
Chapter 5
Modeling Physical and Biogeochemical
Controls on Dissolved Oxygen
in Chesapeake Bay: Lessons Learned
from Simple and Complex Approaches
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Dominic M. Di Toro and W. Michael Kemp

Abstract We compared multiple modeling approaches in Chesapeake Bay to
understand the processes controlling dissolved oxygen (O2) cycling and compare
the advantages and disadvantages of the different models. Three numerical models
were compared, including: (1) a 23-compartment biogeochemical model coupled to
a regional scale, salt- and water-balance box model, (2) a simplified, four-term
model formulation of O2 uptake and consumption coupled to a 3D-hydrodynamic
model, and (3) a 23-compartment biogeochemical model coupled to a
3D-hydrodynamic model. All three models reproduced reasonable spatial and
temporal patterns of dissolved O2, leading us to conclude that the model scale and
approach one chooses to apply depends on the scientific questions motivating the
study. From this analysis, we conclude the following: (1) Models of varying spatial
and temporal scales and process resolution have a role in the scientific process.
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(2) There is still much room for improvement in our ability to simulate dissolved O2

dynamics in coastal ecosystems. (3) An ever-increasing diversity of models, three
of which are presented here, will vastly improve our ability to discern physical
versus biogeochemical controls on O2 and hypoxia in coastal ecosystems.

Keywords Physical modeling ⋅ Biogeochemical modeling ⋅ Dissolved oxygen ⋅
Hypoxia ⋅ Coastal ecosystems ⋅ Chesapeake Bay

5.1 Introduction

Depleted dissolved oxygen (O2) conditions have been a feature of Chesapeake Bay
for at least the past nine decades (Newcombe and Horne 1938) and reflect both the
Bay’s high-productivity and the physical isolation of bottom waters from the
atmosphere. Although Chesapeake Bay may be naturally susceptible to hypoxia
development, analyses of long-term data indicate that summer hypoxic and anoxic
water volumes have increased over the past several decades (Hagy et al. 2004) in
response to some combination of elevated nutrient loading and large-scale climatic
changes (Scully 2010a; Murphy et al. 2011). Because hypoxic conditions have
many negative consequences for living resources and restrict habitat availability
(Brady and Targett 2013; Buchheister et al. 2013), there is a strong emphasis in the
management of this system to alleviate low-O2 conditions in the Bay through
nutrient input reductions within the watershed (Boesch et al. 2001).

Our understanding of O2 dynamics in coastal ecosystems like Chesapeake Bay is
complicated by the fact that O2 is controlled by a diverse suite of physical and
biogeochemical processes. Some of these processes covary or are linked (e.g.,
freshwater and nutrient inputs), and each has its own dominant time and space scales.
Elevated freshwater input, for example, delivers inorganic nutrients that fuel phy-
toplankton production in seaward Bay regions, but also delivers inorganic particles
that limit light availability in landward regions and may cause advection of phyto-
plankton biomass downstream, away from landward regions (e.g., Miller and
Harding 2007). Freshwater input is also associated with elevated stratification during
summer that reduces vertical diffusion of O2 (Boicourt 1992), yet elevated freshwater
flow also leads to higher landward advection in bottom water (Li et al. 2015), which
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may deliver O2-rich water but also may transport relatively labile organic material
(Kemp et al. 1997). Wind stress may lead to three-dimensional (e.g., along- and
cross-channel) circulation features that physically replenish deep-water O2 (Scully
2010b). Prevailing northward winds (up-estuary) in summer, for example, can reduce
the along-channel exchange flow and the associated landward O2 flux in the deep
water, but strengthen the cross-channel circulation that exchanges O2-poor water
with overlying O2-rich water (Scully 2010b; Li et al. 2015), and vice versa. The wind
could also mix nutrient-rich water into surface layers and fuel elevated phytoplankton
production (Malone et al. 1986; Li et al. 2009) that will drive additional O2 depletion
in the following months. Observing the biogeochemical response to these dynamics
directly would involve near-continuous measurements of phytoplankton production
and respiration, concentrations of O2, organic carbon and key nutrients, current
velocities, stratification, and other meteorological and hydrological variables (e.g.,
wind speed) over multiple seasons. Considering the impractical and high-cost nature
of such efforts, numerical models can be used as tools to understand the response of
O2 to external forcing in a way that cannot reasonably be accomplished using
observational studies alone.

