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Abstract. The orthogonal convex hull is the minimal area convex poly-
gon covering a digital object whereas an orthogonal convex skull is the
maximal area convex polygon inscribing the digital object. A quanti-
tative approach to analyse the complexity of a given hole-free digital
object is presented in this paper. The orthogonal convex hull and an
orthogonal convex skull are used together to derive the complexity of an
object. The analysis is performed based on the regions added while deriv-
ing the orthogonal convex hull and the regions deleted while obtaining
an orthogonal convex skull. Another measure for shape complexity using
convexity tree derived from the orthogonal convex skull is also presented.
The simple and novel approach presented in this paper is useful to derive
several shape features of a digital object.

Keywords: Outer isothetic cover · Inner isothetic cover ·
Orthogonal convex hull · Orthogonal convex skull · Concavity ·
Convexity · Convexity tree

1 Introduction

Shape analysis of digital objects has various applications in diversifying fields.
Similarly, boundary complexity analysis is also important in this context. The
detailed patterns of boundary give an idea about the shape of the object. The
description of the detailed pattern of the contour can be analysed using wavelet
local extrema, which are obtained through wavelet transform [9]. The similari-
ties between two patterns, examined by this method uses the detailed features of
contours and their arrangement. From 2D contours of an image, 3D shape can be
inferred, which is an important problem in machine vision. Two kinds of symme-
tries, i.e., parallel and mirror symmetries, give significant information about the
surface shape for a variety of objects [15]. Image retrieval can be performed based
on color, shape, and spatial properties of an image. Such a technique is proposed
in [8], in which a prototype has been implemented to retrieve a particular image
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from an image database, and to calculate the symmetry between two images. The
boundary analysis can be accomplished using features, like shape and texture,
which represents the objects [11].

(a) Object, A (b) Outer and Inner Isothetic (c) OH(A) and OCS(A)
Cover, Aout and Ain

Fig. 1. A sample 2D object and its orthogonal convex hull and skull (grid size = 10).

The applications of shape analysis and retrieval are not bounded in image
processing domain. It has various real-life applications. Shape analysis can be
used for road-sign detection in conjunction with image segmentation [10]. Shape
based features can also be applied to construct OCR for Bengali script [12]. The
working conditions of content-based retrieval, patterns of use, types of pictures,
the role of semantics, the sensory gap, and the computational steps for image
retrieval systems are presented in [14].

In this paper, measures for the boundary complexity and the shape complex-
ity of a digital object are proposed. The boundary of a digital object has a close
relation with outer isothetic cover (orthogonal polygon that tightly covers the
digital object) and the inner isothetic cover (orthogonal polygon which tightly
inscribes the digital object) [3,4]. Here, the complexity of the boundary of a dig-
ital object is analyzed by using the orthogonal hull and skull in conjunction with
each other. The boundary is analyzed based on the portions added while deriv-
ing the orthogonal convex hull [5,6] and the portions deleted while deriving an
orthogonal convex skull [1,7] from inner isothetic cover. The added (discarded)
portions imply concave (convex) region in the contour of the object. The shape
complexity gives a measure of the global shape of the object.

A digital object has been shown in Fig. 1(a) and its outer isothetic cover
(black line), Aout, and inner isothetic cover (blue line), Ain, are shown Fig. 1(b).
The yellow portion is added to outer cover to obtain the orthogonal convex
hull (OH(A)) and the red portion is deleted from inner cover to extract an
orthogonal convex skull (OCS(A)) (Fig. 1(c)). The resulting skull is shown in
blue line and the hull in black line (Fig. 1(c)). The object has a concavity on its
contour, which can be identified from one added portion and one deleted portion.
These information are useful for analysing the boundary complexity and shape
complexity of the digital object.

The paper is organized as follows. Section 2 includes definitions and an
overview of constructing orthogonal hull and skull. The boundary complexity



Boundary and Shape Complexity of a Digital Object 107

and shape complexity are discussed in Sect. 3. A discussion of shape complex-
ity from convexity tree is proposed in Sect. 4. Section 5 contains experimental
results along with the data obtained from digital objects which are related to
complexity analysis. Concluding remarks are presented in Sect. 6.

