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Abstract
Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers 
cAMP and cGMP, thereby regulating multiple aspects of cardiac function. This 
highly diverse class of enzymes encoded by 21 genes encompasses 11 families 
which are not only responsible for the termination of cyclic nucleotide signal-
ling, but are also involved in the generation of dynamic microdomains of cAMP 
and cGMP controlling specific cell functions in response to various neurohor-
monal stimuli. In myocardium, the PDE3 and PDE4 families are predominant to 
degrade cAMP and thereby regulate cardiac excitation-contraction coupling. 
PDE3 inhibitors are positive inotropes and vasodilators in human, but their use is 
limited to acute heart failure and intermittent claudication. PDE5 is particularly 
important to degrade cGMP in vascular smooth muscle, and PDE5 inhibitors are 
used to treat erectile dysfunction and pulmonary hypertension. However, these 
drugs do not seem efficient in heart failure with preserved ejection fraction. 
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There is experimental evidence that these PDEs as well as other PDE families 
including PDE1, PDE2 and PDE9 may play important roles in cardiac diseases 
such as hypertrophy and heart failure. After a brief presentation of the cyclic 
nucleotide pathways in cardiac cells and the major characteristics of the PDE 
superfamily, this chapter will present their role in cyclic nucleotide compartmen-
tation and the current use of PDE inhibitors in cardiac diseases together with the 
recent research progresses that could lead to a better exploitation of the therapeu-
tic potential of these enzymes in the future.

Abbreviations

AC Adenylyl cyclases
AKAP A-kinase anchoring protein
ANP Atrial natriuretic peptide
BNP Brain natriuretic peptide
CaM Calmodulin
CaMKII Ca2+/calmodulin-dependent kinase II
cAMP Cyclic adenosine monophosphate
cGMP Cyclic guanosine monophosphate
CN Cyclic nucleotides
CNP C-type natriuretic peptide
ECC Excitation-contraction coupling
Epac Exchange protein directly activated by cAMP
ERK Extracellular signal-regulated kinase
FRET Förster resonance energy transfer
GAF cGMP-stimulated phosphodiesterases, Anabaena adenylyl cyclases, 

Fhla transcription factor
GC Guanylyl cyclase
HF Heart failure
ICER Inducible-cAMP early repressor
I/R Ischemia/reperfusion
KO Knockout
LTCC L-type Ca2+ channels
mAKAP Muscle AKAP
NO Nitric oxide
NOS NO synthase
PDE Cyclic nucleotide phosphodiesterase
pGC Particulate guanylyl cyclase
PGE Prostaglandin
PI3Kγ Phosphoinositide 3-kinase, γ isoform
PKA cAMP-dependent protein kinase
PKG cGMP-dependent protein kinase
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PLB Phospholamban
RyR2 Ryanodine receptor type 2
SERCA Sarco-endoplasmic reticulum Ca2+-ATPase
sGC Soluble guanylyl cyclase
SR Sarcoplasmic reticulum
TnI Troponin I
β-ARs β-adrenergic receptors

6.1  Introduction

The cyclic nucleotides (CN) cAMP and cGMP participate in the main regulations 
of cardiac function. They act as second messengers for sympathetic and parasym-
pathetic systems, nitric oxide (NO) and natriuretic peptides. CN may exert benefi-
cial or deleterious effects on the heart, depending on the strength and duration of 
the stimulation. Acute elevation of CN regulates cardiac excitation-contraction 
coupling (ECC). However, chronic elevation of cAMP contributes to the develop-
ment of cardiac hypertrophy and progression to heart failure (HF), while cGMP 
possesses anti-hypertrophic properties. The amplitude, duration and localization 
of CN responses are determined by the balance between synthesis of cAMP and 
cGMP by adenylyl and guanylyl cyclases, respectively, and degradation by cyclic 
nucleotide phosphodiesterases (PDEs). PDEs represent the main route to rapidly 
lower CN levels inside the cells and constitute a highly diverse superfamily of 
enzymes. Different enzymatic properties and localization of multiple PDE iso-
forms within the cell participate in CN compartmentation, which is critical to 
determine specific physiological responses (Conti et al. 2014; Steinberg and 
Brunton 2001). In addition, modification in the expression and activity of specific 
PDEs are observed in several cardiovascular diseases. Thus, the members of the 
PDE superfamily are well placed to be the targets for pharmacological interven-
tions in cardiovascular diseases. This is actually the case for a few of them, with 
PDE inhibitors being approved for the treatment of acute heart failure, erectile 
dysfunction, pulmonary hypertension and intermittent claudication. In the follow-
ing, we will present an overview of the roles of PDEs in cardiac muscle, the cur-
rent indication of PDE inhibitors in heart diseases and the recent research advances 
holding promises for future therapeutic developments in cardiovascular diseases.

