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Abstract. Blind signature allows a user to get a signature of a signer on an
arbitrary message, without leaking any information about the message. The
verifier can check that whether the signature is indeed generated by the signer,
and the signer cannot recall the signing situation. This property is essential when
the signed message needs privacy protection for the user, like a bank bill or a
trade secret. Lattice-based system is the most promising quantum-resistant
primitive, and the first lattice-based blind signature is proposed by Rückert. For
another, identity-based system is an alternative to public key infrastructure, as it
can simplify the key management procedures in certificate-based public key
systems. Illuminated by the demand of identity-based blind signature in the
post-quantum circumstance, we consider the lattice-based identity based blind
signature (IBBS) based on hard worst-case lattice problems. Besides, all existing
lattice-based blind signatures are constructed and proved to be secure in the
random oracle model. In this work, we construct an identity-based blind sig-
nature from lattices in the standard model. Our construction is proved to be
one-more unforgeable under the selective identity and chosen message attacks
(sID-CMA), and unconditionally blind in the standard model.
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1 Introduction

1.1 Backgrounds

Digital signature can ensure the integrity of information transmission, identify the
message sender, and avoid the repudiation in business deal. The signature is always
created by the signer under his signing key, and the signer often knows the message
signed. However, sometimes, the message signed may need privacy protection, and the
owner of the message only needs a signature of a particular signer under the message
without leaking its privacy.

Bind signature was first introduced by Chaum [1] in 1982 as a new type of sig-
nature with novel functionality, which enabled a user to get a signature from a signer
S on an arbitrary message M without leaking any information about M, any verifier can
check the signature whether it was indeed a signature onM signed by S. Blind signature
is applicable in many situations, such as e-voting applications, anonymous Internet
banking, and oblivious transfer.
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Shor’s algorithms [2] show that the integer factoring and the discrete logarithm
problems can be solved in polynomial time under quantum computers, on which the
hardness of many existing blind signature schemes are based. Thus, these blind sig-
natures become insecure once quantum computers become mature development, and
quantum secure primitives are in urgent needs. Therefore, tremendous efforts have been
made on the classical schemes that remain secure against a quantum adversary, which
is called post-quantum cryptosystems. Lattice-based cryptography has become a hot
research topic in post quantum cryptography, and many significant achievements have
been obtained [3–10] in recent years.

A natural goal is to design blind signature from lattices. Rückert put forward the
first lattice-based blind signature [11] at ASICRYPT’10 in the random oracle model.
His signature protocol had 4 moves, and would fail with certain probability during
generating signatures. Afterwards, Wang et al. constructed a lattice-based blind sig-
nature with random oracle [12] of 2 moves from pre-image sample function without
failures in the signing procedure.

To simplify the key management procedures in certificate-based public key set-
tings, the first identity-based signature was introduced by Shamir [13] in 1985. In an
identity-based cryptosystem, the public key is the unique string that recognizes the
user’s identity, for instance, it can be an ID number, the email address, or the room
number. A trusted-third-party generates the secret key by a specific algorithm and a
private key. By identity-based cryptosystems, the existing problems in the public key
infrastructure (PKI) can be well resolved, such as the public-key substitute problems,
and the performance bottleneck of authentication center problems.

However, few literature studies on lattice-based IBBS, much less without random
oracle. An interesting research topic is the design of lattice-based IBBS without random
oracle. Therefore, we initiate the research on IBBS from lattices without random oracle
in this research. A lattice-based IBBS scheme without random oracle is constructed
based on hard worst-case lattice problems. Our construction is proved to be uncon-
ditionally blind and one-more sID-CMA unforgeable in the standard model (SM).

1.2 Related Works

Early IBBS schemes appeared in [14, 15] were designed with random oracles. The first
secure construction of IBBS scheme in the standard model was constructed from the
generic approach proposed by Galindo et al. [16] at ASIACRYPT 2006. The main
approach was considerably straightforward and obvious: adding the authentication
information of the signer to the general signature. But this led some disadvantages: the
signature size was large because it includes two parts, and their scheme was inefficient
as the computation and the verification needed double operations. Phong et al. [17]
constructed an IBBS scheme based on bilinear parings with security based on the
elliptic curve discrete logarithm problem.

