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Preface

The number of coastal hypoxic zones has been increasing at an exponential rate
since the 1960s, and there are currently more than 600 documented hypoxic zones
in the estuarine and coastal waters worldwide. These include the well-studied large
systems affected by riverine inputs, as well as increasingly important deeper-water
ocean shelf oxygen minimum zones and small, shallow coastal systems. Hypoxia
causes the loss of habitat and the spatial displacement of plankton, large inverte-
brates, and fish, and is often associated with mass mortalities of marine organisms
that live on or near the bottom. In addition to being a widespread environmental
problem, coastal hypoxia influenced by riverine inputs is also of great socioeco-
nomic and political interest because of its association with agricultural fertilizer
activities in the watershed. There will be increasing demands for predicting the
ecological responses to hypoxia in order to quantify the ecological benefits and
costs of management actions and to express the simulated effects of coastal man-
agement and climate change in terms of direct relevance to managers and the
public. Numerical models can provide the needed information for understanding
hypoxia and ensuring effective management, and this book provides a snapshot of
representative modeling analyses of coastal hypoxia and its effects.

This book is a collection of case studies presented at hypoxia modeling sessions
that editors have organized over the past four years at meetings of the Association
for the Sciences of Limnology and Oceanography and the Coastal and Estuarine
Research Federation. Chapter authors include senior scientists who have studied
hypoxia for many years, but also, importantly, many junior scientists who bring
specialized knowledge on selected hypoxia modeling topics. This book consists of
15 chapters that are broadly organized around three main topics: (1) Modeling
of the physical controls on hypoxia, (2) Modeling of biogeochemical controls and
feedbacks, and (3) Modeling of the ecological effects of hypoxia. The final chapter
is a synthesis chapter that draws generalities from the earlier chapters, highlights
strengths and weaknesses of the current state-of-the-art modeling, and offers rec-
ommendations on future directions. We hope that the “physics to fish” approach of
this book will make it a useful reference for oceanographers, environmental sci-
entists, resource managers, and graduate students.
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All chapters in this book underwent standard peer review typical of scientific
journals, with each receiving multiple, anonymous reviews and with subsequent
revisions monitored by one of the editors. We thank the many people that provided
reviews on the chapters. We are grateful to Janet Slobodien, executive editor,
Ecology and Evolutionary Biology, Springer, for the invitation to write a book on
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Chapter 1
Numerical Experiment of Stratification
Induced by Diurnal Solar Heating Over
the Louisiana Shelf

Mohammad Nabi Allahdadi and Chunyan Li

Abstract The effect of diurnal solar heating on the stratification of waters over the
Louisiana shelf was examined using the 3-dimensional Finite Volume Community
Ocean Model (FVCOM). The simulation was for June 2009 to examine the effects
of solar heating on summertime stratification. The input components of solar
radiation to the FVCOM model were calculated using available relationships for
shortwave, longwave, latent heat, and sensible heat radiation and using Metocean
field data obtained from WAVCIS stations. Simulation results showed a continuous
increase in water temperature and stratification during June 2009 with daily fluc-
tuations of sea surface temperature as large as 0.9 °C. The corresponding stratifi-
cation strengthening was quantified by an increase in the gradient Richardson
number and buoyancy frequency. Development of shelf-wide stratification coin-
cided with a significant decline in bottom water oxygen concentration. Our results
demonstrate how, under certain conditions, solar heating can significantly con-
tribute to vertical stratification and may also create conditions conducive to the
formation and persistence of hypoxia.

Keywords Numerical modeling ⋅ Solar radiation ⋅ Stratification ⋅ Hypoxia ⋅
FVCOM ⋅ Louisiana shelf ⋅ Gulf of Mexico

M.N. Allahdadi (✉)
Department of Marine, Earth and Atmospheric Sciences,
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1.1 Background

Hypoxia is a condition of low dissolved oxygen concentration less than 2 mg/l
(Rabalais et al. 2002). Over the Texas–Louisiana shelf, hypoxia is a seasonal
phenomenon that starts in late spring or early summer and persists in bottom waters
until the early fall (Wiseman et al. 1997). The seasonal occurrence of hypoxia is the
result of influence from several biological and physical factors. The springtime
floods of the Mississippi and the Atchafalaya rivers greatly increase nutrient
loadings to the shelf area (Wiseman et al. 1997). Biological processes supported by
this increased nutrient load contribute to oxygen depletion in bottom waters,
thereby producing hypoxia 1–2 months after the peak in river discharge (Justic
et al. 1996). Freshwater associated with river flooding also increases the buoyancy
of shelf waters and thereby strengthens the stratification, which allows for the
hypoxia formation (Wiseman et al. 1997). However, a significant portion of strat-
ification can be induced by solar heating during summertime and can act as primary
contributing factor to seasonal hypoxia development in the northern Gulf of Mexico
(Hagy and Murrell 2007). The role of water column mixing in re-oxygenating
bottom waters and mitigating hypoxic events, as well as the positive feedback
between stratification and hypoxia and its role in mediating pollutant distribution,
have been addressed by several studies for the Texas–Louisiana shelf (Wiseman
et al. 1997; Wang and Justic 2009; Allahdadi et al. 2013; Chaichitehrani 2012;
Tehrani et al. 2013). Allahdadi et al. (2013) compared the relative Richardson
numbers for stations located to the east and west of the Mississippi Delta and
concluded that for the western stations, the Richardson numbers were an order of
magnitude larger than those for the eastern stations.

Buoyancy is dependent on temperature and salinity gradients in the vertical
dimension. Solar radiation increases in the beginning of the summer. This causes
the water column to stratify with higher sea surface temperature. The stratification
varies periodically due to diurnal variations of solar heat (Chen et al. 2003).

Increasing solar radiation has both positive and negative impacts on reducing
bottom water oxygen. Although the stratification caused by excess solar heating
inhibits bottom water re-oxygenation, it can also enhance photosynthesis and affect
the balance between photosynthesis and respiration rate. In very shallow estuarine
waters, where stratification is not dominant, hypoxic events generally correspond to
low solar radiation. An example of such phenomenon is the hypoxic events in the
Upper Newport Bay Estuary, California (water depth less than 5 m) that tended to
occur more frequently on cloudy days (Nezlin et al. 2009). However, for the deeper
shelf waters of Louisiana west of the Mississippi Delta, we expect that stratification
is dominant and there is negative feedback between solar radiation and bottom
water oxygen concentration.

Many studies have addressed different physical and biogeochemical causes of
hypoxia over the Louisiana shelf (for example Justic et al. 2003, Rabalais and
Louisiana Universities Marine Consortum 1991, Rabalais et al. 2004, Turner and
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Rabalais 1994, Turner et al. 2008). However, the effect of summer solar heating on
stratification and hypoxia formation has not been studied.

The present study examines the effects of solar radiation on stratification for the
Louisiana shelf west of the Mississippi Delta using FVCOM simulations. The effect
of solar heating on water column temperature is included as a heat source term in
the model heat balance equation. The approach has been used by others to study the
effect of atmospheric heat budget on the water column stratification and mixing
(e.g., Elsberry et al. 1976; Price 1981; Bender et al. 1993; Zedler et al. 2002). We
followed the approach of the Chen et al. (2003) here, who applied the ECOM-Si
model with different components of radiation to study stratification and circulation
over the Georges Bank in the Gulf of Maine. Determining parameters for the
vertical structure of downward heat flux in the water column was a challenge in
their study. They used the distinction between coastal and ocean waters to specify
the attenuation of different wavelengths in the water column. They compared their
simulated sea surface temperature (SST) with satellite-derived values, and their
results showed a diurnal fluctuation of SST with approximately 1 °C difference
between day and night temperatures superimposed on a general increasing trend. In
the present study, we used the same approach with the FVCOM model.

1.2 Numerical Model

In order to study the effect of solar heating on shelf stratification, solar radiation
components were introduced to an existing implementation of FVCOM (Fig. 1.1,
Allahdadi 2015). FVCOM is a prognostic, unstructured grid, finite volume, free
surface, three-dimensional (3-D) primitive equations ocean model (Chen et al.
2006). The main equations solved by the model are momentum, continuity, salt
transport, heat transport, and density equation. The equations representing heat and
salt transport and density contribution are as follows:

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z

=
∂

∂z
Kh

∂T
∂z

� �
+FT ð1:1Þ

∂S
∂t

+ u
∂S
∂x

+ v
∂S
∂y

+w
∂S
∂z

=
∂

∂z
Kh

∂S
∂z

� �
+Fs ð1:2Þ

ρ= ρ T , Sð Þ ð1:3Þ

where T is water temperature, S is salinity, and ρ is water density. u, v, and w are
current velocity components in the horizontal (x and y), and vertical (z) directions.
Kh is the coefficient of vertical diffusivity for salt and heat. FT and Fs represent
horizontal thermal and salt diffusion terms, respectively. Solar radiation is applied
to the model equation through the surface boundary condition for temperature:
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∂T
∂z

=
1

ρcpKh
Qn x, y, tð Þ− SW x, y, ξ, tð Þ½ � ð1:4Þ

In the above equation, Qn(x,y,t) is the surface net heat flux that includes four
components: shortwave flux, longwave flux, sensible heat flux, and latent heat flux.
SW(x,y,t) is the shortwave flux at sea surface, and Cp is the specific heat of seawater.

Governing equations of flow, and salt and heat transport, are discretized using
finite volumes and solved with the Runge–Kutta method. Triangular grid elements
are used for computation. This offers more flexibility, including islands and com-
plicated coastline geometry that are common west of the Mississippi Delta. Fur-
thermore, mesh flexibility allows finer spatial resolution where needed. For the
present simulation, a region including the coastline from Mobile-AL to the west of
the Sabine Bank, TX was used as the modeling area (Fig. 1.1). The model has a
circular open boundary extended to the outer-shelf and deep water to the depths
beyond 2000 m. Mesh resolution was the highest for the area associated with the
inner-shelf west of the Mississippi Delta (about 500–1000 m, Fig. 1.1), which is

Fig. 1.1 Computational mesh and model bathymetry for the FVCOM model
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the area of focus in this study. This region includes the shallow shelf off Terrebonne
Bay, outside of the Atchafalaya Bay, and outside of the Barataria Bay, whose
bottom water becomes hypoxic during the summertime (Rabalais et al. 2002).

1.3 Model Specification

1.3.1 Modeling Period and Data

The simulation covered June 1–June 30, 2009, with several days of spin up in
May because the summer-related thermal stratification usually starts in June
(Allahdadi et al. 2013). Field measurements of the required Metocean data
(current speed, wind speed, sea surface temperature, air temperature, air pressure)
were available for June 2009 from the WAVCIS (www.wavcis.lsu.edu) station
CSI-6, located off Terrebonne at 20 m water depth. The data were used for model
setup and validation. Meteorological measurements, including air pressure, air
temperature, wind speed, and relative humidity, as well as oceanographic data and
sea surface temperature (SST), were used in calculating different components of
input heat flux to the model (see Sect. 1.3.2.1). SST data are also used to compare
with the simulated SSTs.

SST observed at CSI-6 increased from May to the maximum value in August
and decreased thereafter (Fig. 1.2). SST values for a longer time period from May
to December are shown in the inset of Fig. 1.2. The time series of June through
July SST shows a generally increasing trend with an average initial SST value of
about 26 °C during the first 5 days. SST increased to a maximum of 31 °C by June
20 with daily fluctuations of ∼0.9 °C. SST variations during this time period (from
June 10 to 20) are all oscillatory, presumably due to diurnal variation of heat flux,
and these continued till mid-July, when diurnal fluctuations of SST almost

Fig. 1.2 Time series of measured SST at WAVCIS station CSI-6
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disappeared and SST showed a gradual (almost smooth) increase. The nighttime
mitigation of SST, and thereby reduced stratification that could contribute to
re-oxygenation in the water column, was absent after mid-July and therefore more
severe hypoxic events are expected.

1.3.2 Model Inputs

1.3.2.1 Heat Flux

The effect of solar insolation on water temperature and density was incorporated
into the FVCOM model through two components of the surface boundary condi-
tion: net surface heat flux and short wave radiation flux. Although these parameters
can be obtained from atmospheric model databases, low temporal resolution of the
available model outputs (time steps of 6 h or larger) limits their use for a detailed
study of diurnal shelf heating and stratification. Hence, the two heat flux compo-
nents were calculated using hourly Metocean data.

Net surface heat flux is the algebraic sum of four different components:

QN =Qs +QLW +QL +Qsn ð1:5Þ

where the quantities in the right-hand side of the equation are shortwave, longwave,
latent heat, and sensible heat fluxes, respectively. For each of them, the equations
are presented in Appendix A.

The hourly Metocean data used for the calculation of heat flux components
provided an adequate temporal resolution of shortwave radiation and net heat flux.
Following the approach presented in Appendix A and using Eq. 1.5, we calculated
shortwave radiation and net heat flux for the simulation period using the Metocean
data from CSI-6 (Fig. 1.3). The peak values show the daytime maximum insolation

Fig. 1.3 Variation in calculated shortwave radiation and net surface heat flux for June 1–June 10,
2009
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occurring two times between 1 and 4 PM. The two distinct peaks of heat flux
correspond to two maxima of the function for cosine of the zenith angle used in the
calculation (Appendix A).

Shortwave radiation is the only component of net heat flux that penetrates
through the water column. Attenuation of shortwave flux versus water depth is
presented by the following equation (Chen et al. 2003):

SW z, tð Þ= SW 0, tð Þ Re
z
a + 1−Rð Þez

b
� � ð1:6Þ

where SW 0, tð Þ is the shortwave radiation at the water surface, t is time, and
SWðz, tÞ is the shortwave radiation at water depth z. Parameters a and b are the
attenuation lengths for longer and shorter (waveband blue-green) wavelengths, and
R is the portion of shortwave flux associated with the longer wavelengths.
Appropriate values for a, b, and R should be considered based on the clarity of
water over the modeling area. Paulson and Simpson (1977) suggested values of
R = 0.78, a = 1.4, and b = 7.9 for coastal waters. In our study, a sensitivity
analysis was implemented on each parameter to obtain the optimal agreement with
SST measurements. The final applied values were consistent with Chen et al.
(2003).

1.3.2.2 Wind Data

We considered the effect of wind, and the associated mixing, in order to evaluate
the model performance and to properly interpret the effects of solar heating on
stratification. Wind data for June 2009 were obtained from CSI-6 and reduced to the
standard level of 10 m above sea surface. The average wind speed during this
month was less than 6 m/s and rarely reached 10 m/s (Fig. 1.4). This implies a
weak wind effect on mixing over the shelf.

Fig. 1.4 Time series of wind speed measurements at station CSI-6 for June 2009
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1.3.2.3 Initial Temperature Profile

We used the climatological profile for May over the Louisiana shelf from NOAA as
the initial temperature profile for FVCOM. Site-specific measurements were not
sufficient to obtain temperature profiles for the initial conditions.

1.3.3 Boundary Conditions

A dissipative internal boundary condition was used to damp the waves reflected
from the boundary to the model domain. No temperature or salinity values were
applied to the open boundary, and also no tide was assumed at the boundary.

1.4 Simulation Results

1.4.1 Model Evaluation

Simulated currents under wind forcing were compared with available measurements
at WAVCIS stations CSI-6 and CSI-9 (Fig. 1.5, see Fig. 1.1 for locations). Small
values of simulated currents for this time period are consistent with measurements
and previous studies (Allahdadi et al. 2013; Chaichitehrani et al. 2014) Current
measurements during simulation period were available for only several days.
Results for SST were compared to field measurements at CSI-6 (Fig. 1.6a). An
optimal agreement was achieved for the case that used the short/longwave atten-
uation lengths suggested by Chen et al. (2003). FVCOM reproduced the increasing
SST trend from 26.5 to 30 °C for June 3–June 15.

Simulated daily fluctuations of temperature are more or less in phase with
measurements showing the mid-day temperature peak and nighttime minimum
(Fig. 1.6a). The simulated time series of SST was de-trended to show the fluctu-
ations associated with diurnal variations of solar insolation. The resultant time
series of daily temperature fluctuations (Fig. 1.6b) show a maximum day–night
temperature difference of 0.9 °C with an average of 0.5 °C for the first 20 days of
June 2009.

1.4.2 Sea Surface Temperature

Simulated spatial variation of SST was complicated due to complex shelf bathy-
metry and the dynamics of circulation on the shelf (Fig. 1.7). SST maps of the study
area for different times on July 15 show the effects of including the minimum
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Fig. 1.5 Comparison of measured and simulated east–west current component (U-component) for
surface and bottom at stations CSI-6 and CSI-9

Fig. 1.6 a Comparison of
simulated and measured SST
at station CSI-6; b day–night
fluctuations in SST
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nighttime radiation and peak daytime radiation. Shelf-wide SST map at 12:00 AM
local time (Fig. 1.7a) shows that simulated SST over the shelf area off the Barataria
and Terrebonne Bays was uniform at about 26.5 °C. Over the shallow shelf off the
Atchafalaya Bay, SST was higher (27.4 °C), which can be partly due to the smaller
depths and advection of warm water from outer-shelf to this area. SST over the
deep waters off the Mississippi Delta was higher (28 °C) compared to the
inner-shelf waters. Three hours later at 3:00 AM (Fig. 1.7b), which is several hours
after the intense daytime solar insolation, SST distribution off the Barataria and
Terrebonne bays was similar to the values at 12:00 AM, but SST off the Atch-
afalaya Bay and the Mississippi Delta decreased to about 27 and 27.1 °C,
respectively. At 12:00 PM (Fig. 1.7c), the daytime increase of solar insolation
caused SST to increase off the Atchafalaya Bay to about 28 °C and off the Mis-
sissippi Delta to about 28.2 °C. Temperature distribution over the shelf just west of
the Mississippi Delta was similar to other two time steps (12:00 AM and 3:00 AM),
but with temperature increased to about 26.8 °C. Corresponding to the peak of
insolation at 3:00 PM (Fig. 1.7d), SST over the shelf west of the Mississippi Delta
increased to 27–27.2 °C and similarly increased in other areas over the shelf.

Fig. 1.7 Shelf-wide variation in simulated SST for June 15, 2009; a 12:00 AM, b 3:00 AM,
c 12:00 PM, and d 3:00 PM
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1.4.3 Vertical Distribution of Temperature

The simulated increase in SST as a result of solar insolation affected the devel-
opment of temperature stratification. Furthermore, the temperature difference during
daytime and nighttime produced diurnal differences in water column stratification.
The general behavior of induced shelf stratification based on simulation results is
presented along an east–west cross section (Sect. 1.1 in Fig. 1.1). The section
extends from the southwest Pass to Sabine Bank that is about 400 km west of the
Mississippi Delta and represents the vertical variation in simulated temperature for
the inner-shelf region. Figure 1.8 shows the depth profiles of temperature across
this section for two different times (12:00 AM and 3:00 PM) on June 15 (almost
15 days after the SST started to increase). Solar heating induced stratification along
the initially mixed shelf, except for a shallow region of 30–50 km width (water
depth less than 10 ms) located west of the Terrebonne Bay over which the water
column was well mixed (Fig. 1.8a). However, the upper part of the water column
(upper 7 m) for all points along the section remained well mixed. Water temper-
ature increased from the initial value of 25 °C to highest value of about 27 °C just
west of the Mississippi Delta off Barataria Bay, as well as over the shallow and
well-mixed region west of the Terrebonne Bay. As compared to 12:00 AM, the 3:00
PM profiles occurred at the peak daytime SST values of 28 °C (Fig. 1.8b). This
peak followed the maxima in solar insolation and was associated with a much
stronger stratification compared to nighttime (12:00 AM) values. At other time
points during the simulation period, the daytime and nighttime stratification patterns
were similar to daytime and nighttime patters as shown in Fig. 1.8. Temperature
distribution at depths greater than 10 m remained unchanged from day to night,
consistent with the attenuating effect of water column depth on short wavelength
radiation. Throughout the simulation period, isotherms were tilted upward in the
shelf area between the Terrebonne and Barataria bays in response to upwelling
resulting from the southwesterly winds.

The diurnal evolution of water column stratification is illustrated with vertical
profiles on transect A (Fig. 1.9) on the shelf in front of the Terrebonne Bay (see
Fig. 1.1 for location). Water temperatures are shown at four different times on June
15 for the shelf waters up to 50 m. At night (Fig. 1.9a), the mixed layer depth for
the shoreward region of the transect (depths smaller than 20 m) was 7–10 m, while
the SST was about 26.3 °C. For the deeper region, the mixed layer depth was
shallower (less than 5 m) and SST was about 27 °C. Three hours later at 3:00 AM
(Fig. 1.9b), the overall pattern of temperature distributions in both shallower and
deeper water was similar. However, the mixed layer depth in the shallower region
decreased to about 5 m or less, and the associated SST increased to 26.6 °C. At
12:00 PM (Fig. 1.9c), when there was a substantial increase in solar radiation
compared to that of morning time over the major part of the shallow shelf, iso-
therms shifted upward making mixed layer depths less than 5 m. SST over the
shallow area increased to 26.9 °C, while the deeper locations had SST values of
about 27 °C. The strongest stratification occurred at 3:00 PM (Fig. 1.9d) and
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extended across the entire transect length with SST increased to 27 °C. Isotherms
were closer to each other compared to other times, demonstrating larger vertical
temperature gradient and stronger stratification at 3:00 PM compared to the other
times.

Development of stratification during night and daytimes is also illustrated using
temperature profiles along transect B west of the Mississippi Delta in front of the

Fig. 1.8 Simulated a nighttime and b daytime temperature distributions along east–west transect
(Sect. 1.1 in Fig. 1.1) for June 15, 2009
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Fig. 1.9 Simulated changes in stratification along transect A for June 15, 2009; a 12:00 AM,
b 3:00 AM, c 12:00 PM, and d 3:00 PM

Fig. 1.10 Simulated temperature values across transect B on July 15, 2009; a 12:00 AM and
b 3:00 PM
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Barataria Bay (Fig. 1.10). This transect extends to around 60-m depth over an area
with a steeper bed slope compared to transect A. The difference between the
thermal stratification for night and day was more or less similar to that of transect A.
At 12:00 AM on June 15, a well-established stratified layer developed beneath the
mixing depth of 5–10 m and SST was 26.9–27 °C (Fig. 1.10a). Also similar to
transect A, at 3:00 PM (Fig. 1.10b), the daytime stratification was stronger com-
pared to nighttime.

1.5 Representing Stratification Based on Gradient
Richardson Number

The vertical temperature distribution along east–west and cross-shore transects
qualitatively showed that the strength of stratification increased on both diurnal and
monthly timescales. In order to quantify this conclusion, buoyancy frequency and
gradient Richardson number were examined. Richardson number is defined as the
ratio of buoyancy to the shear forces in the water column (Lyons et al. 1964):

Ri =
N2

ð∂u
∂zÞ2 + ð∂v

∂zÞ2
ð1:7Þ

N2 = −
g
ρ0

∂ρ

∂z
ð1:8Þ

in which u and v are the horizontal velocity components varying in the vertical
(z) direction, ρ is water density, and g is gravitational acceleration (m/s2). The
quantity N2 is the Brunt-Väisälä or buoyancy frequency. If the Richardson number
is larger than 1, then buoyancy forces outweigh shear forces; hence, the water
column is stable. If the Richardson number is smaller than 0.25, then shear and
turbulence forces dominate and the water column is unstable, which leads to ver-
tical mixing (Lyons et al. 1964; Turner 1973; Galperin et al. 2007).

Variation of temperature in the water column causes density to change and
thereby changes buoyancy frequency. Since SST oscillates diurnally, similar vari-
ation for surface water density and the gradient Richardson number across the water
column are also expected. Figure 1.11a shows the results for time variation of water
density at the surface and mid-depth (depth of 10 m from the surface) at the
location of CSI-6. The surface and mid-depth locations were selected to calculate
the Richardson Number. The decreasing trend of density is consistent with
increasing trend of water temperature during the simulation period. Surface water
density follows a similar diurnal pattern as SST. No fluctuations were present for
water density at the 10-m depth (mid-water). During the nighttime between June 5
and June 10, surface water density increased to about the mid-depth density due to
the nighttime minimum heating. However, after June 10, the difference in densities
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increased as a result of faster heating of the surface water compared to the
mid-water. Note that the mid-depth density experienced a drop caused by the
mixing event of 4 June.

Vertical gradient of water density at the same location was quantified to obtain
buoyancy frequency (Fig. 1.11b). The variation over time in buoyancy frequency
was similar to SST and surface density on both monthly and diurnal scales. Before
June 5, buoyancy frequency experienced a general declining trend caused by a
northern wind-induced mixing. After this date, buoyancy effect increased as shelf
waters were exposed to higher solar heating.

The strength of stratification was quantified based on the gradient Richardson
number at a fixed point, which is the mid-depth water at CSI-6 location (water
depth of 10 m). Vertical gradients of current components at the mid-depth were

Fig. 1.11 Temporal changes in a simulated water density, b calculated buoyancy frequency, and
c calculated Richardson number during June 1–15, 2009, of the simulation. Dashed line in Fig. c.
denotes the temporal trend in Richardson numbers
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calculated based on the results for wind-induced currents. Since wind speed at the
time was generally weak (less than 7 m/s), its impact on mixing was small. The
resultant Richardson number was therefore large, showing the dominant effect of
buoyancy. The time variation of Richardson number in the mid-depth waters at
CSI-6 showed an increasing trend (Fig. 1.11c). The small values of Richardson
number prior to June 5 show the effect of wind mixing events. Variations of
buoyancy frequency and Richardson number elsewhere over the shelf were similar.

1.6 Diurnal Heating/Stratification and Measured Bottom
Oxygen Concentration

Our simulation results showed that stratification becomes stronger as a result of
summertime solar insolation. Hence, it is expected that bottom water oxygen
concentration would decrease during June 2009 as a stratified water column
blocked water re-oxygenation. Time series of measured oxygen concentrations at
the bottom of CSI-6 (Fig. 1.12a) during June 2009 verified this. Oxygen concen-
tration was about 4 mg/l on the first day of June 2009, followed by a decline,
presumably due to increasing solar radiation and the consequent stratification as
well as enhanced biological processes. On June 4, the northerly winds increased

Fig. 1.12 a Measured bottom water oxygen concentration at station CSI-6 for June 1–June 15,
2009. b Measured SST and bottom water oxygen concentration for July and August 2005
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oxygen concentration from 2 mg/l to about 4 mg/l. After this, with the reinforce-
ment of stratification (see Fig. 1.11), oxygen concentration started a longer term
decline, depleting the bottom oxygen to less than 1 mg/l. Declining measured
bottom oxygen concentrations were consistent with the increase in the simulated
SST and the associated buoyancy frequency (implying that the wind-induced
mixing was not significant). The consistency was also examined for measurements
of dissolved oxygen at CSI-6 during the summer of 2005 (Fig. 1.12b). Time series
of bottom oxygen concentration during July 2005 had an average of 4 mg/l for the
first 20 days when the average SST was 29 °C. During the next two weeks, SST
increased to greater than 30 °C, coincided with declining oxygen concentration.
Oxygen concentration then decreased from 4 mg/l to about 1.6 mg/l between July
20 and August 3 when SST increased to 31 °C. This hypoxic bottom water per-
sisted on the shelf until the middle of the last week of August 2005, when mixing
produced by Hurricane Katrina broke down the stratification and re-oxygenated the
bottom water.

Fig. 1.13 Upper panel, energy spectrum of measured SST at station CSI-6 during summer 2005.
The arrow shows the daily dominant spectral energy for this parameter. Lower panel, the
corresponding energy spectrum for measured bottom oxygen concentration at station CSI-6. The
dominant range of spectral energy is denoted by an ellipse
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The coincident variation of SST (which is mainly produced by solar heating) and
bottom water oxygen concentration are further elaborated by examining the energy
spectrum of each parameter during the measurement period of July and August
2005 (Fig. 1.13). The peak of energy for SST was daily (24 h), and bottom oxygen
concentration peaked within a narrow band from 22 to 28 h. This accounts for the
strong daily variation in bottom oxygen concentration. Based on these time series
comparisons, diurnal heating of water column and the resulted stratification can be a
main contributor. However, it should be noted that strengthening stratification is not
the only effect of the heating induced by solar radiation. Enhanced biological
process as a result of higher water temperature can significantly contribute to the
oxygen depletion of bottom water. The present study did not address the oxygen
consumption by biological processes, and our main focus was demonstrating the
role of diurnal solar heating during summertime as a barrier for re-oxygenation
from the water surface.

1.7 Summary and Conclusion

Development of daily stratification, caused by summertime increases in solar
radiation over Louisiana shelf, was studied using the 3-D FVCOM circulation
model. SST over the shelf west of the Mississippi Delta increased from 25 °C on
June 1, 2009, to about 28.5 °C on June 20, 2009. In addition to the diurnal variation
of solar radiation, SST increased steadily during the month. Model simulation
showed that the steady increase in the temperature of the surface layer caused the
enhancement of stratification. As a result, the stratification was widespread on the
shelf west of the Mississippi Delta and was stronger during the daytime and weaker
during the nighttime. The stratification developed more over the shelf area off the
Terrebonne Bay to the Mississippi Delta. This is the area that historically has had
the most severe hypoxic events.

Analysis showed that the buoyancy frequency followed the same increasing
trend of SST in the absence of significant mixing. The Richardson number
exhibited an increase after the initial mixing over the shelf. Stratification was
consistent with the measured bottom water dissolved oxygen during the simulation
period. Oxygen concentration decreased with the increasing SST and stratification
strength during period with little mixing.

Acknowledgements The authors are grateful to Nancy Rabalais for sharing the dissolved oxygen
data from WAVCIS-CSI-6 and Changsheng Chen for providing the FVCOM.
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Appendix A: Formulation of Different Surface Heat
Components

(All parameters are described in Table 1.1)
Shortwave Radiation: Relationships presented by Guttman and Matthews

(1979), Ivanoff (1977), and Cotton (1979) were used to calculate shortwave radi-
ation flux:

Qo =
Scos2Z

cos Z +2.7ð Þe× 10− 5 + 1.085 cos Z +0.10
ð1:9Þ

The cosine of the zenith angle is computed using the formula:

cos Z = sinϕ sin δ+ cosϕ cos δ cosHA ð1:10Þ

Table 1.1 Parameters used for the formulation of surface heat components

Variable Value Description

ða, bÞ (9.5, 7.66) Vapor pressure constants over ice
ða, bÞ (7.5, 35.86) Vapor pressure constants over water
C Cloud cover fraction
CE 1.75 × 10−3 Transfer coefficient for latent heat
CH 1.75 × 10−3 Transfer coefficient for sensible heat
cp 1004 J kg−1 K−1 Specific heat of dry air
Δ Declination
E Vapor pressure in pascals
es Saturation vapor pressure
∈ 0.622 Ratio of molecular weight of water to dry air
HA Hour angle
L 2.5 × 106 J kg−1 Latent heat of vaporization
L 2.834 × 106 J kg−1 Latent heat of sublimation
Φ Latitude
Ǫ˳ Incoming radiation for cloudless skies
qs Surface specific humidity
q10m 10 m specific humidity
ρa Air density
S 1353 W m−2 Solar constant
Σ 5.67 × 10−8 W m−2 K−4 Stefan–Boltzmann constant
Ta Air temperature
Td Dew point temperature
Tsfc Surface temperature of the water/ice/snow
Vwg Geostrophic wind speed

Z Solar zenith angle
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The declination is δ=23.44
◦

× cos 172− day of yearð Þ×2π ̸365½ �, and the hour
angle is HA= 12 h− solar timeð Þ× π ̸12. The correction for cloudiness is given by

SW↓=Qoð1− 0.6c3Þ ð1:11Þ

The cloud correction is optional since some sources of radiation contain it
already.

Longwave Radiation: The clear sky formula for incoming longwave radiation
is given by Wyrtki (1965):

F↓= σT4
a 1− 0.261 exp − 7.77 × 10− 4 273−Tað Þ2

h in o
ð1:12Þ

while the cloud correction is given by:

LW↓= 1+ 0.275cð ÞF↓ ð1:13Þ

Sensible Heat: The sensible heat is given by the standard aerodynamic formula
(Imberger and Patterson 1981):

H↓= ρacpCHVwg Ta− Tsfc
� � ð1:14Þ

Latent Heat: The latent heat depends on the vapor pressure, and the saturation
vapor pressure given by Imberger and Patterson (1981):

e=611× 10aðTd − 273.16Þ ̸ðTd − bÞ ð1:15Þ

es =611× 10aðTεfc − 273.16Þ ̸ðTεfc − bÞ ð1:16Þ

The vapor pressures are used to compute specific humidity according to:

q10m =
∈ e

p− 1− ∈ð Þe ð1:17Þ

qs =
∈ es

p− ð1− ∈ Þes ð1:18Þ

The latent heat is also given by a standard aerodynamic formula:

LE↓= ρaLCEVwgðq10m − qsÞ ð1:19Þ
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Chapter 2
Physical Drivers of the Circulation
and Thermal Regime Impacting Seasonal
Hypoxia in Green Bay, Lake Michigan

Hector R. Bravo, Sajad A. Hamidi, J. Val Klump
and James T. Waples

Abstract The physical processes that drive the circulation and the thermal regime
in the bay largely control the duration and persistence of hypoxic conditions in
Green Bay. A review of previous studies, existing field data, our own measure-
ments, hydrodynamic modeling, and spectral analyses were used to investigate the
effects on the circulation and the thermal regime of the bay by the momentum flux
generated by wind, the heat flux across the water surface, the Earth’s rotation,
thermal stratification and the topography of the basin. Stratification and circulation
are intimately coupled during the summer. Field data show that continuous strati-
fication developed at regions deeper than 15–20 m between late June and
September and that surface heat flux is the main driver of stratification. Summer-
time conditions are initiated by a transition in the dominant wind field shifting from
the NE to the SW in late June and remain in a relatively stable state until bay
vertical mixing in early September. It is during this stable period that conditions
conducive to hypoxia are present. Wind parallel to the axis of the bay induces
greater water exchange than wind blowing across the bay. During the stratified
season flows in the bottom layers bring cold water from Lake Michigan to Green
Bay and surface flows carry warmer water from the bay to Lake Michigan.
Knowledge of the general patterns of the circulation and the thermal structure and
their variability will be essential in producing longer term projections of future
water quality in response to system scale changes.
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2.1 Introduction

Green Bay is a large, elongated gulf (190 km × 22 km) in the northern part of the
Lake Michigan basin. Physically and biogeochemically the bay can be considered to
be divided into two portions, a northern and a southern bay, defined by a dividing line
at the Chambers Island cross section. The northern or “upper” bay, open to Lake
Michigan, is relatively deep (max. depth >50 m) with water quality similar to that of
the open lake and is mesotrophic in character, while the southern or “lower” bay is
both shallower (mean depth ∼10 m) and more confined, resulting in a steep trophic
gradient from south to north. The bay is fed by a number of rivers draining awatershed
that represents approximately one-half of the total drainage basins for the entire lake
(Bertrand et al. 1976). The riverine filling time is approximately 6 years, but because
of the large exchange of water with Lake Michigan, the actually flushing time for the
bay is less than a year (Mortimer 1979; Miller and Saylor 1993). The largest of these
rivers, and the major tributary to the bay with ∼50% of the inflow, is the Fox River,
entering the bay at the extreme southern end (Fig. 2.1). Once considered one of the
most heavily industrialized rivers in the USA as a result of a major regional paper
industry and an extensive, largely dairy, agricultural industry within its watershed, the
Fox River has a history of excessive loading of nutrients and suspended sediments to
lower Green Bay (Klump et al. 1997). As a result, the lower bay has experienced
hyper-eutrophic conditions for more than 70 years. The morphology of the lower bay
makes it a highly efficient nutrient and sediment trap, with organic-rich sediments that
accumulate at rates up to a cm per year and organic carbon contents in excess of 10%
by weight (Klump et al. 2009). These sediments quickly become anaerobic and high
rates of benthic respiration drive recurring summertime bottom water hypoxia during
periods of thermal stratification, generally from late June to early September. The
physical processes of circulation and the thermal regime of the bay drive themixing of
tributary nutrients and sediment loads with Lake Michigan waters, affecting the
duration and persistence of these hypoxic conditions. The physical drivers of circu-
lation and the thermal regime in the bay are the focus of this chapter.

A review of previous studies, existing field data, our own measurements,
hydrodynamic modeling, and spectral analyses were used to investigate the effects
on the circulation and the thermal regime of the bay by the momentum flux gen-
erated by wind, the heat flux across the water surface, the Earth’s rotation, thermal
stratification, and the topography of the basin. Stratification and circulation are
intimately coupled during the summer.

A brief summary of previous studies on the effects of momentum flux generated
by the wind on circulation and thermal regime provides a foundation for our
research. Miller and Saylor (1985) analyzed currents and temperatures measured in
1977 in the passages between Green Bay and Lake Michigan (herein referred to as
the mouth) and within the bay proper. They found that the direction of circulation
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reverses with a SW-NE (along-bay) wind direction. Gottlieb et al. (1990) measured
currents and temperatures in Green Bay during the 1988–1989 winters and the
summer and fall of 1989. Their monthly averaged summer currents showed that the
direction of circulation in the bay varied with the wind direction. Gottlieb et al.
(1990) found that the power spectrum of their measured currents showed the

Fig. 2.1 Bathymetric map of Green Bay showing locations of 1989 NOAA measurements, 2011
current and temperature measurements. The top left inset shows map and cross section of the
passages between Lake Michigan and Green Bay. The bottom right inset shows the locations of
ASOS meteorological stations and NBDC buoys
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surface-mode oscillations computed by Rao et al. (1976), and they attributed the
8-day mode to wind forcing with that frequency. Mortimer (2004) reasoned that:
“[t]hese (winds) occurred at intervals ranging from 6 to 12 (average 8) days,
apparently regular enough to generate and maintain the internal seiche during the
stratified season from mid-July to September.” Waples and Klump (2002) analyzed
the effect of the wind direction on the water mass exchange between Green Bay and
Lake Michigan, and hypoxia in the southern bay. They found a significant shift in
the summer surface wind direction over the Laurentian Great Lakes from 1980 to
1999. They showed that in Green Bay the new wind field most likely resulted in a
decrease in the water mass exchange with Lake Michigan, leading to an increase in
vertical mixing as a result of a less highly stratified water column, a concomitant
decrease in the persistence of bottom water hypoxia, warmer bottom water tem-
peratures, and an increase in benthic microbial metabolism, as observed in
enhanced methane production from bottom sediments. Recently, Hamidi et al.
(2015) analyzed interannual variability in the summer wind direction and the cir-
culation patterns and discussed the relation between multi-year monthly average
wind fields and the circulation patterns in Green Bay.

The effects of heat flux across the water surface on the circulation and the thermal
regime has been the subject of important research. Beletsky and Schwab (2001)
applied a three-dimensional primitive equation numerical model to Lake Michigan
for the periods 1982–1983 and 1994–1995 to study the seasonal and interannual
variability of the lake-wide circulation and the thermal structure in the lake. The
model was able to reproduce all of the basic features of the thermal structure in Lake
Michigan: spring thermal bar, full stratification, deepening of the thermocline during
the fall cooling, and finally, overturn in the late fall. They used a bulk aerodynamic
formulation to calculate heat and momentum flux fields over the water surface for the
lake circulation model. Lately Hamidi et al. (2015) analyzed the relation between the
thermal regime in Green Bay, heat flux across the water surface and heat transport by
circulation, including the water exchange with Lake Michigan.

Examples of previous studies on the effects of stratification and topography of
the basin on the circulation and the thermal regime include Miller and Saylor
(1985), Gottlieb et al. (1990), and Saylor et al. (1995). Miller and Saylor (1985)
analyzed currents and temperatures measured in 1977 in Green Bay and found flow
in two layers and the opposite direction through the mouth of the bay during the
stratified period. They reasoned that cold hypolimnetic water maintains stratifica-
tion and promotes flushing. They also observed oscillations in current records and
analyzed coherence between currents and water level fluctuations. Gottlieb et al.
(1990) measured currents and temperatures in Green Bay during the 1988–1989
winters and the summer and fall of 1989. Their July and August 1989 current and
temperature measurements revealed a strong, persistent, well-defined 8-day-long
oscillation associated with seiching of the thermocline. The power spectrum of their
measured currents also showed the surface-mode oscillations computed by Rao
et al. (1976). Gottlieb et al. (1990) added that the observed period agreed with that
of a free standing internal wave (i.e., an internal seiche). Saylor et al. (1995) used
summer 1989 measurements (Gottlieb et al. 1990) to investigate near-resonant wind

26 H.R. Bravo et al.



forcing of internal seiches in Green Bay. Saylor et al. (1995) found persistent
oscillations of the thermocline at the period of the bay’s lowest-mode, closed basin
internal seiche, an 8-day long period.

This chapter is organized as follows. Section 2.2 presents the research methods
used and Sect. 2.3 presents the research results. Hamidi et al.’s (2015) results on the
effects of surface heat flux and momentum flux generated by the wind on the
circulation and the thermal regime are summarized in Sects. 2.3.1 and 2.3.2 of this
chapter. In Sect. 2.3.3, we present the results of a numerical experiment on the
effect of the wind direction on the water exchange between Lake Michigan and
Green Bay. Section 2.3.4 presents a calculation of the water exchange through a
midbay section at Chambers Island and the mixing time that shows the effects of
stratification and the bay and lake topography. In Sect. 2.3.5, we investigate the
effects of wind, stratification, Earth’s rotation, and the bay and lake topography on
two-layer flows using frequency domain analysis of along-the-bay wind, and top
and bottom currents. In Sect. 2.3.6, we analyzed field data on rotating currents to
investigate the effects of stratification, Earth’s rotation, and the bay and lake
topography on the direction of currents. Section 2.4 presents the conclusions of this
research study. The main questions explored in this chapter on physical drivers of
hypoxia are the relation between the surface heat flux and stratification, the relation
between multi-year monthly averages of wind fields and circulation pattern, the
relation between the wind direction and the water exchange between Green Bay and
Lake Michigan, the residence time in lower Green Bay, and the effect of the Earth’s
rotation on the currents in the top and bottom layers during the stratified season.

2.2 Methods

2.2.1 New Field Measurements

Our data collection program during the summers of 2011, 2013, and 2014 focused on
southernGreenBay.Currentsweremeasured at three stations usingNortekAquadopp
acoustic Doppler profilers (2 MHz) (stations 1, 18, and 19, see Fig. 2.1 and
Table 2.1). Continuous measurements of the water temperature at 1–3 m depth
intervals were collected at stations 9, 17, 31 and Entrance Light—EL using Onset
Hobo temperature data loggers (±0.21 C). The Aquadopp ADCPs were deployed
between June 17 and October 5, 2011, and the settings included a sampling frequency
of 2 Hz, a cell size 0.5 m, an averaging interval 180 s, and a horizontal velocity
precision 0.5 cm/s. Our 2014 field measurements included time series profiles of
horizontal velocity and temperature measured at a GLOS Buoy (NOAA # 45014)
located at Station 17 (see: glos.us). The 2011ADCP measurements were done in
cooperation with NOAA GLERL as part of an effort to improve nearshore wave
climate and beach forecast models within the bay. The 2011 current measurements
were obtained at sites with a depth up to 10 m because that is the effective range of the
ADCPs employed.
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2.2.2 Historical Observations

NOAA GLERL (Hawley, personal communication, 2012) provided summer 1989
current and temperature data (Gottlieb et al. 1990) for 21 moorings, including
stations N22, N24, and N25 at the boundary between Green Bay and Lake
Michigan at the tip of the Door Peninsula, and station N19 west of Chambers Island
(Fig. 2.1 and Table 2.1). The model validation used 1989 historical measurements
that were made at sites that are critical to the understanding of the water exchange
between the lake and the bay at the northern tip of the Door Peninsula (Stations
N22, N24, and N25 at depths larger than 30 m) and between southern and northern
Green Bay at the Chambers Island east and west channels (Station N19).
Great Lakes surface water temperature data obtained from NOAA Coast Watch
(http://www.coastwatch.glerl.noaa.gov/ftp/glsea/) were used to validate modeled
temperatures.

2.2.3 Meteorological Forcing

Meteorological data sets were developed to run the Lake Michigan model for years
in which new and/or historical observations existed, thus allowing validation
against measured currents and temperature data. For 2011, we used a data set
prepared by NOAA GLERL, consisting of wind velocities, air temperature, dew
point, and cloud cover. For years with historical observations, we used the method
described by Beletsky and Schwab (2001) to interpolate to the model grid from the
meteorological data available at stations around the lake (Fig. 2.1). To calculate the
overwater meteorological fields from land observation data, we first interpolated
the data to an hourly basis, then carried out height adjustment and
overland/overwater adjustments, and finally interpolated the adjusted data for all

Table 2.1 Locations and characteristics of new and historical field data collection sites

Station °Lat. °Lon. Depth (m) Data Year

1 44.60 87.87 4 Current 2011
9 44.70 87.82 9 Temp. 2011
17 44.79 87.76 13 Current/Temp. 2014
18 44.78 87.82 10 Current 2011
19 44.87 87.88 4 Current 2011
31 44.93 87.51 25 Temp. 2011
Entrance Light (EL) 44.65 87.90 6.8 Temp/DO 2011
N19 45.21 87.41 33 Current/Temp. 1989
N22 45.29 86.97 30 Current 1989
N24 45.43 86.80 45 Current/Temp. 1989
N25 45.40 86.75 37 Current 1989

28 H.R. Bravo et al.

http://www.coastwatch.glerl.noaa.gov/ftp/glsea/


stations spatially over the 2 km grid. Data from 11 NOAA Automatic Surface
Observing System (ASOS) stations on land were used. After interpolation over
water, results were crosschecked with data at the locations of NBDC buoys 45007
(south) and 45002 (north) in the lake. The accuracy of this interpolation method
was verified by comparing interpolated meteorological data with measured data.
The comparison (not shown) demonstrated the good accuracy of the method
(Hamidi et al. 2015).

2.2.4 Modeling

We employed two hydrodynamic models in this study, namely a Lake Michigan
model that is a version of the Great Lakes Coastal Forecasting System (GLCFS)
developed and operated by NOAA GLERL, and a high resolution nested model of
Green Bay developed for this study. The GLCFS model is based on a Princeton
Ocean Model (POM) version adapted to the Great Lakes (Schwab and Bedford
1994). Hydrodynamic models numerically solve the governing equations to predict
currents and temperature that result from the combined effects of meteorological
forcing functions, the Earth’s rotation, and bathymetry. The Princeton Ocean Model
(POM) (Blumberg and Mellor 1987) is a time-dependent 3D, non-linear, finite
difference model that solves the conservation of heat, mass, and momentum
equations, considering the combined effects of the physical drivers listed above.
The surface heat flux, hf, is calculated as

hf = swr + shf + lhf + lwr ð2:1Þ

where swr is shortwave radiation from the sun, shf is sensible heat transfer, lhf is
latent heat transfer and lwr is long wave radiation. The equations governing the
dynamics of coastal circulation contain fast moving external gravity waves and
slow moving internal gravity waves. It is desirable in terms of computer economy
to separate the vertically integrated equations (external mode) from the vertical
structure equations (internal mode). This technique, known as mode splitting
(Mellor 2002), permits the calculation of the free surface elevation with little
sacrifice in computational time by solving the velocity transport separately from the
three-dimensional calculation of the velocity and the thermodynamic properties.
The nested model used time steps of 1 s and 20 s for the external and internal time
steps, respectively. In this study, simulations started in March–April with Lake
Michigan well mixed from top to bottom at temperatures near the temperature of
maximum density for freshwater, about 4 °C. For applications to the Great Lakes,
the salinity is set to a constant value of 0.2 parts per thousand. The turbulence
closure scheme characterizes the turbulence by equations for the turbulence kinetic
energy and a turbulence macroscale, according to the Mellor and Yamada 2.5
model (Mellor and Yamada 1982). Full details are given in Beletsky and Schwab
(2001).

2 Physical Drivers of the Circulation and Thermal Regime … 29



The Lake Michigan model uses a grid size of 2 km and 131 × 251 cells in the
EW and the NS directions, respectively, and 20 vertical depth intervals (sigma
layers). The model is driven by the meteorological conditions of wind, air tem-
perature, dew point, and cloud cover developed as described above. Meteorological
forcing is distributed over the lake and varies in time every hour. The nested model
for Green Bay uses a grid size of 300 m and 132 × 644 cells in the directions
along the bay and across the bay, respectively, and 20 vertical depth intervals or
sigma layers (Fig. 2.2). The nested model obtains its meteorological forcing, initial
and boundary conditions between Green Bay and Lake Michigan from the Lake

Fig. 2.2 Sketch of the grid used for the nested grid model. The model obtains boundary
conditions at the mouth region between Green Bay and Lake Michigan from the GLCFS model,
and tributary inflows from USGS Web sites. The dark line across Chambers Island delineates the
grid used for Lower Green Bay model simulations
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Michigan model, and tributary inflows from USGS Web sites (http://www.
waterdata.usgs.gov/wi/nwis/sw). Monthly averaged winds and currents were cal-
culated for up to five years within the 2004–2008 period from GLCFS results
provided by NOAA GLERL.

2.2.5 Model Validation

As described by Hamidi et al. (2015), the hydrodynamic model results were vali-
dated against our own 2011 and the historical 1989 measurements, i.e., for two
years with available field data and quite different meteorological forcing. As
explained in Sect. 2.3.2, we found significant interannual variability in meteoro-
logical forcing and circulation patterns. Once the model was validated under dif-
ferent meteorological forcing, we used it in Sect. 2.3.2 to analyze the relation
between multi-year monthly average wind forcing and circulation patterns. The
goodness of fit between measurements of currents or temperature and model pre-
dictions was quantified in terms of the estimated root mean square error (RMSE),
the normalized root mean square error (NRMSE), and the correlation coefficient.
The NRMSE is equivalent to the Fourier norm, Fn, used by Beletsky and Schwab
(2001) and can be thought of as the relative percentage of variance in the obser-
vations unexplained by model calculations. The correlation coefficient between the
measured and the model-predicted time series is their covariance divided by the
product of their individual standard deviations. Blumberg et al. (1999) assessed
the skill of their model of the New York Harbor region in terms of the RMSE and
the correlation coefficient. We investigated the sensitivity of the model with respect
to model parameters and decided to use default values. The sensitivity analysis
included varying the horizontal and vertical grid resolution, changing the model
parameters such as the dimensionless coefficient (C) that relates velocity gradients
to horizontal kinematic viscosity in Smagorinsky’s horizontal diffusivity and the
turbulent Prandtl number (the relation between diffusivity and viscosity), varying
the description of the shortwave radiation penetration, and varying the turbulent
vertical mixing. Table 2.2 shows a comparison between the observed and the
measured currents at station 1. Verification of the temperature profiles was pre-
sented in detail in Hamidi et al. (2015).

Table 2.2 Statistics of the
comparison between observed
and modeled currents at
station 1

Depth avg. currents Min Max Average

RMSE (cm/s) 1.10 2.19 2.10
NRMSE 0.52 0.95 0.82
Correlation coefficient 0.47 0.85 0.62
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2.2.6 Spectral Analysis

The time series data collected in Green Bay during 1988–1989 (Gottlieb et al. 1990)
and 2011 showed oscillatory patterns in temperatures and currents. Frequency
analysis, including the estimation of power spectra, coherency and phase, was
applied to uncover the main frequencies in the oscillations of currents and tem-
perature isotherms. Recall that the spectrum of a time series or signal is a function
of a frequency variable, which has dimensions of power or energy per frequency
unit (such as cycles per day). Intuitively, the spectrum decomposes the content of
the time series into different frequencies present in that process and helps identify
periodicities. The SSA toolkit was used to estimate the power spectra.

Coherence analysis, or cross-spectral analysis, was used to identify variations
that have similar spectral properties (high power in the same spectral frequency
bands), i.e., if the variability of two distinct, detrended time series is interrelated in
the spectral domain (Von Storch and Zwiers 1999). Squared coherency, the fre-
quency domain analogue of correlation, was estimated in this study following
Jenkins and Watts (1968) and Bloomfield (1976). Values of coherency estimates
were considered significant at the 95% level of confidence when they were larger
than the critical value T derived from the upper 5% point of the F-distribution on (2,
d-2) degrees of freedom, where d is the degrees of freedom associated with the
univariate spectrum estimates.

2.2.7 Effects of Earth’s Rotation

Inertial currents are consequences of the Coriolis effect, caused by the rotation of
the Earth and the inertia of the mass experiencing the effect. The effects of the
Coriolis force generally become noticeable only for motions occurring over large
distances and long periods of time, such as a large-scale movement of water in the
ocean. This force causes moving objects on the surface of the Earth to be deflected
in a clockwise sense (with respect to the direction of travel) in the Northern
Hemisphere. Inertial currents occur in all large stratified basins and oceans, and the
theoretical inertial period is 24/(2 sin ϕ), i.e., 17.3 h, for a latitude ϕ = 44°. Inertial
oscillations observed in Lake Michigan do not ordinarily reach the theoretical
inertial limit. The observed periods are slightly less (but never more) than the
theoretical limiting period. Thus one may speak of near-inertial oscillations
(Mortimer 2004). The Rossby radius of deformation, or simply the Rossby radius
a = c/f (c is the wave speed and f is the Coriolis parameter), is the length scale at
which rotational effects become as important as buoyancy or gravity wave effects in
the evolution of the flow about some disturbance. For Green Bay, representative
values of c for surface and internal long waves are cs = 17 m/s and ci = 0.27 m/s.
Therefore, for f = 10−4 rad/s, the Rossby radius for surface and internal waves are
as = 168 km and ai = 2.6 km, respectively. Green Bay is “fairly small” for surface
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Kelvin waves but “quite large” for internal waves. In Sect. 2.3.6, currents measured
west of Chambers Island by Gottlieb et al. (1990) were analyzed using spectral
analysis to investigate possible evidence of the Coriolis effect.

2.3 Results and Discussion

2.3.1 Relation Between the Surface Heat Flux
and Stratification

Gottlieb et al.’s (1990) temperature measurements and our own 2011 measurements
had a resolution sufficient to characterize stratification. The net heat flux across the
water surface of Green Bay was calculated for those two years in order to explore
its relation with stratification. Figure 2.3a, c show the calculated net heat flux, and
its components of shortwave radiation, sensible heat transfer, latent heat transfer,
and long wave radiation, for 1989 and 2011, respectively. The meteorological
forcing files have an hourly time step, and the calculated heat flux varies hourly.
Heat flux terms are displayed in Fig. 2.3 with a daily time step for readability
reasons. The figure shows that the net heat flux is consistently positive between
mid-June and September. Shortwave radiation from the sun was the largest single
component of the surface heat flux. The calculated heat fluxes compared very well
with heat flux measurements made in 2011 (Grunert 2013), and with Beletsky and
Schwab’s (2001) calculated annual cycles of the net heat flux for Lake Michigan
during 1982–1983 and 1994–1995, which ranged from −400 W m−2 in winter to
200 W m−2 in summer.

Figure 2.3b, d show measured temperature profiles at Stations N19 and 31 (see
locations in Fig. 2.1 and Table 2.1) during the summers of 1989 and 2011,
respectively. Continuous stratification developed at regions deeper than 15–20 m
between late June and September. A positive surface heat flux heats the surface
waters, and Fig. 2.3 shows that stratification in the measured temperature profiles
follows the surface heat flux cycle, indicating that the surface heat flux is the main
driver of stratification in Green Bay.

2.3.2 Relation Between Wind Fields and Circulation Pattern

Previous descriptions of the general circulation in Green Bay were based on the
field measurements made within one-year period (Miller and Saylor 1985; Gottlieb
et al. 1990). Examining the more general description of circulation patterns con-
tained in the 1988–1989 data supplied by NOAA GLERL, our own 2011 current
measurements, and model simulations for 1989 and 2011, revealed considerable
differences between the 1989 monthly averaged wind field and circulation patterns,

2 Physical Drivers of the Circulation and Thermal Regime … 33



and those in 2011. The monthly averaged wind was northerly in August 1989 and
westerly in August 2011. The circulation pattern in August 1989 was very different
than that in August 2011, particularly across the region between Green Bay and
Lake Michigan. Results based on the single-year measurements can give incom-
plete descriptions of longer term conditions.

The relation between summer wind fields and circulation was therefore studied
using multi-year averages. Mean summer circulation patterns were determined by
calculating multi-year averages of wind shear fields and depth-averaged currents in
the bay, for each month from May to September, starting with two-year averages
and successively increasing the number of years included. The circulation patterns
remain unchanged beyond a four-year average. Five-year averages of wind shear
fields and currents are illustrated in Figs. 2.4 and 2.5, respectively, for the
2004–2008 period. The circulation in the bay depends on the wind field over the
whole lake. Figures 2.4 and 2.5 show the wind and current fields in Green Bay and
the immediately adjacent area of Lake Michigan.

Even though there is significant variability from one year to another, maps of
climatological circulation in Green Bay are useful because they describe the general
circulation patterns in the bay and can show the patterns of seasonal progression in

Fig. 2.3 a and c calculated net heat flux across the water surface of Green Bay, and its
components, for 1989 and 2011, respectively. b and d measured temperature profiles (C) at
Stations N19 and 31 during the summers of 1989 and 2011, respectively
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the wind field and the resulting mean flows. Beletsky and Schwab (2008) used
10-year averages of model results combined with measurements that validated the
model, to map basin scale, climatological circulation patterns in Lake Michigan.
They pointed out that maps of climatological circulation are extremely useful for a
variety of issues ranging from water quality predictions to sediment transport and
ecosystem modeling.