2 Definitions and Preliminaries

A (finite) subset of Z
2 in which every pair of points is k-connected1 is called a

k-connected set. A digital object A is defined to be an 8-connected subset of Z
2

whose complement Z
2
�A is a 4-connected set [13]. The background grid is given

by G = (H,V), where H and V represent two sets of equi-spaced horizontal and
vertical grid lines respectively. The grid size, g, is defined as the (integer) distance
between two consecutive horizontal/vertical grid lines. A grid point is the point
(with integer coordinates) of intersection of a horizontal and a vertical grid line.

P is said to be an orthogonal polygon if and only if each of its vertices is a grid
point and each of its edges lie on a grid line. P is an orthogonal convex polygon
if and only if its intersection with any horizontal or vertical line is either a single
line segment or empty. The orthogonal convex hull, or simply orthogonal hull, of
a digital object A, denoted by OH(A), is the smallest area orthogonal polygon
such that (i) no point p ∈ A lies on or outside OH(A) and (ii) intersection of
OH(A) with any horizontal or vertical line is either empty or a line segment.
An orthogonal convex skull, or simply orthogonal skull, of a digital object A,
denoted by OCS(A), is a maximal-area orthogonal polygon such that (i) no
point p ∈ Z

2
� A lies on or inside OCS(A) and (ii) OCS(A) is orthogonally

convex.
The construction of outer isothetic cover and inner isothetic cover are

depicted in Sects. 2.1 and 2.2. The description of the method of deriving orthog-
onal convex hull is presented in Sect. 2.3 and that of orthogonal convex skull in
Sect. 2.4.

2.1 Deriving the Outer Isothetic Cover, (OIC)

The outer isothetic cover, Aout, is the minimum-area orthogonal polygon that
covers the digital object, A, imposed on background grid, G. The algorithm in
[3,4] computes the ordered set of vertices of Aout using a combinatorial clas-
sification of the grid points lying on/inside/outside the object boundary. The
characteristics of a grid point p in G is determined by object containments of the
four neighboring cells of size g × g incident at p. If the number of cells occupied
by the object, incident at p is i ∈ [0, 4], then p is classified to class Ci as shown in
Fig. 2. The significance of a class is as follows. (i) C0: p is not a vertex since none
1 Two points p and q are said to be k-connected (k = 4 or 8) in a set S if and only

if there exists a sequence 〈p = p0, p1, . . . , pn = q〉 ⊆ S such that pi ∈ Nk(pi−1) for
1 ≤ i ≤ n. The 4-neighborhood of a point (x, y) is given by N4(x, y) = {(x′, y′) :
|x − x′| + |y − y′| = 1} and its 8−neighborhood by N8(x, y) = {(x′, y′) : max(|x −
x′|, |y − y′|) = 1}.
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Fig. 2. Different vertex types.

of Qis has object containment; (ii) C1: Qi is a 90◦ vertex of Aout (Fig. 2(a));
(iii) C2: (a) if two adjacent cell has object containment, then p is an edge point
(Fig. 2(c)); (b) if diagonally opposite cells contain object, then p is a 270◦ vertex
of Aout (Fig. 2(d)); (iv) C3: p is classified as a 270◦ vertex (Fig. 2(b)); (v) C4: p
is not a vertex of Aout and lies inside Aout.

The start point can be derived from the given top-left point of the digital
object. The traversal is made in the anticlockwise direction such that the back-
ground lies right of the traversal. During the traversal, from each grid point,
vi−1, the next direction, di, of traversal is decided by the type, ti, of the grid
point, vi, and the previous direction, di−1. The next direction, di, is given by
di = (di−1 + ti) mod 4, where di ∈ [0, 3], indicating the direction towards right,
top, left, and bottom respectively. Once di is computed, the next grid point is
determined, and its class is evaluated. Henceforth, in this paper, a 90◦ vertex is
referred as a Type 1 vertex and a 270◦ vertex as a Type 3 vertex.

2.2 Deriving the Inner Isothetic Cover, (IIC)

The inner isothetic cover, namely Ain, is the maximum-area orthogonal polygon
inscribing the digital object A, which is imposed on the background grid G.
The construction of inner isothetic cover is similar to the outer isothetic cover
(Sect. 2.1), except for the consideration of the grid point, q. A grid point, q, is
classified based on the number of fully occupied cells incident at q.

