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Preface

This volume contains the papers presented at Inscrypt 2016: the 12th China Interna-
tional Conference on Information Security and Cryptology held during November 4–6,
2016, in Beijing, China. Inscrypt is a well-recognized annual international forum for
security researchers and cryptographers to exchange ideas and present their work, and
is held every year in China.

The conference received 93 submissions. Each submission was reviewed by two to
four Program Committee members. The Program Committee, after some deliberation,
decided to accept 32 papers. The overall acceptance rate is, therefore, about 34.4%.

Inscrypt 2016 was held in cooperation with the International Association of Cryp-
tologic Research (IACR), and was co-organized by the State Key Laboratory of
Information Security (SKLOIS) of the Chinese Academy of Sciences (CAS) and the
Chinese Association for Cryptologic Research (CACR). The conference could not have
been a success without the support of these organizations, and we sincerely thank them
for their continued assistance and help.

We would also like to thank the authors who submitted their papers to Inscrypt
2016, and the conference attendees for their interest and support. We thank the
Organizing Committee for their time and effort dedicated to arranging the conference.
This allowed us to focus on selecting papers and dealing with the scientific program.
We thank the Program Committee members and the external reviewers for their hard
work in reviewing the submissions; the conference would not have been possible
without their expert reviews. Finally, we thank the EasyChair system and its operators,
for making the entire process of managing the conference convenient.

November 2016 Kefei Chen
Dongdai Lin
Moti Yung
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Biclique Attack of Block Cipher SKINNY

Yafei Zheng1,2(B) and Wenling Wu1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
{zhengyafei,wwl}@tca.iscas.ac.cn

2 State Key Laboratory of Cryptology, Beijing 100190, China

Abstract. SKINNY is a lightweight tweakable block cipher, which was
proposed at CRYPTO 2016. This paper presents an optimized brute
force attack on full SKINNY using biclique attack with partial matching
and precomputation. The results show that full round SKINNY64/64
is not secure against balanced biclique attack, the data complexity is
248, and the time complexity is 262.92. That is a very tiny advantage
against brute force attack. Furthermore, an unbalanced biclique attack
is considered, which improves the time complexity to 262.82. Moreover, in
order to be immune to biclique attack, the round of SKINNY64/64 needs
to be increased by 4 rounds to 36 rounds. Other versions of SKINNY do
not have full round biclique attack owing to more encryption rounds.

Keywords: Block cipher · SKINNY · Biclique attack · Partial match

1 Introduction

With the widespread appliance of sensor nodes, RFID tags and other low
resource devices, lightweight block cipher has been designed to satisfy the new
ubiquitous but constraint cryptography environment. A number of lightweight
block ciphers have been proposed in recent years, like PRESENT [1], KATAN &
KTANTAN [2], LBlock [3], SIMON, SPECK [4] etc.

SKINNY [5] is a family of lightweight tweakable block ciphers, whose goal
is to compete with NSA’s recent design SIMON in terms of hardware/software
performances, while providing in addition much stronger security guarantees
with regards to differential/linear attacks. The designers gave a basic security
evaluation of SKINNY against traditional block cipher cryptanalysis, includ-
ing differential cryptanalysis, linear cryptanalysis, meet-in-the-middle (MITM)
attack and so on. In the part of MITM attack, the designers claim that they do
not think improving brute force attack by a small factor will turn into serious
vulnerability in future. However, for SKINNY64/64 with a short key size of 64
bits, it will be not secure enough as a result of the enhanced computing. There-
fore, optimized brute force attack will surely has a non-ignorable impact on the
security of full round SKINNY64/64.

MITM attack, which is introduced by Diffie and Hellman in 1977 [6], is a
typical method in the cryptanalysis of block cipher. MITM attack has been

c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-54705-3 1



4 Y. Zheng and W. Wu

improved with many techniques, including splice-and-cut, initial structure, par-
tial matching etc. Biclique attack is an optimized brute force attack using MITM
attack and initial structure named biclique. Biclique attack has been applied to
many block ciphers for full round security evaluation including the first single key
attack on full AES [7], and its results can be important references for choosing
the number of encryption round during the design of block ciphers.

Our Contributions. In this paper, we study the security of SKINNY against
biclique attack. We perform a computer-based algorithm to evaluate the compu-
tational and data complexity of different attacks with different choices of original
key difference. Based on the chosen key differential trails, we give the following
results:

(1) With the balanced biclique, key recovery of full round SKINNY64/64 is
presented, with data complexity 248, and time complexity 262.92.

(2) For larger improvement of the time complexity, we introduce unbalanced
biclique, which improves the time complexity to 262.82 with data complexity
252, and to 262.86 with data complexity 248. In fact, the encryption round of
SKINNY64/64 should be increased by 4 rounds to 36 rounds, so as to be secure
against biclique attack.

(3) Results of reduced round biclique attacks on other versions of SKINNY
are also presented.

It is worth noting that, in our attack, we suppose that, in the tweakey sched-
ule, the tweak will not affect the influence of key difference.

Organization. The paper is organized as follows. Section 2 provides a brief
description of SKINNY and the notations used throughout this paper. Section 3
presents the general biclique attack. Key recovery attacks on full round
SKINNY64/64 under balanced biclique and unbalanced biclique are shown in
Sects. 4 and 5 respectively. Section 6 presents the results of other versions of
SKINNY. Section 7 summarizes this paper.

2 Description of SKINNY

We introduce the notations and give a brief description of SKINNY.

2.1 Notations

K: master key of block cipher
tk: the initial tweakey
tk[i]: the i -th cell of tk
Xr: 64-bit input of the r -th round function
Xi,j

r : the i -th and j -th cell of Xr.

2.2 Description of SKINNY

The lightweight block ciphers of the SKINNY family have 64-bit and 128-bit
block versions. The internal state is viewed as a 4× 4 square array of cells,
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where each cell is a nibble (in the n = 64 case) or a byte (in the n = 128 case).
We denote ISi,j the cell of the internal state located at Row i and Column j,
and s the size of a cell.

SKINNY follows the TWEAKEY framework form [8] and thus takes a
tweakey input instead of a key or a pair key/tweak. For block size n, there
are versions with tweakey size t = n, t = 2n and t = 3n, and the numbers of
rounds are 32,36,40 for n = 64, and 40,48,56 for n = 128. z = t/n is the tweakey
size to block size ratio, and the initialization of the tweakey state is performed
by simply setting for 0 ≤ i ≤ 15 : TK1[i] = tk[i] when z = 1, TK1[i] = tk[i] and
TK2[i] = tk[16 + i] when z = 2, and TK1[i] = tk[i], TK2[i] = tk[16 + i] and
TK3[i] = tk[32 + i] when z = 3. tk = tk[0]||tk[1]|| · · · ||tk[16z − 1] is the tweakey
input and tk[i] is an s-bit cell.

The round encryption of SKINNY is depicted in Fig. 1.

Fig. 1. The encryption of block cipher SKINNY.

Subcells. An s-bit S-box is applied to every cell of the cipher internal state.
AddConstants. Round constants are combined with the state.
AddRoundTweakey. For i = {0, 1}, j = {0, 1, 2, 3}:

ISi,j = ISi,j ⊕ TK1i,j when z = 1,
ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.
Then the tweakey arrays are updated as Fig. 2.

Fig. 2. The tweakey schedule in SKINNY.

Pr = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7].
Because the LFSR operation is cell-wise and has no influence in our attack,

we omit it here.

ShiftRows. The rows of the cipher state cell array are rotated to the right by
0,1,2,3, respectively.
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MixColumns. The state array is multiplied by a binary matrix M :

M =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠

3 Biclique Attack of Block Cipher

We introduce the notations of balanced biclique and unbalanced biclique, and
present the general structure of biclique attack.

3.1 Definition of Biclique

Let f be a subcipher connects 2d plaintexts {Pi} to 2d states {Sj} with 22d keys:

{K[i, j]} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K[0, 0] K[0, 1] · · · K[0, 2d − 1]
K[1, 0] K[1, 1] · · · K[1, 2d − 1]

...
...

...
...

K[2d − 1, 0] K[2d − 1, 1] · · · K[2d − 1, 2d − 1]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

If for all i, j ∈ {0, · · · , 2d − 1}, Sj = fK[i,j](Pi), the 3-tuple [{Pi}, {Sj},
{K[i, j]}] is called a balanced d × d–dimensional biclique (Fig. 3).

Fig. 3. d × d-dimensional biclique.

If f is a subcipher that connects 2d plaintexts to 2d
′

states with 2d+d′

keys (d �= d′), we define the corresponding structure an unbalanced d × d′ -
dimensional biclique. Take the d × 2d -dimensional biclique we use later for
example: f is a subcipher that connects 2d plaintexts {Pi} to 22d states {Sj1,j2}
with keys {K[i, j1, j2]}. If Sj1,j2 = fK[i,j1,j2](Pi) for all i, j1, j2 ∈ {0, · · · , 2d −1},
3-tuple [{Pi}, {Sj1,j2}, {K[i, j1, j2]}] is called an unbalanced biclique.

Besides dimension, the length, defined as the number of rounds f covers, is
the other important parameter of a biclique.
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3.2 Biclique Attack of Block Cipher

Biclique attack combines initial structure called biclique with MITM attack.
During the MITM phase, techniques of precomputaion and partial matching are
introduced. Figure 4 describes the general structure of biclique attack of block
cipher.

Fig. 4. Structure of biclique attack against block cipher.

The attack procedure is as follows:
Step 1. Divide the full key space into disjoint groups.
Step 2. Construct a biclique of appropriate dimension for each key group.
Step 3. For each biclique:

1. Choose the internal matching variable v.
2. Ask for the encryption of plaintexts Pi obtained during Step 2, get the

corresponding ciphertexts Ci.
3. Compute Sj → v in the forward direction and v ← Ci in the backward

direction. If one of the tested keys K[i, j] is the correct key, it will match Sj →
v ← Ci. Delete the keys that do not match in the internal matching variable.
Step 4. Exhaustively test the remaining key candidates until the correct key is
found.

The procedure for unbalanced biclique is exactly the same, while j will stand
for two positions j1, j2.

In order to avoid full codebook, the attacks afterwards only keep the bicliques
whose plaintexts belong to a set of cardinality smaller than 264. We exhaustively
search the choices of related-key differential trails. Based on the optimal related-
key differentials, we construct 6-round balanced bicliques of dimension 4× 4 and
unbalanced bicliques of dimension 4× 8 for SKINNY64/64 in Sects. 4 and 5.

4 Key Recovery for SKINNY64/64 with Balanced
Bicliques

In this section, we show the procedure of key recovery attack of full round
SKINNY64/64 with balanced 4× 4-dimensional bicliques. Table 1 summarizes
the attack parameters.
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Table 1. Parameters for key recovery for SKINNY64/64(balanced bicliques)

Rounds Blen Bdim v Forward rounds Backward rounds

32 6(0–5) 4× 4 X0,10
19 6–18 19–31

† Blen: Length of Biclique;
† Bdim: Dimension of Biclique.

Considering the time complexity of the whole attack, we choose cell tk[2] and
tk[10] as original positions of key difference, which is optimal for the attack.

4.1 Key Partitioning

We define the key groups with respect to the master key and enumerate the
groups by 256 base keys. We divide the key space into 256 groups of 28 keys
each. The base keys of these groups are all possible 64-bit values with the {2}-th
and {10}-th cell fixed to 0 and the remaining 56 bits running over all values. For
each key group, the following steps are applied.

We denote the 28 keys in one group by tk[i, j](i, j ∈ {0, 1}4) and the different
values are distinguished as: tk[i, j]{2} = i, tk[i, j]{10} = j.

For a fixed i, the keys tk[i, j](j ∈ {0, 1}4) share common 60 bits and are
only different in the {10}-th cell. Similarly, the keys tk[i, j](i ∈ {0, 1}4) are only
different in the {2}-th cell. In the sequel, the difference will be called active. As
Table 2 shows, round subkeys computed during the key schedule share common
values in parts noted 0, and subkeys noted with 1 are influenced active.

Then we construct a biclique covering 28 keys.

4.2 6-Round Biclique of Dimension 4 × 4

We construct a 6-round (0-th to 5-th round) biclique of dimension 4 × 4 for each
key group.

P is plaintext of the encryption algorithm and state S is defined as X6,
which is the output of the 5-th round encryption. The procedure of computing
the plaintexts and states is depicted in Fig. 5 and are described as follows:

Step 1. Fix P0 = 0(64) and derive S0 = ftk[0,0](P0). The process is called basic
computation.

Step 2. Encrypt P0 with different keys tk[0, j](0 < j < 24) and the correspond-
ing states are denoted by Sj (Fig. 5, Left). Because of the same starting with
basic computation, the time complexity of this procedure is determined by the
influence of difference between tk[0, j] and tk[0, 0]. Keys {tk[0, j](0 < j < 24)}
are only different in the {10}-th cell and the round subkeys are different in parts
noted with 1 (Table 2). So the process share common values with basic computa-
tion in white parts and different parts are marked with red color. Altogether, the
red parts need to be computed 24 times because there are 24 keys in {tk[0, j]}.
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Table 2. Key schedule of SKINNY64/64 influenced by key difference

Round Active cell:{2} Active cell:{10}
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

18 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

22 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

24 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

26 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

28 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Step 3. Decrypt S0 under different keys tk[i, 0](0 < i < 24) and let Pi be the cor-
responding plaintexts (Fig. 5, Right). This process shares common starting with
the inverse basic computation. Similarly, keys {tk[i, 0](0 < i < 24)} are only dif-
ferent in the {2}-th cell and the influence of the keys difference is marked with red
color.
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Fig. 5. Construction of 6-round biclique with 4 × 4 dimension (Color figure online).

Now, we have two differential trails P0
tk[0,j]−−−−→ Sj (j ∈ {0, 1}4) and Pi

tk[i,0]−−−−→
S0 (i ∈ {0, 1}4). Owing to the low diffusion of the key schedule and encryption
algorithm, these two differential trails share no active S-boxes as demonstrated
in Fig. 5.

We obtain a 4 × 4 -dimensional biclique for each key group: Pi
tk[i,j]−−−−→

Sj (i, j ∈ {0, 1}4).

4.3 Matching over 26 Rounds

For best time complexity, we choose X0,10
19 , which is an 8-bit output of 18-th

round as the internal matching variable. There are 7 choices equivalent to this
position: X1,11

19 ,X2,8
19 ,X3,9

19 ,X4,12
19 ,X5,13

19 ,X6,14
19 ,X7,15

19 . The value of the matching
variable is computed in both forward and backward directions and keys do not
match will be deleted.

S-boxes are the major contributor to the time complexity, so we count the
number of S-boxes need to be computed to evaluate the time complexity.

Forward computation. We aim to get the values of corresponding internal
matching variable from the encrypt direction. Let Sj be fixed and use keys
tk[i, j](i ∈ {0, 1}4) to partially encrypt Sj to X0,10

19 . We first precomputed

Sj
tk[0,j]−−−−→ V0,j . When encrypting the same Sj with keys tk[i, j](i ∈ {0, 1}4, i �= 0),

we only need to compute the different parts compared to the process under
tk[0, j]. Because of the same starting, the computational complexity is deter-
mined by the influence of differences between tk[i, j](i �= 0) and tk[0, j]. These
keys are only different in the {2}-th cell and the round subkeys are different in
parts noted with 1 in Table 2. As demonstrated in the left of Fig. 6, it makes
no difference between the S-boxes marked with blue color, while the red parts
represent active parts. The parts without color can be skipped because they are
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Fig. 6. Process of partial matching over 26 rounds (balanced biclique) (Color figure
online).

not involved in the computation of matching variable. Altogether, for a single
Sj , the matching values can be obtained after computing 129 S-boxes 24 times
and 55 S-boxes once.

Backward computation. Now we evaluate the amount of S-boxes in backward
direction. First of all, ask for the encryptions of plaintexts Pi (i ∈ {0, 1}4) and
get 24 ciphertexts Ci. Then decrypt the ciphertexts Ci with the keys tk[i, j](j ∈
{0, 1}4) to X0,10

19 . We know the keys are only different in the {10}-th cell and the
round subkeys are different in parts noted with 1 in Table 2. Taking a fixed Ci

for example, the process of backward matching can be described as right part
of Fig. 6. There is no difference between the S-boxes marked by blue color and
the parts without color can be skipped. Altogether, for a single Ci, the matching
values can be obtained after computing 101 S-boxes 24 times and 55 S-boxes
once.
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4.4 Search Candidates

We test 28 keys under 8-bit matching, so the number of remaining key candidates
should be 256. Exhaustively test the remaining key candidates in each key group
until the correct key is found.

4.5 Complexity

Now we evaluate the complexity of the whole attack. The construction of biclique
and the process of matching are applied to 256 key groups successively and each
key group only includes 28 keys. So the memory complexity will not exceed 28

full-round SKINNY64/64 states.

Data Complexity. We fix P0 = 0(64) for every biclique and all the plaintexts are
same in X0,1,11,14

0 , so the data complexity will not exceed 248 chosen plaintexts.

Time Complexity. The basic computation costs 16 S-boxes for each round, 96
S-boxes in total. Computing Pi(0 < i < 24), 29 S-boxes need to be computed 24

times. Similarly, computing Sj(0 < j < 24) involves 25 S-boxes 24 times. As a
result, a biclique is constructed with complexity of 960 S-boxes.

In the matching part, we compute the 8-bit matching variable from two
directions. It needs 24 × (55 + 24 × 129) S-boxes in the forward direction and
24 × (55 + 24 × 101) S-boxes in the backward direction. In total, it costs 60640
S-boxes per biclique.

The whole computational complexity is:

TC = 256(
960 + 60640

512
) + 256 ≈ 262.92

We exhaustively searched each key group, so the success probability is 1.

5 Key Recovery for SKINNY64/64 with Unbalanced
Bicliques

In this section, we show the process of key recovery attack with unbalanced
4× 8-dimensional bicliques on full round SKINNY64/64 in detail. This process
follows the basic strategy in Sect. 4 but differs in the way of S-boxes counting.

We choose cell tk[6] and tk[8, 11] as original positions of key difference.

5.1 Key Partitioning

We divide the key space into 252 groups of 212 keys each. The base keys of these
groups are all possible 64-bit values with the {6}-th, {8}-th and {10}-th cell
fixed to 0, and the remaining 52 bits running over all values.

There are 212 keys in one group and they share common 52 bits except {6}-
th, {8}-th and {10}-th cells. We denote them by tk[i, j1, j2](i, j1, j2 ∈ {0, 1}4)
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and the different values are distinguished as: tk[i, j1, j2]{6} = i, tk[i, j1, j2]{8} =
j1, tk[i, j1, j2]{11} = j2.

Round subkeys share common values and are influenced active during key
schedule should be computed. Due to the similarity with Table 2 and limitation
in paper space, we will not list it here.

5.2 6-Round Biclique of Dimension 4× 8

We need to determine 24 plaintexts and 28 states that satisfy the definition of
biclique. The procedure is depicted in Fig. 7 and can be described as follows:

Step 1. Fix P0 = 0(64) and derive S0 = ftk[0,0,0](P0).

Step 2. Encrypt P0 with different keys tk[0, j1, j2](0 < j1, j2 < 24) and the
corresponding states are denoted by Sj1,j2 (Fig. 7, Left). Because of the same
starting with basic computation, the time complexity of this procedure is deter-
mined by the influence of difference between tk[0, j1, j2] and tk[0, 0, 0]. As the
definition, keys {tk[0, j1, 0](0 < j1 < 24)} are only different in the {8}-th cell,
and {tk[0, 0, j2](0 < j2 < 24) are only different in the {11}-th cell. So the process
share common values with basic computation in white parts. The red parts are
influenced by the difference between tk[0, j1, 0] and tk[0, 0, 0] only so need to
be computed 24 times. The blue parts are influenced by the difference between
tk[0, 0, j2] and tk[0, 0, 0] only, so need to be computed 24 times. The yellow parts
are influenced by both two differences, so need to be computed 28 times.

Step 3. Decrypt S0 with different keys tk[i, 0, 0](0 < i < 24) and let Pi be the
corresponding plaintexts (Fig. 7, Right). This process shares common starting
point with the inverse basic computation. The influence of the keys difference is
marked with red color, which parts need to be computed 24 times.

Fig. 7. Construction of 6-round biclique with 4 × 8 dimension (Color figure online).
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These two differential trails share no active S-boxes during first 6 rounds as

demonstrated in Fig. 7. It is obvious that Pi
tk[i,j1,j2]−−−−−−→ Sj1,j2 (i, j1, j2 ∈ {0, 1}4).

5.3 Matching over 26 Rounds

We still choose X0,10
19 as the internal matching variable.

Forward computation. Let Sj1,j2 be fixed and use keys tk[i, j1, j2](i ∈ {0, 1}4)
to partially encrypt Sj1,j2 to derive the values of X0,10

19 , which is corresponding

denoted by vi,j1,j2 . We first compute and store the process of Sj1,j2

tk[0,j1,j2]−−−−−−→
V0,j1,j2 . When encrypting the same Sj1,j2 with keys tk[i, j1, j2](i ∈ {0, 1}4), we
only compute the different parts compared to that process with tk[0, j1, j2].
Because of the same starting, the time complexity is determined by the influence
of differences between tk[i, j1, j2](i �= 0) and tk[0, j1, j2]. We know the keys are
only different in the {6}-th cell. As demonstrated in the left of Fig. 8, it makes
no difference between the S-boxes marked with blue color, while the red parts

Fig. 8. Process of partial matching over 26 rounds (unbalanced biclique) (Color figure
online).
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represent active parts. Altogether, for a single Sj1,j2 , the matching values can
be obtained after computing 129 S-boxes 24 times and 55 S-boxes once.

Backward computation. Now we evaluate the amount of S-boxes in backward
direction. First of all, ask for the encryptions of plaintexts Pi (i ∈ {0, 1}4) and
get 24 ciphertexts Ci. Decrypt ciphertexts Ci with the keys tk[i, j1, j2](j1, j2 ∈
{0, 1}4) to X0,10

19 . Taking a fixed Ci for example, the process of backward match-
ing can be described as right part of Fig. 8. There is no difference between the
S-boxes marked by blue color and we can skip the computation of the states with-
out color. The green parts are influenced by the difference between tk[i, j1, 0] and
tk[i, 0, 0] only, so need to be computed 24 times. The red parts are influenced
by the difference between tk[i, 0, j2] and tk[i, 0, 0] only, so need to be computed
24 times. The yellow parts are influenced by both the above two differences, so
need to be computed 28 times. Altogether, for a single Ci, the matching values
can be obtained after computing 89 S-boxes 28 times, 28 S-boxes 24 times and
39 S-boxes once.

5.4 Search Candidates

The number of remaining key candidates in each key group is 24 on average.
Exhaustively test the remaining key candidates in each key group until the cor-
rect key is found.

5.5 Complexity

The construction of biclique and the process of matching are applied to 252 key
groups exhaustively and each key group only includes 212 keys. So the memory
complexity will not exceed 212 full-round SKINNY64/64 states.

Data Complexity. We fix P0 = 0(64) for every biclique and all the plaintexts share
the same values in X3,9,13

0 , so the data complexity will not exceed 252 chosen
plaintexts.

Time Complexity. As before, in order to get Pi(0 < i < 24), we need to compute
27 S-boxes 24 times. Similarly, computing Sj1,j2(0 < j1, j2 < 24) involves 17
S-boxes 24 times and 18 S-boxes 28 times. Thus, a biclique is constructed with
complexity of 96 + 432 + 4880 = 5408 S-boxes.

In the matching part, it spends 28 × (55 + 24 × 129) = 542464 S-boxes
in forward direction and 24 × (39 + 24 × 28 + 28 × 89) = 372336 S-boxes in
backward direction.

The whole computational complexity is:

TC = 252(
5408 + 542464 + 372336

512
) + 256 ≈ 262.82

If we choose tk[i, j1, j2]{1} = i, tk[i, j1, j2]{12} = j1, tk[i, j1, j2]{15} = j2, the
data complexity will be 248, and the time complexity will be 262.86, which is still
better than 262.92 as in balanced biclique attack.



16 Y. Zheng and W. Wu

6 Other Results

Due to the simple tweakey schedule, the biclique with dimension d × d′ when
z = 1 can be easily extended to biclique with dimension 2d × 2d′ when z = 2,
and to biclique with dimension 3d × 3d′ when z = 3. The key recovery attack
will be similar with the attack of SKINNY64/64. Here, we give our parameters
and results in Table 3.

Table 3. Results summary

Cipher Round Blen Bdim Active cell v DC TC

64/64 32 0–5 4× 4 {2},{10} X0,10
19 248 262.92

32 0–5 4× 8 {6},{8,11} X0,10
19 252 262.82

32 0–5 4× 8 {1},{12,15} X0,10
19 248 262.86

64/128 35 0–5 8× 16 {6,22},{8,11,24,27} X0,10
19 252 2126.86

64/192 37 0–5 12× 24 {1,17,33},{12,15,28,31,44,47} X0,10
19 248 2190.95

128/128 37 0–5 8× 16 {1},{12,15} X0,10
19 248 2126.95

128/256 37 0–5 16× 32 {6,22},{8,11,24,27} X0,10
19 248 2254.95

128/384 37 0–5 24× 48 {1,17,33},{12,15,28,31,44,47} X0,10
19 248 2382.95

7 Conclusion

Our results are summarized in Table 3. Moreover, we find that the number of
encryption round of SKINNY64/64 needs to be increased by 4 rounds to 36
rounds, so as to be secure against full round biclique attack.

Whether the sieve-in-the-middle technique proposed by Anne Canteaut etc.
at CRYPTO 2013 can be introduced to improve the complexity, especially the
time complexity of SKINNY64/64, will be the future work.
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Abstract. CAST-128 and CAST-256 are two symmetric algorithms
designed by Adams in 1990s. Both of them adopt the CAST design pro-
cedure which makes them process a number of desirable cryptographic.
CAST-128 is notably used as the default cipher in some versions of GNU
Privacy Guard (GPG) and Pretty Good Privacy (PGP) systems. As an
extension of CAST-128, CAST-256 was submitted as a candidate for the
Advanced Encryption Standard (AES). Since they are widely used, there
are many different attacks on them. Differential cryptanalysis is one of
the most powerful tools. In this paper, we achieve improved differential
cryptanalysis of both CAST-128 and CAST-256 based on the technique
of accessing differential tables. Firstly, we propose a differential attack
on 9-round CAST-128 with 273 encryptions and 258 chosen plaintexts.
Although we cannot improve the number of attacked rounds, the time
complexity is significantly reduced. Then we mount an improved differ-
ential attack on 10 quad-rounds of modified CAST-256 which increase
one quad-round than previous attack. The time complexity of this attack
is 2217 encryptions, and the data complexity is 2123 chosen plaintexts.
As far as we know, these are the best known attacks on CAST-128 and
CAST-256 under weak key assumption.

Keywords: Differential analysis · CAST-128 · CAST-256 · Weak key
assumption

1 Introduction

In 1997, Adams proposed the CAST design procedure for constructing a family
of DES-like Substitution-Permutation Network (SPN) cryptosystems in [1]. The
ciphers, known as CAST family, appear to have good resistance to differential
[7], linear [12] and related-key cryptanalysis [5]. CAST-128 [2] and CAST-256 [3]
both adopt the CAST design procedure. CAST-128 is notably used as the default
cipher in some versions of GNU Privacy Guard (GPG) and Pretty Good Privacy
(PGP) systems. It has also been approved for Canadian government being used
by the Communications Security Establishments. As an extension of CAST-128,
CAST-256 was submitted as a candidate for the Advanced Encryption Standard
(AES) [13] in June 1998.
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-54705-3 2
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Since CAST-128 and CAST-256 were proposed, they have been wildly
attacked by differential attack, linear attack, boomerang attack [17] and multidi-
mensional zero-correlation linear attack [8]. Adams et al. firstly investigated the
resistance of CAST-256 to linear and differential cryptanalysis, but they did not
give any concrete attack [4]. Then at FSE 1999, Wagner presented a boomerang
attack on 16-round CAST-256 [17]. The first concrete linear cryptanalysis of 3-
round CAST-128 and 12-round CAST-256 was presented in [14]. Then at SAC
2008, Wang et al. improved the results of [14] and mounted linear attacks on
6-round CAST-128 and 24-round CAST-256 [19]. Zhao et al. also mounted a
linear cryptanalysis of 32 rounds of CAST-256, and they recovered partial key
information of round 32 of CAST-256.

In [16], Seki et al. presented a differential attack on 9 quad-rounds of modified
CAST-256 with a differential characteristic of 8 quad-rounds which remove the
rotation keys of f2 functions. Then in [18], Wang et al. presented a 6-round
differential characteristic of CAST-128. With this characteristic, they recovered
at less 104-bit subkey of 9-round CAST-128. These are the well known differential
cryptanalysis of CAST-128 and CAST-256.

It is also worth mentioning that Bogdanov et al. mounted a multidimensional
zero-correlation attack on 28-round CAST-256 at ASIACRYPT 2012 [8]. And in
[9], Cui et al. proposed a statistical attack on 29-round CAST-256 by exploiting
the statistical integral distinguisher. This is the best attack on CAST-256 in the
single-key model without weak key (i.e. key which makes the cipher behave in
some undesirable way [10]) assumption.

Our Contribution. In this paper, we use the known technique of the “Looking
up Differential Tables” [11] and mount improved differential attacks on CAST-
128 and CAST-256. We improve the previous attacks and achieve the best known
attacks on both CAST-128 and CAST-256 under the weak key assumption.

– For CAST-128, We append three rounds to the end of the 6-round differential
characteristic proposed by Wang et al. in [18] and recover all subkeys of the
reduced 9-round CAST-128. In [18], Wang et al. recovered at less 104-bit sub-
key of 9-round CAST-128 with 257 chosen plaintexts and 2101.8 encryptions.
In our attack, we reduce the time complexity to 273 encryptions while the
data complexity is also 258 chosen plaintexts. This is the best known attack
on CAST-128 under the weak key assumption.

– For CAST-256, Seki et al. proposed a differential characteristic of 8 quad-rounds
in [16], and they recovered 74-bit subkey of a 9 quad-rounds of modified CAST-
256 under 2123 chosen plaintexts and 295 encryptions. With the same differen-
tial characteristic, we recover 222 bits of subkeys including 148-bit subkey in
the 10-th quad-round and 74-bit subkey in the 9-th quad-round with 2123 cho-
sen plaintexts and 2217 encryptions which increases one more quad-round than
previous result in [16]. As far as we known, it is also the best known attack on
CAST-256 with regard to the attack rounds under weak key assumption.

In order to make a more accurate comparison, we summarise the related
attacks on CAST-128 and CAST-256 in Table 1.
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Table 1. Summary of attacks on CAST-128 and CAST-256

Target Rounds Attack type Data(KP/CP)a Time Source Rate of
weak key

CAST-128 3 Linear 237KP 272.5 [14]

6 Linear 253.96KP 288.51 [19]

9 Differential 258CP 2101.8 [18] 2−23.8

9 Differential 258CP 273 Sect. 3 2−23.8

CAST-256 12 Linear 2101KP 2101 [14]

16 Boomerang 249.3CP 249.3 [17]

24 Linear 2124.10KP 2156.20 [19]

28 Multidimensional ZCb 298.8KP 2246.9 [8]

29 Statistic integral 296.8CP 2219.4 [9]

32 Linear 2126.8KP 2250 [20]

36 Differential 2123CP 295 [16] 2−35

40 Differential 2123CP 2217 Sect. 4 2−35

aKP: Known Plaintext; CP: Chosen Plaintext.
bMulti ZC: Multidimensional Zero-Linear.

Overview of This Paper. In Sect. 2, we give a brief description of CAST-128
and CAST-256. Then the improved differential attacks on CAST-128 and CAST-
256 are proposed in Sects. 3 and 4 respectively. Finally, we conclude in Sect. 5.

2 Brief Description of CAST-128 and CAST-256

2.1 Brief Description of CAST-128

CAST-128 [2] is a DES-like Substitution-Permutation Network (SPN) cryptosys-
tem. It is Feistel network encryption algorithm with 64-bit block size and key
size of 40 to 128 bits (in 8-bit increments). When key size is no more than 80
bits, the algorithm use 12 rounds, and when key size is greater than 80 bits, the
algorithm uses the full 16 rounds.

CAST-128 adopts three different round functions f1, f2, f3. Different round
functions share the same operations but different order of the these operations.
f1, f2 and f3 are described as following and shown in Fig. 1.

f1 : I = ((Kmi
+ D) ≪ Kri

)
f = ((S1[Ia] ⊕ S2[Ib]) − S3[Ic]) + S4[Id]

f2 : I = ((Kmi
⊕ D) ≪ Kri

)
f = ((S1[Ia] − S2[Ib]) + S3[Ic]) ⊕ S4[Id]

f3 : I = ((Kmi
− D) ≪ Kri

)
f = ((S1[Ia] + S2[Ib]) ⊕ S3[Ic]) − S4[Id]
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Fig. 1. Encryption procedure of CAST-128

where D is the data input to the round function. Kri
is 5-bit “rotation key”

of round i, and Kmi
is 32-bit “masking key” of round i. I = (Ia, Ib, Ic, Id) is

the state after rotation key operation. S1, S2, S3 and S4 are four 8 × 8 bits S-
boxes. ≪,⊕,+ and − denote circular left-shift operation, bitwise XOR, addition
modulo 232 and subtraction modulo 232 respectively.

Note that the round number starts from 1 in this paper, so for CAST-128,
rounds 1, 4, 7, 10, 13 and 16 use f1 as round function, round 2, 5, 8, 11 and 14
use f2 as round function, and rounds 3, 6, 9, 12, and 15 use f3 as round function.
The consecutive 3-round encryption procedure is described in Fig. 1.

Since in our attacks, we do not care for the key schedule. We assume that
all subkeys are independent. So we will not describe it in more details. For more
details about the key schedule, please refer to [2].

2.2 Brief Description of CAST-256

CAST-256 [3] was published in June 1998 adopting CAST design procedure. It is
the extension of CAST-128 and was submitted as a candidate for the Advanced
Encryption Standard (AES). Its block size and key size are 128 bits and 256
bits respectively. The whole construction adopts a generalized Feistel network
including four 32-bit branches. Between two adjacent branches there are three
different functions f1, f2 and f3 which are same as the ones used in CAST-128.
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Specially, CAST-256 consists of two types of round function: forward quad-
round and reverse quad-round, which are described as following:

forward quad − round : C = C ⊕ f1(D,Ki
r0 ,K

i
m0

)

B = B ⊕ f2(C,Ki
r1 ,K

i
m1

)

A = A ⊕ f3(B,Ki
r2 ,K

i
m2

)

D = D ⊕ f1(A,Ki
r3 ,K

i
m3

)

reverse quad − round : D = D ⊕ f1(A,Ki
r3 ,K

i
m3

)

A = A ⊕ f3(B,Ki
r2 ,K

i
m2

)

B = B ⊕ f2(C,Ki
r1 ,K

i
m1

)

C = C ⊕ f1(D,Ki
r0 ,K

i
m0

)

where Ki
rj

,Ki
mj

(j = 0, 1, 2, 3) are “rotation key” and “masking key” of the i-th
quad-round respectively. A,B,C,D together denotes a 128-bit block, and each
one of them is a 32-bit word.

The overall encryption procedure is composed of 12 quad-rounds including 6
forward quad-rounds then 6 reverse quad-rounds, which is described in Fig. 2.

Similar to CAST-128, we do not care about the key schedule and assume
that all subkeys are independent. So we ignore it here. For more details, please
refer to [3].

Fig. 2. Encryption procedure of CAST-256
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3 Improved Differential Attack on 9-Round CAST-128

In this section, we will propose an improved differential attack on 9-round CAST-
128. Firstly in Sect. 3.1, we recall a 6-round differential characteristic proposed
by Wang et al. in [18]. Based on this characteristic, we present the detailed attack
in Sect. 3.2. In this attack, we append three rounds to the end of the differential
characteristic and recover all subkeys of 9-round CAST-128, which needs 258

chosen plaintexts and 273 encryptions under about 2106.2 weak keys.

3.1 6-Round Differential Characteristic of CAST-128

In this subsection, we recall the 6-round differential characteristic of CAST-128
presented by Wang et al. in [18]. Its probability is 2−53, and it can be satisfied
under 2−23.8 of the total key space, i.e., 2104.2 weak keys for CAST-128, which
was found by studying the properties of round function f1 and f3. The form
of such 6-round differential characteristic is (f7e00000 ≫ Kr2 ||00000000) →
(f7e00000 ≫ Kr2 ||00000000), which is listed in the Fig. 3.

Fig. 3. 6-Round differential characteristic of CAST-128

Note that in the Fig. 3, Kr2 is the “rotation key” of the round 2. For each of
25 values of Kr2 , the differential characteristic is feasible.

3.2 Key Recovery Attack on CAST-128

In order to make the attack faster, we perform a precomputation: we compute
the Differential Distribution Tables (called as DDT ) for part of f2 and f3 func-
tions, which means that we build a table according to all combinations of input
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and output differences, then store all possible input-output pairs into the corre-
sponding cells of the table that have the same input and output differences.

For f3 function, we exclude the modular subtraction operation with Kmi
and

compute the DDT s for remained part according to the value of Kri
. Since there

are 25 values of Kri
, we need to compute 32 tables. Without loss of generality,

we denote them as DDT 3
j (j = 0, 1, . . . , 31). However, it is worth noting that

the input differences are subtractive differences (modulo 232) and the output
differences are xor differences in these DDT s.

For example, if let Kri
= j, and suppose a, b are two 32-bit inputs, then the

input difference is ΔIn = (a − b) (modulo 232), and the output difference is
ΔOut = f ′

3(a) ⊕ f ′
3(b), where f ′

3 denotes the remaining part of f3 by excluding
the modular subtraction operation with Kmi

. Then we need to store (a, f ′(a))
into the cell satisfying the ΔIn → ΔOut of DDT 3

j .
For f2 function, we build a DDT for the part of f2 without mixing subkeys

operations (renamed as f ′
2), which means we only consider the part from the

state before S-boxes layer to the end of f2 function. Without loss of generality,
we denote this DDT as DDT 2, and its input and output differences are both
xor differences. Until now, we build 33 DDT s.

As the sizes of input and output of f ′
3 and f ′

2 functions are both 32 bits, there
are 264 different pairs and 232 × 232 items (called cells as well) at each DDT .
For fixed input and output differences, one input-output pair can be found on
average.

In the precomputation phase, we need to build 33 DDT s. For each DDT , all
possible input pairs should be traversed, so the total time complexity is (33 ×
232×232×2)/9 ≈ 266.9 9-round encryptions. We can only store one input-output
pair instead of the input pair and output pair into the DDT because of the fixed
input and output difference, the memory complexity is about 33×264×8 ≈ 272.0

bytes.
Next, we will use these DDT s to implement the key recovery phase step by

step. Before giving the detailed attack, we need to define some notations. As
illustrated in Fig. 4, (ILi

, IRi
) and (OLi

, ORi
) are the input and output values of

round i respectively. Di is input value of round function, and Ii is input value
of S-boxes layer. Xi is the result of different operations on Di and Kmi

. And Yi

is the output value of round function.
The overall key recovery phase is shown in Fig. 4, and the detailed attack is

as follows:

– Step 1. Loop for all possible values of Kr2 . In data collection phase, we choose
2n structures. Each of structures involves 232 plaintexts with the same value of
the right half Ir. To satisfy the special difference f7e00000 ≫ Kr2 ||00000000,
each structure can produce 231 plaintext pairs, so in total we can obtain 2n+31

pairs. Ask for encryption of the pairs, and we can obtain 2n+31 ciphertext pairs
as well.

– Step 2. Guess 5-bit value of Kr9 and 5-bit value of Kr8 . Then create a vector
counter V of size 264, and initialize all its elements to zero.
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Fig. 4. Key recovery procedure of CAST-128

– Step 3. Loop for 2n+31 ciphertext pairs, and we can compute the output xor
difference ΔY9 = (CL9 ⊕C ′

L9
)⊕(f7e00000 ≫ Kr2) and the input substractive

difference ΔX9 = (CR9 −C ′
R9

)mod 232 of f ′
3 in round 9 since we already knew

the output values of round 9 (i.e. ciphertexts). Then through accessing the
corresponding DDT , we can get input-output pairs (X9, Y9) and (X ′

9, Y
′
9) of

f ′
3 in round 9. Note that X9 = (Km9 − CR9)mod 232, we can further compute

the value of Km9 .
Since the input xor difference ΔI8 of f ′

2 in round 8 equals (f7e00000 ≫
Kr2) ≪ Kr8 and the output xor difference ΔY8 equals CR9 ⊕C ′

R9
, we can get

the input-output pairs (I8, Y8) and (I ′
8, Y

′
8) through accessing DDT 2. Further,

we can compute Km8 = (I8 ≫ Kr8) ⊕ IL9 .
Then the corresponding Km8 ||Km9 counter are increased by 1. When all the
ciphertext pairs are utilized, the maximum entry in the counter and the cor-
responding (Kr2 ,Kr9 ,Kr8 ,Km9 ,Km8) are stored. In the end, there are 215

candidates as there are 215 values of Kr2 ||Kr9 ||Kr8 , and we consider the sub-
key with the most happen times as the right key.

– Step 4. We have obtained the subkeys of round 8, round 9 and Kr2 . In order
to recover the remaining subkeys from round 1 to round 7, we truncate the first
5 rounds from the 6-round differential characteristic, and decrypt ciphertexts
in the last two rounds. Then we use a very similar way to recover the subkeys
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Algorithm 1. Key Recovery Procedure of 9-round CAST-128
for 25 values of Kr2 do1

Collect 257 plaintext pairs whose differences equal2

f7e00000 ≪ Kr2 ||00000000.
Ask for encryption of these pairs and get their ciphertext pairs.3

for 210 values of Kr9 and Kr8 do4

Allocate a vector counter V [264], and initialize it to zero.5

for 257 ciphertext pairs do6

Compute ΔX9 = (CR9 − C′
R9)mod 232.7

Compute ΔY9 = (CL9 ⊕ C′
L9) ⊕ (f7e00000 ≪ Kr2).8

Look up the corresponding DDT , and get (X9, Y9) and (X ′
9, Y

′
9 ).9

Compute Km9 with X9 = (Km9 − CR9)mod 232.10

Compute ΔI8 = (f7e00000 ≫ Kr2) ≪ Kr8 .11

Compute ΔY8 = CR9 ⊕ C′
R9 where CR8 = CL9 ⊕ Y9 and12

C′
R8 = C′

L9 ⊕ Y ′
9 .

Look up corresponding DDT , and get (I8, Y8) and (I ′
8, Y

′
8 ).13

Compute Km8 with Km8 = (I8 ≫ Kr8) ⊕ CR8 .14

V [Km9 ||Km8 ] + +.15

Store the maximum value of counter V and corresponding16

(Kr2 , Km8 , Kr8 , Km9 , Kr9).

(Kr2 , Km8 , Kr8 , Km9 , Kr9) with the maximum happen times is considered as17

the right key.

of round 6 and round 7. The complexity is smaller than what we need to
recover Km8 ,Kr8 ,Km9 ,Kr9 and Kr2 , which can be ignored. Subkeys of the
first 5 rounds also can be recovered with similar way.

In order to illustrate the key recovery phase more succinctly, the whole key
recovery phase is summarized in Algorithm 1.

3.3 Complexity Evaluation

The ratio of signal to noise is proposed by Selçuk et al. in [15], which is calculated
as follows:

S/N =
p × 2k

α × β
(1)

where α is the average count of keys per analyzed pair, β is the ratio of analyzed
pairs to all the pairs, k is the number of key bits we are searching and p is the
probability of the differential characteristic.

In our attack, p = 2−53. Since we can not filter the ciphertext pairs by
the known condition, β = 1. The number of the all subkeys in round 8, round
9 and Kr2 is 79, so k = 79. For every analyzed pair, if we fix the value of
(Kr2 ,Kr9 ,Kr8), one possible value of Km8 ||Km9 can be deduced on average.
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There are 215 values of Kr2 , Kr9 and Kr8 in total, so we can get that α = 215.
Consequently

S/N =
p × 2k

α × β
=

2−53 × 279

215 × 1
= 211. (2)

The success probability in [20] is calculated as follows:

Ps =
∫ ∞

−
√

μSN −Φ−1(1−2−k)√
SN +1

Φ(x)dx (3)

where μ is the number of the right pairs (i.e. the pairs that satisfy the differential
characteristic). In our attack, μ = 2n−22.

In order to attack the 9-round CAST-128 with the success rate 0.999, we
choose n = 26. Consequently the data complexity of the attack is 226×232 = 258

chosen plaintexts.
The time complexity of Step 1 is 25 × 257 × 2 = 263 9-round encryptions.

Step 2 and Step 3 need about 25 × 210 × 257 × 2 = 273 memory access. The
time complexity of Step 4 is not the domain term, so it can be ignored. We
assume one access to the DDT (memory access) equals one 9-round encryption.
Consequently the time complexity of the key recovery phase is about 263 +
273 ≈ 273 9-round encryptions. And we also need 264.2 bytes of memory in
the key recovery phase. Besides, in the precomputation stage, we need 266.9

encryptions an 272.0 bytes of memory, so the complexity of the overall attack
is about 274 + 266.9 ≈ 274 encryptions, and the memory complexity is about
264.2 + 272.0 ≈ 272.0 bytes of memory.

4 Improved Differential Attack on 10 Quad-Rounds
of Modified CAST-256

In this section, we will mount an improved differential attack on 10 quad-rounds
of modified CAST-256. In Sect. 4.1, we recall a differential characteristic of 8
quad-rounds proposed by Seki et al. [16] firstly. Then in Sect. 4.2, we will give
the detailed attack. In this attack, We append two quad-rounds to the end of
the differential characteristic and recover 148-bit subkey including all subkeys
of round 10 and 74-bit subkey of K9

r0 , K9
m0

, K9
r1 , K9

m1
, which needs 2123 chosen

plaintexts and 2217 encryptions under about 2221 weak keys.

4.1 A Differential Characteristic of 8 Quad-Rounds for CAST-256

In [16], Seki et al. proposed a differential characteristic of 8 quad-rounds for
the modified CAST-256, which removed the rotation keys of all f2 functions.
The form of the characteristic is (00000000||00000000||0000e0f7||00000000) →
(00000000||00000000||0000e0f7||00000000) (see Fig. 5). Its probability is 2−120,
and it is satisfied under 2−35 of the total key space, i.e. 2221 weak keys. With this
characteristic, Seki et al. gave a differential attack on 9 quad-rounds of modified
CAST-256. In Sect. 4.2, we will improve their attack and propose a differential
attack on 10 quad-rounds of modified CAST-256.
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Fig. 5. A differential characteristic of 8 Quad-Rounds for CAST-256

4.2 Key Recovery Attack on CAST-256

In the attack on CAST-256, we also need the “differential distribution tables”
of f ′

2 and f ′
3 functions. The procedure to produce these DDT s is the same as

before. The precomputation stage requires about (33 × 232 × 232 × 2)/40 ≈ 264.6

encryptions and 33 × 264 × 8 ≈ 272.0 bytes.
In this attack, we append two quad-rounds to the end of the differential

characteristic of 8 quad-rounds. Before giving concrete attack, we define some
notations. As described in Fig. 6, Ai||Bi||Ci||Di is the input of round i, which
also is the output of round (i − 1), so in our new attack the ciphertext is
A11||B11||C11||D11. There are four round functions in one quad-round, then we
use Dj

i ,X
j
i , I

j
i , Y

j
i (j = 0, 1, 2, 3) to denote corresponding values in the j-th round

function of the i-th quad-round, which are similar with Di,Xi, Ii, Yi in the attack
on CAST-128.
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Fig. 6. Key recovery procedure of CAST-256

The overall key recovery phase is shown in Fig. 6, and the detailed attack is
as follows:

– Step 1. We need to choose 2n structures. Each of structures involves 232

plaintexts with the same value in the A, B and D parts which can pro-
duce 231 plaintext pairs satisfying the special input difference 00000000||
00000000||0000e0f7||00000000. So there are 2n+31 pairs in total. Ask for
encryption of the plaintext pairs, then choose pairs whose ciphertext differ-
ences satisfy C11 = 0000e0f7 and D11 = 00000000. About 2n+31 × 2−64 =
2n−33 pairs are reserved.

– Step 2. Guess 74-bit K10
r0 , K10

m0
, K10

r1 , K10
m1

. By decrypting the last round,
we can get the second and the third part of the input values of round 10.
C10 = C11 ⊕f1(D11,K

10
r0 ,K10

m0
), C ′

10 = C ′
11 ⊕f1(D′

11,K
10
r0 ,K10

m0
), B10 = B11 ⊕

f2(C10,K
10
r1 ,K10

m1
), B′

10 = B′
11 ⊕ f2(C ′

10,K
10
r1 ,K10

m1
). Store A11||B10||C10||D11

and A′
11||B′

10||C ′
10||D′

11 instead of ciphertext pairs.
– Step 3. Guess the 5-bit value of K10

r2 , 74-bit value of K10
r3 , K10

m3
, K9

r0 , K9
m0

and 5-bit value of K9
r1 . Then create a vector counter of size 264, and initialize

all elements of it to zero.
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– Step 4. Loop for the remaining pairs. Compute input and output differ-
ences of f ′

3 in round 10 with ΔX10
2 = (B10 − B′

10)mod 232 and ΔY 10
2 =

A11 ⊕ A′
11. Access the corresponding DDT of f ′

3, then get the input-output
pairs (X10

2 , Y 10
2 ) and (X10′

2 , Y 10′
2 ) of f ′

3. And compute K10
m2

with X10
2 =

(K10
m2

− B10)mod 232.
Compute the forth part of the input of round 10 and the third part of
the input of round 9 with D10 = D11 ⊕ f1(A10,K

10
r3 ,K10

m3) and C9 =
C10⊕f1(D10,K

9
r0 ,K

9
m0

) where A10 and D10 can be computed by the obtained
values. Then compute the input and output difference of f ′

2 in round 9 with
ΔI91 = 0000e0f7 ≪ K9

r1 , ΔY 9
1 = B10 ⊕ B′

10, and get the input-output pairs
(I91 , Y 9

1 ) and (I9
′

1 , Y 9′
1 ) through looking up DDT 2 of f ′

2. Then compute K9
m1

with K9
m1

= (I91 ≫ K9
r1) ⊕ C9.

The corresponding K10
m2

||K9
m1

counter is increased by 1. When all the remain-
ing pairs are utilized, store the maximum value of the counter and corre-
sponding (K10

r2 ,K10
r3 ,K10

m3
,K9

r0 ,K
9
m0

,K9
r1 ,K

10
r0 ,K10

m0
,K10

r1 ,K10
m1

). Compare the
selected value with the previous stored one, and preserve the larger one and
corresponding subkeys. However, no comparison is needed in the first storage.

In order to illustrate the key recovery phase more succinctly, the key recovery
phase can be performed like Algorithm2.

4.3 Complexity Evaluation

In order to calculate the ratio of signal to noise, p = 2−120 and β = 2−64 in
our attack. k is number of the total subkeys in round 10 and partial subkeys in
round 9 which equals 222. For fixed value of K10

r0 , K10
m0

, K10
r1 , K10

m1
, K10

r2 , K10
r3 ,

K10
m3

,K9
r0 ,K

9
m0

, K9
r1 , one possible value of K10

m2
||K9

m1
can be deduced on average.

There are 2158 values of K10
r0 , K10

m0
, K10

r1 , K10
m1

, K10
r2 , K10

m2
, K10

r3 , K10
m3

,K9
r0 ,K

9
r1

in total, so α = 2158. Consequently

S/N =
p × 2k

α × β
=

2−120 × 2222

2158 × 2−64
= 28. (4)

In the formula of success probability, we need to know the number of the
right pairs, which μ = 2n−89 in our attack. In order to let the success rate be
close to 1, we choose n = 91. Consequently the data complexity of the attack is
291 × 231 × 2 = 2123 chosen plaintexts.

The time complexity of Step 1 is 2123 10 quad-rounds of encryptions. The
time complexity of Step 2 is 258 ×274 ×2 = 2133 half quad-round of encryptions.
Then Step 3 and Step 4 need about 258 × 274 × 284 × 2 = 2217 memory accesses.
Consequently the overall complexity of the key recovery phase is about 2123 +
2133/20 + 2217 ≈ 2217 encryptions. And we need 258 × 16 + 264 = 264.3 bytes of
memory in this phase. What’s more, in the precomputation stage, we need 264.6

encryptions and 272.0 bytes of memory. So the overall time complexity of this
attack is about 2217 + 264.6 ≈ 2217 encryptions, and the memory complexity is
about 264.3 + 272.0 ≈ 272.0 bytes of memory.
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Algorithm 2. Key Recovery Procedure of 10 Quad-Rounds CAST-256
Collect 2122 plaintext pairs whose difference equal1

00000000||00000000||0000e0f7||00000000.
Ask for ciphertext pairs, and filter them with ciphertext difference. //About2

258 pairs remained.
for 274 values of K10

r0 , K10
m0 , K10

r1 , K10
m1 do3

Decrypt ciphertext pairs in the last round, and get C10, C
′
10 and B10, B

′
10.4

Store (A11||B10||C10||D11) and (A′
11||B′

10||C′
10||D′

11) instead of ciphertext
pairs.
for 25 values of K10

r2 , 274 values of K10
r3 , K10

m3 , K9
r0 , K9

m0 and 25 values of5

K9
r1 do

Allocate a vector counter V [264], and initialize it to zero.6

for 258 remained pairs do7

Compute ΔX10
2 = (B10 − B′

10)mod 232.8

Compute ΔY 10
2 = A11 ⊕ A′

11.9

Look up the corresponding DDT , and get (X10
2 , Y 10

2 ) and10

(X10′
2 , Y 10′

2 ).
Compute K10

m2 with X10
2 = (K10

m2 − B10)mod 232.11

Compute D10 = D11 ⊕ f1(A10, K
10
r3 , K10

m3).12

Compute C9 = C10 ⊕ f1(D10, K
9
r0 , K9

m0).13

Compute ΔI9
1 = 0000e0f7 ≪ K9

r1 .14

Compute ΔY 9
1 = B10 ⊕ B′

10.15

Look up the corresponding DDT , and get (I9
1 , Y 9

1 ) and (I9′
1 , Y 9′

1 ).16

Compute K9
m1 where K9

m1 = (I9
1 ≫ K9

r1) ⊕ C9.17

V [K10
m2 ||K9

m1 ] + +.18

Find the maximum value of the counter and the corresponding19

(K10
r2 , K10

r3 , K10
m3 , K9

r0 , K9
m0 , K9

r1 , K10
r0 , K10

m0 , K10
r1 , K10

m1).
Compare the maximum value of the counter with the previous stored20

one, and preserve the larger one. //No comparison is needed in the
first storage.

The subkey corresponding to the final maximum entry is considered as the right21

key.

5 Conclusion

In this paper, we have proposed an improved differential attack on reduced
9-round CAST-128 cipher which needs 258 chosen plaintexts and 273 9-round
encryptions based on the known 6-round differential characteristic. Besides, we
also proposed a differential attack on 10 quad-rounds of modified CAST-256.
The data and time complexity of the attack are 2123 chosen plaintexts and 2217

encryptions respectively. Our attacks on CAST-128 and CAST-256 are the best
known ones under the weak key assumption.
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Abstract. CLEFIA is a block cipher developed by Sony Corporation
in 2007. It is a recommended cipher of CRYPTREC, and has been
adopted as ISO/IEC international standard in lightweight cryptography.
In this paper, some new 9-round zero-correlation linear distinguishers
of CLEFIA are constructed with independent input masks and output
masks, which admit multiple zero-correlation linear attacks on 14/15-
round CLEAIA-192/256 about 79 times faster than results of the SAC
paper with one-eighth of data. Furthermore, some new integral distin-
guishers over 9 rounds are derived by the relations between integral dis-
tinguishers and zero-correlation linear approximations. By using these
integral distinguishers, the previous integral attacks on CLEFIA are
improved with the partial sum technique. Our results have either one
more rounds or lower time complexity than previous attack results with
integral and zero-correlation linear cryptanalysis.

Keywords: Cryptography · Block cipher · CLEFIA · Integral attack ·
Zero-correlation linear cryptanalysis

1 Introduction

The block cipher CLEFIA [11] was proposed in 2007 by Sony Corporation. It was
submitted to IETF (Internet Engineering Task Force) and is on the Candidate
Recommended Ciphers List of CRYPTREC. Besides, it is one of the only two
lightweight block ciphers recommended by the ISO/IEC standard. CLEFIA per-
forms well in both software and hardware, and it is claimed to be highly secure.
The efficiency comes from the generalized Feistel structure and the byte orien-
tation, while the security is based on the novel technique called DSM (Diffusion
Switching Mechanism), which increases resistance against linear and differential
attacks.

A great deal of attention has been paid to CLEFIA and many crypt-
analytic methods have been used to evaluate its security, such as integral
attack [8,10,17], truncated differential attack [7], impossible differential attack
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 33–46, 2017.
DOI: 10.1007/978-3-319-54705-3 3
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Table 1. Summary of the attacks on CLEFIA

Attack type Key size Rounds Data Time Reference

Impossible differential 192 13 2119.8CPs 2146Enc [16]

Impossible differential 256 14 2120.3CPs 2212Enc [16]

Improbable differential 192 14 2118.9CPs 2177.6Enc [15]

Improbable differential 256 15 2119.3CPs 2242.1Enc [15]

Truncated differential 256 15 2100CPs 2203Enc [7]

Truncated differential 192 14 2100CPs 2135Enc [7]

Integral 192 13 2113CPs 2180.5 Enc [8]

Integral 192 14 2128CPs 2166.7 Enc Sect. 4.2

Integral 256 14 2113CPs 2244.5 Enc [8]

Integral 256 15 2128CPs 2230.7 Enc Sect. 4.2

Multidimensional zero-correlation 192 14 2127.5KPs 2180.2 Enc [5]

Multiple zero-correlation 192 14 2124.5KPs 2173.9 Enc Sect. 3.2

Multidimensional zero-correlation 256 15 2127.5KPs 2244.2 Enc [5]

Multiple zero-correlation 256 15 2124.5KPs 2237.9 Enc Sect. 3.2

CPs refer to the number of chosen plaintexts, KPs refer to the number of known
plaintexts, Enc refers to the number of encryptions.

[6,9,13,16], improbable differential attack [1,14,15] and zero-correlation linear
cryptanalysis [5]. Since CLEFIA adopts a 4-branch generalized Feistel struc-
ture as the fundamental structure, in which there are two 4-byte F-functions per
round, the designers [11] showed that there are 9-round impossible differentials in
CLEFIA, that is, (0, α, 0, 0) � (0, α, 0, 0) and (0, 0, 0, α) � (0, 0, 0, α), where α is
any 32-bit nonzero value. Note that the plaintext and ciphertext differences must
be the same. By observing the inner structure of F-functions, where the branch
numbers of the linear transformations are 5, Tsunoo et al. [16] presented some
new 9-round impossible differentials, that is, (0, α000, 0, 0) � (0, 0β00, 0, 0),
where α, β are any nonzero 8-bit values. Although the length of those parts
is 8 bits, it is not necessary for the plaintext and ciphertext differences to be
the same. Later, Sun et al. [12] found 9-round impossible differentials with the
form (0, αβ00, 0, 0) � (0, γ000, 0, 0), where α, β, γ are any nonzero 8-bit values.
With respect to linear distinguishers with zero-correlation of CLEFIA, the only
known are of the forms (α, 0, 0, 0) � (α, 0, 0, 0) and (0, 0, α, 0) � (0, 0, α, 0) over
9 rounds, where α is any 32-bit nonzero value. Note that the input masks and
output masks are the same. So, it is a natural question whether there are any
zero-correlation linear distinguishers whose nonzero parts of the input masks
and output masks are different. This is part of the motivations of our work.

The links between integral and zero-correlation distinguishers were estab-
lished by Bogdanov et al. in [2]. They proved that an integral distinguisher
implies a zero-correlation distinguisher and vise versa under some independent
conditions. For a vectorial Boolean function F , if the input mask α and output
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mask β �= 0 are independent, then the approximation (α, 0) → (β, 0) of F has
correlation zero if and only for any λ, λ ·F (x0, x1) is balanced with any fixed x0.
In a more general case, if the approximation (M ′ · α, 0) → (M ′′ · β, 0) has cor-
relation zero, then there also exist corresponding integral distinguishers, where
M ′,M ′′ are two matrices and α, β are two independent values.

In this paper, we investigate the propagation characteristics of the linear
masks on the matrices of F -functions, and propose some independent zero cor-
relation linear distinguishers over 9-round CLEFIA. Some integral distinguishers
are also deduced. Furthermore, key recovery attacks on 14/15-round CLEFIA-
192/256 are conducted with integral and multiple zero-correlation cryptanalysis.
Our contributions are summarized as follows.

1. The matrices M0, M1 adopted by CLEFIA in the linear transformations
of F -functions are MDS (Maximum Distance Separable) matrices, that is,
their branch numbers are 5. Let α = (α0, 0, 0, 0) and β = (β0, β1, 0, 0)
be 32-bit values with (M0M1)T · β = (γ0, γ1, γ2, 0), where α0, β0, β1 are
any nonzero 8-bit values and γ0, γ1, γ2 are any 8-bit values. Then, by
the propagation characteristics of linear masks, the linear approximation
(((M0)T )−1 · α, 0, 0, 0) → (((M1)T )−1 · β, 0, 0, 0) is zero correlation linear
approximation over 9-round CLEFIA. These new linear approximations are
9-round ones, the same with the existing approximations. However, the input
masks and output masks are not required to be independent, which can be
seen as the dual work of Tsunoo et al. [16]. Further, we propose the first mul-
tiple zero correlation linear cryptanalysis of 14/15-round CLEFIA-192/256
with those new linear approximations.

2. We study the relations between integral and zero-correlation distinguishers in
detail, which can be improved to more general cases. For the zero correlation
linear approximations with linear transformations operated on independent
input masks and output masks, there exist corresponding integral distinguish-
ers. Then, some integral distinguishers over 9-round CLEFIA are derived from
the zero correlation linear approximations, which have much stronger ability
to distinguish the right keys from wrong keys, because the phenomenons of
the integral properties emerge in an extremely low probability in the case of
wrong keys. With the new integral distinguishers, we present key recovery
attacks on 14/15-round CLEFIA-192/256. The comparison of our results and
known attack results on CLEFIA are summarized in Table 1.

The paper is organized as follows. In Sect. 2, we give some necessary nota-
tions, a brief description of CLEFIA and concise explanation of zero-correlation
linear cryptanalysis. Some zero-correlation linear distinguishers over 9-round
CLEFIA are presented in Sect. 3, and multiple zero correlation linear attacks
on 14/15-round CLEFIA-192/256 are proposed in Sect. 4. The relations between
integral and zero-correlation linear distinguishers are discussed in Sect. 5, with
some 9-round integral distinguishers derived, and key recovery attacks on 14/15-
round CLEFIA-192/256 are given. Finally, we summarize our work in Sect. 6.



36 W. Yi et al.

2 Preliminaries

2.1 Notations

F2: the binary finite field {0, 1};
F

n
2 : the n-dimensional vector space over F2;

|A|: the cardinality of the set A;
⊕: bitwise XOR;
a · b: the scalar product of binary vectors, i.e., a · b := ⊕n

i=1aibi;
M−1: the inverse matrix of a non-singular matrix M ;
MT : the transposition of the matrix M ;
M · a: the multiplication of the matrix M and vector aT ;
z[i]: the i-th byte of z, and ‘0’ is the most significant byte;
P,C: the plaintexts and ciphertexts of CLEFIA;
Ci

j: the j-th byte of the i + 1-round with j = 0, 1, 2, 3;
rki: the subkeys in the round functions of CLEFIA;
wki: the 32-bit whitening keys with i = 0, 1, 2, 3;
si(·): the S-box of CLEFIA with i = 0, 1;
Fi(·): the round function of CLEFIA with i = 0, 1;
X‖Y : the concatenation of X and Y ;

2.2 Description of CLEFIA

CLEFIA is a 128-bit block cipher with variable key lengths of 128, 192 and 256
bits, which takes a 4-branch generalized Feistel network with two parallel F -
functions (F0, F1) per round. See Fig. 1(a). The number of rounds are 18/22/26

Fig. 1. The structure and building blocks of CLEFIA
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for CLEFIA-128/192/256, respectively. Firstly, a 128-bit plaintext P is split up
into four 32-bit words P0, P1, P2 and P3. The input state of the first round is
(C0

0 , C0
1 , C0

2 , C0
3 ) = (P0, P1 ⊕wk0, P2, P3 ⊕wk1). For i from 1 to r, the states are

computed in the following steps:

Ci
0 = Ci−1

1 ⊕ F0(Ci−1
0 , Ci−1

1 , rk2i−2), Ci
1 = Ci−1

2 ,

Ci
2 = Ci−1 ⊕ F1(Ci−1

1 , Ci−1
2 , rk2i−1), Ci

3 = Ci−1
0 .

Finally, the 128-bit ciphertext C is computed as C = (Cr
0 , Cr

1 ⊕ wk2, C
r
2 , Cr

3 ⊕
wk3).

The round functions F0 and F1 take the SP structure; see Fig. 1(b), (c). There
are two types of byte orientation S-boxes in the substitution layer, behaving in
different orders in the two round functions. More precisely,

S0(x0, x1, x2, x3) = (s0(x0), s1(x1), s0(x2), s1(x3)),

S1(x0, x1, x2, x3) = (s1(x0), s0(x1), s1(x2), s0(x3)).

The diffusion layer uses two different MDS matrices M0 and M1 in the func-
tions F0 and F1, respectively, where

M0 =

⎛
⎜⎜⎝

0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

⎞
⎟⎟⎠ , M1 =

⎛
⎜⎜⎝

0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01

⎞
⎟⎟⎠ .

These are the so-called 4 × 4 Hadamard type matrices. We remark that the
multiplications between these matrices and vectors are performed in F28 defined
by the primitive polynomial x8 + x4 + x3 + x2 + 1.

Since the relations between the round subkeys will not help in our attacks,
we omit the key scheduling algorithm here. The interested readers can refer to
[11].

2.3 Multiple Zero-correlation Cryptanalysis

Consider a function f : F
n
2 → F

n
2 . The correlation of the linear approximation

x �→ β · f(x) ⊕ α · x, with input mask α and output mask β is defined as

Corx(β · f(x) ⊕ α · x) = 2Prx(β · f(x) ⊕ α · x = 0) − 1.

In zero-correlation linear cryptanalysis, the distinguishers use linear approx-
imations with zero correlation. To reduce the data complexity, Bogdanov
et al. [3] proposed the multiple zero-correlation linear distinguishers, which use
� zero-correlation linear approximations and requires O(2n/

√
�) known plain-

texts, where n is the block size of a cipher. Denote by N , � the number of
required known plaintexts and zero-correlation linear approximations for an n-
bit block cipher. For each of the given linear approximations, compute the num-
ber Ti of times that the i-th linear approximation is fulfilled on N plaintexts
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and ciphertexts, i ∈ {1, 2, ...�}. Each Ti suggests an empirical correlation value
ĉi = 2Ti/N − 1. Then, evaluate the statistic

T =
�∑

i=0

ĉ2i =
�∑

i=0

(2
Ti

N
− 1)2. (1)

Under a statistical independency assumption, the statistic T follows a χ2-
distribution with mean μ0 = �/N and variance σ2

0 = 2�/N2 for the right key
guess, while for the wrong key guess, it follows a χ2-distribution with mean
μ1 = �/N + �/2n and variance σ2

1 = 2�/N2 + 2�/22n + 2�/N2n−1.
If the probabilities of the type-I error and the type-II error to distinguish a

wrong key with a right key are denoted as β0 and β1, respectively, considering
the decision threshold τ = μ0 + σ0z1−β0 = μ1 − σ1z1−β1 , the number of known
plaintexts N should be about

N ≈ 2n(z1−β0 + z1−β1)√
�/2 − z1−β1

, (2)

where z1−β0 and z1−β1are the respective quantiles of the standard normal dis-
tribution. More details are described in [3].

3 New Zero-correlation Linear Approximations for
CLFEIA

To construct the zero-correlation linear approximations, one adopts the miss-in-
the-middle techniques just like to find impossible differentials. Firstly, we give
some properties of the matrices M0 and M1, which are used in the diffusion
layers of the functions F0 and F1, respectively.

Lemma 31. M−1
0 = M0, M−1

1 = M1.

Lemma 32. M0M1 = M1M0 and they are MDS matrices.

Proof. It can be computed that

M1M0 = M0M1 =

⎛
⎜⎜⎝

0x37 0x46 0x34 0x40
0x46 0x37 0x40 0x34
0x34 0x40 0x37 0x46
0x40 0x34 0x46 0x37

⎞
⎟⎟⎠ .

In addition we have (M0M1)−1 = M−1
1 M−1

0 = M1M0 = M0M1 by Lemma 31.
Recall that a matrix is MDS if and only if all of its sub-matrices are invertible. It
was proved in [12] that all of the two-order sub-matrices of M0M1 are invertible.
Besides, by the definition of inverse matrix by adjugate matrix, we know that the
determinants of all 3×3 sub-matrices of M0M1 are in one-to-one correspondence
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Fig. 2. Zero-correlation linear approximations of 9-round CLEFIA

with elements of (M0M1)−1 = M0M1, which are all non-zero. Therefore, M0M1

is MDS.
We assert the linear approximations over 9-round CLEFIA (covering rounds

1–9, see Fig. 2).
(
MT

0 · (α0, 0, 0, 0), 0, 0, 0
) → (

MT
1 · (β0, β1, 0, 0), 0, 0, 0

)

have zero-correlation, where (M0M1)T · (β0, β1, 0, 0) = (γ0, γ1, γ2, 0), that is
0x40T · β0 ⊕ 0x34T · β1 = 0, α0, β0, β1 ∈ F

8
2/{0} and γ0, γ1, γ2 ∈ F

8
2, 0x34T

denotes the transposition of matrix 0x34 in finite field.

Along the encryption direction: We consider the linear trail with non-zero
correlation. Given the mask

(
MT

0 ·(α0, 0, 0, 0), 0, 0, 0
)
, the mask of the 4-th branch

after 5 rounds must have the form (d0, b1, b2, b3) if the corresponding 5-round
linear trail has non-zero correlation, where b1, b2, b3 ∈ F

8
2 are unknown non-zero

values by Lemma 32.

Along the decryption direction: Given the mask
(
MT

1 · (β0, β1, 0, 0), 0, 0, 0
)
,

the mask of the 4-th branch after 4 rounds must have the form (φ0, φ1, φ2, 0) if the
corresponding 4-round linear trail has non-zero correlation, because (M0M1)T ·
(β0, β1, 0, 0) = (γ0, γ1, γ2, 0), where γ0, γ1, γ2, φ0, φ1, φ2 are unknown values.

Contradiction: We just focus on the linear masks of the 4-th branch of the 5-th
round function. From the encryption direction, the input masks are (d0, b1, b2, b3)
under the condition that the corresponding linear trail has non-zero correlation,
where b1, b2, b3 are unknown non-zero values. Similarly, from the decryption direc-
tion, the output masks are (φ0, φ1, φ2, 0), where φ0, φ1, φ2 are unknown non-zero
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values, which is in contradiction with b3 �= 0. Thus, the linear hull is a zero-
correlation linear hull. See Fig. 2.

4 Zero-correlation Linear Cryptanalysis of CLEFIA

In this section, we will attack 14-round CLFEIA-192. We mount the 9-round
linear approximations from round 4 to round 12, and extend 3 rounds forward
and 2 rounds backward respectively; see Fig. 3(a). The key-recovery attacks on
14-round CLEFIA-192 are proceeded with the partial-sum technique as follows.

Step 1. Collect all the N plaintext-ciphertext pairs (P,C). Allocate 8-bit
counters N1[y1] for 2160 possible values of

y1 = P0‖P1‖P2‖M0 · P3[0]‖C0‖C1[0, 1]‖M1,

and initialize them to zero, where M1 is a 8-bit value with

M1 = 0x34T · (M1 · C2[0]) ⊕ 0x40T · (M1 · C2[1]).

For every (P,C) pair, extract the value of y1 and increase the corresponding
counter N1[y1].

Step 2. Allocate 8-bit counters N2[y2] for 2120 possible values of

y2 = P0‖P1‖P2‖M0P3[0]‖C1[1]‖M1,

Fig. 3. Zero-correlations linear attacks on 14/15-round CLEFIA-192/256
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and initialize them to zero. Guess rk26 and wk2[0]⊕rk25[0], and partially decrypt
y1 to get the value of y2, that is,

M1 = M1 ⊕ 0x34T · s1
(
F0(C0, rk26)[0] ⊕ C1[0] ⊕ wk2[0] ⊕ rk25[0]

)
.

Then update the corresponding counter by N2[y2]+ = N1[y1].
Step 3. Allocate a counter N3[y3] for 2112 possible values of

y3 = P0‖P1‖P2‖M0 · P3[0]‖M1,

and initialize them to zero. Guess wk2[1] ⊕ rk25[1], and partially decrypt y2 to
get the value of y3, that is,

M1 = M1 ⊕ 0x40T · s0
(
F0(C0, rk26)[1] ⊕ C1[1] ⊕ wk2[1] ⊕ rk25[1]

)
.

Then update the corresponding counter by N3[y3]+ = N2[y2].
The following steps in the partial encryption and decryption phase are similar

to Step 3. Thus, to be consistent, we use Table 2 to show the details of Step 4
to Step 16 of the partial encryption and decryption.

Step 17. Compute the statistic T according to Eq. (1). If T < τ , the guessed
key value is a right key candidate. After Step 16, 152 key bits have been guessed,

Table 2. Partial encryption and decryption of the attack on 14-round CLEFIA.

Guess keys Counters Computed states

rk0[0] y4 = P0[1, 2, 3]‖P1‖P2‖M0 · P3[0]‖M1 P1[0]+ = 0x01 · s0(P0[0] ⊕ rk0[0]),

P1[1]+ = 0x02 · s0(P0[0] ⊕ rk0[0]);

P1[2]+ = 0x04 · s0(P0[0] ⊕ rk0[0]),

P1[3]+ = 0x06 · s0(P0[0] ⊕ rk0[0]);

rk0[1] y5 = P0[2, 3]‖P1‖P2‖M0 · P3[0]‖M1 P1[0]+ = 0x02 · s1(P0[1] ⊕ rk0[1]),

P1[1]+ = 0x01 · s1(P0[1] ⊕ rk0[1]);

P1[2]+ = 0x06 · s1(P0[1] ⊕ rk0[1]),

P1[3]+ = 0x04 · s1(P0[1] ⊕ rk0[1]);

rk0[2] y6 = P0[3]‖P1‖P2‖M0 · P3[0]‖M1 P1[0]+ = 0x04 · s0(P0[2] ⊕ rk0[2]),

P1[1]+ = 0x06 · s0(P0[2] ⊕ rk0[2]);

P1[2]+ = 0x02 · s0(P0[2] ⊕ rk0[2]),

P1[3]+ = 0x01 · s0(P0[2] ⊕ rk0[2]);

rk0[3] y7 = P1‖P2‖M0 · P3[0]‖M1 P1[0]+ = 0x06 · s1(P0[3] ⊕ rk0[3]),

P1[1]+ = 0x04 · s1(P0[3] ⊕ rk0[3]);

P1[2]+ = 0x02 · s1(P0[3] ⊕ rk0[3]),

P1[3]+ = 0x01 · s1(P0[3] ⊕ rk0[3]);

rk1[1] y8 = P1‖P2[0, 2, 3]‖M0 · P3[0]‖M1 M0P3[0]+ = 0x08 · s0(P2[1] ⊕ rk1[1]);

rk1[2] y9 = P1‖P2[0, 3]‖M0 · P3[0]‖M1 M0P3[0]+ = 0x02 · s1(P2[2] ⊕ rk1[2]);

rk1[3] y10 = P1‖P2[0]‖M0 · P3[0]‖M1 M0P3[0]+ = 0x0a · s0(P2[3] ⊕ rk1[3]);

rk1[0] y11 = P1‖P2[0]‖M0 · P3[0]‖M1 M0P3[0]+ = 0x01 · s1(P2[0] ⊕ rk1[0]);

rk2[0] ⊕ wk0[0] y12 = P1[1, 2, 3]‖P2[0]‖M0 · P3[0]‖M1 P2[0]+ = 0x01 · s0(P1[0] ⊕ rk2[0] ⊕ wk0[0]);

rk2[1] ⊕ wk0[1] y13 = P1[2, 3]‖P2[0]‖M0 · P3[0]‖M1 P2[0]+ = 0x02 · s1(P1[1] ⊕ rk2[1] ⊕ wk0[1]);

rk2[2] ⊕ wk0[2] y14 = P1[3]‖P2[0]‖M0 · P3[0]‖M1 P2[0]+ = 0x04 · s0(P1[2] ⊕ rk2[2] ⊕ wk0[2]);

rk2[3] ⊕ wk0[3] y15 = P2[0]‖M0 · P3[0]‖M1 P2[0]+ = 0x06 · s1(P1[3] ⊕ rk2[3] ⊕ wk0[3]);

rk4[0] y16 = M0 · P3[0]‖M1 M0 · P3[0]+ = 0x01 · s0(P2[0] ⊕ rk4[0]);
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then there are 40 master key bits that we have not guessed. We do exhaustive
search for all keys conforming to this possible key candidate.

Complexity of the Attack. In this attack, we set the type-I error probability
β0 = 2−2.7 and the type-II error probability β1 = 2−20. We have z1−β0 = 1,
z1−β1 = 4.2, n = 128, � = 216. The data complexity N is about 2124.5 by
formula (2), and the decision threshold τ ≈ 26.23. The time complexity of steps
1–17 in the described attack is as follows:

1. Step 1 requires 2124.5 memory accesses;
2. Step 2 requires 2124.5×240 = 2164.5 memory accesses, because we should guess

40 bits rk26 and wk2[0] ⊕ rk27[0];
3. Step 3–11 require 9 × 2168 memory accesses;
4. Step 12–16 require 5 × 2176 memory accesses;
5. Step 17 requires 2152 × 220 14-round CLEFIA encryption, because only the

right key candidates can survive in the wrong key filtration.

If we assume that processing each memory accesses is equivalent to half
round encryption, then the total time complexity is about 1/2 × 5/14 × 2176 ≈
2173.9 14-round encryptions. In total, the data complexity is 2124.5 KPs, the time
complexity is about 2173.9 14-round encryptions and the memory requirement is
2160 bytes for counters.

For the attack on 15-round CLEFIA-256, we mount the 9-round zero-
correlation linear approximations from round 4 to round 12, and extend 3 rounds
forward and 3 rounds backward; see Fig. 3(b). We proceed similar steps to attack
14-round CLEFIA-192. The data complexity of the attack is 2124.5 KPs, the total
time complexity is 2237.9 encryptions and the memory complexity is about 2224

bytes.

5 Integral Cryptanalysis of CLEFIA

In this section, the relations between integral and zero-correlation linear distin-
guishers are discussed. Some 9-round integral distinguishers are deduced, and
then key recovery attacks on 14/15-round CLEFIA-192/256 are given with inte-
gral cryptanalysis.

5.1 Some New Integral Distinguishers over 9-round CLEFIA

Bogdanov et al. [2] showed that an integral implies a zero-correlation distin-
guisher and vise versa under some independent conditions.

Theorem 51 (See [2]). Let m, m1, m2 be integers. For the vectorial Boolean
function f : F

m1
2 × F

m2
2 → F

m
2 , the following are equivalent:

(i) Corxm2

(
(bq, 0) · f(xm1 , xm2)

)
= 0, for all bq ∈ F

q
2 \ {0};

(ii) Corxm1 ,xm2

(
(dm1 , 0) · x ⊕ (bq, 0) · f(xm1 , xm2)

)
= 0, for all dm1 ∈ F

m1
2 and

bq ∈ F

q
2 \ {0}.
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Let M0, M1 be two invertible matrices. For any dm′
1

∈ F

m′
1

2 , bq1 ∈ F

q1
2 , and

M0 · (dm′
1
, 0, ..., 0) ∈ F

m1
2 , M1 · (bq1 , 0, ..., 0) ∈ F

q
2, we have the following result.

Corollary 51. The following two conditions are equivalent.

(i) Corx(dm1−d
m′

1
),xm2

(
bq1 · MT

1 · f
(
(M−1

0

)T · x)q1

)
= 0, for all bq1 ∈ F

q1
2 \ {0};

(ii) Corx

(
(M0 ·(dm′

1
, 0, ..., 0), 0) ·(xdm′

1
, x(dm1−dm′

1
), xm2)⊕(M1 ·(bq1 , 0, ..., 0), 0) ·

f(x)
)

= 0, for all dm′
1

∈ F

m′
1

2 and bq1 ∈ F

q1
2 \ {0}.

The corollary can be proved by the fact that
(
(M ·a)T ·x)

=
(
aT · (MT ·x)

)
,

where M is a linear transformation, so we omit the proof here. By Corollary 51,
an integral distinguisher covering 9 rounds of CLEFIA can be derived from zero-
correlation linear approximations.

Proposition 51. Choose a set of 2120 inputs of the r-th round, where the 32-bit
values of Cr

0 are set to the form MT
0 · (a, b, c, d), Cr

1 , Cr
2 , Cr

3 range over F
32
2 ,

where a is fixed to be any 8-bit values, b, c, d range over F
8
2. Encrypt the 2120

chosen values by 9 rounds. Then, each of the 28 possible values of 0x34T · (M1 ·
Cr+9

0 )[0] ⊕ 0x40T · (M1 · Cr+9
0 )[1] occurs 2112 times.

Let F : F
120
2 → F

8
2 be a random vectorial Boolean function and the sets Aj =

{xj ∈ F
120
2 |F (xj) = yj}, where yj ∈ F

8
2, 0 ≤ j ≤ 28 − 1. Then the probability of

the random vectorial Boolean function satisfying |Aj | = 2112 for each 0 ≤ j ≤
28 − 1 is (

C2112

2120 × C2112

2120−2112 × · · · × C2112

2113 × C2112

2112

)
/(28)2

120
,

which is extremely small compared with 2−256. Only under the case of the right
keys, the phenomenons of the integral properties can emerge, that is, the integral
distinguisher has much stronger ability to distinguish the right and wrong keys.

5.2 Key-Recovery Attacks on 14/15-round CLEFIA-192/256

In this section, the new integral distinguisher is applied to key-recovery attacks
on 14/15-round CLEFIA-192/256. The 9-round integral distinguisher starts
from round 3 and ends at round 11; see Fig. 4(a). In the attack process, we
adopt the idea of subkey-dependent chosen plaintexts. We first construct a pre-
computation table T .

Table T: For each of the 2160 possible sextuples (P0, P1, P2[1, 2, 3], P3, rk0,
wk0[0]⊕rk2[0]), we calculate P2[0] = s0(F0(P0, rk0)[0]⊕wk0[0]⊕rk2[0])⊕0x02 ·
P2[1] ⊕ 0x04 · P2[2] ⊕ 0x06 · P2[3]. Store all the 2120 quadruples (P0, P1, P3, P4)
in a hash table T indexed by 40-bit (rk0, wk0[0] ⊕ rk2[0]).

Attack Process. The key-recovery attacks on 14-round CLEFIA-192 are pro-
ceeded with the partial-sum technique as follows.
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Fig. 4. Integral attacks on 14/15-round CLEFIA-192/256

Step 1. Guess the subkeys rk0, wk0[0] ⊕ rk2[0] by the table T . Choose a set
of 2120 plaintexts to obtain their cipertexts. Allocate a 32-bit counter V1[x1] for
each of the 2104 possible values of

x1 = C0‖C2‖C3‖M1,

and initialize them to zero, where M1 is a 8-bit middle-value with

M1 = 0x34T · (M1 · C1[0]) ⊕ 0x40T · (M1 · C1[1]).

For each set of the chosen ciphertexts, extract the value of x1 and increase the
corresponding counter V1[x1].

Step 2. Allocate 32-bit counters V2[x2] for 28 possible values of

x2 = C0‖C2[1, 2, 3]‖C3‖M1,

and set them zero. Guess rk27[0] and partially decrypt x1 to get the value of x2,
then update the corresponding counter V2[x2]+ = V1[x1].

Step 3. In the following partial decryption phase, guess rk27[1], rk27[2],
rk27[3], rk26[0], rk26[1], rk26[2], rk26[3], rk24[0],rk24[1],rk24[2],rk24[3], rk23[0],
rk23[1], compute corresponding values and update the counters, and get V3[x3],
where

x3 = 0x37T · (M1 · C11
0 )[0] ⊕ 0x40T · (M1 · C11

0 )[1].

Step 4. After Step 3, 152 key bits have been guessed. If there exists x3 ∈ F
8
2

such that V3[x3] �= 2112, discard the guessed keys and guess another sub-key,
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until we get the correct sub-key. As there are 40 master key bits that we have
not guessed, we do exhaustive search for all keys conforming to this possible key
candidate.

Complexity of the Attack. In this attack, there are 152-bit key value guessed
during the encryption phase, and only the right key candidates survive in the
wrong key filtration.

(1) Step 1 requires about 2160 memory accesses;
(2) Step 2 requires about 2104 × 240 × 28 = 2152 memory accesses;
(3) Step 3 requires about 10 × 2168 memory accesses;
(4) Step 4 requires 240 14-round CLEFIA encryption, because only the right

key candidates can survive in the wrong key filtration.

If we assume that processing each memory accesses is equivalent to 1/2 round
encryption, then the total time complexity is about 2168×1/2×10/14 ≈ 2166.7 14-
round encryptions. In total, the data complexity is 2128 CPs, the time complexity
is about 2166.7 14-round encryptions and the memory requirement is 2104 bytes
for counters.

For the integral attack on 15-round CLEFIA-256, we mount the 9-round zero-
correlation linear approximations from round 3 to round 12; see Fig. 4(b). We
proceed similar steps to attack 14 rounds of CLEFIA-192. The data complexity
of the attack is 2128 CPs, the total time complexity is 2230.7 encryptions and the
memory complexity is about 2128 bytes.

6 Conclusion

In this paper, we have evaluated the security of CLEFIA by means of integral
and zero-correlation linear cryptanalysis. Firstly, we investigate the propaga-
tion characteristics of the linear masks on the matrices of the F -functions, and
propose some new linear distinguishers with zero correlation over 9-round CLE-
FIA, where the input masks and output masks are independent. Then multiple
zero-correlation linear attack are conducted on 14/15-round CLEFIA-192/256.
Further, the relations between zero correlation and integral are improved, and
some integral distinguishers are derived. Key recovery attacks on 14/15-round
CLEFIA-192/256 are conducted by means of integral cryptanalysis. These
results are not the best for CLEFIA compared with the truncated differential
attack results. However, the multiple zero-correlation linear attacks are better
compared with the multidimensional zero-correlation linear attacks in terms of
both data and time complexities, and in addition, our integral cryptanalysis can
attack one more round than previous integral cryptanalysis.
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Abstract. An upper bound of the length of impossible differentials for
an SPN structure was presented at EUROCRYPT 2016. This paper
mainly focuses on the lengths of impossible differentials for two spe-
cific SPN structures. The details of the S-boxes could be exploited to
construct longer impossible differentials for ciphers adopting these struc-
tures. For Kuznyechik and the internal permutation of PHOTON, we can
construct 3-round and 5-round impossible differentials, respectively. The
lengths of impossible differentials of these two ciphers are 1 more round
compared with the lengths of impossible differentials of the structures
deduced from the corresponding ciphers.

Keywords: Structure · Impossible differential · Kuznyechik · PHOTON

1 Introduction

Block cipher is one of the most important symmetric cryptographic schemes and
the security of these schemes in some sense depends on the resistance to known
cryptanalytic techniques. Differential cryptanalysis [1] was developed to analyze
the security of the Data Encryption Standard(DES). In differential cryptanalysis,
one first tries to find some differential characteristics with high probability and
then by some statistical methods we may recover the round keys. However,
in impossible differential cryptanalysis, which was independently proposed by
Knudsen [2] and Biham [3], it uses the differentials with probability zero which
are called impossible differentials to discard the wrong keys. To our knowledge,
impossible differential cryptanalysis has obtained much attention and been used
to attack a large number of block ciphers [4–7].
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In impossible differential cryptanalysis, it first constructs some impossible
differentials which cover as many rounds as possible, then impossible differentials
will be used to recover the right key. For any function F : F2n → F2n , we can
always find some α and β such that α → β is an impossible differential of
F . However, if the size of the block cipher is large and we do not know any
algebraic structure of F , it can be very hard to determine whether α → β is
a possible differential or an impossible one. Furthermore, for a block cipher F ,
it is possible that for some key k, α → β is a possible differential while for
other k, it is impossible. From the practical view, we are interested in impossible
differentials that are independent of the round keys. Note that in most cases, the
non-linear complements applied to x can be described as S(x ⊕ k), we always
detect impossible differentials that are independent of the S-boxes, which are
called truncated impossible differentials, i.e., we do not care about the specific
value of the difference when it is nonzero, and we are only interested in whether
the value is zero or not.

Usually, the most popular method to construct an impossible differential is
the miss-in-the-middle technique, i.e., trace the property of input difference α
and output difference β, respectively, once some contradiction is detected in
the middle, an impossible differential is constructed. Several automatic methods
have been proposed to search truncated impossible differentials of a block cipher
such as the U-method [8], UID-method [9] and the linearized method [10].

Though there have already been 4-/4-/8-round impossible differentials for
the AES, ARIA and Camellia without FL/FL−1 layers [11–16], finding longer
length of impossible differentials has never stopped. Sun et al. proposed the
concept of structure deduced by a block cipher at CRYPTO 2015 [17], based
on which they proved at EUROCRYPT 2016 [18] that for an SPN structure, if
α1 → β1 and α2 → β2 are possible differentials, α1|α2 → β1|β2 is also a possible
differential. They further showed that for an SPN structure, there exists an r-
round impossible differential if and only if there exists an r-round impossible
differential α �→ β where the Hamming weights of both α and β are 1 and that
the length of impossible differentials of an SPN structure is upper bounded by
the primitive index of the linear layers. As a result, there does not exist 5-round
impossible differentials for the AES and ARIA unless the details of the S-boxes
are considered.

There are also some literatures that concentrated on exploiting the details
of the S-boxes to construct longer impossible differentials. In SAC 2011 [19],
Bouillaguet et al. presented that if there exists b /∈ ΔF (r)(a) for MARS-like and
CAST-like ciphers, where ΔF (r)(a) denotes the all possible output differences
that the input difference a can propagate through the round function F for suc-
cessive r rounds, the length of impossible differentials can be r rounds longer
than that of the case when the round function F is only viewed as bijective
transformation. For lightweight block ciphers, due to the low confusion and dif-
fusion, we can construct some impossible differentials of a cipher which is much
longer than the length of the corresponding structure. For example, there are
(1100) → (∗∗∗0) and (0100) → (∗1∗∗) for the 4-bit S-box and the inverse of the
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S-box in RECTANGLE [20], respectively. Combined with the linear transforma-
tion, an 8-round impossible differential can be constructed for RECTANGLE.

In this paper, we attempt to find longer length of impossible differentials by
investigating the details of the S-boxes for SPN ciphers. For an r-round SPN
cipher which is defined as (SP )r−1S, where r = r1 + r2 + 1, assume a and b
be the input and output difference respectively, if we can test all differential
characteristics of a → b being impossible differentials, a → b is an impossible
differential. Otherwise, a → b is a possible differential. When E = (SP )r−1S =
(SP )r1+r2S = (SP )r1S(PS)r2 , a

E−→ b ⇔ E1(a) S−→ E2(b), where E1(a) = (P ◦
S)r1(a), E2(b) = (P (−1)◦S(−1))r2(b), E1(a) and E2(b) mean the differences which
a and b can propagate from the forward and backward directions respectively.
Therefore, if there is no element which belongs to E1(a) that can propagate to
the element which belongs to E2(b), we call that E1(a) can not be matched with
E2(b), and a → b is an r-round impossible differential for the SPN cipher. In
the rebound attack, E1(a) can always be matched with E2(b). Furthermore, if
we prove that a → b is an r-round impossible differential, a → b can not be an
r-round rebound attack distinguisher. Given the computation complexity in the
middle match phase, we only consider that the Hamming weights of input and
output differences are 1 in this paper.
Our contributions. Nowadays, for many byte-oriented block ciphers, the
lengths of impossible differentials are the same as those of the structures deduced
by these ciphers. In this paper, we exploit the details of the S-boxes to construct
longer impossible differentials than those of the structures. Note that consid-
ering impossible differential cryptanalysis on structure, the output differences
can take all nonzero values for a given nonzero input difference. However, for a
cipher, the S-box is fixed and there are at most half of the whole space of output
difference values that can be taken for a given nonzero input difference. There-
fore, we can exploit this property for a cipher to construct longer impossible
differentials than those of the corresponding structure. Assume n,m, d denote
the size of S-box, linear transformation and MixColumns respectively. The main
results of this paper are as follows.

(1) For two structures ε(1)(n,m) and ε(2)(n, d) defined in our paper, we prove
that the longest impossible differentials for these two structures are two
rounds and four rounds when m ≤ 2n−1 − 1 and d ≤ 2n−1 − 1, respectively.

(2) For Kuznyechik, we construct 3-round impossible differentials and show all
3-round impossible differentials with the Hamming weights of the input
and output differences being 1. Compared with the structure deduced by
Kuznyechik which belongs to ε(1)(8, 16), the length of impossible differen-
tials of Kuznyechik is one more round than that of the structure.

(3) For the internal permutation in PHOTON, 5-round impossible differentials
for n = 4, d = 6, 7 can be constructed. Compared with the structure deduced
by the internal permutation in PHOTON which belongs to ε(2)(4, d)(d =
6, 7), the length of impossible differentials of the internal permutation in
PHOTON is one more round than that of the structure.



50 X. Shen et al.

Organization. The rest of this paper is organized as follows. First, we intro-
duce the notations and concepts used throughout the paper in Sect. 2. In Sect. 3,
3-round impossible differentials of Kuznyechik are constructed. Moreover, we
construct 5-round impossible differentials of the internal permutation in PHO-
TON in Sect. 4. Section 5 concludes the paper.

2 Preliminary

2.1 Vectors and Matrices

Assume X = (x0, . . . , xm−1) ∈ F
m
2n , the Hamming weight of X is defined as

H(X) = #{i|xi �= 0, i = 0, 1, . . . ,m − 1}.

For P = (pij) ∈ F
m×m
2n , denote Z the integer ring, the characteristic matrix

of P is defined as P ∗ = (p∗
ij) ∈ Z

m×m, where

p∗
ij =

{
0, pij = 0,

1, pij �= 0.

For a matrix M ∈ Z
m×m, M ≥ 0 means that all elements of M are non-

negative; M > 0 means that all elements of M are positive. Furthermore, the
primitive index of P is defined as

γ(P ) = min{t|(P ∗)t > 0, t ∈ Z
+}.

2.2 Some Parameters for the S-box

Given a function G: F
n
2 → F

k
2 , let δ ∈ F

n
2 and Δ ∈ F

k
2 . The differential probability

δ → Δ is defined as

p(δ G−→ Δ) �
#{x ∈ F

n
2 |G(x) ⊕ G(x ⊕ δ) = Δ}

2n
.

If p(δ G−→ Δ) = 0, then δ → Δ is called an impossible differential of G.
For an S-box S: F

n
2 → F

n
2 , let a, b ∈ F

n
2 , p(a S−→ b) > 0 means that the

input difference a can propagate to the output difference b through the S-box,
and we get that a

S−→ b is a possible differential. Moreover, we call that a can
be matched with b through the S-box. We denote VS(a) all possible output
differences through an S-box for the fixed input difference a, i.e.,

VS(a) � {b|p(a S−→ b) > 0}.

Similarly, for the inverse of the S-box, VS−1(a) is defined as

VS−1(a) � {b|p(a S−1

−−→ b) > 0}.
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Furthermore, we denote λS as the maximum number of nonzero output dif-
ferences for any nonzero input difference in an S-box, i.e.,

λS � max
a�=0

{#VS(a)}.

Similarly, λS−1 is defined as

λS−1 � max
a�=0

{#VS−1(a)}.

Moreover, let μS denote the match probability of a nonzero input difference and
a nonzero output difference selected in a random way for an S-box, i.e.,

μS �

2n−1∑
a=1

{#VS(a)}

(2n − 1)2
.

Note that since the number of “0” in differential distribution table(DDT) is larger

than a half of all elements, we get that λS ≤ 2n−1, λ−1
S ≤ 2n−1, μS <

1
2
.

2.3 Two SPN Structures

SPN Ciphers. The SPN structure is one of the most popular structures used in
constructing cryptographic primitives. It iterates some SP-type round functions
to achieve confusion and diffusion. F2n denotes the finite field with 2n elements.
The SP-type function f : F

m
2n → F

m
2n used in this paper is defined as follows.

Assume the input x = (x0, . . . , xm−1), where xi ∈ F2n and i =
0, 1, . . . ,m − 1. The output of f is defined as

f(x) = P ◦ S(x),

where S(x) � (s0(x0), . . . , sm−1(xm−1)) ∈ F
m
2n , the bijective transformation si:

F2n → F2n , the linear transformation P : F
m
2n → F

m
2n . Note that the linear trans-

formation in the last round is omitted for an r-round SPN structure. Then, an
r-round SPN cipher is simply denoted as (SP )r−1S.

The linear transformation P in the SPN structure is vital against different
kinds of cryptographic methods. One method to construct linear transformation
is directly taking large branch number. Specifically, the linear transformation
matrix can be maximum distance separable (MDS) matrix such as Kuznyechik
[21]. Another popular method is combining the ShiftRows and MixColumns
transformations together to construct the linear transformation, such as AES
[11], LED [23], PHOTON [24]. In this paper, we mainly investigate two struc-
tures with these two kinds of linear transformations.

Note that the S-box is defined as S: F
n
2 → F

n
2 for the two structures. When

the following condition is satisfied, the structure is defined as ε(1)(n,m).

– The linear transformation matrix P = (pij) ∈ F
m×m
2n is an m×m MDS matrix.
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When the following condition is satisfied, the structure is defined as ε(2)(n, d).

– The linear transformation P consists of ShiftRows and MixColumns. More-
over, the ShiftRows transformation is a permutation of {0, 1, . . . , d − 1}, and
the MixColumns transformation matrix is a d × d MDS matrix.

At CRYPTO 2015, Sun et al. proposed the definition of the structure:

Definition 1. [17] Let E: F
k
2 → F

k
2 be a block cipher with bijective S-boxes as

the basic nonlinear components.

(1) A structure εE on F
k
2 is defined as a set of block ciphers E′ which is exactly

the same as E except that the S-boxes can take all possible bijective trans-
formation on the corresponding domains.

(2) Let α, β ∈ F
k
2 . If for any E′ ∈ εE, α � β is an impossible differential of E′,

α � β is called an impossible differential of εE.

From Definition 1, we learn that if α → β is an impossible differential of εE ,
α → β is always an impossible differential of the cipher E.

Furthermore, the structure εKuznyechik deduced by Kuznyechik in Sect. 3
belongs to ε(1)(8, 16), the structure εPHOTON deduced by the internal permu-
tation of PHOTON in Sect. 4 belongs to ε(2)(n, d).

3 Impossible Differentials of Kuznyechik

3.1 Specification of Kuznyechik

Kuznyechik [21] is an SPN block cipher that has been recently chosen to be
standardized by the Russian federation as a new GOST cipher. It updates a
128-bit state for 9 rounds with a 256-bit mask key. As depicted in Fig. 1, the
round function consists of:

(1) SubBytes (S): A nonlinear byte bijective mapping.
(2) Linear Transformation (P ): An optimal diffusion operation that operates

on a 16-byte input and the branch number is 17. P and P−1 are shown in
AppendixA.

(3) Xor layer (X): Mixing round keys with the encryption state.

Additionally, an initial XOR layer is applied to the first round. The full
encryption process where the ciphertext C is updated by the plaintext M is
given as:

C = (X[K10] ◦ P ◦ S) ◦ · · · (X[K2] ◦ P ◦ S) ◦ (X[K1])(M).
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Fig. 1. Encryption procedure of Kuznyechik

3.2 Impossible Differentials of Kuznyechik and Its Structure

Firstly, we consider the length of impossible differentials of the structure deduced
by Kuznyechik which belongs to ε(1)(8, 16).

Since any submatrix of an MDS matrix is nonsingular [22], any element of
the MDS matrix is nonzero. Therefore, we can get the following lemma.

Lemma 1. Let P ∈ F
m×m
2n be an MDS matrix. Then γ(P ) = γ(P−1) = 1.

Sun et al. showed that the upper bound of impossible differentials for an SPN
structure is γ(P ) + γ(P−1) at EUROCRYTO 2016 [18], where P is the linear
transformation and m ≤ 2n−1−1. Moreover, when the input difference α and the
output difference β satisfy H(α) + H(β) ≤ m for ε(1)(n,m), 2-round impossible
differentials can be constructed. Therefore, we have the following theorem.

Theorem 1. If m ≤ 2n−1 − 1, the longest impossible differentials of ε(1)(n,m)
is 2-round.

From Theorem 1, we can know the upper bound of the length of impossible
differentials for the structure, i.e., the details of the S-boxes are not investigated.
However, for Kuznyechik with specific an S-box, there may exist longer length
of impossible differentials. In this section, we are going to construct 3-round
impossible differentials considering the S-box and permutation of Kuznyechik.

For Kuznyechik, we only consider the input and output differences whose
Hamming weights are 1 in this section. Instead of constructing 3-round impos-
sible differentials, we are going to search all possible 3-round differentials with
practical differential characteristics.

In Fig. 2, assume the 15-th position of Δin and Δout have nonzero differences,
others have zero differences. If Ω = ∅ after implementing Algorithm 1, it shows
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Fig. 2. 3 rounds of Kuznyechik

that not all positions of P (ΔX1) and P−1(ΔY1) can be matched through the
16 S-boxes, thus they are 3-round impossible differentials for any Δin �= 0 and
Δout �= 0. If Ω �= ∅, when the differentials in Ω can not cover all possible
differentials, there also exist 3-round impossible differentials.

Algorithm 1. The middle match phase for Kuznyechik

Input: the nonzero position of Δin, the nonzero position of Δout

output: the set Ω which contains all VS−1(ΔX1) → VS(ΔY1)
1. for every ΔX1, ΔY1

2. if δin can be matched with δout for all 16 S-boxes,
3. put VS−1(ΔX1) → VS(ΔY1) into the set Ω
4. end if
5. end for

We have tested all possible nonzero input and output difference positions by
implementing Algorithm 1, the results are listed as in Table 1 and Proposition 1
is obtained. Since all 3-round possible differentials are presented in Table 1, the
remaining ones are 3-round impossible differentials.

Proposition 1. For Kuznyechik, if H(ΔX1) = H(ΔY1) = 1, there is at most
one differential characteristic of ΔX1

PSP−−−→ ΔY1.

Remark 1. For Kuznyechik, we can search 3-round impossible differentials where
the Hamming weights of the input and output differences are larger than 1.
However, the larger the Hamming weights differences are, the higher the com-
putation complexity is. Furthermore, 3-round impossible differentials searched
in this paper are closely related to the S-box, if we change the S-box for another
one, 3-round impossible differentials will be different.
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Table 1. All 3-round possible differentials for Kuznyechik

Position Input differences Output differences

(0,15) VS−1(196) VS(75)

(1,0) VS−1(221) VS(58)

(5,9) VS−1(5) VS(81)

(6,3) VS−1(169) VS(213)

(8,12) VS−1(98) VS(28)

(11,4) VS−1(110) VS(192)

(11,13) VS−1(116) VS(45)

(13,9) VS−1(41) VS(186)

(14,1) VS−1(110) VS(231)

(14,7) VS−1(68) VS(31)

(14,8) VS−1(207) VS(121)

(15,3) VS−1(95) VS(156)

(15,7) VS−1(103) VS(84)

3.3 Theoretical Analysis

For ε(1)(n,m), the length of impossible differentials is at most 2-round. In this
paper, we denote NΔ the number of differential characteristics for a pair of
the input and output difference selected randomly. NΔ can be used to estimate
whether there are impossible differentials for a concrete cipher. When NΔ < 1,
there probably exists an impossible differential for this concrete difference pair.
Since we only consider the input and output differences where the Hamming
weights of them are 1 in this section, we present the following proposition.

Proposition 2. In a specific cipher of ε(1)(n,m), 3-round impossible differen-
tials of this cipher can probably be constructed if the following estimation holds:

NΔ ≈ (λS × λS−1) × μm
S < 1.

Proposition 2 can give us some suggestions whether there exist 3-round
impossible differentials before searching. For Kuznyechik, we find λS =
114, λS−1 = 128, μS = 0.42, then

NΔ ≈ (114 × 128) × 0.42−16 = 2−6.19 < 1.

Since λS ≤ 2n−1, λS−1 ≤ 2n−1, μS <
1
2
, according to Proposition 2, NΔ ≈

(λS×λS−1)×μm
S < 22(n−1)×2−m = 22(n−1)−m, we obtain the following corollary.

Corollary 1. In a specific cipher of ε(1)(n,m), 3-round impossible differentials
of this cipher can probably be constructed if the following estimation holds:

2(n − 1) < m.

For example, n = 8,m = 16 in Kuznyechik, 2 × (8 − 1) < 16.
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Fig. 3. One round function

4 Impossible Differentials of the Internal Permutation
in PHOTON

4.1 Specification of the Internal Permutation in PHOTON

The PHOTON family were designed by Guo et al. at CRYPTO 2011 [24] and
they take extended sponge function as the whole structure. The internal per-
mutation in the sponge function is similar with AES and we view the internal
permutation as a block cipher in this paper. Moreover, the round number of the
internal permutation in PHOTON is 12. One round of the permutation consists
of the following steps which is presented in Fig. 3.

(1) AddConstants(AC): The first column is mixed with constants.
(2) SubCells(S): Every sub-block is updated by S-box, where n = 4, 8.
(3) ShiftRows(SR): The i-th row is rotated by i positions to the left, where

i = 0, 1, . . . , d − 1.
(4) MixColumns(MC): The MixColumns matrix is a d × d MDS matrix, the

number of branch is d + 1, where d = 5, 6, 7, 8. The MixColumns matrices
for different d are shown in [24].

4.2 Impossible Differentials of the Internal Permutation in
PHOTON and Its Structure

In the structure ε(2)(n, d), the linear transformation P consists of two parts: the
ShiftRows and MixColumns, where the MixColumns can be represented by a
d × d MDS matrix. Furthermore, Sun et al. showed that the upper bound of
impossible differentials for an SPN structure is γ(P ) + γ(P−1). Note that when
P = MC ◦ SR, the restricted condition in [18] can be modified as d ≤ 2n−1 − 1.
Therefore, we have the following theorem.

Theorem 2. If d ≤ 2n−1 − 1, the longest impossible differentials of ε(2)(n, d)
cover 4 rounds.

The proof of this theorem is shown in AppendixB.
From Theorem 2, we know the upper bound of the length of impossible differ-

entials for ε(2)(n, d). However, for the internal permutation in PHOTON, there
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Fig. 4. 5 rounds of the internal permutation in PHOTON

may exist longer length of impossible differentials if we exploit the specific S-box.
In this section, we are going to find 5-round impossible differentials considering
the specific S-box in PHOTON. As in Sect. 3, we only consider that the Ham-
ming weights of the input and output differences are 1, and we only search all
possible differentials.

The procedure can be divided into three phases (see Fig. 4).
Middle match phase: In Fig. 4, this phase is between ΔX4 and ΔY4. Our
method searches all possible ΔY4 to match all possible ΔX4. If we directly
match each other by exhaustive search, the computation complex is (2n − 1)2d.
However, we can take the Early-Abort [25] technique to reduce the computation
complexity. If we run all possible ΔX5 with one column by another to match
ΔY4, the computation complexity can reduce to at most (2n − 1)d+1 × d. If
Θ = ∅ after implementing Algorithm 2, all Δin and Δout which can propagate
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Algorithm 2. The middle match phase(ΔX4 → ΔY4)

Input: the nonzero position of ΔX4, ΔY4 and the size of MixColumns d
Output: the set Θ which contains all ΔX4 → ΔY4

1. for every ΔY4 do
2. for the j-th column of ΔX5 from 0 to (d − 1)
3. if all the j-th column of δin and δout can not be matched with each other

for d S-boxes,
4. break;
5. end if
6. end for
7. put ΔX4 → ΔY4 into the set Θ
8. end for

Algorithm 3. The backward match phase(ΔX1 → ΔX4)

Input: the nonzero position of ΔX1, all ΔX4 obtained by Algorithm 2 and
the size of MixColumns d

Output: the set Φ which contains all ΔX1 → ΔX4

1. for every ΔX1 do
2. if ΔX3 can be matched with ΔX4 obtained by Algorithm 2 for d S-boxes,
3. put ΔX1 → ΔX4 into the set Φ
4. end if
5. end for

to ΔX4 and ΔY4 respectively are 5-round impossible differentials and we finish
searching. Otherwise, we operate next match phase.
Backward match phase: In Fig. 4, this phase is between ΔX1 and ΔX4. After
middle match phase, ΔX4 are obtained. If Φ = ∅ after implementing Algorithm
3, all Δin and Δout which can propagate to ΔX4 and ΔY4 respectively are 5-
round impossible differentials. Then we finish searching. Otherwise, we operate
next match phase.
Forward match phase: In Fig. 4, this phase is between ΔY4 and ΔY1. After
backward match phases, we can get ΔX1 and ΔY4 which can match with ΔX4

obtained in Algorithm 3. If Λ = ∅ after implementing Algorithm 4, all Δin and
Δout which can propagate to ΔX4 and ΔY4 respectively are 5-round impossible
differentials. Otherwise, ΔY1 are obtained. Furthermore, all possible differentials
ΔX1 → ΔY1 are searched. Therefore, VS−1(ΔX1) = Δin → Δout = VS(ΔY1)
are all 5-round possible differentials for given the nonzero positions of ΔX4

and ΔY4. And the remaining differentials are 5-round impossible differentials.
When all nonzero positions of ΔX4 and ΔY4 are searched, all 5-round impossible
differentials with the Hamming weights of the input and output differences being
1 are obtained.
Example: When n = 4, d = 6 in PHOTON, let all the differences of the 5-
th column of ΔX4 and the diagonal of ΔY4 be nonzero and other elements be
zero(see Fig. 4), we implement Algorithm 2 and the results are listed in Table 2.

Since Θ �= ∅ after implementing Algorithm 2, we implement Algorithm 3 and
the results are presented in Table 3.
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Algorithm 4. The forward match phase(ΔY4 → ΔY1)

Input: all ΔY4 which can propagate to ΔX4 obtained in Algorithm 3,
the nonzero position of ΔY1 and the size of MixColumns d

Output: the set Λ which contains all ΔY4 → ΔY1

1. for every ΔY1 do
2. if ΔY1 can be matched with ΔY4 obtained by Algorithm 2 for d S-boxes,
3. put ΔY4 → ΔY1 into the set Λ
4. end if
5. end for

Table 2. Results of Implementing Algorithm 2

The 5-th column of ΔX4 Diagonal of ΔY4

(12,8,7,13,3,5) (5,13,3,6,2,6)

(2,10,11,5,4,3) (3,12,4,5,4,6)

(7,7,8,8,8,3) (8,7,9,15,13,8)

(13,12,1,15,4,4) (3,4,4,5,12,9)

(13,4,10,15,4,4) (7,4,4,5,12,9)

(11,3,4,11,2,12) (1,5,1,4,4,15)

Since there are some results obtained after implementing Algorithms 2 and
3, we continue to implement Algorithm 4 and we find that there is no result
obtained. Therefore, any difference of Δin and Δout with H(Δin) = H(Δout) = 1
which can propagate to ΔX4 and ΔY4 respectively in Fig. 4 are 5-round impos-
sible differentials.

When we change the nonzero difference positions of ΔX4 and ΔY4, we can
use above method to search 5-round impossible differentials. Similarly, if n = 4,
d = 7, we can also search 5-round impossible differentials with our method.

4.3 Theoretical Analysis

For ε(2)(n, d), we have shown that the longest impossible differentials cover 4
rounds. In this section, we also use NΔ to estimate whether there is an impossible
differential. When NΔ < 1, it means that there probably exists an impossible
differential. Moreover, we show the following proposition.

Table 3. Results of Implementing Algorithm 3

Row of the 5-th column of ΔX1 Value of ΔX1 The 5-th column of ΔX4

1 2 12,8,7,13,3,5

2 2 11,3,4,11,2,12

4 3 11,3,4,11,2,12

5 7 13,12,1,15,4,4
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Proposition 3. In a specific cipher of ε(2)(n, d), 5-round impossible differentials
of this cipher can probably be constructed if the following estimation holds:

NΔ ≈ (λS × λS−1)d+1 × μd2

S < 1.

Proposition 3 can give us some suggestions whether there are 5-round impos-
sible differentials or not before searching. For the PHOTON with n = 4, d = 6,
we find that λS = 8, λS−1 = 8, μS = 0.43. Therefore,

NΔ ≈ (8 × 8)7 × 0.43−36 = 2−1.83 < 1.

Furthermore, when n = 4, d = 7, Proposition 3 holds.

Remark 2. For a specific cipher of ε(2)(n, d), if we attempt to search 5-round
impossible differentials, we need to take small S-box and big d × d MixColumns
for the cipher. Moreover, if the S-box is given, the bigger the value of d is, the
higher of the probability to search 5-round impossible differentials is.

Since λS ≤ 2n−1, λS−1 ≤ 2n−1, μS <
1
2
, according to Proposition 3, NΔ ≈

(λS × λS−1)d+1 × μd2

S < 22(n−1)(d+1)−d2
. We obtain the following corollary.

Corollary 2. In a specific cipher of ε(2)(n, d), 5-round impossible differentials
of this cipher can probably be constructed if the following inequation holds:

2(n − 1)(d + 1) < d2.

Note that when n = 4, d = 7 in PHOTON, Corollary 2 holds.

5 Conclusion

For many byte-oriented ciphers, the lengths of impossible differentials for the
ciphers are the same as those of the corresponding structures. In this paper,
we find that the details of the S-boxes could be used to construct longer impos-
sible differentials provided the sizes of the confusion and diffusion layers satisfy
some special constraint. For Kuznyechik, 3-round impossible differentials have
been constructed, specially, all of these differentials whose input and output
Hamming weights are 1 have been found. For the internal permutation in the
PHOTON family, we have constructed 5-round impossible differentials with the
4-bit S-box and d × d MixColumns where d = 6, 7. For these two ciphers, both
the lengths of impossible differentials are 1 round more than those of their struc-
tures.

We have also tried to construct longer zero correlation linear hulls for these
two ciphers. However, since most of the elements in the Linear Approximation
Table (LAT) are nonzero rather than that more than half of the elements in
the Differential Distribution Table are zero, the strategy shown in this paper
does not work for these two ciphers. We leave the problem that whether these
new impossible differentials could lead to better key-recovery attacks as an open
problem.
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A The Linear Transformation Matrix P and the Inverse
Transformation Matrix P−1 of Kuznyechik

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cf 98 74 bf 93 8e f2 f3 0a bf f6 a9 ea 8e 4d 6e
6e 20 c6 da 90 48 89 9c c1 64 b8 2d 86 44 d0 a2
a2 c8 87 70 68 43 1c 2b a1 63 30 6b 9f 30 e3 76
76 33 10 0c 1c 11 d6 6a a6 d7 f6 49 07 14 e8 72
72 f2 6b ca 20 eb 02 a4 8d d4 c4 01 65 dd 4c 6c
6c 76 ec 0c c5 bc af 6e a3 e1 90 58 0e 02 c3 48
48 d5 62 17 06 2d c4 e7 d5 eb 99 78 52 f5 16 7a
7a e6 4e 1a bb 2e f1 be d4 af 37 b1 d4 2a 6e b8
b8 49 87 14 cb 8d ab 49 09 6c 2a 01 60 8e 4b 5d
5d d4 b8 2f 8d 12 ee f6 08 54 0f f3 98 c8 7f 27
27 9f be 68 1a 7c ad c9 84 2f eb fe c6 48 a2 bd
bd 95 5e 30 e9 60 bf 10 ef 39 ec 91 7f 48 89 10
10 e9 d0 d9 f3 94 3d af 7b ff 64 91 52 f8 0d dd
dd 99 75 ca 97 44 5a e0 30 a6 31 d3 df 48 64 84
84 2d 74 96 5d 77 6f de 54 b4 8d d1 44 3c a5 94
94 20 85 10 c2 c0 01 fb 01 c0 c2 10 85 20 94 01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 94 20 85 10 c2 c0 01 fb 01 c0 c2 10 85 20 94
94 a5 3c 44 d1 8d b4 54 de 6f 77 5d 96 74 2d 84
84 64 48 df d3 31 a6 30 e0 5a 44 97 ca 75 99 dd
dd 0d f8 52 91 64 ff 7b af 3d 94 f3 d9 d0 e9 10
10 89 48 7f 91 ec 39 ef 10 bf 60 e9 30 5e 95 bd
bd a2 48 c6 fe eb 2f 84 c9 ad 7c 1a 68 be 9f 27
27 7f c8 98 f3 0f 54 08 f6 ee 12 8d 2f b8 d4 5d
5d 4b 8e 60 01 2a 6c 09 49 ab 8d cb 14 87 49 b8
b8 6e 2a d4 b1 37 af d4 be f1 2e bb 1a 4e e6 7a
7a 16 f5 52 78 99 eb d5 e7 c4 2d 06 17 62 d5 48
48 c3 02 0e 58 90 e1 a3 6e af bc c5 0c ec 76 6c
6c 4c dd 65 01 c4 d4 8d a4 02 eb 20 ca 6b f2 72
72 e8 14 07 49 f6 d7 a6 6a d6 11 1c 0c 10 33 76
76 e3 30 9f 6b 30 63 a1 2b 1c 43 68 70 87 c8 a2
a2 d0 44 86 2d b8 64 c1 9c 89 48 90 da c6 20 6e
6e 4d 8e ea a9 f6 bf 0a f3 f2 8e 93 bf 74 98 cf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B Proof of Theorem 2

To prove Theorem 2, we only need calculate γ(P ) and γ(P−1). The linear trans-
formation P = MC ◦SR, which is an d2×d2 matrix. According to the definition
of γ(P ), we have P ∗ ≥ 0, γ(P ) > 1, where P ∗ is the characteristic matrix of P .
Thus we consider whether (P ∗)2 > 0.

We denote (P ∗)2 = (qij), thus qij = 0 means that the i-th output byte of the
2-round SPN cipher is independent of the j-th input byte. Furthermore, when
Y = (P ◦ S)2(X), we denote X = (x0, x1, · · · , xd2−1), Y = (y0, y1, · · · , yd2−1),
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where xi, yi ∈ F2n . If we can prove that any xi is dependent on all yj , then
(P ∗)2 > 0.

Assume that X1 = (0, 0, . . . , 0︸ ︷︷ ︸
i−1

, xi, 0, . . . , 0), xi ∈ F
∗
2n , Y1 = S(X1), there is

only one element of Y1 related to xi. We denote Y2 = P (Y1) = MC ◦ SR(Y1),
since the MC matrix is a d × d MDS matrix, there is one column of Y2 which is
viewed as a d×d matrix related to xi. We denote Y = P ◦S(Y2), since the index
transformation of ShiftRows is a permutation and the MC matrix is a d×d MDS
matrix, all elements of Y are dependent on xi.

Therefore, γ(P ) = 2. Similarly, with the same method, we get γ(P−1) = 2.
Furthermore, γ(P )+γ(P−1) = 4. Note that we can construct 4-round impossible
differentials for ε(2)(n, d) when the input difference α and the output difference
β such that H(α) = H(β) = 1.
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Abstract. Commonly used encryption methods treat the plaintext
merely as a stream of bits, disregarding any specific format that the data
might have. In many situations, it is desirable and essential to have the
ciphertext follow the same format as the plaintext. Moreover, ciphertext
length expansion is also not allowed in these situations. Encryption of
credit card numbers and social security numbers are the two most com-
mon examples of this requirement. Format-Preserving Encryption (FPE)
is a symmetric key cryptographic primitive that is used to achieve this
functionality. Initiated by the work of Black and Rogaway (CT-RSA
2002), many academic solutions have been proposed in literature that
have focused on designing efficient FPE schemes. However, almost all
the existing FPE schemes are based on Feistel construction and have
efficiency issues.

In this work, we propose a new family of efficient FPE schemes that
are Substitution-Permutation (SP) based constructions at their core. We
term it as SPF family of FPE schemes. All the underlying SP transforma-
tions in these constructions have been defined such that they preserve
the format of the data. We then demonstrate an instance of our con-
struction applicable for digits. We show that our scheme is at least 5
times more efficient than existing FPE designs for most of the practical
applications.

Keywords: Format-Preserving Encryption · SPN · MDS matrix ·
Binary matrix · Active S-boxes

1 Introduction

1.1 Format-Preserving Encryption

Block ciphers such as AES [13] and DES [11] are the most popular and widely used
cryptographic primitives to maintain confidentiality of messages. Traditionally,
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 64–83, 2017.
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block ciphers handle binary data of specific sizes, for example 128-bit for AES [13].
Various modes of operations are used to encrypt data of size other than the block
size. In many practical applications, such as encryption of Credit Card Number
(CCN) or Social Security Number (SSN), it is desirable to encrypt messages
from an arbitrarily sized set onto the same set. Unfortunately, the conventional
block ciphers and their modes such as ECB, CBC, or CTR are not suitable for
this purpose.

Format-Preserving Encryption (FPE) refers to transformation of data that
is formatted as a sequence of the symbols in such a way that the encrypted
form of the data has the same format and length as the original data. Thus, a
format-preserving encrypted CCN also “looks like” a CCN. Many financial or e-
commerce databases contain credit card numbers or social security numbers and
for both practical and legal reasons, encryption of these values are important.
However, these fields that need to be encrypted have fixed formats and a plain
use of conventional block cipher will produce ciphertexts violating the specified
format.

1.2 Existing Work

The problem of encryption over fixed formats was first investigated in the data-
base community by Brightwell and Smith [10]. They mention that when a tradi-
tional block cipher is used to encrypt a plaintext of a specific format, it produces a
ciphertext which “bears roughly the same resemblance to plaintext . . . as a ham-
burger does to a T-bone steak”. Schoroeppel and Orman proposed the Hasty
Pudding Cipher which first demonstrated an encryption scheme that worked
for arbitrary domain [34]. A few years later, Black and Rogaway [8] made the
first systematic study of this problem and suggested some approaches to achieve
the desired functionality. They proposed three methods: Prefix cipher, Cyclic
walking and a Feistel based construction. However, all these methods have some
serious efficiency or security issues. The Prefix cipher is suitable only for small
domain messages, say when it contains ≤ 230 elements. Cycle walking scheme is
expensive when the message set is significantly smaller than the block size of the
underlying encryption algorithm. The Feistel based construction only achieves
birthday bound security and is not suitable for domains of intermediate size (say,
domain size between 230 to 260, which covers most of the real world use-cases
such as SSN or CCN).

In 2008, Terence Spices proposed Feistel Finite Set Encryption Mode
(FFSEM) [37], which combines cycle walking and an AES based balanced Feis-
tel network. An year later, Bellare et al. [3] studied the problem of FPE in
its full generality. They provided rigorous treatment of “rank-then-encipher”
approach to encrypt over arbitrary domains. In [31], a method to construct a
format-preserving block cipher using maximally unbalanced Feistel network was
proposed. Based on the theoretical analysis of [3], Bellare et al. [30] proposed a
concrete design based on Feistel network and submitted the same to NIST. This
design was named FFX as an abbreviation of “Format-preserving Feistel-based
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encryption”. FFX uses 10 or more rounds thus requiring at least ten invoca-
tions of the underlying cipher. Thus, for most of the motivating applications of
FPE (such as CCN or SSN) at least 10 invocation of the underlying cipher are
required.

BPS [9] is another Feistel based scheme submitted to NIST and very sim-
ilar to FFX. BPS consists of 8 rounds and is more efficient than FFX, although
still much slower than many block ciphers. Visa Format Preserving Encryption
(VFPE) [36] is an FPE scheme by Visa Inc. which uses AES in counter mode and
uses the resulting stream to encrypt the plaintext data. A special publication of
NIST SP800-38G [20] specifies three modes of operation for format-preserving
encryption, submitted to NIST earlier under the names FFX[Radix] [1], VAES3 [38]
and BPS-BC [9]. The mode FE2 was shown to be insecure [21]. Recently, new mes-
sage recovery attacks on FF1 and FF3 have been shown by Rogaway et al. [2].
A method to construct FPE scheme using tweakable block ciphers was proposed
in [26].

Our Contribution: In this work, we present a new FPE construction SPF and
a concrete instance of SPF for digits. This is the first known SPN based FPE
construction. The key idea is to use only format-preserving transformations to
ensure that the format of message and ciphertext are always same. Considering
the domain size of the practical applications of FPE schemes, we add tweak
in the proposed construction. To handle long length messages, we propose the
adoption of well-known counter mode. We estimate a lower bound on the number
of active S-boxes for different number of rounds of the proposed construction.
The security of our design is then analyzed against differential, linear, square,
multiset, related tweak and key scheduling attacks. Finally, we compare the
efficiency of a concrete instance of the proposed construction for the most popular
and widely used format - ‘digit’, with FFX and show that the proposed design is
almost 5 times efficient.

The rest of the paper is organized as follows. In Sect. 2, the important pre-
liminaries are described. The proposed SPF construction is presented in Sect. 3.
The concrete instance of SPF for digits and security analysis of the proposed
scheme against conventional attacks is presented in Sects. 4 and 5 respectively.
We then analyze the performance of the proposed design in Sect. 6. Finally, we
conclude our work in Sect. 7.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , N − 1} be the alphabet set, where N ≥ 2. The size N of
the set Σ is referred to as the ‘format size’ and the elements of Σ are referred to
as ‘symbols’, for example for digits, N = 10. Σ∗ denotes the set of strings with
elements from Σ. We assume that the plaintext contains symbols only from Σ. If
this is not the case, suitable encoding and decoding functions could be used and
then one can apply the “rank-then-encipher” approach [3] to use the methods
described in this work.
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2.1 Notations

|Σ| : The number of elements of a set Σ containing symbols
�N : Symbol wise addition modulo N
�x� : Smallest integer just greater than the real number x
S[i] : ith symbol of the string S from the left
S || T : Concatenation of two strings S and T
|S|N : Length of the string S in base N
F2b : Galois Field GF(2b).

3 The SPF Construction

In this section, we describe a new approach to design an efficient FPE algorithm
for substitution-permutation network (SPN) based constructions termed as SPF
format-preserving encryption.

3.1 Specification

The SPF is an example of SPN based iterated block cipher. Specifically SPFN
r

denotes a member of SPF family consisting of r-rounds that can be used to realize
FPE for the format set Σ, where |Σ| = N . The input/output of each intermediate
round is denoted as state [13]. Each state consists of n = 16 symbols. For ease of
representation and discussion, we represent each state as a 4×4 two-dimensional
array of symbols.

The transformation of an input string of length n over symbol set Σ to state
is described by the function STATE(X) (Algorithm 1); while the inverse trans-
formation of a state to produce a string over Σn is described by the function
STRING(state) (Algorithm 2).

Algorithm 1. STATE(X)
input : string X
output: state

1 for i ← 0 to (n − 1) do
2 j ← i mod 4;
3 k ← �i/4�;
4 state[j, k] ← X[i];

5 return state

Algorithm 2. STRING(state)
input : state
output: string X

1 for i ← 0 to 3 do
2 for j ← 0 to 3 do
3 n ← (i + j × 4);
4 X[n] ← state[i, j];

5 return X

3.2 The Round Transformations

Each round of SPF construction consists of these basic transformations: (1)
Format-Preserving SubBytes (FPSB), (2) ShiftRows, (3) Format-Preserving
MixColumns (FPMC) (4) Format-Preserving Key Addition (FPKA) and (5)
Format-Preserving Tweak Addition (FPTA).
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Format-Preserving SubBytes Transformation (S-layer): By substitution,
we refer to a non-linear transformation that is used to create confusion. The S-
box used here is a bijective mapping of Σ over Σ, i.e., S : Σ → Σ. Since,
each symbol of the state is going to be substituted by a symbol of Σ, this
transformation ensures that the each symbol of resulting state is an element
of Σ. As choice of S-box is critical to the security of the block cipher, proper
characterization and selection of the same is of utmost importance. Apart from
the criteria to thwart differential and linear attacks, hardware implementation
cost should be considered as the final metric to choose the S-box. For smaller
formats it is possible to exhaustively search for all possible S-boxes and choose
the optimal one.

ShiftRows Transformation: The ShiftRows transformation is same as
described for AES [13] and will always preserve the format of the message in
its current description.

Format-Preserving MixColumns Transformation (P-layer): Permuta-
tion layer is used to introduce diffusion in the cipher and is also called the
diffusion layer. This layer ensures that the local differences of an internal state
before P -layer propagates to the larger area of the state after this layer. Selection
of a linear diffusion layer P is very crucial from the view point of efficiency as
well as security. The P -layer of popular ciphers like AES [13] is realized by using
MDS matrix [23].

The branch number of a permutation function represents the diffusion rate
and measures the security of the design against differential [6] and linear [29]
cryptanalysis. The weight wt(X) can be defined as the number of non-zero com-
ponents in X, where X = (x1, x2, . . . , xn)T . The branch number (β) of a matrix
M is defined as:

β(M) = min{wt(X) + wt(M × X)|X �= 0}

While determining the format-preserving permutation layer, the main criteria for
us was that it should preserve the format like other transformations and have
maximum branch number, i.e., an MDS matrix for every format size. However,
we could not find a suitable MDS-matrix satisfying our requirements. This is
explained through Lemma 1 which shows the non-existence of such matrices
under some reasonable restrictions.

Lemma 1. Let M = (mi,j) be a d × d MDS matrix over a field F2b . Let S be
a set of v elements such that S = {0, 1, . . . , v − 1}. Further, let S be a subset of
F2b such that {0, 1} ⊂ S and ∀X ∈ Sd, Y = M × XT ∈ Sd. Then:

1. mi,j ∈ S∗, ∀ 0 ≤ i, j ≤ d,
2. S∗ = mi,jS

∗, ∀ 0 ≤ i, j ≤ d,
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3. For any i, j ∈ {0, . . . , d − 1}, the cyclic group generated by mi,j with respect
to multiplication is subset of S∗, i.e., 〈mi,j〉 ⊆ S∗,

4. S is an additive subgroup of F2b .

Proof. Let |S| = v and S∗ = S\{0}. So |S∗| = v − 1.

1. Let M = (C0, C − 1, . . . , Cd−1), where Ci denotes the i-th column. Then
for X = (1, 0, 0, . . . , 0) ∈ Sd, Y = M × XT = C0 and from the property of
M and S, C0 = Y ∈ Sd. Since M = (mi,j) is MDS, mi,j can not be 0 for
any i, j ∈ {0, . . . , d − 1}. So C0 = Y ∈ S∗d. Similarly it can be shown that
Ci ∈ S∗d. Thus mi,j ∈ S∗, ∀ 0 ≤ i, j ≤ d.

2. Whenever mi,j = 1, the statement is true. Let md−1,d−1 �= 1. Let Xi =
(0, . . . , 0, si) ∈ Sd. So Yi = M × XT = siCd−1 ∈ Sd. For all si ∈ S∗, let us
consider the codes of the form (Xi|Yi). For all these v − 1 codes, the first
d − 1 components of X ′

is are 0. Since M is MDS, following points are easy to
observe:
(i) d components of all Yi’s are non-zero i.e. Yi ∈ S∗d.
(ii) For all d − 1 ≤ i ≤ 2d − 1, the i-th component for all these v − 1 codes

should be different.
Note that (2d − 1)-th component of any of these v − 1 codes, is of the form
xsj , where sj ∈ S∗. From the second observation it is clear that |{xsj |sj ∈
S∗}| = v − 1. Also form the property of M and S, {xsj |sj ∈ S∗} ⊆ S∗. Thus
S∗ = {xsj |sj ∈ S∗} i.e. S∗ = xS∗.

3. Since 1 ∈ S∗, using 2 we get
mk

i,j = mk
i,j × 1 = (mi,j × mi,j × mi,j × . . . × (mi,j × 1)))) . . .) ∈ S∗

for any integer k. Thus 〈mi,j〉 ⊆ S∗.
4. Let s0, s1 ∈ S∗. From 2, it is easy to check that m−1

0,0s0 ∈ S∗. Similarly
m−1

0,1s1 ∈ S∗. Let X = (m−1
0,0s0,m

−1
0,1s1, 0, . . . , 0) ∈ Sd. Then Y = M × Xt ∈

Sd. Note that the first component of Y is m0,0 × m−1
0,0s0 + m0,1 × m−1

0,1s1 =
s0 + s1. So, s0 + s1 ∈ S. Also 0 ∈ S. Since S ⊂ F2b , elements of S itself are
their additive inverses and also the associative property is inherited. So S is
an additive subgroup of F2b . ��

Remark: From result 4 of Lemma 1, a d × d format-preserving MDS matrix
exists if |S| = v is of the form 2b.

The linear diffusion layer of SPF can be instead realized by 4 × 4 binary
matrix with addition modulo N .

Format-Preserving Key Addition Transformation: Given a round key
Ki and current state Si, the key addition operation is symbol wise addition
modulo N .

S′
i ← (Ki + Si) mod N

The modular addition of each symbol of Ki and Si ensures that each symbol
of S′

i is over Σ. Given the secret key K, the round keys Ki will be generated
through a key scheduling algorithm (KSA).
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Format-Preserving Tweak Addition Transformation: Similar to key
addition step, given a subtweak Twi, and the current state S′

i, the tweak addition
is a symbol wise addition modulo N .

Si+1 ← (Twi + S′
i) mod N

The modular addition of each symbol of Ki and S′
i ensures that each sym-

bol of Si+1 is over Σ. Given the public tweak Tw (tweak value is known to
the attacker), the subtweaks Twi will be generated through a tweak scheduling
algorithm (TSA).

The Operating Mode of SPF: We adopt the Counter Mode [19] of operation
using SPFN

r routine internally to handle large messages. For a large message
M , let us suppose j plaintext blocks are generated, i.e., M = M1||M2|| . . . ||Mj

such that ∀i, 1 ≤ i < (j − 1), |Mi|N = n symbols and |Mj |N ≤ n. Given a
sequence of counters T1, T2, . . ., Tj , the SPFN

r cipher is invoked for each counter
block to generate output blocks O1, O2, . . ., Oj respectively. These output blocks
are then added modulo N with corresponding plaintext blocks to produce the
respective ciphertext blocks C1, C2, . . ., Cj . The ciphertext C is then formed by
concatenating these ciphertext blocks together, i.e., C = C1||C2|| . . . ||Cj . The
overall process is defined as follows:

Ci ← SPFN
r (K,Mi, Ti) for i = 1, . . . , j.

C ← C1||C2|| . . . ||Cj .

For decryption, the same scheme is used, except that the received ciphertext
block is now subtracted modulo N with the output block to produce the cor-
responding plaintext block. The same SPFN

r routine is used internally for both
encryption and decryption processes.

We choose counter mode primarily for two reasons. Firstly, this mode allows
us to convert the SPFN

r block cipher into a stream cipher, i.e., it eliminates the
need to pad a message to be a multiple of block length. Thus, it allows operation
in real time. Secondly, it has many attractive properties like it allows random
access during decryption and supports parallel encryption of message blocks. On
the other hand, this mode suffers from one major limitation of malleability, i.e.,
by changing one symbol in ciphertext the corresponding plaintext symbol can be
changed without affecting the rest of the symbols in the plaintext. This limitation
is inherently translated to our SPF scheme as well. However, this constraint is
applicable to other block cipher modes like CBC, OFB etc. as well [32]. To
mitigate this flaw, one can follow the standard practice of incorporating some
additional message authentication protocol in our SPFN

r scheme, the design and
analysis of which is currently beyond the scope of this work.

