
A Simplified Agile Methodology
for Ontology Development

Silvio Peroni(B)

DASPLab, DISI, University of Bologna, Bologna, Italy
silvio.peroni@unibo.it

Abstract. In this paper we introduce SAMOD, a.k.a. Simplified Agile
Methodology for Ontology Development, a novel agile methodology for
the development of ontologies by means of small steps of an iterative
workflow that focuses on creating well-developed and documented models
starting from exemplar domain descriptions. In addition, we discuss the
results of an experiment where we asked nine people (with no or limited
expertise in Semantic Web technologies and Ontology Engineering) to
use SAMOD for developing a small ontology.

Keywords: Agile ontology development methodology · Conceptual
modelling · Knowledge engineering · OWL Ontologies · Ontology engi-
neering · SAMOD · Test-driven development

1 Introduction

Developing ontologies is not a straightforward task. This assumption is implicitly
demonstrated by the number of ontology development processes that have been
developed in last 30 years, that have their roots in the Knowledge and Software
Engineering domains. Moreover, the choice of the right development process to
follow is a delicate task, since it may vary according to a large amount of vari-
ables, such as the intrinsic complexity of domain to be modelled, the context
in which the model will be used (enterprise, social community, high-profile aca-
demic/industrial project, private needs, etc.), the amount of time available for
the development, and the technological hostility and the feeling of unfruitfulness
shown by the final customers against both the model developed and the process
adopted for the development.

In the past twenty years, the Software Engineering domain has seen the pro-
posal of new agile methodologies for software development, in contrast with
highly-disciplined processes that have characterised such discipline since its
beginning. Following this trend, recently, agile development methodologies have
been proposed in the field of Ontology Engineering as well (e.g. [3,7,13]). Such
kind of methodologies would be preferred when the ontology to develop should
be composed by a limited amount of ontological entities – while the use of

RASH: https://w3id.org/people/essepuntato/papers/samod-owled2016.html.

c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 55–69, 2017.
DOI: 10.1007/978-3-319-54627-8 5

https://w3id.org/people/essepuntato/papers/samod-owled2016.html


56 S. Peroni

highly-structured and strongly-founded methodologies remain valid and, maybe,
mandatory to solve and model incredibly complex enterprise projects.

One of main characteristics that ontology development methodologies usually
have is the use of exemplar data during the development process so as to:

– avoid inconsistencies – a common mistake when developing a model is to make
the TBox consistent if considered alone, and inconsistent when we define an
ABox for it, even if all the classes and properties are completely satisfiable.
Using real-world data, as exemplar of a particular scenario of the domain we
are modelling, can definitely prevent this problem;

– have self-explanatory and easy-understandable models – trying to implement
a particular real-world and significative scenario related to a model by using
real data allows one to better understand if each TBox entity has a meaningful
name that describes clearly the intent and the usage of the entity itself. This
allows users to understand a model without spending a lot of effort in reading
entity comments and the related documentation. The use of real data as part of
the ontology development obliges ontology engineers and developers to think
about the possible ways users will understand and use the ontology they are
developing, in particular the very first time they look at it;

– provide examples of usage – producing data within the development process
means to have a bunch of exemplars that describe the usage of the model in
real-world scenarios. This kind of documentation, implicitly, allows users to
apply a learn-by-example approach [1] in understanding the model and during
their initial skill acquisition phase.

As already mentioned, several methodologies already propose the use of data
during the development. However, the current ontology engineering processes,
that deal with the development of small-/medium-size ontologies, usually do not
include other aspects that, according to our experience, are crucial for guaran-
teeing a correct and quick outcome. In particular, it would be important:

– to take advantages of existing agile methodologies from the Software Engi-
neering domain, by considering important features such as adaptive planning,
evolutionary development, early delivery, continuous improvement, and rapid
and flexible response to change;

– not to oblige pair programming – from our personal experience, the develop-
ment of small ontologies usually involves only one ontology engineer;

– to provide a precise definition of different kinds of tests that the ontology must
pass at each stage of the development, and that can be used for documenting
the ontology as well.

In order to address all the aforementioned desiderata, in this paper we intro-
duce SAMOD (Simplified Agile Methodology for Ontology Development), a novel
agile methodology for the development of ontologies, partially inspired to the
Test-Driven Development process in Software Engineering [2] and to existing
agile ontology development methodologies such as eXtreme Design (XD) [13]. In
particular, SAMOD is organised in three simple steps within an iterative process



A Simplified Agile Methodology for Ontology Development 57

that focuses on creating well-developed and documented models by using signi-
ficative exemplars of data, so as to produce ontologies that are always ready-
to-be-used and easily-understandable by humans (i.e. the possible customers)
without spending a lot of effort.