2.3 Construction of Orthogonal Convex Hull, (OH)

The orthogonal hull [5,6] can be detected without any prior knowledge of outer
isothetic cover. The concavities in the outer cover are detected and removed
when the object boundary is traversed along the grid lines, as mentioned in
Sect. 2.1. A region is said to be concave if it has two or more consecutive Type 3
vertices. If the intersection of a horizontal or vertical grid line with the orthogo-
nal polygon has more than one line segment, then it can be said that the object
contains one or more concavities. The goal is to identify such regions and derive
the edges of the orthogonal hull such that the properties of orthogonal convexity
are maintained. In this incremental algorithm, the part of the orthogonal hull
obtained upto a point does not contain two consecutive Type 3 vertices which
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acts as the invariant of the algorithm. Whenever a concavity is detected, nec-
essary combinatorial rules are applied to maintain the algorithm invariant and
to ensure the orthogonal convexity, thereof. However, rest of the patterns, 13,
31, and 11, are in conformance with the algorithm invariant and hence do not
violate the properties of orthogonal convexity.

2.4 Construction of Orthogonal Convex Skull (OCS)

The algorithm to determine an orthogonal convex skull [1,7] first obtains an inner
isothetic cover (Sect. 2.2). An orthogonal convex skull is computed by applying
rules on the obtained inner isothetic cover. The resulting skull is not unique and
it is dependent on the direction of traversal and the starting point of traversal.

Two or more consecutive Type 3 vertices imply a concave region, which
defies the properties of orthogonal convexity, as the intersection of a vertical or
horizontal grid line with the orthogonal polygon (here, Ain) has more than one
line segment. The concavity line passing through two consecutive Type 3 vertices,
divides the polygon into three different parts: two separate sub-polygons lying on
one side of l, and the rest of the polygon at the other side. To achieve orthogonal
convexity, one of these two sub-polygons has to be dropped. Hence, first we
check whether dropping of any sub-polygon divides (disconnects) the polygon
into two parts. If so, then it cannot be dropped. If both the sub-polygons do not
affect the connectivity, then the sub-polygon having larger area is included in
the skull, thus maximizing the area of the skull. As a result, the convex skull,
obtained thereof, also contains no two consecutive vertices of Type 3. Here, in
this paper, this algorithm is slightly modified, to obtain OCS for each of the
isothetic polygons when the object is disconnected.

3 Boundary Complexity and Shape Complexity

The boundary complexity can be analysed from the boundary of orthogonal
convex hull and skull. Orthogonal convex hull is a superset of the outer isothetic
cover and orthogonal convex skull is a subset of the inner isothetic cover. Several
analyses are presented in this paper using Aout with OH(A), Ain with OCS(A),
Aout with Ain, and OCS(A) with OH(A).

Let us consider Aout and OH(A) together for complexity analysis. The num-
ber of portions included in OH(A) provides one measure for the complexity of
A. The number of regions added may be zero or one or more. If it is zero, we can
certainly say that Aout is convex. A shape with more concavities is considered
to be more complex. Wherever there is a concavity in the object, a region is
included in OH(A) to make it convex. When only one region is added, there are
two scenarios depending on the area of the added regions. If the added area is
small w.r.t. Aout, then the complexity is negligible. If the added area is large
w.r.t. Aout, then it can be inferred that the complexity lies in the portion of the
object where the region has been added. Thus, it can be said that the shape is
complex. On the other hand, if the area of the added portion is small enough,
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then it implies that the object is less complex. If more than one region is added,
then there are more than one concavity in Aout. Depending on the area of each
such portions, the complexity can be determined.

Now considering OCS(A) in conjunction with Ain, while determining
OCS(A) some convex portions are discarded. Based on the number of portions
discarded and the area of those portions, the complexity of the object can be
analysed. Similarly, if the number of discarded region is zero, we can certainly
say that Ain is convex. However, it cannot be inferred that the object is not com-
plex. Because it may happen that the object contains a narrow portion, where
Ain has not entered. If one region is discarded and the area is large w.r.t. Ain, it
implies that the complexity lies in that portion of the object. It generally hap-
pens with spiral shaped object. On the other hand, if the area is small enough,
then it implies that the object is less complex. If the number of discarded portion
is greater than one, then there are more than one concavities in Ain. Depend-
ing on the area of each such portion, the complexity can be determined as said
above.

