
Finding Shortest Isothetic Path Inside
a 3D Digital Object

Debapriya Kundu and Arindam Biswas(B)

Department of Information Technology, Indian Institute of Engineering Science
and Technology, Shibpur, Howrah 711103, West Bengal, India

debapriyakundu1@gmail.com, barindam@gmail.com

Abstract. The problem of finding shortest isothetic path between two
points is well studied in the context of two dimensional objects. But it
is relatively less explored in higher dimensions. An algorithm to find a
shortest isothetic path between two points of a 3D object is presented
in this paper. The object intersects with some axis parallel equi-distant
slicing planes giving one or more isothetic polygons. We call these poly-
gons as slices. The slice containing the source and destination points are
called source and destination slice respectively. A graph is constructed
by checking the overlap among the slices on consecutive planes. We call
it slice overlap graph. Our algorithm first finds the source and destina-
tion slice. Thereafter, it finds the minimum set of slices Πst from the
slice overlap graph, that need to be traversed to find SIP. Finally BFS
is applied to find a SIP through these set of slices. The advantage of
this procedure is that it does not search the whole object to find a SIP,
rather only a part of the object is considered, therefore making the search
faster.

Keywords: Unit grid cube (UGC) · Shortest isothetic path (SIP) ·
Breadth first search (BFS)

1 Introduction

The problem of finding shortest path is a well studied area in computational
geometry. Path planning or motion planning in automated robots is a challenging
area of robotics. Computing shortest path between different locations is often
used in various map services and navigation systems. Various prior works on
finding shortest path in 3D have been done. Problems of finding shortest path
can be of different types. Some of the examples are finding shortest path on 3D
polyhedral surface, in presence of a sequence of obstacles or polyhedral obstacles,
finding shortest rectilinear minimum bending path, minimum distance path etc.
The various kinds of shortest path problems in three dimension are discussed
below.

An efficient parallel solution to the problem of finding shortest Euclidean path
between two points in three dimensional space in the presence of polyhedral
obstacles is discussed in [1]. It finds the shortest path touching n lines in a
c© Springer International Publishing AG 2017
R.P. Barneva et al. (Eds.): CompIMAGE 2016, LNCS 10149, pp. 65–78, 2017.
DOI: 10.1007/978-3-319-54609-4 5

66 D. Kundu and A. Biswas

specified order. A more general problem is of finding collision-free optimal path
for a given robot system. A solution to the problem of finding shortest path in
three dimension with polyhedral obstacles is discussed in [7]. A new approach
to solve this problem is discussed in [5] which solves the problem in O(n3vk)
time, where n is the number of vertices of the polyhedra, k is the number of
obstacles and v is the largest number of vertices on any one obstacle. Recently
an algorithm has been proposed on finding shortest path in three-dimensional
cluttered environment [11].

A different kind of problem is construction of multilayer obstacle avoiding
rectilinear Steiner minimum tree. A Steiner tree problem is a combinatorial opti-
mization problem. For a given set of geometric points, the Steiner tree problem
is about finding a minimum length graph interconnecting all these points where
the length of the graph is the sum of the lengths of all edges. The points are
called Steiner points. When the edges are restricted to be axis parallel the prob-
lem reduces to rectilinear minimum Steiner tree problem. An analysis of the
existing rectilinear Steiner minimum tree algorithms is given in [10]. This has
application in circuit layout, network design, VLSI physical design, wire routing,
telecommunications, etc.

A related problem is finding rectilinear minimum link path problem in three
dimensions [3,13]. It involves finding a continuous path with axis-parallel line
segments, such that none of the line segments intersect the interior of any obsta-
cle. [3] solved the problem in O(n2 log n) time with worst case running time of
Ω(n3). A betterment on the worst case running time has been achieved in [13],
where the worst case time complexity is O(n5/2 log n).

Our Contribution: Let A be a 3D digital object and s and t be the source and
destination points. Our objective is to find a SIP (πst) between s and t such that
the SIP lies entirely inside A and consists of moves along grid edges only. There
may exist a number of SIPs between s and t, our algorithm will find one of them.
Here by point we mean digital points only i.e., points with integer coordinates.
The algorithm proposed here is for genus 0 objects. To the best of our knowledge
there exists no suitable algorithmic solution on the geometric problem stated
above. For a given grid size the proposed algorithm runs in O(

∑k
i=1 yi) time

where k is the set of slices in the shortest path from source to destination grid
vertex and yi denotes the number of UGCs in the ith slice of these set of slices.
The worst case time complexity of the proposed algorithm is O(

∑k
i=1 yi) = O(N),

where N is the total number of UGCs of the given digital object. Though the
worst case complexity is high still this algorithm is computationally very fast for
best and average cases.

