
Towards Ontology-Based Event Processing

Riccardo Tommasini1,2, Pieter Bonte1,2(B), Emanuele Della Valle1,2,
Erik Mannens1,2, Filip De Turck1, and Femke Ongenae1,2

1 imec, Ghent University, Ghent, Belgium
{pieter.bonte,erik.mannens,filip.deturck,femke.ongenae}@ugent.be

2 DEIB, Politecnico di Milano, Milan, Italy
{riccardo.tommasini,emanuele.dellavalle}@polimi.it

Abstract. The rapid change and heterogeneity of today’s generated
data calls for real-time decision making systems that can cope with the
presented heterogeneity. In this paper, we present an Ontology Based
Event Processing system that bridges the gap between ontology-based
reasoning and event processing. We propose both a language and an
architecture to perform event processing over abstract ontology concepts.
This allows to perform efficient temporal reasoning, while the high-level
ontological definitions reduce the need for knowledge of the underlying
data structure in complex domains.

Keywords: Stream Processing · Semantic Web · Stream Reasoning ·
Complex Event Processing

1 Introduction

In domains like Social Media, Financial Markets and Internet of Things
(IoT), information is traditionally represented as data streams, i.e. unbounded
sequences of data, or events, i.e. notifications about happened facts. Stream
Reasoning (SR) [5] investigates how Semantic Web and Stream Processing tech-
nologies can be combined to make decision making systems work in real-time,
across multiple data sources. SR investigates how to exploit the time ordering
of data streams to perform deductive and temporal reasoning on the fly.

In order to clarify this domain, consider the following example: We are inter-
ested to identify the presence of fire in a room, but there is no way to detect it
directly. Instead, the room contains sensors to detect the presence of smoke and
measure the temperature. In this case, a data stream is a timestamped sequence
of numbers representing the average temperature in the room; while an event
is a notification about the detection of smoke. The data and events arise from
different types of sensors. This heterogeneity impedes to perform queries across
these data sources. Another obstacle comes from the domain complexity. In pres-
ence of fire the temperature will be higher, but how can we distinguish abnormal
temperatures from normal ones? And, what if we had different rooms? This kind
of information represent background knowledge that our decision making system
has to combine with live data, in order to obtain an answer. Finally, assuming
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 115–127, 2017.
DOI: 10.1007/978-3-319-54627-8 9

116 R. Tommasini et al.

that we finally detect both smoke and abnormal temperature events, we have to
relate them in time.

The presented example calls for an approach that solves data variety, that
combines data with background knowledge, that deducts related information and
operates temporal reasoning combining data streams from sensors and events.
We name this approach Ontology-Based Event Processing (OBEP). For the best
of our knowledge, there is no approach in the SR state of the art that tries to do
so. Temporal extensions of deductive reasoning extends the ontological language
with time relations and, thus, easily diverges into intractability. Semantic Com-
plex Event Processing is limited to a semantic description of events and does
not focus on the processing.

In this paper, we propose an approach for OBEP that operates the event
processing a-posteriori above high level concepts deduced through deductive
reasoning, but without including time relations at ontological level. The con-
tribution of this work are: (i) a requirement analysis for an OBEP system to
satisfy; (ii) a syntax named DELP, i.e. Description Logic Event Processing, to
express information needs as the one presented in the example; (iii) an architec-
ture that bridges the gap between event processing to capture temporal relations
and event descriptions based on Semantic Web technologies and; (iv) a prototype
that proves the feasibility of the approach.

The rest of the paper is structured as follows: Sect. 2 describes the related
works. Section 3 describes the use case that is used throughout the paper.
Section 4 introduces the Description Logic Event Processing (DELP) language
we constructed, while Sect. 5 describes our OBEP system that implements the
abstracted event processing. Section 6 concludes the paper and elaborates on the
future research directions.

2 Background and Related Work

In this section we present the background knowledge required to understand the
content of the paper and the relevant related work.

Stream Processing engines are systems capable to process potentially infinite
sequences of data. Two main approaches exits to this extent:

– Data Stream Management Systems (DSMS) extend Data Base Management
Systems by introducing stream-to-relation operators, e.g. Windows, that allow
the transition between streaming and static data. Queries are continuously
evaluated over finite portions of the data streams selected by the means of
these operators.

