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Abstract. Semantic Web and Internet of Things are progressively con-
verging, but the lack of reasoning tools for mobile devices on the iOS
platform may hinder the progress of this vision. The paper presents an
early redesign of OWL API for iOS. A partial port has been developed,
effective enough to support mobile reasoning engines in a moderately
expressive fragment of OWL 2. Both architecture and mobile-oriented
optimization are sketched and preliminary performance results are dis-
cussed.

1 Introduction and Motivation

Semantic Web technologies are a key enabler of interoperability and intelligent
information processing not only in the WWW, but also in the so-called Internet
of Things (IoT). Application scenarios include supply chain management [5],
(mobile) sensor networks [14], building automation [15] and more. The Semantic
Web and the IoT paradigms are progressively overlapping in the Semantic Web of
Things (SWoT) vision [14,17]. SWoT enables semantic-enhanced pervasive com-
puting by associating informative fragments to multiple heterogeneous micro-
devices in a given environment, each acting as a knowledge micro-repository.
Rather than the batch processing of large ontologies and complex inferences
prevalent in traditional Semantic Web scenarios, SWoT requires quick reason-
ing and query answering on sets of relatively elementary resources, in order
to provide mobile agents with on-the-fly autonomous decision capabilities. The
ever-increasing computing potentialities of mobile devices allow processing of
rich and formally structured information without resorting to centralized nodes
and support infrastructures. For a full accomplishment of this vision, reasoning
engines and library interfaces are needed on the most relevant mobile device
platforms.

iOS is the second largest mobile Operating System (OS) worldwide, with over
1 billion iPhone units sold (as of July 2016 [1]) as well as iPad and iPod Touch
devices. While Android has a larger active device count, iOS has been more
eagerly adopted in business [22]. Higher hardware and OS uniformity, a stricter
security model [12], enterprise IT (Information Technology) department support
tools and a stronger focus on usability are among the reasons. Business sectors
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ranging from healthcare to sales management and research exhibit a thriving
market of iOS software solutions. Nevertheless, a full adoption of Semantic Web
technologies has not been possible on iOS so far. A recent survey [11] found no
Web Ontology Language (OWL) [21] reasoners implemented in Objective-C or
Swift, the only two languages natively supported on iOS. In fact Java is by far
the most popular implementation language for that. Several reasoners originally
developed for Java Standard Edition have been ported to the Java-based Android
platform so as to run on mobile devices [3]; likewise Java-based reasoning engines
expressly designed for mobile devices also exist, including mTableau [19] and
Mini-ME [18], which work on Java Micro Edition and Android, respectively.
Similarly, all main OWL Knowledge Base (KB) management libraries are Java-
oriented. Among them the OWL API [7] is the most adopted one. Java code
requires a rewriting effort toward Objective-C or Swift in order to be adopted
on iOS (whereas C/C++ list can be reused in Objective-C projects by writing
proper wrappers).

The lack of iOS Semantic Web tools hampers the development of multi-
platform semantic-enabled mobile applications to follow the rapid pace of the
IoT (r)evolution, which may stifle the SWoT vision as a whole [6]. Although
toolkits (such as Oracle Mobile Application Framework1 and Codename One2)
allow cross-platform mobile development in Java language and deployment to
iOS devices, they are affected by various cost, efficiency and inconvenience issues.
Automatic source transpilers from Java to Objective-C (such as J2ObjC 3) also
exist, but they are primarily intended to allow multi-platform projects to share
as much business logic code as possible: transpiling existing software is signif-
icantly harder from a development point of view, especially considering that
library dependencies must be recursively translated, or suitable alternatives need
to be found or developed. Automatic translation is also not very flexible, as the
core architecture of the source project cannot be altered without a considerable
amount of work: this is an issue in this specific case, since significant architec-
tural changes to the OWL API internals are desirable in order to ensure high
performance (both in terms of time and memory) in SWoT scenarios.