2 Definitions and Preliminaries

2.1 Digital Grid

A digital grid G consists of three orthogonal sets of equi-spaced grid lines, Gyz,
Gzx, and Gxy, where Gyz = {lx(j ± ag, k ± bg) | a ∈ Z, b ∈ Z}. Similarly, Gzx

Finding Shortest Isothetic Path 67

and Gxy can be represented in terms of ly and lz for a grid size g ∈ Z
+. Here,

lx(j, k) = {(x, j, k) : x ∈ R}, ly(i, k) = {(i, y, k) : y ∈ R}, and lz(i, j) = {(i, j, z) :
z ∈ R} denote the grid lines (Fig. 1) along x-, y-, and z-axes respectively, where
i, j, and k are integer multiples of g. The three orthogonal lines lx(j, k), ly(i, k),
and lz(i, j) intersect at the point (i, j, k) ∈ Z

3, which is called a grid point; a shift
of (±0.5g,±0.5g,±0.5g) with respect to a grid point designates a grid vertex,
and a pair of adjacent grid vertices defines a grid edge [6]. Therefore, the grid
point set is Z3. A grid square is defined by the four grid edges that form a square.
A grid cube is defined by six grid squares that form a cube. It is also called a
3-cell, grid square is a 2-cell, a grid edge is a 1-cell, and a grid vertex is a 0-cell.
A unit grid cube (UGC) is a (closed) cube of length g whose vertices are grid
vertices, edges constituted by grid edges, and faces constituted by grid faces.

A unit grid cube (UGC) is grid cube of length g whose vertices are grid
vertices, edges constituted by grid edges and faces constituted by grid faces.
Each face of a UGC lies on a face plane (hence referred as a UGC-face), which
is parallel to one of three coordinates planes. A UGC contains g × g × g number
of voxels. So a UGC is same as a voxel when g = 1 [8]. A grid for g = 2 with its
elements are shown in Fig. 1.

z
x

y

face plane

Grid vertex

Grid edge

UGC face

Grid line

g=2 Grid point

UGC

3-cell

Fig. 1. 3D grid for g = 2.

2.2 Adjacency

Two cells c1 and c2 are called α adjacent if c1 �= c2 and the intersection contains
an α-cell (α ∈ 0, 1, 2). Two 3D grid points p1 = (x1, y1, z1) and p2 = (x2, y2, z2)
are called 6-adjacent iff 0 < de(p1, p2) � 1, 18 adjacent iff 0 < de(p1, p2) �

√
2,

and 26 adjacent iff 0 < de(p1, p2) �
√

3.
Let c1 and c2 be 3-cells and let pi be the center of ci(i = 1, 2). Then c1 and

c2 are 0-adjacent iff p1 and p2 are 26-adjacent iff c1 and c2 are not identical but
share a grid vertex; c1, c2 are 1-adjacent iff p1 and p2 are 18 adjacent iff c1 and
c2 are not identical but share a grid edge; and c1, c2 are 2-adjacent iff p1 and p2
are 6 adjacent iff c1 and c2 are not identical but share a grid square [8] (Fig. 2).

68 D. Kundu and A. Biswas

2.3 Digital Object

Let A be a 3D digital object, (referred as an object), which is defined as a
finite subset of Z

3, with all its constituent points (i.e., voxels) having integer
coordinates and connected in 26-neighborhood [6]. Here, a digital object is a
26-connected component.

2.4 Isothetic Path

An isothetic path from a grid vertex p ∈ A to a grid vertex q ∈ A is defined as
the sequence of 6-adjacent grid vertices which are all distinct and lie on or inside
the digital object A (Fig. 3). An isothetic path of minimum length is called a
shortest isothetic path (SIP) [2].