SAMOD is the result of our dedication to the development of ontologies in
the past six years. While the first draft of the methodology has been proposed
in 2010 as starting point for the development of the Semantic Publishing and
Referencing Ontologies1 [10], it has been revised several times so as to come
to the current version presented in this paper – which has been already used
for developing several ontologies, such as the Vagueness Ontology2, the F Entry
Ontology3, the OA Entry Ontology4, and the Imperial Data Ontology5. While
a full introduction to SAMOD is provided in [11], in this paper we provide a
summary of it and we discuss some outcomes of an user-based evaluation we
have conducted in the past months.

The rest of the paper is organised as follows. In Sect. 2 we introduce the enti-
ties involved in the methodology. In Sect. 3 we present all the steps of SAMOD,
providing details for each of them. In Sect. 4 we discuss the outcomes of an
experiment where we asked to subjects with limited knowledge about Semantic
Web technologies and Ontology Engineering to use SAMOD for developing an
ontology. In Sect. 5 we present some of the most relevant related works in the
area. Finally, in Sect. 6 we conclude the paper sketching out some future works.

2 Preliminaries

The kinds of people involved in SAMOD are domain experts and ontology engi-
neers. A domain expert, or DE, is a professional with expertise in the domain to
be described by the ontology, and she is mainly responsible to define, often in nat-
ural language, a detailed description of the domain in consideration. An ontology
engineer, or OE, is a person who constructs meaningful and useful ontologies by
using a particular formal language (such as OWL 26) starting from an informal
and precise description of a particular problem or domain provided by DEs.

A motivating scenario (MS) [17] is a small story problem that provides a short
description and a set of informal and intuitive examples about it. In SAMOD, a
motivation scenario is composed by a name that characterises it, a natural lan-
guage description that presents a problem to address, and one or more examples
according to the description.

An informal competency question (CQ) [17] is a natural language question
that represents an informal requirement within a particular domain. In SAMOD,

1 http://www.sparontologies.net/.
2 http://www.essepuntato.it/2013/10/vagueness.
3 http://www.essepuntato.it/2014/03/fentry.
4 http://purl.org/emmedi/oaentry.
5 http://www.essepuntato.it/2015/07/ido.
6 http://www.w3.org/TR/owl2-syntax/.

http://www.sparontologies.net/
http://www.essepuntato.it/2013/10/vagueness
http://www.essepuntato.it/2014/03/fentry
http://purl.org/emmedi/oaentry
http://www.essepuntato.it/2015/07/ido
http://www.w3.org/TR/owl2-syntax/


58 S. Peroni

each informal competency question is composed by an unique identifier, a nat-
ural language question, the kind of outcome expected as answer, some exemplar
answers considering the examples provided in the related motivating scenario7,
and a list of identifiers referring to higher-level informal competency questions
that the question in consideration requires, if any.

A glossary of terms (GoT) [5] is a list of term-definition pairs related to
terms that are commonly used for talking about the domain in consideration.
The term in each pair may be composed by one or more words or verbs, or even
by a brief sentence, while the related definition is a natural language explanation
of the meaning of such term. The terminology used for naming terms and for
describing them must be as close as possible to the domain language.

As anticipated in the introduction, SAMOD prescribes an iterative process
which aims at building the final model through a series of small steps. At the end
of each iteration a particular preliminary version of the final model is released.
Within a particular iteration in, the current model is the version of the final model
released at the end of the iteration in−1. Contrarily, a modelet is a stand-alone
model describing a particular aspect of the domain in consideration which is
used to provide a first conceptualisation of a motivating scenario, without caring
about the current model available after the previous iteration of the process –
it is similar to a microtheory as introduced in Cyc [15]. By definition, a modelet
does not include entities from other models and it is not included in other models.

A test case Tn, produced in the nth iteration of the process, is a sextuple
including a motivating scenario MSn, a list of scenario-related informal compe-
tency questions CQn, a glossary of terms GoTn for the domain addressed by
the motivating scenario, a TBoxn of the ontology implementing the description
introduced in the motivating scenario, an exemplar ABoxn implementing all the
examples described in the motivating scenario according to the TBoxn, and a set
of SPARQL8 queries SQn formalising the informal competency questions. A bag
of test cases (BoT) is a set of test cases.

