
Two-Dimensional Input-Revolving Automata

S. James Immanuel1(B), D.G. Thomas1, Henning Fernau2,
Robinson Thamburaj1, and Atulya K. Nagar3

1 Department of Mathematics, Madras Christian College, Tambaram, Chennai, India
james imch@yahoo.co.in, dgthomasmcc@yahoo.com, robin.mcc@gmail.com

2 Fachbereich 4 – Abteilung Informatik, Universität Trier, 54286 Trier, Germany
Fernau@uni-trier.de

3 Department of Mathematics and Computer Science,
Liverpool Hope University, Liverpool, UK

nagara@hope.ac.uk

Abstract. A new type of two-dimensional automaton for accepting
two-dimensional languages, called as two-dimensional input-revolving
automaton is introduced in this paper. It is an extension of input-
revolving automaton for string languages. We bring out all the variants of
this automaton which are based on the various types of column-revolving
operations considered here. We compare the families of array languages
accepted by the variants of these automata along with the well known
families of Siromoney matrix languages. We discuss some of the closure
properties of the new families of array languages and give an application
in steganography.

Keywords: Picture languages · Extended finite automaton · Rectan-
gular arrays · Input-revolving

1 Introduction

Two-dimensional languages, also called picture languages, are sets of two-
dimensional arrays of symbols chosen from a finite alphabet. Their application
and importance can be seen in image processing, pattern recognition, character
recognition and also in studies concerning cellular automaton and other models
of computing. Due to the structure handling ability of the syntactic models, syn-
tactic techniques of generation of digital picture arrays have become one of the
major areas of theoretical studies in picture analysis and pattern recognition.
Various grammars and automata have already been proposed for the generation
and recognition of rectangular picture languages [4,8–11,13,14,16].

Automata play a vital role in the theory of picture recognizability. The gener-
alization of finite state automata to two-dimensional languages can be attributed
to Blum and Hewitt [2] who introduced the notion of 4-way automata. Array
automata acting on scenes (two-dimensional tapes) are defined in [5]. Motivated
by certain floor designs called “Kolam” patterns, Siromoney et al. [12] introduced
Siromoney Matrix Grammars (SMG), a simple and elegant grammar model for
c© Springer International Publishing AG 2017
R.P. Barneva et al. (Eds.): CompIMAGE 2016, LNCS 10149, pp. 148–164, 2017.
DOI: 10.1007/978-3-319-54609-4 11

Two-Dimensional Input-Revolving Automata 149

generating rectangular arrays. Several variations of Siromoney matrix grammars
have already been added to the literature, for instance [15,17].

In this paper, we extend the concept of input-revolving automata system-
atically investigated in [1], with several shift operations, namely left-revolving,
right-revolving and circular-interchanging operations to two dimensional lan-
guages. Input-revolving automata work similar to ordinary finite automata
except that they can make three special shift operations as mentioned. Two-
dimensional input-revolving automata work on an input array row by row and
every row computation is same as that of input-revolving automata for string
languages. Here we introduce column shift transitions, namely left column-
revolving, right-column revolving and circular column-interchanging transitions
which shifts an entire column. We study all the variants of these automata,
both deterministic and non-deterministic, based on the various types of column-
revolving operations considered. We compare various classes of languages
accepted by these automata with the families of Siromoney matrix languages [12].

2 Preliminaries

In this section we recall some notions related to formal language theory and array
grammars (see [7,12]). Let Σ be a finite alphabet, Σ∗ is the set of words over Σ
including the empty word λ. Σ+ = Σ∗−{λ}. For w ∈ Σ∗ and a ∈ Σ, |w|a denotes
the number of occurrences of a in w. An array consists of finitely many symbols
from Σ that are arranged as rows and columns in some particular order and is

written in the form, A =

[
a11 · · · a1n

.

.

.
. . .

.

.

.
am1 · · · amn

]
or in short A = [aij]m×n, for all aij ∈ Σ,

i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The set of all arrays over Σ is denoted by
Σ∗∗ which also includes the empty array Λ (zero rows and zero columns). Σ++ =
Σ∗∗ −{Λ}. For a ∈ Σ, |A|a denotes the number of occurrences of a in A. The col-

umn concatenation of A =

[
a11 · · · a1p

.

.

.
. . .

.

.

.
am1 · · · amp

]
, and B =

[
b11 · · · b1q
.
.
.

. . .
.
.
.

bn1 · · · bnq

]
, defined only when

m = n, is given by A � B =

[
a11 · · · a1p b11 · · · b1q
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
am1 · · · amp bn1 · · · bnq

]
. As 1 × n-dimensional arrays

can be easily interpreted as words of length n (and vice versa), we will then write
their column catenation by juxtaposition (as usual). Similarly, the row concate-

nation, defined only when p = q, is given by A � B =

⎡
⎢⎢⎢⎢⎢⎣

a11 · · · a1p

.

.

.
. . .

.

.

.
am1 · · · amp

b11 · · · b1q
.
.
.

. . .
.
.
.

bn1 · · · bnq

⎤
⎥⎥⎥⎥⎥⎦. The empty

array acts as the identity for column and row catenation of arrays of arbitrary

dimensions. If A =

[
a11 · · · a1n

.

.

.
. . .

.

.

.
am1 · · · amn

]
, then the transpose of A is AT =

[
a11 · · · am1

.

.

.
. . .

.

.

.
a1n · · · amn

]
.

150 S. James Immanuel et al.

Given a picture A ∈ Σ∗∗ of size (m,n), we define Â as the picture of size
(m,n + 1) obtained by adjoining a special symbol # /∈ Σ to the right end of the
input array. |A|c is the number of columns in picture A and |A|r is the number
of rows in picture A. If every element in an m × n array is a, then we write this
array as an

m.

Definition 1. A Context-sensitive matrix grammar (CSMG) (Context-free
matrix grammar (CFMG), Right-linear matrix grammar (RLMG)) is defined
by a 7-tuple G = (Vh, Vv, ΣI , Σ, S,Rh, Rv), where: Vh is a finite set of horizon-
tal nonterminals; Vv is a finite set of vertical nonterminals; ΣI ⊆ Vv is a finite
set of intermediates; Σ is a finite set of terminals; S ∈ Vh is a starting symbol;
Rh is a finite set of horizontal context-sensitive (context-free, right-linear) rules;
Rv is a finite set of vertical right-linear rules.