– Complex Event Processing (CEP) engines exploit time-aware operators to
detect patterns over infinite sequences of incoming events. The user specifies
reaction rules that are concerned with the invocation of actions in response
to events and actionable situations. These rules specify a pattern over the
incoming data, e.g. A followed-by B, by using a declarative query language.
Such a pattern is usually validated with a finite state machine. Therefore, the
final complexity is at most polynomial in time and space.

Towards Ontology-Based Event Processing 117

Some stream processing engines offer declarative query language to operate
with data streams. The event processing language (EPL)1 is the most relevant
one and it allows to (i) write window-based continuous queries to process data
streams; (ii) define simple events or compositions of them (i.e. complex events)
(iii) treat events as first class citizens, i.e. the operators have direct influence on
the events.

Semantic technologies such as RDF, OWL and SPARQL have been used for
data integration in the IoT domain [2] and Semantic Complex Event Processing
(SCEP) [9].

An example of the former is MASSIF [4], i.e. an event-based semantic-enabled
IoT platform consisting of multiple semantic reasoning services each fulfilling a
distinct reasoning task. These services can collaborate on a high level by sub-
scribing to the Semantic Communication Bus (SCB) and indicating the high
level concepts they are interested in. The platform follows the notion of high
level events, however, it does not support any temporal reasoning between these
events.

An example of the SCEP is the work of Taylor et al. [9], i.e. an ontology
and a system for complex event specification that, in combination with reason-
ing techniques, simplify the rule definitions of a target complex event processing
language (e.g. EPL), eliminating the need of address manually the domain com-
plexity. To this extent, the ontology contains language constructs and operators,
e.g., seq, as properties and classes. This approach generalizes the query definition
task enabling interoperability between different event processing engines, but it
does not extend the semantics of the target query language nor does it propose
a unified syntax for it.

In the SR state-of-the-art, RDF Stream Processing (RSP) engines com-
bines semantic technologies and stream processing to perform continuous query-
ing or complex event processing [1] over streams encoded into time-annotated
RDF. EP-SPARQL [1] is the most relevant work w.r.t. ours, because it extends
SPARQL 1.0 with event processing operators, i.e., seq, equals, optionalseq, and
equalsoptional2. Event processing and SR is enabled over RDF Basic Graph Pat-
tern (BGP). Complex events are defined as BGPs combined with event process-
ing operators. As this is similar to the UNION or OPTIONAL operators in
SPARQL, events are not first class citizens. Since the events are defined through
BGPs, it can be devious to construct advanced event processing patterns.

Finally, temporal extension of deductive reasoning approaches such as
Description Logics are worth to mention. They include time relations at onto-
logical level, but this easily diverges into intractability and limiting the possible
entailments [6].

In summary, state-of-the-art solutions in the stream processing context suc-
cessfully model time relations but lack to address the data variety and the domain
complexity. Semantic technologies can be used to describe these extents, but

1 https://docs.oracle.com/cd/E13157 01/wlevs/docs30/epl guide/overview.html.
2 The semantics of these operators is similar to a left, right or full -join but their

selectivity depends on how the constituents are temporally related.

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

118 R. Tommasini et al.

existing approaches either lack to provide an unified syntax to model the full
processing [9] or have limited expressiveness and do not treat events as first class
citizens [1]. Finally, temporal logics are limited due to the hurdle of including
time within the reasoning algorithms.

3 Use Case

In this section we introduce a simple use case that we will use in the reminder
of the paper to explain our contributions.

A company wants to deploy an intelligent system to detect dangerous situa-
tions. Internally, they distinguish between three classes of conditions:

– Hazardous, i.e., situations that are dangerous for the company assets, e.g., fire
or floods,

– Risky, i.e., situations that are dangerous for the complete business, e.g., infor-
mation leaks or unauthorized access to restricted areas, and

– Unsafe, i.e., situations that are directly dangerous for people, e.g., fire or gas
leaks.

For each dangerous situation class, different alarms are defined (e.g., sound
and lights), alternative escape plans are organized and different authorities are
responsible for handling the situation.

The company is interested in monitoring Unsafe situations within their build-
ings and the surrounding areas. To this extent, sensors for smoke detection,
temperature, humidity and air quality monitoring are deployed within the build-
ing into a wireless sensor network. To monitor the surrounding areas, a public
infrastructure provided by the local government is available through web APIs.