6.2  CN Signalling in Cardiac Myocytes

In response to activation of Gs-coupled receptors, cAMP is produced by transmem-
brane adenylyl cyclases, which constitute the main source of cAMP in cardiac cells. 
Two types of guanylyl cyclases (GC) produce cGMP, the soluble GC (sGC) which 
is activated by NO, and particulate GCs (pGC) which constitute the receptors for 
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natriuretic peptides (ANP, BNP and CNP). Once synthesized, CN exert their effects 
by acting through a limited number of cellular effectors: for cAMP, these include 
the cAMP-dependent protein kinase (PKA), the cyclic nucleotide-gated (CNG) ion 
channels, the exchange proteins directly activated by cAMP (Epac) and the recently 
discovered Popeye domain-containing proteins (Schindler and Brand 2016). For 
cGMP, the main effector in heart is the cGMP-dependent protein kinase (PKG). 
Both nucleotides also bind directly to PDEs, not only at the catalytic site but also at 
allosteric sites, thereby modulating their activity.

During the fight or flight response, epinephrine and norepinephrine bind to 
β-adrenoceptors (β-ARs) in cardiomyocytes, leading to cAMP elevation and PKA 
activation. PKA phosphorylation of sarcolemmal L-type Ca2+ channels (LTCC), 
ryanodine receptors type 2 (RyR2), phospholamban (PLB, which controls the 
 activity of the Ca2+-ATPase from the sarcoplasmic reticulum, SERCA2) and tropo-
nin I (TnI) enhances the amplitude and kinetics of Ca2+ transients in cardiomyocytes 
(Fig. 6.1), underlying the classical positive inotropic and lusitropic effects of acute 
sympathetic stimulation. However, sustained stimulation of β-ARs, as what occurs 
during hypertension or chronic heart diseases, is detrimental to the heart as it favours 
maladaptive hypertrophic remodelling, apoptosis and arrhythmias. Along with 
PKA, Epac is activated by cAMP and may play an important role in this context. 
Epac activation triggers a signalling pathway involving the phosphatase calcineurin 
and Ca2+/calmodulin-dependent kinase II (CaMKII) to stimulate hypertrophic 
growth (Lezoualc’h et al. 2016). CaMKII activation, which can also result from 
PKA-dependent increases in Ca2+, also phosphorylates RyR2 and promotes a pro- 
arrhythmogenic sarcoplasmic reticulum (SR) Ca2+ leak which may ultimately lead 
to chamber dilatation and HF (Ruiz-Hurtado et al. 2012) (Fig. 6.1).

In the heart, cGMP is often viewed as the mirror of cAMP, opposing its effects 
on cardiac function. Indeed, cGMP can exert negative inotropic effects via PKG- 
mediated inhibition of the L-type Ca2+ current (Méry et al. 1991; Yang et al. 2007) 
and phosphorylation of TnI to decrease myofilament sensitivity to Ca2+ (Layland 
et al. 2005). In addition, cGMP can modulate cAMP levels through regulation of 
distinct PDEs (see below). One proposed mechanism by which cGMP-PKG signal-
ling exerts its anti-hypertrophic action is by inhibiting the calcineurin pathway (Tsai 
and Kass 2009) (Fig. 6.1).

6.3  Overview of the PDE Superfamily

Eleven PDE families that differ in their primary structure, catalytic properties and 
affinities for cAMP and/or cGMP, as well as in their mechanisms of regulation, are 
known in mammals (Fig. 6.2). Most PDE families are encoded by several genes, 
which together generate close to 100 different PDE isoforms by the use of different 
translation initiation sites and alternative mRNA splicing. Specific isoforms are des-
ignated according to a common nomenclature: PDE is followed by a family number 
(1–11), a capital letter indicating the gene (A, B, C or D) and a final number corre-
sponding to the splice variant. Some PDE families selectively hydrolyze cAMP 
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(PDE4, 7, 8), while others are specific for cGMP (PDE5, 6, 9). A third category, 
so-called dual PDEs, hydrolyzes both cAMP and cGMP (PDE1, 2, 3, 10, 11).