All IBBS schemes were constructed based on classical number theories such as the
integer factoring problem and the discrete logarithm problem, until Rückert made the first
step in designing lattice-based blind signatures [11] at ASICRYPT 2010. But his schemes
would fail with certain probability during generating signatures. Wang et al. [12]
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put forward a lattice-based blind signature with random oracle of 2 moves from pre-image
sample function without failures in the signing procedure. To the best of our knowledge,
no literature studies on lattice-based IBBS scheme in standard model so far.

2 Preliminaries

2.1 Notations

R(Z) denotes the set of real numbers (integers). For a positive integer d 2 Z, [d] de-
notes the set of integers f1; � � � ; dg. Vectors are denoted by bold lower-case letters in
column form and matrices by bold capital letters. The l2 and l1 norm are denoted by
jj � jj and jj � jj1, respectively. A matrix A 2 R

n�m is always viewed as the set of its
column vectors A¼ a1; � � � ; amf g, and ~A¼ ~a1; � � � ; ~amf g denotes the Gram-Schmidt
orthogonalization of vectors a1; � � � ; am taken in that order. For matrix B 2 R

n�m0 , the
connection by columns of A and B is written as ½AjjB� 2 R

n�ðmþm0Þ.
Let n be the security parameter, other quantities can be expressed by the functions

of n. log denotes the natural logarithm, and DðX; YÞ ¼ 1
2

P
a2D jPr½X ¼ a� � Pr½Y ¼ a�j

defines the statistical distance of two random variables (X and Y) over a domain D. The
notations of O; x are frequently used for describing the growth of function. For some
constant c, f ðnÞ ¼ ~OðgðnÞÞ denotes the function f ðnÞ ¼ OðgðnÞ � logcðnÞÞ is denoted by
f ðnÞ ¼ ~OðgðnÞÞ and f ðnÞ ¼ OðncÞ by poly(n). A function is negligible in n if f ðnÞ ¼
n�c holds for sufficiently large n and positive c. An arbitrary such function is denoted
by neglðnÞ, and a probability is overwhelming if it is 1� neglðnÞ.

2.2 Definitions

Definition 1(Lattices). Let B ¼ fb1; � � � ; bng be set of n linearly independent vectors
over Rm. The lattice generated by B is defined by

LðBÞ ¼
Xn

i¼1
xibijxi 2 Z

( )

:

Generally, k1ðLðBÞÞ denotes the shortest vector of the lattice LðBÞ. For i 2 f1; � � � ; ng,
we denote the successive minima by kiðLÞ, which is the smallest value such that the
sphere of radius kiðLÞ of center the origin contains at least i linearly independent lattice
vectors.

Definition 2 (SISq;n;m;b problem). Given a random matrix A 2 Z
n�m
q , find a non-zero

vector v 2 Z
m such that Av ¼ 0 2 Z

n
q and jjvjj � b.
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2.3 Discrete Gaussian Distribution and Smoothing Parameter

Discrete Gaussian distribution and the smoothing parameter are important tools in
analyzing integer lattices. For arbitrary s[ 0, a Gaussian distribution with parameter
s and c as its center is defined as 8x 2 R

n; qs;cðxÞ ¼ e�xjjx�cjj=s
2
. The Gaussian dis-

tribution on lattice K is defined as 8x 2 K; DK;s;c ¼ qs;cðxÞ=qs;cðKÞ.
Theorem 1 ([7]). Given a trapdoor T for a lattice with dimension n, center c 2 R

n and
parameter s� jj~Tjjxð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ, there exists a probabilistic polynomial-time algorithm,

whose outputs statistically close to the distribution DK;s;c.

Theorem 2 ([7]). If the rows of a matrix A 2 Z
n�m
q generate the space Zn

q with m� 2n,

e 2 ð0; 1=2Þ, and s� ge K?ðAÞ� �
, u ¼ Aemodq statistically close to the uniform dis-

tribution over Zn
q when e�DZ

m;s.

2.4 Identity-Based Blind Signature

Syntax of IBBS. An IBBS scheme always consists of four algorithms (Setup, Key-
Extract, Sign, Verify), where Sign is an interactive protocol between a signer S and a
user U.

Setup. The KGC runs this algorithm to generate the security parameter and the master
key pair (mpk, msk).