Accordingly, much effort has been invested in building models to simulate O2

dynamics on several time and space scales. Models encompassing a wide range of
hydrodynamic resolution, biogeochemical complexity, and temporal scope have
been applied in numerous ecosystems (Oguz et al. 2000; Justíc et al. 2007; Fennel
et al. 2013; Hamidi et al. 2015), including Chesapeake Bay (Xu and Hood 2006;
Liu and Scavia 2010; Scully 2010b; Brown et al. 2013; Cerco and Noel 2013; Lee
et al. 2013; Feng et al. 2015) and the Great Lakes (Rucinski et al. 2010; Hamidi
et al. 2015). Statistical models are often used to infer the major drivers of O2

depletion and to guide management actions (e.g., nutrient load reductions) that
alleviate low-O2 zones, while coupled biophysical models (e.g., the three models
presented in this chapter) are used to understand ecosystem interactions and feed-
backs, where O2 is one of many biogeochemically linked model variables. While
multiple coupled, hydrodynamic−biogeochemical models currently exist for Che-
sapeake Bay (Xu and Hood 2006; Li et al. 2009; Cerco and Noel 2013), few studies
have compared multiple models to emphasize their utility in answering different
scientific and management questions (Irby et al. 2016).

In this chapter, we describe three modeling packages that include both simplified
and complex biogeochemical and hydrodynamic configurations. Our objectives are
to compare and contrast these models to illustrate the different types of simulations
that investigators can use to answer key scientific questions. We also aim to assess
quantitatively how well the applied models reproduce observations of dissolved O2

in Chesapeake Bay, discuss their respective limitations, and suggest where and how
the models might be utilized in future studies based on their spatio-temporal
dimensions and levels of biogeochemical and hydrodynamic complexity.
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5.2 Methods and Approach

High-resolution, coupled hydrodynamic–biogeochemical ocean models are valued
for their ability to accurately represent physical and biogeochemical process in
coastal ecosystems, especially with increasingly affordable computing power. Less
spatially resolved models (regional scale) are still useful for research needs, as they
can be executed quickly (minutes), represent biogeochemistry at the scales where it
has been predominantly measured (regionally and seasonally), and can be used to
compute simple and unambiguous budgets of key variables. In this chapter, we
describe and analyze three different numerical models, including: (1) a course-scale
mass-balance transport model (“box model”) coupled to a water column and sedi-
ment model with detailed simulations of biogeochemical processes (Row-Column
Aesop, or RCA); (2) a 3D, hydrodynamic model using the Regional OceanModeling
System (ROMS) coupled to a simple, four-term O2 biogeochemistry model; and
(3) the ROMS coupled to a multi-compartment, water column and sediment bio-
geochemical process model (RCA).

5.2.1 Box Model with Biogeochemistry (BM-RCA)

A coarse spatial-scale model was developed for Chesapeake Bay, using a water
column and sediment biogeochemical model and physical transport calculated
using a salt- and water-balance model (box model, or BM). The spatial domain of
this model includes 17 control volumes of water (9 surface-layer “boxes”, 8
bottom-layer “boxes”; Figs. 5.1 and 5.2), whose vertical separation is based on
mean-pycnocline depths for each region (Hagy 2002). The box model solves a
series of linear algebraic equations to compute advective and non-advective
exchanges between control volumes based upon freshwater inputs and salt distri-
butions, and given the small number of regions (17), the computation requires
minimal computing resources. The biogeochemical model (Row-Column Aesop, or
RCA) was developed by HydroQual, Inc. and has been applied in many coastal
ecosystems (e.g., Long Island Sound, Massachusetts Bay). RCA is the most recent
extension of the family of water quality models that originated from the Water
Quality Analysis Simulation Program (WASP) used by the United States Envi-
ronmental Protection Agency (Di Toro et al. 1983). The model allows for up to
three phytoplankton groups, as well as water column state variables representing the
following; (1) particulate and dissolved organic carbon, nitrogen and phosphorus,
(2) dissolved inorganic nitrogen, phosphorus, and silica, (3) biogenic particulate
silica, and (4) O2 (Fig. 5.3). RCA also includes a state variable that represents O2

equivalents associated with sulfide and methane released at the sediment-water
interface. Nitrification and denitrification are modeled in both the water column and
sediments, where RCA includes a sediment biogeochemical model, which has
two layers that represent the near-surface aerobic and underlying anaerobic
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Fig. 5.2 Diagram of salt- and water-balance (box) model for Chesapeake Bay, including relevant
freshwater inputs, transport coefficients (Q, Q’, E), box identifiers, and key tributary estuaries. In
Box 5–9, Δs represents salt exchanges between the boxes and adjacent, connected tributaries.
Diagram adapted from Hagy (2002). An aerial view of this model is included in Fig. 5.1
(right panel)
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environments and simulates the cycling of carbon, O2, nitrogen, phosphorus, silica,
and sulfur. The sediment model predicts sediment-water fluxes of dissolved O2,
nitrate, ammonium, phosphate, dissolved methane, and sulfide, where the latter two
constituents contribute to the water column state variable called “oxygen equiva-
lents” that acts as a reservoir for non-nitrogen reduced solutes that contribute to O2

demand. Sulfide is produced via sulfate reduction in the sediment model, where it is
subsequently stored temporarily in particulate form as iron monosulfide (Cornwell
and Sampou 1995), oxidized in the sediment (contributing to sediment O2 demand),
or released to the overlying water. A more extensive description of the RCA
modeling package is found elsewhere (Testa et al. 2013, 2014; Xue et al. 2014).
Model simulations were run on a 6-h time step over the years 1986–2006.