Algorithms 3 and 4, show the encryption and decryption process of SPF con-
struction respectively.
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Algorithm 3. EncSPFN
r

(K,M,T, Tw)
input : Key K, Message M ,

Counter T , Tweak Tw
output: Ciphertext C

1 Initialize a string Q=NULL and
� ← |M |N ;

2 state ← STATE(T );
3 FPKA(state,K);
4 FPTA(state,Tw);
5 for j ← 1 to r − 1 do
6 FPSB(state);
7 ShiftRow(state);
8 FPMC(state);
9 FPKA(state,Kj);

10 FPTA(state,Tw);

11 FPSB(state);
12 ShiftRow(state);
13 FPKA(state,Kj);
14 FPTA(state,Tw);
15 string Q ←STRING(state);
16 for i ← 0 to (� − 1) do
17 C[i] ← (M [i] �N Q[i]);

18 return C;

Algorithm 4. DecSPFN
r

(K,C, T, Tw)
input : Key K, Ciphertext C,

Counter T , Tweak Tw
output: Message M

1 Initialize a string Q=NULL and
� ← |M |N ;

2 state ← STATE(T );
3 FPKA(state,K);
4 FPTA(state,Tw);
5 for j ← 1 to r − 1 do
6 FPSB(state);
7 ShiftRow(state);
8 FPMC(state);
9 FPKA(state,Kj);

10 FPTA(state,Tw);

11 FPSB(state);
12 ShiftRow(state);
13 FPKA(state,Kj);
14 FPTA(state,Tw);
15 string Q ←STRING(state);
16 for i ← 0 to (� − 1) do
17 M [i] ← (C[i] �N Q[i]);

18 return M ;

4 SPF for Digits

The motivating applications of FPE are CCN and SSN, i.e., string of digits. In
this section, we present an instance of SPF construction for digits. Our design
rationales are motivated by efficiency and security on target applications. Since,
SPF is a family of format-preserving encryption schemes, the actual number
of rounds for a scheme depends upon different parameters: format size, avail-
able plaintext/ciphertext, number of rounds that can be attacked using existing
cryptanalytic techniques and security margin.

4.1 The S-box Layer

We use a single S-box S : Σ → Σ, where |Σ| = 10. We first analyzed all
possible 10! mapping of S exhaustively and picked up mappings that have good
differential and linear probabilities. In our next step, we applied the same criteria
for mapping S ◦ S. Finally, we used hardware implementation cost as the final
metric to choose the S-box for digits shown in Table 1. The selected S-box is
implemented as a 4-bit to 4-bit lookup table. For better space efficiency, we
can use Boolean logic to implement the same. The S-box can be represented as
yn = S[xn]. An optimal implementation with logic gates is as follows:

y0 = {x2x3 + x1x̄3 + x0x̄3} y1 = {x̄1x̄2x̄3 + x̄0x̄1x̄3}
y2 = {x̄0x3} y3 = {x2x̄3}

The maximum differential probability and the maximum correlation for this S-
box are 2−2.32 and 2−1.32 respectively. We will discuss this in detail in Sect. 5.1.
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Table 1. Representation of S-box for digits.

x 0 1 2 3 4 5 6 7 8 9
S[x] 2 6 8 7 1 4 9 5 3 0

4.2 The ShiftRow Layer

As discussed earlier, the ShiftRows operation in our construction will work like
AES.

4.3 The Permutation Layer

The linear diffusion layer of our SPF construction is realized by the following
4 × 4 binary matrix with addition modulo N .

M =

⎛
⎜⎝

1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎠

The binary matrix M used for the presented scheme has a branch number of
4. The usage of such binary matrix also results in a fast implementation in the
hardware setup. The transformation of a column of state through our MixCol-
umn matrix is represented as:

⎡
⎢⎣
br,0
br,1
br,2
br,3

⎤
⎥⎦ =

⎛
⎜⎝

1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎠ ×

⎡
⎢⎣
ar,0

ar,1

ar,2

ar,3

⎤
⎥⎦ mod N

4.4 Key Schedule

We propose a new format preserving key scheduling algorithm (KSA) for the SPF
cipher. Simplicity, performance and security are the main design rationals behind
determining the structure of the proposed KSA. The key schedule algorithm
takes the 128-bit cipher key K and the format size (N = 10) as inputs and
generates (r+1) round subkeys as outputs. Let the cipher key K be represented
as k127k126 . . . k2k1k0. We first divide the cipher key K into two bit string of
equal size and find K0 = STATE(K mod 1016). We iterate Step 5 to Step 9 of
the Algorithm 5 to extract remaining r subkeys. In [3] Bellare et al. estimated
the lower bound of statistical distance between the uniform distribution on Zp

and the distribution obtained by b mod p after picking b randomly in Za as p/a
where a > p. We estimate 2−75 (a = 2128, p = 1016 ≈ 253) as the statistical
distance for digits. This bound suggests that the mod 1016 operation does not
impact distributions dramatically.
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Algorithm 5. KSA(K)
input : Key K
output: Round Keys

K0, K1, . . . , Kr

1 x1 ← k127k126 . . . k65k64;
2 y1 ← k63k62 . . . k1k0;

3 K0 ← STATE(K mod 1016)
4 for i ← 1 to r do
5 yi ← ((yi � 15) + xi) ⊕ i;
6 xi ← (xi 
 31) ⊕ yi;
7 Ki ←

STATE((xi||yi) mod 1016);
8 xi+1 ← xi;
9 yi+1 ← yi;

10 return (K0, K1, . . . , Kr);

Algorithm 6. TSA(Tw)
input : Tweak Tw
output: Round tweaks

Tw0, Tw1

1 Tw0 ← STATE(Tw mod 108);
2 Tw ← (Tw � 32);

3 Tw1 ← STATE(Tw mod 108);
4 return (Tw0, Tw1);

4.5 Tweak Addition

Liskov et al. [28] formalized the concept of tweakable block cipher and showed
that tweakable block ciphers are an important construction if changing the tweak
is efficient than changing the key. The tweak is supposed to be completely public
data and is used to randomize the instance of block cipher, i.e., different values
of tweak corresponds to different families of permutations. In [25], Jean et al.
presented the generic TWEAKEY framework that can be built using any key
alternating block cipher and proposed three instantiations - Deoxys-BC, JoltiK-
BC and KIASU-BC that were the first ad-hoc tweakable block ciphers based
on AES.

Considering the domain size (in between 230 to 260) of traditional FPE appli-
cations and birthday bound security (2b/2 for b-bit block cipher), we introduce
an additional parameter tweak in our construction. Choice of tweak addition of
SPF construction is motivated by the tweak addition of KIASU-BC cipher [25]. A
64-bit Tw will be used to generate two subtweaks Tw0 and Tw1 (Algorithm 6)
and will be added to the first two rows of the state for each even and odd
numbered rounds correspondingly. As discussed in [3], the statistical distance
between choosing random subtweaks and subtweaks generated by TSA is upper
bounded by 2−37. This bound suggests that the mod 108 operation (as shown in
Algorithm 6) does not impact the distributions dramatically.

5 Security Analysis

In this section, we evaluate the security of the SPF construction against con-
ventional differential [6] and linear attacks [29]. However, there are many other
dedicated and effective attacks against AES type structure. We provide prelimi-
nary analysis of our construction against these dedicated attacks.

5.1 Differential and Linear Cryptanalysis

Differential and linear cryptanalysis are two of the most powerful techniques to
analyze symmetric-key primitives. An S-box is called active if the given input
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pattern is non-zero for this particular S-box. In order to provide security analysis
of proposed design against linear and differential cryptanalysis, we use the results
of the seminal work done by Daemen and Rijmen [14] to provide lower bound
on active S-boxes for different rounds of SPF.

Theorem 1 [14]. For a key-alternating block cipher with a γλ round structure
the number of active S-boxes of any two-round is lower bounded by the branch
number of λ.

Theorem 2 [14]. For a key-iterated block cipher with a γπθ round transforma-
tion and diffusion optimal π, the number of active S-boxes in a four-round is
lower bounded by the square of branch number of θ.

Note that, the notation γ and λ used in Theorem 1 refer to a local non-
linear transformation (S-box layer) and a linear mixing transformation (P-layer)
respectively. The notations γ, π and θ of Theorem 2 refers Substitution transfor-
mation, Shift Row transformation and Permutation transformation respectively.

Number of Active S-boxes for SPF: The permutation layer of SPF uses a 4×4
binary M matrix with branch number 4. Hence, any two round differential/linear
characteristic of SPF has a minimum of 4 active S-boxes and any four round
differential/linear characteristic of SPF has a minimum of 16 active S-boxes.
Table 2 contains number of rounds (r) and minimum number of active S-boxes
(Ar) for SPF. In FSE 2006, Granboulan et al. [22] presented a general framework
for differential and linear cryptanalysis of block cipher when the block is not a
bitstring. A N × N matrix Δ simulates the behavior of S-box S over differences
by Δ(S)a,b = #{x|S(x + a) − S(x) = b}. The maximum entry of the matrix
D(S) is defined as:

D(S) = max
(a,b) �={0,0}

Δ(S)a,b.

The corresponding maximum propagation probability is defined as DP (S) =
D(S)/N . The D(S) is equal to 2 for SPF10r and the corresponding maximum
differential probability (DP (S)) is equal to 2−2.32 ( 2

10 ≈ 2−2.32).

Table 2. Minimum number of active S-boxes Ar for r rounds of SPF.

r 1 2 3 4 5 6 8 10 12 16 20
Ar 1 4 5 16 17 20 32 36 48 64 80

In order to investigate the security against linear cryptanalysis of the S-
box S : Σ → Σ, firstly we calculate the distribution vector Λ0(S){a,b} =
(#{x ∈ Σ|〈a, b|x, S(x)〉 = u})u∈{Z}, where 〈a, b|x, y〉 = 〈a|x〉 − 〈b|y〉 and
〈a, x〉 is scalar product of a and x. The distribution vector represents the
behavior of the considered S-box. The random behavior can be defined as:
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fa,b;u = 1
N #(x, y) ∈ Σ × Σ|〈a, b|x, y〉 = u. The bias of the S-box represents the

difference of behavior of S-box S and random case and defined as ΛS(S)a,b;u =
Λ0(S)a,b;u −fa,b;u. The highest bias measures the non linearity of the S-box. The
maximal bias is equal to 2

10 , i.e., 2−2.32. The maximum correlation for this S-box
is 2−1.32 respectively.

The probability of a single 8-round differential characteristic is upper
bounded by 2−72 and the maximum correlation of a 8-round linear trial is 2−42.
These bounds ensure that the data requirement to mount these attacks will
exceed the available data 254(1016 ≈ 253.2) for 8 rounds.

5.2 Square Attack

The SQUARE attack was first proposed by Daemen et al. in [12] for block
cipher SQUARE, a forerunner of AES. It was shown to be applicable to AES as
well. This attack consists of choosing a special set of plaintexts and studying its
propagation through the block cipher. This attack is very powerful against AES
type ciphers.

In this section, we describe a 8-round square attack against SPF. This attack
is similar to that described in [17]. For our 8-round attack, we first construct a
5-round distinguisher. Consider a set of 10 plaintexts in which the first symbol
takes all possible 10 values (active symbol) and the remaining symbols take
any constant value that remains same throughout the set. We call such a set
of plaintexts as Λ-set. Since, our construction involves tweak addition, in this
attack, let us suppose that the attacker uses Λ-sets for the two subtweaks as
well, i.e., one symbol of both the subtweaks are active. Considering these, Fig. 1
shows the five round transformations of SPF construction. Let xj , yj , zj , wj

denote the symbol values in round j after SubBytes, ShiftRows, MixColumns
and Key/Tweak Addition stage respectively. Let A[p] denote the pth symbol
(column wise) in any intermediate state A where, 0 ≤ p ≤ 15. Similarly, Ai

j [p]
denotes the pth symbol of ith state A in round j where, (where, 0 ≤ i ≤ 9).

In the pre-whitening stage, since Λ-sets of plaintexts and subtweaks are in
control of the attacker, he chooses the plaintexts P i and subtweaks TW i

0 (where,
0 ≤ i ≤ 9) such that for each i the sum (P i + Twi

0) mod 10 is a constant. The
state remains constant until S1 where the first symbol becomes active again due
to addition of the second sub-tweak Tw1. In, round 2 consider state S2[0]. Due
to sub-tweak addition of Tw1[0], we have:

wi
2[0] = (zi

2[0] + Twi
1[0]) mod 10

Since the tweak symbol as well as the state symbol are active, if we add all the
values in w2[0], it follows that the addition sum mod 10 is always 0:

w0
2[0] + w1

2[0] + . . . w9
2[0] = (z02 [0] + Tw0

1[0]) mod 10 +
(z12 [0] + Tw2

1[0]) mod 10 +
...
(z92 [0] + Tw9

1[0]) mod 10



76 D. Chang et al.

SSB
1 SSR

1 SMC
1P S0 S1

KA SB SR MC

SSB
2 SSR

2 SMC
2

S2

SB SR MC

SSB
3

SSR
3 SMC

3
S3

SB SR MC

SSB
4

SSR
4 SMC

4 S4

SB SR MC

SSB
5 SSR

5 SMC
5

S5

SB SR MC

A C C C
C
C
C C C C

C C C
C C C

C C C C
C
C
C C C C

C C C
C C C

TA

C C C C
C
C
C C C C

C C C
C C C

C C C C
C
C
C C C C

C C C
C C C

C C C C
C
C
C C C C

C C C
C C C

A C C C
C
C
C C C C

C C C
C C CKA

TA

A C C C
C
C
C C C C

C C C
C C C

A C C C
C
C
C C C C

C C C
C C C

A C C C
C
A
A C C C

C C C
C C C KA

TA

B C C C
C
A
A C C C

C C C
C C C

? C C C
C
A
A C C C

C C C
C C C

C C C
C
C
C A C C

C A C
C C C

? C A C
C
?
? A C C

A A C
A A C

?
KA

TA

C A C
C
?
? A C C

A A C
A A C

?

C A C
C
?
? A C C

A A C
A A C

? C A C
A
A
C ? A C

C ? A
A C C

? A ? A
B
?
? ? B C

? ? A
? ? A

?
KA

TA

A ? A
B
?
? ? B C

? ? A
? ? A

?

A ? A
?
?
? ? ? C

? ? A
? ? A

? A ? A
?
?
C ? ? ?

A ? ?
? A ?

? ? ? ?
?
?
? ? ? ?

? ? ?
? ? ?

?
KA

TA

? ? ?
?
?
? ? ? ?

? ? ?
? ? ?

?

Round 1

Round 2

Round 3

Round 4

Round 5

Fig. 1. A five round distinguisher for SPF. Here ‘A’ denotes an active symbol, ‘B’
denotes that mod 10 sum of all values in that symbol is 0 and ‘?’ denotes unknown
symbol.

This can be re-written as1:

w0
2[0] + w1

2[0] + . . . w9
2[0] = (

9∑
i=0

zi
2 +

9∑
i=0

Twi
1) mod 10

= (45 + 45) mod 10
= 0

This shows that the set of values in the first symbol position after second round
tweak addition forms a balanced set with probability 1. After SubBytes operation
in round 3, the balanced set property is destroyed. Similar explanation can be
given till state transformation after ShiftRows in round 5. After MixColumns
operation in round 5, we get a completely unknown state as shown in Fig. 1.
However, at state SMC

5 , consider the second column. Then, we have:

9∑

i=0

zi5[1] +

9∑

i=0

zi5[3] =

9∑

i=0

yi
5[1] +

9∑

i=0

yi
5[2] +

9∑

i=0

yi
5[3] +

9∑

i=0

yi
5[0] +

9∑

i=0

yi
5[1] +

9∑

i=0

yi
5[3]

= 2 (
9∑

i=0

yi
5[1] +

9∑

i=0

yi
5[3]) +

9∑

i=0

yi
5[0] +

9∑

i=0

yi
5[2]

= 2 (
9∑

i=0

yi
5[1] +

9∑

i=0

yi
5[3]) + 0

= Even number

1 Sum of first 10 numbers is 10×9
2

.
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In the right hand side of the above equation, since y5[0] and y5[2] bytes are
active bytes their sum over all 10 states is always going to be zero as discussed
above. As such the additive sum of Z5[1] + Z5[3] over all 10 states will always be
an even number with probability 1. This property will hold true even after tweak
addition in round 5 (since (10 × C) mod 10 = 0). In random case, the output
will be even with a probability half. Hence, a valid distinguisher is constructed.
This five round attack can be extended up to eight rounds by adding one round
in backward and 2 rounds in the forward directions to recover the secret key.

5.3 Impossible Differential Cryptanalysis

Impossible Differential Cryptanalysis (IDC) [5] uses impossible differential char-
acteristics to eliminate the incorrect keys. We propagated 16 input truncated
differential and 16 output different truncated differential with encryption and
decryption function respectively. Then, we used miss-in-the-middle technique
to found impossible differential characteristics for our SPF construction. We
searched for truncated input characteristics and output characteristics contra-
dicting with probability one and found 5 rounds impossible characteristics for
proposed construction. The input and output characteristics for 5 rounds impos-
sible characteristics is as follows:

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 5R
� (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

More rounds can be appended before and after the 5 rounds impossible char-
acteristics depending upon the block size and the key size. We found up to 9
rounds characteristics, which can be used for key-recovery attacks, but no such
characteristics could be found when the number of round is greater than 9.

5.4 Key Related Attacks

Slide attacks [7] and related-key attacks [4] are the two most important types of
key scheduling attacks. Our key scheduling algorithm (KSA) for SPF discussed
in Sect. 4.4 adds a round dependent counter in each round to prevent sliding of
subkeys. For related key attack to work, the attacker should be able to iden-
tify meaningful relationships between the different subkeys so that a related key
differential can be constructed over certain rounds. However, the non-linear addi-
tion operation and the modular function in our key scheduling algorithm does
not allow an adversary to deduce all the other round keys (and the master key)
from one round key by working through the key schedule. The modular function
in particular also makes it very hard for an attacker to control the difference
propagation through different round keys. Moreover, we also analyzed that each
bit of the secret key K is used by the fourth round for all format size 10 or more.
Hence, we believe that these features of the proposed KSA are sufficient to resist
related key attacks.
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5.5 Related Tweak Attack

Unlike the related key attack where the master key is unknown to the attacker
and it is difficult for him to control the difference propagation in the various
round keys, launching a related tweak attack to recover the secret key is easier
for him. This is because the tweak value is a public entity and can be chosen by
the attacker himself. This allows him to insert differences in the tweak input of
the block cipher and construct related tweak differentials. Thus, it is imperative
to assess the security of our SPF scheme in this stronger related tweak setting.

We developed an automated program to count the number of active S-boxes
and return an upper bound on the probability of the best related tweak differen-
tials. To keep the search space from exploding, we consider the differential trails
in a truncated manner, i.e., either a symbol is active or it is not active.

The best related tweak differentials for 3 and 4 rounds of SPF have 1 and
4 active S-boxes respectively. For 6-rounds, SPF has 26 active S-boxes and for
7-rounds the count is 40.2 Table 3 lists the number of active S-boxes for the
first 8-rounds of SPF. Thus, the probability of any characteristic on more than
6 rounds is not higher than 2−26×2.32 = 2−60.32. This bound ensures that the
amount of data required to launch the attack will exceed the data available to an
attacker (i.e., 1016 ≈ 253.2). Hence, our SPF construction can resist any related
tweak attack of practical complexity if the number of rounds is ≥ 6.

Table 3. Count of active S-box (Ar) and corresponding differential probability (Pr0)
over different rounds of SPF for related tweak differentials.

Rounds 1 2 3 4 5 6 7 8

Ar 0 0 1 4 12 26 40 55
Pr 0 0 2−2.32 2−9.28 2−27.84 2−60.32 2−92.8 2−127.6

5.6 Multiset Attack

Multiset attack on AES was first proposed by Dunkelman et al. in [18]. This attack
which is a variant of meet-in-the-middle attack on AES presented by Demirci et
al. in [15], involves constructing a set of functions which maps an ordered 256-
byte sequence in one active byte in the first round to an unordered 256-byte
sequence (a multiset) in one byte of the output after 4-rounds of AES to recover
the key. The current best multiset attacks can reach 7-rounds of AES-128 [16],
9-rounds of AES-192 [27] and 10-rounds of AES-256 [33].

Since our FPE scheme has structural similarity with AES, therefore it was
imperative for us to test this attack against our scheme. Our key schedule algo-
rithm (described in Sect. 4.4 does not allow recovery of all round keys (and the
secret key) from the knowledge of only one round key. Hence, attacks discussed

2 These active S-box counts are the lower bounds and the actual count might be larger.
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in [27,33] will not work for our construction (since they exploit dependencies
between round keys). Our preliminary analysis shows that the number of rounds
attacked in our scheme is same as that for AES-128, i.e., a maximum of 7-rounds
can be attacked. This is because addition of sub-tweaks to each round key just
changes their values to some new constant C’ and thus does not provide any
extra degrees of freedom to exploit with.

By considering the attacks above discussed, performance and security margin,
we recommend r = 14.

6 Performance

In this section, we provide performance analysis of SPF construction for digit.
We present efficiency comparison of FFX, BPS, VFPE and SPF for digits.

The existing popular design FFX and BPS [20] requires minimum 11 and
8 invocations of AES respectively to encrypt messages containing 16 symbols,
i.e., approximately 110 and 80 substitutions and permutations for FFX and BPS
respectively. On the other hand SPF achieves the same goal by using 14 substitu-
tion and permutation. Table 4 shows that the SPF is almost 7 and 5 times more
efficient than FFX and BPS respectively for most practical uses of FPE.

Table 4. Efficiency comparison of FFX, BPS and VFPE with SPF1014 for digits. The table
shows an analysis of numbers of symbols vs number of substitution and permutation
required [35] (an entry corresponding to FPE schemes (in row) and number of symbols
(in column) represents number of substitution and permutation required).

FPE schemes No. of symbols
16 32 64 128

SPF 14 28 56 112
FFX 110 110 310 410
BPS 80 80 160 240
VFPE 10 10 20 40

VFPE [36] outperforms all three constructions including SPF construction for
digits. However it is a patented design and has few security concerns [26,35]. For
large format size messages, the SPF construction will outperform VFPE.

6.1 Implementations

SPF is suitable for efficient implementation on a wide range of devices. Consid-
ering the practical uses of FPE, we implemented SPF1014 on 64-bit platforms and
compared the performance with FFX. Similar to AES, table lookups in SPF can
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be used to combine different round transforms, leading to very fast implementa-
tions. Interestingly, the lookup tables are much smaller compared to AES. Apart
from making such implementations more interesting for resource constrained
environments, the small lookup tables also reduce timing attacks. Unlike AES,
SPF uses a binary matrix for the FPMC operation, as a result the implemen-
tation can be much more efficient on constrained devices. Some of the major
uses of FPE algorithms are in encrypting large databases on high performance
processors, as a result we tested our implementation on two high performance
platforms as well as one mobile and one server platform, the experimental results
are shown in Table 5.

Table 5. Experimental results on various 64-bit processors.

Processor Clock Speed for SPF1014
Speed Symbols/s Cycles/Symbol

Intel Core i7 6700 3.4 GHz 132.4× 106 25.6
Intel Core i7 4770 3.4 GHz 117.2× 106 29.0
Intel Core i5 5200 2.2 GHz 26.8× 106 82.0
Intel Xeon E5 2630 2.3 GHz 52.9× 106 43.4

We implemented SPF1014 using a table based implementation, similar to AES
implementations in C using assembly intrinsics wherever necessary. The MOD
operations were implemented using a table look-up in conjunction with PDEP
and PEXT instructions, added in the new BMI2 instruction set, significantly
improving the overall performance. BMI2 instruction set was introduced in the
Haswell Micro-architecture.

We performed comparisons with reference implementations of FF2 and found
out that the performance ratios with SPF1014 are in agreement with the values in
Table 4.

7 Conclusion

In this work, we presented a new efficient format-preserving encryption con-
struction based on substitution-permutation networks. The construction uses
only format-preserving basic transformations. We present a concrete instance of
proposed construction for format size 10, which is the most practical use of FPE.
For the security analysis of the presented design, we consider conventional crypt-
analytic techniques as well as dedicated attacks. We estimated the number of
rounds of constructions considering security and efficiency. Finally, we compared
the efficiency of the presented construction with existing schemes. The construc-
tion is approximately five times more efficient than existing popular designs such
as FFX and BPS for all practical uses of FPE. A similar construction for other
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popular format size is an interesting open problem. Another interesting research
direction would be to design an efficient format preserving encryption scheme
that can handle long messages and solve the problem of malleability.
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Abstract. In this paper, we target the poor diffusion pattern in the
key schedule of AES. More specifically, the column-by-column word-wise
property in the key schedule matches closely with the MixColumns oper-
ation in the round diffusion, which leads to several attacks in both single-
key and related-key model. Therefore, we propose a new key schedule by
switching the interaction from between different columns to between dif-
ferent rows, which offers stronger security than the original AES key
schedule and better efficiency than other key schedule proposals. First,
our proposal reduces the number of rounds of several single-key attacks,
such as popular SQUARE attacks and meet-in-the-middle attacks, e.g.
Derbez et al., EUROCYRPT 2013 and Li et al., FSE 2014. Meanwhile, it
increases the security margin for AES in the related-key model, namely
making the related-key differential attacks with local collisions which
broke the full rounds of AES impossible.

Compared with the original key schedule, our modification is slight
and just does a transposition on the output matrix of the subkeys. Com-
pared with other AES key schedule variants, no extra non-linear oper-
ations, no complicated diffusion method, and no complicated iteration
process of generating subkeys exist in our modification.

Keywords: AES · Key schedule · Meet-in-the-middle · Related-key ·
Differentials · MixColumns

1 Introduction

In 2000, Rijndael was chosen by NIST as the Advanced Encryption Standard
(AES), as a replacement of DES for the US government. This new standard
encryption algorithm has become one of the most widely used block ciphers in
the last decade. There has been a lot of cryptanalysis against it, such as SQUARE
attacks, differential attacks, impossible differential attacks, differential-linear
attacks, and meet-in-the-middle attacks. A considerable number of these attacks
exploit the weaknesses of the AES key schedule. In the single-key setting, the
weakness in the key schedule can be exploited in the SQUARE and meet-in-the-
middle attacks. This assists the attacker to gain free bytes of subkeys for extend-
ing the targeted rounds of an attack. Moreover, almost all the differential-type
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 84–102, 2017.
DOI: 10.1007/978-3-319-54705-3 6
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attacks can be put in a related-key model with a lower time and data complexity
than in a single-key model by using such weaknesses. Since most current attacks
focus on maximizing the number of rounds that can be broken and on minimiz-
ing the time and data complexity, these security vulnerabilities caused by the
key schedule are worthy of more study.

There are many modified variants of AES, especially modifications of the
key schedule, which aim to patch the security flaw. In 2002, May et al. stud-
ied the defects of the AES key schedule [5]. By taking frequency test and SAC
test they found that the original AES key schedule has a problem of bit leakage
and does not satisfy a one-way function property. The authors then proposed a
new design of key schedule, applying a three-round AES cipher function, which
has good bit diffusion and confusion, to derive the subkeys. In 2010, Nikolic
presented a tweak for the key schedule of AES, which is called xAES [9]. The
author added several rotation operations and extra S-boxes, which would not
change the overall structure of the original key schedule. After checking by an
automatic search tool developed by [1], the author showed that xAES can resist
related-key differential attacks. In 2011, Choy et al. [8] proved that there are
a number of equivalent key pairs in May et al.’s key schedule, which should
be avoided in a block cipher design. Then they improved this key schedule by
eliminating these weak keys. Moreover, they emphasized that the improved key
schedule can defend against the related-key differential attacks in [2] and the
related-key boomerang attacks in [3]. All of these modifications to the AES key
schedule introduce extra operations leading to a reduction of execution speed
and making the new key schedule totally inconsistent with the old one.

Our contribution. This paper starts with an interesting observation of the
AES key schedule. That is, the column-based diffusion pattern is poor. Not
only the widely studied properties of slow diffusion and high linearity, but also
this poor diffusion pattern is responsible for the existing attacks using weak-
nesses of the key schedule. We propose a new key schedule almost the same as
the original one, without bringing any additional operations, e.g., no non-linear
operations (S-boxes) and no complicated diffusion course (adding rotation or
XOR operations to involve more bits). So it is significantly faster than other
AES variants. All we have done is just to transpose the output matrix of the
subkeys by changing the subscripts before it enters the round encryption. Our
simple change affects the positions of the diffusion pattern of the key schedule,
instead of altering the branch number. We demonstrate that with our key sched-
ule, the threat of SQUARE attacks, meet-in-the-middle attacks and related-key
differential attacks has been eased.

Although our key schedule does not eliminate the two important
weaknesses—slow diffusion and high linearity—it is interesting that the minor
change can bring much higher security for both related-key attacks and single-
key attacks, while most of other modifications to the AES key schedule only
impact related-key attacks.
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Organization. This paper is organized as follows. In Sect. 2, we present the
AES block cipher, especially its key schedule. Then we introduce several major
pieces of analysis as well as modifications proposed in previous work. In Sect. 3,
the new key schedule is described. In Sect. 4, we focus on the single-key attacks
for AES, and show why exploiting our key schedule is more resistant against
these attacks. In Sect. 5, we revisit the related-key differential attacks for AES,
and explain why applying our key schedule can avoid the relate-key differential
attacks. In Sect. 6 we summarize this paper and give some discussions.

2 Description and Security Analysis of the AES Key
Schedule

2.1 A Short Description of AES

AES has a 128-bit state and supports three key sizes: 128, 192, and 256 bits [7]. It
is a byte-oriented cipher, and has 10 rounds for 128-bit, 12 rounds for 192-bit and
14 rounds for 256-bit keys. In each round of AES, the internal state can be seen
as a 4 × 4 matrix of bytes, which undergoes the following basic transformations:

– SubBytes(SB): byte-wise application of S-boxes.
– ShiftRows(SR): cyclic shift of each row of the state matrix by some amount.
– MixColumns(MC): column-wise matrix multiplication.
– AddRoundKey(AK): XOR of the subkey to the state.

An additional AddRoundKey operation is performed before the first round (the
whitening key) and the MixColumns is omitted in the last round. The state byte
in the i’th row and j’th column of round r is Sr

i,j .
The key schedule is required to produce 11, 13 or 15 128-bit subkeys from

master keys of size 128, 192 or 256-bit respectively. Each 128-bit subkey con-
tains four words (a word is a 32-bit quantity which is denoted by W[·]). Call
the number of rounds Nr, and the number of 32-bit words in the master key
Nk(e.g., for AES-128, Nr = 10, Nk = 4). The key schedule is shown in Algo-
rithm 1 below: K[·] is a word of the master key, RCON[·] are round constants,
and RotWord(·) rotates four bytes by one byte position to the left. The subkey
used in the AddRoundKey of round r is denoted by Kr. The whitening key is
K0. Each subkey is represented as a byte matrix of size 4 × 4 (corresponding to
the state matrix), and the j’th byte in the i’th row of the matrix is denoted by
Kr

i,j(0 < i, j < 4). The “equivalent” key obtained when the MixColumns and
AddRoundKey operations are interchanged is denoted as K̂r = MC−1(Kr).

2.2 Previous Analysis of the AES Key Schedule

Partial key guessing property and key splitting property of the AES key schedule
were discussed in [4]. Partial key guessing describes the situation where knowl-
edge of parts of the subkeys allows the attacker to calculate many other subkey
(or even master key) bits. Key splitting describes the following phenomenon:
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Algorithm 1. Key schedule of AES
for i = 0, ..., Nk − 1 do

W [i] = K[i];
end for
for i = Nk, ..., 4(Nr + 1) − 1 do

temp ←− W [i − 1];
if i mod Nk == 0 then

temp ←− SB(RotWord(temp)) ⊕RCON [i/Nk];
end if
if Nk = 8 and i mod 8 == 4 then

temp ←− SB(temp);
end if
W [i] ←− W [i − Nk]⊕ temp;

end for

the two topmost rows interact with the two bottommost rows through only 14
bytes (for AES-256) and if we guess these 14 bytes, the rest of the key has been
split into two independent halves controlling half of the expanded key bytes.

The authors in [5] proposed the following three properties to strengthen the
key schedule of AES:

1. be a collision-resistant one-way function;
2. has minimal mutual information between all subkey bits and master key bits;
3. has an efficient implementation.

The authors measured property 1 with Shannon’s concepts of bit confusion
and bit diffusion. They also used the frequency test to judge the bit confusion
of AES key schedule, and the Strict Avalanche Criterion (SAC) test to measure
its bit diffusion. According to the results, they pointed out that the majority of
subkeys do not attain complete bit confusion, and none of them pass the SAC
test. This poor performance suggests that the AES key schedule suffers a serious
bit leakage and is not one-way.

The linear relationship between subkey values were described in [6]. The
authors studied the propagation of (known) key differences in the key schedule for
all three key sizes of AES, which is supposed to be useful for related-key attacks.
However, the authors pointed out that for any key sizes, no such relationship
exists which covers the entire key schedule (i.e., which involves the first subkey
and the last subkey, but no subkeys in between), so there is no straightforward
way to exploit the finding to mount a related-key attack against the full AES.

A breakthrough in the related-key cryptanalysis of AES has been made
in [2,3]. In [2], a related-key attack on all 14 rounds of AES-256 was presented.
And [3] mounted boomerang attacks on full-round AES-192/256 soon afterwards.
The authors in [2] analyzed two features of the AES key schedule. One is the slow
diffusion which has already been discussed widely in the related-key cryptanaly-
sis. Another feature is that the shift operation in the internal state is preserved
by the key schedule. Based on these features and the existence of local collisions,
they constructed the best related-key differential trails for 9–14 rounds.
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2.3 Previous Modifications to the AES Key Schedule

Increasing the number of rounds is a straightforward and effective way to avoid
many kinds of attacks. The current key schedule of AES can easily produce a few
more subkeys without any substantial change. This enhances the security of AES
to a large extent, and is also what the designer has done for different versions
of AES [7]. However, this method affects the speed of not only the key schedule
but also the actual cipher, reducing the execution speed by a factor that cannot
be ignored. So most of the designers seek to modify the key schedule itself.

The key schedule proposed in [5] generates each 128-bit subkey after the
execution of three rounds of the cipher function, using the XOR of master key
and different round constants as both the data input and the key input. The
only difference among the three versions of the key schedule is the initialization
of the data input and the key input. The authors aimed to apply the elegant
and succinct AES round function to the key schedule, and claimed that his key
schedule has much better performance than the old one by measuring with the
frequency test and the SAC test. However, this key schedule has a relatively large
change compared to the original one, and also has low efficiency due to the large
number of S-boxes, especially in a hash mode. Moreover, 2271 equivalent key
pairs exist in this key schedule [8], which produce the same encryption output
and could be taken as an attack point. Two AES variants to protect against
the related-key attacks of [2,3] are also designed in [8]. One is a revision of [5]’s
key schedule that eliminates the equivalent key pairs. The authors simplify the
initialization of the data input and the key input so that each byte of them only
depends on one instead of two bytes of the master key. This prevents an adversary
from forcing the inputs to have zero differences by choosing an appropriate pair
of related master keys. Another is a new on-the-fly key schedule required in the
hardware implementation.

Both of the key schedules mentioned in [5,8] have irreversibility for subkey,
which may make an attack more difficult to a certain extent. However, the irre-
versibility is likely to result in a lot of equivalent keys. Moreover, these key
schedules increase the security by bringing more nonlinearity that reduces the
efficiency greatly.

A tweaking AES called xAES is presented in [9] by adding a certain number
of rotations and additional S-boxes in the key schedule. A subkey word is rotated
by one byte before participating in the generation of next subkey word. The other
operations are the same as the original AES key schedule. After exploiting an
automatic search tool, the author claimed that the number of active S-boxes
in the best round-reduced related-key differential characteristics has increased,
so xAES is resistant against related-key differential attacks. However, xAES
cannot defend against any single-key attacks, such as recent meet-in-the-middle
attacks [12,14], and also suffers a reduced efficiency.

The key schedules in [8,9] protect mainly against the recent related-key differ-
ential attacks. Hashing the master key before passing it through the key schedul-
ing can also achieve this purpose, since it is hard for an adversary to control the
key differences at the beginning [15].
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3 A New AES Key Schedule Proposal

When it comes to the key schedule design of block ciphers, there still have been
less practical and necessary principles. It is generally believed that, which is
often the case, the design of the key schedule is independent of the design of the
round function. However, in [10], Huang and Lai pointed out that the interaction
between the diffusion of the round function and the diffusion of the key schedule
should get more attention.

Indeed, previous results only focus on the amount of leaked key bits and the
speed of diffusion. Even with the same amount of leaked key bits and the same
speed of diffusion, poor leaked positions and inappropriate diffusion pattern will
lead to

– a calculation dependency path with less actual key information, which is usu-
ally used in the single-key attacks,

– a related-key differential path with high probability, which is exploited in the
related-key attacks.

Therefore, we reconsider the AES key schedule. We find that the position
of leaked subkey materials and the pattern of the diffusion are also responsible
for a number of existing attacks. The major reason is that the AES key sched-
ule has a column-by-column word-wise property, which matches nicely with the
MixColumns operation in the round diffusion layer.

We propose a new key schedule that only has a minor modification to the
original one but offers stronger security in both single-key attacks and related-
key differential attacks, that is, after the execution of original key scheduling,
we transpose the output matrix of each subkey. More specifically, we rearrange
the position of the subkey bytes, by taking the Kr

j,i as subkeys, instead of Kr
i,j ,

just as Fig. 1. The pseudocode is shown in Algorithm 2. Note that ExpandedKey
denotes the output matrix of the original key schedule.

Fig. 1. Transposition on subkey matrix

Algorithm 2. AddRoundKey (State, ExpandedKey)
for i = 0 to 3 do

for j = 0 to 3 do
State[i, j] = State[i, j] XOR ExpandedKey[j, i];

end for
end for
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Efficiency. Our key schedule is almost as efficient as the original one on byte
level. This is especially important for Smart Cards applications. We just need to
change the subscripts of the subkey matrices before they are XORed with the
internal state bytes. Other parts of the implementation are the same as AES.
Also, in hardware the transposition of output only costs negligible time.

Security. After this transposition, the route of subkey generation is changed and
the weakness is removed. Therefore, our new proposal offers stronger security
in both single-key and related-key model. We will give detailed explanations in
Sects. 4 and 5 respectively.

For the convenience of illustrating, hereafter we denote AES with our new
key schedule as tAES.

4 Security Comparison of AES and tAES for Single-Key
Attacks

In the standard single-key model, the block cipher cryptanalysis mainly includes
two aspects: how to find a distinguisher to distinguish the block cipher from a
random permutation and how to recover the key. The cryptanalysts first con-
struct a distinguisher for the reduced-round block cipher, then mount a key-
recovery attack by appending several rounds after the distinguisher. As for the
first aspect, the property of a distinguisher in the single-key setting usually
depends on the construction of the round function rather than the design of the
key schedule. However, in the key-recovery phase, the weakness of the key sched-
ule can be exploited to improve the overall complexity. Therefore, we only focus
on the key-recovery phase when we compare the security of tAES with AES in
the single-key attacks, since our proposal does not change the round function
and tAES can always deduce the same effective distinguisher as AES.

In this section, we first analyse the security of tAES in the single-key setting
by evaluating the actual key information, which was introduced by Huang and
Lai [10] to measure the minimal number of key bits in an attack path when
recover the secret key. Further more, we revisit the SQUARE attacks and Meet-
in-the-middle attacks on AES and demonstrate how tAES can effectively resist
such attacks.

4.1 Actual Key Information of AES and tAES

Actual key information(AKI) was proposed by Huang and Lai in [10], which
can be used to evaluate the time complexity in the key-recovery phase of the
single-key attack, as long as the distinguisher is determined. For simplicity, here
we directly introduce AKI by taking AES and tAES as an example. Refer to [10]
for more details.

First consider the case that there is only one active byte at the end of the
internal state in the (r-3)-th round (out of r rounds). When we do a partial
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Fig. 2. Left is the key schedule of AES, and right is that of tAES. the gray boxes are
the involved key bytes; the “A” mark the key bytes having been guessed; the “B” mark
the leaked key bytes, which can derive from “A”; the “?” mark the unknown key bytes.

decryption in the last three rounds, Sr→ Sr−1 →(Sr−2
1,4 , Sr−2

2,4 , Sr−2
3,4 , Sr−2

4,4 )
→ Sr−3

1,4 forms a calculation dependency path [10]. See Fig. 2. All bytes of the
subkey in the last two rounds and four subkey bytes in the (r-2)-th round need
to be guessed. Note that when four bytes in the same column are obtained by
MixColumns from one active byte (This occurs in the last two rounds), one byte
of the equivalent key K̂j is guessed, instead of guessing four bytes of Kj . That is
to say, there are 21 bytes key bits involved in this path: Kr, K̂r−1

1,4 , K̂r−1
2,3 , K̂r−1

3,2 ,
K̂r−1

4,1 , K̂r−2
1,4 .

Now we revisit the AES-192 key schedule. In the key schedule of AES-192,
knowledge of columns 0, 1, 2, 3 of the subkey Kr allows an attacker to deduce
two columns of the subkey Kr−1, and one column of the subkey Kr−2. See the
left part of Fig. 2. Therefore, K̂r−1

3,2 , K̂r−1
4,1 , K̂r−2

1,4 can be derived from Kr, in
which case the actual key information [10] is Kr, K̂r−1

1,4 and K̂r−1
2,3 , 18 bytes

in total.
However, in the key schedule of tAES-192, knowledge of rows 0, 1, 2, 3 of the

subkey Kr allows an attacker to deduce two rows of the subkey Kr−1, and one
row of the subkey Kr−2. See the right part of Fig. 2. Obviously it is not sufficient
for any one column to compute K̂j unless the remaining two (or three) unknown
bytes in Kj are also guessed, which leads to a heavier workload than guessing
just one byte of K̂j directly. The AKI now is 21 bytes, which is larger than
that of AES. In this situation, although the calculation dependency path and the
involved key bits are the same in tAES as that in AES due to the unchanged
round function, the attacker cannot gain any free bytes to reduce the overall
complexity.
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Table 1. Actual key information of AES and tAES

Path length/ Key bits involved Actual key information/bytes

rounds on the path/bytes AES-128 AES-128 AES-192 tAES-192 AES-256 tAES-256

1 1 1 1 1 1 1 1

2 5 5 5 5 5 5 5

3 21 – – 18 21 20 21

4 – – – – – – –

A similar analysis can also be applied to AES-128 and AES-256. For all the
calculation dependency pathes of 1–4 rounds, we calculated the number of key
bits involved on the path (theoretical value of key guessing) and the AKI (actual
value of key guessing) of all versions of AES and tAES, which is summarized in
Table 1.

Since the total number of key bytes that we need to guess in an key-recovery
phase depends mainly on actual key information, tAES increases the attacking
difficulty in the single-key setting, as we will see in Sect. 4.2.

4.2 SQUARE Attacks and MITM Attacks on AES and tAES

In this section, we compare the security of tAES against SQUARE attacks and
Meet-in-the-middle (MITM) attacks with AES. First we review the well-known
observation on the AES-192 key schedule, which has also been mentioned above.
Observation 1. In the key schedule of AES-192, knowledge of the subkey Kr

allows an attacker to deduce columns 0 and 1 of the subkey Kr−1, and column
3 of the subkey Kr−2.

This weakness of the AES key schedule makes it possible to extend the last
three rounds in the single-key attacks, such as SQUARE attacks and MITM
attacks.

In [11], a generic 7-round SQUARE attack extended from a 6-round SQUARE
attack is proposed, with complexity of 2208. This running time should not have
been suitable for AES-192. But by using Observation 1, three useful key bytes
are gained for free, so 2184 encryption is needed actually, which is lower than
exhaustive search of AES-192. For tAES, Observation 1 turns out to be “In the
key schedule of tAES-192, knowledge of the subkey Kr allows an attacker to
deduce rows 0 and 1 of the subkey Kr−1, and rows 3 of the subkey Kr−2”. In
this case, there are no bytes gained for free any more. Therefore the total time
complexity is 2208, which is computationally infeasible.

In [4], an improved 6-round SQUARE attack is mentioned, whose complexity
is comparable to 272 encryptions. After extending to 7 rounds by adding 128 bits
of key guessing in the last round, a total workload of 2200 is required. However,
guessing the last round key K7 gives us two of the four bytes from K̂6, plus one
byte from K̂5, which saves us three bytes of key guessing. Two improvements
are also given in [4] to generate a 7-round attack, which make an extension to 8
rounds possible. This 8-round attack has a complexity of 2204. Again, fixing K8
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determines two useful key bytes of K̂7, which gives a 2188 complexity. For tAES,
just as mentioned above, we could not get any extra advantage even if we take
the key schedule into consider.

In [13], a new multiset variant of the SQUARE-type attack mentioned in [12]
is presented. Then the authors show that for AES-192, the time complexity of the
8-round attack can be reduced by a factor of 232 using key schedule weaknesses. A
factor of 224 in this reduction is due to Observation 1. Later, a 8-round MITM
attack on AES-192 in [14] has a dramatically smaller data complexity of 241

chosen plaintexts. And Observation 1 also contributes to a reduction of the time
complexity in this attack. Again, for tAES, such attacks fails since the time
complexity has increased by a factor of 224.

In recent years, the meet-in-the-middle attack combined with subkey rela-
tions has shown to be a very powerful form of cryptanalysis against 7-round
AES-128 [22], 9-round AES-192 [23] and 10-round AES-256 [24], which are the
best single-key attacks on all versions of AES so far.

In [22], Derbez et al. presented the best attack on 7 rounds of AES-128
with data/time/memory complexities lower than 2100. They further extended
the attack to an 8-round attack for AES-192 with a data complexity of 2107

chosen-plaintexts, a memory complexity of 296 and a time complexity of 2172.
Thanks to the above weakness of the AES key schedule, they can get 3 bytes of
subkey for free, which is the key point to make the attack successful. However,
for tAES, the time complexity should be 2196.

Above single-key attacks exploit the fact that the actual key information is
insufficient in a 3-round calculation path. As for tAES, the actual key information
on the calculation path is exactly all the key bits involved. The attacker cannot
gain any free bytes to reduce the overall complexity, thereby fail in all the attacks.
We summarized these attack results on both AES and tAES in Table 5.

In [23], Li et al. proposed a MITM attack on AES-192 combined with a new
technique named key-dependent sieve. On one hand, by using Observation 1 of
the AES-192 key schedule, two bytes (namely 0,7) of the equivalent subkey K̂2

can be deduced from K3. On the other hand, the two bytes of K̂2 have already
been computed by the intermediate parameters in the MITM distinguisher. Thus
there exists a contradiction between K̂2[0, 7] and K3 with probability 2−16. And
the size of the lookup table is improved by a factor of 216, which should have
been 2208. Finally, with a data-time-memory trade-off, the total time complex-
ity is approximately 2187.5, which includes the precomputation phase. When
it comes to tAES, without the key schedule weakness in Observation 1, there
is no such contradiction to filter values in the precomputation table, thereby
the key-dependent sieve technique becomes invalid and the time complexity in
the precomputation phase increases to 2210.8. Even though the time complexity
online is still lower than the exhaustive search, tAES offers stronger security
since the complexity in the precomputation phase becomes the bottleneck of the
MITM attack on tAES-192. We also summarized the attack results in Table 5.
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5 Security Comparison of AES and tAES for Related-Key
Attacks

In this section we discuss the related-key differential attacks on AES, and demon-
strate that tAES has better resistance against this type of attacks, as the trans-
position in the key schedule brings more active S-boxes in the related-key differ-
ential trails.

5.1 Related-Key Differential Attacks on AES

High probability differential trails (characteristics) play the most important role
in the related-key differential attacks. We give some descriptions about differ-
ential trails first. EK(P ) is the block cipher with master key K, and eKi

() is
one round of the cipher. The key schedule KS(K) produces a set of subkeys
Ki. Si is the state at the beginning of round i, and S0 = P . pΔK,ΔKi is the
probability that a given difference ΔK of K produces a set of differences ΔKi

of Ki, i = 0, ..., r:

pΔK,ΔKi = P (KS(K) ⊕ KS(K ⊕ ΔK) = (ΔK0, ...,ΔKr)).

p
ΔKi,ΔSi,ΔSi+1
i is the probability that the differences ΔSi of state Si and ΔKi

produce the difference ΔSi+1:

p
ΔKi,ΔSi,ΔSi+1
i = P (eKi

(Si) ⊕ eKi⊕ΔKi
(Si ⊕ ΔSi) = ΔSi+1).

An r-round related-key differential trail is composed of a set (ΔSi, ΔKi,
pΔK,ΔKi , p

ΔKi,ΔSi,ΔSi+1
i ), with the probability that

p = pΔK,ΔKi ·
∏

0≤i≤r

p
ΔKi,ΔSi,ΔSi+1
i .

As a useful cryptanalysis tool for AES, related-key differential attacks have
been widely studies, especially its variants of related-key boomerang and rec-
tangle attacks [18–20]. None of these attacks could break any version of full
rounds AES, until in [2,3]. In [2], the author identified certain differential trails
in the key schedule of AES-256 which match nicely with the differential prop-
erties of the cipher round function. Based on this discovery he constructed the
local collision, which is a specific pattern of differences. The method is to inject
a difference into the internal state from the key schedule, causing a disturbance,
and then to correct it with the next injections, which also come from the key
schedule. Using the found related-key differential trail, the author developed the
first full round related-key attack for AES-256 for one out of 235 key pairs, with
2131 time complexity and 265 memory. The result was further improved in [3],
where a related-key boomerang attack covers the full AES-256 with 299.5 time
and data complexity for all the keys. The first related-key amplified-boomerang
attack for full AES-192, whose key schedule has better diffusion which leads to
more active S-boxes in subkeys, was also presented in [3].
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Following [2,3], a tool for systematically searching optimal related-key differ-
ential trails was proposed [1]. The best results for AES-128 now are a 4-round
trail with 13 active S-boxes and a 5-round trail with 17 active S-boxes [1]. No
6-round related-key trail with less than 21 (� 128

6 �) active S-boxes is found. The
authors proposed a related-key boomerang attack on 7-round AES-128 based on
the found trails. For AES-192, differential trails up to 11 rounds are found. Our
following analysis focuses on AES-128, as AES-128 is a representative exam-
ple of explaining the advantage of tAES over AES, regarding these related-key
differential attacks.

5.2 Best 2-Round and 3-Round Related-Key Differential Trails

We compare the number of active S-boxes for the best 2-round and 3-round trails
for AES-128 and tAES-128, and show that tAES-128 has more active S-boxes.
For sake of clarity, here we follow the methodology of [1] and assume that there
is no whitening key. That is to say, in order to draw a more general conclusion,
we consider an input state at the beginning of any internal round rather than
limiting the inputs to the plaintexts.

Proposition 1. For AES-128, the best 2-round related-key differential trail has
1 active S-box. For tAES-128, the best 2-round related-key differential trail has
2 active S-boxes.

Note that one round in Proposition 1 means one complete round, namely includ-
ing SubBytes, ShiftRows, MixColumns and Key Addition step. Now we give the
proof of Proposition 1.

Proof. For AES-128 if a non-zero byte is introduced in the internal state of the
first round, it can be cancel at the end of this round. Then there is no active
S-boxes in the second round. See the left part of Fig. 3, with the dark grey box
denoting the active S-box.

For tAES-128 there are two cases. Once the first round has one non-zero byte,
four non-zero bytes in some row of the key schedule are needed to cancel the MC-
column derived from this byte. The last one byte in the four bytes key differences
has to pass an S-box, 2 active S-boxes totally. Once the last non-zero byte in the row
of key schedule is avoid, which means that the last byte is zero for an MC-column,
then the number of active bytes of the internal state before MixColumns is at least
2 (the branch number of MixColumns is 5). See the middle and right part of Fig. 3.
The two active S-boxes are marked in dark grey. �

The authors in [1] proposed a tool for systematically searching the best
related-key differential trails in byte-oriented block ciphers. By this tool the
authors searched for the best possible (in terms of the number of rounds) related-
key differential trails in AES, byte-Camellia, Khazad, FOX, and Anubis. Accord-
ing to different kinds of key schedules, the authors gave three variants of the tool.
Since the key schedule of tAES is almost the same as the one in AES, we use
the same variant as did the authors when analyzing AES, which is the variant
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Fig. 3. Best 2-round Related-key Differential Trails of AES-128 (1) and tAES-128
(2 and 3).

2 of the tool. We implement this tool in practice and for the pseudocode please
refer to the Algorithm 1.2 of [2].

Due to the limit of computation, we search for the best related-key differential
trail on 3-round tAES-128 and believe that the situations in tAES-192 and tAES-
256 are the same because of the similar structure. The result shows that the
number of active S-boxes for the best trail is ≥ 9 for tAES, while for AES is
5. This means lower related-key differential probability for tAES and proves
better resistance of tAES against related-key differential attacks. As mentioned
before, in terms of one round, we mean one complete round without involving
the whitening key at the beginning.

5.3 Comparison Between tAES and AES

For related-key differential trails which are longer than 3 rounds, we compare
AES and tAES based on the analysis of their structure. As we know, the resis-
tance is usually measured by the number of active in the differential trails, both
in the internal state and in the key schedule. If the attacker is able to find a dif-
ferential trail with fewer S-boxes, the cipher will have poorer resistance against
related-key differential attacks.

Traditional related-key differential trails. Early used trails focus on mini-
mizing the number of disturbance differences, which usually take the same value
in one trail until they are spread out. This is because of the shift and XOR
operations. The shift operation in the internal state is preserved by the XOR
in the key schedule, both changing the value of one byte into zero or the same
(a⊕a = 0, a⊕0 = a). Therefore, using the same disturbance value pays the min-
imum cost for active S-boxes. Another reason why the same disturbance value
is often used is because if we choose different values of disturbance differences
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and take the maximal differential propagation of each S-box, after passing the
S-boxes the differences become more divergent and irregular. However, even the
differences introduced to the state are as few as possible, they will be diffused
very quickly due to the wide trail strategy of the round function. So the targeted
rounds of attacks are limited, and cannot reach the full rounds. Both AES and
tAES have similar security margins for this kind of related-key differentials.

Related-key differential trails with local collisions. The related-key differ-
ential trails with the pattern of local collisions are much more threatening, since
they cancel the diffused differences at the end of each round so that the trails
can last more rounds. So far the best results of related-key differential attacks
are constructed from this type of differential trails. The disturbance differences
are again required to be the same in these trails to guarantee the fewest active
S-boxes. The search results in [1] also show that the best trail disturbs each
active byte of the state with the same difference and then corrects the differ-
ences diffused from this disturbance difference. Our analysis target the attacks
using differentials with local collisions in general, with demonstration specially
on AES-128.

The existence of MC-columns is a necessary condition that the related-key
differentials with local collisions in AES are able to last longer rounds, while
tAES breaks this condition. In order to demonstrate the difference propagation,
we first recall the MixColumns and stress the operations it uses.

MixColumns. The MixColumns step is a linear transformation which makes
every input byte influence four output bytes. Each 4-byte column is considered as
a vector and multiplied by a fixed 4×4 matrix. The matrix MC contains constant
entries, as follows (1). The vector-matrix multiplication and addition are done
in GF(28). Each byte element is represented as polynomials with coefficients in
GF(2). The addition in GF(28) is simple bitwise XOR of the respective bytes.

MC =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ (1)

For the constants in the matrix a hexadecimal notation is used: “01” refers to
the GF(28) polynomial with the coefficients (00000001), i.e., it is the element 1
of the Galois field; “02” refers to the polynomial with the bit vector (00000010),
i.e., to the polynomial x; and “03” refers to the polynomial with the bit vector
(00000011), i.e., the Galois field element x + 1. Multiplication by 02 is imple-
mented as a multiplication by x, which is a left shift by one bit, and a modular
reduction with P (x) = x8 + x4 + x3 + x + 1. Similarly, multiplication by 03
can be implemented by a left shift by one bit and addition of the original value
followed by a modular reduction with P (x). When the degree of the polynomials
represented by 02 · b and 03 · b is less than 8, there are the following relations:
(02 · b) ⊕ b = 03 · b, (03 · b) ⊕ b = 02 · b, (02 · b) ⊕ (03 · b) = b.
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Table 2. Differences states and their corresponding MC-columns

Index Differences MC-columns

1 (b, 0, 0, 0)T (2b, b, b, 3b)T

2 (0, b, 0, 0)T (3b, 2b, b, b)T

3 (b, b, 0, 0)T (b, 3b, 0, 2b)T

4 (0, 0, b, 0)T (b, 3b, 2b, b)T

5 (b, 0, b, 0)T (3b, 2b, 3b, 2b)T

6 (0, b, b, 0)T (2b, b, 3b, 0)T

7 (b, b, b, 0)T (0, 0, 2b, 3b)T

8 (0, 0, 0, b)T (b, b, 3b, 2b)T

9 (b, 0, 0, b)T (3b, 0, 2b, b)T

10 (0, b, 0, b)T (2b, 3b, 2b, 3b)T

11 (b, b, 0, b)T (0, 2b, 3b, 0)T

12 (0, 0, b, b)T (0, 2b, b, 3b)T

13 (b, 0, b, b)T (2b, 3b, 0, 0)T

14 (0, b, b, b)T (3b, 0, 0, 2b)T

15 (b, b, b, b)T (b, b, b, b)T

When an one-byte difference a injected to s0,0, it is expanded by MixColumns
to a four-byte difference in column 0, which is of special form: it is the result
of multiplying a vector (b, 0, 0, 0)T by the MixColumns matrix (where b equals
S-box(a) with the highest probability). In [2] the resulting vectors are called
MC-columns. We consider all possible MC-columns here. e.g. When the column
difference before MixColumns is (0, b, b, 0)T , it turns to be (2b, b, 3b, 0)T after
MixColumns. There are 15 types of MC-columns, as in Table 2.

State Transition between MixColumns. For AES-128, the best related-key
differential trail shown by [1] demonstrates that the most probable one-round
transition differentials correspond to two values of each column in the internal
state, namely (0, 0, 0, 0)T , (0, a, 0, 0)T , and four values of each column in the
subkey, namely (0, 0, 0, 0)T , (0, a, 0, 0)T , MC · (0, b, 0, 0)T , (0, a, 0, 0)T ⊕ MC ·
(0, b, 0, 0)T . So the number of all possible states is 24 × 44 = 212.

In order to check the (most probably) best trail, we study the state space cor-
responding to all 15 MC-columns in Table 2. Compare with the key schedule of
AES, for tAES we consider the MC-columns by row. We consider the state transi-
tion regarding all possible difference values in MC-columns. The resulted matrix
(probability transition matrix) is too large and too sparse to be included here, so
we focus on the possible paths in it according to the non-zero probability and show
that no path longer than 4 rounds even in the key schedule (the paths correspond-
ing to both key and internal state transform will not be longer) exists for tAES. For
each row of the key schedule, the state transition from one MC-column to another
MC-column only possibly occurs in the cases listed in Table 3, meaning that they
have a non-zero probability.
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Table 3. The possible state transition from one MC-column to another MC-column

(b, 3b, 0, 2b) → (2b, b, b, 3b) (b, 3b, 0, 2b) → (3b, 0, 0, 2b)

(3b, 2b, 3b, 2b) → (0, 2b, b, 3b) (3b, 2b, 3b, 2b) → (b, 3b, 0, 2b)

(2b, b, 3b, 0) → (2b, 3b, 0, 0) (2b, b, 3b, 0) → (3b, 2b, b, b)

(3b, 0, 2b, b) → (0, 0, 2b, 3b) (3b, 0, 2b, b) → (b, b, 3b, 2b)

(2b, 3b, 2b, 3b) → (2b, b, 3b, 0) (2b, 3b, 2b, 3b) → (3b, 0, 2b, b)

(0, 2b, b, 3b) → (0, 2b, 3b, 0) (0, 2b, b, 3b) → (b, 3b, 2b, b)

(b, b, b, b) → (2b, 3b, 2b, 3b) (b, b, b, b) → (3b, 2b, 3b, 2b)

Table 4. All possible 4-round paths for key states transition

(b, b, b, b) → (3b, 2b, 3b, 2b) → (b, 3b, 0, 2b) → (2b, b, b, 3b)

(b, b, b, b) → (3b, 2b, 3b, 2b) → (b, 3b, 0, 2b) → (3b, 0, 0, 2b)

(b, b, b, b) → (3b, 2b, 3b, 2b) → (0, 2b, b, 3b) → (0, 2b, 3b, 0)

(b, b, b, b) → (3b, 2b, 3b, 2b) → (0, 2b, b, 3b) → (b, 3b, 2b, b)

(b, b, b, b) → (2b, 3b, 2b, 3b) → (2b, b, 3b, 0) → (3b, 2b, b, b)

(b, b, b, b) → (2b, 3b, 2b, 3b) → (2b, b, 3b, 0) → (2b, 3b, 0, 0)

(b, b, b, b) → (2b, 3b, 2b, 3b) → (3b, 0, 2b, b) → (0, 0, 2b, 3b)

(b, b, b, b) → (2b, 3b, 2b, 3b) → (3b, 0, 2b, b) → (b, b, 3b, 2b)

Longest MixColumns Propagation. As mentioned before, for each state of
the subkey, there should be at least one row possessing MC-column values (for
canceling the differences diffused by MixColumns). For any row of the subkeys,
MC-column states continue 4 rounds at most. e.g., (b, b, b, b) → (2b, 3b, 2b, 3b) →
(2b, b, 3b, 0) → (2b, 3b, 0, 0). So even considering all non-zero probabilities in the
state transition matrix, the existing paths are 4 rounds at most. Since a transition
path with non-zero probability is necessary for a related-key differential path
(trail) with non-zero probability. In this case the related-key differential trails of
tAES with non-zero probabilities are 4-round at most. Not to mention that they
may not satisfy the requirement for an available differential trail, which is with a
probability large than 2−128. Due to the rotation operation in the key schedule,
the path corresponding to one row also relates to non-zero bytes in other rows.
All 4-round paths for key states are shown in Table 4. No 5-round path exists,
and this indicates the upper bound of targeted rounds of related-key differential
trails in tAES.

6 Summary and Other Discussions

In this paper, we analyze the security of AES after doing a transposition on
the output matrix of subkeys, while other conditions are totally the same as the
original key schedule. We point out that by this slight change, we obtain a higher
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Table 5. A comparison of attack results on AES and transposition-AES

Attack type and rounds Time complexity Time complexity

AES-192 tAES-192

7-round SQUARE [4] 2176 2200(failed)

8-round SQUARE [4] 2188 2204(failed)

8-round multiset variant [13] 2172 2196(failed)

8-round meet-in-the-middle [14] 2187.63 2211.63(failed)

8-round meet-in-the-middle [22] 2172 2196(failed)

9-round meet-in-the-middle [23] 2187.5(trade-off, total) 2210.8(offline)

Rounds Rounds

Attack type AES-256 tAES-256

Related-key multicollisions for weak keys [2] full no full

Related-key boomerang [3] full no full

Attack type AES-192 tAES-192

Related-key amplified-boomerang [3] full no full

security level for AES. In that, first, tAES can prevent from gaining free bytes
of needed subkeys during the procedure of an attack, so the number of targeted
rounds is reduced. Second, we do not adopt the traditional idea of adding more
non-linear operations, to avoid related-key differential attacks. By just changing
the diffusion pattern in the key schedule without speeding up the diffusion, we
stop potential local collisions found in AES that may generate long related-key
differential trails.

Some attack results on AES and tAES are compared in Table 5. For the same
attack, tAES needs higher time complexity than AES, which makes the original
attack fail or the number of targeted rounds reduce.

We discuss the resistance of tAES against other attacks. The round function
of tAES is the same as that of AES. Therefore other single-key attacks only
based on vulnerabilities of the round function have the same security margin as
in AES. That is, the number of attacked rounds cannot be increased in tAES.
The biclique attacks, which penetrate full rounds of all three versions of AES in
a single-key scenario by exploiting related-key properties, could still be applied
on tAES. This is principally because the rounds of related-key differential trails
needed for constructing biclique are small: 3 rounds for AES-128, and 4 rounds
for AES-192 and AES-256, which cannot be avoid even in tAES. The round
transformation of AES (so as tAES) is not designed to have strong resistance
against several classes of attacks for a smaller number of rounds. So the biclique
attacks can still split up the cipher into three parts (other two parts are for
MITM matching). Actually, biclique attacks go through the whole key space
and the total complexity depends on the average computation of each guess.
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There is no indication that tAES has a lower computation complexity so we
think that it has a similar security level for this attack.

The analysis in this paper also shows that as well as the speed of the diffusion
and the amount of non-linearity, the route, or position of diffusion propagation
should get more attention.
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Abstract. In EUROCRYPT 2006, Berbain et al. proposed a provably
secure stream cipher named QUAD based on the hardness of solving mul-
tivariate quadratic equations. The authors also mentioned that whether
the security bound can be made tighter or not is an open problem.
Through the last decade, there have been some works on the analysis
of QUAD as well as design extensions of QUAD, but to our knowledge
no work has addressed the existence of tighter bounds. In this paper, we
revisit the proof technique by the authors and correct some bugs in their
proof. Further, we derive tighter security bounds using two approaches.

Keywords: Multivariate quadratic · Provably secure stream cipher ·
Pseudo-random generator · QUAD · Stream cipher

1 Introduction

Stream ciphers are important primitives in symmetric-key cryptography, espe-
cially for fast encryption and decryption. A stream cipher is basically a pseudo-
random number generator (PRNG) that takes as input a secret key and produces
as output a pseudo-random sequence called the keystream. For encryption of a
message, the sender performs bitwise XOR of the message and the keystream.
For decryption, the receiver uses the same secret key and the same PRNG algo-
rithm to generate the same keystream, which when bitwise XOR-ed with the
ciphertext, restores the plaintext.

Formally, a deterministic function G : {0, 1}∗ → {0, 1}∗ is called a PRNG, if
the following three conditions hold:

1. Efficiency: G is computable in polynomial time.
2. Expansion: ∃ a polynomial l : N → N such that l(n) > n,∀n ∈ N and

|G(x)| = l(|x|) ∀x ∈ {0, 1}∗.

c© Springer International Publishing AG 2017
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3. Pseudo-randomness: for any probabilistic polynomial-time (PPT) algorithm
D, for any positive polynomial p, and for all sufficiently large n’s, it holds
that

|Pr[D(G(Un)) = 1] − Pr[D(Ul(n)) = 1]| <
1

p(n)
, (1)

where Uk denotes the uniform distribution over {0, 1}k and the probability is
taken over all choices of inputs of D as well as over the internal coin tosses of
D. The left hand side of Eq. (1) is called the advantage of the distinguisher
algorithm D and is denoted by Adv(D).

Traditionally, stream ciphers for hardware applications have been designed
using linear feedback shift registers (LFSR), non-linear feedback shift registers
(NFSR), Boolean functions with good cryptographic properties and possibly
with some memory elements. On the other hand, stream ciphers for software
applications have been designed using arrays with mathematical operations that
can be performed very fast in software, e.g., swaps, modular additions, rotations,
XOR’s etc. For almost all of these designs, the security of the stream cipher is a
conjecture. It is based on the assumption that the underlying generator is indeed
a PRNG. However, often such PRNG assumption is subsequently invalidated by
showing an event whose probability in the output keystream of the stream cipher
is non-negligibly away from the probability of the same event in a uniformly ran-
dom stream. The procedure of testing such an event is a distinguisher algorithm
D, that violates the third condition of the definition of PRNG above.

Possibility of distinguishers for stream ciphers designed in an ad-hoc manner
provides motivation for the provable security paradigm in designing a stream
cipher. Such stream ciphers come with a proof of security which typically relies on
the one-wayness of some number-theoretic functions, i.e., computing the function
given an element of its domain is easy, but computing the inverse function given
an element of its range is hard. In other words, the proof establishes that if
there exists a distinguisher D for the stream cipher, then this distinguisher can
be used as a subroutine to solve the underlying inverse problem that is known
(or believed) to be hard.

Earliest provably secure PRNG was proposed by Blum and Micali [9] and
was based on the fact that exponentiation modulo a prime number is essentially
one-way. Another provably secure PRNG introduced by L. Blum, M. Blum and
Shub [10], called the BBS generator relies upon the one-wayness of quadratic
residuosity modulo large Blum integers. Fisher and Stern [11] proposed a PRNG
construction relying on the intractability of the subset-sum problem. In the same
year, Impagliazzo and Naor [12] suggested exploiting the difficulty of the syn-
drome decoding problem to build a secure PRNG.

1.1 Motivation and Contributions

The QUAD stream cipher was proposed at EUROCRYPT 2006 by Berbain,
Gilbert and Patarin [1] and is based on the result that if an over-determined
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generic random multivariate quadratic map over F2 is a probabilistically one-
way function, then it gives rise to a provably secure pseudo-random generator.
This idea was further extended by Liu et al. [3], when they proposed the stream
cipher SPONGE based on the hardness of sparse multivariate polynomial class
of inversion problems. However, Yang et al. [2] argued that the lack of tightness
on the time bound in the proof of security renders many practical instances
of QUAD “unproven”. It was shown in [2] that instances such as QUAD(256,
20, 20) can be broken in approximately 266 Opteron cycles and the underlying
hard problem can be broken in approximately 245 Opteron cycles. In fact, all the
QUAD instances presented at EUROCRYPT 2006 were shown to be “unproven”,
i.e., they were either not secure or would never be proven secure under the current
bound. Hence, it is necessary to provide a stronger bound for making the QUAD
instances secure. In this paper, we improve the security bound of QUAD using
two different approaches. Our contribution also includes correcting a bug in the
security proof of QUAD by its original designers in [1, Theorem 2].

2 The QUAD Stream Cipher

In this section, we review the design of the QUAD cipher in brief. Before we give
its short description, we need to introduce some notations and equations.

A multivariate quadratic form in n variables over a finite field Fq is a poly-
nomial of maximal degree 2 in n variables as follows:

Q(x) =
∑

1≤i≤j≤n

aijxixj +
∑

1≤i≤n

bixi + c,

where the coefficients aij , bi and c ∈ Fq.
Choosing a random multivariate quadratic form in n unknowns is the same as

choosing an N -tuple with each co-ordinate being chosen uniformly and indepen-
dently from the underlying field Fq, where N = n(n+1)

2 + 1 for q = 2; otherwise
N = n(n+3)

2 + 1.
The multivariate quadratic (MQ) problem, which forms the basis of the

QUAD stream cipher, is based on the fact that for general values of m and
n, solving a system of m multivariate quadratic equations in n variables is NP-
hard, whether it is over any finite field [6] or restricted to equations over F2.
This problem is perhaps the most difficult when |m − n| is small. For m = n,
the complexity of the best known attack is 2n−O(

√
n), which is nearly as bad

as exhaustive search. Another advantage of the MQ problem is that the MQ is
NP-hard, whereas problems such as discrete log is in NP ∩ co-NP. Some well
known algorithms that are dedicated to solving multivariate quadratic systems
are XL [7] and Faugere’s [8] F4 and F5.

The QUAD stream cipher is a parameterized family of stream ciphers with
three parameters: q (prime), n and r. QUAD(q, n, r) is an instance of QUAD
with the underlying field size being a power of q, where n is the number of
variables, and r is the number of outputs per round. The total number of maps
used is kn = n + r, so that r = (k − 1)n.
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For the key and IV setup, two randomly chosen multivariate quadratic sys-
tems of n equations in n unknowns are considered. Let us call them S0 and S1.
For keystream generation, we need separate kn randomly chosen multivariate
quadratic equations in n unknowns. Let us denote them by S = (Q1, . . . , Qkn).

Let us denote the key as K and the initialization vector as IV , both of size
n bits. Also let IVi be the i-th bit of the initialization vector, 1 ≤ i ≤ n. The
state initialization using the secret key is described in Algorithm 1.

Algorithm 1. Initialization of Internal State
Input: Secret key K and initialization vector IV, each of size n bits
Output: Initial internal state x
Choose two random MQ systems S0 and S1 of n variables over n unknowns;
Let x = K;
for i = 1 to n do

if IVi = 0 then
Set x=S0(x);

else
Set x=S1(x);

Run Algorithm 2 for n iterations, without generating output;

In the keystream generation phase, we shall update the internal state
using the equations Q1, Q2, . . . , Qn and generate keystream using the equations
Qn+1, Qn+2, . . . , Qkn. We illustrate the keystream generation procedure in Algo-
rithm2.

Algorithm 2. Keystream Generation
Input: Initial internal state x
Output: Keystream sequence
for As many (k − 1)n tuples of keystream words needed do

Output the sequence Sout(x) = (Qn+1(x), . . . , Qkn(x));
Update the internal state x by Sit(x) = (Q1(x), . . . , Qn(x));

3 Revisiting the Security Proof of QUAD as in [1] and
Our Corrections

The security proof of QUAD consists of 3 major theorems which are combined
into the final result. We state each result exactly as in [1] and show a sketch of
the security proof for each.

Theorem 1. Let L = λ(k−1)n be the number of keystream bits produced in time
λTS, using λ iterations of QUAD. Suppose there is an algorithm A that distin-
guishes the L-bit keystream sequence associated with a known randomly chosen
system S and an unknown randomly chosen initial internal state x ∈ {0, 1}n
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from a random L-bit sequence, in time T with advantage ε. Then there exists
an algorithm B that, for a randomly chosen S, distinguishes S(x) correspond-
ing to an unknown random input x, from a random value of size kn in time
T ′ = T + λTS with advantage ε

λ .

Proof sketch: The proof introduces hybrid probability distributions Di(S) over
{0, 1}L for the random variables

ti(S, x) = (p1, p2, . . . , pi, Sout(x), Sout(Sit(x)), . . . , Sout(Sλ−i−1
it (x)),

where pj and x are uniformly random over ∈ {0, 1}n. As per this notation,
D0(S) is the distribution of the keystream and Dλ(S) is the uniform probability
distribution over {0, 1}n.

Algorithm B is constructed by considering an input (x1, x2) over {0, 1}kn

such that x1 ∈ {0, 1}n and x2 ∈ {0, 1}(k−1)n and choosing a random i where
0 ≤ i ≤ λ − 1, thereby constructing the L-bit vector

t(S, x1, x2) = (p1, p2, . . . , pi, x2, Sout(x1), Sout(Sit(x1)), ..Sout(Sλ−i−2
it (x1))).

Then B calls algorithm A with inputs (S, t(S, x1, x2)) and returns the value
returned by A. Now, if (x1, x2) is distributed as per the distribution of the
L-bit keystream, then t(S, x1, x2) is distributed as per Di(S); and if (x1, x2) is
distributed uniformly over {0, 1}L, then t(S, x1, x2) is distributed as per Di+1(S).

Let P i be the probability that the Algorithm B accepts an L-bit keystream
averaged over the vector space of quadratic systems S. Now, it can be shown
that

Adv(B) = | 1
λ

λ−1∑
i=0

P i − 1
λ

λ∑
i=1

P i| =
1
λ

|P 0 − Pλ| ≥ ε

λ
.

	

We state the second theorem in the series.

Theorem 2. Suppose there is an algorithm A that, given a randomly chosen
known multivariate quadratic system S of kn equations in n unknowns, distin-
guishes S(x), where x is an unknown random input value, from a random string
of length kn with advantage at least ε and in time T . Then there is an algo-
rithm B that, given a randomly chosen quadratic system S of kn equations in
n unknowns, any n-bit to 1-bit quadratic form R, and y = S(x) where x is a
random input value, predicts R(x) with success probability at least 1

2 + ε
4 using

at most T ′ = T + 2TS operations.

We noticed an error in the proof of this theorem as presented in [1]. The Theorem
along with the corrected proof has been presented in Sect. 3.1.

The third theorem as in [1] is stated below. Before we state the third theorem,
we shall state a lemma used in [1] to prove the third theorem.

Lemma 1. Let x be a fixed unknown n-bit value and f be a fixed n-bit to m-bit
function. Suppose there exists an algorithm B that given the value of f(x) allows
to predict the value of any linear equation R over n unknowns with probability
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1
2 + ε over R, using at most T operations. Then there exists an algorithm C,
which given f(x) produces in time at most T ′ a list of at most 4n2ε−2 values
such that the probability that x appears in the list is at least 1

2 where

T
′
=

2n2

ε2

(
T + log

(
2n

ε2

)
+ 2

)
+

2n

ε2
Tf .

Theorem 3. Suppose there is an algorithm B, that given a randomly chosen
quadratic system S of m quadratic equations, a randomly chosen n-bit to 1-
bit quadratic form R and the image S(x) of a randomly chosen (unknown) n-
bit value x, predicts the value of R(x) with probability at least 1

2 + ε over all
possible (x, S,R) triplets using T operations. Then there is an algorithm C, which
given the image S(x) of a randomly chosen (unknown) n-bit value x produces a
preimage of S(x) with probability at least ε

2 (over all possible values of x and S)
in time

T ′ =
8n2

ε2

(
T + log

(
8n

ε2

)
+ 2

)
+

8n

ε2
Tf .

Proof sketch: We shall first provide a proof sketch of Lemma 1 stated above
and then use it to prove the theorem. The proof of Lemma 1 is essentially
similar to the proof of Goldreich-Levine’s theorem and uses t n-bit to 1-bit linear
forms Ri to randomize requests to algorithm B. For each bit, a voting procedure
is conducted in which algorithm B is called 2t times using all possible linear
combinations of the chosen linear forms. For each possible combination, for each

call, the value returned by C(i, α) = B(
2t∑

j=1

αiRj ⊕ Li, f(x)) ⊕
2t∑

j=1

αiRj(x) at x

(here Li(x) = xi is the i-th bit of the n-bit value x) is considered a vote for xi.
The value of xi is chosen same as that of the majority of the result of this vote.
The efficiency of the algorithm C is a direct consequence of the efficiency of the
algorithm B. Here, a fast Walsh transform is used in order to simultaneously
compute the results of the votes on the C(i, α) values rather than an independent
computation. This proves the lemma.

Now, one can show by a simple method of contradiction that for a fraction of
at least ε of all the (x, S) pairs, the conditions of Lemma 1 are met and algorithm
C of the lemma provides a preimage of S(x) with probability at least 1

2 . 	

Theorems 1, 2 and 3 of [1] are naturally combined to obtain the final theorem

in the security proof which shows that if MQ is intractable, then for general m
and n, most instances of QUAD are secure.

Theorem 4. Let L = λ(k − 1)n be the number of keystream bits produced by
QUAD in time λTS using λ iterations of the QUAD construction. Suppose there
exists an algorithm A that distinguishes the L-bit keystream sequence associated
with a known randomly chosen system S and an unknown randomly chosen initial
internal state x ∈ {0, 1}n from a random L-bit sequence in time T with advantage
ε. Then there exists an algorithm C, which given the image S(x) of a randomly
chosen unknown n-bit value x of a randomly chosen n-bit to m-bit quadratic
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system S, produces a preimage of S(x) with probability at least ε
23λ over all

possible values of x and S in time upper bounded by

T ′ =
27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2

)
+

27nλ2

ε2
TS .

3.1 Corrections in the QUAD Security Proof

We first present an error in the proof of Theorem2 proposed in [1] and then
propose suitable corrections.

Error in the proof of Theorem 2 of [1]: The last step of algorithm B claimed:
“B returns what A′ returns”. But our calculations show that this would result
in Pr(B((S, S(x)), R) = R(x)) ≥ 1

2 , which does not prove the theorem.

Corrected proof: We use the same idea as in [1] to produce an algorithm A′ which
returns 1 on input (S, S(x)) with probability at least 1

2 + ε
2 and returns 1 on

input (S, r) for some random r with probability 1
2 . Algorithm B is designed as

follows:

Algorithm 3. Algorithm B

Input: An n-bit to 1-bit quadratic form R, a kn-bit value y, and a system
S = (Q1, Q2, . . . , Qkn) of kn multivariate quadratic systems

Output: Predicted value of R(x)
Select a random kn-bit vector v=(v1, v2, . . . , vkn) and a random bit b;
for i = 1 to kn do

Pi = Qi + (vi · R);
Set S′ = (P1, P2, . . . Pkn);
Compute A′(S′, y + (b·v));
if A′ returns 1 then

return b;
else

return 1-b;

Case 1: If b = R(x).
If this is the case then, S′(x) = y + (b · v). So, A′ has input S′ and S′(x).

Hence, Pr(B((S, S(x)), R) = R(x)) = Pr(A′(S′, S′(x)) = 1) ≥ 1
2 + ε

2 .

Case 2: If b �= R(x).
So, A′ has input S′ and S′(x) + v. As v is a randomly chosen kn-bit vector,

S′(x) + v can also be assumed to be random kn-bit vector. We have

Pr(B((S, S(x)), R) = R(x)) = Pr(A′(S′, S′(x)+v) = 0) = Pr(A′(S′, r) = 0) ≥ 1
2 ,

where r is a random kn-bit vector. Hence,

Pr(B((S, S(x)), R) = R(x)) ≥ 1
2 ( 12 + ε

2 ) + 1
2 · 1

2 = 1
2 + ε

4 .
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4 Improving the Tightness of the Security Bound

Concerns were expressed in [2] about the lack of tightness in the security proof
of QUAD leading to the use of larger values of n+r, resulting in a slower perfor-
mance of QUAD. Also, as a result of the lack of tightness in the security proof,
the most popular QUAD instance QUAD(2,160,160) was shown to be unproven.
In fact, all instances of QUAD reported in [2] were shown to be “unproven”, i.e.,
they will never be proven secure due to the “looseness factor” in the current secu-
rity proof. Theorem4 in [1] states that if λn bits of output of QUAD(2, n, r) can
be distinguished from uniform with advantage ε in time T , then a random MQ
system of n+r equations in n variables over F2 can be solved with probability at
least 2−3ε

λ in at most time T
′
= 27n2λ2

ε2 (T +(λ+2)TS +log(2
7nλ2

ε2 )+2)+ 27nλ2

ε2 TS ,
where TS is the time necessary to run one block of QUAD. This statement does
not conclude T ≥ 280 without assuming that the corresponding T

′ ≥ 2230

n . We
shall improve the bound in the security proof considerably using Chernoff bound
and Hoeffding’s bound/inequality.

4.1 A Short Note on Chernoff Bound and Hoeffding’s Inequaliy

The Chernoff and Hoeffding’s bounds are two important concentration inequal-
ities in probability theory.

4.1.1 Chernoff Bound
The Chernoff bound [5], named after Herman Chernoff, gives exponentially
decreasing bounds on tail distributions of sums of independent random vari-
ables. The statement in its most general form as stated in [5] is as follows.

Theorem 5. Let M(t) denote the moment-generating function of the random
variable X. Then Pr(X ≥ a) ≤ e−taM(t), ∀t > 0 and Pr(X ≤ a) ≤ e−taM(t),
∀t < 0.

However, we will not use this most general form. We will use the multiplicative
form of the Chernoff bound and we will show how to derive the form that we use
from the multiplicative form of the Chernoff bound. A form of the multiplicative
bound for Poisson random variables can be found in [13]. Here we prove a version
for Bernoulli variables.

Theorem 6. Let X =
n∑

i=1

Xi, where Xi’s are independent Bernoulli random

variables. Let μ = E(X). Then for any δ > 0 we have,

Pr (X ≥ (1 + δ)μ) <

(
eδ

(1 + δ)1+δ

)μ

.

Proof. We have Pr (X ≥ (1 + δ)μ) = Pr
(
etX ≥ et(1+δ)μ

) ∀t > 0. By Markov’s
inequality, we obtain the following bound:

Pr
(
etX ≥ et(1+δ)μ

)
≤ E

(
etX

)
et(1+δ)μ

. (2)
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As the Xi’s are independent and they are Bernoulli random variables with pi =
Pr (Xi = 1), we must have the follows (using the moment generating function
for such random variables):

E(etX) =
n∏

i=1

E
(
etXi

)
=

n∏
i=1

(1 + pi (et − 1)) .

We shall now use the well-known result that ex > 1 + x ∀x > 0. Hence, if
pi > 0, for at least one i, we must have the follows:

E
(
etX

)
<

n∏
i=1

epi(et−1) = e(et−1)μ.

Now, using this result in Eq. (2), we get

Pr (X ≥ (1 + δ)μ) <
e(e

t−1)μ

et(1+δ)μ
.

Now, differentiating the right hand side and plugging in the t for which it is
minimum, we get the desired result. 	


From the above result, one can derive the following corollary which we shall
use to obtain our improvements in the next section.

Corollary 1. For 0 < δ ≤ 1, Pr(|X − μ| ≥ δμ) ≤ 2e
−μδ2

3 .

Proof. Note that Pr(|X − μ| ≥ δμ) = Pr (X ≥ (1 + δ)μ) + Pr (X ≤ (1 − δ)μ) .

We will show that each term in the above sum is ≤ e− μδ2

3 . First, lets work
with the first term. From Theorem 6, it is clear that we just need to show that
for 0 < δ ≤ 1:

eδ

(1 + δ)1+δ
≤ e− δ2

3 . (3)

Taking logarithm on both sides, and rearranging, we obtain the following,

f(δ) := δ − (1 + δ) ln(1 + δ) +
δ2

3
≤ 0.

We now get, by differentiating f(δ):

f ′(δ) = − ln(1 + δ) +
2
3
δ.

f ′′(δ) = − 1
1 + δ

+
2
3
.

From the above equations, it is clear that f ′′ < 0 for 0 ≤ δ < 1
2 and f ′′(δ) > 0

for δ > 1
2 . It is clear that as f ′(0) = 0 and f ′(1) < 0 and f ′ is first decreasing

and then increasing over the interval [0, 1], we also must have f ′(δ) ≤ 0 in the
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interval [0, 1]. As f(0) = 0, we must have f(δ) ≤ 0 in that interval, which proves
Eq. (3) and in turn proves

Pr (X ≥ (1 + δ)μ) ≤ e− μδ2

3 . (4)

Imitating the above proof technique, one can obtain the following bound as well.

Pr (X ≤ (1 − δ)μ) ≤ e− μδ2

2 . (5)

Combining Eqs. (4) and (5), we obtain the result. 	


4.1.2 Hoeffding’s Inequality
Hoeffding’s inequality, proved by Wassily Hoeffding in 1963 [4], provides an upper
bound on the probability that the sum of random variables deviates from its
expected value. The statement of Hoeffding’s inequality is as follows.

Theorem 7. Let X1, X2, . . ., Xn be independent random variables bounded by

the interval [ai, bi]. Let Sn =
n∑

i=1

Xi. Then we have,

Pr(|Sn − E(Sn|) ≥ t ≤ 2e

− 2t2
n∑

i=1
(bi−ai)

2

.

4.2 Improving Tightness Using the Chernoff Bound

We shall modify the proof of Lemma1 in [1] using the above concentration
inequalities, and in doing so will provide a tighter security bound. We first state
the lemma with the improved bound.

Lemma 2. If x is a fixed unknown n-bit value and f be a fixed n-bit to m-bit
function. Suppose there exists an algorithm B that given the value of f(x) allows
to predict the value of any linear equation R over n unknowns with probability
1
2 + ε over R, using at most T operations. Then there exists an algorithm C,
which given f(x) produces in time at most T ′ a list of at most 4n2ε−2 values
such that the probability that x appears in the list is at least 1

2 , where

T ′ =
3 · ( 1

2
+ ε
)
n ln(4n)

ε2

(
T + log

(
3 · ( 1

2
+ ε) ln(4n)

ε2

)
+ 2

)
+

3 · ( 1
2

+ ε) ln(4n)

ε2
Tf .

Proof. Proceed as in [1] to produce the necessary algorithm C. Then we will
try to upper bound the failure probability of C. Let Xi for 1 ≤ i ≤ 2t be
the random variables that count the number of correct votes for a given voting
round for a particular output bit. Let pj be the probability that the j-th round
fails to produce the correct bit value. Let the average of

∑
Xi be μ. We know,
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μ = 2t( 12 + ε) due to the dependance of C on B. So, we have, by applying
Chernoff bound (under the assumption of independent samples)

pi = Pr(
2t∑

i=1

Xi < 2t−1) = Pr(
2t∑

i=1

Xi − μ < −2t · ε)

≤ Pr(|
2t∑

i=1

Xi − μ| > 2t · ε) ≤ 2 · e
− 2t·ε2

3( 1
2+ε)

Hence, the failure probability of C is upper bounded by 2ne
− 2t·ε2

3( 1
2+ε) . From this,

we get 2t as 3·( 1
2+ε) ln(4n)

ε2 . From [1], we have that the run-time of algorithm C is
n2t(T + t + 2) + 2tTf . Substituting, we get the required bound. 	

The bound provided in Theorem4 of [1] is very closely related to the bound
provided in Lemma 1 and hence our tighter bound in Lemma 2 gives us a tighter
bound of Theorem4 as:

T ′
cher =

3 · 26( 1
2

+ ε)n ln(4n)λ2

ε2

(
T + (λ + 2)TS + log

(
3 · 26( 1

2
+ ε) ln(4n)λ2

ε2

)
+ 2

)

+
3 · 26( 1

2
+ ε) ln(4n)λ2

ε2
TS .

4.3 Improving Tightness Using the Hoeffding’s Inequality

We now use the Hoeffding’s inequality to obtain an even tighter bound than the
one in the previous subsection. We state the Lemma again with the improved
bound.

Lemma 3. If x is a fixed unknown n-bit value and f be a fixed n-bit to m-bit
function. Suppose there exists an algorithm B that given the value of f(x) allows
to predict the value of any linear equation R over n unknowns with probability
1
2 + ε over R, using at most T operations. Then there exists an algorithm C,
which given f(x) produces in time at most T ′ a list of at most 4n2ε−2 values
such that the probability that x appears in the list is at least 1

2 where

T ′ =
n · ln(2

√
n)

ε2
·
(

T + log
(

ln(2
√

n)
ε2

)
+ 2

)
+

ln(2
√

n)
ε2

· Tf .

Proof. We proceed exactly as in the above subsection and use the same termi-
nology and notations. In this case, we have, by applying Hoeffding’s inequality
(under the assumption of independent samples)

pi = Pr(
2t∑

i=1

Xi < 2t−1) = Pr(
2t∑

i=1

Xi − μ < −2t · ε)

≤ Pr(|
2t∑

i=1

Xi − μ| > 2t · ε) ≤ 2 · e−2t+1·ε2
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Hence, the failure probability of C is upper bounded by 2ne−2t+1·ε2 . From this,
we get 2t as ln(2

√
n)

ε2 . From [1], we have that the run-time of algorithm C is
n2t(T + t + 2) + 2tTf . Substituting, we get the required bound. 	

Our tighter bound in Lemma 3 results in the following tighter bound on Theo-
rem 4 of [1]

T ′
hoeff = 26n ln(2

√
n)λ2

ε2 (T + (λ + 2)TS + log(2
6 ln(2

√
n)λ2

ε2 ) + 2) + 26 ln(2
√

n)λ2

ε2 · TS

This bound is even stronger than the bound we have presented in the previous
subsection and is a further improvement over the bound in [1].

4.4 Comparison of Our Results with the Existing Bound

To compare the bounds, in the expression of T ′ of Theorem 4 in [1], let αn =
27n2λ2

ε2 , βn = log(2
7nλ2

ε2 ) and γn = 27nλ2

ε2 .

In the expression of T ′
cher, let α

′
n = 3·26( 1

2+ε)n ln(4n)λ2

ε2 , β
′
n =

log(3·26( 1
2+ε)n ln(4n)λ2

ε2 ) and γ
′
n = 3·26( 1

2+ε) ln(4n)λ2

ε2 .
In the expression of T ′

hoeff , let αn, βn and γn are as explained above while

α
′′
n = 26n ln(2

√
n)λ2

ε2 , β
′′
n = log(2

6 ln(2
√

n)λ2

ε2 ) and γ
′′
n = 26 ln(2

√
n)λ2

ε2 .
Then we can write

T ′ = αn(T + (λ + 2)TS + βn + 2) + γnTS .

T ′
cher = α′

n(T + (λ + 2)TS + β′
n + 2) + γ′

nTS .

T ′
hoef = α′′

n(T + (λ + 2)TS + β′′
n + 2) + γ′′

nTS .

In Table 1, we compare the ratios αn/α′
n, αn/α′′

n, βn/β′
n, βn/β′′

n, γn/γ′
n and

γn/γ′′
n, by taking λ = 240 and ε = 0.01. This shows that Chernoff bound gives

tighter security than [1] and Hoeffding’s inequality gives even tighter security
than that provided by Chernoff bound.

Table 1. Comparison between existing results and our bounds

n αn
α′

n

βn
β′

n

γn
γ′

n

αn
α′′

n

βn
β′′

n

γn
γ′′

n

20 5.9661 1.0276 5.9661 18.2564 1.0303 18.2564

40 10.3026 1.0367 10.3026 31.5260 1.0358 31.5260

160 32.3689 1.0570 32.3689 99.0487 1.0483 99.0487

256 48.2784 1.0645 48.2784 147.7320 1.0528 147.7320

350 63.1559 1.0696 63.1559 193.2573 1.0559 193.2573

We have used these specific values of n, as these are the most frequently used
values for use in QUAD instances. Also, the proof of QUAD guarantees security
for n > 350. Beyond n > 350 there is no 280 distinguishing attack, as long as no
better MQ attacks are discovered.
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5 Conclusion

In this paper, we have presented techniques to tighten the security proof of the
QUAD stream cipher. Similar technique may be used to increase the tightness
of security proof of SPONGE [3]. However, we believe that QUAD(2, 160, 160)
still remains“unproven” and the tight-most bound remains open, which can be
established by deriving the bound and showing a matching attack.
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Abstract. Functional encryption allows the authorised parties to reveal
partial information of the plaintext hidden in a ciphertext while in con-
ventional encryption decryption is all-or-nothing. Focusing on the func-
tionality of inner product evaluation (i.e. given vectors x and y, calcu-
late 〈x, y〉), Abdalla et al. (PKC 2015) proposed a functional encryption
scheme for inner product functionality (FE-IP) with s-IND-CPA secu-
rity. In some recent works by Abdalla et al. (eprint: Report 2016/11) and
Agrawal et al. (CRYPTO 2016), IND-CPA secure FE-IP schemes have
also been proposed. In order to achieve Indistinguishable under Chosen
Ciphertext Attacks (IND-CCA security) for FE-IP, in this paper, we pro-
pose a generic construction of FE-IP from hash proof systems. We prove
the constructed FE-IP is IND-CCA secure, assuming the hardness of the
subset membership problem. In addition, we give an instantiation of our
generic construction from the DDH assumption.

Keywords: IND-CCA · Functional encryption · Inner product · Hash
proof system

1 Introduction

Encryption provides information confidentiality such that messages are hidden
and can only be revealed by authorised parties. In traditional encryption, access-
ing to the plaintext is in an all-or-nothing manner. Precisely, Alice encrypts a mes-
sage using Bob’s encryption key and sends the ciphertext to Bob. Later, Bob can
decrypt the ciphertext to read the message using his decryption key while a mali-
cious interceptor Eve gets no information about the encrypted message. Whereas
in functional encryption, it is possible for different authorised parties to reveal
different partial information of the plaintext from a ciphertext by granting them
different secret keys. It is also possible to control the information leaked from the
ciphertexts. In detail, a functional encryption enables the authorised receivers to
reveal the output of a functionality F (k, x) from a ciphertext containing the plain-
text x and a secret key associated with a function key value k.

In this paper, we focus on the functional encryption for the functionality
of inner product evaluation where F (x,y) = 〈x,y〉. A direct application of
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 119–139, 2017.
DOI: 10.1007/978-3-319-54705-3 8
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such a functional encryption scheme is privacy-preserving descriptive statistics
such as calculating the weighted mean or sum of a list of integers. For instance,
suppose in a high school the subject grades of each student are stored in a
vector y which is encrypted under the school manager Alice’s public key. As
a university admission officer, Bob wants to offer scholarship to those students
who are excellent at mathematics, physics, English, and good at other subjects.
To ensure good students can get the scholarship, Alice decides to assist Bob in
identifying the candidates. At the same time, Alice does not want to reveal the
grades of all the students to Bob for privacy reasons. With functional encryption
for inner-products, Alice can generate a secret key for Bob, which is associated
with a vector x = (10, 8, 8, 5, 5) that represents the weight for different subjects
(i.e. 10 for mathematics, 8 for physics and English, and 5 for other subjects).
Later, Bob can run the decryption algorithm to get the weighted sum of each
student’s subject grades, and nothing else. For example, Charlie has a grade
vector y = (90, 70, 80, 50, 60). The function F (x,y) gives 〈x,y〉 = 10 × 90 + 8 ×
70 + 8 × 80 + 5 × 50 + 5 × 60 = 2650. In this case, Bob can only learn the result
2650 but nothing else about y.

The security of functional encryption for inner products is defined by the
notion of IND-CPA in [2]. However, such a security notion is not strong enough
to cover the following variation of the above scenario. In order to restrict Bob’s
ability to calculate the weighted sum of each student, Alice gives the security
key for the vector x to her colleague David instead of directly giving it to Bob.
Consequently, Bob can only get the result of F (x,y) from David by sending the
ciphertext to him, and David can reject any queries related to those students
whose grades are below a threshold. If the scheme is malleable, then Bob can
modify a rejected ciphertext such that it can pass the threshold.

In this paper, we aim to build functional encryption for inner products with
IND-CCA security, which is stronger than IND-CPA and can withstand the
attack described above.

1.1 Related Work

The notion of functional encryption is introduced by Lewko et al. [14] and later
formally defined by Boneh et al. [7]. In [7], the security of functional encryption
is naturally defined via indistinguishability-based security (IND-security) where
an adversary cannot distinguish which message x0 or x1 is encrypted in the
ciphertext with oracles provided according to the attacking model. However, the
IND-security is not sufficient for the general functional encryption [7,16], and
thus simulation-based security (SIM-security) has been proposed. However, the
SIM-security is only achievable in the programmable random oracle model.

For generic functionality, Goldwasser et al. [12] proposed a function encryp-
tion scheme for circuits. Later in [11], the functionality is further extended to
accept multiple inputs such that it is able to compute F (k, x1, . . . , xn) instead
of F (k, x). Since the construction for generic functionalities is very inefficient for
practical use, the construction for specific functionality has been the main focus.
It is worth noting there is a subclass of functional encryption named Predicate
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Encryption [13]. Its message space X consists of two subspaces, index space I
and payload space M . For a predicate P : K × I → {0, 1}, the functionality
F : K × X → M ∪ {⊥} is defined as F (k, (ind,m)) = m if P (k, ind) = 1
or F (k, (ind,m)) = ⊥ otherwise. More subclasses of the functionalities can
be derived from the Predicate Encryption class, including but not limited to
Identity-Based Encryption [6], Attribute-Based Encryption [15,18], Hidden Vec-
tor Encryption [8], Inner Product Encryption [14,15], and Deterministic Finite
Automata (DFA) Based Encryption (Functional Encryption for Regular Lan-
guages) [19]. Another notable functional encryption is searchable encryption [5]
where F (k, x) = 1 if k = x or F (k, x) = 0 otherwise where k and x are the
keywords embedded in the trapdoor and ciphertext, respectively.

Recently, Abdalla et al. [2] investigated a new functionality F (x,y) = 〈x,y〉,
i.e. to calculate the inner product of two vectors x and y where x is embedded
in the secret key and y is embedded in the ciphertext. Unlike Inner Product
Encryption [14,15] where inner product is used for access control, the new func-
tionality here is to compute the actual inner product value. In [2], Abdalla et al.
proposed a functional encryption for inner products scheme, which is selectively
secure against chosen-plaintext attacks (s-IND-CPA). The scheme is generic as
it can be constructed from any s-IND-CPA secure public key encryption, which
is secure under randomness reuse and has linear key homomorphism and lin-
ear ciphertext homomorphism under shared randomness. Based on the generic
construction, two instantiations are given from Decisional Diffie-Hellman (DDH)
assumption and Learning With Error (LWE) assumption respectively. In some
recent works [1,3], FE-IP schemes with IND-CPA security were also proposed.
Specifically, Abdalla et al. [1] proposed another generic construction with IND-
CPA security from any s-IND-CPA secure public key encryption with the same
requirements as in [2]. They also showed that the IND-CPA security and Non-
Adaptive Simulation (NA-SIM) security are equivalent for inner product func-
tionality. Furthermore, an instantiation from Decisional Composite Residuosity
(DCR) assumption is also proposed in [1].

In addition to the confidentiality, a notion called function privacy [4] has also
been investigated for functional encryption which means an adversary should
not be able to distinguish k (or Fk as F (k, x) = Fk(x)) from a secret key skk.
However, the scheme [4] with function privacy is proposed in the private key
setting while normal functional encryption schemes [1,2,19] are in the public
key setting.

1.2 Our Contribution

In this paper, we define the notion of Indistinguishablilty under adaptive Chosen
Ciphertext Attacks (i.e. IND-CCA, or more precisely IND-CCA2 security) for the
general functional encryption. We also present the precise definition of functional
encryption for the inner product functionality. In particular, we show that the
secret keys for the functions 〈x1, · 〉, · · · , 〈xn, · 〉 implies the secret key for the
function 〈x′, · 〉 where x′ ∈ span(x1, . . . ,xn).
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As the main contribution of this paper, we propose under certain conditions
an IND-CCA secure functional encryption for inner products (FE-IP) scheme
from hash proof systems, assuming the hardness of the subset membership prob-
lem. In the generic construction, we require two hash proof systems Ξ1 and Ξ2

with some special properties as the building blocks. In detail, Ξ1 is required to
be diverse (Definition 10) and have key linearity (Definition 8) and hash linearity
(Definition 9). For Ξ2, we require it to be universal2 (Definition 7) and have hash
linearity. We show that those special properties are not hard to achieve. In [10],
Cramer and Shoup constructed hash proof systems from a diverse group sys-
tem G = (H,X, L,Π). We show that their constructions have the key linearity
and the hash linearity. If the hash codomain Π of the underlying diverse group
system has prime order, the constructed hash proof system has the property
of diversity. In other words, we can generically construct an IND-CCA secure
FE-IP scheme from a diverse group system G = (H,X, L,Π) when |Π| is prime.

In addition, we propose a concrete IND-CCA secure FE-IP scheme from
DDH assumption as an instantiation of our generic construction. Note that if we
remove the NIZK proof part of Definition 5, the resulting scheme is exactly the
same as the schemes in [1,3]. Thus the efficiency is the same as [1,3].

1.3 Paper Organisation

The rest of this paper is organised as follows. Beginning with Sect. 2, we review
the subset membership problem, the definition and the security model of the
functional encryption, and introduce the IND-CCA security model. In Sect. 3, we
review the hash proof system and its construction, define new properties of HPS,
and show that the existing construction has the new defined properties. After
that, we give out a precise definition of FE-IP and a generic construction of IND-
CCA secure FE-IP with security proof in Sect. 4. In addition, an instantiation
of our generic construction from DDH assumption is provided in Sect. 5. Finally,
the conclusion is addressed in Sect. 6.

2 Preliminaries

2.1 Subset Membership Problems

In this subsection, we review a problem class named Subset Membership Problems
(SMP) defined by Cramer and Shoup [10]. Some standard problems such as
Quadratic Residuosity and Decisional Diffie-Hellman problems belong to the
SMP problem class.

Definition 1 (Subset Membership Problem). Let X,L,W be three non-
empty sets, and R ⊂ X × W be a binary relation such that L ⊂ X and ∀x ∈
X,∃w ∈ W, (x,w) ∈ R ⇐⇒ x ∈ L. In other words, w is a witness of x if x ∈ L.
Let Λ = (X,L,W,R), x ∈R L, and x′ ∈R X \ L where x ∈R L means that x
is randomly chosen from L. Giving two probability distributions DL = {(Λ, x)}
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and DX\L = {(Λ, x′)}, there is an algorithm A can distinguish DL and DX\L

with advantage:

AdvSMP
A =

∣∣Pr[1 ← A(D ∈R DL)] − Pr[1 ← A(D ∈R DX\L)]
∣∣

A subset membership problem is computational hard if and only if the advantage
AdvSMP

A is negligible.

2.2 Functional Encryption

In this subsection, we review the definition of functional encryption in [7].

Definition 2 (Functional Encryption). Let F : K × X → {0, 1}∗ be a func-
tion where K is the function key space and X is the message space. A functional
encryption (FE) for a functionality F consists of the following four polynomial
time algorithms:

– (PK,MSK) ← Setup(1λ): The randomised system setup algorithm takes a secu-
rity parameter 1λ as input, and generates system-wide parameters and a key
pair of the master secret key MSK and the public key PK.

– SK ← KeyGen(MSK, k): The randomised secret key generation algorithm takes
a master secret key MSK and a function key k ∈ K as input, and generates a
secret key SK for the functionality Fk.

– C ← Encrypt(PK, x): The randomised encryption algorithm takes a public key
PK and a plaintext x as input, and calculates a ciphertext for it.

– D ← Decrypt(SK, C): The (probably) deterministic decryption algorithm takes
a secret key SK of the functionality Fk and a ciphertext containing x. It outputs
a value D, which is equivalent to the output of F (k, x).

In this paper, we consider the indistinguishability-based security and enhance the
IND-CPA security model defined in [7] to the Indistinguishability under adaptive
Chosen Ciphertext Attacks (IND-CCA) as the generalisation of the IND-CCA2
security [17] for public key encryption schemes [9]. The difference is that the
decryption oracle ODecrypt is not allowed in the IND-CPA game at any stage.
The IND-CCA game (Game 1) is defined as follows where an adaptive adversary
A tries to distinguish a ciphertext from two chosen plaintexts x0 and x1.

Gameλ
IND-CCA :

(PK,MSK) ← Setup(1λ)

(x0, x1) ← AOKeyGen,ODecrypt(PK)

b ∈R {0, 1}
C ← Encrypt(PK, xb)

b′ ← AOKeyGen,ODecrypt(C)

OKeyGen :

K ← K ∪ {k}
return SK ← KeyGen(MSK, k)

ODecrypt :

C ← C ∪ {C′}
SK ← KeyGen(MSK, k)

return D ← Decrypt(SK, C′)

Game 1: IND-CCA
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1. The challenger S runs Setup(1λ) to generate a key pair (MSK,PK), and passes
the public key PK to the adversary A.

2. The adversary A can adaptively query the key generation oracle OKeyGen for
the secret key SK of a function Fk from the challenger S. The restriction
is that A can only query the secret keys for the functionality Fk such that
F (k, x0) = F (k, x1) where x0 and x1 are the target plaintexts in the next
step. Otherwise, the game is trivial since A can simply win the game by
testing Decrypt(SKk, C) ?= F (k, x0). Besides that, the adversary A can also
ask the challenger S for decrypting a ciphertext C ′ of x to obtain the output
of F (k, x) for any k ∈ K via the decryption oracle ODecrypt.

3. At some point, the adversary A outputs two target plaintexts x0 and x1.
4. The challenger S randomly selects a bit b ∈R {0, 1}, and generates a target

ciphertext C ← Encrypt(PK, xb). Then S passes C to the adversary A.
5. The adversary A can continue to query the oracle OKeyGen with the same

restriction as before, and the oracle ODecrypt with the restriction that A cannot
query the target ciphertext C since A can win the game trivially by testing
ODecrypt(k,C) ?= F (k, x0) for some k ∈ K such that F (k, x0) �= F (k, x1).

6. Eventually, the adversary A outputs a bit b′, and A wins if b = b′.

The advantage of A winning the Game 1 is

AdvIND-CCA
A =

∣∣∣∣Pr
[
b = b′ ∣∣ C /∈ C ∧ (∀k ∈ K, F (k, x0) = F (k, x1)

)] − 1
2

∣∣∣∣

Definition 3 (IND-CCA Security). A FE scheme is Indistinguishable under
adaptive Chosen Ciphertext Attacks (IND-CCA) if AdvIND-CCA

A is a negligible
function for all adversary A winning the Game 1 in polynomial time.

3 Hash Proof System

In this section, we review the hash proof system (HPS) introduced by Cramer
and Shoup [10]. We also extend their HPS with some extra properties so that
we can use it to construct our scheme.

3.1 Definition

Definition 4 (Hash Proof System). Let X be a non-empty set, and L be a
NP language with a witness space W and a binary relation R such that L =
{x ∈ X | ∃w : (x,w) ∈ R}. A hash proof system (HPS) consists of the following
five polynomial time algorithms:

– param ← Setup(1λ): The randomised system setup algorithm takes a security
parameter 1λ as input, and specifies an instance of X, L, W and R, using X
as the hash domain. It also defines a secret hash key space K, a public hash
key space S, and a hash codomain Π. After that, it packs all descriptions as
the system public parameter param = (X,L,W,R,K, S,Π).
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– SK ← SKGen(param): The randomised secret hash key generation algorithm
takes system parameter param as input, and outputs a randomly chosen hash
key SK ∈R K.

– PK ← PKGen(SK): The deterministic public hash key generation algorithm
takes a secret key SK ∈ K as input, and maps it to a public hash key PK ∈ S.

– π ← Hash(SK, x): The deterministic private evaluation algorithm takes a
secret hash key SK ∈ K and a value x ∈ X, and outputs a hash value π ∈ Π
of x.

– π ← PHash(PK, x, w): The deterministic public evaluation algorithm takes a
public key PK ∈ S, a value x ∈ L and its witness w ∈ W as input, and
generate an equivalent hash value π = Hash(SK, x) ∈ Π of x such that PK =
PKGen(SK).

As a basic property, a HPS should be correct.

Definition 5 (Correctness). A hash proof system is correct if the following
statement is always true.

∀param ← Setup(1λ), ∀SK ← SKGen(param), PK ← PKGen(SK),
∀(x,w) ∈ R, Hash(SK, x) = PHash(PK, x, w).

Furthermore, some useful security properties of a HPS are required.

Definition 6 (Universal). A hash proof system is universal if the following
probability is negligible for all PK ∈ S, x ∈ X \ L and π ∈ Π.

AdvUniversal = Pr[Hash(SK, x) = π | PKGen(SK) = PK]

Definition 7 (Universal2). A hash proof system is universal2 if the following
probability is negligible for all PK ∈ S, x∗ ∈ X, x ∈ X\(L∪{x∗}) and π∗, π ∈ Π.

AdvUniversal2 = Pr[Hash(SK, x) = π | Hash(SK, x∗) = π∗ ∧ PKGen(SK) = PK]

If a hash proof system is universal2 and |X| > 1, it is also universal. Besides all
above properties defined in [10], we require three extra properties to construct
our schemes.

Definition 8 (Key Linearity). A hash proof system has linear key homomor-
phism if K and S are abelian groups and

∀SK1,SK2 ∈ K, PKGen(SK1) + PKGen(SK2) = PKGen(SK1 + SK2) ∈ S.

Particularly, if a HPS has key linearity, we have μ ·PKGen(SK) = PKGen(μ ·SK)
for all SK ∈ K and μ ∈ Z.

Definition 9 (Hash Linearity). A hash proof system has linear hash homo-
morphism if K and Π are abelian groups and

∀SK1,SK2 ∈ K, ∀x ∈ X, Hash(SK1, x)+Hash(SK2, x) = Hash(SK1+SK2, x) ∈ Π.
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Similar to the key linearity, we have μ · Hash(SK, x) = Hash(μ · SK, x) for all
SK ∈ K, x ∈ X, and μ ∈ Z.

Definition 10 (Diversity). A hash proof system is diverse if there exists π ∈
Π such that π �= 0 and for all x ∈ X \ L, there exists SK ∈ K such that
Hash(SK, x) = π and PKGen(SK) = 0. Formally,

∃π ∈ Π,π �= 0 ∧ (∀x ∈ X \ L,∃SK ∈ K,Hash(SK, x) = π ∧ PKGen(SK) = 0)

3.2 Construction

In this subsection, we review the Cramer-Shoup constructions of HPS from uni-
versal projective hashing derived from diverse group systems [10]. We start with
the definition of the group system, then the constructions of the universal pro-
jective hashing. In the end, we show that the reviewed constructions have key
linearity, hash linearity, and diversity. For notational convenience, we use addi-
tion for the group operations.

Definition 11 (Group System). Let X, Π be two finite abelian groups, and
L be a NP language with a witness space W and a binary relation R such that
L = {x ∈ X | ∃w : (x,w) ∈ R}. Let Φ be a finite abelian group of homomorphism
φ : X → Π such that for all φ, φ′ ∈ Φ, x ∈ X, and a ∈ Z, we have (φ ± φ′)(x) =
φ(x) ± φ′(x) and (aφ)(x) = aφ(x) = φ(ax). If φ = 0 ∈ Φ, we have φ(x) = 0 ∈ Π
for all x ∈ X. Let H be a subgroup of Φ. Then G = (H,X, L,Π) is a group
system.

Definition 12 (Diverse Group System). A group system G is diverse if
there exists φ ∈ Φ such that φ(L) = 〈0〉 and φ(x) �= 0 for all x ∈ X \ L.

Construction 1 (Projective Hash Families from Group Systems). Let
G = (H,X, L,Π) be a group system and (g1, . . . , gd) ∈ L be a generator of L.
A projective hash family H = (H,K,X,L,Π, S, α) defined in [10] can be con-
structed from G by setting {φ = Hk | k ∈ K} = H with uniform distribution, S =
Πd, and α : K → S that α(k) = (φ(g1), . . . , φ(gd)) = (Hk(g1), . . . , Hk(gd)). To
hash x ∈ X, it simply calculates Hk(x) = φ(x) ∈ Π. If x ∈ L that x =

∑d
i=1 wigi

where (w1, . . . , wd) ∈ W is the witnesses of x, it can alternatively calculates
Hk(x) = φ(

∑d
i=1 wigi) =

∑d
i=1 wiφ(gi) ∈ Π, using α(k) and (w1, . . . , wd).

Construction 2 (HPS from Projective Hash Families). Let H = (H,K,
X,L,Π, S, α) be a projective hash family where L is a NP language with a wit-
ness space W and a binary relation R such that L = {x ∈ X | ∃w : (x,w) ∈ R}.
A hash proof system Ξ = (Setup,SKGen,PKGen,Hash,PHash) can be constructed
as follows.

– param ← Setup(1λ): return param = (X,L,W,R,K, S,Π).
– SK ← SKGen(param): return k ∈R K.
– PK ← PKGen(SK): return α(k).
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– π ← Hash(SK, x): return Hk(x).
– π ← PHash(PK, x, w): return Hk(x) computed using α(k) and a witness w of

x without the actual k.

Let Ξ be a hash proof system constructed from a group system G by combining
Constructions 1 and 2. From [10], Ξ is universal if G is diverse. Furthermore, we
need a universal2 HPS, which can be derived from a universal projective hash
family.

Construction 3 (Universal2 Projective Hash Families). Let H = (H,K,
X,L,Π, S, α) be a universal projective hash family, p be the smallest prime
dividing |X \ L|, and Γ : X × E → Z

n
p be an injective map. A universal2

projective hash family Ĥ = (Ĥ,Kn+1,X × E,L × E,Π, Sn+1, α̂) can be con-
structed that k̂ = (k0, . . . , kn) ∈ Kn+1, α̂(k) = (α(k0), . . . , α(kn)) ∈ Sn+1, and
Ĥk̂ = Hk0(x) + 〈Γ (x, e), (Hk1(x), . . . , Hkn

(x))〉 for all x ∈ X and e ∈ E.

Let Ξ2 be a hash proof system constructed from a group system G by com-
bining Constructions 1, 3 and 2 in sequence. From [10], Ξ2 is universal2 if G is
diverse.

Besides the above security properties, we find that HPS from a group system
G = (H,X, L,Π) has some extra properties. Let K be a finite abelian group
of order |H|. Since Hk is uniformly distributed over H by randomly choosing
k ∈ K in Construction 1, we have that H is a bijection for K and H. Thus we
have Hk1 + Hk2 = Hk1+k2 ∈ H for all k1, k2 ∈ K.

Theorem 1 (Key Linearity). Let Ξ be a universal HPS and Ξ2 be a
universal2 HPS as constructed above from a group system G. The HPSs Ξ and
Ξ2 have key linearity.

Proof As Ξ and Ξ2 share the same mapping α : K → Πd, we show the linearity
of α that for all k1, k2 ∈ K,

α(k1) + α(k2) = (Hk1(g1), . . . , Hk1(gd)) + (Hk2(g1), . . . , Hk2(gd))
= (Hk1(g1) + Hk2(g1), . . . , Hk1(gd) + Hk2(gd))
= ((Hk1 + Hk2)(g1), . . . , (Hk1 + Hk2)(gd))
= (Hk1+k2(g1), . . . , Hk1+k2(gd)) = α(k1 + k2)

From the linearity of α, we directly have the key linearity of Ξ.

PKGen(SK1) + PKGen(SK2)
= α(SK1) + α(SK2) = α(SK1 + SK2) = PKGen(SK1 + SK2)

For Ξ2, we show the key linearity as follows where SK1 = (k1,0, . . . , k1,n),SK2 =
(k2,0, . . . , k2,n) ∈ Kn+1.

PKGen(SK1) + PKGen(SK2)
= (a(k1,0), . . . , a(k1,n)) + (a(k2,0), . . . , a(k2,n))
= (a(k1,0) + a(k2,0), . . . , a(k1,n) + a(k2,n)))
= (a(k1,0 + k2,0), . . . , a(k1,n + k2,n)) = PKGen(SK1 + SK2)
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Theorem 2 (Hash Linearity). Let Ξ be a universal HPS and Ξ2 be a
universal2 HPS as constructed above from a group system G. The HPSs Ξ and
Ξ2 have hash linearity.

Proof. Starting from Ξ, we show the hash linearity that

Hash(SK1, x) + Hash(SK2, x)
= HSK1(x) + HSK2(x) = HSK1+SK2(x) = Hash(SK1 + SK2, x)

Then we show the hash linearity of Ξ2 as follows where SK1 = (k1,0, . . . , k1,n)
and SK2 = (k2,0, . . . , k2,n) ∈ Kn+1.

Hash(SK1, (x, e)) + Hash(SK2, (x, e))

= Hk1,0(x) + 〈Γ (x, e), (Hk1,1(x), . . . , Hk1,n(x))〉
+ Hk2,0(x) + 〈Γ (x, e), (Hk2,1(x), . . . , Hk2,n(x))〉

= (Hk1,0(x) + Hk2,0(x)) + 〈Γ (x, e), (Hk1,1(x) + Hk2,1(x), . . . , Hk1,n(x) + Hk2,n(x))〉
= Hk1,0+k2,0(x) + 〈Γ (x, e), (Hk1,1+k2,1(x), . . . , Hk1,n+k2,n(x))〉
= Hash(SK1 + SK2, (x, e))

Theorem 3 (Diversity). Let Ξ be a universal HPS as constructed above from
a group system G. The HPS Ξ is diverse if |Π| is prime and G is diverse.

Proof Since G is diverse, we have that there exists k ∈ K such that Hash(k, x) =
0 for all x ∈ L and Hash(k, x∗) �= 0 for all x∗ ∈ X \ L. Let π = Hash(k, x∗) �= 0.
Since Π is a prime order cyclic group, π is a generator of Π and thus for all
π′ ∈ Π ,π′ = μ · π for some μ ∈ Z|Π|. By Theorem 2, we have that for all
x′ ∈ X \ L,

π′ = Hash(k, x′) ⇐⇒ μ · π = Hash(k, x′)

⇐⇒ π = μ−1 · Hash(k, x′) ⇐⇒ π = Hash(μ−1 · k, x′)

Hence, for a fixed π, there exists a secret key μ−1 ·k that hashes x′ to π for all x′ ∈
X. Let w be a witness of x ∈ L. Recall the construction of Ξ that Hash(k, x) =
Hk(x) and PKGen(k) = α(k) = (Hk(g1), . . . , Hk(gd)). Since g1, . . . , gd ∈ L and
Hk(x) = 0 for all x ∈ L, we have PKGen(k) = 0. Therefore, by Theorem 1, we
have PKGen(μ−1 · k) = μ−1 · PKGen(k) = 0 and complete the proof.

4 Functional Encryption for Inner Products

4.1 Definition

Let Gx, Gy, Gz be three abelian groups where there exists an efficient inner
product computation 〈·, ·〉 : Gx × Gy → Gz. The functional encryption for
inner products is associated with a functionality F : Gδ

x × G
δ
y → Gz, mapping

two δ-dimension vectors into a single group Gz such that F (x,y) = 〈x,y〉 =∑δ
i=1〈xi, yi〉 for all x = (x1, . . . , xδ) ∈ G

δ
x and y = (y1, . . . , yδ) ∈ G

δ
y. Based

on the functionality F , we derive the syntax of the functional encryption from
Definition 2.
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Definition 13 (Functional Encryption for Inner Products). A functional
encryption for inner products (FE-IP) scheme for a functionality F : Gδ

x×G
δ
y →

Gz consists of the following four polynomial time algorithms:

– (PK,MSK) ← Setup(1λ, 1δ): The randomised system setup algorithm takes a
security parameter 1λ and a unary value 1δ that specifies the maximum vector
dimension as input. Then it generates system-wide parameters and a key pair
(PK,MSK).

– SK ← KeyGen(MSK,x): The randomised secret key generation algorithm takes
a master secret key MSK and a vector x ∈ G

d
x with dimension d. If d > δ, the

extra dimensions of x is discarded. If d < δ, the vector x is reconstructed to the
dimension δ by filling an additive identity element 0 (i.e. x′ = (x, 0, . . . , 0︸ ︷︷ ︸

δ−d

)).

After that, the algorithm generates a secret key SK for the (modified) vector
x with dimension δ.

– C ← Encrypt(PK,y): The randomised encryption takes a public key PK and
a vector y ∈ G

d
y with dimension d. If d �= δ, the ciphertext may still be con-

structed. However, it may not be decrypted properly. Hence, the same modifi-
cation to x in the algorithm KeyGen is applied to y. After that, the algorithm
generates a ciphertext C for the (modified) vector y with dimension δ.

– D ← Decrypt(SK, C): The deterministic decryption algorithm takes a secret
key SK for x and a ciphertext C of y, and computes D = 〈x,y〉 ∈ Gz. If the
decryption fails, the algorithm outputs a special symbol ⊥.

Before introducing the security model of FE-IP, we review the inner product
functionality along with the vector space first.

Due to the linearity that 〈x0 + x1, y〉 = 〈x0, y〉 + 〈x1, y〉 for all x0, x1 ∈ Gx

and y ∈ Gy, we have μ〈x,y〉 = 〈μx,y〉 for all μ ∈ Z, x ∈ G
δ
x, and y ∈ G

δ
y. Thus

the ability of the secret key for a vector x is not only to calculate F (x,y) but
also to compute F (μx,y) = 〈μx,y〉 = μ〈x,y〉 = μF (x,y), which is equivalent
to the ability of the secret key for the vector μx for all μ ∈ Z. In other words,
the key generation algorithm KeyGen actually generates a secret key for a vector
space span(x) linearly spanned by x instead of a single vector x. Generally, given
multiple secret keys for a vector set S = {x1, . . . ,xn}, we are able to compute
F (x,y) for all x ∈ span(S). It is possible since F (x,y) =

∑n
i=1 μiF (xi,y) where

x =
∑n

i=1 μixi. Notably, if we obtain secret keys for a vector set S such that
span(S) = Gx (e.g. S contains δ linearly dependent vectors), we have the same
ability of the master secret key without compromising it.

Since δ secret keys for linearly independent vectors are equivalent to the
master secret key, the function key space K (recall Definition 2) is reduced to
the size of δ, which is polynomial bounded. Let v1, . . . ,vδ be a basis of Gx.
Intuitively, one may think that the “brute force” construction in [7] becomes
practical by encrypting the output of F (v1,y), . . . , F (vδ,y) instead of the vec-
tor y where the resulting ciphertext size is Θ(δ). However, it is not true since
span(v1 +v2) �= span(v1,v2) where v1 and v2 are independent. Hence, a proper
construction is still required.
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Besides that, if Gx = Gy = Gz = F are the same field, it is impossible to hide
x in the public key setting, given the secret key for the vector x. Since it is in the
public key setting, δ linearly independent vectors y1, . . . ,yδ can be chosen and
encrypted freely. By decrypting the above ciphertexts with the secret key for the
vector x = (x1, . . . , xδ), we can obtain the results {Di = F (x,yi)}i=1...δ. After
that, we can calculate x by solving the following matrix equation in polynomial
time. ⎡

⎢⎣
y1
...

yδ

⎤
⎥⎦x� =

⎡
⎢⎣

D1

...
Dδ

⎤
⎥⎦

Hence, it is impossible to achieve function privacy. As a side effect, it is “safe”
to provide x along with the secret key in the key generation algorithm KeyGen.

For the security model, the definition of the IND-CPA security and the IND-
CCA security can be derived from the security model of the general functional
encryption. The difference is that the setup algorithm is required to take an
additional parameter 1δ.

4.2 Generic Construction from Hash Proof Systems

In this subsection, we describe the key ideas to construct an IND-CCA secure
FE-IP scheme. Then we present our FE-IP scheme from Hash Proof Systems.

In a FE-IP scheme, the plaintext vector y should be encrypted in a raw form
that can be recovered instead of being encrypted as the output of the function
F (x,y) so that it can be manipulated by arbitrary x to compute F (x,y). In
order to achieve the IND-CCA security, the sender who encrypts the message
shall provide a non-interactive zero knowledge (NIZK) proof that it knows the
decryption in terms of the raw form of the plaintext vector y [17]. This is the
essential idea of achieving the IND-CCA security. On the other hand, the decryp-
tion of a functional encryption involves two parts: the function evaluation and
the authorisation to that function evaluation. Obviously, we have to do manip-
ulation first then decryption instead of decryption first then manipulation since
the receiver should only be able to compute F (x,y) but not y itself. For inner
product functionality, the ciphertext of the plaintext vector y is manipulated
into the ciphertext of F (x,y) = 〈x,y〉 by using the vector x and the ciphertext
homomorphism. Later, the receiver can decrypt the resulted ciphertext to obtain
F (x,y), given the authorisation to F (x, · ). Before decryption, the receiver also
needs to verify the NIZK proof attached to the ciphertext. Using the hash proof
system as the NIZK proof system (with auxiliary input), the receiver is required
to use the secret key of the HPS to verify the proof. If we consider attacks from
outsiders only, it is safe to give the secret key to the end users. However, from the
Game 1, we allow attacks from insiders. Therefore, we cannot give the secret key
directly to the users. Otherwise, they can generate the proofs without knowing
the witnesses. To solve this problem, we limit the scheme to serve at most η
users and generate a vector β of secret keys for the proof system with dimension
η. For each user, we randomly pick a vector s and compute the inner product
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〈s,β〉 as the secret key for the end user. When encrypting, the sender generates
the proof using the individual public keys directly derived for β as η proof parts.
To verify, the receiver assembles the proof parts using s and checks with its
secret key 〈s,β〉. Since both β and s have the dimension η, it is impossible to
compute β with η − 1 pairs of (s, 〈s,β〉) (i.e. β is statistically indistinguishable
with a random vector). If all η users collude together, they can obtain β and
generate proofs without witnesses but it is meaningless to launch attacks against
themselves.

Unfortunately, we are not able to construct a generic FP-IP scheme for arbi-
trary Gx, Gy, and Gz. Due to the definition of hash linearity (Definition 9) of
HPS, we have to make Gx = Gy = Gz = Zρ ⊂ Z. To build our FE-IP scheme, we
need a diverse HPS with key linearity and hash linearity, a universal2 HPS with
hash linearity. Note that the key linearity is used in the proof only. Formally, we
present our construction as follows.

Construction 4 (FE-IP from HPS). Let Ξ1 = (Setup,SKGen,PKGen,Hash,
PHash) be a diverse HPS associated with spaces (X,L,W,R,K, S,Π) and Ξ2 =
(Setup,SKGen,PKGen, Hash,PHash) be a universal2 HPS associated with space
(X×Πδ, L×Πδ,W,R,K ′, S′,Π ′) where δ is passed as the input of the algorithm
Setup. Both Ξ1 and Ξ2 are required to have the hash linearity. Ξ1 is required
to have the key linearity for the security proof. Let χ ∈ Π derived from the
diversity property of Ξ1 that χ �= 0 and ∀x ∈ X \ L,∃SK ∈ K,Ξ1.Hash(SK, x) =
χ ∧ Ξ1.PKGen(SK) = 0. We use μ = χ−1(π) to denote the calculation of μ ∈ Zρ

such that μ · χ = π ∈ Π. Our functional encryption scheme for the functionality
F : Zδ

ρ × Z
δ
ρ → Zρ works as follows.

– (PK,MSK) ← Setup(1λ, 1δ, 1η): Given a security parameter 1λ, a maximum
vector size 1δ and a maximum user size 1η, the algorithm generates system-
wide parameters param1 ← Ξ1.Setup(1λ) and param2 ← Ξ2.Setup(1λ). The
algorithm generates two secret key vectors α = (α1, . . . , αδ) ∈ Kδ and β =
(β1, . . . , βη) ∈ K ′η where αi ← Ξ1.SKGen(param1), βi ← Ξ2.SKGen(param2).
After that, it generates corresponding public keys A = (A1, . . . , Aδ) ∈ Sδ and
B = (B1, . . . , Bη) ∈ S′η where Ai = Ξ1.PKGen(αi), Bi = Ξ2.PKGen(βi).
Next, the algorithm packs the public key PK = (A,B) and the master secret
key MSK = (α,β). Finally, the algorithm publishes PK and keeps MSK
private.

param1 ← Ξ1.Setup(1λ), param2 ← Ξ2.Setup(1λ)
For i = 1 . . . δ, αi ← Ξ1.SKGen(param1), Ai = Ξ1.PKGen(αi)
For i = 1 . . . η, βi ← Ξ2.SKGen(param2), Bi = Ξ2.PKGen(βi)

return (PK,MSK) = ((A,B), (α,β)).
– SK ← KeyGen(MSK,x): To generate a secret key for the vector x, the algo-

rithm randomly selects a vector s = (s1, . . . , sη) ∈R Z
η
ρ and calculates K1 and

K2 as follows.
s ∈R Z

η
ρ, K1 = 〈x,α〉, K2 = 〈s,β〉.

return SK = (x, s,K1,K2).



132 S. Zhang et al.

– C ← Encrypt(PK,y): To encrypt a vector y, the algorithm randomly sam-
ples a word l ∈ L with a witness w ∈ W . Then the algorithm computes
the ciphertext part C = (C1, . . . , Cδ) where Ci = yiχ + Ξ1.PHash(Ai, l, w).
After that, the algorithm computes the proof part π = (π1, . . . , πη) where
πi = Ξ2.PHash(Bi, (l,C), w). Finally, the algorithm packs the word, the
ciphertext part, and the proof part as one single ciphertext.

(l, w) ∈R R

For i = 1 . . . δ, Ci = yiχ + Ξ1.PHash(Ai, l, w)
For i = 1 . . . η, πi = Ξ2.PHash(Bi, (l,C), w)

return C = (l,C,π).
– D ← Decrypt(SK, C): To decrypt, the algorithm assembles the proof parts

D2 = 〈s,π〉. If D2 �= Ξ2.Hash(K2, (l,C)), the algorithm outputs D = ⊥ to
reject the ciphertext. Otherwise, the algorithm assembles the ciphertext part
D1 = 〈x,C〉. Then the algorithm decrypts the resulted ciphertext D∗ = D1 −
Ξ1.Hash(K1, l). Finally, the algorithm extracts the result D = χ−1(D∗).

D2 = 〈s,π〉, D2
?= Ξ2.Hash(K2, (l,C)),

D1 = 〈x,C〉, D∗ = D1 − Ξ1.Hash(K1, l).

return D = χ−1(D∗).

Theorem 4. The Construction 4 is correct.

Proof. We verify the correctness by verifying the decryption algorithm.

D2 = 〈s, π〉 =

η∑

i=1

siπi =

η∑

i=1

siΞ2.PHash(Bi, (l, C), w) =

η∑

i=1

siΞ2.Hash(βi, (l, C))

= Ξ2.Hash(

η∑

i=1

siβi, (l, C)) = Ξ2.Hash(〈s, β〉, (l, C)) = Ξ2.Hash(K2, (l, C)).

D1 = 〈x, C〉 =

δ∑

i=1

xiCi =

δ∑

i=1

xi

(
yiχ + Ξ1.PHash(Ai, l, w)

)

=
δ∑

i=1

xiyiχ +
δ∑

i=1

xiΞ1.Hash(αi, l) = 〈x, y〉χ + Ξ1.Hash(
δ∑

i=1

xiαi, l)

= 〈x, y〉χ + Ξ1.Hash(〈x, α〉, l) = 〈x, y〉χ + Ξ1.Hash(K1, l).

After verifying D2 and computing D1, we compute D as follows and complete
the verification.

D∗ = D1 − Ξ1.Hash(K1, l) = 〈x,y〉χ, D = χ−1(D∗) = χ−1(〈x,y〉χ) = 〈x,y〉.

In Construction 4, we require the calculation of χ−1, which may not be
computed in polynomial time. If the decryption space |{〈x,y〉}| is polynomial
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bounded, we can do decryption in an alternative way. In this variation, D1,
D2, and D∗ are computed and checked as normal. To calculate D, we check
Dχ

?= D∗ for each possible D ∈ |{〈x,y〉}|. Since |{〈x,y〉}| is polynomial-sized,
the checking algorithm can be done in polynomial time.

In terms of the maximum number η of users, it is not a defect and the
IND-CCA model is still suitable for Construction 4. Since the number of users
is polynomial sized, the value of η is also polynomial sized. By observing Con-
struction 4, we have the following size table.

Item PK MSK SK C D
Size δ|S| + η|S′|δ|K| + η|K ′|(δ + η)|Zρ| + |K| + |K ′||L| + δ|Π| + η|Π ′||Zρ|

As long as the value of η is polynomial sized, all the elements in Construction 4
are polynomial sized. Hence, the limitation on the maximum user number is no
longer an issue.

4.3 Security Proof

Theorem 5. The proposed FE-IP scheme (Construction 4), allowing at most η
users, is IND-CCA secure (Definition 3) if the language (X,L,W,R) associated
with both the underlying diverse HPS Ξ1 and universal2 HPS Ξ2 satisfies a hard
subset membership problem (Definition 1).

Proof. Having a glance at the security proof, we leverage the diversity property
of the HPS Ξ1 to prove the ciphertext indistinguishability of our construction.
At the same time, we exploit the universal2 property of the HPS Ξ2 to finalise
the IND-CCA security in terms of dealing the decryption oracle.

In detail, we show that an algorithm S (i.e. simulator) can be constructed
to solve subset membership problems in polynomial time with non-negligible
probability if an adversary A can win the Game 1 with non-negligible probability,
querying the key generation oracle OKeyGen at most η−1 times and the decryption
oracle ODecrypt for at most q times. As explained in Sect. 4.2, it is meaningless to
obtain all secret keys of η users and this is the reason why we let the adversary
A query the key generation oracle at most η − 1 times. Although we limit the
maximum number of the key generation queries, we do not limit the maximum
number of the decryption queries to a function of η. Therefore, the proof is still
in a valid IND-CCA model.

Let (Λ = (X,L,W,R), x∗) be an instance of subset membership problems
challenged to the simulator S for distinguishing whether x∗ ∈ L or x∗ ∈ X \ L
where x∗ is sampled from L or X \ L with equal probability. To simulate the
Game 1, the simulator S runs the algorithm Setup as normal to generate a key
pair (PK,MSK) = ((A,B), (α,β)), and passes the public key PK to the adver-
sary A. Since the simulator S has the master secret key MSK, it can answer the
oracles OKeyGen and ODecrypt as normal using the master secret key MSK.

The adversary A is restricted to query the secret keys for x to OKeyGen such
that 〈x,y0〉 �= 〈x,y1〉 where y0 and y1 are the target vectors output by the
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adversary A in the next phase. In other words, the adversary A can only ask
the secret keys for x such that 〈x,y0 − y1〉 = 0.

At some point, the adversary A outputs two target vectors y0 and y1. Then
the simulator S randomly chooses b ∈R {0, 1}. After that, the simulator S com-
putes the target ciphertext C∗ = (x∗,C∗,π∗) where

C∗
i = yb,iχ + Ξ1.Hash(αi, x

∗), π∗
i = Ξ2.Hash(βi, (x∗,C∗)).

After receiving the target ciphertext C∗, the adversary A can continue to query
provided oracles as before with the restriction that A cannot query C∗ to the
decryption oracle ODecrypt. Eventually, the adversary A outputs a bit b′. If b = b′,
the simulator S outputs 1, indicating that A wins the Game 1. Otherwise, the
simulator S outputs 0. After that, the simulator S halts in order to complete
the simulation.

Let EL be the event that S outputs 1 conditioned on x∗ ∈ L, and EX\L

be the event that S outputs 1 conditioned on x∗ ∈ X \ L. Thus we have the
advantage AdvSMP

S of solving the subset membership problem.

