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Abstract The northern Gulf of Mexico is the site of one of the largest areas of

seasonal, coastal hypoxia (up to 22,000 km
2
). Hypoxia can have both direct and indi-

rect effects on fish. Atlantic croaker (Micropogonias undulatus) is a good model

organism for studying the effects of hypoxia on fish in the Gulf of Mexico because it

is a demersal species that lives in the area where hypoxia occurs and has been stud-

ied extensively. Virtual croaker movement was examined for three algorithm groups

on a two-dimensional grid encompassing the Gulf hypoxia region. The model was

run for seven days using four static dissolved oxygen maps reflecting progressively

increasing hypoxia severity. Individual fish movement was modeled using a particle-

tracking module with outputs from a three-dimensional hydrodynamic-water qual-

ity model for the 2002 hypoxia season. The three algorithm groups included the

neighborhood search for hypoxia avoidance and the random walk, Cauchy correlated

random walk, or kinesis for the default behavior. The results show that the default

algorithms have little effect on hypoxia exposure of individual fish, but affect sin-

uosity (wiggle in fish path). The variables to consider when choosing between the

three default algorithms are time step, dispersal, and the effects of stressors other

than hypoxia. This study emphasizes the need to acquire suitable data for calibration

of fish movement models that are presently not available for the northern Gulf of

Mexico.
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10.1 Introduction

The Louisiana–Texas (La-Tex) shelf is the location of one of the largest areas of

seasonal, coastal hypoxia (up to 22,000 km
2
) (Rabalais et al. 2007). For the Gulf of

Mexico (GOM), hypoxia is defined as dissolved oxygen (DO) concentrations less

than 2 mg/L (Rabalais et al. 2001). Hypoxia generally occurs from April through

October at depths of 5–60 m and can stretch from the Birdfoot delta to the La-Tex

border (Turner and Rabalais 1991). Stratification of the water column and surface

primary productivity contribute to the formation of hypoxia (Justic et al. 2007). Strat-

ification occurs during the spring and summer on the La-Tex shelf due to the spring

floods of the Mississippi and Atchafalaya rivers, regional circulation, and seasonal

weather patterns (Rabalais et al. 2001, 2002). Stratification can be broken down by

water column mixing caused by cold fronts during late fall to early spring or by trop-

ical cyclone activity during summer and fall. Organic matter that sinks below the

pycnocline and decomposes leads to reduced oxygen levels that cannot be replen-

ished quickly due to high stability of the water column (Justic et al. 1996; Rabalais

et al. 2002). Primary production is strongly influenced by riverine nutrient loading

(Justic et al. 1993).

The areal extent and severity of hypoxia have increased over the past century

along with the increase in riverine nutrient concentrations (Turner and Rabalais

1991). The analyses of hypoxia proxies in sediment cores indicate that hypoxia began

to appear in the 1900s and started to intensify during the 1940–1950s (Rabalais et al.

2002). Hindcasts from several hypoxia models suggest that widespread hypoxia first

developed in the 1970s (Justic et al. 2002; Scavia et al. 2004). Since hypoxia monitor-

ing program carried out by Louisiana Universities Marine Consortium (LUMCON)

started in 1985, the extent of hypoxia has remained highly variable. However, a sig-

nificant increase in hypoxic layer thickness was observed (Obenour et al. 2013).

Hypoxia can have both direct and indirect effects on fish. Hypoxia exposure can

lead to increased mortality, decreased fecundity, decreased growth, and changes in

movement (Rabalais et al. 2001). Direct mortality can occur if fish are unable to

escape from hypoxic water before being asphyxiated. Indirect effects include sus-

ceptibility to predation and reduced food availability (Thomas and Rahman 2009).

By avoiding hypoxic areas, fish can be more susceptible to predation and experience

reduced or suboptimal habitats (Breitburg 2002). Demersal fish are more likely to

be affected by a loss of habitat than pelagic fish. Benthic feeding fish can also expe-

rience reduced food availability due to changes in numbers and species composition

of benthic organisms in response to hypoxia (Rabalais et al. 2002).

Fish commonly avoid hypoxic areas, though thresholds and negative effects

are species-dependent. Several species of fish and invertebrates have been shown

to avoid hypoxia in the GOM and in Neuse River estuary (Eby and Crowder 2002;
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Craig and Bosman 2012). While most fish avoid hypoxia, thresholds can differ

among species. Importantly, fish can have different DO thresholds depending on

whether the individual is acclimated to hypoxic conditions or not (Brady and Targett

2013). Avoidance can cause movement out of preferred habitats (Eby and Crowder

2002) or a mismatch with prey species with a lower threshold for hypoxia avoidance

(Ludsin et al. 2009).

Atlantic croaker (Micropogonias undulatus) is a good model organism for study-

ing the effects of hypoxia on fish in the GOM because it is a demersal species that

lives in the area where hypoxia occurs and has been studied extensively. Croaker

is a dominant member of the fish fauna caught in trawls in a region where hypoxia

occurs (Baustian et al. 2009). Hypoxia has been shown to reduce the growth, sur-

vival, and fecundity of croaker and other closely related species (Rose et al. 2009).

There is a large amount of previous work with croaker, including field data show-

ing the hypoxia effects on reproduction and prey availability, laboratory experiments

exposing croaker to hypoxia, and models of hypoxia avoidance and effects of hypoxia

on fecundity (Baustian et al. 2009; Creekmore 2011). For example, chronic expo-

sure to hypoxia has been shown to impair oocyte maturation and sperm motility in

Atlantic croaker (Thomas and Rahman 2009). This previous work allows for model

parameterization and provides some knowledge of how croaker react to hypoxia.

Models of varying levels of complexity have been used to model hypoxia in the

GOM, with the more complex models with higher resolution being better suited to

representing smaller scale events. Simpler models include modeling the shelf with

a river model (Scavia et al. 2003) or modeling the shelf as a two-layered system

(Justic et al. 1996). More complex models involve modeling the shelf as a three-

dimensional (3-D) system with detailed modeling of the hydrodynamics (e.g., Het-

land and DiMarco 2008; Wang and Justic 2009). Two of the 3-D models adapted

to model hypoxia in the GOM are ROMS (Regional Ocean Modeling System) cou-

pled to a NPZ model (Fennel et al. 2013) and the coupled FVCOM-WASP (Finite

Volume Coastal Ocean Model—Water Quality Analysis Simulation Program) (Justić

and Wang 2014). These 3-D models allow for the simulation of the conditions within

the hypoxic zone with high spatial and temporal resolutions and are therefore suit-

able for fish movement modeling. FVCOM is an unstructured grid and open-source

ocean circulation model (Chen et al. 2006). WASP is an open-source water qual-

ity model with several submodels for processes such as eutrophication (Wool et al.

2006). FVCOM and FVCOM-WASP have been used to model fish movement and

hypoxia in the GOM (Justić and Wang 2014; Rose et al. 2014).

Several models have been used to study the effects of hypoxia on fish and

fish movement. Models looking at the effects of hypoxia include matrix models,

individual-based models (IBM), and models of the internal processes of an individ-

ual fish (Rose et al. 2009). IBMs can be used to look at fish movement and hypoxia

avoidance (e.g., Creekmore 2011). Even though IBMs typically require more com-

putational power than other model types, they have the advantage of time series (such

as for hypoxia exposure) being possible to create for every fish modeled. Having the

exposure time series allows for a more realistic look at the direct effects of hypoxia.
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There are a number of different approaches to modeling fish and other animal

movements. Various representations of random walk, including simple diffusion,

have been used to describe and model animal movement (Kareiva and Shigesada

1983; Marsh and Jones 1988). The distance an animal can travel with random move-

ment decreases with the size of the time step (Landau et al. 2013). Avoidance of

adverse conditions and attraction to preferred conditions can be modeled using indi-

vidual movement algorithms or by using a decision-making algorithm. Some move-

ment types include random movement components along with avoidance and attrac-

tion components, such as run and tumble (Watkins and Rose 2013) and kinesis (Hum-

ston et al. 2004; Watkins and Rose 2013). Run and tumble and kinesis both have

the animal only aware of their current environmental conditions and whether those

conditions match the preferred conditions. Kinesis does have fish recall their previ-

ous heading. Because these movement algorithms have a random movement compo-

nent, they are still affected by the size of the time step. Other movement algorithms,

such as neighborhood search, allow fish to look at the surrounding conditions and

move in the direction that is most advantageous (Watkins and Rose 2013; Rose et al.

2014). These types of movements are less affected by time steps, but can allow fish to

perceive environmental conditions an unrealistic distance away from their location.

Decision-making algorithms, such as those based on game theory, have also been

used to allow animals to choose among different movement algorithms depending

on the current conditions and memory of past conditions (Goodwin et al. 2006; Rose

et al. 2014). Switching among movement types allows for the movement algorithm

best suited for a situation to be used, including changing the algorithm with changing

conditions.