The key advantages of the BM-RCA approach are that it can be executed rapidly
on a personal computer (20 years in ∼5 min for the 17 regions) and that it captures
regional patterns of O2, carbon, and nutrient dynamics, which can be validated
using available monitoring data and rate-process measurements. Its short run times
make it amenable to sensitivity analysis and scenario experiments and allow it to be
implemented by a wide range of users (e.g., resource managers) who may not have
access to advanced computational resources. Because of its well-defined boundaries
and relatively few transport terms, the model output is easily post-processed to
provide regional and seasonal mass-balance budgets of key variables. The disad-
vantages of this modeling approach include its inability to capture lateral and
vertical variability in physical and biogeochemical processes, as well as the patchy
spatial patterns in plankton productivity and biomass. In particular, short temporal-
and spatial-scale physical dynamics in response to wind and tidal forcing cannot be
adequately represented in this model, and these processes are known to be
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important in Chesapeake Bay and other coastal ecosystems (Li and Zhong 2009;
Scully 2010a).

5.2.2 Hydrodynamic 3D Model with Simple Oxygen
(ROMS-SDO)

The second model in this analysis (ROMS-sDO) is a simple, empirical O2 model
implemented in a relatively high-resolution hydrodynamic model (the Regional
Ocean Modeling System; ROMS). This model was motivated by the need to
capture the key seasonal patterns in biogeochemical O2 uptake so that experiments
related to the effects of altered hydrodynamic variability due to wind stress, tidal
mixing, and freshwater inflow can be achieved. This approach is designed to take
into account the strong seasonal variation of both uptake and production in the
water column (Fig. 5.3). Based on observed measurements of sediment O2 demand
(SOD), water column respiration (WCR), and phytoplankton community production
(PhP), the approach empirically relates these processes to the state variables (e.g.,
O2 concentration, ambient water temperature T), and/or environment forcing (e.g.,
photosynthetically available radiation PAR), allowing for O2 consumption/
production to vary with space (horizontal and vertical) and time to the first order
(see details in Li et al. 2015).

SOD=9.90× 1.7845T ̸10oC ×
O2

Ox+59mmolO2 m− 3

� �

PhP=31.25 × ð1.0101+ 0.0314PAR+0.1966TÞ
WCR=3.3 × e0.0715T

ROMS has been implemented in Chesapeake Bay and validated against a wide
range of observational data and has demonstrated considerable capability in repro-
ducing estuarine dynamics at tidal, synoptic, and seasonal time-scales (Li et al.
2005). We use an application of this model with a 160 × 240 grid in the horizontal
direction (about 500 m grid size) for ROMS-sDO and a grid 80 × 120 grid in the
horizontal direction (about ∼1 km grid size) for ROMS-RCA (Sect. 6.2.3). Both
ROMS-sDO and ROMS-RCA include 20 layers in the vertical dimension (Fig. 5.1).
The open ocean boundary consists of 10 constituents (M2, S2, N2, K2, K1, O1, P1,
Q1, Mf, and Mm) for tidal forcing, de-tided observations for non-tidal water ele-
vations, and monthly climatology for salinity and temperature. In order to provide
the hindcasts of hydrodynamic fields, the model is forced by daily river discharge
along with zero salinity and seasonal water temperature, and by winds, net short-
wave and downward longwave radiation along with air temperature, relative
humidity, and pressure. Surface water temperature was nudged to the observed SST
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field. Further details of the application of ROMS in Chesapeake Bay are described
elsewhere (e.g., Li et al. 2005).

The ROMS-sDO approach is advantageous because it uses reasonable, but
computationally meager representations of biogeochemical O2 production and
uptake to allow high temporal- and spatial-scale simulations of O2 dynamics in
coastal ecosystems. The disadvantages of this approach include the fact that the
empirical O2 uptake formulations generally cannot capture spatial and interannual
variability related to nutrient loading and availability (i.e., eutrophication) and do
not capture biogeochemical feedbacks, which limit the model’s ability to be run for
realistic multi-year experiments. Thus, we display the viability of this approach in
reproducing seasonal O2 dynamics, focusing ROMS-sDO simulations to a single
year (1989) when many of the observations used to build the empirical models were
made.