Given as input MSn, TBoxn and GoTn – a model test aims at checking the
validity of TBoxn against specific requirements:

– [formal requirement] understanding (even by using appropriate unit tests
[19]) whether TBoxn is consistent;

– [rhetorical requirement] understanding whether TBoxn covers MSn and
whether the vocabulary used by TBoxn is appropriate.

Given as input MSn, TBoxn and ABoxn built according to TBoxn, and con-
sidering the examples described in MSn, a data test aims at checking the validity
of the model and the dataset and against specific requirements:

7 Note that if there are no data in any example of the motivating scenario that answer
to the question, it is possible that either the competency question is not relevant for
the motivating scenario or the motivating scenario misses some important exemplar
data. In those cases one should remove the competency question or modify the
motivating scenario accordingly.

8 http://www.w3.org/TR/sparql11-query/.

http://www.w3.org/TR/sparql11-query/


A Simplified Agile Methodology for Ontology Development 59

– [formal requirement] understanding whether the TBoxn is still consistent
when considering the ABoxn;

– [rhetorical requirement] understanding whether the ABoxn describes all
the examples accompanying the motivating scenario completely.

Given as input TBoxn, ABoxn, CQn, and SQn, a query test aims at check-
ing the validity of TBoxn, ABoxn, and each query in SQn against specific
requirements:

– [formal requirement] understanding whether each query in SQn is well-
formed and can correctly run on Tboxn + ABoxn;

– [rhetorical requirement] understanding whether each query in CQn is
mapped into an appropriate query in SQn and whether, running each of them
on TBoxn + ABoxn, the result conforms to the expected outcome detailed in
each query in CQn.

3 Methodology

SAMOD is based on the following three iterative steps (briefly summarised in
Fig. 1) – where each step ends with the release of a snapshot of the current state
of the process called milestone:

1. OEs collect all the information about a specific domain, with the help of
DEs, in order to build a modelet formalising the domain in consideration,
following certain ontology development principles. Then OEs create a new
test case that includes the modelet. If everything works fine (i.e. model test,
data test, and query test are passed), OEs release a milestone and proceed;

Fig. 1. A brief summary of SAMOD, starting with the “Collect requirements and
develop a modelet” step.



60 S. Peroni

2. OEs merge the modelet of the new test case with the current model produced
by the end of the last iteration of the process, and consequently they update
all the test cases in BoT specifying the new current model as TBox. If every-
thing works fine (i.e. model, data and query tests are passed according to
their formal requirements only), OEs release a milestone and proceed;

3. OEs refactor the current model, in particular focussing on the last part added
in the previous step, taking into account good practices for ontology develop-
ment processes. If everything works fine (i.e. model, data and query tests are
passed), OEs release a milestone. In case there is another motivating scenario
to be addressed, OEs iterate the process, otherwise the process ends.

The next sections elaborate on these steps introducing a real running exam-
ple9 considering a generic iteration in.

3.1 Step 1: Define a New Test Case

OEs and DEs work together to write down a motivating scenario MSn, being
as close as possible to the language DEs commonly use for talking about the
domain. An example of motivating scenario is illustrated in Table 1.

Given a motivating scenario, OEs and DEs should produce a set of informal
competency questions CQn, each of them identified appropriately. An example
of an informal competency question, formulated starting from the motivating
scenario in Table 1, is illustrated in Table 2.

Now, having both a motivating scenario and a list of informal competency
questions, OEs and DEs write down a glossary of terms GoTn. An example of
glossary of terms is illustrated in Table 3.

The remaining part of this step is led by OEs only10, who are responsible of
developing a modelet according to the motivating scenario, the informal compe-
tency questions and the glossary of terms11.

In doing that work, they must strictly follow the following principles:

– Keep it small. Keeping the number of the developed ontology entities small
– e.g. Miller’s magic number “7 ± 2” [9] entities per type (classes, object
properties, data properties) – so as not to overload OEs’ working memory.
In addition, by making small changes (and retesting frequently, as our frame-
work prescribes), one has always a good idea of what change has caused an
error/inconsistency in the model [2].

– Use patterns. OEs should take into consideration existing knowledge, in
particular existing and well-documented patterns – the Semantic Web Best
Practices and Deployment Working Group page12 and the Ontology Design

9 The whole documentation about the example is available at http://www.
essepuntato.it/2013/10/vagueness/samod.

10 The OEs involved in our methodology can vary in number. However SAMOD has
been thought for being used also by one OE only.