This paper explores some of the different movement algorithms and how they

affect the hypoxia exposure of individual virtual croaker. Fish movement in relation

to hypoxia was modeled using a combination of output from the FVCOM-WASP

model and a particle-tracking module with different movement algorithms. Three

algorithm groups were tested to model fish movement in four different DO scenar-

ios. The default algorithm, i.e., the algorithm used when the fish does not perceive

hypoxia, is the main difference among the algorithm groups. The hypothesis tested

was that the default algorithms do not affect hypoxia exposure of individual fish if

all the fish use the same avoidance algorithm. The results of the paper will give a

deeper understanding of how the algorithms tested behave in different situations. A

better understanding of the algorithms allows for more effective algorithm selection

and ultimately better informed management decisions.

10.2 Methods

Fish movement was examined for three algorithm groups in two dimensions (2-D)

for static environmental conditions (maps of bottom DO concentration and tempera-

ture). The 2-D model and static conditions were chosen to better examine fish move-

ment for different movement algorithms. Because the model domain is much larger
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horizontally than vertically (674 km from Galveston to Mobile and 3000 m deep),

there is a large difference in the horizontal and vertical size of model elements for

any 3-D grid. Moving a particle simultaneously in the horizontal and vertical direc-

tions is more complicated than just moving horizontally or vertically. Having the

model fish move in only the horizontal direction simplifies the model while allow-

ing for the examination of the properties of different movement algorithms. Also by

using static conditions, the behavior of fish using different movement algorithms can

be seen more clearly.

10.2.1 FVCOM-WASP

The coupled FVCOM/WASP model (Justić and Wang 2014) was used to model DO

concentrations and temperature in the GOM. The FVCOM particle-tracking module

was used to model fish movement on the same FVCOM grid. The model domain

covers the coastal GOM from Mobile Bay to Galveston Bay and extends offshore

up to a depth of about 300m (Wang and Justic 2009). The unstructured nature of the

model grid allows for a more accurate depiction of the complex GOM coastline and

higher model resolution along the coast. The model has been previously calibrated

to accurately represent the circulation and stratification on the La-Tex continental

shelf (Wang and Justic 2009).

Fish were modeled using the FVCOM particle-tracking module with output from

the FVCOM-WASP. The particle-tracking module interpolated the DO and temper-

ature values to the location of each individual fish using the piecewise linear algo-

rithm employed in the FVCOM. Scenarios were created by taking output from the

FVCOM-WASP model for 2002, namely for May 2 (06:00), June 4 (06:00), July

23 (17:00), and September 21 (17:00). These dates and times were chosen because

they depict progressively worsening hypoxic conditions in the GOM, here denoted

as normoxia (May 2), mild hypoxia (June 4), intermediate hypoxia (September 21),

and severe hypoxia (July 23). The May 2 scenario represented conditions before the

onset of hypoxia, and the June 4 conditions represented the onset of hypoxia. Dur-

ing late July, the combination of primary production driven by riverine nutrients and

strong water column stratification typically results in the maximum extent of hypoxia

(Rabalais et al. 2007), which was represented by the July 23 scenario. Water column

mixing can cause hypoxia to break up and then reform. The September 21 scenario

was representative of such a breakup and reformation of hypoxia in response to Trop-

ical Storm Hanna. All scenarios used the July 23 temperature field so that the only

variation between scenarios was due to different DO concentrations. The locations

for the values for plotting were listed with longitude/latitude, while the grid locations

in the tracking module used Universal Transverse Mercator (UTM) projection.
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10.2.2 Movement Algorithms

Movement algorithms were added to the FVCOM particle-tracking module to model

fish movement in the model domain based on environmental cues. The FVCOM

particle-tracking module is designed to track passive particles that move with the

currents calculated by FVCOM. The module was modified as in Rose et al. (2014)

to track active particles with movement behaviors such as fish. Movement algorithms

were used to calculate x and y velocities.

Changes in particle position were calculated using the past positions and the

velocities, as in Watkins and Rose (2013) and Rose et al. (2014). The formulas used

to calculate change in position for all algorithms were as follows:

x(t + 𝛥t) = x(t) + 𝐮(t) ∗ 𝛥t (10.1)

y(t + 𝛥t) = y(t) + 𝐯(t) ∗ 𝛥t (10.2)

where x and y are fish positions on the x and y axes, u and v are fish velocities, and 𝛥t
is the time step for fish movement. Only the positions of fish inside the model domain

were updated. For fish outside the model domain, the reflective boundary algorithm

was applied as described in Sect. 10.2.2.10. Most of the algorithms, except kinesis,

calculated the u and v velocities using the same equations. Velocities for kinesis will

be described with the kinesis algorithm (Sect. 10.2.2.5). The velocities of fish in the

x and y dimensions were calculated as follows:

𝐮(t) = ss ∗ cos(𝜃(t)) (10.3)

𝐯(t) = ss ∗ sin(𝜃(t)) (10.4)

where ss is the swimming speed and 𝜃(t) is the swimming angle relative to due east

for that time step. How the speed and angle were calculated depends on the move-

ment algorithms.

Nine algorithms were used to model fish movement (Table 10.1). The top-level

algorithm, event-based, is used to choose among the other algorithms. Seven algo-

rithms are categorized into three behaviors for use with the event-based algorithm:

default, strategic, and tactical. Default behaviors are used when there is no hypoxia.

Three algorithms are classified as default: random walk, Cauchy correlated random

walk, and Gaussian kinesis. Strategic behaviors are used after an individual leaves

conditions that require immediate reactions, but there is still a memory of those con-

ditions. Two strategic behaviors are used in the model: correlated random walk and

logistic kinesis. Tactical behaviors are used when the fish needs to react to conditions

immediately. The two tactical behaviors, neighborhood search and sprint, are trig-

gered by encountering hypoxia for neighborhood search or spending too much time

in hypoxic conditions for sprint. The ninth algorithm, reflective boundary, is used to

address boundary issues with the fish and is not used in the event-based algorithm.
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10.2.2.1 Event Based

For this study, an event-based approach was used to model fish decision making.

Event-based movement is based on game theory and chooses between different

movement algorithms based on utilities, which depend on current and past conditions

experienced by the virtual fish (Anderson 2002; Watkins and Rose 2013). Environ-

mental conditions, such as hypoxia, are used to choose between default, strategic,

and tactical behaviors. There is only one default behavior used at a time. The default

behavior occurs when the main stimulus, here low DO, is not detected. Strategic and

tactical behaviors come in pairs for each environmental cue or threshold. A preferred

range can be defined using two thresholds, such as for temperature or salinity, result-

ing in two pairs of strategic and tactical behaviors. Tactical movement occurs when a

threshold condition is crossed. Strategic movement occurs when fish are out of con-

ditions that would trigger tactical movement, but a memory term in the equation still

has the fish being influenced by the hypoxia exposure. Strategic is an asymmetrical

behavior that occurs only after a tactical behavior has been triggered and fish are

exiting the hypoxic zone.

The behavior with the highest utility is the one chosen by the event-based algo-

rithm. In a game theory approach, utilities represent how the benefits and costs of

a given behavior affect the fitness of the organism (Anderson 2002). Here, hypoxia

avoidance success is used as a measure of fitness. The utility values are affected by

whether or not events occur. Whether events occur was determined with:

eJ(t) =

{
0 val > th
1 val ≤ th

(10.5)

where eJ(t) is the event value at time t, a Boolean operator of whether the event J is

triggered (1) or not triggered (0) at time t. The val is the environmental value (e.g.,

DO) or other value, such as a counter. An example of the threshold, th, is 2 mg O2/L,

which denotes the upper DO limit for hypoxia.

The utility of the different behavior options were then calculated for each fish.

The behavior with the highest utility is the one chosen by the event-based algorithm.

Utility is calculated by:

utilJ,K(t) = utiliJ,K ∗ probJ,K(t) (10.6)

where util is the utility for that time step, utili is the intrinsic utility, and prob is the

probability of a triggered event. The integers J and K in Eq. 10.6 indicate behavior

groups, where the J value represents a group and the K value indicates whether the

behavior is tactical (K= 1) or strategic (K= 2). The probability of an event being

triggered was calculated by:

probJ,K(t) = (1.0 − memJ,K) ∗ eJ(t) + memJ,K ∗ probJ,K(t − 𝛥t) (10.7)
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where probJ,K(t) is the probability for the behavior J,K at time t, eJ(t) is the event

value at time t, probJ,K(t − 𝛥t) is the probability calculated last time step, andmemJ,K
determines what proportion of the event value and past probability make up the cur-

rent probability. The probability is a running average and allows for the fish to have

some memory of past events. The utilities were then compared to a minimum stan-

dard value, and the largest value determines which behavior was used. If none of the

calculated utilities were larger than the standard minimum, then the default behavior

was used (J=0). The event-based behavior was the same as used in Rose et al. (2014).

The algorithms used for each event-based behavior are described in Table 10.1.

10.2.2.2 Random Walk

Random walk is a type of movement algorithm where random speeds and angles

are chosen without considering environmental conditions. Three random walk algo-

rithms are used in this study, two for default behaviors and one for strategic. The

simplest random walk used chooses a random angle and adds variation to a baseline

speed for each time step. The speed and angle are calculated using:

ss = ss0 ± 0.3 ∗ ss0 ∗ ran (10.8)

𝜃(t) = 2𝜋 ∗ ran (10.9)

where ss0 is the baseline swimming speed and ran is a uniform random number

between 1 and 0. The angle is calculated with relation to a fixed axis, here due east.