PDEs share a conserved catalytic domain (C-domain) showing approximately 
25–52% AA sequence identity but differ markedly in their regulatory N-domain 
(Fig. 6.2). N-domains contain diverse elements involved in enzyme dimerization, 
binding of regulatory small molecules, phosphorylation and localization. They are 
characteristic for each family and their variants. For instance, the unique distin-
guishing feature of the PDE1 family is the existence of two binding sites for the 
Ca2+-binding protein calmodulin (CaM) in the N-domain which are responsible for 
enzyme stimulation by Ca2+. Other important domains found in several PDE fami-
lies (PDE2, PDE5, PDE6, PDE10 and PDE11) are the so-called GAF domains (this 
acronym is based on the first letters of the three proteins in which they were first 
identified: G: cGMP-stimulated phosphodiesterases; A: Anabaena adenylyl cyclase; 
F: Fhla transcription factor) which are involved in enzyme dimerization and alloste-
ric regulation by cyclic nucleotides. In particular, in PDE2 and PDE5, cGMP-bind-
ing to their respective GAF domain stimulates enzymatic activity (Martins et al. 
1982; Rybalkin et al. 2003). In contrast to PDE2, PDE3 is inhibited by cGMP, by 
direct competition at the catalytic site. The N-domains of various PDEs contain 
phosphorylation sites for distinct kinases which modulate enzymatic activity. For 
instance, long isoforms of PDE4 are phosphorylated by PKA, leading to an increase 
in cAMP-hydrolytic activity (Sette and Conti 1996), whereas PKG phosphorylation 
of PDE5 increases cGMP-hydrolytic activity (Francis et al. 2011). Long isoforms of 
PDE4D have been largely studied in that respect and were shown to be phosphory-
lated by multiple other kinases, including in particular ERK2, ERK5 and CaMKII 
(Mika et al. 2015). N-domains are also important for intracellular localization, 
through specific regions that provide membrane association or protein-protein inter-
action. PDEs can associate with multiple protein partners including scaffold pro-
teins such as A-kinase anchoring proteins (AKAPs) or β-arrestin strategically 
located within the cells. Recently, an interaction between PDE8 and the regulatory 
subunit RIα of PKA was described which brings together regions spanning the 
phosphodiesterase active site and cAMP-binding sites of RIα to facilitate cAMP 
hydrolysis (Krishnamurthy et al. 2014). More detailed presentations of PDEs 
including their structure, regulation, physiological roles and pharmacology are 
available in several recent reviews (Conti and Beavo 2007; Francis et al. 2011; 
Keravis and Lugnier 2012; Maurice et al. 2014).