Fig. 2.4 Monthly averaged wind stress for May through August for the 2004–2008 five-year
period
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In May, the monthly averaged wind is predominantly NE. In June, it rotates to
the SW and keeps the same monthly average direction for the rest of the summer.
The switch in wind direction in May and the consistent wind direction during the
summer occurs over the whole lake. Analysis showed a consistent relationship
between the monthly average wind shear direction and the monthly average cur-
rents and circulation. At the beginning of summer in May, the average circulation

Fig. 2.5 Monthly averaged circulation for May through August for the 2004–2008 five-year
period
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pattern responds to a changing wind climate, which transitions from a predomi-
nantly NE to a SW wind direction in June. During July, August, and September
while the wind blows from the SW the circulation patterns remain similar (Figs. 2.4
and 2.5). Figure 2.4 also shows that the average magnitude of wind shear in June is
smaller than that later in the summer as the variability in the direction of the winds
cancels one another and reduces the mean. Water circulation patterns change in
June as a result of changes in the wind direction, and as more persistent wind
conditions become established, a more stable circulation pattern develops during
the rest of the summer. Hypoxia is typically observed from late June to early
September. Results are shown for the months of May to August to demonstrate the
May to June switch in the dominant winds and the subsequent period of consistent
average wind associated with stratification. Figure 2.5 shows depth-averaged cur-
rents to illustrate general circulation patterns. Figure 2.3b, d show the relevance of
bottom currents during the inception of stratification, when the transport of colder
water by into-the-bay bottom currents induces a decrease in bottom temperatures.

Circulation varies from year to year depending on wind forcing, yet it was
possible to find persistent, monthly average patterns in wind forcing and consequent
circulation patterns. Schwab and Beletsky (2003) clearly explained the relation
between transport vorticity and the curl of the wind stress in Lake Michigan. When
the dominant wind field shifts from NE to SW in late June there is a change in the
wind curl, which in turn results in a change in transport vorticity and circulation
patterns, as shown in Fig. 2.5. Furthermore, conditions conductive to hypoxia are
present during the July–September period of consistent circulation.

This description complements the climatological maps of summer and winter
circulation in Lake Michigan developed by Beletsky and Schwab (2008), who
found consistent overall cyclonic circulation in Lake Michigan. Maps of climato-
logical circulation are useful for understanding water quality and ecosystem issues
and patterns of sediment transport.

2.3.3 Relation Between Wind Direction and Water
Exchange Between Green Bay and Lake Michigan

The water exchange between Green Bay and Lake Michigan varies continuously
and depends on several of the physical drivers considered in this chapter. The effect
of wind direction alone was explored by estimating the water exchange between
Lake Michigan and Green Bay under idealized conditions consisting of summer
2011 atmospheric forcing, except for steady uniform wind with a velocity of
5 m s−1 parallel or perpendicular to the main Green Bay axis. This experiment
tested the effect of the wind direction alone and it did not reflect real time variability
in wind speed and direction. The purpose of the experiment was to compare the
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water exchange induced by along-bay and cross-bay winds. An estimation of the
water exchange with a historical unsteady wind is described in Sect. 2.3.4.

This idealized condition is intermediate between the barotropic model with a
steady uniform wind used by Beletsky (2001) to study the circulation in Lake
Ladoga and the general case of a baroclinic model with a spatially variable wind. In
this idealized condition, the wind curl is zero because the wind field is steady and
spatially uniform (Schwab and Beletsky 2003). The model was run in each case for
about one month, when it was verified that the circulation and the thermal regime
approached steady conditions. A steady uniform wind parallel to the axis of the bay
(NNE and SSW) induces roughly a 25% greater water exchange (11,670 and
10,080 m3 s−1, respectively) than wind blowing across the bay (ESE and WNW,
9,900 and 7,200 m3 s−1, respectively). In addition, wind blowing from the lake to
the bay (NNE) induces a greater water exchange than wind blowing from the bay to
the lake (SSW).

A water exchange through the mouth region of 11,550 m3 s−1 was estimated for
wind from the WSW (30o south from W), which approximates the monthly average
wind direction during August 1994. The ESE wind direction described above
approximates the monthly averaged wind direction in August 1995. Across-bay
wind from the ESE induced a substantially smaller water exchange (9,900 m3 s−1)
than wind from the WSW. Waples and Klump (2002) found that SW wind (parallel
to the major axis of the bay) in August of 1994 produced decreases in bottom
temperature and oxygen concentration, while SE (cross-axial) winds in August of
1995 caused increases in bottom temperature and oxygen concentration. They
explained the 1995 effect by saying that the water mass exchange with Lake
Michigan slowed under more easterly winds. The comparison performed in this
study is not based on modeling the circulation and thermal regime during August
1994 and 1995 using the actual meteorological forcing, yet confirms Waples and
Klump’s (2002) finding about the important effect of the wind direction on the
water exchange between Green Bay and Lake Michigan. One of the long-term
impacts hypothesized as potentially important for this system is a regime change in
the propagation of storm tracks through the Laurentian Great Lakes basin in
response to large-scale climate change patterns that have pushed summertime storm
tracks further to the south.

Miller and Saylor (1985) estimated at 3,300 m3 s−1 the average water exchange
during June, July, and August of 1977, and at 0.6 yr the “emptying time” for Green
Bay. The monthly average wind direction was from the SWW in June and from the
SW in July and August of 1977. Our estimate for idealized steady uniform wind
shown above is almost three times larger than Miller and Saylor (1985) estimate.
The water exchange rates presented above are realistic estimates because they were
obtained using a model that was positively tested against 1989 measurements
(Hamidi et al. 2013), assuming an idealized uniform wind with normal speed. The
water exchange flow rates presented here are therefore comparable with Miller and
Saylor’s (1985) estimates based on 1977 measurements.
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2.3.4 Estimation of Water Transport Between Lower
and Upper Green Bay

The water transport between lower and upper Green Bay was estimated based on
model simulation of the circulation and the thermal regime during the summer of
1989, using actual meteorological forcing. This water transport was calculated by
integrating the modeled currents through the cross section at Chambers Island
(Fig. 2.2). During the stratified season, a complex two-layer transport oscillated out
of and into lower Green Bay. Figure 2.6 shows that summer 1989 net transport
varied continuously over time. The three-month (June–August) average in and out
flows were practically equal with a value of 1,500 m3 s−1. This means that
exchange between the upper and lower bay is ∼15% of the exchange of the upper
bay with the open lake, i.e., the flushing or exchange attenuates significantly as
water penetrates into the southern bay. The model estimation is almost double the
water transport values of 790 m3 s−1 and 830 m3 s−1 out of and into lower Green
Bay, respectively, estimated by Miller and Saylor (1993) for the 93 days with
baroclinic currents, June 22–September 22, 1989. Miller and Saylor’s (1993)
estimation was based on actual current measurements along four vertical profiles.
The model estimation presented here is based on simulation of the circulation and
the thermal regime in the whole bay, using actual summer 1989 meteorological
forcing. Dividing the volume of lower Green Bay (23.7 km3) by the estimated
average flow rate of 1,500 m3 s−1 yields a “mixing time” for the lower bay across
the Chambers Island section of ∼0.5 year. Concomitantly, a mixing time for the
upper bay would be on the order of 50 days.

The values of average transport estimated from the data and model are within a
factor of two. The comparison of estimations seems reasonable given that the
former value resulted from measurements made along four vertical profiles, while
the latter values were estimated independently by a model driven by reconstructed
meteorological conditions, as explained in Sect. 2.2.3. Spectral analysis was used to
investigate additional evidence of the physical drivers investigated in this chapter.
Figure 2.6b shows the estimated spectrum for the net transport out of or into lower
Green Bay during summer 1989 across the Chamber Island cross section. The
spectrum shows peaks for the first surface mode of Green Bay GB1 (0.097 h−1), the
first surface mode of Lake Michigan LM1 (0.108 h−1), and the first internal mode of
Green Bay, GBi1 (0.005 h−1 or 0.12 d−1). This means that the water exchange
between upper and lower Green Bay shows relevant timescales that demonstrate the
effects of stratification (GBi1), and the bay and lake topography (GB1 and LM1).
This result confirms the important contribution to the transport of the 8-day period
oscillations reported, based on a qualitative analysis of the currents’ data, by Miller
and Saylor (1993).
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2.3.5 Effects of Wind, Stratification, Earth’s Rotation,
and the Bay and Lake Topography on Two-Layer
Flows

We used frequency domain analysis of field data to further investigate the effects of
wind, stratification, the Earth’s rotation, and the topography of the bay and the lake
topography on the observed two-layer flows. Specifically, we investigated common
timescales of top and bottom currents and along-bay wind, and whether the relevant
timescales indicate evidence of the effects of basin topography, the Earth’s rotation,
and stratification.

Fig. 2.6 a Model-estimated net transport out of (+) or into (−) lower Green Bay during summer
1989 across the Chambers Island midbay cross section. b Spectrum of the net flow out or into
lower Green Bay during summer 1989
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Typical two-layer flows occur during the stratified season. Flows in the bottom
layers bring cold water from Lake Michigan to Green Bay and surface flows carry
warmer water from the bay to Lake Michigan. Figure 2.7a shows along-bay cur-
rents measured at Station N19 (Chambers Island west) in the top and bottom layers
(Gottlieb et al. 1990), and Fig. 2.7b shows along-bay wind speed during the
summer of 1989. The figure shows that during the stratified season (between late
June and September) along-bay surficial and bottom currents vary out of phase.

The time series were analyzed in the frequency domain to uncover relevant
timescales. Figure 2.8a–c show the power spectral density estimates for summer
1989 along-bay currents measured at station N19 (Chambers Island west) in the top
(a) and bottom (b) layers, and along-bay wind (c). The frequencies of the significant
peaks in Fig. 2.8a (top currents) and b (bottom currents) include the inertial fre-
quency f (0.058 h−1), the M2 tide (0.081 h−1), the first surface mode of Lake
Michigan, LM1 (0.108 h−1), the first surface mode of Green Bay GB1 (0.097 h−1),
and the first internal mode of Green Bay, GBi1 (0.005 h−1 or 0.12 d−1). The M2
tidal constituent, the “principal lunar semi-diurnal,” was observed in field data and
is not considered by the POM model.

Figure 2.8d presents the squared coherency and phase between top and bottom
currents. The figure shows that surface and bottom currents are significantly
coherent (above the 95% confidence level shown in the figure) at several fre-
quencies, including the first internal mode of Green Bay, GBi1, the inertial fre-
quency f caused by the Earth’s rotation, the M2 tide, the first surface mode of Green
Bay GB1, and the first surface mode of Lake Michigan LM1. In other words, the

Fig. 2.7 a along-bay currents measured at station N19 (Chambers Island west) in the top (blue)
and bottom (red) layers (Gottlieb et al. 1990), and b along-bay wind speed during summer 1989.
Positive values denote currents and wind flowing out of the bay
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squared coherency in Fig. 2.8d confirms the information conveyed by the spectra in
Fig. 2.8a and b, showing that top and bottom currents have common relevant
timescales that demonstrate the effects of stratification (GBi1), the Earth’s rotation
(f), and the bay and lake topography (GB1 and LM1). Figure 2.8d also shows that at
the inertial frequency top and bottom currents are out of phase by about 135°.

Fig. 2.8 Power spectral density estimates for along-bay currents measured at Station N19
(Chambers Island west) in the top (a) and bottom (b) layers, c power spectral density estimates for
along-bay winds, d squared coherency and phase between top and bottom currents, e squared
coherency and phase between top currents and wind. The horizontal lines in parts d and e show the
threshold for coherency to be significant at the 95% level of confidence
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The squared coherency and phase between wind and top currents (Fig. 2.8e)
shows that wind and surface currents are significantly coherent at several fre-
quencies, including the first internal mode of Green Bay, GBi1, the inertial fre-
quency f caused by the Earth’s rotation, the first surface mode of Lake Michigan
LM1, and the first two surface modes of Green Bay GB1 and GB2 (0.207 h−1). In
other words, wind and top currents show common relevant timescales that
demonstrate the effects of stratification (GBi1), the Earth’s rotation (f), and the bay
and lake topography and the Earth’s rotation (GB1, GB2, and LM1).

2.3.6 Effects of Stratification, Earth’s Rotation, and the Bay
and Lake Topography on the Direction of Currents

Currents measured in the top and bottom layers, west of Chambers Island during
summer of 1989, were analyzed to investigate evidence of the effect of the Earth’s
rotation. Top and bottom currents rotated clockwise (as shown by Fig. 2.9a for the

Fig. 2.9 Direction of a bottom and c top currents measured at Chambers Island west during
summer 1989; spectra of b bottom and d top currents direction
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near bottom currents) with distinct periodicity during the stratified season (between
late June and September).

Figure 2.9b, d show the power spectral density estimates for the direction of
summer 1989 bottom and top currents, respectively, measured at station N19
(Chambers Island west). The frequencies of the significant peaks in Fig. 2.9b, d
include the first internal mode of Green Bay, GBi1 (0.005 h−1 or 0.12 d−1), the
inertial frequency f (0.058 h−1), the M2 tide (0.081 h−1), the first surface mode of
Lake Michigan, LM1 (0.108 h−1), and the first surface mode of Green Bay GB1

(0.097 h−1). In other words, the rotation of top and bottom currents shows time-
scales that demonstrate the effects of stratification (GBi1), the Earth’s rotation (f),
and the bay and lake topography and the Earth’s rotation (GB1 and LM1). The first
internal mode of Green Bay, GBi1, is the frequency of persistent oscillations of the
thermocline at the period of the bay’s lowest-mode, a closed basin internal seiche,
an 8-day long period found by Saylor et al. (1995). The observed inertial period f
was very close to the theoretical limiting period. Mortimer (2004) used the term
near-inertial oscillations to describe this phenomenon. The passage west of

Fig. 2.10 Direction of a bottom and c top currents measured at Station 17 during summer 2013;
spectra of b bottom and d top currents direction
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Chambers Island is about four times the Rossby radius for internal waves (estimated
at 2.6 km); i.e., it is wide enough to observe the effect of the Earth’s rotation.

A similar analysis of our 2013 current measurements at Station 17 showed
results that are very similar to those just described. These results, shown in
Fig. 2.10, demonstrate that the effects of the Earth’s rotation are also observable in
the lower Green Bay circulation.

2.4 Conclusions

The thermal regime in Green Bay is determined by the combination of the heat flux
across the water surface and heat transport by circulation, including the water
exchange with Lake Michigan. The analysis of the calculated heat flux across the
water surface and measured, stratified temperature profiles showed a clear
cause-effect relationship in regions deeper than 15–20 m between late June and
September.

Green Bay exhibits significant interannual variability in the summer wind
direction and the circulation patterns. Hence, descriptions of circulation based on
single-year field data or modeling may represent incomplete pictures or may miss
the range of variability present. The existence of persistent, monthly average pat-
terns in wind forcing and consequent circulation patterns is an important finding of
this study. The monthly average wind direction in May is from the NE and rotates
to the SW in June, producing changes in the circulation pattern. Summertime
conditions are initiated by this transition in the dominant wind field shifting from
the NE to the SW in late June, and conditions remain relatively stable until bay
vertical mixing in early September. It is during this stable period that the stratified
conditions conducive to hypoxia are present. Wind direction has a significant effect
on the water exchange between Lake Michigan and Green Bay. A computational
experiment for an idealized steady uniform wind parallel or perpendicular to the bay
showed that the former condition induces a greater water exchange than the latter
condition, with a difference as much as 60%.

The water exchange between upper and lower Green Bay yields a measure of the
mixing between those water bodies. The hydrodynamic model was used to simu-
late, fairly closely, the water exchange measured by Miller and Saylor (1993) and to
estimate a “mixing time” for the lower bay across the Chambers Island section of
∼0.5 year. Spectral analysis of the net water exchange between upper and lower
Green Bay showed relevant timescales that demonstrate the effects of stratification,
the bay and the lake topography and the Earth’s rotation.

Frequency domain analysis of wind and measured currents’ data revealed the
effects of wind, stratification, the Earth’s rotation, and the topography of the bay
and the lake topography on the observed two-layer flows in Green Bay. This
two-layered flow, particularly the southerly propagation of cooler, denser waters,
establishes and reestablishes the conditions most susceptible to the onset and per-
sistence of hypoxia in the lower bay. This cooler hypolimnetic water mass becomes
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progressively depleted of oxygen as it moves south, at times reaching complete
anoxia. Top and bottom currents rotated clockwise with distinct periodicity during
the stratified season. Frequency domain analysis of top and bottom currents clearly
showed the effects of stratification, Earth’s rotation, and the bay and lake topog-
raphy on the direction of currents.

The general patterns of the circulation and thermal structure and their variability
as related to the changing wind regimes and the thermal climate will be essential in
producing longer term projections of future water quality in response to system
scale changes, e.g., changes in seasonality, duration of summertime conditions,
climate forcing mechanisms, nutrient loading, habitat restoration and alteration, and
long-term changes in predicted lake levels.
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Chapter 3
Interannual Variation in Stratification over
the Texas–Louisiana Continental Shelf
and Effects on Seasonal Hypoxia

Robert D. Hetland and Xiaoqian Zhang

Abstract A numerical dye is used to track freshwater released in May and June from

the Mississippi and Atchafalaya rivers using a hydrodynamic model. These months

are chosen because discharge and nutrient load in May and June is significantly cor-

related with an area of the Texas–Louisiana continental shelf affected by seasonal

bottom low dissolved oxygen. Results show that the two different river sources influ-

ence different parts of the region affected by hypoxia, so that both rivers appear to

contribute to forming the hypoxic region. Analysis shows that both nutrient loading

and stratification caused by freshwater fluxes from the rivers are consistent with the

distribution of dyed freshwater in late July.

Keywords Freshwater discharge ⋅ Stratification ⋅ Hypoxia ⋅ Modeling ⋅ Missis-

sippi River ⋅ Texas–Louisiana shelf ⋅ Gulf of Mexico

3.1 Introduction

The Mississippi–Atchafalaya river system drains 41% of the continental USA, sup-

plying the northern Gulf of Mexico annually with 530 km
3

of freshwater, 210 mil-

lion tons of sediments, and 1.5 million tons of nitrogen (Milliman and Meade 1983;

Goolsby et al. 2001). This large flux of carbon and nitrogen, combined with the strat-

ifying effects of the freshwater, create a large region of near-bottom hypoxia south

of the Louisiana coast. This layer is typically a few meters thick, with the lowest

oxygen concentrations most commonly observed in the benthic nepheloid layer. The

affected area is generally confined between the 10 and 50 m isobaths and may extend

into Texas waters during years with a very large hypoxic area. In years with a small

hypoxic area, low oxygen conditions are typically found in the vicinity of the two

large river mouths, west of the Mississippi Delta and south of Atchafalaya Bay.

Many previous studies have found significant statistical relationships between

either the freshwater discharge from the Mississippi and Atchafalaya rivers (Wise-
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man et al. 1997; Bianchi et al. 2010) or the nitrogen load carried by these rivers

(Scavia et al. 2003; Turner et al. 2005; Greene et al. 2009; Forrest et al. 2011). The

highest correlations are found between the May–June average nitrogen load and the

hypoxic area in late July. However, questions remain about the processes that drive

these correlations.

Nutrient loads and freshwater discharge are significantly correlated (r2 = 0.71,

p = 2.2 × 10−7); that is, the concentration of riverine nitrogen is roughly constant

between years and is uncorrelated to the larger relative variations in freshwater dis-

charge and load. Because of this, the causal relationships between both nutrient load

and freshwater flux that create interannual variations in hypoxic area are confounded.

It is not clear if observed interannual changes in hypoxic area are caused by the strat-

ifying effects of the freshwater, or the eutrofying effects of the increased nitrogen

load.

The goal of this paper is to trace the river water released onto the shelf during

May and June in a number of different years, to examine the relationships between

the fate of this water on the shelf and hypoxic area. May and June are chosen because

of the significant statistical relationship between freshwater flux and nutrient load in

these months with the subsequent extent of hypoxia in July. The numerical simu-

lations are accomplished by adding a numerical dye to each large river source dur-

ing each month. This results in four separate dyes, one for both the Mississippi and

Atchafalaya rivers during both May and June. Distributions of these dyes are then

compared to the extent of hypoxia in late summer.

3.2 Model Setup

We use the Regional Ocean Modeling System (ROMS, Shchepetkin and McWilliams

2005; Haidvogel et al. 2008) configured for the Texas–Louisiana shelf for this study.

This model has been described in previous studies of circulation and freshwater bud-

gets by Zhang et al. (2012a, b). Briefly, the model extends roughly from Laguna

Madre in Mexico to Mobile Bay in Alabama. The model has 30 vertical layers, and

∼1 km horizontal resolution over the Louisiana shelf. The model domain is shown

in Fig. 3.1. The model is forced with inputs from the six major rivers in Louisiana

and Texas, with the Mississippi and Atchafalaya rivers contributing the most to the

riverine freshwater inputs. The model is nudged to results from the GOM-HYCOM

operational model to include the effects of deep ocean currents on shelf circula-

tion. The North American Regional Reanalysis (NARR) model is used for surface

momentum, heat, and freshwater fluxes; heat fluxes are calculated through a bulk

formulation with a Q-correction of 50 W m
2
.

The primary addition to the present set of simulations is that the freshwater from

the Atchafalaya and Mississippi rivers is dyed for each river in both May and June of

each simulation year. Freshwater entering the domain from the rivers is tagged with a

concentration of 1 m
−3

, so that the dye concentration represents the fraction of dyed

freshwater at a particular point in the domain. The manner in which the dyes are
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Fig. 3.1 The model domain and grid are shown in the two maps. The model domain covers the

entire Texas and Louisiana shelves from the coast past the shelf break. The grid resolution in the

region just west of the Mississippi River delta is less than 1 km

added to the freshwater inputs is similar to the method used in Zhang et al. (2012b),

the primary difference being that only water released in either May or June is dyed.

3.3 Results

The year 2008 is presented here as an example of the distribution of the dye from the

Mississippi and Atchafalaya rivers in the months of May and June. The year 2008 is

chosen as an example because it had a very high discharge, relatively typical sum-

mertime winds, and was the second largest hypoxic area recorded during the late July

annual survey (see http://gulfhypoxia.net). Figure 3.2 shows the surface concentra-

tion of dye from each river, released during each of May and June over the summer.

As the dye is introduced at a concentration of one, the dye may be considered as a

proxy for dilution of freshwater over the shelf. Thus, the dye represents the fraction

of river water in a given model cell and is thus unitless. The dye is plotted on a log-

arithmic scale, so that each gradation indicates an order of magnitude dilution. For

this year, where the discharge was above average, by the end of summer essentially

the entire Louisiana shelf is covered with fresh river water that has been diluted less

http://gulfhypoxia.net
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than one thousand times, with significant regions near the source that have dilution

factors of less than ten.

As the undiluted dyed freshwater has a concentration of one, the dye may be

considered as a proxy for volume of freshwater per unit volume ocean water. Thus,

the integral

hf = ∫
𝜂

−H
di dz (3.1)

represents the freshwater thickness, hf , associated with a particular dye, di. The

freshwater thickness is the thickness of the dyed freshwater, if the water column

“unmixed” into purely dyed freshwater with a dye concentration of one and com-

pletely undyed water. The remaining undyed water may contain some freshwater, but

this freshwater was introduced at times when dye was not included in the discharge of

freshwater to the ocean. Distributions of vertically integrated dye show similar pat-

terns (Fig. 3.3); the highest concentrations of integrated dye show that some regions

of the shelf have over three meters of riverine freshwater mixed though the water

column.

Figure 3.4 shows vertical profiles of dye centered about the 20 m isobath in loca-

tions where surface concentrations are high, diluted by less than a factor of 100. Pro-

files indicate that the dye is typically concentrated at the surface and has the strongest

concentrations in the upper half of the water column. The dye released in June has

a particularly strong surface signature that persists throughout the month. However,

all the dye profiles indicate that by the end of July, all of the dye has been signif-

icantly diluted, with concentrations in the upper water column about double those

in the lower water column. Thus, while surface dye concentrations are stronger in

the upper half of the water column through the entire summer, there is a relatively

significant fraction of the dye that penetrates into the lower layer.

The differences in the character of each source can be found by examining the

relationship between the dye and other oceanic tracers. The relationship between dye

and salinity, shown in Fig. 3.5, shows that the highest dye concentrations are found at

intermediate salinity ranges, between fresh riverine water (S = 0.0) and ambient Gulf

water (S ≃ 36.0). The relationship between dye and salinity is controlled primarily by

the dye source; the two river sources appear distinct, regardless of the month in which

the dye was released. There are some common patterns in each dye release. Initially,

a mixing line is formed between the freshwater in which the dye is introduced into

the domain, and the ambient Gulf water that initially contains no dye. Points below

this line are filled in as the dye mixes with freshwater that was introduced earlier,

and that contains no dye. Since the freshwater released from the Mississippi Delta

mixes quickly, dye concentrations are not found at salinities much fresher than about

10 g kg
−1

. As this dye interacts with the Atchafalaya plume, dye is found at even

lower salinities. The Atchafalaya discharge, on the other hand, is released at the edge

of a broad, shallow shelf. As such, there is a pool of freshwater that separates the

Atchafalaya plume water at the beginning of each dye release from the ambient Gulf

water. Because this dye is present at very freshwaters, even early in the Atchafalaya
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dye releases, the mixing line at dye concentrations higher than about 0.2 indicates

mixing with waters that have a salinity fresher than 30 g kg
−1

.

3.4 Discussion

In both the surface dye concentrations (Fig. 3.2) and the dyed freshwater thickness

(Fig. 3.3), the Mississippi and Atchafalaya plumes cover distinct regions on the shelf.

The Atchafalaya plume is generally westward and inshore of the Mississippi plume

water. However, it is clear from the overlays of hypoxic area that the region of the

shelf that is affected by hypoxia is associated with neither plume in particular. In

Table 3.1, the cubic kilometers of dyed freshwater is integrated in the regions of the

shelf that are affected by hypoxia in a given year. Generally, it is clear from this

table, as well as from Figs. 3.2 and 3.3, that no one, particularly freshwater source—

Mississippi or Atchafalaya—or month of dye release—May or June—is the primary

contributor to stratification or nutrients in the regions associated with low dissolved

bottom oxygen.

Figure 3.6 shows the dye thickness from years 2003 to 2011, with the observed

hypoxic area overlaid. On average, there is about 1 m of freshwater over the hypoxic

zone in each year, ranging from about 0.7 m in years with smaller areas (2003 and

2009), and about 1.2 in years with large areas (2007, 2008, and 2010). A stoichio-

metric analysis suggests that 1 m of freshwater could supply enough organic material

to fuel hypoxia in these regions. Assuming that the nitrogen to oxygen ratio is 1:130,

Table 3.1 Integrated freshwater (km
3
) in the regions associated with bottom hypoxia on July 28

of each year. The final column shows the observed hypoxic area for each year. The correlations

between each integrated dye and associated p-values are found in the bottom rows. The correlation

between the sum of all the integrated dyes is r = 0.90, p = 0.0011
Year May Miss

(km
3
)

May Atch

(km
3
)

June Miss

(km
3
)

June Atch

(km
3
)

Hypoxic area

(km
3
)

2003 1.34 0.91 1.90 1.76 8,560

2004 1.94 3.09 2.31 4.75 15,040

2005 1.90 1.40 2.74 2.62 11,840

2006 2.59 3.90 4.17 3.08 17,280

2007 10.24 4.37 3.69 4.64 20,500

2008 8.18 8.20 3.95 6.30 20,720

2009 1.23 2.16 0.38 2.33 8,000

2010 5.43 6.88 5.95 7.71 20,000

2011 7.05 10.39 2.85 7.99 17,520

r = 0.83 r = 0.73 r = 0.83 r = 0.77
p = 0.0061 p = 0.024 p = 0.0059 p = 0.015
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Fig. 3.6 Dye thickness, summing together all four dyes associated with the two sources and months

are shown in late July for nine different years, corresponding to the period when the annual hypoxia

survey occurs. The observed area of hypoxia is shown as a red shaded region

that the nitrogen concentration of river water is 120 µM, that the apparent oxygen

utilization in hypoxic waters is 250 µM, and that the efficiency of converting nitro-

gen into oxygen utilization is 0.2, 1 m of freshwater would convert roughly to 6 m

of hypoxic water. This is of course assuming (1) that there are no other mechanisms

that reduce efficiency such as lags in oxygen utilization, (2) that the organic matter

is delivered roughly evenly over the hypoxic area, and (3) that there is no ventila-

tion of the bottom waters. Also, it is not clear what the timescales and processes of

organic matter creation and conversion are using this simple conceptual model. For

this, one would need to use a full model of biological processes, such as the NPZD

model described by Fennel et al. (2011). Even so, this model suggests that it is plau-

sible that a significant fraction of organic matter required to form hypoxia may be

delivered by the two river systems during May and June.

However, each dye is not spread evenly over the hypoxic area, rather different

rivers contribute differently to different regions. For example, the Mississippi is con-

centrated more to the east, the Atchafalaya more to the west. This may have important

consequences for the formation of hypoxia in different region of the shelf, because

the character of the water introduced to the shelf is very different between the Mis-

sissippi and Atchafalaya. For example, The Atchafalaya River Basin may be a small

source for inorganic nitrogen, but a sink for organic nitrogen (for a total 14% reduc-

tion in total nitrogen) (Xu 2006; Scaroni et al. 2010). Other properties, such as sed-

iments, phosphorous, and organic carbon, may be similarly altered as river water
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passes through the swampy region that defines the Atchafalaya River Basin. Thus,

the Mississippi and Atchafalaya form water masses with very different properties,

and freshwater distributions over the shelf (Hetland and DiMarco 2008).

The dye experiments also suggest that the freshwater delivered to the shelf dur-

ing May and June from both river sources may create stratification in the regions

affected by hypoxia. The vertical structure of the dye in August suggests that the dye

is stratified (see Fig. 3.4). The dye is associated with freshwater, and freshwater is the

primary determinant of density over the Texas–Louisiana shelf. Also, the horizon-

tal distribution of freshwater is roughly co-located with the westward termination of

the hypoxic zone. This implies that it is indeed freshwater in the months of May and

June that are primarily associated with determining the areal extent of hypoxia.

3.5 Conclusions

The water released from the Mississippi and Atchafalaya rivers during May and June

appears to roughly correlate with the regions of the Texas–Louisiana shelf affected

by seasonal bottom hypoxia. Different regions of the area affected by hypoxia are

influenced by different rivers and different release times; the sum total of water

released during May and June from the two sources extends roughly across the entire

hypoxic area, and the along-shore extent of this water appears to be roughly corre-

lated with the along-shore extent of hypoxia.

However, this analysis is not able to differentiate between the organic material

flux to the benthos due to nitrogen inputs from the river, and the stratifying effects

of the fresh river water. Both interpretations are consistent with the model results.
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Chapter 4
A Reduced Complexity, Hybrid
Empirical-Mechanistic Model
of Eutrophication and Hypoxia
in Shallow Marine Ecosystems

Mark J. Brush and Scott W. Nixon

Abstract Numerical simulation models have a long history as research tools for the
study of coastal marine ecosystems, and are increasingly being used to inform man-
agement, particularly related to nutrient-fueled eutrophication. Demand for modeling
assessments is rapidly increasing, and managers need generally applicable tools that
can be rapidly applied with limited resources. Additionally, a variety of calls have been
made for the development of reduced complexity models for use in parallel with more
complexmodels.We propose a simplified, empirically constrainedmodeling approach
that simulates the first-order processes involved in estuarine eutrophication, contains a
small number of aggregated state variables and a reduced set of parameters, and
combines traditional mechanistic formulations with robust, data-driven, empirical
functions shown to apply across multiple systems. The model was applied to Green-
wich Bay, RI (USA), a subestuary of Narragansett Bay, and reproduced the annual
cycles of phytoplankton biomass, dissolved inorganic nutrients, and dissolved oxygen,
events including phytoplankton blooms and development of hypoxia, and the rate of
annual primary production. While the model was relatively robust to changes in
parameter values and initial conditions, sensitivity analysis revealed the need for better
constraint of the phytoplankton carbon-to-chlorophyll ratio, temperature dependence
of phytoplankton production, and parameters associated with our formulations for
water column respiration and the flux of phytoplankton carbon to the sediments. This
reduced complexity, hybrid empirical-mechanistic approach provides a rapidly
deployable modeling tool applicable to a wide variety of shallow estuarine systems.
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4.1 Introduction

Dynamic simulation models have a long history as heuristic and synthetic research
tools in the study of coastal marine ecosystems (Brush and Harris 2010, 2016;
Ganju et al. 2016). In recent decades, these models have been increasingly applied
to guide management of coastal systems, particularly with respect to the effects of
nutrient loading on eutrophication (EPA 1999; NRC 2000; Giblin and Vallino
2003; Harris et al. 2003). In the USA, large investments over many years have been
made in development of high resolution, biogeochemically complex ecosystem
models of major estuarine and coastal systems including Chesapeake Bay (Cerco
and Noel 2004a), Long Island Sound (HydroQual 1991), and Massachusetts
Bay/Boston Harbor (Jiang and Zhou 2008; Chen et al. 2010).

While many modeling efforts are focused on these large estuaries, it is often the
shallow, fringing systems around the perimeter of these estuaries or those lying
outside of larger systems that are subject to the highest rates of nutrient loading and
the most extreme symptoms of eutrophication, including phytoplankton blooms,
proliferation of nuisance macroalgae, and development of hypoxia/anoxia (Valiela
et al. 1992; Boynton et al. 1996; Nixon et al. 2001; Bricker et al. 2007; McGlathery
et al. 2007). These smaller systems are seldom the focus of large, intensive mod-
eling programs, yet they are often at the scale at which local management decisions
are made. With the increasing demand for modeling to inform decisions across a
wide range of estuarine and coastal systems (e.g., total maximum daily loads for all
impaired waterbodies in the USA; EPA 1999), managers need readily applied,
generally applicable modeling tools that can be applied quickly to a variety of
systems with limited resources.

In addition to the need for general, widely applicable models, the last two
decades have seen a growing body of work examining the role of complexity and
spatial resolution in models (Baird et al. 2003; Denman et al. 2003; Fulton et al.
2003, 2004; Friedrichs et al. 2006; Raick et al. 2006; Ménesguen et al. 2007).
Multiple calls have been made for development of simpler, “reduced complexity”
models for application to management (Rigler and Peters 1995; NRC, 2000; Pace
2001; Duarte et al. 2003; Ganju et al. 2016), and a wide variety of alternative
modeling approaches have recently been developed (e.g., Scavia et al. 2006, 2013;
Swaney et al. 2008; Obenour et al. 2014). When used in combination with both
empirical and complex mechanistic models, these alternative models have provided
good examples of the use of multiple modeling approaches (or “ensembles”) to
inform coastal management (Stow et al. 2003; Scavia et al. 2004; Van Nes and
Scheffer 2005).

Given the ever-increasing demand for application of models to an increasing
number of systems, the need for generally applicable tools that can be rapidly
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applied to inform management, and recent calls for development of reduced
complexity models, our objective was to develop a general, reduced complexity
model for shallow marine ecosystems. We include only those state variables and
rate processes of primary importance to the process of estuarine eutrophication as
reflected in the dynamics of phytoplankton, macroalgae, inorganic nutrients, dis-
solved oxygen, and sediment organic accumulation. Selected state variables and
associated rates were aggregated into bulk compartments which reflect processes at
the system level and result in a reduced number of parameters. In the case of four
particularly important rate processes, we developed aggregated formulations based
on robust, empirical relationships that have been shown to apply across multiple
temperate estuaries. Our goal was to develop a model generally applicable to
shallow temperate estuaries and capable of rapid implementation in new systems.

4.2 Methods

4.2.1 Study System

Greenwich Bay, RI (USA) is a subestuary of Narragansett Bay and typical of
shallow temperate estuaries subject to elevated nutrient loading (Fig. 4.1). The bay is
shallow (average depth = 2.6 m at mean sea level) and grades from a deeper, open
embayment directly connected to Narragansett Bay to restricted, shallow coves
(1–2 m) which contain approximately 8% of the total water volume but receive over

Fig. 4.1 Map of Greenwich Bay and the spatial elements (1–7) used in the model. Closed circles
show the locations of the Granger et al. (2000) monitoring stations; no samples were collected in
Brushneck Cove because a shoal at the mouth prevented routine boat access. The asterisk (*)
shows the location of the East Greenwich WWTF
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90% of the watershed nitrogen load (Granger et al. 2000; Brush 2002). Mean daily
total nitrogen loading to the system is approximately 3.1 mmol m−2 d−1, which
increases to 8.7–21 mmol m−2 d−1 in the inner coves. The system exhibits several
symptoms of nutrient enrichment, including concentrations of dissolved inorganic
nitrogen and phosphorus up to 140 mmol m−3 and 17 mmol m−3, respectively,
frequent phytoplankton blooms with chlorophyll-a (chl-a) concentrations up to
60 mg m−3, hypoxic events in which concentrations of dissolved oxygen in bottom
waters fall below 2 mg l−1 and at times approach anoxia, and accumulations of the
macroalgae Ulva lactuca and Gracilaria tikvahiae to densities up to 400 g dry
weight m−2 in the coves (Granger et al. 2000). Granger et al. (2000) conducted an
extensive monitoring program at a series of stations throughout the system during
1995–1997 (Fig. 4.1); the model developed here was run for 1 year between May
1996 and May 1997, the period during which Granger et al. (2000) conducted
monthly monitoring cruises.

4.2.2 Ecosystem Model Kinetics

The ecosystem model includes only those state variables, rate processes, and
parameters of primary importance to eutrophication in shallow coastal marine
ecosystems (Fig. 4.2). State variables include the pools of organic carbon (C),
nitrogen (N), and phosphorus (P) in phytoplankton (PHY), the macroalgae Ulva
lactuca (ULVA) and Gracilaria tikvahiae (GRAC), decaying macroalgal biomass
(DEC), water column pools of dissolved inorganic nitrogen and phosphorus (DIN,
DIP), dissolved oxygen (O2), biological oxygen demand from the East Greenwich
wastewater treatment facility (BODw, Fig. 4.1) and its associated N and P, and the
pool of recently deposited, labile organic carbon in the sediments (SEDC) and its
associated N and P (Table 4.1). Several state variables and processes are aggregated
into bulk terms to reduce the number of parameters, and key processes (e.g.,
phytoplankton primary production) are formulated with cross-system empirical
formulations which further reduce the number of model parameters relative to
traditional mechanistic formulations. Since these empirical formulations were
derived using data from numerous temperate estuaries, they confer a degree of
generality to the model, and since they were developed using direct observations
(e.g., 14C production), they produce model output that can be directly compared to
routine observations (e.g., as opposed to growth rates predicted by traditional
mechanistic formulations). In the following sections, we detail the main features of
the model, particularly our formulation of key rate processes; the macroalgal for-
mulations are presented elsewhere (Brush and Nixon 2010).
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4.2.2.1 Phytoplankton Biomass and Production

A single aggregated phytoplankton pool was modeled in carbon units, with the
associated pools of N, P, and chl-a computed stoichiometrically. Brush et al. (2002)
highlighted the diversity of temperature-dependent formulations for phytoplankton
growth rate in existing models and a tendency for these functions to underestimate
the fundamental rate of primary production; they suggested use of the empirical
“light biomass” (BZpIo) approach which has been shown to apply across a wide
range of estuarine systems. This approach computes daytime phytoplankton net
production (NPPd, g C m−2 d−1) as a function of chl-a biomass (B, mg chl-a m−3),
photic depth (Zp, m), and incident irradiance (photosynthetically active radiation,
PAR) (Io, E m−2 d−1) (e.g., Cole and Cloern 1987; Keller 1988; Kelly and Doering
1997):

Fig. 4.2 Schematic of the estuarine model. State variables, major flows (with arrows), and major
connections (without arrows) are depicted. Flows which consume material (e.g., nutrient uptake,
O2 consumption, loss of biomass) are shown with solid lines. Flows which produce material (e.g.,
remineralization, photosynthetic O2 production) are shown with broken lines. To reduce diagram
complexity, all respiratory demands are shown as being integrated into an estimate of total BOD,
which draws from the O2 pool and remineralizes into N and P. The effect of temperature (T) on
most state variables and flows has likewise been excluded from the diagram. ATM atmospheric,
DENIT denitrification, GZR macroalgal grazers, PCR plankton community respiration, S salinity.
All other terms are defined in the text. Symbols are from Odum (1994)
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NPPd = bBZI +mBZI BZpI0
� �� �

⋅ 10− 3 ð4:1Þ

where bBZI and mBZI are the fitted y-intercept and slope, respectively. The factor of
10−3 converts from units of mg C m−2 d−1 (which are the units of published BZpIo
models) to g C m−2 d−1. Photic depth is defined as the depth of the 1% light level
and is computed as:

Zp =
4.61
kD

ð4:2Þ

where kD (m−1) is the vertical attenuation coefficient for light which was modeled as
a function of predicted chl-a (B) according to the data of Granger et al. (2000):

kD = k0 + kChl ⋅B ð4:3Þ

where k0 and kChl were empirically determined to be 0.82 m−1 and 0.018 m2 mg−1

chl-a for the coves and 0.72 m−1 and 0.019 m2 mg−1 chl-a for the bay, respec-
tively. The primary strengths of the empirical BZpIo formulation are its basis in
direct measurements of productivity and consistent ability to explain the majority of
the variability in daily production across a wide range of systems with remarkably
consistent slopes (see Brush et al. 2002 for a review).

Table 4.1 Model governing equations. Terms are defined in the text. Inputs and losses include
net primary production (NPP), respiration (R), grazing by filter feeders (GFF), exchanges among
spatial elements (exch), external inputs (ext), remineralization (rem), and air-sea diffusion (diff).
For simplicity, Nrem, NNPP, Prem, PNPP, O2NPP, and O2R represent aggregated inputs and losses due
to remineralization, NPP, and respiration from multiple sources; e.g., O2R includes both water
column and sediment respiration

Phytoplankton
carbona

g C m−2 PHYC tð Þ =PHYC t− dtð Þ + 1− fNPPSEDð Þ ⋅NPP*
d −RWC −GFF ± exch

� �
⋅ dt

Dissolved
inorganic N

g N m−2 DIN tð Þ =DIN t− dtð Þ + Next +Nrem −NNPP −Nden ± exchð Þ ⋅ dt

Dissolved
inorganic P

g P m−2 DIP tð Þ =DIP t− dtð Þ + Pext +Prem −PNPP ± exchð Þ ⋅ dt

Dissolved oxygen g O2 m
−2 O2 tð Þ =O2 t − dtð Þ + O2NPP −O2R±O2diff ± exch

� �
⋅ dt

Wastewater BODb g C m−2 BODw tð Þ =BODw t− dtð Þ + BODwext −RBODw ± exchð Þ ⋅ dt
Labile sediment
carbona

g C m−2 SEDC tð Þ = SEDC t− dtð Þ + fNPPSED ⋅NPP*
d −RSED

� �
⋅ dt

Ulva C, N, P g m−2 See Brush and Nixon (2010)

Gracilaria C, N, P g m−2 See Brush and Nixon (2010)

Decaying C, N, P g m−2 See Brush and Nixon (2010)
aMass of N and P in the phytoplankton and sediment pools are computed stoichiometrically
bInputs of biological oxygen demand (BOD) are converted from O2 to C units; mass of N and P is computed
stoichiometrically
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Keller’s (1986) 14C productivity data from the Marine Ecosystems Research
Laboratory (MERL) nutrient gradient experiment in which 12 tanks enriched from
zero to 32 times the ambient DIN and DIP loading to Narragansett Bay were used to
fit an mBZI of 0.76 with bBZI forced to zero. The y-intercept is an artifact of model
fitting and predicts positive production in the absence of chlorophyll and/or light.
The intercept is frequently not significantly different from zero (Keller 1988; Cole
1989), and when it is the lower 95%, confidence limit is often just above zero (Cole
and Cloern 1987). Our fitted slope of 0.76 was within the 95% confidence limits of
the slope without forcing the intercept to zero (0.71).

Zp is a theoretical construct which predicts the depth of 1% Io as a function of kD,
regardless of the actual depth of the system. The BZpIo models have been developed
in relatively deep estuarine systems where the computed Zp is generally less than
the actual depth of the system (Z). However, in shallow systems where light reaches
the bottom, the theoretical value of Zp will often be greater than Z. Brush and
Brawley (2009) presented a depth-correction factor for the BZpIo relationship to
correct predicted production when Z < Zp:

pNPPd =5.95+ 2.31pZp
� �

− 9.95E − 3pZ2
p

� �
− 9.35E − 5pZ3

p

� �
+ 5.13E − 7pZ4

p

� �

− 0.12I0ð Þ− 7.34E − 3pZpI0
� �

+ 9.46E − 5pZ2
p I0

� �

ð4:4Þ

where pNPPd is the percent of predicted NPPd (Eq. 4.1) that occurs over the water
column and:

pZp =MIN 100,
100 ⋅Z
Zp

� 	
 �
ð4:5Þ

where Z is water column depth (m). pNPPd is converted to a fraction and multiplied
by the predicted production from Eq. 4.1.

The BZpIo models have been developed in relatively nutrient replete,
light-limited estuaries; application in a broader range of systems requires con-
straining the predicted amount of daily production by the available pool of nutri-
ents. The total demand for both DIN and DIP from uptake by phytoplankton, Ulva,
and Gracilaria, as well as losses to denitrification and mixing, is computed each
time step (Ndemand, Pdemand) and compared to the available pool plus inputs during
that time step (Navail, Pavail). If the availability of both nutrients exceeds the total
demand, neither is limiting and NPPd is not reduced. If availability of either nutrient
is less than the total demand, the nutrient with the lower ratio of availability to
demand is taken as the limiting nutrient. The ratio of phytoplankton demand to total
demand is then computed for both N and P (NUTLIMN and NUTLIMP) and used to
scale potential NPPd to actual production (NPPd

*):
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If N is limiting: NPP*
d =NPPd ⋅ pNPPd

100 ⋅NUTLIMN

If P is limiting: NPP*
d =NPPd ⋅ pNPPd

100 ⋅NUTLIMP

If neither are limiting: NPP*
d =NPPd ⋅ pNPPd

100

ð4:6Þ

The same approach is used to reduce all other nutrient-consuming processes
(Ulva and Gracilaria uptake, denitrification, and exchange) in the case of limiting
nutrients.

Since phytoplankton biomass is directly included in the equation for daily pro-
duction in absolute terms (i.e., g C m−2 d−1, Eq. 4.1), it is appropriate to incorporate
computed daily production as a zero-order input to the phytoplankton governing
equation (Table 4.1). While models generally rely on multiplication of instantaneous
rates (i.e., d−1) by modeled biomass (i.e., first-order kinetics), conversion of our
BZpIo predicted production to an instantaneous rate resulted in an underestimation of
daily production according to the empirical model. This numerical artifact neces-
sitates incorporating BZpIo predicted rates as a zero-order term.

As Greenwich Bay is a nutrient-rich system, we selected the median carbon:
chlorophyll (C:Chl) ratio of 42 g g−1 from nutrient sufficient cultures in Cloern
et al. (1995) compilation of culture data (see Brush et al. 2002). Phytoplankton
production was converted to oxygen evolution (O2NPP, g O2 m−2 d−1) using a
photosynthetic quotient (PQ) of 1. Production was converted to demand for N and P
(NNPP, PNPP, g m−2 d−1) using molar ratios from the original Narragansett Bay
Model (Kremer and Nixon, 1978) of 7:1 (C:N) and 85:1 (C:P).

4.2.2.2 Pelagic Respiration

Phytoplankton biomass in the model is lost to pelagic heterotrophic processes, flux
to the sediments, filter feeders, and physical exchange. Since the BZpIo model
computes daytime net production, pelagic heterotrophic processes include respi-
ration by phytoplankton at night, grazing and subsequent respiration by zoo-
plankton and other consumers, and incorporation and subsequent respiration of
phytoplankton exudates by the microbial loop. These are difficult to formulate
completely as they are influenced by a variety of factors and carried out by several
trophic groups for which model formulations and parameter values are uncertain.
Regardless of these numerous sinks for phytoplankton biomass within the water
column, however, biomass that is not consumed by filter feeders, deposited on the
bottom, or lost due to exchange will eventually be respired by the pelagic com-
munity. The standing stock of phytoplankton carbon is thus continually returning to
a quasi-steady state, with system respiration often tightly coupled to net daytime
production (Nixon et al. 1986; Smith and Kemp 1995; Caffrey 2003).

A survey of literature equations for predicting plankton community respiration
(PCR) indicates that rates are generally functions of temperature and/or chlorophyll
(Table 4.2; Hopkinson and Smith 2005). All pelagic, heterotrophic loss terms were
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aggregated into a single term recognizing that (1) phytoplankton biomass is the
ultimate substrate for pelagic heterotrophy, (2) PCR is generally exponentially
related to temperature, and (3) heterotrophic responses typically lag behind phy-
toplankton biomass dynamics. To achieve a lag time in heterotrophic response, our
model computes a 10-day moving average of predicted phytoplankton biomass
(PHY10). The model then consumes a temperature (T)-dependent fraction of this
moving average biomass each time step to reflect water column respiration
(RWC, g C m−2 d−1):

RWC =PHY10 ⋅RWC0 ⋅ e
RWCk ⋅ T ð4:7Þ

The exponent (RWCk , 0.095 °C−1) was obtained from Sampou and Kemp’s
(1994) relationship between temperature and PCR in Chesapeake Bay and reflects a
Q10 of 2.6. The 0 °C value (RWC0 ) was set by calibration at 0.055 d−1 to achieve the
best visual fit to the observations. This respiratory rate is used as the loss term to the
phytoplankton state variable and converted into an oxygen demand (O2RWC , g O2

m−2 d−1) using a respiratory quotient (RQ) of 1. Nitrogen and phosphorus are
remineralized stoichiometrically (NRWC , PRWC , g m−2 d−1) using the C:N and C:P
ratios for phytoplankton.

4.2.2.3 Carbon Deposition and Sediment Fluxes

Shallow marine ecosystems are typified by strong benthic–pelagic coupling, with the
key rates being the flux of pelagic carbon to the sediments and subsequent reminer-
alization. The traditional formulation for this flux is to apply a sinking rate as a loss
term to the phytoplankton state variable(s); however, these rates are highly variable
and changewith the dominant phytoplankton group (Riebesell 1989; Reckhow1994).
Alternatively, Nixon (1986) reported a strong linear relationship between annual
benthic carbon remineralization and the total annual input of carbon from primary
production and allochthonous inputs in 16 coastal marine systems. The slope of the
relationship was 0.238, which suggests that roughly 25% of annual phytoplankton
production (ignoring external carbon inputs, which are comparatively low for Nar-
ragansett Bay) is deposited to and respired in the sediments. This formulation thus
gives an empirically based, cross-system relationship independent of the particular
species present. Though the slope surely varies throughout a given year, as a first
approximation our model takes 25% (ƒNPPSED) of daily phytoplankton production
and adds it directly to the sediment carbon pool (SEDC), with the remaining NPP
entering the phytoplankton state variable (NPP*

SED and NPP*
PHY , respectively):

NPP*
SED = fNPPSED ⋅NPP*

d ð4:8Þ

NPP*
PHY = 1− fNPPSEDð Þ ⋅NPP*

d ð4:9Þ
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The state variable SEDC therefore reflects the pool of labile organic carbon
which accumulates seasonally from settling of phytoplankton and heterotrophic
processes (e.g., fecal pellets) rather than recalcitrant carbon which may build up
over longer time scales.

Respiration of the sediment carbon pool (RSED, g C m−2 d−1) was driven as an
exponential function of temperature, using an identical formulation to that for water
column respiration:

RSED = SEDC ⋅RSED0 ⋅ e
RSEDk ⋅ T ð4:10Þ

where RSED0 was determined by calibration to be 0.10 d−1 for the main bay and 0.15
d−1 for the coves which contain sediments with a higher organic content, and the
exponent RSEDk was set at 0.14 °C

−1 based on measurements from Narragansett Bay
(Nixon et al. 1976; Kremer and Nixon 1978). Calibration values were determined as
those that kept the carbon pool in steady state on an annual basis. The calculated
rate of respiration is converted to an oxygen demand (O2RSED , g O2 m−2 d−1;
RQ = 1) and used to remineralize nitrogen and phosphorus (NRSED , PRSED , g m−2

d−1) using the C:N and C:P ratios for phytoplankton.
The other key flux associated with the sediments is the loss of nitrogen to

denitrification. Traditional mechanistic approaches for computing this loss range
from relatively simple functions of water column or porewater nitrate concentra-
tions and water temperature to detailed sediment flux models; as above, these
include a number of parameters which are often not well constrained by the
available data, or are highly variable among systems. Alternatively, Nixon et al.
(1996) presented an empirical regression using data from several systems showing a
linear relationship between flushing time in months (FTmo) and the percent of
nitrogen inputs from land and the atmosphere which are lost to denitrification
(pNden):

pNden =20.8 ⋅ log FTmoð Þ+22.4 ð4:11Þ

As with our formulations for production, respiration, and carbon flux to the
sediments, this equation represents a robust, data-driven relationship which applies
across a wide range of estuarine systems and contains only two parameters. Den-
itrification (Nden, g N m−2 d−1) loss is computed from Eq. (4.11) using flushing
times from the transport model (see below) and the daily input of nitrogen from the
watershed (Nwshd) and atmosphere (Natm):

Nden = Nwshd +Natmð Þ ⋅ pNden ð4:12Þ

4.2.2.4 Remaining Formulations

The rest of the model follows a traditional mechanistic approach; details are
available from the authors and Brush and Nixon (2010). Briefly, macroalgal growth
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is mechanistically driven by temperature, light, and nutrients, and losses include
respiration, grazing, and decay. Macroalgae take up nutrients when in excess (i.e.,
luxury uptake) and are able to use both internal and external nutrients to drive
primary production. Decay of dead biomass is a function of tissue C:N ratio and
temperature. The sediments of Greenwich Bay contain high densities of hard clams
(Mercenaria mercenaria) (Ganz et al. 1994) and amphipods (Ampelisca sp.)
(Stickney and Stringer 1957); mean sizes (5 classes for clams) and densities were
forced and used to compute grazing rates on the phytoplankton using the formu-
lations of Loosanoff (1939), Doering and Oviatt (1986), and Beatty (1991), and
increased sediment fluxes of oxygen and nutrients using the formulations of Hibbert
(1977) and a literature synthesis by Brush (2002). All photosynthetic production
(phytoplankton, Ulva, Gracilaria) is used to stoichiometrically produce oxygen and
consume nutrients; all respiratory processes are used to stoichiometrically consume
oxygen and release nutrients. Air-sea diffusion of oxygen is computed as a function
of mean daily wind speed (Marino and Howarth 1993).

4.2.3 Forcing Functions

Model forcing functions were derived from a combination of cosine fits to the data
of Granger et al. (2000) and daily to weekly data derived directly from local sources
(Fig. 4.3). Watershed and atmospheric inputs of DIN and DIP were computed using
watershed yields from Nixon et al. (1995) and atmospheric data from Fraher (1991)
and Nowicki and Oviatt (1990). Boundary concentrations of chlorophyll-a, DIN,
DIP, and O2 in the surface and bottom waters of Narragansett Bay were forced from
the Granger et al. (2000) data for two stations just outside the mouth of Greenwich
Bay (Fig. 4.1).

4.2.4 Spatial Elements and Transport Model

Greenwich Bay was divided into a series of spatial elements based on morphology,
water quality, and the distribution of survey stations (Fig. 4.1). While boxed
schemes are relatively coarse, the purpose of the current work was to evaluate the
ability of our formulations to reproduce system dynamics; the boxed version makes
possible multiple fast runs during model testing. A second goal was to develop a
model that could be rapidly applied to new systems; again, the boxed version
accomplishes that goal. Recent work has confirmed the utility of boxed approaches
(Ménesguen et al. 2007; Testa and Kemp 2008; Kremer et al. 2010). Boxes were
divided into surface and bottom layers based on mean pycnocline depth using
salinity profiles (Erikson 1998; Granger et al. 2000). Area, volume, mean depth,
and the fraction of bottom area in the surface and bottom layers were determined
from interpolated bathymetric data (NGDC 1996).
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Fig. 4.3 Model forcing functions. Temperature and salinity were specified through cosine
functions fit to the data of Granger et al. (2000). Daily freshwater inflow from the watershed was
provided by S. Viator and R. Wright (University of Rhode Island, unpublished data). Precipitation
and wind speeds were obtained from the National Climatic Data Center (NOAA) for T.F. Green
Airport 5 km north of the bay; evaporation was computed from meteorological data after Erikson
(1998). Solar radiation was obtained from the Eppley Laboratory in Newport, R.I., 21 km
southeast of the bay and converted to PAR (Vollenweider 1974). Daily freshwater discharge from
the wastewater treatment facility was provided by the plant; functions for effluent concentrations
were fit to plant data
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Exchanges of water and materials between the spatial elements and flushing
times were computed from forced salinity distributions and freshwater inputs with
an Officer-type box model (Officer 1980; Swanson and Jayko 1988; Erikson 1998)
(Fig. 4.4). Freshwater inputs were averaged over a 10-day period. A version of the
Officer model was used that allocates freshwater inputs between the surface and
bottom layers using the parameter α, and divides total exchanges between advective
(gravitational) and non-advective (tidal) flows based on the Hansen-Rattray
parameter, υ, computed using the approach of Officer and Kester (1991). The mean
flushing time for Greenwich Bay computed with our box model (8.8 days) closely
matches estimates from a fine scale 2-D circulation model (9.2 days; Abdelrhman
2005) and is within the range of 2–20 days depending on wind speed and direction
determined with the 3-D Regional Ocean Modeling System (ROMS) by Rogers
(2008).

4.2.5 Calibration and Sensitivity Analysis

The model was calibrated to the data of Granger et al. (2000) by tuning parameter
values within known ranges for the period May 1996–May 1997 (the standard run).
Model skill was assessed by analysis of mean absolute error, mean percent error,
and root-mean-squared (RMS) error for surface chlorophyll-a, surface DIN and
DIP, and bottom O2. Monitoring data were first compared to the model prediction
on the same day of the measurement; however, the intent of this and many estuarine
models is not to predict values to the exact day, but rather to predict general

Fig. 4.4 Schematic of the hydrodynamic transport model in vertical cross section, after Officer
(1980), Swanson and Jayko (1988), and Erikson (1998). Q advective flows for box m,
E non-advective flows, ∑R sum of all freshwater inputs upstream of and into box m, α is the
fraction of freshwater inputs that enter the surface layer, subscript v refers to vertical flows, and
prime (′) denotes the bottom layer. The version of the box model used here distinguishes between
advective flows of freshwater (∑R) and entrained ocean water (Q)
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dynamics, down-estuary gradients, and approximate magnitudes of state variables.
We therefore also computed skill by comparing monitoring data to the closest
model prediction within 1 and 2 weeks on either side of the observation (Brush and
Nixon 2010).