For the remainder of the paper, we will provide examples of the Unsafe
situation Fire Detection. As explained in the Sect. 1, there is no direct way
to sense fire, but we can assume its presence through the detection of smoke
and abnormal temperature measurements within the same time interval. Many
challenges arise to define such a simple rule:

(i) Data Integration: How can the proprietary data and those coming from
external APIs be combined?

(ii) Domain Complexity : How can we decide if the detected temperature is
abnormal?

(iii) Temporal Relation: How do we model the temporal relation between smoke
events and abnormal temperature so we can infer the presence of fire?

4 Ontology-Based Event Processing Language

In this section, we introduce our first contribution: DELP, a syntax for Descrip-
tion Logic Event Processing. DELP is designed based on the definition of the
following requirements elicited on the challenges presented in Sect. 3.

Towards Ontology-Based Event Processing 119

(R1) Semantic Event Representation [9]: this allows the integration of multiple
heterogeneous sources (a) and derivation of implicit data in combination
with background knowledge (b).

(R2) Event Processing [1]: this allows to combine high level ontological concepts
capturing the temporal dependencies and build complex events.

(R3) First Class Citizens Events, i.e., creation and direct manipulation with
language operators (e.g. pattern matching) should be possible.

(R4) Filtering and Joining: The former allows to remove irrelevant events, while
the latter allows to combine events over multiple event streams to achieve
intelligent decision making.

In Sect. 4.2, we show each challenge should be tackled for an OBEP system,
finally in Sect. 4.3 we present the grammar of DELP and how it fulfills the
requirements above.

4.1 Semantic Event Representations

In our running example, we want to derive abnormal temperature and measure-
ments and combine them with smoke detection events. These needs are captured
by challenges (i) and (ii), and call for a semantic representation of events. This
need becomes clear when we analyze the domain complexity, e.g. temperature
normality is different in different building areas, e.g., elevator are colder than
server rooms.

Static Information Integration systems such as Ontology Based Data Access
systems solve these circumstances by the means of an integrated conceptual
model (ICM). The ICM enables query answering across heterogeneous data
sources by the means of a common vocabulary formally specified with an onto-
logical language, e.g. DL or OWL. The ICM of our example currently contains
axioms from (1) to (5).

SmokeDetectionEvent ≡ ∃hasContext.(∃observedProperty.Smoke) (1)

TemperatureEvent ≡ Observation

� (∃observedProperty.Temperature) (2)

AbnormalTemperatureEvent � TemperatureEvent (3)

ElevatorAbnormalTemperatureEvent � AbnormalTemperatureEvent

� (∃observationResult.[hasV alue>40])
� (∃hasLocation.Elevator) (4)

ServerRoomTemperatureEvent � AbnormalTemperatureEvent

� (∃observationResult.[hasV alue>20)
� (∃hasLocation.ServerRoom) (5)

120 R. Tommasini et al.

Data integration requires a generic data model. RDF is commonly used by
the Semantic Web community to overcome the heterogeneity of static data. In
our case, RDF is enough to represent the background knowledge but not to
represent streams, which require RDF Streams (see Sect. 2).

Last but not least, the ICM, if combined with a reasoners, allows to exploit
background knowledge to derive information that is only implicit described in
the data, as the axioms (4) and (5) show.

Deciding the entailment to use for representing the ICM is a domain specific
problem and a trade-off with the final system complexity. One may argue the
need of a very expressive ontological language such as OWL 2 DL, that allows
us to define events in a generic and concise manner and it enables to create a
truly abstracted view over the events by the means of DL reasoning. Fragments
like OWL RL, DL-lite, or EL++ have been shown to be interesting for Stream
Reasoning use cases. At this stage, we do not discuss which restriction DELP
should include. In order to express meaningful examples w.r.t. our use case we
opted for OWL 2 DL3, postponing a deep complexity study for future work.

4.2 Capturing Time Relations

In our running example, the central part represent the time relation between
abnormal temperature and smoke. This need is captured by challenge (iii), that
calls for event processing operators. In practice, we need to explain simple tem-
poral pattern such as seq, combined with modifiers that provide enough expres-
siveness to capture the entire domain complexity, e.g. not.