KeyExtract. Given the identity information ID, (mpk, msk), this algorithm generates
the corresponding private key skID for ID.

Sign. This algorithm describes the joint execution between S and U, it always consists
of three algorithms.

Blinding the message (executed by U): Takes the original message m and a ran-
domness r as inputs, and outputs a blinded message m 0;

Signing the blinded message (executed by S): Takes the blinded message m 0 and
the secret signing key sk as inputs, outputs a blinded signature r0;

Unblind the signature (executed byU): Takes the blinded signature r0, and the previous
randomness r as inputs, this algorithm outputs the real signature for message m 0.

Verify. Given m, mpk, ID, and r, this algorithm outputs 1 to accept if r is a valid
signature of m under ID and otherwise 0 to reject.

Security Requirements for IBBS. Blindness. Assume that ðl0; r00Þ and ðl0; r00Þ are
two blinded message/signature pairs. Given lb, r

0
b where b 2 f0; 1g, an IBBS scheme

meets the blindness if, any polynomial-time signer or distinguisher can output a bit
b0 ¼ b with a probability at most 1=2þ 1=nc, where n is enough large, and c is a
constant. That is, ðl0; r00Þ and ðl0; r00Þ is indistinguishable for the signer and
distinguisher.
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One more unforgeable under sID-CMA. An IBBS scheme is sID-CMA one more
unforgeable, if any polynomial-time adversary wins the following game with negligible
probability of success.

Setup. The adversary claims the challenge ID* in advance. Then, the challenger
generates the security parameter and the master key pair (mpk, msk), and sends the mpk
to the adversary with msk as his secret key.

Queries. The adversary is allowed to make two kinds of queries to the challenger.

Key-extract query. The adversary can query on any ID except ID*. The challenger runs
algorithm KeyExtract to return the corresponding skID.
Signing query. The adversary adaptively chooses message m and ID, and gets the
blinded signature r0 of the blinded message m 0 under ID.

Forge. After l key-extract and signing queries, the adversary outputs a bind signature
r	 of the l+1-th message m* under ID*. The adversary wins if the verifier outputs 1
when it checks the forgery (m*,r	).

2.5 Key Algorithms

Algorithms TrapGen and SamplePre. Let q ¼ polyðnÞ be a prime, m be an arbitrary
positive integer that m[ 5n log q.

With a security parameter n as input, algorithm TrapGen outputs the matrix A 2
Z
n�m
q and B 2 Z

m�m. Here B is a good basis of lattice

K?q ðAÞ ¼ fv 2 Z
m : Av ¼ 0mod qg, and jj~Bjj �Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p Þ.

With A 2 Z
n�m
q , B 2 Z

m�m, any r� jj~Bjj � xð ffiffiffiffiffiffiffiffiffiffi
log n
p Þ and vector y 2 Z

n
q as inputs,

algorithm SamplePre outputs a randomly nonzero vector e 2 fe 2 Z
m : jjejj � r

ffiffiffiffi
m
p g

such that Ae ¼ ymod q with overwhelming probability.

Algorithms ExtBasis, RandBasis and ExtRandBasis. Let T 2 Z
m�m be an arbitrary

basis of K?ðAÞ for some A 2 Z
n�m
q whose columns generate the entire group Z

n
q, and

let �A 2 Z
n��m
q be arbitrary.

There is a deterministic polynomial-time algorithm ExtBasisðT;A0 ¼ Ajj�A) that
outputs a basis T’ of K?ðA0Þ
Zmþ �m such that jj~T0jj ¼ jj~Tjj. See Lemma 3 in [5] for
more details of ExtBasis.

Algorithm RandBasis is a probabilistic polynomial-time algorithm, which takes a
basis T of an m-definitional integer lattice K and a parameter s� jj~Tjj � xð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ as

inputs, and outputs a basis T’ of K that jj~T0jj � s
ffiffiffiffi
m
p

. See Lemma 4 in [5] for more
details of RandBasis.