Sensitivity analysis was conducted sequentially on all model parameters,
selected forcing functions, and initial values of all state variables. Initial values
were set at ½ and 2 times the values from the standard run; parameters were
changed ±20% unless approximate ranges were known. Results of the sensitivity
runs were expressed as the percent difference from the standard run:

%difference=
xstandard − xsensitivity
�� ��

xstandard
⋅ 100% ð4:13Þ

where x is the model prediction of a given variable on a given day. Daily values of
% difference were not normally distributed, so the overall model sensitivity to a
given parameter was computed as the median % difference across all spatial ele-
ments for each pair of sensitivity runs.

4.3 Results and Discussion

4.3.1 Phytoplankton

Model predictions of chlorophyll-a biomass followed the observed annual cycle and
captured shorter-scale bloom dynamics (Fig. 4.5, dashed line). The use of a con-
stant slope for the BZpIo regression (mBZI), however, led to overestimates of phy-
toplankton biomass during winter and late fall. Some studies have reported different
slopes between daily production and BZpIo or B in summer (higher mBZI) versus
non-summer (lower mBZI) periods, which have been attributed to changes in species
composition (Pennock and Sharp 1986; Keller 1988). While there was no apparent
temperature dependency of mBZI in the Keller (1986) MERL data, slopes fit using a
more recent dataset of 14C productivity from Narragansett Bay (Oviatt et al. 2002)
were related to temperature (Fig. 4.6). However, production in this study and
consequently values of mBZI were lower than past estimates (Brush et al. 2002). To
derive a formulation for mBZI in the model, we used the exponent from the Oviatt
et al. (2002) dataset (0.051) and set our original value of 0.76 as the intercept at
15 °C, the mean temperature of the Keller (1986) measurements. The equation was
constrained to not go above 1.1, the highest reported value of mBZI (Brush et al.
2002):

mBZI =MIN 0.76e0.051 T − 15ð Þ, 1.1
� �

ð4:14Þ
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The use of this temperature-dependent relationship for mBZI eliminated the
winter and late fall peaks in predicted chlorophyll-a (Fig. 4.5, solid line). The
model still predicted higher biomass levels in late spring than suggested by the data,

Fig. 4.5 Measured (points) and modeled (lines) chlorophyll-a concentrations in the surface layer
of each spatial element in Greenwich Bay. Open circles are observations from the surveys of
Granger et al. (2000). Vertical lines connect measurements from stations within the same spatial
element on each sampling date. Closed circles are from auxiliary surveys designed to capture the
winter–spring bloom. Solid line represents the model standard run with a temperature-dependent
slope of the BZpI0 regression; dashed line is from a run with a constant slope of 0.76. Inset at
bottom shows MERL data collected from the lower West Passage of Narragansett Bay during the
same time period
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Fig. 4.6 Effect of water
temperature on the slope of
the regression between daily
phytoplankton production and
the composite parameter
BZpI0. Regressions were
performed on the data of
Oviatt et al. (2002) at 1 °C
temperature intervals. Open
circles are slopes from
regressions with r2 < 0.50.
Bold line is the regression for
the Oviatt et al. (2002) data.
Thin line is the adjusted
relationship used in the model
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which can be reduced by increasing the coefficients for water column respiration
(which as formulated is a proxy representing all heterotrophic pelagic loss processes
including phytoplankton respiration, mortality, and grazing). However, a winter–
spring bloom was, until recently, a dominant event in the annual cycle of phyto-
plankton in Narragansett Bay (Pilson 1985; Li and Smayda 1998; Nixon et al.
2009). Little evidence for such a bloom exists in the Granger et al. (2000) surveys,
but no data were collected between the end of January and mid-March. Auxiliary
chlorophyll samples collected in the main bay during February provided evidence
that a spring bloom had occurred, as did data collected by MERL in lower Nar-
ragansett Bay (Fig. 4.5). Although the timing is late, the model should indeed be
predicting a winter–spring bloom for the standard year. The duration of the bloom
may be artificially high due to the absence of a zooplankton state variable to graze
down the bloom, which may not be adequately captured by our moving average
formulation for PCR.

Following this bloom, the model reproduced both the observed levels of
chlorophyll and bloom dynamics, particularly reproduction of the mid-September
system-wide crash followed by a substantial fall bloom, which the model captured
albeit slightly early and with a somewhat lower magnitude (Fig. 4.5). One notable
exception is Warwick Cove, in which particularly high densities of clams exert a
large grazing pressure; we suspect these older density estimates may be too high.
The model failed to capture the unusually high chlorophyll concentrations observed
in Apponaug Cove and the inner and mid bay during June. These concentrations
appear related to elevated DIN (see below), but not to inputs from the surrounding
watershed as evidenced by stream flow or precipitation. Such high DIN and
chlorophyll concentrations were likely caused by an event external to the model
formulations; when these high DIN concentrations were forced in a separate model
run, predicted chlorophyll came much closer to the June observations.

4.3.2 Nutrients

Model predictions followed the typical seasonal cycle of DIN for Narragansett Bay
(Pilson 1985) and tracked the lower envelope of the observations (Fig. 4.7), with
periodic increases related to phytoplankton dynamics. The model failed to capture
the very high (>70 mmol m−3) concentrations observed in Apponaug and Warwick
Coves. As for chlorophyll, these concentrations showed no consistent relationship
with watershed flows or precipitation, so it is likely that they are due to processes
external to the model. Further, two measurements exist for each cove on each date,
one from a station near the head and one from mid-cove (Fig. 4.1); on the dates
when these high concentrations were measured, only the station at the head had
such high values, and only in the surface layer, perhaps due to the concentration of
watershed inputs at the head of each cove. With the relatively coarse spatial res-
olution of the box model, and use of time-averaged flows which smooth over
storm events, it is not surprising that the model misses these high concentrations.
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The model should instead be capturing the element-wide mean condition, which is
reflected better by the mid-cove stations which the model captures well.

The model also reproduced the seasonal pattern of DIP concentrations observed
in Narragansett Bay (Pilson 1985) and reflected in the observations, although the
model underestimates concentrations during summer, suggesting an additional
source of DIP to the system (Fig. 4.8). This additional source may be the release of
DIP from sediments due to low oxygen concentrations, or desorption of
particulate-bound phosphorus in stream inputs, two processes not included in the
model. As for DIN, the model does not come close to predicting the extreme
(>10 µM) DIP concentrations in Greenwich Cove. Again, there was no clear
relationship between these high concentrations and inputs from the watershed or

Fig. 4.7 As for Fig. 4.5, but for surface concentrations of DIN

Fig. 4.8 As for Fig. 4.5, but for surface concentrations of DIP
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precipitation. This cove receives effluent from the East Greenwich wastewater
treatment facility which is rich in phosphorus; the plant contributes seven times the
watershed contribution of DIP to Greenwich Bay, and more than twice the atmo-
spheric load (Granger et al. 2000). These high concentrations were consistently
measured at the mid-cove station, which was adjacent to the facility outfall.

4.3.3 Dissolved Oxygen

The model captured the seasonal cycle of dissolved oxygen due to the effect of
temperature and salinity on solubility, along with the occurrence of bottom water
hypoxia (Fig. 4.9). While the first hypoxic event during June was largely missed by
the model, the other events were reproduced to varying degrees. The model does a
particularly good job in Greenwich and Warwick Coves, due in part to the presence
of large clam populations and their associated rates of respiration. The varying
degree to which hypoxic events were captured by the model may be due to its
coarse spatial resolution; alternatively, the model may simply be unable to translate
phytoplankton blooms into hypoxic events due to limitations with the formulations.
The latter possibility was tested by running the model while forcing the maximum
observed chlorophyll biomass from the Granger et al. (2000) surveys. Model pre-
dictions of hypoxia were much improved in this scenario (Fig. 4.9), which suggests
that the model kinetics are correct and the failure to reproduce all hypoxic events is
largely due to the coarse spatial resolution.

Fig. 4.9 As for Fig. 4.5, but for bottom concentrations of O2. Solid line represents the model
standard run; dashed line represents a run in which chlorophyll-a concentrations were forced at the
maximum measured values of Granger et al. (2000)
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4.3.4 Rate Processes

Predicted water column production and respiration displayed seasonal cycles with
maximum values in the summer and variations on the order of a week to a month
related to phytoplankton biomass dynamics (Fig. 4.10a, b). Superimposed on these
cycles were high-frequency variations driven by daily fluctuations in irradiance, a
product of the direct coupling of the NPP formulation to irradiance. The annual
peak in production occurred during August at the peak of the temperature cycle,
rather than during June when irradiance was at its peak. The only available 14C
production data for an annual cycle in Greenwich Bay also indicate an August peak
(Oviatt et al. 2002), so it is reassuring that the model kinetics captured this despite
the light-based approach. Respiration was tightly coupled to production, but did not

Fig. 4.10 a, b Modeled rates of daily system production (gray) and respiration (black) in
representative regions of Greenwich Bay. c, d Modeled accumulation of sediment organic carbon
in the surface (solid) and bottom (dashed) layers. e, f Modeled chlorophyll-a (surface) from the
standard run (solid bold), Eppley run (dashed), and elevated Eppley run (solid gray)
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exhibit the same high-frequency variations due to use of the 10-day moving average
formulation.

The simulated pool of labile organic carbon in the sediments tracked simulated
phytoplankton biomass and productivity (Fig. 4.10c, d). The bottom layer accu-
mulated more carbon in the sediments than the surface layer because it received
material deposited from the entire water column, while deposition to sediments in
the surface layer was limited to nearshore regions where the sediments intersected
the surface layer. As expected, the spring bloom corresponded with the largest
accumulation of sediment carbon (Rudnick and Oviatt 1986; Riebesell 1989),
which was then partially respired before more was deposited throughout summer
and fall due to a series of phytoplankton blooms.

System-wide phytoplankton production was estimated by the model to be about
310 g C m−2 y−1 (Table 4.3). This value is nearly identical to the 14C-based
average value of 320 g C m−2 y−1 for all of Narragansett Bay obtained by Oviatt
et al. (2002), and within the generally accepted range for the bay of 270–310 g C
m−2 y−1 prior to the Oviatt et al. study (Furnas et al. 1976, Oviatt et al. 1981).
However, our model estimate is higher than Oviatt et al. range of 220–255 g C m−2

y−1 for Greenwich Bay alone. That study was conducted in 1997–1998, 1 year after
the model standard year and a year in which there was no winter–spring bloom.
Since this bloom did occur during the modeled year, we extrapolated Oviatt et al.
values to a year with a bloom by assuming that approximately 22% of annual
production in Narragansett Bay occurs during the winter–spring bloom (Durbin
et al. 1975; Furnas et al. 1976; Vargo 1979; Keller 1988). Our modeled estimate
falls in the middle of the Oviatt et al. (2002) range when corrected to account for the
winter–spring bloom (Table 4.3).

Brush et al. (2002) suggested that the traditional use of the Eppley (1972) curve
between temperature and maximum daily phytoplankton growth rate in mechanistic
models may result in an underestimation of phytoplankton production and that the

Table 4.3 Model estimates of annual phytoplankton production (Py, g C m−2 y−1) in Greenwich
Bay

Py

Model standard run

Main Baya 320
Entire systemb 307
Eppley curve simulations

Eppley curvec 206
Increased Eppleyd 395
Observed

Oviatt et al. (2002)e 281–326
aArea-weighted estimate for elements 4, 6, and 7 (see Fig. 4.1)
bArea-weighted estimate for all seven spatial elements
cUsing Eppley (1972) relationship of Gmax = 0.59e0.0633 ⋅Temperature
dUsing Brush et al. (2002) suggested revised Eppley curve of Gmax = 0.97e0.0633 ⋅Temperature
eSee text for details
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BZpIo formulation may produce more accurate predictions. To test this assertion, the
model was run with formulations based on the traditional Eppley curve approach
(Kremer and Nixon 1978). Annual phytoplankton production in the Eppley run was
more than 30% lower than in the standard run (Table 4.3) and resulted in biomass
predictionswith equal or lower values and fewer daily fluctuations (Fig. 4.10e, f). Our
model estimate is also closer to reported rates than the value of 105 g C m−2 y−1 for
Greenwich Bay in the original Narragansett Bay model which was based on the
Eppley curve (Kremer andNixon 1978). The use of an elevated Eppley curve based on
more recently published data (Brush et al. 2002) overestimated annual production by
just under 30% and resulted in biomass predictions in the same range as or higher than
the standard run, also with fewer daily variations (Table 4.3; Fig. 4.10e, f).

4.3.5 Model Skill

Absolute and RMS errors in predicted state variables were relatively low when
comparing values on the same day of the observations, and errors were markedly
reduced when the window for comparison was relaxed to ±1 and 2 weeks
(Table 4.4). On the other hand, percent errors were high when comparisons were
made on the day of the observations, but these were again markedly reduced when

Table 4.4 Computed model skill for the standard run summarized across all spatial elements and
the annual cycle. Skills are reported for comparisons on the same day as the observations and
within 1 and 2 weeks on either side of the observations. Units for chlorophyll-a, DIN, DIP, and O2

are mg m−3, mmol m−3, mmol m−3, and g m−3, respectively

Absolute error Percent error RMS error
Mean Median Mean Median

Surface chlorophyll-a

Same day 12.9 9.0 282.8 66.7 18.6
1 week 5.7 1.8 118.2 17.0 9.8
2 weeks 4.5 0.1 97.0 1.9 8.5
Surface DIN

Same day 5.2 1.1 127.6 67.3 9.6
1 week 2.9 0.3 30.3 16.3 7.4
2 weeks 2.4 0.1 19.2 3.0 7.0
Surface DIP

Same day 1.0 0.5 71.9 68.8 1.5
1 week 0.7 0.3 44.6 31.8 1.2
2 weeks 0.5 0.2 37.6 23.1 1.1

Bottom O2

Same day 1.2 0.8 29.2 11.1 1.7
1 week 0.6 0.2 13.4 2.2 1.0
2 weeks 0.4 0.0 9.8 0.3 0.8
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the temporal window for comparison was relaxed. The discrepancy between mean
and median errors indicates that the means are being influenced by some particu-
larly high values, so the medians may be a better indication of model skill.

4.3.6 Sensitivity Analysis

The model was insensitive to the choice of initial conditions, as the output quickly
converged to that from the standard run. Using a criterion of 10% difference from
the standard run, the model was insensitive to most parameter values, with only a
few meeting this 10% criterion (Table 4.5); these parameters were primarily related
to our proposed alternative model formulations (i.e., Equations 4.1, 4.7, 4.8, 4.14).
The choice of the carbon-to-chlorophyll (C:Chl) ratio had a large effect on model
results, although predicted phytoplankton biomass followed the same trajectories as
in the standard run (Fig. 4.11a). Values of 30 and 60 g g−1 were chosen as these are
the first and third quartiles for light-limited cultures from the Cloern et al. (1995)
database (see Brush et al. 2002). Models are often sensitive to the choice of the C:
Chl ratio as it provides the conversion between carbon units, a common currency
for modeled phytoplankton, to chl-a, the primary proxy for observed biomass used
in calibration. One option for addressing this sensitivity, and potentially improving
the simulation of chl-a, would be to consider using a time-variable model for the C:
Chl ratio; various options are available and range from empirical functions of
temperature, light, and nutrients (Cloern et al. 1995) or kD (Cerco and Noel 2004b),
to mechanistic approaches rooted in cellular physiology (Geider et al. 1998; Lefèvre
et al. 2003).

Table 4.5 Sensitivity of water column state variables and annual system primary production (Py)
to key model parameters. Values for Py are the average daily percent difference between the
standard run and both sensitivity runs across all spatial elements. Other values are the median daily
percent difference between the standard run and both sensitivity runs across all spatial elements.
Results are listed only for parameters and state variables when differences were ≥ 10%

Parameter Standard run Sensitivity values Chl-a DIN DIP O2 System Py

C:Chl 42 g g−1 30, 60 37 16 12 – 18
mBZIint
a 0.76 ±20% 14 12 – – 16

RWC0 0.055 d−1 ±20% 11 12 – – –

RWCk 0.095°C−1 ±20% – 12 – – 11

tPHY 10 d ±20% 10 12 – –

ƒNPPSED 0.25 0.15, 0.35 12 17 10 – –

tR
b 10 d ±20% – 11 – –

νc Variable 0.5 12 12 – –

aIntercept of the temperature − mBZI formulation (Fig. 4.6)
bMoving average window for freshwater inputs to the hydrodynamic box model
cHansen-Rattray parameter in the hydrodynamic box model
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The model was sensitive to the relationship between temperature and mBZI

(Table 4.5), which highlights the need for continued development of the BZI
regressions for use in dynamic models, especially inclusion of the effect of tem-
perature. The model was also sensitive to the set of parameters related to the
calculation of water column respiration (RWC0 , RWCk , tPHY). However, increasing
respiration introduced a greater and unreasonable number of oscillations in pre-
dicted phytoplankton biomass and consequently larger spikes in predicted oxygen
concentrations (Fig. 4.11b, c); reducing respiration resulted in muted bloom
dynamics also not supported by the data. The model was also sensitive to the
fraction of daily phytoplankton carbon transferred to the sediment carbon pool
(fNPPSED), although this value was already well constrained from Nixon (1986)
cross-system empirical relationship.

Another important test of the model kinetics is the degree to which predictions
are driven by the formulations as opposed to forcing by boundary conditions and
the choice of transport model. Freshwater inputs in the box model were smoothed

Fig. 4.11 a Predicted
phytoplankton chlorophyll-
a in surface waters of
Greenwich Cove (Element 5)
from the standard run (solid
line) and two sensitivity runs
with the C:Chl ratio set at 30
and 60 g g−1 (broken lines).
b, c Predicted concentrations
of b surface chlorophyll-a and
c bottom dissolved oxygen in
the mid bay (Element 6) from
the standard run (solid lines)
and a sensitivity run with
increased water column
respiration (broken lines)
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with a 10-day moving average; only modeled DIN was sensitive to the length of
this averaging period (tR) (Table 4.5). Similarly, the model was only mildly sen-
sitive to the Hansen-Rattray parameter (ν). Most importantly, when the forced
concentrations of chlorophyll-a, DIN, DIP, and O2 at the mouth of Greenwich Bay
were replaced with constant, average values, the model continued to reproduce the
dynamics of the system (Fig. 4.12), indicating that the dynamics in the model were
primarily controlled by internal kinetics rather than by water exchanges and forcing
at the boundary.

Fig. 4.12 Predicted concentrations of a surface chlorophyll-a, b surface DIN, c surface DIP, and
d bottom dissolved oxygen from the standard run (solid lines) and a run in which the boundary
concentrations were replaced with constant, average values (broken lines)
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4.4 Conclusions and Future Directions

Our model combines traditional mechanistic formulations with novel empirical
functions that aggregate over multiple levels of complexity to produce predictions
rooted in observations across a variety of estuarine systems. The model satisfac-
torily reproduces observed concentrations and dynamics of phytoplankton biomass,
DIN, DIP, and O2, along with expected seasonal patterns of water column pro-
duction, respiration, and accumulation of carbon in the sediments. The BZpIo-based
production formulation resulted in estimated annual phytoplankton production
within the range of observed values. Predicted daily production and respiration
demonstrated tight coupling between the phytoplankton submodel and respiration
in both the water column and sediments.

The use of cross-system, empirical relationships to drive key rate processes
confers multiple advantages. First, these formulations aggregate across multiple
individual processes, thus reducing the number of parameters. The development of
these formulations using data from multiple temperate estuaries implies a degree of
generality to the model not possible with system-specific formulations. Finally,
these relationships are rooted in direct observations (e.g., 14C productivity) and
therefore produce predictions (e.g., NPP) that can be directly compared to the
observations, as opposed to growth rates for which data are rarely available. This
feature helps confirm that the model is accurately simulating both concentrations
and rate processes (Brush et al. 2002; Grangere et al. 2009). While we only had
concentration data for use in model calibration in the present study, future appli-
cations of the model should be focused on systems for which both state and rate
process data are available to further test model kinetics.

The use of the BZpI0 formulation can be well justified given that these rela-
tionships are typically developed using data over one or more annual cycles and at
multiple stations across a given study system. The relatively consistent slopes and
high coefficients of determination for these relationships (Brush et al. 2002) further
substantiate the use of this relationship. On the other hand, the use of our formu-
lations for carbon flux to the sediments and denitrification requires application of
parameters based on system-wide, annual average rates to prediction of daily rates
across multiple spatial elements. This is clearly a limitation of our proposed
approach. However, models typically formulate processes such as phytoplankton
sinking by selecting fixed sinking rates which are known to be highly variable in
time and are not well constrained in the literature (Riebesell 1989; Reckhow 1994);
models for denitrification also use multiple loosely constrained parameters. We
posit that use of a well-constrained annual average is defensible as an alternative
approach, at least as a starting point; additional work is needed to determine
whether these empirical relationships apply at seasonal and/or more spatially
resolved scales.

Given the greatly reduced complexity in the present model, in terms of biology,
biogeochemistry, and physics, and the use of several aggregated, empirical rela-
tionships, it is encouraging that the model nevertheless reproduces the major
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patterns in the observations. The limited sensitivity of the model to most parameters
is also encouraging; the key sensitivities are associated with our proposed formu-
lations and provide directions for future testing, particularly application of the
model in systems where it can be constrained by available rate process data as well
as concentrations. Particular focus is warranted on the relationship between tem-
perature and slope of the BZpI0 regression; Harris and Brush (2012) recently pro-
vided a temperature correction for this regression based on the Metabolic Theory of
Ecology, which could be adopted. While the choice of C:Chl ratio in the model was
justified based on the dataset of Cloern et al. (1995), the sensitivity of the model to
this parameter suggests that future applications would benefit from the incorpora-
tion of a time-variable ratio based on formulations developed in the literature (e.g.,
Cloern et al. 1995; Geider et al. 1998). Sensitivity of the model to the parameters in
our water column respiration formulation warrants future investigation and gener-
ation of data to constrain these parameters, but the choice of values is somewhat
constrained by the need to generate correct dynamics without introducing unreal-
istic biomass fluctuations (Fig. 4.11b). While the model was sensitive to the frac-
tion of production deposited to the sediments, this value is relatively well
constrained in the literature (Nixon 1986).

Future improvements of the model can also be made to make it more generally
applicable. A state variable for wastewater BOD was included given the presence of
a treatment facility draining into the bay. This submodel could readily be modified
to reflect the pool of non-phytoplankton associated, labile organic carbon (pooled
dissolved and particulate); indeed, BODw in our model was immediately converted
to carbon units and respired using our water column respiration formulation. To
make the model applicable to a wider variety of shallow systems, it could be readily
expanded to include submerged vegetation (e.g., eelgrass) and microphytobenthos;
we have versions of the model with these already included.

Levins (1966) highlighted the trade-offs between precision, realism, and gen-
erality in systems models. Our goal was to develop a reduced complexity model
that achieved a balance between precision (e.g., statistical/empirical models) and
realism (e.g., complex mechanistic models), while at the same time being generally
applicable across a range of similar coastal systems and reasonably accurate as
demonstrated through calibration and skill assessment. The initial success of our
proposed model highlights its potential as a reduced complexity tool useful in both
heuristic and management applications. The reduced complexity approach confers
the ability for rapid implementation in new study systems and fast run times on
desktop computers. Additional testing is needed to demonstrate the utility of the
approach, but we suggest that the model can serve as a useful tool for providing
insight into ecosystem function and for informing management, both on its own and
in parallel with other models.
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Chapter 5
Modeling Physical and Biogeochemical
Controls on Dissolved Oxygen
in Chesapeake Bay: Lessons Learned
from Simple and Complex Approaches

Jeremy M. Testa, Yun Li, Younjoo J. Lee, Ming Li, Damian C. Brady,
Dominic M. Di Toro and W. Michael Kemp

Abstract We compared multiple modeling approaches in Chesapeake Bay to
understand the processes controlling dissolved oxygen (O2) cycling and compare
the advantages and disadvantages of the different models. Three numerical models
were compared, including: (1) a 23-compartment biogeochemical model coupled to
a regional scale, salt- and water-balance box model, (2) a simplified, four-term
model formulation of O2 uptake and consumption coupled to a 3D-hydrodynamic
model, and (3) a 23-compartment biogeochemical model coupled to a
3D-hydrodynamic model. All three models reproduced reasonable spatial and
temporal patterns of dissolved O2, leading us to conclude that the model scale and
approach one chooses to apply depends on the scientific questions motivating the
study. From this analysis, we conclude the following: (1) Models of varying spatial
and temporal scales and process resolution have a role in the scientific process.
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(2) There is still much room for improvement in our ability to simulate dissolved O2

dynamics in coastal ecosystems. (3) An ever-increasing diversity of models, three
of which are presented here, will vastly improve our ability to discern physical
versus biogeochemical controls on O2 and hypoxia in coastal ecosystems.

Keywords Physical modeling ⋅ Biogeochemical modeling ⋅ Dissolved oxygen ⋅
Hypoxia ⋅ Coastal ecosystems ⋅ Chesapeake Bay

5.1 Introduction

Depleted dissolved oxygen (O2) conditions have been a feature of Chesapeake Bay
for at least the past nine decades (Newcombe and Horne 1938) and reflect both the
Bay’s high-productivity and the physical isolation of bottom waters from the
atmosphere. Although Chesapeake Bay may be naturally susceptible to hypoxia
development, analyses of long-term data indicate that summer hypoxic and anoxic
water volumes have increased over the past several decades (Hagy et al. 2004) in
response to some combination of elevated nutrient loading and large-scale climatic
changes (Scully 2010a; Murphy et al. 2011). Because hypoxic conditions have
many negative consequences for living resources and restrict habitat availability
(Brady and Targett 2013; Buchheister et al. 2013), there is a strong emphasis in the
management of this system to alleviate low-O2 conditions in the Bay through
nutrient input reductions within the watershed (Boesch et al. 2001).

Our understanding of O2 dynamics in coastal ecosystems like Chesapeake Bay is
complicated by the fact that O2 is controlled by a diverse suite of physical and
biogeochemical processes. Some of these processes covary or are linked (e.g.,
freshwater and nutrient inputs), and each has its own dominant time and space scales.
Elevated freshwater input, for example, delivers inorganic nutrients that fuel phy-
toplankton production in seaward Bay regions, but also delivers inorganic particles
that limit light availability in landward regions and may cause advection of phyto-
plankton biomass downstream, away from landward regions (e.g., Miller and
Harding 2007). Freshwater input is also associated with elevated stratification during
summer that reduces vertical diffusion of O2 (Boicourt 1992), yet elevated freshwater
flow also leads to higher landward advection in bottom water (Li et al. 2015), which
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may deliver O2-rich water but also may transport relatively labile organic material
(Kemp et al. 1997). Wind stress may lead to three-dimensional (e.g., along- and
cross-channel) circulation features that physically replenish deep-water O2 (Scully
2010b). Prevailing northward winds (up-estuary) in summer, for example, can reduce
the along-channel exchange flow and the associated landward O2 flux in the deep
water, but strengthen the cross-channel circulation that exchanges O2-poor water
with overlying O2-rich water (Scully 2010b; Li et al. 2015), and vice versa. The wind
could also mix nutrient-rich water into surface layers and fuel elevated phytoplankton
production (Malone et al. 1986; Li et al. 2009) that will drive additional O2 depletion
in the following months. Observing the biogeochemical response to these dynamics
directly would involve near-continuous measurements of phytoplankton production
and respiration, concentrations of O2, organic carbon and key nutrients, current
velocities, stratification, and other meteorological and hydrological variables (e.g.,
wind speed) over multiple seasons. Considering the impractical and high-cost nature
of such efforts, numerical models can be used as tools to understand the response of
O2 to external forcing in a way that cannot reasonably be accomplished using
observational studies alone.

Accordingly, much effort has been invested in building models to simulate O2

dynamics on several time and space scales. Models encompassing a wide range of
hydrodynamic resolution, biogeochemical complexity, and temporal scope have
been applied in numerous ecosystems (Oguz et al. 2000; Justíc et al. 2007; Fennel
et al. 2013; Hamidi et al. 2015), including Chesapeake Bay (Xu and Hood 2006;
Liu and Scavia 2010; Scully 2010b; Brown et al. 2013; Cerco and Noel 2013; Lee
et al. 2013; Feng et al. 2015) and the Great Lakes (Rucinski et al. 2010; Hamidi
et al. 2015). Statistical models are often used to infer the major drivers of O2

depletion and to guide management actions (e.g., nutrient load reductions) that
alleviate low-O2 zones, while coupled biophysical models (e.g., the three models
presented in this chapter) are used to understand ecosystem interactions and feed-
backs, where O2 is one of many biogeochemically linked model variables. While
multiple coupled, hydrodynamic−biogeochemical models currently exist for Che-
sapeake Bay (Xu and Hood 2006; Li et al. 2009; Cerco and Noel 2013), few studies
have compared multiple models to emphasize their utility in answering different
scientific and management questions (Irby et al. 2016).

In this chapter, we describe three modeling packages that include both simplified
and complex biogeochemical and hydrodynamic configurations. Our objectives are
to compare and contrast these models to illustrate the different types of simulations
that investigators can use to answer key scientific questions. We also aim to assess
quantitatively how well the applied models reproduce observations of dissolved O2

in Chesapeake Bay, discuss their respective limitations, and suggest where and how
the models might be utilized in future studies based on their spatio-temporal
dimensions and levels of biogeochemical and hydrodynamic complexity.
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5.2 Methods and Approach

High-resolution, coupled hydrodynamic–biogeochemical ocean models are valued
for their ability to accurately represent physical and biogeochemical process in
coastal ecosystems, especially with increasingly affordable computing power. Less
spatially resolved models (regional scale) are still useful for research needs, as they
can be executed quickly (minutes), represent biogeochemistry at the scales where it
has been predominantly measured (regionally and seasonally), and can be used to
compute simple and unambiguous budgets of key variables. In this chapter, we
describe and analyze three different numerical models, including: (1) a course-scale
mass-balance transport model (“box model”) coupled to a water column and sedi-
ment model with detailed simulations of biogeochemical processes (Row-Column
Aesop, or RCA); (2) a 3D, hydrodynamic model using the Regional OceanModeling
System (ROMS) coupled to a simple, four-term O2 biogeochemistry model; and
(3) the ROMS coupled to a multi-compartment, water column and sediment bio-
geochemical process model (RCA).

5.2.1 Box Model with Biogeochemistry (BM-RCA)

A coarse spatial-scale model was developed for Chesapeake Bay, using a water
column and sediment biogeochemical model and physical transport calculated
using a salt- and water-balance model (box model, or BM). The spatial domain of
this model includes 17 control volumes of water (9 surface-layer “boxes”, 8
bottom-layer “boxes”; Figs. 5.1 and 5.2), whose vertical separation is based on
mean-pycnocline depths for each region (Hagy 2002). The box model solves a
series of linear algebraic equations to compute advective and non-advective
exchanges between control volumes based upon freshwater inputs and salt distri-
butions, and given the small number of regions (17), the computation requires
minimal computing resources. The biogeochemical model (Row-Column Aesop, or
RCA) was developed by HydroQual, Inc. and has been applied in many coastal
ecosystems (e.g., Long Island Sound, Massachusetts Bay). RCA is the most recent
extension of the family of water quality models that originated from the Water
Quality Analysis Simulation Program (WASP) used by the United States Envi-
ronmental Protection Agency (Di Toro et al. 1983). The model allows for up to
three phytoplankton groups, as well as water column state variables representing the
following; (1) particulate and dissolved organic carbon, nitrogen and phosphorus,
(2) dissolved inorganic nitrogen, phosphorus, and silica, (3) biogenic particulate
silica, and (4) O2 (Fig. 5.3). RCA also includes a state variable that represents O2

equivalents associated with sulfide and methane released at the sediment-water
interface. Nitrification and denitrification are modeled in both the water column and
sediments, where RCA includes a sediment biogeochemical model, which has
two layers that represent the near-surface aerobic and underlying anaerobic
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environments and simulates the cycling of carbon, O2, nitrogen, phosphorus, silica,
and sulfur. The sediment model predicts sediment-water fluxes of dissolved O2,
nitrate, ammonium, phosphate, dissolved methane, and sulfide, where the latter two
constituents contribute to the water column state variable called “oxygen equiva-
lents” that acts as a reservoir for non-nitrogen reduced solutes that contribute to O2

demand. Sulfide is produced via sulfate reduction in the sediment model, where it is
subsequently stored temporarily in particulate form as iron monosulfide (Cornwell
and Sampou 1995), oxidized in the sediment (contributing to sediment O2 demand),
or released to the overlying water. A more extensive description of the RCA
modeling package is found elsewhere (Testa et al. 2013, 2014; Xue et al. 2014).
Model simulations were run on a 6-h time step over the years 1986–2006.

The key advantages of the BM-RCA approach are that it can be executed rapidly
on a personal computer (20 years in ∼5 min for the 17 regions) and that it captures
regional patterns of O2, carbon, and nutrient dynamics, which can be validated
using available monitoring data and rate-process measurements. Its short run times
make it amenable to sensitivity analysis and scenario experiments and allow it to be
implemented by a wide range of users (e.g., resource managers) who may not have
access to advanced computational resources. Because of its well-defined boundaries
and relatively few transport terms, the model output is easily post-processed to
provide regional and seasonal mass-balance budgets of key variables. The disad-
vantages of this modeling approach include its inability to capture lateral and
vertical variability in physical and biogeochemical processes, as well as the patchy
spatial patterns in plankton productivity and biomass. In particular, short temporal-
and spatial-scale physical dynamics in response to wind and tidal forcing cannot be
adequately represented in this model, and these processes are known to be
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important in Chesapeake Bay and other coastal ecosystems (Li and Zhong 2009;
Scully 2010a).

5.2.2 Hydrodynamic 3D Model with Simple Oxygen
(ROMS-SDO)

The second model in this analysis (ROMS-sDO) is a simple, empirical O2 model
implemented in a relatively high-resolution hydrodynamic model (the Regional
Ocean Modeling System; ROMS). This model was motivated by the need to
capture the key seasonal patterns in biogeochemical O2 uptake so that experiments
related to the effects of altered hydrodynamic variability due to wind stress, tidal
mixing, and freshwater inflow can be achieved. This approach is designed to take
into account the strong seasonal variation of both uptake and production in the
water column (Fig. 5.3). Based on observed measurements of sediment O2 demand
(SOD), water column respiration (WCR), and phytoplankton community production
(PhP), the approach empirically relates these processes to the state variables (e.g.,
O2 concentration, ambient water temperature T), and/or environment forcing (e.g.,
photosynthetically available radiation PAR), allowing for O2 consumption/
production to vary with space (horizontal and vertical) and time to the first order
(see details in Li et al. 2015).

SOD=9.90× 1.7845T ̸10oC ×
O2

Ox+59mmolO2 m− 3

� �

PhP=31.25 × ð1.0101+ 0.0314PAR+0.1966TÞ
WCR=3.3 × e0.0715T

ROMS has been implemented in Chesapeake Bay and validated against a wide
range of observational data and has demonstrated considerable capability in repro-
ducing estuarine dynamics at tidal, synoptic, and seasonal time-scales (Li et al.
2005). We use an application of this model with a 160 × 240 grid in the horizontal
direction (about 500 m grid size) for ROMS-sDO and a grid 80 × 120 grid in the
horizontal direction (about ∼1 km grid size) for ROMS-RCA (Sect. 6.2.3). Both
ROMS-sDO and ROMS-RCA include 20 layers in the vertical dimension (Fig. 5.1).
The open ocean boundary consists of 10 constituents (M2, S2, N2, K2, K1, O1, P1,
Q1, Mf, and Mm) for tidal forcing, de-tided observations for non-tidal water ele-
vations, and monthly climatology for salinity and temperature. In order to provide
the hindcasts of hydrodynamic fields, the model is forced by daily river discharge
along with zero salinity and seasonal water temperature, and by winds, net short-
wave and downward longwave radiation along with air temperature, relative
humidity, and pressure. Surface water temperature was nudged to the observed SST
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field. Further details of the application of ROMS in Chesapeake Bay are described
elsewhere (e.g., Li et al. 2005).

The ROMS-sDO approach is advantageous because it uses reasonable, but
computationally meager representations of biogeochemical O2 production and
uptake to allow high temporal- and spatial-scale simulations of O2 dynamics in
coastal ecosystems. The disadvantages of this approach include the fact that the
empirical O2 uptake formulations generally cannot capture spatial and interannual
variability related to nutrient loading and availability (i.e., eutrophication) and do
not capture biogeochemical feedbacks, which limit the model’s ability to be run for
realistic multi-year experiments. Thus, we display the viability of this approach in
reproducing seasonal O2 dynamics, focusing ROMS-sDO simulations to a single
year (1989) when many of the observations used to build the empirical models were
made.

5.2.3 Hydrodynamic 3D Model with Biogeochemistry
(ROMS-RCA)

The most complex model formulation we present in this chapter is a “soft-coupling”
of ROMS to the multi-compartment, dynamic biogeochemical model RCA (as
described above). The term “soft-coupling” represents the fact that ROMS hydro-
dynamic model simulations were performed first, where the output was saved and
subsequently used to provide hydrodynamic fields (e.g., current velocity) to drive
RCA simulations. This model includes high spatial and temporal resolution sim-
ulations of a wide range of hydrodynamic and biogeochemical processes. Hourly
averages of ROMS temperature, salinity, and transport terms are used to force RCA
along with external loads of nutrients and organic carbon based on daily freshwater
inputs and monthly fortnightly nutrient concentrations (Fig. 5.1). RCA is simulated
on a 10-min time step, and we utilized a multitude of available monitoring data to
characterize boundary and initial conditions, as well as external flows and loadings
(Testa et al. 2014; Li et al. 2016).

The key advantages of this model are that it simulates high-resolution spatial and
temporal dynamics of biogeochemical and physical processes, such that even with
changing nutrient loading and climatic conditions, the model can be run to repro-
duce reasonable estuarine dynamics over many years. This allows for experiments
with altered nutrient loading, freshwater input, and wind stress to be conducted that
result in improved understanding of myriad estuarine processes over multiple time
and space scales. The disadvantages of this approach include high computational
costs and the simulation of physical and biogeochemical processes at scales (e.g.,
daily, ∼1 km) that are difficult to validate given limited spatial and temporal scales
of observational data.
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5.2.4 Calibration and Validation Datasets

All models require validation to ensure their ability to accurately reproduce the
processes and state variables that are intended to be understood and simulated.
Although many models are validated against state variables, including concentra-
tions of nutrients, O2, carbon, and phytoplankton biomass (chlorophyll-a), it is
equally important to validate these models against rate processes, such as plankton
community photosynthesis and respiration rates, organic matter decay rates, and
nutrient transformation and sediment-water exchange rates. Validation of both
“state” and “rate” observations allow one to determine that the model is predicting
concentrations based on appropriate transformation rates, as opposed to situations
where the model accurately simulates “state” concentrations generated by com-
pensating but inaccurate rate processes (e.g., offsetting errors). For Chesapeake
Bay, we were able to calibrate and validate model behavior for diverse variables
and process for which a wide range of data exist across time and space scales.
Validations of the water column state variables (e.g., chlorophyll-a or chl-a, dis-
solved and particulate nutrients, dissolved and particulate organic carbon, etc.) were
performed using fortnightly monthly observations of these variables at several
depths and stations within Chesapeake Bay (http://www.chesapeakebay.net/data).
In addition, rates of water column respiration were compared to measurements of
O2-uptake in dark bottles at several stations (Sampou and Kemp 1994; Smith and
Kemp 1995), while rates of photic-layer net primary production were validated with
observations based on O2 incubations and empirical model computations based on
14C uptake measurements (Smith and Kemp 1995; Harding et al. 2002). Observed
sediment-water fluxes of dissolved O2 were estimated from time-course changes in
solute concentrations during incubations of intact acrylic sediment cores collected
at key stations in Chesapeake Bay (Fig. 5.1; Cowan and Boynton 1996).

5.3 Insights Gained from Model Simulations

In this section, we review the performance of each of the three models and highlight
selected results from the simulations. We also emphasize the types of questions that
can and cannot be answered with a given modeling approach and how these
approaches lead to improved understanding of the dynamics of O2 and hypoxia in
Chesapeake Bay.

5.3.1 Comparison of Model Performance

All three models reproduced seasonal cycles of bottom-water dissolved O2

along the central axis of Chesapeake Bay with reasonable accuracy (Fig. 5.4).
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Taylor diagrams (Fig. 5.4) graphically illustrate several metrics of model-data
agreement (Taylor 2001), and each model was compared in such a diagram for the
time period during which simulations were made, including 1996–2005 for
ROMS-RCA, 1985–2006 for BM-RCA, and 1989 for ROMS-sDO. O2 simulations
from each model were highly correlated to observed values, where r-values
exceeded 0.7 in all cases except the upper-Bay regions in ROMS-sDO (Fig. 5.4).
These two stations (CB2.2 and CB3.1) for ROMS-sDO also tended to have the
highest root-mean-squared difference values (RMSD; Fig. 5.4). Although this
model-data mismatch was only based upon a single year, it reveals the potential
inability for an empirical O2 model to capture variability in respiration in the upper
Bay, where observed O2 variability is high and driven by interannual variations in
the accumulation of phytoplankton biomass in bottom-waters (Testa and Kemp
2014). Somewhat over-predicted O2 at these upper-Bay stations may also explain
why ROMS-sDO tends to under-predict hypoxic volume in the early summer (see
Sect. 6.3.3), as hypoxia tends to initiate in the upper Bay. In general, the
ROMS-based models with high spatial resolution tended to capture variability in
bottom-water O2 better than the regionally based BM-RCA, yet BM-RCA was able
to capture seasonal patterns of bottom-water O2, as well as interannual variability
associated with changes in freshwater and nutrient inputs (Fig. 5.4). That said,
ROMS-RCA predicted short-term variations (daily weekly) in bottom-water O2 that
BM-RCA did not. Although the high-frequency observations necessary to validate
these model simulations do not currently exist along the main channel of Chesa-
peake Bay, high-frequency variability in O2 is expected to occur given tidal mixing
and the passage of storm fronts.

As mentioned previously, we consider it important to validate model process
rates in addition to concentration measurements. We thus compared rates of water
column respiration (as O2 uptake) and SOD measured at several stations to
those rates predicted by ROMS-RCA (Fig. 5.5). Water column respiration rates,
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which were available from multiple studies and several stations in the main stem of
Chesapeake Bay (Sampou and Kemp 1994; Smith and Kemp 1995), compared
favorably with ROMS-RCA-simulated respiration over several seasons (Fig. 5.5a, c
and e). Although modeled respiration rates were slightly higher than observations
during March to May at three stations (10.00–14.69 (model) versus 7.39–11.17
(observed) mmol m−3 d−1), summer (June–August) and November rates were
comparable. Where measurements from multiple years were available for com-
parison (spring and summer at CB6.1), model estimates fell within the range of
observations. At station CB4.3, anoxia during mid-summer prevented the mea-
surement of respiration with oxygen-based techniques, but respiration was pre-
dicted by the model because anoxia was not always predicted in this region by
ROMS-RCA (Figs. 5.4 and 5.5). ROMS-RCA also captured seasonal variability in
sediment oxygen demand (hereafter SOD) at three stations, but tended to
over-predict SOD in the middle Bay (Fig. 5.5). As with water column respiration,
ROMS-RCA did not predict the true anoxic conditions that were observed at this
station and SOD was allowed to persist because O2 was available for uptake from
the overlying water (Fig. 5.5). Despite this, overlying O2 was sufficiently low and
sediment pore water sulfide concentrations were high-enough for the sediment
model to generate fluxes of sulfide to the water column, which would subsequently
consume water column O2. The sulfide fluxes correspond to seasonal minima in
both bottom-water O2 concentrations and the aerobic layer depth within the sedi-
ment model, which limits the storage of sulfide (Cornwell and Sampou 1995).
ROMS-sDO-simulated respiration and SOD rates are plotted for comparison, to
illustrate how they were similar across stations with identical seasonal variation,
which contrasts with ROMS-RCA predictions that varied spatially and temporally
(Fig. 5.5).

5.3.2 Insights Gained from BM-RCA

Despite the simplified physical transport model used to drive BM-RCA, it repro-
duces seasonal, regional, and interannual variability in bottom-water dissolved O2

(Fig. 5.4). Given the coarse resolution in this model, these validations are restricted
to the deepest stations along the main channel of central Chesapeake Bay (shallow
stations flanking the channel are excluded). Thus, although BM-RCA is a useful
tool to understand the effects of interannual variations of river flow and nutrient
load on deep-water O2 at regional scales, it cannot resolve episodic or spatially
resolved dynamics (e.g., vertical profiles) in the Bay. However, the straightforward
division of the Bay into a limited number of segments in BM-RCA allows for the
computation of regional budgets of O2, carbon, and related nutrients.

For example, several questions remain related to the timingand locationof the source
of organic matter fueling hypoxia in Chesapeake Bay (Kemp et al. 1997). Budget
calculations for particulate organic carbon (POC) in each box during two seasons
(Spring = March–April, Summer = June–July) averaged over the 1986–2006 period,
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suggest the key role of both vertical sinking and landward longitudinal transport as
mechanisms for POC delivery to bottomwaters (Fig. 5.6). Landward net POC imports
(the potential fuel for O2 depletion) were greatest in lower-Bay regions, but muted in
upper-Bay regions (Fig. 5.6). This is consistent with the suggestion that landward,
bottom-water transport of organic carbon resulting from net surface-layer carbon pro-
duction in seaward Bay regions is a key aspect of the Bay carbon budget supporting O2

depletion (e.g., Kemp et al. 1997). Thus, althoughBM-RCA cannot capture small-scale
variability in O2 (which is often important) it reveals nutrient loading controls on
deep-water O2 and seasonal and regional transport of organic carbon.
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5.3.3 Insights Gained from ROMS-SDO

Recently, state-of-the-art hydrodynamic models have been coupled to relatively
simple formulations for biogeochemical O2-uptake (Hetland and DiMarco 2008;
Scully 2010a; Li et al. 2015). The motivation for these efforts has been to quantify
biogeochemical effects on O2 in a simple and computationally meager way to allow
an emphasis on variations in physical controls. Such an approach for Chesapeake
Bay has proven useful to understand the effects of wind speed and direction on O2

dynamics, but these simulations also provide an opportunity to understand the
balance between biogeochemical O2 uptake and physical replenishment.

ROMS-sDO was run for Chesapeake Bay in the year 1989, where observations
of primary production, water column respiration, and sediment O2 demand were
available to develop empirical formulations for these processes (Li et al. 2015).
ROMS-sDO captured seasonal patterns of deep-water O2 across many stations in
Chesapeake Bay, and thus reasonably reproduced the annual cycle of hypoxic
volume (Figs. 5.4 and 5.7). To understand the balance between O2 uptake and
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physical replenishment, a budget was computed for O2 by integrating model O2-
equation over a selected control volume for Chesapeake Bay, which encompasses
all deep waters below 10-m depth (from the mean sea level) in the main stem to the
north of York River mouth, and the northern boundary intercepts the shoaling
bathymetry in the upper Bay (see Fig. 5.1 for location). The budget revealed five
types of changes for deep-water O2, including the water column respiration over the
entire control volume, the sediment respiration across the seafloor, the
along-channel advection of oceanic high-O2 water across the lower-Bay section,
and the vertical advection and diffusion of O2 across the 10-m interface (Li et al.
2015). Over the April to July period, biogeochemical O2 uptake (water
column + sediment respiration) exceeded inputs via horizontal and vertical
advection and diffusion, resulting in the drawdown of bottom-water O2 and the
development of hypoxia (Fig. 5.7). Over the course of spring and early summer (as
in all months) this biogeochemical O2 uptake was dominated by water column
respiration (Fig. 5.7), which is consistent with cross-system analyses that suggest
sediment O2 uptake is a small fraction of total water column uptake in systems
deeper than 5–8 m (Kemp et al. 1992). Interestingly, during the spring period when
O2 is drawn down, advection of O2 is a large fraction of total input to this region
due to stronger circulation resulting from buoyancy-induced along-estuary density
gradient and favorable prevailing wind directions (Li et al. 2015). Although vertical
diffusion is the dominant term for the physical components of the O2 budget during
mid-summer, advection is once again important during later-summer and fall, when
physical imports exceed biogeochemical uptake, leading to replenishment of
bottom-water O2 (Fig. 5.4) and the decline in hypoxic volume (Fig. 5.7).

Simulations using ROMS-sDO thus make an important contribution to our
understanding of O2 dynamics in Chesapeake Bay. It became clear that even rel-
atively simple models are useful in quantifying the seasonal and regional balance
between O2 uptake and replenishment, and discerning which processes (advection
versus diffusion, water column versus sediment respiration) contribute most to
variability at a given time of year. Although such models can therefore be used to
investigate interannual variations in physical input and be subject to experiments
that quantify the effects of freshwater input and altered wind patterns, they cannot
be directly used to understand interannual variations in O2 resulting from altered
nutrient loading and other biological considerations.

5.3.4 Insights Gained from ROMS-RCA:
Interannual Variation

Themost complex and well-resolved model presented in this chapter is ROMS-RCA,
which includes a dynamicwater column and sediment biogeochemicalmodel coupled
to a relatively high-resolution hydrodynamic ocean model. This model permits
investigations into short temporal- and spatial-scale dynamics as in ROMS-sDO and
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the analysis of individual terms in the O2 budget, but it adds an additional value in that
specific biogeochemical mechanisms can be examined, as well as interannual vari-
ability of dissolved O2 associated with altered nutrient loading. These model simu-
lations spanned a 10-year period in Chesapeake Bay using realistic climatic and
freshwater forcing, and were also executed for a single year (2000) to examine
responses specific to altered nitrogen and phosphorus loading scenarios.

A dissolved O2 budget analysis similar to that presented for ROMS-sDO was
performed on the 10-year simulation of ROMS-RCA, with the addition of separate
terms for horizontal advection and diffusion, as well as vertical advection and
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diffusion (Fig. 5.8). O2 budgets were calculated for two periods (March–May and
June–August), to capture periods when hypoxia initiates (March–May) and when
hypoxic volume is fully developed at its seasonal maximum (June–August). In both
periods, biogeochemical uptake exceeds physical replenishment, but interannual
variability is much higher for the spring period (March–May) than during the
summer period (June–August; Fig. 5.8). Perhaps, more importantly, physical
replenishment of O2 tends to be proportional to spring O2 uptake, where interannual
variation in spring O2 uptake covaries with physical O2 inputs, both of which are
correlated to winter–spring nutrient loading. In addition, physical replenishment of
O2 is highest during summer, which is the period when biogeochemical O2 uptake
is at seasonal maxima (Fig. 5.8). This reveals that vertical and horizontal gradients
in O2 that are setup by biogeochemical uptake influence the physical replenishment
fluxes, regardless of season. Pie charts representing the relative contribution to the
total O2 budget of the various physical and biogeochemical terms reinforce the
results of ROMS-sDO, where water column respiration is the dominant uptake term
and advective inputs of O2 are comparable in magnitude to diffusive inputs in
multiple seasons (Fig. 5.8).
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5.3.5 Insights Gained from ROMS-RCA: Response
to Nutrient Loading

The second set of analyses presented in this section includes a sensitivity test of
Chesapeake Bay O2 dynamics to altered loadings of nitrogen (N) and phosphorus
(P). Whereas the ROMS-sDO simulations predict the same biogeochemical O2

uptake in a given year and place to understand interannual variability in physical
effects, these experiments use the same physical forcing (from the year 2000 in
ROMS-RCA) to isolate variations in nutrient loading effects. These experiments
reveal that hypoxic volume days (HVD) were consistently higher under elevated
nutrient loads, but the response was stronger for N relative to P. This resulted from
widespread N limitation in seaward Bay regions during summer months (Malone
et al. 1996) that led to higher net primary production (NPP) and phytoplankton
biomass under elevated N loads or much lower NPP and biomass under reduced
loads (Fig. 5.9). Relatively lower sensitivity to P loads results from the fact that P is
limiting in winter–spring in the upper and middle Bay and that phytoplankton
growth during this season appears to be a less important driver of summer hypoxic
volumes (e.g., Newell et al. 2007). The fact that HVD was more sensitive to
combined NP load changes reveals the potential for alternating nutrient limitation if
the load is dominated by either N or P, especially during transitional periods in
Chesapeake Bay where P is limiting in spring and N is limiting in summer (Malone
et al. 1996). These results highlight previously underemphasized seasonal dynamics
associated with hypoxia-nutrient load relationships, as well as the interacting role of
N and P loads in controlling hypoxic volume, which have been highlighted in other
large coastal ecosystems (Conley et al. 2009; Greene et al. 2009; Laurent and
Fennel 2014).

HVD responded nonlinearly to January to May total nitrogen (TN) loads varying
over 2 orders of magnitude (e.g., Murphy et al. 2011). These simulations suggest
that HVD would saturate (600 km3-d) at loads approaching twice that of conditions
in 2000. From a management perspective, this indicates that current nutrient
reduction goals should be expected to result in observable reductions in hypoxic
volume. Simple mechanistic models that simulate Chesapeake Bay hypoxia also
predict similar, nonlinear relationships between TN load and hypoxic volume (Liu
and Scavia 2010), although volumes at the low end of the loading range have not
been observed. If HVD is plotted against N load for each year from the 1996–2005
simulation, the HVD tends to fall below the logistic curve (Fig. 5.9) for years with
below-average Susquehanna Flow (lower HVD/load), while HVD/load is higher in
above-average flow years. This suggests that HVD is sensitive to physical circu-
lation or additional nutrient inputs under high-flow conditions.

Perhaps, the clearest conclusion of the nutrient load simulations for Chesapeake
Bay is the importance of summer NPP and respiration in driving the Bay’s response to
N loading. This is consistent with recent historical data analyses, which have sug-
gested that declines in late summer (July–August) hypoxic volume are associated with
modest declines in January to May Susquehanna River N loads (Murphy et al. 2011).
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Statistical analyses do not, however, provide the specific mechanisms connecting
reduced winter–spring N loads to July–August hypoxic volumes. As this and other
studies (Malone et al. 1996) have shown, N limitation is the primary control on
phytoplankton growth during summer throughout much of Chesapeake Bay. Model
simulations clearly display that NPP, phytoplankton biomass, and respiration during
the summer period are more sensitive to N additions than during spring (Fig. 5.9), but
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spring (March toMay) NPP and water-column respiration rates were also enhanced by
elevated nutrient loads (as in Fig. 5.8). In a related ROMS-RCA model simulation,
where summer phytoplankton was not allowed to grow (Fig. 5.10), bottom-water O2

was replenished to non-hypoxic levels beginning in mid-June. The implication of this
result is that summer phytoplankton growth and subsequent respiration are necessary
to maintain hypoxia throughout summer. Additionally, N-loading enhancement of
lower-Bay water column respiration was a primary driver of interannual variations in
hypoxic volume in the 10-year simulation in Chesapeake Bay. These simulations
clearly identify N load as a major driver of mid- to late summer hypoxic volume in
Chesapeake Bay, and they provide mechanisms to link N load to hypoxia.

5.4 Summary and Synthesis

5.4.1 Lessons Learned from Different Models

Simulation studies for each of the three numerical models presented in this chapter
provide a unique contribution to our current understanding of O2 cycling and
hypoxia in Chesapeake Bay. The modeling tool chosen to answer a particular
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research question should be based on a need to balance model complexity with
sufficient resolution of the spatio-temporal scales and process description needed to
investigate a particular suite of research questions.

BM-RCA was able to accurately reproduce seasonal and regional O2 dynamics
in Chesapeake Bay, as well as to quantify interannual variability in chlorophyll-
a and O2 concentrations over a two-decade-long period. Regional budgets of par-
ticulate organic carbon derived from the model revealed the importance of landward
longitudinal advection in delivering labile carbon to the seasonally hypoxic region
of Chesapeake Bay. The low computational cost of this model and its generic
physical transport calculations make it highly portable to other coastal systems.
BM-RCA, however, cannot resolve lateral patterns in O2 uptake and transport or
capture fine-scale patterns of O2, thus preventing accurate computations of hypoxic
area and volume. For example, to investigate recently recognized channel-shoal
interactions associated with lateral circulation as a key replenishment process of O2

(Scully 2010a) and associated phytoplankton responses (Malone et al. 1986), a
finer-scale 3D modeling approach is required (e.g., ROMS-sDO or ROMS-RCA).
ROMS-sDO can also be used to understand the nature of other hydrodynamic
processes on dissolved O2 such as the effects of tidal/wind mixing and freshwater
input. ROMS-sDO, however, cannot be used to simulate the interannual variability
of dissolved O2 and hypoxic and anoxic volume in the Bay because it does not
capture interannual changes in water column and sediment O2 uptake associated
with changes in nutrient load. Thus, to understand interannual variations, we need
to examine variation in nutrient loading from year to year, along with the associated
spatially-resolved patterns of nutrient and organic matter transport and cycling. In
this case, ROMS-RCA is chosen over simplified models (BM-RCA or
ROMS-sDO) because of its sufficient resolution and complexity in both physics and
biogeochemistry.

5.4.2 Considerations for the Future

Despite the recent advances in modeling dissolved O2 dynamics and hypoxia in
Chesapeake Bay and other coastal waters worldwide, there is vast room for addi-
tional analysis and model improvement. This chapter was designed to help the
coastal system modeling community by illustrating what can be learned about the
effects of seasonal and interannual variability in physical forcing and nutrient
loading on hypoxia in a particular system (Chesapeake Bay). The lessons learned
can likely be applied elsewhere. Despite what was learned from 10 years of
ROMS-RCA model simulations for the Bay, an extension of the simulations
beyond a decade may be necessary to fully test the model’s ability to reproduce
interannual variability in hypoxia and capture trends. Biogeochemical model sim-
ulations, despite their limitations (e.g., unconstrained parameters, missing pro-
cesses), are only as good as the hydrodynamic simulations used to drive them.
Several applications of ROMS in Chesapeake Bay have successfully reproduced
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current velocities and longitudinal salinity and temperature structure (e.g., Li et al.
2005; Irby et al. 2016), but have been unable to generate accurate gradients of
vertical salinity, often under-predicting these gradients in some times and places
(Irby et al. 2016). To improve simulations of dissolved O2 concentrations (vertical
gradients of which tend to follow those of salinity), hydrodynamic simulations must
improve this aspect of estuarine dynamics. New efforts to compare the accuracy and
utility of multiple coupled hydrodynamic–biogeochemical ocean models may be a
way forward in enhancing existing modeling tools.