There are two phases of derivation of the Siromoney Matrix Grammars. In
the first phase, a horizontal string of intermediate symbols is generated by means
of any type of Chomsky grammar rules in Rh. During the second phase treating
each intermediate as a start symbol, vertical generation of the actual picture is
done parallely, by applying Rv. Parallel application ensures that the terminating
rules are all applied simultaneously in every column and that the column grows
only in downward direction. The language generated by a CSMG (CFMG, RLG)
is called a CSML (CFML, RML). For more information, we can refer to [12].
We denote the family of Siromoney matrix languages by L(X), where X ∈
{CSML,CFML,RML}.

3 Two-Dimensional Input-Revolving Finite Automata

In this section we introduce the two-dimensional input-revolving finite automa-
ton and explain its working with an example.

Definition 2. A two-dimensional non-deterministic column revolving finite
automaton, a 2-NCRFA for short, is a 6-tuple M = (Q,Σ, δ,Δ, q0, F), where
Q is a finite set of states, Σ is an input alphabet, Q ∩ Σ = ∅, δ ⊆ Q × (Σ ∪
{λ,#}) × 2Q is the finite set of transition rules, # is a special symbol not in
Q∪Σ, Δ ⊆ Q× (Σ ∪{λ})×2Q is the finite set of column revolving rules, q0 ∈ Q
is the initial state, and F is the set of final states.

M is said to be λ-free if δ is a mapping from Q × (Σ ∪ {#}) to 2Q and Δ is
a mapping from Q × Σ to 2Q.

Members of δ,Δ are referred to as the rules of M and instead of (p, y, q) ∈ δ
(or Δ), we write py → q ∈ δ (or Δ). Based on the different interpretations
of the mapping Δ, we formally distinguish the different operations on the input
array and hence categorize various types of 2-NCRFA. For this, we consider

configurations of this automaton for some input array A =
X
uv
Z

, of size m × n

with X,Z, u, v ∈ Σ∗∗ , uv is 1×n array, to be of the form
X

uqv
Z

where q ∈ Q. This

Two-Dimensional Input-Revolving Automata 151

means that q is the current state of the finite control with tape head reading the
first element in v. (X,u) and (v, Z) are therefore the read and unread part of the
input array, respectively. The transition of a configuration to next configuration
can be induced by either δ or Δ.

1. Let a ∈ Σ ∪ {λ} and A =
X

uav
Z

be an m × n array in Σ∗∗ with |X|c =

|uav|c = |Z|c. If qa → p is in δ then,
X̂

uqav#
Ẑ

	M

X̂
uapv#

Ẑ

. These transitions

are called as the normal transitions. Let A =
X
u
Z

be a m×n array in Σ∗∗ with

|X|c = |u|c = |Z|c, u is a 1×n array. If q# → p is in δ then,
X̂
u q#
Ẑ

	M

X̂ ′
pu′#
Ẑ ′

,

where, X ′ =
X
u

,Z =
u′

Z ′ and u′ is a 1 × n array.

2. Column revolving operations are performed by applying the rules from Δ.

For a ∈ Σ ∪ {λ}, b ∈ Σ, a m × n array, A =
X1 X2 X3 X4

u a v b
Z1 Z2 Z3 Z4

in Σ∗∗ with

|X1|c = |u|c = |Z1|c, |X3|c = |v|c = |Z3|c, |X2|c = |Z2|c = |X4|c = |Z4|c = 1
and a rule qa → p in Δ,
(a) a left column-revolving transition is defined by

X1 X2 X3 X4 #
u q a v b #
Z1 Z2 Z3 Z4 #

	M

X1 X4 X2 X3 #
u q b a v #
Z1 Z4 Z2 Z3 #

(b) a right column-revolving transition is defined by

X1 X2 X3 X4 #
u q a v b #
Z1 Z2 Z3 Z4 #

	M

X1 X3 X4 X2 #
u q v b a #
Z1 Z3 Z4 Z2 #

(c) a circular column-interchanging transition is defined by

X1 X2 X3 X4 #
u q a v b #
Z1 Z2 Z3 Z4 #

	M

X1 X4 X3 X2 #
u q b v a #
Z1 Z4 Z3 Z2 #

If a = λ, then the column-revolving operation is carried out irrespective of
what symbol is being read by the finite state control. If ‘a’ is being read by the
state q at the end of some row of the input array then there is no column-
revolving involved and simply the state will be changed to p.

152 S. James Immanuel et al.

Whenever there is a choice between a normal transition or a column-revolving
transition, the next move is non-deterministically chosen by the automaton.
A deterministic 2-dimensional column revolving automaton, a 2-DCRFA for
short is defined in the same way as 2-NCRFA except that δ ⊆ Q×(Σ∪{λ,#})×
Q, Δ ⊆ Q × (Σ ∪ {λ}) × Q and for which there is at most one choice for any
possible configuration.

The reflexive transitive closure of 	M is denoted by, 	∗
M .

Based on the column-revolving operation involved, a 2-NCRFA is referred to
as two-dimensional non-deterministic left-column revolving (2-NLCRA), right
column-revolving (2-NRCRA) or circular column-interchanging finite automa-
ton (2-NCIRA). The corresponding deterministic variants are referred to
as 2-DLCRA, 2-DRCRA and 2-DCIRA. We can also consider bi-column-
revolving automaton, where both left column-revolving and right column-revolving
transitions are involved. We can formally define this two-dimensional non-
deterministic bi-column-revolving automaton or in short 2-NBCRA to be a 7-
tuple, M = (Q,Σ, δ,Δl,Δr, q0, F), where M = (Q,Σ, δ,Δl, q0, F) is a 2-NLCRA
and M = (Q,Σ, δ,Δr, q0, F) is a 2-NRCRA. Whenever we refer to an automa-
ton as two-dimensional input-revolving finite automaton it is either left column-
revolving, right column-revolving, bi-column-revolving or circular column inter-
changing.