6.4  Role of PDEs in Cyclic Nucleotide Compartmentation

The notion of compartmentation arose from studies of cAMP signalling in the heart. 
Almost 40 years ago, Corbin and co-workers provided evidence that the two sub-
types of PKA, designated type I and type II, are differentially distributed in the heart: 
while PKA type I was found mostly in the soluble fraction, PKA type II was pre-
dominant in the particulate fraction (Corbin et al. 1977). It was shown subsequently 
by Brunton and colleagues that the classical positive inotropic effect of β-AR 
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stimulation was accompanied by an increase in cAMP and PKA in both fractions, 
whereas prostaglandin E1 (PGE1) stimulation increased cAMP and activated PKA 
only in the soluble fraction and was devoid of a positive inotropic effect (Buxton and 
Brunton 1983; Hayes et al. 1980). Two main conclusions were drawn from these 
experiments; the first was that cAMP generated by a given receptor does not activate 
all possible PKA molecules in the cell, and the second was that active PKA cannot 
phosphorylate all possible substrates (Steinberg and Brunton 2001). The discovery 
of AKAPs as scaffold proteins able to direct PKA to specific subcellular compart-
ments provided a mean to spatially restrict PKA activity (Dodge- Kafka et al. 2006; 
Wong and Scott 2004). A large number of PKA type II-specific AKAPs were shown 
to be associated with critical components of β-AR signalling, ECC or hypertrophic 
signalling in the heart (for review see (Diviani et al. 2011)). The role of AKAPs in 
defining the range of PKA action is further supported by recent provocative experi-
ments in HEK293 cells suggesting that when PKA is anchored to an AKAP, the cata-
lytic subunits of the kinase may not dissociate from the regulatory subunits upon 
hormonal stimulation (Smith et al. 2013). Yet, these sophisticated assemblies of 
cAMP signalling components would not be sufficient to ensure specificity if cAMP 
can diffuse uniformly and indistinctly activate all PKAs present in a given cell. The 
observation that a local β-AR stimulation is much more efficient at stimulating local 
than remote Ca2+ channels in frog cardiomyocytes provided evidence that cAMP dif-
fusion must be hindered. Importantly, global PDE inhibition with IBMX increased 
β-AR stimulation of the remote Ca2+ channels, implying that PDEs can act as a dif-
fusion barrier preventing cAMP diffusion (Jurevicius and Fischmeister 1996). More 
direct evidence of the existence of cAMP gradients and extended cAMP spreading 
upon PDE inhibition were subsequently obtained by expressing cyclic nucleotide-
gated channels or Förster resonance energy transfer (FRET) biosensors to measure 
cAMP in real time in mammalian cardiomyocytes (Leroy et al. 2008; Molina et al. 
2014; Mongillo et al. 2004; Nikolaev et al. 2006a, b; Nikolaev et al. 2010; Zaccolo 
and Pozzan 2002). Based on experiments performed in HEK293 cells, it was pro-
posed that differentially localized PDEs may function as local sinks that drain cAMP 
concentration in defined domains by locally degrading the second messenger (Terrin 
et al. 2006). The interaction of PDE4D isoforms with several AKAPs facilitating 
PKA-mediated activation of the PDE by PKA also suggest that cAMP can be con-
trolled locally, at the level of one macromolecular complex (Dodge et al. 2001; 
Terrenoire et al. 2009). Additional evidence that PDEs control local cAMP signals in 
cardiomyocytes come from studies showing that the contribution of the different 
PDEs to cAMP degradation depends on the type of Gs-coupled receptors generating 
the signal (Nikolaev et al. 2006a, b; Rochais et al. 2006; Xiang et al. 2005). These 
studies highlighted the predominant role of the PDE4 family in this control, and in 
neonatal cardiac myocytes, distinct PDE4 variants were shown to associate with and 
regulate the cAMP signals generated by β1-ARs versus β2-ARs (Baillie et al. 2003; 
De Arcangelis et al. 2009; Mika et al. 2014; Richter et al. 2008; Richter et al. 2013). 
The use of cAMP biosensors specifically targeted to distinct subcellular compart-
ments also suggests local cAMP degradation by distinct PDEs. For instance, target-
ing of FRET-based cAMP biosensors to the plasma membrane and the cytosol 
indicates a spatially restricted function of a specific PDE4 variant (PDE4B) to 
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regulation of subsarcolemmal cAMP generated by β1-ARs in neonatal cardiomyo-
cytes (Mika et al. 2014). Moreover, cAMP biosensors targeted to PKA type I and II 
compartments are differentially activated by distinct receptors and PDE inhibitors: 
while cell stimulation with PGE1 or PDE2 inhibition preferentially increase cAMP in 
the PKA type I compartment, stimulation with Iso or PDE4 inhibition preferentially 
increase cAMP in the PKA type II compartment (Di Benedetto et al. 2008). Activation 
of PKA type II correlates with phosphorylation of SR proteins such as PLB by Iso, 
whereas PGE1/E2 fails to phosphorylate PLB (Di Benedetto et al. 2008; Liu et al. 
2012). The use of a FRET-based PKA biosensor (AKAR) localized to the SR con-
firmed a lack of PKA activation in the SR upon PGE2 stimulation but also showed 
that PGE2 is able to blunt β-AR inotropic response by activating PDE4D and prevent-
ing cAMP generated by β-ARs at the membrane to diffuse and activate PKA at the 
SR (Liu et al. 2012). Inhibition of PDE4 or ablation of the PDE4D gene were also 
shown to enhance PKA activation in the nucleus following a short stimulation of 
β-ARs, suggesting that PDE4D also impedes the diffusion of cAMP from the plasma 
membrane to the nucleus (Haj Slimane et al. 2014).

While the works related above argue for a critical role of PDEs in cAMP 
 compartmentation, a number of modelling studies suggest that PDEs are not suffi-
cient to establish cAMP gradients if cAMP diffusion in the cell cytoplasm is as fast 
as in water (Feinstein et al. 2012; Iancu et al. 2007; Rich et al. 2001; Saucerman 
et al. 2014; Saucerman et al. 2006). Indeed, given their in vitro kinetics and esti-
mated concentration in cells, PDEs may not be able to metabolize cAMP fast 
enough to avoid its replacement by diffusion from surrounding areas. Yet, at least 
for PDE2, there is convincing evidence that upon activation of the enzyme by 
cGMP, hydrolysis of cAMP is fast enough to balance the hormonal stimulation of 
cAMP synthesis (Fischmeister and Hartzell 1987; Hartzell and Fischmeister 1986; 
Nikolaev et al. 2005). Also, it should be kept in mind that PDE activity can be 
enhanced during hormonal stimulation (Conti et al. 2014). Whereas several studies 
indicated fast diffusion rates for cAMP in neurons (Bacskai et al. 1993; Chen et al. 
1999; Nikolaev et al. 2004), recent investigations suggest that cAMP diffusion is 
markedly slower in adult cardiomyocytes (Agarwal et al. 2016; Richards et al. 
2016). The reasons for this are not entirely clear, but the above-mentioned recent 
studies propose an important role of the mitochondrial network, acting either as a 
physical barrier (Richards et al. 2016) or as a support for anchored PKA acting as a 
cAMP buffer system (Agarwal et al. 2016).