AdvSMP
S = |Pr[1 ← S | x∗ ∈ L] − Pr[1 ← S | x∗ ∈ X \ L]|

=
∣∣Pr[EL] − Pr[EX\L]

∣∣ (1)

For the case of x∗ ∈ L, the simulation is perfect since the algorithms
(Ξ1.PHash, Ξ2.PHash) and (Ξ1.Hash, Ξ2.Hash) are equivalent. Thus we have

∣∣∣∣Pr[EL] − 1
2

∣∣∣∣ = AdvIND-CCA
A . (2)

For the case of x∗ ∈ X \ L, we modify the game to a new game such that
the simulator S rejects all ciphertexts C = (l,C,π) where l ∈ X \ L in the
decryption oracle ODecrypt in addition to those words, which cannot pass the
proof verification. Let Em be the event that S outputs 1 conditioned on x∗ ∈
X \ L in this modified game, and E⊥ be the event that l ∈ X \ L and 〈s,π〉 =
Ξ2.Hash(K2, (l,C)). In other words, E⊥ is the event that a ciphertext is rejected
in the modified game but accepted in the original game. Since the original game
and the modified game are identical until event E⊥ occurs, we have

∣∣Pr[Em] − Pr[EX\L]
∣∣ ≤ Pr[E⊥]. (3)

Lemma 1. The event E⊥ occurs in negligible probability as long as Ξ2 is a
universal2 HPS. More precisely, letting A query ODecrypt for at most q times, we
have a upper bound of the probability that E⊥ occurs.

Pr[E⊥] ≤ q · AdvUniversal2 (4)

Proof. Let C = (l,C,π) be a ciphertext submitted to the decryption oracle
ODecrypt.

– Suppose that (l,C) = (x∗,C∗), the adversary A tries to find a π �= π∗ such
that 〈s,π〉 = 〈s,π∗〉. Let π̂ = π − π∗ �= 0. Since s is independent from A’s
view, it is impossible to find a π̂ such that 〈s, π̂〉 = 0.
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– Suppose that (l,C) �= (x∗,C∗), the adversary A tries to find a π such that
〈s,π〉 = Ξ2.Hash(K2, (l,C)). Let π̂i = Ξ2.Hash(βi, (l,C)). Since

〈s,π〉 = Ξ2.Hash(K2, (l,C)) = Ξ2.Hash(〈s,β〉, (l,C))

=
η∑

i=1

siΞ2.Hash(βi, (l,C)) = 〈s, π̂〉

and s is independent from A’s view, we have 〈s,π〉 = 〈s, π̂〉 ⇐⇒ π = π̂. As
the scheme allows at most η users (i.e. A can query OKeyGen for at most η − 1
times), the adversary can get at most η − 1 pairs of (s, 〈s,β〉) where all s are
linearly independent. In the worst case, the vector β is collapsed into a space
of dimension 1 with size |K ′| but β is still uniformly distributed over that
space. Let ŝ ∈ Z

η
ρ such that ŝ is linearly independent with all s obtained by

A. Thus k = 〈ŝ,β〉 is independent from A’s view and uniformly distributed
over K ′. If A find a π such that π = π̂, we immediately have attacked the
universal2 property of Ξ2 that 〈ŝ,π〉 = Ξ2.Hash(k, (l,C)). This completes the
proof of Eq. (4).

Lemma 2. The hidden bit b is independent from A’s view that

Pr[Em] =
1
2

(5)

Proof. Thanks to the diversity property of Ξ1, there exists a r ∈ K such that
Ξ1.Hash(r, x) = χ and Ξ1.PKGen(r) = 0. Note that we do not need to calculate
r. Since χ �= 0, we have r �= 0. Let γ = r · (yb − y1−b) ∈ Kδ. Thus we have
Ξ1.Hash(γi, x

∗) = (yb,i − y1−b,i) · Ξ1.Hash(r, x∗) = yb,iχ − y1−b,iχ. Recall the
target ciphertext C∗ where C∗

i = yb,iχ + Ξ1.Hash(αi, x
∗). Although C∗ is a

ciphertext for yb, it can also be a ciphertext for y1−b that

C∗
i

= y1−b,iχ + Ξ1.Hash(αi + γi, x
∗) = y1−b,iχ + Ξ1.Hash(αi, x

∗) + Ξ1.Hash(γi, x
∗)

= y1−b,iχ + Ξ1.Hash(αi, x
∗) + yb,iχ − y1−b,iχ = yb,iχ + Ξ1.Hash(αi, x

∗).

Thus C∗ is a ciphertext of yb for α or y1−b for α+γ where α �= α+γ. Since the
adversary A can only request the secret keys for x such that 〈x,y0〉 = 〈x,y1〉,
we have

〈x,α + γ〉 = 〈x,α〉 + 〈x,γ〉 = 〈x,α〉 + 〈x, r · (yb − y1−b)〉 = 〈x,α〉
Hence, the adversary A cannot distinguish α and α + γ from generated keys.
Since PKGen(αi +γi) = PKGen(αi)+ (yb,i − y1−b,i) ·PKGen(r) = PKGen(αi), the
adversary A cannot distinguish α and α + γ from public keys. Therefore, the
hidden bit b is independent from A’s view.

Combining Eqs. (3)–(5), we have
∣∣∣∣Pr[EX\L] − 1

2

∣∣∣∣ ≤ q · AdvUniversal2 . (6)
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Combining Eqs. (1), (2) and (6), we have

AdvIND-CCA
A ≤ AdvSMP

S + q · AdvUniversal2 . (7)

From Eq. (7), we immediately have the theorem.

5 Instantiation from DDH

Definition 14 (Decisional Diffie-Hellman problem). Let G be a cyclic
group of prime order p, a, b ∈R Zp, and g, T ∈R G. Giving two probability
distributions DDDH = {(g, ga, gb, gab)} and Drand = {(g, ga, gb, T )}, there is an
algorithm A can distinguish DDDH and Drand with advantage:

AdvDDH
A = |Pr[1 ← A(D ∈R DDDH)] − Pr[1 ← A(D ∈R Drand)]|

Let g1 = g and g2 = ga. The Decisional Diffie-Hellman (DDH) problem is
to distinguish DDDH = {(g1, g2, gb

1, g
b
2)} and Drand = {(g1, g2, gb

1, T )}. In other
words, the problem is to decide whether logg1

X1 = logg2
X2 where X1,X2 ∈ G.

Obviously, the DDH problem is a subset membership problem where X = G
2,

L = (gr
1, g

r
2) ⊂ X and r ∈ Zp. We assume the DDH problem is hard. That is,

the advantage AdvDDH
A is negligible.

We recall the universal projective hash family proposed by Cramer and Shoup
[10] derived from a diverse group system based on the DDH problem. The key
space is K = Z

2
p. For the hash key k = (s1, s2) ∈ K, the projection key generation

is α(k) = gs1
1 gs2

2 ∈ S = Π = G. To compute the hash value of x = (X1,X2) ∈
X = G

2 with the hash key k, it computes Hk(x) = Xs1
1 Xs2

2 ∈ Π. To compute
the have value of x = (gw

1 , gw
2 ) ∈ L with the projection key α(k) and a witness

w ∈ W = Zp, it computes Hk(x) = α(k)w ∈ Π.
By applying Construction 2, we obtain a HPS Ξ1. From Theorems 1–3 and

|Π| = |Zp| = p, we have that Ξ1 has key linearity and hash linearity, and is
diverse. To ensure that the underlying group system is diverse, we show the
existence of φ (or equivalent secret key k). Let r ∈ Z

+
p and k = (r,−r logg2

g1).
For all x = (gw

1 , gw
2 ) ∈ L, we have Hk(x) = (gw

1 )r(gw
2 )−r logg2

g1 = g01 . For all
x = (gw1

1 , gw2
2 ) ∈ X \ L, we have Hk(x) = (gw1

1 )r(gw2
2 )−r logg2

g1 = g
r(w1−w2)
1 . To

simplify our instantiation, we choose r = 1 and x = (g21 , g2), and computes χ =
Ξ1.Hash(k, x) = g1. By applying Constructions 2 and 3 we obtain another HPS
Ξ2, which is universal2. From Theorem 2, we have that Ξ2 has hash linearity.
Note that we use a collision resistant hash function (CRHF) H : G2 ×G

δ → Zp

instead of an injective map Γ when applying Construction 3.
With Ξ1 and Ξ2, we apply Construction 4 to construct a functional encryp-

tion scheme for the inner product functionality F : Zδ
p × Z

δ
p → Zp.
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Construction 5. Our instantiation works as follows.

– (PK,MSK) ← Setup(1λ, 1δ, 1η):

H : G2 × G
δ → Zp, g1, g2 ∈R G.

For i = 1 . . . δ, αi = (αi,1, αi,2) ∈R Z
2
p, Ai = g

αi,1
1 g

αi,2
2 .

For i = 1 . . . η, βi = (βi,1, βi,2, βi,3, βi,4) ∈R Z
4
p,

Bi = (Bi,1, Bi,2) = (gβi,1
1 g

βi,2
2 , g

βi,3
1 g

βi,4
2 ).

return (PK,MSK) = ((A,B), (α,β)).
– SK ← KeyGen(MSK,x):

s ∈R Z
η
p, K1 = (K1,1,K1,2) =

(
δ∑

i=1

xiαi,1,

δ∑
i=1

xiαi,2

)

K2 = (K2,1,K2,2,K2,3,K2,4) =

(
η∑

i=1

siβi,1,

η∑
i=1

siβi,2,

η∑
i=1

siβi,3,

η∑
i=1

siβi,4

)

return SK = (x, s,K1,K2).
– C ← Encrypt(PK,y):

r ∈R Zp, l = (u1, u2) = (gr
1, g

r
2), For i = 1 . . . δ, Ci = gyi

1 · Ar
i

h = H(u1, u2, C1, . . . , Cδ), For i = 1 . . . η, πi = (Bi,1 · Bh
i,2)

r

return C = (l,C,π).
– D ← Decrypt(SK, C):

h = H(u1, u2, C1, . . . , Cδ),
η∏

i=1

πsi
i

?= u
K2,1+h·K2,3
1 u

K2,2+h·K2,4
2 , D∗ =

∏δ
i=1 Cxi

i

u
K1,1
1 u

K1,2
2

return D = logg1
D∗.

As mentioned in Sect. 4.2, we can decrypt D in an alternative manner instead
of calculating logg1

D∗ if |{D}| is polynomial-sized.

6 Conclusion

In this paper, we reviewed the hash proof system (HPS) introduced by [10] and
defined new properties of HPS. We found that the existing HPS constructions
by [10] have those new properties. As the main contribution of this paper, we
proposed an IND-CCA secure functional encryption for inner products, which
can be generically constructed from a diverse HPS with key linearity and hash
linearity, and a universal2 HPS with hash linearity. Moreover, we constructed a
concrete scheme from DDH assumption via our proposed generic construction.

One of our future work will be relaxing the scheme without limiting the
number of user who can decrypt. Another future work will be finding new HPS,
which has our defined properties, from other subset membership problems so that
we can construct new functional encryption schemes under new assumptions.
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Abstract. Recently, Bunder, Nitaj, Susilo and Tonien utilized the con-
tinued fraction method to solve for the unknowns of a modular equation
which has been applied in three variants of RSA cryptosystem, where
the modular equation can be expressed as ed ≡ 1 mod (p2 − 1)(q2 − 1)
and N = pq is an RSA modulus. According to their work, when the
private key d � Nδ satisfies that δ < 3−α

2
for α ≥ 1, where e � Nα,

the modulus N can be factored in polynomial time. In this paper, we
revisit their work and improve the previous bound to δ < 2 − √

α for
α ≥ 1. More specifically, by utilizing Coppersmith’s method to solve for
the unknowns of a modular equation and using unravelled linearization
technique in the lattice construction, we can successfully improve their
result. Our attack are verified by experiments.

Keywords: RSA · Cryptanalysis · Coppersmith’s method

1 Introduction

In 1978, the RSA scheme, a new method to efficiently realize digital signature
and authentication in data transmission was put forwarded by Rivest, Shamir
and Adleman [16]. Due to its simplicity and efficiency, the RSA scheme has
become the most popular public key cryptosystem and also has been widely
used in practical applications since its concept was proposed. The key generation
algorithm of the original RSA scheme can be described as follows:

Key Generation of RSA: For an RSA modulus N = pq, where p and q
are primes of the same bitlength. Randomly choose an integer e such that
gcd(e, ϕ(N)) = 1, where ϕ(N) = (p − 1)(q − 1) and calculate d such that
ed ≡ 1 (mod ϕ(N)) by the Extended Euclidean Algorithm. The public key is
(N, e) and the private key is (p, q, d).
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 140–149, 2017.
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In addition, several variants of RSA have been proposed to obtain higher
efficiency or security, like CRT-RSA [20], Prime Power RSA [19] and so on.
Because of the widespread application, the security of the RSA scheme and its
variants is one of important hot spots of cryptanalysis.

Small Private Exponent Attacks on RSA: In 1990, Wiener [20] utilized
the continued fraction method to show that the original RSA scheme can be
broken when the private key d is smaller than N0.25. Later, Boneh and Durfee
[1] used latticed based Coppersmith’s method [5] which can solve for small root
of integer or modular equation in polynomial time to improve the previous bound
to N0.292. Then, Herrmann and May [7] used unravelled linearization technique
in the lattice construction to simplify the Boneh-Durfee’s proof and obtained
same bound as [1]. Along this direction, for the variants of RSA scheme, there
are also many attacks [10,13,14,17] are proposed under small private exponents.

1.1 Background

In 1995, Kuwakado, Koyama and Tsuruoka [11] proposed a system based on
singular cubic curves with equation modular y2 ≡ x3 +bx2 (mod N), where N is
an RSA-type modulus. Compared with the original RSA scheme and its variants,
the public key e and private key d of Kuwakado-Koyama-Tsuruoka scheme satisfy
ed ≡ 1 (mod (p2 − 1)(q2 − 1)). Later, in 2002, Elkamchouchi, Elshenawy and
Shaban [6] extended the RSA scheme to the ring of Gaussian integers. Similarly,
as the Kuwakado-Koyama-Tsuruoka scheme [11], the public key e and the private
d of Elkamchouchi-Elshenawy-Shaban scheme [6] also satisfy ed ≡ 1 (mod (p2 −
1)(q2 − 1)). Moreover, a probabilistic scheme based on the RSA scheme which
was proposed by Castagnos [4] includes the same modular equation as [4,6].
Therefore, how to solve for the unknowns d, p, q from the modular equation
ed ≡ 1 (mod (p2 − 1)(q2 − 1)) is a question that is worth studying.

Recently, Bunder, Nitaj, Susilo and Tonien [3] utilized the continued fraction
method to propose small private key attack on the above three schemes [4,6,11]
and obtained the following theorem:

Theorem 1. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integer or in the Castag-
nos scheme with N = pq and q < p < 2q. If e < (p2 − 1)(q2 − 1) satisfies an
equation ed − k(p2 − 1)(q2 − 1) = 1 with

d <

√
2N3 − 18N2

e
,

then one can factor N in polynomial time.

Note that, for the above theorem, we assume that e, d have the roughly same
bit-size as Nα and N δ respectively, where 0 < α, δ < 2. Then the result of
Theorem 1 can be rewritten as

d < N
3−α
2 ,
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or equivalently,

δ <
3 − α

2
,

neglecting any small constant since N is relatively large.
Moreover, we have that ed ≥ N2, otherwise, we have that

0 < 1 = ed − k(p2 − 1)(q2 − 1) < N2 − kN2 + k(p2 + q2 − 1).

Then since q < p < 2q, we have p2 + q2 − 1 < N(p
q + q

p ) < 3N . Then the
above inequation becomes (k − 1)N < 3k which contradicts the assumption N
is a relatively large RSA modulus. Hence, for more accuracy, another condition
ed ≥ N2 should be added in Bunder et al.’s theorem, so one can obtain that

N2d ≤ ed2 < 2N3 − 18N2 < 2N3

which means their result should be written as

d <

√
2N3 − 18N2

e
, for e >

N

2
,

or equivalently,

δ <
3 − α

2
, for α ≥ 1.

When e ≤ N
2 , namely α < 1, one can not obtain Bunder et al.’s theorem.

1.2 Our Result

In this paper, we reconsider the small private key attack on the variants of RSA
cryptosystem [4,6,11] and improve Bunder et al.’s work [3] to

δ < 2 − √
α,

where α ≥ 1.
More specifically, since e and d satisfy an equation ed−k(p2 −1)(q2 −1) = 1,

the problem can be transformed into solving for the small solutions of modular
equation k(p2 −1)(q2 −1)+1 ≡ 0 mod e. By utilizing Coppersmith’s method to
select polynomials and using unravelled linearization technique to simplify the
lattice construction, we finally improve Bunder et al.’s result. For comparison
with the previous work [3], an explicit picture on our improvement is illustrated
in Fig. 1.

The rest of this paper is organized as follows. Section 2 is the preliminary
knowledge on lattice and Coppersmith’s method. Section 3 presents an improved
analysis of Bunder et al.’s result [3]. Finally, Sect. 4 is the conclusion.
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Fig. 1. Comparison on the ranges of δ with respect to α. Here the dashed line denotes
the lower bound on δ in [3] and the thin solid line denotes that in this paper.

2 Preliminaries on Lattice

Let L be a lattice which is spanned by k linear independent vectors
w1, w2, · · · , wk ∈ R

n. The lattice L can be represented as c1w1 + · · · + ckwk,
where c1, · · · , ck ∈ Z, which means L is the set of all integer linear combinations
of w1, · · · , wk. The set of vectors w1, · · · , wk is called as a lattice basis of L and k
is the dimension of L. Moreover, when the dimension of lattice is greater than 1,
the lattice basis is not unique, one can obtain another lattice basis by a simple
multiplication with some integral matrix with determinant ±1, it means that
any lattice of dimension larger than 1 has infinitely many bases. Hence, same
with searching for the shortest vector of a lattice, how to obtain a lattice basis
with good properties is also an important issue in the study of lattice. More
details about lattice and related problems can be referred to [15].

In [12], Lenstra et al. proposed the famous L3 lattice basis reduction algo-
rithm. Based on their algorithm, for any lattice, one can always obtain a rela-
tively short and nearly orthogonal lattice basis in polynomial time. More specif-
ically, the L3 lattice basis reduction algorithm can be described as follows:

Lemma 1. (L3, [12]) Let L be a lattice of dimension k. Applying the L3 algo-
rithm to L, the outputted reduced basis vectors v1, · · · , vk satisfy that

‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

Coppersmith’s method: Since the appearance of the L3 lattice basis reduc-
tion algorithm, with restriction of the length of lattice basis, more and more
researchers has begun to utilize lattice as a tool in the cryptanalysis. In 1996,
Coppersmith applied the L3 lattice basis reduction algorithm to find small
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root of univariate modular equations and bivariate equations [5] and this tech-
nique is now usually called as Coppersmith’s method. Later, Jochemsz and May
extended Coppersmith’s method and gave a general strategy to solve for the
small root of multivariate polynomials [9]. Since then, the Coppersmith’s method
has become an important technique in cryptanalysis of RSA scheme and its vari-
ants [1,10,13,14,17,18].

Note that, the following lemma due to Howgrave-Graham [8] gives a suffi-
cient condition under which root of a modular equation also satisfy an inte-
ger equation. Note that, for a given polynomial g(x1, · · · , xk) =

∑
(i1,··· ,ik)

ai1,··· ,ik
xi1
1 · · · xik

k , we define the norm of g as

‖g(x1, · · · , xk)‖ =
( ∑

(i1,··· ,ik)

a2
i1,··· ,ik

) 1
2
.

Lemma 2. (Howgrave-Graham, [8]) Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial with at most w monomials. Suppose that

g(y1, · · · , yk) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yk| ≤ Xk, and

‖g(x1X1, · · · , xkXk)‖ <
pm

√
w

.

Then g(y1, · · · , yk) = 0 holds over the integers.

According to the above Lemmas 1 and 2, we can give a brief description of
Coppersmith’s method. For a modular equation

f(x1, · · · , xn) ≡ 0 mod p,

where (y1, · · · , yn) is the desired root. Firstly, we choose polynomials
hi(x1, · · · , xn) as many as possible and all the selected polynomials have the
same root (y1, · · · , yn) modulo pm, where m is an integer. Then we construct a
lattice L whose row vectors correspond to the coefficients of the selected poly-
nomials hi(x1X1, · · · , xnXn), where |y1| ≤ X1, · · · , |yn| ≤ Xn. For the conve-
nience of the calculation of determinant of the constructed lattice, we usually
select polynomials to make the lattice basis triangular. Then by applying L3

lattice basis reduction algorithm to the lattice L, we can obtain n polynomi-
als v1(x1, . . . , xn), · · · , vn(x1, . . . , xn) corresponding to the first n reduced basis
vectors with sufficiently small norm. Based on Lemma 1, we have that

||v1(x1X1, . . . , xnXn)|| ≤ · · · ≤ ||vn(x1X1, . . . , xnXn)|| ≤ 2
k(k−1)

4(k+1−n) det(L)
1

k+1−n ,

where k is the dimension of L.
Moreover, since the obtained polynomials v1(x1, . . . , xn), . . . , vn(x1, . . . , xn)

are some integer combinations of the polynomials hi(x1, · · · , xn),
v1(x1, . . . , xn), . . . , vn(x1, . . . , xn) have the same root (y1, · · · , yn) modulo pm.
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Then if the norm of v1(x1, . . . , xn), . . . , vn(x1, . . . , xn) satisfy the second condi-
tion of Lemma 2, namely if

2
k(k−1)

4(k+1−n) det(L)
1

k+1−n <
pm

√
k

,

we have that v1(y1, · · · , yn) = 0, . . . , vn(y1, · · · , yn) = 0 hold over the integers.
Similarly as other lattice-based attacks, we ignore small terms that do not

depend on p since p is relatively large, and only check whether det(L) < pmk

does hold or not.
Then based on the following heuristic assumption, we can solve for the root

y1, · · · , yn from the polynomials v1(y1, · · · , yn) = 0, . . . , vn(y1, · · · , yn) = 0. In
practical experiments, the following heuristic assumption usually holds. For the
experiments in this paper, we always successfully collected the roots by using
Gröbner basis technique and there was no experimental result to contradict this
assumption. However, it seems very difficult to prove or demonstrate its validity.

Assumption 1. Our lattice-based method yields algebraically independent poly-
nomials. The common solutions of these polynomials can be efficiently computed
by using numerical or symbolic methods.

3 Our Improvement

In this section, we use Coppersmith’s method to improve previous result and
obtain the following theorem.

Theorem 2. Let (N, e) be a public key in the Kuwakado-Koyama-Tsuruoka
cryptosystem or in the RSA cryptosystem with Gaussian integer or in the Castag-
nos scheme with N = pq and q < p < 2q. Let e be the public key and d be the
private key. Assume that e and d have the roughly same bit-size as Nα and N δ,
respectively, where 0 < α, δ < 2. Then under Assumption 1, one can factor N
in polynomial time when

δ < 2 − √
α, for α ≥ 1.

Proof. Since ed = k(p2 − 1)(q2 − 1) + 1 = k(N2 − p2 − q2 + 1) + 1, for the
unknowns (k, p2 + q2), we have the following modular equation,

f(x, y) = x(N2 − y) + 1. (1)

Then following the Herrmann and May’s [7] analysis, we use linearization u =
−xy + 1 and the Eq. (1) can be transformed into

f̂(x, u) = N2x + u.

In order to recover the unknowns, we select polynomials as follows:

gi,k(u, x, y) = xif̂k(x, u)em−k, for k = 0, · · · ,m, and i = 0, · · · ,m − k,
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and

hj,k(u, x, y) = yj f̂k(x, u)em−k, for j = 1, · · · , t, and k = �m

t
	j, · · · ,m.

where m and t are integers which will be chosen later, and each occurrence of
monomial xy is replaced by −u + 1. Below we let t ≤ m and τ = t

m ∈ [0, 1].
Obviously, all the above polynomials have the same root which are desired

unknowns (−k(p2+q2)+1, k, p2+q2) modulo em and the solutions can be roughly
estimated by |k| 
 X(:= Nα+δ−2), |p2 + q2| 
 Y (:= N) and |−k(p2 + q2)+1| 

U(:= XY = Nα+δ−1), neglecting any small constant because N is relatively
large.

Then we construct a matrix, whose row vectors are the coefficient vectors of
gi,k(uU, xX, yY ) and hj,k(uU, xX, yY ) with respect to the monomials on u, x, y.
It is easy to check that it is a triangular matrix, and its diagonal entries are

UkXiem−k, for k = 0, · · · ,m, and i = 0, · · · ,m − k,

and
UkY jem−k, for j = 1, · · · , t, and k = �m

t
	j, · · · ,m.

Let the row vectors of this matrix span a lattice L.
By construction, its determinant can be easily determined as

det(L) = USuXSxY SyeSe ,

where the exponents Su, Sx, Sy, SN are calculated as follows:

Su =
m∑

k=0

m−k∑
i=0

k +
t∑

j=1

m∑
k=� m

t �j

k = (
1
6

+
τ

3
)m3 + o(m3),

Sx =
m∑

k=0

m−k∑
i=0

i =
1
6
m3 + o(m3),

Sy =
t∑

j=1

m∑
k=� m

t �j

j =
τ2

6
m3 + o(m3),

Se =
m∑

k=0

m−k∑
i=0

(m − k) +
t∑

j=1

m∑
k=� m

t �j

(m − k) = (
1
3

+
τ

6
)m3 + o(m3).

On the other hand, the dimension of L is,

dim(L) =
m∑

k=0

m−k∑
i=0

1 +
t∑

j=1

m∑
k=� m

t �j

1 =
1 + τ

2
m2 + o(m2).

According to Lemmas 1 and 2, one can use the L3 lattice basis reduction algo-
rithm to L and obtain polynomial equations which share the root (−k(p2+q2)+
1, k, p2 + q2) over integers if

det(L) < em dim(L),
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or equivalently,

U ( 1
6+

τ
3 )m

3+o(m3)X
1
6m3+o(m3)Y

τ2
6 m3+o(m3)e(

1
3+

τ
6 )m

3+o(m3) < e
1+τ
2 m3+o(m3).

To obtain an asymptotic bound, we assume m goes to infinite and ignore the
small terms o(m3). Putting the bounds U,X, Y into the above inequality, we
obtain that

(
1
6

+
τ

3
)(α + δ − 1) +

1
6
(α + δ − 2) +

τ2

6
+ (

1
3

+
τ

6
)α <

1 + τ

2
α.

Then the inequation becomes

δ <
3 − α + 2τ − τ2

2 + 2τ
.

When α ≥ 1, we set the parameter τ =
√

α − 1, and obtain the bound
δ < 2 − √

α.
When α < 1, we set the parameter τ = 0, and obtain the bound δ < 3−α

2 .
Moreover, since ed − k(p2 − 1)(q2 − 1) = 1, we have that ed > N2, namely,
α + δ > 1, which contradicts our conditions α < 1 and δ < 3−α

2 .
In a conclusion, we obtain the following bound on δ:

δ < 2 − √
α, for α ≥ 1.

Then we can obtain several polynomial equations which share the root (−k(p2 +
q2)+1, k, p2 +q2) over integers. Under Assumption 1, we can successfully collect
the desired solutions. This concludes the proof of our theorem.

Experimental Results. We have implemented the experiment program in
Magma 2.11 computer algebra system [2] on a PC with Intel(R) Core(TM)
CPU(3.30 GHz, 4.0 GB RAM Windows 7). In all experiments, we obtained sev-
eral integer polynomials which satisfied the Howgrave-Graham’s Lemma and
successfully solved for the desired solutions (−k(p2 + q2) + 1, k, p2 + q2) over Z

by using Gröbner basis of these polynomials. In [3], Bunder et al. presented an
example to proof their method. For the 92-bit RSA modulus,

N = 2617939220553315302745462091,

Bunder et al. successfully recovered the 41-bit private key. Namely, the 92-bit
RSA modulus can be factored in polynomial time by Bunder et al.’s method,
when the bitlength of private key d is smaller than 41. Based on our method, for
the same RSA modulus as Bunder et al.’s example, we construct a 60-dimensional
lattice with parameters m = 8, t = 3 and successfully factor the RSA modulus
when the bitlength of private key d is smaller than 48.

The following Table 1 lists some theoretical and experimental results on fac-
toring RSA moduli with small private key d, where the bitlength of public key
e is roughly same as N2.
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Table 1. Theoretical and experimental results of small private key attack on variants
of RSA cryptosystem

Bitsize of The theoretical The value of log2 d (Sect. 3)

N , i.e., log2N value of log2 d [3] theo. expt. (m, t, dim(L)) time of L3(in sec.)

1000 500 585 537 (6,2,33) 45.630

1500 750 878 808 (6,2,33) 113.584

2000 1000 1171 1077 (6,2,33) 212.037

4 Conclusion

In this paper, we revisited the problem of Bunder et al.’s small private key attack
on three variants of RSA cryptosystem, where the private key d and public key e
satisfy ed ≡ 1 mod (p2−1)(q2−1). By utilizing Coppersmith’s method, we firstly
transform the problem into solving for the unknowns of a modular equation and
selected polynomials that have the same desired root. Then we use unravelled
linearization technique to construct lattice which is composed of the selected
polynomials and obtain integer equations by L3 lattice basis reduction algorithm.
Finally, we can successfully improve both theoretical bound and experimental
result.
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Abstract. Related-key attacks allow an adversary to change the key
stored in the memory of a physical device via tampering or other means,
and subsequently observe the outcomes of the cryptosystem under these
modified keys. Cramer and Shoup (CRYPTO 1998) proposed the first
practical public-key encryption scheme proven to be secure against adap-
tive chosen-ciphertext attacks in the standard model. The scheme (CS-
PKE for short) has great influence since it embodies the paradigm of
hash proof system. However, Wee (PKC 2012) showed that the CS-PKE
scheme is not secure in the scenario of related-key attacks when the
related-key derivation functions include linear functions. A fascinating
problem left open is how to protect the classical CS-PKE scheme secure
against linear related-key attacks. In this paper, we propose a simple
method to make the Cramer-Shoup scheme secure against linear related-
key attacks. The idea is to recompute the public key in the decryption
algorithm from the secret key, so that any (dangerous) modification to
the secret key could be detected during the decryption phase. The new
scheme has the same efficiency as the original one, except for involving six
exponentiations to fixed bases in the decryption algorithm. Fortunately,
the computing time for one fixed-base exponentiation with precomputa-
tions is at least 5 times faster than that of one regular exponentiation.

Keywords: Related-key attacks · Public-key encryption · Cramer-
Shoup cryptosystem

1 Introduction

Traditionally, security notions are defined in an ideal setting, where an adversary
can only observe the input/output behavior to the setting, but can not access to
c© Springer International Publishing AG 2017
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or tamper with the internal states (such as the secret keys). In a real life, however,
it may be far from this case. For example, related-key attacks (RKAs) allow an
adversary to tamper with keys stored in the memory of a physical device and
then observe the outcomes of the device under these modified keys. Numerous
successful related-key attacks against blockciphers [5–9,28,33] indicate that such
attacks might be a serious threat to the security of cryptographic algorithms in
practice. Beyond block ciphers, related-key attacks may also be mounted on other
cryptographic primitives, such as public-key encryption (PKE), identity-based
encryption (IBE) and signatures.

The Cramer-Shoup Cryptosystem and Linear RKA Attacks. At
Crypto 1998 [13], Cramer and Shoup proposed the first efficient public-key
encryption scheme proven to be secure against adaptive chosen-ciphertext
attacks (CCA) in the standard model. Here, we briefly review it from [15]. The
scheme consists of a system parameter sp = (G, p, g1, g2,TCR), where G is a
prime order p group with two random generators g1 and g2, and TCR is a target
collision resistant hash function. The system parameter can be shared between
multiple users. Besides this, it also includes the following three (probabilistic)
polynomial-time algorithms:

– (KeyGeneration) Gen(sp): It outputs a public key pk = (h, u, v) and a secret
key sk = (x1, x2, . . . , x6), such that h = gx1

1 gx2
2 , u = gx3

1 gx4
2 and v = gx5

1 gx6
2 .

– (Encryption) Enc(pk,m): It encrypts a message m ∈ G to a ciphertext
C = (u1, u2, e, w), such that

u1 = gr
1, u2 = gr

2, e = m · hr, w = (uvt)r

where r ∈ Zp and t = TCR(u1||u2||e).
– (Decryption) Dec(sk, C): It decrypts the ciphertext C = (u1, u2, e, w)

to a message m = e/(ux1
1 ux2

2 ), unless ux3+x5·t
1 ux4+x6·t

2 = w, where t =
TCR(u1||u2||e).
In the traditional CCA security model, the Cramer-Shoup public-key encryp-

tion scheme has been proven to be secure under the standard Decisional Diffie-
Hellman (DDH) assumption. But, in the RKA security model (see Definition 1),
there are two simple linear RKAs on it, pointed out by Wee [32]. Given a valid
ciphertext (u1, u2, e, w) for some unknown message m ∈ G, for any Δ ∈ Zp, the
attacks work as follows:

– Attack 1: modifying x3 to x3 + Δ, the ciphertext (u1, u2, e, w · uΔ
1 ) is still a

valid ciphertext and decrypts to the original message m.
– Attack 2: modifying x1 to x1 + Δ, the ciphertext (u1, u2, e, w) will decrypt

to the message m · u−Δ
1 under the modified secret key.

Wee also proposed a general method to construct the RKA-secure PKE
scheme from a tag-based CCA-secure encryption scheme that achieves both
finger-printing and key-homomorphism, as well as an efficient strong one-time
signature scheme. However, the Cramer-Shoup CCA-secure constructions [13,14]
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do not satisfy the finger-printing, as pointed out by Wee. We introduce shortly
in the section of related work that there are some general methods available
to make the CS-PKE scheme secure against RKAs. But, the obtained schemes
are not efficient in terms of key sizes and/or computing cost. So, making the
CS-PKE scheme secure against related-key attacks and preserve high efficiency
is still a challenging problem.

Our Contribution. We propose a simple way to lift the Cramer-Shoup public-
key encryption scheme from CCA security to linear-RKA security. The new
scheme is the same as that of the original one, except for the following two
modifications:

– In the encryption algorithm, we add the public key pk into the (target) collision
resistant hash function, i.e., t = CR(u1||u2||e||pk).

– In the decryption algorithm, we first use the secret key sk to recover the
public key, i.e., pk = (gx1

1 gx2
2 , gx3

1 gx4
2 , gx5

1 gx6
2 ), and then compute the tag t =

CR(u1||u2||e||pk).

We observe that the Cramer-Shoup scheme is compromised by the previous two
linear RKA attacks, as the adversary can reuse the tag t to build other valid
ciphertexts. Intuitively, these two attacks do not work in our scheme, as the tag
may be changed if the adversary tampers with the secret key. Here, we note
that the target collision resistant hash function in the original CS-PKE scheme
is replaced by a normal collision resistant hash function. The reason is that
if we use the TCR function, the simulator does not know the secret key from
the TCR challenge tuple (u1, u2, e, pk), and hence cannot answer the adversary’s
RKA queries. In addition, we also do not know how to simulate the RKA queries
directly (without the knowledge of the secret key) given only the challenge TCR
tuple. If we replace it with a collision resistant hash function, our simulator can
generate the secret key by himself, and then compute the corresponding public
key and the CR tuple (for details, see the proof in game G4). Finally, Theorem 1
shows that the linear-RKA security of our scheme can be reduced to the hardness
of the DDH problem or the collision resistant hash function.

Clearly, the performance of our scheme is the same as that of the underly-
ing CS-PKE scheme, except for the additional operations of six exponentiations
to fixed bases over group G, when computing the public key in the decryption
algorithm. To improve the efficiency of the decryption, a direct way is to reduce
the number of exponentiations of the public key in the key generation algo-
rithm. However, in the Cramer-Shoup type constructions [14], they rely on two
hash proof systems (one is smoothness and the other is 2-universal), in which
we need to generate two public keys corresponding to the two hash proof sys-
tems. This may be the bottleneck to improve the decryption efficiency using the
direct method. Fortunately, the exponentiations to fixed bases can be sped up
significantly with precomputations. Specifically, the relative time between one
fixed-base exponentiation and one regular exponentiation is �0.2 [10].

Related Work. There are some basic RKA-secure primitives available
for achieving RKA-secure PKE schemes. They include RKA-PRFs [1–3],
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RKA-IBE [4,20], algebraic manipulation detection (AMD) codes [12] and (con-
tinuous) non-malleable codes/functions [11,19,21,29]. The framework of RKA-
IBE relies on a normal one-time signature scheme. Compared to the underlying
IBE scheme, it usually involves additional computational operations, including
signing and verification, during the encryption and decryption phases. More-
over, it also extends the ciphertext sizes with the signing key and the signature.
The other methods usually require to change the key generation algorithm of
a normal CCA-secure PKE scheme and blows up the key sizes. There are also
numerous concrete and efficient RKA-PKE schemes [16,17,20,22,23,32] based
on specific number-theoretic assumptions, e.g., DDH and factoring. Specifically,
to avoid the usage of one-time signature and pairing, Cui et al. [16] proposed
an efficient PKE scheme based on the CS-PKE scheme. Jia et al. proposed two
efficient RKA-secure PKE schemes [23] based on Kiltz et al.’s (normal) CCA-
secure hybrid PKE schemes [24]. The two schemes almost have the same effi-
ciency as that of the underlying CCA-PKE schemes. Later, Jia et al. [22] showed
that their schemes can be generalized to constructing RKA secure hybrid PKE
schemes from 1-universal hash proof systems (with some special properties).

Organization. The rest of this paper is organized as follows. Section 2 reviews
some basic cryptographic notations that will be used. We present our construc-
tion and show its security in Sect. 3. In Sect. 4, we compare the performance of
our scheme with known RKA-PKE schemes. Section 5 is the summary of this
paper.

2 Preliminary

Notations. Throughout this paper, κ ∈ N denotes the security parameter. If S
is a finite set, then s ←R S denotes the operation of picking s from S uniformly
at random. If s ∈ S is an element, |s| denotes its bit length. By y ← A(x), we
denote the operation of running algorithm A on input x, and letting y denote
its output.

2.1 Public-Key Encryption and Related-Key Security

Public-Key Encryption. A public-key encryption scheme PKE= (Sys, Gen,
Enc, Dec) consists of four probabilistic polynomial-time (PPT) algorithms.
Sys(1κ) is the randomized public parameter generation algorithm, which takes
as input a security parameter 1κ, and outputs a global parameter sp. Gen(sp) is
the randomized public key generation algorithm that takes as input the system
parameter sp, and outputs a pair of public/secret keys (pk, sk). Enc(pk,m) is
the randomized encryption algorithm, which takes as input a public pk and a
message m ∈ M, and outputs a ciphertext C. Dec(sk, C) is the deterministic
decryption algorithm, which takes as input a secret key sk and a ciphertext C,
and outputs a message m or the special symbol ⊥ indicating that C is an invalid
ciphertext. For consistence, we require that for all κ ∈ N, all sp ← Sys(1κ),
(pk, sk) ← Gen(sp) and all message m ∈ M, we have Dec(sk,Enc(pk,m)) = m.
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Similar to the definition of IBE [4], in the above definition, we make a dis-
tinction between the system parameter and the public key. The former usually
contains a description of a finite group which is independent of the secret key.
While the later directly depends on the secret key. Without loss of generality,
the system parameter is assumed to be fixed and available to all algorithms.
We omit sp as input if the context is clear. We also assume that the system
parameter sp implicitly specifies a secret key space SK, a public key space PK
and a message space M.

CC-RKA Security. Informally, the Chosen-Ciphertext Related-Key Attack
(CC-RKA) on a public-key encryption scheme is modeled by a class of related-
key derivation (RKD) functions Φ = {φ : SK → SK} and an RKA (decryption)
oracle OΦ-RKA

PKE,sk (·, ·) parameterized by the secret key sk and the RKD function
class Φ. The RKA-security allows an adversary to access the oracle with queries
of the form (φ,C) ∈ Φ×C. The oracle responds to each query with Dec(φ(sk), C),
i.e., a decryption of C using a modified secret key φ(sk). If the adversary has
seen the challenge ciphertext C∗, we naturally assume that the adversary never
submits a decryption query of the form (φ,C) such that C = C∗ and φ(sk) = sk.
We assume that the RKD function class Φ contains the identity function id.
The formal definition of CC-RKA security with respect to Φ is presented in
Definition 1.

Definition 1 (CC-RKA Security). A public-key encryption scheme PKE =
(Sys,Gen,Enc,Dec) is (semantically) secure against chosen-ciphertext related-key
attacks (shorted as CC-RKA or RKA), if for any stateful PPT adversary A, the
advantage function defined as follows

AdvΦ-CC-RKA
PKE,A (κ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎣

b = b′ :

sp ← Sys(1κ); (pk, sk) ← Gen(sp)

(m0, m1) ← AOΦ-RKA
PKE,sk (·,·)(pk), |m0| = |m1|

b ←R {0, 1}, C∗ ← Enc(pk, mb)

b′ ← AOΦ-RKA
PKE,sk (·,·)(C∗)

⎤

⎥
⎥
⎥
⎦

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣
∣

is negligible in κ.

CCA Security [27]. The traditional CCA security is defined similarly to the
above definition, with the restriction that the adversary cannot tamper with the
secret key.

2.2 (Target) Collision Resistant Hash Functions

The notion of target collision resistant hash function is a special kind of universal
one-way hash function. We recall it from [15].

Definition 2 (Target Collision Resistant Hash Functions). Let TCR :
X → Y be a hash function. We say that TCR is a target collision resistant hash
function, if for any PPT adversary A, the following advantage

AdvTCR
TCR,A(κ) := Pr

[
x′ �= x ∧ TCR(x′) = TCR(x) : x ←R X,x′ ← A(x)

]

is negligible in κ.
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Similarly, we can give the definition of collision resistant hash functions. The
key difference is that, the challenge value x in the above definition is also chosen
by the adversary.

Definition 3 (Collision Resistant Hash Functions). Let CR : X → Y be a
hash function. We say that CR is a collision resistant hash function, if for any
PPT adversary A, the following advantage

AdvCR
CR,A(κ) := Pr

[
x′ �= x ∧ CR(x′) = CR(x) : (x, x′) ← A(X)

]

is negligible in κ.

2.3 Intractability Assumptions

Let G(κ) be a group generation algorithm that takes as input a security para-
meter κ and outputs a finite group G with prime order p and generator g. The
Discrete Logarithm (DL) assumption and the Decisional Diffie-Hellman (DDH)
assumption over group G are respectively defined as follows.

Definition 4 (The DL Assumption). The DL assumption for G states that
for any PPT adversary A, the following DL advantage

AdvDL
G,A(κ) := Pr

[
y = x :

(G, p, g) ← G(κ), x ←R Zp

y ← A(gx)

]

is negligible in κ.

Definition 5 (The DDH Assumption). Let (G, p, g) ← G(κ) and let
x, y, z ←R Zp. The DDH assumption for G states that for any PPT adversary
A, the following DDH advantage

AdvDDH
G,A (κ) := |Pr [A(g, gx, gy, gxy) = 1] − Pr [A(g, gx, gy, gz) = 1]|

is negligible in κ.

Clearly, the DDH problem is not harder than the DL problem.

3 The Construction

In this section, we present a public-key encryption scheme which is secure against
chosen-ciphertext attacks and linear related-key attacks. Our scheme is described
as follows.

– (System Parameter) Sys(1κ): Run G(1κ) to generate a finite group G of
prime order p and randomly choose two distinct group elements g1, g2 ∈ G.
It also chooses a collision resistant hash function CR : G6 → Zp. The system
parameter is sp = (G, p, g1, g2,CR).
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– (Key Generation) Gen(sp): Randomly choose x1, x2, . . . , x6 ∈ Zp, and then
compute h = gx1

1 gx2
2 , u = gx3

1 gx4
2 and v = gx5

1 gx6
2 . The public key is pk =

(h, u, v) and the secret key is sk = (x1, x2, . . . , x6).
– (Encryption) Enc(pk,m): To encrypt a message m ∈ G, it first samples a

random element r ∈ Zp and then sets

u1 = gr
1, u2 = gr

2, e = m · hr, w = (uvt)r

where t = CR(u1||u2||e||h||u||v). The ciphertext is C = (u1, u2, e, w).
– (Decryption) Dec(sk, C): To decrypt a ciphertext C = (u1, u2, e, w), it first

recomputes the public key h = gx1
1 gx2

2 , u = gx3
1 gx4

2 and v = gx5
1 gx6

2 , and then
• computes t = CR(u1||u2||e||h||u||v) and outputs ⊥ if

ux3+x5·t
1 ux4+x6·t

2 �= w.

• otherwise outputs m = e/(ux1
1 ux2

2 ).

Correctness. For any ciphertext C = (u1, u2, e, w) that is correctly generated
by the encryption algorithm, it clearly satisfies

u1 = gr
1, u2 = gr

2, e = m · hr, w = (uvt)r

for some (unknown) r and message m. Since

CR(u1||u2||e||gx1
1 gx2

2 ||gx3
1 gx4

2 ||gx5
1 gx6

2 ) = CR(u1||u2||e||h||u||v) = t

and
ux3+x5·t
1 ux4+x6·t

2 =
(
(gx3

1 gx4
2 )(gx5

1 gx6
2 )t

)r = (uvt)r = w,

the decryption algorithm should output e/(ux1
1 ux2

2 ) = e/hr = m, which is just
the message as in the ciphertext C.

The RKD Functions. As the secret key space is Z
6
p, we define the class of

linear related-key derivation functions as follows:

Φlinear = {φ : (xi)6i=1 → (xi + Δi)6i=1}
for any (xi)6i=1, (Δi)6i=1 ∈ Z

6
p and the operation “+” is defined over the additive

group Zp.

Theorem 1. If the DDH problem is hard in G and CR is a collision resistant
hash function, then the above construction is a Φlinear-CC-RKA secure public-key
encryption scheme.

Particularly, for any PPT adversary A against the Φlinear-CC-RKA security
of our scheme, there exist an adversary B1 against the DDH assumption for G,
an adversary B2 against the collision-resistant hash function CR and an adver-
sary B3 against the DL assumption for G such that

AdvΦlinear-CC-RKA
A,PKE (κ) ≤ AdvDDH

B1,G(κ) + AdvCR
B2,CR(κ) + AdvDL

B3,G(κ) +
Q(κ) + 1
p − Q(κ)

+
1
p
,

where Q(κ) is the number of times A queried the decryption oracle.
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Proof. We begin by defining a sequence of (CC-RKA security) games played
between the challenger and an adversary A. Let Gi denote the i-th game and
let Si denote the event that A succeeds in the i-th game. In each game, we
denote by C∗ = (u∗

1, u
∗
2, e

∗, w∗) the challenge ciphertext and denote by (φ,C =
(u1, u2, e, w)) the decryption queries issued by the adversary A. The challenge
public key and its corresponding secret key are denoted by pk∗ = (h∗, u∗, v∗)
and sk∗ = (x∗

1, x
∗
2, . . . , x

∗
6) respectively.

G0: This is the original CC-RKA experiment as defined in Definition 1. Thus,

AdvΦlinear-CC-RKA
A,PKE (κ) :=

∣∣∣∣Pr[S0] − 1
2

∣∣∣∣ .

G1: This game is the same as game G0, except for a small modification to the
challenge ciphertext. Concretely, G1 computes e∗ and v∗ using the secret key
rather than the public key, i.e.,

e∗ = mb · (u∗
1)

x∗
1 (u∗

2)
x∗
2 and w∗ = (u∗

1)
x∗
3+x∗

5 ·t∗
(u∗

2)
x∗
4+x∗

6 ·t∗
.

Note that the values e∗ and w∗ have the same distributions in both games G1

and G0. So, the change made in game G1 is purely conceptual and hence

Pr[S1] = Pr[S0].

G2: In this game, we make a small modification to the decryption oracle. Instead
of computing (h, u, v) using the modified secret key φ(sk∗) = {x∗

i +Δi}i=1,2,··· ,6,
we compute these values just from the challenge public key pk∗ and the RKD
function φ. Particularly, we compute

h = h∗ ·
(
gΔ1
1 gΔ2

2

)
u = u∗ ·

(
gΔ3
1 gΔ4

2

)
v = v∗ ·

(
gΔ5
1 gΔ6

2

)

for a decryption query (φ,C). As h = (g1)x∗
1+Δ1(g2)x∗

2+Δ2 = h∗ ·
(
gΔ1
1 gΔ2

2

)
(the

same for u and v), the change made in game G2 is purely conceptual. Therefore,

Pr[S2] = Pr[S1].

G3: This game is the same as game G2, except that we again make a small change
to the encryption oracle. Instead of computing u∗

1 and u∗
2 using the same value

r∗, we choose two random values r∗
1 , r

∗
2 ∈ Zp and compute

(u∗
1, u

∗
2) =

(
g

r∗
1

1 , g
r∗
2

2

)
.

We now show that under the DDH assumption, the difference between games
G3 and G2 is negligible in κ. Given a challenge tuple T = (g1, g2, u∗

1, u
∗
2), where

T is either a DDH tuple or a random four tuple, we build a PPT algorithm
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(simulator) B1 to break the DDH assumption using the adversary A as a sub-
routine. The simulator first generates the challenge public key pk∗ = (h∗, u∗, v∗)
and secret key sk∗ = (x∗

1, x
∗
2, . . . , x

∗
6) as in game G2. Since the simulator holds

the decryption key, he can answer the adversary’s decryption queries (φ,C) as
in game G2. To answer the adversary’s encryption query for two equal-length
messages m0,m1, the simulator first chooses a random bit b ∈ {0, 1} and then
computes

e∗ = mb · (u∗
1)

x∗
1 (u∗

2)
x∗
2

t∗ = CR(u∗
1||u∗

2||e∗||h∗||u∗||v∗)
w∗ = (u∗

1)
x∗
3+x∗

5 ·t∗
(u∗

2)
x∗
4+x∗

6 ·t∗

and sends the challenge ciphertext C∗ = (u∗
1, u

∗
2, e

∗, w∗) to the adversary. Finally,
the adversary will output a guess bit b′. The simulator outputs 1 if and only if
b = b′. Observe that if T is a DDH-tuple, the simulator perfectly constructs the
environment that the adversary communicates with in game G2. Otherwise, the
simulator perfectly constructs the environment of game G3. So,

|Pr[S3] − Pr[S2]| ≤ AdvDDH
B1,G (κ).

G4: In this game, we reject all decryption queries (φ,C) such that

t = CR(u1||u2||e||h||u||v) = t∗.

We show that G4 is indistinguishable from game G3 under the hardness of the
collision-resistant hash function and the hardness of the discrete logarithm prob-
lem over group G. We consider the following two cases:

– Case 1: (u1, u2, e, h, u, v) �= (u∗
1, u

∗
2, e

∗, h∗, u∗, v∗),
– Case 2: (u1, u2, e, h, u, v) = (u∗

1, u
∗
2, e

∗, h∗, u∗, v∗).

We can prove that the first case implies a collision of the hash function
CR. The proof is as follows. The simulator first chooses the secret key sk∗ as
in the previous game. Then, it computes the challenge public key pk∗. As the
simulator knows the secret key, it can answer the adversary’s RKA queries like in
the previous game. Finally, the simulator computes the challenge ciphertext as in
the previous game. So, if the adversary asks a query that satisfies the first case,
the simulator actually find a collision of the hash function CR. Therefore, the
first case occurs with probability at most AdvCR

B2,CR(κ) for some PPT adversary
B2 breaking the collision resistance of the hash function CR. Next, we show that
the second case also occurs with a negligible probability.

For Case 2, if φ(sk∗) = sk∗, we obtain that w = w∗. That is,

(φ(sk∗), C) = (sk∗, C∗).

This case should be rejected by the decryption rule. If φ(sk∗) �= sk∗, with-
out loss of generality, we have that x1 − x∗

1 = Δ1 �= 0 (mod p). Given a
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challenge discrete logarithm problem (G, p, g1, g2), we can choose the system
parameter, the challenge public key pk∗ and the secret key sk∗ as in G3.
So, if the adversary submits a decryption query (φ,C) such that φ(sk∗) �= sk∗,
but (u1, u2, e, h, u, v) = (u∗

1, u
∗
2, e

∗, h∗, u∗, v∗), we have that

h = h∗ · (gΔ1
1 gΔ2

2 ) = h∗.

As Δi are known, we solve the discrete logarithm problem between g1 and g2, i.e.,
logg2

g1 = −Δ2/Δ1 (mod p). By the hardness of the discrete logarithm problem
over G, the above case occurs with a probability at most AdvDL

B3,G(κ) for some
PPT adversary B3.

From the above analysis, we have that

|Pr[S4] − Pr[S3]| ≤ AdvCR
B2,CR(κ) + AdvDL

B3,G(κ).

G5: In this game, we again change the random tuple (g1, g2, u∗
1 = g

r∗
1

1 , u∗
2 = g

r∗
2

2 )
(in the challenge ciphertext) into a non-DDH tuple, i.e., r∗

1 �= r∗
2 . As r∗

1 and r∗
2

are chosen uniformly at random from Zp in the previous game, the probability
that r∗

1 = r∗
2 is at most 1/p. Since game G5 is the same as that of G4 unless the

event r∗
1 = r∗

2 occurs in G4, by the difference lemma [31], we have that

|Pr[S5] − Pr[S4]| ≤ 1
p
.

G6: This game is the same as game G5, except that the decryption rejects all
decryption queries (φ,C = (u1 = gr1

1 , u2 = gr2
2 , e, w)), such that r1 �= r2. For

simplicity, we call such ciphertexts invalid ciphertexts. Let E denote the event
that there exist invalid ciphertexts that are not rejected by the decryption rule
in game G5. Clearly, this game has the same distribution as that of G5, unless
the event E occurs. Again, by the difference lemma [31], we immediately have

|Pr[S6] − Pr[S5]| ≤ Pr[E].

We will show that all invalid ciphertexts have already been rejected by the
decryption rule (in game G5) with overwhelming probability.

First, we show that for all non-invalid ciphertexts (i.e., r1 = r2 = r), the
decryption oracle does not reveal any additional information about the secret
key to the adversary, besides the information leaked by the challenge public key
pk∗ and the challenge ciphertext C∗. As explained in game G2, the public key
(h, u, v) corresponding to the modified secret key φ(sk∗) is computed from the
challenge public key (h∗, u∗, v∗) and the RKD function φ. So, the hash value
t = CR(u1||u2||e||h||u||v) only depends on the challenge public key pk∗ and the
queried ciphertext C = (u1, u2, e, w). In addition, we have the following two
equations:

ux3+x5·t
1 ux4+x6·t

2 = (gr
1)

x∗
3+Δ3+(x∗

5+Δ5)·t(gr
2)

x∗
4+Δ4+(x∗

6+Δ6)·t

= (u∗)r(v∗)r·t(u1)Δ3+Δ5·t(u2)Δ4+Δ6·t
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and
e

ux1
1 ux2

2

=
e

(gr
1)x∗

1+Δ1(gr
2)x∗

2+Δ2

=
e

(h∗)r(u1)Δ1(u2)Δ2
.

So, the decryption result is only dependent on the challenge public key pk∗, the
queried ciphertext C and the RKD function φ. Therefore, for valid ciphertexts,
the adversary cannot obtain any additional information about the secret key sk∗

from the decryption oracle.
Suppose that (φ,C) = ({x∗

i + Δi}i∈1,...,6, (u1 = gr1
1 , u2 = gr2

2 , e, w)) is the
first decryption query that contains an invalid ciphertext. We show that this
query is rejected in game G5 with overwhelming probability. Let α = logg1

g2.
From the adversary’s point of view, he may obtain the information of the secret
key (x∗

3, x
∗
4, x

∗
5, x

∗
6) from the following values (over Zp):

logg1
u∗ = x∗

3 + α · x∗
4

logg1
v∗ = x∗

5 + α · x∗
6

logg1
w∗ = (x∗

3 + x∗
5 · t∗) · r∗

1 + (x∗
4 + x∗

6 · t∗) · α · r∗
2 .

Let w′ = ux3+x5·t
1 ux4+x6·t

2 . We now show that the value w′ is unpredictable for
the adversary, even given the above three values. It is sufficient to prove the
following value be unpredictable:

logg1
w′ = (x∗

3 + Δ3 + (x∗
5 + Δ5) · t) · r1 + (x∗

4 + Δ4 + (x∗
6 + Δ6) · t) · α · r2.

From the above four equations, we can derive the following system of linear
equations with respect to variables (x∗

3, x
∗
4, x

∗
5, x

∗
6).

⎛
⎜⎜⎝

logg1
u∗

logg1
v∗

logg1
w∗

logg1
w′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 α 0 0
0 0 1 α
r∗
1 αr∗

2 t∗r∗
1 t∗αr∗

2

r1 αr2 tr1 tαr2

⎞
⎟⎟⎠

︸ ︷︷ ︸
A

·

⎛
⎜⎜⎝

x∗
3

x∗
4

x∗
5

x∗
6

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
0
Δ

⎞
⎟⎟⎠

where Δ = (Δ3 + Δ5t)r1 + (Δ4 + Δ6t)αr2.
The determinant of A is det(A) = α2(r∗

1 − r∗
2)(r1 − r2)(t∗ − t). Note that

r∗
1 �= r∗

2 , r1 �= r2 and t∗ �= t. So, det(A) �= 0 and A is a full rank matrix.
As x∗

3, x∗
4, x∗

5 and x∗
6 are chosen uniformly at random from Zp, logg1

w′ is still
uniformly distributed over Zp, even fixing the other three values logg1

u∗, logg1
v∗

and logg1
w∗. So, the adversary can correctly guess the value w′ with probability

at most 1/p. In other words, the decryption oracle will reject the first invalid
ciphertext with probability at least 1 − 1/p.

Similarly, we can discuss the rejection probability for the i-th invalid cipher-
text. The only difference is that from each rejection, the adversary can rule out
one solution. So, the decryption oracle rejects the i-th invalid ciphertext with



How to Make the Cramer-Shoup Cryptosystem Secure Against Linear RKAs 161

probability at least 1 − 1/(p − i). Suppose that A makes at most Q(κ) RKA
queries (which is a polynomial in κ). We can calculate the following probability
that the decryption oracle rejects all RKA queries with invalid ciphertexts in G5.

Pr[E] ≥
Q(κ)∏
i=1

(1 − 1
p − i + 1

)

≥ 1 − Q(κ) + 1
p − Q(κ)

.

So, Pr[E] ≤ Q(κ)+1
p−Q(κ) .

G7: This game is the same as G6, except that we make a small change to the
challenge ciphertext. Specifically, we replace the vale (u∗

1)
x∗
1 (u∗

2)
x∗
2 in the chal-

lenge ciphertext part e∗ with a random element R∗. We show that the value
(u∗

1)
x∗
1 (u∗

2)
x∗
2 is already almost uniform over G. Note that in game G6, the adver-

sary cannot obtain any additional information about the challenge secret key
from the RKA oracle. So, only the challenge public key part h∗ may reveal some
information of x∗

1 and x∗
2 and the leaked information is at most

logg1
h∗ = x∗

1 + α · x∗
2.

To show that (u∗
1)

x∗
1 (u∗

2)
x∗
2 is distributed uniformly at random over G, it is suf-

ficient to prove that logg1
(u∗

1)
x∗
1 (u∗

2)
x∗
2 is uniform over Zp. Particularly, we have

the following system of linear equations:
(

logg1
h∗

logg1
(u∗

1)
x∗
1 (u∗

2)
x∗
2

)
=

(
1 α
r∗
1 αr∗

2

)

︸ ︷︷ ︸
B

·
(

x∗
1

x∗
2

)

Clearly, the determinant of the matrix B is det(B) = α(r∗
2 − r∗

1) �= 0. So,
logg1

(u∗
1)

x∗
1 (u∗

2)
x∗
2 is uniformly distributed over Zp. That is

Pr[S7] = Pr[S6].

Observe that, in game G7, R∗ is truly random. So, the challenge ciphertext
part e∗ is also uniformly distributed and does not leak any information about
the message mb. Therefore Pr[S7] = 1/2.

Taking all things together, Theorem 1 follows. ��

4 Comparison

In Table 1, we compare our scheme with previous CC-RKA secure PKE schemes,
including Wee’s DBDH-based PKE scheme [32, Sect. 5.2], Bellare et al.’s DBDH-
based KEM scheme [4, Sect. 7.2 of the full version], Jia et al.’s DDH-based hybrid
PKE scheme [23, Sect. 4], Cui et al.’s DDH-based PKE scheme [16, Sect. 4.2] and
DBDH-based PKE scheme [18, Sect. 5.1], and Fujisaki et al.’s DBDH-based KEM
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Table 1. Efficiency comparison of various CC-RKA secure PKE/KEM schemes

Scheme
PKE/KEM

Ciphertext
overhead

Encryption
operations

Decryption operations RKD
functions

Assumption

(#pairings, #[multi, reg, fix-base]-exps)

CS04 [15]a 3|p| 0 + [0, 0, 5] 0 + [2, 0, 0] - DDH

Wee12 [32] 6|p| 1b+[0, 0, 7] 3 + [1, 2, 1] Linear DBDH

BPT12 [4] 2|p| 0 + [0, 0, 4] 3 + [0, 0, 3] Affine DBDH

JLLM13 [23] 2|p|+mac 0 + [0, 0, 3] 0 + [1, 0, 0] Affine DDH

CMA13 [16] 4|p| 0 + [0, 0, 7] 0 + [2, 1, 0] Linear DDH

CMA14 [17] 9|p| 0+[0, 0, 10] 1c + [2, 0, 1] Linear DBDH

FX15 [20] 4|p| 0 + [0, 0, 4] 7 + [0, 0, 1] Invertible DBDH

Ours 3|p| 0 + [0, 0, 5] 0 + [2, 0, 6] Linear DDH
a The Cramer-Shoup public-key encryption scheme is only CCA secure.
b This pairing operation can be replaced by a single fixed-base exponentiation, if the scheme
adds the fixed-base into the system parameter.
c To check the correctness of the ciphertext, it actually requires more than 12 additional
pairings. As they can be done by a third party [25], the authors do not count them in the
computation cost.

scheme [20, Sect. 4]. In contrast to PKE, a KEM (key encapsulation mechanisms)
scheme encrypts a random key rather than a real message. Bellare et al. [4]
showed that a Φ-CC-RKA secure KEM scheme combined with a normal one-
time CCA-secure symmetric key scheme can be used to build a Φ-CC-RKA
secure hybrid PKE scheme.

In this table, |p| is the bit-length of a group element. Ciphertext overhead
denotes the difference between the ciphertext length and the message length.
In counting numbers of operations, we make a distinction of exponentiation
between multi-exponentiation, regular exponentiation, and exponentiation to a
fixed base that allows pre-computations. We can use the following relative tim-
ings to compare the running times for the various operations: bilinear pairing
≈ 5 [30], multi-exponentiation ≥ 1.5, regular exponentiation = 1, fixed-base
exponentiation � 0.2.

From the above table, our scheme has the same efficiency as that of the
original Cramer-Shoup scheme, except for the six additional fixed-base expo-
nentiations during decryption phase. Note that, one fixed-base exponentiation
(allowing pre-computations) requires very less computing time compared with a
regular exponentiation. So, these additional operations may have little effect
on the total decryption cost in practice. Moreover, we can use three multi-
exponentiations with fixed bases [26] to further speed up these six fixed base
exponentiations.

Our ciphertext overhead contains just three group elements, which are shorter
than the other RKA-secure schemes, with the exception of [4,23]. Bellare et al.’s
ciphertext contains only two group elements. Nevertheless, it is constructed over
a bilinear group and its decryption requires three pairing operations, which are
more expensive than exponentiations. Jia et al.’s scheme seems to be the nowa-
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days most efficient scheme with a relative short ciphertexts. But, it needs to use
groups with a sufficiently large order. For example, for a symmetric cipher with
κ = 80 bits keys, the order of the group should be at least |p| ≥ 4κ = 320 bits.
The other schemes, including ours, do not have such restriction. The restric-
tion may be avoided by increasing the cost of an additional exponentiation in
the encryption algorithm [24]. We notice that, efficient RKA-secure schemes
often suffer from small RKD function classes. Though Fujisaki and Xagawa’s
scheme [20] requires a heavy decryption operations, its RKD function class is
very rich. It contains not only linear functions, but also non-linear functions
(affine and polynomial functions).

5 Conclusion

In this paper, we proposed an efficient public-key encryption scheme resilient
against linear related-key attacks, based on the well-known Cramer-Shoup PKE
scheme. We made a very small modification to the encryption of the underlying
scheme, just adding the public key into the hash function. The modification
requires our decryption algorithm re-computing the public key using the secret
key. Nevertheless, the additional operations do not cost expensively, compared
with the other operations executed during the decryption phase. Our method
may be applied to other non-RKA secure PKE scheme that cannot be made to
RKA security using previous methods. In addition, we may generalize the scheme
into Cramer and Shoup’s general framework for constructing CCA-secure PKE
using hash proof systems.
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1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44371-2 5

2. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 36

3. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 26

http://dx.doi.org/10.1007/978-3-662-44371-2_5
http://dx.doi.org/10.1007/978-3-642-14623-7_36
http://dx.doi.org/10.1007/978-3-642-25385-0_26


164 B. Qin et al.

4. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear bar-
rier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 21

5. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology
7(4), 229–246 (1994)

6. Biham, E., Dunkelman, O., Keller, N.: A related-key rectangle attack on the full
KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005). doi:10.1007/11593447 24

7. Biham, E., Dunkelman, O., Keller, N.: A unified approach to related-key attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-71039-4 5

8. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 1

9. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
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Abstract. Biometric authentication is becoming increasingly popular
as a convenient authentication method. However, the privacy and secu-
rity issues associated with biometric authentication are very serious.
Privacy-preserving biometric authentication addresses privacy concerns
associated with the use of biometrics and offers a secure solution for
user authentication. Given the tremendous expansion of wireless com-
munications a new distributed architecture in biometric authentication
is evolving. In this distributed setting, a resource constrained client may
outsource part of the computations during the biometric authentication
process to a more powerful device (cloud server). In this work, we con-
sider one such distributed setting consisting of clients, a cloud server, and
a service provider and make a case for the need for verifiable computa-
tion to achieve security against malicious, as opposed to an honest-but-
curious, cloud server. In particular, we propose to use verifiable com-
putation on top of an homomorphic encryption scheme to verify that
the cloud server correctly performs the computations outsourced to it. A
proof of security of a generic protocol in the presence of a malicious cloud
server is also provided. Finally, we discuss how an XOR-linear message
authentication code can be used to verify the correctness of the compu-
tation.

Keywords: Biometric authentication · Biometric template privacy ·
Homomorphic encryption · Verifiable computation · XOR-linear MAC

1 Introduction

The new era of ubiquitous computing has led to mobile biometric authentication
in which resource constrained devices are involved in the authentication process.
More precisely, in this setting the client gains access to the authentication sys-
tem via a wireless resource constrained device (e.g., mobile phone) and part
of computations involved in the authentication process are outsourced to more
powerful devices (cloud servers). Although this distributed setting seems to be
quite natural given the tremendous expansion of wireless communications and
cloud computing, it also poses serious security and privacy concerns, since bio-
metrics may reveal sensitive private information and could be used to profile and
track individuals. In order to protect against such privacy threats, it is important
to employ privacy-preserving techniques suitable for distributed settings such as
secure multi-party computation techniques.
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 169–186, 2017.
DOI: 10.1007/978-3-319-54705-3 11
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By adopting a distributed model of internal entities in the biometric authen-
tication process one can limit the amount of power each single protocol entity
has at its disposal and consequently avoid single point of failure attacks [1].
Additionally, such separation of protocol entities ensures higher degree of pri-
vacy for the biometric data since not a single entity has access to all sensitive
data (i.e., fresh biometric template, stored biometric template, user’s identity).
However, an important problem that rises when part of the computations of
the biometric authentication process are outsourced to cloud servers is how to
guarantee the confidentiality of the outsourced data as well as the correctness
of the outsourced computation. A malicious cloud server could indeed modify
the process in order to gain some advantages, for instance, to reduce the cost of
computation or recover private information. In this paper, we treat such cases
of malicious cloud server and make a case for the need for combining privacy-
preserving biometric authentication with verifiable delegation of computation to
protect the privacy of the biometric templates against the cloud.

Biometric authentication comprises of two phases: the enrollment phase and
the authentication phase. In the enrollment phase, users provide their biomet-
ric templates derived from their biometrics (such as fingerprints, face recogni-
tion and iris scan) for storage in a database. In the authentication phase, users
authenticate themselves by providing their fresh biometric templates, and they
are authenticated if their fresh biometric template matches the reference bio-
metric template stored in the database.

Following the previous work by [2,3], we consider the following setting for a
biometric authentication system comprising three entities, namely, a client set C
of clients Ci, for i = 1, · · · , N , one for each user Ui, a computation (or a cloud)
server CS with a database DB, and a service provider SP. The client Ci has a
sensor that captures biometric templates from its owner (i.e., the user Ui). The
cloud server CS stores the reference biometric templates and performs computa-
tionally expensive calculations. The service provider SP takes the final decision
depending on whether there is a match between the fresh and the reference bio-
metric templates. This is a reasonable model considering the fast rise of cloud
computing and storage services, and also the widespread use of smartphones
with embedded biometric sensors.

A common cryptographic tool that is employed in building privacy-preserving
biometric authentication is homomorphic encryption [1–7]. In such a scheme,
encryption protects the privacy of the biometric templates while the matching
of the fresh and reference biometric templates are performed over the encrypted
data using the homomorphic property of the encryption. However, this requires
the actor responsible for performing the delegated calculations on encrypted
biometric templates to be trusted. Otherwise, by computing a function differ-
ent than what the protocol specifies and using SP as an oracle, the computing
actor (i.e., the CS) can learn information about either the stored reference bio-
metric template bi or the fresh biometric template b′

i. Similar attacks on two
recently proposed protocols employing ring-LWE and ideal lattice based some-
what homomorphic encryption schemes [2,3] are presented in [8]. Therefore, in
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addition to homomorphic encryption, a cryptographic scheme that allows the
client/service provider to verify that the cloud server performed the correct
computation. Schemes that allow verification of computations delegated to a
computationally powerful third party (or the cloud server in our case) already
exist and are known as verifiable computation [9–14] or signatures of correct com-
putation [15]. In this paper, we study their employment in privacy-preserving
biometric authentication.

1.1 Related Work

Over the years, quite a few proposals for privacy-preserving biometric authen-
tication appeared in the literature. These are based upon cryptographic tech-
niques, such as blivious transfer [16,17], private information retrieval [18,19],
and homomorphic encryption [20,21]. For example, Bringer et al. employed the
Goldwasser-Micali cryptosystem [21] to protect the privacy of the biometric tem-
plates against honest-but-curious (or passive) adversaries in [1]. There are also
other privacy-preserving biometric authentication protocols that are based on
the additive HE by Paillier [20] and Damg̊ard et al. [22] such as the protocols
for face recognition in [5–7]. Oblivious transfer was used in SCiFi [23], a sys-
tem for secure computation of face identification. Furthermore, somewhat HE
schemes based on ideal lattices and ring learning with errors are also employed
in designing privacy-preserving biometric authentication protocols in [2,3].

All of these protocols are designed to be secure against honest-but-curious
adversaries, and their security and privacy properties are later analysed in
[4,8,24–26]. In [24], Simoens et al. made a compelling case for the need for
designing privacy-preserving biometric authentication protocols that are secure
against malicious adversaries. They also presented a framework for analysing the
security and privacy-preserving properties of biometric authentication protocols
in the presence of such adversaries. In fact, the weaknesses of the protocols pro-
posed in [1–3] that are identified in [8,25,26] can be attributed to the lack of
verifiable computation. In other words, the attacks reported in [8,25,26] can also
be mitigated using verifiable computation.

Since most biometric authentication schemes use binary biometric templates,
the Hamming distance (or the normalised Hamming distance) is employed to
check whether two biometric templates match each other. Therefore, protocols
for secure Hamming distance computation based on oblivious transfer are pro-
posed by Bringer, Chabanne and Patey in [27]. These protocols have potential
applications in privacy-preserving biometric authentication. Recently Bringer et
al. generalised their results for secure computation of other distances such as the
Euclidean and the normalised Hamming distance in [28].

1.2 Our Contribution

In this paper, we propose to combine verifiable computation with homomorphic
encryption in order to achieve security against malicious computing server (i.e.,
the cloud server) in the above mentioned distributed biometric authentication
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setting. To this end, we outline a generic biometric authentication protocol with
enhanced security and privacy properties in the presence of a malicious cloud
server, combining homomorphic encryption with a scheme for verifiable compu-
tation. We then prove the security of the generic protocol against malicious cloud
server. Furthermore, we discuss how an XOR-linear message authentication code
(MAC) can be used to verify the correctness of the outsourced computation in
the studied biometric authentication setting.

Outline. The rest of the paper is organised as follows. Section 2 introduces the
necessary background. Section 3 presents our threat model and communication
model for the protocol. Next we propose a generic protocol combining a scheme
for verifiable computation with HE, and show that the protocol has enhanced
security and privacy properties even in the presence of a malicious cloud server
in Sect. 4. Furthermore, we give a specific instantiation of our generic protocol
using an XOR-linear MAC in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

First, we introduce the notations used in this paper. Biometric templates are
regarded as vectors in Z

N
q�2, where q is an integer. Let bi and b′

i denote the
reference and fresh biometric templates, respectively, of the i-th user Ui whose
identity is denoted by IDi, for i = 1, · · · ,M , where M is the total number
of users. Let τ be the authentication threshold and Dist : Z

M
q × Z

M
q �→ R�0

be a distance on Z
M
q . Then we say that bi and b′

i match each other and thus
belong to the same user, if Dist(bi, b

′
i) � τ . In the case of binary templates,

the Hamming distance between bi and b′
i is denoted by HD(bi, b

′
i), which is also

equal to the Hamming weight HW(bi ⊕ b′
i). Finally, PPT and IND-CPA refer to

probabilistic polynomial time and indistinguishability against chosen plaintext
attacks, respectively.

2.1 Homomorphic Encryption

We use an homomorphic encryption (HE) scheme, denoted by HE = (KeyGen,
Enc,Dec), that allows, given Enc(bi) and Enc(b′

i), to compute Enc(Dist(bi, b
′
i))

homomorphically. We require the employed HE scheme to have semantic security
against chosen plaintext attacks, which is defined as follows. Let (pk, sk) be the
public and private key pairs for the HE scheme and λ a security parameter.
Consider the following game played between a PPT adversary A and a challenger

ExpIND-CPA
HE,A (λ):

(pk, sk), ← KeyGen(λ); (m0, m1), m0 �= m1 ← A(λ, pk); β
R←− {0, 1}

c ← Enc(mβ , pk); β′ ← A(m0, m1, c, pk)
Return 1 if β′ = β, 0 otherwise

and define the adversary’s advantage in this game as AdvIND-CPA
HE,A (λ) =

∣∣2Pr{
ExpIND-CPA

HE,A (λ) = 1
} − 1

∣∣.
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Definition 1. We say that HE is IND-CPA-secure if all PPT adversaries have
a negligible advantage in the above game: AdvIND-CPA

HE,A (λ) � negl(λ).

Here, negl(λ) is a negligible function defined as follows.

Definition 2. We say that a function negl : N �→ [0, 1] is negligible if for all
positive polynomials poly and all sufficiently large λ ∈ N, we have negl(λ) <
1/poly(λ).

2.2 Privacy-Preserving Biometric Authentication

At a high level, a privacy-preserving biometric authentication (PPBA) protocol
employing HE can be defined by the following processes.

– Setup: In this step, the keys (pk, sk) for the HE scheme are generated and
distributed to the relevant protocol actors by either one protocol actor or an
external trusted third party.

– DB ← Enroll
(
(Enc(bi))M

i=1, (IDi)M
i=1

)
: This process collects the encrypted ref-

erence biometric template Enc(bi) and identity IDi pair from all M users and
stores them in the database DB.

– 1 ∪ 0 ← Authen(Enc(b′
i), IDi): To authenticate a user Ui, this process takes

an encrypted fresh biometric template Enc(b′
i) and a claimed identity IDi,

retrieves Enc(bi) from the database DB, and homomorphically computes
Dist(bi, b

′
i) from Enc(bi) and Enc(b′

i). Finally, it outputs 1 if the authentication
is successful, 0 otherwise.

A PPBA protocol must be both correct and secure.

Definition 3. We say that a PPBA protocol is correct if, for all enrolled user
identities IDi with the corresponding reference biometric templates bi, and for
all fresh biometric templates b′

i with Dist(bi, b
′
i) � τ , it is always the case that

1 ← Authen(Enc(b′
i), IDi).

One may argue that one can set the Authen process to always return 1 and thus
violate the correctness. However, the Authen process described here is just an
abstraction for the verification process of a biometric authentication protocol,
so for it to return 1, the fresh biometric template must match the reference
biometric template.

Informally, a PPBA protocol is secure if a malicious adversary, which in our
case is the cloud server, cannot learn more about the biometric templates than
what is already revealed by the protocol transcripts. Formally, we define the
security of against a malicious adversary A as follows. Consider the following
game

ExpPrivPPBA,A(λ):

(pk, sk) ← KeyGen(λ); (IDi, b′
i0

, b′
i1

), b′
i0

�= b′
i1

← A(λ, pk)

β
R←− {0, 1}; Out ← Authen

(
IDi, Enc(b

′
iβ

)
)

β′ ← A(IDi, b′
i0

, b′
i1

, Enc(b′
iβ

, DB),Out
)

Return 1 if β′ = β, 0 otherwise
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and define the adversary’s advantage in this game as AdvPriv
PPBA,A(λ) =∣∣2Pr{ExpPrivPPBA,A(λ) = 1} − 1

∣∣. Note, IDi has to be an enrolled user identity.

Definition 4. We say that a PPBA protocol is secure if all PPT adversaries
have a negligible advantage in the above game: AdvPriv

PPBA,A(λ) � negl(λ).

We assume that the adversary is given an oracle access to Authen and is
allowed to query it with user IDj(�= IDi) and b′

j polynomially many times (e.g.,
poly(λ) times). The adversary is also given Enc(b′

iβ
) and the database. If the

adversary cannot distinguish whether it is (IDi, b
′
i0

) or (IDi, b
′
i1

) that is being
used by Authen, then we say that the protocol preserves privacy of the biometric
templates.

2.3 Verifiable Computation

A scheme for verifiable computation (VC) allows a computationally weak client
to both outsource heavy computations to a computationally powerful cloud
server and efficiently verify the output of the cloud server. In our case, we con-
sider that the heavy computations outsourced by the client to the cloud server
are performed over encrypted data. In particular, the cloud computes a function
f on input Enc(bi) and Enc(b′

i) so that f(Enc(bi),Enc(b′
i)) = Enc(Dist(bi, b

′
i)).

Definition 5 (Verifiable computation [11]). A VC scheme VC =
(KeyGen,ProbGen,Com,Ver) comprises four algorithms defined as:

– (PK,VK) ← KeyGen(λ, f): The (randomised) key generation algorithm KeyGen
takes as input a security parameter λ and a function f , and outputs a public
key PK and a verification key VK for the function f . The public key PK is
provided to the cloud server, while the verification key VK is kept secret by the
client.

– (σx, ρx) ← ProbGen(x,VK): The problem generation algorithm ProbGen takes
as input a function input x and a verification key VK, and outputs a public
value σx and a secret value ρx. The public value σx is provided to the cloud,
while the secret value ρx is kept secret by the client.

– σy ← Com(σx,PK): The computation algorithm Com takes as input a public
value σx and a public key PK for f , and outputs an encoded version σy of
y = f(x).

– y ∪ ⊥← Ver(ρx, σy,VK): The verification algorithm Ver takes as input a ver-
ification key VK, a secret value ρx, and the output from Com, and outputs y
indicating that σy is a valid encoding of y = f(x) or ⊥ indicating that σy does
not represent f(x).

A VC scheme is correct if the output of the problem generation algorithm
ProbGen allows an honest cloud server to compute values that will be successfully
verified and that correspond to the evaluation of f on the input values. Formally,
correctness is defined as follows.
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Definition 6. A VC scheme VC is said to be correct if, for any function f
and input x in the domain of f , it holds that y ← Ver(ρx, σy,VK) as long as
(PK,VK) ← KeyGen(λ, f), (σx, ρx) ← ProbGen(x,VK), and σy ← Com(σx,PK).

In order to be secure, a VC scheme VC must be such that, for any given
function f and input x, a malicious cloud should not be able to make the ver-
ification algorithm accept y′ such that y′ �= f(x). Formally, the security of VC
is defined as the advantage of an adversary in the following game ExpVC,A(λ, f)
which captures the intuitive argument above.

ExpVC,A(λ, f):
(PK,VK) ← KeyGen(λ, f)
x1 ← A(λ,PK)
(σx1 , ρx1 ) ← ProbGen(x1,VK)
σy1 ← A(PK, x1, σx1 )
β1 ← Ver(ρx1 , σy1 ,VK)
For i = 2, · · · , � = poly(λ)

xi ← A(PK, x1, σx1 , β1, · · · , xi−1, σxi−1 , βi−1)

(σxi
, ρxi

) ← ProbGen(xi,VK)
σyi

← A(PK, x1, σx1 , β1, · · · , xi−1, σxi−1 , βi−1, σxi
)

βi ← Ver(ρxi
, σyi

,VK)
x ← A(PK, x1, σx1 , β1, · · · , x�, σx�

, β�)
(σx, ρx) ← ProbGen(x,VK)
σ′

y ← A(PK, x1, σx1 , β1, · · · , x�, σx�
, β�, σx)

y′ ← Ver(ρx, σ′
y,VK)

Return 1 if y′ �= f(x) and y′ �=⊥, 0 otherwise

The adversary’s advantage in this game is defined as AdvVC,A(λ, f) =
Pr

{
ExpVC,A(λ, f) = 1

}
. Note that the adversary is given an oracle access to

ProbGen and Ver.

Definition 7 (Security of VC [11]). We say that VC is secure if, for any
function f , all PPT adversaries have a negligible advantage in the above game:
AdvVC,A(λ, f) � negl(λ).

3 Threat Model

When analysing the security of a protocol, there are two types of adversaries to
consider: a semi-honest (also known as, honest-but-curious or passive) adversary
and a malicious (or active) adversary. A semi-honest adversary follows the pro-
tocol correctly, but attempts to deduce as much information as possible about
protected data from the protocol transcripts. A malicious adversary, on the
other hand, can arbitrarily deviate from the protocol specifications. Both types
of adversaries attempt to break either the correctness or the security property
of the protocol. Here we focus on malicious adversaries.

We consider a three-party setting which comprises a client Ci (one for each user
Ui), a cloud server CS, and a service provider SP. The client Ci (e.g., a smartphone
ownedby theuserUi) has abiometric sensor that extracts biometric templates from
the user. We assume that each user’s client device is not compromised. Since if a
client Ci is compromised, then the reference biometric template of the owner Ui can
be easily recovered using the fresh biometric template provided by the owner [29].
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The service providerSP manages the keys for the employed encryption scheme and
makes the authentication decision. Therefore, we consider the service provider SP
as a trusted protocol actor. However, we do not entrust any biometric template
to the service provider. The malicious actor is the cloud server CS, which has a
database storing the encrypted reference biometric templates and performs com-
putations on the encrypted fresh and reference biometric templates. The result of
the computation performed by CS will allow SP to make its decision. In this paper,
we exclusively focus on biometric template privacy and template recovery attacks.
Hence, denial-of-service type of attacks are outside the scope of this paper.

For the communication model, we assume that the communication channel
between the protocol entities are both authentic and secure in the sense that
messages exchanged between two parties cannot be modified or intercepted by
an eavesdropper. This assumption is also necessary for avoiding replay attacks.
Such a communication channel can be established by using TLS or IPsec between
the protocol participants.

4 A Generic Protocol

This section presents a generic protocol that combines verifiable computation
with an homomorphic encryption. The protocol also employs a collision resistant
cryptographic hash function H : {0, 1}� �→ {0, 1}n (in our security analysis, we
regard H as a random oracle). To differentiate from the database DB on the
cloud server side, we use db to denote the database on the service provider side.
We call the generic protocol PPBA which comprises the following.

– Enroll: The user enrollment phase is depicted in Fig. 1. The service provider
SP chooses a collision resistant cryptographic hash function H and runs the
key generation algorithm KeyGen for the HE and VC schemes using a secu-
rity parameter λ and the function f to be computed by the cloud as input:
(pk, sk) ← HE.KeyGen(λ) and (PK,VK) ← VC.KeyGen(λ, f). The client Ci

requests enrollment by sending its owner Ui’s identity IDi to SP. SP then maps
IDi to an index i using a process known only to itself. The tuple (i, H, pk, VK)
is sent to Ci, and (pk,PK) to CS. The function f is known to the proto-
col actors. After receiving (i, H, pk), Ci first obtains the reference biometric
template bi and encrypts the reference biometric template, Enc(bi). Ci then
provides (i, Enc(bi)) to the database DB on the cloud server side for storage.
In addition, Ci sends the hash ωi = H(Enc(bi)) to SP which stores (i, ωi)
in its database db. Locally, Ci stores (i,VK). Since it is necessary for secu-
rity, we assume that user enrollment is performed in a secure and controlled
environment.

– Authen: In this phase, before the user Ui authenticates himself, the service
provider SP authenticates itself to the client Ci and provides the public key
pk for HE and the hash function H to Ci. The authentication of SP is nec-
essary to avoid sending sensitive information to a malicious party imperson-
ating the legitimate SP. After SP is authenticated, Ci obtains from its user
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Fig. 1. The enrollment phase of PPBA.

Ui a fresh biometric template b′
i and an identity IDi, and provides Enc(b′

i)
and the index i that it stored during enrollment to the cloud server CS.
The cloud then retrieves Enc(bi) corresponding to i from its database DB
and runs the computation algorithm σcti ← Com(Enc(bi),Enc(b′

i), pk,PK)
for the verifiable computation scheme VC. Note that pk is needed to eval-
uate the function f on Enc(bi) and Enc(b′

i). The output σcti is an encoded
version of cti = f(Enc(bi),Enc(b′

i)) = Enc(Dist(bi, b
′
i)). Then, CS sends

Enc(bi), σcti back to the client Ci, which runs the verification algorithm cti ←
Ver(Enc(bi),Enc(b′

i), σcti ,VK). If cti �=⊥, then Ci computes ω̃i = H(Enc(bi))
and sends (IDi, cti, ω̃i) to SP; otherwise, Ci aborts the protocol. Upon receiv-
ing (IDi, cti, ω̃i) from Ci, SP first extracts i from IDi, retrieves ωi from db
and checks whether ω̃i = ωi. Note here that the hash function is used to
check whether the cloud used the correct input, i.e., Enc(bi), to the function
f . If ω̃i = ωi, then SP decrypts cti, i.e., Dec(cti) = Dec

(
Enc(Dist(bi, b

′
i))

)
=

Dist(bi, b
′
i). If Dist(bi, b

′
i) � τ , then it outputs 1 (or YES) meaning that the

client Ci (or the user Ui) is authenticated; otherwise, it outputs 0 (or NO)
meaning that the client Ci (or the user Ui) is not authenticated.
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Fig. 2. The user authentication phase of PPBA.

Remark 1: We note that the problem generation algorithm ProbGen for the
VC scheme is not used above since in our case the public and secret output of
ProbGen algorithm are the same and equal to (Enc(bi),Enc(b′

i)).

Remark 2: By requiring the correspondence between an identity and an index
(e.g., IDi ↔ i) to be known only to the service provider, we can prevent a
potentially malicious client Ci from impersonating another client Cj , j �= i. If this
is not the case, then a misbehaving client, say Ci, can initiate the authentication
phase with an identity IDj , j �= i, and index j and obtain Enc(bj) from the cloud
CS. Then, Ci aborts the current round and later authenticates itself as IDj using
Enc(bj). Note that this also guarantees identity privacy against since CS does
not know to which user identity a database entry belongs (Fig. 2).

It is straightforward to see that the correctness of the generic protocol readily
follows. The following theorem summarises the security of the generic protocol
PPBA against the malicious cloud server. The proof of the theorem is given in
Appendix A.

Theorem 1 (Security of PPBA). Let H be a random oracle. Let HE be an
IND-CPA-secure HE scheme and VC a secure VC scheme as defined in Defini-
tion 7. Let A be a malicious cloud server that is PPT. Then the advantage of A
in the game ExpPrivPPBA,A(λ, f) (cf. Sect. 2.1) is negligible, i.e., AdvPPBA,A(λ, f) �
negl(λ).
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As mentioned in the previous work, the protocols previously proposed in
[1–3] can be enhanced with a suitable verifiable computation scheme to mitigate
the reported attacks in [8,25,26].

5 Instantiation

Here we discuss an instantiation of the generic protocol using an ⊕-linear message
authentication code (MAC), where ⊕ is the XOR operation.

A MAC scheme consists of three algorithms (KeyGen,TAG,VRFY) (associated
with a key space, a message space and a tag space). KeyGen, a key generation
algorithm, takes a security parameter λ as input and outputs a key k (i.e.,
k ← KeyGen(λ)). TAG, a tag generation algorithm, takes a message m and a
key k as input, and outputs a tag (i.e., t ← TAG(m, k)). VRFY, a verification
algorithm, takes a message m, a tag t and a key k as input, and outputs a
decision OutMAC (i.e., OutMAC ← VRFY(m, t, k)), which is 1 if the message-tag
pair (m, t) is valid, and 0 otherwise.

A typical construction of a MAC scheme is via the use of Universal2 (U2)
hash functions, see Appendix B for definitions and how U2 hash functions can be
used to construct a MAC scheme. There are constructions of U2 hash functions
that are ⊕-linear [30], from which one can construct an ⊕-linear MAC scheme.
Note that a MAC scheme is called ⊕-linear if TAG(m1 ⊕ m2, k) = TAG(m1, k) ⊕
TAG(m2, k).

Using any HE scheme that enables the evaluation of XOR of two encrypted
bitstrings (e.g., the Goldwasser-Micali encryption scheme [21] which supports
this) and an ⊕-linear MAC to verify the correctness of the computation per-
formed by CS, we have the following variation of the generic protocol presented
in the previous section.

– Enroll: The service provider SP runs the key generation algorithm KeyGen
for the HE and MAC schemes using a security parameter λ: (pk, sk) ←
HE.KeyGen(λ) and ki ← MAC.KeyGen(λ). The client Ci requests for enroll-
ment by sending its owner Ui’s identity IDi to SP, which then maps IDi to
an index i using a process known only to itself. The tuple (i, pk, ki) is sent
to Ci, and pk to CS. After receiving (i, pk, ki), Ci first obtains the reference
biometric template bi and encrypts the reference biometric template, Enc(bi).
Ci then provides (i, Enc(bi)) to the database DB on the cloud server side for
storage. In addition, Ci sends the tag ti = TAG(bi, ki) to SP which stores
(i, ki, ti) in its database db. Locally, Ci stores (i, ki). As before, we assume
that user enrollment is performed in a secure and controlled environment.

– Authen: Again, before the user Ui authenticates himself, the service provider
SP authenticates itself to the client Ci. Then, Ci obtains from its user Ui a
fresh biometric template b′

i and an identity IDi, and provides Enc(b′
i) and the

index i to the cloud server CS. In addition, Ci computes t′i = TAG(b′
i, ki) and

sends (IDi, t
′
i) to SP. The cloud then retrieves Enc(bi) corresponding to i from

its database DB and computes γi = Enc(bi⊕b′
i) homomorphically from Enc(bi)
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and Enc(b′
i), and sends (i, γi) to SP. The service provider then extracts i from

IDi and checks if the extracted i and the index received from CS match each
other. If they match, SP continues to retrieves ki and ti corresponding to
i from db, decrypts γi to obtain ˜bi ⊕ b′

i (i.e., ˜bi ⊕ b′
i ← Dec(γi)), and runs

the MAC verification algorithm VRFY( ˜bi ⊕ b′
i, ti ⊕ t′i, ki). If the output from

VRFY is 0, SP rejects the user. Otherwise, SP checks if the Hamming weight
HW( ˜bi ⊕ b′

i) � τ . Note that HW(bi ⊕ b′
i) = HD(bi, b

′
i), where HD is the Ham-

ming distance. If this is the case, SP authenticates the user Ui, otherwise
rejects.

5.1 Security Analysis

The instantiation is slightly different from the generic protocol in that the cor-
rectness of the computation is verified by SP in the instantiation, we will also
present the security proof for the “instantiation” separately.

Definition 8. A MAC scheme is called (QT , QV , t, ε)-secure (or, ε-secure, for
short) if no PPT adversary A running in time at most t cannot generate a valid
message-tag pair, even after making QT tag generation queries to TAG and QV

verification queries to VRFY, except with probability ε.

In any biometric template recovery attack that makes use of the side channel
information (i.e., the authentication result), CS needs to be able to submit to
SP a γ which encrypts a message that passes the MAC verification test per-
formed by SP. The ε-security of the employed MAC scheme does not allow this
to happen. Furthermore, from a rejection response by SP, CS does not know
whether it is due the MAC verification failure or the mismatch between the fresh
and reference biometric templates. Hence, our instantiation is robust and secure
against the malicious CS. Formally, the following summarises the security of the
instantiation.

Theorem 2. Let HE be an IND-CPA-secure HE scheme such that
HE.Enc(m1, pk)HE.Enc(m2, pk) = HE.Enc(m1 ⊕m2, pk) and MAC an ε-secure ⊕-
linear MAC scheme. Then, the protocol that employs the HE and MAC schemes
is secure against a malicious cloud server.

The proof is given in Appendix C.

6 Summary

Privacy-preserving biometric authentication allows to authenticate users using
their biometrics while preserving the biometric privacy. A natural approach to
building a privacy-preserving biometric authentication protocol is the employ-
ment of an homomorphic encryption scheme that allows the computations and
the matching process over encrypted biometric data. There are indeed multiple
privacy-preserving biometric authentication protocols proposed in the literature
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over the years that rely on homomorphic encryption (cf. Sect. 1.1). In this work,
we proposed to combine schemes for verifiable computation with homomorphic
encryption to preserve the biometric privacy in a distributed remote biometric
authentication setting comprising clients, a cloud server, and a service provider.
A generic biometric authentication protocol which is secure against a malicious,
as opposed to honest-but-curious, cloud server is presented. Moreover, an instan-
tiation is also given using an XOR-linear MAC to verify the correctness of the
computation performed by the cloud.

Acknowledgments. The author would like to thank the anonymous reviewers for
their helpful comments. This work was supported by the European Commission
through the SECURITY programme under FP7-SEC-2013-1-607049 EKSISTENZ.

A Proof of Theorem 1

Before we proceed with the proof, let us first analyse the adversarial scenario in
the case of the generic protocol PPBA. Note that by the attacker (or the adver-
sary) A, we refer to the malicious cloud server. We assume that the adversary
A has oracle access to Authen, so A can query Authen with biometric templates
and identity of its choice poly(λ) times, where λ is a security parameter. In addi-
tion, by the security of a privacy-preserving biometric authentication protocol,
we mean the security of the biometric templates.

Again, we define the security of the protocol PPBA against a malicious adver-
sary A via the following game played between A and PPBA.

ExpPrivPPBA,A(λ, f):
(pk, sk), (PK,VK) ← KeyGen(λ, f)
(IDi, b′

i0
, b′

i1
), b′

i0
�= b′

i1
← A(λ, pk,PK, f)

β
R←− {0, 1}; Out ← Authen

(
IDi, i, Enc(b′

iβ
)
)

β′ ← A(IDi, b′
i0

, b′
i1

, Enc(b′
iβ

),Out
)

Return 1 if β′ = β, 0 otherwise

The adversary’s advantage at the end of this game is defined as AdvPrivPPBA,A =∣∣2Pr{ExpPrivPPBA,A(λ, f) = 1}−1
∣∣. We say that the protocol is secure (and preserves

the privacy of biometric templates) against the malicious cloud server CS, if
AdvPrivPPBA,A � negl(λ).

Let us write out the details of Authen
(
IDi, i,Enc(b′

iβ
)
)

in the above experi-
ment. Since the authentication process involves the client Ci, the cloud server
CS, and the service provider SP, in the description we write the entity name
followed by a set of inputs it takes in a parenthesis to denote what that entity
takes as input. For instance, CS(i,Enc(b′

iβ
), pk,PK) denotes that CS takes i,

Enc(b′
iβ

), and PK as input and performs the operations in the indented block
underneath it.
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Authen
(
IDi, i, Enc(b′

iβ
)
)
:

Ci: SP(IDi, cti, ω̃i, sk):
Send (i, Enc(b′

iβ
)) to CS i ← IDi

CS(i, Enc(b′
iβ

), pk,PK): ωi ← db(i)

Enc(bi) ← DB(i) if ω̃i �= ωi then

σcti
← Com(Enc(bi), Enc(b

′
iβ

), pk,PK) Return Out=0

Send (Enc(bi), σcti
) to Ci else

Ci

(
Enc(b′

iβ
), Enc(bi), σcti

)
: Dist ← Dec(cti)

cti ← Ver
(
Enc(bi), Enc(b

′
iβ

), σcti
,VK
)

if Dist � τ then

if cti =⊥ then Return Out=1

Return Out=0 else

else Return Out=0

ω̃i ← H(Enc(bi))
Send (IDi, cti, ω̃i) to SP

In the authentication process Authen, Out = 1 is returned in only one case
(i.e., the case where the fresh and the reference biometric templates match each
other), while Out = 0 is returned in three cases. The three cases are (1) CS
does not perform the correct computation and the verification algorithm Ver
outputs ⊥, (2) CS performs the correct computation but uses a wrong input, so
the integrity check fails, finally (3) there is no match between the fresh and the
reference biometric templates.

Proof (of Theorem 1). We prove this theorem using two games.
game 0: This is the original game. Let S0 be the event that β′ = β.
game 1: This is the same as game 0, except that we now replace the output
(Enc(bi), σcti) ← CS(i,Enc(b′

iβ
), pk,PK) with the correct Enc(bi) corresponding

to i and valid σcti . Let S1 be the event that β′ = β in this game.

Claim 1: |Pr{S0} − Pr{S1}| is negligible.

Proof (of Claim 1). The difference between game 0 and game 1 is that in
game 0 it may happen that cti =⊥ and/or ω̃i �= ωi, while in game 1 these
do not happen. While cti =⊥ means winning the game ExpVC,A(λ, f), ω̃i �= ωi

means having a collision in H. So both of these happen with negligible probability
because of the assumption that VC is secure (cf. Definition 7) and that H is a
random oracle. Therefore, the difference between the winning probabilities in
game 0 and game 1 is negligible.

Claim 2:
∣∣2Pr{S1} − 1

∣∣ � negl(λ).

Proof (of Claim 2). Suppose that the adversary’s advantage is non-negligible,
i.e.,

∣∣2Pr{S1} − 1
∣∣ > negl(λ). Then we can construct an attacker A′ that wins

in the IND-CPA game against the underlying homomorphic encryption HE with
non-negligible advantage as follows.

ExpIND-CPA
HE,A (λ):

(pk, sk) ← KeyGen(λ); (m0, m1),m0 �= m1 ← A′(λ, pk)

α
R←− {0, 1}; c ← Enc(mα, pk); Simulate PPBA for A

α′(= β′) ← A′(A(m0, m1, c, pk)
)

Return 1 if α′ = α, 0 otherwise
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The attacker A′ obtains the pk for HE, chooses two distinct messages m0, m1 ∈
Z

N
q�2, and receives a challenge c = Enc(mα), where α

R←− {0, 1}. A′ then simulates
the protocol execution for PPBA. To simulate PPBA, A′ uses pk to re-randomise
c = Enc(mα) using the homomorphic property of the encryption, and registers
the re-randomised c, let us call it c′, along with an IDi and a corresponding
index i and a hash of c′ in DB of CS. For CS, c and its randomised version c′

are indistinguishable. This does faithfully simulate the protocol execution for
the adversary A, because A′ knows the output of Authen(IDi, i, c). Now, if A
outputs its guess β′ for β, then A′ outputs its guess α′(= β′) for α. Thus, A′

wins if A wins.
Hence, combining Claim 1 and 2, we have that AdvPrivPPBA,A is negligible.

B Universal Hash Functions

Universal hash functions were first proposed by Carter and Wegman [31] as,
among others, a means to construct unconditionally secure MACs. Stinson for-
malised the definitions of Universal hash functions in [32]. Following these early
works, there has been a considerable amount of research done on Universal
hash functions to improve both the description length and computational per-
formance, see e.g., [33] for a quick overview.

Definition 9 (ε-ASU2 hash functions [32]). Let M and T be finite sets.
A family F of hash functions from M to T is ε-ASU2 if the following two
conditions are satisfied: (a) the number of hash functions in F that takes an
arbitrary m1 ∈ M to an arbitrary t1 ∈ T is exactly |F|/|T |; (b) the fraction
of those functions that also takes an arbitrary m2 �= m1 in M to an arbitrary
t2 ∈ T (possibly equal to t1) is at most ε. If ε = 1/|T |, then F is called SU2.

As can be seen from the definition, ε-ASU2 hash functions can be used to
construct a MAC scheme in a natural way. More specifically, in this case a pair
of users, say Alice and Bob, share a secret key k which identifies a hash function
hk in a family of ε-ASU2 hash functions. When Alice sends a message m to Bob,
she also sends t = hk(m) along with m. Upon receiving (m, t), Bob checks the
authenticity of m by comparing t with hk(m), which he himself computes using
his share of the key k. If hk(m) = t, then Bob accepts m as authentic; otherwise,
he rejects it.

C Proof of Theorem 2

Proof (of Theorem 2). Since the proof is similar to that of the Theorem 1, we just
highlight the differences in the relevant hybrid security games and the claims.
Let PPBA-HE-MAC denote the instantiation. The security against a malicious
adversary A (e.g., CS) is defined via the following game played between A and
PPBA-HE-MAC.
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ExpPrivPPBA-HE-MAC,A(λ):
(pk, sk), MAC.K ← KeyGen(λ)
(IDi, b′

i0
, b′

i1
), b′

i0
�= b′

i1
← A(λ, pk,MAC.K)

β
R←− {0, 1}; Out ← Authen

(
IDi, i, Enc(b′

iβ
)
)

β′ ← A(IDi, b′
i0

, b′
i1

, Enc(b′
iβ

),Out
)

Return 1 if β′ = β, 0 otherwise

where MAC.K is the key space for the employed MAC scheme (e.g., the set of
U2 hash functions). The adversary’s advantage is defined as AdvPrivPPBA-HE-MAC,A =∣∣2Pr{ExpPrivPPBA-HE-MAC,A(λ) = 1} − 1

∣∣. If AdvPrivPPBA-HE-MAC,A � negl(λ), we say
that PPBA-HE-MAC is secure (and preserves the privacy of biometric templates)
against A.

The details of Authen
(
IDi, i,Enc(b′

iβ
)
)

are given below.

Authen
(
IDi, i, Enc(b′

iβ
)
)
:

Ci sends (i, Enc(b′
iβ

)) to CS
Ci sends (IDi, t′

iβ
) to SP

CS(i, Enc(b′
iβ

), pk):

Enc(bi) ← DB(i)
γi ← Enc(bi)Enc(b

′
iβ

) = Enc(bi ⊕ b′
iβ

)

Send (i, γi) to SP
SP(IDi, i, γi, t′

iβ
, sk):

If i is not the correct index for IDi then

Return Out=0

(ki, ti) ← db(i)
if ti ⊕ t′

iβ
�= TAG(Dec(γi), ki) then

Return Out=0

else
if HW(γi) � τ then

Return Out=1

else

Return Out=0

The proof is based on the following two hybrid games.
game 0: This is the original game ExpPrivPPBA-HE-MAC,A(λ). Let S0 be the event that
β′ = β in game 0.
game 1: This is the same as game 0, except that now CS always performs the
correct computation. Let S1 be the event that β′ = β in game 1.
Claim 1: |Pr{S0}−Pr{S1}| is negligible. This follows from the ε-security of the
employed MAC scheme.
Claim 2: The adversary has negligible advantage in game 1, i.e.,

∣∣2Pr{S1}−1
∣∣ �

negl(λ). This follows from the IND-CPA-security of the HE scheme.
Hence, we have that AdvPrivPPBA-HE-MAC,A is negligible.
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Abstract. Although many authentication and key agreement (AKA) schemes
for the mobile satellite communication system have been proposed nowadays,
the security performance of the existing schemes is still unable to satisfy the
requirements of satellite communications. In 2015, Zhang et al. proposed an
improved AKA scheme for satellite communication and they claimed that their
scheme satisfied all the security requirements. However through a detailed
analysis, in this paper we find that to some extent their scheme is vulnerable to
replay attack, injection attack and verification table stolen attack. We further
propose a new lightweight AKA scheme based on the synchronization mech-
anism of user’s temporary identity. The SVO logic is used to provide a formal
security analysis. We also give an overall comparison of computation overhead
and security performance among several related AKA schemes. Meanwhile a
Java program is developed to test the time delay caused by the scheme on the
user and NCC’s sides. All the results show that the proposed scheme has the
advantages of high computation efficiency, good security performance and low
time delay.

Keywords: Mobile satellite communication system � Verification table � Smart
card � Security performance � Key agreement � Authentication

1 Introduction

With the developments of space information technology, the satellite communication is
playing an increasingly important role now. A simple model of the satellite commu-
nication network is shown in Fig. 1. It is mainly composed of the network control
center (NCC), gateways, LEO satellites and mobile users. The gateways preside over
the communications between NCC and LEO satellites, and they are linked to NCC via
a secure wired channel. The LEO satellites are responsible for forwarding the messages
between mobile users and gateways through wireless channels and they can also be
connected with each other by wireless channels. Compared with traditional ground
network, the satellite network can provide communication service in a far greater
scope. But the longer transmission delay, the time-varying network topology structure,
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the vulnerable transmission channel and the resource-constrained devices make the
information security problems much more serious in the satellite communication sys-
tem. In order to set up a safe mobile communication system, the security protocol
should provide a comprehensive protection for the entities involved, such as mutual
authentication, confidentiality, user’s privacy protection, forward/backward secrecy,
simple key management, low computation cost and so on [1–5].

Since Cruickshank first proposed a security scheme for the mobile satellite com-
munication network in 1996 [6], a lot of authentication and key agreement
(AKA) protocols have been proposed [7–16]. Most of the work focuses on the higher
security and lower computation properties. Particularly in 2009, Chen et al. proposed a
self-verification authentication scheme based on public key cryptography (PKC) and
symmetric key cryptography (SKC) [9]. But the computation over head is too high due
to the exponent operations adopted. Besides Lee et al. pointed out later that this scheme
is unsecure since the attackers who have got NCC’s verification table can work out
NCC’s long-term private key and then they proposed an improved scheme claimed to
be much more secure [12]. However Zhang et al. pointed out that Lee et al.’s scheme
couldn’t resist smart card loss attack, denial of service attack and replay attack in 2015
[16]. They also proposed a new scheme and claimed that their scheme could meet all
the security requirements of mobile satellite communication. Nevertheless, we find
their scheme is not as secure as they claimed. In this paper, we will demonstrate the
possible attacks against their scheme and propose an improved one.

The rest of the paper is organized as follows. In Sect. 2, a brief overview of Zhang
et al.’s scheme is provided, along with the presentation of the details of three different

Fig. 1. A simple model of the satellite communication network.
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kinds of attacks towards such scheme (replay, injection and verification table attack).
Our improved AKA scheme and its security analysis is detailed in Sect. 3. The
effectiveness of the mutual authentication and the session key negotiation between U
and NCC are proved by SVO logic [17] specially. In Sect. 4, we compare the proposed
scheme with some other typical AKA methods on the computation overhead and
security performance. Also a simulation program is developed to test the time delay
caused by the scheme on the user and NCC’s sides. Finally, conclusions are given in
Sect. 5.

2 Review and Cryptanalysis of Zhang et al.’s Scheme

In this section, we first review Zhang et al.’s scheme and then carry out a detailed
analysis on its performance against replay attack, injection attack and verification table
stolen attack. We also point out the information storage redundancy exists in Zhang
et al.’s scheme.

In order to facilitate understanding, the commonly used notations in the scheme are
listed in Table 1.

2.1 The Review of Zhang et al.’s Scheme

There are three communication agents in Zhang et al.’s scheme, namely the mobile
users, the LEO satellites and NCC. The scheme is divided into five phases: registration
phase, login phase, authentication phase and two extra phases (smart card lost phase
and password change phase).

During the registration phase, the mobile user U first chooses his permanent
identity UID and password PW, and sends them to NCC via a secure channel. NCC
issues the smart card containing {TID, R, k} to U. (Here TID is generated by NCC
randomly for U, R ¼ P� hðUID k kÞ, P ¼ hðUID k xÞ, x is NCC’s long term private
key and k is a security parameter randomly chosen by NCC). NCC stores {UID, TID,
PW} in its verification table. During the login and authentication phases, U and NCC
agree on a one-time used session key and update U’s temporary identity TID. NCC
stores not only {UID, TID, PW} but also U’s latest login message {Q, S, TID}. Detailed
information of these two phases is illustrated in Fig. 2. Smart card lost phase and

Table 1. Commonly used notations

Notation Instruction

NCC
U
UID

TID

LEOID

h(a)
a� b
a k b

The network control center
The mobile user
The permanent identity of the mobile user
The temporary identity of the mobile user
The identity of the LEO satellite
The one-way hash function on a
The bitwise XOR operation between a and b
The string connection operation between a and b
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password change phase will be operated when the mobile users lose their smart cards or
want to change their passwords respectively. Thorough description of Zhang et al.’s
scheme can be found in [16].

2.2 The Security Analysis of Zhang et al.’s Scheme

In their scheme, in order to protect the privacy of mobile user U, U’s permanent
identity UID will never be transmitted in clear text via the unsecure wireless channel,
and U’s temporary identity TID which has been transmitted in clear text will be updated
after each authentication phase. Furthermore to defense against the denial of service
attack [11], NCC stores U’s last login message in its verification table after the
authentication phase, and U can re-login on NCC in case of losing the reply message.
However, our analysis indicates that the re-login method makes it vulnerable to replay

Fig. 2. The login and authentication phases of Zhang et al.’s scheme
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attack and the scheme cannot resist injection attack or the verification table stolen
attack. In addition, it will occupy much more NCC’s storage space to store the re-login
information with the increasing of the mobile users involved.

Replay attack. To prevent attacker Z from taking advantage of the login message of
the previous run, in Zhang et al.’s scheme the last login message {Q, S, TID} is stored
in NCC’s verification table. Q and S are related to TID since they are computed with
TID by Q ¼ P0 � r � PW and S ¼ hðUID k r k TIDÞ respectively. However, we find that
Z can still implement the replay attack. As is illustrated in Fig. 3, Z first intercepts the
login message {Q, S, TID} of U. Since U cannot receive the reply message from NCC,
after a specific time, U will regenerate and send a new login message {Q′, S′, TID} to
NCC. After completing the check on S′ by:

P ¼ hðUID k xÞ ð1Þ

r0 ¼ Q0 � P� PW ð2Þ

S0 ¼ hðUID k r0 k TIDÞ ð3Þ

Fig. 3. The replay attack against Zhang et al.’s scheme
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NCC stores {Q′, S′, TID}, generates TIDnew and sends a reply message to U. And
now the temporary identity stored in U’s smart card is TIDnew and the corresponding
information stored in NCC’s verification table is {UID, TIDnew, PW} and {Q′, S′, TID}.
Then Z replays the previous intercepted message {Q, S, TID} to NCC, and NCC will
regard the replay message as U’s re-login message. Similarly, NCC stores {Q, S, TID},
generates T′IDnew and sends a reply message. Now the stored information of U in
NCC’s verification table becomes {UID, T′IDnew, PW} and {Q, S, TID}. During the next
run, when the legal user U sends the login message {Q″, S″, TIDnew} to NCC, since
TIDnewmismatches T′IDnew or TID in NCC’s verification table, U’s login request will
always be denied by NCC.

Injection attack. The scheme provides U a method to change his password by adding
an additional parameter Qnew in U’s login message. But during the password change
phase NCC identifies U by Eqs. (1) to (3). Therefore, the identification is related to {Q,
S, TID} instead of {Q, Qnew, S, TID}.

As is illustrated in Fig. 4, to implement injection attack, the attacker Z first inter-
cepts the login message {Q, Qnew, S, TID} sent by U to NCC in the password change
phase. Then he generates a random data Q′new which is in the same format as Qnew,
and sends the altered message {Q, Q′new, S, TID} to NCC. After receiving the altered
login request {Q, Q′new, S, TID}, NCC obtains S′ by Eqs. (1) to (3) and compares it
with S. Obviously S′ equals to S. Then NCC obtains PWnew by PWnew ¼ P� r0 � Qnew
and stores it in its verification table.

After that the PWnew which is owned by U is P ⊕ r⊕Qnew, while the stored one on
the NCC side is P ⊕ r⊕Q′new (Qnew 6¼ Q0

new. Thus all the login requests during the
subsequent runs of U will be rejected by NCC.

Fig. 4. The injection attack against Zhang et al.’s scheme
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Furthermore, Z can also take a more simple way to realize such attack during the
normal login phase. Z can directly alter the login request {Q, S, TID} into a password
changing request {Q, Q′new, S, TID} by intercepting the login request, injecting a
random data Q′new into it and then forwarding the altered one to NCC. As a result, U
holds its original password while NCC is cheated to store a totally different one for U.

Verification table stolen attack. The verification table stolen attack is mainly based
on the fact that U’s permanent identity and the corresponding password are stored in
clear text on NCC’s side in Zhang et al.’s scheme. When the attacker Z steals NCC’s
verification table by some means, he can use {UID, PW} to pretend himself as any legal
users during the smart card lost phase. After receiving the message {UID, PW} from Z
via a secure channel, NCC regards that U has lost his own smart card. Then NCC sends
a smart card with {TIDnew, R′, k′} embedded to U and replaces TID with TIDnew in its
verification table. After receiving NCC’s reply message, Z can forge as the legal user
successfully, and U’s login request will always be denied since the mismatch between
TID and TIDnew.

The redundant storage of information. As for the storage space analysis, NCC
stores not only {UID, TID, PW} but also user’s last login request {Q, S, TIDold} in
Zhang et al.’s scheme. But from above we can see that the storage of user’s last login
request still cannot resist the replay attack, which indicates that the {Q, S, TIDold} is
redundant and useless in some sense. Besides, Zhang et al. claim that the use of U’s
password PW is necessary because the attacker may implement exhaustive attack to
obtain U’s permanent identity UID after stealing U’s smart card. But when UID reaches
a certain length such as 160 bits, a successful exhaustive attack requires more than 1047

hash operations on average, which is infeasible actually. So the use of UID with enough
length has the same effect as the use of PW in defending against the exhaustive attack.
From this point of view the use of PW is unnecessary.

3 Our Proposed Scheme

From above analysis, we can see Zhang et al.’s scheme is still unsecure to withstand
replay attack, injection attack and verification table stolen attack. In this section we
propose an improved AKA scheme which is powerful enough to defend against these
attacks. The main idea is as follows. First, the synchronization mechanism of user’s
temporary identity TIDis adopted to resist the replay attack, while the user’s permanent
identity UIDis stored in NCC’s verification table in cipher text to counteract the veri-
fication table stolen attack. Second, the mobile user do not need to choose a password
in our scheme. Thus the chance for injection attack can be avoided without the pass-
word change phase. Finally the storage space of the proposed scheme is optimized by
storing neither the last login request {Q, S, TIDold} nor the users’ passwords.

3.1 The Process of the Proposed Scheme

There are three phases in our proposed scheme registration phase, login phase and
authentication phase.
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Registration phase

(R1) U ! NCC: UID

U freely chooses his permanent identity UID, and then sends it to NCC via a secure
channel.

(R2) NCC ! U: TID, R, k
After receiving the message UID from U, NCC generates a random number k and

calculates P, R with its long-term private key x:

P ¼ hðUID k xÞ ð4Þ

R ¼ P� hðUID k kÞ ð5Þ

Then NCC generates U’s initial temporary identity TID, calculates:

O ¼ UID � hðTID k xÞ ð6Þ

and stores {O, TID, TIDold} in its verification table. TIDold is initially blank. After that,
NCC sends a smart card embedded with {TID, R, k} to U via a secure channel.

Login phase

(L1) U ! LEO: Q, S, TID

U inserts the smart card into his own device and inputs his permanent identity
UIDmanually. Then the smart card automatically generates a secret random number r
and calculates:

P 0 ¼ R� hðUID k kÞ ð7Þ

Q ¼ P0 � r ð8Þ

S ¼ hðUID k r k TIDÞ ð9Þ

Finally U sends the login message {Q, S, TID} to the LEO satellite.
(L2) LEO ! NCC: Q, S, TID, LEOID

Authentication phase

(A1) After receiving U’s login request from the LEO satellite, NCC first decides
whether TID exits in its verification table based on the second elements TID′ of vector
{O′, TID′, TIDold′}.

(A1.1) If TID exists as the elements of TID′, NCC calculates:

UID ¼ O� hðTID k xÞ ð10Þ

P ¼ hðUID k xÞ ð11Þ

194 X. Wu et al.



r0 ¼ Q� P ð12Þ

S0 ¼ hðUID k r0 k TIDÞ ð13Þ

and verifies whether the calculated value S′ equals to S which is received during L2.
U will be authenticated if S′ equals to S, and the authentication process will go to step
(A2.1).

(A1.2) Else, NCC decides whether TID exists in its verification table based on the
third elements TIDold′ of vector {O′, TID′, TIDold′}. If it exists as the elements of TIDold′,
NCC gets:

UID ¼ O� hðT0
ID k xÞ ð14Þ

and calculates P, r′, S′ by Eqs. (11) to (13). If the calculated value S′ equals to S, U is
authenticated by NCC. Then NCC will start the synchronization mechanism and go to
step (A2.2).

(A1.3) Otherwise, U’s login request will be rejected.
(A2) NCC generates the replying messages at this step.
(A2.1) NCC chooses a secret random number t and U’s new temporary identity

TIDnew, and calculates:

V1 ¼ P� t ð15Þ

V2 ¼ hðP k r0 k t k TIDnew k tagÞ ð16Þ

V3 ¼ hðV1 k r0Þ � TIDnew ð17Þ

Onew ¼ UID � hðTIDnew k xÞ ð18Þ

where tag = 1 indicates the communication is in a normal replying state. Then NCC
replaces the stored message {O′, TID′, TIDold′} with {Onew, TIDnew, TID} in its verifi-
cation table. Now NCC calculates the session key SK between U and itself and go to
(A2.3).

SK ¼ hðUID k r0 k t k PÞ ð19Þ

(A2.2) NCC generates a secret random number t and calculates V1 by Eqs. (15),
then gets:

V2 ¼ hðP k r0 k t k T0
ID k tagÞ ð20Þ

V3 ¼ hðV1 k r0Þ � T0
ID ð21Þ

where tag = 0 suggests that the replying message is for synchronizing purpose.
(A2.3) NCC ! LEO: V1, V2, V3, tag, LEOID

(A3) LEO ! U: V1, V2, V3, tag
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(A4) After receiving the message {V1, V2, V3, tag} from the LEO satellite, U
calculates:

t0 ¼ V1 � P0 ð22Þ
T0
IDnew ¼ V3 � hðV1 k rÞ ð23Þ

V0
2 ¼ hðP0 k r k t0 k T0

IDnew k tagÞ ð24Þ

Then U verifies whether the calculated value V2′ equals to V2 it received. If it holds,
NCC is authenticated successfully by U. Then U will replace TID with T′IDnew in his
smart card. Especially if tag = 1, U will go to step (A5). If tag = 0, U is aware that he is
in the asynchronous state, and he will start a new run for login and authentication.

(A5) U calculates the session key SK between NCC and himself:

SK ¼ hðUID k r k t0 k P0Þ ð25Þ

Obviously the two session keys computed by NCC in Eq. (19) and obtained by U
in Eq. (25) will be the same once NCC and U have been authenticated with each other.
SK will be used as the symmetric encryption key to protect the session messages
between U and NCC later.

3.2 The Security Analysis of Our Scheme

In this section, we will discuss the security performance of the proposed scheme by
analyzing its ability to resist some commonly mentioned attacks. Then the formal
security analysis based on SVO logic is given.

The ability to resist security attacks

Denial of service attack. Zhang et al. adopted re-login mechanism to prevent against
DoS attack, but it makes the system become much more vulnerable to replay attack.
The synchronization method of the user’s temporary identity is used in the proposed
scheme to resist DoS attack. For example, during the authentication process, both TID

and TIDold are stored in the verification table on the NCC’s side. If the authentication
replying message sent by NCC to U is intercepted, NCC can know that the mobile user
has not received its last reply message according to user’s login message containing
TIDold. And the system can still run properly after NCC sends a synchronizing message.

Replay attack. The synchronization of the user’s temporary identity can also be used to
defend against the replay attack. The attacker Z may attempt to intercept and replay
user’s login message {Q, S, TIDold} and NCC’s reply message {V1, V2, V3, tag}. In our
scheme, if NCC receives user’s login message containing his last temporary identity
TIDold, it will respond with the existing TID based on the synchronization mechanism,
no matter whether the login message {Q, S, TIDold} is sent by user himself or not.
Therefore, Z cannot cause the mismatch of user’s temporary identity between the one
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stored in user’s smart card and the one in NCC’s verification table, and Z cannot obtain
user’s existing temporary identity TID from NCC’s reply message {V1, V2, V3, tag}
without r and P.

Injection attack. It is obviously that the chance for injection attack can be avoided in
our scheme, since there is no password change phase at all.

Verification table stolen attack. In our scheme, if the attacker Z steals NCC’s verifi-
cation table, he can obtain parameter O, user’s temporary identity TID and TIDold. But
he cannot obtain user’s permanent identity UID without NCC’s long-term private key x
according to Eq. (10). Therefore, the verification table stolen attack can be resisted
since there is no sensitive information stored in NCC’s verification table.

Smart card loss attack. In the proposed scheme, Z cannot generate a valid login
message even if he has got user’s smart card due to the fact that user’s permanent
identity is not stored in the smart card. Moreover, based on the analysis in Sect. 2. B, Z
cannot obtain user’s permanent identity UID by exhaustive attack when the length of
UID reaches a certain scale.

Impersonation attack. It is obviously that the login message of the proposed scheme is
related to user’s permanent identity UID. For example, Q and S in user’s login message
{Q, S, TID} equals to P ⊕ r and h(UID||r||TID) respectively, and P ¼ hðUID k xÞ.
Therefore, even if Z obtains user’s temporary identity TID, he cannot generate a valid
login message to impersonate a legal user without UID.

From above we can see the proposed scheme is secure enough to defend against the
commonly used attacks. Next the formal analysis for the mutual authentication and
session key negotiation will be given based on SVO logic.

The formal analysis based on SVO logic

The introduction of SVO logic. The notations used in SVO logic are listed in Table 2.
There are two inference rules (MP, Nec) and twenty inference axioms in SVO. For
detailed information please refer [17].

The formal analysis of our scheme. The analysis in SVO logic can be divided into four
parts: protocol idealization, initial assumptions, goals setting and derivation procedure.
In our protocol, NCC stores {O, TID, TIDold} in its verification table. The information
{TID, R, k} is stored in U’s smart card. After omitting the satellite node which is only
responsible for message forwarding, the description of the login and authentication
phases can be described as follows:

U ! NCC : Q; S;TID

NCC ! U : V1;V2;V3; tag
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For the detailed information of each message, please refer to Sect. 3.1.
The final negotiated session key between U and NCC is SK ¼ hðUID k r k t k PÞ.

(1) Protocol idealization

The protocol can be idealized as:

U ! NCC : rf gP; hðUID k r k TIDÞ;TID

NCC ! U : tf gP; TIDnewf gr; hðP k r k t k TIDnewÞ

(2) Initial assumptions

The initial assumptions can be divided into four groups: the participant believes the
freshness of the random number generated by itself, the participant believes that the
trusted participants have jurisdiction over their shared key, the participant believes its
own shared key and the assumptions obtained according to the idealization process of a
security protocol.

The initial assumptions of the proposed scheme can be summarized as follows.
P1: U believes fresh(r)

NCC believes fresh(t)
NCC believes fresh(TID)

P2: U sees (UID,TID,P,k,r)
NCC sees (O,UID,TID,x,t)

P3: U believes NCC controls ðU$t NCCÞ
U believes NCC controls(TIDnew)

NCC believes U controls ðU$r NCCÞ

Table 2. Notations in SVO logic

Notation Instruction

�1; � � � ; �nf g
~K
XP

� �
K

X½ �K
XP
� �

Y

P$K Q
PKw P;Kð Þ
PKr P;Kð Þ
PKd P;Kð Þ
SV X;K;Yð Þ

The unrecognized message received by a participant
K’s corresponding decryption key
The message X encrypted by K and sent by participant P
The message X signed by K
The message X compounded with Y and sent by participant P
A shared key K between participants P and Q
The public encryption key K of participant P
The public signature verification key K of participant P
The public negotiation key K of participant P
The message Y with a signature X verified by key K
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P4: U believes NCC controls fresh(t)
U believes NCC controls fresh(TIDnew)
NCC believes U controls fresh (r)

P5: U believes U$p NCC

U believes U$r NCC

NCC believes U$P NCC

NCC believes U$t NCC
P6: NCC received rf gP; hðUID k r k TIDÞ;TID

P7: U received tf gP; TIDnewf gr; hðP k r k t k TIDnewÞ
P8: NCC believes NCC received �1f g�2; �3;TID

P9: NCC believes ðNCC received �1f g�2; �3;TID �
NCC received U$r NCC

n o
P
; h UID k r k TIDð Þ;TIDÞ

P10: U believes U received �4f gP; �5f gr; �6
P11: U believes ðU received �4f gP; �5f gr; �6 �

U received U$t NCC
n o

P
; TIDnewf gr; h P k r k t k TIDnewð ÞÞ

P12: U believes ðU$r NCC ^ U$t NCC � U$sk NCCÞ
P13: NCC believes ðU$r NCC ^ U$t NCC � U$sk NCCÞ

(3) Goals setting

The goals of the proposed protocol are to achieve mutual authentication and session
key negotiation between U and NCC. They can be described as:

G1: NCC believes U$sk NCC
G2: U believes U$sk NCC
G3: NCC believes fresh(sk)
G4: U believes fresh (sk)

G5: U believes NCC sees U$sk NCC
Here G1 and G2 indicate that both NCC and U believe that SK is a proper shared

session key, G3 and G4mean that both NCC and U believe that SK is fresh whileG5

says that participant U believes that NCC owns SK.

(4) Derivation procedure

The derivation procedure is a process to obtain the security goals from the asso-
ciated protocol idealization and assumptions by using the SVO inference rules. For
simplicity, the inference rules are cited as ‘Ax i’, where Ax means axiom and i is the
corresponding numbers of the SVO inference rules in [17].

The proving procedures of G1 are listed below:

P8
P10

�
!Ax1 NCC believes NCC received U$r NCC

n o
P
; h UID k r k TIDð Þ;TID ðM1Þ
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M1g !Ax6 NCC believes NCC received U$r NCC
n o

P
ðM2Þ

M2
P5

�
!Ax1;Ax3

NCC believes ðU said U$r NCCÞ ðM3Þ

P1g !Ax1;Ax17
NCC believes fresh hðUID k r k TIDÞ ðM4Þ

M4g !Ax1;Ax16
NCC believes fresh ðU$r NCCÞÞ ðM5Þ

M3
M5

�
!Ax1;Ax18

NCC believes ðU says U$r NCCÞ ðM6Þ

M6
P3

�
!Ax1;Ax15

NCC believes U$r NCC ðM7Þ

M7
P5
P13

9=
; !Ax1;Ax5

NCC believes U$sk NCC G1is proved: ðM8Þ

P9
P11

�
!Ax1 U believes U received U$t NCC

n o
P
;

TIDnewf gr; h P k r k t k TIDnewð Þ ðM9Þ

M9g !Ax6 U believes U received U$t NCC
n o

P
ðM10Þ

M10
P5

�
!Ax1;Ax3

U believes ðNCC said U$t NCCÞ ðM11Þ

M9g !Ax6 U believes U received TIDnewf gr ðM12Þ

M12
P5

�
!Ax1;Ax3

U believes ðNCC said TIDnewÞ ðM13Þ

M13
P1

�
!Ax17 U believes ðNCC saysTIDnewÞ ðM14Þ

M14
P3

�
!Ax1;Ax15

U believes TIDnew ðM15Þ

P1g !Ax1;Ax17
U believes fresh hðP k r k t k TIDnewÞ ðM16Þ
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M16g !Ax1;Ax16
U believes fresh ðU$t NCCÞ ðM17Þ

M11
M17

�
!Ax1;Ax18

U believes ðNCC says U$t NCCÞ ðM18Þ

M18
P3

�
!Ax1;Ax15

U believes U$t NCC ðM19Þ

M19
P5
P12

9=
; !Ax1;Ax5

U believes U$sk NCC G2is proved: ðM20Þ

M5
P1

�
!Ax1;Ax17

NCC believes freshðskÞG3is proved: ðM21Þ

M17
P1

�
!Ax1;Ax17

U believes fresh skð ÞG4is proved: ðM22Þ

M12
P5

�
!Ax1 U believes NCC sees r ðM23Þ

M23
P2

�
!Ax10 U believes NCC sees U$sk NCCG5is proved: ðM24Þ

4 Comparison and Simulation

In this section, comparisons of the security properties and the computation overhead
are made among the proposed scheme and several related schemes. From the com-
parison we can see that some schemes including Zhang’s, Lee’s, Lasc’s, Chen’s and
ours can satisfy all the listed security requirements, while only the proposed scheme
can resist all of the known attacks. As for the computation overhead, the proposed
scheme only needs a certain amount of hash operations on both NCC and user’s sides,
which is comparable with that of Zhang’s, Chang’s and Lee’s schemes. In Table 3,we
summarizes the comparisons among these schemes. Here Tsym denotes a symmetric
encryption operation and Th a secure hash operation. Other lightweight operations such
as bitwise XOR operation are omitted.

Also, we design a Java program to verify the effectiveness of our scheme by testing
the time delay on the user and NCC’s sides. The time delay that we have tested
includes four parts, which are the time overhead of user to generate the login message
after inputting his UID (T1), the time overhead of user to authenticate NCC’s reply
message and generate the session key after receiving the reply message (T2), the time
overhead of NCC to authenticate the login message and generate the reply message
after receiving user’s login request (T3) and the time overhead of NCC to authenticate
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the login message and generate the synchronous message after receiving user’s login
request generated with TIDold (T4).

According to the test results in Table 4, the time overheads of the proposed scheme
on both the user and NCC’s sides are within milliseconds. While the transmission delay
in satellite communication systems is normally within tens or hundreds of milliseconds.
Furthermore, by comparing two groups of test results with different user scales, we can
see that only T4 has an obvious increase when the number of user increases from 1000
to 10000. It is because that the search time in the proposed scheme is mainly affected
by the user scale. In the simulation, NCC stores user data in a hash table keyed by
user’s current temporary identity TID. So the time complexity for TID searching is O(1),
but the time complexity for user’s last temporary identity (TIDold) searching is O(n),
which ultimately results the obvious increase of T4.

In a word, the time overhead of the mutual authentication and key agreement
between user and NCC will not have an obvious effect on the system’s overall time
delay.

5 Conclusion

With the rapid development of satellite communication technology, the mobile satellite
communication have brought great convenience to people, at the same time it also
brings a huge challenge to the sensitive information protection during space

Table 3. Comparison of security and computation overheads among related schemes

Schemes Chen’s
scheme [9]

Lasc’s
scheme [11]

Lee’s
scheme [12]

Zheng’s
scheme [13]

Chang’s
scheme [14]

Zhang’s
scheme [16]

Our
Scheme

Mutual authentication Yes Yes Yes Yes Yes Yes Yes
Confidentiality Yes Yes Yes Yes Yes Yes Yes
User’s privacy Yes Yes Yes No Yes Yes Yes
Key independence Yes Yes Yes Yes No Yes Yes
Denial of service attack No Yes No No No Yes Yes
Replay attack Yes Yes No Yes Yes No Yes
Injection attack Yes Yes Yes Yes No No Yes
Verificationtablestolen
attack

Yes Yes Yes No Yes No Yes

Smart card loss attack No No Yes Yes Yes Yes Yes
Impersonation attack Yes Yes Yes Yes No Yes Yes
User computation Tsym + 2Th Tsym + 2Th 5Th (n-j + 5) Th 3Th 5Th 5Th

NCC computation Tsym + 4Th Tsym + 4Th 5Th 4Th 4Th 5Th 7Th

n, the total times which a user can access the services from NCC. j, the current number of a user’s accession.

Table 4. Test results of time overhead

User scale T1 T2 T3 T4

1000 0.2005 ms 0.3533 ms 0.5586 ms 0.5853 ms
10000 0.2095 ms 0.3768 ms 0.5897 ms 1.2658 ms

The results are the average value of 250 tests.
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transmission. The security protocol is the foundation to build a secure network envi-
ronment. In this paper, we analyze Zhang et al.’s authentication and key agreement
scheme in detail, and we find that the scheme is vulnerable to replay attack, injection
attack and verification table stolen attack. Besides the storage redundancy exists in the
scheme. Then, an improved AKA scheme based on the synchronization mechanism of
user’s temporary identity is proposed. The formal analysis with SVO logic and the
simulation with a java program show that our scheme has the advantages of good
security performance and high computation efficiency.
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Abstract. Blind signature allows a user to get a signature of a signer on an
arbitrary message, without leaking any information about the message. The
verifier can check that whether the signature is indeed generated by the signer,
and the signer cannot recall the signing situation. This property is essential when
the signed message needs privacy protection for the user, like a bank bill or a
trade secret. Lattice-based system is the most promising quantum-resistant
primitive, and the first lattice-based blind signature is proposed by Rückert. For
another, identity-based system is an alternative to public key infrastructure, as it
can simplify the key management procedures in certificate-based public key
systems. Illuminated by the demand of identity-based blind signature in the
post-quantum circumstance, we consider the lattice-based identity based blind
signature (IBBS) based on hard worst-case lattice problems. Besides, all existing
lattice-based blind signatures are constructed and proved to be secure in the
random oracle model. In this work, we construct an identity-based blind sig-
nature from lattices in the standard model. Our construction is proved to be
one-more unforgeable under the selective identity and chosen message attacks
(sID-CMA), and unconditionally blind in the standard model.

Keywords: Digital signature � Lattice-based cryptography � Blind signature

1 Introduction

1.1 Backgrounds

Digital signature can ensure the integrity of information transmission, identify the
message sender, and avoid the repudiation in business deal. The signature is always
created by the signer under his signing key, and the signer often knows the message
signed. However, sometimes, the message signed may need privacy protection, and the
owner of the message only needs a signature of a particular signer under the message
without leaking its privacy.

Bind signature was first introduced by Chaum [1] in 1982 as a new type of sig-
nature with novel functionality, which enabled a user to get a signature from a signer
S on an arbitrary message M without leaking any information about M, any verifier can
check the signature whether it was indeed a signature onM signed by S. Blind signature
is applicable in many situations, such as e-voting applications, anonymous Internet
banking, and oblivious transfer.
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Shor’s algorithms [2] show that the integer factoring and the discrete logarithm
problems can be solved in polynomial time under quantum computers, on which the
hardness of many existing blind signature schemes are based. Thus, these blind sig-
natures become insecure once quantum computers become mature development, and
quantum secure primitives are in urgent needs. Therefore, tremendous efforts have been
made on the classical schemes that remain secure against a quantum adversary, which
is called post-quantum cryptosystems. Lattice-based cryptography has become a hot
research topic in post quantum cryptography, and many significant achievements have
been obtained [3–10] in recent years.

A natural goal is to design blind signature from lattices. Rückert put forward the
first lattice-based blind signature [11] at ASICRYPT’10 in the random oracle model.
His signature protocol had 4 moves, and would fail with certain probability during
generating signatures. Afterwards, Wang et al. constructed a lattice-based blind sig-
nature with random oracle [12] of 2 moves from pre-image sample function without
failures in the signing procedure.

To simplify the key management procedures in certificate-based public key set-
tings, the first identity-based signature was introduced by Shamir [13] in 1985. In an
identity-based cryptosystem, the public key is the unique string that recognizes the
user’s identity, for instance, it can be an ID number, the email address, or the room
number. A trusted-third-party generates the secret key by a specific algorithm and a
private key. By identity-based cryptosystems, the existing problems in the public key
infrastructure (PKI) can be well resolved, such as the public-key substitute problems,
and the performance bottleneck of authentication center problems.

However, few literature studies on lattice-based IBBS, much less without random
oracle. An interesting research topic is the design of lattice-based IBBS without random
oracle. Therefore, we initiate the research on IBBS from lattices without random oracle
in this research. A lattice-based IBBS scheme without random oracle is constructed
based on hard worst-case lattice problems. Our construction is proved to be uncon-
ditionally blind and one-more sID-CMA unforgeable in the standard model (SM).