We define the language accepted by a two-dimensional input-revolving finite
automaton M to be,

L(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A =

A1

...
Am

∈ Σ∗∗
∣∣∣∣∣

q0A1

...
Am

	∗
M

A1

...
Am

qλ

or simply

q0A1

...
Am

	∗
M q with q ∈ F

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

We denote the family of languages accepted by devices of type X by L(X).

Example 1. Let, M = ({q0, q1, q2}, {0, 1, 2}, δ,Δ, q0, {q0}) be a 2-DCRFA, where
δ = {q00 → q1, q11 → q2, q22 → q0, q0# → q0} and Δ = {q01 → q0, q02 →
q0, q10 → q1, q12 → q1, q20 → q2, q21 → q2}.

The automaton M accepts the following language regarded as either 2-
DLCRA or 2-DRCRA,

L(M) =

⎧⎪⎨
⎪⎩X =

X1

...
Xm

∈ {0, 1, 2}∗∗
∣∣∣∣∣ each Xi’s are of size 1 × n and
|Xi|0 = |Xi|1 = |Xi|2,∀ i = 1, 2, . . . ,m

⎫⎪⎬
⎪⎭

Working:
The automaton works on X̂ if X is given as the input array. Starting from

state q0 and the tape head on the first element of the first row in the input X,
the automaton M tries to read 0, 1 and 2 sequentially beginning with 0. It uses
the δ transitions to store the current missing symbol in its finite control in order
to search for it. Being in a search state, all non-matching symbol are column-
wise shifted by the transitions from Δ. If the automaton reads #, it means that

Two-Dimensional Input-Revolving Automata 153

a complete row is read. Now the automaton uses the rule q0# → q0 in δ and
moves to the first element of the very next row. This computational process is
repeated for the subsequent rows until the entire array is read. If after reading
the entire row, the automaton is in state q0, then the input array is accepted or
else it is rejected. Thus accepted array has equal number of 0s, 1s and 2s in each
of its rows.

Example 2. The language L = {(•nX•n)m | n,m > 0} is accepted by a 2-
DLCRA, M = (Q, {•,X}, δ,Δ, q0, {q4}), where Q = {q0, q1, q2, q3, q4, q5}, δ =
{q1• → q2, q2• → q0, q0X → q3, q3# → q4, q4• → q5, q5• → q4, q4X → q3} and

Δ = {q0• → q1}. The working of this automaton for an input array

• • X • •
• • X • •
• • X • •
• • X • •

is given as follows (Successive configurations are listed one below the other. The
configuration at the end of a column is succeeded by the configuration at the
top of the next column. The last configuration at the last column of this page is
succeeded by the first configuration on the first column of the next page):

q0 • • X • • #
• • X • • #
• • X • • #
• • X • • #

	
q1 • • • X • #

• • • X • #
• • • X • #
• • • X • #

	
• q2 • • X • #
• • • X • #
• • • X • #
• • • X • #

	
• • q0 • X • #
• • • X • #
• • • X • #
• • • X • #

	
• • q1 • • X #
• • • • X #
• • • • X #
• • • • X #

	

• • • q2 • X #
• • • • X #
• • • • X #
• • • • X #

	
• • • • q0 X #
• • • • X #
• • • • X #
• • • • X #

	
• • • • X q3 #
• • • • X #
• • • • X #
• • • • X #

	
• • • • X #

q4 • • • • X #
• • • • X #
• • • • X #

	
• • • • X #
• q5 • • • X #
• • • • X #
• • • • X #

	

• • • • X #
• • q4 • • X #
• • • • X #
• • • • X #

	
• • • • X #
• • • q5 • X #
• • • • X #
• • • • X #

	
• • • • X #
• • • • q4 X #
• • • • X #
• • • • X #

	
• • • • X #
• • • • X q3 #
• • • • X #
• • • • X #

	
• • • • X #
• • • • X #

q4 • • • • X #
• • • • X #

	

• • • • X #
• • • • X #
• q5 • • • X #
• • • • X #

	
• • • • X #
• • • • X #
• • q4 • • X #
• • • • X #

	
• • • • X #
• • • • X #
• • • q5 • X #
• • • • X #

	
• • • • X #
• • • • X #
• • • • q4 X #
• • • • X #

	
• • • • X #
• • • • X #
• • • • X q3 #
• • • • X #

	

154 S. James Immanuel et al.

• • • • X #
• • • • X #
• • • • X #

q4 • • • • X #

	
• • • • X #
• • • • X #
• • • • X #
• q5 • • • X #

	

• • • • X #
• • • • X #
• • • • X #
• • q4 • • X #

	
• • • • X #
• • • • X #
• • • • X #
• • • q5 • X #

	

• • • • X #
• • • • X #
• • • • X #
• • • • q4 X #

	
• • • • X #
• • • • X #
• • • • X #
• • • • X q3 #

	

q4

The definition of two-dimensional column revolving finite automaton allows
λ-transitions of both δ and Δ. The λ moves do not increase the computational
power of any such automaton. (It is so, because, for every non-deterministic
column-revolving automaton involving λ transitions in normal rules or column-
revolving rules, an equivalent λ-free non-deterministic column-revolving automa-
ton can be easily constructed (same for the deterministic variants)).

4 Comparison of the Variants

In this section we consider two-dimensional deterministic and non-deterministic
variants of the column-revolving finite automata in a detailed way. In particular,
we give the comparison among the different column-revolving rules and it turns
out that the non-deterministic variants are better than the deterministic ones.

Theorem 1. The language L = {(•nX•n)m | n,m > 0} is not accepted by any
2-NRCRA.