Equation 10.8 is used to calculate speed for all of the random walk algorithms and

is slower than the speed used for the tactical behaviors. So fish slow down when

switching from a tactical behavior to one of the random walk algorithms. Random

walk has particles/fish move with simple diffusion.

10.2.2.3 Correlated Random Walk

A correlated random walk (CRW) is a random walk with a bias toward one direction

(Kareiva and Shigesada 1983). A CRW chooses a random speed and a turning angle.

Unlike the simple random walk, a CRW determines the new angle relative to the

angle from the previous time step instead of a fixed axis. The variation added to

the old angle to get the new angle is called the turning angle. The CRW uses the

velocities from the previous time step to calculate the angle:

𝜃(t) = atan2(𝐯(t − 𝛥t),𝐮(t − 𝛥t)) + 0.05 ∗ 2𝜋 ∗ (2 ∗ ran − 1) (10.10)

where the first half of the equation, atan2( ), is from the previous time step and the

second part is a random component to add variation to the angle. If no random com-

ponent was added, then when substituted into Eqs. 10.3 and 10.4, 𝜃 would produce
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the fish swimming velocity components u and v of the previous time step. The fish

moves in mostly the same direction with some variation when a small random com-

ponent is added. Speed is calculated with Eq. 10.8. CRW is the algorithm used for the

strategic behavior in all runs except those with kinesis. Field data of insect movement

have been described using CRW (Kareiva and Shigesada 1983).

10.2.2.4 Cauchy Correlated Random Walk

The Cauchy correlated random walk (CCRW) is a more complicated CRW where

the magnitude and direction of the bias can be controlled by choosing the turning

angle from a non-uniform, wrapped Cauchy distribution. The CCRW was adapted

from Eq. 20 in Wu et al. (2000), which is implemented as the turning angle:

𝜃(t) = 𝜃(t − 𝛥t) + 2 ∗ atan
[
(1 − 𝜀)
(1 + 𝜀)

∗ tan((ran − 0.5) ∗ 𝜋)
]
+ 𝜃m (10.11)

where 𝜀 determines the shape of the wrapped Cauchy distribution, and 𝜃m determines

the center of the distribution. 𝜃(t − 𝛥t) is the previous angle, and the 2 ∗ atan[ ] + 𝜃m
is the turning angle. Higher values of 𝜀 result in more correlation and less random-

ness to the direction of the fish. By changing 𝜃m, the fish can be given a bias in

whether they turn left or right. The original equation from Wu et al. (2000) was

changed by adding the parameter 𝜃m based on Batschelet (1981) and using the result

of the equation as a turning angle instead of the angle of direction. Speed was cal-

culated using Eq. 10.8. Velocities are calculated using Eqs. 10.3 and 10.4.

10.2.2.5 Kinesis

Kinesis compares the ideal condition to the current condition to determine the pro-

portion of random versus previous velocities to use for the new velocities (Humston

et al. 2004; Watkins and Rose 2013). Two forms of kinesis were used: Gaussian and

logistic. As previously mentioned, kinesis uses a different method from the other

algorithms to calculate velocity. Instead of calculating speed and angle at each time

step, the velocities for the x and y directions are calculated using a random compo-

nent and a previous velocity component. The equations are as follows:

𝐮(t) = 𝐮(t − 𝛥t) ∗ (ℎ1 ∗ 𝑝1) ± nran ∗ (1 − ℎ2 ∗ 𝑝1) (10.12)

𝐯(t) = 𝐯(t − 𝛥t) ∗ (ℎ1 ∗ 𝑝1) ± nran ∗ (1 − ℎ2 ∗ 𝑝1) (10.13)

where 𝑝1, ℎ1, and ℎ2 are weighting factors. The 𝑝1 weighting factor is used to deter-

mine the proportion of random versus previous velocities in the new velocities and

is calculated using the comparison of the ideal and current conditions in a func-

tion. The ℎ1 and ℎ2 weighting factors determine the percentage of the previous
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velocities and random components, respectively, used in the new velocities. Fish

using kinesis slow down in areas where the previous component has more weight

than the random component. The previous component is smaller than the actual

previous velocity because the h1 weighting factor is less than 1. The value nran
is a random number from a normal distribution that is screened for extreme values

(>|3|). The Kinesis algorithm is based on studies on a variety of organisms including

wood lice and protozoa and focuses on a mechanistic approach to animal movement

(Fraenkel and Gunn 1961).

10.2.2.6 Gaussian Kinesis

How the 𝑝1 weighting function is calculated depends on the version of kinesis. The

Gaussian kinesis is the form of kinesis used in Watkins and Rose (2013) and Hum-

ston et al. (2004). It uses a Gaussian curve in determining the 𝑝1 weighting factor

used in Eqs. 10.12 and 10.13. A Gaussian curve results in fish moving toward the

mean of the curve. The 𝑝1 weighting factor is calculated with:

𝑝1 = e
−0.5∗

(
temp(t)−𝜇temp

𝜎temp

)2

(10.14)

where temp(t) is the current temperature, 𝜇temp is the mean of the curve and ideal

temperature, and 𝜎temp is the sigma value of the curve. The sensitivity of the algo-

rithm can be altered by changing the curve width with the sigma value. Gaussian

kinesis was used as a default behavior in response to temperature.

10.2.2.7 Logistic Kinesis

Logistic kinesis works better than Gaussian kinesis for avoiding poor conditions,

as opposed to being attracted to good conditions. Tests were run using Gaussian

kinesis to avoid hypoxia, but the algorithm did not perform well. The Gaussian curve

represents an ideal condition and progressively worse conditions well, but does not

represent good conditions that suddenly become poor conditions at some threshold.

A logistic curve better represents the second scenario, so a logistic curve was used

instead of a Gaussian curve to calculate the p1 weighting function:

𝑝1 = er∗do(t)

er∗do(t) + b
(10.15)

where do(t) is the current DO value, r controls the slope of the curve, and b controls

where the curve occurs. The 𝑝1 value was used to calculate velocities with Eqs. 10.12

and 10.13. The algorithm results in fish moving away from areas with values on the

lower part of the curve and then moving mostly randomly in areas where the curve

has leveled off. Logistic kinesis is used as a strategic behavior in response to DO.
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10.2.2.8 Neighborhood Search

Neighborhood search is used in most of the tactical behaviors and is the main algo-

rithm used for hypoxia avoidance. Neighborhood search works by searching the

neighboring cells and then moving either away from the lowest quality cell or moving

toward the highest quality cell. The quality of the cell can be calculated in different

ways (e.g., growth and mortality Watkins and Rose 2013 or salinity Rose et al. 2014).

Hypoxia was avoided with a neighborhood search algorithm moving away from the

lowest DO value. The neighboring cells are searched for the cell with the lowest DO

value and then the swimming speed and angle are calculated with:

𝜃(t) = atan2(y(t) − yl(t), x(t) − xl(t)) + 0.15 ∗ 2𝜋 ∗ (2 ∗ ran − 1) (10.16)

ss = 2 ∗ ss0 ± ss0 ∗ ran (10.17)

where x(t) and y(t) are the current x and y coordinates, xl(t) and yl(t) are the coor-

dinates of the center of the cell with the lowest DO, and ran is a uniform random

number. The first part of the equation, atan2( ), calculates the angle, and the sec-

ond part calculates a random component that adds some variability to the angle.

The amount of variation can be increased or decreased by replacing the 0.15 with

larger or smaller values, respectively, with a maximum meaningful variation of pi.

The swimming speed was faster for avoidance behaviors than for default behaviors

because there was more urgency to avoid bad conditions. The variation in swimming

speed is similar to Eq. 10.8, but has a higher range of variation. Velocities are cal-

culated using Eqs. 10.3 and 10.4. Hypoxia avoidance with neighborhood search was

triggered when the utility is highest for the tactical behavior for low DO avoidance.

10.2.2.9 Sprint

The sprint algorithm was created to deal with the problem of fish moving under

neighborhood search getting stuck moving in a narrow region around a local DO

maximum. When local maxima with values below 2 mg DO/L occur, fish will get

stuck in those cells when using neighborhood search. Adding variability to the neigh-

borhood search angle can keep some fish from getting stuck at local DO maxima, but

not all. The sprint algorithm is triggered when a counter of hypoxic steps exceeds a

set value. The set value determines the maximum number of time steps the fish can

stay in hypoxia before drastic measures need to be used. For this paper, fish start to

panic after spending two days in hypoxic conditions. The set value is the number of

steps, depending on time step, that occur over two days (200 for 15 min; 25 for 2 h).

The sprint is a simple algorithm that calculates the angle and speed with:

𝜃(t) = 𝜃(t − 𝛥t) (10.18)

ss = 3 ∗ ss0 (10.19)
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The counter is decreased by 1 when the algorithm is triggered and is reset to zero

when normoxic conditions are encountered. A decrease of 1 results in the fish sprint-

ing until it exits the hypoxic zone. Changing the amount the counter decreased the

affects how long the sprint algorithm is used, but only a decrease of 1 is used in this

paper.