5.2.3 Hydrodynamic 3D Model with Biogeochemistry
(ROMS-RCA)

The most complex model formulation we present in this chapter is a “soft-coupling”
of ROMS to the multi-compartment, dynamic biogeochemical model RCA (as
described above). The term “soft-coupling” represents the fact that ROMS hydro-
dynamic model simulations were performed first, where the output was saved and
subsequently used to provide hydrodynamic fields (e.g., current velocity) to drive
RCA simulations. This model includes high spatial and temporal resolution sim-
ulations of a wide range of hydrodynamic and biogeochemical processes. Hourly
averages of ROMS temperature, salinity, and transport terms are used to force RCA
along with external loads of nutrients and organic carbon based on daily freshwater
inputs and monthly fortnightly nutrient concentrations (Fig. 5.1). RCA is simulated
on a 10-min time step, and we utilized a multitude of available monitoring data to
characterize boundary and initial conditions, as well as external flows and loadings
(Testa et al. 2014; Li et al. 2016).

The key advantages of this model are that it simulates high-resolution spatial and
temporal dynamics of biogeochemical and physical processes, such that even with
changing nutrient loading and climatic conditions, the model can be run to repro-
duce reasonable estuarine dynamics over many years. This allows for experiments
with altered nutrient loading, freshwater input, and wind stress to be conducted that
result in improved understanding of myriad estuarine processes over multiple time
and space scales. The disadvantages of this approach include high computational
costs and the simulation of physical and biogeochemical processes at scales (e.g.,
daily, ∼1 km) that are difficult to validate given limited spatial and temporal scales
of observational data.
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5.2.4 Calibration and Validation Datasets

All models require validation to ensure their ability to accurately reproduce the
processes and state variables that are intended to be understood and simulated.
Although many models are validated against state variables, including concentra-
tions of nutrients, O2, carbon, and phytoplankton biomass (chlorophyll-a), it is
equally important to validate these models against rate processes, such as plankton
community photosynthesis and respiration rates, organic matter decay rates, and
nutrient transformation and sediment-water exchange rates. Validation of both
“state” and “rate” observations allow one to determine that the model is predicting
concentrations based on appropriate transformation rates, as opposed to situations
where the model accurately simulates “state” concentrations generated by com-
pensating but inaccurate rate processes (e.g., offsetting errors). For Chesapeake
Bay, we were able to calibrate and validate model behavior for diverse variables
and process for which a wide range of data exist across time and space scales.
Validations of the water column state variables (e.g., chlorophyll-a or chl-a, dis-
solved and particulate nutrients, dissolved and particulate organic carbon, etc.) were
performed using fortnightly monthly observations of these variables at several
depths and stations within Chesapeake Bay (http://www.chesapeakebay.net/data).
In addition, rates of water column respiration were compared to measurements of
O2-uptake in dark bottles at several stations (Sampou and Kemp 1994; Smith and
Kemp 1995), while rates of photic-layer net primary production were validated with
observations based on O2 incubations and empirical model computations based on
14C uptake measurements (Smith and Kemp 1995; Harding et al. 2002). Observed
sediment-water fluxes of dissolved O2 were estimated from time-course changes in
solute concentrations during incubations of intact acrylic sediment cores collected
at key stations in Chesapeake Bay (Fig. 5.1; Cowan and Boynton 1996).

5.3 Insights Gained from Model Simulations

In this section, we review the performance of each of the three models and highlight
selected results from the simulations. We also emphasize the types of questions that
can and cannot be answered with a given modeling approach and how these
approaches lead to improved understanding of the dynamics of O2 and hypoxia in
Chesapeake Bay.

5.3.1 Comparison of Model Performance

All three models reproduced seasonal cycles of bottom-water dissolved O2

along the central axis of Chesapeake Bay with reasonable accuracy (Fig. 5.4).
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Taylor diagrams (Fig. 5.4) graphically illustrate several metrics of model-data
agreement (Taylor 2001), and each model was compared in such a diagram for the
time period during which simulations were made, including 1996–2005 for
ROMS-RCA, 1985–2006 for BM-RCA, and 1989 for ROMS-sDO. O2 simulations
from each model were highly correlated to observed values, where r-values
exceeded 0.7 in all cases except the upper-Bay regions in ROMS-sDO (Fig. 5.4).
These two stations (CB2.2 and CB3.1) for ROMS-sDO also tended to have the
highest root-mean-squared difference values (RMSD; Fig. 5.4). Although this
model-data mismatch was only based upon a single year, it reveals the potential
inability for an empirical O2 model to capture variability in respiration in the upper
Bay, where observed O2 variability is high and driven by interannual variations in
the accumulation of phytoplankton biomass in bottom-waters (Testa and Kemp
2014). Somewhat over-predicted O2 at these upper-Bay stations may also explain
why ROMS-sDO tends to under-predict hypoxic volume in the early summer (see
Sect. 6.3.3), as hypoxia tends to initiate in the upper Bay. In general, the
ROMS-based models with high spatial resolution tended to capture variability in
bottom-water O2 better than the regionally based BM-RCA, yet BM-RCA was able
to capture seasonal patterns of bottom-water O2, as well as interannual variability
associated with changes in freshwater and nutrient inputs (Fig. 5.4). That said,
ROMS-RCA predicted short-term variations (daily weekly) in bottom-water O2 that
BM-RCA did not. Although the high-frequency observations necessary to validate
these model simulations do not currently exist along the main channel of Chesa-
peake Bay, high-frequency variability in O2 is expected to occur given tidal mixing
and the passage of storm fronts.