Algorithm ExtRandBasis can be implemented by algorithm ExtBasis and then
algorithm RandBasis. It is a probabilistic algorithm that inputs an arbitrary basis T of
K?ðAÞ for some A 2 Z

n�m
q whose columns generate the entire group Z

n
q, a parameter
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s� jj~Tjj � xð ffiffiffiffiffiffiffiffiffiffiffi
log n
p Þ, an arbitrary �A 2 Z

n��m
q , and outputs a basis T’ of K?ðA0 ¼

Ajj�AÞ
Zmþ �m such that jj~T0jj � s
ffiffiffiffi
m
p

.

Algorithms SampleLeft and SampleRight. Assume that A; B 2 Z
n�m
q , R 2

f�1; 1gm�m, and the matrix F of form F ¼ ½AjjARþB� 2 Z
n�2m
q , algorithms Sam-

pleLeft and SampleRight can sample short vectors from K?q ðFÞ for some u 2 Z
n
q with

either a trapdoor for K?q ðAÞ or a trapdoor for K?q ðBÞ. We describe them briefly as
follows, you can refer to [4] for more details.

SampleLeft. Given a rank n matrix A 2 Z
n�m
q with a ‘short’ basis TA for K?q ðAÞ, a

matrix M1 2 Z
n�m1
q , a vector u 2 Z

n
q, and a Gaussian parameter

r� jj~TAjj � xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðmþm1Þ

p Þ. The algorithm sets F1 ¼ ½AjjM1�, and outputs a vector
e 2 Z

mþm1 sampled from a distribution statistically close to DKu
qðF1Þ;r. The vector e is

generated as follows:

(a) Sample a random vector e2 2 Z
m1 distributed statistically close to DZ

m1 ;r;
(b) Run e1  SamplePreðA;TA; y; rÞ where y ¼ u� ðM1e2Þ 2 Z

n
q;

(c) Output e ðe1; e2Þ 2 Z
mþm1 :

SampleRight. Given matrices A 2 Z
n�k
q and B 2 Z

n�m
q with a basis TB for K?q ðBÞ

where B is rank n, a matrix R 2 Z
k�m, sR ¼ jjRjj ¼ supjjxjj¼1 jjRxjj, a vector u 2 Z

n
q,

and a parameter r� jj~TBjj � sRxð
ffiffiffiffiffiffiffiffiffiffiffi
logm
p Þ, this algorithm sets F2 ¼ ½AjjARþB� and

outputs a vector e 2 Z
mþ k sampled from a distribution statistically close to DKu

qðF2Þ;r.
The vector e is generated as follows:

(a) Construct a set TF2 of ðmþ kÞ linearly independent vectors in K?q ðF2Þ where
jj~TF2 jj\ jj~TBjjðsRþ 1Þ;

(b) if needed, by Lemma 7.1 in [17] to convert TF2 into a basis T0F2
of K?q ðF2Þ such

that jj~T0F2
jj ¼ jj~TF2 jj;

(c) invoke e SamplePreðF2;T0F2
; u; rÞ to generate a vector e 2 Ku

qðF2Þ such that
e is distributed close to DKu

qðF2Þ;r:

3 Our Construction

Assume that n is the system security parameter, other quantities are determined by
n. q is a prime positive integer such that q ¼ polyðnÞ, m ¼ Oð2n log qÞ, L¼8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p

,
s0[ Lxð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ.

Setup. Assume that the key generation center (KGC) has an n-dimensional lattice K
with a trapdoor basis B, we denote the check matrix of K by A 2 Z

n�m
q , and the
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Gram-Schmidt orthogonal basis of B by ~B. The smooth parameter of K is denoted as
geðKÞ. Set s ¼ jj~Bjjs0, and d ¼ jj~Bjj=2, LM is the database of all signed blinded mes-
sages. The identity information of a signer is defined by id 2 f0; 1gk, H : f0; 1gk ! Z

n
q

and H0 : f0; 1g	 ! Z
n
q are secure collision-resistant hash functions, and H1 : Z

n
q !

Z
n�n
q is an encoding with full-rank differences (FRD) function. The output of H is

denoted as vid¼HðidÞ 2 Z
n
q. The message is in f0; 1g	. The KGC operates as follows:

(a) Pick matrixes C0;C1; � � � ;Ck 2 Z
n�m
q .

(b) Uniformly choose random A2, A3 from Z
n�m
q .

(c) Output the system public parameters as P ¼ fn;m; q; s0; s;H;H0;H1g, the master
secret key as msk ¼ fBg, and the master public key as
mpk ¼ fA;A2;A3;C0; � � � ;Ckg.