10.2.2.10 Reflective Boundary

Neighborhood search is also used in the reflective boundary algorithm. It is not one

of the algorithms chosen by the event-based algorithm, but occurs after movement is

calculated by the movement algorithms. The reflective boundary algorithm is used

with kinesis, which works best at larger time steps (≥1 or 2 h). Particles in the

FVCOM-tracking module tend to get stuck on the edges of the model domain at

time steps large enough for kinesis to work well. The reflective boundary algorithm

uses neighborhood search to calculate the cell with the fewest boundaries and move

the fish toward the cell with fewest boundaries. The angle is calculated by:

𝜃(t) = atan2(yl(t) − y(t), xl(t) − x(t)) + 0.15 ∗ 2𝜋 ∗ (2 ∗ ran − 1) (10.20)

where the values are the same as Eq. 10.16. The values used are from the location

calculated at the last time step and not the new location calculated by the movement

algorithms for the current time step. Using the previous values makes sure that the

particle is in a cell so neighborhood search will work properly. The only change in

the calculation of 𝜃 is the order of coordinate values in the atan2 function. Speed is

calculated as in Eq. 10.17. The reflective boundary is applied only to particles that

have gone outside of the model domain.

10.2.3 Algorithm Groups

Three algorithm groups were used in the model simulations (Table 10.2). Each group

had a tactical, strategic, and default behavior and was named after the tactical and

default behaviors. Neighborhood search was used for the tactical behavior for all

groups. Neighborhood search is an efficient and effective avoidance behavior. CRW

Table 10.2 Algorithm groups: Neighborhood Search (NS), Random Walk (RW), Correlated Ran-

dom Walk (CRW), Cauchy Correlated Random Walk (CCRW), Kinesis (K), Logistic Kinesis (KL),

and Gaussian Kinesis (KG)

Algorithm

group

Tactical Strategic Default Panic response

(tactical/strategic)

Time step

(min)

NS/RW NS CRW RW Sprint/CRW 15

NS/CCRW NS CRW CCRW Sprint/CRW 15

NS/K NS KL KG Sprint/CRW 120
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and logistic kinesis were used as the strategic behaviors. Strategic behaviors were

matched to the default behaviors, where CRW was used for random walk defaults

and logistic kinesis was used for the kinesis default. The default behaviors, RW,

CCRW, and Gaussian kinesis (from here on, kinesis refers to Gaussian kinesis), were

the major difference between algorithm groups. Each algorithm group also used a

subgroup consisting of the sprint algorithm as the tactical behavior and CRW as the

strategic behavior.

10.2.4 Model Runs

For simulation set 1, each of the three algorithm combinations (Table 10.2) was

run for the four DO scenarios (Sect. 10.2.1). All simulations were for seven days.

A time period of seven days was selected because the model fish exposure levels

reach steady-state values after about five days. The starting positions of the 913 fish

are the result of having fish move with Gaussian kinesis for 124 days (Fig. 10.1). The

fish end up mostly gathered around the ideal temperature, which overlaps with the

hypoxic zone for the severe hypoxia scenario. The time step used depends on the

algorithm group. A 900-s (15 min) time step is used for the algorithm groups with

random walk algorithms. A time step of 2 h is used for the kinesis algorithm group.

A larger time step is used for kinesis because the algorithm is very inefficient at find-

ing the ideal temperature at smaller time steps. The output time steps were the same

as the respective time step for each algorithm group: every 15 min for the random

walk groups and every 2 h for kinesis.

For simulation set 2, each of the three algorithm groups with individuals con-

figured to be inefficient at avoidance (poor avoidance) was run on only the severe

hypoxia (July 23, 2002) scenario. The effects of poor avoidance are best seen when

avoidance is used a lot, so smaller hypoxic areas are less useful. Everything was the

same as with the severe hypoxia scenario in set 1 except for the poor avoidance. The

ability of the fish to avoid low DO was impaired by changing the 0.15 coefficient in
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Eq. 10.16 to 0.5, which added more variation to the movement angle of neighbor-

hood search used for avoidance. The sprint algorithm was also not used for these

runs because it is an algorithm with good hypoxia avoidance and allows the fish to

easily escape the hypoxic zone after two days. The poor avoidance runs were then

compared to the runs for the severe hypoxia scenario from simulation set 1.

10.2.5 Data Analysis and Visualization

10.2.5.1 Statistics

Several statistics are used to compare model runs. The first group of three statistics

looks at the conditions experienced by each fish. The first statistic, the percentage of

fish in a DO or temperature range, is calculated by first taking the DO or tempera-

ture value for each fish at each time step. The number of fish in each range is then

divided by the total number of fish to get the percentage. Summary statistics (mini-

mum, mean, and maximum) for DO, the second statistic, are calculated at each time

step for all 913 fish. The third statistic, exposure to hypoxia, is calculated by sum-

ming the total time spent in hypoxic conditions. For each time step, a value of one

is assigned for hypoxic values and zero for non-hypoxic values. The one or zero is

then multiplied by the time step, and the resulting values are summed to get the total

time exposed to hypoxia. For comparing time spent in hypoxic conditions, multiply-

ing by the time step converts to the unit of time used for the model. Data analysis,

manipulation, and plotting were all performed in R (R Core Team 2013). Outliers

are as defined by the R plotting method used, generally ggplot2 boxplot.

Three related statistics were used to compare the movement and distribution

spread of the fish: sinuosity, net distance, and total distance. The term “distribu-

tion spread” refers to how far the fish have spread out from their initial positions.

Sinuosity is the amount of wiggle in the path of the fish. It is calculated by dividing

the actual path by the shortest, or net, distance between the first and last point for

each fish. The actual path, or total distance travelled, is calculated by summing the

distances between successive points in the path. Distances between two points use

the distance formula.

A categorization test was used to compare hypoxia exposure values. It is not

advised to use statistical tests with p-values for interpreting simulation models. In a

simulation model, the researcher controls the degrees of freedom, which affects the

p-values (White et al. 2014). The algorithm groups are also known to be different, so

the questions of “are they different” is not an informative question to ask or answer

with statistical tests. Whether the algorithms can be differentiated in a field sample

is a more informative question to answer. A categorization test using a linear dis-

criminant analysis (LDA) was used to determine whether the hypoxia exposures for

the three algorithm groups could be told apart. The lda function in the R package

MASS was used on training data sets. Each training data set was comprised of 1000

mean exposures for each algorithm group from a sample size ranging from 25 to 900
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(by 25). Algorithm groups were only categorized within the same scenario and not

among scenarios. The prior for the LDA was 1/3 for each algorithm group training

data set, which assumes equal chance of a random sample being in any of the algo-

rithm groups. The LDA was run for each scenario using the training data sets and

the miscategorization rate was calculated as 1 minus the average categorization rate.

The acceptable rate of miscategorization was 0.05. The normoxia scenario was not

included because all the exposure values were zero, which caused lda to crash.

10.2.5.2 Growth and Vitality

The effects of hypoxia exposure on growth were calculated for the seven days of the

model run and extrapolated to 30 days. The model fish are juveniles between 1 and

2 years of age. Growth was calculated by first calculating the vitality at each time

step for growth using the following based on Miller Neilan and Rose (2014):

Gvitality =

{
1.0 x ≥ Gne
1.0 − Galpha (x−Gne)2

(x−Gne)2+Gbeta2
x < Gne

(10.21)

where Gne (3.35), Galpha (110.78), and Gbeta (21.06) are constants. Gne is the

threshold below which low DO has an effect on the fish, and x is the DO value

experienced by the individual fish for that time step. There is also a repair term for

growth vitality, Ggamma (0.21), which is the maximum increase in growth vitality

per hour. The repair term accounts for a delay in return to normal vitality rates after

returning to normoxia. The repair term was applied using:

Gvitalityrepair = min(Gvitality(t), (Gvitality(t − 𝛥t) + Ggamma ∗ 𝛥t)) (10.22)

where Gvitalityrepair is the new growth vitality term and 𝛥t is the time step. Ggamma
is multiplied by the time step because the data points are either 15 min or 2 h apart

while the repair term is hourly. Parameters for growth vitality for Atlantic croaker in

the region of the GOM hypoxic zone were provided by Sean Creekmore (personal

communication, Louisiana State University).

Growth is calculated by calculating growth and new weights at each time step.