As mentioned previously, we consider it important to validate model process
rates in addition to concentration measurements. We thus compared rates of water
column respiration (as O2 uptake) and SOD measured at several stations to
those rates predicted by ROMS-RCA (Fig. 5.5). Water column respiration rates,
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which were available from multiple studies and several stations in the main stem of
Chesapeake Bay (Sampou and Kemp 1994; Smith and Kemp 1995), compared
favorably with ROMS-RCA-simulated respiration over several seasons (Fig. 5.5a, c
and e). Although modeled respiration rates were slightly higher than observations
during March to May at three stations (10.00–14.69 (model) versus 7.39–11.17
(observed) mmol m−3 d−1), summer (June–August) and November rates were
comparable. Where measurements from multiple years were available for com-
parison (spring and summer at CB6.1), model estimates fell within the range of
observations. At station CB4.3, anoxia during mid-summer prevented the mea-
surement of respiration with oxygen-based techniques, but respiration was pre-
dicted by the model because anoxia was not always predicted in this region by
ROMS-RCA (Figs. 5.4 and 5.5). ROMS-RCA also captured seasonal variability in
sediment oxygen demand (hereafter SOD) at three stations, but tended to
over-predict SOD in the middle Bay (Fig. 5.5). As with water column respiration,
ROMS-RCA did not predict the true anoxic conditions that were observed at this
station and SOD was allowed to persist because O2 was available for uptake from
the overlying water (Fig. 5.5). Despite this, overlying O2 was sufficiently low and
sediment pore water sulfide concentrations were high-enough for the sediment
model to generate fluxes of sulfide to the water column, which would subsequently
consume water column O2. The sulfide fluxes correspond to seasonal minima in
both bottom-water O2 concentrations and the aerobic layer depth within the sedi-
ment model, which limits the storage of sulfide (Cornwell and Sampou 1995).
ROMS-sDO-simulated respiration and SOD rates are plotted for comparison, to
illustrate how they were similar across stations with identical seasonal variation,
which contrasts with ROMS-RCA predictions that varied spatially and temporally
(Fig. 5.5).

5.3.2 Insights Gained from BM-RCA

Despite the simplified physical transport model used to drive BM-RCA, it repro-
duces seasonal, regional, and interannual variability in bottom-water dissolved O2

(Fig. 5.4). Given the coarse resolution in this model, these validations are restricted
to the deepest stations along the main channel of central Chesapeake Bay (shallow
stations flanking the channel are excluded). Thus, although BM-RCA is a useful
tool to understand the effects of interannual variations of river flow and nutrient
load on deep-water O2 at regional scales, it cannot resolve episodic or spatially
resolved dynamics (e.g., vertical profiles) in the Bay. However, the straightforward
division of the Bay into a limited number of segments in BM-RCA allows for the
computation of regional budgets of O2, carbon, and related nutrients.

For example, several questions remain related to the timingand locationof the source
of organic matter fueling hypoxia in Chesapeake Bay (Kemp et al. 1997). Budget
calculations for particulate organic carbon (POC) in each box during two seasons
(Spring = March–April, Summer = June–July) averaged over the 1986–2006 period,
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suggest the key role of both vertical sinking and landward longitudinal transport as
mechanisms for POC delivery to bottomwaters (Fig. 5.6). Landward net POC imports
(the potential fuel for O2 depletion) were greatest in lower-Bay regions, but muted in
upper-Bay regions (Fig. 5.6). This is consistent with the suggestion that landward,
bottom-water transport of organic carbon resulting from net surface-layer carbon pro-
duction in seaward Bay regions is a key aspect of the Bay carbon budget supporting O2

depletion (e.g., Kemp et al. 1997). Thus, althoughBM-RCA cannot capture small-scale
variability in O2 (which is often important) it reveals nutrient loading controls on
deep-water O2 and seasonal and regional transport of organic carbon.
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5.3.3 Insights Gained from ROMS-SDO

Recently, state-of-the-art hydrodynamic models have been coupled to relatively
simple formulations for biogeochemical O2-uptake (Hetland and DiMarco 2008;
Scully 2010a; Li et al. 2015). The motivation for these efforts has been to quantify
biogeochemical effects on O2 in a simple and computationally meager way to allow
an emphasis on variations in physical controls. Such an approach for Chesapeake
Bay has proven useful to understand the effects of wind speed and direction on O2

dynamics, but these simulations also provide an opportunity to understand the
balance between biogeochemical O2 uptake and physical replenishment.