KeyExtract(id, P, msk, mpk). Take an identity id as input, the PKG generates the
secret key for the identity as follows:

(a) Compute Aid ¼ ½AjjA2þH1ðvidÞA3� where H1ðvidÞ 2 Z
n�n
q ;

(b) Extract a short basis Tid  ExtRandBasisðB;AjjA2þH1ðvidÞ; s0Þ as the secret
key for identity id, where s0 �maxfjj~Tidjjxð

ffiffiffiffiffiffiffiffiffiffi
log n
p Þgid2f0;1gk .

Figure 1 shows the key procedure of the IBBS scheme, the signature issue protocol.
It has two moves between the signer and the user, and consists of three algorithms
(Blind, Sign, Unblind).

, 'm s
D←c , (1, )t d∈ ,

Fig. 1. Signature issue protocol of the IBBS scheme
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Blind(M, P, mpk, id). Take the message M 2 f0; 1g	 and the public parameters as
inputs, the user blinds the message as follows:

(a) Compute h ¼ H0ðMÞ 2 Z
n
q, and Aid ¼ ½AjjA2þH1ðvidÞA3� where

vid¼HðidÞ 2 Z
n
q;

(b) Choose a random vector c ¼ ðc1; c2; � � � ; c3mÞ ! D
Z
3m; s0 with the origin as its

center, then jjcjj � s0
ffiffiffiffiffiffi
3m
p

holds with overwhelming probability from Theorem 2.
If not, repeat it.

(c) Compute �Aid ¼ ½AjjA2þH1ðvidÞA3jjC0þ
P

i2½k� ð�1Þid½i�Ci� for

id ¼ ðid½1�; � � � ; id½k�Þ 2 f0; 1gk.
(d) From Theorem 2, �Aidc is approximate uniform.
(e) Choose an arbitrary t 2 Zq such that 1\t\d.
(f) Compute the blinded message l ¼ ðt�1hþ �AidcÞmod q:

Finally, the user sends l to the signer with identity id.

Sign( l,Tid ,P, mpk, LM). The signer with identity id signs the blinded message l as
follows:

(a) Search l in LM, if l 2 LM , output ?; if not, go to step 2.
(b) For id ¼ ðid½1�; � � � ; id½k�Þ 2 f0; 1gk , compute �Aid ¼ ½AjjA2þH1ðvidÞA3jj

C0þ
P

i2½k� ð�1Þid½i�Ci�.
(c) Extract a basis �Tid  ExtBasisð�Aid ;Tid ; sÞ.
(d) Run v0  SamplePreð�Aid ; �Tid ; s0; lÞ to generate v 0, then check if

�Aidv0 ¼ lmod q, and jjv0jj � s0
ffiffiffiffiffiffi
3m
p

. If not, repeat it.
(e) Add l into LM.

Finally, the signer id outputs v 0 as his signature of the blinded message l.

Unblind(P, mpk, v 0, c, t, id). Upon receiving the signature v 0, the user computes
v ¼ tðv0 � cÞ as the signature of message M signed by the signer with id.

Verify (P, mpk, id, M, v). The verifier computes �Aid ¼
½AjjA2þH1ðvidÞA3jjC0þ

P
i2½k� ð�1Þid½i�Ci� and h ¼ H0ðMÞ, and then checks that:

(1). �Aidv ¼ hmod q; (2). jjvjj � s
ffiffiffiffiffiffi
3m
p

. The verifier outputs 1 if both the two condi-
tions are satisfied, else output 0.

Correctness. As n is the security parameter, other parameters in the scheme allow the
algorithms SamplePre and ExtRandBasis to operate correctly. In particular, the PKG
can generate a trapdoor basis for larger dimension lattice K?q ð�AidÞ as it has the trapdoor
basis of K?q ðAÞ. The signer can generate a short random vector for lattice K?q ð�AidÞ with
the trapdoor basis Tid as his secret key. Besides, v0 is the output of algorithm Sam-
plePre, �Aidv0 ¼ lmod q andjjv0jj � s0

ffiffiffiffi
m
p

holds with overwhelming probability. So we
have �Aidv0 ¼ l ¼ t�1hþAidc; t�Aidv0 ¼ hþ tAidc, �Aid tðv0 � cÞ ¼ h, and �Aidv ¼ h:
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On the other hand, we have jjvjj ¼ tjjðv0 � cÞjj � jj~Bjj=2 � 2s0 ffiffiffiffiffiffi
3m
p ¼ s

ffiffiffiffiffiffi
3m
p

. Therefore,
an honestly created signature will be accepted with overwhelming probability.