11 Note that it is possible that multiple entities (i.e. classes, properties, individuals)
are actually hidden behind one single definition in the glossary of terms.

12 http://www.w3.org/2001/sw/BestPractices/OEP/.

http://www.essepuntato.it/2013/10/vagueness/samod
http://www.essepuntato.it/2013/10/vagueness/samod
http://www.w3.org/2001/sw/BestPractices/OEP/


A Simplified Agile Methodology for Ontology Development 61

Table 1. An example of motivating scenario.

Name Vagueness of the TBox entities of an ontology

Description Vagueness is a common human knowledge and language phenomenon, typ-
ically manifested by terms and concepts like High, Expert, Bad, Near etc.
In an OWL ontology vagueness may appear in the definitions of classes,
properties, datatypes and individuals. For these entities a more explicit
description of the nature and characteristics of their vagueness/non-
vagueness is required.
Analysing and describing the nature of vagueness/non-vagueness in onto-
logical entities is subjective activity, since it is often a personal interpre-
tation of someone (a person or, more generally, an agent).
Vagueness can be described according to at least two complementary
types referring to quantitative or qualitative connotations respectively.
The quantitative aspect of vagueness concerns the (real or apparent) lack
of precise boundaries defining an entity along one or more specific dimen-
sions. The qualitative aspect of vagueness concerns the identification of
such other discriminants of which boundaries are not quantifiable in any
precise way.
Either a vagueness description, that specifies always a type, or a non-
vagueness description provides at least a justification (defined either as
natural language text, an entity or a more complex logic formula, or any
combination of them) that motivates a specific aspect of why an entity
should be intended as vague/non-vague. Multiple justifications are possible
for the same description.
The annotation of an entity with information about its vagueness is a
particular act of tagging done by someone (i.e., an agent) who associates
a description of vagueness/non-vagueness (called the body of the
annotation) to the entity in consideration (called the target of the
annotation).

Example 1 Silvio Peroni thinks that the class TallPerson is vague since there is no
way to define a crisp height threshold that may separate tall from non-tall
people.
Panos Alexopoulos, on the other hand, considers someone as tall when
his/her height is at least 190 cm. Thus, for Panos, the class TallPerson is
not vague.

Example 2 In an company ontology, the class StrategicClient is considered vague.
However, the company’s R&D Director believes that for a client to be
classified as strategic, the amount of its R&D budget should be the only
factor to be considered. Thus according to him/her the vague class Strate-
gicClient has quantitative vagueness and the dimension is the amount of
R&D budget.
On the other hand, the Operations Manager believes that a client is strate-
gic when he has a long-term commitment to the company. In other words,
the vague class StrategicClient has quantitative vagueness and the dimen-
sion is the duration of the contract.
Finally, the company’s CEO thinks that StrategicClient is vague from a
qualitative point of view. In particular, although there are several
criteria one may consider necessary for being expert (e.g. a long-standing
relation, high project budgets, etc.), it’s not possible to determine which
of these are sufficient



62 S. Peroni

Table 2. An example of competency question.

Identifier 3

Question What are all the entities that are characterised by a specific
vagueness type?

Outcome The list of all the pairs of entity and vagueness type.

Example StrategicClient, quantitative

StrategicClient, qualitative

Depends on 1

Patterns portal13 are both valuable examples – as well as widely-adopted
Semantic Web vocabularies – such as FOAF14 for people, SIOC15 for social
communities, and so on.

– Middle-out development. OEs should start to define the most relevant
concepts and then to focus on more high-level and more concrete ones. Such
middle-out approach [18] allows one to avoid unnecessary effort during the
development because detail arises only as necessary, by adding sub- and super-
classes to the basic concepts. Moreover, this approach, if used properly, tends
to produce much more stable ontologies [17].

– Keep it simple. The modelet must be designed according to the informa-
tion obtained previously (MSn, CQn, GoTn) in an as-quick-as-possible way,
spending the minimum effort and without adding any unnecessary seman-
tic structure – avoiding to think about inferences at this stage, and rather
focussing on describing the motivating scenario fully.

– Self-explanatory entities. Each ontological entity must be understandable
by humans by simply looking at its local name (i.e. the last part of the entity
IRI). No labels and comments have to be added at this stage and all the
entity IRIs must not be opaque – class local names has to be capitalised
(e.g. Justification) and in camel-case notation if composed by more than one
word (e.g. DescriptionOfVagueness), property local names must start with a
non-capitalised verb16 and in camel-case notation if composed by more than
one word (e.g. wasAttributedTo), and individual local names must be non-
capitalised (e.g. ceo) and dash-separated if composed by more than one word
(e.g. quantitative-vagueness).