Proof. We assume that the language L is accepted by some 2-NRCRA, M =
(Q,Σ, δ,Δ, q0, F) with |Q| = t. Let us consider an array A with |A|c > 2t, which
is given as an input to the automaton M . The automaton begins its computation
starting from the first element of the first row. During its computation on the first
row some state, say p, appears at least twice, because of Pigeon Hole Principle.
Let us consider that the first appearance of state p is reached after i ordinary
moves and j right column-revolving moves with 0 ≤ j < t. Therefore we have,

q0 • •n−1 X •n #
(• •n−1 X •n #)m−1

	∗
M

•i p • •n−1−i−j X •n+j #
(•i • •n−1−i−j X •n+j #)m−1

Let us consider that the second appearance of state p is reached after k ordinary
moves and l right column-revolving moves with 1 ≤ l < t−j. Therefore we have,

•i p • •n−1−i−j X •n+j #
(•i • •n−1−i−j X •n+j #)m−1

	∗
M

•i+k p • •n−1−i−j−k−l X •n+j+l #
(•i+k • •n−1−i−j−k−l X •n+j+l #)m−1

Two-Dimensional Input-Revolving Automata 155

Since we have assumed that the array A is accepted, the computation reaches
an accepting state, say qf , such that,

•i+k p • •n−1−i−j−k−l X •n+j+l #
(•i+k • •n−1−i−j−k−l X •n+j+l #)m−1

	∗
M qf

When we consider the input array as A′ = (•n−k−lX•n+l)m, the automaton
accepts this input too,

q0 • •n−1−k−l X •n+l #
(• •n−1−k−l X •n+l #)m−1

	∗
M

•i p • •n−1−i−j−k−l X •n+j+l #
(•i • •n−1−i−j−k−l X •n+j+l #)m−1

	∗
M qf

But the array A′ is not a member of the language L. This is a contradiction to
the initial assumption. Hence the theorem is proved. �
Theorem 2. Let L = {{0, 1}∗∗|∃ at least one row in which number of 0s and 1s
are not equal}. This language is not accepted by any 2-DBCRA but is accepted
by some 2-NRCRA.

Proof. We first prove that the language L is not accepted by any 2-DBCRA,
by the method of contradiction. Let us assume that the language is accepted by
some 2-DBCRA, M = (Q,Σ, δ,Δ, q0, F) with |Q| = t. Let A = (0n12n−j0n)m
with n,m, j > 2, j < n, j �= 0 and n > t be the input given to the automaton.
Based on pigeon hole principle, there exists a state, say p, which appears at
least twice during the computation on first row. Let the first occurrence of state
p be reached after: i normal transition, l1 left column-revolving transition and
r1 right column-revolving transition,

q0 0 0n−1 12n−j 0n #
(0 0n−1 12n−j 0n #)m−1

	∗
M

0i p 0 0n−1−i+l1−r1 12n−j 0n−l1+r1 #
(0i 0 0n−1−i+l1−r1 12n−j 0n−l1+r1 #)m−1

Let the second occurrence of state p be reached after: j normal transition, l2 left
column-revolving transition and r2 right column-revolving transition.

0i p 0 0n−1−i+l1−r1 12n−j 0n−l1+r1 #
(0i 0 0n−1−i+l1−r1 12n−j 0n−l1+r1 #)m−1

	∗
M

0i+j p 0 0n−1−i−j+l1−r1+l2−r2 12n−j 0n−l1+r1−l2+r2 #
(0i+j 0 0n−1−i−j+l1−r1+l2−r2 12n−j 0n−l1+r1−l2+r2 #)m−1

Since the considered array A is in the language L, the computation reaches the
accepting state, say qf i.e.,

0i+j p 0 0n−1−i−j+l1−r1+l2−r2 12n−j 0n−l1+r1−l2+r2 #
(0i+j 0 0n−1−i−j+l1−r1+l2−r2 12n−j 0n−l1+r1−l2+r2 #)m−1

	∗
M qf

Let us now consider the input array A′ = (0n−j+l2−r212n−j0n−l2+r2)m. Due to
the deterministic behavior, the computation on the input array A′ is,

q0 0 0n−1−j+l2−r2 12n−j 0n−l2+r2 #
(0 0n−1−j+l2−r2 12n−j 0n−l2+r2 #)m−1

	∗
M

0i p 0 0n−1−i−j+l1−r1+l2−r2 12n−j 0n−l1+r1−l2+r2 #
(0i 0 0n−1−i−j+l1−r1+l2−r2 12n−j 0n−l1+r1−l2+r2 #)m−1

	∗
M qf

156 S. James Immanuel et al.

But this is a contradiction because A′ is not in L. Now we prove that there is a
2-NRCRA, M ′, that accepts the language L. M ′ works on each row by reading
a 0 and a 1 alternatively. This part is similar to the working of the automaton
considered in Example 1. The input array is rejected if M ′ finds that the numbers
are equal in each and every row. If there is at least one row in which the numbers
are not equal then M ′ accepts the input array. Also, during the computation on
each and every row, M ′ guesses whether there are only 0’s or 1’s remaining on
present row and if that is the case then it simply reads the remaining elements
on the row and the guess is verified. Hence, M ′ can accept the input array for
correct guess on at least one row or else reject it. Hence the proof. �
Theorem 3. There is a language L not accepted by any 2-NLCRA but accepted
by some 2-DRCRA.

Proof. To prove this theorem, we consider the following language L =
⎧
⎪⎪⎨

⎪⎪⎩

Y � X | Y = (0
n+1

1)m, X =

X1

.

.

.

Xm

, Xi ∈{0, 1}+
, n + |Xi|0 = 1 + |Xi|1, ∀ n,m ≥ 0, i = 1, . . . ,m

⎫
⎪⎪⎬

⎪⎪⎭

Let us assume that L is accepted by some 2-NLCRA, M = (Q,Σ, δ,Δ, q0, F)
with |Q| = t. Let us consider the array A = (0n+112n0n)m with n,m > 0 and
n > t to be the input given to the automaton. Based on assumption, there is
an accepting computation such that a state, say p appears at least twice during
the computation on first row. Let the first occurrence of state p be reached
after i normal transition and j left column-revolving transition and its second
appearance be reached after k normal transition and l left column-revolving
transition with 0 ≤ i, j, k, l ≤ n and k + l > 0. Hence we have,

q0 0 0n 12n 0n #
(0 0n 12n 0n #)m−1

	∗
M

0i p 0 0n−i+j 12n 0n−j #
(0i 0 0n−i+j 12n 0n−j #)m−1

	+
M

0i+k p 0 0n−i+j−k+l 12n 0n−j−l #
(0i+k 0 0n−i+j−k+l 12n 0n−j−l #)m−1

	∗
M qf

Let us consider the computation of M for the input array A′ =
(0n+1−k+l12n0n−l),

q0 0 0n−k+l 12n 0n−l #
(0 0n−k+l 12n 0n−l #)m−1

	∗
M

0i p 0 0n−i+j−k+l 12n 0n−j−l #
(0i 0 0n−i+j−k+l 12n 0n−j−l #)m−1

	∗
M qf

But this implies that A′ ∈ L. Since, n + l−k
2 + n − l = 2n − l+k

2 �= 2n implies
A′ /∈ L, we arrive at a contradiction.