Also, by considering Aout and Ain, some analyses can be done. If there is a
long neck in A, Ain may not enter the portion (depending on the grid size and
the imposition of the object on the background grid). On the other hand, if the
object contains long neck like protrusion in it, Aout may not be able to detect
it for the same reason. Several measures for boundary complexity and shape
complexity are discussed below (Sects. 3.1 and 3.2).

3.1 Boundary Complexity

Three measures for boundary complexity are defined here. Let p, pi, po, ps, and
ph be the perimeter of A, Ain, Aout, OCS(A), and OH(A) respectively. The
boundary complexity can be defined as follows.

ζ1 =
(ph − po) + (pi − ps)

p
× 100 (1)

The range is 0 < ζ1 < 100. It is the percentage of the boundary for which the
object becomes non-convex. When the object is convex, the value of ζ1 is equal
to zero. High value of ζ1 implies more concavities (i.e., more complexity) along
the boundary. When the grid size decreases, the complexity in the boundary
increases, e.g., more concavities are detected along the contour.

During the construction of orthogonal hull, some portions of the outer iso-
thetic cover are included inside it. For the construction of orthogonal convex
skull, some portions are removed from the inner isothetic cover. Let � po be
the total perimeter included to construct the orthogonal hull. Similarly, � pi
denotes the total perimeter excluded from the inner isothetic cover to construct
orthogonal convex skull. The two other measures for boundary complexity can
be defined based on these two parameters as follows.

ζ2 =
� po
po

+
� pi
pi

(2)
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ζ3 =
|�po

po
− �pi

pi
|

max{�po

po
, �pi

pi
} (3)

ζ2 is the sum of the complexities in the inner and the outer boundary of the
object. The value of ζ2 is higher in the lower grid sizes compared to the higher
grid sizes. The range of ζ2 is 0 � ζ2 < 2. When the object is convex then the
value of ζ2 is zero. When the object is too complex most of the portions of
outer cover will be included in the hull and most of the portions of the inner
cover will be discarded. The value of each fraction will be almost equal to 1. ζ3
gives a measure on the difference between the inner and the outer complexity.
Its range is 0 � ζ3 � 1. If the value is zero then the complexity of the inner
and outer boundaries are almost same. Otherwise, it means the inner (outer)
boundary contains some complexities, which are not detected in the outer (inner)
boundary. It is maximum when either inner cover or outer cover is convex. ζ3 is
not dependent on ζ2.

3.2 Shape Complexity

The two measures for shape complexity are discussed here. Let a, ai, ao, as, and
ah be the area of A, Ain, Aout, OCS(A), and OH(A) respectively. The shape
complexity can be proposed w.r.t. the area (or regions) of the object which makes
the object non-convex. It can be determined as follows.

ζ4 =
(ah − ao) + (ai − as)

a
× 100 (4)

The range is 0 < ζ4 < 100. This measure determines the percentage of the
boundary for which the object becomes non-convex. When the object is convex,
the value of ζ4 is almost equal to zero. High value of ζ4 implies more complex
shape. For lower grid sizes the value of shape complexity increases.

The second measure of the shape complexity can be defined as follows.

ζ5 =
as

ah
(5)

Its range is 0 < ζ5 < 1. When the object is very complex then ζ5 � 0 as the area
of an orthogonal skull will be much lesser and that of the orthogonal hull will
be much higher. The area of the orthogonal convex skull can never be zero, so
lower bound of ζ5 can never be equal to zero. When the object is convex both
areas will be almost equal. In case of a convex object, the orthogonal hull is the
outer isothetic cover and the orthogonal skull is inner isothetic cover. Always
the area of the outer isothetic cover of an object will be greater than that of
inner isothetic cover. Thus, the upper bound of ζ5 cannot be equal to one. If the
value of ζ5 is near to one, it means that the object is less complex. Otherwise,
the object is very complex.
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Fig. 3. Convexity tree for three digital objects: (a) Logo 211 for g = 8; (b) Logo 844

for g = 7; (c) Logo 347 for g = 5.

4 Shape Complexity from Orthogonal Convexity Tree

The orthogonal convexity tree can be formed from the orthogonal convex skull.
Ain consists of the orthogonal convex skull and discarded portions which are
actually orthogonal polygons. Some of these are convex and some are not. If
orthogonal convex skull can be obtained recursively on the non-convex com-
ponents till all the components are orthogonally convex, then an orthogonal
convexity tree can be determined as shown in Fig. 3. The concept of orthogonal
concavity tree is already proposed in [2]. These are useful for determining the
shape complexity of a digital object.