The growth and new weight were calculated for each fish using:

Weight(t) = Weight(t − 𝛥t) ∗ eGvitalityrepair∗maxGrowthM (10.23)

where Weight(t) is the weight for the current time step, Weight(t − 𝛥t) is the weight

of the previous time step, and maxGrowthM is the maximum growth under normoxic

conditions. The initial weight (Weight(0)) and maximum growth rate were calculated

using equations from Barger (1985) that determine the length from age and a weight

from length. Parameters for the movement and growth equations are in Table 10.3.
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Table 10.3 Parameter values for algorithm and weight calculation equations

Parameter Value Description

𝛥t 0.25, 1 h Time step for particle-tracking

module. Value used depends

on default algorithm

th 2 mg O2/L The threshold for triggering

hypoxia avoidance

Utili 2.0, 3.0, 1.0
a

Intrinsic utility (NS, sprint,

default/strategic)

Mem 0.5, 0.9
a

Memory term

(default/strategic, tactical)

Standard minimum 0.175
a

Value utility must be greater

than to affect fish movement

ss0 0.23148 m/s
a

Baseline swimming speed

𝜀 0.9
b

Determines shape of wrapped

Cauchy distribution

𝜃m 0
b

Determines what angle

wrapped Cauchy distribution is

biased toward

h1, h2 0.7, 0.99
a

Kinesis weighting factors

𝜇temp 26
◦
C
c

Ideal temperature for croaker

𝜎temp 2
◦
C
c

Sigma value for Gaussian

curve

r 3
d

Controls slope of logistic curve

b 150
d

Control where logistic curve

occurs

Stuck 200, 25
E

When the counter reaches this

number of steps, the fish is

considered stuck. Value

depends on time step.

Galpha 100.78
f

Constant

Gbeta 21.06
f

Constant

Gne 3.35
f

Threshold for hypoxia affects

Ggamma 0.21
f

Repair term

Weight(0) 88.72 g
g

Initial weight calculated for

croaker at beginning of second

year of life

MaxGrowthM 0.002 g/day
g

Maximum growth rate in

normoxic conditions for

croaker from beginning to end

of second year of life

a
Based on Rose et al. (2014)

b
Determined by testing different values affects on wrapped Cauchy distribution

c
Based on location of temperature contour where croaker gather in the GOM

d
Determined by testing different values so that the logistic curve lined up around 2

e
Number of time steps that make up 2 days

f
From Sean Creekmore (Personal communication, LSU)

g
Calculated based on Barger (1985) and Miller Neilan and Rose (2014)
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10.2.5.3 Visualization Methods

The map plots were creating using ggplot2 layers for the coastline, interpolated val-

ues, contours, and fish generated in R. For the coastline, a shapefile for the US

coast from the USGS (http://coastalmap.marine.usgs.gov/regional/contusa../gomex/

gloria/data.html) was cropped down to include the Gulf coast between −95◦ and

−87◦ longitude and between 27
◦

and 31
◦

latitude. The contour and the interpolated

field layers were generated from output from FVCOM-WASP from 2002. DO values

for May 2, June 4, July 23, and September 21 were combined with temperature and

salinity values for July 23 to create scenarios that vary only by DO values. After

converting the final fish locations to latitude and longitude, the locations were added

to the plot.

10.3 Results

For simulation set 1 (good avoidance), most fish were able to escape the hypoxic zone

within one day and more fish escaped more quickly with the NS/RW algorithm group

than with NS/K algorithm group. In the final position maps for the fish (Fig. 10.2), the

majority of fish were outside of the hypoxic zone. The fish that were in the hypoxic

zone were on the very edge. For mild (d–f) and intermediate (g–i) hypoxia scenarios,

it took a day or less for the percentage of fish in conditions <2 mg/L (solid orange

line) to approach zero (Fig. 10.3). For the severe hypoxia scenario, it took three days

for NS/RW algorithm group (j) and five days for NS/CCRW algorithm group (k) for

the percentage of fish in conditions <2 mg/L to approach zero. The percentage of

fish in < 2 mg/L for the NS/K algorithm group (l) in the severe hypoxia scenario

leveled off at about 5% of fish in conditions < 2 mg/L.

For simulation set 2 (poor avoidance), fish took longer to escape the hypoxic

zone compared to simulation set 1 fish and NS/K algorithm group fish had a greater

decrease in the percentage of fish within the 1–2 mg/L range than NS/CCRW fish.

There were fish in the hypoxic zone for all three algorithm groups for all seven days.

All algorithm groups (m–o) had at least 5% of fish below 1 mg/L (teal line) and at

least 10% of fish between 1–2 mg/L (solid orange line) during the course of the seven-

day simulation (Fig. 10.3). The NS/K algorithm group (o) had the largest decrease

in the percentage of fish for the 0–1 mg/L and 1–2 mg/L ranges. The NS/CCRW

algorithm group (n) had the smallest decrease in the percentage for these ranges

and the percentage of fish in the 1–2 mg/L range stayed constant. The other three

ranges (2–3 mg/L, 3–4 mg/L, >4 mg/L) had a general increase in percentage for all

three algorithm groups with NS/K algorithm group having the largest change and

NS/CCRW algorithm group having the smallest. The >4 mg/L range was an excep-

tion, with NS/RW algorithm group having the smallest change in percentage of fish.

For NS/CCRW algorithm group, the dispersal of fish was greater than compared

to NS/RW algorithm group, resulting in NS/RW algorithm group having a smaller

change in percentage for that particular range.

http://coastalmap.marine.usgs.gov/regional/contusa../gomex/gloria/data.html
http://coastalmap.marine.usgs.gov/regional/contusa../gomex/gloria/data.html
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Fig. 10.2 Final fish positions for the severe hypoxia scenario along the Northern Gulf of Mexico.

Algorithm groups are neighborhood search/random walk (NS/RW), neighborhood search/Cauchy

correlated random walk (NS/CCRW), and Neighborhood Search/Kinesis (NS/K)

The summary statistics of DO for the algorithm groups became less similar as

hypoxic area increased, with NS/K algorithm group minimum DO values never ris-

ing above 2 mg/L while NS/RW and NS/CCRW algorithm group minimums did.

For normoxia (a–c), the mean (black line), minimum (dark gray line), and maxi-

mum (light gray line) DO values were about the same for the three algorithm groups
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Fig. 10.3 Percentage of fish in five DO ranges (0 to <4 mg/L) over time for each algo-

rithm group/scenario combination. Algorithm groups are neighborhood search/random walk

(NS/RW), neighborhood search/Cauchy correlated random walk (NS/CCRW), and neighborhood

search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia, intermediate hypoxia, and severe

hypoxia (with good and poor hypoxia avoidance)

(Fig. 10.4). As hypoxic area increased, the mean DO values for the fish decreased,

from over 5 mg/L for normoxia to around 3 mg/L in the severe scenario (j–l). The

maximum DO values for the fish also decreased with increasing hypoxic area. For

NS/RW algorithm group, the maxima tended to stay around the same values for the

entire model run, while the maximum values for NS/CCRW algorithm group and

NS/K algorithm group tended to increase over time. The minimum values for sce-

narios with hypoxia tended to increase to 2 mg/L and stay around that value. The

minimum values took longer to reach 2 mg/L for the intermediate (g–i) and severe

scenarios (j–l), with the longest time of around 5 days for the severe scenario for

NS/CCRW algorithm group (k). The intermediate (i) and severe (l) hypoxia scenar-

ios for NS/K algorithm group are the only exceptions to the trend of the minimum
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Fig. 10.4 Minimum, mean, and maximum DO values experienced by fish during the seven-day

simulation period for each algorithm group/scenario combination. The thin, black horizontal line
denotes 2 mg/L, so values below the line represent hypoxic conditions. Algorithm groups are

neighborhood search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk

(NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia,

intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

leveling off at 2 mg/L. Both of these time series had more variation than the

corresponding time series for NS/RW algorithm group (g, j) and NS/CCRW

algorithm group (h, k). The minimum DO values experienced by fish for the inter-

mediate scenario approach 2 mg/L and for the severe scenario stayed near 1.75 mg/L.

Even though the minimum DO values experienced by fish could be below 2 mg/L

during the entire simulation period, no fish spent the entire time in the hypoxic zone.

For simulation set 2, there was less variation across time and among the algorithm

groups than with simulation set 1, with NS/K having the largest variation. The mini-

mum DO value (dark gray line) for all the fish remained at or near zero for the entire

seven days (m–o, Fig. 10.4). There was little variation in the three statistics for all
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three algorithm groups. The maximum DO value has some variation for NS/CCRW

algorithm group (n) and NS/K algorithm group (o), but it was less than 0.5 mg/L.

The mean DO values increased very little, less than 0.5 mg/L, over the 7 day period.

The NS/K algorithm group had the largest increase in mean DO value, possibly due

to the larger time step.

10.3.1 Exposure

Fish exposure to hypoxia increased with hypoxic area, and exposure was not greatly

affected by the default algorithm used. As expected, there was no exposure to hypoxia

in the normoxia conditions. As the area of hypoxia increased, the number of fish

exposed and the exposure time increased (Fig. 10.5). NS/K algorithm group in the

severe hypoxia scenario had more fish exposed for over 4 days (l, 47 fish) than did

NS/RW algorithm group ( j, 6 fish) or NS/CCRW algorithm group (k, 10 fish). For the

severe hypoxia scenario, 83% of fish were exposed for less than a day, but there were

a number of outliers with longer exposures (about 150 fish for each algorithm group).

Two of the NS/K algorithm group outliers had exposures of over six days. The inter-

mediate and severe (good avoidance) scenarios required a sample size of about 375

fish to tell the algorithm groups apart (Fig. 10.6). The mild scenario required a sam-

ple size of about 250 fish. Both of these sample sizes are very large for a study record-

ing fish movement and hypoxia exposure. Until fish tracking technology improves,

it is unlikely that the movement types described by the algorithm groups could be

differentiated in field data.