The goal of OEs is to develop a modeletn, possibly starting from a graphical
representation written in a proper visual language – such as Graffoo [4] – so as to
convert it automatically in OWL by means of appropriate tools, e.g. DiTTO [6].

13 http://www.ontologydesignpatterns.org/.
14 http://xmlns.com/foaf/spec.
15 http://rdfs.org/sioc/spec.
16 http://www.jenitennison.com/blog/node/128.

http://www.ontologydesignpatterns.org/
http://xmlns.com/foaf/spec
http://rdfs.org/sioc/spec
http://www.jenitennison.com/blog/node/128


A Simplified Agile Methodology for Ontology Development 63

Table 3. An example of glossary of terms.

Term Definition

annotation of
vagueness/non-
vagueness

The annotation of an ontological entity with
information about its vagueness is a particular act of
tagging done by someone (i.e., an agent) who associates
a description of vagueness/non-vagueness (called the
body of the annotation) to the entity in consideration
(called the target of the annotation).

agent The agent who tags an ontology entity with a
vagueness/non-vagueness description.

description of
non-vagueness

The descriptive characterisation of non-vagueness to
associate to an ontological entity by means of an
annotation. It provides at least one justification for
considering the target ontological entity non-vague. This
description is primarily meant to be used for entities
that would typically be considered vague but which, for
some reason, in the particular ontology are not.

description of
vagueness

The descriptive characterisation of vagueness to
associate to an ontological entity by means of an
annotation. It specifies a vagueness type and provides at
least one justification for considering the target
ontological entity vague.

vagueness type A particular kind of vagueness that characterises the
entity.

quantitative vagueness A vagueness type that concerns the (real or apparent)
lack of precise boundaries defining an entity along one
or more specific dimensions.

qualitative vagueness A vagueness type that concerns the identification of
such other discriminants of which boundaries are not
quantifiable in any precise way.

justification for
vagueness/non-
vagueness
description

A justification that explains one possible reason behind
a vagueness/non-vagueness description. It is defined
either as natural language text, an entity, a more
complex logic formula, or any combination of them.

has natural language
text

The natural language text defining the body of a
justification.

has entity The entity defining the body of a justification.

has logic formula The logic formula defining the body of a justification

Starting from modeletn, OEs proceed in four phases:

1. run a model test on modeletn. If it succeeds, then
2. create an exemplar dataset ABoxn that formalises all the examples introduced

in MSn according to modeletn. Then, OEs run a data test and, if succeeds,
then



64 S. Peroni

3. write SPARQL queries in SQn as many informal competency questions in
CQn. Then, OEs run a query test and, if it succeeds, then

4. create a new test case Tn = (MSn, CQn, GoTn, modeletn, ABoxn, SQn) and
add it to BoT.

When running the model test, the data test and the query test, it is possible
to use any appropriate software to support the task, such as reasoners (Pellet17,
HermiT18) and query engines (Jena19, Sesame20).

Any failure of any test that is considered a serious issue by the OEs results
in getting back to the more recent milestone. It is worth mentioning that an
exception should be also arisen if OEs think that the motivating scenario MSn

is to big to be covered by only one iteration of the process. In this case, it may
be necessary to re-schedule the whole iteration, e.g. by splitting adequately the
motivating scenario in two new ones.

3.2 Step 2: Merge the Current Model with the Modelet

At this stage, OEs merge modeletn, included in the new test case Tn, with the
current model, i.e. the version of the final model released at the end of the
previous iteration (i.e. in−1). OEs proceed in three consecutive steps:

1. to define a new TBoxn merging21 the current model with modeletn, by adding
all the axioms in the current model and modeletn to TBoxn and then by col-
lapsing semantically-identical entities, e.g. those that have similar names and
that represent the same real-world entity (for instance Person and Human-
Being);

2. to update all the test cases in BoT, swapping the TBox of each test case with
TBoxn and refactoring each ABox and SQ according to the new entity names
if needed, so as to refer to the more recent model;

3. to run the model test, the data test and the query test on all the test cases
in BoT, according to their formal requirements only;

4. to set TBoxn as the new current model.

Any serious failure of any test – i.e. something went bad in updating the
test cases in BoT – results in getting back to a previous milestone. In this case,
OEs have to consider either the most recent milestone, if they think there was a
mistake in some actions performed during the current step, or one of the other
previous milestones, if the failure is demonstrably a consequence of any of the
components of the latest test case Tn.