1.2 Related Works

Early IBBS schemes appeared in [14, 15] were designed with random oracles. The first
secure construction of IBBS scheme in the standard model was constructed from the
generic approach proposed by Galindo et al. [16] at ASIACRYPT 2006. The main
approach was considerably straightforward and obvious: adding the authentication
information of the signer to the general signature. But this led some disadvantages: the
signature size was large because it includes two parts, and their scheme was inefficient
as the computation and the verification needed double operations. Phong et al. [17]
constructed an IBBS scheme based on bilinear parings with security based on the
elliptic curve discrete logarithm problem.

All IBBS schemes were constructed based on classical number theories such as the
integer factoring problem and the discrete logarithm problem, until Rückert made the first
step in designing lattice-based blind signatures [11] at ASICRYPT 2010. But his schemes
would fail with certain probability during generating signatures. Wang et al. [12]
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put forward a lattice-based blind signature with random oracle of 2 moves from pre-image
sample function without failures in the signing procedure. To the best of our knowledge,
no literature studies on lattice-based IBBS scheme in standard model so far.

2 Preliminaries

2.1 Notations

R(Z) denotes the set of real numbers (integers). For a positive integer d 2 Z, [d] de-
notes the set of integers f1; � � � ; dg. Vectors are denoted by bold lower-case letters in
column form and matrices by bold capital letters. The l2 and l1 norm are denoted by
jj � jj and jj � jj1, respectively. A matrix A 2 R

n�m is always viewed as the set of its
column vectors A¼ a1; � � � ; amf g, and ~A¼ ~a1; � � � ; ~amf g denotes the Gram-Schmidt
orthogonalization of vectors a1; � � � ; am taken in that order. For matrix B 2 R

n�m0 , the
connection by columns of A and B is written as ½AjjB� 2 R

n�ðmþm0Þ.
Let n be the security parameter, other quantities can be expressed by the functions

of n. log denotes the natural logarithm, and DðX; YÞ ¼ 1
2

P
a2D jPr½X ¼ a� � Pr½Y ¼ a�j

defines the statistical distance of two random variables (X and Y) over a domain D. The
notations of O; x are frequently used for describing the growth of function. For some
constant c, f ðnÞ ¼ ~OðgðnÞÞ denotes the function f ðnÞ ¼ OðgðnÞ � logcðnÞÞ is denoted by
f ðnÞ ¼ ~OðgðnÞÞ and f ðnÞ ¼ OðncÞ by poly(n). A function is negligible in n if f ðnÞ ¼
n�c holds for sufficiently large n and positive c. An arbitrary such function is denoted
by neglðnÞ, and a probability is overwhelming if it is 1� neglðnÞ.

2.2 Definitions

Definition 1(Lattices). Let B ¼ fb1; � � � ; bng be set of n linearly independent vectors
over Rm. The lattice generated by B is defined by

LðBÞ ¼
Xn
i¼1

xibijxi 2 Z

( )
:

Generally, k1ðLðBÞÞ denotes the shortest vector of the lattice LðBÞ. For i 2 f1; � � � ; ng,
we denote the successive minima by kiðLÞ, which is the smallest value such that the
sphere of radius kiðLÞ of center the origin contains at least i linearly independent lattice
vectors.

Definition 2 (SISq;n;m;b problem). Given a random matrix A 2 Z
n�m
q , find a non-zero

vector v 2 Z
m such that Av ¼ 0 2 Z

n
q and jjvjj � b.
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2.3 Discrete Gaussian Distribution and Smoothing Parameter

Discrete Gaussian distribution and the smoothing parameter are important tools in
analyzing integer lattices. For arbitrary s[ 0, a Gaussian distribution with parameter
s and c as its center is defined as 8x 2 R

n; qs;cðxÞ ¼ e�xjjx�cjj=s
2
. The Gaussian dis-

tribution on lattice K is defined as 8x 2 K; DK;s;c ¼ qs;cðxÞ=qs;cðKÞ.
Theorem 1 ([7]). Given a trapdoor T for a lattice with dimension n, center c 2 R

n and
parameter s� jj~Tjjxð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ, there exists a probabilistic polynomial-time algorithm,

whose outputs statistically close to the distribution DK;s;c.

Theorem 2 ([7]). If the rows of a matrix A 2 Z
n�m
q generate the space Zn

q with m� 2n,

e 2 ð0; 1=2Þ, and s� ge K?ðAÞ� �
, u ¼ Aemodq statistically close to the uniform dis-

tribution over Zn
q when e�DZ

m;s.

2.4 Identity-Based Blind Signature

Syntax of IBBS. An IBBS scheme always consists of four algorithms (Setup, Key-
Extract, Sign, Verify), where Sign is an interactive protocol between a signer S and a
user U.

Setup. The KGC runs this algorithm to generate the security parameter and the master
key pair (mpk, msk).

KeyExtract. Given the identity information ID, (mpk, msk), this algorithm generates
the corresponding private key skID for ID.

Sign. This algorithm describes the joint execution between S and U, it always consists
of three algorithms.

Blinding the message (executed by U): Takes the original message m and a ran-
domness r as inputs, and outputs a blinded message m 0;

Signing the blinded message (executed by S): Takes the blinded message m 0 and
the secret signing key sk as inputs, outputs a blinded signature r0;

Unblind the signature (executed byU): Takes the blinded signature r0, and the previous
randomness r as inputs, this algorithm outputs the real signature for message m 0.

Verify. Given m, mpk, ID, and r, this algorithm outputs 1 to accept if r is a valid
signature of m under ID and otherwise 0 to reject.

Security Requirements for IBBS. Blindness. Assume that ðl0; r00Þ and ðl0; r00Þ are
two blinded message/signature pairs. Given lb, r

0
b where b 2 f0; 1g, an IBBS scheme

meets the blindness if, any polynomial-time signer or distinguisher can output a bit
b0 ¼ b with a probability at most 1=2þ 1=nc, where n is enough large, and c is a
constant. That is, ðl0; r00Þ and ðl0; r00Þ is indistinguishable for the signer and
distinguisher.
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One more unforgeable under sID-CMA. An IBBS scheme is sID-CMA one more
unforgeable, if any polynomial-time adversary wins the following game with negligible
probability of success.

Setup. The adversary claims the challenge ID* in advance. Then, the challenger
generates the security parameter and the master key pair (mpk, msk), and sends the mpk
to the adversary with msk as his secret key.

Queries. The adversary is allowed to make two kinds of queries to the challenger.

Key-extract query. The adversary can query on any ID except ID*. The challenger runs
algorithm KeyExtract to return the corresponding skID.
Signing query. The adversary adaptively chooses message m and ID, and gets the
blinded signature r0 of the blinded message m 0 under ID.

Forge. After l key-extract and signing queries, the adversary outputs a bind signature
r	 of the l+1-th message m* under ID*. The adversary wins if the verifier outputs 1
when it checks the forgery (m*,r	).

2.5 Key Algorithms

Algorithms TrapGen and SamplePre. Let q ¼ polyðnÞ be a prime, m be an arbitrary
positive integer that m[ 5n log q.

With a security parameter n as input, algorithm TrapGen outputs the matrix A 2
Z
n�m
q and B 2 Z

m�m. Here B is a good basis of lattice

K?q ðAÞ ¼ fv 2 Z
m : Av ¼ 0mod qg, and jj~Bjj �Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p Þ.

With A 2 Z
n�m
q , B 2 Z

m�m, any r� jj~Bjj � xð ffiffiffiffiffiffiffiffiffiffi
log n
p Þ and vector y 2 Z

n
q as inputs,

algorithm SamplePre outputs a randomly nonzero vector e 2 fe 2 Z
m : jjejj � r

ffiffiffiffi
m
p g

such that Ae ¼ ymod q with overwhelming probability.

Algorithms ExtBasis, RandBasis and ExtRandBasis. Let T 2 Z
m�m be an arbitrary

basis of K?ðAÞ for some A 2 Z
n�m
q whose columns generate the entire group Z

n
q, and

let �A 2 Z
n��m
q be arbitrary.

There is a deterministic polynomial-time algorithm ExtBasisðT;A0 ¼ Ajj�A) that
outputs a basis T’ of K?ðA0Þ
Zmþ �m such that jj~T0jj ¼ jj~Tjj. See Lemma 3 in [5] for
more details of ExtBasis.

Algorithm RandBasis is a probabilistic polynomial-time algorithm, which takes a
basis T of an m-definitional integer lattice K and a parameter s� jj~Tjj � xð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ as

inputs, and outputs a basis T’ of K that jj~T0jj � s
ffiffiffiffi
m
p

. See Lemma 4 in [5] for more
details of RandBasis.

Algorithm ExtRandBasis can be implemented by algorithm ExtBasis and then
algorithm RandBasis. It is a probabilistic algorithm that inputs an arbitrary basis T of
K?ðAÞ for some A 2 Z

n�m
q whose columns generate the entire group Z

n
q, a parameter
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s� jj~Tjj � xð ffiffiffiffiffiffiffiffiffiffiffi
log n
p Þ, an arbitrary �A 2 Z

n��m
q , and outputs a basis T’ of K?ðA0 ¼

Ajj�AÞ
Zmþ �m such that jj~T0jj � s
ffiffiffiffi
m
p

.

Algorithms SampleLeft and SampleRight. Assume that A; B 2 Z
n�m
q , R 2

f�1; 1gm�m, and the matrix F of form F ¼ ½AjjARþB� 2 Z
n�2m
q , algorithms Sam-

pleLeft and SampleRight can sample short vectors from K?q ðFÞ for some u 2 Z
n
q with

either a trapdoor for K?q ðAÞ or a trapdoor for K?q ðBÞ. We describe them briefly as
follows, you can refer to [4] for more details.

SampleLeft. Given a rank n matrix A 2 Z
n�m
q with a ‘short’ basis TA for K?q ðAÞ, a

matrix M1 2 Z
n�m1
q , a vector u 2 Z

n
q, and a Gaussian parameter

r� jj~TAjj � xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðmþm1Þ

p Þ. The algorithm sets F1 ¼ ½AjjM1�, and outputs a vector
e 2 Z

mþm1 sampled from a distribution statistically close to DKu
qðF1Þ;r. The vector e is

generated as follows:

(a) Sample a random vector e2 2 Z
m1 distributed statistically close to DZ

m1 ;r;
(b) Run e1  SamplePreðA;TA; y; rÞ where y ¼ u� ðM1e2Þ 2 Z

n
q;

(c) Output e ðe1; e2Þ 2 Z
mþm1 :

SampleRight. Given matrices A 2 Z
n�k
q and B 2 Z

n�m
q with a basis TB for K?q ðBÞ

where B is rank n, a matrix R 2 Z
k�m, sR ¼ jjRjj ¼ supjjxjj¼1 jjRxjj, a vector u 2 Z

n
q,

and a parameter r� jj~TBjj � sRxð
ffiffiffiffiffiffiffiffiffiffiffi
logm
p Þ, this algorithm sets F2 ¼ ½AjjARþB� and

outputs a vector e 2 Z
mþ k sampled from a distribution statistically close to DKu

qðF2Þ;r.
The vector e is generated as follows:

(a) Construct a set TF2 of ðmþ kÞ linearly independent vectors in K?q ðF2Þ where
jj~TF2 jj\ jj~TBjjðsRþ 1Þ;

(b) if needed, by Lemma 7.1 in [17] to convert TF2 into a basis T0F2
of K?q ðF2Þ such

that jj~T0F2
jj ¼ jj~TF2 jj;

(c) invoke e SamplePreðF2;T0F2
; u; rÞ to generate a vector e 2 Ku

qðF2Þ such that
e is distributed close to DKu

qðF2Þ;r:

3 Our Construction

Assume that n is the system security parameter, other quantities are determined by
n. q is a prime positive integer such that q ¼ polyðnÞ, m ¼ Oð2n log qÞ, L¼8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p

,
s0[ Lxð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ.

Setup. Assume that the key generation center (KGC) has an n-dimensional lattice K
with a trapdoor basis B, we denote the check matrix of K by A 2 Z

n�m
q , and the
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Gram-Schmidt orthogonal basis of B by ~B. The smooth parameter of K is denoted as
geðKÞ. Set s ¼ jj~Bjjs0, and d ¼ jj~Bjj=2, LM is the database of all signed blinded mes-
sages. The identity information of a signer is defined by id 2 f0; 1gk, H : f0; 1gk ! Z

n
q

and H0 : f0; 1g	 ! Z
n
q are secure collision-resistant hash functions, and H1 : Z

n
q !

Z
n�n
q is an encoding with full-rank differences (FRD) function. The output of H is

denoted as vid¼HðidÞ 2 Z
n
q. The message is in f0; 1g	. The KGC operates as follows:

(a) Pick matrixes C0;C1; � � � ;Ck 2 Z
n�m
q .

(b) Uniformly choose random A2, A3 from Z
n�m
q .

(c) Output the system public parameters as P ¼ fn;m; q; s0; s;H;H0;H1g, the master
secret key as msk ¼ fBg, and the master public key as
mpk ¼ fA;A2;A3;C0; � � � ;Ckg.

KeyExtract(id, P, msk, mpk). Take an identity id as input, the PKG generates the
secret key for the identity as follows:

(a) Compute Aid ¼ ½AjjA2þH1ðvidÞA3� where H1ðvidÞ 2 Z
n�n
q ;

(b) Extract a short basis Tid  ExtRandBasisðB;AjjA2þH1ðvidÞ; s0Þ as the secret
key for identity id, where s0 �maxfjj~Tidjjxð

ffiffiffiffiffiffiffiffiffiffi
log n
p Þgid2f0;1gk .

Figure 1 shows the key procedure of the IBBS scheme, the signature issue protocol.
It has two moves between the signer and the user, and consists of three algorithms
(Blind, Sign, Unblind).

, 'm s
D←c , (1, )t d∈ ,

Fig. 1. Signature issue protocol of the IBBS scheme
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Blind(M, P, mpk, id). Take the message M 2 f0; 1g	 and the public parameters as
inputs, the user blinds the message as follows:

(a) Compute h ¼ H0ðMÞ 2 Z
n
q, and Aid ¼ ½AjjA2þH1ðvidÞA3� where

vid¼HðidÞ 2 Z
n
q;

(b) Choose a random vector c ¼ ðc1; c2; � � � ; c3mÞ ! D
Z
3m; s0 with the origin as its

center, then jjcjj � s0
ffiffiffiffiffiffi
3m
p

holds with overwhelming probability from Theorem 2.
If not, repeat it.

(c) Compute �Aid ¼ ½AjjA2þH1ðvidÞA3jjC0þ
P

i2½k� ð�1Þid½i�Ci� for

id ¼ ðid½1�; � � � ; id½k�Þ 2 f0; 1gk.
(d) From Theorem 2, �Aidc is approximate uniform.
(e) Choose an arbitrary t 2 Zq such that 1\t\d.
(f) Compute the blinded message l ¼ ðt�1hþ �AidcÞmod q:

Finally, the user sends l to the signer with identity id.

Sign( l,Tid ,P, mpk, LM). The signer with identity id signs the blinded message l as
follows:

(a) Search l in LM, if l 2 LM , output ?; if not, go to step 2.
(b) For id ¼ ðid½1�; � � � ; id½k�Þ 2 f0; 1gk , compute �Aid ¼ ½AjjA2þH1ðvidÞA3jj

C0þ
P

i2½k� ð�1Þid½i�Ci�.
(c) Extract a basis �Tid  ExtBasisð�Aid ;Tid ; sÞ.
(d) Run v0  SamplePreð�Aid ; �Tid ; s0; lÞ to generate v 0, then check if

�Aidv0 ¼ lmod q, and jjv0jj � s0
ffiffiffiffiffiffi
3m
p

. If not, repeat it.
(e) Add l into LM.

Finally, the signer id outputs v 0 as his signature of the blinded message l.

Unblind(P, mpk, v 0, c, t, id). Upon receiving the signature v 0, the user computes
v ¼ tðv0 � cÞ as the signature of message M signed by the signer with id.

Verify (P, mpk, id, M, v). The verifier computes �Aid ¼
½AjjA2þH1ðvidÞA3jjC0þ

P
i2½k� ð�1Þid½i�Ci� and h ¼ H0ðMÞ, and then checks that:

(1). �Aidv ¼ hmod q; (2). jjvjj � s
ffiffiffiffiffiffi
3m
p

. The verifier outputs 1 if both the two condi-
tions are satisfied, else output 0.

Correctness. As n is the security parameter, other parameters in the scheme allow the
algorithms SamplePre and ExtRandBasis to operate correctly. In particular, the PKG
can generate a trapdoor basis for larger dimension lattice K?q ð�AidÞ as it has the trapdoor
basis of K?q ðAÞ. The signer can generate a short random vector for lattice K?q ð�AidÞ with
the trapdoor basis Tid as his secret key. Besides, v0 is the output of algorithm Sam-
plePre, �Aidv0 ¼ lmod q andjjv0jj � s0

ffiffiffiffi
m
p

holds with overwhelming probability. So we
have �Aidv0 ¼ l ¼ t�1hþAidc; t�Aidv0 ¼ hþ tAidc, �Aid tðv0 � cÞ ¼ h, and �Aidv ¼ h:
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On the other hand, we have jjvjj ¼ tjjðv0 � cÞjj � jj~Bjj=2 � 2s0 ffiffiffiffiffiffi
3m
p ¼ s

ffiffiffiffiffiffi
3m
p

. Therefore,
an honestly created signature will be accepted with overwhelming probability.

4 Security Analysis

In this section, we prove that our scheme is unconditionally blind, and one-more
unforgeable under selective identity and chosen message attacks (sID-CMA) in the
standard model.

Theorem 3 (Blindness). Our IBBS scheme is unconditionally blind.

Proof. From Theorem 2, �Aidc is uniformly distributed. As the output of H0 is
approximate uniform, and t is randomly chosen, the blinded message l ¼
ðt�1hþ �AidcÞmod q is indistinguishable from a uniform distribution over Z

n
q. The

signer chooses a random vector over Zn
q and a random integer t\d, and then tries to

recover the hash value of the real message from tl ¼ hþ �Aidc. Next, we show that the
statistical distance of the resulting distribution of the signer is 0 from the uniform
distribution, that is,

Dðtðl� cÞ; hÞ ¼ 1
2

X
h2Zn

q;c12Zm
q ; t12Z; t1\jj~Bjj=2

j Pr½t1ðl��Aidc1Þ ¼ hÞ� � Pr½H0ðMÞ ¼ h�j

¼ 1
2

X
h2Zn

q;c12Zm
q ; t12Z; t1\jj~Bjj=2

½ð1
q
Þn � ð1

q
Þn� ¼ 0

ð1Þ

Therefore, they are indistinguishable, and our scheme is unconditionally blind.

Theorem 4 (One-more unforgeability against sID-CMA). Assume that the
SISm;q;s ffiffiffi

m
p problem is hard, our IBBS scheme is one-more unforgeable against

sID-CMA in the standard model.

Proof. Assume that there is a successful adversary A with the advantage of e breaks
one-more unforgeability of the proposed scheme, we can construct an algorithm B to
solve the instance of the SISm;q;2s

ffiffiffiffiffi
3m
p problem by employing A to be a subroutine.

Suppose that we get an instance of SISn;q;m;s ffiffiffi
m
p ¼ ðÂ; n;m; q; l; sÞ, where Â 2 Z

n�m
q ,

l is the total query number that the adversary can make at most in the interactive game.
Our goal is to find a vector such that Âe ¼ 0mod q and jjejj � s

ffiffiffiffi
m
p

. The adversary
outputs a challenge identity id	 ¼ ðid	½1�; � � � ; id	½k�Þ. Next, we simulate the circum-
stance to interact with A, and solve the given instance using A.
Setup. Assume that we receives the instance Â 2 Z

n�m
q . The system parameters are set

as our scheme, we generate the public key mpk ¼ fA;A2;A3;C0; � � � ;Ckg as follows:
(a) Compute ðA3;TÞ  TrapGenðn;m; qÞ, and then randomly choose R	 2
f�1; 1gm�m.

(b) Set A ¼ Â, and A2 ¼ AR	 � H1ðid	ÞA3.
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(c) Run the trapdoor sampling algorithm to generate a random lattice K?q ðS0Þ with
S0 2 Z

n�m
q and its corresponding trapdoor basis T0 2 Z

m�m
q .

(d) Pick k short random matrices R0;R1; � � � ;Rk 2 Z
m�m. Fix w0 ¼ 1 2 Zq, uni-

formly pick random scalars w1; � � � ;wk 2 Zq.

(e) Set Ridj ¼ R0þ
P

i2½k� ð�1Þidj½i�Ri 2 Z
m�m, widj ¼ 1þ P

i2½k� ð�1Þidj½i�wi 2 Zq.
(f) Send the public key fA;A2;A3;C0; � � � ;Ckg to A, where Ci ¼ ARiþwiS0 for

i ¼ 0; 1; � � � ; k:

B maintains two lists to store the extraction queries and the signing queries.

Extraction queries. For a fresh identity idj 6¼ id	, j 2 ½l�, B first computes
Aidj ¼ ½AjjA2þH1ðvidjÞA3� ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	 Þ�A3�. By construction,
we know that ½H1ðvidjÞ � H1ðvid	 Þ� is non-singular and therefore T is also a trapdoor for
K ?q ð½H1ðvidjÞ � H1ðvid	 Þ�A3Þ. Using the trapdoor basis T, B first generates a random

trapdoor basis Tidj for K
?
q ðAidjÞ, then adds (idj, Tidj ) into list L1, and finally sends it to

A as the response. If A sends an old identity id that has been queried before, B searches
ðidj;TidjÞ in L1, and answers with Tidj .

Signing queries. On inputs a blinded message lj and an identity idj for j 2 ½l�, algo-
rithm B computes �Aidj ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	 Þ�A3jjC0þ

P
i2½k� ð�1Þidj½i�Ci�,

where H1ðvidjÞ 2 Z
n�n
q and answers in two cases:

Case 1. idj 6¼ id	. B searches ðlj; idj; v0jÞ in L2. If it exists, B returns vj0. Otherwise,
using T and the SampleRight algorithm, B first generates the trapdoor Tidj for
Fidj ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	 Þ�A3�, and then computes a random trapdoor �Tidj

for K?q ðFidjÞ. With the trapdoor �Tidjand the SampleLeft algorithm, B generates

v0j  SamplePreð�Aidj ; �Tidj ; lj; sÞas a signature. Finally, B adds ðlj; idj; v0jÞ into L2 and
returns vj0 as his response. A decodes (unblinds) vj0 to obtain the real signature.

Case 2. idj ¼ id	. B searches ðlj; idj; v0jÞ in L2. If it exists, B returns vj0. Otherwise,
using T0 and the SampleRight algorithm, B constructs the matrix F0id	 ¼
½AjjARid	 þwid	S0� and generates a random trapdoor Tid	 for K

?
q ðF0id	 Þ. Then, with the

trapdoor Tid	 and the SampleLeft algorithm, B generates a random trapdoor �Tid	 for
K?q ðFidjÞ, where Fid	 ¼ ½F0id	 jjAR	� ¼ ½AjjARid	 þwid	S0jjAR	� 2 Z

n�3m
q . B obtains a

short random �v0	 2 K?q ðFid	 Þ with jj�v	0lþ 1jj � s
ffiffiffiffiffiffi
3m
p

by using the trapdoor �Tid	and the
SamplePre algorithm. Finally, B changes the order of the corresponding vectors of �v0	
to get a short random trapdoor ~v0	 2 K?q ð~Aid	 Þ for ~Aid	 ¼ ½AjjAR	jjARid	 þwid	S0�. As
C0þ

P
i2½k� ð�1Þidj½i�Ci ¼ Rid þwidS0 and �Aid	 ¼ ½AjjAR	 þ ½H1ðvidjÞ � H1ðvid	Þ�A3jj

C0þ
P

i2½k� ð�1Þidj½i�Ci�, we have �Aid	 ¼ ~Aid	 . So ~v0	 is also a short random vector in

K?q ð�Aid	 Þ such that jj~v	0lþ 1jj � s
ffiffiffiffiffiffi
3m
p

. Finally, B adds ðlj; id	; ~v0	Þ into L2 and sends as

his response. A decodes (unblinds) ~v0	 to obtain the real signature.
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Challenge. After receiving l message-signature pairs, A outputs the l+1-th valid for-
gery (l	lþ 1,id

	,v	0lþ 1), such that �Aid	v	0lþ 1 ¼ l	lþ 1 and jjv	0lþ 1jj � s
ffiffiffiffiffiffi
3m
p

. B checks that
l	lþ 1 6¼ lj for j ¼ 1; � � � ; l, that is, l	lþ 1 of a fresh message. Then, B generates a
signature �v	0 for the blinded message l	lþ 1 as in the signing queries, where �Aid	�v	0 ¼
l	lþ 1 and jj�v	0jj � s

ffiffiffiffiffiffi
3m
p

. If �v	0 ¼ v	0lþ 1, B aborts (with negligible probability). Other-
wise, B operates as follows:

(a) Compute Rid	 ¼ R0þ
P

i2½k� ð�1Þid
	½i�Ri 2 Z

m�m and wid	 ¼ 1þ P
i2½k� ð�1Þid

	½i�

wi 2 Zq.
(b) If wid	 6¼ 0mod q, abort the simulation (with a probability of about 1� 1

q).

(c) Compute e ¼ j�v	0 � v	0lþ 1j, and parse e ¼ ðe1; e2; e3Þt, where e1; e2; e3 2 Z
m.

(d) Return e	 ¼ e1þR	e2þRid	e3 2 Z
m.

We show the success probability of B in solving SISm;n;q;2s
ffiffiffiffiffi
3m
p . From the above

analysis, Rid	 ¼ R0þ
P

i2½k� ð�1Þid
	½i�Ri 2 Z

m�m, and wid	 ¼ 1þ P
i2½k� ð�1Þid

	½i�wi 2
Zq, we have �Aid	 ðjv	0 � v	0lþ 1jÞ ¼ ½AjjAR	jjARid	 þwid	S0�e ¼ 0. If wid	 ¼ 0mod q,
we have ½AjjAR	jjARid	 �ðe1; e2; e3Þt ¼ 0mod q, that is, ½AjjAjjA�ðe1;R	e2;
Rid	e3Þt ¼ 0mod q. By the similar method as in Lemma 26 in [6], it can be obtained
that e	 is a short non-zero vector as a solution to the given SIS instance with high
probability. The probability of an abort in the above simulation is about ð1� 1

qÞ. The
view of A in the game is identical to its view as provided by B. Therefore, B can solve
the SIS problem with probability at least 1

q e.

Table 1. Comparison of the related blind signature schemes

Schemes [11] [12] Sect. 6

Moves number 4 2 2
Signature size O(nlogq) O(nlogq) O(nlogq)
Without failure � ✓ ✓

ID-based � � ✓

Security model ROM ROM SM

Table 2. Bit length of concrete instances

Instances 1 2 3 4 5

n 284 284 284 284 284
q 216 220 224 227 230

m 9088 11360 13632 15336 17040
L 539 603 660 701 738
Secret key 135s 0 151s 0 165s 0 175s 0 185s 0

Public key 4:1k0 � 107 6:5k0 � 107 9:3k0 � 107 1:2k0 � 108 1:5k0 � 108

Signature 165s 0 185s 0 202s 0 214s 0 226s 0
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5 Conclusions

Table 1 lists the comparison with the existing lattice-based schemes [11, 12], in terms
of the interactive move numbers, failures in generating signatures, ID-based system,
and security models. Here, the move number denotes the number of interactive moves
in the issue protocol of the blind signature, without failure means there is no failures
occur in the blind signing procedures. We use “ID-based” to denote if that scheme
meets the requirement of identity-based cryptosystems, and “the security model” is to
show the security model of that scheme, that is, in the random oracle model (ROM) or
standard model (SM).

Many researchers still wonder whether a secure scheme constructed in the random
oracle model keeps their security in practice, because the random oracles are replaced
by hash functions when implemented. The highlight of our construction is that, it is
designed without random oracle, while other schemes are constructed in the random
oracle model.

Moreover, Table 2 shows the bit length of concrete instances of our scheme.
During the experiments, we set m ¼ 2n log q and L ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log q
p

. s 0 is the smooth
parameter that s0[ Lxð ffiffiffiffiffiffiffiffiffiffi

log n
p Þ with L¼8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log q
p

, k 0=k+4 where k denotes the bit
size of the identity. The secret key, public key, and signature sizes are tolerable when
parameters are suitable set.

Comparing with the schemes designed in the random oracle model, the ones
constructed without random oracles are much convincing in security and practical in
engineering. From the above description, our construction has three additional
advantages:

1. Similar to the scheme in [12], our scheme has 2 moves.
2. Our scheme has no failures in generating blind signatures.
3. Only our scheme is applicable to the ID-based system.

We conclude this work with a brief summary. This research studies on IBBS
scheme from lattices. An identity-based blind signature scheme is put forward based on
hard worst case lattice problem, which is considered to be the most promising one
among the post quantum primitives. By the technique introduced in [18], our selec-
tively secure constructions can be converted into adaptively secure ones by using
chameleon hash functions. However, it needs more efforts to research on identity-based
blind signature from lattices. For example, the verification matrix of the scheme in the
standard model is three times of the master public key in dimension, and thus the
signature sizes is increased. More exploration is needed for reducing the signature size
of identity-based blind signature from lattices.
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Abstract. Fully Homomorphic Encryption (FHE) is a cryptographic
primitive that allows computing over encrypted data without decrypt-
ing the corresponding ciphertexts. In general, existing FHE schemes can
be achieved using standard Learning with Errors (LWE) assumption and
most of the schemes are single-bit encryption. Hence, the construction of
multi-bit FHE with high efficiency remains an open problem in cryptog-
raphy. In this paper, we propose multi-bit versions of Public Key Encryp-
tion (PKE) via the dual LWE-based firstly proposed by Gentry, Peikert,
and Vaikuntanathan at STOC 2008. We initially develop an universal
construction derived from a general structure of the underlying combined
public matrix for constructing the multi-bit version which increases the
size of ciphertexts linearly. Then, utilizing multi-bit PKE scheme as build-
ing block, we propose a new multi-bit FHE scheme under the assumption
of decisional LWE is hard and prove the scheme is IND-CPA-secure.

Keywords: Leveled homomorphic encryption · Dual LWE-based ·
First-is-errorless LWE · Multi-bit encryption

1 Introduction

The recent development of cloud computing allows users to outsource their data
to cloud services. However, cloud computing raises new challenges with respect to
the protection of user privacy. Fully Homomorphic Encryption (hereafter FHE)
is one way to solve the problem. With homomorphic encryption, users send their
data in encrypted form to the cloud, and the cloud still can perform computations
on encrypted data. Since all data in the cloud can be stored in encrypted form,
the confidentiality of user’s data is preserved irrespective of any actions in the
cloud. Owing to this attractive property, homomorphic encryption would give
a powerful tool to break several barriers to the adoption of cloud services for
security-critical usage.
c© Springer International Publishing AG 2017
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Actually, FHE is a public key encryption scheme supporting algebraic opera-
tions on encrypted data. Specially, FHE is a secure homomorphic mapping from
plaintext space to ciphertext space, allowing us to evaluate directly any function
over encrypted data by only using public information, and such that the output
is a ciphertext of the equivalent function over the corresponding plaintexts.

The idea of homomorphic encryption can be traced back to 1978 by Rivest
et al. [28]. It provides a construction of a cryptosystem such that an entity can
carry out computations on encrypted data without decryption. However, the
construction of FHE schemes remained an open problem in cryptography, until
the breakthrough work by Gentry [12] in 2009. Since then, many candidate FHE
schemes have been proposed following the Gentry’s blueprint [5,7,8,20,23].

Up to now, there are two main computational problems that serve as security
foundations of current fully homomorphic encryption schemes: Regev’s Learning
with Errors problem (LWE) over lattices and Howgrave-Graham’s Approximate
Greatest Common Divisor problem (AGCD) over the integers. However, most
of constructions focus on single-bit encryption only. Once we have a single-bit
encryption, then we can follow a straightforward composition to obtain a multi-
bit FHE scheme. However, this straightforward construction for multi-bit FHE
will not lead to better performance. Recently [4,9,15,24,29], many interesting
new methods were proposed to construct multi-bit FHE schemes over the integers
or over lattices, making FHE more efficient.

For multi-bit variants over the integers, we remark that Nuida and
Kurosawa [24] suggested a scheme supporting homomorphic operations over vec-
tors of plaintexts. Nuida and Kurosawa’s scheme follows essentially the same
ideas proposed by Cheon et al. [9], the only difference is that Cheon et al. gave
a construction of batch FHE over the integers with message space restricted
to Z2. Indeed, Smart and Vercauteren’s work [29] was the first to describe how
to achieve SIMD-like homomorphic operations for multi-bit variants, but the
underlying lattice assumption was not the LWE problem, and since LWE-based
constructions in general offer better performance, it would be interesting to
have LWE-based schemes allowing SIMD-like operations. Brakerski, Gentry, and
Halevi [4] used the method presented in [26], describing a way to extend packed
Regev’s encryption [27] to obtain FHE schemes [5,7,8]. In order to compute the
key-switching procedure, using the encrypted secret key as input to reduce the
dimension of fresh ciphertexts, Brakerski [3] utilized the tensoring technique.
Hiromasa, Abe and Okamoto [15] proposed to pack multiple messages into a
single ciphertext assuming an additional assumption, for instance, the circular
security assumption. Their scheme is based on the Alperin-Sheriff and Peik-
ert’s [2] works, which encode messages into matrices, obtaining an optimized
bootstrapping algorithm for any LWE-based FHE scheme.

Actually, all of these single-bit FHE schemes based on the hardness of LWE
assumption have not satisfactory performance. Thus, in order to simultaneously
encrypt t bits, we have that composing single-bit schemes is not a good strategy.
This undesirable situation raises the question:
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Can we construct a Dual.LWE-based FHE scheme with one-time multi-bit
encryption procedure?

The state-of-the-art of homomorphic encryption construction, considering
the asymptotic cost of the subjacent algorithms, is the LWE-based proposal by
Gentry, Sahai, and Waters [14] (hereafter called GSW). Hence, in this paper we
focus our attention on the GSW scheme, since it can achieve leveled homomorphic
encryption without any key switching. However, regarding multi-bit encryption,
a heavy computational cost would be required to evaluate a large number of
ciphertexts. To overcome this issue, we propose a new composition for public
key A, i.e. combining any number LWE distributions into a single public key
matrix. Next we will sketch our main contribution.

1.1 Our Contributions and Techniques

The aim of this paper is to give a practical solution for multi-bit Dual.LWE-based
cryptography and homomorphic encryption rather than by using a straightfor-
ward composition to obtain a multi-bit scheme. Before describing our contribu-
tions and results, we first briefly review some original motivation.

Regev originally constructed the so-called Primal.LWE-based PKE at
STOC2005 [27] and Gentry, Peikert, and Vaikuntanathan constructed the
Dual.LWE-based PKE at STOC2008 [13]. Our first observation is that FHE
schemes are built in general over the perspective of Primal.LWE and the only FHE
scheme based on Dual.LWE is the one proposed by Brakerski [3]. The main reason
is that Dual.LWE-based encryption has larger parameters under the hardness of
decisional LWE assumption. However, we observe that one can simultaneously
encrypt polynomially-many bits using the LWE-based PKE without making the
underlying assumption stronger [26], while simultaneously encrypting t bits in
our scheme is still based on assumption of [26]. Hence, in order to solve the prob-
lem, the instantiations in the papers describing all the Dual.LWE-based public
key and homomorphic encryption schemes cited above use Regev’s proposal [13]
as a building block.

Unlike the majority of previous works, we construct the public matrix A as a
combination of many secret keys, each one protected by the LWE problem. The
main ideas behind our method to compute the public matrix is described now.
We define and construct the structure of the public matrix as follows:

A = [Ā | u − Āē1 | · · · | u − Āēt] ∈ Z
n×m
q

and construct t secret keys ẽi = (1, e)T = (1 | ēi | Ii)T , i ∈ [t] where the vector
Ii in i-th position has value 1 and in other positions has value 0. Therefore, we
can easily find integer matrices A modulo some small q = poly(n), and evaluate
simple linear (surjective) functions like u = fA(ei) = A · ei (mod q) on short
integer vectors ēi [22]. Utilizing the combined public matrix A, containing t
secret keys (t bit each), we can construct multi-bit PKE and FHE scheme. Then,
we will be able to give a detailed description in next sections.
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1.2 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we formally define
the LWE problem, Ferr.LWE assumption and present notation that will be used
throughout the paper. In Sect. 3 we describe our multi-bit encryption scheme.
In Sect. 4 we show a multi-bit variant of the FHE scheme. Finally, we conclude
in Sect. 5.

2 Preliminaries

In this section we introduce some notation and recall the Learning with Errors
problem for both the search and decision variants. Finally, we give a formal
definition and present the decisional version in detail.

2.1 Notation

For a natural number n ∈ N, [n] denotes the set {1, · · · , n}. For a real number
x ∈ R, we let �x� denote the largest integer not greater than x, and �x� = �x+ 1

2�
denote the integer closest to x, with ties broken upward. We use bold lower-
case letters like x to denote column vectors, while for row vectors we use the
transpose xT . We use bold upper-case letters like A to denote matrices, and
sometimes identify a matrix with its ordered set of column vectors. We denote
the horizontal concatenation of vectors and/or matrices using a vertical bar, e.g.,
[A | Ax].

We will be using norms in many of the inequalities in this work. For that
reason, we will give two well known norms and inequalities related to norms
that we will be using in the following sections. lp-norm is: For every vec-
tor v = (v1, · · · , vn) and p ≥ 1, ||v||p = p

√∑n
i=1 |vi|p, l∞ norm is given by

||v||∞ = max{|v1|, · · · , |vn|}, l1 norm is given by ||v||1 =
∑n

i=1 |vi| and Euclid-
ean norm defined as ||v||2 =

√∑n
i=1 |vi|2. For the matrix norm, we adopt the

[13] definition. For matrix A ∈ Z
k×m, its i-th column vector is denoted ai. Let Ã

be the result of applying Gram-Schmidt (GS) orthogonalization to the columns
of A. ||A|| denotes the l2 norm of the longest column of A. The length of a
matrix is the norm of its longest column: ||A|| = maxi||ai||, and, for notational
convenience, we sometimes view a matrix as simply the set of its column vectors.
Before we describe the GSW encryption, we state a useful fact from [22] which
we heavily rely on in the construction.

Lemma 1 ([22,23] Lemma 2.1). For any m ≥ n�log q� there exists a fixed effi-
ciently computable matrix G ∈ Z

n×m
q and an efficiently computable deterministic

“short preimage” function G−1(·) satisfying the following. On input a matrix
M ∈ Z

n×m′
q for any m′. The inverse function G−1(M) outputs a bit matrix

G−1(M) ∈ {0, 1}m×m′
such that GG−1(M) = M.
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2.2 Discrete Gaussian

Many works [25,27] on lattice-based cryptography rely on Gaussian-like prob-
ability distributions. In our constructions, it is very convenient to analyze the
behavior of error elements using the standard notion of Gaussian random vari-
ables. Here we recall the relevant definitions.

Definition 1 ([1] Definition 7). Let L be a subset of Zm. For a vector c ∈ R
m

and a positive parameter σ ∈ R, we define

ρσ,c(x) = exp

(
−π · ||x − c||2

σ2

)
and ρσ,c(L) =

∑
x∈L

ρσ,c(x).

The discrete Gaussian distribution over L with center c and parameter σ,
∀y ∈ L, is given by

DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

.

Lemma 2 ([13] Lemma 2.9). For any n-dimensional lattice Λ, c ∈ span(Λ),
real ε ∈ (0, 1), and gaussian parameter r ≥ ηε(Λ):

Pr
x←DΛ,r,c

[
||x − c|| > r · √n

]
≤ 1 + ε

1 − ε
· 2−n

The final fact we need for certain applications is an upper bound on the probability
of the mode (the most likely element) of a discrete Gaussian; equivalently, it is
a lower bound on the min-entropy of the distribution.

Definition 2 ([7] Definition 2.1, B-bounded distributions). A distribution
ensemble {χn}n∈N, supported over the integers, is called B-bounded if:

Pr
x←χn

[|x| ≥ B] ≤ 2−Ω̃(n).

For a distribution ensemble χ = χ(λ) over the integers, and integers bounded
B = B(λ), we say that χ is B-bounded if Prx←χ(λ)[|x| ≤ B(λ)] ≤ 2−Ω̃(λ).

Throughout the paper, we use B instead of concrete size of some bounds and
omit further details. The reader can find more details in [21] Lemma 4.4 (2).

Lemma 3 ([1] Lemma 12). Let vector x be some vector in Z
m and draw e from

Gaussian distribution DZm,r. Then the quantity | xT · e | when treated as an
integer in [0, · · · , q − 1] satisfies

| xT · e |≤ ||x||rω(
√

log m) + ||x||√m/2

with all but negligible probability in m. Where r is gaussian parameter and defined
in Lemma 2.

We use the following variant of the leftover hash lemma [16].
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Lemma 4 (Matrix-vector Leftover Hash Lemma [7] Lemma 2.1). Let λ ∈ Z,
n ∈ N, q ∈ N, and m ≥ n log q + 2λ. Let A R← Z

m×n
q be a uniformly random

matrix, let r R← {0, 1}m and y R← Z
n
q , then:

Δ
(
(A,AT · r), (A,y)

) ≤ 2−λ (1)

where Δ(A,B) denotes the statistical distance between the distributions A
and B.

2.3 Learning with Errors

We survey the main foundational works that directly underlie most modern
lattice-based cryptographic schemes. Here we shortly describe LWE, its hardness,
and the LWE-based cryptosystem in some detail.

Definition 3 (Learning with errors distribution). For a vector s ∈ Z
n
q called

the secret, the LWE distribution As,χ over Z
n
q × Zq is sampled by choosing a ∈

Zq uniformly at random, choosing e ← χ, and outputting
(
a, b = 〈s,a〉 + e

(mod q)
)
.1

There are two main versions of the LWE problem: (i) the search version, which
is to find the secret given LWE samples, and (ii) the decision version, which is
to distinguish between LWE samples and uniformly random ones.

Definition 4 (Seacrh.LWEn,q,χ,m). Given m independent samples (ai, bi) ∈
Z

n
q ×Zq drawn from As,χ for an uniformly random s ∈ Z

n
q , fixed for all samples,

find s.

Definition 5 (Decision.LWEn,q,χ,m). Given m independent samples (ai, bi) ∈
Z

n
q × Zq, where every sample is distributed according to either: (1) As,χ for an

uniformly random s ∈ Z
n
q , fixed for all samples, or (2) the uniform distribution,

then distinguish with non-negligible advantage which is the case.

Without the error elements from χ, both problems are easy to solve, because
we would be able to efficiently recover s from LWE samples by Gaussian elimi-
nation (in the uniform case of Decision.LWE, with high probability no solution s
will exist).

Corollary 1 ([13] Corollary 5.4). Let n and q be positive integers with q prime,
and let m ≥ 2nlg q. Then for all but a 2qn fraction of all A ∈ Z

n×m
q and

for any r ≥ ω(
√

log m), the distribution of the syndrome u = A · e (mod q) is
statistically close to uniform over Z

n
q , where e ← DZm,r.

1 It is worth mentioning that LWE is a generalization of “learning parities with noise”
(LPN) which is the special case where q = 2 and χ is a Bernoulli distribution over
{0, 1}.
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2.4 First-Is-Errorless LWE

In this subsection, we show that the First-is-errorless LWE (hereafter Ferr.LWE)
problem [6] is also hard in the case where we assume the error elements of
Ferr.LWE problem follows a binary distribution {0, 1}∗. We remark that the
Ferr.LWE problem originally appeared in [6] and next definitions are based on
the original work.

Definition 6 ([6] Definition 4.2). Consider a prime q ≥ 1, positive integers
n,m, an error distribution χ over Z and a PPT algorithm A. The Ferr variant
of the LWE problem is to distinguish between the following two scenarios:

– firstly, the sample is uniform over Z
n
q × Zq and the rest are uniform over

Z
n
q × Z;

– secondly, there is an unknown uniformly distributed s ∈ {0, · · · , q − 1}n, the
first sample we get is from As,{0}, where {0} denotes the distribution that is
deterministically zero, and the remaining are from As,χ.

Lemma 5 ([6] Lemma 4.3). For any n ≥ 2, m, q ≥ 1, and error distribu-
tion χ, there is an efficient reduction from LWEn−1,m,q,χ to the Ferr variant of
LWEn,m,q,χ that reduces the advantage by at most

∑
p p−n, with the sum going

over all prime factors of q.

As the name indicates, the first equation in the Ferr.LWE sample is given
without error. Namely, Ferr.LWEn,m,χ is defined analogously to LWEn,m,χ except
for the fact that the error x is sampled from {0} × χm instead of χm+1, which
captures the first-is-errorless notion. From [6], a tight efficient reduction from
LWE to Ferr.LWE is known. This in return gives us an average to worst case
reduction of the Ferr.LWE problem to a certain hard lattice problem.

2.5 Dual.LWE-Based Encryption (Dual-Regev Encryption)

Gentry, Peikert and Vaikuntanathan [13] have presented a “Dual” LWE-based
encryption scheme at STOC2008, the main difference with Regev’s scheme is that
the roles of the key generation and the encryption procedure are reversed. Inter-
estingly, Dual.LWE-based PKE’s ciphertext takes the same form as in Regev’s
scheme (namely, (a, b = 〈a, s〉 + 2e + m), albeit with higher dimensional vectors
and different distribution of a, e) [7]. Unfortunately, Dual.LWE-based scheme
with slightly longer parameters, but with an interesting property—there is non
noise element in public key. Hence, in our paper, we will use the property to
construct a combination public key A.

2.6 Leveled Fully Homomorphic Encryption

In a public-key encryption, the encrypter holds a public key and encrypts a mes-
sage such that the holder of the corresponding secret key is able to reconstruct
the original plaintext message.



228 Z. Li et al.

Definition 7. Fix a function L = L(λ). An L-homomorphic encryption scheme
HE for a class of circuits {Cλ}λ∈N consists of four polynomial-time algorithms
{KeyGen, Enc, Dec, Eval} such that:

– key generation algorithm KeyGen is a randomized algorithm that takes the
security parameter 1λ as input and outputs a public key pk and secret key sk;

– encryption algorithm Enc is a randomized algorithm that takes a public key pk
and a message m ∈ {0, 1}∗ as input, and outputs a ciphertext c;

– decryption algorithm Dec is a deterministic algorithm that takes the secret key
sk and a ciphertext c as input, and outputs a message m ∈ {0, 1}∗;

– homomorphic evaluation algorithm Eval takes as input a public key pk, a circuit
C ∈ Cλ, and a list of ciphertexts c1, · · · , c�, where � is polynomial over λ, and
it outputs a ciphertext c�.

The following correctness properties are required to hold:

– for any λ, m ∈ {0, 1}∗, and (pk, sk) output by KeyGen(1λ), we have that

m = Dec(sk, (Enc(pk,m)));

– for any λ, any m1, · · · ,ml ∈ {0, 1}∗, and C ∈ Cλ, we have that

C(m1, · · · ,m�) = Dec(sk, (Eval(pk, (C,Enc(pk,m1), · · · ,Enc(pk,m�))))).

We use the standard notion of security against chosen-plaintext attacks, also
called CPA adversaries.

Definition 8. A homomorphic encryption scheme is IND-CPA-secure if we
have that for any polynomial-time adversary A the following is negligible in λ:

|Pr[A(pk,Enc(pk,m0)) = 1] − Pr[A(pk,Enc(pk,m1)) = 1]|,
where (pk, sk) ← KeyGen(1λ) and m0,m1 are arbitrarily chosen from the plain-
text space by the adversary.

The security definition for multi-bit MBGSW is the same as that for single-
bit GSW. Since in the public key setting, security for encryption of a single
message implies security for encryption of multiple message. More details see
[17] Chap. 11.

Definition 9 (Compactness)([18] Definition 3). An L-homomorphic encryption
for a class of circuits {Ck}k∈N is compact if there exists a polynomial α = α(λ)
such that ciphertexts output by Eval have length at most α. (For this to be non-
trivial it should be the case that, for all λ, we have α(λ) ≤ |C| for some C ∈
{C}λ).

3 Multi-bit PKE Scheme

In this section we develop multi-bit public key encryption schemes based on Dual
Regev scheme. Most notably, in order to conveniently analyze the magnitude of
noise, we introduce Ferr.LWE assumption for the multi-bit PKE scheme.
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3.1 Our Construction

We now describe our MBGPV construction and its properties. Roughly, it is a
multi-bit PKE scheme via Dual.LWE-based under the hardness of LWE assump-
tion. Given the security parameter λ, we sample random vector by Ferr.LWE
distribution and set t ∈ N be the number of bits we want to encrypt, and it
corresponds the number of secret keys.

– params ← MBGPV.Setup(1λ):
We receives as input the security parameter λ and we compute a positive
integer n = n(λ) and q ≥ 2. Afterwards, we choose secondary parameters
m̄ = n · log q + 2λ, r ≥ 2

√
n and t ≥ 1 and m = m̄ + t.

– (pk, sk) ← MBGPV.KeyGen(params):
– sk ← MBGPV.SecretKeyGen(params):

For 1 ≤ i ≤ t, we randomly sample vector ēi
R← DZm̄

q ,r rather than

e R← DZm
q ,r, then we set ei = [ēim̄×1 | It×1]T ∈ Z

m×1
q , where we have that

It×1 = [0, · · · , 1m̄+i, · · · , 0], i.e. the matrix whose (m̄ + i)-th value is 1
and other values are 0. The secret matrix is given by

[e1, · · · , et] =
[ (

ē1
I1

)
, · · · ,

(
ēt

It

)]

and output t secret keys ẽi = (1, ei)T ∈ Z
(m+1)×1
q , where i = 1, 2, · · · , t.

– pk ← MBGPV.PublicKeyGen(params, sk):
First, choose random matrix Ā ∈ Z

n×m̄
q rather than A ← Z

n×m
q . Then

generate matrix A such that A = [Ā | (u − Ā · ē1) | · · · | (u − Ā · ēt)],
where u sample from Z

n×1
q and u = A · ei. Finally, output pk = P = [u |

−A] ∈ Z
n×(m+1)
q , where the size of pk is O(n · log2 q). We remark that

P · ẽi = [u | −A] · [1, ei]T = 0.
– c ← MBGPV.Enc(params, pk,m):

1. set m =
(
0 | 0, · · · , 0︸ ︷︷ ︸

m̄

| m1, · · · ,mt︸ ︷︷ ︸
t

) ∈ Z
1×(m+1)
q , mi ∈ {0, 1}, then choose

s ← Z
n×1
q ;

2. sample xT = (x0 | x′) = (x0 | x1, · · · , xm̄︸ ︷︷ ︸
m̄

| xm̄+1, · · · , xm︸ ︷︷ ︸
t

) = (x ←

{0},xT
1 ← χ1×m̄,xT

2 ← χ1×t) ∈ DZ1×(m+1) ;
3. compute c = PT ·s+�q

2
� ·m+x ∈ Z

(m+1)×1
q , where the size of ciphertext

is O((m + 1) log2 q).
– m

′
i ← MBGPV.bitDec(params, ski, c): We defined the bitDec(·) algorithm as

the single-bit decryption algorithm. This program works as follows:
1. firstly, let sk1, sk2, · · · , skt = (1, e1)T , (1, e2)T , · · · , (1, et)T and in order

to decrypt the i-th bit of the ciphertext, it is convenient to choose the
i-th secret key ẽi = (1, ei)T ;
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2. then, compute and output

〈c, ẽi〉 = 〈PT · s + �q

2
� · m + x, ẽi〉 = �q

2
� · mi + small (mod q).

Considering that the single-bit decryption algorithm works as described
above, we can get all of bits by the single-bit decryption algorithm with dif-
ferent secret keys. We now present the multi-bit decryption algorithm.

– m
′ ← MBGPV.Dec(params, (sk1, · · · , skt), c):
1. firstly, suppose the user with secret key matrix S = (sk1, · · · , skt) as fol-

lows:

S = (ẽ1, · · · , ẽt) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
ē1 · · · ē1
...

. . .
...

ēm̄ · · · ēm̄

1 · · · 0
...

. . .
...

0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ {0, 1}(m+1)×t;

2. then compute and output

〈c,S〉 = 〈PT · s + �q

2
� · m + x,S〉 = �q

2
� · mT · S + xT · S

= �q

2
� · m + t · small (mod q).

Most notably, using single-bit decryption algorithm, we can decrypt the
ciphertext bit-by-bit. i.e. repeating t times this step, we can get the message
m. However, we also can get the message m by one-time decryption. The only
difference is that we need a secret key matrix S as input instead of i-th secret key
ski. We have that the magnitude of multi-bit noise grows linearly with respect
to t.

3.2 Correctness Analysis of MBGPV Scheme

We analyze the noise magnitude along the execution of encryption and decryp-
tion algorithms. We start with a lemma regarding the noise magnitude of prop-
erly encrypted ciphertexts.

Lemma 6 (Correctness). Suppose that the following conditions are valid: r =
B ≥ ω(

√
log n) · √

n (refer to [3,21]) and m̄ ≥ n log q + 2λ. Thus an E-noisy
ciphertext, corresponding to some message m ∈ {0, 1}∗ under secret key sk is
given by the vector c = PT · s + �q

2
� · m + x (mod q) ∈ Z

(m+1)×1
q , and for

single-bit decryption with ski = ẽi ∈ Z
(m+1)×1
q , we have that

cT · ẽi = �q

2
� · mi + x0 + x′T · ei = �q

2
� · mi + small (mod q),

with |small| < E ≤ �q/2�/2.
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For multi-bit decryption with sk = S ∈ Z
(m+1)×t
q , we have that

cT · S = �q

2
� · m + xT · S = �q

2
� · m + t · small (mod q),

with |t · small| < t · E ≤ �q/2�/2. Therefore, we conclude that mi ←
MBGPV.Dec(sk,m).

Proof. For single-bit decryption, for x ← {0}×χm and ∀xi ← χ, i �= 1, |xi| ≤ B
(where B � q is a bound on the values of χ), x′ ← χm. By definition, we get

〈c, ẽi〉 = sT · P · ẽi + �q

2
� · m · ẽi + x0 + x′T · e︸ ︷︷ ︸

small

(by Lemma 3),

= 0 + �q

2
� · mi + x0 + x1 · ēi + xi︸ ︷︷ ︸

small

,

= 0 + �q

2
� · mi + xi + x1 · ēi︸ ︷︷ ︸

small

= �q

2
� · mi + small (mod q),

with ||small|| ≤ ||x|| + ||x′T · e|| = ||x|| + ||xT
1 · ē|| ≤ E, the norm of the error

elements x′T · e is bounded by Bχ · r · ω(
√

log m̄) + Bχ

√
m̄/2, i.e. ||B + Bχ ·

rω(
√

log m̄) + Bχ

√
m̄/2|| < E. For the sake of simplicity we denote the norm of

error elements by E.
Similarly, for multi-bit decryption algorithm, we can easily get 〈c,S〉 = �q

2
� ·

m + t · small (mod q) with ||t · small|| ≤ t · E. ��

3.3 Security Analysis of MBGPV Scheme

The following theorem formalizes the core result used to show MBGPV’s security.

Theorem 1. Let m ≥ n log q + 2λ, n ∈ N, let q ∈ N and let χ be a discrete
Gaussian distribution on Z such that the LWEn,q,χ,m problem is hard. Let t be
an integer such that t = O(log n). Then we define two distribution X and Y as
follows.

– X is the distribution on n × m matrices

X = A = [Ā | b1 | · · · | bt] = [Ā | u − Āē1 | · · · | u − Āēt],

where Ā ∈ Z
n×m̄
q is chosen uniformly at random and where, for all i ≤ i ≤ t,

there exists bi = u−Āēi (mod q) ∈ Z
n×1
q , where ēi is sampled from a discrete

Gaussian distribution χm̄×1;
– Y is the uniform distribution on Z

n×1
q .

Then we have that distributions X and Y are computationally indistinguishable.
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Proof. Suppose there exists a probability polynomial-time distinguisher D which
can distinguish X from Y with non-negligible advantage ε. For 1 ≤ i ≤ t + 1 we
introduce intermediate distribution Xi given by [Ā | b′

1 | · · · | b′
i−1 | bi | · · · | bt],

where bi is as above and b′
i is uniformly sampled from Z

n×1
q . Hence X1 = X

and Xt+1 = Y.
Since D can distinguish X1 from Xt+1 with noticeable advantage ε, by a

standard hybrid argument, there is some i such that D can distinguish Xi from
Xi+1 with some noticeable advantage at least ε/t.

It is straightforward that D gives an LWE distinguisher. Namely, given
an LWE challenge (Ā,y) one samples b′

1, · · · ,b′
i−1 uniformly and samples

bi+1, · · · ,bt as specified above (such that they are sampled from an LWE
distribution, for different choices of the secret vector) and then calls D on
[Ā | b′

1 | · · · | b′
i−1 | y | bi+1 | bt]. The theorem follows from the fact that,

by assumption, no such distinguisher exists. ��
Next, we show the scheme is IND-CPA secure based on the LWE assumption

by using Theorem 1 to show that the scheme is indistinguishable from the original
GPV08 scheme [13].

Theorem 2. Let params = (n, q, χ,m, t) be such that the LWEn,q,χ,m assump-
tion holds and m = O(n log q). Then the MBGPV scheme is IND-CPA-secure.

Proof. Below we present a sketch of the proof:

– firstly, we apply Theorem 1 to show that, under LWE assumption, the matrix
A′ = [Ā | b1 | · · · | bt] ∈ Z

n×m
q is computationally indistinguishable from a

randomly chosen matrix;
– secondly, we show that c is computationally indistinguishable from uniform.

This concludes the proof of the theorem. ��

4 Multi-bit GSW13 Scheme

In this section we present our main contribution, we also use MBGPV as the
building block to construct our variant of GSW FHE scheme. First we need to
recall some terminology and tools from previous work [3,5,10].

4.1 Basic Tools

Fix q,m ∈ N. Let lq = �log q� + 1 and N = (m + 1) · lq.

Definition 10. The algorithm PowerOf2 takes an m-dimensional vector v ∈ Z
m
q

and outputs an N -dimensional vector in Z
N
q , in more detail

(
v1, 2v1, · · · , 2lq−1v1, · · · , vm, 2vm, · · · , 2lq−1vm

)
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Definition 11. The algorithm BitDecomp takes as input a vector v ∈ Z
m
q and

outputs an N -dimensional vector (v1,0, · · · , v1,lq−1, · · · , vm,0, · · · , vm,lq−1) where
vi,j is the j-th bit in vi’s binary representation (ordered from least significant to
most significant.) In other words,

vi =
lq−1∑
j=0

2jvi,j .

Definition 12. The algorithm BitDecomp−1 takes as input an N -dimensional
vector v = (v1,0, · · · , v1,lq−1, · · · , vm,0, · · · , vm,lq−1), and outputs the m-
dimensional vector (

∑lq−1
j=0 2j · v1,j , · · · ,

∑lq−1
j=0 2j · vm,j). Note that the input

vectors v need not be binary, the algorithm is well-defined for any input vec-
tor in Z

N .

Definition 13. The algorithm Flatten takes an N -dimensional vector v ∈ Z
N
q

and outputs an N -dimensional binary vector (i.e. an N -dimensional vector with
0/1 coefficients). It is defined by Flatten(v) = BitDecomp(BitDecomp−1(v)).

The following straightforward facts are given in [14].

Proposition 1. Let a,b ∈ Z
m
q be m-dimensional vectors, and let a′ ∈ Z

N
q be

an N -dimensional vector, then 〈BitDecomp(a),PowerOf2(b)〉 = 〈a,b〉 and

〈a′,PowerOf2(b)〉 = 〈BitDecomp−1(a′),b〉 = 〈Flatten(a′),PowerOf2(b)〉.

4.2 Our Construction

Now we describe the details. Let q = q(λ) be an integer function and let χ = χ(λ)
be a distribution ensemble over Z. The various-GSW scheme is defined similarly
to the cryptosystems proposed in [2,11,23] and is described as follows.

– params ← MBGSW.Setup(1λ, 1L):
1. identical to MBGPV.Setup(·) algorithm. Specially, choose the modulus

q = q(λ), the lattice dimension parameter n = n(λ,L), and the error
distribution χ = χ(λ,L), appropriately chosen in order to achieve at
least 2λ security against known LWE attacks. Finally, choose parameter
m̄ ≥ n log q +2λ such that m = m(λ,L, t) = n log q +2λ+ t ≈ O(n log q);

2. let l = �log q� + 1 and N = (m + 1) · l and output params = (n, q, χ,m).
– (pk, sk) ← MBGSW.KeyGen(params):

–sk ← MBGSW.SecretKeyGen(params):
identical to sk ← MBGPV.SecretKeyGen(params), and output ski := ẽi =
(1, ei) ∈ Z

1×(m+1)
q , where ei = (ē | 0, · · · , 1, · · · , 0) ∈ Z

1×m
q , i.e. i-th

position is 1. Here it is important to remark that v = PowerOf2(ẽ);
–pk ← MBGSW.PublicKeyGen(sk):

identical to pk ← MBGPV.PublicKeyGen(s), and output pk = P = [u |
−A] ∈ Z

n×(m+1)
q , where the size of pk is O(nm · log q). Finally, we observe

that P · ēi = [u | −A] · (1, ei)
T = 0).
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– C ← MBGSW.Enc(params, pk,M):
1. sample a uniform matrix R ← {0, 1}n×N , (R′ ← {0, 1}n×(m+1)) and sam-

ple X =
(

x0 ← {0}1×N

X1 ← χm×N

)
∈ Z

(m+1)×N
q . In order to encrypt t messages

mi ∈ {0, 1}, compute

M =
(
E(m̄+1)×(m̄+1) 0(m̄+1)×t

0t×(m̄+1) M′
t×t

)
∈ {0, 1}(m+1)×(m+1),

where matrix M′ ∈ {0, 1}t×t and E is identity matrix. It is interesting
to note that the Dec(·) algorithm also can operate any length message
when M′ = diag(m1, · · · ,mt) is a diagonal matrix, such that all diagonal
positions are non-zero.

2. compute and write C = M ·G+PT ·R+X (mod q) ∈ Z
(m+1)×N
q , since

we have that

C = Flatten(M · I + BitDecomp(PTR′ + X)),
= BitDecomp(BitDecomp−1(M · I) + PT · R′ + X),
= BitDecomp(M · G + PT · R′ + X) (mod q),

where Im+1 denotes the (m + 1)-dimensional identity matrix and thus

gT = [20, 21, · · · , 2l−1] ∈ Z
l
q, l = �log q� = �log q� + 1,

where G = BitDecomp−1(Im+1) = (gT ⊗ Im+1) ∈ Z
(m+1)×N
q ,m ≥

n�log q�, namely m = O(n(log q)).
– m′

i ← MBGSW.bitDec(params, ski,C):
1. suppose we want to decrypt i-th bit, thus we let ski = ẽi ∈ Z

(m+1)×1
q ,

and then we define a vector w ∈ Z
1×(m+1)
q such that

wT = [0, · · · , 0︸ ︷︷ ︸
m̄+1

| �q/2�, · · · , �q/2�︸ ︷︷ ︸
t

];

2. compute

ẽT
i · C = ẽT

i · PT · R︸ ︷︷ ︸
equals 0

+ ẽT
i · X︸ ︷︷ ︸
error

+ẽT
i · M · G = error + ẽT

i · M · G

and vi = ẽT
i · C · G−1(wT );

3. finally, output the decryption message m′
i =

∣∣∣⌊ vi

q/2
⌉∣∣∣, where �·� denotes

the operation of rounding to the nearest integer. Hence, by construction
we have that the output belongs to {0, 1}.

Considering that the single-bit decryption algorithm of MBGSW scheme works
as described above, we can get each bit of the message using the single-bit
decryption algorithm with the appropriate secret keys. We now present the
multi-bit decryption algorithm of MBGSW scheme, which allows recovering all
the bits of the message simultaneously.
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–m′ ← MBGSW.Dec(params, sk,C):
1. define a vector w ∈ Z

1×(m+1)
q such that wT = [0, · · · , 0︸ ︷︷ ︸

m̄+1

|

�q/2�, · · · , �q/2�︸ ︷︷ ︸
t

] and input a secret key matrix S ∈ Z
(m+1)×t
q ;

2. compute

ST · C = ST · PT · R︸ ︷︷ ︸
equals 0

+ST · X︸ ︷︷ ︸
error

+ST · M · G = error + ST · M · G

and vi = ST · C · G−1(wT );
3. output the decryption message m′ =

∣∣∣⌊ vi

q/2

⌉∣∣∣.
Normally, we can choose different secret keys ski to decrypt the ciphertext c
bit-by-bit and get the i-th bit message corresponding to i-th secret key. But
actually we can use secret key matrix S to recover the message using the one-
time decryption algorithm described above. We compute vi = ST ·C·G−1(wT )
in order to get the result as follows:

vi = ST · C · G−1(wT ) = �q

2
� ·

⎛
⎜⎝

m1

...
mt

⎞
⎟⎠ +

⎛
⎜⎝

error1
...

errort

⎞
⎟⎠ · G−1(wT );

It is straightforward to compute the magnitude of noise and verify that it
grows linearly when compared to the single-bit decryption algorithm. Next,
we will show the analysis in detail in Subsect. 4.3.

– MBGSW.Eval(params,C1, · · · ,Cl):
– MBGSW.Add(C1,C2): output

C1 + C2 = (M1 + M2)G + PT(R1 + R2) + (X1 + X2) ∈ Z
(m+1)×N
q ;

– MBGSW.Mult(C1,C2): output the matrix product, because C2 = μ2 ·G+
PT · R2 + X2, then we have that

C1G−1(C2) =
(
M1 · G + PT · R1 + X1

) · G−1(C2)

= M1 · M2 · G + PT · (
R1G−1(C2) + M1R2

)

+
(
X1G−1(C2) + M1X2

)
︸ ︷︷ ︸

smallmult

∈ Z
(m+1)×N
q (2)

This also allows us to compute a homomorphic NAND gate by outputting
G − C1G−1(C2).
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4.3 Homomorphic Operations Analysis

Below we will analyze the scheme’s correctness and homomorphic operations.

Definition 14. We say that a ciphertext C that is designed to encrypt M′ ∈
Z

t×t
q , under t different secret keys ẽi, for i ∈ [t], it has error vector error ∈

Z
1×N
q , if ẽi

T ·C− ẽT
i ·M ·G = ẽT

i ·PT ·R+ ẽT
i ·X = error (mod q). Obviously,

for secret key matrix S = [ẽ1, · · · , ẽt] ∈ Z
(m+1)×t
q , it has error vector Error =

(error1, · · · , errort)T ∈ Z
t×N , if ST ·C−ST ·M·G = ST ·PT ·R+ST ·X = Error

(mod q).

In order to analyze correctness it is convenient to define the following notion
of noisy ciphertexts.

Definition 15. If there exists X =
(
x0 ← {0}1×N

X′ ← χm×N

)
∈ Z

(m+1)×N
q , where X′ =

[X1 ← χm̄×N | X2 ← χt×N ], for ∀xi,j ← χ, (denote |χ| ≤ B), x[j] ← χ1×N ,
then ||x[j]||2 ≤ Bχ (which is equal to

√
N · B) and ||X′||2 = maxi||xi|| ≤ Bχ.

Lemma 7 (E-noisy ciphertext). An E-noisy ciphertext, for a corresponding
message M, and under secret key sk = ẽ ∈ Z

(m+1)×1
q , is a matrix C ∈ Z

(m+1)×N
q

such that C = ẽT · M · G + ẽT · X. Then, we set

error = ẽTX = (1, eT ) · [x0,X′]T = x0 + eT · X′ = ēT · X1 + x,

with ||error|| ≤ ||x|| + ||ēT || · ||X1|| ≤ E = Bχ

(
r · ω

√
log m̄ +

√
m̄/2 + 1

)
.

Furthermore, if we use the multi-bit decryption secret key matrix S ∈
Z
(m+1)×t
q , we obtain

Error = ST · X =

⎛
⎜⎝

x0 + eT · X′
...

x0 + eT · X′

⎞
⎟⎠ =

⎛
⎜⎝

ēT · X1 + x1

...
ēT · X1 + xt

⎞
⎟⎠

with ||Error|| ≤ maxi||errori|| ≤ E = Bχ

(
r · ω

√
log m̄ +

√
m̄/2 + 1

)
.

Proof. Consider a fresh ciphertext C = PT ·R+M ·G+X, which is generated
by encrypting some message M under some public key P with corresponding
secret key ẽ. First recall that P · ẽ = 0 and ẽT · C = ẽT · M · G + ẽT · X.
Let error = ẽT · X for X ← {0}1×N × χm×N . 2 which implies ||error|| ≤
Bχ

(
r · ω

√
log m̄ +

√
m̄/2 + 1

) ≤ E by Lemma 3.

Similarly, the same procedure may be easily adapted to obtain the bound of
Error, i.e. ST ·C = ST ·M ·G+ST ·X, where Error = ST ·X and ||Error|| ≤ E
by Lemma 3. Hence C is an E-noisy encryption of M under S (or ẽi). We call
this value the initial noise and we define

Einit = Bχ

(
r · ω

√
log m̄ +

√
m̄/2 + 1

)
.

Next we analyze the correctness of decryption.
2 If we choose Dual.LWE-based with binary secret, i.e. e ← {0, 1}m, implying

||error|| ≤ √
m · N · Bχm .
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Lemma 8. Let C be an E-noisy encryption of M, if we want to decrypt i-th
ciphertext, then there exists a secret key ẽi such that ẽT ·C = error+ ẽT .M ·G,
where ||errordec||∞ ≤ (m + 1) · E, by Lemma 7. Then we obtain

vi = ẽTC · G−1(wT ) =
(
ẽT · X + ẽTM · G) · G−1(wT )

= ẽTX · G−1(wT ) +
q

2
· mi = errordec +

q

2
· mi (mod q).

Proof. Clearly, we have that

||errordec|| = ||ẽT · X · G−1(wT )|| ≤ ||ẽT · X|| · ||G−1(wT )||1 ≤ (m + 1) · E.

Now one can observe that decryption works correctly as long as ||errordec||∞ ≤
q
4 , i.e. E < q

4(m+1) . We call this value Emax = q
4(m+1) . ��

Lemma 9. Let C be an E-noisy encryption of M, if we want to decrypt
ciphertext C, then there exists a secret key matrix S such that ST · C =
Error + ST · M · G, where ||Errordec||∞ ≤ (m + 1) · E, by Lemma 7. Then
we obtain

vi = ST · C · G−1(wT ) = ST · X · G−1(wT ) +
q

2
· m

= Errordec +
q

2
· m (mod q).

Proof. We can easily prove Lemma 9 using Lemmas 7 and 8. We omit further
details.

Homomorphic Addition Analysis. Let C1 or C2 be two ciphertexts which
are E1 or E2 noisy encryption of M1,M2 ∈ {0, 1}(m+1)×(m+1) under the ẽ
respectively, such that ẽT ·C1 = ẽT ·M1 ·G+error1 and ẽT ·C2 = ẽT ·M1 ·G+
error2 with ||error1||∞ ≤ E1 and ||error2||∞ ≤ E2 by Lemma 7. Furthermore,
if C1 or C2 is under the S respectively, then ST ·C1 = ST ·M1 ·G+Error1 and
ST · C2 = ST · M1 · G + Error2 with ||Error1||∞ ≤ E1 and ||Error2||∞ ≤ E2

by Lemma 7.

Lemma 10. If a ciphertext C is designed to encrypt message M ∈
{0, 1}(m+1)×(m+1) under a secret key matrix S, then ciphertext addition results in
ciphertext CAdd = C1+C2 such that ST ·CAdd = ErrorAdd+ST ·(M1+M2)·G,
where C1, C2 are respectively designed to encrypt M1,M2 ∈ {0, 1}(m+1)×(m+1),
MAdd = M1 +M2 and ErrorAdd = Error1 +Error2. Clearly, its is (E1 +E2)-
noisy.

Homomorphic Multiplication Analysis. Below we describe the
multiplication.

Lemma 11. Let S ∈ Z
(m+1)×t be a secret key matrix. Let C1 ∈ Z

(m+1)×(m+1)·l
q

and C2 ∈ Z
(m+1)×(m+1)·l
q be ciphertexts that encrypt message M1 ∈

{0, 1}(m+1)×(m+1) and M2 ∈ {0, 1}(m+1)×(m+1), respectively. Thus ciphertext
multiplication results in ciphertext CMult = C1 · G−1(C2) such that CMult =
errorMult +M1 ·M2 ·G, then the ciphertext CMult is

(
(m + 1)E1 + E2

)
-noisy.
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Proof. By Eq. 2, we have that CMult = C1 ·G−1(C2) = errorMult+M1 ·M2 ·G,
where errorMult = ST ·(PTR1G−1(C2)+M1PTR2 +X1G−1(C2)+M1X2

)
=

error1 ·G−1(C2) +M1 · error2. Clearly, ||errorMult|| ≤ ||error1 ·G−1(C2)|| +
||M1 · error2|| ≤ ||error1|| · ||G−1(C2)|| + ||M1 · error2|| ≤ (

(m + 1)E1 + E2

)
and the ciphertext CMult is

(
(m + 1)E1 + E2

)
-noisy.

The same calculation holds for NAND gates. Consider the evaluation of a
Boolean circuit of depth L consisting of NAND gates. It takes as input fresh
ciphertexts, i.e. Einit-noisy ciphertexts, and at each level the noise is multiplied
by a factor of at most (m + 1), i.e. the norm of error elements is increased by a
factor of at most (m + 1). Therefore, the error elements of final ciphertext has
norm bounded by

Efinal = (m + 1)L · Einit.

To ensure correctness of decryption we need Efinal ≤ Emax. In other words, we
have that condition (m + 1)L · E < � q

2�/4 must hold, what is guaranteed by our
choice of parameters. ��

4.4 Security Analysis

The security of the Dual.LWE-based MBGPV scheme is based on the hardness
of DLWE assumption and is analogous to standard-LWE assumption. In fact,
we show Dual.LWE-based MBGSW scheme is IND-CPA-secure based on DLWE
assumption by using Theorem 1 to show that the scheme is indistinguishable
from the original GSW13 scheme.

Theorem 3. Suppose MBGSW scheme achieves circular-security and let
params = (n, q, χ,m, t) be such that the LWEn,m,q,χ assumption holds and
m = O(n log q), then the MBGSW scheme is IND-CPA-secure.

Proof. The proof of security consists of two steps, as follows:

– firstly, we argue that if the public key (P = [u,−A]) is sampled from the LWE
distribution, then we are able to apply Theorem 1 to show that, under LWE
assumption, the matrix A = [Ā | u − Āē1 | · · · | u − Āēt] ∈ Z

n×m
q is compu-

tationally indistinguishable from a randomly chosen matrix and the vector u
is statistically close to uniform by the Leftover Hash Lemma (Lemma 4), then
the public key syndrome (u = fA(e),−A) is statistically close to uniform, by
Corollary 1;

– secondly, for the ciphertext C = PTR + MG + X, we just focus on PTR.
The arguments we applied here are from proof of Theorem 2, i.e. PTR is
indistinguishable from uniform assuming the hardness of LWEn,q,χ,m.

To sum up, the joint distribution (P,C) is indistinguishable from the uniform
distribution (Zn×(m+1)

q ,Z
(m+1)×N
q ).
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Table 1. Comparison of LWE-based multi-bit PKE schemes

Scheme PVW08 [26] LP11 [19] Ours-PKE

assumption LWE-based LWE-based Dual.LWE-based

||plaintext|| t t t

||pk|| m̄(n + t) log2 q (n1t) log2 q mn log2 q

||sk|| (nt) log2 q (n2t) log2 q mt log2 q

||ciphertext|| (n + t) log q (n2 + t) log q m log q

key tools packed ciphertext error-tolerant encoder combination A

flexibility dec × ×
√

Table 2. Comparison of LWE-based multi-bit FHE schemes

Scheme BGH13 [4] HAO15 [15] Ours-FHE

assumption LWE-based LWE-based Dual.LWE-based

||plaintext|| t t × t [t, t × t]

||pk|| (n + t)t log2 q (n + t)m̄ log2 q mn log2 q

||sk|| (n + t)t log2 q (n + t)t log2 q mt log2 q

||Eval key|| (n + t)3 log2 q × ×
||ciphertext|| (n + t) log q (n + t)N ′ log q (mN) log q

key tools packed ciphertext packed message combination A

flexibility dec × ×
√

5 Conclusion

We summarize the concrete key sizes of lattice-based multi-bit encryption schemes
via LWE-based and Dual.LWE-based in Tables 1,2, where N ′ = (n + t) · �log q�,
N = (m + t) · �log q�, m = m̄ + t and integer dimension n, n1, n2 ≥ 1.

Compared with other schemes [4,15,19,26], we must point out that the main
drawback of our scheme is that our parameters depend on m rather than on
n. Then our parameters have large magnitude. However, Tables 1, 2 show that
using the public key matrix A we have constructed, though it causes dimension
expansion of public key and ciphertext, it doesn’t affect the correctness of multi-
bit scheme. Most notably, our FHE scheme can encrypt messages of arbitrary
length, i.e. from t bits to t × t bits. Moreover, compared MBGSW’s encryption
with simple concatenation of single-bit ciphertexts, we construct MBGSW with
improved efficiency, and with flexibility to decrypt target bit. We also think [15]
can also achieve any length message encryption and flexibility decrypt target bit
by simple modification.

The construction of a multi-bit FHE scheme with high efficiency is an open
problem. Since most constructions focus on single bit encryption only, we showed
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a multi-bit construction that can be achieved by a straightforward bitwise com-
position, but unfortunately does not offer the best performance. Hence, in order
to improve the performance of the multi-bit construction, we proposed to com-
bine t elements chosen from Dual.LWE underlying distribution into the public
key, where t is the number of bits we want to encrypt. Notably, utilizing the pub-
lic key matrix A, we obtained a variant of the GSW scheme which can achieve
one-time encryption of arbitrary length messages.
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learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 575–584. ACM (2013)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, pp. 97–106. IEEE (2011)

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

9. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun,
A.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 20

10. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 31

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-38348-9_20
http://dx.doi.org/10.1007/978-3-662-48000-7_31


Multi-bit Leveled Homomorphic Encryption via Dual.LWE-Based 241

11. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 24

12. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. STOC 9,
169–178 (2009)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206. ACM (2008)

14. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-based. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

15. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 31

16. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pp. 12–24. ACM (1989)

17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

18. Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adap-
tively secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 2

19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21
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Abstract. At Eurocrypt 2010, van Dijk et al. described a fully homo-
morphic encryption scheme (abbreviated as DGHV) over integers. It is
conceptually simple but the public key size is large. After DGHV scheme
was proposed, many variants of DGHV schemes with smaller public key
size were proposed. In this paper, we present a multi-ciphertexts attack
on a variant of the DGHV scheme with much smaller public key (abbre-
viated as HERK), which was proposed by Govinda Ramaiah and Vijaya
Kumari at CNC 2012. Multi-ciphertexts attack considers the security
of the schemes when the attacker captures a certain amount of cipher-
texts. It is a common phenomena that the attacker can easily obtain
enough ciphertexts in most of practical applications of fully homomor-
phic encryptions (even for public-key schemes). For all the four groups
of the recommended parameters of HERK , we can recover the plaintexts
successfully if we only capture five ciphertexts. Our attack only needs
to apply LLL algorithm twice on two small dimension lattices, and the
data show that the plaintexts can be recovered in seconds.

Keywords: Homomorphic encryption · LLL algorithm · Multi-
ciphertexts attack · Lattice · Cryptanalysis

1 Introduction

Homomorphic encryption is an interesting concept to protect privacy and has
been proposed by Rivest, Adleman and Dertouzos [22] in 1978. Since its pub-
lication, several homomorphic encryptions have been designed for the e-voting
system, Private Information Retrieval Protocol and so on. Seven years ago, in a
breakthrough work, Gentry proposed a fully homomorphic cryptosystem based
on ideal lattice which allows arbitrary times additions and multiplications on
encrypted data [13–15]. Recent works have shown how to implement existing
fully homomorphic schemes [16,26], and how to construct new homomorphic
c© Springer International Publishing AG 2017
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encryption schemes based on other hard problems, such as approximate greatest
common divisor problems [7,12] and Ring-LWE [1–3,17].

At Eurocrypt 2010, van Dijk, Gentry, Halevi and Vaikuntanathan described
a fully homomorphic encryption scheme over the integers [12](abbreviated as
DGHV). As in Gentry’s scheme [13], the authors first propose a somewhat homo-
morphic scheme supporting a limited number of additions and multiplications
over encrypted bits. Then they apply Gentry’s squash decryption technique and
ciphertext refresh procedure to obtain a fully homomorphic scheme. Compared
with the original Gentry’s scheme, the main appeal of the DGHV scheme is its
conceptual simplicity: all operations are done over the integers instead of ideal
lattices. However, the size of public-key is O(n10) which is too large for any prac-
tical system, here n is the security parameter. The security of DGHV scheme
relies on the hardness of sparse subset sum problem and the Approximate Great-
est Common Divisor problem (AGCD). The AGCD problem which was firstly
introduced by Howgrave-Graham in [18], is to recover a secret integer p from
many approximate multiples qi · p + ri of p. The efficiency of the DGHV scheme
has been improved in a series of works [4,6,7,9,11,23].

Compared with the booming development of the design side of the homo-
morphic encryptions, the cryptanalysis result of homomorphic encryptions seems
scarce. Chen and Nguyen [8] presented a square-root attack to break the chal-
lenges announced in [7]. In [5], Cohn and Heninger constructed a lattice by
generalizing the Howgrave-Graham’s algorithm to search the approximate com-
mon divisor. Furthermore, they deduced that the scheme proposed in [12] can
be broken by solving a 2

√
n-approximation SVP.

In most of practical applications of fully homomorphic encryptions, the
attacker can easily obtain enough ciphertexts. In this paper, we consider the
security of a variant of the DGHV scheme (called HERK) under this phenomena.
The HERK scheme was proposed by Govinda Ramaiah and Vijaya Kumari at
CNC 2012 [23], and has much smaller public key compared with DGHV scheme.
For all the four groups of the recommended parameters of HERK , we can recover
the plaintexts successfully if we only capture five ciphertexts. Our attack is based
on orthogonal lattice which was firstly presented by Phong Nguyen and Stern at
Crypto 1997 [20]. Our attack only needs to apply LLL algorithm twice on two
small dimension lattices, and thus is very efficient. We implemented it and car-
ried out our attack on the four groups of the parameters suggested in [24]. The
data show that the plaintexts can be recovered in seconds on a single desktop
computer.

The remainder of this paper is organized as follows. In Sect. 2, we review
backgrounds of lattices. In Sect. 3, we describe the HERK fully homomorphic
scheme based on integer. In Sect. 4, the orthogonal lattice attack is proposed. In
Sect. 5, experimental results with our attack are given. Section 6 concludes the
paper.
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2 Preliminaries

2.1 Notations

We use row representation for matrices. Vectors are row vectors denoted by bold
lowercase letters, matrices are denoted by uppercase letters, and their coefficients
are denoted by lowercase letters. All logarithms are in base 2. Let ‖‖ be the
Euclidean norm. For a real number x, we denote by �x�, �x�, �x� the rounding of
x up, down, or to the nearest integer. For integers z, p we denote the reduction
of z modulo p by [z]p with −p/2 < [z]p ≤ p/2. We write f(λ) = Õ(g(λ)) if
f(λ) = O(g(λ) logk(g(λ))) for some k ∈ N.

2.2 Lattice

Let R
m be the m-dimensional Euclidean space. A lattice in R

m is the set
L(b1, . . . ,bn) = {∑n

i=1 xibi : xi ∈ Z} of all integral combinations of n lin-
early independent vectors b1, . . . ,bn ∈ R

m. The integers n and m are called
the rank and dimension of the lattice. A lattice can be conveniently represented
by a matrix B, where b1, . . . ,bn are the row vectors. The determinant of the
lattice L is defined as det(L) = det(L(B)) =

√
det(BBT ). For any vectors

u,v ∈ Z
m, we say that u and v are orthogonal if 〈u,v〉 = 0, and we denote it

u ⊥ v. For any vector u ∈ Z
m, we denote u⊥ to be the set of vectors in Z

m

orthogonal to u. More generally, if L is a lattice in Z
m, its orthogonal lattice

L⊥ is defined as the set of vectors in Zm orthogonal to the points in L, i.e.
L⊥ = {v ∈ Z

m|u ∈ L, 〈u,v〉 = 0}. For the properties of orthogonal lattice, we
have the following theorems [20]:

Theorem 1. If L is a lattice in Z
m, then rank(L) + rank(L⊥) = m.

Theorem 2. If L is a complete lattice in Z
m, then det(L) = det(L⊥).

Theorem 3. There exists an algorithm which given any basis b1, · · · ,bn of a
lattice L in Z

m of dimension n, outputs an LLL-reduced basis of the orthogonal
lattice L⊥, and whose running time is polynomial with respect to m,n and any
upper bound on the bit-length of the ‖ bj ‖.
To calculate a LLL reduced base of L⊥, Phong Nguyen and Stern [20] presented
a clever idea to construct a suitable lattice, and then a LLL reduced base of
L⊥ can be obtained by invoking LLL algorithm [19] once on this new lattice.
For more details, we refer the readers to [20]. In our attack, we will use this
algorithm twice.
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3 Description of the HERK Homomorphic Encryption
Scheme

The main parameters:
The public key of HERK consists of only two big integers X0 and X1. X0 is an
exact multiple of the odd secret integer P and X1 is an approximate multiple,
i.e., multiple of P containing some additive error R. To encrypt a plaintext bit
M , the erroneous integer X1 of the public key is multiplied with a random even
integer N , the result is added to the plaintext bit and the final sum is reduced
modulo the error-free integer X0 in the public key. For homomorphic evaluation
of a function, the addition and multiplication operations in the corresponding
arithmetic circuit are performed over ciphertexts, modulo the errorfree integer
X0 in the public key. The security of HERK is based on the two-element Partial
Approximate Greatest Common Divisor (PAGCD) problem.

Given the security parameter n, the following parameters are used:

– e is the size of the secret key integer P , is taken as e ≥ d · (n log2 n) to support
homomorphism for evaluation of sufficiently deep circuits.

– r is the size of the noise in the public key integer X1, is taken as ω(log n) to
foil the brute-force attack against the noise.

– g is the number of bits in each of the public key integers, is taken as ω(e · log n)
to thwart lattice based attacks on the two-element PAGCD problem.

– d denotes the size of the even noise factor N used during the encryption. To
avoid the brute-force attack against it, the size of this integer is taken as 2n.

The theoretical parameter setting for HERK can be chosen as, e = Õ(n2),
r = n, d = 2n, and g = Õ(n3). This setting results in a scheme with overall
complexity of Õ(n3). The specific construction of HERK is as follows.

KeyGen(1n): Generate a random odd integer P of size e bits. Choose a random
r-bit integer R from the interval (−2r, 2r). For i = 0, 1, Choose a random g-bit
integer Qi from [0, 2g/P ). Calculate X0 = PQ0,X1 = PQ1 + R. Restart unless
the integers X0,X1 are co-prime and X0 > X1. The public key is pk = (X0,X1),
and the secret key is sk = P .

Encrypt(pk,m ∈ {0, 1}): For a plaintext bit m ∈ {0, 1}, choose a random even
integer N from the interval [2d−1, 2d). The ciphertext

c = [m + N · X1] mod X0.

Evaluate(pk,C, c1, · · · , ct): given the circuit C with t input bits, and t cipher-
texts ci, apply the addition and multiplication gates of C to the ciphertexts,
performing all the additions and multiplications over the integers, and return
the resulting integer.

Decrypt(sk, c): Output the plaintext m = (c mod P ) mod 2.
The appealing feature of the scheme HERK is the relatively smaller public key
with only two integers of size O(n3) each. Encryption method is also compar-
atively simple because, the product N · X1 corresponds to the operations of
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choosing a random subset from the big set of public key elements in the DGHV
Scheme [12].

4 Orthogonal Lattice Attack on Homomorphic Scheme

In this section, we give the details of our attack on HERK scheme. In some prac-
tical applications of homomorphic encryption schemes, the attacker can easily
capture a certain amount of ciphertexts. Our attack is under this circumstances.

Let the vector c = (c1, c2, · · · , ct)T ∈ Z
t be the vector of ciphertext, such

that
ci = mi + Ni · X1 + ki · X0, 1 ≤ i ≤ t.

where the plaintext bit mi ∈ {0, 1}, Ni is a random even integer from the interval
[2d−1, 2d), and ki is the quotient in the division of mi + Ni · X1 by X0.

Therefore, let m = (m1,m2, · · · ,mt)T , N = (N1, N2, · · · , Nt)T , and k =
(k1, k2, · · · , kt)T , we have

c = m + X1 · N + X0 · k (1)

Consider short vectors u1,u2, · · · ,ut−3 ∈ Z
t orthogonal to c. For all 1 ≤ i ≤

t − 3, we can obtain that

0 = 〈ui, c〉 = 〈ui,m〉 + X1 · 〈ui,N〉 + X0 · 〈ui,k〉. (2)

If ‖ui‖ are sufficiently short, because of (X0,X1) = 1 and ‖m‖, ‖N‖, ‖k‖ are all
short vector compared with X0 and X1.
Intuitionally, for all ui, 1 ≤ i ≤ t − 3, we would have:

〈ui,m〉 = 0, 〈ui,N〉 = 0, and 〈ui,k〉 = 0.

Hence, the vectors m,N, and k are all belong to the orthogonal L⊥ of the lattice
L spanned by the vectors u1,u2, · · · ,ut−3.

In particular, a simple observation is that a vector orthogonal to c is either
large, or orthogonal to m,N, and k.

Lemma 1. Let u ∈ Z
t, and u ⊥ c, if ‖u‖ < X

1/2
0 /(t1/2 · 2d+1), then with the

probability at least 1 − 1
2d−1 that u ⊥ m, u ⊥ N, and u ⊥ k.

Proof. Let u ∈ Z
t such that u ⊥ c. From Eq. (1), we have

0 = 〈u, c〉 = 〈u,m〉 + X1 · 〈u,N〉 + X0 · 〈u,k〉.

From ‖u‖ < X
1/2
0 /(t1/2 · 2d+1), we deduce that

|〈u,N〉| ≤ ‖u‖ · ‖N‖ < X
1/2
0 ,

and
|〈u,m〉| ≤ ‖u‖ · ‖m‖ < X

1/2
0 /2d+1.
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Now, we consider the probability P that u ⊥ m, u ⊥ N, and u ⊥ k under the
conditions ‖u‖ ≤ X0/(t1/2 · 2d+1) and u ⊥ c,u ∈ Z

t.

P = Prob

(
u ⊥ m,u ⊥ N, and u ⊥ k

∣∣∣∣∣
‖u‖ ≤ X

1/2
0 /(t1/2 · 2d+1),

u ⊥ c,u ∈ Z
t

)

= Prob

(
u ⊥ m,u ⊥ N, and u ⊥ k

∣∣∣∣∣
‖u‖ ≤ X

1/2
0 /(t1/2 · 2d+1),

〈u,m〉 + X1 · 〈u,N〉 + X0 · 〈u,k〉 = 0

)

= 1 − Prob

(
X0|〈u,m〉 + X1 · 〈u,N〉

∣∣∣∣∣
‖u‖ ≤ X

1/2
0 /(t1/2 · 2d+1),

〈u,m〉 = 0, 〈u,N〉 = 0, 〈u,k〉 = 0

)

≥ 1 − X
1/2
0 · X

1/2
0 /2d+1

X0
≥ 1 − 1

2d+1
.

The third equality is because that if u is orthogonal to one of the three vectors
m,N, and k, then u must orthogonal to the other two vectors. Without loss of
generality, if u ⊥ m, then we have

X1 · 〈u,N〉 + X0 · 〈u,k〉 = 0.

Because (X0,X1) = 1 and |〈u,N〉| � X0, this will yield that 〈u,N〉 = 0, and
thus, 〈u,k〉 = 0. ��
Remark 1. Lemma 1 tells us that if ‖u‖ < X

1/2
0 /(t1/2 · 2d+1) and u ⊥ c, then

with overwhelming probability that u ⊥ m, u ⊥ N, and u ⊥ k. However, in
practical experiments, the vector u’s lengths are much shorter than X

1/2
0 /(t1/2 ·

2d+1), and thus the coefficients 〈u,m〉,〈u,N〉 and 〈u,k〉 are much smaller. In
this situation, X1 · 〈u,N〉 + X0 · 〈u,k〉 cannot equal to a small value unless all
the three coefficients are 0.

From Theorem 3, it is easy to compute a LLL-reduced basis {u1,u2, · · · , ut−1}
of c⊥ ∈ Z

t. From Lemma 1, we can get that for each ui, 1 ≤ i ≤ t − 1, there are
two possibilities that either ui is large, or orthogonal to m,N and k with over-
whelming probability. Since m,N and k are heuristically linearly independent,
the t − 1 vectors cannot be orthogonal to m,N and k.
Let rearrange these t − 1 vectors according to their lengths in the ascending
order, then the last two vectors ut−2,ut−1, must satisfy

‖ut−2‖ ≥ X
1/2
0 /(t1/2 · 2d+1), ‖ut−1‖ ≥ X

1/2
0 /(t1/2 · 2d+1).

The first t− 3 vectors form a lattice Lnew = Zu1 ⊕· · ·⊕Zut−3 of rank t− 3 and
with the volume

V (Lnew) ≈ vol(c⊥)
‖ut−2‖‖ut−1‖ =

‖c‖
‖ut−2‖‖ut−1‖ ≤ t3/2 · 22d+2.

Which can heuristically be expected to behave like a random lattice. In partic-
ular, we have

‖ui‖ = Õ(
√

t − 3V (Lnew)1/(t−3)) = Õ(t1/2 · V (Lnew)1/(t−3)), 1 ≤ i ≤ t − 3
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Thus, the condition for u1, · · · ,ut−3 all being orthogonal to m,N, and k with
overwhelming probability becomes:

Õ(
√

t)(t3/2 · 22d+2)
1

t−3 � X0

(t1/2 · 2d+1)
.

Taking logarithms and ignoring logarithmic factors, we can choose

t ≥ 3 +
2d + 2

g − d − 1
.

Assuming we choose the suitable t satisfy the above condition, then the vectors
m,N and k belong to L⊥

new with overwhelming probability. From Theorem 3,
we can recover the message vector m as long as we invoke LLL algorithm on the
doubly orthogonal lattice,

To sum up, we formalize an algorithm to recover the plaintext vector in
(Algorithm 1).

Algorithm 1. Recover the plaintexts

Input: The public key X0 and X1 and t ciphertexts c1, · · · , ct for
the corresponding plaintexts m1 · · · ,mt.

1. Generate the lattice L1 in Z
1+t by the rows of the following

t × (t + 1) matrix: ⎛
⎜⎝

λ · c1 1 · · · 0
...

...
. . .

...
λ · ct 0 · · · 1

⎞
⎟⎠

where λ is a large constant.
2. Apply LLL algorithm to L1 and keep only the t last coeffi-

cients of each resulting vector. Then, the first t − 1 vectors
(u1, · · · ,ut−1) is the LLL-reduced basis of the lattice c⊥ ∈ Z

t.
3. Generate the lattice L2 ∈ Z

t−3+t by the rows of the following
t × (t − 3 + t) matrix

⎛
⎜⎝

λ′u1,1 · · · λ′ut−3,1 1 · · · 0
...

...
. . .

...
λ′u1,t · · · λ′ut−3,t 0 · · · 1

⎞
⎟⎠

where λ′ is a large constant.
4. Apply LLL algorithm to the lattice L2, and keep only the t last

coefficients of each resulting vector. Then, the first 3 vectors
v1,v2,v3 are the LLL-reduced basis of the lattice L⊥

new, which
is orthogonal to the lattice Lnew = Zu1 ⊕ · · · ⊕ Zut−3 ∈ Z

t of
rank t − 3.

Output: the plaintext vector v1.
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5 Experiments Results

We implemented the homomorphic encryption scheme HERK and Algorithm 1
using Shoups NTL library [25]. However, for the LLL reduction in Algorithm
1, we used the fplll implementation [10] by Cad et al., which includes the L2

algorithm [21]: fplll is much faster than NTL for some matrices with large coef-
ficients. It should be stressed that fplll is a wrapper which actually implements
several variants of LLL, together with several heuristics: L2 is only used as a last
resort when heuristic variants fail. This means that there might be a discrepancy
between the practical running time and the theoretical complexity upper bound
of LLL routines. Our test machine is a 2.93-GHz Intel Core 2 Duo processor
E7500 running on Ubuntu. Running times are given in seconds.

Table 1. Values of parameters at different security levels

Level of security n e r d g

Toy 32 1024 32 64 32768

Small 64 4096 64 128 262144

Medium 80 6400 80 160 512000

Large 128 16384 128 256 2097152

To assess our heuristical attack, we aim to the four groups of recommended
parameters in [24], which corresponding to different security levels: Toy, Small,
Medium, and Large (as shown in Table 1). We perform fifty experiments with
t = 5, 10, 15, 20, 25, 30 for all the four groups of recommended parameters. In
fact, our attack is successful for all the experiments even we choose t = 5,
which means that our estimation of the parameter t ≥ 3 + 2d+2

g−d−1 is tight. This
phenomenon also provides an evidence for the Lemma 1. The data of our attack
is shown in Table 2. The last two columns data show the consuming time of LLL
algorithm on lattice L1 and L2, independently.

Table 2. Efficiency of the attack

Level of security n t Time of LLL on L1 Time of LLL on L2

Toy 32 5 70ms <1 ms

Small 64 5 3.91 s <1 ms

Medium 80 5 17.6 s 10 ms

Large 128 5 180 s 40 ms
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6 Conclusion

In this paper, we present an multi-ciphertexts attack on a variant of the DGHV
scheme with much smaller public key, which was proposed by Govinda Ramaiah
and Vijaya Kumari. More precisely, we show that one can recover the plaintexts
by applying LLL algorithm twice on the lattices with small dimensions. We did
experiments for all the four groups of the recommended parameters, the data
show that the plaintexts can be recovered in seconds.
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Abstract. Based on the FV scheme, we construct at first fully homo-
morphic encryption scheme FX that can homomorphically compute addi-
tion and multiplication of encrypted fixed point numbers without know-
ing the secret key. Then, we show that in the FX scheme one can effi-
ciently and homomorphically compare magnitude of two encrypted num-
bers. That is, one can compute an encryption of the greater-than bit
that indicates x > x′ or not, given two ciphertexts c and c′ of x and x′,
respectively, without knowing the secret key. Finally we show that these
properties of the FX scheme enables us to construct a fully homomorphic
encryption scheme FL that can homomorphically compute addition and
multiplication of encrypted floating point numbers.

Keywords: Fully Homomorphic Encryption · FV scheme ·
Fixed/floating point number · Greater-than bit

1 Introduction

Fully Homomorphic Encryption (FHE) scheme enables us to homomorphi-
cally compute an encrypted XORed bit Enc(b1 XOR b2) and encrypted AND bit
Enc(b1 AND b2) of given encrypted bits Enc(b1) and Enc(b2) without knowing the
secret key [9]. Since any function can be written using XOR and AND gates, this
means that one can homomorphically compute any function of encrypted bits
without knowing the secret key.

Practically, computation over bitwise encryptions is not efficient. It is a kind
of “1-bit” processor. In schemes such as [3,4], one can encrypt congruent integers
(i.e., x mod n) and can homomorphically compute addition Enc(x1 + x2 mod n)
and multiplication Enc(x1 × x2 mod n) of encrypted congruent integers Enc(x1)
and Enc(x2) without knowing the secret key. Based on those schemes, various
mining algorithms are experimentally and homomorphically evaluated against
outsourced genomic, medical, or financial encrypted data [6,12–16].

However, the real world is not comprised of congruent integers. Real num-
bers have greater-than relation x < y, which requires computation of the most
significant bit of x−y. Is it possible to efficiently compute Enc(MSb(x−y)) given
Enc(x) and Enc(y) without knowing the secret key? Moreover, to compute real
numbers, we must depend on some precision control mechanism, that enables
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 253–270, 2017.
DOI: 10.1007/978-3-319-54705-3 16
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computation of real numbers as fixed or floating point number computation. Is
it possible to realize precision control against x only given its encryption Enc(x)
without knowing the secret key? To make the theoretical universality of FHE
schemes be of more practical interest, we need to resolve such problems. As we
will see later, the two problems are tightly related to each other.

1.1 Our Contribution

FHE scheme FX for fixed point numbers. Our starting point is the FV
scheme given by Fan and Vercauteren [8], which is an FHE scheme for con-
gruent integers, instantiating the FHE scheme by Brakerski [2] based on the
Ring LWE problem [18]. Let R = Z[X]/(Φm(X)) be the m-th cyclotomic ring,
where Φm(X) denotes the m-th cyclotomic polynomial. Elements a of cyclotomic
ring R are called cyclotomic integers and represented by integer coefficient poly-
nomials a(X) =

∑n−1
i=0 aiX

i of degree less than n = φ(m). (φ(·) denotes the
Euler function.) Two cyclotomic integer a and b are added through polynomial
addition: (a + b)(X) =

∑n−1
i=0 (ai + bi)Xi. Product of cyclotomic integer a and

b is computed as polynomial multiplication followed by reduction via Φm(X):
(a · b)(X) = a(X)b(X) mod Φm(X).

Cyclotomic integers are reduced modulo an integer q, resulting elements of
Rq = Zq[X]/(Φm(X)). A FV ciphertext is a pair c = (c0, c1) (∈ Rq × Rq) of
cyclotomic integers modulo ciphertext modulus q. A plaintext is a cyclotomic
integer x (∈ Rt) modulo plaintext modulus t. For simplicity we assume t divides
q in this paper. A FV ciphertext c = (c0, c1) of plaintext x ∈ Rt satisfies the
relation c0+c1s = q

tx+v+qα with some small noise v (∈ Rq) and some cyclotomic

integer α ∈ R. If one knows the secret key s ∈ R, by computing
⌊
t
q (c0+c1s)

⌉
mod

t, one can recover the plaintext x from the ciphertext c provided that coefficients
of noise v are not too large relative to ratio q

t .
We modify the FV scheme so that we can treat fixed point numbers x̃ = 2−mx

(x ∈ Z2m+l). Here, m is bit-length after point and l is bit-length before point of
x̃ and so x = 2mx̃ is an integer in Z2m+l . We suppose that integer x represents
a constant polynomial x (i.e., a polynomial whose unique non-zero term is its
constant term) in the cyclotomic ring R. To enable homomorphic computation
of x̃, we will use the relation: c0 + c1s = q

t 2
−mx + v + qα with t = 2m+l.

This is nothing but the relation for FV scheme with enlarged plaintext modulus
t′ = t2m.

Let c′ = (c′
0, c

′
1) be another ciphertext encrypting another fixed point

number x̃′ = 2−mx′. Product of fixed point numbers x̃ and x̃′ is defined as
x̃x̃′ = 2−m

[⌊
2−mxx′⌋]

t
. (Here,

[
a
]
t
denotes the residue of a modulo t.) We want

homomorphic version of this computation. By short calculation, we see that
t2m

q
(c0 + c1s)(c′

0 + c′
1s) =

q

t
(2−mxx′ + t(x′α + xα′)) + v′′ + 2mqα′′ (1)

for some small noise v′′ and cyclotomic integer α′′. By principle of division,
we have xx′ =

⌊
2−mxx′⌋2m +

[
xx′]

2m
. Substituting 2−mxx′ =

⌊
2−mxx′⌋ +

2−m
[
xx′]

2m
into Eq. (1), we get
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t2m

q
(c0 + c1s)(c′

0 + c′
1s)

=
q

t

{
2−m

[
xx′]

2m
+

[⌊
2−mxx′⌋]

t
+

(⌊
2−mxx′⌋ − [⌊

2−mxx′⌋]
t

)

+ t(x′α + xα′)
}

+ v′′ + 2mqα′′.

Thus, product of two ciphertexts c and c′, as ciphertexts of the FV scheme with
plaintext modulus t′ = t2m (and ciphertext modulus q), is an encryption of

w = 2−m
[
xx′]

2m
+

[⌊
2−mxx′⌋]

t
+

(⌊
2−mxx′⌋ − [⌊

2−mxx′⌋]
t

)
+ t(x′α + xα′).

Here we see that w contains the wanted answer 2mx̃x̃′ =
[⌊

2−mxx′⌋]
t

in the
middle, but it also contains two annoying terms LG = 2−m

[
xx′]

2m
and UG =⌊

2−mxx′⌋ − [⌊
2−mxx′⌋]

t
+ t(x′α + xα′). We call the former lower garbage and

the latter upper garbage, since LG is the least significant m bits of w and UG is
the most significant m bits of w. In order to realize homomorphic multiplication
of encrypted fixed point numbers, we will implement some clearing methods of
such two types of garbage LG and UG. Suppose here we had cleared LG and
UG from (c0, c1) to get a new ciphertext (d0, d1), which will satisfy

t2m

q
(d0 + d1s)(d′

0 + d′
1s) =

q

t

[⌊
2−mxx′⌋]

t
+ v′′ + 2mqα′′.

By dividing both sides by 2m, we get

t

q
(d0 + d1s)(d′

0 + d′
1s) =

q

t
2−m

[⌊
2−mxx′⌋]

t
+ 2−mv′′ + qα′′

as desired.
As clearing methods of the lower and upper garbage, we introduce LowerClear

and UpperClear algorithms. The algorithm LowerClear is a variant of arithmetic
procedure for computing msbq : Zq → Z2 of [10,19]. Let t = 2m+l and let
w = x + 2mz be an element of Z22m+l with x ∈ Z2m , z ∈ Zt. That is, x
is the least significant m bits of (2m + l)-bit w (lower garbage). We want to
clear x ∈ Z2m from w to get 2mz. The key observation is the following sim-
ple fact [10,19]: if w is equal to b ∈ {0, 1} mod 2i then w2 is equal to the
same b ∈ {0, 1} mod 2i+1 for any integer i ≥ 1. So, if w has bit decomposi-
tion (b2m+l−1, . . . , b0)2 then by repeating squaring (2m + l − 1) times against
w, we get an integer w0 with bit decomposition (0, · · · , 0, b0)2. LowerClear
(w) repeats in this way to extract all lower m bits b0, b1, · · · , bm−1 of w in
the form of integers w0 = (0, · · · , 0, b0)2, w1 = (0, · · · , 0, b1, 0)2, . . . , wm−1 =
(0, · · · , 0, bm−1, 0, · · · , 0)2 and gets the wanted 2mz = w −∑m−1

i=0 wi. UpperClear
clears the upper garbage by a similar method.

Summarizing, we use the FV scheme with plaintext modulus t′ = 2mt (with
t = 2m+l) to enable homomorphic evaluation on encrypted fixed point numbers
x̃ = 2−mx (x ∈ Z2m+l). To clear lower and upper garbage involved in homomor-
phic multiplication of fixed point numbers, we use LowerClear and UpperClear
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arithmetic procedures homomorphically against the multiplied FV ciphertexts.
We call our FHE scheme for fixed point numbers built in this way FX scheme.
Since the FV scheme is semantically secure and fully homomorphic, our FX
(which ciphertext is nothing but a FV ciphertext with enlarged plaintext mod-
ulus) is also semantically secure and fully homomorphic.

Greater-Than Bit Extraction. As an application of the FX scheme, we treat
the problem of comparison of magnitude of two encrypted numbers. Suppose
we have two encrypted numbers Enc(x1) and Enc(x2). Define a bit b to be 1
if x1 > x2 and 0 otherwise. We want to compute an encryption Enc(b) of the
bit b given only ciphertexts Enc(x1) and Enc(x2) without knowing the secret
key. In the literature [13,14] such problem is tackled by Greater-Than protocol
based on (such as) the one given by Golle [11]. Let D ⊂ Z be a range that
possible xi’s belong to. The protocol is based on the fact that if x1 > x2, there
exists a positive integer i such that x1 = x2 + i. To establish security, it requires
O(

∣∣D∣∣) encryptions and O(
∣∣D∣∣) homomorphic additions among them and needs

interaction with secret key holder. By using the FX scheme, we show that one
can compute the greater-than bit encryption Enc(b) given only Enc(x1) and
Enc(x2) in polylogarithmic complexity of

∣∣D∣∣, neither knowing the secret key
nor interaction with secret key holder.

FHE scheme FL for floating point numbers. Using the method of greater-
than bit extraction by FX, we will construct a fully homomorphic encryption
scheme for floating point numbers, FL. The floating point number N is described
as N = (−1)sf2e, where s ∈ {0, 1} is the sign, f ∈ [1, 2) is the significant and
e is the exponent of N . We will use three different (but related) FX schemes
to encrypt each part of s, f and e into a ciphertext ([|s|]s, [|f |]f , [|e|]e). In com-
putation of floating point numbers N = (−1)sf2e, different parts of s, f , e
have influence to each other. For example, to add two floating point numbers
N = (−1)sf2e and N ′ = (−1)s

′
f ′2e

′
, we need to compare e and e′ to decide

e > e′ or not. If so, we will compute f ′′ = f +(0.5)e−e′
f ′ and if not we will com-

pute f ′′ = f ′+(0.5)e
′−ef . Since we can homomorphically compute a greater-than

bit e > e′ as seen above, it is not difficult to evaluate such process homomor-
phically, given encryptions ([|s|]s, [|f |]f , [|e|]e) and ([|s′|]s, [|f ′|]f , [|e′|]e) without
knowing the secret key. Since the FX scheme is semantically secure and fully
homomorphic, the FL scheme for floating point numbers is also semantically
secure and fully homomorphic.

Related works. There are some different approaches to handle fixed-point arith-
metic in homomorphic encryption schemes in the literatures. Costache, Smart,
Vivek, and Waller [7] encodes fixed-point numbers as polynomials in cyclotomic
rings, which enables a lower plaintext modulus. Although in contrast our method
encodes point numbers only into constant terms of polynomials, our method can
adapt to homomorphic SIMD operations using plaintext slots [20]. Chung and
Kim [5] encodes rational numbers using continued fractions. They restrict their
interest to linear multivariate polynomials.
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Organization. Section 2 recalls the FV scheme as well as its basic properties. We
construct the FX scheme for fixed point numbers in Sect. 3. After treating the
problem of homomorphic greater-than bit extraction in Sect. 4, we construct the
FL scheme for floating point numbers in Sect. 5.

2 Preliminaries

2.1 Homomorphic Encryption

A homomorphic encryption scheme is a quadruple HE = (Keygen,Enc,Dec,Eval)
of probabilistic polynomial time algorithms. Keygen generates a public key
pk, a secret key sk and an evaluation key evk: (pk, sk, evk) ← Keygen(1n).
Enc encrypts a plaintext x ∈ {0, 1} to a ciphertext c under a public key pk:
c ← Enc(pk, x). Decrypt decrypts a ciphertext c to a plaintext x by the secret
key sk: x ← Dec(sk, c). Eval applies a function f : {0, 1}l → {0, 1} to given
ciphertexts c1, . . . , cl and outputs a ciphertext cf using the evaluation key evk:
cf ← Eval(evk, f, c1, . . . , cl).

A homomorphic encryption scheme HE is called L-homomorphic for L = L(n)
if for any function f : {0, 1}l → {0, 1} given as a circuit of depth L and for any
l bits x1, . . . , xl, it holds that Decsk(Evalevk(f, c1, . . . , cl)) = f(x1, . . . , xl) for
ci ← Encpk(xi) (i = 1, . . . , l) except with a negligible probability. A homomorphic
encryption scheme is called fully homomorphic encryption (FHE) scheme if it is
L-homomorphic for any polynomial function L = poly(n).

2.2 The FV Scheme

The FV scheme [8,17] is an FHE scheme for congruent integers, instantiating the
FHE scheme by Brakerski [2] based on the Ring LWE problem [18]. Let m be
a positive integer and let Φm(X) be the m-th cyclotomic polynomial. The ring
R = Z[X]/Φm(X) is called the m-th cyclotomic ring. For cyclotomic integer
a =

∑n−1
i=0 aiX

i ∈ R, let
∥∥a

∥∥
∞ = max0≤i<n{∣∣ai

∣∣} be the infinity norm of a.
Let δ be the expansion factor of R, i.e., δ = supa,b∈R{∥∥ab

∥∥
∞/(

∥∥a
∥∥

∞
∥∥b

∥∥
∞)}.

The symbol �a� denotes the nearest cyclotomic integer (or the (coefficient wise)
nearest integer coefficient polynomial) of a.

A ciphertext of FV scheme is a pair of cyclotomic integers in Rq =
Zq[X]/Φm(X) for ciphertext modulus q and a plaintext is a cyclotomic integer in
Rt = Zt[X]/Φm(X) for plaintext modulus t. Denote by

[·]
q

reduction modulo q

into the interval (−q/2, q/2]. We fix an integer base w and let lw =
⌊
logw(q)

⌋
+1.

Any cyclotomic integer a ∈ Rq can be written as a =
∑lw−1

i=0 aiw
i where ai ∈ R

has coefficients in the interval (−w/2, w/2]. Define WD(a) =
([

ai

]
w

)lw−1

i=0
∈ Rlw

and PO(a) =
([

awi
]
q

)lw−1

i=0
∈ Rlw . As easily verified,

〈
WD(a),PO(b)

〉 ≡ ab

(mod q), where
〈
x ,y

〉
=

∑lw−1
i=0 xiyi.
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Keygen () :

s ← χkey, e ← χerr, a
u← Rq, b = −(as + e)

q

a
u← Rlw

q , e ← χlw
err, b = PO(s2) − (as + e)

q

return sk = s, pk = (a, b), evk = (a, b).

Enc ((a, b), x ∈ Rt) :
u ← χkey, e1, e2 ← χerr, return c = (c0 = Δx + bu + e1 q

, c1 = au + e2 q
)

Dec (s, c = (c0, c1)) : return t
q

c0 + c1s q t
.

Add (c = (c0, c1), c = (c0, c1)) : return cadd = c0 + c0 q
, c1 + c1 q

.

Mult (c = (c0, c1), c = (c0, c1), γ = (a, b)) :

d0 = t
q
c0c0 q

, d1 = t
q
(c0c1 + c1c0) q

, d2 = t
q
c1c1 q

return cmult = d0 + WD(d2), b q
, d1 + WD(d2),a q

.

Fig. 1. The FV scheme

Let χkey and χerr be two discrete, bounded probability distributions on
R. Constants Bkey and Berr denote the corresponding bounds: χkey < Bkey,
χerr < Berr. The symbol x ← χ denotes a random sampling of x according
to distribution χ. For a finite set X, the symbol x

u← X denotes a uniformly
random sampling of x from X.

Parameters. We parameterize FV schemes by two parameter q and t, denoting
ciphertext modulus and plaintext modulus, respectively. In this paper we assume
q is a power of two and t is a divisor of q for simplicity. Let integer Δ = q/t be
a quotient of q by t.

Scheme Description. Figure 1 shows algorithms in the FV scheme. It is not dif-
ficult to see that the FV scheme is semantically secure under the ring-LWE
assumption, that is, a pair (a, b = −as + e) ∈ (Rq)2 sampled as in the Key-
gen algorithm is indistinguishable from uniformly random pair (a, b) in (Rq)2.
By standard hybrid argument a ciphertext (c0, c1) is also indistinguishable from
uniformly random pair over (Rq)2.

Definition 1. The inherent noise term v of FV ciphertext c = (c0, c1) designed
for x ∈ Rt is an element v ∈ R of smallest norm

∥∥v
∥∥

∞ satisfying c0 + c1s =
Δx + v + qα for some α ∈ R.

A fresh ciphertext (c0, c1) directly produced by Enc((a, b), x) satisfies c0 +
c1s − Δx ≡ bu + e1 + (au + e2)s ≡ −eu + e1 + e2 (mod q). So, fresh ciphertexts
have inherent noise terms v = −eu + e1 + e2 bounded as

∥∥v
∥∥

∞ ≤ V :=
Berr(1 + 2δBkey).

Let V FV
max = 1

2Δ = 1
2

(
q
t

)
. Following lemmas adapted from [1,8,17] show some

basic properties of the FV scheme.

Lemma 1 (Correctness of FV scheme). Let v be the inherent noise term of
FV ciphertext c designed for x ∈ Rt. If

∥∥v
∥∥

∞ < V FV
max, then decryption works

correctly, i.e., Dec(s, c) =
[
x
]
t
= x.
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Lemma 2 (Additive Noise of FV scheme). Let v and v′ be inherent noise
terms of FV ciphertexts c and c′, designed for x and x′ ∈ Rt, respectively. Let
vadd be the inherent noise term of cadd = Add(c, c′) designed for

[
x + x′]

t
∈ Rt.

Then,
∥∥vadd

∥∥
∞ ≤ ∥∥v

∥∥
∞ +

∥∥v′∥∥
∞.

Lemma 3 (Multiplicative Noise of FV scheme). Let v and v′ be inherent
noise terms of FV ciphertexts c and c′, designed for x and x′ ∈ Rt, respectively.
Suppose

∥∥v
∥∥

∞,
∥∥v′∥∥

∞ < V for some V (< V FV
max). Let vmult be the inherent

noise term of cmult ← Mult(c, c′) designed for
[
xx′]

t
∈ Rt. Then,

∥∥vmult

∥∥
∞ ≤

δt(2 + 4δBkey)V + δ2Bkey(2Bkey + 4t2) + 2−1δlwwBerr.

As a corollary of Lemmas 2 and 3, we have:

Corollary 1 (Homomorphic Noise of FV scheme). Let f be an arithmetic
circuit over Rt with L levels of multiplications. Let V be an upper bound of
inherent noise terms of input FV ciphertexts ci, designed for plaintexts xi, for
all i. Let vf be the inherent noise term of homomorphically evaluated ciphertext
f(ci) designed for f(xi) ∈ Rt. Then,

∥∥vf
∥∥

∞ ≤ CL
1 V + LCL−1

1 C2 where C1 ≤
2δt(1 + 2δBkey), C2 ≤ 2δ2Bkey(Bkey + 2t2) + 2−1δlwwBerr.

Let Ldec be the level of some circuit that evaluates decryption algorithm
Dec(c, ·) with a FV ciphertext c built-in. By Lemma 1 and Corollary 1, if inequality
Δ(= q/t) > 2(CLdec

1 V + LdecC
Ldec−1
1 C2) holds, we can homomorphically evalu-

ate algorithm Dec(c, ·) using encrypted secret keys Enc(pk, s) and can recrypt the
ciphertext c into a more noiseless new ciphertext (bootstrapping). By Lemma 4 of
[2], we can implement algorithm Dec(c, ·) by some circuit of level Ldec = O(log n)
which is independent of c. Hence the inequality can be satisfied by taking suffi-
ciently large q = O(nlog n) for any ciphertext c with δ = poly(n). Thus, the
FV scheme will be fully homomorphic under circular security assumption (i.e.,
Enc(pk, sk = s) does not leak any information about s) by taking sufficiently large
q = O(nlog n) for cyclotomic ring R with polynomial δ.

3 The Proposed Scheme FX

In this section we construct an FHE scheme that can homomorphically compute
fixed point numbers, using the FV scheme as building blocks.

Let x̃ be a fixed point number that has l bits before point and m bits after
point. We encode x̃ by an integer x ∈ Z2m+l as usual: x̃ = 2−mx. Let t = 2m+l.
Addition and multiplication of two fixed point numbers x̃ = 2−mx and ỹ = 2−my
are defined as

x̃ + ỹ = 2−m
[
x + y

]
t
, x̃ · ỹ = 2−m

([⌊
2−m

[
x · y

]
2mt

⌋]
t

)
.

We see that sum x̃+ỹ is encoded by integer x+y ∈ Zt. So, homomorphic addi-
tion of encrypted fixed point numbers is easy, just a homomorphic addition in
underlying FV scheme. However, product x̃ · ỹ is more complicated. It is encoded
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by integer
[⌊

2−m
[
x ·y]

2mt

⌋]
t
, that results from m-bit right shift of integer prod-

uct
[
x · y]

2mt
. Now our problem is distinguished: How can we homomorphically

compute m-bit right shift of given encrypted (2m + l)-bit integers?
Let FV(2mt) be the FV scheme of ciphertext modulus q and plaintext modulus

2mt. Using FV(2mt), we construct a fully homomorphic encryption scheme for
fixed point numbers, FX, that can homomorphically compute the m-bit right
shift of encrypted encoding integers.

Parameters. The FX scheme is parameterized by three parameters q, m and l.
The parameter q denotes ciphertext modulus. The parameter l denotes bit-length
of fixed point number before point and the parameter m denotes bit-length of
fixed point number after point. Let t = 2m+l. We assume q, m and l are all
powers of two and t is a divisor of q. Let integer Δ = q/t be a quotient of q by t.

Scheme Description. A fixed point number x̃ = 2−mx to be encrypted is encoded
by an integer x ∈ Zt which we identify with a constant polynomial x ∈ Rt in the
cyclotomic ring. The FX scheme consists of the algorithms in Fig. 2. Note that
FX ciphertexts of parameter (q,m, l) are nothing but the FV(2mt) ciphertexts,
and encryption/decryption algorithms are the same as corresponding algorithms
of FV(2mt) scheme. (More precisely, the decryption algorithm is slightly lighter
than the original FV(2mt) scheme, since FX(q,m, l) only recovers (l + m)-bit
integers rather than (l+2m)-bit integers in FV(2mt).) Especially, the FX scheme
is also semantically secure and fully homomorphic with suitable choice of para-
meters that makes the underlying FV(2mt) scheme so. The difference is in the
way of homomorphic evaluation.

Let c be a FX ciphertext of parameter (q,m, l). By definition of Enc, initially
it is produced as an encryption of some constant polynomial x ∈ Rt that encodes
fixed point number x̃ = 2−mx using FV(2mt) scheme. Here note that bit length
of plaintext integer x is only l + m (l bits before point and m bits after point),
but FV(2mt) scheme treats much longer plaintext integer of l + 2m bits. In fact,
Dec algorithm only returns the least l + m bits of recovered integer by FV(2mt).
That is, the FX scheme has m bits more in plaintext space than finally required
for decryption. FX scheme uses this room of m bits in plaintext space in order
to homomorphically compute the m-bit right-shift of encrypted integer.

To homomorphically compute such m-bit right-shift, algorithms LowerClear
and UpperClear are useful. Let c be an FV(2mt) ciphertext of some (l + 2m)-
bit integer w = x + 2mz ∈ R2mt (x is the least m bits of w and z is the
significant (l + m)-bit of w). Before m-bit right-shifting w homomorphically in
the ciphertext c, we need to clear the least m-bit integer x of w, because without
it the term 2−mx should cause a significant noise in the resulting ciphertext. As
verified in Lemma 5, the least m-bit x (lower garbage) of w will be cleared by
LowerClearPlain algorithm in Fig. 3.

As directly verified, LowerClear (c) procedure (for c encrypting w = x +
2mz) in Fig. 2 is a homomorphic version of LowerClearPlain (w) procedure, that
computes 2mz given w = x+2mz. Here we add some remark about this. Suppose



Fully Homomorphic Encryption for Point Numbers 261

Keygen () : return (sk = s, pk = (a, b), evk = (a, b)) ← FV(2mt).Keygen()

Enc (pk = (a, b), x ∈ Rt) : return c = (c0, c1) ← FV(2mt).Enc((a, b), x).

Dec (s, c) : return FV(2mt).Dec(s, c)
t
.

Add (c, c ) : return cadd ← FV(2mt).Add(c, c ).

Mult (c, c , evk = γ) :
c̃ ← FV(2mt).Mult(c, c , γ), d = (d0, d1) ← LowerClear(c̃),

e = 1
2m

d0 q
, 1

2m
d1 q

return cmult ← UpperClear(e).

LowerClear (c) :
d ← FV(2mt).Encpk(0)
For i ∈ [1..m]:

di ← FV(2mt).Add(c, −d)

For j ∈ [1..(2m + l − i)]: di ← FV( 2mt
2i−1 ).Mult(di, di)

d ← FV(2mt).Add(d, di)
return FV(2mt).Add(c, −d).

UpperClear (c) :
d ← FV(2mt).Encpk(0)
For i ∈ [1..(m + l)]:

di ← FV(2mt).Add(c, −d)

For j ∈ [1..(2m + l − i)]: di ← FV( 2mt
2i−1 ).Mult(di, di)

d ← FV(2mt).Add(d, di)
return d.

Fig. 2. The FX scheme

LowerClearPlain (w = x + 2mz) :
g ← 0
For i ∈ [1..m]:

wi ← w − g, wi = 1
2

i−1
wi

22m+l−i

· 2i−1

{wi is divisible by 2i−1 (See the proof of Lemma 5)}
g = g + wi

return w − g. {= 2mz}

Fig. 3. The LowerClearPlain algorithm

a constant polynomial x ∈ R2mt is divisible by 2i (i ≥ 0). Then, its encryption
c = (c0, c1) by FV(2mt) (=FX(q,m, l)) scheme will satisfy

c0 + c1s =
q

2mt
x + v + qα =

q

2m−it

x

2i
+ v + qα

with some small noise v ∈ R and α ∈ R. This means that when plaintext integer
x is divisible by 2i, its ciphertext c = (c0, c1) is nothing but the ciphertext of x

2i

w.r.t. FV(2m−it). So homomorphic version of the step:

– wi =
((

1
2

)i−1
wi

)22m+l−i

· 2i−1
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in Fig. 3 corresponds to the step:

– For j ∈ [1..(2m + l − i)]: di ← FV( 2mt
2i−1 ).Mult(di, di)

in the LowerClear algorithm in Fig. 2. The resulting ciphertext di will be treated
as a FV(2mt) ciphertext.

Now we have cleared the lower garbage x from the ciphertext c that encrypts
w = x + 2mz, resulting a ciphertext d that encrypts 2mz. Then we simply
divide each coefficients of d by 2m and get a ciphertext e of u = z + ty with
some integer y. (Recall that our plaintext space is 2m + l bits. So the term
ty = 22m+l/2m · y should appear with some y due to the division by 2m.) Note
that y is the significant m bits of z + ty (upper garbage). As in the case of
LowerClear, we use UpperClear algorithm in Fig. 2 to clear the upper garbage y
from u = z + ty, that is a homomorphic version of UpperClearPlain algorithm in
Fig. 4.

UpperClearPlain (u = z + ty) :
r ← 0

For i ∈ [1..(m + l)]: ui ← u − r, ui = 1
2

i−1
ui

22m+l−i

· 2i−1, r = r + ui.

return r {= z}

Fig. 4. The UpperClearPlain algorithm

Now we turn to formal treatment.

Definition 2. The inherent noise term v of FX ciphertext c = (c0, c1) designed
for x ∈ R2mt is the term v of smallest norm

∥∥v
∥∥

∞ satisfying c0+c1s = Δ2−mx+
v + qα for some α ∈ R.

Let Vmax = 1
2Δ2−m = 1

2

(
q

2mt

)
. Immediately from Lemma 1,

Lemma 4. Let v be the inherent noise term of FX ciphertext c designed for
x ∈ Rt. If

∥∥v
∥∥

∞ < Vmax, decryption works correctly, i.e., Dec(s, c) =
[
x
]
t
= x.

Next we examine correctness of the LowerClear and UpperClear algorithms.
For C1 and C2 given in Corollary 1, it holds that:

Lemma 5 (Lower Clear). Let ṽ be the inherent noise term of FX ciphertext c̃
designed for constant polynomial w = x+2mz ∈ R2mt with x ∈ R2m and z ∈ Rt.
Let v be the inherent noise term of the ciphertext c ← LowerClear(c̃) designed
for constant polynomial 2mz ∈ 2mR2mt. Then,

∥∥v
∥∥

∞ ≤ ∥∥ṽ
∥∥

∞ + VLC, where
VLC = C2m+l−1

1 V + LC2m+l−2
1 C2.
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Proof. Since algorithm LowerClear is a homomorphic version of algorithm
LowerClearPlain, first, we show that LowerClearPlain computes 2mz given w =
x + 2mz. The key observation is the following simple fact [10,19]: if w is equal
to b ∈ {0, 1} mod 2i then w2 is equal to the same b mod 2i+1 for any inte-
ger i ≥ 1. So, if w has bit decomposition (b2m+l−1, . . . , b0)2 then by repeat-
ing squaring (2m + l − 1) times against it, we get w0 with bit decomposition
(0, · · · , 0, b0)2. By repeating the procedure for w − w0 = (b2m+l−1, · · · , b1, 0)2,
we get w1 with bit decomposition (0, · · · , 0, b1, 0)2: Multiply w − w0 by 1

2 to
get (0, b2m+l−1, · · · , b2, b1)2, repeat squaring (2m + l − 2) times against it to get
(0, · · · , 0, b1)2, and multiply back it by 2 to get (0, · · · , 0, b1, 0)2. LowerClearPlain
(w) repeats in this way to extract all least m bits b0, b1, · · · , bm−1 of w in
the form of integers w0 = (0, · · · , 0, b0)2, w1 = (0, · · · , 0, b1, 0)2, . . . , wm−1 =
(0, · · · , 0, bm−1, 0, · · · , 0)2 and gets the least m-bit x of w as x =

∑m−1
i=0 wi.

Then we get desired 2mz = w − x. Since LowerClearPlain has 2m + l − 1 levels
of nested multiplications, by Corollary 1 we get the claimed noise bound VLC on
the noise occurred by its homomorphic evaluation LowerClear. �

Similarly, we have:

Lemma 6 (Upper Clear). Let ṽ be the inherent noise term of FX ciphertext
c̃ designed for constant polynomial u = z + ty ∈ R2mt with z ∈ Rt and y ∈ R2m .
Let v be the inherent noise term of the ciphertext c ← UpperClear(c̃) designed
for constant polynomial z ∈ Rt. Then,

∥∥v
∥∥

∞ ≤ ∥∥ṽ
∥∥

∞ + VUC, where VUC =
C2m+l−1

1 V + LC2m+l−2
1 C2.

Proposition 1 (Additive Noise of FX scheme). Let v and v′ be inherent
noise terms of FX ciphertexts c and c′, designed for x and x′ ∈ Rt, respectively.
Let vadd be the inherent noise term of cadd = Add(c, c′) designed for

[
x + x′]

t
∈

Rt. Then,
∥∥vadd

∥∥
∞ ≤ ∥∥v

∥∥
∞ +

∥∥v′∥∥
∞.

Proof. This is a restatement of Lemma 2. �

Proposition 2 (Multiplicative Noise of FX scheme). Let v and v′ be inher-
ent noise terms of FX ciphertexts c and c′, designed for x and x′ ∈ R2m+l ,
respectively. Suppose

∥∥v
∥∥

∞,
∥∥v′∥∥

∞ < V . Let vmult be the inherent noise term of
cmult ← Mult(c, c′, evk) designed for

[⌊
2−m

[
xx′]

2mt

⌋]
t
∈ Rt. Then,

∥∥vmult

∥∥
∞ ≤

δt(2 + 4δBkey)V + δ2Bkey(Bkey + 4 · 2mt2) + lwδwBerr + 2−mVLC + VUC.

Proof. We use notation in Fig. 2. For c̃ = FV(2mt).Mult(c, c′, γ) by Lemma 3 we
have c̃0 + c̃1s = Δ2−m

[
xx′]

2mt
+ v + qα with

∥∥v
∥∥

∞ ≤ δ2mt(2 + 4δBkey)V +
δ2Bkey(2Bkey + 4 · 22mt2) + 2−1δlwwBerr.

Then, by Lemma 5 for d ← LowerClear(c̃) we have

d0 + d1s = Δ2−m
(⌊[

xx′]
2mt

2m
⌋
2m

)
+ v + w + qα′
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with
∥∥w

∥∥
∞ ≤ VLC. Dividing by 2m,

1
2m

d0 +
1

2m
d1s = Δ2−m

(⌊[
xx′]

2mt

2m
⌋)

+
v

2m
+

w

2m
+

q

2m
α′

= Δ2−m
(⌊[

xx′]
2mt

2m
⌋

+ tα′
)

+
v

2m
+

w

2m
.

Hence, rounded e =
([⌊

1
2m d0

⌉]
q
,
[⌊

1
2m d1

⌉]
q

)
must satisfy

e0 + e1s = Δ2−m
(⌊[

xx′]
2mt

2m
⌋

+ tα′
)

+
v

2m
+

w

2m
+ w′

with
∥∥w′∥∥

∞ ≤ 1
2 (1 + δBkey). Lemma 6 shows for cmult = UpperClear(e),

cmult,0+cmult,1s = Δ2−m ·[⌊
[
xx′

]
2mt

2m

⌋]
t
+ v

2m + w
2m +w′+w′′+qβ with

∥∥w′′∥∥
∞ ≤

VUC.
Accumulated noise z = v

2m + w
2m + w′ + w′′ satisfies

∥∥z
∥∥

∞ ≤ 2−m(δ2mt(2 + 4δBkey)V + δ2Bkey(2Bkey + 4 · 22mt2) + 2−1δlwwBerr

)

+ 2−mVLC + 2−1(1 + δBkey) + VUC

≤ δt(2 + 4δBkey)V + δ2Bkey(Bkey + 4 · 2mt2) + lwδwBerr + 2−mVLC + VUC

�

By Propositions 1 and 2 we have

Theorem 1. The FX scheme of parameter q, l,m can fully homomorphically
compute additions and multiplications of encrypted fixed point numbers x̃ =
2−mx for x ∈ Z2m+l with suitable choice of parameters that makes the underlying
FV scheme (of parameter q, 22m+l) fully homomorphic. Here, addition of fixed
point numbers x̃ = 2−mx and ỹ = 2−my is such that x̃ + ỹ = 2−m

[
x + y

]
2m+l

and their multiplication is such that x̃ · ỹ = 2−m
([⌊

2−m
[
x · y

]
22m+l

⌋]
2m+l

)
.

Efficiency. We estimate efficiency of homomorphic operations of FX scheme
of parameter q, l,m. Addition Add(c, c′) is done by one addition of FV(q, 2mt)
scheme. We estimate complexity of multiplication Mult(c, c′, γ) in terms of “mul-
tiplicative depth” and “multiplicative number”. The multiplicative depth means
the required depth of nested multiplications of the underlying FV scheme to
perform the target operation. It determines noise growth due to the target
operation and larger noise requires larger ciphertext modulus. Thus, the mul-
tiplicative depth dominates space complexity of the target operation. On a
while, the multiplicative number means the required total number of multi-
plications of the underlying FV scheme to perform the target operation. It
dominates time complexity of the target operation. By inspection, complex-
ity of Mult(c, c′, γ) operation is dominated by UpperClear(e). The multiplicative
depth of UpperClear is 2m+ l − 1 and the multiplicative number of UpperClear is
(2m + l − 1) + · · · + (m + l) = 1

2 (3m + 2l − 1)(m + l). Thus, roughly estimated,
space and time complexity of multiplication Mult(c, c′, γ) is linear and quadratic
to the logarithmic of precision of fixed point numbers, respectively.
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4 Greater-Than Bit Extraction

As an application of our FX scheme, we consider the problem of comparison of
magnitude of two encrypted numbers. Suppose we have two encrypted numbers
Enc(x1) and Enc(x2). Define a bit b to be 1 if x1 > x2 and 0 otherwise. We want
to compute an encryption Enc(b) of the bit b given only ciphertexts Enc(x1) and
Enc(x2) without knowing the secret key. In the literature [13,14] such problem
is tackled by Greater-Than protocol based on (such as) the one given by Golle
[11]. Let D ⊂ Z be a range that possible xi’s belong to. Their protocol is based
on the fact that if x1 > x2, there exists a positive integer i such that x1 =
x2+i. To establish security, the protocol requires O(

∣∣D∣∣) encryptions and O(
∣∣D∣∣)

homomorphic additions among them and needs an interaction with secret key
holder. We show that, by using the FX scheme, we can compute the greater-
than bit encryption Enc(b) given only Enc(x1) and Enc(x2) in polylogarithmic
complexity of

∣∣D∣∣, neither knowing the secret key nor interaction with secret key
holder.

First, we describe procedure MSb(c), that computes an encryption of the
most significant bit of x ∈ Rt, given a FX(q, l,m) ciphertext c of some fixed
point number x̃ = 2−mx. The point is that one can multiply any fixed point
numbers by 0.5 in FX scheme. First it homomorphically extracts the msb b of
x in the form y = (b, 0, . . . , 0)2 using similar method as UpperClear(c). Then, it
repeats taking half of y homomorphically, i.e., computing 0.5 × Enc(y), until we
get an encryption of MSb(x) = (0.5)l−1y = (0, . . . , 0, b, 0, . . . , 0)2 (here, 0 repeat
m times after b) that encodes a fixed point number b.0, as desired. Figure 5 gives
a description of MSb.

