first component of its polyphase
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representation is constant, and in such a case the constant is necessarily 1/.,/g,

where ¢ = |det A| for the dilation matrix A (cf. [10]). Suppose that & is

interpolatory with positive accuracy. Since in this case, for any column vector G(z)

of length ¢, the second row of the analysis matrix A;p(z) := |: H(z) :| can
I, —G(2)H(z)

be written in terms of the rest rows of the matrix, we have the following identity

1 0

Ja(l —HE)GR) — G EE) [;glo ]ALp(z) = Aur(2),
0 Tm1 o
which in turn gives
I, = Sir(2)2r(2)
: 0_ 10 0
= | Sr(2) | /q(1 —H(2)G(z)) —/q H(z) (|:O 01 :|ALP(Z))
0 I -1
_ [Guo(z) + /4 (1 — H()G(2)) —ﬁ’ﬁ(z)] 7 H)
G(2) Io1 — 7 G(2) I — GRHE)

=: Sgcrp (Z) AgcLp (Z)

where H(z) (resp. G(z)) is a subvector of H(z) (resp. G(z)) obtained by removing the
first entry. Therefore, as long as the lowpass filter g associated with G(z) has positive
accuracy, we obtain a non-redundant wavelet FB whose analysis matrix is Agcrp(z)
and the synthesis matrix is Sgcrp(z) (cf. [10] for more details). In particular, the first
column of Sgcyp(z), which is G(z) + [ /7.0, . . ., 0]" (1 —H(2)G(2)), is the polyphase
representation of the synthesis lowpass filter.

3.2 Main ingredients of the theory

In the approach outlined above, the fact that the vector H(z) for the interpolatory
filter has a unit' in the Laurent polynomial ring as one of its entry is used essentially,
and it is clear that this property does not hold true for the general lowpass filter.

Let H(z) be any polyphase representation for an analysis lowpass filter & with
positive accuracy (that is not necessarily interpolatory). Suppose that we want to
design a non-redundant wavelet FB for which its analysis lowpass filter is 4. Then
H(z) is necessarily unimodular, because, being square matrices, the analysis matrix

' An element in a ring is called a unit if its multiplicative inverse lies in the ring.
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times the synthesis matrix equals to I, as well, hence reading off (1, 1)-entry of both
sides in the identity guarantees the existence of a right inverse of H(z). Therefore
we assume that the polyphase representation H(z) we start with is unimodular. The
unimodularity of H(z) for the interpolatory A is trivial since [ /g, 0, - , 0]” is aright
inverse of H(z).

From the unimodularity of H(z), we see that there exists a column vector F(z)
of length ¢ with Laurent polynomial entries such that H(z)F(z) = 1. Hence F(z) is
unimodular as well. By Theorem 1, there exists an invertible ¢ x g matrix M(z) such
that M(z)F(z) = [1,0,...,0]”. Then [M(z)]™" is a ¢ x ¢ matrix with Laurent poly-
nomial entries, and H(z)[M(z)] ™! is a left inverse of M(z)F(z) = [1,0, ..., 0]”, hence
its first entry is 1, which is a unit. By letting the transformed row vector H'(z) :=
H(z)[M(z)]"! play the role of H(z) in the interpolatory case as described in Sec-
tion 3.1, for any column vector G(z) of length ¢, we get the following matrix identity:

I, = [6"(2) + F'(Q)(1 - B'(2)G"(2) I, — FIQH()] [Iq - ng;HM(z) ] éz)
where F"(z) 1= M(:)F(z) and G"(z) := M(:)G(z). The transformed polyphase

representation used here can be thought of a generalization of the valid polyphase
representation studied in [27].

Following the previous discussions when H(z) is interpolatory, because the
second row of the transformed analysis matrix (the second matrix in the right-hand
side of (2)) can be written in terms of the rest rows of the matrix, by inserting

1 0
(-we@ -7 | [0 0 ]
0 T, -1

between the two matrices in the right-hand side of (2), we obtain the matrix identity

L [G”fo(z)+<1~ ~H'(2)6"(2)) —H“‘ﬂ(z)][ 1 B ]
‘- G"(2) It | [—G"(2) I — G @H"(2)
=: Sperp(DBhcp(2),

hence we get a non-redundant wavelet FB with the analysis matrix A%, »(z)M(z) and
the synthesis matrix [M(z)]~' S}, »(z), provided that the lowpass filter g associated
with G(z) has positive accuracy. More precisely, in this wavelet FB, the polyphase
representation for the synthesis lowpass filter is

[M(z)] ! (G"(2) + [1.0,....0]" (1 = 8" (2)G"(2))) = G(2) + F(2)(1 — H(2)G(2)).

for the synthesis highpass filters are the 2nd through the last column vectors of
[T, — F(z)H(2)][M(z)] "', and for the analysis highpass filters are the 2nd through the
last row vectors of M(z)[I, — G(z)H(z)].
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Remark 1 Although the case when M(z) satisfies M(z)F(z) = [1,0,...,0]7 is
discussed above, all we need to run the above argument is for M(z)F(z) to be a
unimodular column vector with a unit in at least one of its components.