4 Security Analysis

In this section, we prove that our scheme is unconditionally blind, and one-more
unforgeable under selective identity and chosen message attacks (sID-CMA) in the
standard model.

Theorem 3 (Blindness). Our IBBS scheme is unconditionally blind.

Proof. From Theorem 2, �Aidc is uniformly distributed. As the output of H0 is
approximate uniform, and t is randomly chosen, the blinded message l ¼
ðt�1hþ �AidcÞmod q is indistinguishable from a uniform distribution over Z

n
q. The

signer chooses a random vector over Zn
q and a random integer t\d, and then tries to

recover the hash value of the real message from tl ¼ hþ �Aidc. Next, we show that the
statistical distance of the resulting distribution of the signer is 0 from the uniform
distribution, that is,

Dðtðl� cÞ; hÞ ¼ 1
2

X
h2Zn

q;c12Zm
q ; t12Z; t1\jj~Bjj=2

j Pr½t1ðl��Aidc1Þ ¼ hÞ� � Pr½H0ðMÞ ¼ h�j

¼ 1
2

X
h2Zn

q;c12Zm
q ; t12Z; t1\jj~Bjj=2

½ð1
q
Þn � ð1

q
Þn� ¼ 0

ð1Þ

Therefore, they are indistinguishable, and our scheme is unconditionally blind.

Theorem 4 (One-more unforgeability against sID-CMA). Assume that the
SISm;q;s ffiffiffi

m
p problem is hard, our IBBS scheme is one-more unforgeable against

sID-CMA in the standard model.

Proof. Assume that there is a successful adversary A with the advantage of e breaks
one-more unforgeability of the proposed scheme, we can construct an algorithm B to
solve the instance of the SISm;q;2s

ffiffiffiffiffi
3m
p problem by employing A to be a subroutine.

Suppose that we get an instance of SISn;q;m;s ffiffiffi
m
p ¼ ðÂ; n;m; q; l; sÞ, where Â 2 Z

n�m
q ,

l is the total query number that the adversary can make at most in the interactive game.
Our goal is to find a vector such that Âe ¼ 0mod q and jjejj � s

ffiffiffiffi
m
p

. The adversary
outputs a challenge identity id	 ¼ ðid	½1�; � � � ; id	½k�Þ. Next, we simulate the circum-
stance to interact with A, and solve the given instance using A.
Setup. Assume that we receives the instance Â 2 Z

n�m
q . The system parameters are set

as our scheme, we generate the public key mpk ¼ fA;A2;A3;C0; � � � ;Ckg as follows:
(a) Compute ðA3;TÞ  TrapGenðn;m; qÞ, and then randomly choose R	 2
f�1; 1gm�m.

(b) Set A ¼ Â, and A2 ¼ AR	 � H1ðid	ÞA3.
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(c) Run the trapdoor sampling algorithm to generate a random lattice K?q ðS0Þ with
S0 2 Z

n�m
q and its corresponding trapdoor basis T0 2 Z

m�m
q .

(d) Pick k short random matrices R0;R1; � � � ;Rk 2 Z
m�m. Fix w0 ¼ 1 2 Zq, uni-

formly pick random scalars w1; � � � ;wk 2 Zq.

(e) Set Ridj ¼ R0þ
P

i2½k� ð�1Þidj½i�Ri 2 Z
m�m, widj ¼ 1þ P

i2½k� ð�1Þidj½i�wi 2 Zq.
(f) Send the public key fA;A2;A3;C0; � � � ;Ckg to A, where Ci ¼ ARiþwiS0 for

i ¼ 0; 1; � � � ; k:

B maintains two lists to store the extraction queries and the signing queries.