Using MSb(·), it is straightforward to compute an encryption of greater-than
bit b indicating x1 > x2, given c1 = Enc(x1) and c2 = Enc(x2). Basically it
simply computes MSb(c2 − c1). If x1 and x2 represent signed numbers, we need

MSb (c, k = 0) : {returns encryption of b.0 for the (l + m − k)-th bit b of x (0 ≤ k < l).}
d ← FV(2mt).Encpk(0)
For i ∈ [1..(m + l − k)]:

di ← FV(2mt).Add(c, −d)

For j ∈ [1..(2m + l − i)]: di ← FV( 2mt
2i−1 ).Mult(di, di)

d ← FV(2mt).Add(d, di)
d ← dm+l−k, h ← FX.Enc(2m−1) {h encrypts “0.5”}
Repeat l − 1 − k times: d ← h · d {taking half of d}
return d.

GTb (c1, c2) : {returns an encryption of b.0 where a bit b is 1 if x1 > x2 or 0 otherwise}
one ← FX.Enc(2m) {ciphertext one encrypts “1.0”}
d1 ← MSb(c2 − c1), d2 ← MSb(c2), s0 ← MSb(c1), s1 = d2

same sign ← s0 · s1 + (one − s0) · (one − s1)
{same sign encrypts 1.0 if x1 and x2 have the same sign, or encrypts 0.0 otherwise}
return d ← same sign · d1 + (one − same sign) · d2.

Fig. 5. The MSb and GTb algorithms
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also to take care of their signs. If x1 and x2 have the same sign, the greater-than
bit b is equal to MSb(x2 − x1). Otherwise, b = MSb(x2). Figure 5 gives also a
description of GTb algorithm, in which FX.Add(c, c′) (or FX.Mult(c, c′)) is simply
written as c + c′ (or c · c′, respectively).

MSb(c) needs (m+l)2 Mult of the underlying FV scheme. So GTb(c1, c2) needs
roughly 3(m + l)2 Mult of the FV scheme, that is polylogarithmic polylog(

∣∣D∣∣)
of the number of possible plaintexts

∣∣D∣∣ = 2m+l.

5 The Proposed Scheme FL

In this section, we construct a fully homomorphic encryption scheme for floating
point numbers, FL, using the GTb algorithm by FX. A floating point number
N is written as N = (−1)sf2e, where s ∈ {0, 1} is the sign, f ∈ [1, 2) is the
significand and e ∈ Z is the exponent of N . Product N ′′ = (−1)s

′′
f ′′2e

′′
of two

floating point numbers N = (−1)sf2e and N ′ = (−1)s
′
f ′2e

′
is computed as

follows. The new sign s′′ is XOR of signs s and s′, i.e. s′′ = (1 − s)s′ + (1 − s′)s.
Significands are multiplied and exponents are added, f ′′ = ff ′ and e′′ = e + e′.
If f ′′ > 2, we need to normalize the result as f ′′ = f ′′/2 and e′′ = e′′ + 1.

Computation of sum N ′′ = (−1)s
′′
f ′′2e

′′
of two floating point numbers N =

(−1)sf2e and N ′ = (−1)s
′
f ′2e

′
is more complicated since we need to adjust the

point position and to consider several cases as follows.

Add00: If s = s′ and e > e′, let s′′ = s, f ′′ = f + 2e′−ef ′, and e′′ = e. If f ′′ > 2, let
f ′′ = f ′′/2 and e′′ = e′′ + 1.

Add01: If s = s′ and e ≤ e′, let s′′ = s, f ′′ = 2e−e′
f + f ′, and e′′ = e′. If f ′′ > 2, let

f ′′ = f ′′/2 and e′′ = e′′ + 1.

Add11: If s �= s′ and e > e′, let s′′ = s, f ′′ = f − 2e′−ef ′, and e′′ = e. While f ′′ < 1, do
f ′′ = 2f ′′, e′′ = e′′ − 1.

Add12: If s �= s′ and e < e′, let s′′ = s′, f ′′ = f ′ − 2e−e′
f , and e′′ = e′. While f ′′ < 1,

do f ′′ = 2f ′′, e′′ = e′′ − 1.
Add101: If s �= s′, e = e′ and f > f ′, let s′′ = s, f ′′ = f − f ′, e′′ = e. While f ′′ < 1, do

f ′′ = 2f ′′, e′′ = e′′ − 1.
Add102: If s �= s′, e = e′ and f < f ′, let s′′ = s′, f ′′ = f ′ − f , and e′′ = e′. While

f ′′ < 1, do f ′′ = 2f ′′, e′′ = e′′ − 1.
Add100: If s �= s′, e = e′ and f = f ′, let s′′ = 0, f ′′ = 1.0, e′′ = 0.

5.1 The Scheme FL

Parameters. Consider a floating point number N = (−1)sf2e. The FL scheme is
parameterized by three parameters q, m and l. The parameter q is the ciphertext
modulus. Parameters m and l are such that 1+m is the bit-length of significand
f and l is the bit-length of exponent e (excluding the sign-bit).
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Building blocks. The scheme FL encrypts each part of sign s, significand f
and exponent e of a floating point number N into a triple of ciphertexts
([|s|]s, [|f |]f , [|e|]e), using three FX schemes FXs, FXf and FXe that share a same
ciphertext modulus q and a same key pair (pk, sk).

– FXs : FX(q, 1, 0) scheme for the sign s
– FXf : FX(q, 2,m) scheme for the significand f
– FXe : FX(q, l + 1, 1) scheme for the exponent e

Although bit-length of the significand f is 1 + m, we use FX(q, 2,m) scheme for
f to take care of carries that occurs among addition f + f ′. Similarly, we use
FX(q, l + 1, 1) scheme for the exponent e of bit-length l, taking care of its sign.

Scheme Description. Figure 6 shows the first part, i.e. Keygen, Enc and Dec
algorithms, of our FL scheme.

Keygen () : return (sk = s, pk = (a, b), evk = (a, b)) ← FXs.Keygen().
{ The key (sk, pk, evk) will be shared among the three schemes FXs, FXf and FXe. }

Enc (pk, N = (s, f, e) ∈ R2 × R22+m × R2l+2) :
[|s|]s ← FXs.Enc(pk, s), [|f |]f ← FXf.Enc(pk, f), [|e|]e ← FXe.Enc(pk, e)
return c = ([|s|]s, [|f |]f , [|e|]e).

Dec (sk, c = ([|s|]s, [|f |]f , [|e|]e)) :
s ← FXs.Dec(sk, [|s|]s), f ← FXf.Dec(sk, [|f |]f), e ← FXe.Dec(sk, [|e|]e)
return N = (s, f, e).

Fig. 6. The first part of FL algorithms

Conversion. Note that we can publicly and efficiently convert ciphertexts,
keeping its underlying plaintext unchanged, between FX schemes that share
a same ciphertext modulus q and a same key pair (pk, sk). In fact, suppose
two schemes FX(q, l,m) and FX(q, l′,m′) share a same ciphertext modulus q
and a same key pair (pk, sk). Let c = (c0, c1) be a ciphertext in FX(q, l,m)
scheme that encrypts x ∈ Rt: c0 + c1s ≡ q

22m+l x + v (mod q). Multiplying c by
22(m−m′)+(l−l′) homomorphically, we get a new ciphertext d = (d0, d1) satisfy-
ing d0 + d1s ≡ q

22m′+l′ x + v′ (mod q) that encrypts x ∈ Rt′ as a ciphertext in
FX(q, l′,m′) scheme. Here note that we can multiply c by 22(m−m′)+(l−l′) homo-
morphically, even if 2(m − m′) + (l − l′) is a negative integer, since we are using
the FX scheme that can treat an encryption of “0.5”.

Figure 7 shows the second part, i.e. Mult and Add algorithms, of FL scheme,
in which conversions between, say [|b|]e and [|b|]f , are implicit.

A ciphertext of the FL scheme of parameter (q,m, l) is just a triple of cipher-
texts of three FX schemes that share a same ciphertext modulus q and a same key
pair (pk, sk). Recall among those three FX schemes, ciphertexts in one scheme
can be publicly converted into another scheme ciphertext, keeping its underly-
ing plaintext unchanged. So, we can view the triple of ciphertexts just a set of
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Mult (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) :
[|s |]s ← [|1.0 − s|]s · [|s |]s + [|s|]s · [|1.0 − s |]s, [|f |]f ← [|f |]f · [|f |]f , [|e |]e ← [|e|]e + [|e |]e
[|b|]f ← MSb([|f |]f) {the m+2-th bit of f }
[|f |]f ← [|b|]f · [|0.5|]f · [|f |]f + [|1.0 − b|]f · [|f |]f ,
[|e |]e ← [|b|]e · [|e + 1.0|]e + [|1.0 − b|]e · [|e |]e
return c = ([|s |]s, [|f |]f , [|e |]e).

Add (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) :
[|s |]s ← [|s|]s · [|s |]s + [|1.0 − s|]s · [|1.0 − s |]s, return IfThenElse([|s |],Add0(c, c ),Add1(c, c )).

Add0 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s }
[|b|]e ← GTb([|e|]e, [|e |]e), ([|s |]s, [|f |]f , [|e |]e) ← IfTenElse([|b|],Add00(c, c ),Add01(c, c ))
[|d|]f ← MSb([|f |]f) {the m+2-th bit of f }
[|f |]f ← [|d|]f · [|0.5|]f · [|f |]f + [|1.0 − d|]f · [|f |]f ,
[|e |]e ← [|d|]e · [|e + 1.0|]e + [|1.0 − d|]e · [|e |]e, return c = ([|s |]s, [|f |]f , [|e |]e).

Add00 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e > e }
[|s |]s ← [|s|]s, [|e |]e ← [|e|]e, [|f |]f ← [|f |]f + RightShift([|f |]f , [|e − e |]e)
return c = ([|s |]s, [|f |]f , [|e |]e).

Add01 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e ≤ e }
[|s |]s ← [|s|]s, [|e |]e ← [|e |]e, [|f |]f ← [|f |]f + RightShift([|f |]f , [|e − e|]e)
return c = ([|s |]s, [|f |]f , [|e |]e).

Add1 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s }
[|be|]e ← GTb([|e|]e, [|e |]e), c ← IfThenElse([|be|],Add11(c, c ),Add1a(c, c ))
return Normalize(c ).

Add11 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e > e }
[|s |]s ← [|s|]s, [|e |]e ← [|e|]e, [|f |]f ← [|f |]f − RightShift([|f |]f , [|e − e |]e)
return c = ([|s |]s, [|f |]f , [|e |]e).

Add1a (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e ≤ e }
[|be|]e ← GTb([|e |]e, [|e|]e), return IfThenElse([|be|],Add12(c, c ),Add10(c, c ))

Add12 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e < e }
[|s |]s ← [|s |]s, [|e |]e ← [|e |]e, [|f |]f ← [|f |]f − RightShift([|f |]f , [|e − e|]e)
return c = ([|s |]s, [|f |]f , [|e |]e).

Add10 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e = e }
[|bf |]f ← GTb([|f |]f , [|f |]f), return IfThenElse([|bf |],Add101(c, c ),Add10a(c, c ))

Add101 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e = e , f > f }
[|s |]s ← [|s|]s, [|e |]e ← [|e|]e, [|f |]f ← [|f |]f − [|f |]f , return c = ([|s |]s, [|f |]f , [|e |]e).

Add10a (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e = e , f ≤ f }
[|bf |]f ← GTb([|f |]f , [|f |]f), return IfThenElse([|bf |],Add102(c, c ),Add100(c, c ))

Add102 (c = ([|s|]s, [|f |]f , [|e|]e)), c = ([|s |]s, [|f |]f , [|e |]e)) : {s = s , e = e , f < f }
[|s |]s ← [|s |]s, [|e |]e ← [|e |]e, [|f |]f ← [|f |]f − [|f |]f , return c = ([|s |]s, [|f |]f , [|e |]e).

Add100 (c, c ) : return c = ([|0|]s, [|1.0|]f , [|0.0|]e). {s = s , e = e , f = f}
Normalize ([|s|]s, [|f |]f , [|e|]e) :
Repeat m times:

[|b|]f ← MSb([|f |]f , 1) {the m+1-th bit of f }
[|f |]f ← [|b|]f · [|f |]f + [|1.0 − b|]f · [|2.0|]f · [|f |]f
[|e|]e ← [|b|]e · [|e|]e + [|1.0 − b|]e · [|e − 1.0|]e

return ([|s|]s, [|f |]f , [|e|]e).
RightShift ([|a|]f , [|e|]e) : {e > 0}

r ← [|1.0|]f
For i in [1..(l − 1)]: {l is the bit-length of e}

r ← r · r, [|b|]e ← MSb([|e|]e, i), r ← [|b|]f · [|0.5|]f · r + [|1.0 − b|]f · r
return r · [|a|]f .

IfThenElse ([|b|], ([|s|]s, [|e|]e, [|f |]f), ([|s |]s, [|e |]e, [|f |]f)) :
[|s |]s ← [|b|]s · [|s|]s + [|1.0 − b|]s · [|s |]s
[|e |]e ← [|b|]e · [|e|]e + [|1.0 − b|]e · [|e |]e
[|f |]f ← [|b|]f · [|f |]f + [|1.0 − b|]f · [|f |]f
return ([|s |]s, [|e |]e, [|f |]f).

Fig. 7. The second part of FL algorithms.
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independent three ciphertexts under a single FXE4FX scheme. Especially, the FL
scheme is also semantically secure and fully homomorphic with suitable choice
of parameters that makes the underlying FX(q,m, l) scheme so.

Theorem 2. The FL scheme of parameter q, l,m can fully homomorphically
compute additions and multiplications of encrypted floating point numbers N =
(−1)sf2e with suitable choice of parameters that makes the underlying FX scheme
(of parameter q, l,m) fully homomorphic.

Efficiency. Multiplicative depth, that is the depth of nested multiplications of
the underlying FX scheme, of Mult(c, c′) is O(m), dominated by the complexity of
MSb in it. Multiplicative depth of Add(c, c′) is dominated by depth of Normalize
and RightShift, which are O(ml) and O(l2), respectively. Hence multiplicative
depth of addition Add(c, c′) is O(ml + l2).
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Abstract. The Bounded Retrieval Model (BRM) was proposed at TCC
2006 (independently by Dziembowski and Di Crescenzo et al.). Essen-
tially, the main idea of this model is to design cryptographic schemes
with secret keys that are so large that it is infeasible for the adversary
to steal them. One of the main technical problems of this idea is that it
by definition requires the users to store large amounts of secret data on
their disks.

In this paper we put forward a technique for dealing with the problem
of this large space consumption for protocols in BRM. More precisely,
we propose a method to derive keys for such protocols on-the-fly from
weakly random private data (like text documents or photos, users keep
on their disks anyway for non-cryptographic purposes) in such a way
that no extra storage is needed. We prove that any leakage-resilient pro-
tocol (belonging to a certain, arguably quite broad class) when run with
a key obtained this way retains a similar level of security as the original
protocol had. Additionally, we guarantee privacy of the data the actual
keys are derived from. In other words: the adversary obtains essentially
no information about the private data that is used for the key derivation.
Our techniques are based on the disperser graphs.

We have also implemented an experimental test of efficiency of our
protocol. For arguably practical parameter settings the performance of
the dispersing procedure is satisfactory.

1 Introduction

One of the biggest threats for the security of the real-life computer systems
are the malicious software attacks (also called the advanced persistent threats).
Obviously even very secure cryptographic schemes get completely broken if the
machines on which they are executed get compromised by viruses, or Trojan
horses. One of the reasons for this, is that the attacker can usually easily steal the
secret key K used by the scheme, and hence create his own identical copy of the
victims machine. One attractive solution for this problem is a technique called
the Bounded Retrieval Model (BRM) [5,8], which is based on the following idea:
design cryptosystems where the secret key K is so large that it is infeasible for
the adversary to download it completely from the infected machine. Additionally,
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it is required that the cryptosystems in the BRM remain secure even if a large
amount of information about K leaks to the adversary. The term “amount of
information” is usually understood as the number of bits the adversary can
download from the machine on which K is stored. To be as realistic as possible,
it is assumed that the adversary can use the computing power of the attacked
machine and compute any (efficiently-computable) function Leak on K, and
download only the output Leak(K), or, more generally, he can adaptively choose
a number of functions Leak1, . . . ,Leakk such that |Leak1(K)|+· · ·+|Leakk(K)| ≤
λ, and learn (Leak1(K), . . . ,Leakk(K)).

Since its invention BRM has gained a noticeable attention in the research
community. In particular, it has been shown how to construct the following
cryptographic primitives in this model: the key-agreement [4,8], signature and
identification schemes [2], public-key encryption schemes [1], and the secret-
sharing schemes [9]. Despite their theoretical attractiveness, up to our knowledge,
these techniques have never been used in the real-life. One of the reasons for
this is that using them comes at a non-trivial price, namely the users need
to store large random keys on their machines. Note that these keys need to be
significantly larger than what the adversary is able to retrieve from the machine.
Hence in practice, their sizes would probably be of an order of several gigabytes.
This is prohibitively expensive for many real-life applications (for example a
typical smart phone has memory of a size 32 GB at most). This means that
computers running BRM protocols are clogged with huge blobs of random and
otherwise useless data.

In this paper we propose a twist to the BRM that overcomes this problem.
Our idea is to design schemes where the large key K is derived from the private
data of the user. Moreover, this is done on-the-fly (that is, it is not necessary
to keep them on disk, and they may be computed when a relevant portion of
the key is requested) from data a user wants to store on his disk for any other
reason. The private user data usable in this context may include: text documents,
photos, audio files, or other media.

Several issues need to be addressed in this idea. Firstly, it is easy to see that
such data, when viewed as a source of randomness, while being unpredictable,
to a degree, for an adversary, is certainly not uniformly random (e.g., note that
certain segments in some file formats may be fixed or come from a prescribed
set of values). Secondly, some protocols assume that BRM keys are fully known
to other trusted parties, e.g., a bank. This raises another problem with the idea
of using randomness from private user data. We need to guarantee that if the
user uses a key derived in this way, the privacy of his data will not be violated.

1.1 Overcoming Weak Expectations

A study of cryptographic applications that retain a comparable level of security
when fed with weakly random sources instead of ones having uniform distri-
butions was initiated by Barak et al. [3]. There, the authors explore the idea
of applying universal hash functions to key derivation. The renowned Leftover
Hash Lemma (LHL) [10] states that families of such functions constitute good
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randomness extractors. Specifically, when applied to a source of min-entropy k,
an extractor of this form produces m bits which are δ-close (in terms of statisti-
cal distance) to uniform, as long as k ≥ m+2 log (1/δ). A key obtained this way
can be then used in a cryptographic application. The min-entropy loss of magni-
tude 2 log(1/δ) may be unacceptably large in some situations but, as shown by
Radhakrishnan and Ta-Shma [13], it cannot be prevented in general. However,
as argued by the authors, there exists a wide range of applications where the
entropy loss can be cut down by the factor of 2 for a price of some security loss
in the application using non-uniform keys. This line of research was continued
by Dodis and Yu [7].

1.2 Sensitive Data

As already highlighted above building a cryptographic protocol on top of ran-
domness derived from private data bears an obvious risk of compromising that
data. One can, for example, imagine an artificial protocol that simply publishes
all accessible randomness. Also, a protocol in the BRM does not necessarily
guarantee protection of its key. Some fragments of a BRM key may be passed,
as a part of normal operating procedure, to an honest party that did not possess
the key in the first place. To give an example illustrating such a situation, one
can conceive of an authentication protocol in the BRM, which itself appears to
be folklore, based on Merkle tree [11]. There, a hash tree is built on an input
BRM key and the resulting hash from the root is then forwarded to a verifier
(say, a bank). This way a user can commit to his key which, in its entirety, is
only stored on user’s side for efficiency reasons. On the other hand, the verifier
may learn parts of the key when the user attempts to authenticate himself. In
order to do that, the verifier demands to be presented with hashes along some
path of his choice in the Merkle tree. Such a path includes data from the initial
BRM key and thus its fragment gets revealed to the verifier.

Now, if a BRM key used in this protocol is obtained from data stored on
disk then, clearly, the key derivation procedure should enjoy some kind of a
one-wayness property. If the procedure does not hide its input then a dishonest
verifier may attempt to recover the underlying data or, at least, he may gain
some partial knowledge. In this paper, we aim at a solution that allows a user
to protect his private and possibly sensitive data in this scenario. Namely, we
require that an adversary can hardly learn anything more about the data except
that he could otherwise achieve via leakage. Below, we refer to it as the privacy
requirement.

1.3 Our Contribution

In this paper, we give a new idea to overcome a problem with large space require-
ments in the BRM model. As a reminder: in the BRM one uses huge private keys
for purpose of leakage-resiliency. Here we describe an idea to derive a secret key
from private data (this could include text documents, videos, etc.). That content
is supposed to have high enough min-entropy, however it raises a problem with
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privacy: we do not want to disclose any sensitive data. Our construction fulfills
this expectation. So the private data remains secret even if the entire derived
key is compromised.

The secret key is being computed on-the-fly from private data so that no
extra memory is used to store the key. Access to the key is fast so one does need
to read limited portion of private data to compute some part of the secret key.

The main result shows that any cryptographic protocol belonging to a well
defined and quite broad class, that is: the class of game based protocols, is still
secure if we use a key derived from private data in place of a random key.

Seemingly, the problem of extracting an almost random key from sufficiently
random data can be easily solved, even in presence of leakage, using a well-known
primitive – namely, an average-case strong randomness extractor. Its definition
requires that for any two random variables X and I (where I can be viewed as
side information about X, i.e., a leak) such that the (conditional) min-entropy
of X given I (see (1) for a precise definition of conditional min-entropy) is
high enough, then the output of the extractor Ext(X,R) is statistically close
to uniform even given a short random seed R and the side information I, in
short:

(
Ext(X,R), R, I

) ≈ (U,R, I). Dodis et al. [6] extend the LHL to show
that universal hash functions constitute good average-case extractors retaining
nearly the same parameters as in the original LHL.

To derive a random key using the above tool one could simply pick R and
compute Ext(X,R) on his data X. To ensure that the key can be recovered on
demand in future it is also reasonable to store R on disk along with the regular
data X. This, however, means that the seed is exposed to leakage and, since it is
short, it can be fully learnt by the adversary issuing an appropriate leakage query.
That said, we may as well assume that in our setting R is fixed and publicly
known, which in turn severely hinders our attempt to directly apply extractors.
This is because it enables the adversary to leak from X adaptively, depending on
R. Note that such a possibility is not captured by the aforementioned definition
of average-case extractor where I and X are independent of R. For the very
same reason which precludes existence of seedless extractors in general, we can no
longer expect that Ext(X,R) is close to uniform when conditioned on I = IR. On
the other hand, one could hope that the conditioning does not degrade the min-
entropy of extractor’s output by more than the length of allowed leakage. This
would still be acceptable for most BRM applications that do not crucially rely on
full uniformity of their keys. In fact, in this aspect the definition of randomness
extractor is even stronger than we actually require – we could resort to a weaker
notion of a condenser. Either way, a simple argument leads to the conclusion
that keys derived this way can replace original BRM keys without influencing
security. However, when we move to discussing privacy of the underlying data
in this solution, the reasoning breaks and one major setback becomes evident.
One could argue that if Ext(X,R) disclosed some information about the private
data X then, by setting I to be this information, we would produce a correlation
between Ext(X,R) and I, thus violating the condition about Ext(X,R) being
close to uniform and independent of I. This is not valid. Namely, when R is
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known a priori then given Ext(X,R) it may be possible to learn some non-
trivial information about X. Even more so when we are additionally given a
leak I = IR – this could, for instance, enable recovering X in full by “inverting”
the function Ext. IR would serve as a hint in guessing which of the possible
preimages of Ext(X,R) should be picked. Overall, randomness extractors do not
guarantee that the privacy requirement is met.

Let us also observe that, for efficiency reasons, not every randomness extrac-
tor would be equally well suited for our application. It would certainly be disad-
vantageous if the derivation procedure required supplying the whole input X (or
almost the whole) in order to compute even a small portion of the derived key
on demand. And the ability to calculate a selected piece of the key efficiently on-
the-fly seems to be a natural requirement in the BRM. To achieve it, we would
need an extractor with the property that for fixed R every single bit of Ext(X,R)
depends only on a small number of input bits X. This is called locality. As shown
by Vadhan [14] one can build locally computable extractors using a two-stage
“sample-then-extract” technique where first a subset of input bits is selected
and then an inner randomness extractor is applied to this subset. The validity of
such an approach can be established using a far-reaching, yet intuitive, result by
Nisan and Zuckerman [12] which asserts that a random sample of a sufficiently
random (i.e., possessing high enough min-entropy) string of bits is likely to be
sufficiently random (to have high min-entropy).

Another idea leading to an immediate solution of the problem we stated
involves hashing the input data. Let us assume the existence of a random
oracle computing a hash function H which outputs short random blocks. To
produce a long random key, we need to invoke H multiple, say �, times and
collect the outputs into one string. This could be done by simply evaluating
H(1,X),H(2,X), . . . ,H(�,X) for the same input data X. By the definition of a
random oracle these values are uniformly random and independent.

To address the issue related to efficiency and locality, we propose a different
way of deriving keys from private data. Our design is quite straightforward –
it boils down to splitting all the data into consecutive blocks of the same fixed
length n (say, n = 4kB). A block could naturally correspond to the smallest
allocation unit in a filesystem present on a user’s device. Then, we use hash-
ing to extract randomness from blocks. A näıve method to implement it would
be computing hashes block by block. This approach, albeit simple, has a sig-
nificant drawback. The only assumption we make about the input data is that
its joint min-entropy is not too small (this measures the a priori knowledge of
the adversary about the private data, before leakage is taken into account). We
do not demand however that the randomness is equidistributed across all the
blocks. Therefore, it may happen that even for high overall min-entropy, e.g.,
1
2�n where � is the number of blocks, there exist �/2 blocks which, from the
adversary’s point of view, are constant. Consequently, the corresponding parts
of a derived key carry no randomness at all and are known to the adversary.

To circumvent the problem caused by blocks with low min-entropy we
increase the number of blocks a single block of the derived key depends on. That
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is, each hash is calculated by taking not one but d blocks of input. Additionally,
we amplify the likelihood of the event that there is at least one high min-entropy
block among the selected d-tuple. This step actually introduces a new flavor to
the reasoning. Namely, we argue the assumption on joint min-entropy of the
input blocks with large probability implies that there exists a large number of
blocks each having high min-entropy. This statement may seem rather natural
and intuitive yet it is somewhat tricky to prove. A related problem of extracting
random blocks was considered before by Nisan and Zuckerman [12] and Alwen,
Dodis, and Wichs [4].

The fact that there should be plenty of sufficiently random blocks in the input
allows us to pick d-tuples of block randomly. However, to recreate portions of
the derived on-the-fly one would have to store the auxiliary randomness used to
select those tuples, which may not be acceptable. Instead, we suggest employing
dispersers – d-regular bipartite graphs with the property that any sufficiently
large set of vertices on the left side is connected to almost all vertices on the
right side. Every disperser of this kind induces a selection of d-tuples.

Clearly, increasing the degree of regularity d of a disperser reduces locality
of the key derivation method. This however comes as a trade-off. We use a
simulation-based argument to prove that any protocol using the derived key
can be simulated by a protocol operating on an original key with O(n�/d) of
additional leakage.

1.4 Implementation and Efficiency

As an evidence of reasonable efficiency of our solution we provided a C++ imple-
mentation of the disperse procedure. The results, which turned out to be promis-
ing in terms of practical application, are given in the full version of the paper.
More precisely, we addressed the following practical issues:

(i) What is the efficiency of our protocol relative to the degree of the disperser
graph?

(ii) What is the lower bound for the degree of the disperser graph necessary to
preserve security of a leakage-resilient protocol executed on a key derived
by our procedure?

2 Preliminaries

We assume the existence of a random oracle, i.e., perfectly random function

H : {0, 1}∗ → {0, 1}n

which can be evaluated only by querying a certain oracle H. At the beginning, all
values of H are uniformly distributed, in particular, unpredictable. Throughout
the protocols operation, one can issue a query H(m) obtaining the value of H(m)
and gaining no other information.
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We say that a function f is H-randomized (or simply randomized if no con-
fusion can arise) if its result is dependent on a certain random oracle H. We
denote a H-randomized function by f(−,H).

The min-entropy H∞ of a random variable X is defined as:

H∞(X) def= − log(max
x

Pr(X = x)).

For two random variables X,Y the conditional min-entropy H̃∞(X|Y ) [6] is
given by the formula:

H̃∞(X|Y ) def= − log
(
Ey2−H∞(X|Y =y)

)
. (1)

This definition turns out to preserve the natural interpretation of min-entropy
as maximal probability of success in guessing X given Y , i.e., for any algorithm
A we have:

Pr(A(Y ) = X) = Ey Pr(A(y) = X)

≤ Ey2−H∞(X|Y =y) = 2−H̃∞(X|Y ).

For R ∈ {0, 1}∗ a leakage oracle Ω is machine that takes as input R and
answers leakage queries – each ith of them consists of a description of a function
Leaki : {0, 1}M → {0, 1}λi . Each such a query is answered with Leaki(R). We
say that a machine M, that interacts with Ω, has λ-bounded access to Ω (or is
λ-bounded) if the total length of the outputs of the functions queried by M, i.e.
the sum of all the λi’s, is bounded by λ.

We denote by TMΩ(D)
λ the class of all probabilistic Turing machines equipped

with an adaptive access to a restricted leakage oracle Ω with the total leakage
of at most λ bits. Moreover, by TMΩ(D,H),H

λ,q we mean the subclass of TMΩ(D)
λ

equipped with an adaptive access to a leakage oracle ΩD,H together with addi-
tional q executions of H.

3 Key Derivation Procedure Based on Sensitive Data

Let n be a security parameter and let H : {0, 1}2n → {0, 1}n be a hash function
modeled as a random oracle. A function kdf : N × {0, 1}N → {0, 1}M that
depends on H (i.e. it is represented as a circuit that can make calls to H) is
called a key-derivation function. We now define, using the standard real-ideal
paradigm, what it means for kdf to be a secure. Let Z be an interactive machine,
called the environment, that takes as input a security parameter n and a string
Y ∈ {0, 1}M and outputs 0 or 1. Informally, the goal of Z is to distinguish
between the ideal and the real model.

In the ideal model the adversary is called the simulator and denoted S.
Assume Y ← {0, 1}M is chosen uniformly and given to the environment. The
simulator receives n from Z and then interacts with Z. The simulator has also
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access to a leakage oracle Ω(Y ) (for some parameter λ). The output of Z at the
end of this execution is denoted idealZ,S(n, λ,M).

In the real model the adversary A has access to H and a leakage oracle Ω(X),
where X is some (not necessarily uniform) random variable over {0, 1}N . The
leakage queries to Ω(X) can depend on H. The environment Z gets as input
Y := kdf(X) (note: it does not directly learn X), and then interacts with A.
The output of Z is denoted as realZ,A(k, kdf,X).

Definition 1. For a pair of functions (Λ, ε) we say that kdf : N × {0, 1}N →
{0, 1}M is a (Λ, ε)-secure key derivation function for sources of min-entropy κ if
for every efficiently-sampleable random variable X (with alphabet {0, 1}N ) such
that H∞(X) ≥ κ, for every λ-bounded adversary A there exists a Λ(λ)-bounded
simulator S such that

|Pr(realZ,A(n, kdf,X) = 1) − Pr(idealZ,S(n,M) = 1)| ≤ ε(n).

We say that kdf is (Λ, ε)-private for sources of min-entropy κ if for variable X
such that H∞(X) ≥ κ, and every λ-bounded machine A that gets as input k and
kdf(k,X) and interacts with Ω(X) there exists a Λ(λ)-bounded machine S that
interacts with Ω(X) such that

(Out(A(n, kdf(n,X)) � Ω(X)),X)
≈ε (Out(S(n,A) � Ω(X)),X)

4 Disperse as a Key Derivation Function

In this section we define a specific function Disperse. Then we prove that it is
both secure and private key derivation function. Before the actual definition
we will introduce dispersers: useful graph class that will be used later in our
construction.

4.1 Disperser Graphs

Throughout the whole construction we shall make use of bipartite right M -
regular graphs identified with functions σ : [N1] × [M ] → [N0] by the following
recipe. By Gσ we denote a bipartite graph G with the sets of vertices equal to
two disjoint sets [N0], [N1] and with edges going from n ∈ [N1] to σn

m ∈ [N0] for
any m ∈ [M ]. The following definition is crucial:

Definition 2. A bipartite graph G = (V 0 � V 1, E) is a right (K,L)-disperser
if for every set S ⊂ V 1 such that |S| = K the neighborhood N(S) satisfies
|N(S)| � L, i.e. the sets of size K expands into sets of size at least L.

We often make use of explicit �d-regular (�e, (1−η)�)-dispersers. We implicitly
assume that the numbers d, e satisfy d < 1, e < 1 and d + e > 1, i.e., the degree
of any vertex is non-trivially bounded by �d and moreover any set of vertices of
cardinality at least �e expands to a set of almost full cardinality (1 − η)� (here
we use the fact that d + e > 1). For the sake of completeness, we refer to those
assumptions as non-triviality of disperser. Namely:
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Non-triviality of Disperser. We say that a �d-regular (�e, (1 − η)�)-disperser
is non-trivial if the parameters d, e satisfy d < 1, e < 1 and d + e > 1.

For more details on dispersers and further definitions see full version of the paper.
In Fig. 1, we describe function Disperse explicitly. For the sake of simplicity,

we identify vertices of graph with labels they contain. An exemplary Disperse
function is shown in Fig. 2.

Fig. 1. Operation of dispersion function.

Fig. 2. An exemplary DisperseGσ
(D,H)

We now state our main result that for an appropriately chosen graph Gσ the
function DisperseGσ

is in fact private and secure for reasonable parameters.

Theorem 1. Let Gσ be a non-trivial �d-regular (�e, (1 − η)�)-right disperser
and H be a random oracle. Then for any η < p and κ = pn� the function
DisperseGσ

(−,H) : {0, 1}�n → {0, 1}�n is:

–
(
λ + �e(log q + log �), 2−n((p−η−λ)�+�e(log q+log �))

)
-private kdf,

–
(
λ + �e(log q + n), 2−n((p−η−λ−�e(log q+n))�+�e(log q+n))

)
-secure kdf.

Since the proof of this theorem is long, it is divided into three parts – at
the beginning it is shown that even under the presence of leakage, function
Disperse effectively hides the data underneath; then, basing on this result, privacy
property is proven; next security is shown.

Before proceeding to actual proofs we shortly elaborate about the bounds on
the parameters.



282 K. Durnoga et al.

Remark 1 (Efficiency of DisperseGσ
). It is important to note that in order to

obtain a single bit of a derived key one need process �d blocks of disk data. This
therefore constitutes a leakage-time trade-off for the operation of our function.
Namely reduction of d allows to compute a single bit of key more efficiently with
a cost of an increased parameter Δλ proportional to �e (recall that d + e > 1).

Remark 2 (Bounds on parameters). The bound η � p express natural require-
ments that the quality of disperser η should be superior to the entropy reserve
represented by p. The bound on q = 2o(�1−e)n corresponds to a robust, exponen-
tial bound on the random oracle query-based complexity of an adversary.

4.2 One-Wayness of Disperse

The main reason for which the Disperse procedure is introduced is its certain one-
wayness property, which states that given an output of Disperse, an adversary
computes a large part of the input only with negligible probability. This property
is expressed in the following lemma. We precede it with a necessary definitions
and lemmata.

Definition 3 (Bad query). Given a random variable D, a bipartite right d-
regular graph Gσ and a random oracle H we say that a random oracle query
H(b), submitted by some Turing machine A, is bad if the argument b equals
(i,Dσi

1
Dσi

2
. . . Dσi

d
) for some i ∈ {1, . . . , �}, i.e., the argument of random oracle

query equals one of the values defined by graph Gσ and a random variable D.

By BadA we denote the set of all bad queries. By indicesA we denote a
list of all pairs (k, ik) of indices k ∈ {1, . . . , q} and ik ∈ {1, . . . , �} such that
k is the smallest index of a bad random oracle query of A which is equal to
(ik,D

σ
ik
1

. . . D
σ

ik
δ

). Since the total number of queries is q and Gσ has 2� vertices,
we can describe the list indicesA using |indicesA| · (log � + log q) bits.

We start with the definition of a Guessing game which is tailored to be used
in the proof of Lemma 2.

Definition 4. Let (X,H) be random variables. A Guessing game against adver-
sary A consists of the steps described in Fig. 3.

Lemma 1. Let (X1, . . . , X�,H) be a random variable such that:

1. (X1, . . . , X�) and H are independent,
2. H is a vector of random independent N = 2δn+log � blocks of length n,
3. each Xi is n bits long,
4. H∞(X1, . . . , X�) = p�n for some 0 ≤ p ≤ 1.

Now let A be a randomized algorithm playing Guessing game with λ. Then, the
probability that A outputs all correct guesses (in both phases) is at most

2−n(k1+k2−(1−p)�)+λ

for k1 � (1 − p)�.
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Fig. 3. Definition of Guessing game

Proof. Suppose there exists algorithm winning the game with probability α. This
implies that α � 2λ ·β, where β is a probability of winning for some non-leakage
algorithm B. The inequality holds since B can simply guess the leakage.

Say that β1 is a probability of guessing k1 values from S1 for some non-
leakage algorithm B. Then the probability of guessing the whole X is at least β1 ·
2−(�−k1)n, since B can guess the missing bits. On the other hand, this probability
is not greater than 2−H∞(X), thus

β1 · 2−(�−k1)n � 2−pn�

β1 � 2−n(p�−�+k1).

Probability β2 of guessing the second phase of the game by an algorithm B can be
bounded by the same inequality, so β2 � 2−nk2 . Since X and H are independent,
the probability β that B wins both phases, is not greater than 2−n(p�−�+k1+k2).
As it was stated before, leakage λ can be simple guessed and α � 2λ · β, hence

α � 2−n(k1+k2−(1−p)�)+λ.

Lemma 2 (One-wayness of Disperse). Let Gσ be a �d-regular (�e, (1 − η)�)-
right disperser and D = (D1, . . . , D�) ∈ {0, 1}n� be a random variable of min-
entropy p�n. Then, the probability that an algorithm A(DisperseGσ

(D,H)) ∈
TMΩ(D,H),H

λ,q makes at least �e different bad queries satisfies:

Pr(|indicesA| � �e) � 2−n((p−η−λ)�)+�e(log q+log �)

for η � p and q = 2o(�1−e)n.
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Proof. Given an adversary A such that its associated list indicesA is longer
or equal to �e with probability ξ we construct a player PA in game
Guessing〈X1,...,X�〉,H (p, k1, k2, λLeak) for

(X1, . . . , X�) = (D1, . . . , D�)
k1 = (1 − η)�

k2 = �

λLeak = λ + �n + �e(log q + log �)

winning with probability ξ. Therefore, we conclude that

ξ < 2−n((p−η−λ)�)+�e(log q+log �)

by Lemma 1. The detailed construction of PA is described in Fig. 4.

Fig. 4. Implementation of a player PA

The first step is to show that a player PA follows the rules of the game:

Guessing 〈D1,...,D�〉,H (p, (1 − η) · �, �, λ + �n + �e(log q + log �)) .
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For this sake, we show that:

– Length of hint λLeak = |Leak(D1, . . . , D�,H)| is not greater than leakage λ of
the adversary A along with n� bits needed to feed the A and �e(log q + log �)
to handle bad queries. Hence λLeak = λ + �n + �e(log q + log �).

– Rules of the game requires that k1 � p, which follows from the assumptions.

Now, we need to show that PA: (a) guesses at least k1 elements in the first
phase with probability ξ and (b) guesses k2 = � elements in the second phase.
The claim (b) follows from directly from the definition of Leak(D,H). Namely,
Leak(D,H) contains the values of H(i,Dσi

1
. . . Dσi

�d
) for i = 1 . . . � which are

explicitly prohibited from being queried (Item 2 of the Game phase) and there-
fore can be guessed in the Second phase of operation of PA. In order to prove
(a) we use the fact that every bad query leads to the capability of guessing �d

associated Dσi
j
’s and apply the properties of disperser graphs. More precisely,

by the assumptions on A the length of indices′ is equal to �e with probability
ξ. In this case, the neighborhood of vertices labeled with indices′ = {i1, . . . , i�e}
consists of at least (1 − η)� (= k1) elements (using basic property of disperser
Gσ) and therefore these k1 elements D

ij

k for j ∈ {1, . . . , �e} and k ∈ {1, . . . , �d}
can be guessed in the First phase of operation of PA. We produced an adversary
that wins the First phase of the Guessing game with probability ξ and Second
phase with probability equals one. Thus, the whole game is won with probability
ξ. Considering upper bound given by Lemma 1 we conclude that:

ξ < 2−n((p−η−λ)�)+�e(log q+log �),

which ends the proof.

4.3 Privacy of Disperse

In this section, we show that Disperse is in fact a private key-derivation proce-
dure. The bottom line of the proof is an application of one-wayness together with
a careful design of leakage query. It is important to note that we significantly
use our computational model, where we can submit potentially non-polynomial
queries.

Theorem 2 (Privacy). Let Gσ be a �d-regular (�e, (1 − η)�)-right disperser,
D = (D1, . . . , D�) ∈ {0, 1}n� be a random variable of min-entropy p�n and η � p.
Then Disperse is (λ + �e(log q + log �), 2−n((p−η−λ)�)+�e(log q+log �))-private.

In order to give a proof, we shall construct a machine S such that for any
adversary A(DisperseGσ

(D,H)) ∈ TMΩ(D,H),H
λ,q the result of S(A) is indistin-

guishable from A(K) conditioned on D. We precede the construction by an
essential transformation of random oracles and leakage functions, which plays a
role of random oracle re-programming.
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Definition 5 (Twisted random oracle). Let H be a random oracle and L =
〈(arg1, v1), . . . , (argk, vk)〉 be a list of pairs of an argument argi together with
a potential value vi. We define a twisted random oracle H{L} to be an oracle
whose operation is described as follows:

H{L}(q) =

{
vi if q = argi for some i

H(q) otherwise.

In particular, given a random variable D, a random oracle H and a random
variable K = 〈K1, . . . ,K�〉 ∈ {0, 1}�n, by H{D Gσ−−→ K} we denote a random
oracle H{〈(Dσ1

i
. . . D

σ
deg(G)
i

,Ki)〉i=1...�}. Observe that if K ∼ U�n is independent

of H then the distributions of H{D Gσ−−→ K} and H are the same.

Construction of the Simulator. The operation of S(A), based on the description
of A, consists of the following steps described in Fig. 5.

Before giving a formal proof of statistical indistinguishability of output dis-
tributions, we give some clarifying remarks about consecutive steps of the con-
struction. Firstly, we should emphasize that in Step (2) we crucially use the
properties of our leakage model by querying leakage oracle with potentially non-
polynomial function simulating whole behaviour of A. Secondly, observe that in
Step (2) the simulator leaks only the indices of queries, not their actual argu-
ments as those can be observed during Step (3) of simulation. Thirdly, note that
in Step (3a) we need not perform any additional leakage apart from the value
of f , as f{D

Gσ−−→ K} can be obtained inside the leakage query as in Step (2).
Therefore the leakage excess consists merely of the list indicesA and consequently
Δλ = |indicesA|(log q + log �).

Proof (Proof of Theorem 2). We shall now argue that the simulator S con-
structed above satisfies the requirements of Theorem 2 for any adversary A.
Concretely, we prove that S perfectly simulates the execution of any adversary
A, unless |indicesA| � �e. Therefore, for any adversary A the output’s distribu-
tion of S(A) satisfies:

(Out(A(n, kdf(n,D)) � Ω(D)),D) ≈ε (Out(S(n,A) � Ω(D)),D)

where ε = Pr(|indicesA| � �e). Firstly, note that the execution of A inside
the leakage function indu (see Step (2)) is perfectly equivalent to an honest
execution of A as H{D Gσ−−→ K} is distributed equally to H. Consequently, the
actual simulation given in Step (3) differs from a perfect simulation only by
the condition on |indicesA|, as its perfectly equivalent to the one performed
during simulators leakage phase. This condition forces the return of ⊥ instead
of appropriate indicesA with probability Pr(|indicesA| � �e) = ε. Consequently,
we bound ε by a factor negligible (in a certain sense) in the security parameters.
Directly by applying Lemma 2 for an adversary A we see that:

ε = Pr(|indicesA| � �e) � 2−n((p−η−λ)�)+�e(log q+log �).

This completes the proof.
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Fig. 5. Implementation of Simulator

4.4 Security of Disperse

Security of our construction function arises from one-wayness of Disperse. We
explicitly show a simulator that simulates perfectly any given λ-bounded adver-
sary A, provided that a number of bad queries made by an adversary does not
exceed �e. This bound is violated only with negligible probability, and therefore
we claim our simulator fails with negligible probability as well.

Theorem 3 (Security). For every �d-regular (�e, (1 − η)�)-disperser Gσ, η � p

and q = 2o(�1−e)n, and H∞(D) = pn�, function DisperseGσ
is(

λ + �e(log q + n), 2−n((p−η−λ)�)+�e(log q+log �)
)
-secure kdf.
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Proof. Let X ∈ {0, 1}�n be a random variable of min-entropy at least p�n. We
need to construct a simulator S such that

|Pr(realZ,A(n,DisperseGσ
,X) = 1) − Pr(idealZ,S(n, �n) = 1)| ≤ ε(n),

Fig. 6. Implementation of S
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where ε(n) = 2−n((p−η−λ)�)+�e(log q+log �). On the high level we aim at simulating
the behaviour of A on a mock randomness XMock ∈ {0, 1}�n distributed equally
as X pretending that the result of DisperseGσ

(XMock,H) is equal to the random-
ness Y that the environment obtains in the ideal scenario. The precise construc-
tion of S ∈ TMΩ(Y )

λ+�e(log q+n) for Y ∼ Unl simulating execution of A ∈ TMΩ(X)
λ

is given in Fig. 6.

To finish the proof we need the following claims.

Claim. The randomness Y equals

Y ′ ← DisperseGσ
(XMock,H{XMock

Gσ−−→ Y }),

executed on mock randomness (XMock,H). Furthermore, transcript of commu-
nication between S and Z does not differ from a transcript between A and Z.

Proof. Firstly, observe that the key Y is equal to

DisperseGσ
(XMock,H{XMock

Gσ−−→ Y })

(by definition of H{XMock
Gσ−−→ Y }) and therefore the input of Z in idealZ,S(n, n�)

is equal to input in realZ,A(n, kdf,XMock). Moreover, all the messages send by S
are in fact produced the adversary A and therefore the only difference is that the
leakage and random oracle queries of A are not processed honestly but simulated
by means of leakage of S described in steps (3a) and (3b) in Fig. 6.

Claim (Simulation’s correctness). The simulation above is faithful (i.e., S works
the same as corresponding A) unless ⊥ is returned in part (3c) of simulation. This
occurs with probability ε = Pr(|indicesA| > �e) = 2−n((p−η−λ)�)+�e(log q+log �) and
therefore Pr(A is faithfully simulated) = 1 − Pr(|indicesA| > �e) = 1 − ε.

Proof. Proof has been omitted due to a page limit.
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Abstract. Leakage-resilient cryptography requires that a crypto-system
remain provably secure even if the attacker gets additional information
about the internal states, which is usually the secret key in the scenario
of public key encryption.

In this paper, we propose a solution to achieve leakage resilience
CCA for key encapsulation mechanisms firstly based on the all-but-one
extractable hash proof system in the bounded leakage model, where to
the best of our knowledge, previous leakage resilient public key encryp-
tion schemes are mostly based on the Cramer-Shoup’s universal hash
proof system and its variations. The main technique we employ is
the indistinguishability obfuscation. Specifically, we use the obfuscated
decryption program as the secret key to deal with the leakage.

Although our schemes can tolerate a considerately good amount of
leakage, the tolerated rate of leakage (defined as the ratio of leakage-
amount to key size) is quite unsatisfactory because we use the whole
obfuscated program as the secret key.

Keywords: Public key encryption · Leakage-resilience · Key-
encapsulation mechanism · Hash-proof system · Indistinguishability
obfuscation

1 Introduction

1.1 Background

Leakage-resilient cryptography was initiated by Dziembowski et al. in 2008 [2],
due to the emergence of new attacks which were not considered in previous
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security models. These new attacks can lead to the exposure of the secret internal
states. For example, the side-channel attacks [7–9] can reveal internal states of a
cryptography system through physical measurements such as power consuming,
electric radiation, computing time and heat radiation; and the memory attacks
such as cold boot attacks, can directly obtain the secret keys which are stored on
a computing device and are not erased properly. Leakage-resilient cryptography
maintains provable security while partial internal states get leaked by all means.

Here we are interested in the leakage-resilient public-key encryption schemes,
more specifically the key encapsulation mechanisms (KEM) in the bounded
leakage model. It is required that standard security goals like indistinguishabil-
ity against chosen plaintext attacks/chosen ciphertext attacks (IND-CPA/CCA)
should not be compromised while the adversary additionally gets several bits
of information about the secret key during various stages of the attack. The
bounded leakage model is considered to be a simple and general model and has
been widely studied [3,5,10,12]. In this model, the adversary is assumed to be
able to adaptively access a leakage oracle to learn the information about the
secret key sk before the challenge ciphertext is given. It queries the leakage ora-
cle with an efficiently computable function f of its own choice, and gets f(sk) as
the answer. The only restriction of this leakage oracle is that the total length of
its outputs should not be greater than l bits, which is also known as “the bound
of leakage”. (See Sect. 2.5 for a formal definition.)

Consider most of the KEM schemes that achieves leakage-resilient IND-
CPA/IND-CCA (IND-lrCPA/IND-lrCCA) security [3,5,10,12]. Their leakage-
resilience property all comes from the fact that in these schemes while the pub-
lic key is given, the secret key is not uniquely decided. In another word, the
secret key has sufficient entropy. Therefore, though there is a few bits of leakage,
through a randomness extraction, the scheme can still be IND-CPA/IND-CCA
secure.

If a KEM with its secret key fixed by the public key can be improved to
achieve leakage-resilience is an interesting problem. We intend to give a positive
answer to this problem with the help of indistinguishable obfuscation.

1.2 Warm up

As a warm up, we would like to further introduce how does a KEM based on
universal hash proof system (UHPS), whose secret key has entropy conditioned
on the public key, achieve leakage-resilience. Then we explain why it is difficult
for a KEM with its secret key fixed by the public key to resist leakage.

We briefly review the UHPS, which was introduced by Cramer and Shoup in
[11]. A UHPS is usually built on the hardness of subset membership problems,
which is a type of decisional problems. An UHPS consists of three algorithms,
(Param, Priv, Pub). The underlying subset membership problem is specified by
a language C and its subset V, and by assumption it is infeasible to decide
whether an instance x ∈ C is from V or C\V. In Param a pair of public/secret
key (pk, sk) is generated, where pk is computed from sk via a projective map,
thus various sk’s may be cast to one pk. The private evaluation algorithm Priv
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computes the hash value of x ∈ C with sk. And the public evaluation algorithm
computes the hash value of x ∈ V with its witness w and pk. It is required
that Pub(pk, x, w) = Priv(sk, x). That is, the hash value of an instance x ∈ V
is determined by the public key and its witness, and it is called the projective
property of UHPS. However, for an instance x′ ∈ C\V (without witness), its hash
value Priv(sk, x′) should be statistically close to uniform conditioned on pk and
x′, and it is called the 1-universal property.

We now explain why it is convenient to obtain leakage resilience from UHPS.
The leakage-resilient KEM based on the UHPS was firstly constructed by Naor
et al. in the bounded leakage model [3]. In the security proof of the KEM from
UHPS, a simulator receives an instance x ∈ C of the underlying subset member-
ship problem and wants to use the ability of an adversary in the leakage model to
decide whether it is from V or C\V. The simulator starts by running Param and
getting the (pk, sk) pair. Since it owns sk, it can naturally answer the leakage
queries. Besides, the leakage-resilient property is achieved due to the 1-universal
property property. Essentially, since sk is not uniquely decided by pk, and the
1-universal property property guarantees that there is information entropy in the
hash value of an instance x′ ∈ C\V. Though the leakage of sk will result in an
entropy decrease of the hash value, which will appear as the encapsulated key k,
a universal hash function ext can be applied as a randomness extractor to extract
the remaining entropy and produce a new encapsulated key ext(k, d) (where d is
the random seed of ext) that is statistically close to a uniformly random string.
A series of works are done to improve the efficiency of leakage-resilience from
UHPS [10,12] and minimize the underlying assumption [5].

However, obtaining leakage resilience from a KEM with its secret key fixed
by the public key is difficult to accomplish. First of all, since the secret key is
uniquely decided by the public key, which means that there is no information
entropy in the encapsulated key. Therefore the IND-CPA security will be com-
promised by even one bit of the leakage. Secondly, the simulator in the security
proof answers the decryption query with a trapdoor related to the underlying
hard problem. Thus it does not possess the real secret key as the simulator in
the UHPS. As a result, in the security model with leakage, it can not answer the
leakage query about the secret key properly.

1.3 Main Idea

We observe that the indistinguishability obfuscation can somewhat provide the
leakage resilient property. Therefore, with an indistinguishability obfuscation,
even the secret key has no entropy conditioned on the public key, the scheme
might still be leakage resilient.

The origin of the indistinguishability obfuscator is “program obfuscation”,
which aims to make computer programs “unintelligible” while preserving their
functionality. An idealistic notion called virtual black-box (VBB) obfuscation
was brought out by Barak et al. in 2001 [18]. VBB asks that an obfuscated
program be no more useful than a black box implementing the program. A less
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intuitive yet achievable notion of indistinguishability obfuscation was then pro-
posed [17]. Informally, an indistinguishability obfuscator provides obfuscation
of any two equal-sized programs that are functionally identical. The obfuscated
programs are functionally equal to the original programs and are computation-
ally indistinguishable from each other [16] (one may refer to Definition 3 for
detail).

First of all, we find that if we let the obfuscated decryption program ΨDecsk

(we denote the program, or circuit, that implements the algorithm Decsk(·) as
ΨDecsk) be the new secret key. Then as long as we can construct a simulated
decryption program ΨDec∗

sk∗ (we denote the program, or circuit, that implements
the algorithm Dec∗

sk∗(·) as ΨDec∗
sk∗ ) which is functionally indistinguishable with

ΨDecsk , we can answer the leakage query with the obfuscation of ΨDec∗
sk∗ . The

difference between a real life execution and a simulated environment will not be
detected by any PPT distinguisher.

The leakage-resilience property being brought out by the indistinguishability
obfuscation can be explained by the intuition idea of VBB on another perspec-
tive. Imagine a VBB VBB applied on the decryption program ΨDecsk and let
VBB(ΨDecsk) be the new secret key. The adversary can only get f(VBB(ΨDecsk))
instead of f(sk) through its leakage query. Then as long as the adversary does not
get enough information of VBB(ΨDecsk) that helps it to recover the whole algo-
rithm, thus gives it the ability to decrypt the challenge ciphertext by itself, the
leakage oracle only provides the adversary no more help than a decryption oracle,
which it already has. We conjecture that any IND-CCA public-key encryption
scheme with its decryption program been obfuscated can leak a large ratio of
the obfuscated decryption program and still be secure. Unfortunately, the exist-
ing realizable definition of obfuscation (namely indistinguishability obfuscation,
differing-inputs obfuscation, etc.) seems insufficient for a precise analysis for its
effect on resisting leakage.

However, there is a main technical difficulty while applying the indistin-
guishability obfuscator on the decryption program. For most of the existing
IND-CCA KEM, the real life decryption algorithm Decsk(·) and the simulated
decryption algorithm Dec∗

sk∗(·) are just computationally indistinguishable. How-
ever, we need the programs to be obfuscated functionally identical, namely the
algorithms have to outputs exactly the same value for almost all of the inputs.

We further find that the KEM based on the extractable EHPS can achieve
the above requirements through some modification. Firstly introduced by Wee in
[15], EHPS and its richer version, all-but-one EHPS (ABO-EHPS), play impor-
tant roles in constructing IND-CCA secure KEMs (without leakage). Moreover,
unlike UHPS whose security are based on decisional assumptions, EHPS is built
from the hardness of search problems (namely computational problems), which
are weaker in assumption thus stronger in security. Therefore, finding a way to
obtaining leakage-resilience from the EHPS framework itself is an interesting
and valuable problem.
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1.4 Our Contributions

We propose a general construction of IND-lrCCA KEM from ABO-EHPS. As
we explained previously, we should conquer two major problems to achieve this
goal: the simulator can not answer the leakage query, for it does not have the
real secret key; and there is no information entropy in the encapsulated key.
Our results are obtained by applying an indistinguishability obfuscator, on the
decryption program to deal with the leakage query and protect the secret key.
More specifically, we use the whole obfuscated decryption program as the new
secret key and answer the leakage query with it.

As we mentioned above, we need the real life decryption algorithm Decsk(·)
and the simulated decryption algorithm Dec∗

sk∗(·) to statistically output the
same value for all the inputs, in order to be able to apply the indistinguishability
obfuscator on the programs ΨDecsk and ΨDec∗

sk∗ . We make two modifications on
the KEM based on ABO-EHPS proposed by Wee [15] to achieve this goal.

For an IND-CCA KEM based on ABO-EHPS as in [15], the secret key sk
is uniquely decided by the public key. There is an internal state “tag”, which
is usually generated by a target collision resistant hash function (TCR) from a
ciphertext. In the simulated proof of the scheme, the decryption algorithm uses
an sk∗ generated from a trapdoor to decrypt all the ciphertexts whose tag is
unequal to the tag generated from the challenge ciphertext, denoted as tag∗.

We first define a secret key deduce mode, in which sk∗ can be deduced from
sk with the help of a trapdoor. Therefore, for the ciphertext with tag �= tag∗,
both Decsk(·) and Dec∗

sk∗(·) provides exact the same output. Note that the secret
key deduce mode shares the same public key with the real life execution. This
is quite different from the keys generated in an ABO mode, which only provide
public keys statistically indistinguishable from the public keys generated in a
real life execution. The sk∗ generated in the ABO mode cannot let Dec∗

sk∗(·)
give the same outputs on the same inputs as Decsk(·), since they do not share
the same public key.

Secondly, since a TCR only ensures that it is computationally hard to find
another ciphertext whose tag equals tag∗, while actually there might exist a lot
of ciphertexts whose tag equals tag∗. Obviously Decsk(·) can provide decryptions
to these ciphertext while Dec∗

sk∗(·) can not. In order to let Decsk(·) and Dec∗
sk∗(·)

be statistically equal, we require an injective map from the ciphertexts to the
tags, and store a decryption for the challenge ciphertext in Dec∗

sk∗(·).
To sum up, in this paper, we give a positive answer to achieving leakage

resilient security for a KEM whose secret key has no entropy conditioned on
the public key. We give the first proposal of applying the indistinguishability
obfuscation on an IND-CCA KEM based on ABO-EHPS to achieve provable
IND-lrCCA security.

Compared with the schemes based on UHPS, we use weaker assumptions.
However the shortcoming on efficiency is obvious. Although our schemes can
tolerate a considerately good amount of leakage, the tolerated rate of leakage
(defined as the ratio of leakage-amount to key size) is quite unsatisfactory. Com-
pared with the framework in [5], we achieve IND-lrCCA security in the bounded
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leakage model while the framework in [5] achieves only IND-lrCPA security in
the same model. Efficiency of both frameworks are unsatisfactory.

Nevertheless, we believe that our work is with more theoretical significance
than practical significance. It is worth to mention that Dana Dachman-Soled
et al. also build a leakage-resilient public-key encryption from obfuscation con-
currently and independently with our work [24], and their construction are based
on the deniable public-key encryption scheme of [16].

1.5 Organization

We give necessary preliminaries in Sect. 2. In Sect. 3, we give our general con-
struction of IND-lrCCA KEM from ABO-EHPS. We also present a concrete
instance in this framework in Sect. 4 for easier understanding. Section 5 is the
conclusion.

2 Preliminary

2.1 Notations and Assumptions

Let λ denote the security parameter. For a distribution or random variable X,
we write x ← X to denote the operation of sampling a random x according to
X. For a set S, we write s ← S to denote sampling s uniformly and randomly
from S. For distributions X and Y , X ≡ Y means that X and Y are identically
distributed, X =s Y means that they are statistically close, and X =c Y means
that they are computationally indistinguishable.

2.2 One-Way Relation

A binary relation Rpp, where pp is efficiently samplable public parameter, is
one-way if:

– With overwhelming probability for the public parameter pp and for all c ∈ C,
there exists at most one ω such that (c, ω) ∈ Rpp;

– There is an efficiently computable generator G such that G(ω) is pseudo-
random even against an adversary that gets pp, c and oracle access to
Rpp, where there is a efficiently computable algorithm SampRpp(·) such that
(c, ω) ← SampRpp(r) for a randomly chosen r ∈ R. (We will also refer to G as
extracting hard-core bits from ω.).

Definition 1. Consider a family of groups G of a large prime order p. The
public parameter pp = (g, gα) for a random g ← G and a random α ← Zp. A
Diffie-Hellman (DH) Relation is:

Rdh
pp = {(c, ω) ∈ G × G : ω = cα}
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Obviously, with pp and c, there is only one ω such that ω = ca. There is effi-
cient sampling algorithm SampRpp(r) outputs (gr, (gα)r). We give the function
G to obtain hard-core bits for Rdh

pp under the bilinear DDH (BDDH) assumption.
A bilinear map ê : G1 ×G1 → G2, where G1 and G2 are two groups of prime

order p, satisfies the following properties [23]:
– Bilinear: A map ê : G1 × G1 → G2 is bilinear if ê(aP, bQ) = ê(P,Q)ab for all

P,Q ∈ G1 and all a, b ∈ Z.
– Non-degenerate: The map does not send all pairs in G1 × G1 to the identity

in G2. Observe that since G1,G2 are groups of prime order, this implies that
if P is a generater of G1 then ê(P, P ) is a generator of G2.

– Computable: There is an efficient algorithm to compute ê(P, P ) for any P,Q ∈
G1.

The Bilinear DDH (BDDH) assumption asserts that:

(g, ga, gb, gc, u) =c (g, ga, gb, gc, ê(g, g)abc)

where g, ga, gb, gc are random element in G1 and u is a random element in G2.
Set pp = (g, gα, gγ), we may extract a linear number of hard-core bits from

ω using [15]:

Gbddh
pp (ω) = ê(ω, gγ)

2.3 Randomness Extractors

The statistical distance of random variables X and Y :

SD(X,Y ) =
1
2

∑
ω∈Ω

|Pr[X = ω] − Pr[Y = ω]|

The min-entropy of a random variable X is defined as:

H∞(X) = − log(maxω∈ΩPr[X = ω])

And the average min-entropy of variable X conditioned on a variable Y is defined
as:

H̃∞(X|Y ) = − log(Ey←Y [2−H∞(X|Y =y)])

Lemma 1. Let X, Y and Z be random variables. If Y has at most 2r possible
values, then

H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z) − r (1)

Definition 2. An efficient function Ext : X ×S → Y is a (v, ε)-extractor if for
all random variables X, Z such that X ∈ X and H̃∞(X|Z) ≥ ν, we have

SD((Z, S,Ext(X,S)), (Z, S, Y )) ≤ ε

where S and Y are uniformly and independently distributed over S and Y respec-
tively.

According to the left-over hash lemma, we have:

Lemma 2. A universal family of hash functions H = {hs : X → Y}S∈S can be
used as (ν, ε)-extractor for any ν ≥ log |Y| + 2 log(1/ε).
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2.4 Indistinguishability Obfuscator

Definition 3 [16]. A uniform PPT machine iO is called an indistinguishability
obfuscator for a circuit class Cλ, if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT adversaries Samp, D, there exists a
negligible function ρ such that the following holds:
if:

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] ≥ 1 − ρ(λ),

then:

|Pr[D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)]

− Pr[D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)]|
≤ ρ(λ)

Note that although attacks on the general indistinguishability obfuscators of
[17] have occurred lately, the idea of indistinguishability obfuscators still works,
and we are optimistic for new mending and new constructions to come up soon.

2.5 IND-lrCCA KEM

The leakage of the secret key in real life is described by allowing the adversary
to query a leakage oracle Leakage(SK). It takes as input a function f : SKλ →
{0, 1}∗ and outputs f(SK). A is an l-key-leakage adversary if the sum of output
length of all functions that A submits to the leakage oracle is at most l bits.

Our definition of l-leakage-resilient IND-CCA key encapsulation mechanism
follows [3,5], which allows leakage queries only after the key generation phase
and before the challenge is given.

Definition 4. A key encapsulation mechanism KEM = (KeyGen,Encap,Decap)
is l-leakage-resilient chosen-ciphertext secure, if for any PPT l-key-leakage
adversary A = (A1,A2), we have:

|Pr[ExpIND−lrCCA
KEM,A (λ) = 1] − 1

2
| ≤ negl(λ)

where ExpIND−lrCCA
KEM,A (λ) defined as below:

1. (SK,PK) ← KeyGen(1λ), (k∗
0 , c

∗) ← EncapPK(1λ), k∗
1 ← K.

2. σ ← ALeakage(SK),DecapSK(·)
1 (PK).

3. b ← {0, 1}, b′ ← ADecapSK(·)
2 (PK, c∗, k∗

b , σ).
4. If b = b′, return 1; else return 0.
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3 A General Construction of IND-lrCCA KEM
from EHPS

Our ABO-EHPS with a secret key deduce mode mainly follows the ABO-EHPS in
[15] with a few modifications to enable the usage of indistinguishable obfuscation.
In the secret key deduce mode, for every sk and any tag∗, a corresponding sk∗

that works like the sk∗ in the ABO mode is produced. This will not compromise
the generality of ABO-EHPS since all existing schemes in this framework can
provide algorithms to meet this requirement. Further more, we need an injective
mapping C → T , where C and T are the space of the ciphertexts and the tags
respectively, to generate the tags in the ABO-EHPS. In this section, we first give
the description of our ABO-EHPS, then give our construction of IND-lrCCA
KEM from this ABO-EHPS.

3.1 All-But-One Extractable Hash Proofs

An extractable hash proof system is based on a one-way relation Rpp. Consider
a family of hash functions Hpk(tag, ·), which is indexed by a public key pk, and
takes a tag as an additional input. An ABO-EHPS with the secret key deduce
mode for a one-way relation Rpp is a tuple of algorithms satisfying the following
properties with overwhelming probability over λ:

ABO − EHPS = (SetupExt,SetupABO,Pub,Ext,Ext∗,Priv,DD)

– PUBLIC EVALUATION.
For all pk, tag, and (c, ω) ← SampRpp(r), there is an algorithm Pub such that:

Pub(pk, tag, r) = Hpk(tag, c),

where SampRpp(r) takes a randomness r and outputs an instance (c, ω) ∈ Rpp.
– EXTRACTION MODE.

For all (pk, sk) ← SetupExt(pp) and all (tag, c, π), there is:

π = Hpk(tag, c) ⇐⇒ (c,Ext(sk, tag, c, π)) ∈ Rpp

– ALL-BUT-ONE MODE.
For all (pk∗, sk∗) ← SetupABO(pp, tag∗), all tag∗, and all (c, ω) ∈ Rpp, there
is

Priv(sk∗, tag∗, c) = Hpk∗(tag∗, c)

In addition, for all tag �= tag∗ and all (c, π):

π = Hpk∗(tag, c) ⇐⇒ (c,Ext∗(sk∗, tag∗, tag, c, π)) ∈ Rpp

– SECRET-KEY DEDUCE MODE.
For all (pk, sk) ← SetupExt(pp) and all tag∗, there is an algorithm with aux-
iliary input aux such that sk∗ ← DD(sk, tag∗, aux).
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For all (c, ω) ∈ Rpp, there is

Priv(sk∗, tag∗, c) = Hpk(tag∗, c)

For all tag �= tag∗, there is:

Ext∗(sk∗, tag∗, tag, c, π) = Ext(sk, tag, c, π).

– INDISTINGUISHABILITY.
For all tag∗, the first outputs of SetupABO(pp, tag∗) and SetupExt(pp) (namely
pk and pk∗) are statistically indistinguishable.

3.2 Constructing IND-lrCCA KEM from ABO-EHPS

Informally, a KEM based on the ABO-EHPS works as follows. In the real-life
encapsulation, SetupExt is used to generate the key pair (pk, sk). The sender uses
SampR(r) in the public evaluation mode to sample a pair (c, ω) ∈ Rpp, then let c
be the encapsulation of k = G(ω). A variable π = Pub(pk, tag, r) which is used
to prove the validity of the ciphertext is also output by the sender with a tag
tag to ensure the CCA security. The receiver uses the program Ext(sk, tag, c, π)
in the extraction mode to extract ω and verifies if (c, ω) ∈ Rpp.1 Finally, it gets
the encapsulated key as k = G(ω).

In the simulation of the security proof, the challenger decides its challenge
c∗ and the correspondence tag tag∗ according to the hard problem first and
then uses SetupABO(pp, tag∗) to generate a key pair (pk∗, sk∗), where pk∗ is
statistically indistinguishable with the public keys generated in the real life and
sk∗ contains a trapdoor to enable the simulator to provide the decryption for all
the valid ciphertext whose tag is unequal with tag∗. Then the algorithm Priv is
used to generate the supposed validity proof π∗ for c∗.

As in the security definition of IND-lrCCA KEM, a leakage oracle for the
secret key should be provided to the adversary. However, the simulated chal-
lenger does not have the real life secret key as we described above. Thus, the
original KEM challenger can not answer the leakage query. To solve this prob-
lem, we employ an indistinguishability obfuscator iO on the decryption program
ΨDecsk and view the whole obfuscated program as the new secret key SK. Corre-
spondingly, the secret key used by the challenger is SK∗ = iO(ΨDec∗

sk∗ ) and the

1 Note that there is (c, ω) ∈ Rpp if and only if π = Hpk(tag, c). However, if the ω output
by Ext satisfies the one-way relation Rpp might not be easily and publicly verified in
a general way. Actually, the verification algorithm has to be designed according to
concrete relations and assumptions. The same thing happens with the function G
which extracts the hardcore bits from ω. Although one can always use some general
hardcore bits such as Goldreich-Levin hardcore, there might be other functions that
extracts the hardcore bits more efficiently under concrete assumptions. The output
length of function G directly affects the design of a concrete scheme under this general
framework since the overall length of the encapsulated keys has to be sufficient for
the DEM.
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leakage query is answered with f(SK∗). According to the property of iO, as long
as the leakage is not big enough to help the adversary uses SK or SK∗ to decrypt
the challenge ciphertext, the adversary cannot tell the difference between SK
and SK∗.

There are some details need to be noticed while applying the indistinguisha-
bility obfuscation. For an IND-CCA secure KEM based on ABO-EHPS as we
described above, the intermediate variable tag is usually generated from c by
a target collision resistant hash function (TCR). In the security reduction, the
challenger is able to decrypt all the legitimate ciphertext whose tag is different
with tag∗, and rejects all the decryption queries with tags equal to tag∗ from the
adversary. However, when we use the indistinguishable obfuscator, the indistin-
guishable obfuscator requires the programs statistically produce the same output
with any input. The TCR just ensures that a computationally bounded adver-
sary will query tag = tag∗ with negligible probability, where in fact, there might
exist a lot of ciphertexts with their tags equals to tag∗, and in these point the
simulated decryption algorithm Dec∗

sk∗ can not give a proper answer as Decsk

does. To solve this problem, we need an injective mapping C → T (where C and
T refers to the domains of the ciphertexts and the tags respectively); moreover,
when the challenge ciphertext is queried, we can provide an answer by storing
a fixed answer in the simulated decryption program in advance. Then we have
that the output of Dec∗

sk∗(·) is statistically close to that of Decsk(·) with exactly
all the inputs. To be noted, it may not be easy to find the injective mapping
in some concrete schemes under various intractability assumptions. Therefore,
our framework only suits for those assumptions which are easy to construct the
injective mapping. In fact, finding this kind of injective mapping for a concrete
intractability assumption is an interesting problem per se.

Finally, we apply a randomness-extractor to extract the remained random-
ness in SK∗ after the leakage, and provide an IND-lrCCA secure KEM.

The formal construction and detailed security proof is as follows.
Starting from an ABO-EHPS with the secret key deduce mode for a one-

way relation Rpp, along with an injective mapping INJ : C → T , we present our
IND-lrCCA KEM as follows:

KEM = (Gen,Encap,Decap)

– Gen(pp): apply SetupExt(pp) to generate (pk, sk) and outputs PK = pk and
SK = iO(ΨDecsk). The algorithm Decsk takes (c, π) as input. It computes
tag = INJ(c) and ω = Ext(sk, tag, c, π). Finally, if (c, ω) ∈ Rpp it outputs
k = G(ω).

– EncapPK(pp): sample (c, ω) ← SampRpp(r), and compute tag = INJ(c),
π = Pub(PK, tag, r), let d ← Ud, k = G(ω), compute e = ext(k, d). Out-
put (e, (c, π, d)).

– DecapSK(c, π, d): uses SK to get the encapsulated string k, then return e =
ext(k, d).

Theorem 1. If Rpp is a one-way relation, INJ is an injective mapping from C
to T , then the above construction of KEM is IND-lrCCA secure.
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Proof. We give a sequence of hybrid experiments and prove that the KEM leak-
age adversary’s advantage must be computational indistinguishable between
each successive ones, where the first hybrid corresponds to the original IND-
lrCCA KEM security game as Definition 4, and the adversary has no advantage
in the final game.

1. Hyb0:
(a) (SK,PK) ← Gen(pp), (e∗

0, C
∗) ← EncapPK(pp), where C∗ = (c∗, π∗, d∗);

e∗
1 ← {0, 1}m.

(b) σ ← ALeakage(SK),DecapSK(·)
1 (PK).

(c) b ← {0, 1}, b′ ← ADecapSK(·)
2 (PK,C∗, e∗

b , σ).
We have:

AdvHyb0A={A1,A2} = |Pr[b = b′] − 1/2|

2. Hyb1: Hyb1 is the same as Hyb0, except for the key generation step.
We have (pk, sk) the same as Hyb0, and set sk∗ ← DD(sk, tag∗) and
SK∗ = iO(ΨDec∗

sk∗,tag∗,W
), where (c∗, ω∗) ← SampRpp(r), tag∗ = INJ(c∗),

π∗ = Pub(PK, tag∗, r), W = G(ω∗).
The algorithm Dec∗

sk∗,tag∗,W takes (c, π, d) as input, computes tag = INJ(c). If
tag �= tag∗, it runs Ext∗(sk∗, tag∗, tag, c, π) to get ω and verifies if (c, ω) ∈ Rpp.
If tag = tag∗ and (c, π) = (c∗, π∗), it outputs k = W . Otherwise, the algo-
rithm Dec∗ outputs k = G(ω).

3. Hyb2: In the key generation step, let (c∗, ω∗) ← SampRpp(r), tag∗ = INJ(c∗),
and W = G(ω∗).
Then call SetupABO(pp, tag∗) to get (pk∗, sk∗).
Outputs (PK,SK) such that PK = pk∗, and
SK = iO(ΨDec∗

sk∗,tag∗,W
). Moreover, compute π∗ = Pub(PK, tag∗, r), and the

challenge ciphertext is C∗ = (c∗, π∗, d).
4. Hyb3: Hyb3 is the same as Hyb2 except for the decapsulation for the challenge

is a randomly chosen string: W ← {0, 1}n and π∗ = Priv(sk∗, tag∗, c∗).

– We prove that Hyb0 and Hyb1 are indistinguishable for any PPT leakage
adversary according to the property of iO.

We firstly prove that:

Pr[∀(c, π) : Decsk(c, π) = Dec∗
sk∗,tag∗,W (c, π)] ≥ 1 − negl(λ)

First of all, the public keys in Hyb0 and Hyb1 are the same, therefore the
same decapsulation for a C = (c, π) such that tag �= tag∗ is output according to
the property of the algorithm Ext∗(sk∗, tag∗, tag, c, π).

Secondly, if (c∗, π∗) is queried, correct answer can also be given in Hyb1
because the W = G(ω∗), such that (c∗, ω∗) ∈ Rpp(r), is previously stored.
(Although (c∗, π∗) is computationally with negligible probability to be queried,
according to the Definition 3 of iO, both programs should be statistically indis-
tinguishable in all of the inputs).
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At last, the probability that there is a valid (c′, π′) such that c′ �= c∗ and
tag′ = tag∗ is negligible, because INJ is an injective mapping.

To sum up, we have:

Pr[∀(c, π) : Decsk(c, π) = Decsk∗,tag∗,W (c, π)] ≥ 1 − negl1(λ)

According to the property of indistinguishability obfuscator iO in Defini-
tion 3, there is

|Pr[D(SK) = 1] − Pr[D(SK∗) = 1]| ≤ neg11(λ)

for any PPT distinguisher D. In another word, the leakage query answered with
SK and SK∗ is indistinguishable for any PPT adversary.

Therefore, Hyb0 and Hyb1 are computationally indistinguishable for any
PPT leakage adversary. We have:

AdvHyb0A − AdvHyb1A ≤ negl1(λ).

– We argue that the advantages of any adversary in Hyb1 and Hyb2 are com-
putational indistinguishable. First of all, according to the indistinguishable
property of ABO-EHPS, the public keys generated by SetupExt(pp) and
SetupABO(pp, tag∗) are indistinguishable for any tag∗. That is public keys
output in Hyb0 and Hyb2 are statistically indistinguishable. Moreover, since
the secret key sk∗ in Hyb1 is generated via (pk, sk) ← SetupExt(pp) in Hyb0,
and the sk∗ is computed by sk∗ ← DD(sk, tag∗), the public keys in Hyb0
and Hyb1 are the same. Therefore, we have the public keys in Hyb1 are sta-
tistically indistinguishable with the public keys in Hyb2, and both hybrids
provides the same decryption.
Therefore, we have that for any adversary:

AdvHyb1A − AdvHyb2A ≤ negl2(λ).

– We first prove that the adversary’s advantage in Hyb3 is negligible and an
adversary’s advantages in Hyb2 and Hyb3 are indistinguishable.
For Hyb3, e0 is extracted from a random string W ← {0, 1}n and there is
e1 ← {0, 1}m, none of them is related with c∗. Therefore, as long as W in
the obfuscated program iO(ΨDecsk∗,tag∗,W

) is not leaked completely, after the
randomness extraction, e0 = ext(W,d) is statistically indistinguishable with
e1. we have:

AdvHyb3A ≤ negl3(λ).

where negl3(λ) is decided by the distance between the output of the random-
ness extractor and a uniformly distributed string.
As for the leakage part, since W is a randomly chosen string from {0, 1}n(λ),
The entropy in it is H̃∞(W |PK) = n(λ). After l bits of leakage, according to
Lemma 1, we have:

H̃∞(W |(PK, f(SK∗))) ≥ n(λ) − l.
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As long as n(λ) − l ≥ m + 2 log(1/ε), according to Lemma 2 and Definition 2,
there is a universal hash function to be applied as a (n − l, ε)-extractor ext
such that outputs m bits of pseudo-randomness e. There is:

SD((PK,Ud, e), (PK,Ud, Um)) ≤ ε

Suppose the size of the obfuscated program is s, the leakage rate of this
scheme is l/s.

Furthermore, assume that there exists a PPT adversary A, whose advantages
in Hyb2 and Hyb3 are distinguishable, then we have that A’s advantage
in Hyb2 is non-negligible, which contradicts the one-wayness of Rpp or the
pseudorandom of G(·). (This part of security proof is the same as the security
proof of IND-CCA KEM in [15].)
Hence there is

AdvHyb2A − AdvHyb3A ≤ negl4(λ).

To sum up, we have

AdvHyb0A ≤ negl1(λ) + negl2(λ) + negl3(λ) + negl4(λ)

The length n(λ) of the output of the function G(·) may not be long enough for
the randomness extraction (at least logarithm of λ). For example, the output of
G(·) may only be a hardcore bit. However, according to [12], with a polynomial
parallel independent execution of above scheme, there will be enough bits for
the randomness extraction and the CCA security will not be compromised. The
numbers of the parallel will only affects the total amount of leakage and the
leakage rate will not be changed.

4 Instance: IND-lrCCA KEM Based on BDDH
Assumption

In this section, we present an instance for our IND-lrCCA KEM. We give our
concrete IND-lrCCA KEM based on BDDH assumption for simplicity, since [22]
already give an efficiently computable injective mapping from G to Zp, where G

is a cyclic group of prime order p, and since the function G(·), which extracts
hardcore bits, has a linear output under BDDH assumption as we introduced in
the preliminary section. Note that instances can also be given under the GHDH
assumption [14], for the BDDH assumption can be viewed as a special case of
the GHDH assumption.

We first give our ABO-EHPS with the secret key deduce mode, which is a
simple modification of the instance of ABO-EHPS in [15] for the DH relation.
Then we present the IND-lrCCA KEM based on the BDDH assumption. Apart
from the modification made in order to suit the use of iO as we explained above,
our KEM also differs from it in [15] on the setting of parameters and the way
of decryption, just in order to make the instance suits the general framework
better.
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4.1 ABO-EHPS with the Secret-Key Deduce Mode for the DH
Relation Based on BDDH Assumption

Let g be the generater of a group G with prime order p. Set the public para-
meters pp = (g, gα), where there is a trapdoor α ∈ Zp, the tag space T = Zp,
SampRpp(r) = (c, ω) = (gr, gαr) where r ∈ Zp and Hpk(tag, c) = (gα·tag · pk)r

where c = gr, we give the ABO − EHPSdh
pp with the secret-key deduce algorithm

as follows.

– SetupExt(pp): choose sk ∈ Zp, compute pk = gsk, output (pk, sk).
– SetupABO(pp, tag∗): choose sk∗ ∈ Zp, set pk∗ = gsk∗ · (gα)−tag∗

.
– Pub(pk, tag, r) = (gα·tag · pk)r.
– Ext(sk, tag, c, π) = (π · c−sk)

1
tag .

– Ext∗(sk∗, tag∗, tag, c, π) = (π · c−sk∗
)

1
tag−tag∗ .

– Priv(sk∗, tag∗, c) = csk∗
.

– DD(sk, tag∗, α) = sk + α · tag∗.

We now show that ABO − EHPSdhpp is an ABO-EHPS with the secret-key
deduce mode for Rdh.

– EXTRACTION MODE. For all (pk, sk) ← SetupExt(pp) and all (tag, c, π),
there is:

π = Hpk(tag, c) = (gα·tag · pk)r = gtag·α·r+sk·r;

Ext(sk, tag, c, π) = (π · c−sk)
1

tag = {gtag·α·r+sk·r · g−sk·r} 1
tag = gαr

– ALL-BUT-ONE MODE.
1. For all (pk∗, sk∗) ← SetupABO(pp, tag∗), all tag∗, and all (c, ω) ∈ Rpp,

there is:

Hpk∗(tag∗, c) = (gα·tag∗ · pk∗)r = gsk∗·r = csk∗
= Priv(sk∗, tag∗, c)

2. For all tag �= tag∗ and all (c, π), there is:

π = Hpk∗(tag, c) = (gα·tag · pk∗)r = gtag·α·r+(sk∗−α·tag∗)·r;

Ext∗(sk∗, tag∗, tag, c, π) = (π · c−sk∗
)

1
tag−tag∗ = g

αr·(tag−tag∗)· 1
tag−tag∗ = gαr

– SECRET-KEY DEDUCE MODE. For all (pk, sk) ← SetupExt(pp) and all
tag∗, there is: sk∗ = DD(sk, tag∗, α) = sk + α · tag∗.

1. For all tag �= tag∗, there is:

π = Hpk(tag, c) = (gα·tag · pk)r = gtag·α·r+sk·r;

Ext∗ = Ext∗(sk∗, tag∗, tag, c, π) = (π · c−sk∗
)

1
tag−tag∗

= g[(tag·α·r+sk·r)−sk∗·r]· 1
tag−tag∗ = g[(tag·α·r+sk·r)−(sk+α·tag∗)·r]· 1

tag−tag∗

= gαr·(tag−tag∗)· 1
tag−tag∗ = gαr
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2. For all (c, ω) ∈ Rpp, there is:

Priv(sk∗, tag∗, c) = csk∗
= csk+α·tag∗

= g(sk+α·tag∗)·r = Hpk(tag∗, c)

– INDISTINGUISHABILITY. Since both sk and sk∗ are randomly chosen from
Zp, pk and pk∗ are statistically indistinguishable.

4.2 IND-lrCCA KEM Based on the BDDH Assumption

Starting from ABO − EHPSdh
pp for a one-way relation Rdh

pp , two groups G1 and G2

of prime order p, where there is a bilinear mapping ê : G1 × G1 → G2, and an
injective mapping G1 → Zp, we present our IND-lrCCA KEM based on BDDH
assumption as follows.

Set the public parameters to be pp = (g, u, v), where g is the generator of G,
u = gα, v = gγ and there is a trapdoor sp = (α, γ) such that α, γ ∈ Zp. Let the
hardcore extracting function G = ê(ω, v). We have:

– Gen(pp): Apply SetupExt(pp) to generate (pk, sk), randomly and outputs
PK = pk and SK = iO(ΨDecsk).
The algorithm Decsk takes (c, π) as input. It computes tag = INJ(c) and
verifies if ê(g, π) = ê(c, utag · PK). If the validity test passes, it computes
ω = Ext(sk, tag, c, π) and outputs k = ê(ω, v); otherwise, it outputs “⊥”.

– Encappk(pp): Sample (c, ω) ← SampRpp(r), where c = gr and ω = ur, Then
compute tag = INJ(c), π = Pub(PK, tag, r). Let d ← Ud, k = ê(ω, v), com-
pute e = ext(k, d). Output (e, (c, π, d)).

– DecapSK(c, π, d): Uses SK to get the encapsulated string k, then return e =
ext(k, d).

Note that our instance is presented in the way that completely fits the general
framework. Therefore, efficiency is not the primary concern. One can always view
u as a part of the public keys, and include α as a part of the secret keys to simplify
the decryption process as in [15].
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Abstract. Tamper resilient cryptography has recently gained attention,
and novel coding solutions have been proposed. One such solutions is
Tamper Detection (TD) codes that are used to detect tampering with a
codeword when the tampering function belongs to a specified family of
functions. We consider TD codes when the class of functions consists of
functions where the adversary first selects a subset of size ρn of the code-
word components to see, and then uses this view to choose a noise vector
that will be added (algebraically) to the codeword (n is the codeword
length). We show it is impossible to construct codes that protect against
tampering of all functions in this class. By removing the set of bad func-
tions from the class, we obtain a subset of this family for which tamper
detection codes exist, and give a construction of tamper detection codes
for this subset. We discuss our results and directions for future work.

1 Introduction

Detection of adversarial tampering with the message is an important security
goal that is traditionally provided using Message Authentication Codes (MAC)
[5]. MAC is a shared secret key primitive and provides protection against unlim-
ited adversarial tampering with the codeword: the adversary can see the code-
word and arbitrarily change it. Detection of adversarial tampering when tam-
pering is restricted to a constant fraction of the code vector has been studied
using error detection codes in Hamming model [18]. In these codes the adversary
sees the whole codeword and arbitrarily modifies a fraction of it. Randomized
coding for protection against a wider class of tampering functions and without
requiring a secret key, has recently received considerable attention [4,7,19,20].
Algebraic Manipulation Detection (AMD) codes [19] provide protection for the
coded message against algebraic tampering when the adversary is oblivious to
the codeword: the adversary, without seeing the codeword, adds an arbitrary
tampering vector to the codeword. The obliviousness of the adversary has been
relaxed in the followup works which allow some level of leakage of the codeword
[4,6], before the error vector is constructed.

Tamper Detection (TD) codes, first informally introduced in [9,16] and for-
malized in [7], have a different protection goal: here the goal is to protect against
tampering of the codeword and not the message. That is, one needs to detect
tampering even if the message stays unchanged.
c© Springer International Publishing AG 2017
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A TD code is defined with respect to a class of tampering functions F and
can detect any modification of a codeword when modification is by a function
f ∈ F . A codeword can be seen as a virtual box that holds the message and
tampering with the box, even if the message remains intact must be detected
with high probability.

It has been shown [7] that TD codes can not exist if F contains functions
with “many fixed points” or functions with “low entropy” output. Assume the
codeword is an n-bit string. Then a tampering function is a function from {0, 1}n

to {0, 1}n. A fixed point of a tampering function f is a point x that satisfies
f(x) = x. The output entropy of a function is the min-entropy of the function
output when a uniform distribution is used on the domain. A fixed point of
a function f cannot be protected against tampering by the function simply
because it is unaffected by the function. Also, for low entropy functions, there
are many input strings being mapped to a single output string and cause a high
detection error if that output string is a valid codeword. A small set of “many
fixed points” functions or “low entropy” output functions are enough to make TD
codes impossible. On the other hand, by excluding these cases, there is always
a TD code if the function family F is sufficiently smaller than the set of all
possible functions (log log |F| < n). Efficiency of TD codes is measured by their
rate k/n where k is the number of information bits. This existence result uses
a probabilistic argument and the TD codes obtained achieve rate 1 − log log |F|

n ,
approximately. See Sect. 2 for more details.

Our work. We consider q-ary TD codes (tampering functions are functions
from F

n
q to F

n
q ) for a special class Fadd

ρ of tampering functions that we call
Limited View Algebraic Tampering (LVAT) family, capturing an adversary that
can choose their tampering vector after observing a fraction of the codeword.
That is, for a constant 0 ≤ ρ ≤ 1, the adversary uses their view of a subset
of ρn components of the codeword, to construct a noise vector that is added
(component-wise) to the codeword, and the goal is detection of tampering. The
LVAT functions extend tampering functions of algebraic manipulation codes
considered in [19], where the adversary obliviously adds a noise vector to the
codeword. Each LVAT function fS,g ∈ Fadd

ρ is specified by two parameters S
and g, where S ⊂ [n] is a subset of size ρn, and a function g : F

ρn
q → F

n
q .

In Sect. 3, we study the two properties of functions that are important in the
context of tamper detection, that is the number of fixed points and their output
entropy. We will show that Fadd

ρ does not contain “low entropy” functions, but
does contain functions that have “many fixed points”. In Lemma 4 we prove
that, for a constant φ where 0 ≤ φ ≤ 1, the detection failure of a TD code for
the subclass of LVAT functions that has φ · qn fixed points is at least φ.

We define the function class Fadd
ρ,φ that is obtained from Fadd

ρ by excluding
all functions that have at least φ ·qn fixed points. In Sect. 4, we define a (ρ, φ, δ)-
LVAT-TD code as a TD code with error (detection failure) probability δ for the
class Fadd

ρ,φ and give a construction for these codes and derive the detection error
probability and rate of these codes.
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Related work. The relation of the results in this work to existing results are
summarized as follows.

– Same coding goal, different adversary: Traditional error detection codes encode
a message so that error in transmission is detected. Since deterministic codes
are used to encode the message, the coding goal is also detecting change
of codeword, same as TD codes. Traditional models of error detection con-
sider Shannon probabilistic model [1] where the error is due to a probabilistic
process, or Hamming adversarial model [18] where the error is chosen by the
adversary with the limitation that the weight of the error vector is bounded. In
this latter case, the adversary’s error is constructed after seeing the codeword.

– Different coding goal, same adversary: In Algebraic Manipulation Detection
[19] the adversary is oblivious to the codeword, but there is no restriction on
the weight of the error. This model was first motivated in the context of robust
secret sharing and has found numerous other applications. The model is later
extended to the case where the codeword is partially leaked to the adversary
[4,6]. The main difference between [4,6] is the type of allowed leakage. The
adversary model considered in [4] is exactly the same as considered in this
work. But the coding goal of this line of works has been detection of tampering
with the message.

– Special case of NMC: In non-malleable codes [20] the adversary’s corruption
is defined by a family of functions, and the protection is by using the concept
of “non-malleability” which includes error detection as a special case. This
is a general model with numerous followup work (just to name a few [3,9,
10,16,21]). In tamper detection [7] the goal is to detect tampering with the
codeword and this is even if the message stays intact. This coding goal implies
non-malleability. Here also the adversary’s tampering is defined by a class of
functions. We can say the codes obtained here are also non-malleable codes
with respect to LVAT functions.

– More Generally: In this paper we consider tamper detection for a specific
function family that we call Limited-View Algebraic Tampering (LVAT) where
the tampering is by adding an error vector to the codeword, and the choice
of the error is after observing a fraction of the codeword components. The
observed components is the leakage of the codeword to the adversary that will
enable them to choose their best error vector. A more general form of this class
is when the adversary’s error vector that is chosen after their observation, is
a vector with limited support that affects only a ρ′ fraction of components of
the codeword. This class of functions was considered in [15] where the goal
of protection is recovering the message and privacy [17]. A rate bound and a
construction that achieves the rate upper bound was given also. Other models
of adversarial errors with the goal of message recovery is given in [11,13,14,22].

2 Preliminary

We begin with a brief description of the notations. Calligraphy letters X denote
sets and their corresponding capital letters denote the cardinality, |X | = X.
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Boldface letters x denote vectors. x|S denotes the sub-vector of x consisting of
the components specified by the index set S. [n] denotes {1, 2, · · · , n}. A capital
boldface letter X denotes a random variable, and X ← X denotes sampling of
the variable from the set X , with X $← X denoting a uniform distribution in
sampling. The statistical distance between X and Y that are both defined over
the set W, is defined as,

SD(X,Y) � 1
2

∑
w∈W

|Pr[X = w] − Pr[Y = w]|.

We say X and Y are δ-close if SD(X,Y) ≤ δ. The min-entropy H∞(X) of a
random variable X ← X is

H∞(X) = − log max
x∈X

Pr[X = x].

All codes studied in this paper are randomized codes. A coding scheme is a
randomized code that satisfies the correctness property, namely, a codeword is
always decoded to its corresponding message. On the other hand, any vector
that is not a codeword of any message is decoded to a symbol ⊥ that denotes
detection.

Definition 1. An (n, k)-coding scheme consists of two functions: a randomized
encoding function Enc : Fk

q → F
n
q , and deterministic decoding function Dec :

F
n
q → F

k
q ∪ {⊥}, where ⊥ denotes detection, satisfying Pr[Dec(Enc(m)) = m] =

1, for any m ∈ F
k
q . Here probability is taken over the randomness of the encoding

algorithm.

Wiretap II model [12] considers a scenario where Alice wants to send mes-
sages to Bob over a reliable channel that is eavesdropped by an adversary, Eve.
The adversary can read a fraction ρ of the transmitted codeword components,
and is allowed to choose any subset of her choice. A wiretap II code provides
information-theoretic secrecy for message transmission against this adversary.

Definition 2. A (ρ, ε) wiretap II code, or (ρ, ε)-WtII code for short, is an (n, k)-
coding scheme that satisfies the following privacy property. For any m0,m1 ∈ F

k
q ,

any S ⊂ [n] of size |S| ≤ nρ,

SD(Enc(m0)|S ;Enc(m1)|S) ≤ ε. (1)

The above definition of security is in line with [15] and is stronger than the
original definition [12], and also the definition in [2]. When ε = 0 is achieved in
(1), the distribution of any ρ fraction of the codeword components is independent
of the message. This is achieved, for example, by the following construction,
which is one of the two building blocks in our construction.
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Lemma 1 [12]. Let G(n−k)×n be a generator matrix of an [n, n− k, k +1] MDS

code over Fq. Append k rows to G such that the obtained matrix
[

G

G̃

]
is of full

rank. Define the encoder WtIIenc as follows.

WtIIenc(m) = [r,m]
[

G

G̃

]
, where r $← F

n−k
q .

The decoder WtIIdec uses a parity-check matrix of the MDS code to “remove
the randomness r” and then maps the syndrome back to the message. (WtIIenc,
WtIIdec) gives a (n−k

n , 0)-WtII code.

Algebraic Manipulation Detection (AMD) codes [19] detect change of mes-
sage with high probability against an adversary that can construct a constant
error vector of any Hamming weight and add it to the codeword. On one hand,
the error vector is not constrained in terms of Hamming weight. On the other
hand, one can think of the adversary as being oblivious to the codeword, since
the error vector (being a constant vector) does not depend on the codeword.

Definition 3 [19]. An (M,G, δ)-Algebraic Manipulation Detection code, or
(M,G, δ)-AMD code for short, is a probabilistic encoding map Enc : M → G
from a set M of size M to an (additive) group G of order G, together with a
(deterministic) decoding function Dec : G → M⋃{⊥} such that Dec(Enc(m)) =
m with probability 1 for any m ∈ M. The security of an AMD code requires that
for any m ∈ M, Δ ∈ G, Pr[Dec(Enc(m) + Δ) /∈ {m,⊥}] ≤ δ.

The following construction only incurs 2 log q bits overhead and has detection
error as small as δ = d+1

q , where the message is a d-tuple over Fq. We will use it
as a building block in our construction in Sect. 4.

Lemma 2 [19]: Let Fq be a field of size q and characteristic p, and let d be any
integer such that d + 2 is not divisible by p. Define the encoding function,

AMDenc : Fd
q → F

d
q × Fq × Fq,m 	→ (m, r, f(r,m)),

where f(r,m) = rd+2 +
∑d

i=1 mir
i. The decoding function AMDdec verifies

(m, r, t) by comparing t and f(r,m). It outputs m if t = f(r,m) and ⊥, other-
wise. (AMDenc,AMDdec) gives a (qd, qd+2, d+1

q )-AMD code.

Tamper Detection (TD) code [7] provides detection of change of codeword.
It was implicitly introduced in [9,16], and later explicitly defined in [7].

Definition 4 (Tamper Detection (TD) code) [7]1. Let (Enc, Dec) be an
(n, k)-coding scheme and let F be a family of functions of the form f : Fn

q → F
n
q .

We say that (Enc, Dec) is a (F , δ)-TD code if for any function f ∈ F and any
message m ∈ F

k
q , we have Pr[Dec(f(Enc(m))) 
=⊥] ≤ δ, where the probability is

over the randomness of the encoder.
1 The study in [7,9,16] are specific to q = 2.
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Remark 1. The construction in Lemma 2 satisfies Pr[AMDdec(AMDenc(m) +
Δ) 
=⊥] ≤ d+1

q , for any Δ 
= 0. This means that (AMDenc,AMDdec) is also an
(F , d+1

q )-TD code with respect to F = {f(x) = x + Δ|Δ ∈ F
d+2
q \{0d+2}}.

According to the definition of a coding scheme (see Definition 1), we have
Pr[Dec(Enc(m)) = m] = 1. Let fID : Fn

q → F
n
q : x 	→ x be the identity func-

tion. If the class of tampering functions F in Definition 4 includes the identity
function, then the detection failure δ should satisfy the following.

δ ≥ Pr[Dec(fID(Enc(m))) 
= ⊥] ≥ Pr[Dec(fID(Enc(m))) = m] = 1.

More generally, for a function f : F
n
q → F

n
q , an n-tuple x′ ∈ F

n
q is called a

fixed point of f if f(x′) = x′. When the random variable Enc(m) takes values
in the fixed points of f , Dec(f(Enc(m))) = m 
= ⊥ will inevitably occur. So
functions that have fixed points need special attention when considering TD
codes. There is another type of functions that also need special attention. Let
fc : F

n
q → F

n
q : x 	→ c be the constant function that takes any n-tuple to

a constant n-tuple c. For an (n, k)-coding scheme (Enc, Dec) such that c ∈
Supp(Enc(m0)) for a particular message m0, we always have Dec(fc(Enc(m))) =
m0 
= ⊥ for any message m. More generally, for a function f : Fn

q → F
n
q , the

quantity log |{f(x)|x ∈ F
n
q }| is called the output entropy of f . Constant functions

have zero output entropy.

Definition 5 [7,9]. For a function f : Fn
q → F

n
q , we define the following two

properties.

– f is a φ-few fixed points function if |{x∈F
n
q |f(x)=x}|

qn ≤ φ;
– f is a μ-entropy function if log |{f(x)|x ∈ F

n
q }| = μ.

Remark 2. It is shown in [8] (restricted to q = 2) that small classes of functions
with either “many fixed points” or “low entropy” output can be constructed such
that TD codes are impossible. In particular, for μ ≤ k, they showed a family F
of μ-entropy, 0-few fixed points functions of size (2n)2

μ

such that there does not
exist any (n, k)-coding scheme that is a TD code with respect to F , and for any
φ, there is a family F of φ-few fixed points, n-entropy functions of size 2n such
that no (F , φ)-TD code exists. On the other hand, for any function family F of
φ-few fixed points and μ-entropy functions of size log log |F| < n, a probabilistic
construction was given that yielded a (F , δ)-TD code with high probability,
provided that φ ≤ δ

4 and μ is lower-bounded by a quantity determined by δ,
log log |F| and the message size of the coding scheme. Moreover, the rate of the
code is k

n ≈ 1 − log log |F|
n .

3 Limited-View Algebraic Tampering

Let S [nρ] be the set of all subsets of [n] of size nρ. Let M(Fnρ
q ,Fn

q ) denote the
set of all functions from F

nρ
q to F

n
q , namely, M(Fnρ

q ,Fn
q ) := {g : Fnρ

q → F
n
q }.
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Definition 6 (LVAT) [4]. The set Fadd
ρ of Limited-View Algebraic Tampering

(LVAT) functions are defined as follows.

Fadd
ρ =

{
fS,g : Fn

q → F
n
q |S ∈ S [nρ], g ∈ M(Fnρ

q ,Fn
q )

}
, (2)

where fS,g(x) = x + g(x|S) for x ∈ F
n
q .

A tampering strategy fS,g of the limited-view algebraic adversary is described
by a reading set S ⊂ [n] and a function g : Fnρ

q → F
n
q . The set S specifies the

components that the adversary chooses to read (observe). The function g : Fnρ
q →

F
n
q expresses the details of the tampering: if the nρ positions of the codeword take

value a, the offset g(a) ∈ F
n
q is added to the codeword. See Fig. 1 for an example

of fS,g ∈ Fadd
1
2

. Fadd
ρ characterizes the limited-view algebraic adversary in the

sense that if a coding scheme guarantees δ-security for all tampering strategies in
Fadd

ρ , then it guarantees δ-security against the limited-view algebraic adversary.

Fig. 1. An example of fS,g ∈ Fadd
1
2

(assuming q = 2 and n = 4) with S = {1, 2} ⊂ [4]

and g defined by g(00) = (0000), g(01) = g(10) = g(11) = (0100).

Before we consider tamper detection with respect to Fadd
ρ , we prove the

following properties of LVAT functions.

Lemma 3. For any fS,g ∈ Fadd
ρ ,

– |{x ∈ F
n
q |fS,g(x) = x}| = |{a|g(a) = 0n}| · qn(1−ρ);

– log |{fS,g(x)|x ∈ F
n
q }| ≥ n(1 − ρ) log q.

Proof. Let X a
S denote the set of n-tuples, whose value at S is a, namely, X a

S =
{x ∈ F

n
q |x|S = a}. We observe that adding an n-tuple y to X a

S yields Xb
S , where

b = a + y|S . As illustrated in Fig. 1, applying fS,g to x ∈ X a
S is by definition

adding g(a) to it, hence turning it into an n-tuple in Xb
S , where b = a+ g(a)|S .

We will simply write fS,g(X a
S ) = Xb

S .
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– Consider each subset X a
S . For any x ∈ X a

S , fS,g(x) = x+ g(a) = x if and only
if g(a) = 0n, in which case every vector in X a

S is a fixed point of fS,g. So the
total number of fixed points of fS,g is given by qn(1−ρ) · |{a|g(a) = 0n}|.

– Consider two subsets X a
S and Xb

S . We have fS,g(X a
S ) = fS,g(Xb

S ) if and only if
a+g(a)|S = b+g(b)|S . Once this happens, the range of fS,g is strictly smaller
than F

n
q . In the extreme case when a + g(a)|S = c for all a ∈ F

nρ
q , the range

of fS,g is X c
S and log |{fS,g(x)|x ∈ F

n
q }| = n(1 − ρ) log q. This is obviously the

smallest value log |{fS,g(x)|x ∈ F
n
q }| can get. The bound then follows.

Remark 3. As recalled in Remark 2, the impossibility result of [8] with respect
to low entropy functions was shown for μ ≤ k log q. Lemma 3 shows that the
entropy of any function in Fadd

ρ is at least n(1−ρ) log q. So as long as the coding
scheme has rate less than 1−ρ, namely, n(1−ρ) > k, we do not need to consider
whether that particular attack applies here. But on the other hand, the number
of fixed points is not bounded and could, in the worst case, be as big as qn. In
fact, the number of fixed points of a function fS,g ∈ Fadd

ρ for any ρ is qn if the
function g is defined such that |{a|g(a) = 0n}| = qnρ.

In the sequel, we impose a bound on the number of fixed points and restrict
ourselves to a subset of Fadd

ρ .

Definition 7. Let φ = i
qnρ , where i = 0, 1, · · · , qnρ. The set Fadd

ρ,φ is the subset
of Fadd

ρ that contains the tampering functions that have less than φ · qn fixed
points.

The following Lemma shows that if a class of tampering functions can fix a
φ fraction of the space F

n
q , then the detection failure can not be made smaller

than φ.

Lemma 4. Let φ = i
qnρ , where i = 0, 1, · · · , qnρ. Let F be the subset of Fadd

ρ

that contains all the functions with φ · qn fixed points, namely,

F = {fS,g ∈ Fadd
ρ |fS,g has φ · qn fixed points}.

If an (n, k)-coding scheme (Enc, Dec) is an (F , δ)-TD code, then δ ≥ φ.

Proof. We need to show that given any (n, k)-coding scheme (Enc, Dec), there is
a message m, for which we can find a tampering function fS,g ∈ F (by specifying
the choice of S and g) such that Pr[Dec(fS,g(Enc(m))) 
= ⊥] ≥ φ. In fact, we
can show this for any particular message m and any particular S ⊂ [n].

Let X = Enc(m) be the random variable that is associated to the randomized
codeword of a particular message m. Let Y = X|S be the random variable that is
associated to the sub-vector of X, for a particular S ⊂ [n] of size nρ. Apparently,
Y is a random variable over F

nρ
q . Here we consider all vectors in F

nρ
q , namely,

we assume Pr[Y = y] = 0, when y ∈ F
nρ
q \Supp(Y). Let Dφ(Y) be a subset

of Fnρ
q of size φ · qnρ that contains the “more likely” values of Y, namely, start

with the value of Y that has the highest probability and go all the way down
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till the φ · qnρ’th value is added into the set. By construction, we obviously have
Pr[Y ∈ Dφ(Y)] ≥ φ. We use it to define a function g as follows.

g(a) =
{

0n, a ∈ Dφ(Y) ⊂ F
nρ
q ;

1n, otherwise.

According to Lemma 3, the number of fixed points of fS,g is qn(1−ρ) · |Dφ(Y)| =
φ · qn. So we have fS,g ∈ F . Finally, by the way g is defined, we have

Pr[Dec(fS,g(Enc(m))) 
= ⊥] ≥ Pr[Dec(fS,g(Enc(m))) = m] ≥ Pr[Y ∈ Dφ(Y)],

which concludes the proof.

4 Limited-View Algebraic Tampering TD Codes

Definition 8 ((ρ, φ, δ)-LVAT-TD code). Let φ = i
qnρ , where i = 0, 1, · · · , qnρ.

An (n, k)-coding scheme (Enc, Dec) is called a (ρ, φ, δ)-LVAT-TD code if it is
a (Fadd

ρ,φ , δ)-TD code, namely, if for any message m ∈ F
k
q and any f ∈ Fadd

ρ,φ ,
Pr[Dec(f(Enc(m))) 
=⊥] ≤ δ.

Remark 4. Lemma 4 implies that (ρ, φ, δ)-LVAT-TD codes can only exist for
φ < δ.

Code Construction

Theorem 1. Let (WtIIenc,WtIIdec) be the linear (ρ, 0)-WtII code in
Lemma 1 with encoder WtIIenc : F

k+2
q → F

n
q . Let (AMDenc,AMDdec) be

the (qk, qk+2, k+1
q )-AMD code in Lemma 2. Then (Enc,Dec) defined as follows

is a (ρ, φ, φ + k+1
q )-LVAT-TD code.

{
Enc(m) = WtIIenc(AMDenc(m));
Dec(x) = AMDdec(WtIIdec(x)).

The rate of the (n, k)-coding scheme (Enc,Dec) is 1 − ρ − 2
n .

Proof. Since both AMDenc and WtIIenc are randomised encoders, in this proof
we write the randomness of a randomized encoder explicitly. Let I denote the
randomness of AMDenc and let J denote the randomness of WtIIenc. As illus-
trated in Fig. 2, a message m is first encoded into an AMD codeword AI

m =
AMDenc(m, I). The AMD codeword AI

m is then further encoded into a WtII
codeword, which is the final (ρ, φ, φ+k+1

q )-LVAT-TD codeword: WtIIenc(AI
m, J).

According to (1), SD
(
WtIIenc(Ai1

m, J)|S ;WtIIenc(Ai2
m, J)|S

)
= 0. This says that

AI
m and Enc(m)|S are independent, in particular, I and Enc(m)|S are indepen-

dent. According to Definition 8, to show that (Enc,Dec) is a (ρ, φ, φ + k+1
q )-

LVAT-TD code, we need to show that for any message m, and any fS,g ∈ Fadd
ρ,φ ,
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Fig. 2. WtII◦AMD construction

Pr[Dec(fS,g(Enc(m)))
=⊥] ≤ φ + k+1
q , where the probability is over the random-

ness (I,J) of the encoder Enc. We show this in two steps.

Step 1. In this step, we assume that Enc(m)|S = a has occurred and bound the
failure probability of (Enc, Dec) under this condition. We compute

Pr[Dec(fS,g(Enc(m)))
=⊥|(Enc(m)|S = a)]
= Pr[Dec(Enc(m) + g(a))
=⊥|(Enc(m)|S = a)]
= Pr[AMDdec(WtIIdec(WtIIenc(AMDenc(m, I),J)

+ g(a)))
=⊥|(Enc(m)|S = a)]
= Pr[AMDdec(AMDenc(m, I) + WtIIdec(g(a)))
=⊥

|(Enc(m)|S = a)]
= Pr[AMDdec(AMDenc(m, I) + WtIIdec(g(a)))
=⊥],

where the third equality follows from the linearity of (WtIIenc, WtIIdec) and
the last equality follows from the fact that I and Enc(m)|S are independent
discussed in the beginning of the proof. Now if g(a) = 0n, we have

Pr[AMDdec(AMDenc(m, I) + WtIIdec(g(a))) 
=⊥] = 1,

since AMDdec(AMDenc(m, I) + WtIIdec(g(a))) = AMDdec(AMDenc(m, I)) =
m. If otherwise g(a) 
= 0n, we have

Pr[AMDdec(AMDenc(m, I) + WtIIdec(g(a))) 
=⊥] ≤ k + 1
q

,

since (AMDenc,AMDdec) in fact “achieves tamper detection” (See Remark 1).

Step 2. In this step, we conclude the proof by showing

Pr[Dec(fS,g(Enc(m)))
=⊥]
=

∑
a Pr[Enc(m)|S = a] · Pr[Dec(fS,g(Enc(m)))
=⊥

|(Enc(m)|S = a)]
≤ ∑

a:g(a)=0n Pr[Enc(m)|S = a] · 1
+

∑
a:g(a) �=0n Pr[Enc(m)|S = a] · k+1

q

< φqnρ · 1
qnρ · 1 + k+1

q

= φ + k+1
q ,
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where the first inequality follows from Step 1. and the following property of
(ρ, 0)-WtII code: for any A ∈ F

k+2
q , Pr[WtIIenc(A)|S = a] = 1

qnρ for any a ∈ F
nρ
q .

The rate of these (ρ, φ, φ + k+1
q )-LVAT-TD codes is computed as follows.

R =
k

n
=

(1 − ρ)n − 2
n

= 1 − ρ − 2
n

.

5 Concluding Remarks

We studied TD codes for a class of functions that we called LVAT function
family. We first showed that the functions that have many fixed points have to
be excluded from the set in order to have a small detection failure. We then gave
a construction of tamper detection codes with respect to the remaining functions
in the family.

LVAT family naturally arises when the codeword is partially leaked to the
adversary and this information is used to choose the noise vector that is added
to the codeword. We assumed leakage is in the form of the components of the
codeword. An interesting open question is to consider codes when leakage is
through an arbitrary function, with the restriction that the remaining entropy
in the codeword remains sufficiently high. Another open question is construction
of TD codes for LVAT family over binary alphabet.
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Abstract. Addition chain calculations play a critical role in determining
the efficiency of cryptosystems based on isogenies on elliptic curves. How-
ever, finding a minimal length addition chain is not easy; a generalized
version of the problem, in which one must find a chain that simultane-
ously forms each of a sequence of values, is NP-complete. For the special
primes used in such cryptosystems, finding fast addition chains for finite
field arithmetic such as inversion and square root is also not easy. In this
paper, we investigate the shape of smooth isogeny primes and propose
new methods to calculate fast addition chains. Further, we also provide
techniques to reduce the temporary register consumption of these large
exponentials, applicable to both software and hardware implementations
utilizing addition chains. Lastly, we utilize our procedures to compare
multiple isogeny primes by the complexity of the addition chains.

Keywords: Addition chains · Post-quantum cryptography · Isogeny-
based cryptosystems · Finite field

1 Introduction

An addition chain can be thought of as a sequence of integers starting from 1
to some number n, where each number is a sum of any two previous integers
in the sequence. For finite fields, operations such as exponentiations, inversions,
or square roots can be performed efficiently by utilizing an optimal addition
chain, the smallest such addition chain sequence to reach n. In particular, fast
exponentiation and inversion are paramount to the performance of scalar point
multiplication in elliptic curve cryptography (ECC), pairings in pairing-based
cryptosystems, and computing isogenies in the quantum-resistant isogeny-based
cryptosystems [1].
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There are several popular families of primes for fast computation of addition
chains used in public key cryptography including Mersenne primes [2], Crandall
primes [2], and Solinas primes [3]. Generally, these primes have a special form
with most of the prime featuring all ‘1’s. This speeds up most finite-field arith-
metic tremendously and also produces extremely fast addition chains through
the use of a regular chain of squaring and multiplying by 2s−1 for increasing val-
ues of s. Similarly, binary extension fields can take advantage of the Itoh-Tsujii
[4] method to compute the large exponential for inversion which also utilizes
towering values of 2s − 1, typically found in hardware implementations.

None of the above primes can be utilized for post-quantum cryptography
based on isogenies on elliptic curves, primarily because the curves generated from
these primes do not have many isogenies that are fast to compute. Therefore,
in [1], a special shape of primes called smooth isogeny primes is presented that
produce curves of smooth shape for fast isogeny computations. These are of the
form p = �aA�bBf ± 1, where �A and �B are relatively small primes, a and b are
positive integers, and f is a small cofactor to make the number prime. Most
primes of this form appear in the general prime category. However, if �A = 2,
then the second half of the prime is either all ‘1’s in the case that the prime is
minus 1 or all ‘0’s in the case that the prime is plus 1. The all ‘0’s form is much
faster in terms of speed as it just requires squarings, but the all ‘1’s pattern is
still a regular structure that can take advantage of long chains of ‘1’, similar to
Solinas or Mersenne primes. If � �= 2, then a basic windowing technique should
be used, similar to the general primes. A majority of the known software [5–8]
and hardware [9,10] implementations do not consider calculating fast addition
chains, which can improve inversion and square root computations essentially
for free.

Motivation. Current isogeny-based cryptography requires many exponentia-
tions through the use of inversions and square roots. Many finite field inversions
are required as points must be recovered from scalar point multiplications to
compute isogenies between curves. Finite field square roots have also been intro-
duced to create a basis for key compression [7,11]. For example, in the super-
singular isogeny Diffie-Hellman key exchange protocol [6] with key compression
[7], approximately 844 finite field inversions and 56 finite field square roots for
85-bit quantum security level were counted through test runs. Interestingly, [8]
revised the SIDH formula to only require a constant 4 finite field inversions,
making constant-time implementations feasible. Addition chains perform large
exponentiations efficiently and in a constant set of operations. Thus, they prove
both security and speed to exponentiations used in the inversion and square root
operations.

In this paper, we study addition chains for primes used in post-quantum cryp-
tography based on isogenies on supersingular elliptic curves. This cryptosystem
resembles ECC with its use of point multiplications, but also provides quantum
resistance by walking large degree isogeny graphs [1]. Our goal is to improve the
speed and efficiency of addition chains used in isogeny-based cryptography so
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that implementation of this post-quantum scheme can be practical. Our contri-
butions can be itemized as follows:

– We analyze the shape of smooth isogeny primes, which are applicable to post-
quantum cryptography based on isogenies on supersingular elliptic curves, and
present several methods to design fast addition chains.

– We present a hybrid windowing method to optimize inversion for primes of
the form 2a�bBf ± 1.

– We present a windowing method with a subtraction to optimize computation
of square root exponentials for 2a�bBf − 1.

– We introduce techniques to minimize the number of intermediate values that
are stored for an addition chain.

– We present empirical results of our techniques on a few smooth isogeny primes.

2 Background of Addition Chains

In this section, we review basic concepts of addition chains, their computations,
and a metric to compare them. All notations used in this paper are summarized
in Table 1.

Table 1. Notations used in this paper

Notation Definition

Z The set of integers

Fpn A finite field of size pn

m Power of 2 to represent families of special primes

k Iterating over k bits at a time (as in k-ary method)

c Optimal power of 2 for use in Hybrid Windowing Method

I, M, S, A Inversion, Multiplication, Squaring, and Addition in Fp

Ĩ , M̃ , S̃, Ã Inversion, Multiplication, Squaring, and Addition in Fp2

2.1 Addition Chains

We formally introduce addition chains with the following definitions. We point
the reader to [12] for an in-depth explanation of addition chains.

Definition 1. An addition chain is a sequence of integers (a0, a1, . . . , ar) with
a0 = 1 and ar = n, such that ai = aj + ak for any j, k < i.

Definition 2. An addition chain is optimal if its length is the smallest among
all possible addition chains.
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Algorithm 1. k-ary Precomputation
Input: n, k, c

Output: ci = ci mod n, with i = 0 . . . 2k − 1
1. c0 = 1

2. for i from 1 to 2k − 1 do
3. ci = (ci−1 × c) mod n
4. return ci

5. end for

Algorithm 2. k-ary Exponentiation Method
Input: A, ci = ci(i = 0 . . . 2k − 1), d = db−1db−2 . . . d1d0)2k
Output: Ad

1. for i from b − 1 downto 0 do

2. A = A2k

3. A = A × cdi

4. end for
5. return A

We are interested in finding optimal or almost optimal addition chains. It has
not been formally proven that finding an optimal addition chain is NP-complete,
but finding the optimal addition chain sequence for multiple numbers is believed
to be NP-complete.

Essentially, addition chains can be thought of as sums of preceding values
in the sequence. This is analogous to exponentiation because multiplying two
numbers with the same base is the same as adding the two exponentials, e.g.
xi × xj = xi+j .

Definition 3. A Brauer chain [13] is an addition chain that always uses the
previous value for the next one. In other words, it is a sequence of integers
(a0, a1, . . . , ar) with a0 = 1 and ar = n, such that ai = aj + ai−1.

Brauer chains utilize a stipulation that forces one of the inputs to be the
previous value. This greatly reduces the number of possible combinations for
addition chains. Several algorithms produce optimal Brauer chains, but unfortu-
nately, these are typically not optimal among all addition chains. We point the
readers to [13] for more analysis of Brauer chains. The general goal of Brauer
chains is to precompute values and then use an accumulator to square and mul-
tiply these precomputed values.

2.2 Computations of Addition Chains

k-Ary Method. The binary method is among the simplest addition chains,
that iterates over bits of an exponential with the square-and-multiply technique.
However, this is part of a broader family, the k-ary method, which is also a form
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of a Brauer chain. The k-ary method iterates over k bits at a time by repeatedly
performing k squarings followed by a multiplication with precomputed values.
Algorithm 1 lists the precomputation phase and Algorithm 2 lists the iterative
square-and-multiply method.

As an example, for k = 5 over a 512-bit exponential, there are approximately
511 squarings and 103 multiplications. Furthermore, at most 30 values must be
precomputed for the general case, for a grand total of 511 squarings and 133
multiplications.

Windowing Method. The sliding windowing method, presented in works such
as [14–17], optimizes the k-ary method by breaking the exponential into specific
windows up to a maximum of k bits. Efficient addition chain sequences are
generated to satisfy each of these windows using methods such as Lucas chains,
halving, approximation, and division. After that, these windows are applied when
it is its turn as the exponential is squared many times. The main advantage of
this over the standard k-ary method is that addition chain sequences are used
to generate only the necessary windows efficiently to reduce the total number of
multiplications and squarings.

2.3 Comparison of Addition Chains

For our purposes, we compare addition chains by the number of squarings and
multiplications for the exponentiation, as well as the number of temporary reg-
isters that must be stored when implemented in hardware or software. For
instance, it is interesting that the basic square-and-multiply, or binary method,
requires many more multiplications than the windowing method for the gen-
eral case, but only requires 2 registers. Indeed, this is among the slowest addi-
tion chains, but it is among the most space-efficient. For some implementations,
squarings are faster than multiplications. For our purposes, we will also try to
optimize for the relationship S = 0.8M .

2.4 Finite Field Inversion and Square Root

We are interested in using fast addition chains to compute the exponentiations
needed by inversion and square root in Fp2 . For any A ∈ Fp, finite field inversion
computes a value B = A−1 such that A · B = 1, where B ∈ Fp. This can be
computed using Fermat’s little theorem, which holds that A−1 = Ap−2. Addi-
tion chains can be used to efficiently evaluate these large powers in a constant
set of operations, to protect against timing attacks and simple power analysis
attacks. Conversely, the extended Euclidean algorithm could be applied to obtain
the inversion with a smaller time complexity, but at the cost of revealing some
information about the operand.

For any A ∈ Fp, finite field square root computes a value B = A1/2 such
that B · B = A where B ∈ Fp. It should be noted that −B ∈ Fp is also a square
root because −B · −B = A where −B ∈ Fp. We utilize the approach given
by [18] over even extension fields. The square root operation utilizes multiple
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exponentiations, p−3
4 , p−1

2 , and p in the case that p ≡ 3 mod 4 and p−1
4 , p−1

2 ,
and p in the case that p ≡ 1 mod 4. Notably, if p ≡ 1 mod 4 then there is an
additional square root operation that is extremely expensive. The exponentiation
by p in Fp2 is special in that it can be performed using the Frobenius operator
[18], which only requires a finite field negation. This is shown in Eq. 1. Consider
an element, a, in Fp2 is represented as a0 and a1, where a0, a1 ∈ Fp and a1 is
the most significant element.

ap = (a0, a1)p = (a0,−a1) (1)

In general, inversion requires a single exponentiation in Fp and the square
root requires one or two exponentiations in Fp2 . We refer the reader to [18] and
the Appendix for a longer discussion of inversion and the square root in even
extension fields.

3 Supersingular Isogeny Cryptosystems

This section serves as a brief review of supersingular isogeny theory and its
application as a cryptosystem. We point the reader to [1,19] for a much more
in-depth look at isogeny theory.

Isogeny-based cryptography relies on the difficulty to compute isogenies
between elliptic curves. An isogeny between two elliptic curves, E1 and E2,
is defined as a morphism φ : E1 → E2 such that φ(O) = O [19]. Essentially,
this is a non-constant rational map between these two curves that preserves the
null point. We are particularly interested in supersingular curves. The endomor-
phism ring of a curve is defined as as the ring of all isogenies from a curve to
itself, under point addition and functional composition. A curve is considered
supersingular if it features a endomorphism ring with Z-rank equal to 4. Super-
singular curves can be defined over Fp2 or Fp. Therefore, a common field that
includes all isogenous curves is Fp2 . Supersingular curves have the property that
for every prime � �= p, there exist � + 1 isogenies of degree � from a base curve.
An isogeny can be computed over a kernel, κ, such that φ : E → E/〈κ〉 by using
Vélu’s formulas [20].

The supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol, for
instance, operates similar to the standard Elliptic Curve Diffie-Hellman version.
In this case, Alice and Bob both have private keys to perform a double point
multiplication that spans the entire isogeny space. They compute isogenies over
the agreed upon bases with their double point multiplication result as the kernel.
They exchange these applied isogenies and perform a second set of double point
multiplications and isogeny computations, to arrive on curves with the same
j-invariant [1].

Key compression and decompression have been introduced for this key
exchange protocol in [7]. In this revised protocol, each party deterministically
creates a shared torsion basis, which is used to reconstruct some public informa-
tion that was originally intended to be exchanged over a public channel in the
standard protocol. The algorithms related to SIDH key compression were also
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Algorithm 3. Efficient Generation of Primes of the Form 2a3bf − 1
Output: Smooth isogeny primes of the form 2a3bf − 1
1. Define powers a and b for a balanced isogeny graph
2. Define a higher bound F on f

3. Define Π =
∏k

i=1 pi < F , where pi is a prime greater than 2 and 3 and Π is
maximized

3a. e.g. Π = 5 × 7 × 11 · · ·
4. Define the generator g = (2a3b)−1 mod Π
5. While looking for primes, do

6. Select some c0 in F
∗
Π //Must be coprime to each pi

7. While (cj �= c0), do //Test all candidates in cyclic sub-group for iteration j
7a. Define f = g + c mod Π

7b. Test if p = 2a3bf − 1 is prime
7c. cj+1 = 3 × cj //Multiplication by 2 could also be used here

8. Return all valid primes p

recently improved in both speed and compression rate in [11]. An SIDH public
key can be compressed to approximately 7

2 log p bytes [11].

How SIDH uses exponentiations. The SIDH protocol and compression were
mentioned because they both use finite field inversions and square roots. Based
on the new “projective” isogeny formulas presented in [8], 4 inversions are
required for the SIDH protocol, far fewer than the original “affine” isogeny for-
mulas. These inversions are necessary to recover the final curve coefficients, basis
points, and j-invariant in the SIDH algorithm. The strong compression algorithm
in [7] deterministically finds coordinates that can be used as a torsion basis. One
essential part to finding a torsion basis is ensuring that the points have the right
order, which utilizes square roots in the curve equation to recover y-coordinates.
It performs the square root at each iteration until it finds points that have the
correct order.

Isogeny-based cryptosystems use primes of the form �aA�bB · f ± 1 where �A
and �B are small primes, a and b are positive integers, and f is a small cofactor
to make the number prime. This prime is used to define a supersingular elliptic
curve, E(Fq) where q = p2. In the literature, the fastest known isogeny com-
putations are over �A = 2 and �B = 3, presented in [8]. For secure primes of
this form, we want the relative size of �aA and �bB to be approximately equal for
balanced isogeny graphs. Furthermore, these primes can fit nicely for software
applications by making the size of the prime as close to a multiple of 32. Lastly,
the quantum security under these schemes was shown to be approximately the
number of bits divided by 6 in [1].

Efficiently Finding Smooth Isogeny Primes. From the prime number the-
orem in arithmetic progressions in [21], it can be shown that the density of such
smooth isogeny primes is sufficient. A brute force approach could be used by
testing all values of f , but we adapted the methods of [22] to greatly reduce
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the number of prime candidates of smooth isogeny forms. Algorithm 3 demon-
strates the approach for primes of the form 2a3bf −1, but simple changes to the
generator in the algorithm make it applicable to other smooth isogeny primes.
The algorithm ensures that all primes that are tested are already coprime to
the product of all small primes used, Π. We further note that each candidate is
coprime to 2 and 3 in our example.

4 Fast Exponentiations for Smooth Isogeny Primes

In this section, we evaluate the structure of exponentiations for inversion and
square root for smooth isogeny primes of the form �aA�bB · f ± 1 where �A and
�B are small primes, a and b are positive integers, and f is a small cofactor to
make the number prime. We break this prime form into the following families:
2a�bBf − 1, 2a�bBf + 1, and general smooth isogeny primes. Figure 1 summarizes
our observations based on the addition chains method we found to be most
effective.

Diffie-Hellman Key 
Exchange based on 

Supersingular Isogenies 

Inversion Square Root

Hybrid Window 
Method

Basic Window 
Method

Window
Method with 
Subtraction

Window
Method for 1st

Half of Prime

Basic Window 
Method

Standard Protocol Compression

Fig. 1. Taxonomy of addition chains for smooth isogeny prime families

4.1 2a�bBf − 1 - Taking Advantage of the Least Significant Half
of the Prime

We introduce this family as a set of smooth isogeny primes that have the least
signficant bits all set to ‘1’. Notably, these primes satisfy the Montgomery
friendly property [23] to speed up Montgomery reduction [24]. Otherwise, it
is essential to note that there will be many more factors of 2 than �B in the
shape of the prime, so primes of this form are p ≡ 3 mod 4, equating to faster
square root operations.

Proposition 1. Very fast addition chains can be generated for primes of the
form 2a�bBf − 1 by using an adaptation of the windowing method for the most
significant half of the exponentials and precomputing a large value 2c − 1 for the
least significant half.
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Algorithm 4. Hybrid windowing method for primes of the form 2a�bBf − 1.
Input: Smooth Isogeny prime of form 2a�b

Bf − 1
Output: Fast Addition Chains for p − 2, p−3

4
, p, and p−1

2

1. Split first half of prime into various max-sized windows
1a. The best choice of window size varies based on the prime

2. Include an additional 2c − 1, such that c makes a large window of all ‘1’s
that minimizes the number of multiplication windows for the second half of the
prime as well as minimizing the number of multiplications to generate
3. Determine good addition sequences to generate the windows

3a. Add additional stored values if necessary
4. Slightly alter choice of c and multiplications to finish the addition chain between
p − 2, p−3

4
, p, and p−1

2

Proposition 1 is straightforward as the first half of primes of this form appear
random and the second half is all ‘1’s. For inversion, we are interested in fast
addition chains for p − 2. For the square root, we want fast addition chains for
p−3
4 and p−1

2 . Luckily, for primes of the form 2a�bBf − 1, only the last few bits of
these exponentials are different. Thus, fast addition chains are extremely similar
among these exponentiations. We present the general procedure in Algorithm 4.

As Algorithm 4 shows, the general procedure starts by dividing up the first
half of the prime. The size of the window depends on the shape of the first
half of the prime, but is typically more than 7 bits for primes of this family of
size 512-bits or larger. After the windows have been found, the addition chain
sequences are constructed to encapsulate each of these windows. [14] provides
one such algorithm to make addition chain sequences to generate these windows.
However, we complete the sequence by using our own pivot judging, which we
found to be very effective. This method determines which number acts as the
best pivot. We judged potential candidates based on:

– Number of newly connected elements with the inclusion of the pivot
– Cost to generate the pivot value based on existing values (doubles are scored

higher)
– Among high scoring pivots, the uniqueness of the connected elements are

valued

Based on these criteria and the abundance of windows available, relatively few
additional pivot values were added to complete the addition sequence. Our
judging criteria prioritized values that could be obtained through squarings
rather than multiplications, to reduce the total complexity of the addition chain
sequence. Since all windows were found as odd numbers, starting and ending
with a ‘1’, primarily even values were added to finalize the addition sequence.

For the second half of the prime (a long chain of ‘1’s), we require a high
value 2c −1. Typically, this value will be a few bits larger than the large window
at the beginning of the exponential. The value 2c − 1 essentially acts as a very
large window for the structured second half of the prime. This value generally fits
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nicely into the number of ‘1’s at the end. The idea is to raise the value of c so that
there are fewer windows on the second half of the prime. Indeed, larger values
of 2c − 1 require more intermediate squarings and perhaps multiplications, but
could reduce even more multiplications for the remaining windows. We consider
this a “hybrid” windowing method because there are different strategies for the
first and second half of the prime.

4.2 2a�bBf − 1 - An Illustrative Example - 225331617 − 1

As an example of a prime in this field, we point to the prime for 85-bit quantum
security presented in [1]. We want to create fast addition chains for inversion,
or 225331617 − 3. From the above strategy, we start by taking windows of the
prime. We are looking at approximately 256 bits for this prime, so a max window
size of about 7–10 bits is sufficient. In Fig. 2, we use a max window of size 8,
which was found to be the fastest addition chain based on our model. It was
determined that the optimal value of c was 13, or 213 −1 = 8191, which required
only a single squaring and multiplication to reach and will complete the second
half of the prime in 19 windows. Larger values of c would have required more
multiplications and squarings, while not reducing the number of final windows
enough to make it worth it. Table 2 illustrates the cost breakdown of various
parts of the exponentiation for inversion.

Fig. 2. Hybrid windowing method for 2a�b
Bf − 1

Table 2. Breakdown of costs for addition chains for 225331617 − 3

Operation Cost

Window generation 28M + 9S

Applying windows 1st half 28M + 245S

Applying windows 2nd half 20M + 254S

Total 76M + 508S
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4.3 2a�bBf − 1 - Why Use Constant-Time Square Roots?

Proposition 2. For a non-constant time implementation of the square root,
fast inversion algorithms such as the extended Euclidean algorithm can be used
to produce negative values to greatly reduce the number of multiplications in an
exponentiation.

To demonstrate Proposition 2, we point to the fact that key compression and
decompression, which require the square root, only reconstruct information that
would be transmitted over a public channel. Thus, as long as a fast inversion
produces an addition chain requiring far fewer multiplications, its use may be
justified. Typically, addition-subtraction chains are used for scalar point mul-
tiplication operations where the negative of a point is easy to obtain, such as
in [25]. But the requirement of constant time for security in compression and
decompression is not necessary and addition chains can benefit as a result.

As an example to this proposition, let us consider p = 4091 = 1111111110112.
We want to take the square root of an element, x, in Fp2 in a fast non-
constant time fashion, so we produce the inverse, x−1, using the Extended
Euclidean Algorithm (EEA). For the first exponentiation, x

p−3
4 , the exponential

is 11111111102 = 210−2 = 100000000002−102. A standard binary method would
require 8M + 9S, but a standard binary method with the second representation
would require 1I + 1M + 11S. Thus, in the general case, if I < 7M − 2S, then
the addition-subtraction chain method is faster. This serves as a toy example to
show a possible way to speed up the square root exponentiations, and is also key
to the non-adjacent form method (NAF) form of exponentiation [17]. The NAF
method does not necessarily mesh well with computing fast windows for addition
chains because it typically iterates over single digits at a time and diminishes
positive windows instead of growing them. However, it may provide far fewer
multiplications for extremely long chains of ‘1’s, which are prominent in square
root exponentiations in the 2a�bBf − 1 family.

4.4 2a�bBf − 1 - Addition-Subtraction Chains to Speed up Square
Roots

Proposition 3. Representing the exponentials used in square roots as e−1 with
a final subtraction likely produces much faster addition chains.

Proposition 3 alludes to using an addition-subtraction chain for fast expo-
nentiation. The long chain of ‘1’s in the least significant half of the exponentials
can be avoided by using −1, or the original value’s inverse. Let us consider expo-
nentiating by p, for instance. This value can be rewritten as p = (p + 1) − 1.
Thus, we can assume that we are exponentiating 2a�bBf , which has the second
half all ‘0’s. After we have found that exponential, we multiply by the inverse of
the element and the exponentiation is complete.

For our example in Sect. 4.2, the second half of the prime required 1 extra
squaring and 22 extra multiplications to generate and apply the final windows.
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Algorithm 5. Windowing method with a subtraction 2a�bBf − 1.
Input: Smooth Isogeny prime of form 2a�b

Bf − 1
Output: Fast Addition Chains for p−3

4
, p, and p−1

2

1. Add ‘1’ to the prime to cancel out all of the second half of the prime
2. Split first half of result into various max-sized windows

2a. The best choice of window size varies based on the prime
3. Determine small addition sequences to generate the windows

3a. Add additional stored values if necessary
4. Perform a fast inversion using a method such as EEA
5. Perform a subtraction by multiplying by the inverse
6. Slightly alter final multiplications to finish the chains for p−3

4
, p, and p−1

2

We are essentially replacing this cost with a multiplication by the inverse. Thus,
this method is faster if Ĩ < S̃ + 21M̃ for this case. This may seem farfetched.
However, in practice we have seen the ratio Ĩ ≈ 5M̃ for 512-bit numbers in
ARMv7 devices. This demonstrates that using a single subtraction at the end of
the addition chain saves the cost of S̃ + 16M̃ in this case, most likely even more
for larger prime sizes.

4.5 2a�bB · f + 1 Family

The 2a�bB · f + 1 family features a prime shape with a long string of ‘0’s. Thus,
this can take advantage of a regular shape as well. Inversions within this fam-
ily can be performed with the hybrid windowing method and the square root
exponentiations feature a second half of the prime that is all ‘0’s.

Exponentiation by p − 2. The inversion exponentiation is similar to that of
the 2a�bB ·f −1 family, as the final half of the exponentation is all ‘1’s. Thus, the
hybrid windowing method is also valid for the 2a�bB · f + 1 family and generates
fast addition chains for these inversions.