Fig. 2. Left: 6-adjacency; Middle: 18-adjacency; Right: 26-adjacency.

s

t

Isothetic path

Fig. 3. An isothetic path with source and destination are marked as red and blue
respectively. (Color figure online)

3 Slicing

The object A is considered to be a set of voxels. A UGC is said to be object
occupied if it contains an object voxel. For slicing the object all the object
occupied UGCs need to be found. The object intersects with some grid planes
along xy-, yz- and zx- axis. The intersection of the object with a grid plane gives
one or more isothetic polygons. We call these polygons as slices. Let us consider
{Π1,Π2,Π3, . . .} be the set of slicing planes separated by g parallel to any one of
yz-, zx-, or xy-plane. Each slice is uniquely identified using a faceid. For slicing

Finding Shortest Isothetic Path 69

an object we used the algorithm proposed in [6]. The entire process of slicing is
discussed below in brief.

To start tracing a slice along a slicing plane a start vertex, vs, is identi-
fied. A vertex qualifies as a start vertex if it is unvisited. Each vertex has eight
neighboring UGCs. Depending on the object occupancy of these UGCs a start-
ing direction is determined. Tracing a slice starts from vs and concludes when
it comes back to vs. During traversal all the grid vertices lying in the path of
traversal are marked visited. Along a given slicing plane the traversal at some
point can be in four possible directions. The direction of traversal depends on
the occupancy of the four neighboring UGCs along that plane and the incoming
direction of traversal at that point. By applying a set of combinatorial formulas
the outgoing direction is found such that the object always lies left. A slice con-
tains the top faces of the adjacent UGCs along that plane. The slicing procedure
traces each slice exactly once. An object and its slices are shown in Fig. 4. The
set of slices is stored in an adjacency list (L). Each list in L contains the slices
along one grid plane. Therefore, the number of lists in L is equal to the number
of grid planes the object intersects with the direction of slicing i.e., either xy-
or yz- or zx-. Let us consider this count as ls. The result of slicing bunny is
presented in Fig. 5. Here, w.l.o.g., we are slicing the object along zx-plane.

Slice overlap region

3

2

1

Fig. 4. Left: 3D object A; Middle: Its slices along zx- axis for g = 1. The slices are shown
in light grey and the overlapping regions are shown in dark grey; Right: corresponding
slice overlap graph.

3.1 Slice Containing a Given Point

To find the slice containing a given point p, the slicing plane containing p is
identified first using its coordinates thereafter searching the slices on that plane.
Given a point i and a slice Si, to check whether i ∈ Si, a LeftOn test [12] is done
for each edge of the slice. This technique checks for each edge whether the query
point p lies on it or on the left (right) of it, when the slice is traversed in an anti-
clockwise (clockwise) manner. The detailed steps of this procedure is discussed in
IDENTIFYSLICE (Fig. 6) which identifies the slice Sp containing a given point
p. Using this procedure the source and the destination slices corresponding to the
source and destination points are obtained respectively. Figure 10 (d, e) shows a
given source and destination points with their corresponding UGCs and slices.

70 D. Kundu and A. Biswas

Fig. 5. Left: Bunny represented as a set of UGCs for g = 1; Middle: Its slices along
zx-axis for g = 1; Right: Slice overlap graph, (here for clarity of view only a few nodes
are shown).

4 Finding the Minimum Set of Slices (Πst) to be
Traversed to Move from Source to Destination Slice

4.1 UGC Corresponding to a Point

In this paper, a grid based approach of finding a SIP is presented. Therefore,
the UGCs corresponding to the source and destination points needs to be found.
For any point i, we need to identify the UGC corresponding to it and for that
the voxel corresponding to that point needs to be selected first. We denote the
voxel and UGC corresponding to i as vi and ui respectively. There are eight
neighboring voxels of i. Not necessarily all of them will be object voxel. To
choose one voxel from this set of eight voxels as vi, an object voxel is selected
based on a defined order of preference. A voxel with lower preference value
will get higher priority. The eight neighboring voxels of a given point with their
preference values are shown in Fig. 7(Left). Once vi is found the UGC containing
vi is selected as ui. We denote the source and destination points as s and t, hence
the source and destination UGCs as us and ut respectively.