The 2-DRCRA, M = ({q0, q1, q2, q3, q4}, {0, 1}, δ,Δ, q0, {q4}), where δ =
{q00 → q1, q11 → q2, q20 → q3, q31 → q2, q3# → q4, q40 → q3} and Δ = {q10 →
q1, q21 → q2, q30 → q3} accepts the language L.

Theorem 4. (i) The family L(2-DLCRA) is properly included in L(2-NLCRA)

(ii) The family L(2-DRCRA) is properly included in L(2-NRCRA)

Two-Dimensional Input-Revolving Automata 157

(iii) The family L(2-DBCRA) is properly included in L(2-NBCRA)
(iv) The family L(2-DRCRA) is properly included in L(2-DBCRA)
(v) The family L(2-NRCRA) is properly included in L(2-NBCRA)
(vi) The family L(2-DLCRA) is properly included in L(2-DBCRA)
(vii) The family L(2-NLCRA) is properly included in L(2-NBCRA)

Proof. All inclusions are trivial. From Theorem1, ∃ a language not accepted by
any 2-NRCRA and hence also by any 2-DRCRA. But, as seen in Example 2 it is
accepted by some 2-DLCRA and hence by some 2-DBCRA and 2-NBCRA. This
proves (iv) and (v). By Theorem2, ∃ a language not accepted by any 2-DBCRA
and hence by any 2-DLCRA, 2-DRCRA but is accepted by 2-NRCRA, and hence
by some 2-NBCRA. This proves (ii) and (iii). By Theorem3 ∃ a language not
accepted by any 2-NLCRA and hence by any 2-DLCRA but is accepted by some
2-DRCRA and hence by 2-DBCRA and 2-NBCRA. This proves (vi) and (vii).

To prove strict inclusion of (i), we consider the language L from Example 2.
Let L′ = L ∪ (L � L′′), where L′′ = {Ym � {•, Y }∗∗}. Clearly L′ is accepted by
some 2-NLCRA. But L′ is not accepted by any 2-DLCRA. We prove this by
contradiction. Let us assume that there is a 2-DLCRA, M = (Q,Σ, δ,Δ, q0, F)
with |Q| = t. We consider an input array A = (•2nX •2n Y n•2n)m ∈ L′ with
n > t. During the computation on the first row some state, say p ∈ Q appears
at least twice due to our choice of n, let the first appearance be after i normal
moves and j left column-revolving moves and the second appearance be after k
normal moves and l left column-revolving moves, with 0 ≤ i, j, k, l ≤ n, k+l > 0.
Since M is deterministic we have,

q0 • •2n−1 X •2n Y n •2n #
(• •2n−1 X •2n Y n •2n #)m−1

	∗
M

•i p • •2n−1−i+j X •2n Y n •2n−j #
(•i • •2n−1−i+j X •2n Y n •2n−j #)m−1

	+
M

•i+k p • •2n−1−i+j−k+l X •2n Y n •2n−j−l #
(•i+k • •2n−1−i+j−k+l X •2n Y n •2n−j−l #)m−1

	∗
M qf

We find that there exists an accepting configuration for the input array A′ =
(•2n−k+lX •2n Y n•2n−l)m such that,

q0 • •2n−1−k+l X •2n Y n •2n−l #
(• •2n−1−k+l X •2n Y n •2n−l #)m−1

	∗
M

•i p • •2n−1−i+j−k+l X •2n Y n •2n−j−l #
(•i • •2n−1−i+j−k+l X •2n Y n •2n−j−l #)m−1

	∗
M qf

But this implies that k = l. Since l + k > 0, we derive at l > 0. Since, M is
deterministic, the accepting computation for the input array A′′ = (•2nX•2n)m
is,

q0 • •2n−1 X •2n #
(• •2n−1 X •2n #)m−1

	∗
M

•i p • •2n−1−i+j X •2n−j #
(•i • •2n−1−i+j X •2n−j #)m−1

	+
M

•i+k p • •2n−1−i+j−k+l X •2n−j−l #
(•i+k • •2n−1−i+j−k+l X •2n−j−l #)m−1

	∗
M q′

f

158 S. James Immanuel et al.

where q′
f ∈ Q. We can also obtain an accepting configuration for the input array

A′′′ = (•2n−k+lX•2n−l)m as follows,

q0 • •2n−1−k+l X •2n−l #

(• •2n−1−k+l X •2n−l #)m−1
�∗
M

•i p • •2n−1−i+j−k+l X •2n−j−l #

(•i • •2n−1−i+j−k+l X •2n−j−l #)m−1
�∗
M q′

f

Since we have l = k and l > 0, the array A′′′ /∈ L′, which is a contradiction.
Hence this proves (i). �
Theorem 5. (i) The family L(2-DLCRA) is incomparable with L(2-DRCRA)
(ii) The family L(2-DLCRA) is incomparable with L(2-NRCRA)
(iii) The family L(2-NLCRA) is incomparable with L(2-NRCRA)
(iv) The family L(2-NLCRA) is incomparable with L(2-DRCRA)
(v) The family L(2-NLCRA) is incomparable with L(2-DBCRA)
(vi) The family L(2-NRCRA) is incomparable with L(2-DBCRA)

Proof. Follows from the proof of Theorem 4. �

5 Comparison with Siromoney Matrix Languages

In this section we give the comparison of the family of languages accepted by all
the variants of 2-NCRFA with the family of Siromoney matrix languages. Here
we consider RMLT to be the transposition of RML.

