
Chapter 7
Structural Damage Identification Using Free Response Measured
by a Continuously Scanning Laser Doppler Vibrometer System

Y.F. Xu, Da-Ming Chen, and W.D. Zhu

Abstract Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously
scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This
paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV
system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression
of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite
element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage
regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes. The
proposed methodology was numerically applied to identify damage in a beam structure.

Keywords Damage identification • Beam structure • Continuously scanning laser Doppler vibrometer system • Free
response shape • Free-response damage index

7.1 Introduction

Vibration-based damage detection has become a major research topic of structural dynamics in the past few decades [1].
Changes of physical properties of a structure, such as mass, stiffness and damping, are directly related to those of modal
properties of the structure, i.e., natural frequencies, mode shapes (MSs) and modal damping ratios [2]. Damage that exist in
a structure can be detected, located and characterized by use of modal properties. Methods that use changes of natural
frequencies due to damage have been investigated by many researchers. They require a minimum amount of vibration
measurement and can accurately detect locations and extent of damage, since natural frequencies are global properties of a
structure and relatively easy to measure [3–8]. However, spatial information of structural property changes due to occurrence
of damage cannot be directly obtained by use of natural frequencies, and one needs to construct accurate, physics-based
models in order to apply the methods [3–8], which can be difficult to achieve in practice, especially for complex large-scale
structures. Since occurrence of damage can introduce local abnormalities in MSs near damage regions [9], unlike use of
natural frequencies, the damage can be identified by inspecting smoothness of MSs without necessity of constructing models
of structures. Being more sensitive to damage of small extent than MSs, curvatures of MSs (CMSs) are more often used to
locate damage [10]. Effects of damage in a beam structure can be observed as severer local abnormalities in its CMSs than
in MSs, and one can isolate the effects by comparing a CMS of the damaged beam structure with that of an undamaged one.
It was shown that relatively large differences between a CMS of a damaged beam structure and that of an undamaged one
mainly occur near a region of damage and the differences increase as severity of damage increases [10]. CMS-based and
wavelet-transform-based methods were proposed in [11] to identify embedded horizontal cracks in beam structures, where
global trends of CMSs and wavelet transforms of MSs were eliminated by use of MSs from polynomials that fit MSs of
cracked beam structures with properly determined orders in a global manner.

A laser Doppler vibrometer (LDV) is capable of accurate, non-contact surface vibration measurement; its mechanism is
based on Doppler shifts between the incident light from and scattered light to the system [12]. The concept of a continuously
scanning LDV (CSLDV) system was first proposed in [13, 14]. A CSLDV system continuously sweeps its laser over a
surface of a structure under sinusoidal excitation to obtain its ODSs, which can be approximated by Chebyshev series with
coefficients determined by processing velocities measured by the system. Two CSLDV measurement methods were later
proposed to obtain ODSs of a structure under sinusoidal excitation: demodulation and polynomial methods [15, 16]. A
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“lifting” method was proposed to obtain MSs from measured free response of a structure, where velocities measured by a
CSLDV system are treated as output of linear time-periodic systems [17]. Use of a CSLDV system for damage identification
was first proposed in [18], where the demodulation method was used to obtain ODSs of various structures by scanning their
cracked surfaces, and effects of cracks could be observed as local abnormalities in obtained ODSs. The demodulation and
polynomial methods were synthesized to identify damage in beams, where damage can be identified by use of a CSLDV
system that scans intact surfaces of damaged beam structures [19].

In this work, a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV
system is introduced. An analytical expression of FRSs of a damped beam structure is derived. It is shown in the analytical
expression that amplitudes of FRSs exponentially decay to zero with time. A finite element model of a damped beam
structure is constructed, and a CSLDV system is simulated to measure its free response. FRSs associated with the structure
are obtained from the response measured by the simulated CSLDV system from the demodulation method, and they are
compared with those from the analytical expression. A new damage identification methodology that uses FRSs is proposed
for beam structures. A free-response damage index (FRDI) is defined, which consists of differences between curvatures
of FRSs obtained by use of a CSLDV system and those from polynomials that fit the FRSs, and damage regions can be
identified near neighborhoods with consistently high values of FRDIs associated with different modes. Effectiveness of the
methodology for identifying damage in a beam structure is numerically investigated.