6.5  PDEs and Cyclic Nucleotide Compartmentation in Heart 
Failure

In the 1970s and 1980s, PDE3 inhibitors were discovered to exhibit cardiotonic, 
inotropic, bronchodilatory and vasodilatory activities in several species and were 
initially developed as cardiotonic agents to replace or add to cardiac glycosides in 
the treatment of HF (Movsesian et al. 2011). However, despite beneficial hemody-
namic effects on the short term, chronic use of PDE3 inhibitors were associated 
with increased cardiac arrhythmias and sudden death (Packer et al. 1991). Thus, the 
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use of PDE3 inhibitors is now limited to acute decompensated HF. Nevertheless, 
PDE3 inhibitors are targeting several functionally distinct isoforms which are co- 
expressed in the heart, raising the hope that more selective targeting might provide 
some benefits. PDE3 is encoded by two genes, PDE3A and PDE3B. Evidence from 
global PDE3A and PDE3B knockout (KO) mice indicates that PDE3A but not 
PDE3B is responsible for the inotropic and chronotropic effects of PDE3 inhibitors 
(Sun et al. 2007). Three isoforms of PDE3A are expressed in cardiomyocytes, 
which differ only in their N-terminal domain, giving rise to different intracellular 
localization (Wechsler et al. 2002). In mice and humans, PDE3A1 controls PLB- 
SERCA2 activity and Ca2+ re-uptake in the SR (Ahmad et al. 2015; Beca et al. 2013) 
(Fig. 6.1). Because dephosphorylated PLB and depressed SERCA2 activity are a 
hallmark of HF, PDE3 inhibitors targeting specifically the PDE3A1 associated with 
PLB-SERCA2 may improve contractile performance and provide therapy for HF 
(Movsesian 2015). However, currently available PDE3 inhibitors have little selec-
tivity for PDE3A versus PDE3B isoforms, whose catalytic domains are similar, and 
no selectivity for individual PDE3A isoforms, whose catalytic domains are identi-
cal. Phosphorylation of PDE3A1 was recently shown to regulate its interaction with 
SERCA2 (Ahmad et al. 2015). Targeting this mechanism may offer an alternative to 
selectively enhance contractility without the harmful effects of global inhibition of 
PDE3 activity.

The second major PDE involved in cAMP hydrolysis in the heart is the cAMP- 
specific PDE4. The PDE4 family is encoded by four genes (PDE4A-D). Most of our 
knowledge on the role of individual PDE4 subtypes in the heart is limited to 
PDE4D. Deletion of this gene in mice leads to PKA hyperphosphorylation of RyR2, 
increased sensitivity to exercise-induced arrhythmias and a late onset dilated cardio-
myopathy (Lehnart et al. 2005). PDE4D isoforms are localized in multiple compart-
ments of the cardiomyocyte. For instance, PDE4D3 is localized at the perinuclear 
region, where it is part of a macromolecular complex organized by the scaffold 
protein mAKAP and comprising Epac1 and the kinase ERK5 to regulate cardio-
myocyte hypertrophy (Dodge-Kafka et al. 2005). This isoform is also present at the 
sarcolemma, where it associates through another AKAP with slowly activating 
delayed rectifier potassium channels controlling cardiac repolarization (Terrenoire 
et al. 2009) and at myofilaments, in association with another scaffold protein, myo-
megalin (Verde et al. 2001). In addition, as indicated above, distinct PDE4D iso-
forms were shown to interact with β1-ARs and β2-ARs, either directly or indirectly 
through β-arrestin, and to shape specific physiological or pathophysiological 
responses (Baillie et al. 2003; Berthouze-Duquesnes et al. 2013; De Arcangelis 
et al. 2009; Richter et al. 2008; Richter et al. 2013). Finally, similarly to PDE3A, 
PDE4D also associates with the PLB/SERCA2 complex and regulates the SERCA 
pump activity in the mouse heart (Beca et al. 2011) (Fig. 6.1).

A role for PDE4B in the heart emerged recently when it was identified as an 
integral component of the LTCC complex and the main PDE regulating the LTCC 
current during β-AR stimulation (Fig. 6.1). PDE4B KO mice, as PDE4D KO, have 
an increased susceptibility to ventricular arrhythmias during catecholamine stimu-
lation which may be due to enhanced Ca2+ influx through LTCC (Leroy et al. 2011). 
Although RyR2 phosphorylation by PKA did not seem to be affected in adult hearts 
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from PDE4B KO mice (Leroy et al. 2011), a recent study indicates that it was 
increased in neonatal myocytes lacking PDE4B (Mika et al. 2014) suggesting that 
altered RyR2 regulation may also contribute to this arrhythmic phenotype. In a 
recent study in rat ventricular myocytes, we showed that under β-AR stimulation, 
inhibition of PDE4 (as well as inhibition of PDE3) exerted inotropic effects via 
PKA but led to spontaneous diastolic Ca2+ waves via both PKA and CaMKII, sug-
gesting the potential use of CaMKII inhibitors as adjuncts to PDE inhibition to limit 
their pro-arrhythmic effects (Bobin et al. 2016).