Fast Exponentiations for Square Roots. This family has primes that are
of the form p ≡ 1 mod 4. Thus, the exponentials p−1

4 , p−1
2 , and p are used in

the square root process. This means that the windowing method can be used
for the first half of these primes and the second half is simply squarings since
it is all ‘0’s. This exponentiation is similar to that of the addition-subtraction
chains used in 2a�bB · f − 1, but without the need to compute a fast inverse.
However, these fast square root exponentations do not make up for the fact that
an extremely expensive square root [18] in the field Fp must be performed. Thus,
this family is not necessarily a good fit for key compression and decompression.

4.6 General Smooth Isogeny Family

The binary representation of digits used in today’s processors means that the
representation of other “general” smooth isogeny primes will appear pseudo-
random since there are no powers of 2. The general isogeny primes can further
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be classified based on their form of their square root functions. The two classi-
fications are p ≡ 3 mod 4 or p ≡ 1 mod 4. Clearly, these are the two groupings
because otherwise the number would not be prime. In either case, the inversion
and square root exponentiations can be determined efficiently by using the win-
dowing method over the entire prime. The exponentations for the square root
are slightly different in the two groupings, and the p = 3 mod 4 general prime
is clearly faster as it does not require a square root operation in Fp in addition
to the exponentations.

5 Proposed Technique to Reduce Temporary Registers

In the previous sections, we have not considered the impact of storing interme-
diate addition chain windows. Here, we propose new techniques that reduce the
number of intermediate values needed, while preserving the speed of the addition
chains. In software and hardware implementations of inversion, the intermediate
storage must be accounted for. This can make a large difference in embedded
devices that are limited by the number of values that can be stored. Fast addi-
tion chains typically require many more temporary values than something like
the binary method, but careful planning can be used to minimize the impact on
a register file, for instance. We summarize our observations in Algorithm 6.

Algorithm 6. Minimizing register usage in windowing method
Input: Addition chain sequence based on the windowing method
Output: Efficient paths to perform the exponentiation with a reduced number of
registers
1. Based on the addition sequence, generate a short path from 1 to the value
of the first window
2. Remove values that are stored in registers based on the following criteria:

2a. If a register has been used and is no longer required to make a path to
other windows

2b. If a separate register contains the value of a register multiplied by 2
3. As the windows are being applied, they can be performed by multiplying
their factors directly instead of multiplying to a separate register.

5.1 New Techniques

Proposition 4. Temporary registers can be reduced by creating a short path to
reach the first window that involves other windows. The steps along the path that
are also windows must be used as registers.

Proposition 4 leads to a few different techniques to reduce the total number
of registers:
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Proposition 5. The windows used in an addition chain do not have to be gen-
erated at the start. They only need to be generated in the order that they appear
with the windowing method. Thus, after a window is used with no remaining
dependencies, its register can be replaced.

Proposition 5 is simple to see. So long as we can create the first window
efficiently, we can recreate the other windows efficiently at a later time. The
order of the windows is relevant. In addition, any window that is used twice
must be stored as a temporary register so that the cost of generating it is not
experienced twice. For example, let us consider we have windows in the order 9,
11, 9, 6, 4, 5. The optimal addition sequence for this toy example is 1, 2, 4, 5,
6, 9, and 11. The shortest addition sequence for the first window is 1, 2, 4, 5,
and 9. In reality, we only have to store values for 2, 4, 5, 9, and an accumulator.
The other values that are not stored can be recreated from each of these. For
instance, 6 = 2 + 4 and 11 = 2 + 9. The register holding 9 can also be freed
after the second 9 window is applied. There are no more dependencies on it
within the window sequence. Likewise, the register holding 2 can be freed after
applying the window of 6, and the register holding 4 can be freed after applying
the window of 4.

Proposition 6. New windows can be recreated from pre-existing windows using
addition chains at no cost to the complexity of the exponentiation.

Proposition 6 shows that only the absolutely necessary windows must be
stored and that the others can be recreated from multiplications. In the toy
example above, we can recreate the windows that are not included by adding
the factors to generate the window in sequence. For instance, if we have a win-
dow of 11, we would multiply the accumulator by 9 and then multiply it by 2.
Alternatively, one could use a temporary register to hold the product of 9 and
2, and then multiply that to the accumulator. In the end, this window costs
2 multiplications to use in the addition chain. Thus, storing the window to a
temporary register wastes a register unless the window appears more than once.
In our example, 5 and 9 appear twice in the sequence of windows, so a register
must hold these values to prevent recreating the window multiple times. There is
no reason to store 6 because it is only used once and is not necessary to generate
any other windows.

5.2 An Illustrative Example - 225331617 − 1

We demonstrate these techniques with our example in Sect. 4.2. Originally, this
example requires 32 registers since there are 24 windows, 7 intermediate values
necessary to complete the addition sequence, and a single register for the accu-
mulator. However, it is worth noting that based on the order of the windows and
above propositions, we can reduce the number of registers significantly.

One optimization that we can do is to reach our first window with as few
steps as possible. 4057 can be reached in with 21 registers by using the addition
chain sequence 1, 2, 3, 4, 7, 8, 16, 23, 27, 29, 37, 38, 40, 77, 115, 123, 125, 165,
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205, 243, and an accumulator to perform the other squarings and multiplications
up to 4057. The intermediate values must be saved as they are windows that will
be used later. Unfortunately, the windows for 43 and 91 occur at the beginning of
the exponential sequence and occur multiple times, thus registers must be used
to store these as well. 43 requires one step and 91 requires 51, thus 3 additional
registers are required. From there, all of the other windows can be reached within
a single step. As windows are used in the exponentiation and are not needed to
generate other values, these registers can be freed and reused for other windows.
Technically, these new windows do not necessarily need to be stored since they
can be factored to two of the existing windows, as noted in Proposition 6. Based
on data dependency within the window order, 3 additional registers are used.
Using these techniques, 5 temporary registers can be saved and 27 registers are
required in total.

One more strategy is to free the start of the sequence as their values are used.
Indeed, after 47 is obtained, 1, 7, 8, and 16 can each be removed. The rest of
the sequence is obtainable. One interesting note is that 1 is not needed since 2
can serve as its window, but after one more squaring. Another interesting use
of this technique is that 213 can be applied as a window in two multiplications,
even if 8 is not available. One cycle before the window’s turn, the factor 4 is
multiplied to the accumulator. The accumulator is squared and multiplied with
205, to achieve 213 = 4 × 2 + 205. The data dependency technique can also
remove 38 and 40 after 243 has been generated since they are not used in any
other windows. Thus, we further reduce the register count from 32 at the start
to 21, reducing the register usage by 34%.

6 Comparison of Methods

Using the above techniques, we demonstrate the reduced complexity of our
method over a standard windowing method in Table 3. We used a Jetson TK1
development board with the GNU Multiprecision (GMP) Library version 6.1.0
to test our addition chain strategies. We used Karatsuba-optimized methods for
arithmetic in Fp2 and GMP for arithmetic in Fp. The timing result represents

Table 3. Comparison of addition chains for square root exponentiation by p =
225331617 − 1

Method Window size #Ĩ #M̃ #S̃ Time (μs) #Registers

Binary 1 0 380 511 2.978 2

K-ary 2 0 224 511 2.435 4

K-ary 4 0 141 511 2.076 16

Standard window 8 0 87 508 1.877 20

Hybrid window 8 0 76 508 1.804 21

Window with a subtraction 8 1 56 508 1.751 21
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Table 4. Comparison of addition chains for smooth isogeny primes p512

Exponentiation #I #M #S Window addition #Registers Max window c
sequence length size

p = 225331617 − 1

p − 2 0 75 508 31 21 8 13
p−1
2

1 56 505 31 21 8 -

p = 2254315871 + 1

p − 2 0 79 514 32 19 7 14
p−1
2

0 58 507 32 19 7 -

p = 5108789732 + 1

p − 2 0 99 505 55 28 10 -
p−1
2

0 99 504 55 28 10 -

p = 5108790102 + 1

p − 2 0 106 508 54 24 8 -
p−1
2

0 106 507 54 24 8 -

the cost of performing the exponential p = 225331617 − 1 over Fp2 , designed
for a square root. The k-ary method is presented in Algorithms 1 and 2. Our
hybrid windowing method reduces the total number of multiplications needed by
approximately 13% over a standard windowing method. Furthermore, our win-
dowing method with a subtraction reduces the total number of multiplications
by 36% at the cost of a fast inversion. The new methods are optimizations of the
windowing strategy, applicable to special isogeny primes of the form 2a�bB ·f ±1.
These optimizations require only a single register over the standard windowing
method, but speed up the exponentiation by 3.9% for the hybrid windowing
method and 6.8% for the window with a subtraction. Interestingly, the relative
ratio of inversion over multiplication in Fp2 , Ĩ/M̃ , was found to be approximately
5 for the Jetson TK1. Thus, the window with a subtraction method reduced the
cost of the square root exponentiation by approximately 15 multiplications in
Fp2 for 512-bit primes.

We also apply the technique to the three major families with 512 bit primes in
Table 4. These results show that the square root exponentiations are faster with
the form p = 2a�bB · f + 1 because a fast inversion is not needed as the least half
of the prime is already all ‘0’s. We also compare primes of the form 2a�bB ·f −1 in
Table 5. For these two tables, exponentiation by p − 2 is for inversion and in Fp

and exponentiation by p−1
2 is for the square root and in Fp2 . Typically, the total

number of registers appeared to be directly related to the max window size and
addition sequence to generate the windows. Smaller window sizes required fewer
steps to reach the first window and required fewer numbers for the remaining
steps. It is also interesting that the optimal max window size did not necessarily
scale with the prime size. Generally, windows of size 7–10 appeared the best
for our results. These window sizes fit well for these sizes because many of the
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Table 5. Comparison of addition chains for smooth isogeny primes of different sizes

Exponentiation #I #M #S Window addition #Registers Max window c
sequence length size

p512 = 225331617 − 1

p − 2 0 76 508 31 21 8 13
p−1
2

1 56 506 31 21 8 -

p768 = 23793239497 − 1

p − 2 0 108 770 49 26 9 16
p−1
2

1 84 762 49 27 9 -

p1024 = 25093320107 − 1

p − 2 0 134 1029 52 28 8 18
p−1
2

1 102 1020 52 29 8 -

windows could be generated quickly and there were only additional windows as
the max window size got larger. In contrast, the value of c in 2c − 1 did appear
to scale with the size of the prime. This is to be expected as greater values of
c required typically an additional squaring and multiplication, but saved many
window multiplications at the end of the prime.

7 Conclusion

Overall, this paper investigated fast and efficient addition chains for smooth
isogeny primes used in the supersingular isogeny Diffie-Hellman scheme. The
hybrid windowing method produces fast addition chains for inversion for the
2a�bB · f ± 1 families by taking advantage of the semi-regular structure of p − 2.
Other primes used in the scheme can use the basic windowing method, but
typically require more multiplications. Square root exponentials can also benefit
from a fast inversion for 2a�bB ·f −1 or simply from having half of the exponential
being zero for 2a�bB · f + 1. The applications of inversions and square roots for
isogeny-based cryptography necessitate the need for fast addition chains for fast
and secure exponentiations. The hybrid and subtraction windowing methods find
addition chains that feature reduced numbers of multiplications and squarings
at an insignificant cost to temporary storage, which can be valuable to both the
speed and size of ECC over prime curves.
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A Appendix

A.1 Addition Chains for Inversion

Finite-field inversion finds some A−1 such that A · A−1 = 1, where A,A−1 ∈ Fp.
This can be computed using Fermat’s little theorem, which shows that A−1 =
Ap−2. Addition chains can be used to efficiently evaluate these large powers in
a constant set of operations, to protect against timing attacks and simple power
analysis attacks.

Isogeny-based cryptosystems operate in Fp2 , so the inversion in Fp must be
extended as such. We use Eq. 2 to perform the inversions in Fp2 with irreducible
modulus x2 +1 (assuming −1 is not a quadratic residue in Fp). We note that an
element, a, in Fp2 is represented as a0 and a1, where a0, a1 ∈ Fp and a1 is the
most significant element.

a−1 = (a0, a1)−1 = (a0 × (a2
0 + a2

1)
−1,−a1 × (a2

0 + a2
1)

−1) (2)

Fast non-constant time inversion. Inversion by Fermat’s little theorem is
accomplished in constant-time, but it is still slow compared to algorithms such as
the Extended Euclidean Algorithm (EEA) and Kaliski’s almost inverse. In fact,
EEA has a significantly lower time complexity of O(log2n) compared to O(log3n)
for Fermat’s little theorem. EEA uses a greatest common divisor algorithm to
compute the modular inverse of elements a and b with respect to each other,
ax + by = gcd(a, b). We present this alternative for inversion because it makes
an inversion term much quicker to compute, which can be used for the square root
exponentiations. For our sample implementation, the GMP library incorporates
EEA for fast inversion.

A.2 Fast Computation of Square Root

The finite-field square root finds some A1/2 such that A1/2 · A1/2 = A, where
A,A1/2 ∈ Fp. For the case that p ≡ 3 mod 4, which is true for primes of the
form 2a3bf − 1, Shank’s algorithm can be used to retrieve the square root of the
quadratic residue by exponentiating the value by p+1

4 . However, unlike inversion,
not all elements in a prime field have a square root. Thus, there is also a check
on the result that if its square and product by the original element is −1, then
the square root does not exist.

For the case p ≡ 1 mod 4, there is also an additional square root operation
in Fp. Typically, the method to recover the square root in this case is based on
the Tonelli-Shanks algorithm demonstrated in works such as [26]. We will not
go into the specifics of this square root operation, but the extra overhead for the
full square root is significant compared to the case p ≡ 3 mod 4.

Square roots in Fp2 are trickier than inversion. For the square root in this
extension field, we refer to [18], which extends Shank’s algorithm for even exten-
sion fields. In this work, Algorithms 9 and 10 contain the square root computa-
tion over even extension fields when p ≡ 3 mod 4 when p ≡ 1 mod 4, respectively.
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Abstract. Advances in quantum computers threaten to break public
key cryptosystems such as RSA, ECC, and EIGamal on the hardness of
factoring or taking a discrete logarithm, while no quantum algorithms
are found to solve certain mathematical problems on non-commutative
algebraic structures until now. Under this background, a non-commuting
cryptography class based on matrix power function has been given. In
this paper we show that the non-commuting cryptography class based
on MPF is vulnerable to a linear algebra attack which only requires
polynomial time to achieve the equivalent keys respectively. In addition,
we conduct an analysis on the flaws in this schemes and propose an
improved scheme that remedies the weakness of their schemes.

Keywords: Cryptography · Post-quantum computational cryptogra-
phy · Cryptanalysis · Asymmetric cipher · Matrix power function

1 Introduction

Most public key cryptosystems used today rely on the assumed difficulty of
either factorization or computing discrete logarithms. Many experts believe that
public-key cryptosystems on noncommutative algebraic structures used today
have the potential to resist known quantum algorithms attacks which motivate
researchers to develop a new family of cryptosystems that can resist quantum
computers attacks and that are more efficient in terms of computation. In recent
years, cryptographers have been making efforts in the area of post-quantum
computational cryptography [1–6]. There also are some alternative quantum-
resistant public key cryptosystems from other mathematically intractable prob-
lems, such as NPC problem [7–13].

Before going into details we would like to mention that nonabelian algebraic
structures has already been used in a cryptographic context. We refer to [5,6]
for a general introduction to non-commutative cryptography. In this paper we
study a non-commutative cryptography class based on matrix power function
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problem proposed in [14–16]. The novelty of launching such attacks on the non-
commuting cryptography class which have the potential to resist known quantum
algorithms attacks is that we can obtain the equivalent keys from an associated
public key with significant probability in a reasonable time.

There are many cryptography which are broken by some linear algebra attack
[5,12,17]. Because these schemes have some weak keys by using some linear
algebra knowledge. Our main results are that the non-commutative cryptography
class is vulnerable to a linear algebra attack based on the probable occurrence
of weak keys in the generation process. Then we analyze the basic rationale
for the linear algebra attack and show corresponding algorithmic description
and efficiency analysis. We also propose an improved scheme that remedies the
weakness of their schemes.

The rest of this paper is organised as follows. Section 2 reviews necessary
material for this paper. Section 3 gives an overview on the asymmetric cipher
scheme based on MPF proposed in [14–16]. Section 4 proposes an attack method,
and shows corresponding algorithmic description and efficiency analysis respec-
tively. In Sect. 5, the modified scheme and the security analysis are proposed. At
the end, Sect. 6 provides some concluding remarks and discusses possible lines
of future work.

2 Preliminaries

Here, we have a quick review of necessary material for this paper.
Throughout in this paper, we use the following notations. q is a power of

prime. Fq is a finite field of order q.
GLk(Fq) is a set of k × k invertible matrices of Fq-entries. Mk(Fq) is a set of

k × k matrices of Fq-entries. Ik ∈ GLk(Fq) is the identity matrix. For a matrix
A, AT is the transpose of A.

For A = (aij)k1×k1 ∈ Mk1(Fq), and B = (bij)k2×k2 ∈ Mk2(Fq),
−→
A = (aij) ∈

F
1×k2

1
q ,

A ⊗ B =

⎛
⎜⎝

a11B · · · a1k1B
...

. . .
...

ak11B · · · ak1k1B

⎞
⎟⎠ .

Proposition 1. The Kronecker product “⊗” has the following simple properties:

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C),

(A ⊗ B)T = AT ⊗ BT , (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

Proposition 2. Stacking the row of a matrix into one long row vector “−→· ” has
the following simple properties:

−−−−−−→
αA + βB = α

−→
A + β

−→
B, (

−−→
AX)T = (A ⊗ I)(

−→
X )T ,

(
−−→
XB)T = (I ⊗ BT )(

−→
X )T , (

−−−→
ACB)T = (A ⊗ BT )(

−→
C )T .
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Define 1 (one-sided Matrix Power Function). Let matrix Q = (qij)n×n

powered by matrix Y = (yij)n×n from the right be a matrix C = (Cij)n×n

and matrix Q powered by matrix X = (xij)n×n from the left be a matrix D =
(dij)n×n, i.e.,

C = QY ,D =X Q

where elements of C are computed by the formula Cij =
n∏

k=1

q
ykj

ik , elements of D

are computed by the formula dij =
n∏

k=1

qxik

kj .

Define 2 (two-sided Matrix Power Function or MPF). Denoting the
result matrix by E = (eij)n×n we have the following MPF definition

E =X QY .

The elements eij are then computed in a following way:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qx11y11
11 · · · qx1my11

m1 qx11y21
12 · · · qx1my21

m2 · · · qx1mym1
mm = e11

qx11y12
11 · · · qx1my12

m1 qx11y22
12 · · · qx1my22

m2 · · · qx1mym2
mm = e12

...
qxm1y1m
11 · · · qxmmy1m

m1 qxm1y2m
12 · · · qxmmy2m

m2 · · · qxmmymm
mm = emm

(1)

where X = (xij)n×n and Y = (yij)n×n.

Define 3 (Matrix MQ problem). Suppose that matrix Q is defined over some
cyclic group G and the generator g of the group G is given and due to Fermat’s
theorem. A discrete logarithm with the base of this generator of E =X QY can
be applied to E,Q to obtain

ldgE = ldX
g QY = XldgQY = XTY,

where ldgE and ldgQ mean, T = ldgQ. So, suppose that T and ldgE are given,
find matrices X and Y which is called matrix MQ problem.

This problem is similar to well known NP-complete problem, namely multi-
variate quadratic (MQ) problem. In [14,16,17], they made a conjecture that the
matrix MQ problem is a candidate one-way function since its inversion is related
with the solution of known multivariate quadratic problem which is NP-complete
over any field.

3 Description of Asymmetric Cipher Class

In this section, we briefly review the asymmetric cipher of non-commuting cryp-
tography class based on matrix power function proposed by Sakalauskas et al.
as follows.
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3.1 The Asymmetric Cipher 1

The asymmetric cipher 1 given in [14] can be summarized as follows:
At first, the common setting on the public parameters of the proposed

schemes are given by < ML,MR,PL,PR,P,Mn(Fq) >, where let P = {pi()}
be a set of all polynomials over Fq, subsets PL ⊆ R,PR ⊆ R are generated
by matrices ML and MR respectively, i.e., PL = {pi(ML)},PR = {pi(MR)}. It
is evident, that all matrices in PL and all matrices in PR are commuting. All
matrices are numbers in finite field Fq.

Now, the key agreement protocol using matrix power functions is described
as follows.

KeyGen: Alice and Bob agree on publicly available matrix Q ∈ Mn(Fq).

(1) Alice chooses at random secret matrices X ∈ PL, Y ∈ PR, calculates

A =X QY ,

then sends A to Bob.
(2) Bob chooses randomly matrices U ∈ PL, V ∈ PR and calculates

B =U QV

and sends B to Alice.
(3) Both parties compute the following common secret key

K =X BY =XU QV Y =UX QY V =U AV .

3.2 The Asymmetric Cipher 2

The asymmetric cipher 2 given in [15,16] can be summarized as follows:
At first, the common setting on the public parameters of the proposed

schemes are given by < Q,A,MS ,MR >, where

(1) MS and MR are a matrix semigroup and a matrix ring respectively;
(2) Matrix Q is selected from platform semigroup MS and matrix A is selected

from power ring MR.

Now, the encryption protocol is described as follows.

KeyGen: Alice randomly selects a non-singular matrix X ∈ MR and a polyno-
mial PU . Calculate U = PU (A), XAX−1 = B and XQU = E. Output (B,E)
as the public key pair and (U,X) as the private key pair.

Enc: Input the public key pair (B,E) and the message M . Bob chooses a non-
singular matrix Y ∈ MR and a polynomial PV .

(1) Bob computes V = PV (A), and PV (B) = XV X−1.
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(2) He raises matrix E =X QU to the obtained power matrix XV X−1 on the
left and obtains XV QU . He also raises the power matrix Y on the right and
obtains K =XV QUY .

(3) He computes C = K ⊕ M , where ⊕ is bitwise sum modulo 2 of all entries of
matrices K and M .

(4) Bob sends (C,D = Y −1AY,F =V QY ) to Alice.

Dec: (1) Alice computes PU (Y −1AY ) = Y −1UY . Then Alice raises the matrix
F to the power X on the left, raises matrix F to the obtained power matrix
Y −1UY on the right and obtains the same encryption key K =XV QUY .

(2) Alice decrypts the ciphertext C using encryption key K and the message
M = K ⊕ C = K ⊕ K ⊕ M is obtained.

4 The Linear Algebra Attack

This section attempts to attack the non-commuting cryptography class based
on MPF mentioned above. The attack makes use of the elementary tools and
this is intended to show the structural vulnerabilities of asymmetric cipher of
non-commuting cryptography class based on matrix power function.

4.1 Attack on the Asymmetric Cipher 1

Suppose an attacker A is observing the asymmetric cipher protocol, he is then
able to get the information: (ML,MR, A,B,Q). He searches for a pair of matrices
(X,Y ) such that ⎧⎪⎨

⎪⎩

A =X QY ;
XML = MLX;
Y MR = MRY,

(2)

then the proposed scheme have always had weakness. It remains to analyze the
asymmetric cipher, which can be concluded as follows.

Proposition 3. If an adversary can find matrices X̃, Ỹ satisfying the Eq. (2),
then the asymmetric cipher 1 can be broken.

Proof. If an adversary can find matrices X̃, Ỹ satisfying the Eq. (2), then the
asymmetric cipher 1 based on matrix power function may be summarized as
follows.

According to X̃ML = MLX̃, Ỹ MR = MRỸ and U ∈ PL, V ∈ PR, then
X̃U = UX̃, Ỹ V = V Ỹ .
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Thus

X̃BỸ =X̃ (UQV )Ỹ

=X̃U QV Ỹ

=UX̃ QỸ V

=U (X̃QỸ )V

=U AV

= K.

(3)

This completes the proof.

4.2 Attack on the Asymmetric Cipher 2

This section attempts to attack the asymmetric cipher 2. For each n × n matrix
A ∈ Mn(Fq) with entries over Fq, the characteristic polynomial fA(x) is defined
to be

fA(x) = det(xIn − A) = anxn + an−1x
n−1 + · · · + a1x + a0,

where ai ∈ Fq. fA(x) tells us that An can be linearly represented by the set
B = {I,A, · · · , An−1}. For the matrix A, there exists a corresponding minimum
polynomial fminA(x) such that fminA(A) = O. We know that fminA(x) | fA(x),
thus for any k ∈ Z and each n×n matrix A, Ak can also be linearly represented
by the set B.

If we could find any pair of matrices (X,U, Y ) such that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

XAX−1 = B;
Y −1AY = D;
XQU = E;

U =
n−1∑
i=0

aiA
i.

(4)

then the proposed scheme 2 is always had weakness. It remains to analyze the
asymmetric cipher 2, which can be concluded as follows.

Proposition 4. If an adversary can find matrices X,Y,U satisfying the Eq. (4),
then the asymmetric cipher 2 can be broken.

Proof. If an adversary can find matrices X̃, Ỹ , Ũ satisfying the Eq. (4), then the
asymmetric cipher of non-commuting cryptography class based on matrix power
function may be summarized as follows.
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Let Ũ = PŨ (A), Ỹ −1Ũ Ỹ = PŨ (Ỹ −1AỸ ) = PŨ (D) = PŨ (Y −1AY ) =
Y −1ŨY , the adversary calculates encryption key K̃,

K̃ =X̃ FPŨ (D)

=X̃V Q(Y PŨ (D))

=X̃V Q(PŨ (Y DY −1)Y )

=(X̃V ) Q(PŨ (A)Y )(using Y −1AY = D)

=(X̃PV (A)) QŨY

=(PV (X̃AX̃−1)X̃) QŨY

=(PV (B)X̃) QŨY (using XAX−1 = B)

=PV (B) (X̃QŨ )Y

=PV (B) EY

= K

(5)

So the message M = K̃ ⊕ C = K ⊕ C is obtained by the attacker.

4.3 Algorithmic Description and Efficiency Analysis

The Asymmetric Cipher 1. Recall the matrix Eq. (2) over Fq and matrix Q
is defined over some cyclic group G = Fq and the generator g of the group G is
given and due to Fermat’s theorem. A discrete logarithm with the base of this
generator of A =X QY can be applied to A,Q to obtain

ldgA = ldX
g QY = XldgQY = XTY = E,

where E = ldgA and ldgQ mean, T = ldgQ. If the matrix X is an inverse
matrix, then the matrix Eq. (2) is actually to solve multivariate linear equations
as follows: ⎧⎪⎨

⎪⎩

X−1E = TY ;
X−1ML = MLX−1;
Y MR = MRY.

(6)

He can easily get the following results by Proposition 2

WNT = 0 (7)

where

W =

⎛
⎝

In ⊗ ET −T ⊗ In

ML ⊗ In − In ⊗ MT
L 0

0 MR ⊗ In − In ⊗ MT
R

⎞
⎠

3n2×2n2

, N =
(−−→

X−1,
−→
Y

)
,
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−−→
X−1,

−→
Y are the stretch of the matrices X−1, Y and det(X−1) �= 0, det(Y ) �= 0,

⊗ represents the Kronecker product, In is the n × n identity, 0 is the matrix
with all zero elements.

The method to calculate a matrix pair X̃−1, Ỹ of (7) is shown in Algorithm 1.
Formally, the key recovery attack can be described by Algorithm 1. It takes as
input matrices (ML,MR, A,Q) and outputs equivalent keys X̃−1, Ỹ .

Algorithm 1. Recovering equivalent keys for any given public key

Input: Matrices (ML,MR, A,Q, )

Output: Equivalent keys X̃−1, Ỹ
1: Compute discrete logarithms of matrices A and Q respectively
2: By employing the method of Gauss elimination to solve the homogeneous
linear equations in the 2n2 entries of the unknown vector N : WNT = 0

3: Fix a basis for the solution space and transform vectors
−−→̃
X−1T ,

−→̃
Y T to matrices

X̃−1, Ỹ respectively. Pick random solution matrix X̃−1 until X̃−1 is invertible

4: Compute X̃−1
−1

= X̃

5: Return X̃, Ỹ .

Combining the above discussions together, let us give a performance eval-
uation on Algorithm 1. Since the classical techniques for matrix multiplica-
tion/inversion in Zq take about O(nωlog2q) bit operations, where the best known
algorithm of the product of two n×n matrices requires O(nω)(ω = 2.3755) Zq

operations and each Zq operation needs O(log2q) bit operations [17–20]. Suppose
that the rank of a 3n2 ×2n2 coefficient matrix W is r. By employing the method
of Gauss elimination we know that 0 < r ≤ 2n2. If r = 2n2, then the matrix W
has full column rank, i.e. N = 0. We know that there is at least a solution to the
Eq. (6), namely: the private keys, thus 0 < r < 2n2. Then, it remains to analyze
the complexity of the Algorithm 1, which can be concluded in Table 1.

Table 1. Computation cost of Algorithm 1

Comp. content Comp. cost Explanation

E = ldgA,T = ldgQ O(2n2q) Discrete logarithms of two matrices

W
−→
N T = 0 O(3n2 · (2n2)ω−1log2q) 3n2 equations in 2n2 variables

Invertible X̃−1, Ỹ O(3n2(2n2 − r)ω−1log2q) A linear combination of solution space

X̃−1
−1 O(nωlog2q) 1 inversion

There are an invertible solution to the Eq. (7), namely: the private keys X

and Y . Thus, to generate one random elements X̃−1, Ỹ , one takes a linear combi-
nation of a basis of the solution space respectively. The number of free variables
of the matrix Eq. (7) are 2n2 − r, then the total expected running time of step
2 is 3n2(2n2 − r)ω−1 ≤ n2 · (2n2)ω−1. On one hand, for any n × n matrix A over
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Fq, the number of rank r0 is
qr0(r0−1)/2

n∏

i=n−r0+1
(qi−1)2

r0∏

i=1
(qi−1)

, thus the probability of A

of rank n is
qn(n−1)/2

n∏

i=1
(qi−1)

qn2 . On the other hand, the probability that random
solution matrices X and Y are invertible may be assumed arbitrarily close to
1− n

q (q > n) [5]. Now, if we neglect small constant factors, then the key recovery
attack against asymmetric cipher 1 based on MPF can be finished with the bit
complexity of O(n2ωlog2q).

The Asymmetric Cipher 2. We eliminate U of (4) as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AX−1 = X−1B;
AY = Y D;

M(
n−1∑
i=0

aiA
i) = X−1N

(8)

where M and N are discrete logarithms of matrices Q and E respectively, i.e.
M = ldgQ and N = ldgE, and det(X−1) �= 0, det(Y ) �= 0.

By Proposition 2, we can easily get the following results.
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(A ⊗ In − In ⊗ BT )
−−→
X−1T = 0;

(A ⊗ In − In ⊗ DT )
−→
Y T = 0;

(In ⊗ NT )
−−→
X−1T −

(−−−→
MA0T · · · −−−−−→

MAn−1T
)

⎛
⎜⎜⎝

a0

...
an−1

⎞
⎟⎟⎠ = 0.

(9)

where
−−→
X−1,

−→
Y ,

−→
U are the stretch of the matrices X−1, Y, U , ⊗ represents the

Kronecker product, In is the n × n identity. Let

L =

⎛
⎝

A ⊗ In − In ⊗ BT 0 0
0 A ⊗ In − In ⊗ DT 0

(In ⊗ NT ) 0 −m

⎞
⎠

3n2×(2n2+n)

,

W =
(−−→

X−1 −→
Y −→a

)
1×(2n2+n)

,

where m =
(−−−→

MA0T · · · −−−−−→
MAn−1T

)
, a =

⎛
⎜⎝

a0

...
an−1

⎞
⎟⎠ .

Suppose that the rank of a 4n2 × (2n2 + n) coefficient matrix L is r. By
employing the method of Gauss elimination we know that 0 < r ≤ 2n2 + n. If
r = 2n2 + n, then the matrix L has full column rank, i.e. W = 0. We know that
there is at least a solution X,Y,U to the Eq. (9), namely: the private keys, thus
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0 < r < 2n2 + n. Then the method to calculate matrices X̃, Ỹ , Ũ is shown in
Algorithm 2. It takes as input matrices (Q,A,B,D) and outputs equivalent keys
X̃, Ỹ , Ũ .

Algorithm 2. Recovering equivalent keys for any given public key

Input: Matrices (Q,A,B,D)

Output: Equivalent keys X̃, Ỹ , Ũ

Step 1: Compute discrete logarithms M,N of matrices Q and E respectively
Step 2: Solve homogeneous linear equations in the 2n2 + n entries of W respectively
LWT = 0

Step 3: Fix a basis for the solution space and transform vectors
−−→
X−1T ,

−→
Y T to matrices

X−1, Y respectively. Pick the matrices X̃−1, Ỹ until X̃−1 and Ỹ are invertible and
obtain the vector a

Step 4: Compute U =
n−1∑

i=0
aiA

i

Step 5: Compute the inverse matrix X̃−1
−1

Step 6: Return X̃, Ỹ , Ũ .

Then, it remains to analyze the complexity of the Algorithm 2, which can be
concluded in Table 2.

Table 2. Computation cost of Algorithm 2

Comp. content Comp. cost Explanation

LWT = 0 O(4n2 · (2n2 + n)ω−1log2q) 4n2 equations in 2n2 + n variables

Solutions X̃−1, Ỹ O(4n2(2n2 + n − r)ω−1log2q) A linear combination of solution
space

U =
n−1∑
i=0

aiA
i O((n − 2)nωlog2q) n − 2 multiplication

˜̃
X−1

−1

O(nωlog2q) 1 inversion

Thus, to generate random elements X̃, Ỹ , one takes a linear combination of
a basis of the solution space respectively. The number of free variables of the
matrix Eq. (9) are 3n2−r, then the total expected running time of step 2 is about
(2n2 +n−r)ω−1 ≤ (2n2 +n)ω−1. Now, if we neglect small constant factors, then
the key recovery attack against asymmetric cipher based on MPF can be finished
with the complexity of O(n2ωlog2q). The recommended maximal parameters are
given as follows: n = 15,m = 141, then the total bit complexity of asymmetric
cipher 2 based on MPF is about 224.2.

5 Improvement of the Non-commuting Cryptography
Class Based on a MPF Problem

Our improved scheme uses the non-commuting cryptography class based on
matrix power function, which relies on the solution of a multivariate polynomial
system of equations. We provide two improvement methods in the following.
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5.1 Improvement 1

In the two scheme above, it is known that even the solution of a multivariate
quadratic polynomial system of equations over any field is an NP-complete prob-
lem. Hence, the security of the proposed improved scheme is also based on the
solution of a system of multivariate equations, which is a hard problem.

If we cannot compute discrete logarithms M of the matrix Q or discrete
logarithms N of the matrix E by designing parameters, then we also can propose
an improved scheme that can protect against key recovery attack.

5.2 Improvement 2

When neither a pair of matrix (X,Y ) nor a pair of matrix (U, V ) is an invertible
matrix, the key recovery attack fails, as mentioned in Sect. 4 and Ref. [12], where
A =X QY , B =U QV . We therefore can propose an improved scheme that can
protect against key recovery attack.

6 Conclusions

We have showed that two asymmetric ciphers based on MPF are insecure in
the sense that an attacker, who is able to solve the linear equations with high
efficiency over a given general linear group, is able to break asymmetric cipher
schemes. The question, whether there exists groups on which an asymmetric
cipher scheme based on MPF is secure, remains open. When studying asym-
metric cipher based on MPF on other groups the considerations of the previous
section must be taken into account. How to use several nonabelian algebraic
structures make a public-key cryptosystem, which has the potential to resist
known quantum algorithms attacks, also remains open.
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Abstract. In Asiacrypt’14, Boneh et al. built a new statistically hiding
and computationally binding commitment scheme based on the collision-
resistant property of the Zagier polynomial fzag(x, y) = x7 + 3y7. In
this paper, we describe several types of partial bits exposure attacks on
this new commitment, that is, the most significant bits exposure attack,
the least significant bits exposure attack and the middle parts exposure
attack. Besides, we study the partial bits exposure attack on the sit-
uation that a message is committed twice. We mainly use the famous
Coppersmith’s method in our analyses.

Keywords: Bivariate polynomials · Collision-resistant · Cryptographic
commitments · Lattices · LLL algorithm · Coppersmith’s method

1 Introduction

Commitment schemes play an important role as a primitive in cryptographic pro-
tocols. They can be used to construct secure multi-party computation [1], anony-
mous Bitcoin transactions [2], digital signatures [3,4], zero-knowledge proofs and
arguments [5,6], electronic auctions, e-voting systems and threshold cryptography.
In a commitment scheme, a player can commit to a secret value S by publishing
a commitment C without revealing anything about the secret S, which is called
the hiding property. The player can later open C to reveal S in a way verifiable by
anyone else, i.e., the commitment value is binding to the committer in the sense
that the player can’t open C to any other value than S to cheat on the receiver.

In Crypto’97, Okamoto et al. [5] presented the first efficient integer commit-
ment scheme and also suggested an efficient multiplication protocol. Later several
related works are inspired. Prior works have derived statistically hiding commit-
ment schemes based on the discrete log problem [7], the Paillier crypto system
[8], the RSA problem [9], pseudo-random generators [10,11], and some specific
harness assumptions such as the availability of collision-free hash functions [12].
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 357–366, 2017.
DOI: 10.1007/978-3-319-54705-3 22
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Verifying the correctness of opening a commitment in these schemes calls for
expensive modular exponentiations or elliptic curve scalar multiplications.

Low-degree collision-resistant bivariate polynomials are very useful, which
gives rise to very efficient instantiations of a number of cryptographic primi-
tives. The Zagier polynomial fzag(x, y) = x7+3y7, produced by Don Zagier [13],
is conjectured to possess this nice property. Boneh et al. [14] did comprehen-
sive research on the properties of the Zagier polynomial. Based on its algebraic
collision-resistant property, they designed a new statistically hiding and com-
putationally binding commitment scheme, a conceptually simple cryptographic
accumulator, and an efficient chameleon hash function.

Boneh et al.’s commitment scheme can be briefly described as follows. N
is a public parameter, which is an RSA modulus of unknown factorization. To
commit to a value m ∈ Z

∗
N , where Z

∗
N = {x ∈ ZN : gcd(x,N) = 1}, the

committer samples a random blinding value r from Z
∗
N and computes the value

of f(m, r) = m7 + 3r7 mod N at the point (m, r). Verifying an opening in this
commitment scheme requires just a few modular multiplications [14].

In his seminal work [15,16] in 1996, Coppersmith described polynomial time
algorithms for finding small roots of univariate modular polynomials as well
as bivariate integer polynomials based on lattice basis reduction. The essence
of Coppersmith’s method is to find integer linear combinations of polynomials
which share a common root modulo some integer such that the derived polynomi-
als have small coefficients. Thus one may obtain several polynomials that possess
the desired root over integers and then find the desired root using standard root
finding algorithms. Howgrave-Graham [17] reformulated Coppersmith’s method
in a simpler way which has been widely adopted by researches for cryptanalysis.

Recently, side-channel attack is becoming a power tool in cryptanalysis by
exploiting the leakage of some kind of information from the cryptosystem dur-
ing its execution [18–21]. In this paper, we use the leakage information of the
message m and the blinding value r, which can be obtained via side-channel
methods, to consider several types of partial bits exposure attack on Boneh
et al.’s new commitment scheme by applying Coppersmith’s method so that the
whole information m can be recovered. Then, we study how one can recover a
message when the message is committed twice and the attacker gets access to
the approximates of the random numbers r1 and r2.

The rest of this paper is organized as follows. In Sect. 2, we recall some
preliminaries. In Sect. 3, we present our attacks on this new commitment scheme.
And experimental results are also involved. Section 4 is some conclusions.

2 Preliminaries

2.1 Lattices

Let b1, . . . ,bω be linear independent row vectors in R
n, and a lattice L spanned

by them is

L = {
ω∑

i=1

kibi | ki ∈ Z},
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where {b1, . . . ,bω} is a basis of L and B = [b1
T , . . . ,bω

T ]T is the corresponding
basis matrix. The dimension and determinant of L are respectively

dim(L) = ω, and det(L) =
√

det(BBT ).

A lattice can be represented by different bases. Different bases would have
different computational cost and lead to different results when solving problems
relevant to lattices, even if the involved algorithms are exactly the same. Thus,
one always wants to find the bases satisfying some certain constraints, and it
would be much easier to solve the problems by using these specific bases as the
input. The process of choosing such a basis is called lattice basis reduction, and
the corresponding basis is called a reduced basis. The criteria for a reduced basis
varies from different requirements of problems.

Reduced basis vectors possess much elegant properties, like short norms and
the property of being approximate orthogonal to each other. Thus, calculating a
reduced basis of a given lattice is always a hot topic. In 1982, Lenstra, Lenstra
and Loyáze proposed the distinguished LLL-algorithm [22] that can find vectors
in polynomial time whose norm is small enough to satisfy the following condition.

Lemma 1 ([22]). Let L be a lattice. In polynomial time, the LLL algorithm
outputs reduced basis vectors v1, . . . ,vω that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , 1 ≤ i ≤ ω.

2.2 Finding Small Roots

Coppersmith gave rigorous methods for extracting small roots of modular uni-
variate polynomials and bivariate integer polynomials. These methods can be
heuristically extended to multivariate cases. Howgrave-Graham reformulated
Coppersmith’ s ideas of finding modular roots in [17], of which we use the fol-
lowing lemma.

Lemma 2 ([17]). Let g(x1, x2) ∈ Z[x1, x2] be an integer polynomial that
consists of at most ω nonzero monomials. Define the norm of g(x1, x2) :=∑

bi1,i2x
i1
1 xi2

2 as the Euclidean norm of its coefficient vector, namely,

‖g(x1, x2)‖ =
√∑

b2i1,i2
.

Suppose that

1. g(x(0)
1 , x

(0)
2 ) = 0 (mod N), for |x(0)

1 | < X1, |x(0)
2 | < X2;

2. ‖g(X1x1,X2x2)‖ < N√
ω
.

Then g(x(0)
1 , x

(0)
2 ) = 0 holds over integers.
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Combining Howgrave-Graham’s lemma with the LLL algorithm, one can
deduce that the equations of the polynomials corresponding to the shortest i
reduced basis vectors hold over integers under the following condition

2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i <
N√
ω

.

Neglecting the low order terms which are independent on N , the above condition
can be simplified as

det(L) < Nω+1−i. (1)

After obtaining enough equations over integers, one can extract the shared roots
by either resultant computation or Gröbner basis technique.

We need the following assumption through our analyses, which is widely
adopted in previous works.

Assumption 1. The polynomials corresponding to the first n LLL-reduced vec-
tors are algebraically independent.

2.3 Boneh et al.’s New Commitment Scheme Based on the Zagier
Polynomial

Boneh et al.’s commitment scheme uses the following assumption.

Assumption 2. The Zagier polynomial fzag(x, y) = x7 + 3y7 ∈ Z[x, y] is colli-
sion resistant.

This commitment scheme consists of only one public parameter, an RSA
modulus N , for which its factorization is unknown. To commit to a value m ∈
Z

∗
N , the committer computes the value of fzag(m, r) mod N where r is a random

blinding value sampled from Z
∗
N .

The construction of this commitment scheme is as follows.
Setup(λ) → N. N is an RSA modulus, the product of two random λ−bit primes

p and q satisfying that gcd(φ(N), 7) = 1, where φ(N) is the Euler’s totient
function of N . The commitment space C is ZN . The message space M and
the space of blinding values R are Z

∗
N .

Commit(m) → (c, r). Choose a random blinding value r ← Z
∗
N and set

c = m7 + 3r7 mod N. (2)

Return r as the commitment secret.
Open(c,m, r) → {0, 1}. Output “1” if m, r ∈ Z

∗
N and c = m7 + 3r7 mod N .

Output “0” otherwise.
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3 Attacks on the New Commitment Scheme

In this section, we discuss our main attacks on this commitment scheme.

3.1 MSBs Exposure Attack on Boneh et al.’s New Commitment
Scheme

First, we describe the most significant bits exposure attack on this scheme.
We consider the following situation. When an attacker gets access to the most

significant bits of the message m and the random number r by some methods,
for example, side-channel attacks, which means that the approximations of m
and r can be derived. Our task is to recover the whole knowledge of m and r.

Set m = A + x and r = B + y, where A and B are the approximations
to m and r, and x and y are the error terms. Suppose that |x| ≤ X = Nα1 ,
|y| ≤ Y = Nα2 . We have

c = (A + x)7 + 3(B + y)7modN.

Then, this problem can be transformed into finding the small roots of the fol-
lowing bivariate modular polynomial

f(x, y) = (A + x)7 + 3(B + y)7 − cmodN. (3)

We use Coppersmith’s idea to solve this polynomial equation. Choose a proper
integer n and construct the shifting polynomials as follows,

g1k,i,j(x, y) = yjfkNn−k, k = 0, ..., n; i = 0; j = 0, ..., 7(n − k),

and

g2k,i,j(x, y) = xiyjfkNn−k, k = 0, ..., n − 1; i = 1, ..., 6; j = 0, ..., 7(n − k − 1).

Use the coefficient vectors of g1(xX, yY ) and g2(xX, yY ) to build a lattice L,
and arrange them according to the lexicographical order of {k, i, j}, so that each
polynomial introduces one and only one new monomial. Thus, we can obtain a
lower triangular lattice, whose determinant can be easily calculated as det(L) =
XSX Y SY NSN as well as its dimension ω, where

SX =
n∑

k=0

7(n−k)
∑

j=0

7k +

n−1∑

k=0

6∑

i=0

7(n−k−1)
∑

j=0

(i + 7k) =
7

6
n(49n2 − 42n + 17) =

343

6
n3 + o(n3),

SY =
n∑

k=0

7(n−k)
∑

j=0

j +

n−1∑

k=0

6∑

i=0

7(n−k−1)
∑

j=0

j =
7

6
n(49n2 − 42n + 17) =

343

6
n3 + o(n3),

SN =

n∑

k=0

7(n−k)
∑

j=0

(n − k) +

n−1∑

k=0

6∑

i=0

7(n−k−1)
∑

j=0

(n − k) =
7

3
n(7n2 + 3n − 4) =

49

3
n3 + o(n3),

ω =
n∑

k=0

7(n−k)
∑

j=0

1 +

n−1∑

k=0

6∑

i=0

7(n−k−1)
∑

j=0

1 =
1

2
(49n2 − 21n + 2) =

49

2
n2 + o(n2),
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Put these values into (1), we obtain

XY < N
1
7 .

Since X = Nα1 , Y = Nα2 , the above condition can be written as

α1 + α2 <
1
7
.

3.2 LSBs Exposure Attack on the New Commitment Scheme

Here we analyze the case when the least significant bits of m and r are leaked.
In this situation, we assume that m = m1R + m2 and r = r1S + r2, where

m2 and r2 refer to the leaked least significant parts, R and S represent the sizes
of m2 and r2 respectively, that is, if m2 is l bit long, we take R = 2l. The value
for S is set analogously. So m1 and r1 are the unknown high parts. Define

flsb(x, y) = (Rx + m2)7 + 3(Sy + r2)7 − cmodN,

where x and y represent the unknown parts m1 and r1. It is easy to get that
(x0, y0) = (m1, r1) is a root of flsb(x, y) ≡ 0 mod N . This polynomial possesses
the same structure with (3), except for different coefficient settings. We omit
the detailed calculations and directly give the derived bounds for the unknowns,
that is, XY < N1/7.

Set R = Nβ1 and S = Nβ2 , according to the relation (m−m1)(r−r1)
RS < N1/7,

and we obtain that Nβ1+β2 > (m−m1)(r−r1)
N1/7 . Since m and r are of the same size

as N , we can recover the whole information of m and r when

β1 + β2 >
13
7

.

3.3 Middle Bits Exposure Attack on the New Commitment Scheme

In this subsection, we discuss the case when the middle parts of m and r are
leaked. We write m = m2,1 + m̂R1 + m2,2R2 and r = r2,1 + r̂S1 + r2,2S2, where
m2,1 and r2,1 are the unknown least significant parts, m̂ and r̂ correspond to the
leaked middle bits, R1 and S1 mark the scales of m2,1 and r2,1 respectively. For
example, R1 = 2�log2 m2,1�, S1 = 2�log2 r2,1�, m2,2 and r2,2 represent the unknown
high bits, and R2 and S2 mark the ending points of the leaked parts, that is
R2 = 2�Log2(m2,1+m̂R1)�, S2 = 2�Log2(r2,1+r̂S1�).

According to (2), we get that c = (m2,1 + m̂R1 + m2,2R2)7 + 3(r2,1 + r̂S1 +
r2,2S2)7modN . Thus, the problem of attacking this commitment scheme can be
reduced to solving the following four variable polynomial equation.

f(x, y, z, w) = (x + R2y + m̂R1)7 + 3(z + S2w + r̂S1)7 − c mod N.

It is obvious that (x0 = m2,1, y0 = m2,2, z0 = r2,1, w0 = r2,2) is a root of the
above equation.
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It is difficult to derive a general formula for the shifting polynomials which
share the same roots modulo Nn with f(x, y, z, w) mod N , where n is a pos-
itive integer. Here we only use the knowledge of f(x, y, z, w) to build a lat-
tice L̂ and compute a rough bound on the solvable value ranges of x, y, z
and w. Construct the following polynomials, which share the same root with
f(x, y, z, w) ≡ 0 mod N ,

ĝi1,i2,i3,i4(x, y, z, w) = xi1yi2zi3wi4N,

where xi1yi2zi3wi4 ∈ f(x, y, z, w) and xi1yi2zi3wi4 	= w7.

Use the coefficient vectors of ĝi1,i2,i3,i4(xX, yY, zZ,wW ) and f(xX, yY,

zZ,wW ) as a basis to build the lattice L̂, where X,Y,Z and W are the upper
bounds of x, y, z and w. Notice that all monomials that belong to f(x, y, z, w)
are included in ĝi1,i2,i3,i4(x, y, z, w) except for w7, which will be introduced by
f(x, y, z, w) itself. Arranging polynomials ĝi1,i2,i3,i4(xX, yY, zZ,wW ) in front
of the polynomial f(xX, yY, zZ,wW ), we get a lower triangular lattice with
a dimension ω(L̂) = 71, which is computed by counting the monomials of
f(x, y, z, w). The determinant of L̂ can also be easily calculated as det(L̂) =
(XY ZW )84N70. Put these values into (1), and we can obtain the constraints for
x, y, z and w, that is XY ZW < N1/84. Set X = Nγ1 , Y = Nγ2 , Z = Nγ3 ,W =
Nγ4 , then the above condition can be written as

γ1 + γ2 + γ3 + γ4 <
1
84

.

3.4 Attack on the Twice Committed Message

In this subsection, we study the side channel attack on the case when a message
is committed twice. Assuming that c1 and c2 are two commitments of a same
message m, that is, c1 = m7 + 3r71 mod N and c2 = m7 + 3r72 mod N , we get
that c2 − c1 = 3(r72 − r71) mod N . Once an attacker gets the approximates of r1
and r2, that is, r2 = Â + x, r1 = B̂ + y, we show that the whole knowledge of r1
and r2 can be recovered, and so the message m can be obtained.

Construct a bivariate polynomial

f̂(x, y) = 3(x + Â)7 − 3(y + B̂)7 + ĉ mod N.

We have that (x0, y0) = (r2 − Â, r1 − B̂) is a root of the above polynomial
equation f̂(x, y) ≡ 0 mod N for a constant ĉ = (c1 − c2). This polynomial is also
of the same structure as (3) except for some different coefficient settings. Thus,
we directly put the analysis result here and omit detailed calculation steps. That
is, we can recover the message m from the approximates of r1 and r2 when the
approximation error terms satisfy XY < N1/7, where X and Y represents the
upper bounds of x and y. Set X = Nη1 , Y = Nη2 , and the above constraints can
be written as

η1 + η2 <
1
7
.
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3.5 Experimental Results

The following Tables 1, 2 and 3 display some experimental data performed to
verify our analyses. These tests are done in Magma on a PC with Intel (R)
Core(TM) Quad CPU (3.20 GHz, 4.00 GB RAM, Windows 10).

Table 1. Experimental data for the MSBs exposure attack

N (bits) n dim α1 α2 LLL (seconds) Gröbner (seconds)

256 2 78 1/40 1/40 16.703 9.625

512 2 78 1/40 1/40 90.797 25.766

1024 2 78 1/40 1/40 430.281 84.094

2048 2 78 1/40 1/40 2201.031 251.484

Table 2. Experimental data for the LSBs exposure attack

N (bits) n dim β1 β2 LLL (seconds) Gröbner (seconds)

256 2 78 55/56 55/56 197.357 10.719

512 2 78 55/56 55/56 56.609 33.500

1024 2 78 55/56 55/56 202.938 104.328

2048 2 78 55/56 55/56 804.156 275.484

Table 3. Experimental data for the attack in Sect. 3.4

N (bits) n dim η1 η2 LLL (seconds) Gröbner (seconds)

256 2 78 1/40 1/40 23.328 8.938

512 2 78 1/40 1/40 103.422 27.969

1024 2 78 1/39 1/39 445.297 87.766

2048 2 78 1/39 1/39 2184.906 275.891

In our problems, the polynomials involved are 7◦. And the dimensions of the
lattices increases greatly as the parameter n goes larger, which makes the process
of executing the LLL algorithm quite time-consuming. Taking into account the
time performance, we set n = 2 in our experiments, however, which makes the
experimental results not as good as the theoretical bounds.

4 Conclusion

In this paper, we proposed four kinds of partial bits exposure attacks on the
newly proposed commitment scheme based on the Zagier polynomial, that is,
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the most significant bits exposure attack, the middle bits exposure attack, the
least significant bits exposure attack, and the partial bits exposure attack on the
twice committed message. All of our attacks can be reduced to solving a certain
type of modular polynomial equation, whose small roots can then be extracted
by applying the distinguished Coppersmith’s root finding method. Our work are
based on the background of side channel attacks.

Acknowledgements. During my visit to the University of California Irvine in 2015,
Alice Silverberg et al. studied this new commitment scheme in their seminar, which
drew my attention to this commitment scheme. We thank them for helpful conversa-
tions about this work. Our work was partially supported by the National Key Basic
Research Program of China (2013CB834203).

References

1. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

2. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, 19–22 May 2013, pp. 397–411 (2013)

3. Al-saggaf, A.A., Ghouti, L.: Efficient abuse-free fair contract-signing protocol based
on an ordinary crisp commitment scheme. IET Inf. Secur. 9(1), 50–58 (2015)

4. Gritti, C., Susilo, W., Plantard, T.: Logarithmic size ring signatures without ran-
dom oracles. IET Inf. Secur. 10(1), 1–7 (2016)

5. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modu-
lar polynomial relations. In: 17th Annual International Cryptology Conference on
Advances in Cryptology - CRYPTO 1997, Santa Barbara, California, USA, 17–21
August 1997, pp. 16–30 (1997)

6. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

7. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Proceedings of 11th Annual International Cryptology Conference on
Advances in Cryptology - CRYPTO 1991, Santa Barbara, California, USA, 11–15
August 1991, pp. 129–140 (1991)

8. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s cryp-
tosystem revisited. In: Proceedings of the 8th ACM Conference on Computer
and Communications Security, CCS 2001, Philadelphia, Pennsylvania, USA, 6–8
November 2001, pp. 206–214 (2001)

9. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
8th International Conference on Financial Cryptography, FC 2004, Revised Papers,
Key West, FL, USA, 9–12 February 2004, pp. 164–180 (2004)

10. Naor, M.: Bit commitment using pseudo-randomness. In: Proceedings of 9th
Annual International Cryptology Conference on Advances in Cryptology -
CRYPTO 1989, Santa Barbara, California, USA, 20–24 August 1989, pp. 128–136
(1989)

11. Kim, S.G.: Adaptive cryptographic protocol for fair exchange of secrets using
pseudo-random-sequence generator. J. Digital Contents Soc. 8(4), 631–637 (2007)



366 X. Zhang and L.-P. Wang

12. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Proceedings of 16th Annual International Cryptol-
ogy Conference on Advances in Cryptology - CRYPTO 1996, Santa Barbara,
California, USA, 18–22 August 1996, pp. 201–215 (1996)

13. Cornelissen, G.: Stockage diophantien et hypothse abc gnralise. Comptes Rendus
de l’Acadmie des Sciences - Series I - Mathematics 328(1), 3–8 (1999)

14. Boneh, D., Corrigan-Gibbs, H.: Bivariate polynomials modulo composites and their
applications. In: Proceedings of 20th International Conference on the Theory and
Application of Cryptology and Information Security on Advances in Cryptology -
ASIACRYPT 2014, Part I, Kaoshiung, Taiwan, R.O.C., 7–11 December 2014, pp.
42–62 (2014)

15. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Pro-
ceeding of International Conference on the Theory and Application of Crypto-
graphic Techniques Advances in Cryptology - EUROCRYPT 1996, Saragossa,
Spain, 12–16 May 1996, pp. 155–165 (1996)

16. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Proceeding of International Conference on the Theory
and Application of Cryptographic Techniques Advances in Cryptology - EURO-
CRYPT 1996, Saragossa, Spain, 12–16 May 1996, pp. 178–189 (1996)

17. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). doi:10.1007/BFb0024458

18. Ambrose, J.A., Ragel, R.G., Parameswaran, S., Ignjatovic, A.: Multiprocessor
information concealment architecture to prevent power analysis-based side channel
attacks. IET Comput. Digital Tech. 5(1), 1–15 (2011)

19. Karakoyunlu, D., Gürkaynak, F.K., Sunar, B., Leblebici, Y.: Efficient and side-
channel-aware implementations of elliptic curve cryptosystems over prime fields.
IET Inf. Secur. 4(1), 30–43 (2010)

20. Marchand, C., Francq, J.: Low-level implementation and side-channel detection of
stealthy hardware trojans on field programmable gate arrays. IET Comput. Digital
Tech. 8(6), 246–255 (2014)

21. Vaquie, B., Tiran, S., Maurine, P.: Secure D flip-flop against side channel attacks.
IET Circ. Dev. Syst. 6(5), 347–354 (2012)

22. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

http://dx.doi.org/10.1007/BFb0024458


Key Predistribution Schemes Using Bent
Functions in Distributed Sensor Networks

Deepak Kumar Dalai1(B) and Pinaki Sarkar2

1 School of Mathematical Sciences,
National Institute of Science Education and Research (HBNI),

Bhubaneswar 752 050, Odisha, India
deepak@niser.ac.in

2 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, Karnataka, India

pinakisark@csa.iisc.ernet.in

Abstract. Key management is an essential functionality for develop-
ing secure cryptosystems; particularly for implementations to low cost
devices of a Distributed Sensor Networks (DSN)–a prototype of Internet
of Things (IoT). Low cost leads to constraints in various resources of
constituent devices of a IoT (e.g., sensors of a DSN); thereby restrict-
ing implementations of computationally heavy public key cryptosystems.
This leads to adaptation of the novel key predistribution trick in sym-
metric key platform to efficiently tackle the problem of key management
for these resource starved networks. After a few initial proposals based
on random graphs, most key predistribution schemes (KPS) use deter-
ministic (combinatorial) approaches to assure essential design proper-
ties. Combinatorial designs like a (v, b, r, k)−configuration which forms a
µ(v, b, r, k)−CID are effective schemes to design KPS [20]. In this paper,
we use bent Boolean functions to generate four combinatorial designs for
the purpose of designing deterministic KPS. Of particular interest are
our later (two) schemes that are constructed over Dillon’s bent Boolean
function. Effectiveness of our solutions in term of crucial metrics in com-
parison to prominent schemes has been theoretically established.

Keywords: Bent functions · Partial spread · Combinatorial designs ·
Key predistribution scheme(s) · Internet of Things · Distributed Sensor
Networks

1 Introduction

Distributed (Wireless) Sensor Networks (DSN) are regarded as revolutionary
information gathering systems owing to their easy deployment and flexible topol-
ogy. They are decentralized with numerous low-cost identical resource starved
wireless devices, called sensors or nodes, that deal with sensory data. They are
considered as a nice prototype of Internet of Things (IoT) which is a sophisticated
concept that aims to connect our world more than we ever thought possible. This
has boosted the study of such distributed networks in modern times.
c© Springer International Publishing AG 2017
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Prominent scientific applications of IoT are smart homes, smart cities, smart
grids, smart water networks, agriculture, health-care, etc. Of particular inter-
est are applications of DSN to networks where security is a premium. For
instance, security may be essential for certain sensitive scientific and military
networks that are meant for (i) military surveillance, (ii) force protection.arenas,
(iii) self healing minefields, and so on. Primary tasks of devices of an IoT in any
such application are to collect information from their surrounding, process and
forward them to other devices. Depending on specific applications, they may be
further required to (i) track and/or classify an object, (ii) determine parametric
value(s) of a given location, etc. These sensitive task for such critical applications
create the necessity of security of message communication among the resource
starved devices of these useful low cost networks.

1.1 Type of Cryptosystem: Key Predistribution Schemes (KPS)

Constraints in resources of constituent ordinary devices of any IoT (like sensors of
DSN) make us opt for symmetric key cryptosystems (SKC) over their public key
counterparts while designing security protocols for such networks. SKC require
both the sender and receiver to possess the same encryption–decryption key
before message exchange. Standard online key exchange techniques that involve
public parameters are generally avoided due to their heavy computations.

One can think of two trivial key distribution techniques. First is to assign
a single key for entire network devices. Second is to think of assigning pairwise
distinct (symmetric) keys for every pair of devices. Former method is completely
vulnerable to single point failure (compromise of even one sensor reveals this
single system key). Whereas, the second strategy overloads the memory of each
sensor, since N −1 keys are required to be stored per sensor for a network of size
N . This is particularly impractical for large networks (i.e., large value of N ).

Treating a node (or a few) as Trusted Authority (TA) is risky. This also
makes the network prone to single point failure.1 Thereby schemes like Kerberos
[18] are avoided while designing secure key management schemes for DSN.

These facts emphasizes the importance of employing an adequate key man-
agement scheme for such networks. This stalemate situation was wittily overcome
in 2002 by Eschenauer and Gligor by introducing the concept of key predistrib-
ution that involves applications of SKC to sensor networks. Any key predistrib-
ution scheme (KPS) primarily execute the following steps:

– Prior to deployment of the network, keys are preloaded into sensors to form
their key rings or key chains from the key pool. Key pool is the collection of
all network keys. Each sensor is preloaded with a subset of keys from this pool
to form its key ring or key chain. Each system key is marked with an unique
identifier (key id). These key id are used during key establishment.

1 Capture of this authority (sensor) acting as a TA makes the system vulnerable.
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– These preloaded keys are established by a two steps process, given below:
–(i) Shared key discovery phase: establishes shared common key(s) among
participant nodes. This may be achieved by broadcasting the key ids of all
keys contained in a node. On receiving each other’s key ids, the sensors
tally them to trace their mutual shared key id(s), hence common shared
key(s).
–(ii) Path key establishment phase: establishes an optimized path key
between a pair of nodes that do not share a common key. This process
involves intermediate nodes. Refer to common intersection designs in
Sect. 3.

Depending on whether the above processes are probabilistic or deterministic,
such schemes are classified into two types: (a) random and (b) deterministic.
Sections 2.1 and 2.2 present a brief overview of individual type of schemes.

1.2 Our Contribution and Paper Organization

Observing the significant advantages of deterministic KPS during key manage-
ment for low cost distributed networks, we set out to propose four such schemes.
Our proposals uses Bent Boolean functions that have been well studied com-
binatorially. However, we are not aware of any KPS constructed using these
functions. After a brief literature survey on KPS in Sect. 2, we present prelimi-
naries of Boolean functions in Sect. 3 that are needed for our work. Two simple
schemes are first proposed in Sect. 4. These proposal have certain weaknesses, but
can be useful for certain constructions. Section 5 presents our main schemes that
adhere to the desirable criteria set out in Sect. 2.4. We analyze our later schemes
in terms of various performance metrics set out in Sect. 6; thereby establish
their efficiency in comparison to prominent existing proposals. We summarize
our work in Sect. 8 while stating related future research directions.

2 Key Predistribution Schemes (KPS): A Brief Survey

This section presents a state-of-the art survey of prominent KPS. We split survey
into three stage: (i) random KPS, (ii) deterministic KPS, and (iii) advantages
of the later type over former. Thereby, we justify our proposals of four new
deterministic KPS that adhere to the design criteria set out in Sect. 2.4.

2.1 Random Key Predistribution Schemes (RKPS)

First generation KPS rely on random graph theory pioneered by Erdős and Rényi
[14] to preload (symmetric) cryptographic keys into sensors. Therefore, key rings
are formed randomly. This leads to probabilistic key sharing and establishment.
Later is achieved by either broadcast of key ids or challenge and response (refer
to [15, Sect. 2.1]). Earlier, Blom proposed the first key distribution scheme [4] in
public key settings meant for resourceful ad hoc networks. Blom’s schemes uses
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pairs of public-private matrices for key distribution. Blom’s scheme cannot be
applied to resource constraint sensor networks due to its heavy memory require-
ment to store huge vectors. Several researchers use variants of Blom’s scheme to
propose both random and deterministic KPS for DSN. Çamptepe and Yener [7]
provides an excellent survey of such random KPS.

2.2 Deterministic Key Predistribution Schemes (DKPS)

Deterministic KPS were proposed simultaneously by Çamtepe and Yener [6],
Lee and Stinson [20] and Wei and Wu [28] in 2004. Wei and Wu [28] combines
subset-based schemes with existing key distribution schemes such as [4] to obtain
multiple key spaces. Çamtepe and Yener [6] exploits combinatorial designs like
symmetric Balanced Incomplete Block Designs (BIBD), generalized quadrangles
and projective planes. The scheme of Lee and Stinson [21] uses quadratic equa-
tion solving and can be viewed as a scalable extension of their later proposal
using Transversal Design (TD(k, p)) [20]. Their work [20] further summarizes
the necessary conditions for a combinatorial design to yield a deterministic KPS.
Certain KPS exploit special structures like Reed Solomon code based KPS [25]
that permit alternate combinatorial description [1,11,22]. In the same light, we
show our schemes derived from Bent functions, particularly of Dillon types, can
yield nice combinatorial properties meant for designing deterministic KPS.

2.3 Advantages of Deterministic KPS (Over Random Ones)

Deterministic schemes have certain advantages over their random counterparts.
For instance, a desired property of a randomized scheme may occur only with a
certain probability whereas they can be proven to hold in a deterministic scheme
(refer to [20–22]). This led to proposals of numerous deterministic KPS using var-
ious combinatorial tricks. Further the predictable nature of these combinatorial
structures has been efficiently exploited to address design weaknesses of certain
prominent schemes. For instance [1,11] primarily address the connectivity aspect
of [25] by deterministic and random approaches respectively.

Contrary to these observations, Ruj and Pal [24] state that random graph
models are well suited for ‘scalability’ and ‘resilience’. Thereby they justify their
proposals of random graph based preferential attachment models with degree
bounds. They design various network using their model. All of their designs
suffers from highly skewed load distribution, poor connectivity and resiliency;
and hence, are inappropriate for (distributed) IoT applications.

In fact, sensitive IoT applications require protocols to yield equal distribution
of tasks among peers. Moreover, to reduce hops and hence potential risks from
node capture, it is more important to have connected networks that can not be
guaranteed by random schemes. Therefore to secure IoT networks, we opt for
deterministic protocols that assure predictable (high) connectivity; despite most
of them having restricted scaling operations. This is a major area of study for
most (deterministic) KPS proposals, including ours (recalled in Sect. 8).
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Observe that the structure of the combinatorial objects used to design deter-
ministic KPS can not directly model network of any specified size N . Usually,
such structures result in designs having a specific pattern in the number of resul-
tant blocks; viz. a prime power or 2n, s2m (like ours), etc. Since N can be any
number, a standard strategy is to consider the least prime power (or power of
2 here) that is greater than the network size (i.e., pn ≥ N or 2n, s2m ≥ N for
ours). Then N subset are randomly selected to form the key rings of the resultant
network nodes. Bose et al. [3] speculate that random removal of blocks may have
a disadvantageous affect on the underlying design properties and hence become
an issue of concern.

Fortunately, this claim of Bose et al. has been successfully challenged by
Henry et al. [16]. Through practical experiments, they establish that random
removal of key rings of a combinatorial KPS has negligible effect on underlying
(crucial) design properties with overwhelming probability. This work reestab-
lishes the importance of combinatorial schemes. An updated study of KPS based
on combinatorial schemes can be traced in [22] and the references therein.

2.4 KPS for DSN (IoT in General): Desirable Design Criteria

Devices of an IoT (for instance, sensors of a DSN) are highly prone to damage
and/or physical capture. This is a crucial consideration while designing any KPS.
Primary objectives of any KPS is to ensure that the resulting network:

1. has less number of keys per node, i.e., sizes of individual key rings are less;
2. have large node support, i.e., support large number of network nodes;
3. has good (ideally full secure) connectivity. Secure connectivity or simply con-

nectivity is the ratio of number of (secure) links in eventual network to all
possible links. A pair of nodes are said to be connected by a (secure) link if
there exists at least one secret key between them;

4. is resilient against adversarial attacks. A prevailing method adopted in most
existing works [6,19,20,22] is to show that the standard resiliency coefficient
fail(t) is minimized. This work will follow suit. The quantifier fail(t) mea-
sures the ratio of links broken after compromise of t sensors to the total
number of links in the remaining network. Notationally:

fail(t) =
Number of links broken when t nodes are compromised

total links among uncompromised nodes of remaining network
.

Ideally, a KPS should have small key rings, and yet support large num-
ber of nodes with appreciable resiliency, scalability and connectivity. However,
renowned scientists proved the impossibility of constructing a ‘perfect KPS’ that
meet all these criteria [20–22]. This motivates continual research to propose ade-
quate designs that are robust for specific applications.

3 Preliminary

In this section we introduce the definitions and notations which will be used to
describe the schemes presented in this paper.
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3.1 Combinatorial Set Systems and KPS

There have been several papers that have used combinatorial design technique
on the basic idea presented in [15]. The use of different combinatorial designs
was primarily presented in paper [19,20] for having deterministic KPS. After
then there are several KPS based on combinatorial designs have been proposed.
A survey on KPS in WSN are available by Chen and Chao [9]. Recently, Pater-
son and Stinson have unified the combinatorial design techniques by partially
balanced t−design [22]. The same paper has listed the important schemes based
on combinatorial designs with proper references.

Let X be a finite set. The elements of X are called varieties. Each subset of
X is termed as a block. Consider A to be a collection of blocks of X . Then the
pair (X ,A) is said to be a set system or, a design. (X ,A) is regular (of degree r)
if each point is contained in r blocks. (X ,A) is uniform (of rank k) if all blocks
have the same size, say k.

Further, a design (X ,A) is said to form a (v, b, r, k) − 1−design if

– |X | = v and |A| = b;
– (X ,A) is regular of degree r and uniform of rank k.

A (v, b, r, k) − 1−design forms a (v, b, r, k)−configuration if any arbitrary pair of
blocks intersect in at most one point. Moreover, if any pairs of varieties occur
in exactly λ block, then a (v, b, r, k) − 1−design forms a (v, b, r, k, λ)−BIBD
(Balanced Incomplete Block Designs). These designs can be used to construct
various KPS(see [20]) by mapping:

1. the v varieties of |X | to the set of keys in the scheme (i.e., key pool),
2. b to the number of nodes in the system (i.e., network size),
3. k to the number of keys per node (i.e., size of key rings), and
4. r to the number of nodes sharing a key (i.e., degree of the resultant KPS).

Target is to construct KPS with identical burden on each sensor. This leads to
opting for design with uniform rank (k) and regular degree (r); so that every
key ring is of equal size (k) and same number of nodes (r) share each key for the
resultant network.

A (v, b, r, k)−configuration (X ,A) is said to form a μ−common intersection
design(CID) in case:

|{Aα ∈ A : Ai ∩ Aα �= ∅ and Aj ∩ Aα �= ∅}| ≥ μ whenever Ai ∩ Aj = ∅, ∀ i �= j.

That is, if two nodes Ai and Aj do not share any key then there are at least μ
other nodes which share keys with both Ai and Aj . In this case, the nodes Ai

and Aj can communicate via another node which share keys with both Ai and
Aj . It is important to construct design that maximize the value of μ.

3.2 Bent Boolean Functions

Boolean function is a very interesting entity in the study of cryptography, coding
theory and combinatorics. The book by Cusick and Stănică [10] can enlighten
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the reader about the significance of Boolean functions in the study of cryptog-
raphy. We denote by IF2 the finite field of two elements set {0, 1} with the usual
operations + (XOR) and · (AND). Denote Vn be the n−dimensional vector space
IFn

2 over IF2 and 0 is the zero vector in Vn. A Boolean function on n variables is
a mapping from Vn into IF2 and define Bn as the set of all n−variable Boolean
functions. One of the standard representation of a Boolean function f ∈ Bn is
by the output column of its truth table in an order of input vectors, i.e., a binary
string of length 2n,

f = [f(0, · · · , 0, 0), f(0, · · · , 0, 1), f(0, · · · , 1, 0), · · · , f(1, . . . , 1, 1)].

The support set of f is defined as Ωf = {v ∈ Vn : f(v) = 1}. The Hamming
weight (in short, weight) of f ∈ Bn is denoted as wt(f) = |Ωf |. A Boolean
function f ∈ Bn is called balanced if wt(f) = 2n−1.

A Boolean function can be represented as a multivariate polynomial over IF2,
called the algebraic normal form (ANF), as

f(x1, · · · , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + · · · + a1,2,··· ,nx1x2 · · · xn,

where the coefficients a0, ai, ai,j , · · · , a1,2,...,n ∈ IF2. The algebraic degree (in
short, degree), deg(f), is the number of variables in the highest order term with
non zero coefficient. A Boolean function f is affine if the deg(f) ≤ 1 and the set
of all affine functions is denoted by An.

The Walsh transform of f ∈ Bn is an integer valued function from Vn which
is defined as

Wf (ω) =
∑

x∈Vn

(−1)f(x)+x·ω, for any ω ∈ Vn.

The conservation law of the Walsh spectral values of the n−variable Boolean
functions, i.e.,

∑
ω∈Vn

(Wf (ω))2 = 22n, is known as Parseval’s equality. The non-
linearity of f ∈ Bn is given by min{d(f, l) : l ∈ An} where the distance function
d(f, g) = |{v ∈ Vn : f(v) �= g(v)}| = wt(f + g). The nonlinearity of f can be rep-
resented in terms of its Walsh spectra as nl(f) = 2n−1 − 1

2 maxω∈Vn
|Wf (ω)|. A

function f ∈ Bn achieves the maximum nonlinearity if and only if Wf (ω) = ±2
n
2 ,

for all ω ∈ Vn and the nonlinearity is 2n−1 − 2
n
2 −1. The functions achieving this

value of nonlinearity are called bent Boolean functions and they exist only when
n is even [23]. Note that, through out this paper, we call as bent function in
stead of bent Boolean function.

Note 1. Since we are constructing KPS from the bent functions f ∈ Bn and
underlying Cayley graph is connected, we always consider n = 2m ≥ 4 is an
even positive integer in the rest part of this paper.

The weight of a bent function is 2n−1 − 2m−1 (unbalanced) and the algebraic
degree of a bent function is at most m for n ≥ 4. This class of functions are very
important in the literature of cryptography, coding theory and combinatorics.
We refer [26, Sect. 4.3] for the study about the involvement of bent functions in
combinatorial set designs.
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Dillon’s Bent Function: Partial spreads play fundamental role in this con-
struction of bent functions. A partial spread Σ of order s in Vn is a set of
pairwise supplementary m−dimensional subspaces E1, E2, · · · , Es of Vn i.e.,
Ei ∩ Ej = {0} for all 1 ≤ i < j ≤ s. A Boolean function f ∈ Bn is called
in PS+ if Ωf = ∪s

i=1Ei where s = 2m−1 + 1 and in PS− if Ωf = ∪s
i=1E

∗
i

where s = 2m−1 and E∗
i = Ei \ {0}. Dillon proposed bent functions in following

theorem.

Theorem 1 [12,13]. The functions from PS+ or, PS− are bent.

A partial spread Σ is a spread if ∪s
i=1Ei = Vn, in which case |Σ| = 2m + 1.

Therefore, from a given spread Σ each of the
(

2m+1
2m−1+1

)
or,

(
2m+1
2m−1

)
choices of

2m−1 + 1 (respectively, 2m−1) members of Σ provides a bent function from
PS+ (respectively, PS−). Recently, the bent functions from partial spreads are
restudied using pre-quasifields in the papers [8,17,27].

3.3 Strongly Regular Graph

A graph Γ consists of a finite set V of vertices and an edge set E is a 2−element
multi-subset of V . We denote edges {u, v} as (u, v). The edges of the form (v, v)
are called loop. The graphs without loops are called simple graphs. For a vertex
v ∈ V , the neighbor of v is defined as N(v) = {u : (v, u) ∈ E} i.e., the set of
vertices adjacent to v. The degree of a vertex v ∈ V is |N(v)| and it is denoted
as deg(v). A graph Γ is regular of degree r (or, r−regular) if the degree of
each vertex of Γ is r. A strongly regular graph with parameters (n, r, λ, μ) (or,
srg(n, r, λ, μ)) is a r−regular graph with additional property that for each pair of
vertices u, v ∈ V , |N(u)∩N(v)| is equal to λ, μ if u, v are adjacent, respectively,
nonadjacent. We refer the draft [5] by Cameron for a detailed study on strongly
regular graphs.

3.4 Cayley Graph of Boolean Function and Block Graph of Set
Design

Given a Boolean function f ∈ Bn, the Cayley graph Γf is defined with vertex
set Ωf and edge set Ef as defined

Ef = {(u, v) : u + v ∈ Ωf i.e., f(u + v) = 1}.

The graph Γf is a regular graph of degree wt(f). The graph Γf is connected
if and only if the subspace generated by Ωf is Vn i.e., < Ωf >= Vn. If Γf

is disconnected then the vertex sets of connected components are the cosets of
< Ωf >. We refer [2,10] for detailed study of Cayley graph of Boolean functions.

For n ≥ 4 and f ∈ Bn is bent, it can be shown that < Ωf >= Vn and hence,
Γf is connected.

Theorem 2 [10, Theorem 8.7, 8.10]. A Boolean function f ∈ Bn (n = 2m ≥ 4
and even) is bent if and only if its associated Cayley graph Γf is strongly regular
graph of degree wt(f) = 2n−1 ± 2m−1 and λ = μ = 2n−2 ± 2m−1 respectively.
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The block graph ΓA of the set design (X ,A) is defined with the vertex set A
and edge set EA = {(A,B) : A,B ∈ A and A ∩ B �= ∅}.

4 Bent Boolean Functions and KPS

In this section we present the trivial construction of KPS from bent functions
by connecting the support set of bent functions with combinatorial set designs.

Lemma 1 [13]. A Boolean function f ∈ Bn is bent if and only if Ωf is a
(2n, 2n−1 ±2m−1, 2n−2 ± 2m−1) difference set 2 in Vn.

For any f ∈ Bn and v ∈ Vn, define the translation v + Ωf = {v + x : x ∈ Ωf}.
Then define, Dev(Ωf ) = {v + Ωf : v ∈ Vn}. Now, connecting Lemma 1 with [26,
Theorem 3.8], we have

Theorem 3. If f ∈ Bn is bent, then (Vn,Dev(Ωf )) is a symmetric (2n, 2n−1 ±
2m−1, 2n−2 ± 2m−1)−BIBD, where b = v = 2n and r = k = 2n−1 ± 2m−1.
Therefore, if f ∈ Bn is bent, then (Vn,Dev(Ωf )) is a (2n, 2n, 2n−1 ± 2m−1,
2n−1 ± 2m−1) − 1−design.

As per the combinatorial construction in [20, Sect. 2], we have a KPS with 2n

nodes, each node containing 2n−1 ± 2m−1 keys and each key is hold by 2n−1 ±
2m−1 nodes. Since it is a symmetric BIBD each pair of nodes contain exactly
2n−2 ± 2m−1 common keys.

Now we shall describe to have KPS with 2n+1 nodes (where n + 1 = 2m + 1
is odd) from a bent function f ∈ Bn. From another characterization of bent
functions due to Dillon [12,13] a Boolean function f is bent if and only if for any
nonzero vector y ∈ Vn its derivative Dy(f(x)) = f(x) + f(x + y) is balanced, we
have the following type of difference set:

Lemma 2 [12,13]. A Boolean function f ∈ Bn is a bent function if and only if
the set Δf = {(x, f(x))|x ∈ Vn} is a (2n+1, 2n, 2n−1) difference set in Vn+1.

Now, again connecting Lemma 2 with [26, Theorem 3.8], we have the following
scheme with b = v = 2n+1 and r = k = 2n.

Theorem 4. If f ∈ Bn is a bent function, then (Vn+1,Dev(Δf )) is a symmetric
(2n+1, 2n+1, 2n, 2n, 2n−1)−BIBD. Therefore, if f ∈ Bn is a bent function, then
(Vn+1,Dev(Δf )) is a (2n+1, 2n+1, 2n, 2n) − 1−design.

By the combinatorial construction in [20, Sect. 2], we have a KPS with 2n+1

nodes where each node contains 2n keys and each key is held by 2n nodes. Since
it is a symmetric BIBD each pair of nodes contain exactly 2n−1 common keys.

Remark 1. The above schemes are completely connected. The main disadvantage
in both the schemes is storage requirement. In both the cases the number of keys
2 The definition of difference set can be found in the book by Stinson [26].
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need to be stored at each node is O(2n), which is same as order of the number
of nodes. Hence the schemes may not be preferred for practical applications.
We presented the schemes for the shake of theoretical interest. However, in the
following section we shall describe another key pre-distribution schemes from a
class of bent functions where the number of keys in each block is order of square
root of the number of blocks. In fact most prominent protocols [6,19–21,25] aim
to achieve a same ratio. These design typically burden each sensor with q keys
to support a network of size N = q2 where q = pr is a prime power [1,22].

5 KPS from Dillon’s Bent Functions

Let f be a bent function from PS+ or PS− where Σ = {E1, E2, · · · , Es} be the
partial spread in Vn. Therefore, if

1. f ∈ PS+ then s = 2m−1+1, Ωf = ∪s
i=1Ei and wt(f) = 2m(2m−1+1)−2m−1 =

22m−1 + 2m−1 = 2n−1 + 2m−1.
2. f ∈ PS− then s = 2m−1, Ωf = ∪s

i=1E
∗
i and wt(f) = (2m − 1)2m−1 =

22m−1 − 2m−1 = 2n−1 − 2m−1.

Let denote and fix Ei be a supplementary subspace of Ei in Vn (i.e., their
direct sum Ei ⊕ Ei = Vn and Ei ∩ Ei = {0}). Note that the subspaces Ei’s in
a partial spread are pairwise supplementary. So, any Ej , j �= i can be chosen as
Ei. Consider the set system (X ,A) such that X = Vn and and the set of blocks
A = {α + Ei : α ∈ Ei and 1 ≤ i ≤ s} i.e., set of all cosets of Ei’s.

Theorem 5. The set design (X ,A) is a μ(2n, s2m, s, 2m)−CID where μ = (s −
1)2m.

Proof. Here v = |X | = 2n. Consider two blocks α+Ei and β +Ej . Now we have
the following cases.

1. If i = j, then
(a) α + Ei = β + Ej if α = β or,
(b) (α + Ei) ∩ (β + Ej) = ∅ if α �= β.

2. If i �= j, then we shall show that |(α + Ei) ∩ (β + Ej)| = 1. Since Ei and Ej

are supplementary to each other, the element α + β ∈ Vn can be uniquely
expressed as u + v where u ∈ Ei and v ∈ Ej . That is, α + β = u + v which
implies, α + u = β + v is the unique element in (α + Ei) ∩ (β + Ej).

Therefore, the number of blocks i.e., the number of cosets is b = s2m and each
block contains k = 2m elements. Given a subspace Ei, i ∈ {1, 2, · · · , s}, each
element u ∈ Vn belongs to exactly one coset of Ei. So, each u ∈ Vn belongs to
exactly s many blocks in A. The set design (X ,A) is regular with r = s. Here,
every two distinct blocks intersect each other by at most one element which
implies that (X ,A) is a (2n, s2m, s, 2m)−configuration.

We see that two blocks α + Ei and β + Ej does not intersect iff i = j and
α �= β i.e., both are distinct cosets of same subspace Ei. For the case of non
intersecting blocks α + Ei and β + Ei, α �= β, both blocks intersect all other
blocks of the form γ +Ej where j �= i. Since there are μ = (s−1)2m such blocks
γ + Ej in A, (X ,A) is a (s − 1)2m(2n, s2m, s, 2m)−CID. ��
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It also can easily be checked that the block graph of (X ,A) is a strongly
regular graph with parameters (n = s2m, r = (s − 1)2m, λ = (s − 2)2m, μ =
(s−1)2m). In the study of finite geometry, the varieties together with the blocks
(i.e., cosets) form the points and lines of an affine plane. Two non-parallel lines
(i.e., α + Ei and β + Ej for i �= j) intersect at one point.

Example 1. This example is from a simple bent function f(x1, x2, x3, x4) =
1 + x1x2 + x3x4 ∈ B4. Let represent each vector by its integer value. Hence,
Ωf = {0, 1, 2, 4, 5, 6, 8, 9, 10, 15} = E1 ∪ E2 ∪ E3 where E1 = {0, 1, 4, 5}, E2 =
{0, 2, 8, 10} and E3 = {0, 6, 9, 15}. So, the scheme (X ,A), where X = V4 and
A = {E1, 2+E1, 8+E1, 10+E1, E2, 1+E2, 4+E2, 5+E2, E3, 1+E3, 2+E3, 3+E3},
is a 8(16, 12, 3, 4)−CID.

Example 2. Dillon studied a subclass denoted PSap of PS− to construct a class
of bent functions which can be presented in explicit form. Here, we consider IF2n

as a vector space Vn and identified with IF2m × IF2m . The partial spread class
PSap consists of the functions f on IF2m × IF2m of the form f(x, y) = g(xy2m−2)
where g is a balanced function on IF2m with g(0) = 0. For a ∈ IFm

2 , define the
subspace Ea = {(ax, x) : x ∈ IFm

2 } of dimension m. For (ax, x) ∈ Ea, f(ax, x) =
g(ax.x2m−2) = g(ax2m−1) i.e., f(ax, x) = g(a) when x �= 0 and 0 when x = 0.
Since g is balanced, Σ = {Ea : a ∈ Ωg} forms a partial spread in IF2n and f is
a bent function from PS−.

Let (Y,B) be the dual design of (X ,A). Then Y = A i.e., the set of all cosets
of Ei’s and B = {Zv : v ∈ Vn} where Zv = {A : v ∈ A and A ∈ A} i.e., set of
cosets containing v. Now we have the following design.

Lemma 3. The dual design (Y,B) of (X ,A) is a (s2m, 2n, 2m, s)−configuration.

Proof. Here v = |Y| = s2m and b = |B| = 2n. Since each v ∈ Vn belongs to s
cosets, the rank of each Zv in B is k = |Zv| = s. Moreover, as each coset contains
2m vectors of Vn, a coset is contained in 2m many Zv’s for each v in that coset
i.e., degree of each block is r = 2m.

To complete the proof we need to show that (Y,B) is a configuration i.e.,
|Zu ∩Zv| ≤ 1 for distinct u, v ∈ Vn. That is, we need to show that every distinct
pair u, v ∈ Vn belongs to at most one coset. Let u, v ∈ (α + Ei) ∩ (β + Ej). It is
clear that i �= j. Then u = α + w1 = β + z1 and v = α + w2 = β + z2 for some
w1, w2 ∈ Ei and z1, z2 ∈ Ej . So, α + β = w1 + z1 = w2 + z2. Since Ei and Ej

are supplementary to each other, w1 = w2 and z1 = z2. That is, u = v. ��
Lemma 4. The block graph ΓB of the set design (Y,B) is isomorphic to the
Cayley graph Γf of f ∈ Bn from PS+ or PS− with the partial spread Σ =
{E1, E2, · · · , Es}.
Proof. The correspondence between the vertex set B of ΓB and vertex set Vn of
Γf is from Zv to v. (Zu, Zv) is an edge in ΓB iff there is a coset A ∈ A such
that u, v ∈ A iff there is a subspace Ei such that u + v ∈ Ei iff (u, v) is an
edge in Γf . ��
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As the Cayley graph Γf is a strongly regular graph with λ = μ = 2n−2 ± 2m−1

[from Theorem 2], we have the following design.

Theorem 6. The set design (Y,B) is a μ(s2m, 2n, 2m, s)−CID where

μ =
{

2n−2 + 2m−1 if s = 2m−1 + 1
2n−2 − 2m−1 if s = 2m−1.

Example 3. We return to Example 1 and identify the cosets in A as
L1, L2, · · · , L12 in the order the cosets written in A. Here, the scheme (Y,B),
where Y = {L1, L2, · · · , L12} and B = {Zv : v ∈ B4} and Zv = {i : v ∈ Li, 1 ≤
i ≤ 12}, is a 6(12, 16, 4, 3)−CID.

In this section we presented constructions with number of nodes (i.e., b) 2n−1

and 2n−1+2m in Theorem 5 and 2n in Theorem 6. In both the cases, the number
of keys need to be stored is O(2m) i.e., order of square root of number of nodes.
These schemes has storage space advantage over the trivial schemes presented
in previous section.

6 Analysis of the Schemes: Comparative Study

There are various metrics that evaluate different performance and security
aspects of a KPS for a wireless sensor network. We analyze our schemes
(described in Sect. 5) on the basis of four of these metrics. For the remaining
party of the paper, we denote the schemes proposed in Theorem 5 and 6 by
(X ,A) and (Y,B) respectively.

6.1 Key-Node Ratio (σ(n))

The key-node ratio is defined as σ = k
b . This ratio provides idea about the storage

requirement of the scheme at each node with respect to the total number of
nodes. The value of σ closer zero implies lesser amount of memory required for
key storage at each node. In our constructions, both the schemes (X ,A) and
(Y,B) have key-node ratio σ(n) = O(2−m) = O(2− n

2 ).

6.2 Key Establishment and Time Complexity

In this subsection, we discuss about the process of key establishment between
two nodes and time complexity of the process. There are two ways of key estab-
lishment. One is shared key discovery if two nodes have a common key and other
is path key agreement by two hops if there is no common key between two nodes.
In the later case, both the nodes has to find a common neighbor node with whom
they discover their share key and establish connection between them. Here, we
will discuss about the key establishment process of both the schemes presented
in Sect. 5.
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KPS Using the Set Design (X ,A): In this scheme the key establishment
is done using the node id. Let β1

i , β2
i , · · · , βm

i be a basis set of the subspace
Ei for 1 ≤ i ≤ s. Then, the node α + Ei can be identified by the node id
(α, β1

i , β2
i , · · · , βm

i ). When the node α + Ei wants for key establishment with
another node β + Ej , then they can follow the following arguments to discover
the common key.

Step 1: The nodes α + Ei and β + Ej compare the last m vectors (i.e., basis
vectors) in their node id. If they are same then follow Step 3 otherwise follow
Step 2.

Step 2: In this case, the Ei �= Ej i.e., they share a common key. Let the common
key is α+u = β+v where u ∈ Ei and v ∈ Ej . Now we need to find u and v in
terms of the basis vectors of Ei and Ej respectively. Here, α+β = u+v ∈ Vn.
Since Ei and Ej are supplementary subspaces in Vn, α + β can be uniquely
expressed as a linear combination of the basis vectors of Ei and Ej . Let
α + β = (b1β1

i + · · · + bmβm
i ) + (bm+1β

1
j + · · · + bnβm

j ), where bi ∈ IF2. That
is, α + b1β

1
i + · · · + bmβm

i = β + bm+1β
1
j + · · · + bnβm

j . Hence, the common
key is α+ b1β

1
i + · · ·+ bmβm

i = β + bm+1β
1
j + · · ·+ bnβm

j ∈ Ei ∩Ej . The time
complexity in this step is the time complexity to express α + β in terms of
the basis vectors in a basis i.e., O(n3).

Step 3: In this case, the Ei = Ej i.e., they do not share any common key. In
this case, they have to establish connection through another node with whom
they share a key. That is, they have to find a node γ + Ek where k �= i. The
probability of finding such a node using a random pick up is s−1

s which is
very high. Since both α+Ei and β +Ej share a key with γ +Ek, each one do
the same process described in Step 2 with γ + Ek to discover their common
key. After then α + Ei and β + Ej can establish connection through γ + Ek.
Hence, in step the time complexity is O(n3).

Therefore, each node needs (m+1)∗n = O(n2) bits of memory for their identifica-
tion and the time complexity to discover the common key(s) for the connection
establishment is O(n3). Here, the nodes have to broadcast only node id i.e.,
O(n2) bits instead of all (i.e., O(2m) many) key ids as many other KPS.

KPS Using the Set Design (Y,B): Let f be the bent function used for this
scheme, where Ωf = ∪s

i=1Ei. In this scheme two distinct nodes Zu, Zv share a
common key if and only if u + v ∈ Ωf . It seems that the node id computation
technique to find common key will not work for this scheme.

The common key can be found by comparing all the key ids (in an order).
When two nodes Zu and Zv wants to establish connection, they need to search
for common key id by linear comparison of their key ids which takes O(s) time
complexity. If the common key is found then it is done. Otherwise they have
to communicate through another node Zw where both have common key. Since
they have μ = 2n−2 ± 2m−1 common neighbors Zw, the probability of finding
such Zw is μ

2n ≈ 1
4 . After finding such common neighbor Zw, both Zu and Zv

discover their common key with Zw by linear comparisons which takes O(s) time
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complexity. The key establishment process of the scheme (Y,B) is very slow in
comparison with the earlier scheme (X ,A).

6.3 Resiliency(fail(t))

We prove our scheme is well equipped to perform against adversarial attacks.
To this end, we establish that a standard resiliency metric fail(t) is minimized.
This is prevalent method adopted by most existing works [1,6,19,20,22]. The
quantifier fail(t) measures the probability that a random link between two
sensors is broken due to the compromise of t other random nodes not in the link.
Notationally:

fail(t) =
No. of links broken when t nodes are compromised

No. of links among uncompromised nodes of remaining network
.

Theorem 7 is due to Lee and Stinson in [20, Sect. 8] provides the formula to
compute fail(t) for any (v, b, r, k)− configuration.

Theorem 7. For any (v, b, r, k)−configuration, the value of the metric fail(t)
on random compromise of t nodes is given by:

fail(t) = 1 −
(

b − r

b − 2

)t

. (1)

Corollaries 1 and 2 are immediate outcomes of substituting in Eq. 1, the values
of b and r, that our design achieves.

Corollary 1. The value of the resilience metric fail(t) for the set system
(X ,A), which is a (2n, s2m, s, 2m)−configuration is:

fail(t) = 1 −
(

s2m − s

s2m − 2

)t

.

In particular,

fail(1) =
s − 2

s2m − 2
≈ 2−m.

Corollary 2. The value of the resilience metric fail(t) for the set system
(Y,B), which is a (s2m, 2n, 2m, s)−configuration is:

fail(t) = 1 −
(

2n − 2m

2n − 2

)t

.

In particular,

fail(1) =
2m − 2
2n − 2

≈ 2−m.

In both the schemes, the metric fail(1) = O(2−m) i.e., if a node N is compro-
mised, then the probability that a link (which is not incident with N) fails is
O(2−m). For example, if n = 10 (i.e., there are approximately 210 many nodes)
then the value fail(1) ≈ 0.03.
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6.4 Connectivity

We say two blocks in a set system are connected by e−link (or, are at a distance e)
if the shortest path between them in the block graph includes e edges. Hence, we
define the metric connectivity (or, connection probability) pe of the network to be
the probability that two nodes (placed in physical neighborhood) are connected
by e−links for a fixed e.

Observe that the value of e for a μ−CID with μ > 1 is either 1 (if they
share a key) or 2 (if they do not share a key). Theorems 5 and 6 states that
μ = (s − 1)2m and μ = 2n−2 ± 2m−1 for the schemes based on (X ,A) and its
dual (Y,B).

The formulae for p1 and p2 are provided in [20, Sect. 6], which are being
formally restated in the following theorem. Let η denote the number of nodes in
the intersection of the physical neighborhood of two given nodes.

Theorem 8. The connection probabilities of a μ(v,b,r,k)-CID are given by

p1 =
k(r − 1)

b − 1
and p2 ≈ (1 − p1) ×

(
1 −

(
b − μ − 2

b − 2

)η)
.

Following two corollaries are immediate outcome for our schemes by substituting
the values of b, r, k and λ in Theorem 8.

Corollary 3. The value of the connectivities for the set system (X ,A), which
is a (s − 1)2m(2n, s2m, s, 2m)−CID, are

p1 ≈ 1 − 1
s

and p2 ≈ sη − 1
sη+1

.

Proof. Now putting the value of b = s2m, r = s, k = 2m and μ = (s − 1)2m in
p1 and p2, we have

p1 = 2m(s−1)
s2m−1 = s2m−2m

s2m−1 = 1 − 2m−1
s2m−1 ≈ 1 − 1

s ,

and p2 ≈ 1
s

(
1 −

(
s2m−(s−1)2m−2

s2m−2

)η)
= 1

s

(
1 −

(
2m−2
s2m−2

)η)

≈ 1
s

(
1 − 1

sη

)
= sη−1

sη+1 . ��
Corollary 4. The value of the connectivities for the set system (Y,B), which is
a μ(s2m, 2n, 2m, s)−CID, are

p1 ≈ 1
2

± 1
2m+1

and p2 = (1 − p1)
(

1 −
(

3
4

)η)
.

Proof. Now putting the value of b = 2n, r = 2m, k = s, μ = 2n−2 ± 2m−1 and
s = 2m−1 + 1 or, 2m−1 for p1 and p2, we have

p1 = s(2m−1)
2n−1 ≈ 2n−1±2m−1

2n−1 ≈ 1
2 ± 2m−1

2n−1 ≈ 1
2 ± 1

2m+1 ,

and p2 ≈ (1 − p1)
(
1 −

(
2n−(2n−2±2m−1)−2

2n−2

)η)
≈ (1 − p1)

(
1 − (

3
4

)η)
. ��
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Remark 2. From the above analysis of our schemes, it is evident that the scheme
based on (X ,A) outperforms the scheme based its dual (Y,B) in terms of the
time complexity and the amount of broadcasted data during the key establish-
ment. Moreover, our former scheme out scores our later scheme in providing
better connectivity for similar storage and resiliency factor.

7 Comparative Study

This section presents a comparative study of our Dillon type schemes, (X ,A)
and (Y,B), with prominent existing works with respect to resilience and network
scaling. Performance of our schemes with respect to other metric like storage
connectivity, etc. has been discuss in Sect. 6 (refer to Remarks 1 and 2).

7.1 Connectivity and Resiliency Tradeoff

There have been several proposals for deterministic key predistribution schemes
for wireless sensor networks based on various types of combinatorial struc-
tures such as designs and codes. The paper [22] proposes a general framework
by unifying those structures into a new design, termed as “partially balanced
t-designs(PBtD)”. Although, our schemes falls into 2 − (v, k, λ0 = b, λ1 =
r)−PBtD as a configuration, their generalization does not consider μ−CIDs.
Hence, being a μ−CID, our schemes do not classify as PBtD by their descrip-
tion [22]. There are few comparison tables of different schemes are provided
in [22]. In the following, we take data of TD(t, k, n) with intersection threshold
η = 1 from the paper [22] along with other designs to compare with our schemes.

Let consider the number of nodes in all the compared scheme is N . Now
we will compare the asymptotic behavior of metrics p1, fail(1) and the ratio
ρ = p1

fail(1) . It is desirable that the ratio ρ be as large as possible. The comparison
is displayed in Table 1.

From this comparison table it is clear that the asymptotic behavior of the
ratio ρ of our scheme (X ,A) is similar or better than all other schemes except
the scheme TD(3,k,q), k = q and Merging Block (MB) design of [1]. The later
has significantly less (merging) block support (halved). Moreover, in our scheme
(X ,A), the shared key discovery is done with time complexity O((log N)3) and
the amount of data need to be broadcasted is O((log N)2). This is an added
advantage over most KPS that require key id comparisons for key discovery
including our dual scheme (Y,B).

7.2 Scalability Comparison

Our Dillon type schemes, (X ,A) and (Y,B) can support large networks. This is
because the choice n and respectively m and/or s are unbounded in theory. This
may help in scaling networks designed by our schemes (prefix large values).

Scalability, otherwise is a major challenge in most deterministic KPS. For
instance the schemes [6,19–21,25] have restricted scaling. This owes to the fact
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Table 1. Comparison of asymptotic behavior of different schemes.

Scheme No. of nodes p1 fail(1) ρ =
p1

fail(1)

(X , A) N = s2m ≈ 2n−1 1 − 1
s = 1 − 1√

N/2
≈ 1√

2N ≈ √
2N − 2

(Y, B) N = 2n 1
2 ± 1

2m+1 = 1
2 ± 1

2
√N ≈ 1√N ≈

√N±1
2

TD(2, k, q), k = cn

[22]

N = q2 c ≈ 1/
√N ≈ c

√N

TD(3, k, q),

k = cq, c < 1 [22]

N = q3 c(2 − c)/2 2(1 − c)/N 1/3 c(2−c)2

4(1−c) N 1/3

TD(3, k, q), k = q

[22]

N = q3 1/2 ≈ 5/N 2/3 ≈ N 2/3/10

Symmetric BIBD of

[6]

N = q2 + q + 1 1 ≈ 1/
√N ≈ √N

RS code based

design of [25]

N = q2 q−1
q+1

q−2
q2−2

≈ 1/
√N ≈ √N

MB designs of [1]

for TD(2, k, q) or

RS code

N = q2/2 1
q/2−2

q2/2−2
≈ 1/

√
2N ≈ √

2N

that key establishment for these network require general solutions of polynomi-
als. Therefore, the complexity of the key establishment process increases with
increment in degree of these polynomials. The hallmark Abel-Ruffini theorem
states that (general) algebraic solutions of quintic polynomials in not possible.
Random schemes can scalable arbitrarily [24]; at the expense of desirable para-
meters like connectivity, resilience, storage (key-node ratio), etc. Therefore, we
opt deterministic schemes while designing KPS [22]. Also refer to Sect. 2.3.

8 Conclusion and Future Work

Realizing the need of deterministic KPS with desirable properties (set out in
Sect. 2.4) to address the problem of key management in low cost networks, we
propose four such schemes. Our schemes are constructed using bent functions.
Of particular interest are the later two schemes whose block graphs are dual to
each other. These schemes are based on Dillon’s bent functions, also known as
partial spreads. Rigorous analysis show that our first proposal is better suited
to design KPS as compared to its dual and other prominent existing protocols.

Both our proposed block designs suffers from lack of full connectivity. Though
the generic computations in Sect. 6.4 establish that the connectivity of our both
schemes is good (either direct or 1−hop path connectivity), it is preferable to
have full connectivity or at least a deterministic path in case of 1−hop connec-
tivity. The sophisticated MB designs of [1,11] establishes a deterministic 1−hop
connectivity for the Reed Solomon code based KPS [25]. These heavily design
dependent works can certainly open the doors for future research by considering
similar constructions over our schemes in place of [25].
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10. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications.
Academic Press, Elsevier (2009)

11. Dhar, A., Sarkar, P.: Full Communication in a Wireless Sensor Network by Merging
Blocks of a Key Predistribution Using Reed Solomon Code (2011)

12. Dillon, J.F.: A survey of bent functions. NSA Tech. J., 191–215, 1972
13. Dillon, J.F.: Elementary Hadamard Difference sets. Ph.D thesis, University of

Maryland (1974)
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Abstract. Cross-domain group key exchange protocols enable partici-
pants from different domains, even with various cryptographic settings
and system parameters, to establish a common secret session key. In
prior cross-domain key exchange works, only the case of two communi-
cation parties is considered, and the two parties are required to adopt
a common cryptographic setting (e.g., identity-based setting) or shared
parameters (e.g., algebraic group), which is not suitable for group data
sharing in many cross-domain interoperability scenarios. In this paper,
we present the first one-round cross-domain group key exchange proto-
col, and by using indistinguishability obfuscation as the main tool, we
prove our construction can achieve the desired security properties in the
standard model. It is especially attractive for our protocol that existing
PKIs can be used and all participants do not have to accommodate any
other peers (even do not need to know other peers’ algebraic settings) to
agree on the session key.

Keywords: Group key exchange protocol · Cross-domain · Interoper-
ability · Indistinguishability obfuscation · Standard model

1 Introduction

Secure group communication is an increasingly popular research area and has
received much attention in modern collaborative and distributed applications
such as distributed social networks, peer-to-peer file sharing, and cloud comput-
ing. Group key exchange protocols are fundamental to secure communication
among a group of users. In a group key exchange protocol, a group of users are
allowed to communicate over an untrusted, open network to agree on a common
secret session key and thereafter, they can securely exchange messages using this
shared key.
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 386–400, 2017.
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With the popularity of group data sharing in distributed networks, cross-
domain group key exchange protocols have become the basis of securely connect-
ing distributed multi-domain systems. Each domain environment would have its
own users and resources within specific trust domain, however, since diverse
type of requirements can be made by the users, which may not be offered by
one single domain system, one domain system has to request another domain
system or multiple domain systems. Therefore, the demand of cooperative work
in multiple domains, i.e., cross-domain interoperability, is rising. Nonetheless,
cross-domain group key exchange protocols are hard to design for its complexity
in system deployment and user operation, all of which need large amount com-
putation and resource consumption. In particular, there are many differences
in the design between cross-domain authenticated group key exchange protocol
and two-party key exchange protocol. First, the users’ structure is more com-
plex: in two-party case, users are on equal status, while in the group case, users
are usually in the ring structure, tree structure, or line structure; second, the
parameters setting is more universal: in two-party case, the same cryptographic
setting is used, while in the group case, the users may be in various algebraic
settings; third, the round of the protocol is more dynamic: the two-party case
usually has constant round, while in the group case, the round is closely linked
with the group structure and size, usually increasing with the group size.

Over the past several years, many solutions to group key exchange protocols
have been proposed [1–13]. However, all of these constructions require all par-
ticipants to adopt a common cryptographic setting and shared parameters. In
practical applications, the common scheme and parameter requirements can be a
large barrier when entities coming from different settings wish to communicate
with each other. Taking an example of signature, existing users have already
established signing keys and algorithms which are entrenched in an existing
public key infrastructure. The changing and re-certifying of one’s public keys
may bring much resource consumption and make the user store many suits of
keys, which absolutely results in complexity of operation. Aiming at tackling the
challenges above, we propose a one-round cross-domain group key exchange pro-
tocol which removes the complex group structure, and most of all, it allows group
members to come from different cryptographic settings (e.g., identity-based set-
ting, certificate-based setting) and use different signature schemes (e.g., RSA,
ECDSA).

1.1 Related Work

Group Key Exchange Protocol. Burmester et al. [4] proposed an efficient
and practical group key exchange protocol, in which the number of the com-
munication rounds is constant when broadcast messages are allowed, however,
there is no security proof for it. Later, Bresson et al. [7] introduced a formal
security model for group key exchange protocols based on the Bellare and Rog-
away model [14] and proposed the first provably secure protocol in this setting.
Users in their protocol communicate in a ring structure, and only after receiving
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messages from his predecessor, the user can produce his own message. Unfortu-
nately, the essence of their communication structure makes their protocol quite
impractical for large groups due to the number of communication rounds linear
in the number of group users. In 2003, Katz and Yung [10] analyzed Burmester’s
protocol [4], who also proposed the first constant round and fully scalable authen-
ticated group key exchange protocol which is provably secure in the standard
model. Besides this, there are some identity-based group key exchange proto-
cols [2,5,13], using the identity information in place of public keys to provide
authentication. Recently, Boneh and Zhandry [15] constructed the first multi-
party non-interactive key exchange protocol requiring trusted setup based on
indistinguishability obfuscation, and gave the formal security proof in the static
and semi-static models, however, their protocol does not consider entity authen-
tication, and moreover the group session key is generated only by group users’
public keys, which makes the session key static and fixed.

Cross-Domain Key Exchange Protocol. Chen et al. [16] introduced the
concept of two-party cross-domain communication and proposed an ID-based
protocol that allows two parties to communicate through different domains. In
2005, McCullagh et al. [17] proposed a more efficient cross-domain two-party
construction. However, both of constructions [16,17] require all parties from dif-
ferent domains adopt the common group parameter. Ustaoǧlu [18] also proposed
a collection of integrating protocols which support interoperability between two
different cryptographic settings, but their protocols still require that the par-
ticipants use parameters from the same algebraic group. Later, Guo et al. [19]
proposed a two-party key exchange protocol where one entity is certificate-based
and the other one is identity-based, and the parameters of both entities may come
from different groups. Recently, Chen et al. [20] proposed a cross-domain four-
party password-based authenticated key exchange protocol in a scenario that two
cross-domain clients establish secure communication through their servers, which
is a nice work but needs the client share password with its server. In summary,
it seems that no existing solutions can perfectly support cross-domain group key
exchange while not changing participants’ existing cryptographic settings.

Obfuscation and Its Security. Obfuscation was first rigorously defined and
studied by Barak et al. [21]. Roughly speaking, obfuscation security requires
an obfuscated version O(P) of a program P to behave like a virtual black box
(VBB) in the sense that anything one can compute given O(P), one could also
compute from the input-output behavior of the program P. However, it has been
known that it is impossible to realize it in general. This leads to an alternative
and weaker notion called indistinguishability obfuscation (iO), which requires
that if two programs of the same size compute the same function, then their
obfuscations should be indistinguishable. In 2013, Garg et al. [22] (known as
GGH13) proposed the first candidate construction of an efficient iO for all cir-
cuits. Since their breakthrough result, an extremely large number of uses for iO
in cryptography have been found, not only in obtaining classical cryptographic
primitives, but also in reaching new possibilities. Subsequently, several other
candidate iO schemes have been proposed, and almost all known schemes rely
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on multilinear maps. Unfortunately, there have been several attacks [23–25] on
multilinear maps that exploit extra information revealed by the zero-test proce-
dure. However, known attacks exploit the correlations among ring elements, and
these correlations are much harder to leverage in the case where only “highest-
level” zero-encodings can be obtained, which is the case for known obfuscation
candidates. Therefore, such attacks are not applicable to candidate iO schemes.
The only known attacks against obfuscation schemes are the recent annihila-
tion attacks of Miles et al. [25]. However, not all the obfuscation candidates are
broken by the annihilation attacks. Recently, Garg, Mukherjee et al. [26] gave
a beautiful new candidate iO construction, using a new variant of the GGH13
multilinear map candidate, and proved its security in the weak multilinear map
model assuming an explicit PRF in NC1. Concurrently, Lin [27] also proposed
a construction of iO from a simple assumption (joint-SXDH assumption) on
prime-order graded encodings.

1.2 Technical Contributions

Cross-domain group key exchange (CDGKE) protocols are fundamental building
blocks for securing communication over public, insecure cross-domain networks.
In this paper, we propose the first universal cross-domain group key exchange
protocol. In a universal cross-domain group key exchange protocol, users coming
from different domains (with various cryptographic settings and system para-
meters) communicate over an insecure public network and establish a common
secret session key.

Our primary challenge is how to create a way to make all the participants have
the uniform computation even though they are coming from different settings,
and then hide the computation result from the outsiders. Inspired by Boneh and
Zhandry’s multiparty non-interactive key exchange scheme [15], we use indistin-
guishability obfuscation as the main tool. The essential idea is the following: the
global agreed domain parameter consists of an obfuscated program for a con-
strained pseudorandom function PRF which requires to operate the verification
of signature, and each user Pi generates a signature on the message xi chosen
randomly using its own signature scheme and broadcasts it. By running the
global agreed domain parameter program, each user in the group can indepen-
dently evaluate the obfuscated program to obtain the shared session key, which
is the PRF output evaluated at the concatenation of the message xi. However,
such an approach fails because a signature can be replayed by an adversary. To
prevent such attacks, we require the random value si used for generating the
message xi also as the input of the obfuscated program.

Compared to existing constructions, our protocol has a number of advantages:
(i) It is optimal in terms of round complexity, which is a central measure of effi-
ciency for any interactive protocol; (ii) Each participant neither needs to change
or re-certify his public keys, nor holds many suites of keys; (iii) Each participant
in the group may use different signature scheme (e.g., BLS, RSA, ECDSA, or
FS-IBS) even in various algebraic settings (e.g., using RSA in different modulo),
which is more suitable for cross-domain setting; (iv) Each participant does not



390 X. Lan et al.

need to know the exact identity of any other participant, only the identifier in
the group; (v) The group session key is different in each protocol execution even
though the group users are not changed; (vi) It is provably secure in the stan-
dard model. It is also worth noting that since our protocol is built from a generic
indistinguishability obfuscation mechanism other than secure multilinear maps,
it may eventually depend on a weaker complexity assumption.

2 Preliminaries

In this section we start by briefly recalling the definitions of different crypto-
graphic primitives essential for our study. Let x ← S denote a uniformly random
element drawn from the set S and λ the security parameter.

2.1 Indistinguishability Obfuscation

Definition 1 (Indistinguishability Obfuscation [22]). An indistinguishabil-
ity obfuscator iO for a circuit class Cλ is a probabilistic polynomial time (PPT)
algorithm satisfying the following conditions:

– iO(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we
compute C ′ = iO(λ,C), then C ′(x) = C(x) for all inputs x.

– For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the
circuits iO(λ,C0) and iO(λ,C1) are indistinguishable. More precisely, for all
pairs of PPT adversaries (Samp,D) there exists a negligible function α such
that, if

Pr[∀x,C0(x) = C1(x) : (C0, C1, τ) ← Samp(λ)] > 1 − α(λ),

then

|Pr[D(τ, iO(λ,C0)) = 1] − Pr[D(τ, iO(λ,C1)) = 1]| < α(λ).

In this paper, we will make use of such indistinguishability obfuscators for
all polynomial-size circuits.

Definition 2 (Indistinguishability Obfuscation for P/poly). A uniform
PPT machine iO is called an indistinguishability obfuscator for P/poly if the
following holds: Let Cλ be the class of circuits of size at most λ, Then iO is an
indistinguishability obfuscator for the class {Cλ}.

2.2 Constrained Pseudorandom Functions

A pseudorandom function (PRF) [28] is a function PRF: K × X → Y where
PRF(k, ·) is indistinguishable from a random function for a randomly cho-
sen key k. Following Boneh and Waters [29], we recall the definition of con-
strained pseudorandom function1.
1 The Boneh and Waters’s construction for the class of circuit-constrained PRFs [29]

is based on the multilinear maps, however, to the best of our knowledge, there does
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Definition 3 (Constrained Pseudorandom Function [29]). A PRF F : K×
X → Y is said to be constrained with respect to a set system S ⊆ 2X if there is
an additional key space KC and two additional algorithms:

• F.constrain(k, S): On input a PRF key k ∈ K and the description of a set
S ∈ S (so that S ⊆ X ), the algorithm outputs a constrained key kS ∈ KC .

• F.eval(kS , x): On input kS ∈ KC and x ∈ X , the algorithm outputs

F.eval(kS , x) =
{

F (k, x) if x ∈ S
⊥ otherwise

For ease of presentation, we use F (kS , x) to represent F.eval(kS , x).

Security. Intuitively, we require that even after obtaining several constrained
keys, no polynomial time adversary can distinguish a truly random string from
the PRF evaluation at a point not queried. This intuition can be formalized by
the following security game between a challenger and an adversary A.

Let F : K × X → Y be a constrained PRF with respect to a set system
S ⊆ 2X . The security game consists of three phases:

Setup Phase. The challenger chooses a random key K ← K and a random bit
b ← {0, 1}.

Query Phase. In this phase, A is allowed to ask for the following queries:

• Evaluation Query: On input x ∈ X , it returns F (K,x).
• Key Query: On input S ∈ S, it returns F.constrain(K,S).
• Challenge Query: A sends x ∈ X as a challenge query. If b = 0, the challenger

outputs F (K,x); else, the challenger outputs a random element y ← Y.

Guess Phase. A outputs a guess b′ of b.
Let E ⊆ X be the set of evaluation queries, C ⊆ S be the set of constrained

key queries and Z ⊆ X the set of challenge queries. A wins if b = b′ and E∩Z = φ
and C∩Z = φ. The advantage of A is defined to be AdvF

A(λ) = |Pr[A wins]−1/2|.

Definition 4. The PRF F is a secure constrained PRF with respect to S if for
all probabilistic polynomial time adversaries A, AdvF

A(λ) is negligible in λ.

2.3 Signature Scheme

A digital signature scheme is a triple SIG = (Sig.Gen, Sig.Sign, Sig.Verify),
consisting of a key generation algorithm (pk, sk) ← Sig.Gen(1λ) generating a
public verification key pk and a private signing key sk on input of security
parameter λ, signing algorithm σ ← Sig.Sign(sk;m) generating a signature for
message m, and verification algorithm Sig.Verify(pk;m,σ) returning 1 if σ is a
valid signature for m under key pk, and 0 otherwise.

not exist any negative result on its security, and the attack [24] on multilinear maps
is not applicable to it.
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Correctness. For all λ ∈ N, (pk, sk) ← Sig.Gen(1λ), message m ∈ M(λ), we
require that Sig.Verify(pk;m,Sig.Sign(sk;m))=1.

Security. Consider the following security experiment (defined by [30]) played
between a challenger C and an adversary A.

1. The challenger generates a public/private key pair (pk, sk) ← Sig.Gen(1λ),
the adversary receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies to each query with a signature σi = Sig.Sign(sk;mi). Here i
is an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m∗, σ∗).

Definition 5 (Secure Signatures [30]). We say that SIG is existentially
unforgeable under adaptive chosen-message attacks (EUF-CMA), if for all adver-
saries A, there exists a negligible function negl such that

Pr[(m∗, σ∗) ← AC(1λ, pk) such that

Sig.Verify(pk;σ∗,m∗) = 1 ∧ m∗ �∈ {m1, . . . ,mq}] ≤ negl(λ).

3 Security Model

In this section, we briefly recall the formal security model for group key exchange
protocols as presented in [10] (which is based on the model by Bresson [9]).

Parties and initialization. In a group key exchange protocol, we assume for
simplicity a fixed, polynomial-size set P = {P1, . . . , Pl} of potential parties.
Any subset of P may decide at any point to establish a session key, and we
do not assume that these subsets are always the same size or always include
the same participants. There are two different types of party: CP (certification
based party) and IP (identity based party). Before the protocol is run for the
first time, an initialization phase occurs. For each participant Pi ∈ CP, it runs
an algorithm Gi(1λ) to generate public/private keys (PKi, SKi), where each Pi

may be from different cryptographic settings (e.g., finite field, elliptic curve, or
RSA). For each Pi ∈ IP, the public key PKi is its own identity IDi and the
private key SKi is generated by its private key generator (PKG). Each player
Pi stores SKi, and the public key PKi is known by all participants (and is also
known by the adversary).

Adversary model. We denote instance i of user P as πi
P . A given instance

may be used only once. Each instance πi
P has associated with it the variables

acci
P , sidi

P , pidi
P , ski

P with the following semantics:

– acci
P : 0/1-valued variable which is set to be 1 by πi

P upon normal termination
of the session and 0 otherwise.

– sidi
P : session identity for instance πi

P , which is a protocol-specified function
of all communication sent and received by πi

P .
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– pidi
P : partner identity for instance πi

P , which consists of the identities of the
players in the group with whom πi

P intends to establish a session key (including
P itself).

– ski
P : session key after the execution of the protocol by πi

P .

During the execution of the protocol, an adversary A could interact with
protocol participants via several oracle queries, which model adversary’s possible
attacks in the real execution. All possible oracle queries are listed in the following:

– Send(πi
P ,m): This query is used to simulate active attacks, in which the adver-

sary may tamper with the message being sent over the public channel. It
returns the message that the user instance πi

P would generate upon receipt of
message m.

– Execute(πi1
P1

, . . . , πin
Pn

): This query models passive attacks in which the attacker
eavesdrops on honest executions among the user instances πi1

P1
, . . . , πin

Pn
. It

returns the messages that were exchanged during an honest execution of the
protocol.

– Reveal(πi
P ): This query models the possibility that an adversary gets the ses-

sion key. It returns to the adversary the session key ski
P of the user instance πi

P .
– Corrupt(P ): This query returns the long-term secret key of player P .
– Test(πi

P ): This query tries to capture the adversary’s ability to tell apart a
real session key from a random one. It returns the session key for instance πi

P

if b = 1 or a random number of the same size if b = 0. This query is called
only once.

Partnering. Two instances πi
P and πj

P ′ are said to be partnered if and only if
(1) pidi

P =pidj
P ′ , (2) sidi

P =sidj
P ′ and (3) acci

P = accj
P ′ = 1.

Freshness. We say an instance πi
P is fresh if none of the following conditions

hold:

(1) the adversary queries Reveal(πi
P ) or Reveal(πj

P ′), where πj
P ′ is partnered

with πi
P ;

(2) the adversary queries Corrupt(V ) (with V ∈ pidi
P ) before a query of the

form Send(πj
P ′ , ∗), where P ′ ∈ pidi

P .

Correctness. The correctness of group key exchange protocol requires that,
whenever two instances πi

P and πj
P ′ are partnered, both instances should hold

the same non-null session key.

Security. For any adversary A, let Succ(A) be the event that A makes a single
Test query directed to some fresh instance πi

P at the end of a protocol Π and
correctly guesses the bit b used in the Test query. The advantage of A in violating
the semantic security of the protocol Π is defined as:

AdvΠ(A) = |2Pr[Succ(A)] − 1|.
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Definition 6. We say a group key exchange protocol Π is selectively secure
if, for any PPT adversary A satisfying the following properties, AdvΠ(A) is
negligible:

– A commits to a set Ŝ of users at the beginning of the security game.
– Test query must be on a subset S of Ŝ.

4 One-Round Cross-Domain Group Key Exchange
Protocol

In this section we present our construction of a one-round cross-domain group
key exchange protocol.

4.1 Protocol Description

The idea of our cross-domain group key exchange (CDGKE) protocol is the
following: In the setup phase, a trusted third party chooses a key K for a con-
strained pseudorandom function PRF and publishes an obfuscated program for
the PRF as the global agreed domain parameter. In the group key exchange
phase, each participant Pi broadcasts a signature σi of the random xi generated
by Pi using his own signature scheme. The shared session key will be the function
PRF evaluated at the concatenation of the identity Pi and xi. However, to make
the session key shared only among legal participants, the knowledge of a seed
s will be required to operate an obfuscated program for PRF. More precisely,
each participant generates a seed si and computes xi = PRG(si), where PRG
is a pseudorandom generator. In this way, all users can compute the session key,
but anyone else without the corresponding private key or seed, will therefore be
unable to compute the session key.

A formal description of our protocol appears in Fig. 1.

4.2 Correctness and Security

The correctness is obvious by inspection. For security, we have the following
theorem.

Theorem 1. Let PRG : {0, 1}λ → {0, 1}2λ be a secure pseudorandom genera-
tor, let F be a secure constrained PRF, let SIGi (i ∈ {1, 2, · · · , n}) be a signature
scheme that is existentially unforgeable under adaptive chosen-message attacks,
and let iO be a secure indistinguishability obfuscator. Then, the protocol in
Fig. 1 is a secure group key exchange protocol.

Proof. Fix a PPT adversary A attacking the cross-domain group key exchange
protocol. We use a hybrid argument to bound the advantage of A. We define a
sequence of experiments Hyb0, · · · ,Hyb3, and denote the advantage of adver-
sary A in experiment Hybi as:

Advi(A) def= |2 · Pr[A succeeds in Hybi] − 1|.
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Protocol

Consider an execution of the protocol among participants P1, · · · , Pn belonging to
different security domains and wishing to establish a common session key. Let F be
a pseudorandom function, PRG be a pseudorandom generator, and iO be a program
indistinguishability obfuscator.

Global Agreed Domain Parameter: A trusted third party chooses a random key
K to obtain an instance of a pseudorandom function F , builds the program PCDGKE in
Fig. 2, and then outputs PiO = iO(PCDGKE) as the global agreed domain parameter.

Setup: Build the global agreed domain parameter and publish it. Each participant Pi

chooses his own signature scheme SIGi= (SIGi.Gen, SIGi.Sign, SIGi.V erify), runs
the key generation algorithm SIGi.Gen on input 1λto obtain a public/private key pair
(pki, ski) (i.e., (pki, ski) ← SIGi.Gen(1λ)), where λ ∈ N is a security parameter.

Round 1: Each participant Pi proceeds as:

1. Choose si randomly, compute xi = PRG(si), and generate the signature σi =
SIGi.Sign(ski; xi||P1|| · · · ||Pn).

2. Broadcast mi = (Pi, Si, pki, xi, σi).

Key Generation: Each participant Pi runs PiO on (m1, m2, · · · , mn, i, si) to obtain
the session key SK or ⊥.

Fig. 1. An honest execution of the cross-domain group key exchange protocol

Inputs: m1, m2, · · · , mn, i, si

Constants: F key K

if xi �= PRG(si) then
Output ⊥

else if there exists j ≤ n such that SIGj .V erify(pkj ; xj ||P1|| · · · ||Pn, σj) = 0 then
Output ⊥

else Output F (K, x1, x2, . . . , xn, P1, P2, . . . , Pn)

Fig. 2. The program PCDGKE

We bound the difference between the adversary’s advantage in successive exper-
iments, and then bound the adversary’s advantage in the final experiment.
Finally, combining all the above results, we get the desired bound on Adv0(A),
the adversary’s advantage when attacking the real protocol.

Experiment Hyb0. This is the original experiment with respect to a given
polynomial-time adversary A, in which A commits to a set Ŝ = {P̂1, P̂2, · · · , P̂n}
and interacts with the real protocol as defined in Sect. 3.

Experiment Hyb1. This experiment is different from Hyb0 only in that it is
aborted and the adversary does not succeed if the following event Forge occurs.
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Forge: Let Forge be the event that, the adversary makes send query of the form
Send(πi

P ,m) such that the message m contains a new, valid message/signature
pair with respect to the public key pkU of some user U before querying Cor-
rupt(U).

Lemma 1. |Adv1(A) − Adv0(A)| < negl(λ).

Proof. Assuming that the event Forge occurs, we can construct an algorithm F
which outputs, with a non-negligible probability, a forgery against a signature
scheme SIGi for some i ∈ {1, 2, · · · , n} as follows.

The given public key PK is assigned to one of the n participants. All other
parties are initialized as normal according to the protocol. All queries to the
parties can be easily answered by following the protocol specification since all
secret keys are known, except for the private key corresponding to the public
key of the forgery attack game. In the latter case the signing oracle that is avail-
able as part of the chosen message attack can be used to simulate the answers.
If Forge occurs against an instance who holds PK, F halts and outputs the
message/signature pair generated by A as its forgery. Otherwise, F halts and
outputs a failure indication.

The success probability of F is exactly Pr[Forge]/n. Then, the lemma follows
by noticing that the signature scheme SIGi (i ∈ {1, 2, · · · , n}) is existentially
unforgeable under adaptive chosen-message attacks.

Experiment Hyb2. In this experiment, for Pi ∈ Ŝ, we will choose random
xi ∈ {0, 1}2λ instead of generating them from PRG. The security of PRG yields
the lemma 2.

Lemma 2. |Adv2(A) − Adv1(A)| < negl(λ).

Experiment Hyb3. Replace the F (·) in PCDGKE by a constrained pseudo-
random function FC(·), arriving at the program P ′

CDGKE given in Fig. 3. The
constrained set C is defined as C = {(x1, x2, . . . , xn, P1, P2, . . . , Pn) : there exists
some Pj (and respective xj) that is not contained in the set Ŝ}.

Inputs: m1, m2, · · · , mn, i, si

Constants: Constrained F key KC

if xi �= PRG(si) then
Output ⊥

else if there exists j ≤ n such that SIGj .V erify(pkj ; xj ||P1|| · · · ||Pn, σj) = 0 then
Output ⊥

else Output F C(KC , x1, x2, . . . , xn, P1, P2, . . . , Pn)

Fig. 3. The program P ′
CDGKE
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Lemma 3. |Adv3(A) − Adv2(A)| < negl(λ).

Proof. Note that with overwhelming probability, none of xi (the correspond-
ing Pi ∈ Ŝ) in Experiment Hyb2 has a pre-image under PRG. Therefore, with
overwhelming probability, there is no input to PCDGKE that will cause F to be
evaluated on points of the form (x̂1, x̂2, . . . , x̂n, P̂1, P̂2, . . . , P̂n), where P̂i ∈ Ŝ.
We can conclude that the modified program P ′

CDGKE has the same functionality
with the original program PCDGKE. Then based on the property of indistin-
guishability obfuscation, it is easy to see that the experiments Hyb2 and Hyb3

are computationally indistinguishable. Thus, security of iO yields the lemma.

Bounding the advantage in Hyb3. We reduce the non-negligible advantage of
the adversary A in the experiment Hyb3 to the security of the constrained PRF
presented above. We construct a PRF adversary B that breaks the security of
F as a constrained PRF as follows: adversary B simulates the entire experiment
for A. In response to Execute query, B computes the signature of mi with correct
private key ski exactly as in experiment Hyb3. In response to Reveal query, B
also queries its PRF oracle and thus always reveals the correct session key. At
the end of the experiment, for a test query, B makes a real-or-random challenge
query for the constrained function FC as defined above. One can easily see that,
B is given a real PRF or a random value, then its simulation is performed exactly
as in experiment Hyb3. Thus, the advantage of B is exactly Adv3(A). It conflicts
with the security of the constrained PRF. Thus the advantage of the adversary
A in this experiment is negligible.

4.3 Comparison with Related Protocols

The core of our protocol is an obfuscation program, therefore, any polynomial-
time bounded indistinguishability obfuscation candidates (e.g., [26,27]) can be
adopted to instantiate our scheme. In this subsection, we compare our protocol
with Katz et al.’s protocol [10], Neupane et al.’s protcol [12], Ustaoǧlu’s protocol
[18], and Guo et al.’s protocol [19] from many respects. Table 1 summarizes the
comparison results2.

In Table 1, both Katz et al.’s protocol [10] and Neupane et al.’s protocol [12]
are group key exchange protocols proven to be secure in the standard model.
However, their constructions require all participants to adopt a common cryp-
tographic setting and shared parameters, which means that cross-domain inter-
action is not supported. Both Ustaoǧlu’s protocol [18] and Guo et al.’s protocol
[19] are two-party key exchange protocols supporting cross-domain interaction.
However, as the authors commented, the protocol in [18] requires the partici-
pants to use parameters from the same algebraic group and the protocol in [19]
requires one party being identity-based and the other one being certificate-based,
which means that the involved cryptographic setting is not universal. Meanwhile,

2 Since our protocol is universal, the concrete computation & communication com-
plexity relies on the instantiated schemes, and we omit it in the comparison.
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Table 1. Comparison of related protocols

Protocol Type Communication Cross-domain Universal? Standard

rounds support? model?

Protocol in [10] Group 3 ✗ ✗ ✓

Protocol in [12] Group 2 ✗ ✗ ✓

Protocol in [18] 2-Party 2 ✓ ✗ ✗

Protocol in [19] 2-Party 3 ✓ ✗ ✗

Our protocol Group 1 ✓ ✓ ✓

our protocol is a group key exchange protocol supporting cross-domain interac-
tion. Moreover, the participants may come from various cryptographic settings
(universal) and do not need anything special to generate the shared session key.

In summary, our protocol only has one round, and supports cross-domain
interaction from different cryptographic settings, and it is proven secure in the
standard model. To the best of our knowledge, there is no cross-domain group
key exchange protocol (until this work) whose security directly relies on stan-
dard model and does not need to use the same algebraic setting and shared
parameters.

5 Conclusion

In this paper, we investigate cross-domain group key exchange protocol for inter-
operability scenarios. Our main contribution is to propose the first one-round
group key exchange protocol which supports participants coming from different
domains. Besides, different signature schemes and different system parameters
can be used, which is more flexible and more suitable for interoperability sce-
narios. We also prove that our protocol can achieve the desired security goals in
the standard model. It remains an open problem to further reduce the computa-
tional costs of group participants, whilst maintaining its optimal communication
round.
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Abstract. The problem of constructing pairing-friendly elliptic curves
is the key ingredients for implementing pairing-based cryptographic sys-
tems. In this paper, we aim at constructing such curves with ρ = 1. By
offering a more generalized concept “parameterized families”, we pro-
pose a method for constructing parameterized families of pairing-friendly
elliptic curves which can naturally include many existent (and even more
new) families of curves without exhaustive survey. We demonstrate the
utility of the method by constructing concrete parameterized family in
the cases of embedding degree 3, 4 and 6. An interesting result is proved
that all the possible quadratic families of pairing-friendly elliptic curves
of desired embedding degrees satisfying ρ = 1 have been covered in our
parameterized families. As a by-product, we also revisit the supersingular
elliptic curves from a new perspective.

Keywords: Elliptic curves · Pairing based cryptography · Cyclotomic
polynomials · Parameterized families

1 Introduction

Bilinear pairings on elliptic curves, such as Tate pairing, Weil pairing and their
variations, have drawn much attention in cryptography for the past decades. For
one thing, bilinear pairings on curves can be used for translating the elliptic curve
discrete logarithm problem (a.k.a ECDLP) to discrete logarithm problem (a.k.a
DLP) in a multiplicative group of some finite field, and thus reduce the compu-
tational complexity of ECDLP on desired curves. Two representative examples
are the Frey-Rück (FR) reduction [5] or the Menezes-Okamoto-Vanstone (MOV)
attack [11]. For another, numerous schemes in identity based cryptography now
are built based on some bilinear maps, where the using of bilinear pairing on
elliptic curves has become a common and standardized approach to instantiate
such special maps. Suggested pairing-based cryptographic protocols include the
well known one-round three-way key exchange by Joux [9], ID based encryption
by Boneh and Franklin [3], ID-based signatures by Paterson [13], and so on.
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Suppose E is an elliptic curve defined over some finite field Fq, and P is a
base point with prime order r dividing #E(Fq). Let k be the embedding degree
with respect to r, i.e., the smallest positive integer such that r|qk − 1. The so
called bilinear pairing on E/Fq can reduce the discrete logarithm problem in
the group 〈P 〉 ⊂ E(Fq) to the same problem in F

∗
qk . It should be noted that not

every elliptic curve facilitate efficiently computable bilinear pairings. Parameters
(q, k, r) should be chosen such that the DLP is infeasible both in 〈P 〉 and in
F

∗
qk , while the arithmetic in Fqk is feasible. Elliptic curves which satisfy these

properties are named as pairing-friendly curves [4].
Efficient constructions of pairing friendly elliptic curves have been studied in

several literatures, most of which can be referred to the exhaustive survey by
Freeman et al. [4]. As shown by Balasubramanian and Koblitz [2], the embedding
degree k of a random elliptic curve could be expected around r, which implies
that the pairing friendly curves are very rare [15]. Though families of such curves
have been introduced, it still needs further work on exploring more curves which
provides efficient pairing computation for cryptographic application in different
scenarios.

In this work, we further investigate the construction of pairing-friendly curves
with ρ = log q

log r ≈ 1. By defining a more generalized concept “parameterized
families”, we present a method for constructing parameterized families of pairing-
friendly elliptic curves which helps us to discover many pairing-friendly families
of curves and also rediscover known families. We apply it to the case of φ(k) = 2
and prove all quadratic families of curves satisfying ρ = 1 can be obtained from
parameterized families. As a by-product, we rediscover the supersingular elliptic
curves from a new perspective.

The paper is organized as follows: In Sect. 2 we briefly describe the concept
of pairing-friendly curves. We introduce the new strategy and algorithm for
constructing parameterized families of pairing-friendly elliptic curves in Sect. 3
and apply the new algorithm to construct parameterized families of pairing-
friendly curves with φ(k) = 2 in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Pairing Friendly Curves

In this section we recall some basic knowledge about pairing friendly elliptic
curves. As defined in [4], an elliptic curve E over Fq is said to be pairing friendly
if there is a prime r with r|E(Fq) and the ratio ρ = log q

log r ≤ 2, while the embedding
degree k with respect to r satisfies k ≤ log r

8 .
We also use the same notations as [4,14] to define a family of curves. An

irreducible polynomial f(x) ∈ Q(x) is said to be prime representative if f(x)
has positive leading coefficient, and the set S(f) = {f(x) ∈ Z : x ∈ Z} satis-
fies that |S(f)| > 1 and gcd(S(f)) = 1. Based on the complex multiplication
(a.k.a. CM) method for generating elliptic curves [1], we now introduce the
triple (q(x), t(x), r(x)) in Q(x) which represents a family of elliptic curves with
the embedding degree (with respect to r) k and the CM discriminant D:
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1. q(x) = p(x)d for some d ≥ 1 and q(x) is irreducible and prime representative;
2. r(x) = c · r′(x) with c ∈ Z, c ≥ 1 and r′(x) is irreducible and prime represen-

tative;
3. q(x) + 1 − t(x) = h(x)r(x) for some h(x) ∈ Q(x);
4. r(x)|φk(t(x) − 1), where φk is the k-th cyclotomic polynomial;
5. The CM equation 4q(x) − t(x)2 = Dy2 has infinitely many integer solutions

(x, y).