Theorem 6. L(RMLT) = L(2-DCIRA) = L(2-NCIRA)

Proof. The transposition of any regular matrix language is accepted by a return-
ing finite automaton (RFA), as can be seen in [3], which can be viewed as a 2-
DCIRA where Δ = ∅ and which is also a particular 2-NCIRA. Hence it remains
to prove that any 2-NCIRA accepts a regular matrix language.

While we consider a 2-NCIRA, during the application of Δ rules, the automa-
ton performs a circular-column-interchanging operation and it interchanges the
column of the currently read symbol of the input array with the last column. So,
once the last letter of the current reading row is known, a simulating automa-
ton can remember the current last symbol of the row in its finite control to act
correctly. Also we see that, initially the last symbol in the current row of the
input can be guessed and finally, it can also be verified. Thus during the accep-
tance of any input array it can be easily seen that every row as well as column
is regular. This simply corresponds with the definition of right-linear matrix
grammars, where the vertical string of intermediate symbols are generated by
using right-linear grammar rules followed by horizontal generation in parallel
using right-linear grammar rules, yielding the regular matrix language. Hence
any 2-NCIRA accepts a regular matrix language. �
Theorem 7. 1. L(2-NLCRA) and L(CFML) are incomparable.
2. L(2-NRCRA) and L(CFML) are incomparable.

Two-Dimensional Input-Revolving Automata 159

Proof. To Prove: L(2-NLCRA) − L(CFML) �= ∅ and L(2-NRCRA) − L(CFML)
�= ∅. Consider the language,

L =

⎧⎪⎨
⎪⎩X =

X1

...
Xm

∈ {0, 1, 2}∗∗
∣∣∣∣∣ each Xi’s are of size 1 × n and
|Xi|0 = |Xi|1 = |Xi|2,∀ i = 1, 2, . . . ,m

⎫⎪⎬
⎪⎭

This language can be generated by any 2-NLCRA and 2-NRCRA, as can be
seen in Example 1. But L /∈ LCFML. Hence, L(2-NLCRA) − LCFML �= ∅ and
L(2-NRCRA) − L(CFML) �= ∅.

To prove: L(CFML) − L(2-NLCRA) �= ∅ and L(CFML) − L(2-NRCRA)

�= ∅. Consider the language, L′ =

⎧⎨
⎩

Xm Y m X Y n Xn

(Xm •m X •n Xn)i
Xm Y m X Y n Xn

∣∣∣∣ n,m, i ≥ 1

⎫⎬
⎭. L′ ∈

L(CFML), as can be seen in [12], the vertical string of intermediate symbols can
be generated by using right-linear grammar rules followed vertical generation in
parallel using context-free grammar rules.

However, this language cannot be generated by any 2-NBCRA. We prove this
by the method of contradiction. Let us assume that the language is accepted by
some 2-NBCRA, M = (Q,Σ, δ,Δ, q0, F) with |Q| = t and no (useless) loops.

Let A =
Xn+1 Y n+1 X Y n Xn

(Xn+1 •n+1 X •n Xn)i
Xn+1 Y n+1 X Y n Xn

with n > 2, i > 0 and n > t be the input

given to the automaton. By the pigeon hole principle, there exists a state, say p
which appears at least twice during the computation on first row. Let the first
occurrence of state p be reached in r steps which involves j normal transition,
l1 left column-revolving transition and r1 right column-revolving transition,
q0 X Xn Y n+1 X Y n Xn #
(X Xn •n+1 X •n Xn #)i
X Xn Y n+1 X Y n Xn #

�∗
M

Xj p X Xn−j+l1−r1 Y n+1 X Y n Xn−l1+r1 #

(Xj X Xn−j+l1−r1 •n+1 X •n Xn−l1+r1 #)i
Xj X Xn−j+l1−r1 Y n+1 X Y n Xn−l1+r1 #

Let the second occurrence of state p be reached in s steps which involves k nor-
mal transition, l2 left column-revolving transition and r2 right column-revolving
transition,

Xj p X Xn−j+l1−r1 Y n+1 X Y n Xn−l1+r1 #
(Xj X Xn−j+l1−r1 •n+1 X •n Xn−l1+r1 #)i
Xj X Xn−j+l1−r1 Y n+1 X Y n Xn−l1+r1 #

	∗
M

Xj+k p X Xn−j−k+l1−r1+l2−r2 Y n+1 X Y n Xn−l1+r1−l2+r2 #
(Xj+k X Xn−j−k+l1−r1+l2−r2 •n+1 X •n Xn−l1+r1−l2+r2 #)i
Xj+k X Xn−j−k+l1−r1+l2−r2 Y n+1 X Y n Xn−l1+r1−l2−r2 #

Since the considered array A is in the language L, the computation reaches the
accepting state, say qf ∈ Q i.e.,

Xj+k p X Xn−j−k+l1−r1+l2−r2 Y n+1 X Y n Xn−l1+r1−l2+r2 #
(Xj+k X Xn−j−k+l1−r1+l2−r2 •n+1 X •n Xn−l1+r1−l2+r2 #)i
Xj+k X Xn−j−k+l1−r1+l2−r2 Y n+1 X Y n Xn−l1+r1−l2−r2 #

	∗
M qf

160 S. James Immanuel et al.

We find that l2 − r2 = 0. Otherwise, the computation

q0 X Xn−k+l2−r2 Y n+1 X Y n Xn−l2+r2 #
(X Xn−k+l2−r1 •n+1 X •n Xn−l2+r2 #)i

X Xn−j+l1−r1 Y n+1 X Y n Xn−l1+r1 #
	∗
M

Xj p X Xn−j−k+l1−r1+l2−r2 Y n+1 X Y n Xn−l1+r1−l2+r2 #
(Xj X Xn−j−k+l1−r1+l2−r2 •n+1 X •n Xn−l1+r1−l2+r2 #)i
Xj X Xn−j−k+l1−r1+l2−r2 Y n+1 X Y n Xn−l1+r1−l2−r2 #

	∗
M qf

accepts the array A′ =
Xn+1−k+l2−r2 Y n+1 X Y n Xn−l2+r2

(Xn+1−k+l2−r2 •n+1 X •n Xn−l2+r2)i
Xn+1−k+l2−r2 Y n+1 X Y n Xn−l2+r2

/∈ L′. For same

reason we also find that l2 − r2 − k = 0 which implies k = 0. But this is a
contradiction to our assumption because it follows either that r = s or M loops.
This implies L′ is not accepted by any 2-NBCRA and hence by any 2-NLCRA
and 2-NRCRA. Hence, L(CFML) − L(2-NLCRA) �= ∅ and L(CFML) − L(2-
NRCRA) �= ∅. �

6 Closure Properties

In this section we discuss the closure properties of the family of languages
accepted by any 2-DCIRA, 2-DLCRA, 2-DRCRA and 2-DBCRA.