4.2 Slice Overlap Graph

Two slices on consecutive planes are said to have overlap if their projection on
a plane overlap with each other. A graph is constructed considering each slice
of A as a node and an edge between two nodes if there is overlap between the
corresponding slices. We call this graph as slice overlap graph. As each slice has
an unique faceid, so the node corresponding to that slice is uniquely identified
using that faceid. As the object A is a digital object hence its slices will be
orthogonal polygons. To check overlap between two orthogonal polygon (say Si

and Sj) we adopt a simple method, which is discussed below.
Si and Sj are traced starting from any of their boundary grid vertices. Each

grid vertex occurring in the path of traversal of each slice are given label equal to

Finding Shortest Isothetic Path 71

Procedure IdentifySlice(L, p)

01. for each slice Si in L on PlaneNumber(p)
02. for all edge ei,j ∈ Si

03. if (LeftOn(ei,j , p))
04. return i
05. else
06. break
07. find next slice on planeno(p)

Procedure
SliceOverlapGraph(L)

01. for each j ← 2 to Ln

02. i = j-1
03. for each slice polygon in
Li check overlap with all slice
polygons in Lj

04. if overlap found then
addedge(G, i, j)

Fig. 6. Left: Procedure IdentifySlice; Right: Procedure SliceOverlapGraph.

5
67

8

1
23

4

i

ui

vi

j
vj

uj

uk

k

vk

Fig. 7. Left: Order of preference of eight neighboring voxels of a point (the point is
shown as a black dot); Right: voxels and UGCs corresponding to some given points.
Here, the points are shown in black dots, the voxel corresponding to a point is marked
red and the UGC containing that voxel is marked light red. (Color figure online)

the faceid of its corresponding slice. Therefore by this process each grid vertex
on the boundary of a slice gets a label. Here by slice we mean only object slices,
not any hole polygon. To check overlap we start from the slices on plane Π2.
Let us denote the slices on ith plane as Si,1, Si,2, Si,3, Hence, jth slice on ith

plane is denoted by Si,j . The grid vertices on the boundary of Si,j are denoted
by vi,j,1, vi,j,2, Therefore, the kth grid vertex of polygon j on slice i will be
denoted by vi,j,k. We traverse each grid vertex on the boundary of a slice and
for each grid vertex vi,j,k with label l we check label l1 of vi,j−1,k (w.l.o.g., for
slices along zx-plane), if l1 �= 0, then an edge is added to the slice overlap graph
between nodes with faceid l and l1, if this edge does not already exist in the slice
overlap graph. This method is able to identify the overlap between projections
of two slices if the projections intersect with each other. If the projections of
slices do not intersect each other and one is contained within another then the
following method is adopted. For two slices (say, Si,j and Si,k) between which no
edge has been reported by the previous method we find whether Si,j is contained
within Si,k or vice-versa. We take any one point from the vertex set of Si,j and

72 D. Kundu and A. Biswas

Slice with faceid = 2
2

2
2

2 2
2 2

2
2 2

2
2 2

2222
2

1
1

1 1
1 1

1 1 1
1

11
1 1

11

1
Slice with faceid = 1

Fig. 8. The labelling of grid vertices on each slice

the method discussed in Sect. 3.1 is applied to find whether it is contained within
Si,k. If it returns false then the similar method is applied to check whether Si,k

is contained within Si,j . If there exists a overlap, an edge is added between the
nodes corresponding to Si,j and Si,k to the slice overlap graph else no edge
is added. Hence by visiting only the boundary grid points of all the slices the
complete slice overlap graph is constructed. Figure 8 shows an object with two
slices and the labels of the grid vertices on the boundary of each slice.

The procedure SliceOverlapGraph is given in Fig. 6. Figures 4, 5 and 10(b,
c) shows the slice overlap graph of some objects. The overlapping regions are
shown in dark shade.

For genus 0 objects slice overlap graph will be a tree, but for objects of type
genus 1 or more it will contain one or more cycles in it. The algorithm proposed
in this paper is for genus 0 objects only.

Instead of constructing a slice overlap graph taking all the slices it can be
made specific to the source and destination slices. This will require less amount
of storage space as well as time to find Πst. This graph construction starts from
the source slice and only those slices that overlap with it are further explored
and this process continues till the destination slice is visited. This process follows
the BFS technique. So this graph will not necessarily contain all the slices of the
object, which makes it time and space efficient. But the problem associated with
this approach is, as it is specific to a given source and destination slice, the
source and destination slices can not be changed dynamically.