For a family (q(x), t(x), r(x)), we can also use the definition of the ratio ρ in
[4] as

ρ(q, t, r) = lim
x→∞

log q

log r
=

deg q(x)
deg r(x)

.

If the CM equation in (5) has a set of integer solutions (x0, y0) with both of
q(x0) and r′(x0) are primes, then we are able to construct curves E over Fq(x0)

via the CM method, where E(Fq(x0)) has a subgroup of order r′(x0) and the
embedding degree k with respect to r′(x0).

3 Construction of Parameterized Families of Pairing
Friendly Curves

3.1 Factorization of Cyclotomic Polynomial

When constructing pairing-friendly elliptic curves, one of ideas is to find factor-
ization of cyclotomic polynomial. If Φk(q(x)) is reducible with a factor r(x) of
degree φ(k) for some q(x) ∈ Q[x] and q(x) represents a prime number or power
of a prime number, then there exists an elliptic curve defined over Fq(x) and
it is possible to find a family of elliptic curve (q(x), r(x), t(x)) with embedding
degree k.

However, such factorizations are rare. The pioneer work of finding factoriza-
tions is due to Galbraith, Mckee, and Valenca [6] who provide a criterion for
quadratic polynomial q(x) to give a factorization of Φk(q(x)). Tanaka and Naka-
mula [14] generalize q(x) to arbitrary degree and offer a method which converts
the problem of finding a suitable q(x) to solving an equation system.

Lemma 1. Let q(x) ∈ Q[x]. Then the polynomial Φk(q(x)) has an irreducible
factor of degree φ(k) if and only if the equation q(z) = ξk has a solution in
Q(ξk).

Proof. Refer to Lemma 5.1 in [6].

In order to introduce our idea, we generalize the definition of families of
pairing-friendly elliptic curves as follows, where the coefficients of desired poly-
nomials are taken into account.
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Definition 1 (parameterized families of pairing-friendly elliptic
curves). Let the denotations be the same as those in Sect. 2, a parameterized
family of pairing-friendly elliptic curves is given by the following triple

(q(x, a0, a1, ..., an), t(x, a0, a1, ..., an), r(x, a0, a1, ..., an)),

where a0, a1, ..., an ∈ Q.

It is easy to see when a0, a1, ..., an are substituted by concrete rational values, a
family of pairing-friendly elliptic curves tends to be obtained.

3.2 Strategy for Constructing Parameterized Families

We propose our strategy to construct parameterized families of desired curves
as follows: Given a parameterized polynomial q(x, a0, ..., an) in Q[x, a0, ..., an],
if we could obtain a degree φ(k) irreducible factor of Φk(q(x, a0, ..., an)) via the
factorization of cyclotomic polynomials as above, then it follows a parameterized
expression of r(x, a0, ..., an). Note that t(x, a0, ..., an) = q(x, a0, ..., an) + 1 −
h · r(x, a0, ..., an), and therefore we get a potential family (q(x, a0, ..., an), h ·
r(x, a0, ..., an), t(x, a0, ..., an)). Moreover, the conditions of Hasse-Weil Bound
and CM equation should also be satisfied for the tripe (q, t, r), which can be
achieved by solving corresponding equations with regard to h, a0, ..., an.

The key step of the above strategy is to find appropriate q(x, a0, ..., an), of
which the solution can be derived from the method proposed by Tanaka and
Nakamula [14].

Let Φk(x) be the kth cyclotomic polynomial, then we can construct Q(ξk)
as Q(ξk) = Q[x]/Φk(x), thus ξk = x, and thereby the condition in Lemma1
can be rewritten as q(a(x)) ≡ x mod Φk(x) for some a(x) ∈ Q[x]. It is a neces-
sary and sufficient condition for q(x) such that Φk(q(x)) has a factor of degree
φ(k). Moreover, since we concentrate on constructing families of pairing-friendly
elliptic curves with ρ(q, r, t) = 1, the degree of q(x) should also be set as φ(k).

Let q(x) =
∑φ(k)

i=0 qix
i, a(x) =

∑φ(k)−1
i=0 aix

i and set v(x) to be the poly-
nomial of degree < φ(k) such that v(x) ≡ q(a(x))(mod Φk(x)), then v(x) can
be computed as v(x) =

∑φ(k)−1
i=0

∑φ(k)
j=0 qjvijx

i, where vij is a combination of
a0, ..., aφ(k)−1.

Taking a0, ..., aφ(k)−1 as indeterminate coefficients, we get an equation system

V

⎛
⎜⎜⎜⎜⎜⎝

q0
q1
q2
...

qφ(k)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

(1)

where V = (vij) is a φ(k) × (φ(k) + 1) matrix.
Unfortunately, the Eq. (1) is an over-determined equation system. To deal

with this problem, we divide V into two parts as V = (V1, V2), where V1 is a
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φ(k)×φ(k) matrix and V2 is a φ(k)×1 vector. Adding qφ(k) as an indeterminate
coefficient, we get a new equation system

V1

⎛
⎜⎜⎜⎜⎜⎝

q0
q1
q2
...

qφ(k)−1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

− qφ(k) · V2 (2)

If the Eq. (2) has a solution in Q[qφ(k), a0, a1, ..., aφ(k)−1], then a parameter-
ized expression of q(x, qφ(k), a0, a1, ..., aφ(k)−1) for Φk(q) admitting an irreducible
factor of degree φ(k) has been obtained.

3.3 Algorithm for Generating Parameterized Families with ρ = 1

The method of generating the parameterized expression of q is summarized below
as Algorithm 1.

Algorithm 1. Generating the parameterized expression of q

Input: Embedding degree k.
Output:the parameterized expression of q(x, qφ(k), a0, a1, ..., aφ(k)−1) such that Φk(q)
has an irreducible factor of degree φ(k).
1. Construct the Equation (2)
2. Solve Equation (2) in Q[qφ(k), a0, a1, ..., aφ(k)−1]:
3. If it has no solution, then there is no family, exit;
4. Otherwise, go to step 5.
5. Construct the parameterized expression q(x, qφ(k), a0, a1, ..., aφ(k)−1) by substituting
each solution into coefficients of x. It has the form as

q(x, qφ(k), a0, a1, ..., aφ(k)−1) = qφ(k)x
φ(k) +

φ(k)−1∑

i=0

fi(qφ(k), a0, a1, ..., aφ(k)−1)x
i.

The method of generating the parameterized families with ρ = 1 is summa-
rized in Algorithm 2.

Remark 1. Freeman et al. in [4] concluded that if f(x) = 4q(x)−t(x)2 is a square-
free polynomial of degree at least 3, then there will be only a finite number of
integer solutions to the equation Dy2 = f(x). So in step 5 of Algorithm 2, if the
degree of x in f(x, qφ(k), a0, a1, ..., aφ(k)−1) is less than 3, the condition of CM
equation is thought to be satisfied.
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Algorithm 2. Generating the parameterized families with ρ = 1
Input: q(x, qφ(k), a0, a1, ..., aφ(k)−1) and embedding degree k.
Output:The parameterized families of pairing-friendly elliptic curves with ρ = 1.
1. See Φk(q(x, qφ(k), a0, a1, ..., aφ(k)−1) as a polynomial with regard to x. Factor it and
get all irreducible factors r((x, qφ(k), a0, a1, ..., aφ(k)−1) of degree φ(k).
2. For each pair of q((x, qφ(k), a0, a1, ..., aφ(k)−1), r(x, qφ(k), a0, a1, ..., aφ(k)−1)):
3. Compute

t(x, qφ(k), a0, ..., aφ(k)−1) = q(x, qφ(k), a0, ..., aφ(k)−1) + 1 − h · r(x, qφ(k), a0, ..., aφ(k)−1)

where h ∈ Q is a cofactor;
4. If degree of x in t(x, qφ(k), a0, a1, ..., aφ(k)−1) is less than or equal to half the degree
of x in q(x, qφ(k), a0, a1, ..., aφ(k)−1), the triple (u, t, r) satisfies the Hasse-Weil Bound.
5. Computer CM equation f(x, qφ(k), a0, a1, ..., aφ(k)−1) = 4q− t2. If the degree of x in
f(x, qφ(k), a0, a1, ..., aφ(k)−1) is less than 3, then the triple (q, t, h · r) is a parameterized
family of pairing-friendly elliptic curves with ρ = 1.

4 Parameterized Families for φ(k) = 2

Miyaji, Nakabayashi and Takano [12] presented explicit families of prime orders
of ordinary elliptic curves with φ(k) = 2 (a.k.a MNT curves). In this section,
we construct the parameterized families and prove that our results can cover all
families of curves satisfying ρ = 1. we generalise the MNT argument to allow for
cofactors.

As a result, MNT families can be viewed as a special case of our parameterized
families. We also revisit the supersingular elliptic curves from a new perspective.

4.1 The Case k = 3

When the embedding degree k equals to 3, then φ3(x) = x2 + x + 1, we have
Q(ξ3) = Q[x]/(x2 + x + 1) and ξ3 = x.

Let q(x) = q2x
2 + q1x + q0 and a(x) = a1x + a0 ∈ Q(ξ3), we have

q(a(x)) = q(a1x + a0) ≡ x mod (x2 + x + 1) (3)

Using Algorithm 1, we get the unique parameterized expression of
q(x, q2, a0, a1):

q = q2x
2 + q1x + q0

= q2x
2 − 2q2a1a0 − q2a

2
1 − 1

a1
x +

q2a1a
2
0 − a0q2a

2
1 + q2a

3
1 − a0

a1
.

Factoring Φ3(q(x, q2, a0, a1)), we get

Φ3(q(x, q2, a0, a1)) =
1
a2
1

r1(x, q2, a0, a1) · r2(x, q2, a0, a1),
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where

r1(x, q2, a0, a1) =x2 − (2a0 − a1)x + a2
0 − a0a1 + a2

1,

r2(x, q2, a0, a1) =q22a
2
1x

2 − 2a0a
2
1q

2
2x + 2a1q2x + a3

1q
2
2x + q22a

2
1a

2
0 − 2q2a1a0

− a0q
2
2a

3
1 + q2a

2
1 + q22a

4
1 + 1.

We have the following result:

Theorem 1. All quadratic families of pairing-friendly elliptic curves with k = 3
satisfying ρ = 1 must have the form as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(x, q2, a0, a1) =q2x
2 − 2q2a1a0 − q2a

2
1 − 1

a1
x +

q2a1a
2
0 − a0q2a

2
1 + q2a

3
1 − a0

a1

r(x, q2, a0, a1) =h1(x2 − (2a0 − a1)x + a2
0 − a0a1 + a2

1) or

=h2(q22a
2
1x

2 − 2a0a
2
1q

2
2x + 2a1q2x + a3

1q
2
2x + q22a

2
1a

2
0−

2q2a1a0 − a0q
2
2a

3
1 + q2a

2
1 + q22a

4
1 + 1)

t(x, q2, a0, a1) =q(x, q2, a0, a1) + 1 − r(x, q2, a0, a1)

where the degree of x in t(x, q2, a0, a1) is 1.

Proof. Suppose (q(x), r(x), t(x)) is an arbitrary quadratic family of pairing-
friendly elliptic curves with k = 3 and ρ = 1, then r(x) is an irreducible factor
of Φ3(q(x)) and the degree of q(x) and r(x) is 2. By Lemma 1, q(x) must satisfy
the Eq. (3). Since q(x, q2, a0, a1) is the unique solution of Eq. (3), q(x) can be
expressed by q(x, q2, a0, a1).

Curves on Fqn . We discuss the conditions of curves with embedding degree
k = 3 on extension field Fqn where n > 0.

Apparently, in this case, q(x, q2, a0, a1) = q2x
2, so we have

⎧⎪⎪⎨
⎪⎪⎩

q0 =
q2a1a

2
0 − a0q2a

2
1 + q2a

3
1 − a0

a1
= 0,

q1 = −2q2a1a0 − q2a
2
1 − 1

a1
= 0.

Solving the equation, we get 2 solutions:

{a0 = a1, a1 = a1, q2 =
1
a2
1

}, {a0 = −a1, a1 = a1, q2 = − 1
3a2

1

}.

Since q2 > 0 must be satisfied, q(x) has the unique form q(x) = x2. Factoring
Φ3(q(x)), we obtain

Φ3(x2) = (x2 + x + 1)(x2 − x + 1),

And thus

q = p2m, r = q ± √
q + 1, t = ∓√

q,
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where p is a prime. This is exactly the only kind of supersingular elliptic curves
with embedding degree 3 [4, Sect. 3.3].

Curves on Fq. According to Theroem 1, all quadratic families of pairing-friendly
elliptic curves can be obtained by changing values of q2, a1 and a0.

We list some examples as below:

– q2 = 12, a1 = 1
6 , a0 = 1

3 .
This family can be computed as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(x) =12x2 − 1,

r(x) =h1(x2 − 1
2
x +

1
12

) or

=h2(4x2 + 2l +
1
3
),

t(x) =q(x) + 1 − r(x).

In order to satisfy Hasse-Weil Bound, set h1 = 12, h2 = 3, then
⎧⎪⎨
⎪⎩

q(x) =12x2 − 1,

r(x) =12x2 ± 6x + 1,

t(x) = ∓ 6x − 1.

This is just the family of MNT curves [12].
– q2 = 8, a1 = 1

2 , a0 = 1
4 .

This family can be written as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q(x) =8x2 + 2x + 1

r(x) =h1(x2 +
3
16

) or

=h2(16x2 + 8x + 4)
t(x) =q(x) + 1 − r(x)

For the condition of Hasse-Weil Bound, h2 is set to be 1
2 , then

⎧⎪⎨
⎪⎩

q(x) =8x2 + 2x + 1,

r(x) =2(4x2 + 2x + 1),
t(x) = − 2x.

4.2 The Case k = 4

If k = 4, then φ4(x) = x2 + 1, we have Q(ξ4) = Q[x]/(x2 + 1) and ξ4 = x.
Let q(x) = q2x

2 + q1x + q0 and a(x) = a1x + a0 ∈ Q(ξ4), we have

q(a(x)) = q(a1x + a0) ≡ x mod (x2 + 1). (4)
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Using Algorithm 1, we get the unique solution of q(x, q2, a0, a1) as:

q = q2x
2 + q1x + q0

= q2x
2 − 2q2a1a0 − 1

a1
x +

q2a1a
2
0 + q2a

3
1 − a0

a1
.

Factoring Φ4(q(x, q2, a1, a0)), we get

Φ4(q(x, q2, a1, a0)) =
1
a2
1

r1(x, q2, a1, a0)r2(x, q2, a1, a0),

where

r1(x, q2, a1, a0) =x2 − 2a0x + a2
0 + a2

1,

r2(x, q2, a1, a0) =q22a
2
1x

2 − 2a0a
2
1q

2
2x + 2a1q2x + q22a

2
1a

2
0 − 2q2a1a0 + q22a

4
1 + 1.

Similarly with the case k = 3, we obtain the following result.

Theorem 2. All quadratic families of pairing-friendly elliptic curves with k = 4
satisfying ρ = 1 must have the form as:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(x, q2, a0, a1) =q2x
2 − 2q2a1a0 − 1

a1
x +

q2a1a
2
0 + q2a

3
1 − a0

a1
,

r(x, q2, a0, a1) =h1(x
2 − 2a0x + a2

0 + a2
1) or

=h2(q
2
2a

2
1x

2 − 2a0a
2
1q

2
2x + 2a1q2x + q22a

2
1a

2
0 − 2q2a1a0 + q22a

4
1 + 1),

t(x, q2, a0, a1) =q(x, q2, a0, a1) + 1 − r(x, q2, a0, a1).

where the degree of x in t(x, q2, a0, a1) is 1.

Curves on Fqn . We also explore the conditions of curves with embedding degree
k = 4 on extension field Fqn where n > 0.

In this case, q(x, q2, a0, a1) = q2x
2. So we have

⎧⎪⎪⎨
⎪⎪⎩

q0 =
q2a1a

2
0 + q2a

3
1 − a0

a1
= 0,

q1 =
2q2a1a0 − 1

a1
= 0.

Solving the equation, we get 2 solutions:

{a0 = a1, a1 = a1, q2 =
1

2a2
1

}, {a0 = −a1, a1 = a1, q2 = − 1
2a2

1

}.

Since q2 > 0 must be satisfied, q(x) has the unique form q(x) = 2x2. Factoring
Φ3(q(x)), we get

Φ4(2x2) = (2x2 + 2x + 1)(2x2 − 2x + 1).
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It is only of interest when x = 2m is a power of 2. Given q = 22m+1, we
obtain

q = 22m+1, r = q ±
√

2q + 1, t = ∓
√

2q.

This is exactly the only kind of supersingular elliptic curves with embedding
degree 4 [4, Sect. 3.4].

Curves on Fq. According to Theorem 2, all quadratic families of pairing-friendly
elliptic curves can be obtained by choosing proper values of q2, a1 and a0.

We list some examples as following:

– q2 = 1, a1 = 1, a0 = 0.
For the condition of Hasse-Weil Bound, we set h1 = 1, h2 = 1 and obtain the
family

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(x) =x2 + x + 1,

r(x) =x2 + 1 or

=x2 + 2x + 2,

t(x) =x + 1 or

= − x.

This also belongs to the family of the MNT curves [12].
– q2 = 8, a1 = 1

2 , a0 = − 1
4 .

We get the family by setting h2 = 1
2 , then

⎧⎪⎨
⎪⎩

q(x) =8x2 + 6x + 3,

r(x) =4(2x2 + 2x + 1),
t(x) = − 2x.

4.3 The Case k = 6

If k = 6, write φ6(x) = x2 − x + 1, then we have Q(ξ6) = Q[x]/(x2 − x + 1) and
ξ6 = x.

Let q(x) = q2x
2 + q1x + q0 and a(x) = a1x + a0 ∈ Q(ξ3), we obtain

q(a(x)) = q(a1x + a0) ≡ x mod (x2 − x + 1). (5)

Using Algorithm 1, we get the unique parameterized expression of
q(x, q2, a0, a1) as

q = q2x
2 + q1x + q0

= q2x
2 − 2q2a1a0 + q2a

2
1 − 1

a1
x +

q2a1a
2
0 + a0q2a

2
1 − a0 + q2a

3
1

a1
.

We factor Φ6(q(x, q2, a0, a1)) as

Φ6(q(x)) =
1
a2
1

r1(x)r2(x),
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where

r1(x) =x2 − (2a0 + a1)x + a2
0 + a0a1 + a2

1,

r2(x) =q22a
2
1x

2 − 2a0a
2
1q

2
2x + 2a1q2x − a3

1q
2
2x + q22a

2
1a

2
0 − 2q2a1a0 + a0q

2
2a

3
1

− q2a
2
1 + q22a

4
1 + 1.

It follows that

Theorem 3. All quadratic families of pairing-friendly elliptic curves with k = 6
satisfying ρ = 1 must have the form as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(x, q2, a0, a1) =q2x
2 − 2q2a1a0 + q2a

2
1 − 1

a1
x +

q2a1a
2
0 + a0q2a

2
1 − a0 + q2a

3
1

a1
,

r(x, q2, a0, a1) =h1(x2 − (2a0 + a1)x + a2
0 + a0a1 + a2

1) or

=h2(q22a
2
1x

2 − 2a0a
2
1q

2
2x + 2a1q2x − a3

1q
2
2x + q22a

2
1a

2
0 − 2q2a1a0

+ a0q
2
2a

3
1 − q2a

2
1 + q22a

4
1 + 1,

t(x, q2, a0, a1) =q(x, q2, a0, a1) + 1 − r(x, q2, a0, a1),

where the degree of x in t(x, q2, a0, a1) is 1.

Curves on Fqn . We find the conditions of curves with embedding degree k = 6
on extension field Fqn where n > 0.

Apparently q(x) = q2x
2, so we have

⎧⎪⎪⎨
⎪⎪⎩

q0 =
q2a1a

2
0 + a0q2a

2
1 − a0 + q2a

3
1

a1
= 0,

q1 = −2q2a1a0 + q2a
2
1 − 1

a1
= 0.

Solving the equation, we obtain 2 solutions as

{a0 = −a1, a1 = a1, q2 = − 1
a2
1

}, {a0 = a1, a1 = a1, q2 =
1

3a2
1

}.

Since q2 > 0 must be satisfied, q(x) has the unique form q(x) = 1
3x2, then

Φ6(q(x)) has the following factorization as

Φ6(
1
3
x2) =

1
9

(
x2 + 3x + 3

) (
x2 − 3x + 3

)

= (
1
3
x2 + x + 1)(

1
3
x2 − x + 1).

It is only of interest when l = 3m is a power of 3, giving q = 32m−1, we
obtain

q = 32m−1, r = q ±
√

3q + 1, t = ∓
√

3q.

This is exactly the only kind of supersingular elliptic curves with embedding
degree 6 [4, Sec. 3.5].
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Curves on Fq. All quadratic families of pairing-friendly elliptic curves in this
situation can be obtained by iterating all possible values of q2, a1 and a0. Some
examples of this kind are listed as follows:

– q2 = 4, a0 = 0, a1 = 1
2 .

This tripe lies in the family of MNT curves [12], since
⎧⎪⎨
⎪⎩

q(x) =4x2 + 1,

r(x) =4x2 ± 2x + 1,

t(x) = ∓ 2x + 1.

where h1 = 4, h2 = 1.
– q2 = 16, a1 = 1

2 , a0 = − 1
2 .

Set h1 = 16, then the family in this case is
⎧⎪⎨
⎪⎩

q(x) =16x2 + 10x + 5,

r(x) =4(4x2 + 2x + 1),
t(x) =2x + 2.

4.4 Cryptographic Perspectives

The above constructions are mainly in a mathematical fashion. The results
derived from our parameterized method naturally covered families of ordi-
nary/supersingular elliptic curves with desired embedding degrees and ρ-value
(as summarized in [4]). It should be noted that not all of these families of paring
friendly curves are applicable for cryptography.

For one thing, elliptic curves with low embedding degrees and ρ-values are
desirable in order to speed up arithmetic on the elliptic curve [4]. Since for
our parameterized families of curves the ρ-values are approximate to 1 and the
embedding degrees are no more than 6, the required field arithmetic for pairing
evaluation would also be very efficient.

For another, pairing friendly curves defined over finite fields with character-
istic 2 and 3 are considered to be not safe now in cryptographic applications,
since the progress in function fields sieve method [10] makes the DLP in the
multiplicative group of F2n or F3n less complex, which implies that the corre-
sponding ECDLP on desired elliptic curves would be vulnerable to MOV/FR
attack. Practical attack implementations have been exploited in several litera-
tures [7,8]. Thus, we should avoid to choose such curves for building up pairing
based crypto-systems.

5 Conclusion

In this work, we presented a new strategy to construct pairing-friendly elliptic
curves. The utility of such method has been illustrated by constructing para-
meterized families of pairing-friendly elliptic curves of embedding degrees 3, 4
and 6. It is also shown in all these 3 cases, our results can cover all the quadratic
families. We hope this method would also serve as an inspiration to explore more
pairing friendly elliptic curves with higher embedding degrees.
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Abstract. Isogenies are widely used in elliptic curves. Since Moody and
Shumow [20] proposed isogenies on Edwards and Huff curves analogues of
Vélu’s formulas, they have pointed out a new way to construct isogenies.
However, hardly any isogeny on Jacobi quartic curves has been designed,
this paper extends their work to construct isogenies on extended Jacobi
quartic curves for the first time including a 2-isogeny and a generalized
l-isogeny for any odd l as well as an improved l-isogeny. This paper also
estimates the time complexity of the improved l-isogeny. If the constants
are carefully chosen, the Jacobi quartic isogeny is about to catch up with
Huff isogeny.

Keywords: Elliptic curves · Isogeny · Extended Jacobi quartic curves ·
Vélu’s formulas

1 Introduction

Since the elliptic curve was first put forward by Miller and Koblitz [1,2], it has
shown a boom for its highest security in one bit. Isogenies play an important
role in elliptic curves as a special structure, especially in some relevant compu-
tational problems. Brier and Joye [3] justified that most curves recommended
in cryptographic standards can be mapped to a curve y2 = x3 + ax + b with
parameter a = −3 by an isogeny of small degree. One of these problems is that if
given the kernel of an isogeny, how to determine the rational functions forming
the isogeny. Tate [4] put forward the theorem stating that two elliptic curves are
isogenous over a finite field Fq if and only if they have the same number of Fq-
points. Therefore, many algorithms to count the number of points on an elliptic
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curve are raised, such as Schoof’s idea [5]. Galbraith [6] described a probabilis-
tic algorithm for counting the isogeny, known that two curves defined over the
same finite field have the same rational points. Galbraith, et al. also proposed a
low storage algorithm for constructing isogenies between ordinary elliptic curves
in [7] and gave an improvement by modifying the pseudorandom walk so that
lower-degree isogenies can be used more frequently in [8]. With the development
of quantum algorithms, David Jao, et al. [9] described a quantum algorithm for
computing an isogeny between any two supersingular elliptic curves, and they
also presented quantum-resistant public cryptosystems based on supersingular
elliptic curves isogenies in [10].

In an algebraic view, isogenies of elliptic curves are independent of the specific
model chosen for the curve. However, for computational aspects the model cho-
sen for the curve matters a lot. So there is a need to carry out more research on
isogenies for different models of elliptic curves. Jacobi quartic curves [11,12] are
acknowledged for efficient arithmetics in regard to their group law and immunity
to side channel attacks. This form produces the fastest unified addition formula
for curves of even order. Later, many researchers improved this operation [13–15].
But we can hardly find any isogenies on Jacobi quartic curves after a careful sur-
vey. Hence, it is essential to construct one isogeny on this model and it is just what
this paper will do.

The principal operation in elliptic curves is scalar multiplication and it is also
the most time-consuming. Scalar multiplication is to compute kP where k is an
integer and P is a rational point on an elliptic curve. A large number of methods
have been raised to speed up this calculation. The significant application of
isogenies is to compute scalar multiplication efficiently. If there is an l-isogeny ϕ
on an elliptic curve, then we have a product expression [l] = ϕ̂ϕ. The complexity
to directly evaluate [l]P is O(l2), since the [l] map has degree l2. But the existence
of an l-isogeny yields an improvement to O(l) theoretically. Galbraith, Lin and
Scott [16] gave a universal construction combining Frobenius expansion and
l-isogeny, quadratic twists of curves in particular. They made full use of the
property of efficiently computable endomorphisms on a large class of curves.
GLS method has opened up new opportunities for GLV [17]. A speedup of up to
50% was reached in GLV. In [18] scalar multiplication 2P and 3P are computed
by suitable isogeny decompositions with the fastest speed for specific curves.
Subsequently, Dustin Moody [19] quintupled points on curves using 5-isogenies.
He also pointed out that it is unlikely to be more efficient than other methods
using l-isogenies to compute the multiplication by l map (if l larger than 5).

Dustin Moody and Daniel Shumow [20] proposed isogenies on Edwards and
Huff curves based on Vélu formulas [21]. Vélu formulas work in an additive
form, which is different from our multiplicative form about point coordinates.
The method of coordinate multiplication seems to be available for all kinds of
elliptic curve forms. This paper not only constructs a 2-isogeny on extended
Jacobi quartic curves for the first time, but also a general l-isogeny for any odd
l. We give a detailed proof about the isogenies and their properties. Since there
exist efficient alternative addition formulas, we attempt to construct a faster
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isogeny relatively. We also estimate the time complexity and compare it with
Edwards and Huff curves.

The rest of this paper is structured as follows. Section 2 reviews the prelimi-
naries of how Vélu’s formulas work and some properties of the extended Jacobi
quartic curves. Section 3 constructs a 2-isogeny on extended Jacobi quartic curves
by mapping to and from Weierstrass form. Section 4 constructs isogenies of any
odd degree and demonstrates the theorem in detail. Section 5 analyzes the advan-
tages and drawbacks about the isogeny we obtain in Sect. 4 and then presents a
more efficient formula with a brief estimate about the computation complexity.
Finally, we draw our conclusions and discuss avenues for future work.

2 Preliminaries

2.1 Vélu’s Formulas

Vélu [21] provided a method to construct explicit isogenies between Weierstrass
curves. Vélu’s formulas give explicit isogenies if given the kernel, but only take
effect for curves in Weierstrass form. Let E : y2 = x3+ax+b be an elliptic curve
in short Weierstrass form for simplicity. Next we describe Vélu’s formulas briefly,
where we adopt the notations in [20] for the most part. An isogeny ϕ : E1 → E2

over field K may be expressed by rational functions

ϕ(x, y) =
(

ϕ1(x, y)
ψ2(x, y)

,
ϕ2(x, y)
ψ3(x, y)

)
,

where ϕ1, ϕ2 and ψ are rational functions over K. Vélu told how to explicitly
find the rational functions of an isogeny with kernel F .

For any P = (xP , yP ) on E, define

ϕ (P ) =

{∞ P ∈ F(
xP +

∑
Q∈F−∞ (xP+Q − xQ) , yP +

∑
Q∈F−∞ (yP+Q − yQ)

)
P /∈ F

In order to present the formulas with rational functions, Vélu partitioned F
into two sets F+ and F− such that F = F+ ∪ F−. In this way, P ∈ F+ if and
only if −P ∈ F−. Then the l-isogeny ϕ : E1 → E2 is defined as

(x, y) �→
⎛

⎝x +
∑

P∈F+

(
vP

x − xP
− uP

(x − xP )2
), y −

∑

P∈F+

(
2uP ∗ y

(x − xP )3
+ vP

y − yP − gx
P ∗ gy

P

(x − xP )2
)

⎞

⎠

where
v =

∑
P∈F+

vP , vP = 2gx
P , gx

P = 3x2
P + a;

w =
∑

P∈F+

uP + xP ∗ vP , uP = (gy
P )2, gy

P = −2yP .
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Here, let g = x3 + ax + b − y2. gx
P and gy

P represent the partial derivatives of g
at point P , respectively.

There is another method to show the isogeny ϕ written by its kernel polyno-
mial [22]. The additive form is utilized in Vélu’s formulas, by which inspiration
may be sparked. One may ask if multiplicative form is reasonable here. That’s
just what we will have a try later on.

2.2 Extended Jacobi Quartic Curves

Suppose K is a finite field of characteristic greater than 2, an extended Jacobi
quartic curve can be defined as

EJ,d,a : y2 = dx4 + 2ax2 + 1

where a, d ∈ K with Δ = 256d(a2 − d)2 �= 0 [11]. All elliptic curves with a
point of order 2 can be represented in this form. The j-invariant of this curve is
given by 64d−1(a2 − d)−2(a2 + 3d)3 ∈ K. The identity element is (0, 1) and the
negative of a point (x, y) is (−x, y). The point (0,−1) has order 2. The addition
formula [11] is defined by

(x1, y1) + (x2, y2) = (x3, y3).

x3 =
x1y2 + x2y1
1 − dx2

1x
2
2

,

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2
2) + 2dx1x2(x2

1 + x2
2)

(1 − dx2
1x

2
2)2

.

This formula can prevent SPA-like attacks. Suppose that a Weierstrass ellip-
tic curve has a point of order 2, then there is a birational equivalence from a
curve in extended Jacobi quartic form to a curve in Weierstrass form. The map is

φ : EJ,d,a → E1

(x, y) �→ (
2y + 2

x2
+ 2a,

4y + 4
x3

+
4a

x
),

(1)

and the inversion is

φ−1 : E1 → EJ,d,a

(x, y) �→ (
2x

y
,
2(x − 2a)x2

y2
− 1).

After the birational transform, the equation becomes E1 : y2 = x3 − 4ax2 +
(4a2 − 4d)x. We can easily see that φ ◦ φ−1 = idE1 and φ−1 ◦ φ = idEJ,d,a

. But
the map φ is regular at all points except (0,−1) and (0, 1) corresponding to ∞.
However, in [23] it is successful to change φ to map all points except (0, 1). Then
alternative maps are defined
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φ′ : EJ,d,a → E1

(x, y) �→
(

2dx2 + 2a(1 + y)
y − 1

,
4a(dx2 + 2a) − 4d(1 − y)

(1 − y)2
x

)
.

(2)

φ′−1 : E1 → EJ,d,a,

(x, y) �→
(

2y

(x − 2a)2 − 4d
,
x2 − 4(a2 − d)
(x − 2a)2 − 4d

)
.

They seem to be a little more complicated to express than the former birational
transform.

3 2-Isogeny on Extended Jacobi Quartic Curves

Although Vélu’s formulas are intended for odd prime isogeny, when l = 2 it is
still available for some kind of forms. Then 2-isogeny on the extended Jacobi
quartic curve is constructed as follows.

Theorem 1. Suppose that EJ,d,a is the extended Jacobi quartic curve defined
over field K, then there is a 2-isogeny ϕ from EJ,d,a to EJ,4a2−4d,−2a, given by

ϕ(x, y) = (X(x, y), Y (x, y)) ,

where

X(x, y) =
2x(y + 1 + x2)

(y + 1 + ax2)2 − (a2 − d)x4
,

Y (x, y) = 4
(y + 1 + ax2)3 + (4a2 − 4d)(y + 1 + ax2)x4

((y + 1 + ax2)2 − (a2 − d)x4)2
− 1.

Proof. First, let φ1 be the birational transform from EJ,d,a to a Weierstrass
curve E1 given in (1) which is easier to perform by comparison with (2). Even
though it is not regular at (0,−1), we make sacrifices. Then the equation becomes
E1 : y2 = x3 − 4ax2 + (4a2 − 4d)x. Then it is easy to see that (0, 0) is the point
with order two. By using Vélu’s formulas, we get a 2-isogeny φ2 defined as

φ2 : E1 → E2

(x, y) �→ (x +
4a2 − 4d

x
, y

x2 − (4a2 − 4d)
x2

),

where E2 is y2 = x3−4ax2−(16a2−16d)x+16a(4a2−4d). When only considering
the field K itself instead of its algebraic closure K̄, there is a unique point (4a, 0)
of order 2. With the purpose to map E2 to an extended Jacobi quartic curve,
we make use of a linear transform φ3. Then we get a curve E3 in a similar form
to E1. The linear transform φ3 is performed as

φ3 : E2 → E3

(x, y) �→ (x − 4a, y),
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where E3 is y2 = x3+8ax2+16dx. Since every v2 = u3+a2u
2+a4u is birationally

equivalent over K as EQ,(a2
2−4a4)/16,−a2/4 [23],

φ4 : E3 → EJ,d̂,â

(x, y) �→ (2
x

y
, 2(x + 4a)

x2

y2
− 1),

then we get EJ,d̂,â : y2 = d̂x4 + 2âx2 + 1, with d̂ = 4a2 − 4d, â = −2a.
Finally, we compose all the maps above and get the 2-isogenies from EJ,d,a

to EJ,d̂,â. Besides, if we consider the algebraic closure field K̄, we can find two
more points of order 2 of E2 and then there are the other two linear transforms.
If so, we can obtain the other two 2-isogenies by using the similar way. Here, we
omit the detailed description.

4 General l-isogeny on Extended Jacobi Quartic Curves

Theorem 2. Suppose that F is a subgroup of the extended Jacobi quartic curve
EJ,d,a with the odd order l = 2s + 1, and points

G = {(0, 1), (±α1, β1), ..., (±αs, βs)}.

For any point P = (xP , yP ) on EJ,d,a, define

ψ(P ) =

⎛
⎝xP

∏
Q∈G−(0,1)

xP+Q

xQ
, yP

∏
Q∈G−(0,1)

yP+Q

yQ

⎞
⎠ .

Then ψ is an l-isogeny, with kernel G, from the curve EJ,d,a to the curve EJ,d̂,â

with â = a +
∑s

i=1 λi and d̂ = μ − 4(a +
∑s

i=1 λi)γ where λi = 2dα2
i + 2a −(

2aαi+2dα3
i

βi

)2

+ 4dαi, μ = d +
∑s

i=1(4aλi + λ2
i ) +

∑s
j=1,j �=i

∑s
i=1 4λiλj and

γ =
∑s

i=1(dα2
i + 2a − βi

α2
i
). The coordinate maps are given by

ψ(x, y) = (X(x, y), Y (x, y)) ,

where

X(x, y) = (−1)s x

A2

s∏
i=1

β2
i x2 − α2

i y
2

1 − dα2
i x

2
,

Y (x, y) =
y

B2

s∏
i=1

β2
i y2(1 + dα2

i x
2)2 − ((2aαi + 2dα3

i )x + (2adα3
i + 2dαi)x3)2

(1 − dαix2)4
,

with A =
∏s

i=1 αi and B =
∏s

i=1 βi.
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Proof. First, we must show that G is just the kernel of ψ. On the one hand,
as it is to see that ψ(0, 1) = (0, 1) and ψ(±αi, βi) = (0, 1), so G ⊆ ker(ψ). On
the other hand, if any P ∈ ker(ψ), i.e. ψ(P ) = (0, 1) which means that there
are some Q ∈ G such that xP+Q = 0, yP+Q = 1. yP+Q is not equal to −1 here
because P ∈ ker(ψ) and Q ∈ G ⊆ ker(ψ), as a result of which we must have
P + Q ∈ ker(ψ), i.e. xP+Q = 0, yP+Q = 1. After that, P = ±Q ∈ G. So we
get ker(ψ) ⊆ G and hence ker(ψ) = G. Subsequently, it ’s natural to derive the
coordinate maps according to the addition law.

Next, d̂ and â remain to be derived in the image curve Y 2 = d̂X4+2âX2+1,
where X and Y are just the functions of coordinates above. We adopt the similar
method as [20]. Considering the function

G(x, y) = d̂X(x, y)4 + 2âX(x, y)2 + 1 − Y (x, y)2,

we are supposed to solve for d̂ and â. If G(x, y) is identically zero, we can conclude
that the codomain curve is really an extended Jacobi quartic curve.

We can check that ψ(0,−1) = (0,−1). ψ(0, 1) = (0, 1) which has been verified
above. That is to say points (0, 1) and (0,−1) are preserved by the coordinate
maps. What’s more, on the domain curve EJ,d,a, the two points are the only
two leading to the x-coordinate equal to 0. That is the same to EJ,d̂,â. We can
prove that the two points are nonsingular, namely simple zeros. We know the
representations of X and Y as rational functions of x and y as well as G(x, y).
Calculating the partial derivatives of G(x, y), we have

Gx(x, y) = 2X · Xx + 2Y · Yx − d̂(2X · Xx · Y 2 + 2Y · Yx · X2),

Gy(x, y) = 2X · Xy + 2Y · Yy − d̂(2X · Xy · Y 2 + 2Y · Yy · X2).

For convenience, let X and Y denote X(x, y) and Y (x, y) respectively. When
(x, y) = (0, 1), then Gx(0, 1) = 2Yx(0, 1) and Gy(0, 1) = 2Yy(0, 1). Let

Ti =
β2

i y2(1 + dα2
i x

2)2 − ((2aαi + 2dα3
i )x + (2adα3

i + 2dαi)x3)2

(1 − dαix2)4
,

Ti(0, 1) = Ti(0,−1) = β2
i . Here Ti represents the rational function Ti(x, y). By

the chain rule, it is convenient to gain the derivatives of product of multiple
functions.

Yx(0, 1) =
1

B2
(T1x

s∏
i=2

β2
i + T2x

s∏
i=1,i �=2

β2
i + · · · + Tsx

s−1∏
i=1

β2
i )

=
s∑

i=1

Tix

β2
i

.
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where Tix(0, 1) = 0. Therefore, Yx(0, 1) = 0 and so that Gx(0, 1) = 0. Similarly,

Yy(0, 1) =
1

B2

s∏
i=1

Ti +
1

B2
(T1y

s∏
i=2

β2
i + T2y

s∏
i=1,i �=2

β2
i + · · · + Tsy

s−1∏
i=1

β2
i )

= 1 +
s∑

i=1

Tiy

β2
i

,

where Tiy (0, 1) = 2β2
i . Therefore, Yy(0, 1) = 1+2s and so that Gy(0, 1) = 2+4s.

Gx and Gy are not zero at point (0, 1) at the same time. Hence, it’s verified that
G(x, y) has simple zero at point (0, 1). We can conclude that G(x, y) also has
simple zero at point (0,−1) in the same way.

With the purpose to solve for d̂ and â, we present X and Y as power series at
x = 0. Since y2 can be replaced by dx4 + 2ax2 + 1, X(x, y) and Y (x, y) becomes
rational functions about only one variable x.

X(x) = x

s∏
i=1

(1 + (dα2
2 + 2a − βi

α2
i

)x2 + O(x4)), (3)

Y (x) = y
s∏

i=1

(1 + λix
2 + O(x4)), (4)

Then

X(x)2 = x2 + 2
s∑

i=1

(dα2
i + 2a − βi

α2
i

)x4 + O(x8),

X(x)4 = x4 + O(x8),

Y (x)2 = 1 + (2a + 2
s∑

i=1

λi)x2 + μx4 + O(x8),

where O(xn) represents all the terms of power equal or greater than n,

λi = 2dα2
i + 2a −

(
2aαi+2dα3

i

βi

)2

+ 4dαi and μ = d +
∑s

i=1(4aλi + λ2
i ) +∑s

j=1,j �=i

∑s
i=1 4λiλj . Substituting these into G(x, y) and then we call it G′(x),

G′(x) = (2â − 2a − 2
s∑

i=1

λi)x2 + (d̂ + 4âγ − μ)x4 + o(x8),

with γ =
∑s

i=1(dα2
i + 2a − βi

α2
i
). However, when we consider the divisors of

d̂X4+2âX2 and 1−Y 2, we find that both of them have zeros of order 2 at (0, 1)
and (0,−1). So G′(x) has a zero of order 2. Nevertheless we have verified before
that (0,1) is a simple zero, which is a contradiction. G′(x) has to be identically
zero. Therefore, the coefficients of x2 and x4 need to be zero. Based on above,
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we can easily obtain one choice about d̂ and â. The map we have defined is really
an isogeny from an extended Jacobi quartic curve to another extended Jacobi
quartic curve.

Solve the equation set
⎧⎪⎨
⎪⎩

.
2â − 2a − 2

s∑
i=1

λi = 0

d̂ + 4âγ − μ = 0

and then get â = a +
∑s

i=1 λi and d̂ = μ − 4(a +
∑s

i=1 λi)γ. It completes the
proof.

5 Analysis and Improvement

One important property deserving to figure out is that the isogeny we have
defined is normalized. If the isogeny ψ is normalized, the pullback of the invariant
differential must be equal to the invariant differential on the curve EJ,d̂,â. Let
ψ(x, y) = (X(x, y), Y (x, y)), then

Xx∂x

2Y
=

c∂x

2y

for some constant c. The equation implies

Xx =
cY

y
.

According to (3) and (4), we derive

Xx = 1 + o((x2)),

cY

y
= c

s∏
i=1

(1 + λix
2 + o(x4)).

The constant item of cY
y must be 1, so c = 1. Hence, the isogeny ψ is normalized.

Reviewing the l-isogeny we have constructed above, it’s not difficult to find a
drawback that the computation is a little complex. Even though the computation
of Jacobi quartic curve is not as efficient as Edwards and Huff curves, we still
would like to find a faster formula. Hisil, et al. [12] provided some new efficient
arithmetic on Jacobi quartic curves. New addition formulas are achieved by
Jacobi quartic functions.

From Lemma 2.1, 2.2 and 2.3 in [12], let a, d, x1, y1, x2, y2 ∈ K such that
d(a2 − d) �= 0. Assume that d is non-square, then 1 − dx2

2x
2
2 �= 0. Assume that

P = (x1, y1) and Q = (x2, y2) on EJ,d,a and P �= Q. Then x1y2 − y1x2 �= 0. We
have a new choice to compute (x3, y3) = (x1, y1) + (x2, y2).

x3 =
x2
1 − x2

2

x1y2 − y1x2
,

y3 =
x1y1(2 + 2ax2

2 − y2
2) − x2y2(2 + 2ax2

1 − y2
1)

(x1y2 − y1x2)(1 − dx2
2x

2
2)

.
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Utilizing these addition formulas, we construct another l-isogeny analogues
of Vélu’s formulas with more constant terms and no one quartic term. The
symbols below inherit those in the last section. We sacrifice some points in G.
When P ∈ G, denote ψ(P ) by ∞.

For any P , define

ϕ (P ) =

{∞ P ∈ G(
xP

∏
Q∈G−(0,1)

xP+Q

xQ
, yP

∏
Q∈G−(0,1)

yP+Q

yQ

)
P /∈ G

When P /∈ G, the coordinate maps are given by

ψ(x, y) = (X(x, y), Y (x, y)) ,

where

X(x, y) = (−1)s x

A2

s∏
i=1

(x2 − α2
i )

2

β2
i x2 − α2

i y
2
,

Y (x, y) =
y

B2

s∏
i=1

x2y2(2 + 2aα2
i − β2

i )2 − α2
i β

2
i (2 + 2ax2 − y2)2

(β2
i x2 − α2

i y
2)(1 − dα2

i x
2)2

.

We leave out the proof here. If readers want to know more about it, the proof
of Theorem 1 is a reference.

Next we give a brief evaluation about the computation complexity. In this
paper, M stands for a field multiplication, S for a field squaring, C for a multi-
plication by a curve constant and I for a field inversion. S is about 0.8 M in most
time. Since additions cost much less than squaring and multiplication, we omit
its cost here. It’s reasonable to some extend.

At first, computing x2, y2 and x2y2 cost 2S + M . As dx4 = y2 − 2ax2 − 1,
we get x4 by computing 2ax2 and another one multiplication by a constant.
Computing

∏s
i=1(x

2 − α2
i )

2 which is equal to
∏s

i=1 x4 + α4
i − 2α2

i x
2 amounts to

sC + (s − 1)M . Computing
∏s

i=1 β2
i x2 − α2

i y
2 costs 2sC + (s − 1)M , the same

as
∏s

i=1 1 + d2α4
i x

4 − 2dα2
i x

2. It is essential to compute (2 + 2aα2
i − β2

i )2 before
computing x2y2(2+2aα2

i −β2
i )2 for s times. We have to compute another squaring

unavoidably. That is (2+2ax2−y2)2. Then computing α2
i β

2
i (2+2ax2−y2)2 costs

sC. The first items of both X and Y cannot be left out, which cost 2(C +M). In
the affine space, inversions of

∏s
i=1 β2

i x2 − α2
i y

2 and
∏s

i=1 1 + d2α4
i x

4 − 2dα2
i x

2

amount to 2I, after which 3M is needed. Therefore, the total cost is (4s+2)M +
3S +(7s+4)C +2I. In the projective space, the inversion can be avoided. If the
constants are carefully chosen, the cost of C can be decreased greatly.

There is no doubt that the isogenies derived in this paper can be used to
perform efficient scalar multiplication. The projective weighted coordinates or
even a redundant representation of points may help a lot. So far, only [24] has
given explicit formulas for the i-th multiple of a point on Jacobi quartic curves.
[24] made use of the division polynomial, but didn’t give an evaluation of the
computation complexity. Since the division polynomials are recursive, they seem
to be quite complex intuitively. Another advantage of the isogenies in this paper
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is that the construction is very flexible, as it relies on the addition formulas. If
a more efficient addition formula is found, a more efficient isogeny can corre-
spondingly take place. Although Jacobi quartic is not as fast as Edwards and
Huff curves generally, it prevents SPA-like attacks. [20] gives an estimate of
the Edwards isogeny in (3s + 1)M + 2S + 3sC + I and the Huff isogeny in
(4S − 2)M + 2S + 2sC + 2I. If the constants are carefully chosen, the Jacobi
quartic isogeny is about to catch up with Huff isogeny. Dustin Moody and Daniel
Shumow have compared Edwards and Huff curves with Weierstrass curves by
experiments in [20], as it is not easy to estimate the time complexity of Weier-
strass curves explicitly. They showed that isogenies on Edwards and Huff curves
are considerably faster than Vélu’s Formulas on Weierstrass curves (Table 1).

Table 1. Theoretic time cost of different curves

Curve Cost

Edwards (3s + 1)M + 2S + 3sC + I

Huff (4s − 2)M + 2S + 2sC + 2I

Jacobi quartic (4s + 2)M + 3S + (7s + 4)C + 2I

6 Conclusion

In this paper we extend the results in [20] to Jacobi quartic curves and accom-
pany our routine with a robust proof of the validity of the isogenies. Based on dif-
ferent addition formulas we construct two kinds of isogenies and the latter one is
more efficient. We stress that this is the first time to construct isogenies on Jacobi
quartic curves and one could speed up the computation by many other methods.
Our method to compute the isogeny costs (4s + 2)M + 3S + (7s + 4)C + 2I.
Ultimately, the crucial future work is to accelerate the scalar multiplication by
isogenies to obtain the n-th multiple of a point on the fly at little cost.
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Abstract. Recently, the security of Industrial Control Systems (ICSs)
is widely concerned all over the world. In this paper, the security issues
in remote state estimation process of ICSs will be considered. The com-
munication channel between sensor nodes and the remote state estima-
tor may be maliciously interfaced and manipulated by the internal or
external attacker. With resources constraints for both the sensor and
the attacker side, the interactive decision making process of whether to
send or receive data packets or not for estimation process and whether
to launch an attack on some data packets or not for an attacker are stud-
ied in this paper. A game theory based framework is formulated in the
paper and it has been proved that a Nash equilibrium of the final pay-off
arbitration game is existed. For the practical computation convenience,
an on-line updating algorithm is proposed. What’s more, the simulation
of the game-based framework described in this paper is demonstrated
to verify the validity and efficiency of this framework. The experimental
results have shown that the game-based framework could improve per-
formance of the decision making and estimation process and mitigate the
impact of the attack. It may provide a novel and feasible approach to
protect the state estimation process and improve the intrusion tolerance
in ICSs.

Keywords: ICS · Critical infrastructures · False data injection ·
Remote state estimation · Game theory · Nash equilibrium

1 Introduction

Nowadays, Industrial Control Systems (ICSs) are ubiquitously applied in var-
ious industrial control processes, especially national critical infrastructures as
electric power generation, transmission and distribution, chemical production,
oil and gas, refining and water desalination [1,2]. Industrial control systems are
computer-controlled systems that manage industrial processes automatically in
the physical world. These systems include Distributed Control Systems (DCS),
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 431–450, 2017.
DOI: 10.1007/978-3-319-54705-3 27
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Fig. 1. Structure of SCADA.

Supervisory Control and Data Acquisition systems (SCADA), Programmable
Logic Controllers (PLC), and devices such as remote telemetry units (RTU),
smart meters, and intelligent field instruments including remotely programmable
valves and intelligent electronic relays [2,3]. In [3], the classical structure of a
SCADA system is given as showing in Fig. 1.

As hearts of critical infrastructure in industrial processes, ICSs are the key
drivers of sensing, monitoring, control and management. While sharing basic
constructs with Information Technology (IT) business systems, ICSs are tech-
nically, administratively, and functionally more complex and unique than busi-
ness IT systems. Such systems increasingly rely on remote operations via local
area networks or the Internet, which are enabled by software with limited secu-
rity protections. Cyber attacks on such systems can lead to devastating effects
on the functionality of national critical infrastructures. As a consequence, ICSs
are inviting targets for adversaries attempting to disable critical infrastructure
through cyber attacks. Therefore, the security of ICS has attracted considerable
interest from both academic and industrial communities in the past few years.

In the past, ICSs were mainly conceived as isolated systems. While, with
the ever growing demand of both highly ubiquitous computing services and
location-independent access to Information and Communication Technology
(ICT) resources, they are more and more connected to all kinds of desktop
and business computing systems (DBCS) [4] and often to the Internet.

The increasing connection with Internet, kinds of applications and various
terminals units brings threats to the ICSs of cyber-attacks from adversaries
around the world. The threat and possible disastrous consequence of cyber
attacks on ICSs has been demonstrated by the Stuxnet worm in 2011. The
Stuxnet worm is a sophisticated malware specially designed to sabotage ICSs.
It exploited several previously unknown vulnerabilities in the Windows oper-
ating system and Siemens STEP 7 software to target specific control systems
appearing in uranium enrichment facilities [1,5–7].

Moreover, information security methods, such as authentication, access con-
trol, and message integrity, appear inadequate for a satisfactory protection of
ICSs. Indeed, these security methods do not exploit the compatibility of the
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measurements with the underlying physical process or the control mechanism,
and they are therefore ineffective against insider attacks targeting the physical
dynamics [8].

A. Related Work
ICSs, however, suffer from specific vulnerabilities which do not affect clas-
sical control systems, and for which appropriate detection and identification
techniques need to be developed. For instance, the reliance on communica-
tion networks and standard communication protocols to transmit measurements
and manipulation packets increases the possibility of intentional and worst
case attacks against physical plants. The challenges here at hand include data
integrity, data veracity and trustworthiness, and resources availability. The vul-
nerabilities analysis of ICSs to external attacks has received increasing attention
in recent years [2,8]. The general approach has been to study the effect of specific
attacks against particular systems. For instance, deception and denial of service
(DoS) attacks against a networked control system are defined in [9]. Deception
attacks compromise the integrity of control packets of measurements, while DoS
attacks refer to compromising the availability of resources by, for instance, jam-
ming the communication channels. As specific deception attacks in the context
of static estimators, false data injection attacks against static estimators are
introduced in [10]. Stealthy deception attacks against SCADA system are intro-
duced in [11]. Reply attacks and covert attacks effect are introduced in [12,13]
respectively.

Clark A. et al. in [1] proposed a proactive defense framework against Stuxnet.
Commands from the system operator to the PLC are authenticated using a
randomized set of cryptographic keys. It leverages cryptographic analysis and
control and game-theoretic methods to quantify the impact of malicious com-
mands on the performance of physical plants. The works in [14,15] studies the
timing of DoS in the term of attackers. Considering the vulnerabilities of stale
data in ICSs, properly timed DoS could drive the system to unsafe states. By
attacking sensor and controller signals, the attacker can manipulate the process
at will. Similarly, Heng Zhang et al. in [16] studies the optimal DoS attack
schedule in Wireless Networked Control System (WNCS). The optimal jamming
attack schedule is proposed to maximize the attack effect on the control system.
Also, centralized and distributed monitors are proposed to detect and identify
the attacks in Cyber-physical Systems(CPSs) by Pasqualetti F. et al. in [17].
Krotofil M. et al. in [18] investigated a set of lightweight real-time algorithms
for spoofing sensor signals directly at the microcontroller of the field device. The
data veracity detection toke the form of plausibility and consistency checks with
the help of the correlation entropy in a cluster of related sensors.

However, these works have focused only on one side, i.e., the attacker or the
defender. If attackers have knowledge of system parameters, then both defender
and attacker may involve in an interactive decision making process. To handle
these issues, some researchers proposed the game-theory approach [19–23]. In the
similar fashion, Li Y. et al. in [24,25] introduced zero-sum game approaches to
optimize the decision process both for the jamming attacker and the remote state
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estimator in CPSs. The existence of optimal solutions, i.e., Nash equilibrium of
zero-sum game, in the decision process is proved and illustrated in numerical
examples.

B. Summary of Results and Organization
Obviously, compromising devices or transmission channel used to monitor or
control an industrial system is a necessary prerequisite for launching a cyber-
physical attack aimed at disrupting the physical process. As far as know, there
isn’t any relative researches on the game-based framework for decision making
process in deception attacks in ICSs. This paper presents an analytical game
theory approach to analyzing and mitigating the efficacy of a special deception
attack, namely false data injection attack, on remote state estimation in ICSs.
The main contributions can be summarized as follows:

(1) Propose a game-based framework to a special kind of deception attack - false
data attack. The game framework is based on the final pay-off arbitration
model.

(2) A practical updating algorithm is proposed to apply the game based frame-
work into the practical situation and update the framework on-line.

(3) Simulation of the proposed game-based framework is executed. Experimental
results shown verification of the validity and efficacy of this framework to
the false data injection attack.

The reminder of the paper is organized as follows. In Sect. 2, we present the
models and problem formulation. In Sect. 3, we introduce some basic properties
of system performance under arbitrary false data injection attacks under game-
theory framework. We construct game-theory framework and analyze the system
performance. In Sect. 4, dynamic update of the game theory action is illustrated.
In Sect. 5, numerical examples are shown to demonstrate the effectiveness of the
proposed framework. Finally, Sect. 6 concludes this paper.

Notations: Z denotes the set of all integers and N the set of all positive integers.
R is the set of all real numbers. Rn is the n-dimensional Euclidean space. Sn

+ (and
Sn
++) is the set of n by n positive semi-definite matrices (and positive definite

matrices). When X ∈ Sn
+ (and Sn

++), we write X ≥ 0 (and X > 0). X ≥ Y
if X − Y ∈ Sn

+. Tr(·) is the trace of a matrix. The superscript ′ stands for
transposition. For functions f, f1, f2 with appropriate domains, f1f2(x) stands
for the function composition f1(f2(x)), and fn(x) � f(fn−1(x)), where n ∈ N
and with f0(x) � x. δij is discrete-time Dirac delta function, i.e., δij equals
to 1 when i = j and 0 otherwise. The notation P [·] refers to probability and
E[·] to expectation. T ! stands for the factorial of T . We write CT

M for (T
M ) =

T !/(M !(T − M)!).
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2 Problem Analysis

2.1 System Model

In this paper, a general discrete linear time-invariant(LTI) control process is
considered, which is described by the following state space expression:

xk+1 = Axk + wk

yk = Cxk + vk

(1)

where k ∈ N,xk ∈ Rnx is the control process state vector at time k, yk ∈ Rny

is the measurement taken by the sensor, wk ∈ Rnx and vk ∈ Rny are zero-
mean i.i.d. Gaussian noises with E[wkw

′
j ] = δkjQ(Q ≥ 0). E[vkv

′
j ] = δkjR(R >

0), E[wkv
′
j ] = 0,∀j, k ∈ N . The pair (A,C) is assumed to be observable and

(A,Q1/2) controllable.

2.2 Attack Model

In this paper, a kind of special deception attack - false data injection attack is
considered. With the knowledge of the system configuration and the historical
transportation on the communication channel, the attacker can systematically
generate and inject malicious measurements which will mislead the state esti-
mation process without being detected by any of the exiting techniques for bad
measurements detection as shown in [10]. For realistic scenarios, the attacker
is either constrained to some specific sensor measurements or limited in the
resources required to launch attack on sensor measurements or communication
channels.

Let za represent the vector of observed measurements that may contain mali-
cious data. za can be represented as za = z + a, where z = (z1, ..., zm)T is the
vector of original measurements and a = (a1, ..., am)T is the malicious data added
to the original measurements. Attack vector is denoted as a. The i-th element ai

being non-zero means that the attacker compromises the i-th measurements, and
then replaces its original measurements zi with a phoney measurement zi + ai.
The attacker can choose any non-zero arbitrary vector as the attack vector a,
and then construct the malicious measurements za = z + a. Let x̂a

k and x̂k

denote the estimate of xk using the malicious measurements za and the original
measurements z, respectively. x̂a

k can be represented as x̂k + c, where c is a non-
zero vector of length n. Note that c reflects the estimation error injected by the
attacker. The attack model can be described as:

x̂k =

{
x̂a

k, if an attack vector arrives
x̂k, otherwise

(2)

where x̂a
k is the an attack on k-th state variable at this moment with the attacking

vector za.
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Fig. 2. Security issue of state estimation.

2.3 Local State Estimation

Here, the security issue of state estimation is considered as depicted in Fig. 2.
The on-board processors equipped on the sensors can be used to significantly
improve system performance [26]. State estimator is widely used to ensure the
safety and economy of operation in ICS. Essentially, state estimation is a process
which uses real-time redundant measurements to improve data accuracy and
automatically excluded from the error message caused by random interference.
For state estimation, e.g. in power system, measurements are usually the values
that can be observed by sensors easily, such as line power flow, power injection,
voltage magnitudes etc., while the state variables are usually complex phasor
voltages which cannot be measured conveniently. Its objective is to find estimates
of states that are best fit to the corresponding measurements.

For local state estimation, at each time k, the sensor first estimate the state
xk based on all the measurements it collects from the field up to time k and
then transmits its local estimate to the remote estimator. Let x̂s

k and P s
k as

the sensor’s local Minimum Mean-Squares Error (MMSE) estimate of the state
xk and the corresponding estimation error covariance. They are given by the
following functions and could be calculated by a Kalman filter.

x̂s
k = E[xk|y1, y2, ..., yk] (3)

P s
k = E[(xk − x̂s

k)(xk − x̂s
k)′|y1, y2, ..., yk] (4)

For notational case, the following functions are introduced: h, g̃ : Sn
+ → Sn

+

as
h(X) � AXA′ + Q

g̃(X) � X − XC ′[CXC ′ + R]−1CX
(5)

It is well-known that under suitable conditions the estimation error covari-
ance of the Kalman filter converges to a unique value from any initial condition,
thus the local estimation error covariance ps

k will converge to a steady-state. Gen-
erally (similar assumptions can be found in [27,28]), the Kalman filter at the
sensor side is assumed that it has entered the steady state and the subsequent
discussion could be simplified by setting

P s
k = P , k ≥ 1 (6)



Cyber-Attacks on Remote State Estimation in Industrial Control System 437

As discussed in [29], P is the steady-state error covariance, which is the
unique positive semi-definite solution of g̃ ◦ h(X) = X.

2.4 Remote State Estimation

Remote state estimation process in networked control systems has been well stud-
ied recent years. In the similar fashion with the local state estimation process, let
x̂k and Pk denote as the remote state estimator’s MMSE state estimate and the
corresponding error covariance. Here, x̂k can be calculated as following: once the
sensor’s local estimate packet arrives, the remote state estimator synchronizes
its own estimate with the sensor’s x̂s

k; otherwise, the remote state estimator just
predicts its estimate x̂k based on its previous optimal estimate [28].

x̂k =

{
x̂s

k, if x̂s
k arrives

Ax̂k−1, otherwise
(7)

Correspondingly, the remote state estimation error covariance Pk can be
calculated as:

Pk =

{
P , if x̂s

k arrives
h(Pk−1), otherwise

(8)

The remote state estimator is assumed that it knows the system parameters
A,C,Q,R. Thus the expected state estimation error covariance can be easily
written as:

E[Pk] = pkP + (1 − pk)(E[Pk−1]) (9)

where pk is denoted as the possibility for remote estimator receiving data packets
from sensor nodes. pk = 0 means the remote state estimator didn’t received data
packets, otherwise, the remote state estimator received data packets successfully.

2.5 Communication Channel

As described in [10], typical false data injection attack can inject malicious
measurements into the data transportation process between components in net-
worked control systems i.e. ICSs without being detected by existing fault detec-
tion mechanisms. As described previously, the attacker is assumed to be able to
manipulate the measurements or inject false data into the data transportation
process between sensors and remote state estimator, which may mislead the state
estimation process and drive the system into undesired situations (see Fig. 2).

In practice, for both sensors and attackers, energy and source constraint is
a natural concern, which affects the state estimation performance and attacking
policies. Here, let m denotes the total number of sensors, M(M ≤ m) denotes the
total number of the state estimate that are accepted by remote state estimator
successfully at each time k, N(N ≤ m) denotes the total state estimate that
attacker could compromise or manipulate at each time k. Within a given time
horizon t ∈ [0, T ], the attacker can launch false date attack for ka(ka ≤ T ) times
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at most. To encompass energy limitations, we will assume that, at each sampling
time the sensor can send the data packet at most times to the remote estimator,
while the attacker can launch false data injection attack at most times.

Thus, the sensor’s data-sending strategy at each sampling time is denoted
as:

θS � {γ1, γ2, ..., γm} (10)

where γi = 1 for i = 1, 2, ...,m means that the k-th sensor’s data packet is
received by remote state estimator at a certain sampling time, otherwise γi = 0
for i = 1, 2, ...,m. Consequently, we have the following constraint:

m∑
i=1

≤ M (11)

Similarly, the attacker’s strategy is denoted as:

θA � {λ1, λ2, ..., λm} (12)

where λi = 1 for i = 1, 2, ...,m means that the attacker launches a false
data injection attack on the k-th sensor’s data packet, otherwise λi = 0 for
i = 1, 2, ...,m. The associated constraint is

m∑
i=1

≤ N (13)

In practical communication systems, packet dropouts may occur due to dif-
ferent reasons, including signal degradation, channel fading and channel conges-
tion. However, we assume the communication dropout probability of data packet
from the sensor arrives at the remote estimator is 0 all the time to simplify the
simulation and explanation. As noted above, the strategies of the sensor and the
attacker at every sampling time are assumed to be θS and θA respectively.

2.6 Main Problem

The quality of the state estimation process during a certain time horizon [0, T ]
is quantified by the trace of error covariance as proposed in [24]. It is the cost
function as following function:

Jα(T ) � α
1
T

T∑
k=1

Tr(E[Pk]) + (1 − α)Tr(E[PT ]) (14)

where α = 1 or 0, corresponding to the overall performance and terminal per-
formance, respectively. Here, overall state estimation performance is considered,
namely let α = 1, the cost function is simplified as:

Jα(T ) � 1
T

T∑
k=1

Tr(E[Pk]) (15)
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In term of the sensor’s side, the goal of the decision maker is to minimize the
cost function Jα(T ) in (15). Oppositely, the goal of the attacker is to maximize
the Jα(T ). So, the objective function of sensor’s side is obtained as:

JS(θS) � −Jα(T ) (16)

while the objective function of attacker’s side is obtained as:

JA(θA) � Jα(T ) (17)

Thus, the objective function of sensor and attacker are simplified since the
objective of sensor is opposite to the one of attacker. The goal of the both sides is
to maximize the objective functions. Here, θS and θA are defined in (10) and (12).

The optimal strategies for both sides subjecting to the constrains described
in (11) and (13) are the solutions of the optimal problems based on the above
analysis. Since getting more measurements always benefits for improving the
performance for both sides, it is not difficult to show that the optimal strategies
for both sides remain the same if (11) and (13) are changed to

∑m
i=1 = M and∑m

i=1 = N , respectively.
Thus, the optimization problem is obtained as following for the sensor’s side:

max
θS

{JS(θS)}

s.t.

m∑
i=1

= M
(18)

In the similar fashion, for the attacker’s side:

max
θA

{JA(θA)}

s.t.

m∑
i=1

= N
(19)

where θS and θA are same as the definition in (10) and (12).

3 Game-Based Framework

In this section, the decision making processes of both the sensor side and the
attacker side are demonstrated in a game-theory framework based on the opti-
mization problems, i.e.(18) and (19). Here, the decision maker on sensor side and
the one on the attacker side are considered as the two players of a final pay-off
arbitration game model. The details of this game model and the decision making
process are discussed below.
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3.1 Final Pay-Off Arbitration Framework

Farber developed a model of final-offer arbitration trying to solve the wage dis-
putes of firms or unions in 1980 [30]. The two major forms of arbitration are
conventional and final-offer arbitration. In final-offer arbitration medel, the two
sides make wage offers and then the arbitrator picks one of the offers as the
settlement. In conventional arbitration model, in contrast, the arbitrator is free
to impose any wage as the settlement. Here, the former model would be taken
into consideration.

So far, relative researches in the existing literature mainly focus on only
one side with energy or resource constraint. In this paper, for the case with
constraints for both sides, i.e., M ≤ m and N ≤ m, those cannot be used.
For there may be kinds of different strategies for both sides, the problem will
be investigated from a game-theoretic view adopting the following definitions
according to the final pay-off arbitration model:

(1) Player: there are two players: the sensor and the attacker.
(2) Action: θS for the sensor and θA for the attacker.
(3) Payoff: JS(θS) for the sensor and JA(θA) for the attacker.

In the final pay-off arbitration model, there is an arbitrator in the arbitration
process. For the situation in this paper, the arbitration is between the local
state estimate and the state estimate calculated upon the historical data. The
local state estimate is generated by sensors and transferred to remote estimator
through the communication channel. The remote state estimator acts as the
arbitrator during the arbitration process in this game model. The output of the
arbitration process will be accepted as the system’s present state estimate by the
remote state estimator, according to which the controllers regulate and control
the system’s performance.

3.2 Nash Equilibrium

In game theory, Nash equilibrium is a state that no single player wants to devi-
ate [30]. If in a game, each player has chosen a strategy and no player can benefit
by changing his own strategy while the other players keep theirs unchanged, then
the current strategy of both sides constitutes a Nash equilibrium. Nash defined
a mixed strategy Nash Equilibrium for any game with a finite set of strategies
and proved that at least one mixed strategy Nash equilibrium must exist in such
a game in [31].

As proved in [31], for any game with a finite set of strategies, there exists at
least one mixed strategy Nash equilibrium in the game.

3.3 Existence of Nash Equilibrium

To analyze the Nash equilibrium of the game between the sensor and the
attacker, the number of all the pure strategies need to be taken into account
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first. For the sensor, the number of pure strategies P is P = CM
m = (m

M ), which
are denoted as θprue

S (1), θprue
S (2),...,θprue

S (T ). Correspondingly, the mixed strate-
gies can be denoted as: θmixed

S (π1, π2, ..., πP ) = θprue
S (p) with πp, p = 1, 2, ..., P ,

where πp is the probability of θprue
S (p) and

∑P
p=1 πp = 1, πp ∈ [0, 1].

In the same way, for the attacker, the number of pure strategies Q is Q =
CN

m = (m
N ), which are denoted as θprue

A (1), θprue
A (2),...,θprue

A (T ). Correspondingly,
the mixed strategies can be denoted as: θmixed

A (π1, π2, ..., πQ) = θprue
A (q) with πq,

q = 1, 2, ..., Q, where πq is the probability of θprue
A (q) and

∑Q
q=1 πq = 1, πq ∈

[0, 1].
Different combinations of πp and πq constitute different mixed strategies for

both the sensor and attacker, respectively. Obviously, that the number of pure
strategies is finite, there are infinitely many mixed strategies for each side.

It has been proved in [27] that a Nash equilibrium exists for the considered
two-player zero-sum game between the sensor and the attacker. The optimal
strategies for each side are denoted as θ�

S and θ�
A, respectively. By giving the

optimal strategy θ�
A chosen by the attacker, the optimal strategy for the sensor

is the one that maximizes its objective function JS(θS) as described in (18), i.e.,
JS(θ�

S |θ�
A) ≥ JS(θS |θ�

A),∀ θS . For the attacker, a similar conclusion is obtained,
i.e., JA(θ�

A|θ�
S) ≥ JA(θA|θ�

S),∀ θA. Since the payoff functions are objective func-
tions for each sides respectively, the optimal strategies for the sensor and the
attacker constitute a Nash equilibrium of this game naturally.

4 Update of the Game Theory Action

Though the decisions are chosen randomly on both sides in the game investi-
gated in the last section, all decisions are made before the initial time of the
system. Anyway, it can just be regarded as a off-line schedule. In some practical
situations, both sides may be able to monitor the performance of the opponent
and renew their choices at each sampling time according to the practical sta-
tus of the system. For example, after the attacker launches a attack, the system
server may be able to detect and identify the abnormality and inform the respon-
sive sensors about that [17], through which the sensors and the state estimation
process could do some corresponding adjustment, i.e. abandon the abnormal
measurements or refuse the relevant suspicious sensor’s data uploading mission.
The attacker can also detect whether the data packet is accepted or not based on
the system status. Thus, though each side can not be sure about the next deci-
sion of their opponent, they can still make prediction on the opponent’s future
action through the system’s present performance and therefore narrow the scope
of their opponent’s action sets.

For this situation, based on the observation on the past action of opponents,
a new game with new constrains will be considered at each time step for both
the sensor and the attacker during the whole time horizon T . At each time
step, let θ�

S(T,M,N,Φ0) denotes the optimal mixed strategies for the sensor and
θ�

A(T,M,N,Φ0) denotes the one for attacker with parameters of T,M,N,Φ0.
Here, T is the time-horizon, M and N are the resource constraints of sensor
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and attacker respectively, and Φ0 = P is the expected initial remote state esti-
mate error covariance. θ�

S(T,M,N,Φ0) and θ�
A(T,M,N,Φ0) is calculated at each

time and contain the action sequences for the whole time-horizon of each side
respectively, but only the first step will be kept as the initial parameters of the
next time step at both sides. Moving to the next step, the parameters, e.g., sys-
tem outcomes, constraints and time-horizon, are updated, and thus the game,
decision and constraints will be renewed continually.

To update the whole decision making process at each time step for each sides
in the game-based framework, a recursive algorithm is proposed here as showing
in Algorithm 1. Following this algorithm, both sides are able to involve in the
decision making process of the game-based framework described above with the
time varying, resource constrains and any initial states.

Algorithm 1. Game updating for both sides

Initialize: xS , θ�
S(T, M, N, Φ0) and θ�

A(T, M, N, Φ0).

1. Game begins with the initial parameters;
2. for t = 1 : T do
3. Solve for θ�

S(T, M, N, Φ0) and θ�
A(T, M, N, Φ0);

4. Employ the actions of θ�
S(T, M, N, Φ0) and θ�

A(T, M, N, Φ0) designed for the first
time step for the new game as the action of the current time step t;

5. Each side observe the action taken by the opponent at time step t;
6. if γ = 1 then
7. M = M − 1;
8. else
9. M = M ;

10. end if
11. if λ = 1 then
12. N = N − 1;
13. else
14. N = N ;
15. end if
16. T = T − 1;
17. Φ0 = E[Pt];
18. end for

Example: Suppose such s situation in a time horizon T = 5 and the constraint
for both side are M = 2 and N = 1 when m = 3. At time step k = 1, sensor side
send data packet by a strategy θt=1

S chosen from its strategy set which includes
the pure strategies θS = {1, 0, 0}, {0, 1, 0}, {0, 0, 1} and the mixed strategies
proportionally consisting of them. As the mixed strategies for the the sensor side
is chosen from proportional combination of the pure strategies {1, 1, 0}, {1, 0, 1}
and {0, 1, 1}, the sensor’s strategy can be deduced by the attacker side according
to the observe the action taken by the opponent after the time step t = 1. Thus
the attacker side could make corresponding adjustment to his next strategy.
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The similar mechanism also happened at the sensor’s side. By this accumulative
process, both sides of the game could make good use of their resources and make
optimal decisions at each step t.

5 Example and Simulation Analysis

To verify the validity and efficiency of this game-based decision making frame-
work, simulation experiment is employed in this section.

Consider a LTI control process with Gaussian White Noise which is similar
to function (3) as following:

xt+1 = Axt + But + wt

yt = Cxt + Dut + vt

(20)

with parameters as following:

A =
[
1.1269 −0.4940 0.1129
1.0000 0 0

]
(21)

B =

⎡
⎣

−0.3832
0.5919
0.5191

⎤
⎦ (22)

C =
[
1 0 0

]
(23)

D =

⎡
⎣

0
0
0

⎤
⎦ (24)

where, t ∈ [0, T ] is the time horizon, ut = sin(t/5) is the input of the system,
wk ∈ Rnx and vk ∈ Rny are Gaussian White Noise with error covariances of
Q = 1 and R = 1 respectively, which are generated and mixed into the system
by the function awgn(·) provided by MATLAB. In this system, the number of
system state x is m = 3, the number of system output y is 1, the constrains
for both sides are M = 2 and N = 3, respectively. Both the local and remote
state estimator are standard Kalman filters as described in [29]. The attacker
takes an action of random false data injection on state estimate which will be
represented by a sequence of random values generated by an algorithm based on
the observation of the system’s previous states.

In the following simulation results, the attack moments denoted as set kat
where kat = [8, 24, 31, 42, 92], and the responding sequence number of attacked
sensors are denoted as Ka where Ka(kat) = [1, 3, 3, 3, 1]. Actually, both kat and
Ka are generated randomly in the practical. According to the calculation of the
ranks of the pair (A,C) and (A,Q1/2) respectively, it is confirmed that (A,C)
and (A,Q1/2) are nonsingular and the system is controllable and observable.
When the data packet x̂s

k is arriving through the communication channel, the
remote state estimator will arbitrate between x̂s

k and the expected state value x,
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which is obtained by learning on the communication channel or receiving from
the local state estimation.

Figure 3 shows the comparison of the states time-changing curve during the
time window T of the original system with and without Gaussian White Noise
wk and vk. Here in Fig. 3, the states of original system without noise are xs. xv

are the states of the same system with Gaussian White Noises.
Figure 4 shows the comparison of the outputs time-changing curve during the

time window T of the system with and without Gaussian White Noise wk and
vk in the same situation described in Fig. 3. Here in Fig. 4, the output of original
system without noise is ys. yv is the output of the same system with Gaussian
White Noises.

According to Figs. 3 and 4, it is easy to figure that the system performance,
i.e., xs and ys, driven by the input ut can follow the expected performance well,
i.e., xv and yv.

Figure 5 shows the comparison of the states time-changing curve during the
time window T of the above system with the state estimator. Here, the xs and
xv are states same as they are described in Fig. 3, and xf are the results of the
state estimation process.

Figure 6 shows the comparison of the outputs time-changing curve during
the time window T of the above system with the state estimator in the same
situation described in Fig. 5. Here in Fig. 6, ys and yv are outputs same as they
are described in Fig. 4, and ye is the output of the system with state estimation.

Figure 7 shows the comparison of the states time-changing curve during the
time window T of the above system and the same system applying the game

Fig. 3. States of the original system with and without Noise.
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Fig. 4. Outputs of the original system with and without Noise.

Fig. 5. States of the above system with state estimator.

framework under the false data injection attack on the state estimate. Here, the
original system state are xs, the states of system with attack obtained from the
communication channel are xle. x are the expected states of the system, which
equal to states estimate xre as shown in the Fig. 7. Xcf are the results of the
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Fig. 6. Outputs of the above system with state estimator.

Fig. 7. States of the above system under attack. (Color figure online)

arbitration process of the game-based decision making framework in the same
situation, which are accepted by the remote state estimator and then employed
by the controllers of the system into the adjustment of the control process.
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Obviously, applying the game framework into the system described above,
the states estimation process could be improved and the attacking effectiveness
could be relieved as shown in Fig. 7.

According to the simulation experiment and corresponding to the time steps
kat = [8, 24, 31, 42, 92], the state estimate received by remote state estima-
tion generated by local estimation process are as shown by green line in Fig. 7:
xre = [−1.1710, 1.6322, 0.5043, 1.5360, −1.2311]; the expected state estimate
x = xle received by calculation based on previous measurement are as shown
by red line in Fig. 7: xle = [−0.3228, −0.9031, −0.2526, −0.1653, 2.0693];
the final state outputs of the final pay-off arbitration game process
is denoted as xcf , which are shown by blue line in Fig. 7: xcf =
[−0.3228, −0.9031, −0.2526, −0.1653, 2.0693].

Figure 8 shows the overall estimation error covariance trace time-varying dur-
ing the time window T . The system state estimation error covariance trace
Trs of the steady state is Trs = 2.5150. While in the same time window
T , the corresponding remote state estimation error covariance trace at the
attack moments kat = [8, 24, 31, 42, 92] are denoted as Trat, where Trat(kat)
= [2.5175, 2.6783, 2.5213, 2.5942, 2.6792], corresponding to the attack moments
kat = [8, 24, 31, 42, 92], respectively. It is easy to figure that the traces of the
attack moments are higher than the stable state without any attack. So the result
of the decision making process accepts the state estimate value with smaller
error covariance trace Trs at each time step, meaning that the calculated state
estimation values are kept as the output of the decision making process of the
game-base framework in this simulation experiment.

Fig. 8. Estimation error covariances of the above system under attacker.
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Obviously, by applying the final pay-off arbitration game-based framework
in the decision making process for the remote state estimator, performance of
the same system under false data attack, i.e., xle, has been improved and the
attack impact on the remote state estimate has been relieved, i.e., Xcf .

6 Conclusion

The former ICSs with poor security mechanism are feeble and vulnerable to
malicious attacks from internal system and external network. As the new kind of
sophisticated attack, which is called APT including Stuxnet and Flames, targets
the ICSs and there are no effective strategies to detect and defense them up to
now, the ICSs need to be able to relieved the attack impact of certain degree to
keep plants work as normal and to minimize the loss and harm caused by the
malicious action.

A situation where a game-based framework under a kind of special deception
attack - false data injection attack on the remote estimator in the ICSs has been
studied in this paper. The attack is carried out by manipulating the data packet
on the communication channel between sensors and remote state estimator. To
improve the system control performance and mitigate the attack impact on the
state estimation process in the ICSs, the final pay-off arbitration game-based
decision making framework is applied.

To verify the validity and efficiency of this game-based decision making frame-
work, a simulation experiment is employed. Simulation of a discrete LTI control
process applying the game framework mentioned above has been done in MAT-
LAB software. Experimental results have shown that the final pay-off arbitration
game-based decision making framework could relief the impact of the false data
injection attack on the remote state estimator and improve the state estimation
performance of the ICSs.

In our future work, the other game frameworks applying into the similar
attacking situations aiming at the ICSs would be our interests. What’s more,
the objective functions used to improve the system performance and find the
Nash equilibrium on both the attacker and sensor sides will be studied at the
same time.
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Abstract. With the advent of big data era, it’s becoming an increasing
trend for different clients lack of computational resources to cooperate in
outsourcing data mining tasks to cloud service providers in order to pro-
duce maximum value of the joint database. Generally, the outsourced
data contributed by clients should be encrypted under different keys
owing to security concerns. Unfortunately, existing privacy-preserving
outsourcing protocols are either restricted to a single key setting or quite
inefficient due to frequent server-client interactions, making the deploy-
ment far from practical. In this paper, we focus on outsourced k-Nearest
Neighbor (kNN) classification over encrypted data under multiple keys,
and propose a set of secure building blocks and the Secure Collaborative
Outsourced kNN (SCOkNN) protocol. Theoretical analysis shows that
the proposed protocol protects the confidentiality of data from data own-
ers, privacy of query, and access patterns in the semi-honest model with
negligible computation and communication costs. Experimental evalua-
tion also demonstrates its practicability and efficiency.

Keywords: Big data · Cloud computing · Privacy-preserving data min-
ing · K-nearest neighbor classification · Multiple owners

1 Introduction

With an inevitable trend on rapid growth of the volume and variety of data cap-
tured by organizations, outsourcing both data and data mining tasks to cloud
service providers to reduce management costs and improve efficiency becomes a
natural solution. As the concerns of data security and privacy are also on the
rise, clients intend to encrypt their data before outsourcing to protect data con-
fidentiality from unauthorized access. Therefore, the secure outsourcing protocol
should not only guarantee the accuracy of target computation, but also preserves
privacy of users’ data, query, as well as access patterns.

In this paper, we focus on the problem of securely processing k-Nearest Neigh-
bor (kNN) queries in the cloud. kNN algorithm identifies the k points nearest to
c© Springer International Publishing AG 2017
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a query point in a given database according to some distance measurements like
Minkowski or Euclidean distance, and classifies the query based on the majority
classifications of the neighboring points. Particularly, we consider a more practi-
cal scenario that the federal databases in the cloud are contributed by multiple
data owners, and the cloud servers process kNN queries over the encrypted data-
base in a collaborative way, which may maximize the benefit of big data.

Most existing works [1–4] on outsourced kNN computation were based on a
single data owner situation. F. Li et al. [5] first considered multiple distrusted
owners and used kernel density estimation instead of kNN to prevent distance-
learning attacks. These methods require that data owners encrypt their datasets
under the cloud server’s public key which is also used to encrypt queries. How-
ever, this single key setting faces two problems in multi-user scenario: (1) The
compromised server or key leakage may jeopardize the privacy of all clients’ data.
(2) The cloud storage cannot function properly, since data owners don’t possess
the private key for decryption. Therefore, generating and utilizing different keys
for different owners proves to be essential in this model. Recently, [6] leveraged
the two independent decryption mechanisms of BCP cryptosystem to convert
ciphertexts under different keys, which also incurs heavy interactions between
servers. To reduce the costs, [7,8] proposed two schemes for outsourced com-
putation based on ElGamal encryption. But its additive scheme needs solving
discrete logarithm which is considered to be computationally intractable, while
its multiplicative scheme may reveal partial privacy under the two-server model.
As a consequence, it still remains unsolved to efficiently and securely perform
outsourced kNN tasks over distributed datasets from multiple owners.

Main Contributions. In this paper, we propose a set of privacy-preserving
building blocks and Secure Collaborative Outsourced kNN (SCOkNN) protocol
that allows data owners to encrypt data with their own keys while the cloud
servers can perform kNN over the encrypted federate datasets. To the best of
our knowledge, there’s no prior work that addresses outsourced kNN problem
under multiple keys setting. The main contributions of this work are three-fold:

– Our protocol is able to process ciphertexts under multiple keys by re-
encryption technique, and returns the correct kNN class label for a given
query. In the meantime, it meets the privacy requirements that none of the
following should be revealed to the cloud servers or other participants: (1) con-
tents of joint datasets or any intermediate results; (2) query and its response;
(3) encrypted records corresponding to the majority class label. Thus, our
protocol protects the data privacy, query privacy, and access patterns from
unauthorized access via open channel.

– We emphasize that the data owners or querists are not required to involve in
any kNN computations after uploading their encrypted dataset or query record
to the cloud. They are allowed to obtain the uploaded dataset from cloud
storage or final result with their own keys. Moreover, the usage of separate
keys lowers down the risks of key leakage as well as eavesdropping attacks.
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– Theoretical analysis demonstrates that the proposed schemes execute kNN
computation correctly, and they’re secure under the standard semi-honest
model, with lower computational and communication complexity compared
with similar works. Extensive experiments on real datasets also show its sig-
nificant improvements in efficiency.

The rest of the paper is organized as follows. Our system model and threat
model are described in Sect. 2. In Sect. 3, we briefly introduce proxy re-encryption
techniques. The design details of privacy-preserving building blocks and corre-
sponding SCOkNN protocol are presented in Sect. 4. Then, we evaluate the per-
formance of our schemes in Sect. 5, and we review the related work regarding
outsourced privacy-preserving kNN computation in Sect. 6. Finally, we summa-
rize the paper and outline future work in Sect. 7.

2 Problem Statement

In this section, we formally describe our system model, threat model and design
objectives.

2.1 System Model

In our system model depicted in Fig. 1, there are n data owners U1, ..., Un who
hold their own database D1, ...,Dn along with their respective public/private key
pairs, denoted as pk1/sk1, ..., pkn/skn. The database Di has li records with m+1
attributes for i ∈ [1, n], in which the (m + 1)th attribute contains corresponding
class label of that record. For simplicity, we assume li has the equal length l.
There’s also an authorized querist Q with a kNN query q =< q1, ..., qm > and key
pair pkQ/skQ. The cloud environments are composed of two servers, namely C1

and C2. Let tij,h denote the hth attribute value of record tij of Di for h ∈ [1,m]
and j ∈ [1, l]. Initially, Ui encrypts each attribute tij,h with pki and acquires
Encpki

(Di) denoted by D′
i as well, which is then uploaded to C1 for storage and

Fig. 1. System Model
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kNN classification. Q uses pkQ to compute EncpkQ
(q) denoted by q′, which is then

submitted to C1. After C1 obtains the joint encrypted databases, it begins to
evaluate over the kNN function f(D′

1, ...,D
′
n, q′) = c′

q together with C2 through
cryptographic protocols, where c′

q denotes the encrypted class label for q. Finally,
the encrypted result is returned to Q under its public key.

Our system model is appropriate and applicable for the following two reasons.
On one hand, to protect confidentiality of users’ data, it is essential for data own-
ers and querists to encrypt their data before outsourcing. Besides, the encryp-
tions are conducted by using their own keys, which reduces the risks of secret key
disclosure and being intercepted by other owners or compromised cloud servers
(e.g., private key leakage in single-key model may endanger data privacy of all
participants [9]). This is also consistent with the security demands of real world
application. On the other hand, two non-colluding servers to perform privacy-
preserving computations is commonly used to eliminate users’ interactions [10],
and previous work [11] has proven that a non-interactive solution is impossible
to implement under traditional single server model. Furthermore, two servers
may belong to different cloud providers, generally driven by different business
model and competing relationship (e.g., Google Compute Engine and Amazon
EC2), thus lowering down the chances of collusion attacks.

2.2 Threat Model

As Fig. 1 shows, our threat model primarily includes cloud servers, data owners
and querist, communication channel.

(1) Servers: The two cloud servers are assumed to be semi-honest, which
means that each server will follow the protocol, but may try to analyze user’s
inputs, intermediate results, as well as outputs in order to infer sensitive informa-
tion. We also assume the servers have background knowledge of the distribution
of owners’ data.

(2) Data owners and querists: They are assumed to be semi-honest clients
of outsourced kNN service. They can cooperate with other participants for the
sake of collaborative data mining, meanwhile they may attempt to gather others’
private information. Besides, their online periods are relatively short and non-
deterministic.

(3) Channel: Communication channel is supposed to be open and insecure.
Adversary may launch eavesdropping attacks and infer additional information
from intercepted data.

2.3 Design Objectives

Given the model above, our design should achieve the following objectives:

– Correctness. If the clients and cloud servers both follow the designed pro-
tocol, the returned result should be decrypted to a correct class label for the
specific kNN query.
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– Confidentiality. During the outsourced computation process, nothing
regarding the content of data owners’ datasets, query record, kNN result,
or access patterns should be revealed and conjectured by the cloud servers, or
other parties.

– Efficiency. Due to the users’ insufficient computation scalability, their partic-
ipation should be minimized, while the major workload should be completed
at servers’ side at an appealing rate.

3 Preliminaries

Proxy Re-Encryption (PRE) is a useful primitive introduced by Blaze, Bleumer
and Strauss [12]. In a PRE system, a proxy is given a re-encryption key rki→j

so that it can transform a ciphertext under public key pki into a ciphertext of
the same plaintext under another user’s public key pkj . The proxy, however,
learns nothing in terms of the corresponding plaintext. Only by transform those
ciphertexts into ones under a unified key can the servers conduct any arithmetic
operations.

In this work, we use the classic bidirectional PRE scheme in [12] because
ciphertext conversion from two directions (i.e., user-to-server and server-to-user)
is required. The scheme is constructed on ElGamal cryptosystem, which is secure
against chosen-plaintext attacks (CPA). It consists of the following five algo-
rithms [13,14]:
– KeyGen(G, p, g) → {pki, ski}: Let G be a multiplicative cyclic group of an

order of p, and g be a generator of G. Ui uses this key generation algorithm
to generate a key pair ski = a ∈ Z∗

p and pki = ga ∈ G.
– ReKeyGen(ski, skj) → {rki↔j}: The re-encryption key generation algorithm

takes two private keys ski and skj as inputs, and outputs a re-encryption key
rki↔j = skj/ski ∈ Z

∗
p. Here, it is required that i �= j in that there’s no point

to re-encrypt oneself’s ciphertext.
– Enc(pki, b) → {CTi}: The encryption algorithm takes a public key pki and a

message b ∈ M as inputs. It outputs an ciphertext CTi = (b · gr, pkr
i ) under

pki. Here, M denotes the message space, and r is a random number generated
from Z

∗
p. Let the notion r ∈R Z

∗
p denote the random number generation.

– ReEnc(rki↔j , CTi)→{CTj}: The re-encryption algorithm takes a re-encryption
key rki↔j and an original ciphertext CTi as inputs, and outputs a transformed
ciphertext CTj = (b · gr, (pkr

i )rki↔j ) under pkj .
– Dec(ski, CTi) → {m}: The decryption algorithm takes a private key ski and

an original or converted ciphertext CTi under public key pki. It outputs a
plaintext message b ← b · gr/((pkr

i )1/ski).

Moreover, ElGamal encryption has multiplicatively homomorphic property
over ciphertexts. More specifically, we have

Encpk(b1) × Encpk(b2) = Encpk(b1 · b2), (1)

Encpk(b1)α = Encpk(bα
1 ), where α ∈ Zp. (2)

Here, “·” denotes the multiplication operation in the plaintext domain while “×”
denotes the multiplication operation in the ciphertext domain.
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4 Secure Collaborative Outsourced kNN Scheme

In this section, we first give an overview of our outsourced privacy-preserving
kNN protocol with multiple owners under corresponding keys. Then, we present
the design details of building blocks and complete protocol. And the security
and complexity of the proposed scheme are further analyzed.

4.1 Overview

With the assumption of two semi-honest, but non-colluding servers, the basic
idea of our SCOkNN scheme is to utilize the ciphertext conversion property of
PRE. Initially, the server C1 runs a setup operation and distributes the system
public parameters, based on which Ui(i ∈ [1, n]), Q and C2 generate their respec-
tive public and private key pairs. After this, both servers and clients jointly gen-
erate the re-encryption keys via key distribution protocol. After Ui’s encrypted
dataset under pki are uploaded to the cloud, C1 transforms all the ciphertexts
into encryptions under a unified key (C2’s key). Let D′

joint denote the combi-
nation of the ultimate converted datasets. When Q submits its encrypted query
q′ to cloud, C1 begins to conduct ciphertext transformation. And then, kNN
classification can feasibly be performed through a set of cryptographic subpro-
tocols. The final class label under the unified key should be converted back to the
ciphertext under Q’s public key. Finally, Q retrieves the encrypted output with
its private key. Note that the outsourced kNN computation part is conducted
with no interactions of data owners and queriest whatsoever.

4.2 Privacy-Preserving Building Blocks

During privacy-preserving kNN outsourcing, the cloud servers need to initialize
encryption keys and then perform a lot of basic operations over ciphertexts,
including multiplication, addition, distance computation, comparison, as well as
computing the majority class. They are regarded as privacy-preserving building
blocks of SCOkNN protocol, which are presented as follows:

1. The Key Initialization (KI) Protocol: At first, the server C1 runs a
setup process that initializes the ElGamal cryptosystem and distributes sys-
tem parameters to the other participants. Each party generates its key pairs by
KeyGen(G, p, g), including Ui’s (pki, ski), Q’s (pkQ, skQ) and C2’s unified key
(pku, sku). For simplicity, we treat Q as (n + 1)th data owner, but this does not
affect the security. C1 computes n + 1 re-encryption keys for each user through
secure interactions with Ui, Q, and C2. C1 first generates ri ∈R Z

∗
p, and dis-

tributes it to Ui; after that, Ui computes ri/ski and sends it to C2 who obtains
ri/ski·sku and returns it to C1; thus, C1 gets re-encryption key by ri/ski·sku·r−1

i .
The overall communication is protected by secure protocol like SSL. Note that
C2 cannot know the secret keys of Ui or Q during execution of this protocol
because they’re blinded by random number ri.
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2. The Secure Multiplication (SM) Protocol: Given that C1 holds pri-
vate inputs (Encpku

(a),Encpku
(b)) and C2 holds the secret key sku, the goal of

this protocol is to compute the encryption of multiplication of a and b (i.e.,
Encpku

(a · b)). Since ElGamal encryption is multiplicatively homomorphic, the
multiplication over the two ciphertexts can be performed by C1 independently
as follows.

Encpku
(a · b) = Encpku

(a) × Encpku
(b)

= ((a · b) · gra+rb , g(ra+rb)·sku),
(3)

where ra, rb are random numbers in Z
∗
p. According to the security of ElGamal

scheme, SM protocol is semantic secure.

3. The Secure Addition (SA) Protocol: Assume that C1 with private inputs
(Encpku

(a),Encpku
(b)), and C2 with sku. The goal of this protocol is to compute

the encrypted addition of a and b (i.e., Encpku
(a + b)) as output to C1. As

the encryption system is not additively homomorphic, it requires interactions
between C1 and C2.

The first scheme to address addition over ciphertexts under multiple keys
using ElGamal-based PRE was proposed by B. Wang, et al. in their works
[7,8]. Their scheme under two-server model works like this: C1 uses a ran-
dom factor r to blind the input ciphertexts by performing Encpku

(ra) ←
Encpku

(a) × Encpku
(r), and Encpku

(rb) ← Encpku
(b) × Encpku

(r). Then, C2

decrypts those blinded ciphertexts, and computes ra + rb, the encryption of
which is sent back to C1. The blinding factor is removed through Encpku

(a+b) ←
Encpku

(ra + rb) × Encpku
(r−1) by C1. During the process, a, b, ra, rb are not

directly revealed to both servers. However, C2 may compute ratio of inputs by
a/b ← ra/rb. This information can be used to distinguish ra and rb if the knowl-
edge of data distribution is known to C2. To avoid leaking the input ratio, they
adopted the third server to enhance security [7].

Similar with [8], our SA protocol is also based on ElGamal cryptosystem
under two-server model, whereas we assume the adversary may possess the
knowledge of data owners’ data distribution. Hence, none of a, b, a + b, or a/b
should be revealed to cloud servers to protect privacy.

Our solution utilizes a kind of blinding technique, denoted by Blind.
Blind(C, r) is an operation that randomizes c1 of ciphertext C by multiplying
random value r so that the plaintext b is blinded by r, where C = (c1, c2),
c1 = bgr′

, r, b ∈ G, and r′ ∈ Z∗
p . This operation only requires one multiplication

over G. The overall steps of SA are presented in Algorithm 1.
First, C1 generates random numbers: r1, r2 from Z, r3, r4 from G, while

ensuring the relation: r1 + r2 ≡ 2 mod H, where H is used to generate G. Then,
C1 computes an encrypted set L, in which L1 = SM(Encpku

(a),Encpku
(b)), L2 =

Blind(Encpku
(a)2, r3), L3 = Blind(L1, r1 · r3), L4 = Blind(Encpku

(b)2, r4), L5 =
Blind(L1, r2 · r4). Based on Eq. (1), we can infer that L1 = Encpku

(a · b). Based
on Eq. (2), it can be verified that L2 = Encpku

(a2 · r3), L3 = Encpku
(r1 · r3 ·a · b),

L4 = Encpku
(b2 · r4), L5 = Encpku

(r2 · r4 · a · b). The two sets {L2, L3}, {L4, L5}
are sent to C2.
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Upon receiving L, C2 begins to decrypt those ciphertexts by sku, denoted
by L′. Let S be the sum set between L′

2 and L′
3, L′

4 and L′
5. C2 calculates

S and encrypts it as S′ which is returned back to C1. Then, C1 removes the
blinding factors r3, r4 via Blind operation with the multiplicative inverses of
them, meanwhile randomizing the ciphertexts again with another random r5.
Thus, C1 obtains the encryptions of r5 ·a2 + r1 · r5 ·a · b, and r5 · b2 + r2 · r5 ·a · b,
denoted by α1 and α2, respectively, which are sent to C2 for further processing.
Afterwards, C2 decrypts α1, α2 and computes their sum, denoted as λ. Before
transmitting to C1, C2 encrypts it using pku. In the end, C1 can get the encrypted
value of a+b by blinding with r−1

5 and exponentiating with 2−1. The correctness
can be proven as follows:

Blind(λ′, r−1
5 )2

−1
= Encpku

(r−1
5 (r5a2 + r1r5ab + r2r5ab + r5b

2))2
−1

= Encpku
(a2 + (r1 + r2)ab + b2)2

−1

= Encpku
((a + b)2)2

−1

= Encpku
(a + b).

(4)

Security Analysis of SA. The security of SA protocol is discussed based on
“Real-vs.-Ideal” framework [15]. Under this framework, we need to show that
SA is secure against both adversary ASH

C1
corrupting C1 and ASH

C2
corrupting C2.

(1) Security Against Cloud Server C1: During SA protocol, the inputs of C1

are Encpku
(a), Encpku

(b), S′, and λ′, all of which are encrypted under pku. So
without decryption key sku, C1 can only obtain the encryption form of inputs
and outputs. By the semantic security of the ElGamal encryption scheme, the
encrypted data C1 stores are indistinguishable from encryptions of random values
simulated by FSH in the ideal world. We have the following

Idealf,FSH(Encpku
(bi))

c= RealSA,ASH

C1
(Encpku

(bi)), (5)

where i ∈ {1, 2}. Thereby, no privacy leakage to ASH

C1
is guaranteed.

(2) Security Against Cloud Server C2: Since C2 has the secret key sku, it can
get the intermediate results: r3a

2, r1r3ab, r4b
2, r2r4ab in the first round of compu-

tation. However, C2 cannot obtain either a, b or a+b, because they are blinded by
the C1’s generated random numbers. Although C2 can compute a/r1b ← L′

2/L′
3,

b/r2a ← L′
4/L′

5, and also has the knowledge of r1 + r2 ≡ 2 mod H, it’s not
sufficient to infer a/b in that r1 + r2 = 2 + xH, where x ∈ Z. Without knowing
x, C2 cannot setup enough equations to obtain a/b. During the second round,
C2 obtains r5a

2 + r1r5ab and r5b
2 + r2r5ab by decryption under sku. These two

messages are randomized by r1, r2, r5. We can build a simulator FSH in the ideal
world that uses random values as inputs, and executes the protocol for C2’s part.
As long as C2 does not know the blinding factors, AC2 is not able to distinguish
from the real world and the ideal world. We have the following

Idealf,FSH(Encpku
(rib

2
i ))

c= RealSA,ASH

C2
(Encpku

(rib
2
i )), (6)

where i ∈ {1, 2}. Thereby, no privacy leakage to ASH

C2
is guaranteed.
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Algorithm 1. SA(Encpku
(a),Encpku

(b)) → Encpku
(a + b)

Require: C1 has Encpku(a) and Encpku(b); C2 has sku.
C1:

1. Generate random numbers r1, r2 ∈R Z, r3, r4 ∈R G, where r1 + r2 ≡ 2 mod H,
and H is used to generate the multiplicative cyclic group G;

2. Compute L1 ← SM(Encpku(a),Encpku(b));
3. Compute L2 ← Blind(Encpku(a)2, r3);
4. Compute L3 ← Blind(L1, r1 · r3);
5. Compute L4 ← Blind(Encpku(b)2, r4);
6. Compute L5 ← Blind(L1, r2 · r4);
7. Send {L2, L3}, {L4, L5} to C2;

C2:

1. Receive encrypted results {L2, L3}, {L4, L5} from C1;
2. Decrypt: L′

i ← Dec(sku, Li), for i = 2, 3, 4, 5;
3. Compute S1 ← L′

2 + L′
3;

4. Compute S2 ← L′
4 + L′

5;
5. Encrypt: S′

i ← Enc(pku, Si), for i = 1, 2;
6. Send S′ to C1;

C1:

1. Receive encrypted set S′ from C2;
2. Generate random number r5 ∈R G;
3. Compute α1 ← Blind(S′

1, r
−1
3 · r5);

4. Compute α2 ← Blind(S′
2, r

−1
4 · r5);

5. Send α1, α2 to C2;

C2:

1. Receive α1, α2 from C1;
2. Decrypt: α′

i ← Dec(sku, αi), for i = 1, 2;
3. Compute λ ← α′

1 + α′
2;

4. Encrypt: λ′ ← Enc(pku, λ);
5. Send λ′ to C1;

C1:

1. Receive λ′ from C2;

2. Compute Encpku(a + b) ← Blind(λ′, r−1
5 )2

−1
;

4. The Secure Squared Distance (SSD) Protocol: Given that C1 holds
private inputs (Encpku

(A),Encpku
(B)) and C2 holds the secret key sku, the goal

of this protocol is to compute the encryption of squared distance between A
and B, where A,B are two m-dimension vectors with the form: Encpku

(A) =<
Encpku

(a1), ...,Encpku
(am) > and Encpku

(B) =< Encpku
(b1), ...,Encpku

(bm) >.
In this paper, we only consider the Euclidean Distance. So the goal of this
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protocol is to compute Encpku
(
∑m

i=1(ai − bi)2). First, the servers compute the
difference between the elements of vectors by SA protocol. Then the differences
are squared by C1 running SM. The final result is calculated by adding the
squared differences via SA. The main steps involved in SSD are shown in Algo-
rithm 2.

Security Analysis of SSD. SSD protocol is performed through execution of
SM and SA. According to the Composition Theorem for the semi-honest model
[15], this protocol does not reveal any privacy about inputs and outputs as long
as SM and SA are secure, which have been illustrated before.

Algorithm 2. SSD(Encpku
(A),Encpku

(B)) → Encpku
(|A − B|2)

Require: C1 has Encpku(A) =< Encpku(a1), ...,Encpku(am) > and Encpku(B) =<
Encpku(b1), ...,Encpku(bm) >; C2 has sku.
C1 and C2, for i = 1 to m do:

1. Compute Encpku(−bi) ← Blind(Encpku(bi), −1);
2. Compute Encpku(ai − bi) ← SA(Encpku(ai),Encpku(−bi));

C1, for i = 1 to m do:

1. Compute Encpku((ai − bi)
2) ← SM(Encpku(ai − bi),Encpku(ai − bi));

C1 and C2:

1. Initialize Encpku(|A − B|2) ← Encpku(0);
2. for i = 1 to m do:

– Compute Encpku(|A − B|2) ← SA(Encpku(|A − B|2),Encpku((ai − bi)
2));

5. The Secure Minimum between 2 Numbers (SM2N) Protocol: Given
that C1 holds private inputs (Encpku

(a),Encpku
(b)) and C2 holds the secret key

sku, the goal of this protocol is to compute the encryption of minimum from the
two inputs. The main idea of this protocol is to compute the sign of difference
between inputs. In most practical applications, the size of plaintext is far smaller
than the key size. Let ζ be the size of key size, and ε denote the maximum size
of our plaintext. The max value and the min value we can express are 2ε −1 and
−2ε + 1. Likewise, the max difference between two values is 2ε+1 − 2 while the
min difference can be −2ε+1+2. During modular computation in G, the negative
value is in the range [γ − 2ε+1 + 2, γ − 1], where γ is the group modulus. C1

computes the encrypted difference and generates a random number r to blind the
difference. To ensure there’s no integer overflow, the size of r should be chosen
as the following:

|r| ∈R [1, log(γ − 2ε+1 + 1) − 64]. (7)

The complete steps are presented in Algorithm 3.
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Security Analysis of SM2N. This protocol utilizes SA to compute the differ-
ence of inputs, which is blinded by a random number r. Hence, C2 cannot know
the exact difference of distances during kNN computation apart from the sign of
that value, denoted by σ. Since the max value of γ can be 2ζ − 1 and ε � ζ, the
random number r is large enough to guarantee security. In the end, C1 outputs
the minimum ciphertext based on σ. Note that the transmitted σ should be pro-
tected by SSL protocol. Combined with security discussion mentioned earlier,
SM2N does not disclose any privacy of user’s data.

Algorithm 3. SM2N(Encpku
(a),Encpku

(b)) → Encpku
(min(a, b))

Require: C1 has Encpku(a),Encpku(b); C2 has sku.
C1:

1. Compute Encpku(−b) ← Blind(Encpku(b), −1);
2. Compute Encpku(a − b) ← SA(Encpku(a),Encpku(−b)) with C2;
3. Generate a random number r ∈R G that satisfies the Eq. (7);
4. Send Encpku(r(a − b)) to C2;

C2:

1. Initialize σ ← 0;
2. if Dec(sku,Encpku(r(a − b))) > 0 then σ ← 1;
3. Send σ to C1 via SSL protocol;

C1:

1. Initialize Encpku(min(a, b)) ← Encpku(a);
2. if σ == 1 then Encpku(min(a, b)) ← Encpku(b);

6. The Secure Minimum in n Numbers (SMnN) Protocol: Assume that
C1 with inputs (Encpku

(d1),..., Encpku
(dn)) interacts with C2 securely compute

minimum from n inputs. The main goal of the SMnN protocol is to compute
Encpku

(dmin)) and its corresponding index without revealing any information
about di to C1 and C2. Here, dmin denotes the minimum value of inputs, i.e.,
dmin = min(d1, ..., dn). Since we already have constructed secure comparison
protocol–SM2N, SMnN is designed based on SM2N as the building block, and
any generic sort algorithm can be applied to SMnN. Considering the efficiency,
we implement heap sort algorithm to compute the encrypted minimum value,
the complexity of which is O(log n). Due to space limitations, the complete pre-
sentation of SMnN is omitted. Furthermore, no exact information of input data
is disclosed to C1 and C2 during SMnN, because SM2N is a privacy-preserving
protocol and the security of SMnN depends on SM2N.
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7. The Secure Major Class Computation (SMCC) Protocol: C1 with
< Encpku

(c′
1), ...,Encpku

(c′
k) >, and C2 securely compute major class label. Recall

that k is number of nearest points. We also assume that C1 knows the encrypted
vector of each class label, i.e., < Encpku

(c1), ...,Encpku
(cθ) >, where θ is number

of class labels. Here, c′
i denotes the class label of ith closest neighbor to query

q for 1 ≤ i ≤ k, while cj denotes the unique class label in the joint database
for 1 ≤ j ≤ θ. Obviously, c′

i ∈ {c1, ..., cθ}. During the SMCC protocol, the
output Encpku

(cmajor) is revealed only to C1 whereas neither c′
i nor cj is revealed

to C1 and C2. Besides, C1 does not know which data record corresponds to
Encpku

(cmajor).
The overall steps involved in the SMCC protocol are shown in Algorithm 4. In

the beginning, C1 generates a permutation function π, which is used to disorder
the arrangement of encrypted vector of class labels denoted by Θ. Then, C1 and
C2 cooperate to compute such a matrix S that the element Si,j = Encpku

(c′
i−cj),

for 1 ≤ i ≤ k and 1 ≤ j ≤ θ. C1 later obtains S′ by randomizing each element of
S with a random value rj . After receiving S′, C2 decrypts every component of the
matrix and computes the frequencies. It can be easily observed that the row S′

i

must contains merely one encryption of 0 and θ−1 encryptions of random values
based on the fact c′

i ∈ {c1, ..., cθ}. Therefore, C2 calculates a frequency vector fr,
the element of which corresponds to the frequency of that class. After that, the
index of most frequent class in Λ is computed, and C2 returns C1 an encrypted
vector CL in which the frequent index is the ciphertext of 1 and the rest are
ciphertexts of 0. Upon receiving CL, C1 reorders it through the inverse of π
and computes the encrypted scalar product between CL′ and Θ. Obviously, the
scalar product result is the final encryption of majority class label because the
only desired element is left after component-wise multiplication of < c1, ..., cθ >
and < 0, ..., 1major, ..., 0 >.

Security Analysis of SMCC. During the first round computation of C1, its
inputs {Θ,Θ′} and processed results {Λ, S′} are all encrypted under C2’s pri-
vate key. During the second round computation of C1, the input CL and final
result Encpku

(cmajor) are also encrypted values. Due to security of ElGamal
cryptosystem and SM, SA sub-protocols, these ciphertexts are computationally
indistinguishable from random numbers in G. During the computation of C2,
even though C2 can attain the frequencies of each class label, it infers neither
the exact class label values nor the index corresponds to which class, in that
S′

i,j are randomized by rj and the column order of S′ is altered by π. Therefore,
we can build a simulator in the ideal world that is computationally indistin-
guishable from SMCC based on [15]. In other words, SMCC does not disclose
anything about the class labels. Additionally, as fr is only known to C2, the
record of actual majority class is oblivious to C1. So the query access patterns
are hidden.
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Algorithm 4. SMCC(Θ,Θ′) → Encpku
(cmajor)

Require: C1 has Θ =< Encpku(c1),Encpku(c2), ...,Encpku(cθ) > and Θ′ =<
Encpku(c′

1),Encpku(c′
2), ...,Encpku(c′

k) >; C2 has sku.
C1:

1. Generate a permutation function π;
2. Compute Λ ← π(Θ);
3. for i = 1 to k do:

– Compute Pi ← Blind(Encpku(c′
i), −1);

– for j = 1 to θ do:

• Compute Si,j ← SA(Λ[j], Pi) with C2;
• C1 generates a random number rj ∈R G;
• C1 computes S′

i,j ← Blind(Si,j , rj);

4. Send S′ to C2;

C2 for j = 1 to θ do:

1. for i = 1 to k do:

– if Dec(sku, S′
i,j) == 0 then frj ← frj + 1; //Initial frj ← 0;

2. for j = 2 to θ do:

– if frmax < frj then:

• 	 ← j; frmax ← frj ; //Initial frmax ← fr1 and 	 ← 1

3. Compute an encrypted vector CL, where CL[i] ← Encpku(1), for i = 	; other-
wise, CL[i] ← Encpku(0), for i �= 	 and 1 ≤ i ≤ θ;

4. Send CL to C1;

C1:

1. Compute CL′ ← π−1(CL);
2. Compute Vi ← SM(CL[i], Θ[i]), for 1 ≤ i ≤ θ;
3. Initialize Encpku(cmajor) ← Encpku(0);
4. Compute Encpku(cmajor) ← SA(Vi,Encpku(cmajor)) with C2, for 1 ≤ i ≤ θ;

4.3 The Complete Protocol of SCOkNN

On the basis of the privacy-preserving building blocks described above, we dis-
cuss the SCOkNN protocol in cloud environments with multiple data owners who
have realistic demands for collaborative data mining. This protocol handles kNN
queries over the joint database in a privacy-preserving manner while still guar-
anteeing Ui’s (i ∈ [1, n]) necessary rights to retrieve and decrypt encrypted data
locally like using cloud storage. More specifically, the total process of SCOkNN
comprises of four phases, that is, Secure Data Outsourcing Phase, kNN Query
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Phase, Outsourced kNN Classification Phase, and Result Retrieval Phase, the
major steps of which are shown in Algorithm 5.

During Secure Data Outsourcing Phase, to begin with, data owner Ui(i ∈
[1, n]), querist Q, and cloud servers C1, C2 jointly run KI protocol in order
to generate their own key pairs and re-encryption keys. Then, Ui encrypts its
databset Di component-wise with its public key pki, where Di = {tij,h|i ∈
[1, n], j ∈ [1, l], h ∈ [1,m + 1]} and tij,m+1 denotes the class label for jth

record of that databset. We assume that the sizes of all owners’ databsets are
the same, denoted by l. With its own public key, Ui encrypts Di by running
Encpki

(Di) = {Enc(pki, t
i
j,h)|j ∈ [1, l], h ∈ [1,m + 1]}, and uploads them to C1.

Upon receiving all data owners’ data, C1 re-encrypts the ciphertexts under mul-
tiple keys by leveraging PRE technique long with {rki↔u|i ∈ [1, n]}. At the end
of the protocol execution, C1 gets the merged encrypted dataset under pku. We
use Dmer, D′

mer to denote this joint dataset and its encrypted form respectively,
where D′

mer = {t′i,j |i ∈ [1, nl], j ∈ [1,m + 1]}.
During kNN Query Phase, suppose Q intends to know the kNN class of its

query q over the federal database. In the first place, Q submits its identity IDQ

and q′ to C1. Here, q should be encrypted component-wise, but we express it as
q′ = EncpkQ

(q) to be intuitive. C1 then checks whether Q is an authorized party.
After successful identification, q′ is then transformed into encryption under pku

using its re-encryption key. Let q′
u denote the transformed ciphertext of q. After

this, C1 activates the kNN computation procedures.
During Outsourced kNN Classification Phase, first of all, C1 and C2 compute

the encryptions of squared distances between all records of Dmer and q via SSD
protocol. Let E denote the encryption vector, where E =< d′

1, ..., d
′
ln >, d′

i =
Encpku

(di), and di = |ti −q|2 for 1 ≤ i ≤ ln. After that, the top k smallest values
in {d′

1, ..., d
′
ln} are selected by conducting SMnN protocol. More specifically,

when C1 computes the first minimum value d′
ν1

and its corresponding index ν1,
Encpku

(dν1) is removed from E. Likewise, the top kNN index set denoted by
V = {ν1, ..., νk} can be computed in an iterative fashion. Based on V , C1 is able
to pick the recordings of encrypted kNN class label. As mentioned before, we
use c′

i to denote ti,m+1 for i ∈ V . Hence, C1 gets Θ′ as the encrypted class set
of k closest records. With Θ and Θ′ as inputs, C1 computes the ciphertext of
majority class among Θ′ through cooperation with C2 using SMCC protocol.
The output of this step is Encpku

(cq), where cq is the class label for q. Last
but not least, C1 transforms Encpku

(cq) to EncpkQ
(cq) (also denoted by c′

q) with
re-encryption key rk−1

Q↔u.
During Result Retrieval Phase, the final encrypted result c′

q under public key
pkQ is transferred back to Q from C1. Finally, Q retrieves the desired class label
by decrypting c′

q using its private key skQ.

Security Analysis of SCOkNN. According to Composition Theorem [15], if
every step of SCOkNN is secure, then we can prove that the complete protocol is
secure. The security of SCOkNN under semi-honest model is defined as follows.
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Algorithm 5. SCOkNN(D1, ...,Dn, q, κ) → cq

Require: Ui holds its dataset Di where i ∈ [1, n]; Q holds its query q; C1 has security
parameter κ.
{Secure Data Outsourcing Phase}
1. C1, C2, and Ui (for 1 ≤ i ≤ n) run KI(κ) protocol interactively to generate their

own public/private key pairs and re-encryption keys;
2. Ui, for i = 1 to n do:

– Compute D′
i ← {Encpki(t

i
j,h)|j ∈ [1, l], h ∈ [1, m + 1]};

– Upload D′
i to C1;

3. C1:

– Compute D′
mer ← {ReEnc(rki↔u, D′

i)|i ∈ [1, n]};

{kNN Query Phase}
Q:

1. Submit its identity IDQ and encrypted query q′ to C1, where q′ ← EncpkQ(q);

C1:

1. Authenticate Q’s identity, if Q is not authorized then abort;
2. Compute q′

u ← ReEnc(rkQ↔u, q′);

{Outsourced kNN Classification Phase}
C1 and C2:

1. for i = 1 to ln do:

– Compute d′
i ← SSD(D′

mer[i], q
′
u);

– Compute E ← E ∪ {d′
i}; //Initial E ← Ø

2. for i = 1 to k do:

– Compute νi ← SMnN(E);
– Compute V ← V ∪ {νi}; //Initial V ← Ø
– Compute Θ′ ← Θ′ ∪ {t′

νi,m+1}; //Initial Θ′ ← Ø
– Compute E ← {d′

1, ..., d
′
νi−1} ∪ {d′

νi+1, ..., d
′
ln};

3. Compute Encpku(cq) ← SMCC(Θ, Θ′);
4. Compute c′

q ← ReEnc(rk−1
Q↔u,Encpku(cq)), and send it to Q;

{Result Retrieval Phase}
Q:

1. Receive c′
q from C1;

2. Compute cq ← Dec(skQ, c′
q);
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Theorem 1. During the execution of the SCOkNN protocol, no privacy regard-
ing the inputs of data owners and querist, the final output or the access pattern
are revealed to cloud servers or other participants as long as ElGamal cryptosys-
tem is semantically secure, and blinding factors are randomly selected.

Proof. First of all, during the Secure Data Outsourcing phase, the key distrib-
ution protocol KI ensures every party has its own key without being known by
anyone else. We stress that due to the encryption of Di(i ∈ [1, n]) and by seman-
tic security of the ElGamal cryptosystem, Ui’s dataset Di is protected from other
data owners Uj(j �= i), C1, C2 and Q. Furthermore, C1 cannot get anything pri-
vate by the re-encryption technique. Similarly, Q’s submitted query q is unknown
to all the other parities in the kNN Query Phase. During the Outsourced kNN
Classification Phase, C1 and C2 cooperate to compute the encryptions of the
squared Euclidean distances, minimum values and major class label via SSD,
SMnN and SMCC protocols as building blocks, which have been proven secure
in previous section. SMCC protocol also preserves the access pattern for the given
query. Then, the output is re-encrypted by C1, which can only be decrypted by
the Q. In the last phase, the class label is encrypted under pkQ, so nothing is
revealed to other parties owing to the security of encryption scheme. Supposing
one of the participants is corrupted by semi-honest adversary A, we can build a
simulator F to simulate the view of A in the ideal world. Since all sub-protocols
are secure under the threat model, A cannot distinguish the real world from
ideal world, which means no privacy regarding any party’s input and output are
revealed. We also stress that SCOkNN is secure against eavesdropping attacks,
because each party holds its own key for encryption, and the corrupted party’s
secret key cannot be used to decrypt other parties’ ciphertexts. Based on the
above discussions, our solution protects confidentiality of joint database, queries,
as well as query access pattern. 	


Complexity Analysis of SCOkNN. Let Exp, Mult denote operations of
exponentiation, multiplication, respectively. Let N denote the size of the joint
datasets, i.e., N = nl. ElGamal cryptosystem requires 2Exp + 1Mult to encrypt
one plaintext, and 1Exp+1Mult for corresponding decryption. The computation
cost and communication overhead of the proposed building blocks are presented
in Table 1. Recall that m,n, k, θ denote the number of attributes, the number
of records, the closest neighbor counts, and the number of different class labels,
respectively.

The outsourced computation invokes SSD N times, SMnN k times, and
SMCC once. Since exponentiation calculation accounts for the primary cost
and m, k, θ � N , the overall computation complexity for cloud is bounded by
O(mN) while communication complexity is bounded by O(mN |G|). PPkNN
protocol constructed based on Paillier cryptosystem in work [4] is most simi-
lar with ours. Unlike other kNN outsourcing protocols which requires frequent
client-server interactions [2], PPkNN also protects the privacy of inputs and
outputs without clients’ participation. The computation complexity of PPkNN
is bounded by O(kpN log N), where p is referred to as value size in bits while
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Table 1. Computation and communication overhead of building blocks

Sub-protocol Computation overhead Communication overhead

SM 2Mult –

SA 15Exp + 20Mult 18|G|
SSD 30mExp + 42mMult 36m|G|
SM2N 16Exp + 23Mult 21|G|
SMnN log n(16Exp + 23Mult) 21 log n|G|
SMCC (16kθ + 17θ)Exp + (2kθ + 23θ)Mult 20θ(k + 1)|G|

Table 2. Complexity comparison between SCOkNN and PPkNN [4]

Algorithm SCOkNN PPkNN

Computation O(mN) O(kpN log N)

Communication O(mN |G|) O(kpN log N |G|)

the communication complexity is bounded by O(kpN log N |G|). As shown in
Table 2, it’s apparent that our scheme incurs much less computation time and
communication overhead for m � N . The reason is that in order to compare
two ciphertexts securely, PPkNN should decompose every ciphertext into form
of encrypted bits by complex bit-decomposition protocol, the time complexity
of which is O(pN). By the way, PPkNN only works in single-key scenario.

5 Experimental Results

In this section, we analyze and evaluate the performance of our schemes for
outsourced kNN classification under multiple keys in cloud environment and
compare our work with similar methods.

5.1 Settings and Implementation

The experiments of SCOkNN are performed on two non-colluding servers, which
have identical configurations which are Intel Xeon E5-2620 @ 2.10 GHz with
8 GB RAM running CentOS 6.5. We implement a proof-of-concept version of the
proposed protocols and PPkNN [4] in C++ using the Crypto++5.6.3 library.

Our experiments are performed on real dataset–Wine Quality dataset from
the UCI Machine Learning Repository [16], with 12 attributes, and 11 class
labels. These records are evenly distributed among 10 data owners. The key size
of the encryption scheme is chosen to be 1024 bits.

5.2 Empirical Analysis

We evaluate the performance of our protocols based on the parameters:
the count of nearest neighbors (k) and the outsourced database size (N).
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We choose k varying from 5 to 25 and N from 500 to 2500. Each data owner’s
encrypted dataset is outsourced to the simulated server for collaborative kNN
computation. The query is chosen from the entire instances randomly for each
test. Each client takes about 3.426 s to encrypt its data during SCOkNN, whereas
for PPkNN a client spends 7.632 s to encrypt the same amount of data. Then
we consider to evaluate the performance during Outsourced kNN Classification
Phase. The results presented in the following are averaged over 100 repeated
tests.
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Fig. 2. Cloud computation time and communication cost for varying count of nearest
neighbors

First, we assess the computation time and communication overhead of cloud
servers with varying number of nearest neighbors. The outsourced database
includes 1599 records. From Fig. 2(a), it can be observed that the computa-
tion cost for servers grows linearly with k, and our proposed protocol runs
several orders faster than PPkNN scheme. For example, when k = 5, it takes
PPkNN 610.2 min to process outsourced kNN while it only requires 10.16 min
for SCOkNN. So our speedup rate is about 60 times. Moreover, the cost growth
of SCOkNN is not as sharp as that of PPkNN. The hug gap is mainly caused
by expensive bit-decomposition operations during comparison in PPkNN, which
drags down the entire performance while we apply blinding technique in SA and
SM2N sub-protocols to boost speed.

Figure 2(b) shows the communication overhead increases with the growth of
k. The reason is that the larger k is, the more comparisons are required. As
we mentioned earlier, both schemes take heavy interactions for cloud servers to
compare two ciphertexts. We can easily see that the traffic caused by PPkNN
mounts up much more rapidly, which produces approximately 16 times more
network flow than ours. The latency of SCOkNN is relatively small compared
to computation. For instance, when k = 25, the communication cost is 173 MB
whose delay is 1.45 s for 1 Gbps bandwidth, accounting for 0.13% of outsourced
computation cost.

Next, we evaluate the scalability of our solution. The dataset is randomly
picked from wine-quality dataset. As shown in Fig. 3(a) and (b), both the cloud
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Fig. 3. Cloud computation time and communication cost for varying size of database
with k = 10

computation time and communication cost increase linearly with the size of out-
sourced database. For adding every 500 instances with 12 attributes, the growth
for computational and communication overhead of SCOkNN increase by 3.77 min
and 36 MB, respectively. As for PPkNN, the costs are 370 min and 373 MB. It’s
apparent that SCOkNN is significantly more efficient due to optimization tech-
niques used in privacy-preserving primitives.

6 Related Work

In this section, we review the existing outsourced privacy-preserving kNN
approaches under different models.

Single-key outsourced model. This model assumes the data are encrypted
and outsourced in the cloud while all the participants share the same key.
Most recent methods have been proposed based on this assumption. Distance-
Recoverable Encryption (DRE) is the straightforward solution, but it’s not
secure against level-2 or level-3 attacks [1]. Wong et al. [1] suggested preserving
a special type of scalar product instead of distance to find kNN, whereas their
scheme is not secure enough to resist against key leakage. B. K. Samanthula
et al. [4] proposed PPkNN protocol by utilizing Paillier Cryptosystem’s addi-
tively homomorphic property and proposed a set of generic primitives to per-
form Secure Multiplication, Secure Squared Euclidean Distance, Secure Bit-
Decomposition, Secure Minimum, Secure Bit-OR, etc., based on which the out-
sourced kNN protocol was proposed. Their approach is similar with ours and
it also protects the confidentiality of data, query and access patterns, whereas
their methods have high computation and communication overhead caused by
heavy server-server interactions. In order to compare two encrypted distances,
PPkNN invokes bit-decomposition for every ciphertext and then used bit oper-
ations to compute the encrypted minimum. However, our simple strategy works
more efficient in practice. Based on practical observations, the single-key model
faces two potential security risks: key leakage and eavesdropping attacks. Once
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the private key is revealed, then all clients’ data can be decrypted by the adver-
sary, including the query record and class label. Moreover, if the corrupted server
is able to sniff the network, any data encrypted may be accessed illegally.

Multiple-key outsourced model. This model supposes different parties hold
their respective keys, hence mitigating the single-key risks. Recently, paper [6]
shed light upon multiple-key computation issues, and made use of the two inde-
pendent decryption mechanisms of BCP cryptosystem to transform ciphertexts,
while moving the workload of users’ interactive decryptions to the non-colluding
servers. Following this, B. Wang et al. [7,8] made further improvements in effi-
ciency by using ElGamal-based PRE scheme, by proposing a new method to
compute addition over ciphertexts with the assumption that the cloud servers do
not have knowledge of data distribution as we explain in SA protocol of Sect. 4.2.
Collaborative outsourced data mining with multi-owner was studied in [17]. They
utilized multiplicative transformation to encrypt data, which is more efficient
than public-key encryption. Nevertheless, their approaches directly reveal the
secret matrix of data owner to data user, with a strong security assumption
on the trust in users. Our previous work [18] proposed a scheme to compute
outsourced scalar product under multiple keys, and its secure addition protocol
was achieved by inserting ciphertexts of random numbers, but the corrupted
server may guess the ratio of inputs with a small probability. Therefore, current
solutions are not secure and efficient to address kNN outsourcing problems.

7 Conclusion

In this paper, we focused on the outsourced kNN classification scenario where
multiple data owners encrypt data with their own keys, by proposing an efficient
privacy-preserving solution based on PRE scheme, called SCOkNN for short.
With a prevalent security model of two semi-honest but non-colluding servers in
cloud environments, our scheme does not require any user interactions during
the outsourcing period. Theoretical analysis show that the proposed protocols
ensure the confidentiality of data, kNN query, query result and access patterns
with small costs produced by the servers. We also highlight the efficiency of our
protocols by performing experiments under different parameter settings with
similar work. However, SCOkNN was only tested over a small-size dataset, and
its performance is not so excellent to be adopted in processing big data, so we
plan to investigate more secure and faster solutions as our future work.
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Abstract. This paper presents a novel steganalytic method for detec-
tion of quantized DCT-based video steganography. First, the modifica-
tion on the partially decoded quantized coefficients is modeled. Then the
influence of the embedding operation on spatial domain is illustrated,
which takes the form of the centralization of errors within each corre-
sponding spatial pixel block. Finally, based on this fact, a 36-dimension
feature set is extracted and used for classification. Experiments are car-
ried out on videos corrupted by various quantized DCT-based steganog-
raphy methods and encoded by various motion estimation methods. Per-
formance results demonstrate the effectiveness of our scheme.

Keywords: Video steganalysis · DCT · H.264/AVC · Intra-frame dis-
tortion drift

1 Introduction

Steganography is the art and science of data hiding, the purpose of which is
to hide the presence of covert data within innocent-looking media, called cover
media, such as digital video, image and audio, etc. Facilitated by the booming of
H.264/advance video coding (AVC) [1], digital video has become a carrier object
provided with inherent advantages. Consequently, this fact has also drawn more
researchers in the area of video steganalysis which is to detect the presence of
hidden messages.

H.264/AVC is a hybrid video coding standard which provides many differ-
ent venues for data hiding. The secret message can be embedded into intra
prediction mode assignment, block partition type, motion vector, quantization
parameter and discrete cosine transform (DCT) coefficients, etc. Compared with
the others, the venue of DCT coefficients is a superb choice considering all asso-
ciated factor. Several researches on watermarking and data hiding based on
H.264/AVC have been published [2–6]. However, video steganographic methods
using DCT coefficients can not be as mature as image steganography. One of
c© Springer International Publishing AG 2017
K. Chen et al. (Eds.): Inscrypt 2016, LNCS 10143, pp. 472–483, 2017.
DOI: 10.1007/978-3-319-54705-3 29
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the most important reasons is that the intra-prediction of H.264/AVC includes
many heuristic schemes that cannot recover the data exactly [7]. That means
all of mentioned approaches could not handle the intra-frame distortion drift
of H.264/AVC except [8,9]. Ma et al. [8] proposed a data hiding algorithm by
justifying paired-coefficients to prevent intra-frame distortion drift. Lin et al. [9]
further considered Ma’s work and proposed a novel algorithm to achieve a higher
payload.

To cope with the abuse of steganography, video steganalysis has attracted
much attention recently. Budhia et al. [10] presented a video steganalytic method
exploiting the temporal statistical visibility to detect the presence of additive
Gaussian spread-spectrum watermarks in a video sequence. Pankajakshan et
al. [11] proposed a new blind steganalysis scheme for which features extracted
from the residual frames after spatio-temporal prediction. Furthermore, Da et al.
[12] presented a new steganalysis scheme utilizing the temporal and the spatial
correlation. A new video steganalysis detecting spread spectrum data hiding
schemes was proposed by Zarmehi et al. [13]. The schemes [10–13] are more
effective for detecting these steganalytic methods using raw video. Liu et al.
[14] proposed a scheme based on Markov and joint distribution features in the
DCT and DWT transform domains. Similarly, a novel steganalysis is proposed
exploiting the spatial-temporal correlation between adjacent frames by Zhao
et al. [15]. Absolute central moments, skewness, kurtosis and Markov features
are extracted from the DCT domain which are only effective for detecting ones
using spread-spectrum-based steganography [16]. Both [14,15] obtain features
from DCT coefficients. In this study, we focus on detection of the embedded
message into DCT coefficients using quantized DCT-based video steganographic
methods.

A recent tread in DCT-based video steganographic methods of H.264/AVC
is the one that prevents intra-frame distortion drift. To our knowledge, there was
no existing video steganalysis that tried to detect the DCT-based perturbation
in this category. So in this paper, we propose a steganalytic scheme against the
DCT-based perturbation in intra frames of H.264/AVC. For comparison, another
video steganalytic method is also achieved in the Sect. 4.

The rest of paper is structured as follows. In Sect. 2, the intra prediction
process is briefly introduced, and we interpret that what causes the intra-frame
distortion drift and how to prevent it. In Sect. 3, the centralized error residual
(CER) features in intra frames are illustrated, and our proposed steganalytic
scheme is described in details. Section 4 describes comparative experiments which
are conducted mainly to prove the feasibility and validity. In Sect. 5, conclusion
is drawn in the end.

2 Preliminaries

2.1 Intra-Frame Prediction in H.264

As a major departure from the previous coding standards, H.264 tries to remove
the spatial redundancies existing within one single frame via intra prediction.
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To minimize the prediction error, nine optional prediction modes for each 4 × 4
luminance blocks and four for each 16 × 16 luminance blocks are provided by
H.264. 9 intra 4×4 prediction modes are illustrated in Fig. 1 and 4 intra 16×16
prediction modes are illustrated in Fig. 2. Each sample of the current block is
calculated by the samples A ∼ M .

Fig. 1. Intra 4 × 4 prediction modes

Furthermore, We give a real 4 × 4 block as an example to illustrate how to
get the residual matrix of this block, which is to be encoded. We assume that the
current 4×4 luma block is recorded as Bi,j and its four adjacent luma blocks are
represented by Bi−1,j−1, Bi−1,j , Bi−1,j+1 and Bi,j−1, which is shown in Fig. 3.
The samples of a ∼ p to be predicted are based on encoded and restructured
samples A ∼ M corresponding to the selected prediction mode. Ri denotes the
residual value of sample i, P p

i denotes the predicted value of sample i and Pi

denotes the value of sample i when i ∈ a, b..., p. The residual Ri of each sample
is rational on condition that

Ri = Pi − P p
i . (1)

2.2 Error Caused by DCT-based Perturbation

Since I4PM is mainly used for characterizing the details which are less sensitive
for human eyes, I4PM is much more appropriate for embedding than I16PM.
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Fig. 2. Intra 16 × 16 prediction modes

Fig. 3. The current 4×4 block and the reference pixels in the adjacent encoded blocks

Given a 4 × 4 intra block, the residual matrix of each block are denoted as
R ∈ R

4×4. The quantized DCT coefficient matrix Ỹ of R can be expressed as
follows:

Ỹ = round[(CfRCf
T ). × PF./Q] (2)

where Cf =

⎛
⎜⎜⎝

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎞
⎟⎟⎠ , PF =

⎛
⎜⎜⎜⎜⎜⎜⎝

a2 ab
2 a2 ab

2

ab
2

b2

4
ab
2

b2

4

a2 ab
2 a2 ab

2

ab
2

b2

4
ab
2

b2

4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a = 1
2 , b =

√
2
5 . ′.×′ denotes element by element product of two matrices and

Q is the quantization step size determined by the quantization parameter(QP).
The modified quantized DCT coefficient matrix Ỹ

′
is defined as follows:

Ỹ
′
= Ỹ + Δ (3)
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where Δ is the error matrix. In the decoding stage, the restructured residual
matrix before embedding R

′ ∈ R
4×4 can be calculated as follows:

R
′
= CT

i (Ỹ . × Q. × IPF )Ci (4)

where Ci =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 1
2 − 1

2 −1

1 −1 −1 1
1
2 −1 1 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, IPF =

⎛
⎜⎜⎜⎜⎜⎜⎝

a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Similarly, the restructured residual matrix after embedding R
′′

is calculated as
follows:

R
′′

= CT
i (Ỹ

′
. × Q. × IPF )Ci (5)

Since R
′

and R
′′

are obtained, the error E of residuals between the original
restructured block and perturbed restructured block is derived as

E = R
′′ − R

′
(6)

2.3 Distortion Drift and Counter Measures

As illustrated in Fig. 3, the residual values of Bi−1,j−1, Bi−1,j , Bi−1,j+1 and
Bi,j−1 are perturbed artificially and the samples of A ∼ M which are utilized
to calculate the predicted values of the samples a ∼ p could be perturbed too.
Therefore, the error induced by the perturbation would propagate to Bi,j . Sim-
ilarly, the perturbation of Bi,j would further propagate to other blocks, i.e., the
right block, the under block, the under and left (under-left) block, the under and
right (under-right) block. It is called intra-frame distortion drift.