17 http://clarkparsia.com/pellet.
18 http://hermit-reasoner.com/.
19 http://jena.sourceforge.net/.
20 http://www.openrdf.org/.
21 If in is actually i1, then the modeletn becomes the current model since no previous

model is actually available.

http://clarkparsia.com/pellet
http://hermit-reasoner.com/
http://jena.sourceforge.net/
http://www.openrdf.org/


A Simplified Agile Methodology for Ontology Development 65

3.3 Step 3: Refactor the Current Model

In the last step, OEs work to refactor the current model shared among all the
test cases in BoT, and, accordingly, each ABox and SQ of each test case, if
needed. In doing that task, OEs must strictly follow the following principles:

– Reuse existing knowledge. Reusing concepts and relations defined in other
models is encouraged and often labelled as a common good practice [18]. The
reuse can result either in including external entities in the current model as
they are or in providing an alignment22 or an harmonisation23 with another
model.

– Document it. Adding annotations – i.e. labels (i.e. rdfs:label), comments
(i.e. rdfs:comment), and provenance information (i.e. rdfs:isDefinedBy) – to
ontological entities, so as to provide natural language descriptions of them
and to allow tools (e.g. LODE [12]) to produce an HTML human-readable
documentation from the ontology source;

– Take advantages from technologies. Enriching the current model by using
all the capabilities offered by OWL 2 (e.g. keys, property characteristics, prop-
erty chains, inverse properties and the like) in order to infer automatically as
much information as possible starting from a (possible) small set of real data.
In particular, it is important to avoid over-classifications by specifying asser-
tions that may be automatically inferred by a reasoner – e.g. creating an
inverse property of a property P defining explicitly its domain and range even
if they can be inferred automatically.

Finally, once the refactor is finished, OEs have to run the model test, the
data test and the query test on all the test cases in BoT. This is a crucial task to
perform, since it guarantees that the refactoring has not damaged any existing
conceptualisation implemented in the current model.

3.4 Output of an Iteration

Each iteration of SAMOD produces a new test case that will be added to the
bag of test cases (BoT). Each test case describes a particular aspect of the model
under-development, i.e. the current model under consideration after one iteration
of the methodology.

In addition of being integral part of the methodology process, each test
case represents a complete documentation of a particular aspect of the domain
described by the model, due to the natural language descriptions it includes
(the motivating scenario, the informal competency questions, and the glossary
of terms), as well as the formal implementation of exemplar data (the ABox)
and possible ways of querying the data compliant with the model (the set of

22 An alignment is set of correspondences between entities belonging to two models
different models.

23 It is the process of modifying a model (and also to align it, if necessary) to fully fit
or include it into another model.



66 S. Peroni

formal queries). All these additional information should help end-users in under-
standing, with less effort, what the model is about and how they can use it to
describe the particular domain it addresses.

4 Experiment

We performed an experiment so as to understand to which degree SAMOD can
be used by people with limited experience in Semantic Web technologies and
Ontology Engineering. In particular, we organised a user testing session so as
to gather some evidences on the usability of SAMOD when modelling OWL
ontologies.

We asked nine Computer Science and Law people – one professor, two post-
docs, and six Ph.D. students – to use SAMOD (one iteration only) for modelling
a particular motivating scenario provided as exercise. SAMOD, as well as the
main basics on Ontology Engineering, OWL, and Semantic Web technologies,
were introduced to the subjects during four lectures of four hours each. At the
end of the last lecture, we asked them to answer three questionnaires:

– a background questionnaire containing questions on previous experience in
Ontology Engineering and OWL;

– another questionnaire containing ten likert questions according to the System
Usability Scale (SUS), which also allowed us to measure the sub-scales of pure
Usability and pure Learnability, as proposed recently by Lewis and Sauro [8];

– a final questionnaire asking for the experience of using SAMOD for completing
the task.

The mean SUS score for SAMOD was 67.25 (in a 0 to 100 range), approaching
the target score of 68 to demonstrate a good level of usability (according to
[14]). The mean values for the SUS sub-scales Usability and Learnability were
65.62 and 73.75 respectively. In addition, an Experience score was calculated for
each subject by considering the values of the answers given to the background
questionnaire. We compared this score (x-axis in Fig. 2) with the SUS values
and the other sub-scales (y-axis) using the Pearson’s r. As highlighted by the
red dashed lines (referring to the related Least Squares Regression Lines), there is
a positive correlation between the Experience score and the SUS values – i.e. the
more a subject knew about ontology engineering in general, the more SAMOD
was perceived as usable and easy to learn. However, only the relation between
the Learnability score and the Experience score was statistical significant (p <
0.05).