5.4.3 Summary

In this chapter, we summarize and compare three modeling systems for simulating
dissolved O2 and hypoxia dynamics in Chesapeake Bay. We conclude that each of
these modeling approaches has its advantages and disadvantages, and the choice of
which to apply depends on the scientific questions that are to be addressed. For
example, if one seeks a tool to do sensitivity tests or examine regional patterns in
biogeochemistry, a model like BM-RCA may be sufficient. On the other hand, if the
driving questions are related to climatic effects on O2 dynamics, a model similar to
ROMS-sDO may be adequate. However, if one is interested in examining inter-
annual variability in biogeochemical processes, biophysical interactions and feed-
backs, or small-scale processes, a model like ROMS-RCA is necessary. Although
the potential levels of complexity and resolution accessible with modern coastal
biophysical models continue to increase, relatively simple models still have a role
for addressing broader and more general research questions to understand coastal
systems dynamics.
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Chapter 6
Modeling Hypoxia and Its Ecological
Consequences in Chesapeake Bay

Jerry D. Wiggert, Raleigh R. Hood and Christopher W. Brown

Abstract The Chesapeake Bay is a valuable recreational, ecological and economic
resource that is subject to environmental hazards, such as harmful algal bloom
(HAB) and hypoxia, which can degrade the Bay’s health and jeopardize the viability
of this important natural resource. As a step toward developing the capability to
forecast such hazards, a biogeochemical version of the Chesapeake Bay Regional
Ocean Modeling System (ChesROMS) has been developed. The model framework
encompasses the physical, biogeochemical and bio-optical effects of river borne
sediments, atmospheric deposition, nutrient and dissolved organic matter inputs, and
benthic interactions throughout the Bay. These influences all contribute to the
evolution of dissolved oxygen in the Bay’s waters, in particular the consistent annual
development of anoxia in the bottom waters of the mid-Bay region. Here, we
report on the performance of a newly developed, mechanistic dissolved oxygen
formulation that has been incorporated into the ChesROMS model with the
motivation to realistically resolve seasonally developing hypoxia/anoxia in the Bay.
Insights into various biophysical interactions and biogeochemical processes of the
Bay gained from these numerical experiments are considered, and the application of
the ChesROMS model fields in short-term ecological forecast applications is
discussed.
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6.1 Introduction

Chesapeake Bay is the largest estuary in North America and has the highest
land-to-water ratio (14:1) of any coastal water body in the world. The Chesapeake
Bay watershed spans more than 64,000 square miles, encompasses the District of
Columbia and parts of six states, extends northward to Otsego Lake near Coop-
erstown, NY and westward to the foothills of the Blue Ridge Mountains, and is
home to more than 17 million people. Recreationally, the Bay’s sport salt-water
fishing industry annually yields $1.34 billion in sales (National_Marine_Fish-
eries_Service 2011), and swimming and boating are supported by numerous bea-
ches and safe harbors. Ecologically, vast wetlands surround the Bay and its
tributaries and offer a haven for a rich diversity of wildlife. Economically, the Bay
supports the livelihoods of many commercial fishermen. The commercial seafood
industry contributed $3.39 billion in sales, $890 million in income, and nearly
34,000 jobs to the local economy in 2009; furthermore, the Bay is the largest
producer of blue crabs in the world, with yearly harvests of approximately 24.9
million kilograms (National_Marine_Fisheries_Service 2011). Clearly, maintaining
the ecological health of the Bay is a priority for the quality of life and economic
vitality of the mid-Atlantic region.

The seasonal variability of the physical environment within the Bay regulates the
biogeochemical processes that in turn provide the framework for supporting these
substantial fisheries harvests. The magnitude of the Bay’s estuarine circulation is
primarily set by the seasonality of the Susquehanna outflow, which typically peaks
in the spring and tapers off to a late summer minimum. Seasonally varying wind
forcing has also been established as an important contributor to the longitudinal
circulation, with wintertime northerly winds acting to reinforce the principal estu-
arine circulation and southerly winds associated with the summertime Bermuda
High acting in opposition to this circulation (Goodrich and Blumberg 1991). Along
with its influence on the estuarine circulation, the annual cycle of freshwater inflow
is a primary control on the seasonal variation in water column stratification, which
is of particular biogeochemical relevance due to how this affects air-sea exchange
and therefore in water dissolved oxygen concentration. The annually recurring
development of severe hypoxia in the bottom waters of the main stem of the Bay is
clearly linked to water column stratification that develops in late spring/early
summer (Murphy et al. 2011).

Human activities over the last several decades have led to significant degradation
of water quality and ecosystem health in the Bay (Kemp et al. 2005). Associated
detrimental impacts include nutrient pollution and the negative consequences of
eutrophication such as increased turbidity of Bay waters, which inhibits the growth
of submerged aquatic vegetation (SAV) (Moore and Wetzel 2000; Moore and Jarvis
2008). Eutrophication has also amplified the annually recurring manifestation of
hypoxia in bottom waters of the Bay, an environmental condition that is harmful to
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both invertebrates and fish. All of these negative effects are subject to substantial
intra-seasonal and interannual variability that arises due to variations in
freshwater/nutrient loading and the above-noted physical drivers (Murphy et al.
2011; Hagy et al. 2005). This variability is so large that it has made it difficult to
assess whether efforts to restore the Bay are working; that is, detecting a clear trend
is problematic given the system’s inherent variability. This variability also makes it
difficult to predict what the ecological health of the Bay will be in the future on
timescales ranging from days to months to years and under the emerging impacts of
global climate change (Najjar et al. 2010).

Developing the ability to predict the timing, location, and intensity of low
oxygen events will help mitigate their impacts on human and ecosystem health by
providing local, state, and federal agencies with early warnings of their arrival.
Furthermore, this capability can be used by managers to evaluate the outcome of
different scenarios and select the best alternative in order to better preserve the
coastal resources and protect human health.

As part of an effort to predict water quality and ecosystem health in Chesapeake
Bay, we have developed the Chesapeake Bay Ecological Prediction System
(CBEPS), a three-dimensional, coupled estuarine physical–biogeochemical–eco-
logical modeling system that routinely generates and provides nowcasts and
short-term (3-day) forecasts of a broad suite of physical, biogeochemical and
ecological properties in the Bay (Brown et al. 2013). This modeling system is built
upon the Chesapeake Bay Regional Ocean Modeling System (ChesROMS) (Xu
et al. 2011), an implementation of the open source Regional Ocean Modeling
System (ROMS) (Shchepetkin and McWilliams 2005) for Chesapeake Bay.

The ChesROMS’s biogeochemical model was developed to capture the
spatio-temporal variability of the Bay’s phytoplankton and nutrient distributions.
Capturing the annually recurring seasonal onset of hypoxia at depth in the mid-Bay
region (Hagy et al. 2004) was another specific objective of the model’s develop-
ment. The focus on hypoxia necessitates the inclusion of an active dissolved oxygen
(DO) component in the biogeochemistry. Fulfilling this need represents a challenge
in terms of maintaining sufficient complexity to capture the seasonally recurring
transition to hypoxic/anoxic waters in a setting where the influence of benthic–
pelagic coupling (i.e., exchange of dissolved nutrients and DO) plays a critical role
in the overall elemental cycling of the Chesapeake Bay system. In addition, this
model must be capable of capturing interannual variability in the Bay’s biogeo-
chemical properties and DO. Finally, a streamlined approach is needed for routine
application of the ChesROMS biogeochemical model to obtain the nowcasts and
short-term forecasts of ecosystem function that inform CBEPS (cf., Brown et al.
2013), and to expeditiously perform longer-term runs (e.g., annual and interannual
hindcasts) used for synthesis studies of the Chesapeake Bay system.

In this paper, we describe the ChesROMS biogeochemical model, focusing on
the model components that have been developed and implemented to simulate
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nutrient cycling under seasonally developing hypoxic and anoxic conditions in both
the water column and sediments of Chesapeake Bay. The solutions presented here
were all obtained through application of forcing fields from 1999, which was
chosen as a focus for the biogeochemical model’s development since it represents a
typical hydrologic flow regime. The three primary aspects of the Bay’s biogeo-
chemical variability we targeted as key features to capture in the model simulations
were the phytoplankton bloom dynamics, the spatio-temporal variation of nutrient
distributions, and the onset and persistence of severe hypoxia along the main stem.
We found that there are inherent tradeoffs to these three modeling objectives,
whereby increased skill in one aspect can be countered by a significant degradation
of one or both of the other objectives. Here, we report on our success in simulta-
neously attaining these three objectives, review the new insights into the workings
of the Chesapeake Bay system that were gained, and outline future steps for
incorporating these insights into ongoing research activities and operational model
development efforts.

6.2 Methods

6.2.1 ChesROMS: Physical Model and Forcing Fields

ChesROMS is set up as a three-dimensional, sigma-coordinate model, with a
horizontal resolution of 1 to 5 km and 20 vertical levels; this configuration is used
to simulate the circulation and physical properties (temperature, salinity, density,
velocity and mixing) of the estuary (Fig. 6.1). The physical implementation of the
ChesROMS model employed for the results presented here is identical to that
reported by Xu et al. (2011). A synopsis of the model setup is presented here; for
full details of the implementation, validation and assessment of model skill, the
reader is invited to consult the Xu et al. foundational effort.

The ChesROMS physical model provided the capacity to simulate the estuarine
circulation in Chesapeake Bay that is principally controlled by hydrologic inputs
from nine freshwater sources distributed around the Bay (Xu et al. 2011). The
principal sources into the Bay are the Susquehanna (51%), Potomac (18%) and
James (14%) Rivers, with further contributions from the Patuxent, Rappahannock
and York Rivers and sources on the Eastern Shore (Guo and Valle-Levinson 2007).
Forcing of the ChesROMS model consists of lateral boundary conditions associated
with the noted river inflows, atmospheric boundary conditions (heat and momentum
fluxes) obtained from the NARR reanalysis produced by NCAR, tidal forcing at the
Bay’s mouth from the ADCIRC EC2001 tidal database along with tide station data
from Wachapreague, Virginia and Duck, North Carolina. At the model’s open
boundary with the North Atlantic, salinity and temperature were nudged to cli-
matological values in the 2001 World Ocean Atlas.
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6.2.2 ChesROMS: Biogeochemical Model Configuration

A relatively simple NPZD-type ecosystem model has been implemented as a fully
coupled component of ChesROMS. The Fennel et al. model (2006) that is provided
as a standard component of the ROMS source (http://www.myroms.org) forms the
basis for the ChesROMS ecosystem model (Fig. 6.2). Here, we describe how the
model has been constructed and the capabilities that we have introduced in order to
capture the elements of the Bay’s biogeochemistry that were not accounted for in the
standard ROMS release. Due to space considerations, the detail of the
biogeochemical equations that we developed is not included herein. For the reader
with interest to pursue these modifications in more depth, a slightly modified version
of our biogeochemical formulations has been documented in Feng et al. (2015).

The ChesROMS ecosystem uses nitrogen as its fundamental currency but also
includes a simple parameterization of phosphorus limitation. The formulation of an
water light model specifically developed for the Bay by Xu et al. (2005) has been
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adopted, with model salinity (as a proxy for CDOM (colored dissolved organic
matter)) contributing to attenuation of downwelling irradiance, along with chloro-
phyll and inorganic suspended solids (ISS). The ecosystem tracks phytoplankton

DONNH4

Z

ISS

DS

DL

River Inputs
Diffuse Sources

Atmospheric Deposition

NO3

N2 O2

P
Chl

NO3

NH4

Fig. 6.2 Diagram for the ChesROMS biogeochemical model, illustrating the flows of nitrogen
through the model’s state variables. Benthic, terrestrial and atmospheric sources and sinks
accounted for by the model are shown. The gray backgrounds of Z, DS, DL and ISS represent these
constituents’ role in attenuating downwelling irradiance. Similarly, the green background of CHL
represents its role in attenuating downwelling irradiance, where CHL is a diagnostic variable of the
phytoplankton state variable for which Chl:N varies with environmental conditions (Geider et al.
1997). The black circle represents the formation of large detritus (DL) through the aggregation of
phytoplankton (P) and small detritus (DS). The light blue background of the upper box represents
the dissolved oxygen within the water column that is subject to atmospheric exchange, variability
in stratification and biotic generation and utilization. The cyan arrows represent production of
oxygen via photosynthesis while the magenta arrows in the flow chart represent respiratory
processes that take up oxygen. Drawdown of nitrate to fuel benthic denitrification and benthic
efflux of ammonium into the water column are indicated by the pathways of NO3 into and NH4 out
of the benthos
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biomass, and organic and inorganic components of nutrient and particulate con-
stituents (Fig. 6.2). The phytoplankton constituent in the model has an associated
chlorophyll representation that is based on a Chl:N ratio that is modulated by the
light field (Geider et al. 1997). As part of the particulate organic constituents, two
detritus size classes are included, where large detritus (DL) is generated through the
aggregation of small detritus (DS) and phytoplankton (P) (black circle, Fig. 6.2).
A single zooplankton size class with grazing rate modulated by temperature
(Huntley and Lopez 1992) contributes to the small detritus pool via sloppy feeding
and mortality. A dissolved organic nitrogen (DON) component has been added to
accommodate riverine-associated DON loadings that contribute significantly to the
Bay’s overall nitrogen budget, which exhibits increasing DON:DIN ratio toward the
Bay mouth (Bradley et al. 2010). In addition to the flows of nitrogen through the
ChesROMS ecosystem noted here, the benthic, terrestrial and atmospheric sources
and sinks incorporated in the ecosystem model are represented in the wire diagram
(Fig. 6.2).

Dissolved oxygen (DO) concentration is mechanistically determined, with sea-
sonal transitions toward anoxia accomplished by inclusion of explicit water column
denitrification based on Oguz (2002). Within the water column, DO-based transi-
tions between nitrifying (normoxic) and denitrifying (hypoxic) conditions are
applied that modulate the remineralization of detritus by aerobic and anaerobic
bacteria; zooplankton activity and metabolic losses are linked to the nitrification
formulation and are thus ramped down where hypoxia is established and as it
intensifies. The sources and sinks of DO associated with these biogeochemical
processes in the water column are indicated on the wire diagram by the cyan
(production) and magenta (uptake) arrows (Fig. 6.2). The benthic biogeochemical
model of Fennel et al. (2006) that was developed for normoxic water column
applications has been extended by linking benthic exchanges to the dissolved
oxygen concentration of overlying bottom waters using a Michaelis–Menten-based
formulation.

Through this benthic exchange linkage the model is set to: (1) mechanistically
modulate the drawdown of water column DO at depth to fuel benthic denitrification
and; (2) capture the observed amplification of ammonium efflux from the benthos
and onset of nitrate influx to the benthos as benthic denitrification intensifies (see
Fig. 6 in Middelburg et al. 1996). The Michaelis–Menten-style formulation applied
to control these benthic exchanges is based on published observations from the Bay
that relate ammonium efflux to bottom DO (Rysgaard et al. 1994; Cowan and
Boynton 1996). A second Michaelis–Menten style mechanistic link to nitrate
concentration in overlying bottom waters is implemented to prevent generation of
negative concentrations resulting from nitrate drawdown; this inhibition to nitrate
drawdown solely affects the benthic interaction with water column nitrate at depth
in the model. That is, anaerobic respiration in the benthos that fuels ammonium
efflux is assumed to shift to an alternative electron acceptor source (e.g., sulfate)
that is not explicitly modeled. Finally, the sinking velocity of the large detritus pool
was reduced by 40% in the bottom layer of the model to allow for advective
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redistribution of organic matter by the estuarine circulation and to promote oxygen
demand in the water column via resuspension.

Point and diffuse source loadings of NO3, and both organic and inorganic par-
ticulates, are based on the rates of river inflow and concentrations of NO3, total
organic nitrogen (TON) and total suspended solids (TSS) measured along the Bay’s
boundaries that were obtained from the Chesapeake Bay Program (CBP) data
repository (http://chesapeakebay.net/). Atmospheric deposition of NO3, NH4 and
DON over the Bay are determined from measured rates of wet atmospherically
deposited nitrogen from the NADP’s Wye Island Station (http://nadp.sws.uiuc.edu/)
and constant annual rates of dry deposition (Meyers et al. 2001).

6.2.3 Model Assessment and Validation

The CBP data holdings are an invaluable resource that have been used here both for
setting the initial state of the model and for constructing the biogeochemical
boundary conditions associated with point and diffuse sources around the Bay (as
noted above). These data were also critical for assessing how effective the bio-
geochemical model is at capturing the seasonal variability, including vertical
structure, over the entire estuary. Measurements of chlorophyll, NO3, NH4, DO and
DON were all routinely extracted and used to directly compare the seasonal vari-
ability of profiles at a targeted group of CBP stations (3.3C, 4.3C, 5.3 and 6.3) that
are representative of the upper, mid- and lower Bay (Fig. 6.1). The three upper
stations are also aligned with the outflows (north to south) of the Patapsco,
Choptank and Potomac Rivers, while the Lower Bay site is located south of the
Rappahannock River outflow.

The CBP measurements were also used to determine an along-Bay quantification
of model skill (Willmott 1981) that provided a temporally integrated view of per-
formance over 27 CBP sites along the Bay’s main stem. For the results presented
herein, skill values for chlorophyll, NO3 and NH4 are based on the full annual
period while the skill values for DO are based on the summer period (May–
August). The temporal and spatial alignment of the model output to the CBP profile
data are as follows. The time of the data profiles is aligned to the middle of the UTC
hour to associate it with the model time step. Spatially, the model values (20 layers)
are interpolated to align with the vertical location of the data. In cases for which the
measurement location extends beyond the model profile, the bottommost point in
the model profile is used.

As a typical hydrological forcing condition, 1999 was deemed an attractive time
frame for conducting the development and testing needed for establishing the
biogeochemical model and gaining critical insight into its sensitivities. The results
presented here will focus on the baseline model implementation and the insights it
reveals regarding seasonal variation of bloom dynamics, nutrient availability and
dissolved oxygen in the Bay.
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6.3 Results

6.3.1 Seasonal Variability in the Physical Environment

Examining the seasonal and spatial variability in the Bay’s salinity field reveals the
physical setting that controls its biogeochemical processes. The comparison of
modeled salinity with co-located measurements drawn from the CBP observations
database at the four target stations (3.3C, 4.3C, 5.3 and 6.3) is shown in Fig. 6.3.
These point-to-point model-data plots provide a direct comparison of the 15 CBP
salinity profiles obtained during 1999 at the four stations highlighted. For this
comparison, the smaller symbols at each profile location represent shallower sample
depth.

Some generalities that can be drawn from this comparison are that at the two
northern sites (3.3c and 4.3c, Fig. 6.3), bottom waters in the model are fresher than
the observed condition until the fall when the model is consistent with the data.
Surface waters in the model are also consistently fresher at the northernmost station
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(3.3c), except during the spring freshet and in November (Fig. 6.3a). At station 4.3c
(Fig. 6.3b), the surface waters are slightly fresher than observed through May; over
the rest of the year, the model accurately represents surface salinity. Overall at
station 5.3 (Fig. 6.3c), the salinity range for each profile over the course of 1999 is
well represented by the model. The model does exhibit a tendency toward too salty
conditions at depth after July. This tendency (model salinity greater than observed
at depth) is more pronounced at station 6.3 (Fig. 6.3d).

Vertical sections of salinity along the Bay’s main stem, for April, May, August
and October, are shown in Fig. 6.4. The magenta diamonds along the distance axis
represent the location of the four CBP stations featured in Fig. 6.3, while the
along-Bay distance is in reference to the mouth of the Susquehanna River in Harve
de Grace, MD. The extraction path of the along-Bay section from the model results
follows the Bay’s main stem (Fig. 6.1, white line).
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The mid-April time frame of the first salinity section is chosen to align with the
seasonal peak in freshwater discharge, which typically occurs late March to early
April (Sanford et al. 2001; Schubel and Pritchard 1986). Over the course of the 6
months shown in Fig. 6.4, the freshwater plume associated with the inflow of
Susquehanna River water exhibits a clear peak in its extent in the mid-April panel
(Fig. 6.4a) with salinities of 12 or less extending ∼110 km downstream of the river
mouth. The profile from the end of April at station 3.3c (Fig. 6.3a) indicates that
surface salinity is accurately captured in the model, whereas the deep values are
fresher by ∼20%. An interesting feature of the mid-April salinity section is the
shoaling of the S = 16 isohaline at 155–165 km and the freshening of surface
waters farther downstream, where the S = 16 isohaline again outcrops oceanward
of 220 km (Fig. 6.4a). Examining an animation of model salinity sections reveals
that this mid-Bay outcropping of the S = 16 isohaline occurs intermittently, and
exhibits pronounced variability, from mid-February through mid-June. The fresher
waters downstream of this outcrop location, which are bounded by the S = 16
isohaline when the outcrop events occur (Fig. 6.4a), are aligned with the Potomac
River inflow. The magenta diamond at ∼180 km downstream distance, which
demarks CBP station 5.3, is adjacent to the mouth of the Potomac (Fig. 6.1).

The 6-month sequence of salinity sections provides a useful illustration of the
evolution of surface salinity in the Bay (Fig. 6.4). The freshwater discharge from
the Susquehanna River in May is typically 40–50% lower than the peak discharge
of the late March/early April time frame. The retreat of the low salinity feature at
the head of the Bay in May (note the S = 8 and S = 12 isohalines) clearly reflects
this discharge reduction (Fig. 6.4a, b). The freshening of the mid-Bay region is also
apparent, with the S = 16 outcrop no longer present in the mid-Bay (Fig. 6.4b).
This results from the progression of the spring freshet down the Bay and the various
lateral inputs (e.g., the Potomac and Patuxent Rivers).

The evolution of the estuarine circulation’s return flow is represented by the
S = 16 and S = 20 isohalines in the 6-month sequence (Fig. 6.4). By May, the
bottom expression of both isohalines has shifted toward the Bay mouth coincident
with the noted freshwater inflow. Over the summer, the two isohalines propagate
40–50 km northward (Fig. 6.4b, c). Over the summer months, model salinities at
depth for the two southern stations show good agreement with the CBP measure-
ments (Fig. 6.3c, d) while the two northern stations are consistently less salty than
observed (Fig. 6.3a, b). In the fall this bias shifts, with bottom salinities at the two
northern stations represented well in the model while the two southern stations tend
toward being too salty. The fall salinity transect reveals the reduction in the strength
of the return flow and the onset of fall breakdown of stratification with seasonal
cooling (Fig. 6.4d).

As indicated above, the distinction in bottom salinity between the model and the
observations at station 3.3c persists through September (Fig. 6.3a); this indicates
that the return flow of the estuarine circulation in the model is slightly too weak. For
the sections of model salinity, this suggests that the accumulation of elevated
salinity waters at the Bay mouth is apparent as the seasonal evolution unfolds is
overstated (Fig. 6.4b, c). Thus, deep salinities will tend to be too high near the Bay
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mouth and too low in the mid- and upper Bay, as is generally apparent in the
model-data comparison time series (Fig. 6.3). This aspect of the simulated physical
environment has significant implications for the functioning of the model’s bio-
geochemical constituents, in particular the DO evolution that is attained.

6.3.2 Seasonal Variability of Biochemical Constituents

Model-data comparison for biochemical constituents of the model (chlorophyll,
NO3 and NH4) for the two northern sites, where seasonal anoxia manifests, is
shown in Fig. 6.5. The chlorophyll comparison at the northernmost site shows that
the range in chlorophyll concentrations is consistent with the measurements
(Fig. 6.5a). The spring bloom onset is captured, though the bloom’s persistence in
the model extends to early May prior to decreasing in late May and into the summer
months. The observations indicate that the spring bloom begins to ramp down a
couple weeks earlier than in the model; however, the maximum surface chlorophyll
concentration (>40 mg m−3) was measured in late May. During summer, modeled
chlorophyll is within the observed range, though the model’s subsurface values are
consistently higher than the minimum observed concentrations. During fall and
early winter, chlorophyll in the model consistently exceeds the measured values
over the whole water column. At station 4.3C, the spring bloom in the model also
persists longer into the early summer (Fig. 6.5b). Interestingly, during the summer
and into the fall the model succeeds in capturing the minimal chlorophyll con-
centrations at depth that are seen in the data.

The model-data comparison of nitrate provides some insight into the functioning
of the model’s ecosystem. At both locations, observed nitrate concentrations during
late April/early May significantly exceed the modeled values (Fig. 6.5c, d). This
suggests that the termination of the spring phytoplankton bloom is due to grazer
control, indicating that zooplankton activity in the model does not ramp up as
quickly. Minimal values of nitrate over the summer months over the entire water
column are accurately represented in the model at station 3.3c, as is the subsequent
enrichment in the fall/early winter period (Fig. 6.5c). At station 4.3c, the very low
summertime nitrate values are also captured; however, concentrations in the latter
months are 2–3 times greater than observed (Fig. 6.5d). The model does accurately
capture the observed high bottom-water nitrate concentrations.

The ammonium comparison shows that the model does a good job of simulating
low surface concentrations over almost the entire seasonal cycle (Fig. 6.5e, f).
Departures from the measured low surface ammonium values (<0.6 μM) in the
model tend to occur in late summer (particularly mid-August) and in the early
winter in the mid- to upper Bay (Fig. 6.5e, f) as well as the lower Bay (not shown).
Examining animations of along-Bay sections of ammonium indicate that when they
appear, these instances of elevated surface ammonium concentrations in the model
result from vertical mixing that homogenizes the water column distribution (data
not shown). As this mechanism implies, maximum ammonium concentrations
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occur in bottom waters that are in contact with the benthos. Peak ammonium values
at depth in the model occur consistently throughout the seasonal cycle; the observed
vertical distributions also follow this pattern (Fig. 6.5e, f). While the simulation’s
peak bottom concentration values are consistent with the highest observed values,
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modeled concentrations in the lower half of the water column are for the most part
higher than observed and these elevated values at depth are clearly more persistent.

6.3.3 Dissolved Oxygen (DO) Results

The dissolved oxygen comparison shows that the model captures the general fea-
tures of the seasonal cycle for the upper, mid and lower regions of the Bay, with peak
concentrations in the spring, decreasing concentrations from late spring through the
summer and re-oxygenation of the water column initiating in the fall (Fig. 6.6).
A more complete representation of this seasonal evolution of dissolved oxygen in the
model is revealed in the along-Bay sections (Fig. 6.7). Fully oxygenated springtime
surface waters are clearly represented in the section plots; this DO condition can be
seen to extend over the entire Bay (Fig. 6.7a). The late spring distribution shows
reduction of dissolved oxygen concentrations over the whole water column and the
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appearance of very low bottom-water concentrations at several locations (Fig. 6.7b).
These low DO hotspots in the late spring distribution are most pronounced in the
mid- to upper Bay with two distinct features that appear just above the two northern
CBP focus stations (3.3C, 4.3C); thus, they are situated just upstream of the inflows
of the Patapsco and Choptank rivers. The model-data comparison for these two
stations shows that the model captures the timing of this hypoxia onset in late spring
quite well (Figs. 6.6a, b and 6.7b). In addition, moderate DO concentrations at this
time (∼180 mmol m−3) are very accurately represented at station 5.3 (Fig. 6.6c). At
station 6.3, the model consistently overestimates DO drawdown at depth through the
late spring (mid-May) time frame (Fig. 6.6d).

The establishment of persistent summertime hypoxia is achieved at station 4.3C
and intermittently realized at stations 3.3C and 5.3 (Fig. 6.6a–c). All three of these
sites exhibit hypoxic conditions in the summer, with the two northern locations
reaching full anoxia beginning in late May to early June that persists through the
end of August (Fig. 6.6b, c). In the results shown here, full anoxia in the model’s
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bottom waters is only achieved at station 4.3C in mid-July to mid-August
(Fig. 6.6b). However, several other of the CBP station locations in this mid-Bay
region also achieve summertime anoxia in the bottom DO concentrations in the
model (4.1C, 4.3 W, 5.2, not shown). Further, daily maps of modeled bottom DO
over the Chesapeake Bay domain reveals that hypoxic to anoxic conditions
extending from the Potomac River inflow (station 5.3) to just north of the Patapsco
River inflow (station 3.3C) occur intermittently in late June through July and more
persistently throughout August (not shown). The along-Bay section for mid-August
illustrates this extensive latitudinal range of very low DO conditions and indicates
that hypoxia can range over 15 meters of the water column and extend to within 5
meters of the surface (Fig. 6.7c).

The timing of onset of re-oxygenation of the water column in mid-September for
the upper and mid-Bay stations is nicely captured by the model (Fig. 6.6a–c).
Further the ongoing evolution of re-oxygenation through early December is well
represented. Except for waters proximal to the Patapsco outflow (Fig. 6.7d), the
along-Bay section for mid-October indicates that the entire estuary has returned to
oxic condition. The CBP data support the model’s indication that the main stem
region near the Patapsco outflow is a low DO hotspot in the late fall/early winter
time frame, as it is the only site where DO is below 150 mmol m−3 in November
and below 200 mmol m−3 in December (Figs. 6.6 and 6.7d).

6.3.4 Assessment of Model Skill and Parameter Sensitivities

With the goals of attaining fidelity in the model’s representation of phytoplankton
bloom dynamics, spatio-temporal variation of nutrient distributions and the
onset/persistence of severe hypoxia in the mid- to upper Bay region, an extensive
exploration of the ecosystem model’s parameter space has been performed. The
model-data comparisons of the biochemical fields (e.g., as featured in Figs. 6.5 and
6.6) were a prime component of the solution assessments. The other primary
component of these assessments was determination of model skill (as defined in
Willmott 1981), which provided an objective, overview characterization of the key
state variables for each solution. An aggregate model skill over the 1999 seasonal
cycle was calculated using all profile data gathered at each of 27 CBP stations and
is presented as an along-Bay variation. The 27 CBP stations chosen for these
along-Bay skill assessments range from station CB1.1 (39.55 °N, 76.08 °W) down
to CB7.3 (37.12 °N, 76.13 °W); the linear distance of these stations from Harve de
Grace, MD is represented by the black triangles on the abscissa of Figs. 6.4 and 6.7.
For the most part, these stations lie along the Bay’s main stem; however, several
sites in the shallower waters adjacent to the main stem are included to provide full
representation.

The along-Bay skill within a set of six model solutions for four model state
variables (chlorophyll, ammonium, nitrate and dissolved oxygen) is shown in
Fig. 6.8. The sidebar of Fig. 6.8 lists the identifiers of the 27 CBP sites included in
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the skill determinations, with an integer index noting their ordering in the down Bay
direction. The four CBP stations featured in the model-data comparisons (black
diamonds, Fig. 6.1) are indicated by gray shading in this site listing. While skill in
the model state variables throughout the Bay was desired, the skill values for DO at
sites 6–7 and 12–15 were a focal point for assessing how well summertime hypoxia
onset and persistence were attained. These two along-Bay foci, respectively,
coincide with the Patapsco/Chester River and Potomac River inflows (Fig. 6.1). It
should be noted that differences in DO skill achieved at these sites were closely
examined since even minor improvement in skill at these locations was indicative
of significant improvement in the summertime evolution of bottom DO concen-
tration in the model, in particular with regard to transitioning to and maintaining
hypoxic conditions.
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Fig. 6.8 Along-Bay skill within a set of six model solutions for four model state variables:
a chlorophyll, b ammonium, c nitrate and d dissolved oxygen. An aggregate of along-Bay skill
assessments is determined for 27 CBP stations that range from station CB1.1 (39.55 °N, 76.08 °W)
down to CB7.3 (37.12 °N, 76.13 °W). The model-data pairs contained within each aggregate
include all depths for every profile obtained by the CBP sampling in 1999 for the chlorophyll,
ammonium and nitrate skill plots. For the dissolved oxygen skill plot, the May–August time frame
was targeted to gain clearer insight into model performance during the summer hypoxia regime.
The complete list of station IDs from which data are drawn for the skill determination is given in
the included table
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The six featured model solutions are chosen to illustrate the tradeoffs in the
fidelity of these biochemical fields that are commonly realized; that is, improve-
ments in one of the targeted system attributes achieved through parameter adjust-
ment are typically accompanied by some degree of degradation in one (or both) of
the other attribute targets. The skill assessments shown in Fig. 6.8 represent a
progression of overall improvement in model skill as parameter adjustments are
adopted, albeit with tradeoffs as detailed below. In previous sensitivity analyses
leading up to the group of solutions shown in Fig. 6.8, a diverse range of the
model’s ecosystem functionalities were explored that assessed maximum nitrifi-
cation rate, temperature dependence of phytoplankton growth rate and zooplankton
grazing rate, and the aggregation parameter that modulates formation of large
detritus (represented by the black circle in Fig. 6.2). As a result of this sequence of
parameter explorations, model solution A was achieved (dashed orange line,
Fig. 6.8).

A particular target outcome that motivated the parameter exploration reported
here was to improve the persistence of summertime mid-Bay hypoxia, which was
difficult to achieve. Indeed, the summer evolution of mid-Bay hypoxia in Solu-
tion A nicely captures onset in late May/early June but does not maintain the severe
hypoxia seen in the observations and actually transitions to non-hypoxic DO
concentrations by early August (i.e., >62.5 mmol m−3, Fig. 6.9a). The five sub-
sequent solutions featured in Fig. 6.8 represent a further parameter exploration that
targeted refining the formation, water column processing, and benthic delivery of
organic matter in the model with the aim of improving persistence of hypoxia
during the stratified, summer season. The skill curves for the baseline solution are
for the standard run from which all of the model-data shown herein are taken
(Figs. 6.3, 6.4, 6.5, 6.6 and 6.7). The skill curves for solutions B–E in Fig. 6.8
highlight intermediate stages from solution A (orange dashed line) that led to the
baseline run (black dashed line). Table 6.1 provides a synopsis of the model
parameters used for each skill assessment, how the values were adjusted and their
impact on the ecosystem.

In the original water column denitrification formulation that we adopted from
Oguz (2002), symmetric ramps for switching on/off nitrification and denitrification
as conditions transitioned from normoxic to anoxic were employed. For solution B
(Fig. 6.8, olive solid line), an asymmetry was introduced via modification of the
half-saturation coefficient for the denitrification curve (KDNF, Table 6.1). This
asymmetry acted to slightly retard the net remineralization by aerobic and anaerobic
bacteria of both detrital size classes, thus resulting in slight amplifications of
oxygen uptake within the water column and delivery of organic matter to the
benthos. Relative to solution A, solution B exhibited a clear improvement in DO
skill at upper and mid-Bay sites (6–7, 12–15), a mixed influence on chlorophyll and
a significant degradation of ammonium and nitrate, particularly in the mid- to lower
Bay (Fig. 6.8). The degradation of these DIN forms manifests as concentrations that
were in excess of 6 times too high in July/August (ammonium) and
October/November (nitrate) (not shown). Excessive ammonium efflux is the
underlying cause, with the efflux rate being amplified by both the increased organic
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matter delivery to the benthos and, to a lesser degree, the lower bottom-water DO
concentration. These low DO concentrations are clearly apparent in the model-data
comparison (Fig. 6.9b). These show that DO values that interact with the benthos,
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Fig. 6.9 Observed (+) and modeled (O) dissolved oxygen (mmol m−3) for May–August 1999 at
CBP station 4.3C for a Solution A, b Solution B, c Solution C, d Solution D, e Solution E and
f Baseline solution. Each vertical group of symbols represents a vertical profile at the
corresponding time. Size of the symbols is coded by depth with bigger symbols for greater depth
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and modulate benthic exchange rates, successfully capture the summertime per-
sistence of bottom-water anoxia but DO values at mid-depths are lower than
observed.

For solution C (Fig. 6.8, blue solid line), the reduction of large detritus sinking
velocity in the bottom layers of the model has been relaxed (FwR, Table 6.1) to
promote benthic delivery and relieve POM retention in the bottom model layers that
amplifies oxygen demand via remineralization in the water column. As intended,
this parameter modification returns the mid- to lower Bay DIN fields to a realistic
state in the summer to fall time period. However, the summertime onset and evo-
lution of mid-Bay hypoxia is severely degraded, with persistence of bottom anoxia
again being poorly captured though with improvement relative to solution A
(Fig. 6.9a, c).

For solution D (Fig. 6.8, cyan solid line), a more pronounced asymmetry in the
nitrification/denitrification ramps is adopted with the aim of shifting the model into
a solution space that can achieve the desired summertime hypoxia behavior
(KDNF, Table 6.1). Similar to the solution A -> solution B impact described
above, solution D (relative to solution C) exhibits significant degradation of DIN
fields in the mid- to lower Bay that is again associated with too high concentrations
of ammonium and nitrate in the mid-summer to fall time frame. Also similar to

Table 6.1 Summary of model parameter adjustments. Column 1 shows the line type, to reinforce
the legend on Fig. 6.8. Column 2 gives the run identifier. Columns 3–5 give the details of the
affected parameter including its variable name, units, and how its value was modified for the given
model run. A summary of the parameter’s direct impact on the model for the given experiment is
given in Column 6. Over the progression from solution A to the new baseline solution, the
parameter changes are cumulative

Line type Run ID Modified
parameter

Units Value
adjustment

Modification summary

Solution A Original solution

Solution B KDNF mmol
O2 m

−3
3.0 -> 2.86 Reduce 1/2 saturation

coefficient of denitrification
onset curve (KDNF)

Solution C FwR N/A 0.9 -> 0.4 Increase DL sinking velocity
in bottom model layer. 
wLDet_bottom = (1 − FwR)
* wLDet

Solution D KDNF mmol
O2 m

−3
2.86 -> 2.82 Reduce 1/2 saturation

coefficient of denitrification
onset curve (KDNF)

Solution E wLDet m d−1 0.5 -> 0.95 Increase DL sinking velocity
throughout water column

Baseline KBO2 mmol
O2 m

−3
26.5 -> 20.0 Reduce 1/2 saturation

coefficient applied for benthic
biogeochemical exchanges
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solution B, the mid-Bay DO fields better capture the onset and evolution of hypoxia
in bottom waters, in particular the persistence of anoxia in bottom waters
(Fig. 6.9d). However, similar to solution B, mid-depth DO is too low, particularly
late July to August time frame (Fig. 6.9b, d). Solution D also realizes the highest
skill in chlorophyll in the lower Bay (sites 18–23), which contrasts the poorest skill
relative to the other solutions (along with solution B) at mid-Bay sites (13–17).

For solution E (Fig. 6.8, magenta solid line), the sinking velocity of large
detritus was increased from 0.5 to 0.95 m/d (wLDet, Table 6.1). This parameter
modification promotes flux of organic matter to the benthos and reduces particulate
matter loading in the water column, with concomitant impacts on oxygen demand
and denitrification. Both DIN fields are positively impacted. Solution E achieves the
highest skill in ammonium throughout the Bay and the highest skill in nitrate in the
lower Bay. Two pronounced tradeoffs are incurred. The first is the poorest
chlorophyll skill in the lower Bay, which results from poorer fidelity of bloom
dynamics during the mid-summer to early fall time frame. The second tradeoff is
that bottom DO concentrations during summertime are just on the threshold of
hypoxic, rather than the severe hypoxia to anoxia that is observed for the June
through August time frame (Fig. 6.9e).

For the baseline solution (Fig. 6.8, black dashed line), the half-saturation coef-
ficient in the formulation that links benthic exchanges to the DO concentration of
overlying bottom waters is lowered by ∼25% (KBO2, Table 6.1). In oxic to mar-
ginally hypoxic bottom waters, this modification reduces nitrate drawdown and
ammonium efflux, and enhances dissolved oxygen drawdown. The reduced nitrate
drawdown has an interesting, though subtle, impact that can be seen when com-
paring model fields for the mid-Bay stations of the standard run (Fig. 6.5b, d, and f)
with those of solution E (not shown). Higher nitrate concentration in late April
promotes higher plankton biomass (both P and Z) that leads to higher POM
accumulation, relative to solution E, with an associated increase in water column
recycling and DO uptake. This combines with the amplified benthic DO drawdown
linked with export fluxes to improve hypoxic onset and persistence in the model’s
bottom waters during the summer (Fig. 6.9e, f).

The summertime DO time series for the six experiments demonstrate the sig-
nificant variation in the modeled hypoxia evolution at one station (4.3C, Fig. 6.9).
Aside from solution B, there is a consistent pattern to hypoxia onset in May. In
contrast, the persistence of anoxia in bottom DO and evolution of DO concentration
over the water column exhibits a range of responses across the six solutions
(Fig. 6.9); this diverse model DO response to the applied parameter modifications is
apparent all along the Bay in the skill values (Fig. 6.8d). At station 4.3C, the
baseline solution can be seen to provide the best balance between attaining per-
sistent hypoxic bottom DO conditions while maintaining low (non-hypoxic) con-
ditions at mid-depths of the water column (Fig. 6.9). For additional overall
comparative perspective for the six solutions in the skill assessments, mean skill
values and rankings of the experiments for all four state variables have been col-
lected in Table 6.2. The gray shading applied to some of the cells indicate results
where the along-Bay skill is below one standard deviation from the mean for all
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experiments. This view of the results, along with the skill and summer DO com-
parisons (Figs. 6.8 and 6.9), summarizes the tradeoffs in the model’s skill at cap-
turing the observed spatial and temporal variability of the key biogeochemical
parameters targeted in this assessment. It is apparent that each solution tended to
have an attribute for which it particularly excelled, yet each was also consistently
plagued by one (or more) attribute(s) for which performance was particularly poor
(e.g., NH4 and NO3 skill in solutions B and D, Fig. 6.8b, c). Overall, it can be seen
that the baseline solution achieved the best collective fidelity over the spectrum of
model attribute objectives articulated in the introduction.

6.4 ChesROMS Application to Ecological Forecasting
of Chesapeake Bay

The ultimate goal motivating our development of the ChesROMS biogeochemical
model is its application as a means of illuminating biogeochemical processes within
the Bay (described above) and providing nowcasts and short-term forecasts that can
be used to inform the Chesapeake Bay Ecological Prediction System (CBEPS).
The CBEPS was created with and for state and federal agencies responsible for
monitoring and responding to potentially harmful biotic events and conditions in
Chesapeake Bay, such as harmful algal blooms and hypoxia, to forecast these
events and aid in mitigating their deleterious effects on human and ecosystem health
(Brown et al. 2013).

In the application of CBEPS, the physical and biogeochemical variables are
forecast mechanistically using ChesROMS, while the species predictions are gen-
erated using a novel mechanistic—empirical approach, whereby real-time output
from the coupled physical—biogeochemical model drives multivariate empirical

Table 6.2 Summary of impact on model skill as a result of the parameter adjustments
(Table 6.1). Column 1 gives the run identifies. Columns 2–5 give the mean along-Bay skill. The
temporal range for the mean skill values of chlorophyll, NH4 and NO3 is annual while for DO it is
the summer period (May–August). The rank order over the six solutions in this comparison is
given along with the mean skill. The mean and standard deviation for the four parameter skills are
given in the two bottom rows. For table cells with italics, the mean along-Bay skill for a given
solution is more than one σ below the mean over the six solutions

Run ID Mean Along-Bay Skill
Chl NH4 NO3 DO

Solution A 0.33/5 0.40/4 0.55/2 0.50/3
Solution B 0.32/6 0.17/5 0.26/5 0.53/2
Solution C 0.36/3 0.43/2 0.56/1 0.48/6

Solution D 0.34/4 0.14/6 0.25/6 0.54/1
Solution E 0.37/2 0.48/1 0.52/3 0.49/5

Baseline 0.38/1 0.43/2 0.49/4 0.50/3
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habitat suitability models of the target species (see Fig. 3 in Brown et al. 2013).
Environmental variables such as water temperature, water clarity, the concentra-
tions of chlorophyll and nutrients, and the probability of encountering or (relative)
abundance of several noxious species, such as the Atlantic sea nettle (Chrysaora
quinquecirrha), a stinging jellyfish, the pathogenic bacterium Vibrio vulnificus, and
the harmful algal species Karlodinium veneficum in the Bay and its tributaries are
provided as forecast guidance (Fig. 6.10). Near real-time forecasts of sea nettle
distribution have been widely viewed by recreational users, while predictions of
V. vulnificus appearance are under review by state officials to assist in monitoring
recreational exposure (J. Jacobs, pers. comm.) and have been deemed helpful to
managers who must decide when to close beaches and shellfish beds (Pace et al.
2015). Hindcasts can be used to explore likely changes in the distribution of these
organisms that might occur in the future in response to climate change (Decker et al.
2007; Jacobs et al. 2014).

The capability to predict DO and consequently hypoxic events provides these
agencies with a tool that can be used to alert them of these and related potentially
harmful conditions. For example, predicting the three-dimensional fields of DO and
water temperature can be used by fisheries scientists to assess the volume of suit-
able habitat for various commercially important fish in the Bay, such as striped
bass, and the stress imposed on them by hypoxia and elevated temperatures (Ludsin
et al. 2009; Costantini et al. 2008). The hypoxia predictions can also be used
tactically by monitoring agencies to strategically design and implement their
sampling efforts in Chesapeake Bay and its tributaries. Forecasts are needed more

Fig. 6.10 Examples of species forecasts generated by the Chesapeake Bay Ecological Prediction
System (CBEPS). a Probability of encountering Atlantic sea nettles, Chrysaora quinquecirrha, on
17 August 2007; b probability of encountering the pathogenic bacterium Vibrio vulnificus on 20
April 2011; and c relative abundance of the potentially toxigenic dinoflagellate Karlodinium
veneficum on 20 April 2005. Legend: low: 0–10, med: 11–2000 cells/ml, high: >2000 cells/ml.
Color bar for likelihood is the same for both A and B. Reproduced with permission from Brown
et al. (2013)
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than ever to guide sampling activities in the field and increase the efficiency of
monitoring programs during periods of limited resources. On a longer time horizon,
CBEPS/ChesROMS could be extended, given appropriate forcing, to project how
anthropogenic effects might impact the timing, distribution, and intensity of
hypoxia in the Bay in the future.

In order for the environmental predictions to be useful to the agencies and
public, they must be sufficiently accurate with a known degree of uncertainty,
reliably available and accessible in a timely fashion, and interpretable by these
agencies and its users. CBEPS is located, maintained and run by an academic
institution (University of Maryland’s Center for Environmental Science at Horn
Point Laboratory in Cambridge, MD) that is not funded to offer this degree of
service. As a consequence, over the course of CBEPS’s lifetime, its predictions
have sporadically been unavailable due to problematic issues such as maintaining
software licensing, hardware viability and supporting cyberinfrastructure. It does,
however, offer a valuable experimental platform to test and assess new ecological
forecasting algorithms and models for the Bay and to demonstrate the use of these
predictions. Once validated and deemed useful by the community, the newly
developed techniques and models can and should be migrated into a true opera-
tional environment within an appropriate agency, such as NOAA. This effort is one
of several crucial steps in laying the foundation for generating truly operational
ecological forecasts in Chesapeake Bay and serves as a roadmap for other locations.

6.5 Discussion and Conclusions

The ChesROMS physical model has considerable skill in simulating temperature
and, to a lesser degree, salinity in Chesapeake Bay; hindcasts over a 15-year period
(1991–2005) reveal that both temperature and salinity fields match well with
observations with a correlation of approximately 0.99 and RMSE of 1–1.5 °C for
temperature and a correlation of 0.95 and RMSE of 2–2.5 for salinity (Xu et al.
2011). The results presented herein reflect this lower salinity correlation, with
bottom waters that are too fresh at the northern sites during summer (Fig. 6.3a, b)
and too saline at the southern sites during fall (Fig. 6.3c, d). This model tendency is
further demonstrated in the seasonal sections of salinity that reveal an accumulation
of high salinity waters near the southern end of the Bay, which should propagate
farther up the estuary. This is indicative of an estuarine circulation with a too weak
return flow in the model; the core shortcoming leading to this result is an overly
smoothed bathymetry with an inadequately resolved deep channel. Higher resolu-
tion ROMS simulations have been demonstrated to better resolve the estuarine
return flow and more realistically capture along-Bay salinity variability (M. Scully,
personal communication). However, the computational demand of such higher
resolution configurations makes them impractical to use in most research efforts.

The ecosystem model results from the main solution (Figs. 6.5, 6.6, 6.7 and 6.9)
indicate that rather than being solely prescribed by dynamical processes, these fields
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are subject, over location and season, to varying blends of physical and biochemical
control; this assertion is consistent with that articulated in the synthesis of Kemp
et al. (2009). The link between stratification and hypoxia in coastal and estuarine
systems is well-documented (Rabalais et al. 2010) and has a clear association in the
salinity and DO fields of the model (Figs. 6.3 and 6.6). Contrasting how salinity
stratification relates to DO evolution in bottom waters at stations 3.3C and 4.3C
underscores the importance of realistically representing stratification of bottom
waters, which harkens back to the issues noted above regarding the shortcomings in
the estuarine circulation. Comparing the fidelity of bottom salinity at station 3.3C to
that at 4.3C in the model (Fig. 6.3a, b), it can be seen that the modeled salinity
during the May–August period is notably worse at the more northern site (i.e.,
where the estuarine circulation is more poorly represented). It is also apparent that
the greater skill at capturing summertime onset and persistence of hypoxia at these
two sites aligns with how well stratification of bottom salinity is represented
(Figs. 6.3a, b and 6.6a, b). Overall, examining these two sites reveals a direct
linkage between the degree of mismatch in modeled bottom salinity and how well
the temporal evolution of bottom hypoxia is represented.

In contrast, the spring bloom in the model is an example of a biophysical
interaction subject to biochemical control where its onset is consistent with the
observed timing yet its persistence is longer than is apparent in the measurements.
Given that observed nutrients are non-limiting, this suggests that the key mecha-
nism relates to establishment of top-down control of the phytoplankton population
being delayed and potentially under-represented in the model. Another biophysical
mechanism apparent in the results is, while the model effectively simulates the
accumulation of DIN forms in bottom waters through benthic connectivity and their
subsequent lateral advection, the timing of the injection of these chemical con-
stituents into surface waters is controlled by vertical mixing (i.e., reduction of
vertical stratification). Thus, it is likely that the mismatch in surface nitrate and
ammonium in the late fall, where the model values are too elevated, link back to
stratification shortcomings noted above.

The principal motivation of developing a mechanistic dissolved oxygen for-
mulation applicable to an estuarine system subject to significant riverine loadings
and benthic connectivity has been realized with some success. The seasonal
establishment of hypoxic bottom waters over the mid- to upper Bay, and the
subsequent re-oxygenation in the fall, is well represented. Further, full anoxia in
late summer in the upper Bay is also realized. An interesting result appearing in the
model DO field is an association between hypoxia “hot spots” in the Bay and the
inflows of the Patapsco and Choptank rivers. While they may primarily relate to
estuarine circulation issues in the model, it is possible that these hot spots are
indicative of the flow of low DO waters into the Bay from these riverine sources,
and/or augmentation of the organic matter loads remineralized within the water
column and by the benthos of the main stem Bay. While the impact of the
multi-decadal trend in the Susquehanna’s nitrate loading on Bay eutrophication is
well-established (Hagy et al. 2004), this model result suggests that the influence of
the lower volume lateral riverine inputs to the main stem Bay play a significant role

6 Modeling Hypoxia and Its Ecological Consequences … 143



in the establishment and maintenance of its hypoxic waters. Elucidating the effects
of these lateral inputs deserves further investigation and assessment. This is par-
ticularly crucial in light of the amplifying anthropogenic impacts, associated with
evolving land use and agricultural practices (among others), that are known to afflict
river dominated estuarine and coastal waters worldwide (Zhang et al. 2010).

Two aspects of our model’s biogeochemical function, both relating to how the
transition from normoxic to anoxic remineralization is formulated, have demon-
strated sensitivity that has clear repercussions on ecosystem behavior. These are:
(1) introduction of asymmetry in the nitrification/denitrification ramps applied to
the water column remineralization; and (2) modification of the half-saturation
coefficient applied in linking benthic exchanges of DO and DIN to the dissolved
oxygen concentration of overlying bottom waters. For the ramps asymmetry, the
complexity of nitrogen cycling when a nitrification—denitrification coupling can be
established at the boundary of oxygen deficient waters (Codispoti and Christensen
1985) strongly suggests that mirrored onset/shutdown of these processes in the
water column is improbable and requires further consideration. The formulation we
have introduced to link benthic remineralization with overlying dissolved oxygen
concentration was developed with the objective to forego incorporating further
complexity via coupling with a detailed benthic model (e.g., Soetaert et al. 2000).
However, a very limited dataset was leveraged in developing our formulation; given
the clear sensitivity to adjustment of its half-saturation parameter demonstrated by
the model, a larger dataset that more comprehensively establishes these exchanges
is desirable.

The sensitivity studies that we have documented clearly demonstrate that
modification of the biogeochemical formulation leads to notable changes in the
model’s biological and chemical constituents. That is, biogeochemical controls on
the Chesapeake Bay system, in particular the spatio-temporal distribution of its
hypoxic waters, are of primary importance to attaining realistic biogeochemical
function and, in this regard, are arguably on par with the influence of physical
controls that has been elegantly demonstrated previously (Scully 2010, 2013).
Consequently, a well-considered, mechanism-based biogeochemical model
embedded within a coupled three-dimensional model framework is essential for
achieving: (1) valuable insight into how short-term and interannual variation in
river inflow and nutrient loading will impact the Chesapeake Bay estuarine system;
(2) successful application of ecological prediction systems to promote informed
recreational and resource use; and (3) accurate prediction of the biogeochemical and
ecological consequences of climate change.
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Chapter 7
Modeling River-Induced Phosphorus
Limitation in the Context of Coastal
Hypoxia

Arnaud Laurent and Katja Fennel

Abstract The urban development of coastal areas and the increased use of
chemical fertilizers over the last century have led to a worldwide expansion of
coastal eutrophication and a significant increase in the occurrence and intensity of
human-induced coastal hypoxia. Proportionally, nitrogen load has often increased
more severely than phosphorus load and phosphorus limitation became a common
seasonal phenomenon in many eutrophic coastal systems. Phosphorus limitation
may alter the magnitude, timing, and location of phytoplankton production with
potential effects on hypoxia. Yet, because of the difficulty in observing these effects,
limited work has been carried out to assess the influence of P limitation on hypoxia.
Models are thus useful tools for simulating the effects of river-induced phosphorus
limitation on coastal hypoxic systems. Modeling P limitation is important to better
understand the processes controlling hypoxia, to improve the predictive skill of
hypoxia prediction models, and to design and evaluate nutrient management
strategies for hypoxia mitigation. Here, we review the effects of phosphorus limi-
tation on a continuum of coastal hypoxic systems, contrasting the effects of P
limitation on systems that are primarily one-dimensional (or “flow-through”) like
the Neuse River Estuary versus more dispersive open systems like the Mississippi
River plume. We discuss modeling frameworks and techniques that are relevant in
this context and summarize recent modeling work that quantitatively assesses the
effect of phosphorus limitation on hypoxia development in the Mississippi River
plume.
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7.1 Introduction

Riverine nitrogen (N) and phosphorus (P) fluxes to the coastal oceans have both
increased over the last century due to the development of coastal areas and an
increasing use of chemical fertilizers (Zhang et al. 2010). N and P are essential
elements for phytoplankton and, for balanced growth, are required approximately in
the ratio of 16 N:1P (Redfield et al. 1963). N is typically the limiting element in
marine systems because denitrification produces biologically unavailable N2

resulting in a partial loss of N, while P has no such loss process and is rapidly
recycled (Caraco et al. 1990). Increases in river nutrient loads have not necessarily
been in the same proportion for N and P because their sources differ. N inputs into
watersheds are mainly diffuse and associated with the use of chemical fertilizers
(Boesch 2002), whereas P inputs are primarily from point sources related to urban
wastewater (Harrison et al. 2010). The stoichiometry of dissolved inorganic N
(DIN) and dissolved inorganic P (DIP) in river waters can thus deviate significantly
from the Redfield ratio of 16 N:1P. Measures to control nutrient pollution from
point sources have been put in place since the 1970s, but the use of chemical
fertilizers has increased further since then. This has led to a proportionally larger
increase of N loads, altered the N:P stoichiometry such that N: P> 16 in estuarine
and river plume waters of many coastal systems (Conley 2000; Scavia and Don-
nelly 2007; Paerl 2009), and promoted P-limited primary production in otherwise
N-limited systems (Howarth and Marino 2006).

P limitation and hypoxia often co-occur in coastal systems because they are both
driven by excess nutrient load and eutrophication. A switch from N to P limitation
may alter the magnitude, timing, and location of phytoplankton production with a
potential effect on hypoxia (Paerl et al. 2004). Yet, limited work has been carried
out to assess the influence of P limitation on hypoxia. The paucity of observational
evidence for the effects of P limitation on hypoxia results in large part from the
effort involved in observing coastal systems at the relevant spatial and temporal
scales combined with the inability to manipulate N and P loads at the scale of the
whole system. In this context, models are important for simulating the conse-
quences of different resource limitation scenarios and for quantitatively assessing
the effects of P limitation on coastal hypoxia.