Extraction queries. For a fresh identity idj 6¼ id	, j 2 ½l�, B first computes
Aidj ¼ ½AjjA2þH1ðvidjÞA3� ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	 Þ�A3�. By construction,
we know that ½H1ðvidjÞ � H1ðvid	 Þ� is non-singular and therefore T is also a trapdoor for
K ?q ð½H1ðvidjÞ � H1ðvid	 Þ�A3Þ. Using the trapdoor basis T, B first generates a random

trapdoor basis Tidj for K
?
q ðAidjÞ, then adds (idj, Tidj ) into list L1, and finally sends it to

A as the response. If A sends an old identity id that has been queried before, B searches
ðidj;TidjÞ in L1, and answers with Tidj .

Signing queries. On inputs a blinded message lj and an identity idj for j 2 ½l�, algo-
rithm B computes �Aidj ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	 Þ�A3jjC0þ

P
i2½k� ð�1Þidj½i�Ci�,

where H1ðvidjÞ 2 Z
n�n
q and answers in two cases:

Case 1. idj 6¼ id	. B searches ðlj; idj; v0jÞ in L2. If it exists, B returns vj0. Otherwise,
using T and the SampleRight algorithm, B first generates the trapdoor Tidj for
Fidj ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	 Þ�A3�, and then computes a random trapdoor �Tidj

for K?q ðFidjÞ. With the trapdoor �Tidjand the SampleLeft algorithm, B generates

v0j  SamplePreð�Aidj ; �Tidj ; lj; sÞas a signature. Finally, B adds ðlj; idj; v0jÞ into L2 and
returns vj0 as his response. A decodes (unblinds) vj0 to obtain the real signature.

Case 2. idj ¼ id	. B searches ðlj; idj; v0jÞ in L2. If it exists, B returns vj0. Otherwise,
using T0 and the SampleRight algorithm, B constructs the matrix F0id	 ¼
½AjjARid	 þwid	S0� and generates a random trapdoor Tid	 for K

?
q ðF0id	 Þ. Then, with the

trapdoor Tid	 and the SampleLeft algorithm, B generates a random trapdoor �Tid	 for
K?q ðFidjÞ, where Fid	 ¼ ½F0id	 jjAR	� ¼ ½AjjARid	 þwid	S0jjAR	� 2 Z

n�3m
q . B obtains a

short random �v0	 2 K?q ðFid	 Þ with jj�v	0lþ 1jj � s
ffiffiffiffiffiffi
3m
p

by using the trapdoor �Tid	and the
SamplePre algorithm. Finally, B changes the order of the corresponding vectors of �v0	
to get a short random trapdoor ~v0	 2 K?q ð~Aid	 Þ for ~Aid	 ¼ ½AjjAR	jjARid	 þwid	S0�. As
C0þ

P
i2½k� ð�1Þidj½i�Ci ¼ Rid þwidS0 and �Aid	 ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	Þ�A3jj

C0þ
P

i2½k� ð�1Þidj½i�Ci�, we have �Aid	 ¼ ~Aid	 . So ~v0	 is also a short random vector in

K?q ð�Aid	 Þ such that jj~v	0lþ 1jj � s
ffiffiffiffiffiffi
3m
p

. Finally, B adds ðlj; id	; ~v0	Þ into L2 and sends as

his response. A decodes (unblinds) ~v0	 to obtain the real signature.
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Challenge. After receiving l message-signature pairs, A outputs the l+1-th valid for-
gery (l	lþ 1,id

	,v	0lþ 1), such that �Aid	v	0lþ 1 ¼ l	lþ 1 and jjv	0lþ 1jj � s
ffiffiffiffiffiffi
3m
p

. B checks that
l	lþ 1 6¼ lj for j ¼ 1; � � � ; l, that is, l	lþ 1 of a fresh message. Then, B generates a
signature �v	0 for the blinded message l	lþ 1 as in the signing queries, where �Aid	�v	0 ¼
l	lþ 1 and jj�v	0jj � s

ffiffiffiffiffiffi
3m
p

. If �v	0 ¼ v	0lþ 1, B aborts (with negligible probability). Other-
wise, B operates as follows:

(a) Compute Rid	 ¼ R0þ
P

i2½k� ð�1Þid
	½i�Ri 2 Z

m�m and wid	 ¼ 1þ P
i2½k� ð�1Þid

	½i�

wi 2 Zq.
(b) If wid	 6¼ 0mod q, abort the simulation (with a probability of about 1� 1

q).