ROMS-sDO was run for Chesapeake Bay in the year 1989, where observations
of primary production, water column respiration, and sediment O2 demand were
available to develop empirical formulations for these processes (Li et al. 2015).
ROMS-sDO captured seasonal patterns of deep-water O2 across many stations in
Chesapeake Bay, and thus reasonably reproduced the annual cycle of hypoxic
volume (Figs. 5.4 and 5.7). To understand the balance between O2 uptake and
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physical replenishment, a budget was computed for O2 by integrating model O2-
equation over a selected control volume for Chesapeake Bay, which encompasses
all deep waters below 10-m depth (from the mean sea level) in the main stem to the
north of York River mouth, and the northern boundary intercepts the shoaling
bathymetry in the upper Bay (see Fig. 5.1 for location). The budget revealed five
types of changes for deep-water O2, including the water column respiration over the
entire control volume, the sediment respiration across the seafloor, the
along-channel advection of oceanic high-O2 water across the lower-Bay section,
and the vertical advection and diffusion of O2 across the 10-m interface (Li et al.
2015). Over the April to July period, biogeochemical O2 uptake (water
column + sediment respiration) exceeded inputs via horizontal and vertical
advection and diffusion, resulting in the drawdown of bottom-water O2 and the
development of hypoxia (Fig. 5.7). Over the course of spring and early summer (as
in all months) this biogeochemical O2 uptake was dominated by water column
respiration (Fig. 5.7), which is consistent with cross-system analyses that suggest
sediment O2 uptake is a small fraction of total water column uptake in systems
deeper than 5–8 m (Kemp et al. 1992). Interestingly, during the spring period when
O2 is drawn down, advection of O2 is a large fraction of total input to this region
due to stronger circulation resulting from buoyancy-induced along-estuary density
gradient and favorable prevailing wind directions (Li et al. 2015). Although vertical
diffusion is the dominant term for the physical components of the O2 budget during
mid-summer, advection is once again important during later-summer and fall, when
physical imports exceed biogeochemical uptake, leading to replenishment of
bottom-water O2 (Fig. 5.4) and the decline in hypoxic volume (Fig. 5.7).

Simulations using ROMS-sDO thus make an important contribution to our
understanding of O2 dynamics in Chesapeake Bay. It became clear that even rel-
atively simple models are useful in quantifying the seasonal and regional balance
between O2 uptake and replenishment, and discerning which processes (advection
versus diffusion, water column versus sediment respiration) contribute most to
variability at a given time of year. Although such models can therefore be used to
investigate interannual variations in physical input and be subject to experiments
that quantify the effects of freshwater input and altered wind patterns, they cannot
be directly used to understand interannual variations in O2 resulting from altered
nutrient loading and other biological considerations.

5.3.4 Insights Gained from ROMS-RCA:
Interannual Variation

Themost complex and well-resolved model presented in this chapter is ROMS-RCA,
which includes a dynamicwater column and sediment biogeochemicalmodel coupled
to a relatively high-resolution hydrodynamic ocean model. This model permits
investigations into short temporal- and spatial-scale dynamics as in ROMS-sDO and
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the analysis of individual terms in the O2 budget, but it adds an additional value in that
specific biogeochemical mechanisms can be examined, as well as interannual vari-
ability of dissolved O2 associated with altered nutrient loading. These model simu-
lations spanned a 10-year period in Chesapeake Bay using realistic climatic and
freshwater forcing, and were also executed for a single year (2000) to examine
responses specific to altered nitrogen and phosphorus loading scenarios.

A dissolved O2 budget analysis similar to that presented for ROMS-sDO was
performed on the 10-year simulation of ROMS-RCA, with the addition of separate
terms for horizontal advection and diffusion, as well as vertical advection and
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diffusion (Fig. 5.8). O2 budgets were calculated for two periods (March–May and
June–August), to capture periods when hypoxia initiates (March–May) and when
hypoxic volume is fully developed at its seasonal maximum (June–August). In both
periods, biogeochemical uptake exceeds physical replenishment, but interannual
variability is much higher for the spring period (March–May) than during the
summer period (June–August; Fig. 5.8). Perhaps, more importantly, physical
replenishment of O2 tends to be proportional to spring O2 uptake, where interannual
variation in spring O2 uptake covaries with physical O2 inputs, both of which are
correlated to winter–spring nutrient loading. In addition, physical replenishment of
O2 is highest during summer, which is the period when biogeochemical O2 uptake
is at seasonal maxima (Fig. 5.8). This reveals that vertical and horizontal gradients
in O2 that are setup by biogeochemical uptake influence the physical replenishment
fluxes, regardless of season. Pie charts representing the relative contribution to the
total O2 budget of the various physical and biogeochemical terms reinforce the
results of ROMS-sDO, where water column respiration is the dominant uptake term
and advective inputs of O2 are comparable in magnitude to diffusive inputs in
multiple seasons (Fig. 5.8).
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5.3.5 Insights Gained from ROMS-RCA: Response
to Nutrient Loading