The objectives of this chapter are to (1) describe the occurrence and effects of P
limitation on hypoxic systems, (2) provide an overview of modeling frameworks
and techniques that can be used to study river-induced P limitation in the context of
coastal hypoxia, and (3) present results from a model investigation for the Mis-
sissippi River plume in the northern Gulf of Mexico as a case study of the effect of
P limitation on hypoxia. First, we consider how P limitation may influence hypoxia
in a one-dimensional flow-through system and then contrast this with a more open
and dispersive system. Several examples representing a continuum between these
two are provided. We then discuss several modeling frameworks and present recent
results from the modeling investigation of Laurent and Fennel (2014) for the
Mississippi River plume.
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7.2 Occurrence of P Limitation in Hypoxic Systems

River-induced P limitation is most often a transient phenomenon that occurs at peak
discharge in spring, when N load tends to be particularly high. When primary
production is P-limited in estuaries or river plumes, the excess DIN is transported
downstream into more saline, N-limited waters where it stimulates primary pro-
duction (Fig. 7.1a). In other words, the location and timing of DIN uptake are
shifted downstream and delayed in time. The spatial shift tends to spread
eutrophication over larger regions and into downstream waters compared to a sit-
uation where P is not limiting (Paerl et al. 2004). P limitation in the spring is
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Fig. 7.1 Conceptual model showing the spatial effects of river-induced P limitation on DIN
concentration, phytoplankton biomass, and hypoxia in one-dimensional flow-through systems
(A) and open dispersive systems (B). Resource limitation is indicated at the top. For both
flow-through and dispersive systems, N is partly removed by denitrification in the sediment. As an
indication, spatial distributions are also represented for systems where P is not limiting (dashed
lines)
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generally followed by N limitation during the low-discharge season in summer
(Conley 2000).

Sediments play an important role in the generation of coastal hypoxia. Partic-
ulate organic matter (POM) is deposited and remineralized in the sediments, which
consume O2 in the process. Sediment oxygen consumption (SOC) can be the
dominant O2 sink (Quiñones-Rivera et al. 2010) and thus a significant driver of
hypoxia (Fennel et al. 2013; Yu et al. 2015a). A fraction of the deposited N is lost
as biologically unavailable N2 through sediment denitrification, an anaerobic
microbial remineralization process that represents a major sink for N in coastal
areas (Fennel et al. 2009). P may be adsorbed onto the sediment in oxygenated
conditions, but is otherwise released back to the water column as DIP (McManus
et al. 1997). This disparity in N and P recycling results in a shift back to N
limitation in downstream and offshore waters (Fig. 7.1).

There is currently no consensus on whether P limitation amplifies or weakens
hypoxia. P limitation is generally viewed as a mechanism that relocates or spreads
hypoxia (Paerl et al. 2004; Scavia and Donnelly 2007) and thereby considered
detrimental. Any relocation of primary production due to P limitation will also
induce a relocation of O2 sinks although the detailed mechanisms are nonlinear and
thus hard to predict. On the one hand, the decomposition of organic matter in
downstream waters should result in higher O2 consumption rates there and could
potentially lead to the development of hypoxic conditions in waters that would be
normoxic without P limitation. This is likely the case in one-dimensional
flow-through systems like the Neuse River Estuary, which are characterized by
strong freshwater-induced stratification and transport akin to a simple translation
along their upstream–downstream axis; a shift of primary production along this axis
may well result in a linear effect on hypoxia (Fig. 7.1a). On the other hand, P
limitation in dispersive open systems, such as river plumes, may reduce the
occurrence and magnitude of hypoxia. Excess nutrients in river plumes are being
diluted when plumes interact with coastal circulation forced by topography, winds,
and tides. In this case, a “downstream” relocation may spread elevated primary
production over a larger area while lowering the maxima of primary production in
the affected area, in effect “diluting” the imprint of eutrophication (Fig. 7.1b).

Further uncertainty in predicting the effects of P limitation on hypoxia results
from its differential effect on sediment-water fluxes of N and P. At low O2, N-loss
through sediment denitrification is inhibited (Kemp et al. 1990), whereas P is
released from the sediments (Ingall and Jahnke 1997). The relative magnitude of
these effects is often poorly constrained. Certainly, the O2 dependence can lead to
high sediment-water fluxes of N and P during hypoxic conditions (Conley et al.
2002; Kemp et al. 2005) and result in nonlinear effects of P limitation on hypoxia.

In the following sections, we discuss and compare four prominent examples of
hypoxic systems where P limitation has been studied. Their locations are shown in
Fig. 7.2.
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7.2.1 Neuse River Estuary

The Neuse River Estuary is a eutrophic to hypertrophic estuary (Paerl et al. 1998)
located on the Atlantic coast of the USA (Fig. 7.2). This shallow estuary (∼4 m)
has a 455 km2 surface area and drains water from a 16.1 × 103 km2 watershed
(Stow and Borsuk 2000). The estuary discharges into the Pamlico Sound, which is
connected to the Atlantic Ocean. N and P loads to this estuary from urban,
industrial, and agricultural sources have increased since the 1960s (Stow et al.
2001). Annual total load into the Neuse River Estuary is about 9.6 × 106 kg N y−1

and 9.7 × 105 kg P y−1 (1993–2003 average, Burkholder et al. 2006). The increase
in nutrient load was followed by the emergence of cyanobacterial blooms in the
upstream portion of the estuary and a concomitant increase in bottom-water
hypoxia (Paerl et al. 1998, 2004) that can reach over 40% of the estuary’s surface
area in summer (Buzzelli et al. 2002). The decrease in P loading resulted from a ban
of P detergents in the 1980s and represents a “natural” system-wide experiment on
the effect of P limitation on a one-dimensional eutrophic flow-through estuary.
After the ban came into effect, P limitation developed in the upstream portion of the
Neuse River Estuary and led to the downstream transport of excess DIN with a
subsequent increase of phytoplankton biomass in mid-estuary waters (Paerl et al.
2004). Evidence for how this affected hypoxia is limited.

7.2.2 Chesapeake Bay

Chesapeake Bay, located about 300 km north of the Neuse River Estuary (Fig. 7.2),
is the largest (11.5 × 103 km2) and most productive estuary in the USA. This
relatively shallow (∼8 m with a deep central channel) and partially stratified estuary
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Fig. 7.2 Map showing the location of the four hypoxic systems discussed in Sect. 7.2
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drains a 164.2 × 103 km2 watershed. Flow is primarily along one axis in Chesa-
peake Bay but the lower bay is broad with potential for transverse transport and
dispersion. Similar to the Neuse River Estuary, Chesapeake Bay has experienced a
long-term increase in hypoxia since the 1950s associated with enhanced nutrient
loading due to the use of chemical fertilizers and the development of urban areas in
the watershed (Hagy et al. 2004; Kemp et al. 2005). Annual total load into Che-
sapeake Bay is about 1.5 × 108 kg N y−1 and 9.6 × 106 kg P y−1 (1990–2012
average, Hirsch et al. 2013). The relatively long residence time for freshwater and
nutrients (90–180 days, Kemp et al. 2005) combined with pronounced freshwater
stratification that isolates the deeper central channel (20–30 m) results in seasonal
hypoxia in the mid-bay, reaching a volume of about 8 km3 on average in July
(Murphy et al. 2011).

In Chesapeake Bay, resource limitation varies in space and follows a
well-defined seasonal cycle controlled by freshwater inputs (Kemp et al. 2005).
P limitation develops in the upper section of the bay which receives high N:P river
inputs in spring during the peak of freshwater runoff (Fisher et al. 1992, 1999) and
is alleviated by remineralized P fluxes from the sediment as waters move down-
stream (Fisher et al. 1999). The intrusion of N-limited marine waters and the
benthic source of P modify nutrient stoichiometry in the lower section of Chesa-
peake Bay where primary production is typically N-limited. Using N and P load
scenarios with a multi-nutrient biogeochemical model, Wang et al. (2016) showed
that P load reduction in the upper bay tributaries can be an effective strategy to
increase bottom-water O2 in the upper bay due to the intensification of P limitation.
This suggests a mitigation effect of P limitation on hypoxia. However, direct evi-
dence of the spatial and temporal effects of P limitation on hypoxia is still missing
for Chesapeake Bay.

7.2.3 Northern Gulf of Mexico

The Mississippi–Atchafalaya River Basin is the third largest river basin in the
world; it drains a 3.2 × 106 km2 watershed and discharges onto the Louisiana shelf
through the Mississippi River delta and Atchafalaya Bay. The Mississippi River
plume is a dispersive open system controlled by a complex set of interactions with
wind forcing, coastal topography, and cross-shore transport associated with eddies
(Schiller et al. 2011). As for the previous systems, nutrient loading increased since
the 1960s, mainly due to the extensive use of chemical fertilizers, and represents
currently an annual total load of about 1.2 × 109 kg N y−1 and 1.5 × 108 kg P
y−1. Excess nutrient load results in high primary production (Lohrenz et al. 1997)
and recurrent bottom-water hypoxia in summer that extends over 14.9 × 103 km2

on average (Obenour et al. 2013). This is the largest hypoxic area in North
American coastal waters (Rabalais et al. 2002). Numerous physical processes affect
the timing, location, and extent of hypoxia on the Louisiana shelf (Hetland and
DiMarco 2008; Wang and Justic 2009; Zhang et al. 2012; Yu et al. 2015a).
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On the Louisiana shelf, P limitation occurs during peak discharge in spring and
early summer (Sylvan et al. 2006, 2007; Quigg et al. 2011) due to a high N:P ratio
in Mississippi River loads. P limitation leads to the downstream (westward)
transport of excess N and a subsequent increase of primary production on the
western Louisiana shelf (Laurent et al. 2012). Due to a dilution effect, this results in
a reduction of hypoxia on the Louisiana shelf (Laurent and Fennel 2014; see details
in Sect. 7.4). During the low-discharge season in summer, resource limitation
switches back to N limitation because of N-loss through sediment denitrification
and mixing with open ocean waters.

7.2.4 Baltic Sea

The Baltic Sea is the largest brackish water system in the world. It covers a total
area of 381 × 103 km2 and drains a 1.6 × 106 km3 watershed. This relatively deep
(∼55 m) semienclosed estuarine system is connected to the North Sea through the
Danish Straits, via a series of sills that limit deep-water exchange with the deep and
strongly stratified subbasins of the Baltic Sea. The long water residence time of the
Baltic Sea (20–30 years) leads to long periods of O2 depletion in bottom waters
leading to widespread hypoxia in the deep basins (Krauss 2001).

The Baltic Sea has been increasingly affected by anthropogenic eutrophication
since the 1960s with a simultaneous increase of hypoxia (Conley et al. 2002, 2011).
Currently, the average total N and P loads are about 7.0 × 108 kg N y−1 and
0.3 × 108 kg P y−1, respectively (HELCOM 2013) and are dominated by inputs
from major rivers such as the Vistula, Oder, Daugava, Neman, and Neva (Stålnacke
et al. 1999). P loads have decreased since the 1980s due to management of point
sources (Nausch et al. 1999); hence, one would expect the system to move toward P
limitation. Indeed P limitation has been observed but only in nearshore areas such
as the Himmerfjärd inlet on the coast of Sweden in spring and early summer
following P management measures (Granéli et al. 1990). P limitation rarely occurs
in the open waters of the central Baltic Sea due to the efficient release of P from
sediments under hypoxic conditions (Eilola et al. 2009). Low O2 waters also pro-
mote N removal through denitrification when nitrate is available, due to an
increased oxic/anoxic interface with increasing hypoxic volume (Vahtera et al.
2007). The resulting low N:P ratio in surface waters of the open Baltic Sea stim-
ulates the development of N2-fixing cyanobacterial blooms (Neumann and Sch-
ernewski 2008). These blooms in combination with the external P loads exacerbate
bottom-water hypoxia and further increase the internal P load. Despite P load
reduction measures, this positive feedback inhibits the recovery of the system from
eutrophication (Vahtera et al. 2007).
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7.2.5 One-Dimensional Flow-Through Versus Dispersive
Open Systems

The effect of P limitation on phytoplankton is similar among the four systems
presented above; P limitation displaces their biomass toward downstream waters
due to the transport of excess N (Fig. 7.1a). The consequence for hypoxia depends
on the system. In one-dimensional systems such as the Neuse River Estuary,
hypoxia is thought to respond to P limitation with a displacement or an extension of
hypoxic conditions (Fig. 7.1a). On the contrary, in open dispersive systems such as
the Mississippi River plume, P limitation dilutes eutrophication and reduces
hypoxia (Fig. 7.1b). In intermediate systems, such as Chesapeake Bay, both effects
may occur depending on the location and timing of hypoxia. However, these
contrasting effects remain speculative due to the limited number of investigations.

The Baltic Sea does not seem to fit in this continuum. It is an unusual system
because permanent hypoxia appears to restrict the possibility for P limitation in
open waters. This example demonstrates the difference between seasonally and
permanent hypoxic systems and illustrates the importance of sediment-water fluxes
and recycling in controlling P limitation in eutrophic systems.

7.3 Modeling P Limitation in Coastal Hypoxic Systems

There are primarily three reasons for simulating P limitation in coastal hypoxic
systems: (1) to better understand the processes controlling hypoxia, (2) to improve
the predictive skill of hypoxia prediction models, and (3) to be better able to
evaluate and design nutrient management strategies for hypoxia mitigation. Here-
after, we present an overview of modeling frameworks and strategies that are used
to investigate the relationship between coastal hypoxia and nutrient loading. We
focus on models that explicitly consider P load and are able to represent P
limitation.

7.3.1 Statistical Regressions

Perhaps the simplest approach for assessing the effects of P limitation on hypoxia is
through statistical regressions. Statistical regression models have been used to
predict hypoxia or bottom O2 concentration as a function of nutrient loading
(Turner et al. 2006; Greene et al. 2009) and physical drivers (Prasad et al. 2011;
Forrest et al. 2011; Obenour et al. 2012). Although not strictly a simulation model,
this strategy is worth mentioning here because it is a useful tool for assessing the
effects of nutrient loading as well as other factors on the development of hypoxia. In
this approach, the contribution of N and P loads to hypoxia is inferred from their
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statistical weight in the multiple regressions. However, P limitation is not directly
represented; hence, this approach does not provide mechanistic insight.

7.3.2 Coupled Physical-Biogeochemical Models

Biogeochemical models represent the cycling of chemical elements such as C, N, P,
or O in an ecosystem due to biotic and abiotic processes. Resource limitation is
directly represented in these models; hence, they provide mechanistic insights into
the effect of P limitation on hypoxia. The physical framework is also important
because nutrient supply, primary production, and freshwater transport are
three-dimensional, time-dependent processes that influence the development and
location of hypoxia; in addition, vertical stratification is a key driver.
Physical-biogeochemical models coupling circulation, physical properties of the
water column, and biogeochemistry are therefore essential to study the processes
controlling hypoxia in a spatially explicit manner. These models vary in their level
of complexity in terms of both their biogeochemistry and physical framework. For
instance, biogeochemical models may represent P as DIP only, or may include
dissolved organic P (DOP) and the O2-dependent P scavenging on detrital POM.
Stratification and transport can be represented using coarse resolution box models
that parameterize large-scale transport or high-resolution hydrodynamic models that
simulate circulation explicitly.

7.3.2.1 Formulations of Limitation by Multiple Nutrients

Because P limitation is often a transient phenomenon in coastal hypoxic systems,
multi-nutrient models that are able to switch between limitation by P and N (and
sometimes silicate) are necessary. Several model formulations have been used to
represent multi-nutrient limitation in ecosystem models. They can be divided into
three general categories (Flynn 2003): (1) simple Monod-type models, (2) more
complex cell quota models, and (3) complex mechanistic models that represent
internal nutrient pools and feedback processes. Mechanistic models are possibly
more realistic in representing the biochemistry of the cell (John and Flynn 2000),
but may be over-parameterized due to more unknown parameters, are computa-
tionally less efficient, and may be unnecessarily complex for the purpose of sim-
ulating the effects of nutrient limitation switches on hypoxia. The quota model,
which can include different functional forms of phytoplankton, represents internal
nutrient storage. This model type is more efficient and frequently used in ecosystem
studies (e.g., Roelke et al. 1999). However, measurements of intracellular nutrient
concentrations are scarce, and thus, modeled internal nutrient concentrations cannot
be validated against observations. Monod-type models represent nutrient limitation
as a direct function of nutrient availability in surrounding waters and assume
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balanced growth. They are frequently used in multi-nutrient ecosystem models
because of their stability and computational efficiency.

Several multi-nutrient Monod-type functional forms have been proposed
(O’Neill et al. 1989). The most commonly used are the minimum and the multi-
plicative functional forms. The minimum functional form assumes that phyto-
plankton growth depends on the most limiting nutrient, whereas the multiplicative
form assumes co-limitation. The minimum function is frequently used to represent
P limitation in biogeochemical models, e.g., to study O2 dynamics in the Baltic Sea
(Neumann et al. 2002; Eilola et al. 2009) and on the Louisiana shelf (Justić and
Wang 2014; Laurent and Fennel 2014). These formulations are based on limitation
factors LN for N (LN = LNO3 +LNH4) and LP for P, calculated as follows:

LNO3 =
NO3

kNO3 +NO3
⋅

1
1+NH4 ̸kNH4

ð7:1Þ

LNH4 =
NH4

kNH4 +NH4
ð7:2Þ

LP =
DIP

kDIP +DIP
ð7:3Þ

where kNO3, kNH4, and kDIP are the half-saturation constants for nitrate, ammonium,
and DIP uptake, respectively. The second factor on the right-hand side of Eq. 7.1
represents ammonium inhibition of nitrate uptake. Quadratic versions of the lim-
iting factors have also been used (Neumann et al. 2002).

The specific phytoplankton growth rate (μ) depends on light (E), temperature
(T), and the nutrient limitation factor such that

μ= μmax E, Tð Þ ⋅ Ltot ð7:4Þ

where μmaxðE, TÞ is the light- and temperature-dependent maximum growth rate of
phytoplankton and Ltot is the nutrient limitation factor (0 < Ltot < 1).

The minimum and multiplicative forms of Ltot are formulated, respectively, as
follows:

Ltot =min LN ,LPð Þ ð7:5Þ

Ltot = LN ⋅ LP ð7:6Þ

7.3.2.2 Sediment-Water Fluxes

Sediment-water fluxes represent a key aspect of simulating P limitation in hypoxic
environments. Nutrient fluxes control the occurrence of P limitation (e.g., Baltic
Sea) and its location (e.g., Chesapeake Bay), whereas SOC can be an important sink
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for bottom O2 in eutrophic systems (e.g., Fennel et al. 2013; Yu et al. 2015b). In
biogeochemical models, sediment-water fluxes can either be parameterized or
mechanistically simulated using a diagenetic model (Fennel et al. 2009). Perhaps
the most parsimonious approach is a reflective boundary where SOC, N and P
fluxes are proportional to deposited POM (Laurent and Fennel 2014). Simple
parameterizations based on observations are used to represent sediment-water
fluxes as a function of overlying bottom-water conditions. For example, Fennel
et al. (2013) represent SOC as a function of bottom O2 and temperature based on
observed relationships. In this case, nutrient fluxes are a linear function of SOC.
More complex parameterizations and representations of P cycling at the
sediment-water interface are also used (e.g., Neumann and Schernewski 2008;
Eilola et al. 2009; Gustafsson 2012; Justić and Wang 2014). The appropriate level
of complexity for these parameterizations depends on the characteristics of the
system.

Vertically resolved diagenetic models are the most realistic representation of
sediment processes. Yet, they do not necessarily perform better than simple
parameterizations of sediment-water fluxes (Wilson et al. 2013). Given their higher
computational cost, they are typically used at the expense of physical realism (e.g.,
Eldridge and Roelke 2010) and simple parameterizations are often preferred.
Parameterizations based on diagenetic model results have been proposed as an
intermediate solution (Laurent et al. 2016).

7.3.2.3 Box Models

Box models have a coarse spatial resolution that reduces hydrodynamics to the
large-scale spatial features of the system. For example, a 3-layer box model of the
semienclosed Szczecin Lagoon in the southern Baltic Sea was used to describe
long-term effects of eutrophication in a coastal system and its response to nutrient
management (Humborg et al. 2000). A 4-box, 2-layer circulation framework of the
Mississippi River plume was used to study the effects of nutrient loading in the
seasonally hypoxic Louisiana shelf (Eldridge and Roelke 2010). This simple
transport framework allows for the use of a more complex representation of bio-
geochemistry, namely the use of a mechanistic diagenetic model to represent
realistic sediment-water fluxes, and representation of multiple phytoplankton
groups with different nutrient requirements and growth dynamics (Eldridge and
Roelke 2010).

An important drawback of the box model framework is its inability to resolve the
details of vertical stratification despite its importance in hypoxia formation. For
example, in the Mississippi River plume, hypoxic conditions are limited to the
relatively thin bottom boundary layer (Wiseman et al. 1997; Fennel et al. 2016).
The lack of vertical resolution can be alleviated to some degree by increasing the
horizontal resolution (Gustafsson 2012). Nonetheless, the coarse horizontal reso-
lution remains inadequate to represent the spatial effect of P limitation on primary
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production (Fig. 7.1), and therefore, box models are limited in their suitability for
studying the effect of P limitation on hypoxia.

7.3.2.4 Hydrodynamic Models

High-resolution hydrodynamic models enable the more realistic spatial represen-
tation of resource limitation and hypoxia that is often essential for studying the
spatial and temporal effects of P limitation on hypoxia in coastal environments. The
hydrodynamic models are coupled to biogeochemical models of varying com-
plexities. However, given the computing cost, relatively simple biogeochemical
models are often used to represent pelagic processes. This type of framework has
been used in large hypoxic systems such as Chesapeake Bay (see Irby et al. 2016
for a model comparison), the Baltic Sea (Eilola et al. 2009), and the northern Gulf
of Mexico (Justić and Wang 2014; Laurent and Fennel 2014). Laterally averaged
and three-dimensional coarse resolution coupled models have also been used in the
Neuse River Estuary (Bales and Robbins 1999; Wool et al. 2003).

Hereafter, we present an overview of the recent investigations of Laurent and
Fennel (2014) that used a coupled hydrodynamic-biogeochemical model of the
northern Gulf of Mexico to quantitatively assess the effect of P limitation on
hypoxia in a relatively open and dispersive system. Model setup and results are also
relevant to other coastal systems where P limitation and hypoxia co-occur.

7.4 The Mississippi River Plume Case Study

7.4.1 Model Description

The model simulates circulation and biogeochemistry with the Regional Ocean
Modeling System (ROMS, Haidvogel et al. 2008). The circulation model is
described in Hetland and DiMarco (2008, 2012). The biogeochemical model aims
at a parsimonious representation of the N and P cycles (Fig. 7.3). It is based on the
N-cycle model of Fennel et al. (2006, 2008), which was extended to include DIP
(Laurent et al. 2012) and O2 (Fennel et al. 2013).

In the model, phytoplankton growth is limited by either DIN or DIP according to
the multi-nutrient formulation described by Eqs. 7.1–7.4. Nutrient limitation factors
inferred from inorganic nutrient measurements on the Louisiana shelf compare well
with their corresponding nutrient addition bioassays (Fig. 7.4), indicating that the
formulation of resource limitation in the model is appropriate. DIN and DIP sources
are the Mississippi and Atchafalaya rivers (see locations in Fig. 7.5) and rem-
ineralization of POM in the water column and in the sediment. The sediment-water
interface is represented as a reflective boundary with a preferential return of DIP to
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the water column due to denitrification in the sediment. Slowly sinking phyto-
plankton (Phy) and suspended detritus (SDet) coagulate into fast-sinking large
detritus (LDet) as a function of their concentration according to τ ⋅ ðSDet + PhyÞ2
where τ is the coagulation rate. Sources and sinks of O2 are associated with the
N-cycle (Fig. 7.3) as follows: In the water column, O2 is produced by photosyn-
thesis, lost through nitrification and respiration, and exchanged with the atmosphere
at the air-sea interface; O2 is lost at the sediment-water interface due to sediment
oxygen consumption (Fennel et al. 2008, 2013). The model does not consider O2

feedbacks on sediment denitrification and on the P cycle because these processes
are not well constrained for the Louisiana shelf and because bottom-water O2 is
generally well-above anoxic conditions where nonlinearities are expected to
become important.

Two types of simulations are used by Laurent and Fennel (2014) to quantify the
effects of P limitation: (1) In a baseline simulation, the multi-nutrient version of the
model with N and P cycling (as illustrated in Fig. 7.3) is used. In this simulation,
either N or P can limit primary production. (2) In an additional, single-nutrient
simulation, only the N-cycle version of the model is used (here, DIP is disabled, but
all other processes and model forcing are identical to the baseline simulation).

DIP

NO3 NH4

DIP

Fig. 7.3 Schematic of the biogeochemical model used in Laurent and Fennel (2014). The state
variables are phytoplankton (Phy), zooplankton (Zoo), slow-sinking small detritus (SDet),
fast-sinking large detritus (LDet), nitrate (NO3), ammonium (NH4), DIP, and O2. The dynamics of
O2 is coupled with the production and respiration of organic matter via the sources and sinks
indicated in the left panel. Figure from Laurent and Fennel (2014) subject to a CC-By 4.0 license
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Differences between the N-only and the baseline simulations are due to the absence
of P limitation in the former and illustrate the effect of P limitation on the system.

7.4.2 Spatial/Temporal Shift in Primary Production

The model successfully simulates resource limitation on the Louisiana shelf,
namely the development of P limitation between March and July and the switch
back to N limitation in September. P limitation results in excess DIN that is
transported downstream (i.e., westward) between March and July, where it fuels
primary production in otherwise N-limited waters (Laurent et al. 2012). This
induces a time delay and a westward relocation of a fraction of primary production
(Fig. 7.6a). Here, we quantify this relocation using the simulations described in
Laurent and Fennel (2014), in terms of the change in horizontal transport of POM
and DIN across the boundaries of three boxes representing the western, mid-, and
eastern Louisiana shelf (Fig. 7.7). With P limitation, the following changes in
transport occur: (1) Less primary production occurs on the eastern shelf resulting in
a smaller transport of POM westward and across the shelf break into the open Gulf
of Mexico, (2) Westward transport of DIN is larger, and (3) Transport of DIN
across the shelf break is larger (Fig. 7.7). Offshore transport of DIN across the shelf
break is larger near the Mississippi delta, but more of this DIN is recirculated onto
the mid- and western shelf. On average, 34 and 26% more DIN is transported
westward into the mid- and western shelf boxes, respectively. POM and DIN fluxes
further west onto the Texas shelf also increase slightly (Fig. 7.7).
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7.4.3 The Dilution Effect

Laurent and Fennel (2014) have shown that P limitation reduces the size of the
July–August hypoxic area by an average of 29%. In their simulation, changes in
bottom-water O2 are asymmetric over the Louisiana shelf with a significant increase
on the eastern shelf, but only a small decrease on the western shelf (Fig. 7.5). Two
additive effects explain this spatial asymmetry: the westward shift of organic matter
respiration against the backdrop of weakening vertical stratification and the net shift
of respiration from the sediments to the water column.

The intensity of the simulated water column stratification varies along the
freshwater gradient of the Mississippi River plume (e.g., Hetland and DiMarco
2008; Zhang et al. 2012; Laurent and Fennel 2014). Simulated water column
stratification is strongest on the eastern shelf, especially in summer when
upwelling-favorable winds pile up freshwater near the Mississippi delta (Zhang
et al. 2012). Stratification intensity decreases toward the western shelf, away from
the Mississippi River delta (Hetland and DiMarco 2008). Since simulated bottom
O2 concentration is highly correlated with stratification intensity on the Louisiana
shelf (Fennel et al. 2013), a westward shift in organic matter respiration results in a
reduction of hypoxia (Laurent and Fennel 2014).

In addition, the simulations suggest that P limitation leads to a redistribution of
respiration between sediment and water column (Fig. 7.6b, c). The westward shift
of primary production occurs on a broadening shelf, thus spreading primary pro-
duction over a larger area and essentially diluting phytoplankton and detritus
(Fig. 7.6a). Smaller concentrations of phytoplankton and suspended detritus (even
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if present over a larger area) reduce coagulation into fast-sinking, larger detritus;
hence, more organic matter is respired in the water column and less in the sediment
when P limitation is present. This leads to an asymmetric effect of P limitation on
respiration between the eastern and the western Louisiana shelf (Fig. 7.6b, c).
Observations and simulations show that hypoxia mainly occurs within the bottom
boundary layer (BBL) on the Louisiana shelf (i.e., within less than 5 m above the
bottom; see Fennel et al. 2016). In this layer, SOC is the main O2 sink and therefore
controls hypoxia development on the Louisiana shelf (Fennel et al. 2013; Yu et al.
2015b). The net shift of respiration from sediments to the water column due to P
limitation reduces respiration within the bottom boundary layer and therefore the
overall extent of hypoxia (Laurent and Fennel 2014).

7.4.4 Hypoxia Remediation Strategies

Four nutrient reduction scenarios were tested in Laurent and Fennel (2014) to assess
their effect on summer hypoxia: a 50% decrease of river DIN load (−N), a 50%
decrease of river DIP load (−P), a 50% decrease of river DIN and DIP loads (−NP),
and a 50% increase in river DIN load with a simultaneous 50% reduction of river
DIP load (+N−P). The dual N and P load reduction (−NP) maximizes the decrease
in hypoxia size and duration (Fig. 7.8). Decreasing N load only (−N) reduces
hypoxia on the western shelf but the hypoxic area is larger than with a dual nutrient
reduction. Reducing P only (−P) reduces the hypoxic area but not hypoxia duration
on the western shelf. Finally, decreasing P but with a simultaneous increase of N
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Hypoxia duration (east)

Hypoxia duration (west)

−N −P −NP +N-P

−40 −30 −20 −10 0 10

Fig. 7.8 Results from the
nutrient load experiments of
Laurent and Fennel (2014)
showing the relative change in
summer 2004 hypoxic area
and hypoxia duration at an
eastern and western shelf
station, associated with a
modification in nutrient river
load as follows: −50% DIN
(−N), −50% DIP (−P), −50%
nutrients (−NP), and +50%
DIN, −50% DIP (+N−P)
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(stronger P limitation) leads to a small reduction of the hypoxic area, but also to a
longer duration of hypoxic conditions on the western shelf (Fig. 7.8). A dual N and
P load reduction strategy is therefore recommended to mitigate hypoxia on the
Louisiana shelf.

7.5 Conclusions and Recommendations

River-induced P limitation is a common phenomenon in coastal hypoxic systems.
Although consideration of P limitation is of direct relevance for hypoxia mitigation
through nutrient load reduction, there is still limited direct evidence for the effect of
P limitation on hypoxia. Models are invaluable tools because they allow one to
simulate system-wide N and P load manipulations that are necessary to quantita-
tively assess the effects of resource limitation. This was illustrated by the recent
modeling investigation of the Mississippi River plume (Laurent and Fennel 2014).
This type of coupled hydrodynamic-biogeochemical model is most suitable to
examine the effect of P limitation on hypoxia because it represents limitation by
multiple resources and hypoxia within a realistic spatial and physical setting. This is
essential in this context, and similar investigations should be conducted in other
P-limited coastal hypoxic systems.

Based on the general understanding of P limitation and the results of the Mis-
sissippi River plume study, we were able to distinguish between two types of
hypoxic systems: one-dimensional flow-through and open dispersive systems,
illustrated by the conceptual model in Fig. 7.1. One-dimensional systems such as
estuaries may respond linearly to P limitation with a downstream relocation of
hypoxia. More open and dispersive systems such as river plumes likely have a
nonlinear response to P limitation because stratification weakens downstream where
phytoplankton biomass is relocated and the dilution of biomass over the shelf
reduces depositional flux, and subsequently hypoxia. Intermediate systems such as
large estuaries may respond differently to P limitation depending on the timing and
location of hypoxia. The different effect of P limitation on this continuum of sys-
tems needs to be considered with regard to hypoxia mitigation strategies.

Further investigations that compare the effect of P limitation on hypoxia across
these various types of systems are needed to confirm our conceptual model. The
Neuse River Estuary is a good candidate for studying the effect of P limitation on
one-dimensional systems because both resource limitation and hypoxia were pre-
viously investigated there. A relatively simple biogeochemical model should be
sufficient to simulate resource limitation in this system. Chesapeake Bay is a good
candidate for intermediate systems. Sediment-water feedbacks such as the inhibi-
tion of denitrification at low O2 may need to be considered in Chesapeake Bay (or
similar intermediate systems), given the relatively long residence time of the deep
waters. Wang et al. (2016) simulated the effect of N and P load reduction on
bottom-water O2 in Chesapeake Bay and concluded that increased P limitation
associated with P load reduction has a positive effect on bottom-water O2 where P
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limitation occurs. A follow-up study is necessary to characterize the direct effect of
P limitation on the timing, location, and intensity of hypoxia in this intermediate
system. Model frameworks should be designed carefully in open dispersive systems
and include the essential processes influencing hypoxia development. For example,
coagulation and sediment remineralization were necessary to simulate the response
to P limitation in the Mississippi River plume. It was also important to represent the
spatial variation in stratification over the Louisiana shelf. Essential processes vary
among systems, and therefore, local characteristics should be taken into account
during model development.

Simulated river-induced P limitation in this continuum from one-dimensional
flow-through to open dispersive systems will significantly improve our conceptual
understanding of resource limitation in the context of coastal hypoxia and will help
design and improve nutrient load reduction strategies to mitigate river-induced
hypoxia.
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Chapter 8
Predicted Effects of Climate Change
on Northern Gulf of Mexico Hypoxia

John C. Lehrter, Dong S. Ko, Lisa L. Lowe and Bradley Penta

Abstract We describe the application of a coastal ocean ecosystem model to assess
the effect of a future climate scenario of plus (+) 3 °C air temperature and + 10%
river discharge on hypoxia (O2 < 63 mmol m−3) in the northern Gulf of Mexico.
We applied the model to the Louisiana shelf as influenced by the runoff from the
Mississippi River basin. The net effect of the future climate scenario was a mean
increase in water temperature of 1.1 °C and a decrease in salinity of 0.09 for the
region of the shelf where hypoxia typically occurs (<50 m depth). These changes
increased the strength of water column stratification at the pycnocline and increased
phytoplankton biomass. In the future scenario, the hypoxic area was only 1% larger
than the present. A more significant effect was in the duration and extent of severe
hypoxic areas. Severe hypoxic areas, defined as model cells having hypoxia for
more than 60 days in the year, had a mean increase in hypoxia duration of 9.5 days
(a 10% increase). The severely hypoxic area also increased by 1,130 km2 (an 8%
increase) in the future scenario. The results confirm that a warmer and wetter future
climate will, on average, worsen the extent and duration of hypoxia in this system.
Thus, it is probable that long-term Mississippi River nutrient management for
hypoxia will need to be adapted for climate change.
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8.1 Introduction

Hypoxic water masses (O2 < 63 mmol m−3) are increasingly observed in the
coastal ocean as a result of land-based nitrogen (N) and phosphorus (P) loading
(Diaz and Rosenberg 2008). On the continental shelf of the northern Gulf of
Mexico, hypoxia occurs seasonally from late spring to early fall and is correlated
with peak river discharge and N and P exported from the Mississippi and Atch-
afalaya river basin (MARB) (Rabalais et al. 2002; Greene et al. 2009). The annual
size of this hypoxic area averages 15,540 km2 (1993–2015), and concerns about its
potential effect on marine life have prompted the development of a management
goal to reduce the hypoxic area to a 5-year running average of 5,000 km2 by 2035
(Mississippi River, Gulf of Mexico Watershed Nutrient Task Force 2015). To be
successful, long-term goals such as this will have to incorporate adaptive man-
agement against the backdrop of climate change and other changing stressors.

Climate change is expected to further exacerbate the hypoxia problem (Rabalais
et al. 2010; Doney et al. 2012). Increased water temperatures due to global warming
will impact O2 concentrations by decreasing O2 solubility and enhancing
temperature-dependent biological metabolism. Increased sea surface temperature
and freshwater discharge from rivers are expected to increase the strength of vertical
stratification, which is a physical precursor necessary for bottom water hypoxia
development (Wiseman et al. 1997). Other climate impacts on hypoxia could include
enhanced sinking rates of organic particles due to warmer water temperature (Bach
et al. 2012) that will increase the deposition of organic matter. Enhanced watershed
export of nutrients, organic matter, and optically active constituents like colored
dissolved organic matter (CDOM) can be expected due to their observed correlation
with greater discharge and temperature (Mulholland 2002; Aulenbach et al. 2007;
Spencer et al. 2009; 2012). These terrestrial exports could impact hypoxia directly
through enhanced primary production and respiration or indirectly by absorbing
shortwave and photosynthetically available radiation, which would be expected to
further warm the surface ocean and reduce the PAR available for photosynthetic O2

production. In sum, these changes are expected to increase the severity of hypoxia in
terms of lower O2 concentrations, longer duration of low O2, and larger areal extent.

Various aspects of climate change impacts on Louisiana shelf hypoxia have been
modeled previously. Justic et al. (1996) developed a one-dimensional, vertical
model to evaluate the impacts of increased freshwater discharge and nutrient
loading on stratification and hypoxia development at single point on the shelf,
station C06 (Fig. 8.1). Donner and Scavia (2007) examined potential climate
impacts on hypoxia using a modified Streeter–Phelps model that was scaled to the
hypoxic area based on a simple one-dimensional, in the horizontal east–west
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direction, physical advection model. These studies have provided first-order pre-
dictions that climate change impacts are likely to increase the severity of hypoxia.

More recent modeling studies have implemented three-dimensional (3-D)
hydrodynamic and ecosystem models to explore various drivers of oxygen and
primary production dynamics (Fennel et al. 2013; Justic and Wang 2014; Pauer et al.
2016). In this study, we expand upon the previous work by using a 3-D hydrody-
namic and ecosystem model to simulate how a potential future climate may impact
oxygen concentrations and hypoxia. We defined our future climate using a projected
increase in air temperature (+3 °C, IPCC 2014) and river discharge (+10%, Sperna
Weiland et al. 2012). We then compared the future scenario results with model
results from the present (reference year 2006) to assess how these changes in air
temperature and river discharge could impact the sea temperature, salinity, vertical
stratification, phytoplankton biomass, O2 concentration, and hypoxic area.

The manuscript is organized as follows. First, we describe the coastal ocean
ecosystem model and its application to the Louisiana continental shelf. Then, the
results from the numerical simulation with a potential future climate are reported
with a discussion of how climate change may impact hypoxia and uncertainties in
these results. The main conclusions from this numerical experiment are that the

Mississippi 
River

Atchafalaya 
River

10 m

50 m

200 m

H04500 m
C06

R1

R2R3

R4

R5

R6

Fig. 8.1 Louisiana shelf modeling domain is shown by the box with dashed line. Hypoxia occurs
mainly within the 50-m isobath. Sampling stations shown as circles were used to develop initial
and boundary conditions and for model corroboration. The boxes represent regions (R1–R6) over
which model results and observations were aggregated and compared. Two stations, H04 and C06,
are noted (red stars), where modeled time-series results were compared to observations. The
dotted vertical line at –90.4 longitude is the location of the vertical slice in Fig. 8.9
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potential future climate affects the temperature and salinity of the shelf and these
changes manifest in stronger stratification at the pycnocline. In turn, the stronger
stratification results in increased severity of hypoxia on the shelf.

8.2 Model Description and Numerical Experiment

8.2.1 Hydrodynamic and Ecosystem Model Description

To model potential climate impacts on hypoxia, we applied a 3-D hydrodynamic and
ecosystem modeling system. The 3-D hydrodynamic model is an implementation of
the Navy Coastal Ocean Model (NCOM; Martin 2000) for the Louisiana continental
shelf (NCOM-LCS) and was developed to provide horizontal and vertical transport
and mixing, temperature, and salinity (Lehrter et al. 2013, Ko et al. 2016) for the
ecosystem model. Within the Louisiana shelf model domain (Fig. 8.1), the model
grid has a horizontal resolution of approximately 1.9 km. Vertical structure is rep-
resented by 20 equally spaced sigma layers on the shelf (≤ 100 m depth) that follow
the ocean topography and up to 14 layers at constant depths below 100 m depth.

NCOM-LCS was run for the period October 1, 2004–December 31, 2007, at a
time-step of 300 s. Hourly model outputs from January 1 to December 31, 2006
were used for this study. Land–sea forcing of the model (Table 8.1) was through
river discharges to the model domain based on daily observations of the Mississippi
(USACOE gauge 01100) and Atchafalaya Rivers (USACOE gauge 03045) and from
92 smaller rivers entering the domain based on USGS measurements. Aggregate
discharge from the smaller rivers was calculated to be <2% of the MARB discharge.
Atmospheric forcing consisted of 3 h, 9 km scale estimates of air pressure, wind
stress, and air temperature from the Coupled Ocean/Atmosphere Mesoscale Pre-
diction System (COAMPS; Hodur 1997) and solar short wave radiation and surface
total heat flux from the Navy Operational Global Atmospheric Prediction System
(NOGAPS; Rosmond 1992). Initial conditions and boundary conditions (Table 8.1)
for currents, temperature, and salinity for the eastern, southern, and western open
ocean boundaries were provided by a lower-resolution (approximately 6 km scale)
regional implementation of NCOM called the Intra-Americas Sea Nowcast Forecast
System (IASNFS; Ko et al. 2003; Ko and Wang 2014) covering the Gulf of Mexico,
Caribbean Sea, and a portion of the North Atlantic Ocean.

The ecosystem model used for describing nutrients and O2 dynamics was based
on the biogeochemical model described by Eldridge and Roelke (2010). For this
study, the one-dimensional (Eldridge and Roelke 2010) model was recoded from
MATLAB to FORTRAN, made explicitly 3-D, and generalized to run on any
orthogonal grid. We call this new code a coastal general ecosystem model (CGEM).
The CGEM state variables used in this application (Table A.1) included one
phytoplankton group to represent diatoms, which were the dominant phytoplankton
taxa observed on the shelf (Murrell et al. 2014); phytoplankton cell quotas for
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nitrogen and phosphorus; two zooplankton groups to represent large and small
grazers; four classes of organic matter in particulate and dissolved forms to rep-
resent organic matter derived from phytoplankton, zooplankton, rivers, and ocean
boundaries; CDOM; nutrients in the form of NO3

−, NH4
+, PO4

3−, and Si; and O2

(Fig. 8.2). Model equations and parameter tables are provided in Appendices A–F.
The CGEM code and model output are available upon request to the authors.

CGEM was applied to the Louisiana shelf for the year 2006 with hydrodynamic
forcing from NCOM-LCS. Other forcing for CGEM included (Table 8.1) photo-
synthetically available radiation (PAR, sum of irradiance for 400–700 nm wave-
lengths) delivered to the sea surface, which was calculated as a fraction (0.47) of the
atmospheric short wave radiation from NOGAPS. Ocean boundary and initial
conditions were derived from reported observations of nutrient and organic matter

Table 8.1 Model boundary conditions

Model
boundary

Model process Treatment

Land–sea Freshwater discharge, temperature,
and concentrations of state variables
for 94 rivers

Mississippi and Atchafalaya Rivers daily
observed discharge (USACOE) and
concentrations of variables at weekly to
monthly sampling frequency (USGS).
Other rivers had USGS gauged discharge or
were assigned discharges based on gauged
rivers. Nutrient concentrations (total N and
P) for unmonitored rivers were obtained
from the USGS SPARROW mode

Air–sea Sea surface heat, salinity, and
momentum fluxes

Temperature, solar shortwave radiation, air
pressure, and winds from COAMPS model,
9 km resolution, 3 h. Precipitation from
TRMM, 0.25° resolution, 3 h (Ko et al.
2008; Lehrter et al. 2013)

O2 and CO2 exchange Concentration gradients from sea to air and
wind speed (Liss and Merlivat 1986;
Whitfield and Turner 1986; Justic et al.
1996; Eldridge and Roelke, 2010)

Open
boundaries and
initial
conditions

Currents, temperature, and salinity IASNFS model, 6 km resolution, 3 h (Ko
et al. 2003; Lehrter et al. 2013)

Concentrations of state variables Multivariate regression relationships were
developed based on observed depth and
salinity (independent variables) and
observed concentrations reported in Lehrter
et al. (2013). Regression equations were
applied to IASNFS depth and salinity
outputs at each i, j, k grid cell on the model
boundary and each model time-step

Abbreviations: USACOE, United States Army Corps of Engineers; USGS, United States Geological
Survey; IASNFS, Intra-America Seas Nowcast/Forecast System; COAMPS, Coupled Ocean/Atmosphere
Mesoscale Prediction System; TRMM, Tropical Rainfall Measuring Mission; CMAQ, Community
Multiscale Air Quality model
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concentrations (Lehrter et al. 2013). O2 exchanges at the air–sea interface were
calculated based on concentration gradients at the sea surface and wind speed (Liss
and Merlivat 1986).

For this study, sediment-water exchanges were not modeled explicitly. As a
simplification, particulate organic matter sinks to the bottom layer in the model
where it continues to be remineralized through aerobic respiration and denitrifica-
tion according to the availability of electron acceptors, stoichiometry of the organic
matter, and parameterized decay rates.

8.2.2 In Situ Observations Used to Assess Model Results

Modeled state variables temperature, salinity, nitrate, chlorophyll, and O2 were
compared to observations from the Louisiana shelf (Fig. 8.1) from three cruises in
April, June, and September 2006. During cruises, vertical profiles of temperature,
salinity, and O2 were collected with a CTD (Sea-Bird 911, Sea-Bird Electronics,
Bellevue, WA). Chlorophyll a (Chla) samples were collected at discrete depths in
Niskin bottles. A description of the fluorometric analysis of Chla has been reported
previously (Lehrter et al. 2009; 2013; Murrell et al. 2014).

Rivers 

Water-column

Atmosphere
O2

PAR

NO3 PO4 NH4 

DOCCDOM

Phytoplankton

Macro Micro

Zooplankton

POM DOM

Organic ma er 
(4x)

O2 
OceanSPM POC

Ver cal Export

Diatoms

Si

(a)

(b)

Fig. 8.2 CGEM conceptual model representing a atmospheric surface boundary forcing from
photosynthetically available radiation (PAR) and air-sea exchange of O2 and b water column
horizontal exchange with river and ocean end-members and mechanisms regulating light, nutrient,
phytoplankton, zooplankton, and organic matter dynamics. In the present study, only one
phytoplankton group is used, but the model is flexible in representing up to 99 groups. Particulate
and dissolved organic matter is represented by four types (4x) each including river, algal-derived,
zooplankton-derived, and ocean boundary condition organic matter
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The strength and depth of the pycnocline were estimated at each station from
vertical profiles of density, calculated from observed temperature and salinity
profiles described above. The density profiles were used to calculate Brunt Väisälä
frequencies (N2, Pond and Pickard 1983) as N2 = (g/ρ0) (dρ/dz), where g is the
gravitation parameter, ρ0 is reference sea water density, ρ is potential density, and z
is water depth positive downward. The maximum Brunt Väisälä frequency (Nmax

2 )
and depth were used as proxies for the stratification strength and depth of the
pycnocline, respectively, at each station.

The model results were compared to observations (Murrell et al. 2014) from
2006 on both a point-to-point and regional basis. For point-to-point comparisons,
model results were extracted to match station locations, depths, and times. For
regional comparisons, surface and bottom median concentrations from the model
results and observations were calculated for the regions shown in Fig. 8.1.

Three model assessment metrics (Stow et al. 2008; Lehman et al. 2009) were
calculated for evaluating model results against observations. Bias, the mean dif-
ference between model results and observations, was calculated as

Bias=
1
n
∑ M −Oð Þ. ð8:1Þ

where O is an observed value and M the modeled value corresponding to n ob-
servations. The root-mean-square error, a measure of model agreement with
observations, was calculated as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ O−Mð Þ2

n

s
ð8:2Þ

The model efficiency (ME), a measure of model prediction skill, was calculated
from residuals of observed and modeled values in relation to the observed sum of
squares

ME=1−
∑ O−Mð Þ2
∑ O−O

� �2 , ð8:3Þ

where O is the mean of observations.
The observed hypoxic area from the July 21–27, 2006, survey by the Louisiana

Universities Marine Consortium (LUMCON, http://www.gulfhypoxia.net/) was also
used for comparison with modeled results. Calculated hypoxic areas from the model
results did not consider model grid cells with total depths less than 7 m. These
depths were excluded because they were not sampled in the LUMCON survey and
because they consisted of model boundary cells at the land–sea interface.

Numerical Experiments
A future climate scenario was developed that included a +3 °C air temperature. This

was based on the Intergovernmental Panel on Climate Change (IPCC) RCP6 scenario,
which assumes an increase of +6 W m−2 of radiative forcing, that results in an
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approximately +3 °C change in regional air temperature in the northern Gulf of Mexico
(Collins et al. 2013). The future scenario also incorporated a +10% river discharge
(Sperna Weiland et al. 2012). We chose the year 2006 as the present base year because
tropical storms and hurricanes were not present in 2006. Tropical systems are known to
affect hypoxia by breaking down the pycnocline and mixing O2 to depth through
intensive winds and large waves. Further, there were observations (Murrell et al. 2014)
available from three cruises in 2006 to compare tomodel results. Thus,we applied the+3
°Cair temperature and+10% river discharge to2006 to assess a future impact onhypoxia.

In the future scenario, the +3 °C air temperature was transferred to the ocean
surface by latent and sensible heat fluxes. Latent heat flux occurred due to the
air-sea temperature differences and the sea surface moisture pressure, and the
sensible heat flux occurred due to the air-sea temperature difference. In addition,
temperature enters the model domain in the freshwater discharge from the rivers for
which it was assumed that the +3 °C air temperature translated to a change of +1.7
°C in freshwater temperature.

To provide appropriate boundary forcing for the future climate scenario, we first
ran the IASNFS regional model using +3 °C and +10% river discharge. We then
ran the NCOM-LCS model with the future climate scenario with open ocean
boundary forcing from the IASNFS run with the future climate scenario. Finally,
CGEM was run with the future temperature, river discharge, and transport supplied
by the NCOM-LCS model. In the future climate scenario, nutrient and organic
matter concentrations from the rivers and ocean boundaries were kept the same as
the 2006 present case. This was done in order to focus on how changing temper-
ature and discharge affect stratification and O2. However, we note that a 10%
increase in river discharge results in a 10% increase in nutrient load (load = dis-
charge × concentration). In another study, we plan to address other potential future
scenarios that include alterations in watershed nutrient and organic matter loading.

8.3 Results

8.3.1 Model Hindcast Comparison to Observations

Model skill metrics indicated the hydrodynamic model generally reproduced the
observed spatial and temporal patterns of temperature, salinity, and density
(sigma-t). A point-to-point comparison with observations of temperature, salinity,
and sigma-t from three cruises in 2006 indicated small bias, small RMSE, and good
model prediction skill (ME > 0.6) (Table 8.2). An ME > 0 indicates the model is a
better predictor than the simple mean of all observations of a state variable, and
ME = 1 is the maximum value and indicates the model has perfect agreement with
observations. Thus, the model reproduced temporal and spatial patterns in tem-
perature and salinity (Fig. 8.3).

In Fig. 8.3, the apparent bias between observed salinity and model salinity for
depths <20 m is due to an under-representation of shallow depths in the
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Table 8.2 Model comparison with observations on a point-by-point basis from three cruises in
2006 for temperature (T, °C), salinity (S), density (sigma-t, kg m−3), nitrate (NO3, mmol m−3),
chlorophyll a (Chla, mg m−3), and oxygen (O2, mmol m−3). Shown are the number of point
observations that were available for comparison to the model (n), and the estimated model bias,
root-mean-square error (RMSE), and model efficiency (ME). For NO3, Chla, and O2, model
comparison results are also shown for median surface and bottom concentrations extracted from
the six regions shown in Fig. 8.1

n Bias RMSE ME

T 8,777 –0.04 0.97 0.92
S 8,777 –0.42 1.90 0.61
Sigma-T 8,777 –0.31 1.52 0.72
NO3 723 –0.84 6.31 0.17
Chla 493 0.60 4.72 0.14
O2 6,638 43.7 65.4 –0.89
NO3regions 36 –0.77 3.05 0.25
Chlaregions 36 –1.02 4.21 0.15
O2regions 36 27.2 50.7 0.22

Fig. 8.3 Mean water column temperature and salinity from the model for the present case (solid
blue) and for the future climate scenario (dashed red) for the area of the shelf with depths <20 m
(upper panel) and <50 m (lower panel). The circles with error bars represent the mean ± standard
deviation of observations in the same depth categories
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observational dataset. Whereas the model extends inshore into shallow coastal areas
and bay, the observations are not representative of these shallow areas (Fig. 8.1),
which are closer to freshwater sources and have lower salinity.

Generally, the modeled pycnocline stratification strengths were weaker than the
observations (Fig. 8.4). However, both the present and future scenario models
generated a large percentage of N2 greater than 40 cycles h−1, which is a value above
which hypoxia occurs (Bianchi et al. 2010), especially during early summer when
greater than 50% of the maximum N2 were greater than 40. Thus, although the model
is not able to reproduce the observed maximum N2, the model does produce N2

sufficient for the formation of hypoxia. Modeled pycnocline depths were on average
1.5 m deeper than observed pycnocline depths during April and June 2006 (Fig. 8.4).
This deeper bias primarily occurred at locations less than 20 m depth. In September
2006, the modeled pycnocline depths were similar to the observed with no bias.

Fig. 8.4 Cumulative distributions of observed (black line) and modeled Nmax
2 (left column) and

depth of Nmax
2 (right column). Present (blue line) and future scenario (red line) model results are

shown in comparison with observations from April (upper panel), June (middle panel), and
September (lower panel) of 2006. Nmax

2 = 40 is shown by the vertical dashed line
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Model skill metrics for point-to-point and regional comparisons with observa-
tions of NO3

−, Chl, and O2 are shown in Table 8.2. The model had ME > 0 for
NO3

− and Chl on a point-by-point basis and ME > 0 for all three variables on a
regional basis. At a regional scale (Fig. 8.5), the model was unable to reproduce
high Chl concentrations observed in Region 1 near the Southwest Pass of the lower
Mississippi River, nor did it produce low O2 concentrations observed in Region 2.

The model generally reproduced seasonal variability in observed Chl and O2

concentrations at H04 and C06 (Fig. 8.6). The model output in Fig. 8.6 is only at
noon on each day. Thus, the modeled results shown do not reproduce the diel

Fig. 8.5 Comparison of present modeled results and observed NO3, Chl, and O2. Data shown are
median model and observed results from three cruises in 2006 where both median model and
observed results were calculated for the six regions shown in Fig. 8.1 for surface and bottom bins
(n = 36). Error bars are 25th and 75th percentiles of observations from a region. The solid line is
the 1:1 line
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variability seen in the observations at these stations, which were collected every 3 h
over 24–36 h of station occupation.

Modeled hypoxic area for the present scenario was similar to the observed
(Fig. 8.7). In Fig. 8.7, the modeled hypoxic area starts at zero on January 1 and
climbs to an August 1 value of 17,820 km2 which is quite similar to the observed
hypoxic area of 17,280 km2. The hypoxic area then declines in mid-August before
rising again to its maximum extent of 18,110 km2 on August 26.

Despite being similar in spatial extent, the spatial distribution of modeled and
observed hypoxia differed in some respects (Fig. 8.8). Modeled hypoxia tended to
be larger in the offshore direction on the eastern shelf and was contiguous along the
shelf. Some of this difference can be attributed to the modeled hypoxic area shown
in Fig. 8.8 being from August 26 when the maximum hypoxic area occurred in the
model (Fig. 8.7). The observed hypoxic area shown in Fig. 8.8 is based on one
cruise from July 21–27. Modeled hypoxic areas shown along the coastline and in

◀Fig. 8.6 Modeled time-series of Chl and O2 at station H04 (left column) and C06 (right column)
during 2006 for the present (blue line) and future (dashed red line) scenario. The three subplots in
each column are at k levels 1, 15, and 20 (depths of approximately 1, 15, and 20 m). Observed Chl
and O2 concentrations observed in April, June, and September (black circles) are shown for
comparison
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Fig. 8.7 (Upper plot) Annual time-series of modeled hypoxic area for the present (blue line) and
future scenario (dashed red line). The observed hypoxic area of 17,280 km2 from the LUMCON
July 21–27, 2006, cruise is shown (black circle) for reference. (Lower plot) June 1–October 1
time-series of mean modeled O2 concentration in hypoxic cells for the present (blue line) and
future scenario (red line) with dashed lines representing the ± standard deviation of O2

concentrations from hypoxic cells. The mean ± standard deviation of the observed O2 (data from
Obenour et al. 2013) in hypoxic cells is shown by the black circle with error bars
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bays in Fig. 8.8 are highly uncertain as these areas of the model are at or near the
inshore boundary of the model grid.

8.3.2 Numerical Experiment with Future Climate Scenario

Application of the future climate scenario of +3 °C air temperature increased the
modeled water column average temperature by +1.1 °C (Fig. 8.3). At depths
shallower than 20 m, the overall temperature increase was +1.3 °C. The +10% river
discharge in the future climate reduced average salinity by –0.09 for depths <50 m
and –0.24 for depths <20 m (Fig. 8.3). The largest salinity changes of approxi-
mately –1 occurred in the plume region of the Atchafalaya River at depths shal-
lower than 10 m. Salinity in the plume region of the Mississippi River was less
affected by the +10% discharge (<–0.25 change) due to the deeper waters in this
region of the shelf.