Actually, Ma et al. [8] has solved the error propagation problem. Based on
the analysis of the relationship between the quantized DCT coefficients and
the distortion incurred in residual values, they proposed to hide data into the
paired-coefficients which can prevent the distortion drift effectively. The paired-
coefficients are two quantized DCT coefficients which are manipulated to embed
data in the current 4 × 4 luma block while no error incurred in the right-most
line or the bottom line. As an extension of Ma’s work, Lin et al. [9] added a new
coefficient-pair to each block. Besides, more 4 × 4 luma blocks were exploited
based on a new perturbation technique which changed quadruple coefficients
simultaneously and achieved a higher payload. The new perturbed residual values
indicated that no error incurred in the right-most line and the bottom line at
the same time.

It is not complicated to get three patterns of E shown in Fig. 4. ‘*’ denotes the
perturbed sample, and the blank denotes the non-perturbed sample. According
to Fig. 4, the perturbation of Pattern - 1 would not propagate to the right,
under-right blocks and the perturbation of Pattern - 2 would not propagate to
the under, under-left and under-right blocks. Also the perturbation of Pattern -
3 would not propagate to all adjacent blocks. Distortion drift can be prevented
by different patterns corresponding to intra-frame prediction modes.
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Fig. 4. Three particular patterns of the error between original blocks and perturbed
blocks

3 Proposed Steganalytic Scheme

3.1 The Centralized Error in Spatial Blocks

As described in Sect. 2, the intra-frame distortion drift can be prevented by
paired-coefficients. Ma’s and Lin’s work achieve a new perturbation technique in
intra frames without drift prevention which even can be exploited in real-time
applications. However, the error which is prevented from propagating to next
blocks shows some particular patterns. Following the derivation in Lin et al.
[9] and doing further derivation, three particular patterns of the error can be
derived as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

2T 2T 2T 2T

2T 2T 2T 2T

0 0 0 0

⎤
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⎡
⎢⎢⎢⎢⎢⎢⎣

0 2T 2T 0

0 2T 2T 0

0 2T 2T 0
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⎤
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⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 4T 4T 0

0 4T 4T 0
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⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

where T ∈ {−a2,−ab,−b2, 0, a2, ab, b2} × Q.
Considering (1) and (6), we can get a new relationship which is seen in (8)

with regard to E, P
′
and P

′′
.

E = P
′′ − P

′
. (8)

where P
′

denotes the restructured luminance values of sample matrix and P
′′

denotes the restructured perturbed luminance values of sample matrix. (8) indi-
cates that the sample values are perturbed as the same as the residuals which
are also satisfied with three patterns of (7). Four samples, i.e., a, d, m and p
in one block are never perturbed and eight samples, i.e., b, c, e, h, i, l, n and o
are sometimes perturbed. Four samples, i.e., f, g, j and k are always perturbed.
In other words, the DCT-based perturbation of paired-coefficients causes the
centralized error in spatial blocks when preventing the error from propagating
to next blocks.

Taking the reference from Fig. 5 to illustrate the centralized error in spatial
blocks, the dark circles represent the samples of f, g, j and k and the slightly dark
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circles represent the samples of b, c, e, h, i, l, n and o. The remaining samples
of a, d, m and p are represented by the blank circles. The color depth embodies
the perturbed extent, i.e., the color of sample deepens as the sample gets more
perturbed.

Fig. 5. Samples of the centralized error in spatial blocks

The centralized error in spatial blocks indicates that intra-frame data-hiding
algorithms without distortion drift prevents the drift at the expense of causing
much more perturbation of the other positions of the block. Taking video spatial
correlation between samples [17] into consideration, the centralized error is reli-
ably an opportunity to detect the existing data hiding algorithms of intra-frame
DCT-based perturbation without distortion drift.

3.2 CER Features

Our overall goal is to capture the different and fundamental types of depen-
dencies among neighboring samples. The distinguishing features of intra-frame
perturbed 4 × 4 blocks without distortion drift can be described precisely based
on these dependencies.

In Fig. 5, Correlation between the horizontal, vertical and diagonal of two
neighboring samples will be destroyed on condition that non-distortion drift
perturbation emerges in intra-frame 4× 4 blocks. Correlation with regard to the
samples in blank circles is always wrecked because the samples in blank circles
never change while neighboring samples are perturbed. However, the correlation
between the samples in dark circles and slightly dark circles might maintain
consistency on account of different patterns in Fig. 4. Fundamental dependencies
is emerged at the residuals of neighboring samples and different residuals of
neighboring samples promote the diversity of dependencies. Having acquaintance
with that, we propose that the centralized error residual (CER) features should
be exploited to represent these dependencies. There are four residuals are defined
as follows:

Rh = Ph1 − Ph2 (9)

where (Ph1, Ph2) ∈ Uh = {(b, a), (c, d), (n,m), (o, p)}. U i
h denotes the i-th element

of Uh when 1 ≤ i ≤ 4.
Rv = Pv1 − Pv2 (10)
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where (Pv1, Pv2) ∈ Uv = {(e, a), (h, d), (i,m), (l, p)}. U i
v denotes the i-th element

of Uv when 1 ≤ i ≤ 4.
Rd = Pd1 − Pd2 (11)

where (Pd1, Pd2) ∈ Ud = {(f, a), (g, d), (j,m), (k, p)}. U i
d denotes the i-th element

of Ud when 1 ≤ i ≤ 4.

Rm = max{Pm − Pm1, Pm − Pm2} (12)

where (Pm, Pm1, Pm2) ∈ Um = {(f, b, e), (g, c, h), (j, n, i), (k, o, l)}. U i
m denotes

the i-th element of Um when 1 ≤ i ≤ 4.
For given a group of pictures (GOP), N denotes the number of 4 × 4 intra

blocks in the GOP. Here we utilize Rh, Rv, Rd and Rm. Four co-occurrence
matrices Ch, Cv, Cd and Cm are set up as

Ch(j) =
ΣN

n=1Σ
4
i=1δ(Rh = j, (Ph1, Ph2) = U i

h)
Z

(13)

Cv(j) =
ΣN

n=1Σ
4
i=1δ(Rv = j, (Pv1, Pv2) = U i

v)
Z

(14)

Cd(j) =
ΣN

n=1Σ
4
i=1δ(Rd = j, (Pd1, Pd2) = U i

d)
Z

(15)

Cm(j) =
ΣN

n=1Σ
4
i=1δ(Rm = j, (Pm, Pm1, Pm2) = U i

m)
Z

(16)

where Z is the normalization factor and δ = 1 if its arguments are satisfied.
The four matrices processed using the range of j limited [−4,+4] are constructed
based on consecutive residuals of neighboring samples which represent the fun-
damental dependencies. The total CER features in co-occurrence matrices Ch,
Cv, Cd and Cm are up to 36.

4 Comparative Experiments

4.1 Experimental Setup

All experiments in this section are carried out on a database containing 150
video subsequences of 480P in the YUV420 format. Each video are intercepted
500 frames as a source sequence which is further divided into 5 subsequences.
Therefore, 150 subsequences intercepted by 30 videos are used for training and
prediction. Randomly selecting 120 video subsequences for training, the rest
subsequences are used for prediction. The experiment is repeated 5 times.

Aimed at data hiding in H.264 intra frames of non-distortion drift, our exper-
iment implements two typical data hiding algorithms, i.e., Ma’s [8] and Lin’s [9]
using open source encoder/decoder FFmpeg. Two methods are denoted as AlgMa

and AlgLin. In order to compare the results of different application scenarios, the
source sequences are compressed with different values of QP. Owing to simulat-
ing the real intra-frame data hiding, the GOP size of sequences is also configured
as twelve.
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As the DCT-based perturbation incurring in intra frames, Liu et al. [14]
proposed a scheme of detecting information hiding in videos on the pairs of con-
dition and joint distributions in the DCT domains. They utilize the best 468
features of expanding Markov and joint distribution features which are denoted
as EMJD features to analyse the perturbation of DCT coefficients. For perfor-
mance comparisons, EMJD features are tested as well.

4.2 Results and Analysis

True positive rate (TP) and True negative rate (TP) are utilized to evaluate the
detection performance in our experiment. Based on the SVM classifier [18], clas-
sification model are constructed on the training sequences and predict the test-
ing video sequences. The embedding intensity is measured based on the average
perturbed block rate (APBR), which indicates the modification rate of available
intra 4 × 4 blocks.

In Table 1, the performance results of detecting AlgMa and AlgLin are exhib-
ited within the proposed CER features and the EMJD features. Based on the
results of TP and TN, it is obvious to see that the proposed CER features per-
form much better than EMJD features. For detecting of AlgMa, the TP value
of CER is up to 82.4% when APBR is 100%, but EMJD is only 70.2%. And for

Table 1. Performance comparison of different data hiding methods within EMJD and
CER features (480P, GOP Size = 12).

Methods QP APBR (%) EMJD CER

TP(%) TN(%) TP(%) TN(%)

AlgMa 20 10 52.8 52.7 54.3 55.6

25 54.0 52.5 69.1 70.6

50 62.4 64.1 73.4 74.0

100 65.2 68.1 80.1 81.4

28 10 52.9 50.4 63.0 61.1

25 57.9 60.7 71.0 73.2

50 68.3 69.0 76.8 77.5

100 70.2 71.7 82.4 84.5

AlgLin 20 10 54.3 53.1 64.2 66.1

25 53.9 57.2 70.4 71.4

50 64.8 66.7 77.4 80.3

100 68.8 70.1 83.9 85.9

28 10 55.9 56.4 63.3 69.2

25 56.4 63.8 77.0 78.1

50 68.1 70.4 83.1 85.2

100 75.7 80.5 90.3 92.1
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Fig. 6. Detection performance TP of AlgMa for QP 20 and 28 when steganalyzed with
the proposed CER and EMJD
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Fig. 7. Detection performance TP of AlgLin for QP 20 and 28 when steganalyzed with
the proposed CER and EMJD
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detecting of AlgLin, the TP value of CER is up to 90.3% when APBR is 100%,
but EMJD is only 75.7%. Even when APBR is low and QP is low, CER features
still perform better results. One more finding of the experiment is that the per-
formance results of AlgLin are better than the results of AlgMa. Although APBR
is the same value and sequences are of no difference, more intra 4× 4 blocks can
be perturbed by Lin’s which also results in the better detection performance.

Figure 6 exhibits the TP results of AlgMa for QP 20 and 28 when steganalyzed
with the proposed CER and EMJD. We can see that detection accuracy becomes
higher as QP is higher. This is a result of high QP pricking up the perturbation
of the positions in the block. Except for the correlation between accuracy and
QP corresponding to Fig. 6, another finding is also shown in Fig. 7 that CER
features can effectively detect the stego-objects when APBR is 25% but 50% for
EMJD features.

5 Conclusion

This paper introduces a novel steganalytic method for detecting DCT-based per-
turbation in intra frames of H.264/AVC. Three particular patterns are presented
to characterize the modification on the partially decoded quantized coefficients
and the features which are interpreted as one-dimensional histograms of residu-
als, are extracted and used for classification. Since the algorithms of this category
break the correlation of neighboring samples and even pricks up the perturba-
tion of other positions in the blocks, CER features can be a good candidate
for building practical detectors in steganalysis applications. Experiment results
prove the feasibility and validity of our proposed features.
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Abstract. A maintenance services logging system is a useful tool for car
owners to keep track of the car’s condition and also can increase the mar-
ket value of the car. Logging systems range from manual, paper-based, to
automated, cloud-based systems. The automated process provides ease
of use and availability of the records. A secure protocol is required to
ensure that the workshop and service record are authentic, and hence
the records are reliable. In this paper, we propose a secure protocol for
automated maintenance services logging systems, through the use of a
mobile application called AutoLOG. The multiple electronic control units
(ECUs) used to support the connected and intelligent vehicle’s technol-
ogy are used to support the digital automated logging system. The car
is the trusted entity that generates the log. The records are stored in
an authorised mobile device and uploaded onto a cloud server to ensure
availability. The proposed protocol is implemented to measure the per-
formance and is formally analysed using Scyther and CasperFDR, with
no known attack found.

1 Introduction

Maintenance services conducted are manually recorded by workshops. The ser-
vices are either not recorded at all, or recorded in a logbook kept by the car
owners. For reminder purposes, to notify the car owner of the next service date,
a workshop may attach a sticker on the windshield. Recent use of mobile appli-
cations that have been introduced for car maintenance include a notification
reminder for the next service date. However, other than the date of the next
service, the type of maintenance repair, replacement or any other services might
also be useful for the car owner to keep track of. The process of recording is man-
ual, whereby the user has to manually enter the information using the mobile
application. The logbook not only will keep the owner up-to-date on the health
status of the car and avoid higher maintenance cost due to breakdowns, but
it will also add value to the car, especially when the car is resold. The recent
implementation which notifies the date of next service is available through the
c© Springer International Publishing AG 2017
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car dealer’s cloud server [6]. When a car is being serviced by a car dealer, the
details are uploaded onto the car dealer’s server. When the next service date is
nearing, the car owner will be contacted by the car dealer as a reminder.

An Electronic Control Unit (ECU) is a microcontroller that controls the
operations of a car. In modern cars, there can be around 70 ECUs that control
the overall operations of the vehicle [20]. Each ECU is responsible for different
operations, such as body control, engine control and telematics. The different
ECUs are connected within a car through networks such as Local Interconnect
Network (LIN) [40], Controller Area Network (CAN) bus [22], FlexRay [25]
and Media Oriented Systems Transport (MOST) [27]. The OBD-II (On-Board
Diagnostic) port is a port that interfaces the outside world to the in-vehicle
networks [41]. The port can be interfaced with a Wi-Fi, Bluetooth or serial
connection using the ELM327 interface [17].

1.1 Problem Statement

The challenges in a maintenance services record system are to provide integrity,
authenticity and reliability of the data. The process of recording the maintenance
log is manual, and the car owner normally does not have access to the data, unless
it is manually recorded in a logbook that he/she keeps. The car owner cannot
validate the services being conducted but must trust the information provided
by the workshop through the receipts or documents provided. Furthermore, it
is inconvenient to keep these receipts and/or documents for all the records of
maintenance services. Equally, a potential buyer does not have an assurance that
the records in the maintenance log and the workshops who had performed the
services are authentic.

1.2 Contribution

In this paper we propose a protocol for a secure automated process of recording
the maintenance services for car maintenance. It ensures integrity of the data
stored as well as the authenticity of the data and party conducting the service.
The automated process ensures the maintenance data is available all the time
to the car owner. The list of services/repairs conducted by the workshop is also
validated. The protocol is not only useful to the car owners, but also benefits
the garages, car sales organisations and vehicle manufacturers.

2 Maintenance Services Logging System

A maintenance logging system allows the car owner to keep the car’s mainte-
nance services record updated and hence can reduce the cost of maintenance by
avoiding major car breakdowns. Other than that, it can also add value to the
car when it is resold [10]. The potential buyer is assured that the car is in good
condition as it is well maintained. The logging of the maintenance services also
shows the party who conducted the services: for example, if it is conducted by
a reliable and trusted workshop or car dealer.
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2.1 Manual Maintenance Services Logging System

A manual maintenance services logging system is where the process of uploading
and storing the records of the services is performed manually. The workshop will
issue receipts to show the list of services performed, or enter this information on
the car’s physical logbook.

In a manual maintenance logging system, a malicious entity can:

(i) Fake a signature to show that the service is conducted by a recognised dealer
or workshop. If the process is manual and using a printed document, the
document is stamped as a proof of signature. This stamp can be forged.

(ii) Fake a record to show that a service is conducted when it is not. Dates can
easily be changed or faked.

(iii) Change the list of maintenance services conducted.

For a manual logging system, the manipulation could be conducted by the car
dealer or the car owner. The purpose is to increase a car’s value when reselling it
[5,7]. The owner might also collude with a workshop to falsify the records. The
car dealer might falsify the records themselves, or an untrustworthy workshop
might falsify the list of conducted services, repairs or parts replaced to obtain a
higher profit.

2.2 Automated Services Logging System

In this system, the process of recording and storing the log is automated, mainly
operated by the workshop or car dealer. An automated process can ensure avail-
ability of data and ease of use. In the automated logging system, the potential
storage locations are the electronic data logger, mobile devices or cloud server.
The electronic data logger resides in the car and is connected to the CAN bus
as one of the nodes. The mobile device is an external device (to the car), and
it requires a connection to communicate with the in-vehicle network. The log
could also be stored on a cloud server.

3 Proposed Solution

The framework is shown in Fig. 1. The mobile device gives both the graphical
user interface (GUI) and the connectivity. The mobile application supporting
our proposed protocol is called AutoLOG. The process starts with the workshops
updating in the car log of the list of services conducted, the date the service was
conducted and the next of date of service. In order to communicate with the car,
the workshop uses a diagnostic tool (DT). The diagnostic tool will communicate
with the car through its Central Communication Unit (CCU). The CCU is a
type of Electronic Control Unit (ECU). It is the first node any external device
will have to go through in order to communicate with other ECUs. The related
sensors and/or ECU(s) for the service will validate the information given to the
CCU by the DT. After the validation, the CCU will store the latest record of
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Cloud

Mobile device (MD)

CarDiagnostic tool (DT)

Fig. 1. Framework for the automated maintenance logging system

maintenance services. The mobile device will then retrieve this data from the
CCU and upload the data to the cloud. This way, the records are always available
on both the mobile device and the cloud. In case the mobile device is lost, the
data is always available on the cloud. In this proposal, the trust foundation is
moved from the workshop to the car’s sensors and ECU nodes. The cloud server
could be owned by the user, trusted third party, community or government body.
The cloud ownership is out of the scope of this paper.

Our proposal is based on the EVITA project [19], which proposed an embed-
ded Hardware Security Module (HSM) in the ECU to ensure secure communica-
tions for on-board system. As proposed in the EVITA project, each ECU has its
own HSM. This suggests that any node communicating through the CAN bus
is required to have access authorisation in order to send or receive messages. In
our proposal, the mobile device and diagnostic tool act as a communicating node
through the CAN bus, and so requires access authorisation. This avoids the issue
of unauthorised access to the in-vehicle networks, especially the CAN bus. The
assumption on our proposal is based on the capability of the sensors in the car
to validate the services being performed. While this may not be available now
in current implementations, future firmware updates may introduce a version of
this work.

3.1 Related Work

There are many mobile applications available in the market that provide mainte-
nance service logging systems [1–4,9]. However, these applications require man-
ual information to be entered by the car owner. After a car is serviced or repaired,
the information can either be keyed in, or a photo of the document is captured
to be stored. The data can later be stored in the cloud, depending on the appli-
cation feature. Some applications require a manual upload to the cloud, while
other applications will store the data automatically to the chosen cloud server.
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Another type of maintenance service logging system is the one provided by
car dealers [6,11]. When a car is being serviced by a car dealer, details are
uploaded onto the car dealer’s server. When the next service date is nearing, the
car owner will be contacted by the car dealer as a reminder.

A most recent development for car maintenance logging systems was intro-
duced in “AUTObiography” by Motoriety [8]. This service logs the maintenance
services record onto the cloud. Trusted workshops registered with Motoriety can
use the service and will digitally sign the services conducted to be stored on
the cloud. The data, or the “biography” of the car will then be available on the
cloud, and can be passed from one owner to another. All the records are being
managed by the service, can be retrieved by the car owners, and owners will get
reminders for the next service date.

In the above-mentioned works, the trust is completely in the hands of the
workshops. If an untrustworthy workshop fakes an item in the list of services
conducted, nobody could prove this. On the other hand, a trustworthy workshop
might mistakenly insert an item as a result of human error, since the process of
recording and keying in the data is manual.

There are proposals for reminder notifications of the next service date [12,21].
There is also a system proposed using a passive radio frequency identification
(RFID) device to detect the repairs/services being conducted [13].

Table 1 shows the added features of AutoLOG compared to other related
works, which include manual and automated systems. AutoLOG, AUTObiogra-
phy and a car dealer’s cloud server provide automation, but the mobile applica-
tions do not [1–4,9]. Data ownership of the records belong to the car owner in
AutoLOG, AUTObiography and the discussed mobile applications. However, the
ownership of the records in a car dealer’s cloud server belongs to the car dealer.
Data availability is supported by all the works discussed including AutoLOG.
However, since the uploading process is manual for these mobile applications,
data availability depends on this manual process. Unlike other related works,
in our proposal, we consider the capability of the ECUs to validate the ser-
vices. Security is a feature provided by all three automated systems. The car
owners have the flexibility to choose from a range of different workshops for
AutoLOG, AUTObiography and the discussed mobile applications. However, in
the car dealer’s cloud server system, the options of workshops are limited to the
ones appointed by the car manufacturers.

Table 1. Features of AutoLOG compared to other related works

Features AutoLOG AUTObiography Mobile applications Car dealer’s cloud server

Automation ✔ ✔ ✘ ✔

Data ownership ✔ ✔ ✔ ✘

Data availability ✔ ✔ ✔ ✔

Validation of services ✔ ✘ ✘ ✘

Security ✔ ✔ ✘ ✔

Options of workshops ✔ ✔ ✔ ✘
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The reason for not choosing TLS protocol for this application is because it is
too much for CCU/ECU devices to cope with. The TLS protocol is bulky and
has many implementation options. This will lead to more vulnerabilities. Our
proposed protocol is very specific for this application, eliminating additional
vulnerabilities. The TLS protocol is also slower in performance [38].

3.2 Threat Model

In the maintenance services logging system, assets to be protected are the read
and write access authorisation and the authentication and integrity of the data.
Potential attackers are untrustworthy workshops, owners and hackers with finan-
cial motivation, and potential buyers attempting to reduce the selling price. The
two most likely threats are:

(i) Dishonest mechanic charges owner for a full service, but may have done
little/nothing.

(ii) Owner changes service log to make the car more attractive to a buyer.

There are a number of possible attacks that could be performed in a digital
maintenance logging system as follows:

(i) Denial of service (DoS) attack: to cause an availability issue, where data
stored is not able to be retrieved, or data cannot be stored. Denying access
of data to an authorised party is also a method of DoS.

(ii) Impersonation attack: to impersonate an authorised party to conduct fur-
ther attacks, for example, an attacker impersonating an authorised work-
shop to log a record showing that the service is conducted by a certain
trusted workshop.

(iii) Data manipulation attack: to change the list of the services, either by chang-
ing the data before or after the storage.

(iv) Replay attack: by replaying the same record of service to be stored on a
different date to fake a record.

An additional assumption of the threat model in the digital automated system
is the attacker cannot break well-established cryptographic algorithms.

3.3 Security Requirements

From the architecture, the security requirements can be elicited [26]. In gen-
eral, a maintenance services logging system should satisfy the following security
requirements:

– Integrity: The data stored should not be changed, modified or added to, to
ensure that the record of the maintenance services integrity is protected.

– Authentication: Data authentication and data origin authentication should
be in place. This is to ensure that the data comes from an authorised party
(workshop and car) and the data itself is authentic.
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– Non-repudiation: To ensure that the data stored by the workshop can be
verified, i.e., the workshop cannot deny that the data stored originated from
its diagnostic tool and services were conducted by the workshop or dealer.

– Freshness: To ensure no replay attack is possible, hence a record of services
cannot be logged/replayed if it is not actually performed.

The records should not be linked to a car owner’s personally identifiable
information (PII). Hence, privacy is not a concern in the maintenance services
record, unlike various other applications involving cyber-physical systems [39].

3.4 Protocol Goals

This section discusses the requirements of each party involved in the automated
maintenance service log update.

(i) Car: The car requires authentication of the diagnostic tool, authentication
of mobile device and data integrity of the information transferred from the
diagnostic tool.

(ii) Mobile device (MD): The mobile device requires authentication of the car
(CCU) and data integrity of the information transferred from the CCU.

(iii) Diagnostic tool (DT): The diagnostic tool requires authentication of the car
(CCU).

3.5 Protocol Assumptions and Preconditions

Assumptions and preconditions on the successful use of AutoLOG are as follows.

1. The mobile application is installed on a mobile device and the cloud server is
properly set up for the data to be stored.

2. The nonces generated (by DT, CCU and MD) should be random and not
predictable.

3. The ECUs and sensors are equipped with the capability to validate the ser-
vices being conducted on the car. For example, the sensor can validate the
parameter given by the CCU, such as the serial ID of a new component. The
proposal [13] could be used for this purpose. For a start, the firmware update
status could be logged. Cars are now full of electronic modules that may
require firmware updates. As part of the normal service, logging the status
of all this firmware (which may then trigger updates) could be useful. So,
when buying a second-hand car, not only does the potential buyer know it
had a normal service on a particular date but also whether its IT/electronic
systems have been “serviced” (kept up-to-date).

4. The cloud is securely managed. A user is authenticated to access the cloud
server, and only authorised users have access to the data. However, even if
an attacker is able to get access to the data in the cloud, the main concern is
to protect the integrity of the data, which is provided by our protocol.

5. The data is always automatically transmitted to the phone and later to the
cloud. If data is not updated after a certain time, the owner will be notified.
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Fig. 2. Hierarchy for the key distribution

3.6 Protocol Key Distribution

Figure 2 shows the hierarchy for the key distribution. The hierarchy may be
implemented for a specific car manufacturer. A car manufacturer may have a list
of trusted workshops and diagnostic tool manufacturers. Each diagnostic tool of
a workshop has its own set of public and private keys, one set for signature and
one set for encryption. The digital certificates contain the public keys of the
diagnostic tools, which tie the diagnostic tool to a workshop, and are available
at a diagnostic tool manufacturer server, which is under a trusted third-party
server. The cars and mobile devices are registered under the car manufacturer,
which is also under the same trusted third-party server of the diagnostic tool
manufacturer. Each CCU has its own set of public and private keys, which are
pre-installed during manufacturing. These keys are updated by the car manu-
facturer. The mobile device needs to be registered to the car manufacturer in
order to communicate with the car. After the AutoLOG application is installed
on the mobile device, the registration of the mobile device via the AutoLOG
application will enable the mobile device to communicate with the car. Based
on the input parameters during registration, which include the Vehicle Identifi-
cation Number (VIN), the car manufacturer will share a symmetric key, kccu−md

of the CCU with the intended mobile device. Similarly, the diagnostic tool will
acquire the public key of the CCU from the trusted third party. The CCU, which
is the master ECU in the car, has the records of all ECUs. The records of ECUs
include their IDs, the hash content of the firmware and their symmetric keys to
communicate with the CCU, kccu−ecu. The keys are stored in the HSM for the
car (CCU and ECUs) and the diagnostic tool. For the mobile device, the keys
are stored in a secure memory for example on a secure element.

3.6.1 Protocol Description
To communicate with the car, the mobile device is connected to the OBD-II
port via Wi-Fi or Bluetooth. Once connected, the mobile device will be authen-
ticated, to determine whether it is authorised to retrieve the requested data.
Once authenticated, the mobile device is connected to the CAN bus, and able
to access the required data. The protocol notations are as shown in Table 2.
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Table 2. Notations for the protocol

DT Diagnostic tool

CCU Central Communication Unit

MD Mobile device

dt ID of DT

ccu ID of CCU

md ID of MD

pkx Public key of x, x=DT or CCU

skx Private key of x, x=DT or CCU

na, nb, nc, nd Message Authentication Code (MAC) keys

ne, nf AES keys

kccu−ecu Symmetric key shared between CCU and ECU

kccu−md Symmetric key shared between CCU and MD

ENC Encryption using RSA

enc Encryption using AES128

sign Sign using RSA

MAC HMAC using SHA256

a||b a concatenate with b

a ⊕ b a XOR b

mile Mileage

servicetype Type of service (basic, full or major)

servicedate Date of service

nextdate Next date of service

serviceupdate Command to conduct the log update

serviceupdatereq Command to obtain the log update

validateservice Command to validate service from CCU to ECU

serviceupdateready Response from CCU to acknowledge it is ready with updated data

ackready Response from ECU to acknowledge it is ready for validation

ack Acknowledgement

s1, s2, s3 List of services, repairs and/or updates conducted

The protocol, which is divided into three phases, is shown in Tables 3, 4 and 5.
The first part (Table 3) shows the communication between the DT and CCU.

1. In the first message, the DT will send its ID, concatenated with update
notification, serviceupdate, and a nonce, na. These parameters are signed
with the DT’s private key and encrypted with the CCU’s public key. The
digital signature is using signature with message recovery. The signature is
then encrypted with the CCU’s public key. The objective is to protect the
secret nonce na, so that only the authorised CCU is able to obtain the value
of na. The CCU will decrypt the message and verify the signature of the
DT. From that, it will obtain the na, to be sent in the second message to
the DT.
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2. In the second message, the CCU will send its ID concatenated with the
acknowledgment receipt of service update command and nonce na. It will be
concatenated with its own generated nonce, nb. This message will be signed
by its private key and encrypted with DT’s public key. This signature is also
using signature with message recovery and then encrypted with DT’s public
key in order to protect nb.

3. The DT will then decrypt the message to get the nonce nb. The nonces na
and nb are used for MAC computation for the following messages between
DT and CCU. The DT will then reply with all the required information,
i.e. the maintenance type of service conducted (either basic, full or major),
the service date, the next date of service to be conducted and the mileage
reading, and concatenated with the MAC of all the parameters. The MAC
is to ensure that the integrity of the data can be verified by the CCU.

4. The CCU will acknowledge the receipt of these parameters and concatenate
it with the MAC.

5. Upon receiving the acknowledgment, the DT will send the list of services,
repairs or updates conducted; in this example, they are s1, s2 and s3.

6. The next part is the communication between the CCU and the related
ECU(s), as shown in Table 4. The CCU will validate the list of services,
repairs and/or updates claimed by the DT. The related ECUs, equipped
with sensors to verify the services/repairs/updates conducted, will respond
accordingly. The CCU will send a command validateservice and a nonce nc,
which is encrypted with kccu−ecu to ensure only authorised ECU can read
the nonce.

7. The ECU will decrypt the message to obtain the nonce nc. It will then send
a message to acknowledge the receipt of nonce nc, and that it is prepared
for the validation process, and will send its own generated nonce nd. This
message is encrypted with the same kccu−ecu. The CCU will then decrypt
the message in order to obtain the nonce nd. These nonces nc and nd are
used for MAC computation for the following messages between CCU and
corresponding ECU.

8. The CCU will send the list of services/repairs/updates conducted, concate-
nated with a MAC.

9. The ECU, after verifying the MAC received from the CCU, will validate
each service/repair through its related sensors. After validating the list, it
will send an acknowledgment of whether or not the validation is successful,
concatenated with a MAC. If all items in the list are true, only the acknowl-
edgment is sent with a MAC. Otherwise, the failed item is included in the
message.

10. The last part of the protocol is where the mobile device retrieves the list of
services/repairs/updates from the CCU. The mobile device will send a mes-
sage containing its ID concatenated with a command of serviceupdatereq
and a nonce ne, which is encrypted with a pre-shared symmetric key between
the mobile device and CCU, kccu−md. The encryption is to ensure the confi-
dentiality of the nonce ne. Only the authorised CCU will be able to decrypt
the message and obtain ne.
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11. The CCU will decrypt the message to get the nonce ne and then will reply
with a message telling that a new service is available. If the service has
already been retrieved before, it will send a different message to inform
the MD. The message contains the ID of the mobile device, serviceupdate
reply, concatenated with nonce ne and its own generated nonce nf . They
are encrypted with the pre-shared symmetric key between the mobile device
and CCU, kccu−md. The nonces ne and nf are used for AES computation
for the proceeding messages between the CCU and MD.

12. The MD will then decrypt the message to obtain the nonce nf and will then
send an acknowledgment message to the CCU. This message is encrypted
using the nonces as the key.

13. The CCU will then start sending the required service information to the
MD, i.e., the maintenance type of service conducted (either basic, full or
major), the service date and the next date of service to be conducted, the
current mileage and the signature of this message. The signature is using
signature with appendix. The signature is used to verify that the message
originates from the CCU. The record transferred to the mobile device will
not be able to be changed, because only the CCU has the private key to sign
the message.

14. The MD, upon receiving these data, will be able to verify the origin of the
message (i.e., CCU) by verifying the signature. It will then acknowledge the
receipt of this message, in an encrypted message using AES128.

15. The CCU will next send the list of services/repairs/updates conducted. They
are also appended with a signature for the same reason as in step 13, i.e.
origin authentication and integrity protection.

16. Finally, the MD, upon receiving and storing these data, will send an acknowl-
edgment encrypted using AES128 to the CCU. This will notify the CCU that
the latest maintenance services record has been retrieved.

Table 3. DT-CCU update of services protocol

1. DT : M1= ccu||serviceupdate||na
DT → CCU : dt||ENCpkccu{signskdt{M1}}

2. CCU : M2=dt||ack||na||nb
CCU → DT : ccu||ENCpkdt{signskccu{M2}}

3. DT : M3= ccu||servicetype||servicedate||nextdate||mile

DT→ CCU : dt||M3||MACna||nb{M3}
4. CCU : M4=dt||ack

CCU → DT : ccu||M4||MACna||nb{M4}
5. DT : M5=s1||s2||s3

DT→ CCU : dt||M5||MACna||nb{M5}



Log Your Car: Reliable Maintenance Services Record 495

Table 4. CCU-ECU validation of services protocol

6. CCU : M6=ecu||validateservice||nc
CCU → ECU : ccu||enckccu−ecu{M6}

7. ECU : M7=ccu||ackready||nc||nd
ECU → CCU : ecu||enckccu−ecu{M7}

8. CCU : M8=ecu||s1||s2||s3
CCU→ ECU : ccu||M8||MACnc||nd{M8}

9. ECU : M9=ccu||ack
ECU → CCU : ecu||M9||MACnc||nd{M9}

Table 5. MD-CCU request for services update protocol

10. MD : M10=serviceupdatereq||ne
MD→ CCU : md||enckccu−md{M10}

11. CCU : M11=md||serviceupdate||ne||nf
CCU → MD : ccu||enckccu−md{M11}

12. MD : M12=ack

MD → CCU : md||ccu||enc(ne⊕nf){M12}
13. CCU : M13=servicetype||servicedate||nextdate||mile

CCU → MD : ccu||enc(ne⊕nf){M13}||signskccu{enc(ne⊕nf){M13}}
14. MD : M14=ccu||ack

MD→ CCU : enc(ne⊕nf){M14}
15. CCU : M15=s1||s2||s3

CCU → MD : ccu||enc(ne⊕nf){M15}||signskccu{enc(ne⊕nf){M15}}
16. MD : M16=md||ack

MD → CCU : enc(ne⊕nf){M16}

3.7 Security Analysis

The protocol is first analysed using informal analysis. Then, formal analysis is
conducted using CasperFDR [24] and Scyther [16] tools to verify the protocol
and provide indicative results.

3.7.1 Informal Analysis of the Protocol
Based on the threat model discussed in the previous section, the protocol
addresses them accordingly.

Denial of service attack (DoS) could be conducted:

(i) by stealing the mobile device. If the mobile device is stolen, all the records
are still available on the server. A stolen mobile device would not be able
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to tamper with the available stored data, because the data is signed by the
car’s CCU.

(ii) by disabling connectivity between mobile device and CCU to disable the
update. Since the logging process is automated, once a mobile device is
authenticated to the CCU, it will ask for an update every time they are
connected. If the update is not conducted, the owner will be notified.

(iii) by introducing manual errors. However, the process may repeat and retry
the update. The diagnostic tool will likely abort after a few attempts. A
notification message will be prompted after a certain retry limit. An error
could occur in normal use; however it could also be evidence of an attack.
The data will always be consistent, as the mobile device will verify with the
CCU whether the last data has been retrieved. If not, the CCU will retain
the last record.

(iv) by causing the related ECUs/sensors to malfunction. During the second
phase, i.e., the validation of the services, the ECU will acknowledge that
the services are correctly being performed as given by the DT to the CCU
in the previous phase. In this phase, all the related sensors will verify the
correctness of the provided data. If any of the sensors fail, this will be
displayed on the diagnostic transmission code (DTC, which is the error
code) before the services is being performed. The faulty sensor should be
fixed prior to updating the maintenance services logging system.

Impersonation of recognised workshop or dealer is prohibited with the use of
digital signature to ensure only authorised DT can conduct the storing of infor-
mation to CCU.

Data manipulation attack (change, deletion or insertion) could be conducted at
three different stages:

(i) From the DT side: Digital signature is used to ensure that only authorised
DT can sign the message required. Therefore, the message is authentic and
comes from an authorised party, unless the private key is compromised.

(ii) After storing the information to the CCU, and during retrieval of data from
CCU to the MD: The CCU only stores the last record of maintenance service
conducted. This information is important to the car owner, in order to know
the last service record. If the adversary wanted to modify or manipulate this
one record, he/she needs to have the access to the CCU information, i.e.,
key to read and/or write to the specific memory address.

(iii) After storing the information in the mobile application or server: Fake
records could be inserted to increase the car resale value. With this protocol,
this is impossible because the record is protected by the CCU’s signature
to ensure its integrity is protected. The mileage can also prove the age of
the car when the service is conducted.

Replay attack is not possible through the use of random nonces for each trans-
action.
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The proposal also addresses all the security requirements discussed in
Sect. 3.3, as follows:

– Integrity: The data stored could not be changed, modified or added. To ensure
that the record of maintenance service is integrity protected, MAC and digital
signatures are used.

– Authentication: Data authentication and data origin authentication should be
in place. MAC is used to verify the data origin authentication.

– Non-repudiation: Digital signatures are used to ensure that the workshop and
the car cannot deny their own data.

– Freshness: Freshness is verified by using nonces and the mileage reading.

3.7.2 Formal Analysis of the Protocol Using CasperFDR and Scyther
Tools

The security requirements to be verified include confidentiality and authen-
tication properties. Aliveness, agreement and synchronisation are part of
the authentication property. Scyther is an automated tool for the verifica-
tion of security protocols [16]. CasperFDR tool uses Communication Sequen-
tial Process (CSP) files to be analysed using Failure Divergence Refinement
(FDR) [24]. CasperFDR and Scyther input scripts are as in link: CasperFDR
and Scyther input scripts (https://www.dropbox.com/sh/ixqrynsxb6tfvr0/
AAB0Q7ohHbcA9atE9O854ZWxa?dl=0). The protocol is modelled as follows.
The DT knows the CCU, but does not know the MD. MD only communicates
with the CCU and not with the DT.

The protocol security objectives are key confidentiality and internal (CCU-
ECU) and external (DT-CCU and MD-CCU) authentication. From our Scyther
and CasperFDR input scripts, the following security claims are made and veri-
fied.

(i) Confidentiality: To verify the confidentiality of the cryptographic keys. The
key confidentiality includes confidentiality of secret nonce (na, nb, nc and
nd: used as the MAC keys, and ne and nf : used as the AES keys), and all
secret keys (skdt, skccu and skmd).

(ii) Authenticity: To verify the authenticity of all entities involved in the process
(DT, CCU and MD). This includes agreement and aliveness tests as defined
in [15,23]. In Scyther, additional authentication property, i.e., synchronisa-
tion is also verified. Synchronisation considers the content and ordering of
the messages [15].

Analysis using CasperFDR. The security properties verified are secrecy, aliveness
and agreement. The confidentiality property is to verify the secrecy of the nonces
(na, nb, nc and nd) that are used as keys for MAC computations, and (ne and
nf) that are used as keys for AES computations. The aliveness property is to
verify the aliveness between DT and CCU, between CCU and ECU and between
MD and CCU. The agreement property is to ensure the agreement of variables
shared between DT and CCU (na and nb), between CCU and ECU (nc and nd)

https://www.dropbox.com/sh/ixqrynsxb6tfvr0/AAB0Q7ohHbcA9atE9O854ZWxa?dl=0
https://www.dropbox.com/sh/ixqrynsxb6tfvr0/AAB0Q7ohHbcA9atE9O854ZWxa?dl=0
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and between MD and CCU (ne and nf). The threat model is that the attacker
knows all the entities involved, i.e., the DT, CCU, ECU and MD, and their
corresponding public keys. No known attack was found in the protocol.

The scripts are divided into three parts for the three different parts of
the protocol. The full script for the first part (DT-CCU) can be found in
link: CasperFDR input script (https://www.dropbox.com/s/mlvl33829kkppo4/
maintenance.spl?dl=0). The script starts with #Free variables declaration,
which declares all the variables used in the protocol. It is followed with the #Pro-
tocol description. This describes the messages being transmitted (in sequence)
during the information passing from DT to CCU, which starts from service
update notification (i.e., 1.a -> c:a,{{c,serviceupdate,na}{SK(a)}}{PK(c)}). In
3. a -> c:a,c,service,mile,h(a,c,service,mile,na,nb), the list of services is passed
from DT to CCU in clear text but appended with MAC of the message. It is the
same in 5. a - > c:a,s1,s2,s3,h(s1,s2,s3,na,nb). Only DT and CCU can compute
the MAC and verify them based on the shared keys in the previous message.

In the #Processes, all the involved entities in the protocol and their knowl-
edge are declared. For example, INITIATOR(a,c,serviceupdate,na,service,mile,
s1,s2,s3) knows PK,SK(a), where a is the DT and c is the CCU.

The #Specification declares all the assertions made to verify the security
properties. The confidentiality of na and nb are declared as Secret(a,na,[c]) and
Secret(c,nb,[c]). As an authentication verification, the aliveness property between
DT-CCU and the Agreement property between DT-CCU are verified.

The #Actual variables section describes the names of the actual agents,
servers and the actual variables such as agent a is DT and agent c is CCU.
In the #Functions section the public and secret keys are declared (symbolic
PK,SK). The #System section again declares all the involved entities in the
protocol and their knowledge, but with their actual names. For example, INI-
TIATOR(DT,CCU,Serviceupdate,Na,Service,Mile,S1,S2,S3).

The #Intruder Information declares the intruder X who has the knowledge
of all the entities involved and their public keys, and its own public and secret
keys, i.e., IntruderKnowledge=DT,CCU,X,PK.

All the specifications made are verified and no attack is found for all the
assertions.

Analysis using Scyther. The security properties verified are secrecy, non-injective
synchronisation, non-injective agreement and aliveness. The secrecy property is
to verify the confidentiality of the nonces that are used as keys for MAC com-
putations. The non-injective synchronisation property is to verify that parties
know who they are communicating with, agree on the content of the messages
and the order of the messages. The non-injective agreement is to verify that
parties agreed on the content of the variables. The aliveness property is to verify
that the intended communication partner (DT-CCU, CCU-ECU and MD-CCU)
has executed some events. In Scyther, all the security properties are modelled in
role-base. The properties are viewed from the local view of each role.

https://www.dropbox.com/s/mlvl33829kkppo4/maintenance.spl?dl=0
https://www.dropbox.com/s/mlvl33829kkppo4/maintenance.spl?dl=0
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The full script for MD-CCU communication can be found in link: Scyther
input scripts (https://www.dropbox.com/s/i1f9zax8d2ga549/AutoLOG mdccu.
spdl?dl=0). In this section, the discussion is about the third part of the protocol,
i.e., between MD-CCU. The script starts with functions declarations (line 1–4).
Then, we have macros of messages to make the script neat and easy to follow
(line 8–14). Next, the events and claims are made for each role (MD: line 16–42
and CCU: line 44–69).

For example, for MD role, the examples of events are send 10(md,ccu,m10)
and recv 11(ccu,md,m11), which means the MD sends the macro m10 to the
CCU and later receives macro m11 from the CCU. Claims are the security
properties to be verified. For example, for the MD role, claim I3(md,SKR,
ne) is for confidentiality. Authentication properties are verified through
Agreement (claim I6 (md,Weakagree), claim I2(md,Niagree)), Synchronisation
(claim I1(md,Nisynch)), and Aliveness (claim I4(md,Alive)).

The default verification setup was used (i.e., five maximum number of runs,
type-matching and to find best attack with ten maximum patterns per claim).
The results for all the claims made are verified as “Ok” in the “Status” with
“Verified” and “No attacks” in the “Comments”. This means that no attack was
found within the bounded or unbounded statespace; the security property has
been successfully verified [14].

3.8 Protocol Implementation

The protocol was then implemented on a PIC32MZ Microchip microcontroller
and an Android device to obtain indicative performance results.

3.8.1 Implementation Platform
Our approach of implementation is to observe the computation time on the DT,
CCU, ECU and the mobile device separately. The mobile device communicates
via Wi-Fi, while the DT, CCU and ECU via CAN bus. There is a Wi-Fi module
connected to the CCU to receive the Wi-Fi messages from the mobile device and
convert these messages into UART messages. There is another interface module
between the Wi-Fi module and the CCU to translate UART messages into CAN
messages and vice versa. The DT, CCU and ECU are simulated using a micro-
controller with all the functions required to be an actual ECU with cryptographic
engines. PIC32MZ2048ECM144 [37] is chosen as the implementation platform for
all three components (DT, CCU and ECU). It is a 32 bit microcontroller with 2048
KB of flash and 512 KB of SRAM, and operates at 200 MHz clock. It supports CAN
bus communication, as required in an ECU. The hardware cryptographic engines
support the computation of cryptographic algorithms to produce faster perfor-
mance. For the mobile device, the application protocol is loaded into a LG Nexus 5
with a Quad-core 2.3 GHz Krait 400 CPU running on Android 5.1. PIC18F4580 is
used as the interface module to translate UART-CAN messages. PIC18F4580 [29]
is an 8 bit microcontroller with 32 KB of flash and 256 bytes of RAM. It operates
with a 16 MHz clock and supports CAN bus and UART communication. For the
Wi-Fi module, the Wi-Fi G demo board [36] is used (Fig. 3).

https://www.dropbox.com/s/i1f9zax8d2ga549/AutoLOG_mdccu.spdl?dl=0
https://www.dropbox.com/s/i1f9zax8d2ga549/AutoLOG_mdccu.spdl?dl=0
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CCUInterface moduleWi-Fi

module (PIC18F) (PIC32MZ)

UART CAN

Fig. 3. CCU’s setup for communication with MD

3.8.2 Experiment Setup
For the DT, CCU and ECU setup, the simulation of the messages from and to
each component uses the Microchip CAN bus analyser tool [31]. The tool can be
used to observe the messages sent from the PIC32MZ microcontroller and also to
send messages to it. On the PIC32MZ part, the PIC32MZ2048ECM144 starter
kit [35] is connected to a CAN PICtail daughter board [32] through a starter kit
adapter [34] and an I/O expansion board [30]. The CAN PICtail daughter board
is then connected to the CAN bus analyser. The setup is shown in Fig. 4. The
computation performance is measured based on cycle count given by MPLABX
debugger.

For the interface module (using PIC18F4580), an additional CAN trans-
ceiver, MCP2551 [28], is connected to the PIC18. The interface module is then
connected to MCP2200 breakout module [33] to observe the UART messages.
The performance of communication is measured using an oscilloscope. The per-
formance of Wi-Fi communication is measured using the “Inspector” feature
from the internet browser.

All the protocol messages are in the data byte of the CAN message. The
header of the CAN message is used in the same manner as in current imple-
mentation where it indicates what operation is to be handled. Based on the
proposed protocol, the length of a message is more than eight bytes, hence, all
the messages will need to be divided into more than one CAN message due to
the limited number of bytes (8 bytes) of data per CAN message transmission.
The messages are divided into three to eighteen messages to be transmitted via
CAN.

1 2 4

5

1 PIC32MZ starter kit

2 Starter kit adapter board

3 I/O expansion board

5 CAN bus analyser

4 CAN PICtail daughter board

3

Fig. 4. Lab setup for DT, CCU and ECU through CAN bus communication
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3.8.3 Performance Results
The computation and communication performance is as shown in Table 6. The
communication includes the transfer of data from the Wi-Fi module to the mid-
dle interface module (via UART) and from the middle interface module to the
CCU (via CAN). To the authors’ knowledge, there is no related work that pro-
poses an automated maintenance services logging system that we can compare
the performance with. However, the total time for the protocol to complete is
only about 883 ms. This shows that the protocol is efficient and practical for
implementation. Although the computation time for AES and HMAC is faster
using PIC32MZ as compared to the Android phone, the RSA computation is
longer for PIC32MZ. This is because PIC32MZ has cryptographic engines for
AES and HMAC which compute the algorithms at hardware level. Hence, this
results in a faster computation time. The communication time is longer for the
third part of the protocol, because the messages from the mobile device need
to go through Wi-Fi, be converted to UART messages, then to CAN messages.
It is the same for the communication from the CCU to mobile device, where
the messages from the CCU are in CAN, then converted to UART, and later

Table 6. Protocol performance on LG Nexus 5 and PIC32MZ; for Protocol part I:
A= DT, B = CCU, for Protocol part II: A = CCU, B = ECU, for Protocol part III:
A= MD, B= CCU

Protocol part Message Time (ms)

Computation Communication Total time (ms)

A B

I 1 53.041 52.691 1.825 107.557

2 52.680 53.012 1.825 107.517

3 0.102 0.086 0.859 1.046

4 0.084 0.079 0.752 0.915

5 0.077 0.086 0.752 0.914

II 6 0.099 0.050 0.537 0.686

7 0.039 0.083 0.537 0.659

8 0.103 0.083 0.859 1.045

9 0.083 0.078 0.537 0.697

III 10 0.605 0.049 57.627 58.280

11 0.805 0.083 72.818 73.705

12 0.382 0.036 50.031 50.450

13 1.216 39.459 163.962 204.636

14 0.231 0.031 34.841 35.103

15 1.082 39.609 163.962 204.652

16 0.199 0.030 34.841 35.069

Total 882.933
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to Wi-Fi. The baud rates of communication are at 9600 bps for UART and at
1 Mbps for CAN. The communication time can be further improved if CAN FD
[18] is used, where one message can contain up to 64 bytes of data, instead of
just 8 bytes.

4 Conclusion

The automated logging of car maintenance services helps car owners to keep track
of the car maintenance record and avoid major breakdowns that can contribute
to large costs. Having a secure protocol to conduct the automated logging can
ensure that no records can be faked or modified. This will not only help the
owner during the ownership of the car but also during car reselling, by increasing
value of the car’s price through showing that the car has been well maintained.
The use of a mobile device gives a user interface as well as connectivity for
the car, and thus helps the widespread use of this application since not all
cars have connectivity and/or user interface. The proposed protocol provides
integrity, authenticity and reliability of the data. It is also efficient and practically
implementable.
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Abstract. The availability of electronic information is necessary in our
everyday life. Progressively, often, data needs to be shared among the
unreliable entities. In this field, one interesting and common problem
occurs when two parties want to secretly determine the intersection or
cardinality of intersection of their respective private sets. PSI or its vari-
ants are ideal to solve the aforementioned problems. Existing solutions
of mPSI and mPSI-CA mainly use trusted third party to achieve fairness.
However, in real life, the unconditional trust is fraught with security risks
as the trusted third party may be unfaithful or corrupted. As a conse-
quence, construction of an efficient mPSI-CA preserving fairness remains
a challenging problem. In this paper, we address this issue by employing
an off-line third party, called arbiter, who is assumed to be semi-trusted
in the sense that he does not have access to the private information of
the entities while he will follow the protocol honestly. In this work, we
design a construction of fair and efficient mPSI-CA utilizing Bloom fil-
ter. Our mPSI-CA is proven to be secure in the random oracle model
(ROM) and achieves linear communication and computation overheads.
A concrete security analysis is provided in malicious environments under
the Decisional Diffie-Hellman (DDH) assumption.

Keywords: mPSI-CA · Malicious adversary · Fairness · Semi-trusted
arbiter · Bloom filter

1 Introduction

Nowadays, there are many realistic modern scenarios where electronic infor-
mation is increasingly often shared among mutually dishonest parties. Let us
consider some real-life scenarios where private data needs to be shared:

1. Program chairs of a conference may wish to determine that none of the sub-
mitted papers are also under review in other conferences or journals, while at
the same time they are not allowed to reveal papers in submission.

2. Two different health organizations want to know the number of common
villagers who are suffering from a particular disease in a village. None of the
organizations will disclose their list of suspects to other. Note that revealing
the name of the suspects may create an impact on patient’s mind.
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To address associated security and privacy issues in the aforementioned scenar-
ios, we need some strong cryptographic techniques, such as Private Set Inter-
section (PSI). In PSI, two parties want to learn the intersection of their respec-
tive private sets, while they also want to prevent the other party from finding
out anything more about their own sets except the elements of the intersection.
According to the functionality, PSI can be divided into the following two classes:
(i) one-way PSI, where the functionality enables only one of the two parties to
learn the intersection and the other party to receive nothing and (ii) two-way
or mutual PSI, where the functionality enables both the parties to receive the
intersection. In several applicative scenarios (see Example 2), the entities wish to
learn only the cardinality of the intersection rather than the intersection of their
private data sets. This cardinality version of PSI is known as PSI-CA. Similar
to PSI, PSI-CA can be divided into two classes: one-way PSI-CA and two-way
or mutual PSI-CA (mPSI-CA).

The primary challenge in designing mPSI-CA is its efficiency. Achieving fair-
ness is another crucial fact for mPSI-CA. Fairness guarantees that on completion
of the protocol, if one of the entities receives the cardinality of the intersection
then the other should also receive that. By using a fully trusted third party,
easily fairness can be achieved. However, in real life, existence of such fully
trusted third party seems to be impossible as the party may be compromised or
dishonest.

Related Works: Agrawal et al. [1] introduced the concept of PSI relying on
commutative encryption and attains linear complexity. Following this a num-
ber of one-way PSI protocols were proposed in [14,19,20,22,23,26,27]. The first
one-way PSI-CA dates back to the work of Agrawal et al. [1]. After that a
sequence of one-way PSI-CAs were presented in [12,14,15,20]. Kissner and Song
[25] combined oblivious polynomial evaluation (OPE) with additively homomor-
phic encryption (AHE) to design the first mPSI protocol which can support more
than two players in the communication system. In the subsequent years, a variety
of mPSI protocols were proposed in [10,13,16–18,24].

mPSI-CA: The concept of OPE based mPSI-CA was introduced by Kissner and
Song [25]. More than two players can participate in their construction. Fairness
is not considered in this work. Later, Camenisch and Zaverucha [10] introduced a
fair mPSI-CA protocol for certified sets relying on OPE. Recently, the authors of
[16] proposed the first fair optimistic mPSI-CA protocol over prime order group
with linear complexity.

Our Results: In this paper, we are aiming to design fair and efficient mPSI-CA
protocol instead of one-way PSI-CA. We utilize Bloom filter as building blocks
of our construction. We integrate distributed ElGamal encryption [6], Cramer-
Shoup cryptosystem [11] and blend zero-knowledge proofs for discrete logarithm
together with zero-knowledge argument for shuffle to build the proposed mPSI-
CA. Our scheme is proven to be secure in the ROM [3] against malicious adver-
saries with linear complexity under the DDH assumption. In mPSI-CA, fairness
is a major concern as it ensures that the intersection is received either by both
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the participants or none on completion of the protocol. We emphasize that fair-
ness is achieved in our construction using an optimistic fair exchange by using an
off-line third party, called arbiter who is assumed to be semi-trusted. The arbiter
is semi-trusted in the sense that he cannot get access to the private information
of the participants but follows the protocol honestly. As far as we are aware
of, there is only one fair mPSI-CA [16] with linear complexity over prime order
group. The authors of [16] proposed that their construction of mPSI-CA is secure
against malicious adversaries. However, it seems to us that their scheme does
not remain secure when the participants behave maliciously. In the efficiency
section, we will discuss about this in detail. On a more positive note, our proto-
col requires only 4 rounds whilst the mPSI-CA of [16] requires 5 rounds. Apart
from [16], there are two existing mPSI-CA protocols [10,25], both of which use
composite order group and attain quadratic computational overhead. Fairness is
not considered in [25]. The authors of [10] pointed out that their construction of
mPSI-CA can be modified to achieve fairness using an optimistic fair exchange
scheme where a trusted third party certifies the inputs. However, they have not
given any construction of that and their approach of attaining fairness does not
work in general cases where inputs are not certified by a trusted authority. This is
because forcing the participants to use the same inputs in two different instances
is practically infeasible in real life applications.

2 Preliminaries

Throughout the paper, the notations κ, a ← A, x � X and {Xt}t∈N ≡c {Yt}t∈N
are respectively used to represent “security parameter”, “a is output of the
procedure A”, “variable x is chosen uniformly at random from set X” and “the
distribution ensemble {Xt}t∈N is computationally indistinguishable from the
distribution ensemble {Yt}t∈N ”. Formally, {Xt}t∈N ≡c {Yt}t∈N means for all
probabilistic polynomial time (PPT) distinguisher Z, there exists a negligible
function ε(t) such that |Prx←Xt

[Z(x) = 1] − Prx←Yt
[Z(x) = 1]| ≤ ε(t). A

function ε : N → R is said to be a negligible function of κ if for each constant
c > 0, we have ε(κ) = o(κ−c) for all sufficiently large κ.

Definition 1 Functionality: A functionality FΠ , computed by two parties A
and B with inputs XA and XB respectively by running a protocol Π, is defined
as FΠ : XA × XB → YA × YB, where YA and YB are the outputs of A and B
respectively on completion of the protocol Π between A and B.

Definition 2 Decisional Diffie-Hellman (DDH) Assumption [5]: Let the
algorithm gGen generate a modulus n and a generator g of a multiplica-
tive group G of order n on the input 1κ. Suppose a, b, c � Zn. Then the
DDH assumption states that no PPT algorithm A can distinguish between
the two distributions 〈ga, gb, gab〉 and 〈ga, gb, gc〉 i.e., |Prob[A(g, ga, gb, gab) =
1] − Pr[A(g, ga, gb, gc) = 1]| is negligible function of κ.
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2.1 Security Model

Informally, the basic security requirements of any multi-party protocol are

(a) Correctness. At the end of the protocol an honest party should receive the
correct output.

(b) Privacy. After completion of the protocol, no party should learn more than
its prescribe output.

(c) Fairness. A dishonest party should receive its output if and only if the honest
party also receives its output.

In this work, we focus on the malicious model where the adversary can behave
arbitrarily. A protocol is said to be secure if any adversary in the real protocol
can be simulated by an adversary in the ideal world. The security framework of
mPSI-CA is formally described below following [18].

The real world: The protocol has three participants – party A, party B and
an arbiter Ar. All the participants have knowledge about the public parameters
of the protocol mPSI-CA, the functionality FmPSI−CA : ((X, |Y |), (Y, |X|)) →
(|X ∩ Y |, |X ∩ Y |), the security parameter κ, Ar’s public key pkAr and other
cryptographic parameters such as hash functions to be used. Party A has a pri-
vate input X, party B has a private input Y and Ar has an input ∈ {◦,⊥},
where ⊥ stands for “nothing”. The real world adversary C can corrupt upto two
parties in the protocol and can behave arbitrarily. At the end of the protocol
execution, an honest party outputs whatever prescribed in the protocol, a cor-
rupted party outputs nothing, and an adversary outputs its view which consists
of the transcripts available to the adversary. The joint output of A,B,Ar, C in
the real world is denoted by REALmPSI−CA,C(X,Y ).

The ideal process: In the ideal process, there is an incorruptible trusted party
T who can compute the ideal functionality FmPSI−CA and parties A,B and Ar.
Party A has input X, B has input Y and Ar has an input ∈ {◦,⊥}. The inter-
action is as follows:

(i) A sends X or ⊥ to T , following it B sends Y or ⊥ to T ; and then Ar
sends two messages bA ∈ ({◦,⊥} ∪ XA) and bB ∈ ({◦,⊥} ∪ YB) to T , where
XA = YB = N∪ {0}, set of non-negative integers. The inputs X and Y may
be different from X and Y respectively if the party is malicious.

(ii) T sends private delayed output to A and B. T ’s reply to A(resp. B) depends
on A and B’s messages and bA(resp. bB). Response of T to A(resp. B) is as
follows:
(a) If bA(resp. bB) = ◦, and T has received X =⊥ from A and Y =⊥ from

B, then T sends |X ∩ Y | to A(resp. B).
(b) Else if bA(resp. bB) = ◦, but T has received ⊥ from either A or B, then

T sends ⊥ to A(resp. B).
(c) Else bA(resp. bB) = ◦, then T sends bA(resp. bB) to A(resp. B).
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In the ideal process, if A, B and Ar are honest then they behave as follows: A
and B send their inputs to T and Ar sends bA = ◦ and bB = ◦. The ideal process
simulator SIM gets the inputs of the corrupted parties and may replace them
and gets T ’s response to corrupted parties. The joint output of A,B,Ar,SIM in
the ideal process is denoted by IDEALFmPSI−CA,SIM(X,Y ). The security definition
in terms of simulatability is

Definition 3. Simulatability: Let the functionality of mPSI − CA be
FmPSI−CA : ((X, |Y |), (Y, |X|)) → (|X ∩ Y |, |X ∩ Y |). Then the protocol mPSI-
CA is said to securely compute FmPSI−CA in malicious model if for every real
world adversary C, there exists an ideal world adversary SIM such that the
joint distribution of all outputs of the ideal world is computationally indistin-
guishable from the outputs in the real world, i.e., IDEALFmPSI−CA,SIM(X,Y ) ≡c

REALmPSI−CA,C(X,Y ).

2.2 Homomorphic Encryption [7]

We describe below the distributed ElGamal encryption [6] which is multi-
plicatively homomorphic encryption scheme and semantically secure provided
DDH problem is hard in underlying group. The distributed ElGamal encryption
DEL = (DEL.Setup,DEL.KGen,DEL.Enc,DEL.Dec) is executed between two
parties A1 and A2 as follows:

(par) ←− DEL.Setup(1κ). On input 1κ, a trusted third party outputs a public
parameter par= (p, q, g), where p, q are primes such that q divides p − 1 and
g is a generator of the unique cyclic subgroup G of Z∗

p of order q.
(pk, sk) ←− DEL.KGen(par). Each participant Ai, i = 1, 2 selects ai � Zq,

publishes epkAi
= yAi

= gai and keeps eskAi
= ai as secret to itself. Then,

each of A1, A2 publishes the public key for the DEL as pk = h = ga1+a2 ,
while the secret key for DEL is sk = a1 + a2. Note that sk is not known to
anyone under the hardness of DLP in G.

(dEpk(m)) ←− DEL.Enc(m, pk, par, r). Encryptor encrypts a message m ∈ G

using public key pk = h = ga1+a2 and computes the ciphertext tuple
dEpk(m) = (α, β) = (gr,mhr), where r � Zq.

(m∨ ⊥) ←− DEL.Dec(dEpk(m), a1, a2). Given a ciphertext dEpk(m) = (α, β) =
(gr,mhr), each participant Ai publishes αi = αai and proves the correctness
of the proof PoK

{
ai|yAi

= gai ∧ αi = αai
}

to Aj , where i, j ∈ {1, 2} and
i = j. If proofs are valid, then each of A1, A2 recovers the message m as

β
α1α2

= β
(α)(a1+a2) = mhr

gr(a1+a2) = mhr

hr = m; otherwise outputs ⊥.

2.3 Verifiable Encryption [7]

We describe below a CCA2-secure verifiable encryption scheme VE = (VE .Setup,
VE .KGen,VE .Enc,VE .Dec) which is a variant of Cramer-Shoup cryptosystem [11]
over prime order group [18].
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(ppar) ←− VE .Setup(1κ). On input 1κ, a trusted third party outputs a public
parameter ppar= (par, ĝ,H), where par = (p, q, g), p, q are primes such that q
divides p − 1 and g, ĝ are generators of the unique cyclic subgroup G of Z∗

p

of order q, H : {0, 1}∗ → Zq is an one-way hash function.
(vpkU , vskU ) ←− VE .KGen(par, ĝ, U). User U chooses u1, u2, v1, v2, w1 � Zq,

computes a = gu1 ĝu2 , b = gv1 ĝv2 , c = gw1 , publishes vpkU = (a, b, c) as his
public key and keeps vskU = (u1, u2, v1, v2, w1) secret to itself.

(vEvpkU
(m)) ←− VE .Enc(m, vpkU , ppar, z, L,H). To encrypt a message m ∈

G using public key vpkU = (a, b, c), encryptor picks z � Zq, sets e1 =
gz, e2 = ĝz, e3 = czm, uses a label L ∈ {0, 1}∗ which is computed using some
information that are available to both encryptor and decryptor, computes ρ =
H(e1, e2, e3, L), sets e4 = azbzρ, and computes the ciphertext vEvpkU

(m) =
(e1, e2, e3, e4).

(m∨ ⊥) ←− VE .Dec(vEvpkU
(m), vskU , L,H). Decryptor U , on receiving cipher-

text vEvpkU
(m) = (e1, e2, e3, e4), computes ρ = H(e1, e2, e3, L) and then

verifies eu1
1 eu2

2 (ev1
1 ev2

2 )ρ = e4 using secret key vskU = (u1, u2, v1, v2, w1).
If the verification succeeds, then he recovers the message m by computing
e3/(e1)w1 = czm/gzw1 = gzw1m/gzw1 = m; otherwise outputs ⊥.

2.4 Bloom Filter [4]

Bloom filter (BF) is a data structure that represents a set X = {s1, s2, ..., sv} of
v elements by an array of m bits and uses k independent hash functions H =
{h1, ..., hk} with hi : {0, 1}∗ → {1, ...,m} for i = 1, ..., k to insert elements or to
check the presence of an element. Let BFX ∈ {0, 1}m represent a Bloom filter
for the set X and BFX [i] represents the bit at the index i in BFX . We describe
below a variant of Bloom filter [4] that performs following three operations:

Initialization: Set 1 to all the bits of an m-bit array, which is an empty Bloom
filter with no element in that array.

Add(s): To add an element s ∈ X ⊆ {0, 1}∗ into a Bloom filter, s is hashed
with the k hash functions {h1, ..., hk} to get k indices h1(s), ..., hk(s). Set 0 to
the indices h1(s), ..., hk(s) of the Bloom filter. Each s ∈ X needs to be added to
get BFX ∈ {0, 1}m.

Check( ŝ): To check if an element ŝ belongs to X or not, ŝ is hashed with the k
hash functions {h1, ..., hk} to get k indices h1(ŝ), ..., hk(ŝ). Now if atleast one of
BFX [h1(ŝ)], ...,BFX [hk(ŝ)] is 1 then ŝ is not in X, otherwise ŝ is probably in X.

Bloom filter allows false positives whereby an element that has not been
inserted in the filter can mistakenly pass the set membership test. This happens
when an element ŝ does not belong to X but BFX [hi(ŝ)] = 0 for all i = 1, ..., k.
On the contrary, Bloom filter never yields a false negative i.e., an element that
has been inserted in the filter will always pass the test. This is because if ŝ
belongs to X, then each of BFX [h1(ŝ)], ...,BFX [hk(ŝ)] is 0.

Theorem 1 [19]. Given the number v of elements to be added and a desired
maximum false positive rate 1

2k
, the optimal size m of the Bloom filter is m = vk

ln 2 .
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2.5 Zero-Knowledge Proof of Knowledge [2]

Zero-Knowledge proof [2] is a two-party protocol, where prover (P) wants to
convince the verifier (V) about the truth of the claim that he knows some secret
values, and the verifier wants to check that the claim is true. A zero-knowledge
proof protocol π for relation R should satisfy the following three properties:

(a) Completeness. Completeness, also known as proof of knowledge, means that
an honest prover convinces the verifier that he knows the secret values.

(b) Soundness. Soundness indicates that a cheating prover, who does not know
the actual secret values, will succeed to convince the verifier with negligible
probability. In other words, if the success-probability of the prover is non-
negligible, then there exists a knowledge extractor that can extract the secret
values.

(c) Zero-knowledge. Zero-knowledge ensures that the verifier does not obtain
any useful information about the secret values of the prover.

Zero-Knowledge Proof for Discrete Logarithm [9]: We follow the notations
introduced by [8] for the various zero-knowledge proofs of knowledge of discrete
logarithms and proofs of validity of statements about discrete logarithms. We
describe below a general construction of interactive zero-knowledge proofs of

knowledge, denoted by π = PoK{(α1, ..., αl)|
M∧
i=1

Xi = fi(α1, ..., αl)}, where the

prover P wants to prove the knowledge of (α1, ..., αl) to the verifier V by send-
ing the commitments to Xi = fi(α1, ..., αl), i = 1, ...,M such that extracting
(α1, ..., αl) from X1, ...,XM is infeasible for anyone. For each i = 1, ...,M , fi is
publicly computable linear function from X l to Y, where X is additive set and
Y is multiplicative set. This proof system satisfies soundness property under the
hardness of DDH assumption. For verification process see [16].

Lemma 1. If Exp is the total number of exponentiations computed and GE is
the total number of group elements sent for verification of the proof system π,
then: (a) Exp = M +2

∑M
i=1(number of exponentiations to compute Xi), and (b)

GE = M + l + 1.

Zero-Knowledge Argument for Shuffle [21]: We briefly discuss the zero-
knowledge argument for shuffle of [21] which we use in our mPSI-CA. Let p, q
be two primes such that q divide p − 1, G be a subgroup of Z

∗
p of order q,

g0(= 1) be an element of G, x � Zq be a private key and m0 = gx
0 mod p be a

public key used for re-encryption in shuffling. Let {τu}v
u=−4 be v + 5 elements

of G that are uniformly and randomly generated so that neither P nor V can
generate non-trivial integers a, {au}v

u=−4 satisfying ga
0

∏v
u=−4 τau

u ≡ 1 mod p
with non-negligible probability.

The prover P chooses {A0i � Zq}v
i=1 and a permutation matrix

(Aji)j,i=1,...,v of order v × v corresponding to a permutation φ ∈ Σv, where Σv

denotes the set of all possible permutations over the set {1, ..., v} and the permu-
tation matrix (Aji)j,i=1,...,v is defined as Aji = 1 mod q if φ(j) = i, 0 otherwise.
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The prover P shuffles v ElGamal ciphertexts {(gi,mi)}v
i=1, yielding ciphertexts

{(g′
i,m

′
i)}v

i=1 as

(g′
i,m

′
i) =

(
v∏

u=0

gAui
u ,

v∏
u=0

mAui
u

)
= (gA0i

0 gφ−1(i),m
A0i
0 mφ−1(i)) mod p. (1)

The zero-knowledge argument of [21] for the correctness of a shuffle is
denoted by π̂ = PoKArg

{
(φ ∈ Σv, A01, ..., A0v ∈ Zq)|{(g′

i,m
′
i) =

(gA0i
0 gφ−1(i),m

A0i
0 mφ−1(i))}v

i=1

}
. The prover P wants to prove the knowledge

of the permutation φ ∈ Σv and randomness {A0i ∈ Zq}v
i=1 to the verifier V such

that Eq. 1 holds for each i = 1, ..., v. Note that decryption of the ciphertexts
(g′

i,m
′
i) and (gφ−1(i),mφ−1(i)) give same message. This proof system satisfies

soundness property under the hardness of DDH assumption. For verification
process see [21].

Lemma 2. If Exp is the total number of exponentiations computed and GE
is the total number of group elements sent for verification of the proof system
represented by π̂, then (a) Exp = 15v + 22, (b) GE = 4v + 16. In particular,
commitment generation requires 9v + 12 Exp and verification process requires
6v + 10 Exp.

For the distributed ElGamal encryption DEL presented in the Sect. 2.2,
the zero-knowledge argument for shuffle will be of the form PoKArg

{
(φ ∈

Σv, ρ1, ..., ρv ∈ Zq)|{C ′
i = Cφ−1(i)DEL.Enc(g0, pk, par, ρi)}v

i=1

}
, where cipher-

texts {Ci = (gi,mi)}v
i=1 are shuffled to {C ′

i = (g′
i,m

′
i)}v

i=1.

3 Protocol

Our mPSI-CA protocol consists of three algorithms: (I) Setup, (II) procedure
mPSI-CA and (III) procedure Dispute Resolution. It involves two parties A and
B together with an arbiter Ar. In the Setup phase, a trusted third party generates
the global parameter and each of parties A, B and Ar generate their public/secret
key pair. The procedure mPSI-CA is executed between the parties A and B with
respective input sets X = {x1, ..., xv} ⊂ {0, 1}∗ and Y = {y1, ..., yw} ⊂ {0, 1}∗

to compute |X ∩Y |, the cardinality of the set intersection. A high level overview
of this process is given in Fig. 2. Finally, in the procedure Dispute Resolution,
the arbiter Ar takes part only when a corrupted player prematurely aborts
the procedure mPSI-CA and resolves the dispute without knowing the private
information of the parties A and B.

(I) Setup. The Setup algorithm is represented by Fig. 1.
Note that a session identity sid is agreed by the parties A, B and Ar before
involving in the procedure mPSI-CA.

(II) procedure mPSI-CA. This is a four round procedure executed between
the parties A and B. We describe the steps below.
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Setup(1κ) – We use the distributed ElGamal encryption DEL and the verifiable en-
cryption VE over prime order group as described in the sections 2.2 and 2.3.

– A trusted third party generates ppar = (par, ĝ, H) ← VE .Setup(1κ), where par =
(p, q, g), selects Bloom filter parameters {m, k, H}, chooses τi, ιj � G for i =
−4, ..., m; j = −4, ..., w, where G =< g > is the cyclic subgroup of Z∗

p of order q.
Finally, the trusted third party publishes all these as global parameter gpar i.e.,
gpar = (ppar, m, k, H, {τi}m

i=−4, {ιj}w
j=−4). Note that {τi}m

i=−4, {ιj}w
j=−4 are to be

used in zero-knowledge arguments for shuffle of the procedure mPSI-CA.
– Each of the parties A, B generates

(epkA, eskA) ← DEL.KGen(par), eskA = a1 � Zq, epkA = yA = ga1 ,

(epkB , eskB) ← DEL.KGen(par), eskB = a2 � Zq, epkB = yB = ga2 .

They publish their respective public keys yA, yB through the trusted third party
who acts as the certifying authority in this case. Parties A, and B keeps the
respective secret keys eskA, eskB secret to themselves.

– The off-line arbiter Ar generates
(vpkAr = (a, b, c), vskAr = (u1, u2, v1, v2, w1)) ← VE .KGen(par, ĝ),

where u1, u2, v1, v2, w1 � Zq and a = gu1 ĝu2 , b = gv1 ĝv2 , c = gw1 , and then
publishes the public key vpkAr through the trusted third party who works as the
certifying authority in this case also.

– Let pk = h = (epkA)(epkB) = ga1+a2 and sk = a1 +a2. Then (pk, sk) pair serves as
the public-secret key pair for DEL. Note that the secret key sk = a1+a2 for DEL is
not known to anyone. However, the public key pk for DEL is publicly computable
from epkA and epkB .

Fig. 1. Setup algorithm of our mPSI-CA

Step 1. The party A proceeds as follows:
(i) constructs a Bloom filer BFX of his private set X following the procedure

defined in Sect. 2.4; using k independent hash functions {h1, ..., hk}, where
hi : {0, 1}∗ → {1, ...,m} for i = 1, ..., k;

(ii) for i = 1, ...,m, encrypts each of gbi = gBFX [i] using the public key pk
to get Ci = (ci, di) ← DEL.Enc(gbi , pk, par, rbi), where ci = grbi , di =
gbihrbi ;

(iii) generates a proof π1 = PoK
{
rb1 , ..., rbm

∣∣ m∧
i=1

(ci = grbi )
}
;

(iv) sends R1 =
〈{Ci}m

i=1, π1

〉
to the party B.

Step 2. On receiving R1 =
〈{Ci}m

i=1, π1

〉
from A, the party B verifies the validity

of the proof π1 following the zero-knowledge proof for discrete logarithm (DL)
described in Sect. 2.5. If the verification fails then B aborts. Otherwise, does
the following:
(i) chooses a random permutation φ from the set Σm of all possible permu-

tations over the set {1, ...,m}, selects α1, ..., αm � Zq and computes
Ci = Cφ−1(i)DEL.Enc(g0, pk, par, αi) = (cφ−1(i), dφ−1(i))(gαi , g0hαi) =
(c′

i, d
′
i),

where c′
i = cφ−1(i)g

αi , d′
i = dφ−1(i)h

αi for i = 1, ...,m;
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(ii) for each j = 1, ..., w, constructs an m-bit string sj (corresponding to
yj ∈ Y , B’s input set) whose i-th bit s

(i)
j is defined as follows

s
(i)
j =

{
1, if i ∈ {φ(h1(yj)), ..., φ(hk(yj))}
0, elsewhere;

(iii) chooses k1, ..., kw � Zq and uses {s1, ..., sw} to compute for j = 1, ..., w

νj =
m∏

i=1

(Ci)s
(i)
j = (λj , δj), where λj =

m∏
i=1

(c′
i)

s
(i)
j , δj =

m∏
i=1

(d′
i)

s
(i)
j ,

yj = (νj)r = (cj , dj), where cj = (λj)kj , dj = (δj)kj ;
(iv) generates a label L ∈ {0, 1}∗ using a session identity sid which has been

agreed by all parities beforehand and the hash of past communication;
(v) selects r1, ..., rw, z1, ..., zw � Zq, for j = 1, ..., w, computes Tj = (cj)a2grj

and vEvpkAr
(grj ) = (t1j , t2j , t3j , t4j) ← VE .Enc(grj , vpkAr, ppar, zj , L,H),

where t1j = gzj , t2j = (ĝ)zj , t3j = czjgrj , t4j = azj bzjρj , ρj =
H(t1j , t2j , t3j , L) and vpkAr = (a, b, c) is the public key of the arbiter
Ar;

(vi) generates the proofs π2, π̂2 as

π2 = PoK
{
(a2, r1, ..., rw, z1, ..., zw, k1, ..., kw)

∣
∣(yB = ga2 )

w∧

j=1

(t1j = gzj )(t2j = (ĝ)zj )

w∧

j=1

(t3j = czj grj )(t4j = azj bzjρj )(cj = (λj)
kj )(dj = (δj)

kj )(Tj = (cj)
a2grj )

}
,

π̂2 = PoKArg
{
(φ ∈ Σm, α1, ...., αm)

∣
∣{Ci = Cφ−1(i)DEL.Enc(g0, pk, par, αi)}m

i=1

}
;

(v) sends R2 =
〈{Ci}m

i=1, {yj , sj , Tj , vEvpkAr
(grj )}w

j=1, π2, π̂2

〉
to A.

Note that the members of the set {gr1 , ..., grw} are encrypted under the
public key of the arbiter Ar in order to make sure that if B aborts pre-
maturely then A will get the correct output by involving in the procedure
Dispute Resolution.

Step 3. The party A, on receiving R2 =
〈{Ci}m

i=1, {yj , sj , Tj , vEvpkAr
(grj )}w

j=1,

π2, π̂2

〉
from B, computes νj =

m∏
i=1

(Ci)s
(i)
j = (λj , δj) for j = 1, ..., w. The

party A then checks the validity of the proofs π2, π̂2 following the zero-
knowledge proof for discrete logarithm and zero-knowledge proof of argument
for shuffle as described in Sect. 2.5, and aborts if verification of atleast one of
π2, π̂2 fails; otherwise, executes the following steps:
(i) chooses a random permutation ψ ∈ Σw, where Σw is the

set of all possible permutations over the set {1, ..., w}, selects
β1, ..., βw � Zq and computes μj = νψ−1(j)DEL.Enc(g0, pk, par, βj) =
(λψ−1(j), δψ−1(j))(gβj , g0hβj ) = (ej , fj) and ej = (ej)a1 , where ej =
λψ−1(j)g

βj , fj = δψ−1(j)h
βj for each j = 1, ..., w;

(ii) generates the proofs π3 = PoK
{
(a1)|(yA = ga1)

w∧
j=1

(ej = (ej)a1)
}
,

π̂3 = PoKArg
{
(ψ ∈ Σw, β1, ...., βw)

∣∣{μj = νφ−1(j)DEL.Enc(g0, pk,

par, βj)}w
j=1

}
;
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(iii) sends R3 =
〈{μj , (ej)}w

j=1, π3, π̂3

〉
to B.

Step 4. On receiving R3 =
〈{μj , (ej)}w

j=1, π3, π̂3

〉
from A, party B verifies the

correctness of the proofs π3, π̂3. If atleast one of π3, π̂3 does not valid then B
aborts, else executes the following steps
(i) sets card = 0 and for j = 1, ..., w,

(a) extracts ej , fj , ej = (ej)a1 from R3 =
〈{μj = (ej , fj), (ej)}w

j=1,

π3, π̂3

〉
, received from A in Step 3,

(b) computes (ej)a2 using secret key eskB = a2 and utilizes (ej)a2 to
compute lj = fj

(ej)(ej)a2 = fj

(ej)a1 (ej)a2 ,
(c) increases card by 1 i.e., sets card = card + 1 if lj = 1;

(ii) generates a zero-knowledge proof π4 as

π4 = PoK
{
(z1, ..., zw)| ∧w

j=1 (t1j = gzj )(t2j = ĝzj )(t3j = czj grj )(t4j = azj bzjρj )
}
;

(iii) sends R4 =
〈{grj}w

j=1, π4

〉
to A and outputs card as the cardinality of

X ∩ Y . Note that B constructs the proof π4 to prove that grj ∈ R4 was
encrypted in Step 2 to generate vEvpkAr

(grj ) for j = 1, ..., w using Ar’s
public key.

Step 5. On receiving R4 =
〈{grj}w

j=1, π4

〉
from B, party A verifies the validity

of the proof π4. If the proof is valid then A proceeds as follows
(i) sets card = 0 and for j = 1, .., w,

(a) extracts Tj , cj , dj from R2 =
〈{Ci}m

i=1, {yj = (cj , dj), sj , Tj ,

vEvpkAr
(grj )}w

j=1, π2, π̂2

〉
, received from B in Step 2,

(b) computes Tj

grj = (cj)
a2grj

grj = (cj)a2 and utilizes (cj)a2 to compute

l′j = dj

(cj)a1 (cj)a2 , where eskA = a1 is A’s secret key,
(c) increases card by 1 i.e., sets card = card + 1 if l′j = 1;

(ii) finally, outputs card as the cardinality of X ∩ Y .
If the verification of the proof π4 does not succeed or B does not send
{gr1 , ..., grw} to A (i.e., B prematurely aborts) then A sends a dispute
resolution request to the arbiter Ar.

(III) procedure Dispute Resolution. On receiving a dispute resolution
request from A, the arbiter Ar who is an off-line semi-trusted third party inter-
acts with A and B as follows:

Step 1. Party A sends all the messages sent and received in Step 1–2 of the
mPSI-CA protocol to the arbiter Ar. As the session ID sid is known to Ar,
on receiving the messages from A, the arbiter Ar computes the label L and
verifies the consistency between messages and the label L. If the verification
fails or if the transcript ends before the end of Step 2 of the procedure mPSI-
CA then Ar aborts so that neither party gets any advantage. Otherwise, Ar
continues with the following steps.

Step 2. As in Step 3 of the procedure mPSI-CA, A sends R3 =〈{μj , (ej)}w
j=1, π3, π̂3

〉
to Ar.
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Step 3. On receiving R3 =
〈{μj , (ej)}w

j=1, π3, π̂3

〉
from B, the arbiter Ar checks

the validity of the proofs π3, π̂3. If atleast one the proofs does not valid then
Ar aborts so that neither party gets any advantage. Otherwise, Ar decrypts
each member of {vEvpkAr

(gr1), ..., vEvpkAr
(grw)} using its secret key vskAr

and sends {grj}w
j=1 to A, thereby A can evaluate |X ∩ Y | using the similar

technique as described in Step 5 of the procedure mPSI-CA. On the other
hand, Ar forwards

〈{μj , (ej)}w
j=1

〉
to B who in turn can execute |X ∩ Y |

using the similar technique as explained in Step 4 of the procedure mPSI-CA.

4 Security

We present two cases to prove the security of mPSI-CA. In Case I, the adversary
corrupts two of the three parties while in Case II, when the adversary corrupts
only one of the three parties.

Theorem 2. Suppose the encryption schemes DEL and VE are semantically
secure, the associated proof protocols are zero knowledge proofs and zero-
knowledge argument of proofs for shuffle. Then our proposed mPSI-CA pre-
sented in Sect. 3 is a secure computation protocol in ROM for the functional-
ity FmPSI−CA : ((X, |Y |), (Y, |X|)) → (|X ∩ Y |, |X ∩ Y |) in the security model
described in Sect. 2.1 except with negligible probability ε, where ε is the false pos-
itive rate of the Bloom filter BFX .

Proof. Let C be the real world adversary who breaks the security of our
mPSI-CA protocol executed between two parties A and B with their respec-
tive private input sets X and Y ; and an arbiter Ar. Suppose there be an
incorruptible trusted party T , parties A,B, Ar and simulator SIM in the
ideal process. In the real world, a trusted party generates the global para-
meter gpar = (ppar,m, k,H, {τi}m

i=−4, {ιj}w
j=−4) and certifies the public keys

epkA, epkB , vpkAr of A,B,Ar respectively. On the other hand, simulator SIM
performs these works in the ideal process. Let us denote REALmPSI−CA,C(X,Y )
as the joint output of A,B,Ar, C in the real world and IDEALFmPSI−CA,SIM(X,Y )
as the joint output of A,B,Ar,SIM in the ideal process.

Case I (When the adversary C corrupts two parties). There are three subcases
– either (I) A and Ar are corrupted or (II) b and Ar are corrupted or (III) A
and B are corrupted. We analyze each of these subcases below.

Subcase I (A and Ar are corrupted). Let us consider Z as a distinguisher to
distinguish the real world from the ideal world. The distinguisher Z controls C,
feeds the input of the honest party B and observes B’s output. We present a
sequence of games G0, ...,G4 to prove indistinguishability of Z’s views in the
real world and in the ideal world. The view of the real world adversary C together
with B’s output constitutes Z’s view in the real world. On the other hand, the
view of the ideal world simulator SIM along with output of B forms Z’s view
in the ideal world. Here view of an entity means the transcripts available to it.
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Common input: gpar, epkA, epkB , pk = epkA · epkB , vpkAr

A’s private input: B’s private input:
X = {x1, ..., xv}, eskA = a1 Y = {y1, ..., yw}, eskB = a2

constructs BFX ∈ {0, 1}m

rb1 , ..., rbm � Zq

for i = 1, ..., m,

Ci = (ci, di) ← DEL.Enc(gbi , pk, par, rbi)

R1 =
〈{Ci}m

i=1, π1

〉 R1−−−−→ φ � Σm, α1, ..., αm, k1, ..., kw � Zq

r1, ..., rw, z1, ..., zw � Zq, for i = 1, ..., m,

Ci = Cφ−1(i)DEL.Enc(g0, pk, par, αi)
for j = 1, ..., w, constructs m-bit string sj as

s
(i)
j =

{
1, if i ∈ {φ(h1(yj)), ..., φ(hk(yj))}
0, elsewhere;

for j = 1, ..., w,

νj =
∏m

i=1(Ci)
s
(i)
j = (λj , δj)

yj = (νj)
kj = (cj , dj), Tj = (cj)

a2grj

vEvpkAr (grj ) = (t1j , t2j , t3j , t4j)
← VE .Enc(grj , vpkAr, ppar, zj , L, H)

R2←−−−− R2 =
〈{Ci}m

i=1, {yj , sj , Tj , vEvpkAr (grj )}w
j=1,

π2, π̂2

〉
ψ ∈ Σw, β1, ..., βw � Zq

for j = 1, ..., w,

νj =
∏m

i=1(Ci)
s
(i)
j = (λj , δj)

μj = (ej , fj)
= νψ−1(j)DEL.Enc(g0, pk, par, βj)

ej = (ej)
a1

R3 =
〈{μj , (ej)}w

j=1, π3, π̂3

〉 R3−−−−→
sets card = 0 and for j = 1, ..., w,

lj =
fj

(ej)(ej)
a2 =

fj
(ej)

a1 (ej)
a2

if lj = 1, sets card = card + 1
outputs card as |X ∩ Y |

R4←−−−− R4 =
〈{grj}w

j=1, π4

〉
sets card = 0 and for j = 1, ..., w,

Tj

g
rj = (cj)

a2 , l′j =
dj

(cj)
a1 (cj)

a2

if l′j = 1 sets card = card + 1
outputs card as |X ∩ Y |

Fig. 2. Communication flow of procedure mPSI-CA

We argue that Z’s views in any two neighbouring game are indistinguishable. Let
Si be the simulator in Gi that simulates the honest party B and Z distinguishes
the view of Gi from the view of the real protocol with the probability Pr[Gi]
for i = 0, ..., 4.

G0: It corresponds to the real protocol, where the simulator S0 has the full knowl-
edge of B and interacts with C. Hence, Pr[REALmPSI−CA,C(X,Y )] = Pr[G0].

G1: This game is same as G0 except the following:
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(a) The simulator S1 maintains a list X ′ and records all queries the adversary
made to the random oracles, such as h1, ..., hk. Without loss of generality,
we assume the adversary makes no more than poly(κ) queries and stops at
some point, where κ is security parameter.

(b) If the proof π1 is valid then the simulator S1 runs the extractor algorithm
for π1 with C to extract the exponents {rb1 , ..., rbm}. These exponents rbi

for i = 1, ...,m are utilized by the simulator S1 to compute gbi = di

h
rbi

,
where di = gbihrbi is extracted from Ci = (ci, di) in the first round message
R1 =

〈{Ci}m
i=1, π1

〉
sent by the party A (i.e., C) to B (i.e., S1) and h =

epkA · epkB = ga1+a2 . Note that Ci = (ci, di) is the encryption of BFX [i]
using distributed ElGamal encryption scheme under pk using randomness
rbi . The simulator S1 then extracts Bloom filter BFX = {b1, ..., bm} for the
set X by setting BFX [i] = 0 if gbi = 1, 1 otherwise for i = 1, ...,m.

(c) The simulator S1 runs the check step of Bloom filter presented in Sect. 2.4
for membership check of each element in X ′ against BFX . If the check is
valid then the corresponding element is put in a set X ′′. Note that the set
X ′′ is identical to the set X except with negligible probability ε.

The views of Z are indistinguishable in G0 and G1 by the simulation soundness
property of π1. Therefore, |Pr[G1] − Pr[G0]| ≤ ε1(κ), a negligible function.

G2: Note that in this game the simulator S2 has the knowledge of A’s input set
X = {x1, ..., xv} extracted as in G1, B’s input set Y = {y1, ..., yw} and secret
key eskB = a2 of B. G2 is exactly same as G1 except the following:

(a) If the verifications of both the proofs π3, π̂3 succeed then S2 outputs |X ∩Y |
as the final output of B using Y and the above extracted set X.

(b) If the verification of atleast one of the proofs π3, π̂3 fails or C aborts prema-
turely in the procedure mPSI-CA, then the following cases arise:
– if C sends {μj = (ej , fj), ej}w

j=1 to S2 in the procedure Dispute Resolution,
then S2 first sets card = 0. For j = 1, ..., w, the simulator S2 computes
(ej)a2 and utilizes it to compute lj = fj

(ej)(ej)a2 . The simulator S2 increases
card by 1 if lj = 1, for j = 1, ..., w and outputs card as the final output of
B.

– if C aborts in the procedure Dispute Resolution then S2 outputs ⊥ as the
final output of B.

Clearly, Z’s views in G2 and G3 are indistinguishable. Hence,

|Pr[G2] − Pr[G1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

G3: This game is identical to G2 except that S3 simulating the honest party B
does the following after extracting X = {x1, ..., xv} as in G1:

(a) Computes |X ∩ Y | using the input set Y = {y1, ..., yw} of B and constructs
a set Y ′ = {y′

1, ..., y
′
w} by including |X ∩ Y | many random elements of X

together with w − |X ∩ Y | many random elements chosen from {0, 1}∗ \ X.
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(b) Chooses a random permutation φ ∈ Σm over the set {1, ...,m}, selects
α1, ..., αm � Zq and computes for each i = 1, ...,m,
Ci = Cφ−1(i)DEL.Enc(g0, pk, par, αi) = (cφ−1(i), dφ−1(i))(gαi , g0hαi) =
(c′

i, d
′
i),

where c′
i = cφ−1(i)g

αi , d′
i = dφ−1(i)h

αi .
(c) For each j = 1, ..., w, constructs an m-bit string sj (corresponding to y′

j)

whose i-th bit s
(i)
j is defined as s

(i)
j =

{
1, if i ∈ {φ(h1(y′

j)), ..., φ(hk(y′
j))}

0, otherwise.

(d) Selects kj � Zq, computes νj =
∏m

i=1(Ci)s
(i)
j = (λj , δj) and yj = (cj , dj),

where cj = (λj)kj , dj = (δj)kj for j = 1, ..., w.
(e) Generates a label L ∈ {0, 1}∗ using a session ID which has been agreed

by all parities beforehand and the hash of past communication, chooses
r1, ..., rw, z1, ..., zw � Zq and computes Tj = (cj)a2grj and vEvpkAr

(grj ) =
(t1j , t2j , t3j , t4j) ← VE .Enc(grj , vpkAr, ppar, zj , L,H) for j = 1, ..., w.

(f) Finally, sends
〈{Ci}m

i=1, {yj , sj , Tj , vEvpkAr
(grj )}w

j=1

〉
to C and simulates

π2, π̂2.

As the encryption schemes DEL and VE are semantically secure, the tuple〈{Ci}m
i=1, {yj , sj , Tj , vEvpkAr

(grj )}w
j=1

〉
is identically distributed in G3 and G2.

The zero-knowledge (simulatability) of π2, π̂2 and indistinguishability of the
tuple

〈{Ci}m
i=1, {yj , sj , Tj , vEvpkAr

(grj )}w
j=1

〉
make the views of Z in G2 and

G3 indistinguishable. Therefore, there exists a negligible function ε3(κ) such
that |Pr[G3] − Pr[G2]| ≤ ε3(κ).

G4: This game is analogous to G3 except that during the setup phase, the
simulator S4 in simulating B chooses a2 � Zq and simulates π4 as in Step 4.
By the zero-knowledge (simulatability) of π4, the views of Z in G3 and G4

are indistinguishable. Consequently, |Pr[G4] − Pr[G3]| ≤ ε4(κ), a negligible
function.

Let us now construct the ideal world simulator SIM that uses C as sub-
routine, simulates the honest party B, controls A,Ar and incorporates all steps
from G4.

(i) First, SIM plays the role of trusted party and generates the global para-
meter gpar = (ppar,m, k,H, {τi}m

i=−4, {ιj}w
j=−4), where ppar = (par, ĝ,H).

It then plays the role of honest party B by choosing a2 � Zq and publishing
ga2 as the public key epkB = yB. It also acts as a certifying authority to
obtain respective public keys epkA, vpkAr of A,Ar. Finally, SIM invokes
C.

(ii) SIM keeps records for all poly(κ) queries the adversary made to the ran-
dom oracles in a list X ′, where κ is security parameter.

(iii) On receiving R1 =
〈{Ci}m

i=1, π1

〉
from C, SIM verifies the proof π1. If the

verification fails, SIM instructs A to send ⊥ to T , Ar to send bB = ◦
to T and terminates the execution; otherwise, runs the extractor algo-
rithm for π1 with C to extract the exponents {rb1 , ..., rbm} and extracts the
Bloom filter BFX for the set X exactly in the same way as described in G1.
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Similar to G1, SIM queries each element in X ′ against BFX to construct
a set X ′′ which is essentially X except with negligible probability ε. SIM
then instructs A to send X to T , Ar to send bA = ◦ to T and receives
|X ∩ Y | from T .

(iv) As in G3, SIM constructs a set Y ′ = {y′
1, ..., y

′
w}, computes

Ci = (c′
i = cφ−1(i)g

αi , d′
i = dφ−1(i)h

αi), i = 1, ...,m

νj =
∏m

i=1(Ci)s
(i)
j = (λj , δj) and yj = (cj , dj) = ((λj)kj , (δj)kj ), j = 1, ..., w

Tj = (cj)a2grj and vEvpkAr
(grj ) = (t1j , t2j , t3j , t4j), j = 1, ..., w,

where s
(i)
j =

{
1, if i ∈ {φ(h1(y′

j)), ..., φ(hk(y′
j))}

0, otherwise,
φ � Σm and α1, ..., αm, k1, ..., kw, r1, ..., rw � Zq. It also simulates the
proofs π2, π̂2 and sends

〈{Ci}m
i=1, {yj , sj , Tj , vEvpkAr

(grj )}w
j=1

〉
to C. SIM

then executes following steps according to C’s reply.
(v) If C instructs A to send

〈{μj , (ej)}w
j=1, π3, π̂3

〉
, then SIM verifies the valid-

ity of each of the proofs π3, π̂3. If the verifications of both the proofs succeed
then SIM instructs Ar to send bB = ◦. If verification of atleast one of the
proofs fails or C instructs A to abort in the procedure mPSI-CA then the
following cases arise:
– if C instructs Ar to send {μj = (ej , fj), ej}w

j=1 in the procedure Dispute
Resolution, then as in G2, SIM computes (ej)a2 , utilizes it to compute
lj = fj

(ej)(ej)a2 and sets card = card+1 if lj = 1 for j = 1, ..., w, where card

is a count variable which is set 0 initially. Finally, SIM instructs Ar to
send bB = card to T , outputs whatever C outputs and terminates.

– if C instructs Ar to abort in the procedure Dispute Resolution, SIM
instructs Ar to send bB =⊥ to T , outputs whatever C outputs and ter-
minates.

(vi) If C instructs both A and Ar to abort, then SIM instructs Ar to send
bB =⊥ to T , outputs whatever C outputs and terminates.

Note that the ideal world simulator SIM provides the real world
adversary C exactly the same simulation as the simulator S4 in G4.
Therefore, we have Pr[IDEALFmPSI−CA,SIM(X,Y )] = Pr[G4]; yielding
|Pr[IDEALFmPSI−CA,SIM(X,Y )] − Pr[REALmPSI−CA,C(X,Y )]| = |Pr[G4] −
Pr[G0]| ≤ Σ4

i=1|Pr[Gi] − Pr[Gi−1]| ≤ Σ4
i=1εi(κ) = ρ(κ), where ρ(κ) is a negli-

gible function.
Consequently, we have IDEALFmPSI−CA,SIM(X,Y ) ≡c REALmPSI−CA,C(X,Y ).

Subcase II (B and Ar are corrupted). Let Z be a distinguisher who controls
C, feeds the input of the honest party A and also sees the output of B. Now
we argue that Z’s view in the real world (C’s view +A’s output) and its view
in the ideal world (SIM’s view + A’s output) are indistinguishable, where the
view of an entity consists of the transcripts available to it. Due to limited space
we give only construction of the ideal world simulator SIM that uses C as
subroutine, simulates the honest party A and controls B,Ar and we will show
the simulatability holds in this case.
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(i) SIM first plays the role of trusted party by generating the global para-
meter gpar = (ppar,m, k,H, {τi}m

i=−4, {ιj}w
j=−4), where ppar = (par, ĝ,H).

It then simulates the honest party A by choosing a1 � Zq and publishing
ga1 as the public key epkA = yA. It also acts as a certifying authority to
obtain public keys epkB , vpkAr of B,Ar. SIM then invokes C.

(ii) SIM constructs a Bloom filter BFX′ whose all entries are set as 0 and
encrypts each of gbi = gBFX′ [i] = g0 using public key pk = epkA · epkB to
get the ciphertext Ci ← DEL.Enc(gbi , pk, par, rbi) for i = 1, ...,m. SIM
then simulates the proof π1 and sends {C1, ..., Cm} to C.

(iii) The simulator SIM maintains a list Y ′ by recording all the poly(κ) queries
the adversary made to the random oracles.

(iv) On receiving R2 =
〈{Ci}m

i=1, {yj , sj , Tj , vEvpkAr
(grj )}w

j=1, π2, π̂2

〉
from C,

SIM verifies each of the proofs π2, π̂2. If the verifications of atleast one
of the proofs does not succeed then SIM instructs B to send ⊥ to T , Ar
to send bA = ◦ to T and terminates the execution; otherwise, SIM runs
the extractor algorithm for π̂2 with C to extract the permutation φ ∈ Σm.
For each y′ ∈ Y ′, the simulator SIM constructs an m-bit string s whose

i-th bit s(i) is defined as s(i) =

{
1, if i ∈ {φ(h1(y′)), ..., φ(hk(y′))}
0, otherwise

and

checks that s is in {s1, ..., sw} or not. If the check is valid then it includes
y′ in Y ′′. Note that the extracted set Y ′′ is identical to the set Y except
with negligible probability ε. SIM then instructs B to send Y to T , Ar to
send bB = ◦ to T and receives |X ∩ Y | from T .

(v) SIM constructs a set Ỹ = {ỹ1, ..., ỹw} by including |X ∩ Y | many
ciphertexts as dEpk(0) together with v − |X ∩ Y | many random cipher-
texts as dEpk(r), where r � Zq and r = 0. Let ỹj = (λj , δj) for
j = 1, ..., w. Then SIM chooses a random permutation ψ ∈ Σw

over the set {1, ..., w}, selects β1, ..., βw � Zq and computes for each
j = 1, ..., w, μj = ỹψ−1(j)DEL.Enc(g0, pk, par, βj) = (ej , fj) and ej =
(ej)a1 , where ej = λψ−1(j)g

βj , fj = δψ−1(j)h
βj . SIM then simulates π3, π̂3,

sends
〈{μj , (ej)}w

j=1

〉
to C and executes following steps according to C’s

reply.
(vi) If C instructs B to send

〈{grj}w
j=1, π4

〉
, then SIM checks the validity of

the proof π4. If the verification succeeds then SIM instructs Ar to send
bA = ◦ to T . If verification fails or C instructs B to abort in the procedure
mPSI-CA then the following cases arise:
– if C instructs Ar to send {g1, ..., gw} in the procedure Dispute Resolution

then the simulator SIM extracts Tj , cj , dj from R2 =
〈{Ci}m

i=1, {yj =
(cj , dj), sj , Tj , vEvpkAr

(grj )}w
j=1, π2, π̂2

〉
, computes êj = Tj

gj
and uses êj to

compute l′j = dj

(cj)a1 êj
for j = 1, ..., w. The simulator SIM then increases

card by 1 if l′j = 1 for j = 1, ..., w, where the count variable card is
initially set as 0. Finally, SIM instructs Ar to send bA = card to T ,
outputs whatever C outputs and terminates.
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– if C instructs Ar to abort in dispute resolution protocol then SIM
instructs Ar to send bA =⊥ to T . SIM then outputs whatever C outputs
and terminates.

(vii) If C instructs both B and Ar to abort, then SIM instructs Ar to send
bA =⊥ to T . Then outputs whatever C outputs and terminates.

The outputs of the honest parties A and A are always the same. All we need
to check is whether SIM’s view is indistinguishable from the view of C. The
differences between the simulation and the real executions are – SIM uses
the Bloom filter BFX′ instead of BFX to generate {Ci}m

i=1 and Ỹ instead of Y
to generate {μj , ej}w

j=1. As the encryption scheme DEL is semantically secure,〈{Ci}m
i=1, {μj , ej}w

j=1

〉
is identically distributed in the simulation and real execu-

tions. Thus the use of BFX′ and Ỹ does not affect the distribution of the views
of SIM and C. Consequently, Z’s view in the real world (C’s view +A’s output)
and its view in the ideal world (SIM’s view + A’s output) are indistinguishable.

Subcase III (A and B are corrupted). This case is trivial as C has full knowl-
edge of X and Y and the encryption scheme used by Ar is semantically secure.
Therefore a simulator can always be constructed.

Case II (When the adversary C corrupts only one party). If only Ar is corrupted
then Ar is not involved in the protocol as A and B are honest. Thus it is trivial to
construct a simulator in this case. If only A or B is corrupted then the simulator
can be constructed as in steps (i)–(iv) of the case when both A and Ar are
corrupted or in steps (i)–(v) of the case when both B and Ar are corrupted. The
only change in these cases is that Ar is honest and always sends ◦ to T .

5 Efficiency

The computation overhead of our mPSI-CA protocol is measured by modular
exponentiation (Exp), modular inversion (Inv) and hash function evaluation (H).
On the other hand, the number of group elements (GE) transmitted publicly by
the users in our mPSI-CA protocol incurs the communication cost. The complex-
ities of our mPSI-CA protocol are displayed in Table 1, where π1, π2, π3, π4, π̂2, π̂3

are associated interactive zero-knowledge proofs.

Note: In [16], the authors proposed a mPSI-CA protocol, where two parties
A and B involve with their private sets X = {x1, ..., xv} and Y = {y1, ..., yw}
respectively. On completion of the protocol, both of them learn the sets X =
{(gxφ−1(1))rr′

, ..., (gxφ−1(v))rr′}, Y = {(gyψ−1(1))rr′
, ..., (gyψ−1(w))rr′} and com-

putes |X ∩ Y | which is actually |X ∩ Y |.
The authors of [16] claimed that their mPSI-CA is secure against malicious

adversaries. However it seems to us that their scheme is no longer secure when
the adversaries are malicious due to the following:

(i) Let the participant A behave maliciously and involve in the mPSI-CA pro-
tocol with the set X ′ = {x′

1, ..., x
′
v} instead of the private X = {x1, ..., xv},
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Table 1. Complexity of our mPSI-CA protocol

Party A Party B Arbiter Ar Total

Exp 9m + 39w + 25 13m + 30w + 25 14w + 12 22m + 83w + 62

GE 9m + 22w + 38 5m + 25w + 20 5w + 1 14m + 52w + 59

Inv 2w w w 4w

H v + w 2w w v + 4w

GE= number of group elements, Exp = number of exponentiations,
Inv= number of inversions, H = number of hash query, m = kv

ln 2
.

Table 2. Comparative summary of mutual PSI-CA protocols in malicious model

mPSI-CA Adv. Security Comm. Comp. Fairness Optimistic Group Arbiter

Protocol Model Assumption Cost Cost Order

[25] Mal AHE O(v) O(v2) No No Composite

[10] Mal Strong RSA O(w + v) O(wv) Yes Yes composite FT

Our Mal DDH O(w + v) O(w + v) Yes Yes Prime SH

AHE= Additively Homomorphic Encryption, FT= Fully Trusted, Mal= Malicious,
DDH = Decisional Diffie-Hellman, v, w are the sizes of input sets.

where x′
i = g(k−1)xk

i for some k � Z
∗
q and i = 1, ..., v. Then at the end of the

protocol, both A and B learn the sets X ′ = {(gx′
φ−1(1))

rr′
, ..., (gx′

φ−1(v))
rr′},

Y = {(gyψ−1(1))rr′
, ..., (gyψ−1(w))rr′}. From these sets, B computes |X ′ ∩Y |

and outputs this as |X ∩ Y |. However, |X ′ ∩ Y | is not actually |X ∩ Y |
due to X ′. Thus B does not get the correct cardinality. On the other hand,
for each i = 1, ..., v, the malicious party A computes (gx′

φ−1(i))
rr′k−1

=

(gg(k−1)xk
φ−1(i))

rr′k−1
= (gkxk

φ−1(i))
rr′k−1

= (gxφ−1(i))rr′
. In other words,

A extracts the set X = {(gxφ−1(1)),rr′
..., (gxφ−1(v))rr′}. The party A then

computes |X ∩ Y | which is actually |X ∩ Y |.
(ii) Similarly, when B behaves maliciously, it can be shown that B gets the

exact cardinality whereas A does not get the correct one.
We briefly summarize comparison of our mPSI-CA from prior works in

Table 2.

6 Conclusion

In this paper, we have designed a fair optimistic mPSI-CA protocol attaining
linear complexity overhead. We have utilized Bloom filter as building blocks of
our scheme. The proposed mPSI-CA is provably secure under DDH assumption
against malicious entities in ROM. Fairness of this protocol is achieved by using
an off-line semi-trusted arbiter. Particularly, our mPSI-CA is more efficient than
existing mPSI-CA protocols. To the best of our knowledge, our mPSI-CA is the
first fair mPSI-CA that achieves linear complexity in the malicious environment.
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Abstract. Estimating entropy of randomness sources is a task of crit-
ical importance in the context of true random number generators, as
feeding cryptographic applications with insufficient entropy is a serious
real-world security risk. The challenge is to maximize accuracy and con-
fidence under certain data models and resources constraints.

In this paper we analyze the performance of a simple collision-counting
estimator, under the assumption that source outputs are independent but
their distribution can change due to adversarial influences.

For n samples and confidence 1 − ε we achieve the following features
(a) Efficiency: reads the stream in one-pass and uses constant memory

(forward-only mode)
(b) Accuracy: estimates the amount of extractable bits with a relative

error O(n− 1
2 log(1/ε)) per sample, when the source outputs are i.i.d.

(c) Robustness: the same error when the source outputs are independent

but the distribution changes up to t = O(n
1
2 ) times during runtime

We demonstrate that the estimator is accurate enough to adjust
post-processing components dynamically, estimating entropy on the fly
instead investigating it off-line. Our work thus continues the line of
research on “testable random number generators” (originated by Bucii
and Luzzi at CHES’05) combining it with the robustness against source
changes (originated by Barak et al. at CHES’03).

Keywords: Online entropy estimators · Testable random number gen-
erators · True random number generators in changing environments

1 Introduction

1.1 Estimating Entropy for True Random Number Generators

True Random Number Generators (TRNGs) are devices that utilize some under-
lying physical process to generate bits that are statistically indistinguishable1

A full and updated version is available at ePrint (Report 2016/272).
M. Skorski—Supported by the National Science Center, Poland (2015/17/
N/ST6/03564).

1 Which means closeness in the variational distance (distance ε smaller than 2−80 for
practical applications).
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from independent and unbiased bits (we call these indistinguishable bits truly
random). Examples of such processes are radio noise [Haa], radiation [Wal],
thermal noise [JK99] or noise from sensors in mobile devices [BKMS09,BS].
A typical TRNG consists of an entropy source, harvesting mechanism and a post-
processing2 component which reduces bias and correlations present in raw data
[Sun09,TBK+]. In reality, outputs of available randomness sources are some-
what unpredictable but biased, therefore the output quality depends critically on
adjusting the post-processing part to the source. Basically, post-processing func-
tions give provable guarantees on the output quality when fed with inputs of suf-
ficiently high entropy (well known examples are universal hash functions [BST03]
or the von Neumann extractor [vN51]). Therefore, to achieve the required qual-
ity we need to estimate the entropy in the source. This requirement is not only a
matter of provable security, but a serious practical concern as low entropy may
lead to attacks on real-world applications [dRHG+99]. Recent examples are bugs
in the Linux Random Number Generator on Debian distributions [GPR06] on
Android distributions [KKHD14]. For this reason, entropy evaluation is con-
sidered a necessary part of the developing designing process and is strongly
recommended by standards [TBK+].

To formulate the problem more precisely, we assume without losing generality
that the entropy source output is already digitized and forms a sequence of
symbols X1, . . . , Xn over a finite alphabet X (for example X may be the set
of 10-bit strings), which are produced by repeating the generating procedure in
consecutive time intervals. Keeping in mind that there are many entropy notions
and not all of them are suitable for cryptographic purposes (such as generating
random numbers) we can state the following problem

Problem: How to estimate the (cryptographically relevant) entropy of a
stochastic process X1,X2, . . . , Xn over an alphabet X ?

The right entropy notion here is not the popular Shannon entropy, but the
more conservative entropy notion called min-entropy. The theory of randomness
extraction characterizes min-entropy as the measure of the amount of almost
uniform bits that can be extracted (using best post-processing functions) from
a given distribution [RW05,Sha11]. More specifically, the min-entropy is the
negative logarithm of the likelihood of the most heavy element: if every outcome
appears with probability at most 2−k then we say that the distribution has k-bits
of min-entropy.

Once we know how much entropy we have collected, we can tune the para-
meters of the appropriate extractor (post-processing) function and produce an
almost unbiased string. The task of estimating entropy is independent on a
specific post-processing function. Different post-processing functions yield only
different trade-offs between the input entropy and the output length and quality
(also in memory and time resources consumed). What makes this problem hard

2 Sometimes called also the conditioning component [TBK+], or an extractor in the
theoretical literature.
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is finding the right balance between the accuracy, sample complexity and the
source model (in particular, utilize as few samples as possible).

1.2 Related Works

Standards like the most recent NIST recommendation [TBK+] suggest to
approximate the min-entropy based on empirical frequencies plugged into the
entropy formula and many independent samples. This approach is applied in
works with focus on provable security [BST03,BKMS09,VSH11]. We note that
this process requires a large amount of extra memory, namely one needs to com-
pute the frequencies of all elements x ∈ X . This costs Ω(|X |) bits of memory,
actually more if we want an entropy estimate with a small relative error δ. For
this we need to keep the frequencies with a precision up to δ

|X | , which means

Ω(|X | log
(

|X |
δ

)
) bits. For 30-bit blocks this is more than 4GB of memory (see

Appendix A for a quantitative explanation).
In general, the “plug-in” estimator is not memory-efficient on small mobile

or embedded devices [LRSV12]. The authors of the referenced work proposed
to construct an estimator for Shannon entropy instead of min-entropy, which
basically just quickly reads the stream and operates within a constant amount
of memory. However, this is not provably secure except the case of stateless
sources (producing i.i.d. symbols) as shown by a result called the Asymptotic
Equipartition Property [Sha48,Ash90]. The price is a wide error margin which
the best known bound is as large as O(|X |) [Hol06], which is more than 1000
bits for a source with only 10-bit outputs blocks.

1.3 Our Contributions

We analyze the simple estimator based on the idea of collisions counting, which
operates in constant memory. Technically speaking, we estimate not the min-
entropy but a slightly weaker notion called collision entropy, which turns out to
be close enough. Using the technique called entropy smoothing (see Lemma 1)
we can go back from collision entropy to be ε-close to min-entropy losing only
log(1/ε) bits where ε is the chosen security parameter, typically ε = 2−80. More-
over, for most popular post-processing functions based on universal hashing
[BST03,VSH11] our estimate can be applied with no loss as if it was min-
entropy, because universal hash functions work with collision entropy [HILL99].
The pseudocode of our estimator is given in Algorithm 1.
For this estimator, we prove the following key features:

(a) Convergence bounds: we give clear error bounds on the estimator conver-
gence, depending on the chosen security level (output indistinguishability)
and the number of samples. Namely, for n samples at confidence 1 − ε we

estimate the entropy per bit with a relative error δ = O

(√
|X | log(1/ε)

n

)
,

for n = Ω(|X | log(1/ε)). Moreover, the alphabet size |X | can be replaced by
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Algorithm 1. Collision Entropy Estimator
Data: independent samples x1, . . . , xn from X over an alphabet X
Result: An estimation for the source collision entropy H2(X)

1 P ← 0
2 for i = 2, . . . , n do
3 if xi = xi−1 then
4 P ← P + 1

5 Ĥ ← − log2

(
P

n−1

)

6 return Ĥ

2H2 where H2 is the collision entropy rate (collision entropy per block) of
the source. For more details, see Theorem 1.

(b) Provable security: using the estimate together with universal hash functions

we extract all the entropy but O
(√

n2H2 |X |
)

bits (the result being at most
O(ε)-far from the uniform distribution). For more details, see Corollary 1.

(c) Efficiency: by definition, the estimator works in one pass and constant mem-
ory, being extremely efficient for long streams of data. This way we improve
previous heuristic on on-line entropy estimation [LPR11] with an estimator
even more efficient and, in addition, provably secure.

(d) Robustness in changing environments: we prove the convergence relaxing
the i.i.d assumption. Namely, we require consecutive outputs to be indepen-
dent but allow the source to “switch” its internal state t times, changing the
output distribution (t � n). This result has two consequences: first, the esti-
mator is robust against environmental changes (accidental or adversarial);
second, it allows for estimating entropy in production environments (in real
time) where distributions may be different than laboratory estimates. The
importance of these features were discussed in CHES papers [BST03,BL05].
As for further applications, in Sect. 5 we show how to adapt our technique
to estimate entropy of a source consisting of a few independent sources.

While it is straightforward to analyze the collision counting estimator for i.i.d.
samples (see for example [Sko16]), our novel contribution is relaxing this assump-
tion and proving robustness. See Table 1 for a brief overview of our contribution.

1.4 Source Model

The source must have a certain structure to allow for estimating entropy from
samples with high accuracy and confidence (because we are interested in provable
security) but on the other hand the model should be possibly general to cover a
possibly large range of real-world applications. From a theoretical perspective,
the most general approach is to model entropy sources by Markov chains of
finite order [Mau92,TBK+]. This is, however, extremely inefficient in terms of
the complexity/accuracy trade-off [TBK+]. In this work we adopt the common
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Table 1. Our estimator compared to related works.

Estimator Source model Robustness Adaptive Prov. Sec.

[BST03] Small family of sources Entropy-preserving
off-line changes

No Yes

[BL05] Independent binary On-line changes to
bias

Yes Yes

[LRSV12] i.i.d symbols Fixed distribution Yes No

This paper Independent symbols Any on-line
distribution changes

Yes Yes

modeling approach, which assumes that the source outputs are i.i.d. [LRSV12,
VSH11,BL05,BKMS09]. Our model is substantially stronger: we assume that the
source distribution changes at most t times at arbitrarily chosen (for example
by an adversary) moments. That is

– X1,X2, . . . , Xn are independent
– The number of indexes = 1, . . . , n such that Xi � d= Xi+1 is at most t

This model captures scenarios where environmental conditions change and influ-
ence the source during entropy harvesting.

1.5 Convergence Bounds

In the cryptographic literature, estimating entropy is typically not given a rig-
orous treatment. The newest NIST recommendation [TBK+] suggest to take
n � 106 for empirical evaluations, which should be big enough to ensure con-
vergences. Other works [VSH11] also evaluate entropy over huge data sets, like
“overnight” samples. On the other hand our bounds show that, at least under
our (relaxed) i.i.d. assumption, this number can be much smaller. In fact, we are
able to estimate entropy in production environments, when we don’t have much
more data except what is necessary for extraction. This way we can make the
statistical error small enough to not to affect provable security level we want to
achieve (e.g. make the statistical error same as security ε = 2−80).

1.6 Efficiency and Provable Security

The work [LPR11] discusses an on-line entropy estimation technique for TRNGs
by approximating the source Shannon Entropy, under the i.i.d. assumption. This
is however not secure, as in this setting Shannon Entropy can be converted to
min-entropy only with a huge entropy loss O(|X |√n log(1/ε)) [Hol06]. Also, only
asymptotic convergence was proven for the entropy estimator. Comparing to this
work, we lose at most log(1/ε) bits when converting to min-entropy (see Corollary
1) and provide a clear convergence bound with a loss at most O(

√|X |n log(1/ε))
for confidence 1− ε. Also, we use less memory as [LPR11] need a sliding window
with a variable size to further reduce the estimator bias.
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1.7 Robustness in Changing Environments

In real world, devices that generate random numbers operate under vary-
ing environmental conditions and can be indirectly affected by a number of
processes. The output distribution in the production environment may be dif-
ferent than during the testing stage. Examples may be temperature or voltage
changes [BST03], or even different way the user is interacting with the device -
for example, the quality of accelerometer-based TRNG depends on the “shaking
pattern” [VSH11]. The issue becomes even more serious, where environmental
parameters can be manipulated by a malicious adversary [BST03]. There are
two ways to handle this issue: (a) trying to investigate all relevant factors dur-
ing off-line tests, an provide a lower bound [VSH11] or (b) developing a design
robust against changes in the entropy rate [BST03,BL05,LRSV12]. The second
way seems to be more promising (and also more challenging) as addressing all
factors that can influence the source is binded to a particular hardware and thus
is not a generic approach. Moreover, the approach (a) is a passive way of solving
the issue whereas (b) can be used to actively monitor the device behavior in pro-
duction environments. More concretely, detecting a decrease in the entropy rate
may be a trigger raising an attack alarm [BL05]. Lastly, we may want to use the
robustness to handle multiple sources which contribute synchronously but inde-
pendently to outputs blocks (for example, readings from all three accelerometer
axes). A short example is discussed in Sect. 5.

1.8 Our Techniques

Our approach is based on using large deviation inequalities and some Jensen
inequalities.

1.9 Organization

In Sect. 2 we provide necessary definitions and useful inequalities. The conver-
gence of the entropy estimator is discussed in Sect. 3. Some further applications
are explained in Sects. 4 and 5.

2 Preliminaries

2.1 Information-Theoretic Divergence Measures

Definition 1 (Variational (Statistical) Distance). We say that discrete
random variables X1 and X2, taking values in the same space, have the sta-
tistical distance at least ε if their probability mass functions are at most ε-away
in terms of the �1 norm, that is

∑
x

|PX1(x) − PX2(x)| � ε.
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2.2 Entropy Notions

Definition 2 (Min-Entropy). The min-entropy of a random variable X is
defined as H∞ (X) = maxx log 1

PX(x) .

Definition 3 (Collision-Entropy). The collision-entropy of a random vari-
able X is defined as H2(X) = − log

(∑
x (PX(x))2

)
.

Definition 4 (Shannon-Entropy). The Shannon-entropy of a random vari-
able X is defined as H(X) = −∑

x PX(x) log PX(x).

Definition 5 (Smooth Min-Entropy). We say that X has k-bits of ε-smooth
min-entropy if X is ε-close to Y such that H∞ (Y ) � k.

Lemma 1 (From collision to smooth min-entropy [Cac97]). Suppose that
H2(X) � k. Then Hε

∞(X) � k − log(1/ε).

2.3 Randomness Extractors

Extractors are functions which process weak sources into distributions that are
close (in the information-theoretic sense) to the uniform distribution. In general,
they need some amount of auxiliary randomness called seed. The seed is passed
as an extra argument in the definition.
Definition 6 (Seeded extractors). A deterministic function Ext : {0, 1}n ×
{0, 1}d → {0, 1}k is a (k, ε)-extractor for X if we have

SD (Ext(X,Ud), Ud;Uk, Ud) � ε

Remark 1 (Relaxing min-entropy for seeded extractors). The min-entropy
required in the source can be relaxed at least in two ways:
(a) X needs to be only close to a distribution with entropy k
(b) The entropy notion can be collision entropy, instead of much more restrictive

min-entropy.

Lemma 2 (A necessary conditions for extracting [Sha11]). Suppose that
Ext on input X outputs a distribution which is ε-close Let Ext be any function
such that SD (Ext(X,S);Uk|S) � ε. Then X is ε-close to a distribution of min-
entropy at least k.

Definition 7. A family H of functions from n to m is called universal, if for a
random member H ∈ H and every different x, y ∈ {0, 1}n we have

Pr[H(x) = H(y)] = 2−m.

Lemma 3 (Universal families are good extractors). Suppose that
H2(X) � k + 2 log(1/ε). Let H be a universal family of functions from n to
m bits. For any x ∈ {0, 1}n and h ∈ H define

Ext(x, h) = h(x)

Then we have
SD (Ext(X,H),H;Uk,H) � ε

where H is a random element of H.
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2.4 Useful Inequalities

Lemma 4 (Jensen’s Inequality). Let I be an interval and f : I → R be a
convex function. Then we have

n∑
i=1

αif(ui) � f

(
n∑

i=1

αiui

)

for any numbers u1, . . . , un ∈ I and non-negative weights α1, . . . , αn that sum
up to 1.

Lemma 5 (Multiplicative Chernoff Bound [Che52]). Let X1, . . . , Xn be
independent binary random variables. Define p̂ =

∑n
i=1 Xi

n . Then we have

Pr [p̂ � (1 − δ)Ep̂] � exp
(−npδ2/2

)

for any positive number δ.

3 Main Result

Theorem 1 (The estimator convergence). Let X1, . . . , Xn be independent
random variables over a finite domain X . Suppose that the distribution of Xi

changes at most t times when i goes from 1 to n. Then for any ε the output
Ĥ of Algorithm 1 ran over X1, . . . , Xn and the collision entropy rate H2 =
1
nH2(X1, . . . , Xn) satisfy

H2(X1, . . . , Xn) � (Ĥ − δ) · n

with probability 1 − ε where the relative error δ smaller than any of the two
bounds below

δ =

√
2Ĥ · 4 log(2/ε)

n
+

2Ĥ · 4 log(2/ε)
n

+
2Ĥ · (t + 1)

n ln 2
(1)

δ =

√
2H2 · 4 log(2/ε)

n
+

2H2 · (t + 1)
n ln 2

. (2)

Corollary 1 (Provable security with any min-entropy extractor). Let
Ext be any (k, ε) extractor from Xn to {0, 1}�. Then the output of Ext on
X1, . . . , Xn is O(ε)-close to the uniform distribution on {0, 1}�, provided that

k � nĤ − (nδ + log(1/ε)) .

were Ĥ and δ are as in Theorem 1. Moreover, for universal hash functions it’s
enough to assume

k � nĤ − nδ.
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Proof. The proof follows immediately from the extractor definition and the con-
version between smooth min-entropy and collision entropy (Lemma 1). For the
extractor built on universal hash functions we simply use the fact that the
assumption about k bits of min-entropy on input can be relaxed to k bits of
collision entropy.

Remark 2. This corollary shows that our estimator can be coupled with any
min-entropy extractor (post-processing function). The entropy loss is due to the
estimation statistical error plus up to log(1/ε) bits for conversion (not needed
for universal hash functions). Note that typically we have n � log(1/ε) and
therefore log(1/ε) � nδ. Thus the entropy loss in Corollary 1 equals O(δn)

Proof. (Proof of Theorem 1). Suppose that X1, . . . , Xn are independent, and for
some t ∈ [0, T ] there are numbers nj satisfying

1 = n0 < n1 < n2 . . . < nt+1 = n + 1 (3)

such that for every j = 0 . . . , t we have

∀i ∈ {nj , . . . , nj+1 − 1} Xi
d= Yj .

This corresponds to the scenario where the distribution of the source is switched
at moments n1, . . . , nt. Let p̂j

col be the collision probability estimate for samples
Xi where i = nj , . . . , nj+1 − 1. That is

p̂j
col =

{ ∑
nj<i<nj+1

1{Xi=Xi−1}
nj+1−nj−1 , nj+1 − nj > 1

0, nj+1 − nj = 1
(4)

Note that

E
[
p̂j
col

]
= pj

coll (5)

where pj
coll = CP(Yj). Let pcol be the collision probability estimate, computed

by the algorithm, over samples X1, . . . , Xn. In other words

p̂col =
∑n−1

i=1 1{Xi=Xi+1}
n − 1

(6)

Skipping in Eq. (6) these indexes i for which i = nj − 1 for some j, and using
Eq. (5) we obtain

E [p̂coll] =
1

n − 1

nj+1−1∑
i=nj

E
[
1{Xi=Xi+1}

]

>
1

n − 1

t∑
j=0

nj+1−2∑
i=nj

E
[
1{Xi=Xi+1}

]

=
1

n − 1

t∑
j=0

(nj+1 − nj − 1) pj
coll. (7)
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Note that thre random variables Zi = 1{Xi=Xi+1} are not independent, so we
cannot apply the Chernoff Bound directly. However, we can take advantage of the
fact that the subsequences with odd and even indexes are independent. Define

I1 = {j : 1 � i � n − 1, j ≡ 1 mod 2}
I2 = {j : 1 � j � n − 1, j ≡ 0 mod 2}

The estimate in Eq. (6) can be expressed as a combination of estimates over the
set I1 and I2, as follows

p̂col =
|I1|

n − 1
· p̂1 +

|I2|
n − 1

· p̂2 (8)

where

p̂i =

∑
i∈Ij

Zi

|Ij | , j = 1, 2.

By the Chernoff Bound applied separately to p̂1 and p̂2, we conclude that every
of the following inequalities

E [p̂1] � p̂1 +

√
2 ln(2/ε)E [p̂1]

|I1|

E [p̂2] � p̂2 +

√
2 ln(2/ε)E [p̂2]

|I1|
holds with probability 1 − ε

2 . By the union bound, they are satisfied simultane-
ously with probability at least 1−ε. Multiplying these inequalities by the weights
|Ij |
n−1 for j = 1, 2 respectively, and using Eq. (8) we obtain

Ep̂col =
|I1|

n − 1
·E [p̂1] +

|I2|
n − 1

·E [p̂2]

� |I1|
n − 1

· p̂1 +
|I2|

n − 1
· p̂2 +

(

|I1|
n − 1

·
√

2 ln(2/ε)E [p̂1]

|I1|
+

|I2|
n − 1

·
√

2 ln(2/ε)E [p̂2]

|I2|

)

� p̂coll +

(√

2 ln(2/ε)|I1|E[p̂1] +
√

2 ln(2/ε)|I2|E[p̂2]
)

n − 1
. (9)

with probability 1 − ε. In order to simplify the rest of the proof, we use the
following convention: from now all the inequalities hold with probability 1 − ε
unless stated otherwise. From Eq. (9), by applying the inequality

√
a +

√
b �√

2(a + b) (which follows by the Jensen inequality) and Eq. (8), we conclude
that

Ep̂col � p̂coll +

√
4 ln(2/ε)(n − 1)E[p̂coll]

n − 1

= p̂coll +

√
4 ln(2/ε)E[p̂coll]

n − 1
(10)
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To make the right-hand side independent of the unknown parameter Ep̂col we
rewrite Eq. (10) as

(√
Ep̂col −

√
ln(2/ε)
n − 1

)2

� p̂coll +
ln(2/ε)
n − 1

which implies

Ep̂col �
(√

p̂coll +
ln(2/ε)
n − 1

+

√
ln(2/ε)
n − 1

)2

= p̂coll +
2 ln(2/ε)

n − 1
+ 2

√(
p̂coll · ln(2/ε)

n − 1

)2

+
(

ln(2/ε)
n − 1

)2

� p̂coll +

√
4p̂coll ln(2/ε)

n − 1
+

4 ln(2/ε)
n − 1

. (11)

where the last line follows by the elementary inequality
√

a + b � √
a+

√
b. Now,

from Eqs. (7) and (11) it follows that

1
n − 1

t∑
j=0

(nj+1 − nj − 1) pj
coll � p̂coll +

√
4p̂coll ln(2/ε)

n − 1
+

4 ln(2/ε)
n − 1

or, equivalently, that
t∑

j=0

(nj+1 − nj) pj
coll � (n − 1)p̂coll +

√
4(n − 1)p̂coll ln(2/ε) + 4 ln(2/ε) +

t∑

j=0

pj
coll

Bounding pj
coll by 1 on the right-hand side and dividing both sides by n we

obtain

t∑
j=0

(nj+1 − nj)
n

pj
coll � n − 1

n
p̂coll +

√
4(n − 1)p̂coll ln(2/ε)

n2
+

4 ln(2/ε) + t + 1
n

� p̂coll +

√
4p̂coll ln(2/ε)

n
+

4 ln(2/ε) + t + 1
n

(12)

with probability 1 − ε. To derive a bound in terms of entropies, we rewrite the
right-hand side in a relative-error form

t∑
j=0

(nj+1 − nj)
n

pj
coll � p̂coll

(
1 +

√
4 ln(2/ε)
np̂coll

+
4 ln(2/ε) + t + 1

np̂coll

)
.

This inequality can be rewritten, by taking the logarithm of both sides, as

− log

⎛

⎝

t∑

j=0

(nj+1 − nj)

n
pjcoll

⎞

⎠ � − log p̂coll − log

(

1 +

√

4 ln(2/ε)

np̂coll
+

4 ln(2/ε) + t + 1

np̂coll

)

.
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The right-hand side can be bounded in a simper way by the elementary inequality
log(1 + u) � u

ln 2 valid for all u > −1. This gives us (with probability 1 − ε)

− log

⎛
⎝

t∑
j=0

(nj+1 − nj)
n

pj
coll

⎞
⎠ � − log p̂coll −

√
4 log(2/ε)

np̂coll
− 4 log(2/ε) + t+1

ln 2

np̂coll

(13)

Consider now the left-hand side. By applying the Jensen Inequality to the convex
function u → − log u, arguments uj = pj

coll and weights αj = nj+1−nj

n we obtain

t∑
j=0

(nj+1 − nj)
n

(
− log

(
pj
coll

))
� − log

⎛
⎝

t∑
j=0

(nj+1 − nj)
n

pj
coll

⎞
⎠

� − log p̂coll −
√

4 log(2/ε)
np̂coll

− 4 log(2/ε) + t+1
ln 2

np̂coll
.

(14)

Since X1, . . . , Xn are independent, we have

CP (X1, . . . , Xn) =
n∏

i=1

CP(Xi)

=
t∏

j=0

nj+1−1∏
i=nj

CP(Xi)

=
t∏

j=0

nj+1−1∏
i=nj

CP(Yj)

=
t∏

j=0

(
pj
coll

)nj+1−nj

,

and therefore the collision entropy per bit equals

− log CP (X1, . . . , Xn)
n

=
t∑

j=0

nj+1 − nj

n
·
(
− log pj

coll

)
,

which combined with Eq. (14) finishes the proof. To obtain the second bound
on δ, we simply skip the step just after Eq. (10) and proceed with the unknown
parameter Ep̂coll.

4 Application to On-Line Estimation

Consider a source which outputs 10-bit samples. Suppose that the entropy rate
is r = 2

10 . Suppose we want to generate a key of length � = 256 which is at most
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ε = 2−112-far from the uniform distribution. If we use universal hashing then we
need � + 2 log(1/ε) entropy bits, that is 480 entropy bits. This, we need at least
240 samples.

Suppose we have collected n = 240 samples and estimate the entropy rate
at 0.2 by our algorithm. Taking the error into account, we conclude that we can
generate � = 120 bits with security ε = 2−60. Thus, the quality goes down but
our gain is provable security without assumptions on the entropy rate.

5 Application to Mixed Sources

Imagine a stream of data, where a few different independent sources contributes
to every consecutive block. For example in [VSH11] the authors consider using
an iPhone accelerometer as a source, which outputs readings from three axes X,
Y and Z. The corresponding random process may be described as

V1, V2, . . . , V3n = X1, Y1, Z1,X2, Y2, Z2, . . . , Xn, Yn, Zn

It can be seen that if in our collision counting estimator we compare Vi = Vi−3

instead of Vi = Vi−1 then we get a collision-entropy estimator with the same
convergence bounds (up to a constant factor). Indeed, the random variables
Zi = 1{Vi=Vi=3} are all independent, and thus the estimator doesn’t depend on
the order. We can now imagine that the order is slightly different

Vσ1 , Vσ2 , . . . , Vσ3n = X1,X2, . . . , Xn, Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn

which corresponds to t = 2 switches (the distribution changes two times). There-
fore, our bounds apply.

6 Conclusion

We have shown that the simple collision-counting entropy estimator is (almost)
as good as estimating min-entropy in terms of the number of extracted bits,
but it is very efficient and robust against changing the source distribution. The
assumption that consecutive outputs are independent is not that restrictive as
it has been confirmed empirically and argued theoretically in previous works for
many sources.

A Inefficiency of Plugin Estimators

Let X be an m-bit distribution. Suppose that we want to estimate PX from
i.i.d samples X1, . . . , Xn, and use this estimate in the entropy formula. Let X̂ be
the random variable corresponding to the empirical distribution of n samples,
that is

∀x : Pr[X̂ = x] =
1
n

n∑
i=1

1{Xi=x}.
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We want to use the estimate

H∞(X) ≈ H∞(X̂).

Consider the case when X is uniform. Suppose that we want the absolute error
to be at most γ, that is

∣∣∣H∞(X) − H∞(X̂)
∣∣∣ � γ.

According to the min-entropy definition, this means that
∣∣∣m + max

x
log

(
PX̂(x)

)∣∣∣ � γ.

which is equivalent to

m − γ � max
x

log
(
PX̂(x)

)
� −m + γ.

In particular,

∀x : PX̂(x) � 2−n+γ = 2γ · PX(x).

This means that we need to estimate the probability mass function PX(x) up to
a relative error δ = 2γ − 1. According to the Chernoff Bound, with fixed x and
n samples we get the error probability exp(−3PX(x)δ2) � exp(−3 ·n2−mδ2) for
some c. Thus, to get the error term below ε, we need δ = O

(√
2m log(1/ε)/3n

)
.

Even for a pretty weak bound γ = 1 (an error of 1 bit) we need δ = 1 which
means n > 2m log(1/ε)/3 samples.
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[LRSV12] Lacharme, P., Röck, A., Strubel, V., Videau, M.: The linux pseudorandom
number generator revisited. Cryptology ePrint Archive, Report 2012/251
(2012). http://eprint.iacr.org/

[Mau92] Maurer, U.: A universal statistical test for random bit generators. J. Cryp-
tology 5, 89–105 (1992)

[RW05] Renner, R., Wolf, S.: Simple and tight bounds for information reconcil-
iation and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005). doi:10.1007/
11593447 11

[Sha48] Shannon, C.E.: A mathematical theory of communication. Bell Syst.
Techn. J. 27 (1948)

[Sha11] Shaltiel, R.: An introduction to randomness extractors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 21–41.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 2
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