Axial coding of the personal comments expressed in the final questionnaires
[16] revealed a small number of widely perceived issues. Overall the methodology
proposed has been evaluated positively by 7 subjects (described with adjectives
such as “useful”, “natural”, “effective”, and “consistent”), but it has also received
criticisms by 5 subjects, mainly referring to the need of more expertise in Seman-
tic Web technologies and Ontology Engineering for using it appropriately. The
use of the tests for assessing the ontology developed after a certain step has been



A Simplified Agile Methodology for Ontology Development 67

Fig. 2. Three comparisons between the SUS score (and its sub-scales) and the experi-
ence score by the subjects.

appreciated (3 positive comments vs. 1 negative one), as well as the use of the
scenarios and examples in the very first step of SAMOD (3 positive comments)
and the implementation of competency questions in form of SPARQL queries (2
positive comments). All the outcomes of the questionnaires are available online
in the SAMOD GitHub repository24.

5 Related Works

Several quick-and-iterative ontology development processes have been intro-
duced recently, which could be preferred when the ontology to develop should
be composed by a limited amount of ontological entities – while the use of
highly-structured and strongly-founded methodologies (e.g. [5,17,18]) is still nec-
essary and, maybe, mandatory for incredibly complex enterprise projects. In this
section we introduce some of the most interesting agile approaches to ontology
development.

One of the first agile methodologies introduced in the domain is eXtreme
Design (XD) [13], which has been inspired by the eXtreme Programming method-
ology in Software Engineering. The authors described XD as “an approach, a
family of methods and associated tools, based on the application, exploitation,
and definition of ontology design patterns (ODPs) for solving ontology develop-
ment issues”. Summarising, XD is an agile methodology that uses pair design
(i.e. groups of two ontology engineers working together during the development)
and an iterative process which starts with the collection of stories and compe-
tency questions as requirements to address, and then it proposes the re-use of
existing ontology design patterns for addressing such informal requirements.

Another recent approach has been introduced by Keet and Lawrynowicz
in [7]. They propose to transfer concepts related to the Test-Driven Development
in Software Engineering [2] into the Ontology Engineering world. The main idea
24 http://github.com/essepuntato/samod.

http://github.com/essepuntato/samod


68 S. Peroni

behind this methodology is that tests have to be run in advance before to proceed
with the modelling of a particular (aspect of a) domain. Of course, the first
execution of the tests should fail, since no ontology has been already developed
for addressing them properly, while the ontology developed in future iterations
of the process should result in passing the test eventually.

De Nicola and Missikoff [3] have recently introduced their Unified Process for
ONtology building methodology (a.k.a. UPON Lite), which is an agile ontology
engineering method that places end-users without specific ontology expertise
(domain experts, stakeholders, etc.) at the centre of the process. The method-
ology is composed by an ordered set of six steps. Each step outputs a self-
contained artefact immediately available to end users, that is used as input of
the subsequent step. This makes the whole process progressive and differential,
and involves ontology engineers only the very last step of the process, i.e. when
the ontology has to be formalised in some standard language.

6 Conclusions

In this paper we have introduced SAMOD, a Simple Agile Methodology for Ontol-
ogy Development. In particular, we have introduced its process by detailing each
of its steps, and we have also discussed the results of an experiment we have run
involving nine people with no or limited expertise in Semantic Web technologies
and Ontology Engineering.

In the future, we plan to involve a larger set of users so as to gather additional
data about its usefulness, usability, and effectiveness. In addition, we plan to
develop supporting tools for accompanying and facilitating users in each step of
the methodology.

Acknowledgements. We would like to thank Jun Zhao for her precious comments
and concerns about the initial drafts of SAMOD, David Shotton for our fruitful discus-
sions when developing the SPAR Ontologies, Francesca Toni as one of the first users
of such methodology, and Panos Alexopoulos as co-author of the Vagueness Ontology
that we used herein to introduce all the examples of the SAMOD development process.