Fig. 8.8 Hypoxic area (left column) and duration of severe hypoxia (right column). The left
column shows the present and future scenario maximum hypoxic area for 2006. The color bar
shows the modeled bottom-water O2 concentration (mmol m−3) for O2 ranging from 0 to
100 mmol m−3. The black solid contour line is the modeled isopleth of O2 = 63 mmol m−3. The
red solid contour line is the observed isopleth of O2 = 63 mmol m−3 (data from Obenour et al.
2012). Note that the maximum hypoxic extent occurred on August 26 in the present model results
and August 29 in the future scenario, while the observed hypoxia area was measured July 21–27
and reported to be 17,280 km2. Annotated text is the hypoxic area on August 26 for the present
and August 29 for the future scenario. The right column shows the duration of severe hypoxia.
Severe hypoxia per model grid cell was defined as occurring for more than 60 days during 2006
(see Sect. 3.2). The color map shows the duration (days) that hypoxia occurred in each model cell
that was classified as severely hypoxic. Annotated text is the area of model cells where
bottom-layer hypoxia persisted longer than 60 days. Note that model results from grid cells with
total depths <7 m were excluded from calculations and are not shown in the duration plots

186 J.C. Lehrter et al.



May Present May Future

June Present June Future

July Present July Future

August Present August Future

Fig. 8.9 Vertical slices of the monthly averaged N2 (10−2 s−2) for May through August 2006
extracted from the 20 sigma layers in the model along longitude line 90.4 °N. Model results for the
present are shown in the left column, and future climate scenarios are shown in the right column.
Note the color bar is log10 scale
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As a result of the warmer and less saline water in the surface layer, stronger
stratification occurred during the summer in the future scenario (Fig. 8.4). This
change is evident in Fig. 8.9, which shows vertical slices of the model N2 for May
through August of 2006. Changes in the stratification between the present and
future scenarios were most evident at depths between 7 and 30 m. The N2 in this
depth range were larger in May in the present model results, but thereafter from
June to August the N2 were greater in the future scenario. These results indicated a
stronger pycnocline in the future scenario during June, July, and August, which
coincides with the lower O2 concentrations at C06 and H04 during this period in the
future scenario (Fig. 8.6). Note that the color bar in Fig. 8.9 is N2 on log10 scale,
and thus, subtle differences in color are significant changes in N2.

Shelf current velocities in the future climate scenario were on average 0.3 and
0.2 cm s−1 greater than in the present case for water depths <50 m and <20 m,
respectively (data not shown). Current directions, which were generally westward
inside the 50-m isobath during fall, winter, and spring and eastward during summer,
were unchanged in the future scenario.

Modeled Chl, on average, was larger in the future scenario (Fig. 8.6), but the
whole water column grand mean only changed from 3.8 to 4.1 mg m−3 from the
present to the future scenario. Whole water column mean O2 concentrations
changed from 213 mmol m−3 in the present scenario to 207 in the future. Largest
differences in O2 concentrations in the present and future model runs were in the
bottom layer (Fig. 8.6).

In the future scenario, the hypoxic area was on average only 1% (299 km2)
larger than the present (Fig. 8.7). But, there are some notable differences season-
ally, for example, in early June when the future scenario hypoxic area was 23%
larger than the present and again in later October and early November when the
hypoxic area was approaching the fall/winter minimum. Thus, the effects of a
warmer and wetter climate on hypoxic area seem to mainly occur at the tails of the
hypoxia size distribution. The shapes of the hypoxic areas in the present and future
scenario (Fig. 8.8) were similar, but with differences noted in the western extent
near longitude 92.5° W where the future area was smaller.

The effect of the future scenario on O2 concentration in bottom water was an
average change of –6.1 ± 14.2 mmol m−3. In the model cells where hypoxia
occurred, the average O2 concentration was consistently lower (Fig. 8.7 lower plot)
than the present, but the differences were small on average, −2.0 ± 1.7 mmol m−3.
However, at a specific location, the O2 difference in bottom waters could be quite
large. For example, the future scenario bottom-water O2 concentration at station
C06 exhibited large departures from the present from mid-May to July (Fig. 8.6)
and again in late October and early November, which resulted in a longer duration
of hypoxia. Station H04 had a similar pattern.

To further examine the issues of hypoxia duration and areas of hypoxia severity,
in Fig. 8.8 we classified model bottom cells as “severely hypoxic” if hypoxia
occurred in a cell more than 60 days over the annual cycle. We then examined the
change in the duration and area of severe hypoxia obtained from the present and
future scenario. In the future scenario, the area of severe hypoxia increased by
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1,130 km2, a 7.9% increase. The average duration of hypoxia in the severely
hypoxic cells increased by 9.5 ± 22.3 days, a 10% increase.

8.4 Discussion

8.4.1 Present Model Results and Future Scenario
Implications for Hypoxia

For the first time, a 3-D hydrodynamic and ecosystem model was used to
demonstrate the effects of a future climate scenario on northern Gulf of Mexico
hypoxia. The use of the 3-D model allowed for comparison with observations and
an examination of the spatial and temporal differences in modeled state variables as
a result of the prescribed change in climate between the present and future scenario.
Corroboration of the modeling results for the present included point-to-point and
regional comparisons between observations and model results.

In the point-to-point comparisons, the hydrodynamic model had good skill pre-
dicting observed temperature, salinity, sigma-t (Table 8.2), and the depth of strati-
fication (Fig. 8.4), but was unable to reproduce the maximum strength of
stratification (Fig. 8.4). Accurately modeling hypoxia is contingent upon the ability
of hydrodynamic models to reproduce the depth and strength of vertical stratification
(Fennel et al. 2013; Fennel et al. accepted). However, hypoxia on the Louisiana shelf
may occur whenever the N2 is greater than 40 cycles per hour (Bianchi et al. 2010).
This threshold was achieved at greater than 50% of the locations assessed in the
model (Fig. 8.4), and stratification was sufficient for generating hypoxia (Fig. 8.7).

An obvious issue arises with the use of point-to-point comparisons. There is a
mismatch in spatial scale when comparing model results with observations due to
the horizontal resolution of the model (1.9 km) in comparison with point locations
for sampling stations. This issue is particularly problematic for the Louisiana shelf
where small-scale variability is the norm due to dynamics among many plume
fronts (Marta-Almeida et al. 2013). Thus, although the model had high skill at
reproducing observed temperature and salinity (Table 8.2), getting the modeled
stratification to match observations requires a near-perfect representation of the
observed vertical temperature and salinity profile. This is a difficult task at the
coarser scales of existing models and where small-scale variability occurs. Future
improvements in reproducing stratification are likely to come from data assimilation
of vertical hydrographic profiles into the hydrodynamic models. This is not likely to
be achieved in the near future due to a lack of sampling at the required time and
space scales for data assimilation.

For the biogeochemistry, CGEM coupled to NCOM-LCS reproduced observed
NO3

−, Chl, and O2 concentrations with decent skill (Table 8.2). In the
point-to-point and regional comparisons, O2 was biased high in the model due to an
inability of the model to reproduce the lowest observed bottom-water O2 concen-
trations (e.g., Fig. 8.5). In light of the discussion above about modeled
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stratification, this inability to reproduce the lowest O2 concentrations is not sur-
prising, as it has been noted previously that stratification is inversely correlated to
bottom-water O2 concentration in a model (Fennel et al. 2013). These results
provide confidence that the present model was generally reproducing the temporal
and spatial patterns of observations.

8.4.2 Future Scenario Implications for Hypoxia

In the future climate scenario, water temperature increased and salinity decreased
(Fig. 8.3). These changes resulted in stronger stratification (Fig. 8.4), especially
during summer (Fig. 8.9). In turn, O2 concentrations were lower during late spring
to fall in the future scenario. This change manifested in both the bottom layer and
into the water column (Fig. 8.6). The most pronounced changes in bottom-water O2

concentrations and hypoxic area between the present and future scenario occurred
during the spring months leading to the onset of hypoxia and the fall months during
the breakdown of hypoxia (Fig. 8.7).

The future scenario affected the duration and extent of severe hypoxia (Fig. 8.8).
The decision to use a 60-day occurrence threshold for defining severe hypoxia was
based on the continuous O2 time-series observations at station C06 presented by Justic
and Wang (2014, their Fig. 2d), which showed hypoxia occurring for approximately
60 days during late spring and summer. We repeated the analysis using different
thresholds of 30 and 90 days. Using a threshold of 30 days to classify cells as severely
hypoxic yielded a 0.3% increase in the area of severe hypoxia and an 8% increase in
the average duration of hypoxia in severely hypoxic cells in the future. For a 90-day
threshold, the future scenario had a 37% larger area and no change in the duration of
hypoxia. These differences over the range of thresholds examined occur because the
range in the number of hypoxia days in cells classified as exceeding the threshold
becomes smaller as the threshold increases. Thus, at a low duration threshold for
severe hypoxia, the areal extent of severe hypoxia cannot change much, but the overall
duration can increase, while at a high duration threshold, the area can increase sig-
nificantly in the future scenario but not the overall duration.

Regardless of the threshold used, the pattern that emerges is that the future
scenario causes more severe hypoxia. Longer-duration hypoxia occurs due to the
appearance of low O2 conditions earlier in the spring and later in the fall in the
future scenario (Fig. 8.6). The greater extent occurs due to larger areas of severe
hypoxia on the eastern shelf near longitude 90.7° W and on the western shelf near
longitude 92.5° W (Fig. 8.8).

The exact reasons for the difference in O2 and hypoxia in the future scenario
were not diagnosed in this study. This would require a thorough mass balance
accounting of the processes controlling O2 in bottom waters (Yu et al. 2015) and is
left for another study. However, based on the patterns of O2 responses in relation to
changes in stratification we infer that physical rather than biological processes were
the dominant control. We can rule out eutrophication as a driving process in the
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future scenario based on the muted Chl response. Though the future scenario
resulted in a +10% increase in nutrient loading as a result of the +10% increase in
discharge, Chl was not observed to be significantly larger in the future scenario at
location where hypoxia occurs (Fig. 8.6). Further, the phytoplankton growth rate in
the model (not shown) was not significantly different in the future scenario.

The inference of hypoxia change in the future scenario being driven by stratifi-
cation is supported by previous work. Based on observations of O2 and vertical
hydrography, Wiseman et al. (1997) demonstrated an empirical inverse relationship
between stratification strength and bottom-water O2 concentrations. In modeling
studies, simulations of future climate scenarios with 1-D models have predicted that
the Louisiana shelf hypoxic area will increase as a result of increased stratification
(Justic et al. 1996; Donner and Scavia 2007). More recently, 3-D modeling studies
from the Louisiana shelf have demonstrated that hypoxia is sensitive to differences in
water column temperature (Ko et al. 2016) and stratification (Hetland and DiMarco
2008; Fennel et al. 2013; Justic and Wang 2014). Thus, although the 3-D modeling
studies were not couched in the context of climate change, their results indicate
similar behavior as the future climate scenario model results presented here.

8.4.3 Climate and Modeling Uncertainties

The +3 °C air temperature used in this study is consistent with the IPCC RCP6.0
scenario (Collins et al. 2013) prediction for the southeastern USA and northern Gulf
of Mexico. The range of IPCC regional predictions for this area was +2 to +4 °C,
based on RCP2.6 and RCP8.5 scenarios, respectively (Romero-Lankao et al. 2014).
Thus, the +3 °C increase used here may be conservative in comparison with
RCP8.5, which is the business-as-usual scenario.

Climate impacts to hydrology are likely to occur, but the certainty about the
amount of change is less than for air temperature (Collins et al. 2013). For example,
Sperna Weiland et al. (2012) modeled global river discharge using 12 different
global climate models (GCMs) as forcing and reported an ensemble mean 11%
increase in discharge globally. However, at a continental scale, the change in dis-
charge for North America ranged from –15% to +60%. Thus, the +10% increase in
river discharge used in this study is consistent with the modeled global increase, but
has high uncertainty.

We did not include a change in coastal winds in our scenario because the IPCC
did not note a regional change in coastal winds as a future consequence of climate
(Collins et al. 2013; Romero-Lankao et al. 2014). Further studies could address
changes in wind with regionally downscaled climate model results with sufficient
resolution to capture potential changes in regional prevailing winds. Currents on the
Louisiana shelf are wind-dominated; thus, future changes in wind could have
significant effects on hypoxia as has been noted in the present (Forrest et al. 2011).

Future changes in sea temperature, salinity, wind intensity, and nutrient loads
could impact the food web of the shelf system through changes in the
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phytoplankton community structure. Phytoplankton community structure and food
web dynamics are thought to play an important role in coastal hypoxia development
(Falkowski et al. 1980; Eldridge and Roelke 2010), but our current understanding
of these processes and how climate change may impact them is highly uncertain.
Models, like CGEM, that can represent multiple phytoplankton functional types
may be used to explore these climate effects. Here, however, we used only one
phytoplankton type, diatoms, to simplify the model results. In future work, we plan
to assess how climate impacts in combination with changing nutrient loads may
affect competition among multiple phytoplankton functional types and resultant
effects on trophic transfer to zooplankton and detrital organic matter pools.

The year 2006 had low river discharge for the combined Mississippi and
Atchafalaya Rivers with an average discharge of 12,200 m3 s−1 in comparison with
the long-term (1968–2015) average of 21,300 m3 s−1. Additional model analyses
are needed to examine potential climate impacts during average and high discharge
periods. Another aspect that should be examined with respect to discharge is the
observed positive correlation between freshwater discharge and nutrient (Aulen-
bach et al. 2007) and dissolved organic matter (Mulholland 2002) concentrations
and loads. In the future, if river discharge increases, we expect that elevated river
nutrient and organic matter loads will enhance primary production and respiration
on the shelf (Justic et al. 2003). Further increased CDOM loads may reduce light
availability in the water column and potentially limit photosynthetic production of
O2 beneath the pycnocline (Lehrter et al. 2009; 2014). The accompanying increased
absorption of atmospheric radiation by Chla stimulated by nutrient loads and by
CDOM in surface waters could also further increase the surface water temperature,
which may lead to stronger stratification (Ko et al. 2016).

Finally, there are obvious limitations in the biogeochemical model that con-
tribute to uncertainty in the results presented here. Even a fairly complex model like
CGEM is still a gross simplification of the nutrient, organic matter, and O2 cycling
processes that occur. Further work is needed to explore trade-offs between smaller
model grid cells, potential improvements in modeled stratification strength and
biogeochemistry, and computational requirements to run the model.

8.4.4 Conclusions

Current nutrient management strategies for mitigating hypoxia include goals with
target dates that are decades into the future. Achieving these goals will require
adaptive management that considers changing climate. Only the simple potential
interaction between temperature and discharge has been investigated here. How-
ever, there are clearly a myriad of other interactions including changing watershed
loads of nutrients and organic matter, changing ocean chemistry, and other climate
impacts that should be assessed. More observation and modeling studies of these
interactions are warranted to improve our conceptual model and predict the impacts
on coastal hypoxia.
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Appendices A–F

A. State Variables

CGEM state variables (Table A.1) are represented by time-dependent differential
equations. Horizontal and vertical currents, vertical mixing, and sinking are
implicit, and these terms are not shown in state variable equations. Currents,
mixing, and temperature are hydrodynamic model outputs that are provided to
CGEM by NCOM-LCS at each model time-step and point in the grid. State vari-
ables are presented below in the order that they appear in Table A.1.

Table A.1 State variables in CGEM code

State variable Description Units

A Phytoplankton abundance cells m−3

Qn and Qp Nitrogen and phosphorus cell quota mmol N
cell−1

Z1 and Z2 Macrozooplankton and microzooplankton Individuals
m−3

OM1_A and OM2_A Particulate and dissolved organic matter from
phytoplankton

mmol m−3

OM1_Z and OM2_Z Particulate and dissolved organic matter from
zooplankton

mmol m−3

OM1_R and OM2_R Particulate and dissolved organic matter from rivers mmol m−3

OM1_BC and OM2
_BC

Particulate and dissolved organic matter from later
boundaries

mmol m−3

CDOM Colored dissolved organic matter ppb
NH4 Ammonium mmol m−3

PO4 Phosphate mmol m−3

Si Silica mmol m−3

NO3 Nitrate mmol m−3

O2 Oxygen mmol m−3
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A.1 Phytoplankton

For simplicity, in this implementation of CGEM, one phytoplankton functional type
is modeled based on the dominant diatom on the Louisiana shelf, Skeletonema
costatum. S. costatum accounted for 58% of the total phytoplankton abundance
observed on the Louisiana shelf from 2002 to 2007 (data reported in Murrell et al.
2014). CGEM, however, is flexible in being able to represent up to 99 phyto-
plankton groups. Phytoplankton abundance (A, cells m−3) per group (i = 1:99) is
calculated as

d
dt
Ai =Agrowi −Arespi −ZgrazA toti −Amorti. ðA1Þ

where Agrow is production (cells m−3 s−1), Aresp (cells m−3 s−1) is the sum of
somatic and basal respiration, ZgrazA_tot (cells m−3 s−1) is the total zooplankton
grazing on Ai by the two zooplankton represented in the model, and Amort (cells
m−3 s−1) is the non-grazing mortality rate. Agrow, Aresp, Amort, and ZgrazA_tot
are described in Appendix C, Eqs. (C1), (C7), (C11), and (C12), respectively.

Phytoplankton internal cell quotas (Q, mmol cell−1) for nitrogen and phosphorus
are calculated as

d
dt
Qni = vNi −Qni ⋅ uAi −

AexudNi

Ai
ðA2Þ

d
dt
Qpi = vPi −Qpi ⋅ uAi −

AexudPi

Ai
ðA3Þ

where vN and vP (mmol cell−1 d−1) are phytoplankton uptake of nitrogen and
phosphorus, respectively (Eqs. C15–C17), Q ⋅ uA (mmol cell−1 d−1) is the utiliza-
tion of Q to support the growth rate (uA, Eq. C2), and AexudN and AexudP are
exudation (mmol cell−1 d−1) of nitrogen and phosphorus, respectively, associated
with Aresp (Eqs. C9 and C10).

A.2 Zooplankton

Zooplankton (Z, individuals m−3) dynamics for two types (j = 1:2) are represented
as

d
dt
Zj = Zgrowj −Zrespj −Zmortj ðA4Þ

where zooplankton growth (Zgrow), respiration (Zresp), and mortality (Zmort) are
described in Eqs. (D1), (D6), and (D9), respectively.
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A.3 Organic Matter

Particulate organic matter (OM1, mmol C m−3) from phytoplankton (OM1_A),
zooplankton (OM1_Z), rivers (OM1_R), and boundary conditions (OM1_BC) are
calculated as

d
dt
OM1 A=ROM1 A+ ∑

6

i=1
Amorti ⋅

QminNi

Qni
⋅Qci

� �
, ðA5Þ

d
dt
OM1 Z =ROM1 Z +ZegC1 +ZunC1 +ZmortC1 + ZmortC2

+ OM1 Ratio ⋅ ZslopC totð Þ
ðA6Þ

d
dt
OM1 R=ROM1 R ðA7Þ

d
dt
OM1 BC=ROM1 BC. ðA8Þ

In Eq. (A5), ROM1 is the OM1 remineralization rate and is a loss term for OM1
(e.g., Eq. E39), QminN and Qc are parameters for the minimum cellular N quota
and the fixed C quota per phytoplankton cell (Table A.2), respectively. In Eq. (A6),
ZegC1 is the Z1 carbon in excess of growth requirements that is egested in fecal
pellets (Eq. E18), ZunC1 is the Z1 ingested carbon that is unassimilated in the gut
and also released in fecal pellets (Eq. D4), ZslopC_tot is the organic matter released
during sloppy feeding by both Z1 and Z2 (Eq. D4), and OM1_Ratio (Eq. E19) is the
fraction of organic matter derived from sloppy feeding that becomes OM1_Z.

Dissolved organic matter (OM2, mmol C m−3) dynamics are represented by

d
dt
OM2 A= −ROM2 A+ ∑

6

i=1
Amorti ⋅

Qni −QminNi

Qni
⋅Qci

� �
, ðA9Þ

d
dt
OM2 Z = −ROM2 Z + ZegC2 + ZunC2 + OM2 Ratio ⋅ ZslopCð Þ ðA10Þ

d
dt
OM2 R= −ROM2 R ðA11Þ

d
dt
OM2 BC= −ROM2 BC. ðA12Þ

In (A9), ROM2 is the OM2 remineralization rate (e.g., Eq. E40). In (A10),
ZegC2 is the Z2 carbon in excess of growth requirements that is egested (Eq. E18),
ZunC2 is the Z2 ingested carbon that is not assimilated (Eq. D5), and OM2_Ratio
(Eq. E20) is the fraction of organic matter derived from sloppy feeding that
becomes OM2_Z.
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CDOM in concentration units (QSE ppb) is input to the model from riverine
loading, and once in the model, the only biogeochemical fate is to decay. Thus, the
time rate of change for CDOM is

d
dt
CDOM = −Kcdom decay ⋅CDOM ðA13Þ

where Kcdom_decay is the decay rate (Table A.5).

A.4 Nutrients

NH4 (mmol m−3) sources and sinks are described by

d
dt
NH4 =RNH4 −R 11−AupN

NH4

NH4 +NO3
+AexudN +ZexN. ðA14Þ

where RNH4 (Eq. E51) is the production of NH4 due to remineralization of organic
matter (Eq. E28), R_11 is the nitrification rate (Eq. E43), AupN (Eq. C17) is the

Table A.2 Phytoplankton parameters

Parameter Description Units Value

volcell Biovolume per cell μm3 513
Qc Carbon per cell 10−7 mmol C

cell−1
0.454

umax Maximum growth rate at 20 °C d−1 2.2
alpha Initial slope of the photosynthesis

versus irradiance curve
10−16 cm2 s
quanta−1d−1

3.96

beta Photoinhibition (P1) 10−18 cm2 s
quanta−1d−1

1.1

respg Growth-dependent respiration Dimensionless 0.1
respb Basal respiration d−1 0.02
QminN,
QminP

Minimum cell quotas for N and P 10−9 mmol N
cell−1

0.153,
0.0107

Kn, Kp, Ksi Half-saturation coefficients for N, P,
and Si

mmol m−3 1.13, 0.51,
1.13

vmaxN,
vmaxP,
vmaxSi

Maximum uptake rates for N, P, and
Si

10−8 mmol
cell−1d−1

0.133,
0.0407,
0.133

aN Scaling factor Dimensionless 1
Athresh Phytoplankton threshold for

zooplankton grazing
107 cells m−3 7

ediblevector Edibility of phytoplankton Dimensionless 0.5
sink Sinking rate m d−1 0.01
mA Mortality of phytoplankton d−1 0.11
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phytoplankton uptake of dissolved inorganic nitrogen (NH4 + NO3), AexudN is the
phytoplankton exudation of nitrogen driven by respiration (Eq. C9), and ZexN is
the zooplankton excretion of nitrogen driven by respiration (Eq. D7).

Change in NO3 (mmol m−3) is represented as

d
dt
NO3 =RNO3 +R 11−AupN

NO3

NO3 +NH4
ðA15Þ

where RNO3 (Eq. E48) is negative and represents NO3 lost to denitrification
(Eq. E30) and AupN is modified by the fraction of NO3 in the pool of NO3+NH4 to
represent phytoplankton NO3 uptake.

PO4 (mmol m−3) is calculated as

d
dt
PO4 =RPO4 −AupP+AexudP+ZexP ðA16Þ

where RPO4 (Eq. E49) is the production of PO4 from remineralization of organic
matter, AupP is phytoplankton uptake of PO4 (Eq. C17), AexudP is phytoplankton
exudation of PO4 driven by respiration (Eq. C10), and ZexP is zooplankton
excretion of PO4 (Eq. D8).

Change in Si (mmol m−3) is represented by

d
dt
Si=RSi−AupSi+ZegSi+ZunSi. ðA17Þ

where RSi (Eq. E53) is Si produced by remineralization of organic matter, where
the organic matter stoichiometry is assumed to have an Si:N = 1. AupSi is the
phytoplankton uptake of Si (Eq. C17). ZegSi and ZunSi are the zooplankton
egestion of Si and zooplankton unassimilated Si, respectively, and are set equal to
ZegN (Eq. E18) and ZunN (Eq. D5), respectively.

A.5 Oxygen

O2 (mmol m−3) is represented by

d
dt
O2 =RO2 − 2 ⋅R 11+Agrow ⋅Qc−Aresp ⋅Qc−Zresp ⋅ Zc

±Air − Sea Exchange
ðA18Þ

where RO2 is the aerobic oxygen consumption associated with organic matter
remineralization (Eqs. E41 and E42) and air-sea exchanges are described in
Appendix F.
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B. Optical Equations

Irradiance is modeled using inherent optical properties (IOPs) to calculate light
attenuation (k). The main advantage of this approach is that the absorption (a) and
backscattering (bb) of light are calculated, which could facilitate comparison of
modeled and observed IOPs as these observations become more common. This
approach could also be extended to a multi-spectral treatment. k is calculated (Penta
et al. 2008; 2009) as

Ez =E0e− kðzÞz

kðzÞ= k1 +
k2

1 + zð Þ0.5

k1 = χ0 + χ1 a490ð Þ0.5 + χ2bb490
h i

1+ α0sin θað Þ

k2 = ζ0 + ζ1 a490ð Þ0.5 + ζ2bb490
h i

α1 + α2cos θað Þ

ðB1Þ

where Ez is irradiance at depth z, E0 is the irradiance at the surface layer above z,
model coefficients include χ, ζ, and α (Table A.3), and θa is the solar zenith angle
calculated as a function of latitude and time. Absorption at wavelength 490 nm
(a490, m

−1) is calculated as

a490 = aChl490 + aCDOM490 + aSPM490 + aw490 ðB2Þ

where aChl is the absorption by chlorophyll (Chl), aCDOM is the absorption by
colored dissolved organic matter (CDOM), aSPM is the absorption by suspended
particulate matter (SPM), and aw is the absorption by seawater and is a model
parameter (Table A.3). aChl is calculated as

aChl490 = astar490 ⋅Chl ðB3Þ

where astar490 (Table A.3) is Chl-specific absorption and total Chl (mg m−3) is
calculated as

Chl= ∑
6

i=1
Chl: cellð Þ ⋅Ai ðB4Þ

where Chl:cell is the chlorophyll per cell (mg cell−1) (see Eq. B5) and Ai is the
phytoplankton cell abundance (cells m−3 d−1). Chl:cell is calculated for the
Louisiana shelf using an empirical equation based on observations of cell abundance
and Chla (Murrell et al. 2014). A regression relating these variables (R2 = 0.81), with
intercept set equal to zero, has the form Chl=3.0 × 10− 9 ⋅CellAbundance, where
3.0 × 10−9 is the slope of the observed relationship between chlorophyll a and
phytoplankton abundance (i.e., Chl:cell).
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aCDOM is based on CDOM (Eq. A13) loaded to the model domain from ter-
restrial sources. In the case of the Louisiana shelf, CDOM loaded from the rivers is
derived from regression equations relating observed riverine CDOM and DOC
concentrations. The Mississippi River monthly time-series of observed DOC
(mg l−1) (USGS data) was converted to aCDOM at wavelength 440 (m−1) by the
regression equation (Spencer et al. 2012)

aCDOM440 = 1.10 ⋅DOC− 2.76. ðB5Þ

Next, aCDOM440 was converted to aCDOM312 with the general aλ = aλref∙e
-S(λ-λref),

i.e.,

aCDOM312 = aCDOM440 ⋅ e
− S 312− 440ð Þ ðB6Þ

where S is the spectral slope of CDOM (S = 0.016) (Spencer et al. 2012; D’Sa and
Dimarco 2009). Then, aCDOM312 was converted to CDOM concentration using the
regression equation (Conmy et al. 2004)

CDOM= 2.933 ⋅ aCDOM312 + 0.538 ðB7Þ

Thus, in the model for the Louisiana shelf, Eqs. (B5–B7) are applied to riverine
DOC observations. CDOM concentration is then input by the rivers to the shelf
model domain where it is decayed by Eq. (A13) and advected and mixed. aCDOM490

Table A.3 Optical parameters

Parameter Description Unit Value

chi0, chi1, chi2 Coefficients Dimensionless –0.057, 0.482,
4.221

zeta0, zeta1,
zeta2

Coefficients Dimensionless 0.183, 0.702, –
2.567

alpha0, alpha1,
alpha2

Coefficients Dimensionless 0.090, 1.465, –
0.67

astar490 Chla specific absorption
(490 nm)

m−1(mg Chla
m−3)−1

0.020

aw490 Water absorption (490 nm) m−1 0.015
astarOMA OM1_A specific absorption

(490 nm)
m−1(g OM1_A
m−3)−1

0.01

astarOMZ OM1_Z specific absorption
(490 nm)

m−1(g OM1_Z
m−3)−1

0.01

astarOMR OM1_R specific absorption
(490 nm)

m−1(g OM1_R
m−3)−1

0.01

astarOMBC OM1_BC specific absorption
(490 nm)

m−1(g OM1_BC
m−3)−1

0.01

CF_SPM Percentage of river SPM that
is OM1_R

% 1.8
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is required in Eq. (B2). Thus, CDOM is first back-transformed to aCDOM312 using the
Conmy et al. (2004) equation, and then aCDOM312 is converted to aCDOM490 by

aCDOM490 = aCDOM312 ⋅ e
− S 490− 312ð Þ. ðB8Þ

aSPM (m−1) at 490 nm is calculated as the sum of absorption by the different
types of OM1 as

aSPM490 =
astarOMA ⋅OM1 A+ astarOMZ ⋅OM1 Z +

astarOMR ⋅
OM1 R
CF SPM

+ astarOMBC ⋅OM1 BC

0
@

1
A ⋅

12
1000

ðB9Þ

where astarOM terms are parameters (Table A.3), CF_SPM is a conversion factor
for adjusting OM1_R to river SPM. For the application of CGEM to the Louisiana
shelf, CF_SPM = 1.8% (Table A.3) was based on the average observed POC/SPM
= 1.8% in the Mississippi and Atchafalaya Rivers (USGS data). The factor 12/1000
converts from mmol m−3 to g m−3.

Backscattering in Eq. (B1) was calculated (Penta et al. 2008; 2009) as a function
of Chl as

bb, 490 = 0.015 ⋅ 0.3 ⋅Chl0.62 ⋅
550
490

� �� �
. ðB10Þ

C. Phytoplankton Equations

C.1 Phytoplankton Growth

Growth (Agrow, cells m−3 d−1) for each phytoplankton group is calculated as

Agrowi = μAi
Ai ðC1Þ

where µA is the specific growth rate (d−1) and A is the phytoplankton abundance
(cells m−3). Agrow is converted to units of carbon (mmol C m−3 d−1) by the product
Agrowi ⋅QCi , where QC is a parameter specifying the carbon per cell (mmol C
cell−1) (Table A.2).

The specific growth is calculated based on Liebig’s law of the minimum

μAi
= umaxAi ⋅ func Ti ⋅MIN func Ei, func Ni, func Pi, func Sii½ � ðC2Þ

where func_T, func_E, func_N, func_P, and func_Si are limiting factors due to
temperature (Eldridge and Roelke 2010), PAR, nitrogen, phosphorus, and silica,
respectively. PAR- and nutrient-dependent growth equations are shown below.
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C.2 Phytoplankton Light–Growth Dependence

Light dependence func_E is represented by

func E= 1− e
− alphaiE
umaxi

� �
. ðC3Þ

C.3 Phytoplankton Nutrient–Growth Dependence

Nitrogen and phosphorus dependence are modeled (Droop 1973) as

func N =
Qni −QminNi

Qni
ðC4Þ

func P=
Qpi −Qmin Pi

Qpi
ðC5Þ

where Qmin is the minimum nutrient cell quota (mmol cell−1) per phytoplankton
group required for survival and Q is the cell quota (mmol cell−1).

Silica dependence is modeled as a function of seawater silicate concentration

func Si=
Si

Si+Ksi
ðC6Þ

where Si is the modeled silicate concentration (mmol m−3) and Ksi is the
half-saturation concentration (mmol m−3) of silica uptake.

C.4 Phytoplankton Losses

Phytoplankton respiration (cells m−3 d−1) is represented as a function of growth,
cell abundance, and temperature

Arespi = respgi ⋅Agrowi + respbi ⋅Ai ⋅ func T ðC7Þ

where respg is a respiration coefficient that scales to growth rate and respb rep-
resents basal maintenance activities that scale to abundance. Phytoplankton respi-
ration results in a loss of carbon from the cell (ArespC) and nutrient exudation
(Aexudi, mmol m−3 d−1) as

ArespC= ∑
6

i=1
Arespi ⋅Qci ðC8Þ
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AexudN = ∑
6

i=1
Arespi ⋅Qni ðC9Þ

AexudP= ∑
6

i=1
Arespi ⋅Qpi. ðC10Þ

Phytoplankton mortality (Amort, cells m−3 d−1) is calculated by

Amorti =Ai ⋅mAi ðC11Þ

where mAi is the mortality rate (d−1).
Phytoplankton sinking losses (cells m−3 d−1) are applied implicitly in the

advection and mixing routines with sinking velocities prescribed by the parameter
sink (Table A.2).

Grazing losses (ZgrazA_tot, cells m−3 d−1) are calculated as

ZgrazA toti = ∑
2

j=1

Zgrazvolji
volcelli

. ðC12Þ

The term Zgrazvolji is the grazing rate by each zooplankton (j = 1:2) on each
phytoplankton (i) in units of biovolume (µm3 m−3 d−1) and is calculated by

Zgrazvolji = Zj ⋅ Zumaxj ⋅monod Zji ðC13Þ

where Zumaxj is the maximum growth rate of the zooplankton in terms of volume
of prey (Table A.4) and monodZij is a hyperbolic function represented by

monodZij =
Abiovoli − Athreshi ⋅ volcellið Þ ⋅ ediblevectori

ZKaj + ∑
6

i=1
Abiovoli ⋅ ediblevectorið Þ

, ðC14Þ

where Abiovol (= Ai ⋅ volcelli) is the biovolume, Athresh is the threshold abundance
(cells m−3) below which grazing of Ai does not occur, ediblevector is a vector
expressing prey edibility (unitless, range = 0–1), and ZKa is the grazing
half-saturation (Table A.4).

C.5 Phytoplankton Uptake and Utilization of N, P, and Si

Nutrient uptake by the modeled phytoplankton only occurs during the day. For the
rate-limiting nutrient substrate (S), which is determined as the min[f_N, f_P, f_Si],
the nutrient uptake rate (vS, mmol cell−1 d−1) for each phytoplankton group is
calculated as
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vSi = vmaxSi ⋅
S

S+KSið Þ ⋅Q10 ðC15Þ

where vmaxS is the maximum uptake rate (mmol cell −1 d−1), KS is the
half-saturation concentration (mmol m−3) (Table A.2), and Q10 is the temperature
adjustment factor such that a doubling of the rate occurred for a 10 °C change in
temperature.

If S is not the rate-limiting nutrient, the uptake is modified by an additional
limitation term as

vSi = vmaxSi ⋅
S

S+KSið Þ ⋅Q10 ⋅ func Qsi ⋅
RLN

RLN + aS ⋅KRLNi

ðC16Þ

where RLN is the substrate concentration of the rate-limiting nutrient (RLN), KRLN is
the half-saturation concentration of the RLN, and aS is a scaling factor (Roelke et al.
1999).

The total phytoplankton uptake of nutrient (shown here for nitrogen, i.e., AupN)
is then

AupN = ∑
6

i=1
vNi ⋅Að Þi. ðC17Þ

Table A.4 Phytoplankton parameters

Parameter Description Units Value

Zvolcell Volume per individual μm3

individual−1
[2.98e+7
6.74e+5]

ZQc Carbon per individual mmol C
individual−1

[3.13e−4
7.08e−7]

ZQn N per individual mmol N
individual−1

[6.95e−5
1.57e−7]

ZQp P per individual mmol P
individual−1

[3.77e−6
8.53e−9]

Zslop Sloppy feeding coefficient Dimensionless [0.25 0]
Zeffic Assimilation efficiency as a fraction of

ingestion
Dimensionless [0.4 0.4]

ZKa Grazing half-saturation coefficient μm3 m−3 [1.12e+12
1.12e+12]

Zrespg Growth-dependent respiration Dimensionless [0.2 0.3]
Zrespb Biomass (basal)-dependent respiration d−1 [0.1 0.416]
Zumax Maximum growth rate in terms of volume

of prey
μm3 ind−1 d−1 [9.45e+8

2.98e+7]
Zm Zooplankton mortality constant for

quadratic mortality
m6 ind−2 d−1 [0.00072

0.00072]
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D. Zooplankton Equations

Zooplankton growth rates (individuals m−3 d−1) are modeled as

Zgrowj = func T ⋅MIN
ZinNj

ZQnj
,
ZinPj

ZQpj

� �
. ðD1Þ

where ZinN and ZinP are zooplankton ingestion rates of nitrogen and phosphorus
(mmol m−3 d−1), and ZQn and ZQp are zooplankton N and P quota parameters,
respectively (mmol per individual, Table A.4). ZinN, ZinP, and zooplankton inges-
tion of carbon (ZinC) are calculated similarly. For brevity, only the nitrogen equations
are shown. Carbon and phosphorus equations are analogous. Thus, for ZinN,

ZinNj =ZgrazNj − ZslopNj − ZunNj ðD2Þ

ZgrazNj = ∑
6

i=1
ZgrazAij ⋅Qni ðD3Þ

ZslopNj =Zslopj ⋅ZgrazNj ðD4Þ

ZunNj = 1− Zefficj
� �

⋅ ZgrazNj −ZslopNj
� � ðD5Þ

where ZgrazN (mmol N m−3 d−1) is the grazing in units of nitrogen, ZgrazA is
described in Eq. (C12), ZslopN is sloppy feeding (mmol N m−3 d−1), Zslop is a
sloppy feeding parameter (range = 0–1, Table A.4), and ZunN (mmol N m−3 d−1)
is the amount of zooplankton unassimilated nitrogen, which is a function of the
assimilation efficiency (Zeffic, range = 0–1, Table A.4) of each zooplankton.

Zooplankton respiration loss (individuals m−3 d−1) is represented with two terms

Zrespj = Zrespgj ⋅ Zgrowj + Zrespbj ⋅ Zi ⋅ func T ðD6Þ

where Zrespg and Zrespb are respiration coefficients (Table A.4) on zooplankton
growth and basal metabolism. Zooplankton excretion of nutrients (Zex, mmol m−3

d−1) is used to mass balance zooplankton respiratory loss of CO2 by

ZexN = ∑
2

j=1
ZrespTotj ⋅ ZQnj ðD7Þ

ZexP= ∑
2

j=1
ZrespTotj ⋅ZQpj. ðD8Þ

Zooplankton mortality (individuals m−3 d−1) is treated as a quadratic function of
zooplankton abundance (Cerco and Noel 2004) and is assumed to mainly occur by
predation from other trophic levels
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Zmortj =ZmjZ2
j ðD9Þ

where Zm is the zooplankton mortality coefficient (Table A.4)

E. Organic Matter Equations

E.1 Organic Matter Types and Stoichiometry

Eight classes of organic matter representing phytoplankton, zooplankton, river, and
boundary condition OM are tracked in the model in both particulate (OM1) and
dissolved (OM2) forms and with variable stoichiometry CxNyPz. OM1 and OM2 are
created (mmol m−3 d−1) in the model by phytoplankton and zooplankton mortality,
zooplankton sloppy feeding, zooplankton egestion, and unassimilated OM that
passes through the zooplankton. We simply represent partitioning of Amort to
OM1_A and OM2_A based on cell quotas, which assumes that Qmin may be used as
a proxy for separating particulate and dissolved fractions

OM1 CA= ∑
6

i=1
Amorti ⋅

Qni −QminNi

Qni
⋅Qci

� �
ðE1Þ

OM1 NA= ∑
6

i=1
Amorti ⋅QminNið Þ ðE2Þ

OM1 PA= ∑
6

i=1
Amorti ⋅Qmin Pið Þ ðE3Þ

OM2 CA= ∑
6

i=1
Amorti ⋅

QminNi

Qni
⋅Qci

� �
ðE4Þ

OM2 NA= ∑
6

i=1
Amorti ⋅ Qni −QminNið Þð Þ ðE5Þ

OM2 PA= ∑
6

i=1
Amorti ⋅ Qpi −Qmin Pið Þð Þ. ðE6Þ

Dynamic stoichiometric ratios (CxNyPz) of OM1_A and OM2_A are tracked as

stoich x1A=
OM1 CA+OM1 Að Þ

OM1 PA+ 1
stoich x1A ⋅OM1 A

ðE7Þ
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stoich y1A=
OM1 NA+ stoich y1A

stoich x1A ⋅OM1 A
� �
OM1 PA+ 1

stoich x1A ⋅OM1 A
ðE8Þ

stoich x2A=
OM2 CA+OM2 Að Þ

OM2 PA+ 1
stoich x2A ⋅OM2 A

ðE9Þ

stoich y2A=
OM2 NA+ stoich y2A

stoich x2A ⋅OM2 A
� �
OM2 PA+ 1

stoich x2A ⋅OM2 A
ðE10Þ

stoich z1A= stoich z2A=1. ðE11Þ

Organic matter C, N, and P derived from zooplankton are calculated as

OM1 CZ = ZegC1 + ZunC1 +ZmortC1 +ZmortC2 + OM1 Ratio ⋅ ZslopCð Þ ðE12Þ

OM1 NZ = ZegN1 + ZunN1 + ZmortN1 + ZmortN2 + OM1 Ratio ⋅ ZslopNð Þ ðE13Þ

OM1 PZ =ZegP1 +ZunP1 +ZmortP1 + ZmortP2 + OM1 Ratio ⋅ ZslopPð Þ ðE14Þ

OM2 CZ = ZegC2 + ZunC2 + OM2 Ratio ⋅ ZslopCð Þ ðE15Þ

OM2 NZ = ZegN2 + ZunN2 + OM2 Ratio ⋅ ZslopNð Þ ðE16Þ

OM2 PZ =ZegP2 +ZunP2 + OM2 Ratio ⋅ZslopPð Þ ðE17Þ

where Zun and Zslop equations are presented in Appendix D and zooplankton
egestion (Zeg) is calculated as follows. Zeg in the model is governed by an optimal
nutrient ratio of the zooplankton, i.e., ZQn/ZQp, such that

if ZinNj >
ZQnj
ZQpj

⋅ZinPj

ZegNj = ZinNj − ZinPj ⋅
ZQnj
ZQpj

ZegCj = ZinCj −
ZinPj

ZQpj
⋅ ZQcj

ZegPj =0

else

ZegPj = ZinPj − ZinNj ⋅
ZQpj
ZQnj

ZegCj = ZinCj −
ZinNj

ZQnj
⋅ ZQcj

ZegNj =0.

ðE18Þ
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Similar to the OM derived from mortality of phytoplankton cells being split into
OM1_A and OM2_A, OM from sloppy feeding on phytoplankton cells is split into
particulate and dissolved OM fractions based on the calculated OM1_Ratio and
OM2_Ratio as

OM1 Ratio=
∑6

i=1 Ai ⋅ Qni −Qmin Ni
Qni

∑6
i=1 Ai

ðE19Þ

OM2 Ratio=
∑6

i=1 Ai ⋅ QminNi
Qni

∑6
i=1 Ai

. ðE20Þ

C, N, and P stoichiometry of OM1_Z and OM2_Z are tracked as

stoich x1Z =
OM1 CZ +OM1 Zð Þ

OM1 PZ + 1
stoich x1Z ⋅OM1 Z

ðE21Þ

stoich y1Z =
OM1 NZ + stoich y1Z

stoich x1Z ⋅OM1 Z
� �
OM1 PZ + 1

stoich x1Z ⋅OM1 Z
ðE22Þ

stoich x2Z =
OM2 CZ +OM2 Zð Þ

OM2 PZ + 1
stoich x2Z ⋅OM2 Z

ðE23Þ

stoich y2Z =
OM2 NZ + stoich y2Z

stoich x2Z ⋅OM2 Z
� �
OM2 PZ + 1

stoich x2Z ⋅OM2 Z
ðE24Þ

stoich z1Z = stoich z2Z =1. ðE25Þ

E.2 Reaction Equations

Primary production (PrimProd) of organic matter by phytoplankton is

PrimProd= ∑
6

i=1
Agrowi ⋅Qci ðE26Þ

and proceeds according to the photosynthesis reaction

xCO2 + yDIN + zDIP⟶
uptake

CxNyPz + xO2 ðE27Þ

where dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus
(DIP) are taken up to produce organic matter with C:N:P stoichiometry of Qc:Qn:
Qp.
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Organic matter oxidation by aerobic respiration is represented by

CxNyPz + xO2⟶
RI

xCO2 + yNH4 + zPO4 ðE28Þ

where R1 is

R1=
O2

KO2 +O2
ðE29Þ

and KO2 is the Monod half-saturation constant (Table A.5).

Table A.5 Organic matter parameters

Parameter Description Units Value

KG1 Decay rate of OM1_A and OM1_G y−1 50
KG2 Decay rate of OM2_A and OM2_G y−1 50
KG1_R Decay rate of OM1_R y−1 11
KG2_R Decay rate of OM2_R y−1

KG1_BC Decay rate of OM1_BC y−1 1
KG2_BC Decay rate of OM2_BC y−1 1
nitmax Maximum rate for nitrification mmol m−3 d−1 0.52
KNH4 Half-saturation constant for nitrification mmol m−3 1
KO2 Half-saturation constant for O2 uptake mmol m−3 10
KstarO2 Inhibition constant for denitrification mmol m−3 10
KNO3 Half-saturation constant for denitrification mmol m−3 5
stoich_x1R Initial C:P stoichiometry of OM1_R mol/mol 51
stoich_y1R Initial N:P stoichiometry of OM1_R mol/mol 4.5
stoich_x2R Initial C:P stoichiometry of OM2_R mol/mol 700
stoich_y2R Initial N:P stoichiometry of OM2_R mol/mol 50
stoich_x1BC Initial C:P stoichiometry of OM1_BC mol/mol 106
stoich_y1BC Initial N:P stoichiometry of OM1_BC mol/mol 16
stoich_x2BC Initial C:P stoichiometry of OM2_BC mol/mol 106
stoich_y2BC Initial N:P stoichiometry of OM2_BC mol/mol 16
sink_OM1_A Sinking rate of OM1_A m d−1 10
sink_OM2_A Sinking rate of OM2_A m d−1 0
sink_OM1_Z Sinking rate of OM1_Z m d−1 10
sink_OM2_Z Sinking rate of OM2_Z m d−1 0
sink_OM1_R Sinking rate of OM1_R m d−1 10
sink_OM2_R Sinking rate of OM2_R m d−1 0
sink_OM1_BC Sinking rate of OM1_BC m d−1 10
sink_OM2_BC Sinking rate of OM2_BC m d−1 0
sink_CDOM Sinking rate of CDOM m d−1 0
Kcdom_decay Decay rate of CDOM d−1 0.01
K Q10 coefficient such that a 10 °C increase results in

a twofold increase in OM remineralization
Dimensionless 0.07
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The organic matter reaction during denitrification uses the reaction equation of
Van Cappellen and Wang (1996)

CxNyPz +
4x+3y

5

� �
NO3 ⟶R2

2x+4y
5

� �
N2 +

x− 3y+10z
5

� �
CO2 +

4x+3y− 10z
5

� �
HCO3+ zPO4

ðE30Þ

where R2 is

R2=
NO3

KNO3 +NO3

KstarO2

KstarO2 +O2
ðE31Þ

and KNO3 is a Monod half-saturation constant (Table A.5), and KstarO2 is an O2-
based inhibition constant (Table A.5) that limits denitrification when O2 concen-
trations approach and exceed KstarO2.

Reaction rates (R) are determined for organic matter remineralization (ROM,
mmol C m−3 d−1), O2 utilization (RO2, mmol O2 m−3 d−1), nitrification (R_11,
mmol N m−3 d−1) and denitrification (RNO3, mmol N m−3 d−1), and remineral-
ization of PO4 (RPO4, mmol P m−3 d−1), NH4 (RNH4, mmol C m−3 d−1), and Si
(RSi, mmol C m−3 d−1). The remineralization equations are identical for the four
sources of OM and, for brevity, are only shown for OM_A.

Organic matter decay coefficients are adjusted for temperature by a Q10 relation

KG1 Q10= 10RQ1 ðE32Þ

KG2 Q 10= 10RQ2. ðE33Þ

where RQ1 and RQ2 are intermediate variables calculated as

RQ1=LOG10ðKG1Þ−FACTOR ðE34Þ

RQ2=LOG10ðKG2Þ−FACTOR ðE35Þ

and

FACTOR=LOG10ð2Þ ⋅ 0.1 ⋅ ðTQ1−TQ2Þ ðE36Þ

where TQ1 is the reference temperature of 25 °C and TQ2 is the temperature in the
model.

The temperature-adjusted reaction (RCT) rates for OM1_A and OM2_A are then
calculated as

RCT1 A=KG1 Q10 ⋅OM1 A ðE37Þ
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RCT2 A=KG2 Q10 ⋅OM2 A. ðE38Þ

ROM1_A and ROM2_A are calculated as

ROM1 A= − RCT1 A ⋅R1+RCT1 A ⋅R2ð Þ ðE39Þ

ROM2 A= − RCT2 A ⋅R1+RCT2 A ⋅R2ð Þ. ðE40Þ

O2 consumption associated with remineralization (RO2, mmol m−3 d−1) is

RO2 A= RCT1 A+RCT2 Að Þ ⋅R1 ðE41Þ

and

RO2 =RO2 A+RO2 Z +RO2 R+RO2 BC. ðE42Þ

Nitrification proceeds as a function of NH4 and O2 concentration (Van Cappellen
and Wang 1996) as

NH +
4 + 2O2 + 2HCO−

3 ⟶
R 11

NO−
3 + 2CO2 + 3H2O ðE43Þ

where R_11 is the reaction rate defined as

R 11= nit max ⋅
O2

KO2 +O2
⋅

NH4

KNH4 +NH4
⋅Q10 ðE44Þ

where nitmax is the parameterized maximum nitrification rate and KNH4 is the
half-saturation constant (Table A.5). For the denitrification reaction (Eq. E30),
reaction stoichiometry is taken into account in intermediate variables (GAM14 and
GAM24) calculated as

GAM14=
4 ⋅ stoich x1A+3 ⋅ stoich y1A

5
stoich x1A

ðE45Þ

GAM24=
4 ⋅ stoich x2A+3 ⋅ stoich y2A

5
stoich x2A

ðE46Þ

where the coefficients 4, 3, and 5 are the coefficients to NO3 in Eq. (E30). Deni-
trification (RNO3) using OM1_A and OM2_A as electron donors is represented by

RNO3 A= − GAM14 ⋅RCT1 A+GAM24 ⋅RCT2 Að Þ ⋅R2. ðE47Þ

Then, RNO3 is
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RNO3 =RNO3 A+RNO3 Z +RNO3 R+RNO3 BC. ðE48Þ

Remineralization of PO4 during the OM oxidation reactions is calculated as

RPO4 =RPO4 A+RPO4 Z +RPO4 R+RPO4 BC ðE49Þ

with

RPO4 A=ROM1 A ⋅
stoich z1A
stoich x1A

+ROM2 A ⋅
stoich z2A
stoich x2A

. ðE50Þ

Remineralization of NH4 is

RNH4 =RNH4 A+RNH4 Z +RNH4 R+RNH4 BC ðE51Þ

with

RNH4 A= RCT1 A ⋅
stoich y1A
stoich x1A

+RCT2 A ⋅
stoich y2A
stoich x2A

� �
⋅R1 ðE52Þ

The rate of Si remineralization is

RSi=RSi A+RSi Z +RSi R+RSi BC ðE53Þ

with Si stoichiometrically linked to remineralization of N as Si:N = 1 such that

RSi A=ROM1 A ⋅
stoich y1A
stoich x1A

+ROM2 A ⋅
stoich y2A
stoich x2A

. ðE54Þ

F. Air–Sea Exchange

Air–sea exchanges of O2 were modeled based on concentration gradients and wind
speed (Eldridge and Roelke 2010).
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Chapter 9
Oregon Shelf Hypoxia Modeling

Andrey O. Koch, Yvette H. Spitz and Harold P. Batchelder

Abstract Bottom hypoxia on the shelf in the Northeast Pacific is caused by different
processes than coastal hypoxia related to riverine inputs. Hypoxia off the coast of
Oregon is a naturally occurring process as opposed to the anthropogenically forced
hypoxia found inmany coastal environments (e.g., Gulf ofMexico shelf, Chesapeake
Bay). Off Oregon, bottom hypoxia occurs in summers that have large upwelling-
driven near-bottom transport of high nitrate, low dissolved oxygen (DO) waters onto
the shelf. The combination of low DO and high nitrate provides initially low (but not
hypoxic) DO conditions near the bottom, and nitrate fertilization of shelf surface
waters, leading to substantial phytoplankton production. Some production is grazed,
and some of it sinks to the bottom where it decomposes consuming oxygen, creating
bottom hypoxia in some years. Terrestrial runoff of nutrients into the system is small
and not responsible for the development of bottom hypoxia. Similar processes con-
tribute to natural hypoxia in other eastern boundary current upwelling regions, such as
the Humboldt Current off Peru and the Benguela Current off Namibia and South
Africa. We summarize the observational data on DO and illustrate the coupled bio-
physical modeling of hypoxia that has been done on the Oregon shelf. We compare
hypoxia development in summer of 2002 and 2006, which differed in timing, spatial
extent and intensity of hypoxia. Sensitivity analysis using various initial and boundary
conditions for nitrate and dissolved oxygen reveals some of the essential conditions
responsible for hypoxia development on the Oregon shelf.
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9.1 Introduction

Hypoxic regions in the world’s oceans are becoming more numerous, lower in
oxygen content, and expanding in area, volume and duration (Diaz and Rosenberg
2008). The concentration of dissolved oxygen (hereafter, DO) in coastal ocean
regions is determined by air-sea exchange, ocean circulation, biological processes
and anthropogenic activities. Hypoxia, defined by DO concentrations less than
1.43 ml L−1 (Grantham et al. 2004) and, in some cases, anoxia (DO < 0.5 ml L−1;
Chan et al. 2008) are known to occur in coastal regions, typically due to excessive
nutrient input derived from agricultural runoff, or from waste management facilities
incapable of handling the loads in regions of high human population density. The
Louisiana–Texas shelf of the Gulf of Mexico (Chaps. 1, 3, 7, 8, 10, 13 and 14), the
Chesapeake Bay (Chaps. 5, 6, 11 and 12), Narragansett Bay, RI (Chap. 4) and Green
Bay, Lake Michigan (Chap. 2) are all regions that have experienced substantial
anthropogenic nutrient enrichment and eutrophication as a primary contributing
cause of hypoxia. Changes in DO include reductions in concentration, particularly
near the bottom, seasonal extension of the duration or presence of hypoxia, and
altered spatial patterns of hypoxia. Seasonal hypoxia is relatively common in
semi-enclosed bays and estuaries where bottom waters have longer residence times
due to reduced exchanges with more open regions. Summer is especially vulnerable
to hypoxia development because stronger density stratification inhibits vertical
exchange of surface and bottom waters, and high surface primary production creates
organic detritus that sinks to bottom waters and remineralizes, consuming DO.

The open continental shelves of Oregon and Washington along the Pacific
Northwest Coast have experienced a long-term (50 year) decline in late-summer
DO (Chan et al. 2008), but without evidence of anthropogenic nutrient inputs and
eutrophication. Instead, these shelves, and shelves more generally along eastern
boundary currents, develop near-bottom hypoxia caused by natural oceanographic
processes (Chan et al. 2008; Escribano and Schneider 2007).

The Pacific Northwest Coast experiences strong seasonally reversing winds.
Winds during winter (October–April) are strongly from the SW, which causes
onshore surface Ekman transport and downwelling of well-oxygenated surface
waters on the inner to middle shelf. During this time, waters near the bottom on the
central Oregon shelf are well oxygenated (ca. 4–7 ml L−1). During spring winds
change from predominantly northward to southward (spring transition). The timing
of the spring transition and the duration of the summer upwelling season varies
greatly from year to year, as illustrated by the along-shore wind data for the three
years (2002, 2006 and 2008) considered in this study (Fig. 9.1 and Table 9.1).
Strong, persistent southward winds in the summer lead to offshore Ekman transport
of coastal surface waters. Coastal water is replaced by cold, upwelled, nutrient rich,
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but relatively oxygen poor water (Bakun 1990). Peterson et al. (2013) show that the
source of upwelling water is from depths of 100–170 m off the shelf, where the DO
is 1.5–3 ml L−1 (e.g., not hypoxic) in most years. The intermediate and deep water
of the eastern North Pacific has been isolated from the atmosphere for ca. seven
years due to global ocean circulation and has experienced substantial DO loss due
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Fig. 9.1 Cumulative wind forcing (Nm−2 d−1) for the upwelling season of 2002, 2006 and 2008.
Note the later start and earlier end of upwelling in 2008, and the similar durations of upwelling in
2002 and 2006, but the 34% greater net upwelling during 2006. (Data retrieved from http://damp.
coas.oregonstate.edu/windstress/index.html). April 1 is day of year 91; May 1 is day of year 121.
November 1 is day of year 305

Table 9.1 Details of wind forcing for 2002, 2006 and 2008 from the National Data Buoy Center
station 46050 located 20 nautical miles west of Newport, OR (station has a bottom depth of
137 m). See http://damp.coas.oregonstate.edu/windstress/index.html for summary of data

Year 2002 2006 2008
Year-day of spring transition 107 110 120
Number of upwelling days 144 143 104
Number of downwelling days 58 46 36
Length of upwelling season (days) 202 189 140
Sum of downwelling stress (N m−2 d−1) 1.03 1.13 0.72
Sum of upwelling stress (N m−2 d−1) −4.84 −6.22 −4.38
Sum of stresses (N m−2 d−1) −3.81 −5.09 −3.66
Proportion of days that were downwelling 0.29 0.24 0.26
Percent reduction in upwelling stress due to downwelling during
upwelling period

0.21 0.18 0.16
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to remineralization of sinking organic matter (Ueno and Yasuda 2003). The DO of
the source waters may vary interannually by up to 1.0 ml L−1 (Grantham et al.
2004; Peterson et al. 2013).

The shelf waters in years with lower DO in offshore source waters are poised to
go hypoxic earlier during the summer, reach lower minimum DO levels and possibly
have more spatially extensive hypoxic regions. Years of sustained summer upwel-
ling, such as occurred in 2002 and 2006, elevate nutrients in the inner-shelf, fueling
productivity and reducing near-bottom oxygen levels due to remineralization of
sinking particulate organic carbon (Grantham et al. 2004; Wheeler et al. 2003;
Fig. 9.2). Thus, the development of near-bottom hypoxia on the Oregon shelf may
have several contributing factors: initially low dissolved oxygen in the upwelling
source waters; higher nutrient concentrations that upwell into the euphotic zone
stimulate higher phytoplankton productivity; and greater sinking and remineraliza-
tion of in situ produced organic matter near the bottom (Wheeler et al. 2003).