As stated above, phosphorylation of certain PDE3 and PDE4 isoforms by PKA 
activates these enzymes, and this constitutes a powerful negative feedback for 
cAMP signals in cardiomyocytes (Leroy et al. 2008; Rochais et al. 2004). This regu-
lation has been shown to be facilitated by spatial proximity of PKA and PDEs 
assembled by the perinuclear mAKAP (Dodge-Kafka et al. 2005) or by PI3Kγ, 
which in addition to its lipid kinase function also acts as an AKAP facilitating phos-
phorylation of PDE3B, PDE4A and PDE4B by PKA (Ghigo et al. 2012).

Although these studies underline the critical role of PDE4 in controlling β-AR 
stimulation in rodents, this family contributes less to the regulation of cardiac con-
tractility in humans, where PDE3 predominates (Molenaar et al. 2013). However, in 
human atrial strips, inhibition of PDE3, but also of PDE4, potentiates the arrhyth-
mogenic effect of β-AR stimulation, and PDE4 activity tends to decrease in the atria 
of patients with atrial fibrillation (Molina et al. 2012). A further understanding of 
the role of PDE4 in humans may also be important for the pro-arrhythmic effect of 
PDE3 inhibitors since PDE3 inhibitors such as milrinone and enoximone may also 
inhibit PDE4 in cardiac preparations (Bethke et al. 1992; Shakur et al. 2002).

In cardiac hypertrophy and HF, there are profound modifications in the major 
components of the cAMP pathway. These include a decreased density of β1-ARs, an 
uncoupling of β2-ARs from Gs, an increase in Gi and in the G protein-coupled recep-
tor kinase GRK2 and, in certain models, a decrease in adenylyl cyclase activity 
(Lohse et al. 2003). In a model of pathological hypertrophy induced by pressure 
overload in rats, we found that the expression and activity of PDE3A, PDE4A and 
PDE4B were decreased, and this was associated with a blunted regulation of subsar-
colemmal cAMP generated by β-ARs by PDE3 and PDE4 (Abi-Gerges et al. 2009). 
In contrast, in a model of cardiac hypertrophy induced by angiotensin II, an 
increased PDE4 activity was observed, accompanied by an increase in the 69-kDa- 
PDE4A isoform and a decrease in expression of 52- and 76-kDa PDE4D isoforms 
(Mokni et al. 2010). These results suggest that the level of expression of the iso-
forms of PDE3 and PDE4 is specifically regulated by the type of stimulus used to 
induce cardiac hypertrophy and the stage of the disease. Whereas an increase in 
cAMP-PDE can participate in desensitization of the β-AR pathway, a decrease 
could represent a compensatory mechanism to restore cAMP levels and inotropism. 
However, lower PDE activity also alters the degree of cAMP confinement, which 
could lead to illegitimate or excessive activation of certain pools of PKA or Epac, 
hence promoting maladaptive remodelling and rhythmic disturbances. This is sup-
ported by the results of a recent study showing that the specific PDE4D5 isoform 
regulates activation of hypertrophic programme by Epac1 upon stimulation of β2- 
AR (Berthouze-Duquesnes et al. 2013) receptors.
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HF is also accompanied by modifications of the microarchitecture of the myo-
cytes, including that of the T-tubular system, manifested as T-tubule loss or as reor-
ganization depending on the studies (Louch et al. 2010). These alterations in the 
T-tubular network not only affect the synchrony of Ca2+ release (Heinzel et al. 2002), 
but are also associated with modifications in the distribution of CN signalling com-
ponents and, therefore, CN compartmentation. In a rat model of HF, it was shown 
that β2-ARs redistribute from their normal T-tubular localization to the peripheral 
sarcolemma, leading to diffusive as opposed to constrained cAMP signals generated 
by these receptors (Nikolaev et al. 2010). In a more recent study, the local regulation 
of cAMP by PDEs in the vicinity of SERCA2 was compared in transgenic mice with 
cardiac-specific expression of a PLB-targeted cAMP biosensor, and modifications 
induced by transverse aortic constriction were analysed (Sprenger et al. 2015). In 
agreement with their known localization within the SERCA2 complex (Beca et al. 
2013; Beca et al. 2011), both PDE3 and PDE4 were found to regulate cAMP in this 
microdomain. Interestingly, during hypertrophy and early HF, there was a specific 
rearrangement of the PDEs regulating this specific cAMP pool, with a decreased 
contribution of PDE4 and an increased contribution of PDE2 (Sprenger et al. 2015). 
These results indicate that PDE alterations in cardiac disease include redistribution 
of PDE variants in discrete microcompartments of cardiomyocytes, as shown for 
PDE2 and PDE3 at the membrane (Perera et al. 2015).