7.2 Methodology

7.2.1 Free Response of a Damped Beam Structure

A linear time-invariant Euler-Bernoulli beam structure with a uniform cross-section is considered. The structure has a length
L, a bending stiffness EI and a linear mass density m. It is viscously damped, and damping effects are modeled using the
Kelvin-Voigt viscoelastic model with a damping coefficient c [20, 21]. Excitation in the form of a single impulse with an
intensity G0 is applied to the structure at position x D L0 at time t D 0. Response of the structure can be obtained by solving
its governing partial differential equation

EI
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D G0ı .x � L0/ ı .t/ (7.1)

with given boundary and initial conditions, where y .x; t/ is the displacement of the structure at position x at time t. Based on
the expansion theorem [20], a solution to Eq. (7.1) can be expressed by

y .x; t/ D
1X

hD1

Yh .x/ Fh .t/ (7.2)

where Yh .x/ is the mass-normalized eigenfunction of the hth mode of the corresponding undamped structure and �h .t/ is the
corresponding time function. The eigenfunction Yh .x/ can be expressed by

Yh .x/ D C1 sin ˇhx C C2 cos ˇhx C C3 sinh ˇhx C C4 cosh ˇhx (7.3)

where C1, C2, C3, C4 and ˇh are determined by the boundary conditions and the orthonormality condition of eigenfunctions

Z L

0

mYh .x/ Yj .x/ dx D ıh;j (7.4)

in which ıh;j is the Kronecker delta. The time function Fh .t/ can be obtained by solving an ordinary differential equation

RFh .t/ C c .2�fh/2 PFh .t/ C .2�fh/2 Fh .t/ D G0Yh .L0/ ı .t/ (7.5)

with initial conditions Fh .0/ and PFh .0/ determined by those of Eq. (7.1), where fh is the natural frequency of the undamped
structure in Hz associated with its hth mode. A relation between ˇh and fh can be expressed by



7 Structural Damage Identification Using Free Response Measured by a Continuously Scanning Laser Doppler Vibrometer System 61
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The solution to Eq. (7.5) can be expressed by Rao [22]
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is an amplitude constant and

�h D actan2

 PFh .0/ C 2��hfhF .0/

2�fh;d
C G0Yh .L0/

2�fh;d
; Fh .0/

!
(7.9)

is a phase angle;

�h D c�fh (7.10)

and

fh;d D fh
q

1 � �2
h (7.11)

are the damping ratio and damped natural frequency of the structure associated with its hth mode, respectively. Based on
Eqs. (7.2) and (7.7), y .x; t/ can be expressed by

y .x; t/ D
1X

hD1

AhYh .x/ e�2��hfht cos .2�fh;dt � �h/ (7.12)

7.2.2 FRS

A FRS associated with the hth mode of the beam structure can be defined by

�h .x; t/ D AhYh .x/ e�2��hfht (7.13)

and Eq. (7.12) becomes

y .x; t/ D
1X

hD1

�h .x; t/ cos .2�fh;dt � �h/ (7.14)

It can be seen that Yh, which can be considered as a MS associated with the hth mode, exists in the definition of a FRS
in Eq. (7.13). A similarity between Yh and �h is that they both correspond to the same mode of the structure. Since a MS
describes amplitude ratios of displacement, velocity or acceleration at different positions on the structure while it vibrates, the
multiplication factor of the MS can be an arbitrarily chosen non-zero constant, and the MS can be considered time-invariant.
However, �h differs from Yh due to two extra terms in Eq. (7.13), i.e., Ah and e�2� fh�ht. The coefficient Ah is determined
by the initial conditions of and impulse to the structure, and e�2� fh�ht indicates that amplitudes of �h at different positions
exponentially decay to zero with time. Hence, Ah cannot be arbitrarily chosen, and �h is time-varying.
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A CSLDV system continuously sweeps its laser spot over a vibrating structure surface with a specific scan pattern. It can
measure response of a measurement point, where its laser spot is located during a scan, and a finite number of modes of a
structure are included in free response measured by a CSLDV system. Let Qx .t/ be the position of a laser spot on a beam
structure at time t; free response of the structure measured by the CSLDV system with a straight scan line along its length
can be expressed by

Qy .t/ D
nX

hD1

Q�h .Qx .t// Q�h .t/ (7.15)

where n is the number of measured modes, and Q�h and Q�h are the FRS and time function associated with the hth mode
measured by the system, respectively. The FRS Q�h in Eq. (7.15) can be defined in a way similar to �h in Eq. (7.13):

Q�h .t/ D AhYh .Qx .t// e�2� fh�ht (7.16)

A major difference between �h in Eq. (7.13) and Q�h is that x in the former becomes Qx in the latter, which is a function of t and
is unique in a scan of the system. Similar to �h, Q�h contains both Ah and e�2� fh�ht, and it is time-varying. The time function
Q�h can be expressed by

Q�h .t/ D cos .2�fht � ˛h � �h/ (7.17)

where ˛h is the difference between a phase determined by the initial conditions and impulse associated with the hth mode and
that by a mirror feedback signal, and �h is a phase variable that controls amplitudes of in-phase and quadrature components
of Q�h, which can be expressed by

Q�I;h D Q�h cos .˛h C �h/ (7.18)

and

Q�Q;h D Q�h sin .˛h C �h/ (7.19)

respectively [19].