The instances of longer hypoxia exposure were most likely due to spatial patterns

in the hypoxic zone that occurred in the intermediate and severe hypoxia scenarios

where fish were surrounded by hypoxic water on at least three sides. In the interme-

diate and severe hypoxia scenarios, fish tended to congregate in areas of normoxia

that were either partially or entirely surrounded by hypoxic water. Fish in these areas

were likely to wander back into the hypoxic zone and have higher hypoxia exposure.

Because of the larger time step for the NS/K algorithm group, in narrow regions of

normoxia, fish could overshoot normoxic areas multiple times and end up with large

hypoxia exposures.

When avoidance is poor (simulation set 2), more fish were exposed and the three

algorithm groups have similar exposures, though NS/CCRW and NS/RW algorithm

groups had more fish at maximum exposure (7 days) than NS/K algorithm group.

As expected, the exposures for poor avoidance did not resemble those from good

avoidance (simulation set 1, Fig. 10.5). The NS/K algorithm group had fewer fish

with about seven days of exposure, which was most likely due to the larger time

step. Fish with a seven-day exposure were most likely stuck at local maxima that

were still hypoxic and this occurred less with larger time steps. All three algorithm

groups had a group of fish with no exposure, which were the fish that started outside

the hypoxic area and never entered it. The NS/RW (m) and NS/CCRW (n) algo-

rithm groups resulted in more fish being exposed for the maximum cumulative time
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Fig. 10.5 Exposure calculated as the total number of days fish spend in hypoxic conditions plotted

for each fish and each algorithm group/scenario combination. The fish are numbered by their model

ID number. Algorithm groups are neighborhood search/random walk (NS/RW), neighborhood

search/Cauchy correlated random walk (NS/CCRW), and neighborhood search/kinesis (NS/K). The

scenarios are normoxia, mild hypoxia, intermediate hypoxia, and severe hypoxia (with good and

poor hypoxia avoidance)

than NS/K algorithm group (o). The NS/CCRW algorithm group had 266 fish at

maximum exposure and the NS/RW algorithm group had 273 fish, while the NS/K

algorithm group had 45 fish at maximum exposure. The algorithm groups could be

differentiated at a sample size of about 250 fish. This sample size was smaller than

the sample size for the severe hypoxia scenario with good avoidance.
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Fig. 10.6 Graph of miscategorization rate of algorithm groups plotted against sample size. The

horizontal black line is the maximum acceptable miscategorization rate (0.05). The scenarios are

mild, intermediate, and severe hypoxia. Severe hypoxia has both good and poor hypoxia avoidance

10.3.2 Distribution Spread

10.3.2.1 Maps

Fish spread further with the NS/CCRW algorithm group than with the NS/RW and

NS/K algorithm groups. When looking at the final position maps for normoxia, the

three algorithm groups had a different distribution. The NS/RW algorithm group

fish (Fig. 10.7) diffused a short distance from the initial positions such that the ini-

tial positions are still recognizable. The NS/CCRW algorithm group fish (Fig. 10.7)

spread out until the positions looked random, and the initial positions were no longer

recognizable. The NS/K algorithm group fish (Fig. 10.7) looked almost exactly like

the initial positions because the initial positions are the steady state for kinesis. The
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Fig. 10.7 Final fish positions for the normoxic scenario along the Northern Gulf of Mexico. Algo-

rithm groups are neighborhood search/random walk (NS/RW), neighborhood search/Cauchy cor-

related random walk (NS/CCRW), and neighborhood search/kinesis (NS/K)

final position maps for mild and intermediate hypoxia had a similar distribution as

the normoxia maps for the respective algorithm.

The final position maps for severe hypoxia (Fig. 10.2) show that for the NS/CCRW

algorithm group fish spread more than for the other two algorithms groups and NS/K

algorithm group gathered near the optimum temperature when possible. In the area

outside of the hypoxic zone, fish were spread out the least with the NS/RW algorithm
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group and the most with the NS/CCRW algorithm group (Fig. 10.2). Fish gathered

closer to the edges of the hypoxic zone with the NS/RW algorithm group and the

NS/K algorithm group (Fig. 10.2) than with the NS/CCRW algorithm group. There

was an area of normoxic water completely surrounded by hypoxic water (i.e., a nor-

moxic island) for the severe hypoxia scenarios. The spatial distribution of fish within

the normoxic island was influenced by the default algorithm. The fish were evenly

spread out with the NS/CCRW algorithm group, while they gathered on one side

with the NS/RW and NS/K algorithm groups. The fish for the NS/RW algorithm

group were largely located on the eastern side of the normoxic island. In contrast,

the kinesis fish gathered near the southern side of the normoxic island which was

closer to their optimum temperature.

10.3.2.2 Sinuosity, Net Distance, and Total Distance

Sinuosity, net distance, and total distance differed among the algorithm groups with

NS/RW having the largest sinuosity while covering the shortest net distance. The

NS/RW algorithm group fish generally had larger sinuosities than the NS/CCRW

and NS/K algorithm groups (Fig. 10.8). The NS/K algorithm group tended to have a

slightly smaller sinuosity than the NS/CCRW algorithm group. Sinuosity was broken

into its two components: the net distance from start to end and the total distance of

the fish track. For net distance (Fig. 10.9), the NS/RW algorithm group fish tended

to cover a smaller net distance than the NS/CCRW and NS/K algorithm groups.

The opposite was true for the total distance covered, with the NS/K algorithm group

covering a smaller total distance than the other two algorithm groups (Fig. 10.10).

NS/CCRW and NS/RW both had similar and relatively small distributions of total

distance. The NS/K algorithm group had a larger distribution.

Increasing the area of hypoxia affected sinuosity and its components because NS

and sprint algorithms were used more. The sinuosity decreased for the NS/RW algo-

rithm group and increased for the NS/K algorithm group as the area of hypoxia

increased (Fig. 10.8). The NS/RW algorithm group sinuosity decreased because the

net distance covered by the fish increased. Because fish travel in a mostly straight line

using NS and sprint algorithms as opposed to the many turns taken by RW, increasing

usage of NS and sprint algorithms increases the net distance. The sinuosity for the

NS/K algorithm group increased because the total distance covered increased. The

distance travelled for each time step depends on the temperature and the weighting

of the random and previous components. The closer to the optimum temperature

the fish are, the slower they move. By adding NS and sprint algorithms, which have

set distances covered each time step, the total distance covered is increased. NS and

especially sprint also contributed to the increase in the number of outliers for net and

total distance as the area of hypoxia increased. There was little change for the sin-

uosity or its components for the NS/CCRW algorithm group as the area of hypoxia

increased.

The simulation set 2 fish had larger distribution ranges for sinuosity and total

distance than the simulation set 1 fish, but generally followed the same trends as
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Fig. 10.8 Sinuosity (amount of wiggle) of the fish tracks. Black dots denote outliers. Algorithm

groups are neighborhood search/random walk (NS/RW), neighborhood search/Cauchy correlated

random walk (NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia,

mild hypoxia, intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

simulation set 1 fish for the respective algorithm groups. For sinuosity, the NS/RW

algorithm group had the highest value and had a median and range similar to the

normoxia, mild hypoxia, and intermediate hypoxia scenarios (Fig. 10.8). Because

there was no sprint and NS had a large degree of randomness, the sinuosity did not

decrease with a larger hypoxic area. For the NS/CCRW algorithm group, sinuos-

ity for poor avoidance was larger than sinuosity for good avoidance. For the NS/K

algorithm group, sinuosity was only a little larger, by about one. For net distance,

the distribution ranges for poor avoidance were not much greater than those for good

avoidance (Fig. 10.9). The poor avoidance distribution ranges were between the sizes

of the good avoidance for the severe hypoxia scenario and the other three scenarios.

The net distance for the NS/K algorithm group was larger than the net distance for
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Fig. 10.9 The net, or shortest, distance between the starting and ending positions of the fish. Black
dots denote outliers. Algorithm groups are neighborhood search/random walk (NS/RW), neigh-

borhood search/Cauchy correlated random walk (NS/CCRW), and neighborhood search/kinesis

(NS/K). The scenarios are normoxia, mild hypoxia, intermediate hypoxia, and severe hypoxia (with

good and poor hypoxia avoidance)

the NS/CCRW algorithm group, while for good avoidance they were either similar

or the net distance for the NS/CCRW algorithm group was greater. For total distance,

the distribution ranges were much larger for the NS/RW and NS/CCRW algorithm

groups (Fig. 10.10). For the NS/K algorithm group, the total distance was similar to

the values for the normoxia, mild hypoxia, and intermediate hypoxia scenarios. As

with good avoidance, for the NS/K algorithm group, the total distance was smaller

than the total distance for the other two algorithm groups.
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Fig. 10.10 Total distance covered by the fish. Black dots denote outliers. Algorithm groups are

neighborhood search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk

(NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia,

intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

10.3.3 Temperature

The temperatures experienced by the fish depended on the default algorithm used,

with a greater percentage of fish near the optimum temperature for NS/K algorithm

group, except for the severe hypoxia scenario. The percentage of fish in the 25–

27
◦
C range (solid purple line), which brackets the optimum temperature of 26

◦
C,

decreased over the course of the seven days for NS/RW and NS/CCRW algorithm

groups (Fig. 10.11). The 25–27
◦
C range was added to see how the percentage of

fish around the optimum temperature changes. The percentage of fish in the 25–

27
◦
C range for the NS/RW algorithm group decreased less than for the NS/CCRW

algorithm group because the NS/RW algorithm group fish do not travel as far. For
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Fig. 10.11 Percentage of fish in temperature ranges over time for each algorithm group/scenario

combination. The optimum temperature is 26
◦
C. Algorithm groups are neighborhood

search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk (NS/CCRW),

and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia, intermediate

hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

the NS/K algorithm group, the percentage of fish in the 25–27
◦
C range increased for

the normoxia (a–c), mild hypoxia (d–f), and intermediate hypoxia (g–i) scenarios.