Remark 2 Unlike the classical approach in searching for a right inverse of H(z) for
a non-redundant wavelet FB design (cf. Example 2), in the above approach, we do
not need to look for a single right inverse of H(z) that has positive accuracy. Rather,
one needs a pair of column vectors F(z) and G(z) such that F(z) is any right inverse
of H(z) (with possibly no accuracy) and that G(z) has positive accuracy (but needs
not be a right inverse of H(z)), which is much easier to find.

3.3 Main ingredients of the algorithms

The theory in the previous subsection provides an immediate algorithm for design-
ing non-redundant wavelet FBs.

Algorithm 1 For a non-redundant wavelet FB from a lowpass filter.

Input: H(z): unimodular polyphase representation of an analysis lowpass filter h with positive
accuracy.
Output: D(z): polyphase representation of a synthesis lowpass filter,
J1(2), ..., J4—1(2): polyphase representation of analysis highpass filters,
Ki(2),...,K4—1(2): polyphase representation of synthesis highpass filters,
such that, together with H(z), they form a non-redundant wavelet FB.

Step 1: Choose a lowpass filter g with positive accuracy, and let G(z) (as a column vector) be its
polyphase representation.

Step 2: Choose a right inverse F(z) of H(z).

Step 3: SetD(z) := G(z) + F(2)(1 — H(z)G(2)).

Step 4: Choose an invertible g X g matrix M(z) such that M(z)F(z) = [1,0,---,0]".

Step 5: Set J1(2), ..., J4—1(2) :=2nd through last rows of M(z)[I, — G(2)H(z)].

Step 6: Set K;(2), ..., Ky—1(z) := 2nd through last columns of [I, — F(2)H(z)][M(z)] "

Given an analysis lowpass filter A, if one is interested in getting a synthesis
lowpass filter d with positive accuracy, one can stop the algorithm after Step 3
and use D(z) there as its polyphase representation. In fact, it can be shown that
the accuracy of the lowpass filter d is at least min{ay, g, o + B, o + B,}, where
f is the lowpass filter having F(z) as its polyphase representation, and «, and S, are
the accuracy number and the flatness number of a lowpass filter x, respectively (see
[15] for details including the definition of the flatness number of a lowpass filter).

In general o can be zero, and B, B, can be as small as 1 (they have to be
positive because / and g are lowpass filters) even if 4 and g have large accuracy,
hence as a result, the accuracy of d can be much smaller than «y,. This situation can
be improved by choosing g with large accuracy, and iterating a part of Algorithm 1
as shown in the next algorithm. Recalling the close relation between the number
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of vanishing moments and the accuracy numbers of the lowpass filters for a non-
redundant wavelet FB (cf. Section 2.1), the next algorithm provides a way to design
wavelet FBs with large vanishing moments from a lowpass filter with large accuracy.

Algorithm 2 For a non-redundant wavelet FB with > «;, vanishing moments.

Input: H(z): unimodular polyphase representation of an analysis lowpass filter h with accuracy
op.
Output: D(z): polyphase representation of a synthesis lowpass filter,
J1(2),...,J4—1(2): polyphase representation of analysis highpass filters,
Ki(2), ..., K4—1(2): polyphase representation of synthesis highpass filters,
such that, together with H(z), they form a non-redundant wavelet FB with highpass filters
having at least o, vanishing moments.

Step 1: Set Ite := 1.

Step 2: Choose a lowpass filter g with at least «, accuracy, and let G(z) (as a column vector) be
its polyphase representation.

Step 3: Choose a right inverse F(z) of H(z).

Step 4: Set D(z) := G(z) + F(2)(1 — H(2)G(2)).

Step 5: If oy + (Ite)Br, = oy, and of + (Ite) B, = ay, then go to Step 6. Otherwise, let Ite :=
Ite + 1 and F(z) := D(z), and go to Step 4.

Step 6: Choose an invertible ¢ X ¢ matrix M(z) such that M(z)F(z) = [1,0,---,0]".

Step 7: Set J;(2), ..., J,—1(z) := 2nd through last rows of M(z)[I, — G(z)H(z)].