Theorem 8. L(2-DCIRA) is closed under complementation and union.

Proof. From [14], RML is closed under complementation and union. By Theo-
rem 6, this theorem is proved. �
Theorem 9. L(2-DLCRA), L(2-DRCRA) and L(2-DBCRA) are not closed
under complementation.

Proof. Consider the language,

L =

⎧⎪⎨
⎪⎩X =

X1

...
Xm

∈ {0, 1}∗∗
∣∣∣∣∣ each Xi’s are of size 1 × n and
|Xi|0 = |Xi|1,∀ i = 1, 2, . . . , m

⎫⎪⎬
⎪⎭

By Theorem 2, the language L̄ = {{0, 1}∗∗|∃ at least one row in which no. of
0s and 1s are not equal} is not accepted by any 2-DBCRA and hence by any
2-DLCRA and 2-DRCRA. But by Example 1, we see that the language L is
accepted by some 2-DBCRA and hence by some 2-DLCRA and 2-DRCRA. �
Theorem 10. L(2-DLCRA), L(2-DRCRA) and L(2-DBCRA) are not closed
under union.

Two-Dimensional Input-Revolving Automata 161

Proof. Consider the languages,

L1 =

⎧⎪⎨
⎪⎩X =

X1

...
Xm

∈ {0, 1}∗∗
∣∣∣∣∣ each Xi’s are of size 1 × n and
|Xi|0 = |Xi|1,∀ i = 1, 2, . . . ,m

⎫⎪⎬
⎪⎭

and L2 = {0}∗∗. The language L1 can be accepted by a 2-DBCRA, as can be
seen in Example 1. L2 can be accepted by a 2-DBCRA, M = ({q0}, {0}, {q00 →
q0, q0# → q0}, ∅, ∅, q0, {q0}). By the same reasoning as in the proof of Theorem9
we can show that L1 ∪ L2 is not accepted by any 2-DBCRA and hence by any
2-DLCRA and 2-DRCRA. �
Theorem 11. L(2-DCIRA) is closed under column catenation, but not under
row catenation.

Proof. From [14], RML is closed under column catenation, but not under row
catenation. By Theorem 6, this theorem is proved. �
Theorem 12. L(2-DLCRA), L(2-DRCRA) and L(2-DBCRA) are neither
closed under column catenation nor row catenation.

Proof. Consider the languages, L1 =

⎧⎨
⎩

Xm Y m X
(Xm .m X)i
Xm Y m X

∣∣∣∣ m, i ≥ 1

⎫⎬
⎭ and L2 =

⎧⎨
⎩

Y n Xn

(.n Xn)i
Y n Xn

∣∣∣∣ n, i ≥ 1

⎫⎬
⎭. Both the languages L1 and L2 belong to L(2-DLCRA).

But the column catenation, L1 � L2 =

⎧⎨
⎩

Xm Y m X Y n Xn

(Xm .m X .n Xn)i
Xm Y m X Y n Xn

∣∣∣∣ n,m, i ≥ 1

⎫⎬
⎭

does not belong to L(2-DBCRA), as seen in proof of Theorem 7. This proves
that L(2-DLCRA) and L(2-DBCRA) are not closed under column catenation.

If we consider the language,

L3 =

⎧⎪⎨
⎪⎩X =

X1

...
Xm

∈ {0, 1}∗∗
∣∣∣∣∣ each Xi’s are of size 1 × n and
|Xi|0 = |Xi|1,∀ i = 1, 2, . . . ,m

⎫⎪⎬
⎪⎭

belonging to L(2-DLCRA) and also L(2-DRCRA), it is clear that L3 � L2

does not even belong to L(2-DBCRA), because the columns shuffling involved
during the simulation of the automaton accepting L2 makes the simulation of
the automaton accepting L3 impossible. This proves that L(2-DLCRA), L(2-
DRCRA) and L(2-DBCRA) is not closed under row catenation.

Now we consider the language,

L4 =

⎧⎪⎨
⎪⎩X =

2X1

...
2Xm

∈ {0, 1, 2}∗∗
∣∣∣∣∣ each Xi’s are of size 1 × n and
|Xi|0 = |Xi|1,∀ i = 1, 2, . . . ,m

⎫⎪⎬
⎪⎭

162 S. James Immanuel et al.

Clearly, the languages L3 and L4 belong to 2-DRCRA, but the language L1 � L2

does not belong to 2-DRCRA (can be proved by a similar argument as in
Theorem 1). Hence L(2-DRCRA) are not closed under column catenation.

Theorem 13. L(2-DCIRA) is closed under column Kleene star, but not under
row Kleene star.

Proof. The proof follows from Theorem 11. �
Theorem 14. L(2-DLCRA), L(2-DRCRA) and L(2-DBCRA) are neither
closed under column Kleene star nor row Kleene star.

Proof. The proof follows from Theorem 12. �
Theorem 15. L(2-DCRFA) is not closed under quarter turn and transpose.

Proof. For L(2-DCIRA) the properties are true, from [14] and Theorem 6.
Consider the language,

L(M) =

{
X =

X1

...
Xm

∈ {0, 1}∗∗
∣∣∣∣∣ Xi = ai1ai2 . . . ain

|Xi|0 = |Xi|1,∀ i = 1, 2, . . . , m

}
. This lan-

guage can be generated by some 2-DBCRA, and hence by some 2-DLCRA and
2-DRCRA as can be seen in Example 1. Let us represent the quarter turn of this
language by LQT and we have,

LQT =

{
X = Xm . . . X1 ∈ {0, 1}∗∗| Xi =

ai1

...
ain

, |Xi|0 = |Xi|1,∀ i = 1, 2, . . . ,m

}
.