7.2.3 Demodulation Method for FRSs

The demodulation method has been proposed to obtain MSs and ODSs of a structure under sinusoidal excitation [16], where
its steady-state response measured by a CSLDV system are analyzed. FRSs of a linear damped beam structure measured by
a CSLDV system, as described by Q�h in Eq. (7.16), can also be obtained from the demodulation method by analyzing its free
response of half-scan periods measured by the system, and each obtained Q�h corresponds to a mode in a half-scan period.
A half-scan period starts when the laser spot of the system arrives at one end of a scan line, and it ends when the laser spot
arrives at the other end. Hence, multiple Q�h can be obtained from free response of the structure measured by the system in
one scan. To identify the start and end of a half-scan period, one can refer to mirror feedback signals of a CSLDV system
and determine instants when its laser spot arrives at ends of a scan line.

Application of the demodulation method for obtaining Q�k associated with the hth mode in a half-scan period of a CSLDV
system is described below. Based on Eqs. (7.15) through (7.19), a half-scan period of free response of the structure that is
measured by a CSLDV system can be expressed by

Qy .t/ D
nP

hD1

Q�h .Qx .t// cos .2�fht � ˛h � �h/

D
nP

hD1

� Q�I;h .Qx .t// cos .2�fht/ C Q�Q;h .Qx .t// sin .2�fht/
� (7.20)
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The response Qy .t/ is then multiplied by cos .2�fkt/ and sin .2�fkt/, which gives
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2
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and
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respectively. A low-pass filter is then applied to Qy .t/ cos .2�fkt/ and Qy .t/ sin .2�fkt/ in Eqs. (7.21) and (7.22) to obtain 1
2

Q�I;k

and 1
2

Q�Q;k, respectively, and the second and third terms on the third lines and terms on the fourth lines of Eqs. (7.21) and (7.22)
are removed. Further, Q�I;k and Q�Q;k can be obtained by multiplying the corresponding filtered signals by two. The value of
�h in Eq. (7.20) can be optimized so that Q�I;h and Q�Q;h attain their maximum and minimum amplitudes, respectively. In what
follows, all FRSs are represented by their in-phase components with maximum amplitudes.

7.2.4 FRDI

A CMS Y 00
h is the second-order spatial derivative of Yh, where a prime denotes first-order differentiation with respect to x. A

curvature FRS Q�00
h can be defined as

Q�00
h .Qx .t// D @2 Q�h

@Qx2
D AhY 00

h .Qx .t// e�2� fh�ht (7.23)

Since Y 00
h is related to the bending stiffness of a beam structure that can decrease due to occurrence of damage and regions of

the decrease correspond to damage regions, it can be used for damage identification [10], and so can Q�00
h , since it explicitly

contains Y 00
h , as shown in Eq. (7.23).

Since a MS of an undamaged beam structure can be well approximated by that from a polynomial that fits a MS of a
damaged beam structure [11], it can be inferred that a FRS of an undamaged structure can also be well approximated by
that from a polynomial that fits a FRS of a damaged structure. A damage index similar to that in [11] can be defined by
comparing Q�00

h of a damaged beam structure and that from a polynomial that fits Q�h with a properly determined order, which
can be expressed by

ıh .Qx/ D
NdX

iD1

� Q�00
h;i .Qx/ � Q�p00

h;i .Qx/
�2

(7.24)

where Nd is the number of FRSs to be included in the index, Q�h;i is a FRS associated with the hth mode in the ith half-scan
period, and Q�p

h;i is a FRS from a polynomial that fits Q�h;i with a properly determined order. The index ıh .Qx/ in Eq. (7.24) is
termed as a free-response damage index (FRDI) at Qx. Since there can be FRSs associated with multiple modes corresponding
to Qy measured by a CSLDV system in one scan, FRDIs associated with multiple modes can be obtained using measurement
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by a CSLDV system in one scan, and damage regions can be identified near neighborhoods with consistently high values
of FRDIs associated with different modes. Note that use of ıh associated with rigid-body modes should be excluded in
damage identification as curvatures of their FRSs are zero, and one should use ıh associated with elastic modes in damage
identification.