Step 8: Set K (2), ..., Ky—1(z) := 2nd through last columns of [I, — F(z)H(z)|[M(z)] .

Because B, and B, are positive, each time the algorithm goes back to Step 4 from
Step S, oy + (Ite) B, and oy + (Ite) B, strictly increase and they eventually satisty the
conditions oy + (Ite) B, > oy, and oy + (Ite) B, > ayp, even if they did not initially.
Therefore, by the time the algorithm reaches to Step 6, min{ay, g, otf + B, 0tf +
Be} = ap, and the accuracy number of the lowpass filter associated with D(z) is at
least «,.

In both algorithms, G(z), F(z), and M(z) need to be chosen. One can always
choose H(z™")T as G(z). F(z) is nothing but the first column of [M(z)]™', and F(z)
and M(z) can be found by using Mathematical softwares such as Maple package
QuillenSuslin mentioned earlier.

4 Conclusion

We presented some important ingredients of a recent method in [15] for designing
non-redundant wavelet FBs, as well as some essential background material for the
method including the Quillen-Suslin Theorem. The main advantage of this method
compared to other existing wavelet FB design methods is the existence of a simple
algorithm for designing a non-redundant wavelet FB with a prescribed number of
vanishing moments.
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A Fast Fourier Transform for Fractal
Approximations

Calvin Hotchkiss and Eric S. Weber

Abstract We consider finite approximations of a fractal generated by an iterated
function system of affine transformations on R? as a discrete set of data points.
Considering a signal supported on this finite approximation, we propose a Fast
(Fractal) Fourier Transform by choosing appropriately a second iterated function
system to generate a set of frequencies for a collection of exponential functions
supported on this finite approximation. Since both the data points of the fractal
approximation and the frequencies of the exponential functions are generated by
iterated function systems, the matrix representing the Discrete Fourier Transform
(DFT) satisfies certain recursion relations, which we describe in terms of Ditd’s
construction for large Hadamard matrices. These recursion relations allow for the
DFT matrix calculation to be reduced in complexity to O(N log N), as in the case of
the classical FFT.

Keywords Fractal ¢ Fast Fourier Transform ¢ Hadamard matrix
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1 Introduction

The Fast Fourier Transform (FFT) is celebrated as a significant mathematical
achievement (see, for example, [1]). The FFT utilizes symmetries in the matrix
representation of the Discrete Fourier Transform (DFT) [3]. For 2V (equispaced)
data points on [0,1), the matrix representation of the DFT is given by

omidk
Fn = (€7
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316 C. Hotchkiss and E.S. Weber
where 0 < j, k < 2N The FFT is obtained from the DFT by a permutation of the
columns of Fy:

o)
Fy = (772 ),

for 0 < j,k < 2N, where

2k 0<k<2N1

U(k)= N—I1 N
d+1 2V <k<2V,

The significance of the permutation is that the permuted matrix can be written in the
following block form:

FnP =

(]:N—l DJ:N—]) 1)

Fn—1 —DFy—

where D is a diagonal matrix. This block form reduces the computational complexity
of the associated matrix multiplication; recursively, Fy—; can be permuted and
written in block form as well. Repeated application of the column permutation
reduces the computational complexity further, and results in overall complexity
O(N-2M).

We take the view in the present paper that the DFT arises naturally in the context
of iterated function systems, and the FFT arises as reordering of the iterated function
system. Indeed, consider the following set of generators:

1
W= =1

The invariant set of this IFS is the interval [0, 1], and the invariant measure is
Lebesgue measure restricted to [0, 1]. Consider the approximation for the invariant
set [10, 12] given by

Sy = {Tjy_, © Tjy_, 00T, 0 T;,(0) 1 ji € {0, 1}}.

This is an approximation in the sense that [0, 1] = UySy, but the significance for
our purposes is that Sy consists of 2V equispaced-points:

k
SN:{Z—N:keZ, 0 <k <2V
Define a second iterated function system generated by

po(x) = 2x; p1(x) = 2x + 1.
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Since these are not contractions, the IFS will not have a compact invariant set, but
we consider the finite orbits of O under this IFS just as before. Define

Ty = {pj}v—l O Pjy—y @+ 0 Pj Opjo(o) “Jk € {O’ 1}}
Note that
Tv=1k:keZ 0<k<2V}.

With the inherited ordering on Sy and 7y from R, say Sy = {s¢, s1,...,8$»w_;} and
Ty = {to, 11, ..., t,n_; }, we obtain

-FN — (e—zmz,-sk)jk.