9.2 Hypoxia Variability on the Oregon Shelf

Hypoxia development on the Oregon shelf is seasonal and linked with
upwelling-favorable winds. Anthropogenic eutrophication is not a significant
contributor to the development of near-bottom hypoxia on the shelf of Oregon (and
Washington and Southern British Columbia) in the Pacific Northwest (Chan et al.
2008; Crawford and Pena 2013). Upwelling-favorable winds may occur at any time
of the year, but winds are persistently upwelling favorable during the spring and
summer. Near-bottom hypoxia intensifies with duration of upwelling following the
spring transition (Huyer et al. 1979) and often peaks in intensity and spatial extent
on the Oregon shelf during late summer (August–September). Cumulative
upwelling-favorable wind stress varies significantly interannually (Fig. 9.1).
Although later retrospective studies have revealed periods of bottom hypoxia on the
Oregon shelf several decades ago, the extent and ecological impacts of bottom
hypoxia were not fully appreciated until the summer of 2002, when video surveys
from remote operated vehicles showed dead and dying fish and invertebrates on the
central Oregon shelf (Grantham et al. 2004). Prior to 2002, few hydrographic
surveys included measurements of dissolved oxygen, as low oxygen was not
considered a common occurrence in Oregon shelf waters.

Cross-shelf sampling of the Newport Hydrographic Line (44.65° N) during
August–September of 1998–2009 showed 6 years (2000, 02, 05, 06, 07, 09) with
extensive cross-shelf bottom hypoxia (Fig. 9.2). A few years (1998, 99, 2001, 03
and 08) showed little to no bottom hypoxia. What is responsible for these differ-
ences? To address this, we first examine the physical conditions leading to the
2002, 2006 and 2008 patterns of hypoxia. We then describe the results of coupled
biophysical models that simulated the ecosystem and oxygen conditions on the
Oregon shelf during the 2002 and 2006 upwelling period.

Spring–summer upwelling in 2002 was fairly persistent, but not exceptionally
strong, whereas 2002 was remarkable in having exceptionally low oxygen
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concentration and high nitrate concentrations in the water that upwelled from off the
shelf (Fig. 9.3). In fact, the cumulative upwelling in 2002 was quite similar to 2008
(Fig. 9.1), a year in which bottom hypoxia was not prevalent. Oxygen concentra-
tions shown by Grantham et al. (2004; their Fig. 4c) in July 2002 at 100–170 m at
the shelf break off Newport, Oregon is very low, and far lower than the previously
reported 95% confidence level from a decade of observations in the 1960s. Oceanic
(offshore) regions of the Northeast Pacific have broad oxygen minimum zones
(OMZ) at mid-depths. In 2002, the upwelled waters had very low DO (even below
the hypoxic threshold in July), especially when compared to 2008 that was another
“hypoxic” (though not strong) year (Fig. 9.2). The prevalence of hypoxic bottom
conditions in 2002 was not recognized until the end of the summer, and there were
few surveys during summer that included DO sampling in near-bottom water
(Grantham et al. 2004).

During upwelling, high nutrient (especially nitrate), low oxygen waters upwell
from depths of 100–200 m offshore (actual depth may vary interannually and
seasonally; Peterson et al. 2013). The injection of nutrients into the photic zone
enables high phytoplankton production on the shelf. In 2002, the higher nutrient
concentrations resulted in shelf chlorophyll concentrations that were twice the
levels of the preceding years 1998–2001 (Wheeler et al. 2003). Some of this
phytoplankton production sinks as flocculates or fecal pellets to mid- and bottom
waters on the shelf where it is remineralized, reducing near-bottom DO
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Fig. 9.2 Dissolved oxygen concentrations on the Newport Hydrographic transect in September
(1998–2008) and August 2009 (lacking September data for 2009). Oxygen is contoured at 1 ml
L−1 intervals for values of 1.0 or greater, and at 0.25 ml L−1 intervals where DO is less than 1 ml
L−1. An additional contour (thick black line) is shown at the hypoxic level of 1.4 ml L−1.
Figure provided courtesy of Bill Peterson (NWFSC, NOAA)
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concentrations even further from their initially low values. Gradually, the DO may
be reduced below the hypoxia threshold.

Bottom DO is also strongly influenced by the local residence time of water (e.g.,
the near-bottom flow velocities and retention times), which may be controlled by
bottom bathymetry (Castelao and Barth 2005). Wider continental shelves, complex
bathymetries (bank complexes) and reduced wind stress (or intermittency of
upwelling) lead to longer retention times, allowing greater localized consumption of
DO (Barth et al. 2005; Hickey and Banas 2003). The region of most intense
hypoxia in 2002 was associated with Heceta Bank, a wide region of the shelf, which
has both sluggish flows and recirculation, and thus longer local retention times
(Grantham et al. 2004; Barth et al. 2005).

The next few sections describe a physical–biological model applied to the Oregon
shelf to understand the roles of physical and biological processes in modulating the
development and extent of hypoxia. We focus on the summers of two hypoxic years,
2002 and 2006 that contrast in the severity and duration of their hypoxia.

9.3 Model of Oregon Shelf Hypoxia

We develop a coupled biological–physical model for the coastal ocean off Oregon
(Fig. 9.4). We coupled a 3-km horizontal resolution Regional Ocean Modeling
System (ROMS v3.0) physical model (Shchepetkin and McWilliams 2003, 2005)
with a 5-component NAPZD (nitrate, ammonium, phytoplankton, zooplankton,

Fig. 9.3 Dissolved oxygen (DO) concentrations (ml L−1) of the source water during the
upwelling period (May–September) for 2002, 2006 and 2008. Source water DO concentrations
were measured at the 26.44 sigma-t level at a station 25 miles off the coast of Newport Oregon
(NH-25) as reported by Peterson et al. (2013). 2008 was a year of relatively little hypoxia on the
Oregon shelf; 2002 and 2006 were years of widespread low DO on the shelf. (Data compiled by
Jay Peterson, Oregon State University, from data collected by multiple sampling programs.)
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detritus) ecosystem model (based on Spitz et al. 2005). The ROMS Coastal
Transition Zone (ROMS-CTZ) computational domain spans 129–124° W merid-
ionally and 40.5–47.5° N zonally and is identical to that used in Koch et al. (2010).
Following their study, we simulate the period from April through August, which
includes the transition in spring from northward winds to southward
upwelling-favorable winds and summer upwelling circulation.

We add dissolved oxygen (DO) to the Spitz et al. (2005) NAPZD model to
create a 6-component NAPZDO model (Fig. 9.5). DO is treated as a passive tracer
with biologically mediated inputs (photosynthesis) and losses (zooplankton respi-
ration, detritus remineralization and oxidation of ammonium), and an additional
source (sink) term through air-sea exchange; the equations governing DO dynamics
are shown in Appendix A. The computation of air-sea DO flux uses DO saturation
concentration after Garcia and Gordon (1992) and gas transfer coefficient after
Keeling et al. (1998). We do not explicitly simulate sediment-based DO con-
sumption. Instead, we consider that settling particulate matter is retained within the
bottom-most cell in the model and consumed there. We generate solutions for
spring–summer of 2002 and 2006 that had extensive and severe hypoxia on the

Fig. 9.4 Study location. The
full region shown corresponds
to the domain of the
ROMS-CTZ Pacific Ocean
model off Northern California
(Southern end) to Northern
Oregon (Northern end). The
shelf region delimited by the
bold lines (43.5–46.5° N) is
the region analyzed in detail
for bottom hypoxia.
GLOBEC-LTOP observation
locations on Crescent City
(CR), Rogue River (RR), Five
Miles (FM), Heceta Head
(HH) and Newport
Hydrographic (NH) transects
are shown by lighter dotted
lines. Bathymetry is shown by
thin numbered (m) lines. The
200-m contour identifies the
offshore edge of the shelf
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central Oregon shelf for most of the summer. The oxygen instantaneous values were
saved twice-daily (every 12 h) for every grid cell.

9.3.1 Atmospheric Forcing, Initial and Open Boundary
Physical Conditions

The coupled model simulations for 2002 are forced by 9-km horizontal resolution
daily averaged COAMPS (The Coupled Ocean/Atmosphere Mesoscale Prediction
System; Hodur 1997) winds and monthly averaged NCEP/NCAR (National Center
for Environmental Prediction/National Center for Atmospheric Research; Kalnay
et al. 1996) fields for heat-flux computation (shortwave solar radiation, air tem-
perature, air pressure, relative humidity, precipitation) with 2.5° horizontal reso-
lution. The simulations for 2006 were forced using 9-km atmospheric fields from
the North American Mesoscale (NAM) model.

Initial conditions and open boundary conditions for velocities, temperature,
salinity and sea surface height (SSH) were provided by a larger-scale NCOM-CCS
(Navy Coastal Ocean Model for California Current System) model with 9-km
horizontal resolution and 40 vertical levels: 20 sigma-levels (in upper 150 m) and
20 z-levels with constant depths (Shulman et al. 2004). Open boundary fields were
provided daily. To suppress undesired effects of open boundary conditions as a
result of merging larger-scale 9-km horizontal resolution NCOM fields with
smaller-scale 3-km ROMS-CTZ fields we implemented a “sponge” layer that
provided enhanced diffusivity and dissipation in the 100-km region adjacent to the

O2 produc on
O2 loss

NitrateNitrate

AmmoniumAmmonium

DetritusDetritus

ZooplanktonZooplankton

PhytoplanktonPhytoplankton

AtmosphereAtmosphere

N flux

O2 produc on
O2 loss

NitrateNitrate

AmmoniumAmmonium

DetritusDetritus

ZooplanktonZooplankton

PhytoplanktonPhytoplankton

OxygenOxygen

AtmosphereAtmosphere

N flux

Fig. 9.5 Simple schematic of the ecological and dissolved oxygen model used for the Oregon
shelf model. Model is modified from the ecosystem model of Spitz et al. (2005) to include
dissolved oxygen processes as a passive tracer, with atmosphere exchange, biologically mediated
inputs (dotted black arrows) and losses (solid black arrows). Nitrogen fluxes are shown with solid
gray arrows
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open boundaries. Our analysis of biological and DO fields was restricted to the
subdomain from 43.5–46.5° N that excludes the sponge layer. The ROMS-CTZ
domain along with the analysis subdomain is shown in Fig. 9.4.

9.3.2 Initial and Open Boundary Ecosystem Conditions

Providing the initial and boundary conditions for model runs requires knowledge of
conditions in the real ocean, which is usually collected by multiple investigators. In
our case, we relied extensively on field sampling conducted during the Global
Ocean Ecosystems Dynamics (GLOBEC) Northeast Pacific regional program that
sampled the Oregon shelf physics and ecosystem from 1997–2004 (especially the
Long-Term Observation Program; hereafter LTOP), and subsequent sampling of
the mid-to-late 2000s by individual investigators.

Open boundary conditions for nitrate, ammonia, phytoplankton, zooplankton
and detritus are provided by the NCOM-CCS biological solutions for April–August
of 2006 and 2008. NCOM simulations for 2002 did not include an ecosystem
model, so for 2002 simulations using ROMS-CTZ we use biological boundary
conditions from the NCOM-CCS simulation from 2008; wind forcing in 2008 was
similar to wind forcing in 2002 (Fig. 9.1). NCOM’s ecosystem includes two
phytoplankton types (diatoms and nanoflagellates) and two zooplankton types
(microzooplankton and mesozooplankton), with most of the biomass in the diatom
and mesozooplankton types. Since our model had only a single phytoplankton and
single zooplankton type, we used the sum of the multiple phytoplankton and
zooplankton from NCOM-CCS for boundary conditions of ROMS-CTZ.

The initial nitrate conditions for the NCOM-CCS ecosystem model are based on
Levitus World Ocean climatology (Levitus 1982). During the several decades long
spin-up of NCOM-CCS, the nitrate fields showed significant drift and by the 2000s
both the nitrate concentration and depth of the nitrocline had become biased
(I. Shulman, personal communication). We eliminated the nitrate bias by adjusting
the nitrate fields from NCOM using empirical linear regression between
NCOM-CCS and GLOBEC-LTOP (Strub et al. 2002; Wetz et al. 2004) nitrate
values taken at the same locations of the space–time domain for eight depth layers
(0–50, 50–100, 100–150, 150–250, 250–350, 350–500, 500–700, 700 m-bottom).
The bias correction was done separately for NCOM-CCS data from 2006 and 2008.
GLOBEC-LTOP data on NO3 and DO were collected at standard depths spanning
from surface to 1000 m depth (or bottom, if shallower) along traditional Oregon
observation lines: Crescent River (CR), Rogue River (RR), Five Miles (FM),
Heceta Head (HH) and Newport Hydrographic (NH, Fig. 9.4) extending from the
inner-shelf offshore to 126° W. Since the NCOM model did not include DO
dynamics, we use a NO3: DO linear regression to estimate the DO field from NO3

for both boundary and initial conditions. The NO3: DO linear relationship was more
robust than other relations between DO and density, temperature or salinity. The
linear regression ratio (slope −0.16, intercept 7.23) was derived using all
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GLOBEC-LTOP NO3 and DO observations from March–April of 1997–2004. The
GLOBEC-LTOP observational program ended in 2004, but we assumed that the
NO3: DO relation derived from 1997–2004 applied also to 2006.

It is critical (as shown later by “Sensitivity analysis”) that the simulation begin
with realistic DO and NO3 concentrations in order to accurately reproduce the shelf
ecosystem dynamics, including hypoxia. This is why we took great care to provide
accurate initial (i.e., early spring) spatially explicit NO3 and DO fields. Initial DO
and NO3 for 2002 came from 2002 in situ LTOP data. For 2006, NO3 came from
the LTOP multi-year climatology. Initial spring 2006 DO came from a shelf-wide
survey (J. Peterson, Oregon State University, unpublished data). Initial conditions
for phytoplankton, zooplankton and detritus were provided from NCOM-2006
fields (for 2006) or NCOM-2008 (for 2002). Figure 9.6 summarizes the vertical

Fig. 9.6 Spring (March–April) dissolved oxygen concentration profiles at a location above the
slope (25 nautical miles off the coast) along the Newport Hydrographic transect (see Fig. 9.1). The
dot-dashed black line (LTOP2002) is the observed DO profile from the GLOBEC-LTOP cruise in
2002. The dotted black line (J.P. 2006) is the DO profile from the same location in 2006 (data
provided by Jay Peterson, Oregon State University). The solid gray line is the mean climatological
value from spring sampling at that station during 1998–2004 (including 2002), which is referred to
as LTOP-clim in Table 9.2 and elsewhere in this chapter. The dashed gray lines about the
climatological profile are 1 standard deviation above and below the mean. The hypoxia threshold
of 1.43 ml L−1 is shown as the black dashed vertical line
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profiles of dissolved oxygen from a station above the slope off Newport, OR in
March–April used in computing offshore initial condition fields for various model
simulations. Offshore waters in 2002 had significantly lower DO concentrations at
all depths than the LTOP climatology and the 2006 observations. Not shown in this
figure is the NCOM-2008 DO profile estimated from the regression analysis against
NO3, which had significantly higher concentrations than all the profiles shown,
especially at depth.

9.3.3 Model–Data Comparisons

Detailed comparisons of the physical model simulations with observations are
described for 2002 in Koch et al. (2010). There was good model–data agreement on
the structure and seasonal development of surface and depth-averaged velocities
over the shelf and in the offshore transition zone, the structure and development of
the upwelling SST front, the separation and offshore intensification of the upwelling
jet, and the 3-dimensional density field.

For the ecosystem components, we compare the modeled vertical profiles of
NO3 and DO to GLOBEC-LTOP July 2002 vertical profiles (e.g., 3.5 months after
the start of the simulation). Figure 9.7 shows vertical profiles of NO3 and DO along

Fig. 9.7 Vertical profiles of NO3 (mmol N m−3; gray) and dissolved oxygen (ml L−1; black) from
the model (solid lines) and observations (dotted-dashed lines) along the Newport Hydrographic
transect (Fig. 9.1, 44.65° N) during 10–12 July 2002. Leftmost panel is 85 miles offshore;
rightmost two panels are 15 miles and 5 miles from shore
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the NH line for 10–12 July 2002. There is a very good agreement between modeled
and observed NO3 and DO at offshore deep locations and on the shelf. There is a
region over the continental slope (NH25, NH35), where the NO3 and DO profiles
from the model underestimate DO and overestimate NO3 at intermediate depths,
although at both shallower and deeper depths the model–data agreement is quite
good.

9.4 Description of Oregon Shelf Hypoxia in 2002 and 2006

The patterns of seasonal hypoxia development in summer from the model simu-
lations of 2002 and 2006 are illustrated by showing monthly averaged, cross-shelf
vertical sections of dissolved oxygen for the Newport line (Fig. 9.8), monthly maps
of the minimum dissolved oxygen concentration (Fig. 9.9), and time–latitude plots

Fig. 9.8 ROMS-CTZ modeled dissolved oxygen concentrations (ml L−1) on a Newport
Hydrographic cross-shelf transect averaged from twice-daily values for all days in June (a, d),
July (b, e) and August (c, f) of 2002 (a–c) and 2006 (d–f). The dash-dot contour shows the
hypoxic threshold at 1.43 ml L−1
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that show the seasonal cross-shelf extent of hypoxia (Fig. 9.10). Both monthly
averages and minimums were calculated from daily averages of twice-daily outputs.
All these results are based on the base case simulations: for 2002 simulation BC2
(Base Case-2002) and for 2006 simulation BC6 (see Table 9.2 for details).

In June 2002, the monthly averaged DO showed bottom hypoxia, but only at
bottom depths exceeding 150 m (Fig. 9.8). Modeled hypoxia was severe from
offshore to inshore in July and August, but temporally and spatially intermittent
(Fig. 9.10), with inner- and mid-shelf bottom regions in both months having <1 ml
L−1 DO, and the monthly averaged bottom DO being hypoxic across the entire
Newport shelf (Fig. 9.8b, c). Grantham et al. (2004) reported that the few obser-
vations of inner-shelf bottom DO from mid-July to mid-September of 2002 all
indicated severe bottom hypoxia. Newport transects at 44.65° N from the model
reveal that inner- and mid-shelf bottom waters became hypoxic in July (Fig. 9.9b),
with most of the shelf width experiencing bottom hypoxia. On average, about 20–
30% of the shelf off Newport was hypoxic most days in July, gradually increasing
from the first shelf hypoxia observed in mid-June (Fig. 9.10a). The model suggests
that hypoxia appeared earliest at Newport and further south (near Heceta Bank) and
was most severe and extended furthest off the bottom (35–40 m) in August where
the bottom depths were 100 m or less (Fig. 9.8). North of 45° N, the model shows
that hypoxia was not present on the inner-shelf in July (Fig. 9.9b) and was not
widespread across the shelf until August (Figs. 9.9c and 9.10a).

Fig. 9.9 Minimum DO concentration (ml L−1) in the water column over the continental shelf for
June (a, d), July (b, e), and August (c, f) of 2002 (a–c) and 2006 (d–f). Heavy solid line is the
200 m isobath. Dashed line is the location of the hypoxia threshold (1.43 ml L−1) near the bottom.
Minimum DO values were taken over vertical axis for every horizontal grid cell from daily
averages of twice-daily outputs. Then, monthly averages for each horizontal grid cell were
calculated
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Fig. 9.10 Percentage of the latitudinal cross-shelf area (to 200 m isobath) experiencing hypoxia
(DO < 1.43 ml L−1) as a function of time for the base case model simulations in the sensitivity
analysis (see Table 9.2): BC2 (a 2002) and BC6 (b 2006). Daily averages of twice-daily values
were used

Table 9.2 Initial and open boundary conditions for dissolved oxygen (DO) and nitrate (NO3)
concentrations for four model simulations in 2002 and one in 2006 that comprised the sensitivity
analysis. Two letter case prefixes BC, UI, CI and UB indicate the base case, unmodified initial
conditions, climatological initial conditions and unmodified boundary conditions, respectively.
One digit Case suffix 2 and 6 indicate the summer 2002 and 2006 simulations, respectively. For all
four 2002 simulations, initial and boundary physical conditions are from NCOM-2002; initial and
boundary biology conditions are from NCOM-2008, because NCOM-2002 did not include
ecosystem variables, and wind forcing in 2008 was most similar to wind forcing in 2002;
atmospheric wind forcing is from COAMPS-2002, and heat fluxes are from NCEP-2002. The
single 2006 simulation (BC6) used NCOM-2006 for providing both biological and physical initial
and boundary conditions, and NAM-2006 provided the wind and heat flux estimates. JP-2006 as
the source for DO means in situ DO observations obtained by Jay Peterson (Oregon State
University) in early spring in 2006 were used to initialize DO. See text for details on other
abbreviations/methods for specifying initial and boundary conditions

Year Case Initial conditions Boundary conditions

Dissolved oxygen
(DO)

Nitrate
(NO3)

Dissolved oxygen (DO) Nitrate (NO3)

2002 BC2 LTOP-2002 LTOP-2002 N:O on mod NCOM-2008 NCOM:LTOP

UI2 N:O on NCOM-2008 NCOM-2008 N:O on mod NCOM-2008 NCOM:LTOP

CI2 LTOP-clim LTOP-clim N:O on mod NCOM-2008 NCOM:LTOP

UB2 LTOP-2002 LTOP-2002 N:O on NCOM-2008 NCOM-2008

2006 BC6 JP-2006 LTOP-clim N:O on mod NCOM-2006 NCOM:LTOP
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Modeled hypoxia in 2006 exhibited a different temporal–spatial development
from that shown for 2002. Although there was a short period of hypoxia locally
near 46° N beginning in June (Fig. 9.10b), widespread along-shelf hypoxia did not
occur until late July, and severe and spatially extensive hypoxia occurred only in
August (Fig. 9.9f). Model results showed that about 60–80% of the shelf had
bottom hypoxia in August, and almost 50% of the shelf volume of water had DO
concentrations below the hypoxia threshold in late August, especially between
Newport and 46° N.

9.5 Sensitivity Analysis Experiment in 2002

To examine the relative importance of variable NO3 and DO initial and boundary
conditions for summer hypoxia development on the Oregon shelf in 2002, we
conducted a set of controlled sensitivity simulations. Table 9.2 provides details of
ecosystem and physical initial and open boundary conditions, including atmo-
spheric forcing, used in the numerical experiment. The base case simulation, BC2
(2002; BC for base case), described in the previous section, used the most realistic
initial and open boundary conditions available. NO3 and DO initial conditions for
BC2 are from 2002 data collected by the US GLOBEC Northeast Pacific
Long-Term Observation Program (LTOP), that sampled off the coast of Oregon
from 1997–2004 (Batchelder et al. 2002). Three other model settings, which varied
in either their initial conditions or the boundary conditions, were simulated to assess
how much the results differ from the BC2 simulation. In simulation UI2 (2002; UI
for unmodified initial conditions), the boundary conditions for NO3 and DO are as
in BC2, but initial conditions for NO3 and DO are estimated from the unmodified
NO3 NCOM fields. For simulation CI2 (2002; CI for climatological initial condi-
tions), a multi-year (1997–2004) climatology of DO and NO3 derived from
GLOBEC-LTOP sampling in April provided the initial conditions for DO and NO3,
and the boundary conditions were identical to those as in BC2. Simulation UB2
(2002; UB for unmodified boundary conditions) uses the same initial conditions as
BC2 and boundary DO and NO3 conditions from unmodified NCOM fields.

9.5.1 Analysis of the Basic Simulation in the Sensitivity
Experiment

Summer hypoxia development on the shelf and its characteristics were compared
among the simulations in the sensitivity experiment by computing the number of
days each month (June, July and August) for each location that the bottom DO
concentration was below the hypoxic threshold (Fig. 9.11).
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As was noted from the analysis of BC2 in Fig. 9.10a, hypoxic waters in 2002
first appear on Heceta Bank in June. Heceta Bank is a relatively shallow shelf area
surrounded by deeper bathymetry; hypoxia also occurs near 44–44.5° N, where the
shelf is broad (Fig. 9.9). The along-shore coastal jet, which tends to follow the shelf
edge, veers offshore near Heceta Bank (Koch et al. 2010). Circulation on the bank is
slow, and recirculation and meanders are common and provide long-residence times
for phytoplankton growth. Concentrations of phytoplankton (measured by chloro-
phyll) were high on the bank in 2002 (Grantham et al. 2004). Some of this phy-
toplankton is consumed by zooplankton, and some sinks to the bottom as
phytodetritus. Near the bottom, DO is reduced by detritus decomposition and
ammonium oxidation.

Due to the long-residence time of water on the bank, bottom waters in the BC2
simulation are more likely to become hypoxic. On the bank, bottom DO concen-
trations are hypoxic for 12–20 days in June (Fig. 9.11a, left panel). In July, hypoxic

Fig. 9.11 Number of days during the month when bottom DO concentrations were less than the
hypoxic threshold (i.e., <1.43 ml L−1) in summer of 2002 for the model simulations a BC2, b UI2,
c CI2, d UB2 (Table 9.2). The coastline is the heavy dark line on the right side of each panel; the
shelf edge (200 m isobath) is the thin line on the left side of each panel. Daily averages of
twice-daily values were used in determining whether a given day was hypoxic or not
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conditions in the BC2 model simulation expanded northward along the shelf break
and hypoxic waters occupied all of Heceta Bank, from the shelf break to the coast,
with much of the bank experiencing bottom hypoxia through the entire month
(Fig. 9.11a, middle panel). Inner-shelf waters are affected by hypoxia north to
almost 45° N. This northward expansion of hypoxia from June to July is not due to
advection, which is from north to south, but rather to delayed accumulation of
phytodetritus due to weaker bloom and stronger along-shore currents where the
shelf is narrower. In August, bottom hypoxia occurs nearly every day along the
entire shelf from 44–46.5° N (Fig. 9.11a, right panel). The exception is the offshore
and southern parts of Heceta Bank that are no longer hypoxic as a result of
northward advection of higher DO concentration waters (analysis not shown).

9.5.2 Sensitivity Simulations with Modified Initial
Conditions

When initial DO and NO3 conditions are altered from the most realistic values to
conditions derived from unmodified NCOM fields, the results (simulation UI2,
Table 9.2) do not show development of hypoxia on the Oregon shelf (Fig. 9.11b).
The reasons why hypoxia does not develop in this simulation are basically twofold.
First, advection of high (overestimated) DO offshore waters onto the shelf might
buffer the decline in DO due to biological processes sufficiently such that the
hypoxia threshold is not exceeded. Second, the deeper than normal nitrocline from
the NCOM fields may inhibit upwelling of NO3 onto the shelf, which reduces the
total phytoplankton production and the biological oxygen demand when the phy-
todetritus remineralizes near the bottom.

The CI2 simulation that uses NO3 and DO from the LTOP multi-year clima-
tology for the initial April conditions (CI2; Table 9.2) produces shelf hypoxia
(Fig. 9.11c), though there are substantial spatial and temporal differences from the
BC2 simulation (Fig. 9.11a). Bottom hypoxia develops along the shelf break north
of 45° N and, again, in the Heceta Head transect (see Fig. 9.4) only in July, thus
being delayed about one month (Fig. 9.11c, middle panel). In August, distribution
of bottom hypoxic waters over the shelf is similar to BC2, although there are subtle
differences in the southward extent of hypoxia along the shelf break (Fig. 9.11c,
right panel).

9.5.3 Sensitivity Simulation with Modified Boundary
Conditions

The UB2 simulation shows that DO and NO3 conditions at the open boundaries
influence summer hypoxia on the shelf. The shelf hypoxia for the simulation using
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unmodified NCOM fields at the open boundaries (UB2, Table 9.2) is shown in
Fig. 9.11d. Bottom hypoxia appears first along the shelf break and on Heceta Bank
in June (Fig. 9.11d, left panel), but later than in simulation BC2. The development
and propagation of bottom hypoxia in July and August resemble those of BC2, but
the spatial extent and duration of bottom hypoxia are considerably reduced
(Fig. 9.11d, middle and right panels). Even with unrealistically high DO and low
NO3 concentrations at the open boundaries, UB2 simulated the beginning of
hypoxia better than did CI2 that had more realistic boundary conditions, but used
climatological initial conditions. This result suggests that having accurate initial
conditions for DO and NO3 within the model domain in early spring of 2002 was
important in replicating the progression of observed summer 2002 hypoxia.

In our model domain, boundary effects might result from conditions on any of
the open northern, southern or western boundaries. A simulation (not shown) where
DO and NO3 concentrations at the open western boundary were set to zero showed
no difference from simulation BC in the development of bottom hypoxia on the
shelf. The western boundary of the model is too distant (400 km from the coast),
and the cross-shelf flow velocities are too slow to influence DO and NO3 con-
centrations on the shelf within the five month simulation period. Thus, the effects of
DO and NO3 entering the shelf subdomain through the perimeter ultimately came
from either the northern or southern open boundaries. This is not surprising given
the much greater magnitude of along-shore flows (especially from the north) than
cross-shelf flows in the California Current System.

9.6 Role of Physical and Biological Drivers

To determine the relative importance of physical and biological factors to the
development of summer hypoxia on the Oregon shelf in 2002 and 2006, we inte-
grate the DO budgets for each model process for the entire water column for the
entire simulation (April 1–September 1) and for the summer (June 1–September 1)
only over the shelf subdomain (Fig. 9.12). The results of base case simulations BC2
and BC6 are used. The contribution of each process to total oxygen concentration is
summarized in Table 9.3. The net change of DO in modeled shelf waters for April–
August 2006 is estimated as a loss of 4.7 � 1015 ml O2 (hereafter in this paragraph
we provide volumes in km3 (1 km3 = 1015 ml)), which is equivalent to a decrease
of 3.0 ml L−1 through the entire shelf. This is 2.5 times higher than the decrease in
2002 (1.8 km3 O2; Table 9.3).

Although oxygen reduction due to biological sink terms (organic remineraliza-
tion) is important in deeper layers in both years, the net biological effect on dis-
solved oxygen overall, considering the full water column, is positive and large due
to the large O2 production by phytoplankton photosynthesis in the photic zone (ca.
8.7 km3 O2 in both 2002 and 2006, Table 9.3). The net effect of horizontal
advection is to decrease DO on the shelf through off-shelf advection during
upwelling of high DO surface waters (due to photosynthesis; e.g., biological source
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Fig. 9.12 Simulated physical (dash black), biological (solid gray) and net (solid black) fluxes of
dissolved oxygen integrated over the shelf ( × 109 ml s−1) along with the zonal integrated
upwelling index (NOAA, S. Pierce; × 3000 m3 s−1) for a 2002 and b 2006. Upwelling
index/physical flux correlations (CC) are shown

Table 9.3 Dissolved oxygen
(DO) shelf budgets (ml
O2 ⋅ 1015 (=1 km3)) in 2002
and 2006 due to different
processes: advection,
diffusion, air-sea flux,
biological production and
loss, net physical, net
biological and total net
change during the entire
integration period April–
August and during the
summer (June–August) only.
Net terms are highlighted in
bold

Factor/Time interval April–August
2002

April–August
2006

Advection −3.1 −5.7
Diffusion −2.0 −2.9
Air-sea flux −1.1 −1.1
Physical net −6.2 −9.7
Biological source 8.7 8.7
Biological sink −4.3 −3.7
Biological net 4.4 5.0
Total net −1.8 −4.7
Factor/time interval June–August

2002
June–August
2006

Physical net −4.2 −5.2
Biological net 3.0 3.5
Total net −1.2 −1.7
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in Table 9.3) and deep intrusions of low DO waters onto the shelf from offshore.
About 12% of the biologically produced oxygen near the surface is lost by out-
gassing of oxygen from supersaturated surface waters to the atmosphere. The
physical mechanisms of DO reduction, especially through horizontal advection and
diffusion, are responsible for losses of 6.2 km3 O2 in 2002 and 9.7 in 2006
(Table 9.3) and are the critical factors for the overall decline of DO on the shelf.

Since the DO change due to biological processes was similar in 2002 and 2006,
the large difference between years in net DO change is ultimately due to the
difference in physical forcing. In 2002, the loss of DO occurred predominantly in
June–August, whereas in 2006 two-thirds of the net DO loss occurred during very
strong upwelling events in April and May (Fig. 9.1). Time series of the DO fluxes
(physical, biological and net) integrated over the entire shelf volume clearly show
greater net biological production of DO in June–August (67–70% of total) than
earlier, and the close matching of physical and net DO fluxes in both years
(Fig. 9.12). There is a strong negative correlation between DO physical flux and
upwelling index in both years: −0.77 in 2002 and −0.68 in 2006 (Fig. 9.12). This
relationship is explained by a simple conceptual model of upwelling, wherein
relatively high DO surface waters are advected offshore past the shelfbreak, while
deeper waters having low dissolved oxygen are advected onshore from beyond the
shelf. This circulation pattern would decrease DO concentration in shelf waters. In
contrast, deeper waters advected onto the shelf would have high nutrient concen-
trations and with injection into the inner-shelf euphotic zone would facilitate
enhanced phytoplankton growth and DO production. Considering the full
depth-integrated water column on the shelf, the physical processes dominate over
the biological processes in controlling the total oxygen content. These budget
results are consistent with model results of Siedlecki et al. (2015) for whole water
column integrations of the Oregon and Washington shelves.

Whole water integrations, as done by us and Siedlecki et al. (2015), could be
supplemented by examining the water column partitioned into the euphotic DO
production zone and a deeper zone dominated by remineralization processes, where
each has biological and physical sources and sinks of dissolved oxygen. We did not
do vertically partitioned DO budgets for this analysis.

The documented differences in hypoxia timing, spatial distribution and severity
in 2002 and 2006 could be explained as follows. On the one hand, with the
comparable rates of biological net oxygen production in both years, physical
oxygen removal (mainly due to upwelling) rate in 2006 is about 1.5 higher resulting
in net oxygen loss rate being 2.5 higher than in 2002 (Table 9.3 and Fig. 9.12). On
the other hand, initial oxygen concentrations in early April of 2002 are essentially
lower than in 2006 (Fig. 9.6), which provides a head start for shelf waters DO
concentration to drop below hypoxic level as early as in mid-June. In 2006, despite
strong (especially in April–May) upwelling, the initial DO concentration in shelf
waters is relatively high, and it takes as much as 3.5–4 months to develop strong
shelf hypoxia. From that point on (2nd half of July–August), hypoxia development
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in 2006 seems to be more rapid and ubiquitous than in 2002, which is well doc-
umented in Fig. 9.10, and is also supported by observations in September (outside
of our model integration interval) on Fig. 9.2.

9.7 Discussion and Conclusions

Our results that indicate the Heceta Bank region of the Oregon shelf is a hotspot for
hypoxia are consistent with the analysis of observations reported by Connolly et al.
(2010) and with model simulations conducted by Siedlecki et al. (2015). There is
substantial year-to-year variability in the spatial and temporal extent and intensity
of hypoxia (Siedlecki et al. 2015) in the Pacific Northwest. Their model showed
three regions of the Oregon–Washington coast that had persistent hypoxia in
late-summer simulations of three years, which included Heceta Bank as well as two
regions in Washington, one of which was the Juan de Fuca Eddy (JdFe) region
offshore of the Strait of Juan de Fuca. Both Heceta Bank and JdFe are known to be
regions where water residence times are relatively long because of local recircu-
lation flows (Barth et al. 2005; Hickey and Banas 2003). Both regions had high
vertically integrated water column organic matter respiration (Seidlecki et al. 2015).

The coupled biophysical model used in this study demonstrated skill in repro-
ducing the physical and biological processes that govern Oregon shelf summer
hypoxia. With realistic and controlled sensitivity simulations we were able to
understand the relative contributions of ocean physics and ecological processes in
creating regional hypoxia on the Oregon shelf. The sensitivity analysis demon-
strated the importance of having accurate ecosystem boundary and early spring
initial conditions, especially the latter, for accurate hindcasting of summer–autumn
oxygen on the Oregon shelf. Unrealistically high initial DO and low NO3 condi-
tions in spring 2002 (from NCOM derived fields) prevented or significantly delayed
bottom hypoxia development. We also showed that when lacking year-specific data
for specifying the initial conditions of NO3 and DO, a simulation initialized with a
7-year climatological average conditions was able to reveal the spatial pattern of
hypoxia, although not the full temporal development (the climate scenario had
weaker and delayed hypoxia). DO changes due to biological processes (photo-
synthesis, respiration, remineralization) are large, although physical processes,
mostly horizontal advection of low DO in the bottom boundary layer associated
with upwelling, are most responsible for the net reduction in DO in spring–summer
and the onset of bottom hypoxia in summer on the Oregon shelf.

For realistic modeling of shelf hypoxia, it is critical to have accurate estimates of
the initial and boundary conditions. These are often provided by larger-scale
numerical models or, in cases where they are available, by recent ocean observa-
tions of the relevant parameters. In our modeling, initial and boundary values of
NO3 and DO concentrations are critical for evaluating hypoxia development. Many
large-scale coupled physical–biological models do not provide sufficiently realistic
DO and NO3 information essential to force higher spatial resolution (local-regional)
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models for hindcasting (or forecasting) the intensity, duration and spatial patterns of
hypoxia on the Oregon shelf. No available regional model simulations in hindcast,
nowcast or forecast mode are presently able to provide the external boundary
conditions and forcing required for higher resolution coastal models, like the model
described here, that focus on dissolved oxygen dynamics. An alternative to
downscaling from larger-scale models might be more intensive in situ sampling,
which provides directly measured DO and NO3. Often, the limited vertical reso-
lution of the coarser resolution larger-domain models is insufficient to provide fine
enough vertical information to the local model to resolve the depth of the oxygen
minimum zone (OMZ) offshore, or the potential shallowing of it through recent
decades. In regions where OMZ offshore has shown to be shallowing, it is
important to include these changes by prescription or by modeling to enable real-
istic hindcasting and forecasting of hypoxia on continental shelves, which has direct
effects on marine biota and livelihoods.

Appendix A. Oxygen Formulation

The dissolved oxygen dynamics in our ecosystem model is governed by the fol-
lowing equation:

∂O2

∂t
=Vmf Ið Þ NO3

Ku +NO3
e−ψNH4rO2:NO3 +

NH4

Ku +NH4
rO2:NH4

� �
P

− 2ΩNH4 −ΓrO2:NH4Z −φrO2:NH4D+QgeðO2sat −O2Þ

where P is phytoplankton, Z is zooplankton, D is detritus, Vm = 1.5 d−1 is phy-
toplankton maximum uptake rate, f(I) is light limitation (see Spitz et al. 2005 for
details), ψ = 1.46 (mmol N m−3)−1 is NH4 inhibition parameter, Ω = 0.25 d−1 is
NH4 oxidation coefficient, Γ = 0.1 d−1 is zooplankton specific excretion and
mortality rate, φ = 0.1 d−1 is detritus decomposition rate, rO2:NO3 and rO2:NH4 are
oxygen-nitrate and oxygen-ammonium conversion parameters, respectively;

Qge =
KνO2

Δzn
, where Δzn is the height of the top cell and KνO2 = 0.31u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
660 ̸Sc

p
is

the gas transfer coefficient with u being the average wind speed and Sc being
Schmidt number calculated after Keeling et al. (1998): Sc = 1638.0 − 81.83T +
1.483T2 − 0.008004T3; O2sat = eA1000/22.9316 is the saturation concentration of
oxygen with A = 2.00907 + 3.22014TS + 4.05010TS2 + 4.94457TS3 −
0.256847TS4 + 3.88767TS5 + S(−0.00624523 − 0.00737614TS − 0.0103410TS2 −
0.00817083TS3) − 4.88682 ⋅ 10−7S2, where TS = ln((298.15 − T)/Tk), T is in
Celsius, Tk in Kelvin (after Garcia and Gordon 1992).
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Chapter 10
Comparing Default Movement Algorithms
for Individual Fish Avoidance of Hypoxia
in the Gulf of Mexico

Elizabeth LaBone, Dubravko Justic, Kenneth A. Rose, Lixia Wang
and Haosheng Huang

Abstract The northern Gulf of Mexico is the site of one of the largest areas of

seasonal, coastal hypoxia (up to 22,000 km
2
). Hypoxia can have both direct and indi-

rect effects on fish. Atlantic croaker (Micropogonias undulatus) is a good model

organism for studying the effects of hypoxia on fish in the Gulf of Mexico because it

is a demersal species that lives in the area where hypoxia occurs and has been stud-

ied extensively. Virtual croaker movement was examined for three algorithm groups

on a two-dimensional grid encompassing the Gulf hypoxia region. The model was

run for seven days using four static dissolved oxygen maps reflecting progressively

increasing hypoxia severity. Individual fish movement was modeled using a particle-

tracking module with outputs from a three-dimensional hydrodynamic-water qual-

ity model for the 2002 hypoxia season. The three algorithm groups included the

neighborhood search for hypoxia avoidance and the random walk, Cauchy correlated

random walk, or kinesis for the default behavior. The results show that the default

algorithms have little effect on hypoxia exposure of individual fish, but affect sin-

uosity (wiggle in fish path). The variables to consider when choosing between the

three default algorithms are time step, dispersal, and the effects of stressors other

than hypoxia. This study emphasizes the need to acquire suitable data for calibration

of fish movement models that are presently not available for the northern Gulf of

Mexico.
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10.1 Introduction

The Louisiana–Texas (La-Tex) shelf is the location of one of the largest areas of

seasonal, coastal hypoxia (up to 22,000 km
2
) (Rabalais et al. 2007). For the Gulf of

Mexico (GOM), hypoxia is defined as dissolved oxygen (DO) concentrations less

than 2 mg/L (Rabalais et al. 2001). Hypoxia generally occurs from April through

October at depths of 5–60 m and can stretch from the Birdfoot delta to the La-Tex

border (Turner and Rabalais 1991). Stratification of the water column and surface

primary productivity contribute to the formation of hypoxia (Justic et al. 2007). Strat-

ification occurs during the spring and summer on the La-Tex shelf due to the spring

floods of the Mississippi and Atchafalaya rivers, regional circulation, and seasonal

weather patterns (Rabalais et al. 2001, 2002). Stratification can be broken down by

water column mixing caused by cold fronts during late fall to early spring or by trop-

ical cyclone activity during summer and fall. Organic matter that sinks below the

pycnocline and decomposes leads to reduced oxygen levels that cannot be replen-

ished quickly due to high stability of the water column (Justic et al. 1996; Rabalais

et al. 2002). Primary production is strongly influenced by riverine nutrient loading

(Justic et al. 1993).

The areal extent and severity of hypoxia have increased over the past century

along with the increase in riverine nutrient concentrations (Turner and Rabalais

1991). The analyses of hypoxia proxies in sediment cores indicate that hypoxia began

to appear in the 1900s and started to intensify during the 1940–1950s (Rabalais et al.

2002). Hindcasts from several hypoxia models suggest that widespread hypoxia first

developed in the 1970s (Justic et al. 2002; Scavia et al. 2004). Since hypoxia monitor-

ing program carried out by Louisiana Universities Marine Consortium (LUMCON)

started in 1985, the extent of hypoxia has remained highly variable. However, a sig-

nificant increase in hypoxic layer thickness was observed (Obenour et al. 2013).

Hypoxia can have both direct and indirect effects on fish. Hypoxia exposure can

lead to increased mortality, decreased fecundity, decreased growth, and changes in

movement (Rabalais et al. 2001). Direct mortality can occur if fish are unable to

escape from hypoxic water before being asphyxiated. Indirect effects include sus-

ceptibility to predation and reduced food availability (Thomas and Rahman 2009).

By avoiding hypoxic areas, fish can be more susceptible to predation and experience

reduced or suboptimal habitats (Breitburg 2002). Demersal fish are more likely to

be affected by a loss of habitat than pelagic fish. Benthic feeding fish can also expe-

rience reduced food availability due to changes in numbers and species composition

of benthic organisms in response to hypoxia (Rabalais et al. 2002).

Fish commonly avoid hypoxic areas, though thresholds and negative effects

are species-dependent. Several species of fish and invertebrates have been shown

to avoid hypoxia in the GOM and in Neuse River estuary (Eby and Crowder 2002;
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Craig and Bosman 2012). While most fish avoid hypoxia, thresholds can differ

among species. Importantly, fish can have different DO thresholds depending on

whether the individual is acclimated to hypoxic conditions or not (Brady and Targett

2013). Avoidance can cause movement out of preferred habitats (Eby and Crowder

2002) or a mismatch with prey species with a lower threshold for hypoxia avoidance

(Ludsin et al. 2009).

Atlantic croaker (Micropogonias undulatus) is a good model organism for study-

ing the effects of hypoxia on fish in the GOM because it is a demersal species that

lives in the area where hypoxia occurs and has been studied extensively. Croaker

is a dominant member of the fish fauna caught in trawls in a region where hypoxia

occurs (Baustian et al. 2009). Hypoxia has been shown to reduce the growth, sur-

vival, and fecundity of croaker and other closely related species (Rose et al. 2009).

There is a large amount of previous work with croaker, including field data show-

ing the hypoxia effects on reproduction and prey availability, laboratory experiments

exposing croaker to hypoxia, and models of hypoxia avoidance and effects of hypoxia

on fecundity (Baustian et al. 2009; Creekmore 2011). For example, chronic expo-

sure to hypoxia has been shown to impair oocyte maturation and sperm motility in

Atlantic croaker (Thomas and Rahman 2009). This previous work allows for model

parameterization and provides some knowledge of how croaker react to hypoxia.

Models of varying levels of complexity have been used to model hypoxia in the

GOM, with the more complex models with higher resolution being better suited to

representing smaller scale events. Simpler models include modeling the shelf with

a river model (Scavia et al. 2003) or modeling the shelf as a two-layered system

(Justic et al. 1996). More complex models involve modeling the shelf as a three-

dimensional (3-D) system with detailed modeling of the hydrodynamics (e.g., Het-

land and DiMarco 2008; Wang and Justic 2009). Two of the 3-D models adapted

to model hypoxia in the GOM are ROMS (Regional Ocean Modeling System) cou-

pled to a NPZ model (Fennel et al. 2013) and the coupled FVCOM-WASP (Finite

Volume Coastal Ocean Model—Water Quality Analysis Simulation Program) (Justić

and Wang 2014). These 3-D models allow for the simulation of the conditions within

the hypoxic zone with high spatial and temporal resolutions and are therefore suit-

able for fish movement modeling. FVCOM is an unstructured grid and open-source

ocean circulation model (Chen et al. 2006). WASP is an open-source water qual-

ity model with several submodels for processes such as eutrophication (Wool et al.

2006). FVCOM and FVCOM-WASP have been used to model fish movement and

hypoxia in the GOM (Justić and Wang 2014; Rose et al. 2014).

Several models have been used to study the effects of hypoxia on fish and

fish movement. Models looking at the effects of hypoxia include matrix models,

individual-based models (IBM), and models of the internal processes of an individ-

ual fish (Rose et al. 2009). IBMs can be used to look at fish movement and hypoxia

avoidance (e.g., Creekmore 2011). Even though IBMs typically require more com-

putational power than other model types, they have the advantage of time series (such

as for hypoxia exposure) being possible to create for every fish modeled. Having the

exposure time series allows for a more realistic look at the direct effects of hypoxia.
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There are a number of different approaches to modeling fish and other animal

movements. Various representations of random walk, including simple diffusion,

have been used to describe and model animal movement (Kareiva and Shigesada

1983; Marsh and Jones 1988). The distance an animal can travel with random move-

ment decreases with the size of the time step (Landau et al. 2013). Avoidance of

adverse conditions and attraction to preferred conditions can be modeled using indi-

vidual movement algorithms or by using a decision-making algorithm. Some move-

ment types include random movement components along with avoidance and attrac-

tion components, such as run and tumble (Watkins and Rose 2013) and kinesis (Hum-

ston et al. 2004; Watkins and Rose 2013). Run and tumble and kinesis both have

the animal only aware of their current environmental conditions and whether those

conditions match the preferred conditions. Kinesis does have fish recall their previ-

ous heading. Because these movement algorithms have a random movement compo-

nent, they are still affected by the size of the time step. Other movement algorithms,

such as neighborhood search, allow fish to look at the surrounding conditions and

move in the direction that is most advantageous (Watkins and Rose 2013; Rose et al.

2014). These types of movements are less affected by time steps, but can allow fish to

perceive environmental conditions an unrealistic distance away from their location.

Decision-making algorithms, such as those based on game theory, have also been

used to allow animals to choose among different movement algorithms depending

on the current conditions and memory of past conditions (Goodwin et al. 2006; Rose

et al. 2014). Switching among movement types allows for the movement algorithm

best suited for a situation to be used, including changing the algorithm with changing

conditions.

This paper explores some of the different movement algorithms and how they

affect the hypoxia exposure of individual virtual croaker. Fish movement in relation

to hypoxia was modeled using a combination of output from the FVCOM-WASP

model and a particle-tracking module with different movement algorithms. Three

algorithm groups were tested to model fish movement in four different DO scenar-

ios. The default algorithm, i.e., the algorithm used when the fish does not perceive

hypoxia, is the main difference among the algorithm groups. The hypothesis tested

was that the default algorithms do not affect hypoxia exposure of individual fish if

all the fish use the same avoidance algorithm. The results of the paper will give a

deeper understanding of how the algorithms tested behave in different situations. A

better understanding of the algorithms allows for more effective algorithm selection

and ultimately better informed management decisions.

10.2 Methods

Fish movement was examined for three algorithm groups in two dimensions (2-D)

for static environmental conditions (maps of bottom DO concentration and tempera-

ture). The 2-D model and static conditions were chosen to better examine fish move-

ment for different movement algorithms. Because the model domain is much larger
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horizontally than vertically (674 km from Galveston to Mobile and 3000 m deep),

there is a large difference in the horizontal and vertical size of model elements for

any 3-D grid. Moving a particle simultaneously in the horizontal and vertical direc-

tions is more complicated than just moving horizontally or vertically. Having the

model fish move in only the horizontal direction simplifies the model while allow-

ing for the examination of the properties of different movement algorithms. Also by

using static conditions, the behavior of fish using different movement algorithms can

be seen more clearly.

10.2.1 FVCOM-WASP

The coupled FVCOM/WASP model (Justić and Wang 2014) was used to model DO

concentrations and temperature in the GOM. The FVCOM particle-tracking module

was used to model fish movement on the same FVCOM grid. The model domain

covers the coastal GOM from Mobile Bay to Galveston Bay and extends offshore

up to a depth of about 300m (Wang and Justic 2009). The unstructured nature of the

model grid allows for a more accurate depiction of the complex GOM coastline and

higher model resolution along the coast. The model has been previously calibrated

to accurately represent the circulation and stratification on the La-Tex continental

shelf (Wang and Justic 2009).

Fish were modeled using the FVCOM particle-tracking module with output from

the FVCOM-WASP. The particle-tracking module interpolated the DO and temper-

ature values to the location of each individual fish using the piecewise linear algo-

rithm employed in the FVCOM. Scenarios were created by taking output from the

FVCOM-WASP model for 2002, namely for May 2 (06:00), June 4 (06:00), July

23 (17:00), and September 21 (17:00). These dates and times were chosen because

they depict progressively worsening hypoxic conditions in the GOM, here denoted

as normoxia (May 2), mild hypoxia (June 4), intermediate hypoxia (September 21),

and severe hypoxia (July 23). The May 2 scenario represented conditions before the

onset of hypoxia, and the June 4 conditions represented the onset of hypoxia. Dur-

ing late July, the combination of primary production driven by riverine nutrients and

strong water column stratification typically results in the maximum extent of hypoxia

(Rabalais et al. 2007), which was represented by the July 23 scenario. Water column

mixing can cause hypoxia to break up and then reform. The September 21 scenario

was representative of such a breakup and reformation of hypoxia in response to Trop-

ical Storm Hanna. All scenarios used the July 23 temperature field so that the only

variation between scenarios was due to different DO concentrations. The locations

for the values for plotting were listed with longitude/latitude, while the grid locations

in the tracking module used Universal Transverse Mercator (UTM) projection.
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10.2.2 Movement Algorithms

Movement algorithms were added to the FVCOM particle-tracking module to model

fish movement in the model domain based on environmental cues. The FVCOM

particle-tracking module is designed to track passive particles that move with the

currents calculated by FVCOM. The module was modified as in Rose et al. (2014)

to track active particles with movement behaviors such as fish. Movement algorithms

were used to calculate x and y velocities.

Changes in particle position were calculated using the past positions and the

velocities, as in Watkins and Rose (2013) and Rose et al. (2014). The formulas used

to calculate change in position for all algorithms were as follows:

x(t + 𝛥t) = x(t) + 𝐮(t) ∗ 𝛥t (10.1)

y(t + 𝛥t) = y(t) + 𝐯(t) ∗ 𝛥t (10.2)

where x and y are fish positions on the x and y axes, u and v are fish velocities, and 𝛥t
is the time step for fish movement. Only the positions of fish inside the model domain

were updated. For fish outside the model domain, the reflective boundary algorithm

was applied as described in Sect. 10.2.2.10. Most of the algorithms, except kinesis,

calculated the u and v velocities using the same equations. Velocities for kinesis will

be described with the kinesis algorithm (Sect. 10.2.2.5). The velocities of fish in the

x and y dimensions were calculated as follows:

𝐮(t) = ss ∗ cos(𝜃(t)) (10.3)

𝐯(t) = ss ∗ sin(𝜃(t)) (10.4)

where ss is the swimming speed and 𝜃(t) is the swimming angle relative to due east

for that time step. How the speed and angle were calculated depends on the move-

ment algorithms.

Nine algorithms were used to model fish movement (Table 10.1). The top-level

algorithm, event-based, is used to choose among the other algorithms. Seven algo-

rithms are categorized into three behaviors for use with the event-based algorithm:

default, strategic, and tactical. Default behaviors are used when there is no hypoxia.

Three algorithms are classified as default: random walk, Cauchy correlated random

walk, and Gaussian kinesis. Strategic behaviors are used after an individual leaves

conditions that require immediate reactions, but there is still a memory of those con-

ditions. Two strategic behaviors are used in the model: correlated random walk and

logistic kinesis. Tactical behaviors are used when the fish needs to react to conditions

immediately. The two tactical behaviors, neighborhood search and sprint, are trig-

gered by encountering hypoxia for neighborhood search or spending too much time

in hypoxic conditions for sprint. The ninth algorithm, reflective boundary, is used to

address boundary issues with the fish and is not used in the event-based algorithm.
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10.2.2.1 Event Based

For this study, an event-based approach was used to model fish decision making.

Event-based movement is based on game theory and chooses between different

movement algorithms based on utilities, which depend on current and past conditions

experienced by the virtual fish (Anderson 2002; Watkins and Rose 2013). Environ-

mental conditions, such as hypoxia, are used to choose between default, strategic,

and tactical behaviors. There is only one default behavior used at a time. The default

behavior occurs when the main stimulus, here low DO, is not detected. Strategic and

tactical behaviors come in pairs for each environmental cue or threshold. A preferred

range can be defined using two thresholds, such as for temperature or salinity, result-

ing in two pairs of strategic and tactical behaviors. Tactical movement occurs when a

threshold condition is crossed. Strategic movement occurs when fish are out of con-

ditions that would trigger tactical movement, but a memory term in the equation still

has the fish being influenced by the hypoxia exposure. Strategic is an asymmetrical

behavior that occurs only after a tactical behavior has been triggered and fish are

exiting the hypoxic zone.

The behavior with the highest utility is the one chosen by the event-based algo-

rithm. In a game theory approach, utilities represent how the benefits and costs of

a given behavior affect the fitness of the organism (Anderson 2002). Here, hypoxia

avoidance success is used as a measure of fitness. The utility values are affected by

whether or not events occur. Whether events occur was determined with:

eJ(t) =

{
0 val > th
1 val ≤ th

(10.5)

where eJ(t) is the event value at time t, a Boolean operator of whether the event J is

triggered (1) or not triggered (0) at time t. The val is the environmental value (e.g.,

DO) or other value, such as a counter. An example of the threshold, th, is 2 mg O2/L,

which denotes the upper DO limit for hypoxia.

The utility of the different behavior options were then calculated for each fish.

The behavior with the highest utility is the one chosen by the event-based algorithm.

Utility is calculated by:

utilJ,K(t) = utiliJ,K ∗ probJ,K(t) (10.6)

where util is the utility for that time step, utili is the intrinsic utility, and prob is the

probability of a triggered event. The integers J and K in Eq. 10.6 indicate behavior

groups, where the J value represents a group and the K value indicates whether the

behavior is tactical (K= 1) or strategic (K= 2). The probability of an event being

triggered was calculated by:

probJ,K(t) = (1.0 − memJ,K) ∗ eJ(t) + memJ,K ∗ probJ,K(t − 𝛥t) (10.7)
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where probJ,K(t) is the probability for the behavior J,K at time t, eJ(t) is the event

value at time t, probJ,K(t − 𝛥t) is the probability calculated last time step, andmemJ,K
determines what proportion of the event value and past probability make up the cur-

rent probability. The probability is a running average and allows for the fish to have

some memory of past events. The utilities were then compared to a minimum stan-

dard value, and the largest value determines which behavior was used. If none of the

calculated utilities were larger than the standard minimum, then the default behavior

was used (J=0). The event-based behavior was the same as used in Rose et al. (2014).

The algorithms used for each event-based behavior are described in Table 10.1.

10.2.2.2 Random Walk

Random walk is a type of movement algorithm where random speeds and angles

are chosen without considering environmental conditions. Three random walk algo-

rithms are used in this study, two for default behaviors and one for strategic. The

simplest random walk used chooses a random angle and adds variation to a baseline

speed for each time step. The speed and angle are calculated using:

ss = ss0 ± 0.3 ∗ ss0 ∗ ran (10.8)

𝜃(t) = 2𝜋 ∗ ran (10.9)

where ss0 is the baseline swimming speed and ran is a uniform random number

between 1 and 0. The angle is calculated with relation to a fixed axis, here due east.

Equation 10.8 is used to calculate speed for all of the random walk algorithms and

is slower than the speed used for the tactical behaviors. So fish slow down when

switching from a tactical behavior to one of the random walk algorithms. Random

walk has particles/fish move with simple diffusion.