Regarding time, we assume a point-based time semantics [3] for events; an
event e as a pair (G, t), where G is an RDF graph containing the event state-
ments and t is the associated timestamps. A partial ordering is established
among events, i.e. events can occur at the same timestamps. Regarding the
event processing, we consider the following time-aware operators:

– seq : (G1, t1) and (G2, t2), returns true iff the events occur and t1 > t2;
– and : (G1, t1) and (G2, t2), returns true when both the events occur regardless

their ordering;
– or : (G1, t1) or (G2, t2), returns true iff at least one of the events occur;

and the following modifiers:

– every, forces the re-evaluation of the pattern according to its positive evalua-
tion;

– within, limits the validity of the pattern by constraining its evaluation into
time boundaries; and

– not, negates the truth value of a pattern4.

Notably, in the state of the art, none of the existing solution implements all
these operators.
3 https://www.w3.org/TR/owl2-direct-semantics/.
4 Not can be used only as a combination of other patterns.

https://www.w3.org/TR/owl2-direct-semantics/

Towards Ontology-Based Event Processing 121

4.3 Description Logic Event Processing

In this section, we finally explain how the event processing operators (see
Sect. 4.2) are used in combination with ontological concepts.

In our example, we are interested in abnormal temperature and smoke sensor
readings to detect fire. We saw in Sect. 4.2 that semantic event representation
(R1) is possible in the ICM. Alternatively, high level events can be specified
within a DELP query, by the means of the EventDecl clause (see Listing 1.4).
Listing 1.1 is an example of event declaration in DELP. The Manchester syntax5

is chosen for two reasons: it is conciser than RDF and highlights the idea of spec-
ifying events using high level abstractions. Moreover, it was combined already
with SPARQL in the past [8].

EVENT : OfficeAbnormalTemperaturEvent subClassOf
AbnormalTemperaturEvent

and (ob s e r v a t i o n r e s u l t some (hasValue (hasDataValue >= 40)))
and (hasLocat ion some Of f i c e))

Listing 1.1. Event Declaration for office abnormal temperature in DELP

Events defined through this clause are added to the TBox of ontology the
reasoner uses for the inference process. Each of the defined events in DELP are
translated to OWL class expressions. The translation is straight forward, since
the event definition is based on the DL Manchester syntax. For example, the
Office Abnormal Temperature definition in Listing 1.1 is translated to:

OfficeAbnormalTemperaturEvent � AbnormalTemperatureEvent

� (∃observationResult.[hasV alue>40])
� (∃hasLocation.Office) (6)

DELP exploits the time-aware operators as explained in Sect. 4.2. Listing 1.2
shows how Fire detection can be defined exploiting the temporal relation between
a SmokeDetectionEvent and AbnormalTemperaturEvent.

Event processing over high level concepts (R2), an example of which is avail-
able in Listing 1.2, is enabled by the sub-clause PatternExpr of the Pattern-
Decl clause. The definition of event patterns relies on user-defined ontological
concepts or those already existing in an ontology.

NAMED EVENT : FireEvent {
MATCH : AbnormalTemperaturEvent SEQ : SmokeDetectionEvent WITHIN (5m)

}

Listing 1.2. Event Declaration for fire, based on temperature and smoke, in DELP.

5 https://www.w3.org/TR/owl2-manchester-syntax/.

https://www.w3.org/TR/owl2-manchester-syntax/

122 R. Tommasini et al.

NAMED EVENT : FireEvent {
MATCH : AbnormalTemperaturEvent SEQ : SmokeDetectionEventa WITHIN (5m)

IF {
EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc : hasValue ?v}
EVENT : SmokeDetectionEvent { ?smkSnsLoc : hasValue ?v ;

?smokeObs ssn : obse rvat i onResu l t ; : hasValue ? smokeLevel

FILTER (? smokeLevel == ”3”ˆˆxsd : i n t e g e r)

}
}

}

Listing 1.3. Example of event pattern with filters (R4). aWe assume this event is
already defined in the ontology.