7.3 Numerical Investigation

7.3.1 FRSs from Analytical and FE Models

Based on Eq. (7.1), the analytical model of an undamaged aluminum cantilever beam structure with L D 0:8 m, E D
68:9 GPa, m D 0:1950 kg=m and c D 8 � 10�7 s is formulated; the structure has a uniform square cross-section with a side
length of 0:01 m. The structure has fixed and free ends at x D 0 and x D L, respectively, and it has zero initial conditions.
A single impulse with an intensity of 0:01 N s is applied to the free end of the structure. A corresponding FE model of the
structure under the same initial conditions and excitation is constructed using ABAQUS with 16,384 linear beam elements
for comparison purposes, where the damping in the analytical model can be equivalently modeled using Rayleigh damping
[20]. The formulation of the FE model can be expressed by

MRz .t/ C CPz .t/ C Kz .t/ D f .t/ (7.25)

with initial conditions z .0/ D 0 and Pz .0/ D 0, where M, C and K are mass, damping and stiffness matrices, respectively, in
which C D ˛M C ˇK with Rayleigh damping coefficients ˛ D 0 and ˇ D c, i.e., C D cK, and z and f are displacement and
force vectors, respectively. Mass-normalized MSs of the first four modes from the analytical and FE models compare well,
as shown in Fig. 7.1.

Response of the beam structure is then measured by a simulated CSLDV system with a scan period of T D 2 s
and a sampling frequency of 16,384 Hz; the simulated CSLDV system is capable of measuring response in the form of
displacement. The position of its laser spot is shown in Fig. 7.2a; the first half-scan period starts at t D 0:0625 s, and
measured response of the structure from the analytical and FE models in the first 8 s is shown in Fig. 7.2b.

Based on Eq. (7.16), FRSs from the analytical model associated with the first four modes of the beam structure in the
first three half-scan periods of the simulated CSLDV system are shown in Fig. 7.3a–d, respectively. FRSs from the FE model
obtained by use of the simulated CSLDV system, which are obtained from the demodulation method, are shown in Fig. 7.4.
It can be seen from Figs. 7.3 and 7.4 that the FRSs from the analytical and FE models are in good agreement. Amplitudes of
the FRSs associated with the fourth mode of the structure in the second and third half-scan periods drastically decrease to
almost zero due to the damping; the FRS in the first half-scan period is included in ıh .Qx/ associated with the fourth mode for
damage identification that follows.
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Fig. 7.1 Mass-normalized MSs of the cantilever beam structure associated with its first four modes from its analytical and FE models
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Fig. 7.2 (a) Position of the laser spot of a simulated CSLDV system on the beam structure and (b) response from its analytical and FE models
measured by the simulated CSLDV system

7.3.2 Damage Identification Using FRDIs

Since fidelity of the FE model of the undamaged cantilever beam structure has been verified in Sect. 7.3.1, the FE model can
be adapted to model such a beam structure with damage in the form of thickness reduction to numerically investigate the
proposed damage identification methodology. The thickness of the section of the structure between x D 6

16
L and x D 7

16
L

is reduced by 10%, while its E and volume mass density remain unchanged. Response of the damaged structure from its FE
model is measured by the simulated CSLDV system with the same settings as those in Sect. 7.3.1, and it is used to obtain
FRSs of the damaged structure associated with the first four modes in the first three half-scan periods, as shown in Fig. 7.5.

FRDIs associated with the first through fourth modes are shown in Fig. 7.6a–d, respectively. Note that numbers of FRSs
included in the FRDIs associated with the first through fourth modes are 3, 3, 3 and 1, respectively. The damage can be
clearly identified near neighborhoods with consistently high values of the FRDIs.

7.4 Conclusion

A new type of vibration shapes called a FRS is introduced in this work. A FRS can be obtained by use of a CSLDV system,
and it can be obtained from the demodulation method using free response of a structure. An analytical expression of a FRS is
derived for a beam structure with damping that can be modeled by Kelvin-Voigt viscoelastic model. FRSs from the analytical
expression compare well with those from a FE model. A FRDI that uses differences between curvatures of FRSs associated
with a mode and those from polynomial fits is proposed, and damage regions can be accurately identified near neighborhoods
with consistently high values of FRDIs associated with different modes. It is numerically shown that amplitudes of FRSs
decrease from one half-scan period to the next. The proposed methodology was numerically applied to a damaged beam
structure with thickness reductions along their lengths. The damage region is successfully identified near neighborhoods
with consistently high values of FRDIs associated with different modes.
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Fig. 7.3 FRSs of the beam structure from its analytical model associated with its (a) first, (b) second, (c) third and (d) fourth modes in the first
three half-scan periods of the simulated CSLDV system
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Fig. 7.4 FRSs of the beam structure from its FE model associated with its (a) first, (b) second, (c) third and (d) fourth modes obtained by use of
the simulated CSLDV system in the first three half-scan periods
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Fig. 7.5 FRSs from the FE model of the damaged beam structure obtained by use of the simulated CSLDV system associated with the (a) first,
(b) second, (c) third and (d) fourth modes in the first three half-scan periods
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Fig. 7.6 FRDIs associated with the (a) first, (b) second, (c) third and (d) fourth modes of the damaged beam structure. Locations of damage ends
are indicated by two vertical dashed lines
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