Numerous information can be found from the convexity tree, e.g., the depth
of convexity tree, the number of children, the number of children per level, etc.
If the convexity tree branches out uniformly, then the corresponding object may
be symmetric (provided the area of a pair of convex components are same). The
object in Fig. 3(a) is symmetric. Here, all the leaves are at same depth. Each pair
(A2, A4 and A3, A5) has almost similar area and perimeter. It is to be noted here
that area and perimeter comparison are not the only criteria to check whether
the object is symmetric or not. If the depth of the tree is higher and there are
only one child at each level of the tree, then the shape of the object is very
complex and the convexity tree will be unbalanced (e.g., spiral-shaped objects).
The depth of the convexity tree is two for the objects shown in Fig. 3(a) and (b).
These are more complex objects compared to Fig. 3(a) whose depth is one.

The total number of concavities in the object boundary can be determined
from the convexity tree. It is the total number of nodes in the tree (internal
nodes and leaves except root) minus one. The number of convex regions which
are discarded is the number of concavities in the IIC. All the leaves in the
convexity tree correspond to convex regions of the object. If the area is very
small w.r.t. the area of the object, then the concavity is insignificant. Let ax

be the area of a convex region. If ax

a � 0, then the corresponding concavity is
insignificant. It may not be detected when the object is imposed on higher grid
size.
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5 Experimental Results

Some of the experimental results are included to explain the complexity analysis
in Figs. 4, 5 and 6 and the corresponding data are shown in Table 1. The algo-
rithm of orthogonal hull and skull were implemented in C Ubuntu 14.04. The
orthogonal convex skull is shown in blue border whereas orthogonal convex hull
with black border. The regions which are included in the orthogonal convex hull
are shown in yellow color. The discarded regions to construct orthogonal convex
skull are shown in red color. ζ1 and ζ2 decreases when grid size increases. For
less complex boundary the value is lower. The inner isothetic cover of Logo 220
for g = 20 is convex and its outer isothetic cover has only one concavity. The
value of ζ1 and ζ2 are very low for this object, whereas ζ3 = 1 (maximum value).

(a) g = 3 (b) g = 12 (c) g = 18

(d) g = 3 (e) g = 10 (f) g = 20

(g) g = 3 (h) g = 10 (i) g = 15

Fig. 4. OH(A) and OCS(A) on a set of objects (Logo 844, Logo 181, and Logo 426)
which contains circular portion (g refers to grid size). (Color figure online)
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(a) g = 3 (b) g = 10 (c) g = 20

(d) g = 3 (e) g = 10 (f) g = 20

(g) g = 3 (h) g = 10 (i) g = 20

(j) g = 3 (k) g = 10 (l) g = 20

Fig. 5. OH(A) and OCS(A) on a set of symmetric objects (Logo 1287, Logo 5, Logo
211, and Logo 257). Here, g refers to grid size. (Color figure online)
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(a) g = 3 (b) g = 10 (c) g = 20

(d) g = 6 (e) g = 12 (f) g = 20

(g) g = 3 (h) g = 10 (i) g = 20

Fig. 6. OH(A) and OCS(A) on another set of objects (Logo 23, Logo 220, and Logo

347). Here, g refers to grid size. (Color figure online)

From these three measures, it can be said that either Ain or Aout is convex and
concavities in the boundary are very less. If Logo 5 is considered for the three
grid sizes, it is seen that the value ζ3 increases with the increase of grid size but
ζ1 and ζ2 decreases for the same. It implies that the difference in the boundary
complexity for Ain and Aout is very less for the lower grid sizes which detects
almost all the concavities. For higher grid sizes, the difference increases as some
of the concavities are not being detected in both. The nature of ζ4 is same with
ζ1. The value of ζ5 remains high for the three grid sizes in Logo 347. It means
that there is less difference in shape while considering orthogonal convex hull and
skull. If the range of ζ5 is high for lower and higher grid sizes then there is a huge
difference in shape for orthogonal convex hull and skull (consider Logo 181).
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Table 1. Area and perimeter of digital object, Aout, Ain, OH(A), and OCS(A) (areas
are represented as a, ao, ai, ah, and as respectively, whereas perimeters are represented
as p, po, pi, ph, and ps respectively) for the mentioned grid size shown in Figs. 4, 5 and
6. ζ1, ζ2, and ζ3 are boundary complexity measures. Shape complexity measures are ζ4
and ζ5.