For 0 < k < 2V, we write k = Y _ j,2" with j, € {0, 1}. Then

k
Tin—1 O Tjy—p O "0 ":jo(o) = 2_N = Sk- (2)
However,
Pjo © Pjy © -0 Py, (0) =k = 1. 3)

We define a new ordering on Sy as follows:

Sk =Ty 0 gy 0 -+- 0 iy, (0) )

where k is written in base 2. As we shall see in Theorem 9, this new ordering on Sy
results in the following matrix equality:

(72 %) = FyP ()

as in Equation (1).

We will call the compositions in Equations (3) and (4) the obverse ordering.
The composition in Equation (2) will be called the reverse ordering. As suggested
previously, and will be established in Theorem 9, if the elements of Sy and Ty
are both ordered with the obverse compositions, then the permuted DFT matrix
obtained is as in Equation (5). However, if both Sy and 7y are ordered using the
reverse compositions, then the matrix becomes

ot Fn— Fn—
2 itisk | = PFy = N—1 N—1
(e )jk N (FN_]D —fN_lD ’

a block form that will allow the inverse Fy ! to have a fast multiplication algorithm.
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Consider the measure uy = %N D e sy Os; this sequence of measures converges
weakly to Lebesgue measure restricted to [0, 1], the invariant measure for the IFS
generated by {1, 7; }. Moreover, we consider the exponential functions {¢>™*0) : t €
Tv} C ? (un); this set will be an orthonormal basis, and the DFT is the matrix
representation of this basis (up to a scaling factor). Thus, the IFS generated by
{70, 71} gives rise to a fractal, and the IFS generated by {po, p1} gives rise to the
frequencies of an orthonormal set of exponentials.

A probability measure u is spectral if there exists a set of frequencies A C R
such that {¢?"*0) : 1 € A} C L*(p) is an orthonormal basis [5, 6]. If the measure
is spectral, the set A is called a spectrum for w. Jorgensen and Pederson [13] prove
that the uniform measure supported on the middle-thirds Cantor set is not spectral.
However, they prove that the invariant measure 4 for the iterated function system
generated by

x+2
4

W=7 0=

is spectral, and moreover, the spectrum is obtained via the iterated function system
generated by

Po(x) = 4x, p1(x) =4x+ 1.

In fact, the orbit of 0 under the iterated function system generated by {po, p1} is a
spectrum for 4.

For a generic iterated function system {vy, ..., ¥x—} consisting of contractions
on RY, we will consider an approximation Sy to the invariant set given by

Sy = {ij—l oij—z o"'Ole Owjo(o) k€{0.1,... K- 1}}

This collection of points we will consider as the locations of data points. We then
will choose a second iterated function system {py, . .., px—1 }, and consider the finite
orbit of 0:

Tn = {Pjy—1 © Piy—z © =0 Pj © P;(0) 1 jx €{0,1,..., K —1}}.

These will be the frequencies for an exponential basis in L?(uy), where uy =

1
KN ZA‘ESN 85 :

A necessary and sufficient condition to obtain an exponential basis for L?(jy)
from the frequencies in 7y is that the matrix

Hy = (e %),
is invertible, where s; and f#; range through Sy and 7y under any ordering,

respectively. Preferably, the matrix Hy would be Hadamard [2,7, 14], i.e. HyHy =
KN Igv (since it automatically has entries of modulus 1), since this would correspond
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to an orthogonal exponential basis. As we will show, if H| is invertible (Hadamard),
then all Hy will be invertible (Hadamard, respectively).

Moreover, we will put an ordering (namely, the obverse ordering) on Sy and
Ty so that under this ordering the matrix Hy has a block form in the manner of
Ditd’s construction for large Hadamard matrices. This block form will allow for the
computational complexity of the matrix multiplication to be reduced. Then, Sy and
Ty will be reordered (using the reverse ordering) so that the inverse of Hy will have a
similar block form, again allowing for a fast algorithm for the matrix multiplication.

We note that for a generic IFS, the set Sy will consist of irregularly spaced points.
We view the matrix Hy as being a Fourier transform for a signal (or set of data
points) located at the points in Sy, and thus Hy (and its block form as shown in
Theorem 9) can be considered a non-equispaced FFT. We further note, however,
that this is not a full irregularly spaced FFT, since all of the data point locations in
Sy are rationally related. Please see [8, 9, 11] for the irregularly spaced FFT.