For the severe hypoxia scenario (j–l), the percentages for all three algorithm groups

looked similar. For example, while the 25–27
◦
C range was over 50% by the end of

the run for the less severe hypoxic scenarios, the percentage was less than 20 for

the severe hypoxia scenario. The hypoxic zone overlaps with the 26
◦
C contour, so

the NS/K algorithm group fish were not able to congregate near the contour line.

The percentage of fish in the >30
◦
C range (dotted dark gray line) tended to increase

for NS/CCRW algorithm group but not for the other algorithm groups, most likely

because the NS/CCRW algorithm group fish spread out the most.
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For simulation set 2, the percentage of fish in different temperature ranges was

similar to the severe hypoxia scenario for simulation set 1. For all three algorithm

groups (m–o), the percentage of fish in the 25–27
◦
C range decreased over the seven

days (Fig. 10.11). The major difference between the poor and good avoidance for

severe hypoxia scenarios was that there was a smaller percentage of fish in the >30
◦
C

range for the poor avoidance (m–o) than for the good avoidance ( j–l). This was prob-

ably due to the fact that many fish never left the hypoxic zone and did not have the

chance to disperse away from it. The NS/K algorithm group (o) had the highest per-

centage of fish in the >30
◦
C range, but the percentage of fish was still lower than in

case of good avoidance (l).

10.3.4 Growth and Vitality

There were only small difference in weights (<1 g) or growth (<0.05 g/day) due

to default algorithm or scenario (Fig. 10.12). There was a small difference between

different scenarios, but even the severe scenario ( j–l) had less than 1 g difference

in weight due to low DO exposure for most of the fish. The growth rates differed

by less than 0.05 g/day among scenarios and algorithm groups. When extrapolated

out to 30 days, the weights between algorithm groups covered the same numerical

range. About 83% of fish were exposed for less than a day, which is probably why

the effects on growth were so small.

The final weights for the poor avoidance set covered a similar range of values

for all algorithm groups within that set and also a larger range compared to the good

avoidance set. The poor avoidance runs had similar distributions of final weights with

slight differences. The range for poor avoidance weights ranged from 90 g for the fish

least affected by hypoxia to just below 87 g for the fish most affected (Fig. 10.12).

For good avoidance, only less than 20 fish had weights below 89.5 g.

10.4 Discussion

10.4.1 Avoidance and Default Behaviors

The model results suggest that avoidance and default behaviors can be separated and

evaluated independently. For example, avoidance can be modeled without having to

consider the default algorithm because it did not affect the hypoxia exposure. The

default behavior can be chosen based on its characteristics without considering any

interaction between the avoidance and default behaviors. Importantly, the avoidance

and default algorithms could be validated and calibrated separately. There is not a

large amount of field data for validating and calibrating fish tracks from IBMs, so

being able to use data even if all the environmental conditions used in a model are

not recorded in the field data is essential.
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Fig. 10.12 Final weights plotted for each fish by model id number. Algorithm groups are neigh-

borhood search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk

(NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia,

intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

10.4.2 Exposure

The default algorithms were found not to affect hypoxia exposure for the model fish,

but the tactical behavior did affect exposure. It makes sense that the tactical behavior

should have an important effect on hypoxia exposure because the tactical behavior

was responsible for having the fish avoid conditions such as hypoxia. What differ-

ences there were between the default algorithms were shown when the effectiveness

of the tactical behavior was changed from good to poor avoidance (Fig. 10.5). Poor

avoidance magnified the differences between the default algorithms. The difference

between good and poor avoidance can also be seen in the smaller sample size required

to differentiate between the algorithm groups (Fig. 10.6). The difference was most
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likely due to the different time steps used for the random walk algorithm groups and

the kinesis algorithm group. The time step used was chosen because of the character-

istics of the default algorithm, but the exposure differences mostly occurred because

of that time step’s effect on the tactical behavior. So even when there was a difference

in exposure between algorithm groups, it was generally due to the tactical behavior

and not the default behavior.

The hypoxia conditions and “local” conditions had a greater effect on hypoxia

exposure than the default algorithm. There was an obvious increase in exposure with

increased hypoxic area. More fish were exposed in larger areas and took longer to

escape the hypoxic area. There was also the increased chance of fish getting stuck

and having to rely on the sprint algorithm to escape the hypoxic zone. The different

scenarios also had different smaller scale or “local” features that affected hypoxia

exposure. The severe scenario in particular had several features such as the nor-

moxic island and the normoxic sliver that affected exposure. In particular, the nor-

moxic sliver, i.e., the thin area of normoxia surrounded by hypoxia on three sides

in the severe scenario, was a relatively small area for fish to inhabit. Because all the

default algorithms diffuse to some extent, the fish in a small normoxic area tended

to spread out into the hypoxic area. Most of these fish then used the tactical behavior

and returned to the normoxic sliver. Thin hypoxic areas such as the normoxic sliver

feature led to increased hypoxia exposure. Fish are known to gather at the shoal

that corresponds to the normoxic sliver (Craig 2012), so whether real fish continu-

ally wander back into the hypoxic area or stay on the shoal without getting exposed

would be an interesting question to explore. It would help with making the model

better reflect reality and increase knowledge of the behavior of the fish.

10.4.3 Algorithm Comparison

The choice of the default algorithm did not make a significant difference in the

hypoxia exposure of the fish or changes in growth due to hypoxia exposure for static

conditions, so other characteristics of the algorithm must be considered when choos-

ing which algorithm to use. As shown in the results, the temperatures experienced

by the fish and the distance covered by the fish were different among the default

algorithms. The time step that the algorithm can be used for is also important to

consider.

The main way that the default algorithms differed was sinuosity and tempera-

ture sensitivity. There were only small differences in exposure between the default

algorithms, whether avoidance was good or bad. The area covered by the fish was

the major difference among the algorithms (Fig. 10.8). Fish using the RW algorithm

moved only a short distance in very convoluted paths while fish using the CCRW

algorithm spread out the furthest. Fish using the kinesis algorithm tended to gather

along the 26
◦
C contour where possible, so these fish travelled farther than the RW

using fish but did not spread out like the CCRW using fish. Kinesis was the only algo-

rithm that took temperature into account and so was the only algorithm that affected
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temperature-related movement in the non-severe hypoxia scenarios (Fig. 10.11). The

RW algorithm had more fish near the optimum temperature than the CCRW algo-

rithm, but this was due to the RW fish not diffusing far from the starting positions

along the 26
◦
C contour.

The time step used can limit what algorithms are effective. Kinesis is not very

effective at time steps smaller than an hour on large grid cells because the fish are

unable to find the preferred temperature. The CCRW and RW algorithms work at

smaller time steps. While the RW algorithm works at smaller time steps, fish clearly

move a shorter distance using that algorithm than with kinesis or CCRW as shown

in the results. For greater diffusion, a large time step would need to be used with RW.

Because CCRW is a more directional algorithm, a larger distance is covered when

using that algorithm even at smaller time steps.

Selection of an appropriate time step depends on the system and the organism.

Generally, a larger time step is used for slow moving particles and for large areas

while a smaller time step would be used for faster moving particles and small areas.

Physical variables are typically evaluated on the time frame of seconds, even for

large areas. For example, the FVCOM-WASP model calculates physical and envi-

ronmental data at time steps of 5 s for grid cells that can be 10 km in size (Justić and

Wang 2014). For fish, the time step often depends on the grid size used. Time steps

and grid sizes that have been used to model fish movement include 1-km cells with a

time step of 1 hr (Creekmore 2011), 20–500 m cells with a 9-s time step (Rose et al.

2014), and <1 m with a 2-s time step (Goodwin et al. 2006). Field data could be used

to determine whether croaker movement in response to hypoxia in the GOM can be

modeled in sufficient detail with a 2-h time step.

The distance covered by the model fish depends on the default algorithm and the

time step used. The area that a random walk algorithm can cover is limited by the time

step. The average radial distance from the starting to ending point for a random walk

is

√
N, where N is the number of steps (Landau et al. 2013). For a fixed time period,

the number of steps is inversely proportional to the time step. So the number of steps

is greater for the 900 s time step than for the 2-h time step. This is why for RW the

fish do not travel very far and why kinesis does not work well at the shorter time step.