g ao ai ah as po pi ph ps ζ1 ζ2 ζ3 ζ4 ζ5

Logo 844 3 37189 32662 45700 19531 1512 1494 948 882 78.4 0.93 0.28 63.39 0.43
a = 34141 12 43969 25911 50029 15279 1536 1416 984 888 72 0.84 0.21 48.89 0.31
p = 1500 18 53317 21313 53317 13663 1008 1152 1008 756 26.4 0.39 1.00 22.41 0.26

Logo 1287 3 24826 21169 31273 15310 1158 1206 840 810 58.24 1.04 0.38 54.93 0.49
a = 22404 10 29251 17741 34131 13591 1100 1080 860 780 44.05 0.81 0.38 40.31 0.4
p = 1226 20 36581 13681 39261 10761 1160 960 920 720 39.15 0.63 0.30 25 0.27

Logo 5 3 40603 37333 44299 33820 1176 1152 1008 984 29.02 0.73 0.08 18.9 0.76
a = 38148 10 44371 33051 46811 29871 1140 1100 1020 940 24.18 0.53 0.11 14.73 0.64
p = 1158 20 49781 27681 52121 26041 1160 960 1040 880 17.27 0.34 0.30 10.43 0.50

Logo 23 3 32638 28810 37882 17671 1284 1260 972 906 52.03 0.84 0.21 54.54 0.47
a = 30040 10 37631 24811 41401 14731 1260 1220 1000 860 48.44 0.79 0.32 46.11 0.36
p = 1280 20 45021 19361 48521 10741 1240 1120 1040 680 50 0.69 0.40 40.35 0.22

Logo 181 3 20302 17146 27421 15985 1056 1008 912 828 31.21 0.62 0.32 45.7 0.58
a = 18120 10 24131 13711 30171 12981 1060 820 940 760 17.34 0.46 0.61 37.36 0.43
p = 1038 20 28541 9541 34081 9541 1080 680 960 680 11.56 0.31 1.00 30.57 0.28

Logo 211 3 34648 30466 39232 21442 1236 1386 936 888 56.28 0.91 0.22 42.75 0.55
a = 31832 10 38161 25041 41281 18121 1120 1280 960 840 42.31 0.74 0.43 31.54 0.44
p = 1418 20 44981 20581 46921 15201 1160 1160 1040 800 33.85 0.60 0.60 23 0.32

Logo 220 6 37759 28099 46075 16699 1572 1004 996 924 40.95 1.13 0.36 60.77 0.36
a = 32442 12 42517 24793 49177 15109 1512 1200 1008 840 53.93 0.84 0.17 50.38 0.31
p = 1602 20 53361 18482 54121 18482 1120 960 1040 960 4.99 0.09 1.00 2.34 0.34

Logo 257 3 25594 22249 27241 18532 1110 1098 912 882 37.03 0.69 0.14 22.9 0.68
a = 23425 10 30271 18631 31381 15121 1140 1060 960 840 35.78 0.61 0.44 19.72 0.48
p = 1118 20 36541 13662 36921 12822 1080 920 1040 840 10.73 0.18 0.62 5.21 0.35

Logo 347 3 42421 38704 44503 33382 1230 1212 966 936 43.62 0.78 0.27 18.54 0.75
a = 39946 10 45851 33951 47391 30041 1100 1100 980 880 27.46 0.53 0.34 13.64 0.63
p = 1238 20 52121 28841 51741 27201 1080 880 1040 800 9.69 0.19 0.64 3.15 0.53

Logo 426 3 26821 22897 39835 19387 1314 1260 972 918 52.78 0.84 0.32 68.37 0.49
a = 24168 10 31540 18601 43101 16151 1259 1199 1000 900 43.06 0.68 0.21 57.97 0.37
p = 1296 15 35926 16967 44836 16007 1200 1079 1020 960 23.07 0.45 0.55 40.84 0.36

6 Conclusions

A simple and novel approach to analyse the complexity of a digital object is
presented here. It gives a measure of the complexity of the global shape of the
object. The concept of convexity tree to determine shape complexity is com-
pletely a novel technique. Various experimental results are given to show the
effectiveness of the proposed scheme. As a future direction, some more features
of the object can be derived and metrics can be formulated to classify digital
objects based on shapes.