1.1 Dita’s Construction of Large Hadamard Matrices

Dita’s construction for large Hadamard matrices is as follows [4, 15]. f Aisa K x K
Hadamard matrix, B is an M x M Hadamard matrix, and Ey, ..., Ex_; are M x M
unitary diagonal matrices, then the KM x KM block matrix H is a Hadamard matrix:

a()()B amE]B . ao(K_l)EK_lB
a]()B a”E]B e a](K_l)EK_lB

H= (6)

ak-1oB ax-11E\B ... ag-1k-1Ex—1B

Since we will also consider invertible matrices, not just Hadamard matrices, we
show that for A, B, E, ..., Ex— invertible, H will also be invertible, and its inverse
has a similar block form.

Proposition 1 Suppose A and B are invertible, E,,...,Ex_, are invertible and
diagonal. Let C = A™". For the matrix H in Equation 6,

cooB™! co1B™! .. cok—1B™!
H_l C]QBilEl_l C]]BilEl_l e C]([(_l)BilEl_l (7)
cx-10B™ Exly eig-nBT gl ... cx—n-nB T Egl

Proof Let G be the block matrix in Equation (7), and let Ey = Ij;. Note that the
product of H and G will have a block form. Multiplying the j-th row of H with the
£-th column of G, we obtain that the j, £ block of HG is:
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K—1 K—1
Z(a,/‘kEkB)(CklfB_lEk_l) = Zajkck(éIM-
k=0 k=0
Since Zf:_g ajcre = 8j¢, we obtain HG = Igy. O
If A, By,...,Bk—1, E1, ..., Eg_; are all unitary, then the construction for H™!

gives H*, so H is also unitary.

1.2 Complexity of Matrix Multiplication in Ditd’s Construction

Let U be a vector of length KM. Consider HV where H is the block matrix as in
Equation (6). We divide the vector v into K vectors of length M as follows:

Then the matrix multiplication Hv can be reduced in complexity, since

K—1 =
2_j=o a0EjBUo

K—1 -
R > j—o ai;EiBU1

Hv = a

K—1 ’ =
2 j=o @k-1;EBUk-1

Let Oy be the number of operations required to multiply the vector w of length
M by the matrix B. The total number of operations required for each component of
H?v is Oy + M(K — 1) + MK multiplications and M (K — 1) additions. The total
number of operations for Hv is then KOy, + 3MK 2_2MK. We have just established
the following proposition.

Proposition 2 The product Hv requires at most KOy + 3MK? — 2MK operations.

Since Oy = O(M?), we obtain that the computational complexity of H is
O(M?’K + MK?), whereas for a generic KM x KM matrix, the computational
complexity is O(K>M?). Thus, the block form of H reduces the computational
complexity of the matrix multiplication.
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2 A Fast Fourier Transform on Sy

We consider an iterated function system generated by contractions {yo, ¥, ..., Yx—1}
on R? of the following form:

@) = A +b)

where A is a d x d invertible matrix with ||A|| < 1. We require A~! to have integer
entries, the vectors b; € 74, and without loss of generality we suppose by = 0. We
then choose a second iterated function system generated by {po, p1, ..., px—1} of
the form

pj(x) = Bx + Zj
where B = (AT)™!, with ¢; € Z%, and ¢y = 0. We require the matrix
M, = (e—zmzj-AZk)ik

be invertible (or Hadamard). Note that depending on A and {I;O, 7)1 v bk }, there
may not be any choice {¢o, ¢1, ..., Cx—1} so that M is invertible. However, for many
IFSs there is a choice:

Proposition 3 [f the set {Z)o, bi,..., Z)K_l} is such that for every pair (j # k), AI;j —
AZJk ¢ 74, then there exists {Co, C1, . .., Cx—1} such that the matrix M is invertible.

Proof The mappings ¢; : X 27D and ¢ 1 X > 2" %Ab gre characters on
G = 7Z/BZ%. Since Ab; — Ab; ¢ 7, the characters are distinct. Thus, by Schur
orthogonality, 3" . ¢1(x)p2(x) = 0. Therefore, the matrix M = (e~>*™4%)),
where {X;} is any enumeration of G, has orthogonal columns. Thus, there is a choice
of a square submatrix of M which is invertible. O

Even under the hypotheses of Proposition 3 there is not always a choice of ¢’s so
that M, is Hadamard; this is the case for the middle-third Cantor set, which is the
attractor set for the IFS generated by yo(x) = 3, ¥1(x) = ’% (and is a reflection
of the fact that p3 is not spectral).

Notation 1 We define our notation for compositions of the IFSs using two distinct
orderings. Let N € N.Forj € {0,1,...,KN—1}, writej = jo+ji K+ -+jy_1 KV}
with jo, ...,jv—1 €{0,1,... K — 1}. We define

\pj,N = 1ﬂjﬂ ° %'1 -0 ij—l

Rj,N ‘= Pjp O Pj; OO Pjy_y-
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These give rise to enumerations of Sy and 7y as follows:

Sy ={¥n0):j=01,...K" 1}
Tnv = {Rin(0):j=0,1,...KY —1}.