Last but not least, the IFDecl clause enables to express filters and joins over
RDF Streams. Using a SPARQL-like syntax, the user can specify a basic graph
pattern to match for each event, e.g., EVENT :AbnormalTemperaturEvent in
Listing 1.3, and joins that exploit a name-based notation, i.e., variables with
the same name obtain the same binding (e.g., variable ?v in Listing 1.3). Filters
are specified using the SPARQL 1.1 Filter clause e.g., variable ?smokeLevel in
Listing 1.3.

Finally, Listing 1.4 describes a sub-portion of the DELP grammar, the full
one is available at http://bit.ly/2bURXUt. Due to the lack of space, we omitted
those parts that relies on other grammars, in particular: The EventDecl clause
allows definition of events as first class citizens; it relies on the classes formulation
typical of Manchester Syntax. An example of this is available in Listing 1.1. The
Constraint clause allows the specification of filters; it relies on the SPARQL 1.1
grammar; an example of this is available in Listing 1.3. The user can specify time
relations over semantic event declarations using the MATCH clause. Notably,
the optional keyword NAMED works differently from SPARQL 1.1. It indicates
which events the user is interested to select for the retrieval of the underlying
RDF graph.

EventClause −> [NAMED] ’EVENT’ EventIRI (EventDecl | PatternDecl)
EventDecl −> Fol lows Manchester Syntax Grammara

PatternDecl −> ’WHEN’ PatternExpr [IFDecl] PatternExpr −> ’MATCH’
FollowedByExpr [WITHIN TimePeriod] TimePeriod −> ’INTEGER’ (ms | s
| m | h | d | w) FollowedByExpr −> OrExpr (([’NOT’] ’SEQ’) OrExpr)∗
OrExpr −> AndExpr (’OR’ AndExpr)∗ AndExpr −> EveryOrNotExpr (’AND’
EveryOrNotExpr)∗ EveryOrNotExpr −> [’EVERY’ | ’NOT’] (EventIRI
[’AS’ EventAl t I r i]

| (PatternExpr))∗
IFDecl −> IF ’{ ’ ’EVENT’ (EventIRI | Var) F i l t e rExpr ’} ’
F i l t e rExpr −> ’{ ’ (BGP | ’FILTER’ Constra int)∗ ’} ’

Constra int −> Fol lows the SPARQL 1.1 Grammarb

Listing 1.4. Ontology-Based Event Processing Language Grammar. ahttps://www.
w3.org/TR/owl2-manchester-syntax/#description. bhttps://www.w3.org/TR/rdf-
sparql-query/\#rConstraint.

http://bit.ly/2bURXUt
https://www.w3.org/TR/owl2-manchester-syntax/#description
https://www.w3.org/TR/owl2-manchester-syntax/#description
https://www.w3.org/TR/rdf-sparql-query/#rConstraint
https://www.w3.org/TR/rdf-sparql-query/#rConstraint

Towards Ontology-Based Event Processing 123

5 Ontology-Based Event Processing Architecture

In this section, we describe a system architecture for an OBEP system that
supports the DELP syntax.

Figure 1 shows three different layers, each of which addresses a specific part
of the processing to go from RDF Streams to the results of a DELP query. As
anticipated in Sect. 4.3, we assume incoming events as a pair (G, t) where G is
an RDF Graph and t is a timestamp (RDF Stream in Fig. 1).

Building on this assumption, Layer (a) is responsible for inferring high level
concepts by applying reasoning over the incoming events; Layer (b) is responsible
for identifying and extracting, from the underlying RDF graph, those properties
that are relevant for filtering and joining, as specified in the query; last, but not
least, Layer (c) applies event processing over the abstracted events as well as
filtering and joining using the extracted properties. In the following paragraphs,
each layer is described in detail.

To better understand how each layer behaves, we continue our running exam-
ple. We want to capture the temporal relation between abnormal temperature
and smoke in order to detect fire, but we need to ensure that the smoke detection
and the abnormal temperature measure belong to the same room. In Listing 1.5,
this requirements are translated into a time relation and a join condition: the
variable ?v is used for the AbnormalTemperaturEvent and the SmokeDetection-
Event.

Fig. 1. Overview of the ontology-based event processing architecture

NAMEDEVENT : FireEvent {
MATCH : AbnormalTemperaturEvent −> : SmokeDetectionEvent WITHIN (5m)
IF {

EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc a : Locat ion .
?tmpSnsLoc : hasValue ?v}

EVENT : SmokeDetectionEvent { ?smkSnsLoc a : Locat ion .
?smkSnsLoc : hasValue ?v}

}
}

Listing 1.5. Event Declaration for fire, if the smoke and temperature are sensed in
the same location.