4.3 Storage of Slice Overlap Graph

The slice overlap graph is stored in an adjacency list (L
′
) where the number of

lists is equal to the number of nodes in the graph. Each list gives information
about a particular node i.e., the nodes adjacent to it. Each node of a list contains
2 elements a pointer to the first node of the slice corresponding to it and a pointer
to the next node. If a node’s faceid is 1 it is stored in the 1st list, similarly a node
with faceid 2 is stored in the 2nd list. Figure 9 shows the memory representation
of the slice overlap graph of the object represented in Fig. 4.

Finding Shortest Isothetic Path 73

1 1 1

2 2 2

3 3 3

1

2

3

2

3

Fig. 9. Representation of slice overlap graph in memory

4.4 Finding the Minimum Set of Slices (Πst) to be Traversed to
Find SIP

To find path between two nodes in slice overlap graph BFS is applied. It starts
from the source node and continues search until the destination node is visited.
The source node is labeled 0 and marked visited. For a node with label i, its
adjacent unvisited nodes are labeled i+1 and marked visited. Therefore, the
label at a node is its shortest distance from the source node. The shortest path
between the source and destination node is found by retracing. This is done in
Step 5–6 of the algorithm FindSIP. The minimum set of nodes or slices found
this way, are stored in a linked list (L

′′
). Each node of this list contains the value

of the faceid of the corresponding slice and a pointer to the next node of Πst.

5 Algorithm FINDSIP

To find a SIP, BFS is applied on the set of UGCs, that are bounded by the slices
in the list L

′′
. BFS starts from us which is labeled as zero and it continues till ut

is visited. The label of a given UGC gives the count of the minimum number of
UGCs that need to be traversed to reach it from the source UGC. Here, BFS is
done in 26-neighborhood as the object is connected in 26-neighborhood. Finally
SIP is found by retracing the visited UGCs. The complete algorithm to find SIP
is given below. A step by step process of finding SIP is shown in Fig. 10. This
algorithm follows grid based approach of solving the problem. The BFS done
in Step 7 can be considered as an extension of Lee’s [9] wavefront technique to
three dimension.

Algorithm FindSIP(A, s, t)

01. L = SLICE(A)
02. Ss = IdentifySlice(L, s)
03. St = IdentifySlice(L, t)
04. L

′
= SliceOverlapGraph(L)

05. BFS(L
′
)

06. L
′′

= Retrace(Ss, St)
07. BFS(us, ut, L

′′
)

08. πst = Retrace(ut, us)

74 D. Kundu and A. Biswas

This is to be noted that this algorithm FindSIP never backtracks during
the traversal in Step 7. This is due to the underlying logic in the BFS traversal
method. BFS starts from us and extends in breadth till ut is visited. Each
visited UGC gets a label during traversal which gives its shortest distance from
the source. BFS starts from us so its label is 0. As no UGC will be visited after
ut so no UGC will ever get a label greater than that of ut. Hence there will be
no possibility of backtracking during the traversal.

8 9

6 7

5

3 4

1 2

10

8 9

6 7

5

3 4

1 2

10

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10. Demonstration of various steps in finding SIP. (a) Object represented as a set
of UGCs; (b) Object slices along zx-plane. Each of the slices are shown in light grey
colour and overlapping regions are shown in dark grey. (c) Corresponding slice overlap
graph; (d) Source and destination points with their corresponding UGCs; (e) Source
and destination slices are marked red and blue respectively and the set of slices in the
path from source to destination are marked light blue; (f) The minimum set of nodes
in the path from source to destination node of the slice overlap graph are shown in
light blue; (h) Final SIP is shown in red. (Color figure online)

6 Time Complexity

Slicing takes O(n/g) time in best case and O(ng) time in worst case, where n is
the total number of voxels constituting the object surface in 26-neighborhood.
Therefore, we can consider the complexity of slicing in general as O(n), if n >> g.

The procedure IdentifySlice, in the worst case, traverses edges of all the
slices on the plane containing a given point. Therefore, the procedure needs

Finding Shortest Isothetic Path 75

O(smaxemax) time, smax is the maximum possible count of slices on a slicing
plane and emax is the maximum possible count of edges of a slice.

In procedure SliceOverlapGraph the boundary grid vertices of all the
slices are visited twice, first time for labeling and second time for checking overlap
among the slices. Hence, in this procedure all the grid vertices on the whole
object surface are visited twice. The number of grid vertices on an object surface
is always in the order of the total number of UGCs constituting that object
surface. For an object with n voxels the number of UGCs in it, in best case is
O(n/g3) and in worst case O(n/g). Therefore, the complexity of the procedure
SliceOverlapGraph becomes O(n/g3) in best case and O(n/g) in worst case.