We call these the “obverse” orderings of Sy and Ty.
Likewise, we define

lI}j.N = WjN—l o ij—z O-:-0 1pjo

,R’J"N *= Pjn—1 © Pjn— © " ° Pjy

which also enumerate Sy and Ty. We call these the “reverse” orderings.
Remark 1 Note that for N = 1, \I/.,'J = ,‘I—;jﬁ] and 'R,j.] = ﬁjJ.

We define the matrices My and M, v as follows:

Myl = e 2R N (0) Wi (0)

and

Myl = e Riv@Fen©)
Both of these are the matrix representations of the exponential functions with
frequencies given by 7y on the data points given by Sy. The matrix My corresponds
to the obverse ordering on both 7y and Sy, whereas the matrix My corresponds to

the reverse ordering on both. Since these matrices arise from different orderings of
the same sets, there exist permutation matrices P and Q such that

OMyP = My. ®)

Indeed, define forj € {0, ..., K" — 1} a conjugate as follows: if =Jjo+ 1K+
oo jno1 KN detf = jyoy + jy—2oK 4 -+ + joKV~!. Note then that j = j, and

Uy =Wy Rin = Riy ©)

Now, define a KV x KV permutation matrix P by [P],, = 1 if n = m, and 0
otherwise.

Lemma 4 For P defined above,

PMyP = My.
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Proof We calculate
[PMPlon = [Pl ) [MyliclPlen
k 14

= [PlunMn]ii[Plin
— 27 RN (0T 5(0)

— o 27iRuNO)Ynn(0) — My ]

by virtue of Equation (9). O

Proposition 5 For scale N = 1,

1 1 . 1
- 1 exp(2mic, -AZ)l) ... exp(2mic -AI;K_I)
My =M =] . . .. )
1 exp(2mick—1 -Al;l) ... exp(Qmick—1 -AI;K_I)
Proof The proof follows from Remark 1. ad

Lemma 6 ForN e N, 0<j <KV, andx,y € RY,
D Wiy (x+y) = Ei.N(}) + ANy
i) Wiy (X+5) = ¥ n(E) + AV
i) Rjy (X+75) = Rin() + BYy
vi) Rjn (X +5) = Rin(x) + BYY.
Proof We prove by induction on N. The base case is easily checked. Assume the
equality in Item i) holds for N — 1. For j = jo + jiK + -+ + jy_1 KV !, let £ =
j—jn—1KN~'. We have
Uiy (X45) = Won—1 (¥, &+ )
= qj(,N—l(Wj}v—l (}) + A;’)
= Wen—1 (Y 3) + AN 1Ay
= Wn(x) + Ay

The proofs for the other three identities are analogous. O

Lemma7 ForN € Nand0 <j < KV,

i) Win(0) = AYZ for some 7 € Z¢,
ii) W;n(0) = ANZ for some % € Z°,
i) R;n(0) € Z°,
vi) RJN(O) € Zd.
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Proof We prove by induction on N. The base case is easily checked. Assume the
equality in Item i) holds for N — 1. For j = jo + jiK + -+ + jy—1 KV !, let ¢; =
j—jn—1KN~'. We have

Win(0) = Yy, (¥gn—1(0))
= A (A2 4 )
=A@ +A""p)
Since A~! is an integer matrix, so is A~™~1 and thus 7 + A_(N_l)l;j € Z4. Ttem i)

is analogous. For Item iii), note first that p;(Z9) C Z9, so by induction, pj, o -+ o
Pjv—, (0) € Z%. Likewise for Item iv). O

Lemma 8 Assume N > 2, let £ be an integer between 0 and K — 1, and suppose
I-KN"' <j< (I+ DK L. Then,

) Win0) = ¥_xv—1 y—1(0) + AND,
11) ‘IJJN(O) == Aq}j—l'KN_l,N—l (0) + Abl,
111) 73,]1\7(0) = Ri—l~KN_1,N—l(O) + BN_IEI,

vi) R;n(0) = Bﬁj—LKN*I,N—l(O) + ¢
Proof Forl-KN=! <j < (I4+ )K", jy_1 = I, so we have
Win(0) = j, o ¥, 0 -+ 0 Yy, 0 Yu(0)
= Y, 00, 00 Y, (A(O + 131)>
= W;_xv—1 y—1 (0 + Aby).
Applying Lemma 6 Item 1) to W;_;.gv—1 y_1:

lej-[‘KN_l,N—l (O + AB[) - \IJ_/'—Z-KN_I,N—I (O) + AN_IAB[.