The dual specific PDE2 represents a minor part of cAMP-hydrolytic activity in 
the normal heart, but the cAMP-hydrolytic activity of this PDE is stimulated 5 to 
30-fold by cGMP, and this was shown to inhibit cardiac LTCC in various species 
including humans (Fischmeister et al. 2005). Subsequently, measurements with 
FRET-based sensors in neonatal rat cardiomyocytes showed that by decreasing the 
level of cAMP, PDE2 counteracts the effects of a β-AR stimulation downstream of 
β3-ARs (Mongillo et al. 2005). In contrast to PDE3 and PDE4, which expression 
and activity are generally decreased in pathological hypertrophy and HF (Abi- 
Gerges et al. 2009; Ding et al. 2005; Osadchii 2007), we found recently that PDE2 
is increased in animal models as well as in human HF (Mehel et al. 2013). PDE2 
inhibition partially restores β-AR responsiveness in diseased cardiomyocytes, sug-
gesting that PDE2 enhancement in HF constitutes a protective mechanism against 
excessive β-AR stimulation. This hypothesis was confirmed in a more recent study 
using a transgenic mouse model with a cardiac-specific overexpression of PDE2 
(Vettel et al. 2016). Transgenic increase in PDE2 abundance in mice lowers heart 
rate but preserves cardiac output due to greater cardiac force. Increased PDE2 abun-
dance was found to be cardioprotective in vivo in acute catecholaminergic stress 
and after myocardial infarction without compromising contractile performance 
(Vettel et al. 2016). However, according to another recent study, PDE2 could exert 
a pro-hypertrophic effect by blunting PKA-mediated phosphorylation of NFAT 
(Zoccarato et al. 2015). Further studies are needed to fully understand the role of 
PDE2 in HF (Wagner et al. 2016; Zoccarato et al. 2016).

Similarly to PDE2, PDE1 and PDE5 were reported to be upregulated in patho-
logical hypertrophy and HF (Miller et al. 2009; Pokreisz et al. 2009; Vandeput et al. 
2007). Because PDE1 and PDE5 preferentially (PDE1A) or specifically (PDE5) 
degrade cGMP, their increase in HF can clearly be seen as maladaptive. Accordingly, 
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transgenic mice with cardiac-specific overexpression of PDE5 are predisposed to 
adverse remodelling after myocardial infarction (Pokreisz et al. 2009), whereas on 
the contrary, pharmacological inhibition of PDE1 (Miller et al. 2009) or PDE5 
(Takimoto et al. 2005) reduces hypertrophy and improves cardiac pressure and vol-
ume overload. Numerous animal studies have shown that PDE5 inhibitors protect 
against ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and 
diabetic cardiomyopathy, and Duchenne muscular dystrophy (Das et al. 2015). 
However, it remains controversial whether significant levels of PDE5 are expressed 
in the myocardium, raising the possibility that the beneficial effects of PDE5 inhibi-
tors involve other mechanisms including inhibition of PDE1 (Degen et al. 2015; 
Lukowski et al. 2014). In patients with systolic HF, sildenafil decreased pulmonary 
vascular pressure and increased peak oxygen consumption and cardiac index (Lewis 
et al. 2007). Sildenafil also improved left ventricular diastolic function, cardiac 
geometry and clinical status in patients with systolic HF (Guazzi et al. 2011) and 
improved diabetic cardiomyopathy (Giannetta et al. 2012). However, despite 
encouraging results in an initial mono-centre study (Guazzi et al. 2011), chronic 
therapy with sildenafil was not associated with clinical benefit in patients with dia-
stolic HF in a larger, multicentre study (Redfield et al. 2013). Ongoing trials with 
PDE5 inhibitors include testing for the gender response to tadalafil in left ventricu-
lar hypertrophy associated to diabetic cardiomyopathy (NCT01803828).

Two other PDEs were recently proposed to participate in cGMP degradation in 
the heart. Experiments performed in isolated cardiomyocytes from transgenic mice 
expressing a FRET-based cGMP biosensor have suggested that PDE3, which is 
classically known to degrade preferentially cAMP, may also be involved in the con-
trol of cGMP levels (Gotz et al. 2014). In addition, the cGMP-specific PDE9 was 
found to be expressed in rodent and human heart and to be upregulated in hypertro-
phy and HF (Lee et al. 2015). PDE9 genetic ablation or pharmacological inhibition 
appears to protect the heart against pathological remodelling during pressure over-
load. Moreover, PDE9 inhibition reverses pre-established heart disease in a NO 
synthase (NOS) activity-independent manner, whereas PDE5 inhibition requires 
active NOS, which is decreased in HF. This is because PDE9 seems to hydrolyze 
specifically cGMP generated by natriuretic peptides, whereas PDE5 controls cGMP 
generated by NO (Castro et al. 2006; Takimoto et al. 2007). We had shown previ-
ously that PDE2 is critical to regulate subsarcolemmal cGMP levels in response to 
pGC activation in adult cardiomyocytes (Castro et al. 2006), thus raising the ques-
tion of whether PDE2 and PDE9 exert a redundant or distinct regulation of natri-
uretic peptide signalling.