The procedure BFS in line 5 of the algorithm FindSIP starts from the source
node of the slice overlap graph and for each node its adjacent nodes are also
visited, thereby requiring O(mk) time, where k is total number of slices of the
object and m is the maximum possible number of nodes adjacent to a node in
the slice overlap graph.

BFS in line 7 visits each UGC bounded by the slices ∈ Πst and for each
UGC it visits its 26-adjacent UGCs which are bounded by any of the slices ∈
Πst. Hence it requires O(

∑k
i=1 yi) time, where yi denotes the number of UGCs

in the ith slice of L
′′
.

Therefore the total time complexity is given by TC = O(n) + 2 ×
O(smaxemax) + O(n/g) + O(mk) + O(

∑k
i=1 yi). As n is the number of voxels

on the object surface hence it will have value less than
∑k

i=1 yi for most of the
objects. Similarly O(n/g) will also have value less than

∑k
i=1 yi. smaxemax can

never exceed the value of
∑k

i=1 yi and the number of slices of an object will always
be much less than the number of UGCs on a set of slices, hence mk <

∑k
i=1 yi.

Therefore, TC = O(
∑k

i=1 yi) and in worst case O(
∑k

i=1 yi) = O(N). Though
the worst case time complexity is high still the algorithm is computationally
very fast in best and average cases due to the process of doing BFS only on the
UGCs of the selected set of slices. An improvement in terms of complexity can
be done using Hadlock’s [4] method of traversal (it has to be extended to 3D).
This can be considered as a future scope of work.

7 Results and Conclusion

The proposed algorithm has been implemented in C in Linux Fedora Release
7, Kernel 2.6.21.1.3194.fc7, Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB.
It has been tested on several 3D objects for slicing along zx-plane. Some test
results are presented in Fig. 11. Some test results found by our algorithm and
the results found by doing only BFS to find the SIP between two points has
been presented in Fig. 12. For better understanding the UGCs visited by both
the methods has been marked blue. The count of voxels visited by each of the
methods as well as the percentage of voxels traversed with respect to the total
number of object voxel and the respective average CPU times (in milliseconds)
for each of the methods has been given under each figure of second and third

76 D. Kundu and A. Biswas

columns. For the type of cases shown in first four rows of Fig. 12 a significant
reduction in the visited voxel count by the proposed algorithm can be observed.
However for the type of cases shown in the last row of Fig. 12 worst case occurs,
so the visited voxel count is not much reduced by the proposed algorithm.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 11. SIP found by our algorithm on different objects. Left: Object represented as
a set of slices. Right: Object represented as a set of UGCs. (a, b, c, d) SIP found in
bunny for g = 2; (e, f) SIP found in aeroplane for g = 2; (g, h) SIP found in table for
g = 2; (i, j) SIP found in cow for g = 2; Here the source and destination points and
the corresponding slices are marked in red and pink respectively and the set of slices
∈ Πst are marked blue and the final SIP is shown in red. (Color figure online)

Hence it can be noticed that the algorithm proposed in this paper can give
much reduction in the count of visited voxels for best and average cases. This
algorithm finds SIP between any pair of points of a 3D digital object of type
genus 0. The proposed method can be improved for application on objects of type

Finding Shortest Isothetic Path 77

Voxels traversed = 28928
(91%) (T=1.186ms)

Voxels traversed = 15144
(48%) (T=0.61ms)

Object: Aeroplane (g = 2). Total number of voxels = 31720

Voxels traversed = 107504
(97%) (T=2.191ms)

Voxels traversed = 27960
(25%) (T=0.441ms)

Object: Table (g = 2). Total number of voxels = 111304

Voxels traversed = 28376
(85%) (T=1.016ms)

Voxels traversed = 25272
(76%) (T=0.89ms)

Object: Bunny (g = 2). Total number of voxels = 33392

Voxels traversed = 667456
(85%) (T=2.621ms)

Voxels traversed = 64832
(8%) (T=0.208ms)

Object: Cow (g = 4). Total number of voxels = 782592

Voxels traversed = 690880
(88%) (T=2.222ms)

Voxels traversed = 657600
(84%) (T=1.653ms)