124 R. Tommasini et al.

The incoming RDF graphs are added to the ABox, processed by the reasoner,
and then removed. This process is show in Fig. 1a. DL reasoning is utilized,
together with ontological definition of events, to materialize the incoming RDF
graphs. When the reasoner, after a realization step, infers one of the defined
high level events, these are forwarded to the next layer that can perform event
processing over high level abstractions.

DELP allows the specification of filters and joins over the defined events.
However, performing joins or filters requires to compare the values of those
variables expressed in the DELP query. Which means access to the underlying
RDF graph of high level ontological concepts that DELP targets. An additional
SPARQL-querying layer, shown in Fig. 1b, is added in order to reach the under-
lying RDF graph that the high level event definition implies and extract the
variables required for joining or filtering.

The translation from DELP filters to SPARQL queries is again straight for-
ward. Listing 1.6 shows one of the required queries for the property extraction
of the SmokeDectectionEvent in our example. For joins, the variable value must
be the same for all the events sharing a variable; filters should positively validate
a given conditional expression (e.g. lower than a specified threshold). Once the
query is executed, the variable bindings are added to the event as properties,
maintaining the naming convention. If no properties need to be extracted and
no additional filtering is required, this step can be omitted.

SELECT ?tmpSnsLoc ?v
WHERE { ?tmpSnsLoc a : Locat ion ; : hasValue ?v }

Listing 1.6. Translated SPARQL query for the property extraction based on the
definition in Listing 1.5 for the SmokeDetectionEvent

The last layer in our proposed architecture is responsible for the actual event
processing; it corresponds to Fig. 1c.

In our example, SmokeDetectionEvent and AbnormalTemperatureEvent are
matched. Figure 2 zooms in Fig. 1c and shows the structure of the events once
they reach the event processing layer for our running example: (Fig. 2I) the
materialized events that therefore contain both explicit data (Blue) and those
which have been inferred (Green); (Fig. 2II) the previously extracted values for
variables involved in filters or, in this very case, joins; (Fig. 2III) the high level
event definition, represented as an RDF graph to maintain a coherent notation.

Assuming such a layered data structure, the pattern matching can be trans-
lated into a target CEP language that provides filtering and joining using a
name-based notation such as EPL. Listing 1.7 shows an example of this transla-
tion related to the fire detection example.

select ∗ from pattern
[every a=AbnormalTemperaturEvent −> b=SmokeDetectionEvent (v=a . v)
where t imer : with in (5 min)]

Listing 1.7. Event Declaration for fire, translated to EPL

Towards Ontology-Based Event Processing 125

Fig. 2. Event processing over high level events. (Color figure online)

Building complex event structure is the goal of both CEP and SCEP systems.
Therefore, it is worth discussing how complex events are provided to the user in
case of positive pattern matching. At current stage, DELP does not include the
specification of composed events explicitly. This is because it is hard to combine
high level event description with their low level construction and we leave this
as future work. Since event composition is crucial in event processing, we opt
for a conservative solution and we define the complex event as the union of the
underlying RDF graphs. The union is used since the event processor will only
return values when the operator turned true. For example if E1 has been detected
and E2 not, then E1 OR E2 will return true with E2 as an empty collection.

Last but not least, we implemented an OBEP proof-of-concept system6 con-
taining the following technologies: the HermiT reasoner [7] for event abstraction
in the first layer; Jena ARQ7 for the property extraction of the underlying RDF
graph in the second layer and the Esper engine8 to perform the event processing
on the high level events in the third layer.

6 Discussion and Conclusion

In this paper, we presented a first step towards ontology-based event process-
ing. We designed an approach that contributes to the state-of-the-art of stream

6 The code is part of the new version of MASSIF platform which is not yet available
as open source. A stand alone version will be published at https://github.com/
IBCNServices/OBEP.

7 https://jena.apache.org/documentation/query/.
8 http://www.espertech.com/.

https://github.com/IBCNServices/OBEP
https://github.com/IBCNServices/OBEP
https://jena.apache.org/documentation/query/
http://www.espertech.com/

126 R. Tommasini et al.

Table 1. Differences and similarities between (S)CEP and OBEP approaches against
Sect. 4 requirements. ⊗, i.e. SPARQL-like; �, i.e. seq, and, or, not, every, within.