The second set of analyses presented in this section includes a sensitivity test of
Chesapeake Bay O2 dynamics to altered loadings of nitrogen (N) and phosphorus
(P). Whereas the ROMS-sDO simulations predict the same biogeochemical O2

uptake in a given year and place to understand interannual variability in physical
effects, these experiments use the same physical forcing (from the year 2000 in
ROMS-RCA) to isolate variations in nutrient loading effects. These experiments
reveal that hypoxic volume days (HVD) were consistently higher under elevated
nutrient loads, but the response was stronger for N relative to P. This resulted from
widespread N limitation in seaward Bay regions during summer months (Malone
et al. 1996) that led to higher net primary production (NPP) and phytoplankton
biomass under elevated N loads or much lower NPP and biomass under reduced
loads (Fig. 5.9). Relatively lower sensitivity to P loads results from the fact that P is
limiting in winter–spring in the upper and middle Bay and that phytoplankton
growth during this season appears to be a less important driver of summer hypoxic
volumes (e.g., Newell et al. 2007). The fact that HVD was more sensitive to
combined NP load changes reveals the potential for alternating nutrient limitation if
the load is dominated by either N or P, especially during transitional periods in
Chesapeake Bay where P is limiting in spring and N is limiting in summer (Malone
et al. 1996). These results highlight previously underemphasized seasonal dynamics
associated with hypoxia-nutrient load relationships, as well as the interacting role of
N and P loads in controlling hypoxic volume, which have been highlighted in other
large coastal ecosystems (Conley et al. 2009; Greene et al. 2009; Laurent and
Fennel 2014).

HVD responded nonlinearly to January to May total nitrogen (TN) loads varying
over 2 orders of magnitude (e.g., Murphy et al. 2011). These simulations suggest
that HVD would saturate (600 km3-d) at loads approaching twice that of conditions
in 2000. From a management perspective, this indicates that current nutrient
reduction goals should be expected to result in observable reductions in hypoxic
volume. Simple mechanistic models that simulate Chesapeake Bay hypoxia also
predict similar, nonlinear relationships between TN load and hypoxic volume (Liu
and Scavia 2010), although volumes at the low end of the loading range have not
been observed. If HVD is plotted against N load for each year from the 1996–2005
simulation, the HVD tends to fall below the logistic curve (Fig. 5.9) for years with
below-average Susquehanna Flow (lower HVD/load), while HVD/load is higher in
above-average flow years. This suggests that HVD is sensitive to physical circu-
lation or additional nutrient inputs under high-flow conditions.

Perhaps, the clearest conclusion of the nutrient load simulations for Chesapeake
Bay is the importance of summer NPP and respiration in driving the Bay’s response to
N loading. This is consistent with recent historical data analyses, which have sug-
gested that declines in late summer (July–August) hypoxic volume are associated with
modest declines in January to May Susquehanna River N loads (Murphy et al. 2011).

5 Modeling Physical and Biogeochemical Controls … 111



Statistical analyses do not, however, provide the specific mechanisms connecting
reduced winter–spring N loads to July–August hypoxic volumes. As this and other
studies (Malone et al. 1996) have shown, N limitation is the primary control on
phytoplankton growth during summer throughout much of Chesapeake Bay. Model
simulations clearly display that NPP, phytoplankton biomass, and respiration during
the summer period are more sensitive to N additions than during spring (Fig. 5.9), but
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spring (March toMay) NPP and water-column respiration rates were also enhanced by
elevated nutrient loads (as in Fig. 5.8). In a related ROMS-RCA model simulation,
where summer phytoplankton was not allowed to grow (Fig. 5.10), bottom-water O2

was replenished to non-hypoxic levels beginning in mid-June. The implication of this
result is that summer phytoplankton growth and subsequent respiration are necessary
to maintain hypoxia throughout summer. Additionally, N-loading enhancement of
lower-Bay water column respiration was a primary driver of interannual variations in
hypoxic volume in the 10-year simulation in Chesapeake Bay. These simulations
clearly identify N load as a major driver of mid- to late summer hypoxic volume in
Chesapeake Bay, and they provide mechanisms to link N load to hypoxia.