In order to allow developing mobile reasoners for iOS, we present here the first
results of porting the OWL API to iOS. This approach was preferred over writing
a new application programming interface because the OWL API is a de facto
standard for manipulating DL KBs and has a large user community. A functional
subset of the OWL API was implemented, able to load and process KBs in an
OWL 2 fragment corresponding to the ALEN Description Logic (DL) –with
the addition of role hierarchies– in RDF/XML syntax. The ported library was
written in Objective-C, to be used by both Objective-C and Swift applications.
It runs on iOS and macOS without modification, as it does not use iOS-specific
APIs. Experimental tests verified the correctness of the implementation and
exhibit satisfactory results also in comparison with the original Java OWL API

1 http://www.oracle.com/technetwork/developer-tools/maf/overview/index.html.
2 https://www.codenameone.com/.
3 http://j2objc.org.
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on macOS. The library is released4 as open source under the Eclipse Public
License and can already support a future Mini-ME port for iOS.

The remainder of the paper is as follows: Sect. 2 provides background on the
OWL API and porting strategies, while Sect. 3 describes the developed library;
experimental results are in Sects. 4 and 5 closes the work.

2 Background

The OWL API [7] is the most commonly used front-end for OWL-based Knowl-
edge Base Management Systems (KBMS) [3,11]. Other interfaces include Jena5,
Protégé-OWL API [8] and OWLlink [10]. The Jena library provides ontol-
ogy manipulation APIs for Resource Description Framework (RDF) [16], RDF
Schema (RDFS) [4] and OWL models, and an inference API to support reason-
ing and rule engines. The Protégé-OWL API [8] leverages Jena on OWL and
is particularly effective for developing graphical applications. OWLlink [10] is a
client/server protocol on top of HTTP for KB management and reasoning. The
OWLlink API [13] implements OWLlink on top of the OWL API and therefore
could be also ported to iOS.

The OWL API is a Java library defining a set of interfaces to manipu-
late OWL 2 KBs. It supports loading and saving in several syntaxes, including
RDF/XML, Turtle, the Manchester Syntax and more. The implemented model
gives an abstract representation of concept, property, individual and axiom types
in OWL 2 through four interface hierarchies, all having OWLObject as a com-
mon ancestor. The model interfaces do not depend on any particular concrete
syntax. The OWLOntologyManager interface allows creating, loading, changing
and saving KBs, alleviating the burden of choosing the appropriate parsers and
renderers. Finally, OWLReasoner is the main interface for interacting with OWL
reasoners. It provides methods to check satisfiability of classes or ontologies, to
compute class and property hierarchies and to check whether axioms are entailed
by a KB.

The benefits of porting traditional Semantic Web reasoners like FaCT++ [20]
to mobile platforms should be questioned, as they were designed primarily to run
inference services such as classification and consistency check on large ontolo-
gies and/or expressive DLs. In ubiquitous contexts, ABox reasoning and non-
standard inference services are often more useful, because mobile agents must
provide on-the-fly answers to usually smaller problems in moderately expressive
KBs [18]. On the other hand, importing a C/C++ library for RDF parsing can
be a sensible choice to build an OWL manipulation library or a reasoner. Among
the many available tools, the Redland [2] suite stands out for functional com-
pleteness, standards compliance and code maturity. Other tools like owlcpp [9]
are less suitable for working in an OWL API port, as they only parse individual
RDF triples.

4 GitHub repository: https://github.com/sisinflab-swot/OWL-API-for-iOS.
5 Apache Jena project: https://jena.apache.org/.
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3 Reasoning on iOS Devices: OWL API Porting

The proposed software is a port of the OWL API version 3.2.4. It was imple-
mented in Objective-C –deemed as more mature and stable than Swift– as an
iOS Framework, i.e., a library easily used by applications through dynamic link-
ing. The following subsections report on the general architecture and devised
performance optimization, respectively.

3.1 Models and Architecture

The OWL API entry point is the OWLManager class implementing the
OWLOntologyManager interface, which allows loading and manipulating a KB.
As shown in Fig. 1, the library architecture includes two basic components, the
OWL Model and the OWL Parser. Java interfaces were translated to the corre-
sponding Objective-C protocols, therefore the Model is interface-wise as the one
of the OWL API. The current version does not model the whole OWL 2 lan-
guage, but a fragment of it exhaustive enough to manage KBs in the ALEN
DL with role hierarchies. In more detail, classes; property restrictions; Boolean
class expressions; object properties; declaration, subclass, disjointness, equiva-
lence, domain, range, class assertion and object property assertion axioms are
modeled.