The proof of Item iii) is similar to Item i) with one crucial distinction, so we include
the proof here. We have

R;n(0) = pjy 0 pj; 0+ 0 pjy_, © pi(0)
= Pjo © Pj; ©*© Pjy_y (BO + El)
= Rj_xv—1 y—1(0 + ).

Applying Lemma 6 Item iii) to R;_.gnv—1 y—;:

Rirxv—1 n—1(0 4+ ¢) = Rj_ppv—1 y—1(0) + BV~Ig,.
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For Item ii), we have
aj,N(O) =Y (aj—bKN—l,N—l(O))
= AV, gv—1 y_1(0) + Aby.
The proof of Item iv) is analogous. O

Note that in Item i), the extra term involves A", whereas in Item iii) the extra
term involves BY~!. We are now in a position to prove our main theorem.

Theorem 9 The matrix My representing the exponentials with frequencies given
by Ty on the fractal approximation Sy, when both are endowed with the obverse
ordering, has the form

mooMy—1 moDyiMy—1 ... mok—1)Dn x—1Mn—-1

mioMy— my Dy iMy—1 ... myk—1)Dnx—1Mn—-
My = . .. . (10)
mg—1y0My—1 mg—1y1DniMn—1 ... mk—1yx—-1)Dnxk—1My—1

. . . i AN
Here, Dy ,, are diagonal matrices with [Dy ]y = e 2Ry N=1 A% - mj =
[M]jx-

Proof Let us first subdivide My into blocks By, of size K¥~! x KN~1, so that

By ... Box-1
My = . )

Bk—10 ... Bk—1)x-1)
Fix 0 < j.k < K" and suppose £KN™! < j < (£ + DKV ! and mKN™! < k <
(m+ DK"Y with0 < ¢,m < K.Letq; = j—¢K"" and g, = k—mK"~'. Observe
that
[MN]jx = [Bomlgjq- (11)
Using Lemma 8 Items ii) and iv), we calculate
Rin(0) - Wy (0) = (Ryn—1(0) + BY7'¢y) - (‘I’qk,N—l(O) + ANI_;m) .
By Lemma 7 Item i), for some z € Z¢,
BN_lzg W, N—1(0) = BN_IE( CANTIz = ¢z €Z.
Note that

BY=12, . AND,, = ¢ - Ab,,.
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Therefore, combining the above, we obtain
Myl = e 27RO Len ()

— o 2Ry N=1(0) Yy N—1(0) ;=27 Ry N—1(0)-AN by ,—2miC(-Aby

= Myilyqe R O ), (12)
Letting j vary between £KV~! and (¢ + 1)KV~! and k vary between mK"~! and
(m 4+ 1)K"~! corresponds to gj and gy varying between 0 and K™ ~1. Therefore, we
obtain from Equations (11) and (12) the matrix equation

BZm - [Ml]ZmDN,mMN—l

—27‘[[7?,],41\1_1 0)

ANT .
where [Dy ],y = € A% 35 claimed. O

Corollary 10 The matrix My is invertible. If M| is Hadamard, then My is also
Hadamard.

Proof If M, is invertible, then by induction, My is invertible via Proposition 1. If M,
is Hadamard, then again by induction, My is Hadamard by Ditd’s construction. O

Theorem 11 The matrix My representing the exponentials with frequencies given
by Ty on the fractal approximation Sy, when both are endowed with the reverse
ordering, has the form

mQQMN:} m’(EMN:} e mo(K_’L)MN:}
~ mioMy—1Dy miyMy—1Dy1 ...  myk—1yMn—1Dn
My = .. .
mg—1oMy—1Dy gk—1 mE—1)iMn—1Dn x—1 - .. mE—1y&k—1)Mn—1Dn g—1
(13)
Here, IA)/N,q is a diagonal matrix with [BN,g]pp = e~ 2miccApN=1O0)  gnd my. = [M) ).

Proof The proof proceeds similarly to the proof Theorem 9. Let us first subdivide
My into KN~! x KN~ blocks By,,, so that
By ... EO(K—])
Z‘ZN = : :
E(K—I)O ~~-§(K—1)(K—l)
Fix 0 < j, k < K" and suppose £KN~! < j < (£ + DKV ! and mKN™! < k <

(m+ DK with0 < ¢,m < K.Letg; = j—¢K" " and g, = k—mK"~!. Observe
that

Myl = Bonlgar- (14)
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We calculate using Lemma 8 items ii) and iv):

Rin(0) - Wy (0) = (BRyn—1(0) + &) - (AW, v—1(0) + Ab,,)
= Ryn—1(0) - Ty y—1(0) + ¢ - AT, y—1(0)

+ 7’\?’J‘I/'J\’_l(o) : Bm + E[ AI;,,,

By Lemma 7 Item iv), ﬁqj,N_l (0) - l;m € Z. Thus,

[Bfm]qjqk — [MN—I]qjqk e—27riZg AV N—1(0) [Ml](fm
and as in the proof of Theorem 9, we have

Bow = [My)enMy—1Dy .