Kinesis is the combination of the previous direction and a random walk, so the radial

distance covered by kinesis is affected by the time step. The fish using kinesis do not

cover a large enough area with a 900-s time step to find the preferred temperature.

The CCRW algorithm is not a uniform random walk because of the use of the Cauchy

distribution when choosing angles. CCRW is the only default algorithm where fish

cover a large distance at the smaller time step, with the distance at 900 s for CCRW

being comparable to the distance covered using kinesis for a 2-h time step. If smaller

time steps are a better fit for croaker movement, the CCRW movement algorithm

would be the preferred default algorithm among those compared in this paper.

In systems where multiple environmental conditions affect fish movement and

distribution, being able to model fish responses to multiple conditions or stressors is

useful. It is more realistic for fish to be affected by multiple stressors or conditions.

Temperature and distance from shore affect the distribution of croaker in the GOM
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(Craig 2012). In tidal systems, salinity and tides are important environmental condi-

tions that can affect fish movement in conjunction with hypoxia (Brady and Targett

2013). Multiple conditions or stressors can be modeled using an event-based algo-

rithm to choose between different algorithms depending on the condition or stressor.

Event-based algorithm is useful for conditions or stressors that have clear cut offs or

thresholds where the fish is either affected or not affected. For conditions or stressors

that are always present and have no clear cut off or threshold, it is more useful to use

a default algorithm that moves fish based on the condition or stressor. The ability

to take environmental conditions, such as temperature, into account is a strength of

kinesis as a default algorithm.

Determining the most appropriate default algorithm for a particular model and

organism requires weighing the advantages and disadvantages of the different algo-

rithms. For GOM croaker, more information is needed to determine which of the

algorithms covered in this paper is most appropriate. Looking for additional algo-

rithms to use as the default is also worth considering. The CCRW algorithm was

adapted to work with the FVCOM particle-tracking module as an alternative to kine-

sis and RW. CCRW works at smaller time steps while covering a larger distance than

RW. This is useful in situations where diffusion-type movement is required, but the

grid cells are too large and the time step is too small for RW to sufficiently diffuse

from the starting position.

10.4.4 Real Versus Model

The lack of appropriate data makes it difficult to calibrate or validate IBMs for

hypoxia avoidance in the GOM. Most available data for fish locations in the GOM

are from trawls or other group sampling methods that only show where fish are at

one point in time. Such data sets can be compared to the general locations of fish in

the model. Fish have been shown to concentrate on a shoal (Craig 2012) that cor-

responds to the normoxic sliver where fish gather in the severe hypoxic scenario.

But for comparing fish tracks and hypoxia exposure, data sets need to have detailed

information on fish movement over time and not just general locations or locations

for one time step. Fish can be tracked using acoustic tags, but this does not guarantee

that the horizontal movement is recorded with enough detail.

Existing data sets are either in areas that are difficult to compare to the GOM or

are not detailed enough. A data set for croaker in the GOM was part of a study look-

ing at the vertical movement of croaker in response to hypoxia. Because horizontal

movement was not part of the study, it was not recorded in detail. The horizontal loca-

tions of the fish can be reconstructed after the fact from the strength of the acoustic

tag signals (Grothues et al. 2013), but the resulting data have confidence intervals

too large to be used to compare to the model. Two data sets that are detailed either

temporally (Pepper Creek, DE, Brady and Targett 2013) or spatially (Neuse River,

NC, Kevin Craig personal communication) are from shallow tidal areas with diur-

nal DO changes. The area, depth, and DO cycle are very different between the tidal
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areas and the GOM. Pepper Creek is a narrow tidal creek where the fish movement

was recorded as one dimensional (Brady and Targett 2013). Neuse River is larger

than Pepper Creek, but still much smaller than the GOM. Fish tracks were recorded

in two dimensions at Neuse River. The tides also have a greater effect on the tidal

areas, which are located on the Atlantic coast, as compared to the GOM shelf where

the tides are weak. All of these differences make it difficult to compare fish behavior

in the tidal areas to fish behavior in the GOM.

Despite the differences in the areas, there are still some ways that the field data can

be used. The most important information that can be taken from the three existing

field data sets is that fish avoid hypoxia and can survive brief exposures to hypoxic

water (Brady and Targett 2013). The DO values experienced by the GOM croaker

were interpolated from CTD casts near the fish location. None of the croaker were

found in hypoxic conditions. This suggests that the fish were able to successfully

avoid hypoxia, keeping in mind the stress due to tagging that may have affected

behavior and that hypoxia was weak where the fish were tracked (Thomas Grothues

personal communication). The Pepper Creek and Neuse River had fish that were

exposed to hypoxia and then moved out of the hypoxic area and continued to move,

indicating the exposure was sublethal. The fact that non-fatal exposure occurs means

that direct effects other than mortality and indirect effects are possible. As previ-

ously mentioned, sublethal effects of low DO exposure have been found in croaker

(Thomas and Rahman 2009). Even when field data cannot be directly compared to

the model output, the field data can demonstrate that the processes described in the

model exist in the field.

10.4.5 Impacts

The work in this paper is important because it builds on what has been done with

movement algorithms and the models used. Similar movement algorithms have been

used with different grids (Creekmore 2011), for different locations with different

stressors (Rose et al. 2014), or in abstracted grids (Watkins and Rose 2013). This

paper represents the first attempt to use the movement algorithms with a grid based

on a snapshot of the FVCOM-WASP output. The CCRW algorithm was also added

to the list of algorithms used before with the FVCOM-tracking module with the

FVCOM-WASP output. The CCRW algorithm adds another option to the default

algorithms that is not as limited by time step. There was also an increased understand-

ing of how different algorithms behave as default algorithms in an event-based setup

compared to each other. A better understanding of how algorithms behave allows for

choosing the more appropriate algorithm for a given model and scenario.

Modeling movement helps to study the impacts of environmental conditions and

stressors on organisms such as fish, especially when field data are hard to obtain. As

mentioned in Sect. 10.4.4, there is limited field data for the interactions of croaker

and the GOM hypoxic zone. There is particularly limited data for movement of indi-

vidual croaker relative to the hypoxic zone. A model helps to look at the impacts of
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the hypoxic zone using what information there is on croaker and hypoxia. The use of

a model does not negate the need for field data, but it can help to fill in gaps where

field data are hard to obtain or absent.

Appropriate models can be used to help inform management decisions. Choos-

ing the appropriate model and movement algorithms requires knowledge of the sys-

tem, possible models, and possible movement algorithms. Increasing knowledge of

the behaviors of different movement algorithms helps with the decision of choosing

the appropriate model. Field data and a validated model can be used for manage-

ment decisions. An example is a fish movement model used to model fish movement

around various objects near a hydroelectric dam (Goodwin et al. 2006). If the neces-

sary field data were collected for calibration and validation, the model in this paper

could be used to inform decisions that involve the GOM hypoxic zone and fisheries.

10.5 Conclusion

This paper tested the hypothesis that the default algorithm does not affect the hypoxia

exposure for model fish. The results of running three algorithm groups for four sce-

narios based on output from the FVCOM-WASP hydrodynamic-water quality model

suggest that the default algorithm does not affect hypoxia exposure in static condi-

tions. While exposure is not affected by the default algorithm, sinuosity and its com-

ponents, total and net distance, are affected by the default algorithm used. For static

conditions, the factors that should be considered when choosing a default algorithm

are dispersion, time step, and environmental conditions other than DO.

For the results and conclusions of this paper to be applied to dynamic conditions

or 3-D conditions and not just static 2-D conditions, the algorithms must be tested

for dynamic conditions and 3-D conditions. The algorithms were tested for static

2-D conditions, which do not reflect reality very well. Consequently, the results of

the paper increase the knowledge of how these algorithms perform; the results may

not apply to dynamic or 3-D conditions. To better reflect reality and be more useful

for management purposes, the properties of the algorithms need to be compared in

dynamic conditions and in 3-D.

Validated models can help inform management decisions when field data is diffi-

cult or impossible to obtain. Models are particularly useful in situations where field

data are difficult to obtain (e.g., exposure time series for large numbers of fish) or

impossible to obtain (e.g., effects of future climate change). Managers can use results

from a range of model scenarios to decide between different management actions.

To ensure the model scenarios reflect reality as closely as possible, it is important

to understand the model and to have field data for calibration and validation. By

testing how the model reacts under different conditions helps the modeler to better

understand the behavior of the model. Investigating how the default algorithms affect

exposure helps to better understand the model for hypoxia avoidance for fish. Appro-

priate field data allow for calibration and validation, which help insure the model

is close enough to reality. There is a need for appropriate field data for the model
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described in this paper. Obtaining detailed movement tracks and hypoxia time series

for relatively small fish such as croaker is difficult, but worth doing to improve the

model and its usefulness. Developing methods for obtaining movement and hypoxia

exposure time series for croaker is also important because it establishes methods for

successfully obtaining the data which could be applied to economically important

species such as red snapper or shrimp.
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