References

1. Atkinson, R.K., Derry, S.J., Renkl, A., Wortham, D.: Instructional principles
from the worked examples research. Rev. Educ. Res. 70(2), 181–214 (2000).
http://dx.doi.org/10.3102/00346543070002181

2. Beck, K.: Test-Driven Development by Example. Addison-Wesley (2003). ISBN:
978-0321146533

3. De Nicola, A., Missikoff, M.: A lightweight methodology for rapid ontology engi-
neering. Commun. ACM 59(3), 79–86 (2016). http://dx.doi.org/10.1145/2818359

4. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontolo-
gies with Graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320–325. Springer, Heidel-
berg (2014). doi:10.1007/978-3-319-11955-7 42

http://dx.doi.org/10.3102/00346543070002181
http://dx.doi.org/10.1145/2818359
http://dx.doi.org/10.1007/978-3-319-11955-7_42


A Simplified Agile Methodology for Ontology Development 69

5. Fernandez, M., Gomez-Perez, A., Juristo, N.: METHONTOLOGY: from ontolog-
ical art towards ontological engineering. In: Proceedings of the AAAI97 Spring
Symposium Series on Ontological Engineering, pp. 33–40. http://aaaipress.org/
Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf

6. Gangemi, A., Peroni, S.: DiTTO: diagrams transformation inTo OWL. In: Proceed-
ings of the ISWC 2013 Posters & Demonstrations Track (2013). http://ceur-ws.
org/Vol-1035/iswc2013 demo 2.pdf

7. Keet, C.M., �Lawrynowicz, A.: Test-driven development of ontologies. In: Sack, H.,
Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 642–657. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-34129-3 39

8. Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu,
M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02806-9 12

9. Miller, G.A.: Some limits on our capacity for processing information. Psychol. Rev.
63(2), 81–97 (1956). http://dx.doi.org/10.1037/h0043158

10. Peroni, S.: The semantic publishing and referencing ontologies. In: Semantic Web
Technologies and Legal Scholarly Publishing, pp. 121–193 (2014). http://dx.doi.
org/10.1007/978-3-319-04777-5 5

11. Peroni, S.: SAMOD: an agile methodology for the development of ontologies.
figshare (2016). http://dx.doi.org/10.6084/m9.figshare.3189769

12. Peroni, S., Shotton, D., Vitali, F.: The Live OWL Documentation Environment:
a tool for the automatic generation of ontology documentation. In: Proceedings of
EKAW 2012, pp. 398–412 (2012). http://dx.doi.org/10.1007/978-3-642-33876-2
35

13. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme design with content
ontology design patterns. In: Proceedings of WOP 2009 (2009). http://ceur-ws.
org/Vol-516/pap21.pdf

14. Sauro, J.: Background, Benchmarks & Best Practices (2011). ISBN: 978-
1461062707

15. Sowa, J.F.: Representation and inference in the cyc project:
D.B. Lenat and R.V. Guha. Artif. Intell. 61(1), 95–104 (1993).
http://dx.doi.org/10.1016/0004-3702(93)90096-T

16. Strauss, A., Corbin, J.: Basics of Qualitative Research Techniques and Procedures
for Developing Grounded Theory, 2nd edn. Sage Publications, London (1998).
ISBN 978-0803959408

17. Uschold, M., Gruninger, M.: Principles, methods and applications. IEEE Intell.
Syst. 11(2), 93–155 (1996). http://dx.doi.org/10.1109/MIS.2002.999223

18. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Work-
shop on Basic Ontological Issues in Knowledge Sharing (1995). http://www.aiai.
ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf

19. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1012–1020. Springer, Heidelberg
(2006). doi:10.1007/11915072 2

http://aaaipress.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
http://aaaipress.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-642-02806-9_12
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1007/978-3-319-04777-5_5
http://dx.doi.org/10.1007/978-3-319-04777-5_5
http://dx.doi.org/10.6084/m9.figshare.3189769
http://dx.doi.org/10.1007/978-3-642-33876-2_35
http://dx.doi.org/10.1007/978-3-642-33876-2_35
http://ceur-ws.org/Vol-516/pap21.pdf
http://ceur-ws.org/Vol-516/pap21.pdf
http://dx.doi.org/10.1016/0004-3702(93)90096-T
http://dx.doi.org/10.1109/MIS.2002.999223
http://www.aiai.ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf
http://www.aiai.ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf
http://dx.doi.org/10.1007/11915072_2

	A Simplified Agile Methodology for Ontology Development
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Step 1: Define a New Test Case
	3.2 Step 2: Merge the Current Model with the Modelet
	3.3 Step 3: Refactor the Current Model
	3.4 Output of an Iteration

	4 Experiment
	5 Related Works
	6 Conclusions
	References