This language cannot be generated by any 2-DCRFA, because no such automa-
ton can accept the input X from LQT with the condition |Xi|0 = |Xi|1,∀ i =
1, 2, . . . , k. This proves that L(2-DBCRA) is not closed under quarter turn.

Let us represent the transpose of the language L by LT and we have, LT ={
X = X1 . . . Xm ∈ {0, 1}∗∗|Xi =

ai1

...
ain

, |Xi|0 = |Xi|1,∀ i = 1, 2, . . . ,m

}
. By the

same argument as discussed for LQT , we see that there is no 2-DCRFA to accept
LT . This proves that L(2-DBCRA) is not closed under transpose. �
Theorem 16. L(2-DCRFA) is closed under half turn, reflection on rightmost
vertical and reflection on base.

Proof. For L(2-DCIRA) the property is true, from [14] and Theorem 6. We shall
give the proof for L(2-DRCRA) and reflection about the rightmost vertical,
proof being similar for the rest of the cases. Let M = (Q,Σ, δ,Δ, q0, F) be a 2-
DRCRA that accepts the language L = L(M). We now construct a 2-DRCRA,
M ′ that accepts the language obtained by taking reflection on the rightmost
vertical of L represented by LRB . M ′ = (Q ∪ {q′

0}, Σ, δ′,Δ, q′
0, F

′), where δ′ =
δ ∪ {q′

0 → q | p# → q ∈ δ} ∪ {p → q0 | p ∈ Q} ∪ {q → p | q ∈ F, p ∈ Q}
and F ′ = {q | q0 → q1, q1 → q2, . . . , qn−1 → qn, qn# → q ∈ δ′}. Clearly,
L(M ′) = LRB . �

Two-Dimensional Input-Revolving Automata 163

7 Application

One of the applications of this newly constructed automata is in the field of
steganography [6]. Steganography is the art and science of hiding information
by embedding messages within others. This hidden information can be plain text,
cipher text, or even images. Steganographic communications hide often in plain
sight, whereas encrypted communications in Cryptography are very obvious of
the fact that they are sending secrets.

Here we consider hiding text messages behind some pictures which can be
retrieved only by giving them as input in the newly constructed automata and
arriving at the final configuration. For example, let us consider the 2-DRCRA

automaton from Example 1 and an array
2 2 1 0 1 0
2 1 0 1 0 2
0 1 2 1 0 2

. Let
T � � S H I
I � � A S �
E S T E C R

be the

scrambled hidden message behind the array A. Now to get the proper hidden

message
� T H I S �
� I S � A �
S E C R E T

, the array A is given as the input to the automaton and

an accepting configuration has to be reached. The working of this automaton on
array A along with the hidden message is as follows:

q02 2 1 0 1 0 #
2 1 0 1 0 2 #
0 1 2 1 0 2 #

	∗

0 1 2 0 1 2 #
q01 0 2 2 0 1 #

1 0 0 2 2 1 #

	∗

1 2 2 1 0 0 #
0 1 2 0 1 2 #

q00 1 0 2 1 2 #

	∗

q0

I T H S � �
� I S A � �
R E C E S T

S � I � H T
A � � � S I
E S R T C E

� T I H S �
� I � S A �
S E R C E T

T H I S
I S A

S E C R E T

8 Conclusion

It is worth examining the decidability results (non-emptiness, membership,
finiteness, etc.) of these automata and explore their further applications in char-
acter recognition and floor designs. Construction of two-dimensional automaton
which involves both column-revolving and row-revolving can also be studied.

164 S. James Immanuel et al.

References

1. Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving deterministic
and nondeterministic finite automata. Inf. Comput. 207, 1140–1155 (2009)

2. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT 1967, 8th
Annual Symposium on Switching and Automata Theory, pp. 155–160 (1967)

3. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Scanning pictures the
boustrophedon way. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 202–216. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26145-4sps15

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Hei-
delberg (1997)

5. Kamala, K., Siromoney, R.: Array automata and operations on array languages.
Int. J. Comput. Appl. 4(1–4), 3–30 (1974)

6. Kipper, G.: Investigator’s Guide to Steganography. Auerbach Publications, Boca
Raton (2003)

7. Meduna, A.: Automata and Languages: Theory and Applications. Springer,
Heidelberg (2000)

8. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture
grammars. Inf. Comput. 209, 1246–1267 (2011)

9. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition.
Acadamic Press, Cambridge (1979)

10. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1(3), 229–
245 (1993)

11. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vols. 1–3.
Springer, Heidelberg (1997)

12. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Proc. 1, 284–307 (1972)

13. Siromoney, R.: Advances in array languages. In: Ehrig, H., Nagl, M., Rozenberg, G.,
Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 549–563. Springer,
Heidelberg (1987). doi:10.1007/3-540-18771-5 75

14. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Inf. Control 22, 447–470 (1973)

15. Siromoney, R., Subramanian, K.G., Rangarajan, K.: Parallel/sequential rectangu-
lar arrays with tables. Int. J. Comput. Math. 6A, 143–158 (1977)

16. Wang, P.S.P.: Array Grammars, Patterns and Recognizers. World Scientific Series
in Computer Science, vol. 18. World Scientific Publishing, Singapore (1989)

17. Wang, P.S.P.: Sequential/parallel matrix array languages. J. Cybern. 5, 19–36
(1975)

http://dx.doi.org/10.1007/978-3-319-26145-4sps15
http://dx.doi.org/10.1007/978-3-319-26145-4sps15
http://dx.doi.org/10.1007/3-540-18771-5_75

	Two-Dimensional Input-Revolving Automata
	1 Introduction
	2 Preliminaries
	3 Two-Dimensional Input-Revolving Finite Automata
	4 Comparison of the Variants
	5 Comparison with Siromoney Matrix Languages
	6 Closure Properties
	7 Application
	8 Conclusion
	References