6.6  PDEs as Therapeutic Targets in Ischemia/Reperfusion 
Injury?

Manipulation of PDE activity may also prove protective in the context of ischemia/
reperfusion (I/R) injury. Indeed, PDE5 inhibitors were shown to reduce infarct size 
in rabbits and mice. They also decreased cell death in isolated cardiomyocytes, sug-
gesting that part of this effect is independent of vasodilation. Several mechanisms 
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appear to be involved in these effects, including increased NO synthase expression, 
cGMP elevation, PKG activation and opening of mitochondrial KATP and Ca2+-
activated K+ channels (Das et al. 2015). PDE3 inhibitors have also been reported to 
reduce infarct size when applied before sustained ischemia, thus mimicking the 
cardioprotection conferred by ischemic preconditioning (Fukasawa et al. 2008; 
Sanada et al. 2001; Tosaka et al. 2007). A recent study using KO mice for either 
PDE3A or PDE3B strongly suggests that PDE3B is the isoform mediating the car-
dioprotective effect of PDE3 inhibitors in this context. Indeed, PDE3B KO mice, 
but not PDE3A KO mice, were protected against ischemia/reperfusion injury. This 
protective effect appears to involve cAMP/PKA-mediated opening of mitochondrial 
Ca2+-activated K+ channels and assembly of ischemia-induced caveolin-3-enriched 
fractions (Chung et al. 2015). Somehow at odds with the above-mentioned cardio-
protective effect of PDE3 inhibitors, mice with cardiac-specific overexpression of 
PDE3A1 were protected during ischemia/reperfusion injury (Oikawa et al. 2013). 
In addition to regulating SERCA2, PDE3A1 also acts as a negative regulator of 
cardiomyocyte apoptosis, by controlling the expression of the transcriptional repres-
sor and pro-apoptotic factor, ICER (inducible- cAMP early repressor) (Yan et al. 
2007). Inhibition of this mechanism in mice with cardiac-specific overexpression of 
PDE3A1 was associated with protection during ischemia/reperfusion (Oikawa et al. 
2013). Collectively, these studies suggest that PDE3A and PDE3B may play an oppo-
site role during ischemia/reperfusion, which may be linked to their differential local-
ization and the control of discrete cAMP pools in cardiomyocytes (Chung et al. 2015).

6.7  Concluding Remarks

Soon after the discovery of cAMP and cGMP by Sutherland and colleagues more 
than 50 years ago, an enzymatic activity that could degrade these second messen-
gers was described (Sutherland and Rall 1958). Since then, the large diversity and 
complexity of the PDE superfamily have been unveiled, and the critical role of these 
enzymes in the cardiovascular system demonstrated. After several disappointments 
in the development of PDE3 and PDE4 inhibitors due to their adverse effects (mor-
tality and emesis, respectively), the success in PDE5 inhibitors to treat erectile dys-
function associated with an increasing understanding of PDE biology has raised 
new hopes that manipulating PDE activity with greater specificity is possible and 
should yield therapeutic benefits. However, the targeting of individual PDE iso-
forms located in distinct subcellular compartments to regulate local cAMP and/or 
cGMP concentrations and a specific cell function is challenging. Knowledge of the 
protein partners and of the molecular mechanisms that govern this specific localiza-
tion allows to envisage the displacement of specific PDE pools by small molecules 
or peptides that disrupt protein-protein interaction, with potentially fewer adverse 
effects than global inhibition of an entire PDE family. Recent examples of such 
strategy include the disruption of PDE4 from heat shock protein 20 (HSP20) in 
cardiomyocytes, resulting in hyperphosphorylation of HSP20 and attenuated car-
diac hypertrophic growth (Martin et al. 2014; Sin et al. 2011), and the disruption of 
Epac1-PDE3B and Epac1-PDE4D complexes involved in the control of endothelial 
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cell adhesion, spreading and permeability (Rampersad et al. 2010; Wilson et al. 
2011). Another interesting strategy is the development of allosteric inhibitors of 
PDEs, for instance, targeting the GAF domain of PDE5 to block enzyme activation 
but not its basal activity (Schultz et al. 2011) or exploiting sequence differences 
outside the active site to reach isoform selectivity in the case of PDE4B and PDE4D 
(Burgin et al. 2010; Fox et al. 2014). The allosteric mode of regulation could also 
allow the discovery of small molecules acting as activators of specific PDEs, which 
may actually be useful in correcting the detrimental effects of excessive β-AR stim-
ulation observed in HF.
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