R1.a R1.b R2 R3 R4 (filters) R4 (joins)

EPL Relational / � � � �
EP-SPARQL [1] RDF BGP RDFS seq, opt seq eq opt seq / �⊗ �⊗

Taylor et al. [9] OWL Boha seq, or, and � / /

MASSIF [4] DL Axioms OWL 2 DL / / � /

OBEP DL Axioms OWL 2 DL � � �⊗ �⊗
aRiccardo: find.

reasoning with a requirement analysis; a syntax for Description Logic Event
Processing, i.e. DELP; a three-layered architecture for an OBEP system that
supports the proposed DELP syntax and fulfills our requirements; and a proof-
of-concept implementation of a system.

Table 1 summarizes the differences and similarities between the related works
mentioned in Sect. 2 and our approach for OBEP. This table highlights the
novelty of the proposed system through the requirements that we presented
in Sect. 4. Our approach combines semantic event declaration (R1.a) and event
processing (R2). It also allows to compute temporal inference over the high-
level concepts outputted by a deductive reasoning process. This is different from
approaches that extend the ontological language to perform temporal inference,
because they have to choose between either small entailments or intractability.
DELP implements all the typical event processing operator (R3), while the other
approaches focus on a subset. In particular, we include the not, which allows the
definition of more expressive patterns. The final system complexity is composed
by two layers, i.e. deductive reasoning and event processing. The second one is
known to be polynomial in time, therefore the final complexity is bounded by
the complexity of the ontological language used to describe the events.

In our future work, we will focus on the full language specification, i.e. full
complexity description and the analysis under different DL fragments. We will
investigate how to add the underlying definition of the events defined as RDF
graphs. Integrating this in the language facilitates the creation of a more com-
plete system that allows the processing of data on different levels. We aim at
introducing explicit complex event construction semantics and also important
time-aware operators, such as the ones of Allen’s algebra. Finally, we plan to
combine our approach with static knowledge for advanced inference and to thor-
oughly compare the performance of a prototype with state-of-the-art solutions,
such as EP-SPARQL.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning, pp. 635–644 (2011)

2. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of
Things: early progress and back to the future. Int. J. Semant. Web Inf. Syst.
(IJSWIS) 8, 1–21 (2012)

Towards Ontology-Based Event Processing 127

3. Bohlen, M.H., Busatto, R., Jensen, C.S.: Point-versus interval-based temporaldata
models. In: Proceedings of the Fourteenth International Conference on Data Engi-
neering, pp. 192–200 (1998)

4. Bonte, P., Ongenae, F., De Backere, F., Schaballie, J., Arndt, D., Verstichel, S.,
Mannens, E., Van de Walle, R., De Turck, F.: The MASSIF platform: a modular
and semantic platform for the development of flexible IoT services. KAIS, 1–38
(2016)

5. Della Valle, E., Ceri, S., Harmelen, F.V., Fensel, D.: It’s a streaming world! Rea-
soning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

6. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In:
15th International Symposium on Temporal Representation and Reasoning, TIME
2008, Université du Québec à Montréal, pp. 3–14, 16–18 June 2008

7. Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient owl reasoner. In:
OWLED, vol. 432, p. 91 (2008)

8. Sirin, E., Bulka, B., Smith, M.: Terp: Syntax for owl-friendly SPARQL queries. In:
Proceedings of the 7th International Workshop on OWL: Experiences and Directions
(OWLED 2010), San Francisco, 21–22 June 2010

9. Taylor, K., Leidinger, L.: Ontology-driven complex event processing in heteroge-
neous sensor networks. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B.,
Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp.
285–299. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21064-8 20

http://dx.doi.org/10.1007/978-3-642-21064-8_20

	Towards Ontology-Based Event Processing
	1 Introduction
	2 Background and Related Work
	3 Use Case
	4 Ontology-Based Event Processing Language
	4.1 Semantic Event Representations
	4.2 Capturing Time Relations
	4.3 Description Logic Event Processing

	5 Ontology-Based Event Processing Architecture
	6 Discussion and Conclusion
	References