Object: Cow (g = 4). Total number of voxels = 782592

Fig. 12. Left: SIP found by algorithm FindSIP on different objects where the objects
are represented as set of slices. The source and destination points and the corresponding
slices are marked in red and pink respectively and the set of slices ∈ Πst are marked
blue and the final SIP is shown in red. Middle: SIP found by doing BFS starting from
the source UGC to the destination UGC. Right: SIP found by algorithm FindSIP.
(Color figure online)

78 D. Kundu and A. Biswas

genus 1 or more. Some improvement in terms of complexity can be considered
as future scope of work. An algorithm for finding multiple SIPs on a 3D object
for a given set of control points remains an open problem.

Acknowledgement. This research is funded by All India Council for Technical Edu-
cation, Government of India.

References

1. Bajaj, C.: An efficient parallel solution for Euclidean shortest path in three dimen-
sions. In: IEEE International Conference on Robotics and Automation, Proceed-
ings, vol. 3, pp. 1897–1900. IEEE (1986)

2. Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: On finding shortest iso-
thetic path inside a digital object. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K.
(eds.) IWCIA 2012. LNCS, vol. 7655, pp. 1–15. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34732-0 1

3. Fitch, R., Butler, Z., Rus, D.: 3D rectilinear motion planning with minimum bend
paths. In: 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Proceedings, vol. 3, pp. 1491–1498. IEEE (2001)

4. Hadlock, F.: A shortest path algorithm for grid graphs. Networks 7(4), 323–334
(1977)

5. Jiang, K., Seneviratne, L.D., Earles, S.: Finding the 3D shortest path with visibil-
ity graph and minimum potential energy. In: Proceedings of the 1993 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 1993, vol. 1,
pp. 679–684. IEEE (1993)

6. Karmakar, N., Biswas, A., Bhowmick, P.: Fast slicing of orthogonal covers
using DCEL. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA
2012. LNCS, vol. 7655, pp. 16–30. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34732-0 2

7. Khouri, J., Stelson, K.A.: An efficient algorithm for shortest path in three dimen-
sions with polyhedral obstacles. In: American Control Conference, pp. 161–165.
IEEE (1987)

8. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Elsevier, Amsterdam (2004)

9. Lee, D.T.: Rectilinear paths among rectilinear obstacles. In: Ibaraki, T., Inagaki, Y.,
Iwama, K., Nishizeki, T., Yamashita, M. (eds.) ISAAC 1992. LNCS, vol. 650, pp.
5–20. Springer, Heidelberg (1992). doi:10.1007/3-540-56279-6 53

10. Lin, C.W., Huang, S.L., Hsu, K.C., Lee, M.X., Chang, Y.W.: Multilayer obstacle-
avoiding rectilinear steiner tree construction based on spanning graphs. IEEE
Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(11), 2007–2016 (2008)

11. Lu, J., Diaz-Mercado, Y., Egerstedt, M., Zhou, H., Chow, S.N.: Shortest paths
through 3-dimensional cluttered environments. In: 2014 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 6579–6585. IEEE (2014)

12. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cam-
bridge (1998)

13. Wagner, D.P., Drysdale, R.S., Stein, C.: An O(n5/2logn) algorithm for the recti-
linear minimum link-distance problem in three dimensions. Comput. Geom. 42(5),
376–387 (2009)

http://dx.doi.org/10.1007/978-3-642-34732-0_1
http://dx.doi.org/10.1007/978-3-642-34732-0_1
http://dx.doi.org/10.1007/978-3-642-34732-0_2
http://dx.doi.org/10.1007/978-3-642-34732-0_2
http://dx.doi.org/10.1007/3-540-56279-6_53

	Finding Shortest Isothetic Path Inside a 3D Digital Object
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Digital Grid
	2.2 Adjacency
	2.3 Digital Object
	2.4 Isothetic Path

	3 Slicing
	3.1 Slice Containing a Given Point

	4 Finding the Minimum Set of Slices (st) to be Traversed to Move from Source to Destination Slice
	4.1 UGC Corresponding to a Point
	4.2 Slice Overlap Graph
	4.3 Storage of Slice Overlap Graph
	4.4 Finding the Minimum Set of Slices (st) to be Traversed to Find SIP

	5 Algorithm FINDSIP
	6 Time Complexity
	7 Results and Conclusion
	References