Boundary and Shape Complexity of a Digital Object 117

References

1. Biswas, A., Dutt, M., Bhowmick, P., Bhattacharya, B.B.: On finding the orthogo-
nal convex skull of a digital object. In: Proceedings of 13th International Workshop
on Combinatorial Image Analysis: IWCIA 2009, pp. 25–36. Progress in Combina-
torial Image Analysis, Research Publishing Services, Playa del Carmen, Mexico,
November 2009

2. Biswas, A., Sarkar, A., Bhowmick, P., Bhattacharya, B.B.: Combinatorial construc-
tion of the orthogonal concavity tree of a digital object. In: 2011 2nd International
Conference on Emerging Applications of Information Technology (EAIT), pp. 210–
213 (2011)

3. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: on finding a tight isothetic
polygonal shape covering a 2D object. In: Kalviainen, H., Parkkinen, J., Kaarna, A.
(eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005).
doi:10.1007/11499145 94

4. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers
of a digital object: a combinatorial approach. J. Vis. Commun. Image Represent.
21(4), 295–310 (2010)

5. Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: A linear-time combi-
natorial algorithm to find the orthogonal hull of an object on the digital plane. Inf.
Sci. 216, 176–195 (2012)

6. Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: Finding the orthogonal
hull of a digital object: a combinatorial approach. In: Brimkov, V.E., Barneva, R.P.,
Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 124–135. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78275-9 11

7. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding an orthogonal
convex skull of a digital object. Int. J. Imaging Syst. Technol. 21(1), 14–27 (2011)

8. Hung, K., Aw-Yong, M.: A content-based image retrieval system integrating color,
shape and spatial analysis. In: Proceedings of IEEE International Conference on
Systems, Man, and Cybernetics, vol. 2, pp. 1484–1488 (2000)

9. Hussein, E., Nakamura, Y., Ohta, Y.: Analysis of detailed patterns of contour
shapes using wavelet local extrema. In: Proceedings of 13th International Confer-
ence on Pattern Recognition: ICPR 1996, vol. 2, pp. 335–339 (1996)

10. Khan, J.F., Bhuiyan, S.M.A., Adhami, R.R.: Image segmentation and shape analy-
sis for road-sign detection. IEEE Trans. Intell. Transp. Syst. 12(1), 83–96 (2011)

11. Liu, W., Srivastava, A., Klassen, E.: Joint shape and texture analysis of objects
boundaries in images using a Riemannian approach. In: Proceedings of Interna-
tional Conference on Digital Image Processing, vol. 14, pp. 833–837 (2008)

12. Naser, M.A., Hasnat, M., Latif, T., Nizamuddin, S., Islam, T.: Analysis and repre-
sentation of character images for extracting shape based features towards building
an OCR for Bangla script. In: Proceedings of International Conference on Digital
Image Processing, pp. 330–334 (2009)

13. Rosenfeld, A., Kak, A.C. (eds.): Digital Picture Processing, 2nd edn. Academic
Press, Cambridge (1982)

14. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach.
Intell. 22(1), 1349–1380 (2001)

15. Ulupanar, F., Nevatia, R.: Using symmetries for analysis of shape from contour.
In: Proceedings of 2nd International Conference of Computer Vision: ICCV 1998,
pp. 414–426 (1998)

http://dx.doi.org/10.1007/11499145_94
http://dx.doi.org/10.1007/978-3-540-78275-9_11

	Boundary and Shape Complexity of a Digital Object
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Deriving the Outer Isothetic Cover, (OIC)
	2.2 Deriving the Inner Isothetic Cover, (IIC)
	2.3 Construction of Orthogonal Convex Hull, (OH)
	2.4 Construction of Orthogonal Convex Skull (OCS)

	3 Boundary Complexity and Shape Complexity
	3.1 Boundary Complexity
	3.2 Shape Complexity

	4 Shape Complexity from Orthogonal Convexity Tree
	5 Experimental Results
	6 Conclusions
	References