2.1 Computational Complexity of Theorems 9 and 11

As a consequence of Proposition 2, the matrix My can be multiplied by a vector of
dimension K" in at most KPy_; +3KN ! —2K" operations, where Py_ is the num-
ber of operations required by the matrix multiplication for My_,. Since My_; has
the same block form as My, Py—; can be determined by Py—_,, etc. The proof of the
following proposition is a standard induction argument, which we omit. Note that
this says that the computational complexity for My is comparable to that for the FFT
(recognizing the difference in the number of generators for the respective IFS’s).

Proposition 12 The number of operations to calculate the matrix multiplication
Myv is Py = KN7'Py + 3(N — DKNTL — 2(N — 1)KN. Consequently, Py =
O(N - KV).

The significance of Theorem 11 concerns the inverse of My. If P is_the
permutation matrix as in Lemma 4, then My' = PM,;'P. By Proposition 1, My!
has the form of Ditd’s construction, and so the computational complexity of M,;l
is the same as My. Thus, modulo multiplication by the permutation matrices P, the
computational complexity of multiplication by My, ' is the same as that for My.

2.2 The Diagonal Matrices

The matrices My and MN have the form of Ditd’s construction as shown in
Theorems 9 and 11. The block form of Ditd’s construction involves diagonal
matrices, which in Equations (10) and (13) are determined by the IFSs used to
generate the matrices My and My. As such, the diagonal matrices satisfy certain
recurrence relations.
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Theorem 13 The diagonal matrices which appear in the block form of My
(Equation (10)) satisfy the recurrence relation Dy ,, = Dy—1m ® En ,, where Ey

. . S oic AN, .
is the K x K diagonal matrix with [Ey ] = e 2w bn That is:

—27il ANT,
[DNlpp = [Dy—1mlp € 2" 047 0m)

where p = (p — po)/K. _
Likewise, the diagonal matrices which appear in the block form of My (Equa-
tion (13)) satisfy the recurrence relation Dyy = Dy_14 ® Eyy, where Eyy is the

. - —oricsANE .
K x K diagonal matrix with [Ey ¢],, = e 2" tA b, That is:

~

9. ANF,
[DN,Z]pp = [DN—I,Z]};‘]} e 2micy-A bPo.

Proof As demonstrated in Theorem 9, for p = 0,1,...,KN7!, [DNmlpp =
e 27 RpN—10A%n Note that py_; = 0, and po(0) = 0. We want to cancel one
power of A in AVb,,, so we factor out a B from R, y—1(0):

'R’P,N*I(O) = Ppo © Pp; © 0 Ppy_y (0) =B (IOPI OO0 Ppy_y (O)) + Z:,'70'
Sinceﬁ =p1+pK+--+ pN_zKN_S, Rp,N—l(O) = BR’ﬁyN_Z(O) + EPO' Thus,

[Dymlpp = e_z”m“’v*‘(o)'ANT’”’

— o 2mi(BRy N—2(0)AAN T Bp)) = 2miCpy ANB)
_ e—zm(Rﬁ,N_z(O)-(AN—lZm)) e—zm(z,,OANEm)

—oxi(e AN
— [DN—I,m]ﬁ'ﬁe 27i(Cpy-A bm).

Similarly, as demonstrated in Theorem 11, [Dy.],, = e > ccA@n-10) We
write:

ﬁ;ﬂ,N—l 0) = Vpn—s © Ypy—s3 © =+ 0 Yp, © Yy (0)
= 1»”Invfz o prfs -0 %1 (O + AI;PO)
= W5 y—2(0 + Aby,)

= Eﬁ’]\]_z (0) + AN_I Z’Po .
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where in the last equality we use Lemma 6 item ii). Therefore:

[Dy.clpp = e~ 2miceA(Ypn—1(0))
— o 2micr ATy n—2(0)+AY "By
— g 2niceA(Tpn—a(0)+AV )

_ e—znisz(%,N_z(O)) e—2ni5@~ANZI,O

[DN—I ,l]ﬁﬁ 6_27”2/& .ANb,,O .
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