The Parser module uses the Raptor RDF parser from Redland to deserialize
RDF/XML documents (other syntaxes were not considered at this early stage)

Fig. 1. Main components of the ported library
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Fig. 2. Detail of the interaction between the Model and Parser modules

into streams of RDF statements. The OWLOntologyManager invokes Raptor
through an OWLRDFXMLParser wrapper, which further processes the RDF state-
ment stream in order to create an in-memory representation of the referenced
OWL constructs and returns a fully populated OWLOntology object. The inter-
action between the Model and Parser modules is detailed in Fig. 2.

OWL ontology parsing from RDF triples does not follow the original OWL
API approach. A simpler and leaner architecture was adopted, particularly fit for
small and medium sized KBs. The implementation of OWLOntology interface is
built through the OWLOntologyInternals class, which is populated incremen-
tally during the parsing. It contains data structures such as maps and sets. As
pictured in Fig. 3, OWLStatementHandlerMap associates each type of statement
to a proper handler, as allowed by the Raptor library. Handlers are implemented
as Objective-C blocks, which are similar to Java lambdas or C function point-
ers. Furthermore, the builder pattern was adopted to create instances within
the Model component incrementally, because OWL axioms can derive from a
variable number of RDF statements.

3.2 Optimization

Optimization effort basically focused on an efficient use of memory, which is the
most constrained resource on mobile devices. Execution time was also profiled
and optimized wherever possible. In what follows followed optimization direc-
tions are outlined.

Architectural optimization. The whole Model component is composed of
immutable objects. This allows having just one copy of every instance in mem-
ory, saving space and time; moreover, it makes the whole component thread-
safe. With immutable objects, object hashes can be cached to speed up the
very frequent accesses to associative data structures. As a further optimiza-
tion, if one guarantees that equal objects have the same memory address, the
address itself is a perfect hash and equality check becomes just a pointer com-
parison. In order to make this property true, the library uses the NSMapTable
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Fig. 3. Main objects of the Parser module

class of the Objective-C Foundation framework as hash table, which supports
pointer identity for equality and hashing. NSMapTable was set up to use weak
references to allow de-allocation of unused objects. This approach, however, is
beneficial only in hash tables with low collision rates: this was not found out
to be true for all OWL API model classes. Therefore it was adopted just for
entities (classes, object properties, individuals) and some axioms considered as
performance-critical after profiling tests. These optimizations allowed to roughly
halve the measured parsing turnaround times w.r.t. the initial implementation.
Parsing optimization. During the parsing process, each RDF triple is wrapped
in a RDFStatement instance, which is discarded as soon as it is not used anymore.
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Furthermore, builders cache the objects they populated, saving both time and
memory (in case of similar but not identical instances). Finally, axiom builders
are de-allocated in groups: this reduced the observed memory usage peak during
parsing by about 30% in preliminary tests.

4 Experiments

The formal correctness and completeness of results provided by the iOS library
was evaluated on a set of 34 KBs, obtained from the 2012 OWL Reasoner Evalua-
tion Workshop reference dataset6 considering all the KBs in the supported AL ,
AL+ and ALE DLs. The original Java OWL API 3.2.4 was leveraged as a
test oracle. After parsing, the following tests were performed against each KB
as significant examples: (i) retrieval of all axioms; (ii) retrieval of all axioms of a
given kind; (iii) retrieval of all classes, individuals and properties; (iv) retrieval
of all disjoint, equivalent and subclass axioms. The iOS library correctly parsed
every KB in the test set, and the returned output of all retrieval tasks proved
to be equivalent to the Java OWL API.

Performance evaluation was carried out on a subset of the KBs used for
the correctness tests, reported in Table 1. They were selected because they are
representative of both traditional and SWoT scenarios, while allowing to sample
the performance of the iOS library when working with KBs of varying size. For
each KB, three tests were performed: (i) parsing turnaround time; (ii) memory
usage peak; (iii) query turnaround time. Each test was repeated five times: for
turnaround time tests, the average of all runs was taken. For memory tests, the
final result is the average of the last four runs, in order to consider a worst-case
scenario due to potential memory leaks. Test devices are listed in Table 2.