(c) Compute e ¼ j�v	0 � v	0lþ 1j, and parse e ¼ ðe1; e2; e3Þt, where e1; e2; e3 2 Z
m.

(d) Return e	 ¼ e1þR	e2þRid	e3 2 Z
m.

We show the success probability of B in solving SISm;n;q;2s
ffiffiffiffiffi
3m
p . From the above

analysis, Rid	 ¼ R0þ
P

i2½k� ð�1Þid
	½i�Ri 2 Z

m�m, and wid	 ¼ 1þ P
i2½k� ð�1Þid

	½i�wi 2
Zq, we have �Aid	 ðjv	0 � v	0lþ 1jÞ ¼ ½AjjAR	jjARid	 þwid	S0�e ¼ 0. If wid	 ¼ 0mod q,
we have ½AjjAR	jjARid	 �ðe1; e2; e3Þt ¼ 0mod q, that is, ½AjjAjjA�ðe1;R	e2;
Rid	e3Þt ¼ 0mod q. By the similar method as in Lemma 26 in [6], it can be obtained
that e	 is a short non-zero vector as a solution to the given SIS instance with high
probability. The probability of an abort in the above simulation is about ð1� 1

qÞ. The
view of A in the game is identical to its view as provided by B. Therefore, B can solve
the SIS problem with probability at least 1

q e.

Table 1. Comparison of the related blind signature schemes

Schemes [11] [12] Sect. 6

Moves number 4 2 2
Signature size O(nlogq) O(nlogq) O(nlogq)
Without failure � ✓ ✓

ID-based � � ✓

Security model ROM ROM SM

Table 2. Bit length of concrete instances

Instances 1 2 3 4 5

n 284 284 284 284 284
q 216 220 224 227 230

m 9088 11360 13632 15336 17040
L 539 603 660 701 738
Secret key 135s 0 151s 0 165s 0 175s 0 185s 0

Public key 4:1k0 � 107 6:5k0 � 107 9:3k0 � 107 1:2k0 � 108 1:5k0 � 108

Signature 165s 0 185s 0 202s 0 214s 0 226s 0
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5 Conclusions

Table 1 lists the comparison with the existing lattice-based schemes [11, 12], in terms
of the interactive move numbers, failures in generating signatures, ID-based system,
and security models. Here, the move number denotes the number of interactive moves
in the issue protocol of the blind signature, without failure means there is no failures
occur in the blind signing procedures. We use “ID-based” to denote if that scheme
meets the requirement of identity-based cryptosystems, and “the security model” is to
show the security model of that scheme, that is, in the random oracle model (ROM) or
standard model (SM).

Many researchers still wonder whether a secure scheme constructed in the random
oracle model keeps their security in practice, because the random oracles are replaced
by hash functions when implemented. The highlight of our construction is that, it is
designed without random oracle, while other schemes are constructed in the random
oracle model.

Moreover, Table 2 shows the bit length of concrete instances of our scheme.
During the experiments, we set m ¼ 2n log q and L ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log q
p

. s 0 is the smooth
parameter that s0[ Lxð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ with L¼8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p

, k 0=k+4 where k denotes the bit
size of the identity. The secret key, public key, and signature sizes are tolerable when
parameters are suitable set.

Comparing with the schemes designed in the random oracle model, the ones
constructed without random oracles are much convincing in security and practical in
engineering. From the above description, our construction has three additional
advantages:

1. Similar to the scheme in [12], our scheme has 2 moves.
2. Our scheme has no failures in generating blind signatures.
3. Only our scheme is applicable to the ID-based system.

We conclude this work with a brief summary. This research studies on IBBS
scheme from lattices. An identity-based blind signature scheme is put forward based on
hard worst case lattice problem, which is considered to be the most promising one
among the post quantum primitives. By the technique introduced in [18], our selec-
tively secure constructions can be converted into adaptively secure ones by using
chameleon hash functions. However, it needs more efforts to research on identity-based
blind signature from lattices. For example, the verification matrix of the scheme in the
standard model is three times of the master public key in dimension, and thus the
signature sizes is increased. More exploration is needed for reducing the signature size
of identity-based blind signature from lattices.
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