5.4 Summary and Synthesis

5.4.1 Lessons Learned from Different Models

Simulation studies for each of the three numerical models presented in this chapter
provide a unique contribution to our current understanding of O2 cycling and
hypoxia in Chesapeake Bay. The modeling tool chosen to answer a particular

CB3.1 CB3.3C

J F M A M J J A S O N D
0

125

250

375

CB4.3C

J F M A M J J A S O N D

CB5. 2

125

250

375

0

D
is

so
lv

ed
 O

2 (
M

)

No Summer
Production

Base Run

Fig. 5.10 Seasonal cycle of
ROMS-RCA-simulated
bottom-layer dissolved O2 at
four stations in Chesapeake
Bay under two conditions:
(1) the “Base Run,” or
simulation under normal
conditions (blue lines), and
(2) a simulation where
summer phytoplankton
growth is prevented (“No
Summer Production,” red
lines)

5 Modeling Physical and Biogeochemical Controls … 113



research question should be based on a need to balance model complexity with
sufficient resolution of the spatio-temporal scales and process description needed to
investigate a particular suite of research questions.

BM-RCA was able to accurately reproduce seasonal and regional O2 dynamics
in Chesapeake Bay, as well as to quantify interannual variability in chlorophyll-
a and O2 concentrations over a two-decade-long period. Regional budgets of par-
ticulate organic carbon derived from the model revealed the importance of landward
longitudinal advection in delivering labile carbon to the seasonally hypoxic region
of Chesapeake Bay. The low computational cost of this model and its generic
physical transport calculations make it highly portable to other coastal systems.
BM-RCA, however, cannot resolve lateral patterns in O2 uptake and transport or
capture fine-scale patterns of O2, thus preventing accurate computations of hypoxic
area and volume. For example, to investigate recently recognized channel-shoal
interactions associated with lateral circulation as a key replenishment process of O2

(Scully 2010a) and associated phytoplankton responses (Malone et al. 1986), a
finer-scale 3D modeling approach is required (e.g., ROMS-sDO or ROMS-RCA).
ROMS-sDO can also be used to understand the nature of other hydrodynamic
processes on dissolved O2 such as the effects of tidal/wind mixing and freshwater
input. ROMS-sDO, however, cannot be used to simulate the interannual variability
of dissolved O2 and hypoxic and anoxic volume in the Bay because it does not
capture interannual changes in water column and sediment O2 uptake associated
with changes in nutrient load. Thus, to understand interannual variations, we need
to examine variation in nutrient loading from year to year, along with the associated
spatially-resolved patterns of nutrient and organic matter transport and cycling. In
this case, ROMS-RCA is chosen over simplified models (BM-RCA or
ROMS-sDO) because of its sufficient resolution and complexity in both physics and
biogeochemistry.

5.4.2 Considerations for the Future

Despite the recent advances in modeling dissolved O2 dynamics and hypoxia in
Chesapeake Bay and other coastal waters worldwide, there is vast room for addi-
tional analysis and model improvement. This chapter was designed to help the
coastal system modeling community by illustrating what can be learned about the
effects of seasonal and interannual variability in physical forcing and nutrient
loading on hypoxia in a particular system (Chesapeake Bay). The lessons learned
can likely be applied elsewhere. Despite what was learned from 10 years of
ROMS-RCA model simulations for the Bay, an extension of the simulations
beyond a decade may be necessary to fully test the model’s ability to reproduce
interannual variability in hypoxia and capture trends. Biogeochemical model sim-
ulations, despite their limitations (e.g., unconstrained parameters, missing pro-
cesses), are only as good as the hydrodynamic simulations used to drive them.
Several applications of ROMS in Chesapeake Bay have successfully reproduced
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current velocities and longitudinal salinity and temperature structure (e.g., Li et al.
2005; Irby et al. 2016), but have been unable to generate accurate gradients of
vertical salinity, often under-predicting these gradients in some times and places
(Irby et al. 2016). To improve simulations of dissolved O2 concentrations (vertical
gradients of which tend to follow those of salinity), hydrodynamic simulations must
improve this aspect of estuarine dynamics. New efforts to compare the accuracy and
utility of multiple coupled hydrodynamic–biogeochemical ocean models may be a
way forward in enhancing existing modeling tools.

5.4.3 Summary

In this chapter, we summarize and compare three modeling systems for simulating
dissolved O2 and hypoxia dynamics in Chesapeake Bay. We conclude that each of
these modeling approaches has its advantages and disadvantages, and the choice of
which to apply depends on the scientific questions that are to be addressed. For
example, if one seeks a tool to do sensitivity tests or examine regional patterns in
biogeochemistry, a model like BM-RCA may be sufficient. On the other hand, if the
driving questions are related to climatic effects on O2 dynamics, a model similar to
ROMS-sDO may be adequate. However, if one is interested in examining inter-
annual variability in biogeochemical processes, biophysical interactions and feed-
backs, or small-scale processes, a model like ROMS-RCA is necessary. Although
the potential levels of complexity and resolution accessible with modern coastal
biophysical models continue to increase, relatively simple models still have a role
for addressing broader and more general research questions to understand coastal
systems dynamics.
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