Table 1. Knowledge bases used in the performance tests.

Knowledge base DL Category Axioms Size (kB)

spider anatomy.owl ALE Small 1392 187

brenda.owl ALE Medium 14262 1515

mammalian phenotype.owl AL+ Large 46081 4289

teleost taxonomy.owl AL Large 195351 21878

Figure 4 shows the results of parsing turnaround time tests: times grow lin-
early with the size of the parsed ontologies, and small-to-medium ontologies are
parsed in about one second or less on devices more than two years old (iPhone
5s). This result is aligned with the performance goals of a mobile reasoner, espe-
cially considering that parsing only happens once per usage session, rather than
each time a query is submitted to the reasoner.

6 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/.
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Table 2. Devices used for performance evaluation.

Device OS CPU Arch. RAM

Retina MacBook OS X 10.11.5 Intel Core i7- 64 bit 16 GB DDR3@

Pro 2014 4870HQ@2.5 GHz 1600 MHz

iPhone 6s iOS 9.0.2 Apple A9@1.8 GHz 64 bit 2 GB LPDDR4

iPhone 5s iOS 9.3.2 Apple A7@1.3 GHz 64 bit 1 GB LPDDR3

iPhone 5 iOS 9.3.2 Apple A6@1.3 GHz 32 bit 1 GB LPDDR2E

Fig. 4. iOS API parsing turnaround time (ms).

Fig. 5. Comparison of the parsing turnaround time between the iOS API and OWL
API (ms).

Figure 5 compares parsing times provided by the iOS API with OWL API
on the MacBook Pro testbed. First-run results were considered in this test only,
in order to evaluate parsing performance in real usage, since a KB is usually
loaded once and queried multiple times. Subsequent runs would provide less
realistic results due to in-memory caching. The iOS API shows competitive per-
formance on every test KB, outperforming the OWL API when parsing the small
to medium-large ones.

Figure 6 reports on memory usage peak during parsing, which grows linearly
with the size of the parsed ontology. Measured values are roughly similar on
MacBook Pro, iPhone 6s and iPhone 5s, while they are about 40% lower on
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Fig. 6. Memory peak while parsing (MB).

Fig. 7. Memory usage (MB) as a function of time (s).

iPhone 5: this is likely due to it being the only 32-bit device among the four.
The results of this test were overall satisfactory, since the required memory is
consistent with RAM availability of modern iOS devices.

Figure 7 shows the memory usage trend while parsing and querying the
largest KB in the test set (teleost taxonomy.owl) on iPhone 6s. Four phases
can be pinpointed: memory usage raises and reaches its peak value during the
parsing phase; during the steady phase the KB is fully loaded and can be
queried; memory is released when the KB is de-allocated .

Figure 8 shows the turnaround times for the retrieval of all classes in the
ontology. This specific query is unrealistic, but it was chosen nonetheless as a
stress test for the library. As also seen in the previous tests, times grow linearly
with the size of the queried ontology. In order to contextualize the obtained
results, query times were compared to OWL API on the MacBook Pro testbed: as
reported in Fig. 9, the iOS API outperformed OWL API on every test ontology,
confirming its suitability to be used in mobile and pervasive scenarios.
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Fig. 8. All classes retrieval query turnaround time (µs).

Fig. 9. Comparison of the turnaround time for all classes retrieval query between the
iOS API and OWL API (µs).

5 Conclusion and Future Work

The paper presented early results of porting the OWL API to Objective-C,
targeting mobile reasoning on the iOS platform. The developed library can run
unmodified also on macOS. Early experiments on a small set of ontologies showed
correctness of implementation and satisfactory performance in KB parsing and
manipulation.

In its current form, the proposed library is ready to support the port of the
Mini-ME mobile matchmaking and reasoning engine [18] to iOS, which was the
main motivation for the endeavor and is the first planned future work. As a
further hope, it will benefit the community as a whole and –possibly with the
help of other developers– will grow toward a complete port, aligned with latest
OWL API version.
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ter project PERSON (PERvasive game for perSOnalized treatment of cognitive and
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