10.2.2.3 Correlated Random Walk

A correlated random walk (CRW) is a random walk with a bias toward one direction

(Kareiva and Shigesada 1983). A CRW chooses a random speed and a turning angle.

Unlike the simple random walk, a CRW determines the new angle relative to the

angle from the previous time step instead of a fixed axis. The variation added to

the old angle to get the new angle is called the turning angle. The CRW uses the

velocities from the previous time step to calculate the angle:

𝜃(t) = atan2(𝐯(t − 𝛥t),𝐮(t − 𝛥t)) + 0.05 ∗ 2𝜋 ∗ (2 ∗ ran − 1) (10.10)

where the first half of the equation, atan2( ), is from the previous time step and the

second part is a random component to add variation to the angle. If no random com-

ponent was added, then when substituted into Eqs. 10.3 and 10.4, 𝜃 would produce
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the fish swimming velocity components u and v of the previous time step. The fish

moves in mostly the same direction with some variation when a small random com-

ponent is added. Speed is calculated with Eq. 10.8. CRW is the algorithm used for the

strategic behavior in all runs except those with kinesis. Field data of insect movement

have been described using CRW (Kareiva and Shigesada 1983).

10.2.2.4 Cauchy Correlated Random Walk

The Cauchy correlated random walk (CCRW) is a more complicated CRW where

the magnitude and direction of the bias can be controlled by choosing the turning

angle from a non-uniform, wrapped Cauchy distribution. The CCRW was adapted

from Eq. 20 in Wu et al. (2000), which is implemented as the turning angle:

𝜃(t) = 𝜃(t − 𝛥t) + 2 ∗ atan
[
(1 − 𝜀)
(1 + 𝜀)

∗ tan((ran − 0.5) ∗ 𝜋)
]
+ 𝜃m (10.11)

where 𝜀 determines the shape of the wrapped Cauchy distribution, and 𝜃m determines

the center of the distribution. 𝜃(t − 𝛥t) is the previous angle, and the 2 ∗ atan[ ] + 𝜃m
is the turning angle. Higher values of 𝜀 result in more correlation and less random-

ness to the direction of the fish. By changing 𝜃m, the fish can be given a bias in

whether they turn left or right. The original equation from Wu et al. (2000) was

changed by adding the parameter 𝜃m based on Batschelet (1981) and using the result

of the equation as a turning angle instead of the angle of direction. Speed was cal-

culated using Eq. 10.8. Velocities are calculated using Eqs. 10.3 and 10.4.

10.2.2.5 Kinesis

Kinesis compares the ideal condition to the current condition to determine the pro-

portion of random versus previous velocities to use for the new velocities (Humston

et al. 2004; Watkins and Rose 2013). Two forms of kinesis were used: Gaussian and

logistic. As previously mentioned, kinesis uses a different method from the other

algorithms to calculate velocity. Instead of calculating speed and angle at each time

step, the velocities for the x and y directions are calculated using a random compo-

nent and a previous velocity component. The equations are as follows:

𝐮(t) = 𝐮(t − 𝛥t) ∗ (ℎ1 ∗ 𝑝1) ± nran ∗ (1 − ℎ2 ∗ 𝑝1) (10.12)

𝐯(t) = 𝐯(t − 𝛥t) ∗ (ℎ1 ∗ 𝑝1) ± nran ∗ (1 − ℎ2 ∗ 𝑝1) (10.13)

where 𝑝1, ℎ1, and ℎ2 are weighting factors. The 𝑝1 weighting factor is used to deter-

mine the proportion of random versus previous velocities in the new velocities and

is calculated using the comparison of the ideal and current conditions in a func-

tion. The ℎ1 and ℎ2 weighting factors determine the percentage of the previous
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velocities and random components, respectively, used in the new velocities. Fish

using kinesis slow down in areas where the previous component has more weight

than the random component. The previous component is smaller than the actual

previous velocity because the h1 weighting factor is less than 1. The value nran
is a random number from a normal distribution that is screened for extreme values

(>|3|). The Kinesis algorithm is based on studies on a variety of organisms including

wood lice and protozoa and focuses on a mechanistic approach to animal movement

(Fraenkel and Gunn 1961).

10.2.2.6 Gaussian Kinesis

How the 𝑝1 weighting function is calculated depends on the version of kinesis. The

Gaussian kinesis is the form of kinesis used in Watkins and Rose (2013) and Hum-

ston et al. (2004). It uses a Gaussian curve in determining the 𝑝1 weighting factor

used in Eqs. 10.12 and 10.13. A Gaussian curve results in fish moving toward the

mean of the curve. The 𝑝1 weighting factor is calculated with:

𝑝1 = e
−0.5∗

(
temp(t)−𝜇temp

𝜎temp

)2

(10.14)

where temp(t) is the current temperature, 𝜇temp is the mean of the curve and ideal

temperature, and 𝜎temp is the sigma value of the curve. The sensitivity of the algo-

rithm can be altered by changing the curve width with the sigma value. Gaussian

kinesis was used as a default behavior in response to temperature.

10.2.2.7 Logistic Kinesis

Logistic kinesis works better than Gaussian kinesis for avoiding poor conditions,

as opposed to being attracted to good conditions. Tests were run using Gaussian

kinesis to avoid hypoxia, but the algorithm did not perform well. The Gaussian curve

represents an ideal condition and progressively worse conditions well, but does not

represent good conditions that suddenly become poor conditions at some threshold.

A logistic curve better represents the second scenario, so a logistic curve was used

instead of a Gaussian curve to calculate the p1 weighting function:

𝑝1 = er∗do(t)

er∗do(t) + b
(10.15)

where do(t) is the current DO value, r controls the slope of the curve, and b controls

where the curve occurs. The 𝑝1 value was used to calculate velocities with Eqs. 10.12

and 10.13. The algorithm results in fish moving away from areas with values on the

lower part of the curve and then moving mostly randomly in areas where the curve

has leveled off. Logistic kinesis is used as a strategic behavior in response to DO.
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10.2.2.8 Neighborhood Search

Neighborhood search is used in most of the tactical behaviors and is the main algo-

rithm used for hypoxia avoidance. Neighborhood search works by searching the

neighboring cells and then moving either away from the lowest quality cell or moving

toward the highest quality cell. The quality of the cell can be calculated in different

ways (e.g., growth and mortality Watkins and Rose 2013 or salinity Rose et al. 2014).

Hypoxia was avoided with a neighborhood search algorithm moving away from the

lowest DO value. The neighboring cells are searched for the cell with the lowest DO

value and then the swimming speed and angle are calculated with:

𝜃(t) = atan2(y(t) − yl(t), x(t) − xl(t)) + 0.15 ∗ 2𝜋 ∗ (2 ∗ ran − 1) (10.16)

ss = 2 ∗ ss0 ± ss0 ∗ ran (10.17)

where x(t) and y(t) are the current x and y coordinates, xl(t) and yl(t) are the coor-

dinates of the center of the cell with the lowest DO, and ran is a uniform random

number. The first part of the equation, atan2( ), calculates the angle, and the sec-

ond part calculates a random component that adds some variability to the angle.

The amount of variation can be increased or decreased by replacing the 0.15 with

larger or smaller values, respectively, with a maximum meaningful variation of pi.

The swimming speed was faster for avoidance behaviors than for default behaviors

because there was more urgency to avoid bad conditions. The variation in swimming

speed is similar to Eq. 10.8, but has a higher range of variation. Velocities are cal-

culated using Eqs. 10.3 and 10.4. Hypoxia avoidance with neighborhood search was

triggered when the utility is highest for the tactical behavior for low DO avoidance.

10.2.2.9 Sprint

The sprint algorithm was created to deal with the problem of fish moving under

neighborhood search getting stuck moving in a narrow region around a local DO

maximum. When local maxima with values below 2 mg DO/L occur, fish will get

stuck in those cells when using neighborhood search. Adding variability to the neigh-

borhood search angle can keep some fish from getting stuck at local DO maxima, but

not all. The sprint algorithm is triggered when a counter of hypoxic steps exceeds a

set value. The set value determines the maximum number of time steps the fish can

stay in hypoxia before drastic measures need to be used. For this paper, fish start to

panic after spending two days in hypoxic conditions. The set value is the number of

steps, depending on time step, that occur over two days (200 for 15 min; 25 for 2 h).

The sprint is a simple algorithm that calculates the angle and speed with:

𝜃(t) = 𝜃(t − 𝛥t) (10.18)

ss = 3 ∗ ss0 (10.19)
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The counter is decreased by 1 when the algorithm is triggered and is reset to zero

when normoxic conditions are encountered. A decrease of 1 results in the fish sprint-

ing until it exits the hypoxic zone. Changing the amount the counter decreased the

affects how long the sprint algorithm is used, but only a decrease of 1 is used in this

paper.

10.2.2.10 Reflective Boundary

Neighborhood search is also used in the reflective boundary algorithm. It is not one

of the algorithms chosen by the event-based algorithm, but occurs after movement is

calculated by the movement algorithms. The reflective boundary algorithm is used

with kinesis, which works best at larger time steps (≥1 or 2 h). Particles in the

FVCOM-tracking module tend to get stuck on the edges of the model domain at

time steps large enough for kinesis to work well. The reflective boundary algorithm

uses neighborhood search to calculate the cell with the fewest boundaries and move

the fish toward the cell with fewest boundaries. The angle is calculated by:

𝜃(t) = atan2(yl(t) − y(t), xl(t) − x(t)) + 0.15 ∗ 2𝜋 ∗ (2 ∗ ran − 1) (10.20)

where the values are the same as Eq. 10.16. The values used are from the location

calculated at the last time step and not the new location calculated by the movement

algorithms for the current time step. Using the previous values makes sure that the

particle is in a cell so neighborhood search will work properly. The only change in

the calculation of 𝜃 is the order of coordinate values in the atan2 function. Speed is

calculated as in Eq. 10.17. The reflective boundary is applied only to particles that

have gone outside of the model domain.

10.2.3 Algorithm Groups

Three algorithm groups were used in the model simulations (Table 10.2). Each group

had a tactical, strategic, and default behavior and was named after the tactical and

default behaviors. Neighborhood search was used for the tactical behavior for all

groups. Neighborhood search is an efficient and effective avoidance behavior. CRW

Table 10.2 Algorithm groups: Neighborhood Search (NS), Random Walk (RW), Correlated Ran-

dom Walk (CRW), Cauchy Correlated Random Walk (CCRW), Kinesis (K), Logistic Kinesis (KL),

and Gaussian Kinesis (KG)

Algorithm

group

Tactical Strategic Default Panic response

(tactical/strategic)

Time step

(min)

NS/RW NS CRW RW Sprint/CRW 15

NS/CCRW NS CRW CCRW Sprint/CRW 15

NS/K NS KL KG Sprint/CRW 120
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Fig. 10.1 Starting positions for particles/fish in FVCOM-tracking module in the Northern Gulf of

Mexico. The line is the 26
◦
C contour

and logistic kinesis were used as the strategic behaviors. Strategic behaviors were

matched to the default behaviors, where CRW was used for random walk defaults

and logistic kinesis was used for the kinesis default. The default behaviors, RW,

CCRW, and Gaussian kinesis (from here on, kinesis refers to Gaussian kinesis), were

the major difference between algorithm groups. Each algorithm group also used a

subgroup consisting of the sprint algorithm as the tactical behavior and CRW as the

strategic behavior.

10.2.4 Model Runs

For simulation set 1, each of the three algorithm combinations (Table 10.2) was

run for the four DO scenarios (Sect. 10.2.1). All simulations were for seven days.

A time period of seven days was selected because the model fish exposure levels

reach steady-state values after about five days. The starting positions of the 913 fish

are the result of having fish move with Gaussian kinesis for 124 days (Fig. 10.1). The

fish end up mostly gathered around the ideal temperature, which overlaps with the

hypoxic zone for the severe hypoxia scenario. The time step used depends on the

algorithm group. A 900-s (15 min) time step is used for the algorithm groups with

random walk algorithms. A time step of 2 h is used for the kinesis algorithm group.

A larger time step is used for kinesis because the algorithm is very inefficient at find-

ing the ideal temperature at smaller time steps. The output time steps were the same

as the respective time step for each algorithm group: every 15 min for the random

walk groups and every 2 h for kinesis.

For simulation set 2, each of the three algorithm groups with individuals con-

figured to be inefficient at avoidance (poor avoidance) was run on only the severe

hypoxia (July 23, 2002) scenario. The effects of poor avoidance are best seen when

avoidance is used a lot, so smaller hypoxic areas are less useful. Everything was the

same as with the severe hypoxia scenario in set 1 except for the poor avoidance. The

ability of the fish to avoid low DO was impaired by changing the 0.15 coefficient in
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Eq. 10.16 to 0.5, which added more variation to the movement angle of neighbor-

hood search used for avoidance. The sprint algorithm was also not used for these

runs because it is an algorithm with good hypoxia avoidance and allows the fish to

easily escape the hypoxic zone after two days. The poor avoidance runs were then

compared to the runs for the severe hypoxia scenario from simulation set 1.

10.2.5 Data Analysis and Visualization

10.2.5.1 Statistics

Several statistics are used to compare model runs. The first group of three statistics

looks at the conditions experienced by each fish. The first statistic, the percentage of

fish in a DO or temperature range, is calculated by first taking the DO or tempera-

ture value for each fish at each time step. The number of fish in each range is then

divided by the total number of fish to get the percentage. Summary statistics (mini-

mum, mean, and maximum) for DO, the second statistic, are calculated at each time

step for all 913 fish. The third statistic, exposure to hypoxia, is calculated by sum-

ming the total time spent in hypoxic conditions. For each time step, a value of one

is assigned for hypoxic values and zero for non-hypoxic values. The one or zero is

then multiplied by the time step, and the resulting values are summed to get the total

time exposed to hypoxia. For comparing time spent in hypoxic conditions, multiply-

ing by the time step converts to the unit of time used for the model. Data analysis,

manipulation, and plotting were all performed in R (R Core Team 2013). Outliers

are as defined by the R plotting method used, generally ggplot2 boxplot.

Three related statistics were used to compare the movement and distribution

spread of the fish: sinuosity, net distance, and total distance. The term “distribu-

tion spread” refers to how far the fish have spread out from their initial positions.

Sinuosity is the amount of wiggle in the path of the fish. It is calculated by dividing

the actual path by the shortest, or net, distance between the first and last point for

each fish. The actual path, or total distance travelled, is calculated by summing the

distances between successive points in the path. Distances between two points use

the distance formula.

A categorization test was used to compare hypoxia exposure values. It is not

advised to use statistical tests with p-values for interpreting simulation models. In a

simulation model, the researcher controls the degrees of freedom, which affects the

p-values (White et al. 2014). The algorithm groups are also known to be different, so

the questions of “are they different” is not an informative question to ask or answer

with statistical tests. Whether the algorithms can be differentiated in a field sample

is a more informative question to answer. A categorization test using a linear dis-

criminant analysis (LDA) was used to determine whether the hypoxia exposures for

the three algorithm groups could be told apart. The lda function in the R package

MASS was used on training data sets. Each training data set was comprised of 1000

mean exposures for each algorithm group from a sample size ranging from 25 to 900
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(by 25). Algorithm groups were only categorized within the same scenario and not

among scenarios. The prior for the LDA was 1/3 for each algorithm group training

data set, which assumes equal chance of a random sample being in any of the algo-

rithm groups. The LDA was run for each scenario using the training data sets and

the miscategorization rate was calculated as 1 minus the average categorization rate.

The acceptable rate of miscategorization was 0.05. The normoxia scenario was not

included because all the exposure values were zero, which caused lda to crash.

10.2.5.2 Growth and Vitality

The effects of hypoxia exposure on growth were calculated for the seven days of the

model run and extrapolated to 30 days. The model fish are juveniles between 1 and

2 years of age. Growth was calculated by first calculating the vitality at each time

step for growth using the following based on Miller Neilan and Rose (2014):

Gvitality =

{
1.0 x ≥ Gne
1.0 − Galpha (x−Gne)2

(x−Gne)2+Gbeta2
x < Gne

(10.21)

where Gne (3.35), Galpha (110.78), and Gbeta (21.06) are constants. Gne is the

threshold below which low DO has an effect on the fish, and x is the DO value

experienced by the individual fish for that time step. There is also a repair term for

growth vitality, Ggamma (0.21), which is the maximum increase in growth vitality

per hour. The repair term accounts for a delay in return to normal vitality rates after

returning to normoxia. The repair term was applied using:

Gvitalityrepair = min(Gvitality(t), (Gvitality(t − 𝛥t) + Ggamma ∗ 𝛥t)) (10.22)

where Gvitalityrepair is the new growth vitality term and 𝛥t is the time step. Ggamma
is multiplied by the time step because the data points are either 15 min or 2 h apart

while the repair term is hourly. Parameters for growth vitality for Atlantic croaker in

the region of the GOM hypoxic zone were provided by Sean Creekmore (personal

communication, Louisiana State University).

Growth is calculated by calculating growth and new weights at each time step.

The growth and new weight were calculated for each fish using:

Weight(t) = Weight(t − 𝛥t) ∗ eGvitalityrepair∗maxGrowthM (10.23)

where Weight(t) is the weight for the current time step, Weight(t − 𝛥t) is the weight

of the previous time step, and maxGrowthM is the maximum growth under normoxic

conditions. The initial weight (Weight(0)) and maximum growth rate were calculated

using equations from Barger (1985) that determine the length from age and a weight

from length. Parameters for the movement and growth equations are in Table 10.3.
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Table 10.3 Parameter values for algorithm and weight calculation equations

Parameter Value Description

𝛥t 0.25, 1 h Time step for particle-tracking

module. Value used depends

on default algorithm

th 2 mg O2/L The threshold for triggering

hypoxia avoidance

Utili 2.0, 3.0, 1.0
a

Intrinsic utility (NS, sprint,

default/strategic)

Mem 0.5, 0.9
a

Memory term

(default/strategic, tactical)

Standard minimum 0.175
a

Value utility must be greater

than to affect fish movement

ss0 0.23148 m/s
a

Baseline swimming speed

𝜀 0.9
b

Determines shape of wrapped

Cauchy distribution

𝜃m 0
b

Determines what angle

wrapped Cauchy distribution is

biased toward

h1, h2 0.7, 0.99
a

Kinesis weighting factors

𝜇temp 26
◦
C
c

Ideal temperature for croaker

𝜎temp 2
◦
C
c

Sigma value for Gaussian

curve

r 3
d

Controls slope of logistic curve

b 150
d

Control where logistic curve

occurs

Stuck 200, 25
E

When the counter reaches this

number of steps, the fish is

considered stuck. Value

depends on time step.

Galpha 100.78
f

Constant

Gbeta 21.06
f

Constant

Gne 3.35
f

Threshold for hypoxia affects

Ggamma 0.21
f

Repair term

Weight(0) 88.72 g
g

Initial weight calculated for

croaker at beginning of second

year of life

MaxGrowthM 0.002 g/day
g

Maximum growth rate in

normoxic conditions for

croaker from beginning to end

of second year of life

a
Based on Rose et al. (2014)

b
Determined by testing different values affects on wrapped Cauchy distribution

c
Based on location of temperature contour where croaker gather in the GOM

d
Determined by testing different values so that the logistic curve lined up around 2

e
Number of time steps that make up 2 days

f
From Sean Creekmore (Personal communication, LSU)

g
Calculated based on Barger (1985) and Miller Neilan and Rose (2014)
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10.2.5.3 Visualization Methods

The map plots were creating using ggplot2 layers for the coastline, interpolated val-

ues, contours, and fish generated in R. For the coastline, a shapefile for the US

coast from the USGS (http://coastalmap.marine.usgs.gov/regional/contusa../gomex/

gloria/data.html) was cropped down to include the Gulf coast between −95◦ and

−87◦ longitude and between 27
◦

and 31
◦

latitude. The contour and the interpolated

field layers were generated from output from FVCOM-WASP from 2002. DO values

for May 2, June 4, July 23, and September 21 were combined with temperature and

salinity values for July 23 to create scenarios that vary only by DO values. After

converting the final fish locations to latitude and longitude, the locations were added

to the plot.

10.3 Results

For simulation set 1 (good avoidance), most fish were able to escape the hypoxic zone

within one day and more fish escaped more quickly with the NS/RW algorithm group

than with NS/K algorithm group. In the final position maps for the fish (Fig. 10.2), the

majority of fish were outside of the hypoxic zone. The fish that were in the hypoxic

zone were on the very edge. For mild (d–f) and intermediate (g–i) hypoxia scenarios,

it took a day or less for the percentage of fish in conditions <2 mg/L (solid orange

line) to approach zero (Fig. 10.3). For the severe hypoxia scenario, it took three days

for NS/RW algorithm group (j) and five days for NS/CCRW algorithm group (k) for

the percentage of fish in conditions <2 mg/L to approach zero. The percentage of

fish in < 2 mg/L for the NS/K algorithm group (l) in the severe hypoxia scenario

leveled off at about 5% of fish in conditions < 2 mg/L.

For simulation set 2 (poor avoidance), fish took longer to escape the hypoxic

zone compared to simulation set 1 fish and NS/K algorithm group fish had a greater

decrease in the percentage of fish within the 1–2 mg/L range than NS/CCRW fish.

There were fish in the hypoxic zone for all three algorithm groups for all seven days.

All algorithm groups (m–o) had at least 5% of fish below 1 mg/L (teal line) and at

least 10% of fish between 1–2 mg/L (solid orange line) during the course of the seven-

day simulation (Fig. 10.3). The NS/K algorithm group (o) had the largest decrease

in the percentage of fish for the 0–1 mg/L and 1–2 mg/L ranges. The NS/CCRW

algorithm group (n) had the smallest decrease in the percentage for these ranges

and the percentage of fish in the 1–2 mg/L range stayed constant. The other three

ranges (2–3 mg/L, 3–4 mg/L, >4 mg/L) had a general increase in percentage for all

three algorithm groups with NS/K algorithm group having the largest change and

NS/CCRW algorithm group having the smallest. The >4 mg/L range was an excep-

tion, with NS/RW algorithm group having the smallest change in percentage of fish.

For NS/CCRW algorithm group, the dispersal of fish was greater than compared

to NS/RW algorithm group, resulting in NS/RW algorithm group having a smaller

change in percentage for that particular range.

http://coastalmap.marine.usgs.gov/regional/contusa../gomex/gloria/data.html
http://coastalmap.marine.usgs.gov/regional/contusa../gomex/gloria/data.html
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Fig. 10.2 Final fish positions for the severe hypoxia scenario along the Northern Gulf of Mexico.

Algorithm groups are neighborhood search/random walk (NS/RW), neighborhood search/Cauchy

correlated random walk (NS/CCRW), and Neighborhood Search/Kinesis (NS/K)

The summary statistics of DO for the algorithm groups became less similar as

hypoxic area increased, with NS/K algorithm group minimum DO values never ris-

ing above 2 mg/L while NS/RW and NS/CCRW algorithm group minimums did.

For normoxia (a–c), the mean (black line), minimum (dark gray line), and maxi-

mum (light gray line) DO values were about the same for the three algorithm groups
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Fig. 10.3 Percentage of fish in five DO ranges (0 to <4 mg/L) over time for each algo-

rithm group/scenario combination. Algorithm groups are neighborhood search/random walk

(NS/RW), neighborhood search/Cauchy correlated random walk (NS/CCRW), and neighborhood

search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia, intermediate hypoxia, and severe

hypoxia (with good and poor hypoxia avoidance)

(Fig. 10.4). As hypoxic area increased, the mean DO values for the fish decreased,

from over 5 mg/L for normoxia to around 3 mg/L in the severe scenario (j–l). The

maximum DO values for the fish also decreased with increasing hypoxic area. For

NS/RW algorithm group, the maxima tended to stay around the same values for the

entire model run, while the maximum values for NS/CCRW algorithm group and

NS/K algorithm group tended to increase over time. The minimum values for sce-

narios with hypoxia tended to increase to 2 mg/L and stay around that value. The

minimum values took longer to reach 2 mg/L for the intermediate (g–i) and severe

scenarios (j–l), with the longest time of around 5 days for the severe scenario for

NS/CCRW algorithm group (k). The intermediate (i) and severe (l) hypoxia scenar-

ios for NS/K algorithm group are the only exceptions to the trend of the minimum
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Fig. 10.4 Minimum, mean, and maximum DO values experienced by fish during the seven-day

simulation period for each algorithm group/scenario combination. The thin, black horizontal line
denotes 2 mg/L, so values below the line represent hypoxic conditions. Algorithm groups are

neighborhood search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk

(NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia,

intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

leveling off at 2 mg/L. Both of these time series had more variation than the

corresponding time series for NS/RW algorithm group (g, j) and NS/CCRW

algorithm group (h, k). The minimum DO values experienced by fish for the inter-

mediate scenario approach 2 mg/L and for the severe scenario stayed near 1.75 mg/L.

Even though the minimum DO values experienced by fish could be below 2 mg/L

during the entire simulation period, no fish spent the entire time in the hypoxic zone.

For simulation set 2, there was less variation across time and among the algorithm

groups than with simulation set 1, with NS/K having the largest variation. The mini-

mum DO value (dark gray line) for all the fish remained at or near zero for the entire

seven days (m–o, Fig. 10.4). There was little variation in the three statistics for all
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three algorithm groups. The maximum DO value has some variation for NS/CCRW

algorithm group (n) and NS/K algorithm group (o), but it was less than 0.5 mg/L.

The mean DO values increased very little, less than 0.5 mg/L, over the 7 day period.

The NS/K algorithm group had the largest increase in mean DO value, possibly due

to the larger time step.

10.3.1 Exposure

Fish exposure to hypoxia increased with hypoxic area, and exposure was not greatly

affected by the default algorithm used. As expected, there was no exposure to hypoxia

in the normoxia conditions. As the area of hypoxia increased, the number of fish

exposed and the exposure time increased (Fig. 10.5). NS/K algorithm group in the

severe hypoxia scenario had more fish exposed for over 4 days (l, 47 fish) than did

NS/RW algorithm group ( j, 6 fish) or NS/CCRW algorithm group (k, 10 fish). For the

severe hypoxia scenario, 83% of fish were exposed for less than a day, but there were

a number of outliers with longer exposures (about 150 fish for each algorithm group).

Two of the NS/K algorithm group outliers had exposures of over six days. The inter-

mediate and severe (good avoidance) scenarios required a sample size of about 375

fish to tell the algorithm groups apart (Fig. 10.6). The mild scenario required a sam-

ple size of about 250 fish. Both of these sample sizes are very large for a study record-

ing fish movement and hypoxia exposure. Until fish tracking technology improves,

it is unlikely that the movement types described by the algorithm groups could be

differentiated in field data.

The instances of longer hypoxia exposure were most likely due to spatial patterns

in the hypoxic zone that occurred in the intermediate and severe hypoxia scenarios

where fish were surrounded by hypoxic water on at least three sides. In the interme-

diate and severe hypoxia scenarios, fish tended to congregate in areas of normoxia

that were either partially or entirely surrounded by hypoxic water. Fish in these areas

were likely to wander back into the hypoxic zone and have higher hypoxia exposure.

Because of the larger time step for the NS/K algorithm group, in narrow regions of

normoxia, fish could overshoot normoxic areas multiple times and end up with large

hypoxia exposures.

When avoidance is poor (simulation set 2), more fish were exposed and the three

algorithm groups have similar exposures, though NS/CCRW and NS/RW algorithm

groups had more fish at maximum exposure (7 days) than NS/K algorithm group.

As expected, the exposures for poor avoidance did not resemble those from good

avoidance (simulation set 1, Fig. 10.5). The NS/K algorithm group had fewer fish

with about seven days of exposure, which was most likely due to the larger time

step. Fish with a seven-day exposure were most likely stuck at local maxima that

were still hypoxic and this occurred less with larger time steps. All three algorithm

groups had a group of fish with no exposure, which were the fish that started outside

the hypoxic area and never entered it. The NS/RW (m) and NS/CCRW (n) algo-

rithm groups resulted in more fish being exposed for the maximum cumulative time
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Fig. 10.5 Exposure calculated as the total number of days fish spend in hypoxic conditions plotted

for each fish and each algorithm group/scenario combination. The fish are numbered by their model

ID number. Algorithm groups are neighborhood search/random walk (NS/RW), neighborhood

search/Cauchy correlated random walk (NS/CCRW), and neighborhood search/kinesis (NS/K). The

scenarios are normoxia, mild hypoxia, intermediate hypoxia, and severe hypoxia (with good and

poor hypoxia avoidance)

than NS/K algorithm group (o). The NS/CCRW algorithm group had 266 fish at

maximum exposure and the NS/RW algorithm group had 273 fish, while the NS/K

algorithm group had 45 fish at maximum exposure. The algorithm groups could be

differentiated at a sample size of about 250 fish. This sample size was smaller than

the sample size for the severe hypoxia scenario with good avoidance.
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Fig. 10.6 Graph of miscategorization rate of algorithm groups plotted against sample size. The

horizontal black line is the maximum acceptable miscategorization rate (0.05). The scenarios are

mild, intermediate, and severe hypoxia. Severe hypoxia has both good and poor hypoxia avoidance

10.3.2 Distribution Spread

10.3.2.1 Maps

Fish spread further with the NS/CCRW algorithm group than with the NS/RW and

NS/K algorithm groups. When looking at the final position maps for normoxia, the

three algorithm groups had a different distribution. The NS/RW algorithm group

fish (Fig. 10.7) diffused a short distance from the initial positions such that the ini-

tial positions are still recognizable. The NS/CCRW algorithm group fish (Fig. 10.7)

spread out until the positions looked random, and the initial positions were no longer

recognizable. The NS/K algorithm group fish (Fig. 10.7) looked almost exactly like

the initial positions because the initial positions are the steady state for kinesis. The
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Fig. 10.7 Final fish positions for the normoxic scenario along the Northern Gulf of Mexico. Algo-

rithm groups are neighborhood search/random walk (NS/RW), neighborhood search/Cauchy cor-

related random walk (NS/CCRW), and neighborhood search/kinesis (NS/K)

final position maps for mild and intermediate hypoxia had a similar distribution as

the normoxia maps for the respective algorithm.

The final position maps for severe hypoxia (Fig. 10.2) show that for the NS/CCRW

algorithm group fish spread more than for the other two algorithms groups and NS/K

algorithm group gathered near the optimum temperature when possible. In the area

outside of the hypoxic zone, fish were spread out the least with the NS/RW algorithm
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group and the most with the NS/CCRW algorithm group (Fig. 10.2). Fish gathered

closer to the edges of the hypoxic zone with the NS/RW algorithm group and the

NS/K algorithm group (Fig. 10.2) than with the NS/CCRW algorithm group. There

was an area of normoxic water completely surrounded by hypoxic water (i.e., a nor-

moxic island) for the severe hypoxia scenarios. The spatial distribution of fish within

the normoxic island was influenced by the default algorithm. The fish were evenly

spread out with the NS/CCRW algorithm group, while they gathered on one side

with the NS/RW and NS/K algorithm groups. The fish for the NS/RW algorithm

group were largely located on the eastern side of the normoxic island. In contrast,

the kinesis fish gathered near the southern side of the normoxic island which was

closer to their optimum temperature.

10.3.2.2 Sinuosity, Net Distance, and Total Distance

Sinuosity, net distance, and total distance differed among the algorithm groups with

NS/RW having the largest sinuosity while covering the shortest net distance. The

NS/RW algorithm group fish generally had larger sinuosities than the NS/CCRW

and NS/K algorithm groups (Fig. 10.8). The NS/K algorithm group tended to have a

slightly smaller sinuosity than the NS/CCRW algorithm group. Sinuosity was broken

into its two components: the net distance from start to end and the total distance of

the fish track. For net distance (Fig. 10.9), the NS/RW algorithm group fish tended

to cover a smaller net distance than the NS/CCRW and NS/K algorithm groups.

The opposite was true for the total distance covered, with the NS/K algorithm group

covering a smaller total distance than the other two algorithm groups (Fig. 10.10).

NS/CCRW and NS/RW both had similar and relatively small distributions of total

distance. The NS/K algorithm group had a larger distribution.

Increasing the area of hypoxia affected sinuosity and its components because NS

and sprint algorithms were used more. The sinuosity decreased for the NS/RW algo-

rithm group and increased for the NS/K algorithm group as the area of hypoxia

increased (Fig. 10.8). The NS/RW algorithm group sinuosity decreased because the

net distance covered by the fish increased. Because fish travel in a mostly straight line

using NS and sprint algorithms as opposed to the many turns taken by RW, increasing

usage of NS and sprint algorithms increases the net distance. The sinuosity for the

NS/K algorithm group increased because the total distance covered increased. The

distance travelled for each time step depends on the temperature and the weighting

of the random and previous components. The closer to the optimum temperature

the fish are, the slower they move. By adding NS and sprint algorithms, which have

set distances covered each time step, the total distance covered is increased. NS and

especially sprint also contributed to the increase in the number of outliers for net and

total distance as the area of hypoxia increased. There was little change for the sin-

uosity or its components for the NS/CCRW algorithm group as the area of hypoxia

increased.

The simulation set 2 fish had larger distribution ranges for sinuosity and total

distance than the simulation set 1 fish, but generally followed the same trends as
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Fig. 10.8 Sinuosity (amount of wiggle) of the fish tracks. Black dots denote outliers. Algorithm

groups are neighborhood search/random walk (NS/RW), neighborhood search/Cauchy correlated

random walk (NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia,

mild hypoxia, intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

simulation set 1 fish for the respective algorithm groups. For sinuosity, the NS/RW

algorithm group had the highest value and had a median and range similar to the

normoxia, mild hypoxia, and intermediate hypoxia scenarios (Fig. 10.8). Because

there was no sprint and NS had a large degree of randomness, the sinuosity did not

decrease with a larger hypoxic area. For the NS/CCRW algorithm group, sinuos-

ity for poor avoidance was larger than sinuosity for good avoidance. For the NS/K

algorithm group, sinuosity was only a little larger, by about one. For net distance,

the distribution ranges for poor avoidance were not much greater than those for good

avoidance (Fig. 10.9). The poor avoidance distribution ranges were between the sizes

of the good avoidance for the severe hypoxia scenario and the other three scenarios.

The net distance for the NS/K algorithm group was larger than the net distance for
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Fig. 10.9 The net, or shortest, distance between the starting and ending positions of the fish. Black
dots denote outliers. Algorithm groups are neighborhood search/random walk (NS/RW), neigh-

borhood search/Cauchy correlated random walk (NS/CCRW), and neighborhood search/kinesis

(NS/K). The scenarios are normoxia, mild hypoxia, intermediate hypoxia, and severe hypoxia (with

good and poor hypoxia avoidance)

the NS/CCRW algorithm group, while for good avoidance they were either similar

or the net distance for the NS/CCRW algorithm group was greater. For total distance,

the distribution ranges were much larger for the NS/RW and NS/CCRW algorithm

groups (Fig. 10.10). For the NS/K algorithm group, the total distance was similar to

the values for the normoxia, mild hypoxia, and intermediate hypoxia scenarios. As

with good avoidance, for the NS/K algorithm group, the total distance was smaller

than the total distance for the other two algorithm groups.
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Fig. 10.10 Total distance covered by the fish. Black dots denote outliers. Algorithm groups are

neighborhood search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk

(NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia,

intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

10.3.3 Temperature

The temperatures experienced by the fish depended on the default algorithm used,

with a greater percentage of fish near the optimum temperature for NS/K algorithm

group, except for the severe hypoxia scenario. The percentage of fish in the 25–

27
◦
C range (solid purple line), which brackets the optimum temperature of 26

◦
C,

decreased over the course of the seven days for NS/RW and NS/CCRW algorithm

groups (Fig. 10.11). The 25–27
◦
C range was added to see how the percentage of

fish around the optimum temperature changes. The percentage of fish in the 25–

27
◦
C range for the NS/RW algorithm group decreased less than for the NS/CCRW

algorithm group because the NS/RW algorithm group fish do not travel as far. For
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Fig. 10.11 Percentage of fish in temperature ranges over time for each algorithm group/scenario

combination. The optimum temperature is 26
◦
C. Algorithm groups are neighborhood

search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk (NS/CCRW),

and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia, intermediate

hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

the NS/K algorithm group, the percentage of fish in the 25–27
◦
C range increased for

the normoxia (a–c), mild hypoxia (d–f), and intermediate hypoxia (g–i) scenarios.

For the severe hypoxia scenario (j–l), the percentages for all three algorithm groups

looked similar. For example, while the 25–27
◦
C range was over 50% by the end of

the run for the less severe hypoxic scenarios, the percentage was less than 20 for

the severe hypoxia scenario. The hypoxic zone overlaps with the 26
◦
C contour, so

the NS/K algorithm group fish were not able to congregate near the contour line.

The percentage of fish in the >30
◦
C range (dotted dark gray line) tended to increase

for NS/CCRW algorithm group but not for the other algorithm groups, most likely

because the NS/CCRW algorithm group fish spread out the most.



10 Comparing Default Movement Algorithms for Individual . . . 269

For simulation set 2, the percentage of fish in different temperature ranges was

similar to the severe hypoxia scenario for simulation set 1. For all three algorithm

groups (m–o), the percentage of fish in the 25–27
◦
C range decreased over the seven

days (Fig. 10.11). The major difference between the poor and good avoidance for

severe hypoxia scenarios was that there was a smaller percentage of fish in the >30
◦
C

range for the poor avoidance (m–o) than for the good avoidance ( j–l). This was prob-

ably due to the fact that many fish never left the hypoxic zone and did not have the

chance to disperse away from it. The NS/K algorithm group (o) had the highest per-

centage of fish in the >30
◦
C range, but the percentage of fish was still lower than in

case of good avoidance (l).

10.3.4 Growth and Vitality

There were only small difference in weights (<1 g) or growth (<0.05 g/day) due

to default algorithm or scenario (Fig. 10.12). There was a small difference between

different scenarios, but even the severe scenario ( j–l) had less than 1 g difference

in weight due to low DO exposure for most of the fish. The growth rates differed

by less than 0.05 g/day among scenarios and algorithm groups. When extrapolated

out to 30 days, the weights between algorithm groups covered the same numerical

range. About 83% of fish were exposed for less than a day, which is probably why

the effects on growth were so small.

The final weights for the poor avoidance set covered a similar range of values

for all algorithm groups within that set and also a larger range compared to the good

avoidance set. The poor avoidance runs had similar distributions of final weights with

slight differences. The range for poor avoidance weights ranged from 90 g for the fish

least affected by hypoxia to just below 87 g for the fish most affected (Fig. 10.12).

For good avoidance, only less than 20 fish had weights below 89.5 g.

10.4 Discussion

10.4.1 Avoidance and Default Behaviors

The model results suggest that avoidance and default behaviors can be separated and

evaluated independently. For example, avoidance can be modeled without having to

consider the default algorithm because it did not affect the hypoxia exposure. The

default behavior can be chosen based on its characteristics without considering any

interaction between the avoidance and default behaviors. Importantly, the avoidance

and default algorithms could be validated and calibrated separately. There is not a

large amount of field data for validating and calibrating fish tracks from IBMs, so

being able to use data even if all the environmental conditions used in a model are

not recorded in the field data is essential.
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Fig. 10.12 Final weights plotted for each fish by model id number. Algorithm groups are neigh-

borhood search/random walk (NS/RW), neighborhood search/Cauchy correlated random walk

(NS/CCRW), and neighborhood search/kinesis (NS/K). The scenarios are normoxia, mild hypoxia,

intermediate hypoxia, and severe hypoxia (with good and poor hypoxia avoidance)

10.4.2 Exposure

The default algorithms were found not to affect hypoxia exposure for the model fish,

but the tactical behavior did affect exposure. It makes sense that the tactical behavior

should have an important effect on hypoxia exposure because the tactical behavior

was responsible for having the fish avoid conditions such as hypoxia. What differ-

ences there were between the default algorithms were shown when the effectiveness

of the tactical behavior was changed from good to poor avoidance (Fig. 10.5). Poor

avoidance magnified the differences between the default algorithms. The difference

between good and poor avoidance can also be seen in the smaller sample size required

to differentiate between the algorithm groups (Fig. 10.6). The difference was most
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likely due to the different time steps used for the random walk algorithm groups and

the kinesis algorithm group. The time step used was chosen because of the character-

istics of the default algorithm, but the exposure differences mostly occurred because

of that time step’s effect on the tactical behavior. So even when there was a difference

in exposure between algorithm groups, it was generally due to the tactical behavior

and not the default behavior.

The hypoxia conditions and “local” conditions had a greater effect on hypoxia

exposure than the default algorithm. There was an obvious increase in exposure with

increased hypoxic area. More fish were exposed in larger areas and took longer to

escape the hypoxic area. There was also the increased chance of fish getting stuck

and having to rely on the sprint algorithm to escape the hypoxic zone. The different

scenarios also had different smaller scale or “local” features that affected hypoxia

exposure. The severe scenario in particular had several features such as the nor-

moxic island and the normoxic sliver that affected exposure. In particular, the nor-

moxic sliver, i.e., the thin area of normoxia surrounded by hypoxia on three sides

in the severe scenario, was a relatively small area for fish to inhabit. Because all the

default algorithms diffuse to some extent, the fish in a small normoxic area tended

to spread out into the hypoxic area. Most of these fish then used the tactical behavior

and returned to the normoxic sliver. Thin hypoxic areas such as the normoxic sliver

feature led to increased hypoxia exposure. Fish are known to gather at the shoal

that corresponds to the normoxic sliver (Craig 2012), so whether real fish continu-

ally wander back into the hypoxic area or stay on the shoal without getting exposed

would be an interesting question to explore. It would help with making the model

better reflect reality and increase knowledge of the behavior of the fish.

10.4.3 Algorithm Comparison

The choice of the default algorithm did not make a significant difference in the

hypoxia exposure of the fish or changes in growth due to hypoxia exposure for static

conditions, so other characteristics of the algorithm must be considered when choos-

ing which algorithm to use. As shown in the results, the temperatures experienced

by the fish and the distance covered by the fish were different among the default

algorithms. The time step that the algorithm can be used for is also important to

consider.

The main way that the default algorithms differed was sinuosity and tempera-

ture sensitivity. There were only small differences in exposure between the default

algorithms, whether avoidance was good or bad. The area covered by the fish was

the major difference among the algorithms (Fig. 10.8). Fish using the RW algorithm

moved only a short distance in very convoluted paths while fish using the CCRW

algorithm spread out the furthest. Fish using the kinesis algorithm tended to gather

along the 26
◦
C contour where possible, so these fish travelled farther than the RW

using fish but did not spread out like the CCRW using fish. Kinesis was the only algo-

rithm that took temperature into account and so was the only algorithm that affected



272 E. LaBone et al.

temperature-related movement in the non-severe hypoxia scenarios (Fig. 10.11). The

RW algorithm had more fish near the optimum temperature than the CCRW algo-

rithm, but this was due to the RW fish not diffusing far from the starting positions

along the 26
◦
C contour.

The time step used can limit what algorithms are effective. Kinesis is not very

effective at time steps smaller than an hour on large grid cells because the fish are

unable to find the preferred temperature. The CCRW and RW algorithms work at

smaller time steps. While the RW algorithm works at smaller time steps, fish clearly

move a shorter distance using that algorithm than with kinesis or CCRW as shown

in the results. For greater diffusion, a large time step would need to be used with RW.

Because CCRW is a more directional algorithm, a larger distance is covered when

using that algorithm even at smaller time steps.

Selection of an appropriate time step depends on the system and the organism.

Generally, a larger time step is used for slow moving particles and for large areas

while a smaller time step would be used for faster moving particles and small areas.

Physical variables are typically evaluated on the time frame of seconds, even for

large areas. For example, the FVCOM-WASP model calculates physical and envi-

ronmental data at time steps of 5 s for grid cells that can be 10 km in size (Justić and

Wang 2014). For fish, the time step often depends on the grid size used. Time steps

and grid sizes that have been used to model fish movement include 1-km cells with a

time step of 1 hr (Creekmore 2011), 20–500 m cells with a 9-s time step (Rose et al.

2014), and <1 m with a 2-s time step (Goodwin et al. 2006). Field data could be used

to determine whether croaker movement in response to hypoxia in the GOM can be

modeled in sufficient detail with a 2-h time step.

The distance covered by the model fish depends on the default algorithm and the

time step used. The area that a random walk algorithm can cover is limited by the time

step. The average radial distance from the starting to ending point for a random walk

is

√
N, where N is the number of steps (Landau et al. 2013). For a fixed time period,

the number of steps is inversely proportional to the time step. So the number of steps

is greater for the 900 s time step than for the 2-h time step. This is why for RW the

fish do not travel very far and why kinesis does not work well at the shorter time step.

Kinesis is the combination of the previous direction and a random walk, so the radial

distance covered by kinesis is affected by the time step. The fish using kinesis do not

cover a large enough area with a 900-s time step to find the preferred temperature.

The CCRW algorithm is not a uniform random walk because of the use of the Cauchy

distribution when choosing angles. CCRW is the only default algorithm where fish

cover a large distance at the smaller time step, with the distance at 900 s for CCRW

being comparable to the distance covered using kinesis for a 2-h time step. If smaller

time steps are a better fit for croaker movement, the CCRW movement algorithm

would be the preferred default algorithm among those compared in this paper.

In systems where multiple environmental conditions affect fish movement and

distribution, being able to model fish responses to multiple conditions or stressors is

useful. It is more realistic for fish to be affected by multiple stressors or conditions.

Temperature and distance from shore affect the distribution of croaker in the GOM
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(Craig 2012). In tidal systems, salinity and tides are important environmental condi-

tions that can affect fish movement in conjunction with hypoxia (Brady and Targett

2013). Multiple conditions or stressors can be modeled using an event-based algo-

rithm to choose between different algorithms depending on the condition or stressor.

Event-based algorithm is useful for conditions or stressors that have clear cut offs or

thresholds where the fish is either affected or not affected. For conditions or stressors

that are always present and have no clear cut off or threshold, it is more useful to use

a default algorithm that moves fish based on the condition or stressor. The ability

to take environmental conditions, such as temperature, into account is a strength of

kinesis as a default algorithm.

Determining the most appropriate default algorithm for a particular model and

organism requires weighing the advantages and disadvantages of the different algo-

rithms. For GOM croaker, more information is needed to determine which of the

algorithms covered in this paper is most appropriate. Looking for additional algo-

rithms to use as the default is also worth considering. The CCRW algorithm was

adapted to work with the FVCOM particle-tracking module as an alternative to kine-

sis and RW. CCRW works at smaller time steps while covering a larger distance than

RW. This is useful in situations where diffusion-type movement is required, but the

grid cells are too large and the time step is too small for RW to sufficiently diffuse

from the starting position.

10.4.4 Real Versus Model

The lack of appropriate data makes it difficult to calibrate or validate IBMs for

hypoxia avoidance in the GOM. Most available data for fish locations in the GOM

are from trawls or other group sampling methods that only show where fish are at

one point in time. Such data sets can be compared to the general locations of fish in

the model. Fish have been shown to concentrate on a shoal (Craig 2012) that cor-

responds to the normoxic sliver where fish gather in the severe hypoxic scenario.

But for comparing fish tracks and hypoxia exposure, data sets need to have detailed

information on fish movement over time and not just general locations or locations

for one time step. Fish can be tracked using acoustic tags, but this does not guarantee

that the horizontal movement is recorded with enough detail.

Existing data sets are either in areas that are difficult to compare to the GOM or

are not detailed enough. A data set for croaker in the GOM was part of a study look-

ing at the vertical movement of croaker in response to hypoxia. Because horizontal

movement was not part of the study, it was not recorded in detail. The horizontal loca-

tions of the fish can be reconstructed after the fact from the strength of the acoustic

tag signals (Grothues et al. 2013), but the resulting data have confidence intervals

too large to be used to compare to the model. Two data sets that are detailed either

temporally (Pepper Creek, DE, Brady and Targett 2013) or spatially (Neuse River,

NC, Kevin Craig personal communication) are from shallow tidal areas with diur-

nal DO changes. The area, depth, and DO cycle are very different between the tidal
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areas and the GOM. Pepper Creek is a narrow tidal creek where the fish movement

was recorded as one dimensional (Brady and Targett 2013). Neuse River is larger

than Pepper Creek, but still much smaller than the GOM. Fish tracks were recorded

in two dimensions at Neuse River. The tides also have a greater effect on the tidal

areas, which are located on the Atlantic coast, as compared to the GOM shelf where

the tides are weak. All of these differences make it difficult to compare fish behavior

in the tidal areas to fish behavior in the GOM.

Despite the differences in the areas, there are still some ways that the field data can

be used. The most important information that can be taken from the three existing

field data sets is that fish avoid hypoxia and can survive brief exposures to hypoxic

water (Brady and Targett 2013). The DO values experienced by the GOM croaker

were interpolated from CTD casts near the fish location. None of the croaker were

found in hypoxic conditions. This suggests that the fish were able to successfully

avoid hypoxia, keeping in mind the stress due to tagging that may have affected

behavior and that hypoxia was weak where the fish were tracked (Thomas Grothues

personal communication). The Pepper Creek and Neuse River had fish that were

exposed to hypoxia and then moved out of the hypoxic area and continued to move,

indicating the exposure was sublethal. The fact that non-fatal exposure occurs means

that direct effects other than mortality and indirect effects are possible. As previ-

ously mentioned, sublethal effects of low DO exposure have been found in croaker

(Thomas and Rahman 2009). Even when field data cannot be directly compared to

the model output, the field data can demonstrate that the processes described in the

model exist in the field.

10.4.5 Impacts

The work in this paper is important because it builds on what has been done with

movement algorithms and the models used. Similar movement algorithms have been

used with different grids (Creekmore 2011), for different locations with different

stressors (Rose et al. 2014), or in abstracted grids (Watkins and Rose 2013). This

paper represents the first attempt to use the movement algorithms with a grid based

on a snapshot of the FVCOM-WASP output. The CCRW algorithm was also added

to the list of algorithms used before with the FVCOM-tracking module with the

FVCOM-WASP output. The CCRW algorithm adds another option to the default

algorithms that is not as limited by time step. There was also an increased understand-

ing of how different algorithms behave as default algorithms in an event-based setup

compared to each other. A better understanding of how algorithms behave allows for

choosing the more appropriate algorithm for a given model and scenario.

Modeling movement helps to study the impacts of environmental conditions and

stressors on organisms such as fish, especially when field data are hard to obtain. As

mentioned in Sect. 10.4.4, there is limited field data for the interactions of croaker

and the GOM hypoxic zone. There is particularly limited data for movement of indi-

vidual croaker relative to the hypoxic zone. A model helps to look at the impacts of
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the hypoxic zone using what information there is on croaker and hypoxia. The use of

a model does not negate the need for field data, but it can help to fill in gaps where

field data are hard to obtain or absent.

Appropriate models can be used to help inform management decisions. Choos-

ing the appropriate model and movement algorithms requires knowledge of the sys-

tem, possible models, and possible movement algorithms. Increasing knowledge of

the behaviors of different movement algorithms helps with the decision of choosing

the appropriate model. Field data and a validated model can be used for manage-

ment decisions. An example is a fish movement model used to model fish movement

around various objects near a hydroelectric dam (Goodwin et al. 2006). If the neces-

sary field data were collected for calibration and validation, the model in this paper

could be used to inform decisions that involve the GOM hypoxic zone and fisheries.

10.5 Conclusion

This paper tested the hypothesis that the default algorithm does not affect the hypoxia

exposure for model fish. The results of running three algorithm groups for four sce-

narios based on output from the FVCOM-WASP hydrodynamic-water quality model

suggest that the default algorithm does not affect hypoxia exposure in static condi-

tions. While exposure is not affected by the default algorithm, sinuosity and its com-

ponents, total and net distance, are affected by the default algorithm used. For static

conditions, the factors that should be considered when choosing a default algorithm

are dispersion, time step, and environmental conditions other than DO.

For the results and conclusions of this paper to be applied to dynamic conditions

or 3-D conditions and not just static 2-D conditions, the algorithms must be tested

for dynamic conditions and 3-D conditions. The algorithms were tested for static

2-D conditions, which do not reflect reality very well. Consequently, the results of

the paper increase the knowledge of how these algorithms perform; the results may

not apply to dynamic or 3-D conditions. To better reflect reality and be more useful

for management purposes, the properties of the algorithms need to be compared in

dynamic conditions and in 3-D.

Validated models can help inform management decisions when field data is diffi-

cult or impossible to obtain. Models are particularly useful in situations where field

data are difficult to obtain (e.g., exposure time series for large numbers of fish) or

impossible to obtain (e.g., effects of future climate change). Managers can use results

from a range of model scenarios to decide between different management actions.

To ensure the model scenarios reflect reality as closely as possible, it is important

to understand the model and to have field data for calibration and validation. By

testing how the model reacts under different conditions helps the modeler to better

understand the behavior of the model. Investigating how the default algorithms affect

exposure helps to better understand the model for hypoxia avoidance for fish. Appro-

priate field data allow for calibration and validation, which help insure the model

is close enough to reality. There is a need for appropriate field data for the model
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described in this paper. Obtaining detailed movement tracks and hypoxia time series

for relatively small fish such as croaker is difficult, but worth doing to improve the

model and its usefulness. Developing methods for obtaining movement and hypoxia

exposure time series for croaker is also important because it establishes methods for

successfully obtaining the data which could be applied to economically important

species such as red snapper or shrimp.
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Chapter 11
Hypoxia Effects Within an Intra-guild
Predation Food Web of Mnemiopsis leidyi
Ctenophores, Larval Fish, and Copepods

Sarah E. Kolesar, Kenneth A. Rose and Denise L. Breitburg

Abstract Differences in predator and prey tolerances to abiotic factors, such as
seasonal low dissolved oxygen (DO) concentrations in estuarine environments, can
affect planktonic food web dynamics. Summertime hypoxia in the Chesapeake Bay
alters field distributions, encounter rates, and predator–prey interactions between
hypoxia-tolerant ctenophores, Mnemiopsis leidyi, and their less tolerant ichthy-
oplankton and zooplankton prey. Omnivory and intra-guild predation (IGP) in-
crease the complexity of food webs, thereby confounding the effects of predation
versus competition on prey populations. Omnivorous ctenophores in temperate
estuarine food webs can both eat and compete with fish larvae for copepod prey.
We isolated the effects of predation and competition, and how low versus high DO,
affect larval fish growth and survival, using a spatially explicit (three vertical layers)
individual-based model of a ctenophore-fish larvae-copepod IGP food web. We
simulated three alternative food web structures of how ctenophores affect fish larvae
(full interactions, relaxed predation, relaxed competition) under normoxic and
hypoxic DO scenarios. Results from laboratory experiments and field studies were
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used to configure and corroborate the model. Ctenophore predation had a bigger
effect on survival of modeled fish larvae than did competition between ctenophores
and fish larvae for shared zooplankton prey, but competition more strongly affected
larval fish growth rates than did predation. Hypoxia versus normoxia did not alter
the relative importance of ctenophore predation and competition, but low DO did
decrease larval fish survival and increase larval growth rates. Model results suggest
that consideration of the interaction strength in food webs and explicit treatment of
spatial habitats to allow predator–prey overlap to emerge from movement will
enhance our ability to predict hypoxia effects on fish.

Keywords Hypoxia ⋅ Bay anchovy ⋅ Fish eggs ⋅ Ichthyoplankton ⋅
Zooplankton ⋅ Predation ⋅ Trophic ⋅ Chesapeake Bay

11.1 Introduction

Hypoxia is increasing in coastal waters worldwide (Diaz and Rosenberg 2008;
Gilbert et al. 2010; Rabalais et al. 2010; Zhang et al. 2010), with unknown but
potentially meaningful effects on ecologically and commercially important species
(Caddy 1993; Cloern 2001; Breitburg et al. 2009; Ekau et al. 2010; Levin et al.
2010). Hypoxia has well-documented effects on sessile species, and on the growth,
survival, and reproduction of mobile individuals in localized areas. Furthermore,
generalizations about hypoxia affecting mobile species at the population level are
common (Kidwell et al. 2009 and references therein), although the quantitative
evidence is mixed. Breitburg et al. (2009) did not find a strong relationship between
fisheries landings and degree of hypoxia across coastal systems, but they caution
that there are well-known problems with using landings data as indicators of
population abundance. In a review of modeling analyses, Rose et al. (2009)
determined that direct large-scale effects of hypoxia on coastal fish populations are
relatively rare, but that there is potential for indirect effects of hypoxia on fish
populations mediated via competitive and predation changes due to the responses of
other members of the food web. Thus, examination of the effects of hypoxia within
a food web context is appropriate, and may be necessary, to fully quantify hypoxia
effects at the population level for key, mobile fish species.

Omnivory is common in many aquatic consumers and affects food web
dynamics. Omnivory results in increased food web complexity that can dampen
trophic cascades (Polis and Strong 1996; Snyder and Wise 2001) caused by strong
top-down control in linear food chains. Feeding on multiple trophic levels disperses
predation effects throughout the food web by creating weak trophic links (McCann
et al. 1998). Trophic links are weaker when a predator is not wholly dependent
upon any single resource for survival, such that the predator’s actions may be more
detrimental to the prey species than beneficial to the predator (Holt and Polis 1997;
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Diehl and Fießel 2000). Omnivory also reduces the ability of predators to deplete
any one trophic level in a system, and thus, omnivores are potentially less affected
by food limitation than specialists. However, whether omnivores can limit the
growth or abundance of competitors by depleting shared food resources is debatable
(Polis and Strong 1996). The effect of omnivory on food webs is complicated, and it
remains unclear whether the overall effect of omnivory is stabilizing or destabi-
lizing (Fagan 1997; Vandermeer 2006).

Intraguild predation (IGP) is a specialized case of omnivory involving the
consumption of one competitor by another, simultaneously conferring nutritional
gain to the predator and eliminating a competitive rival (Polis et al. 1989). Intra-
guild predation is widespread (Ehler 1996; Arim and Marquet 2004; Vandermeer
2006; Rosenheim 2007) and is particularly ubiquitous in marine and coastal sys-
tems (Polis et al. 1989; Thompson et al. 2007). Separating the indirect effects of
competition from the direct effects of predation is challenging (Wissinger and
McCrady 1993; Diehl 1995; Navarette et al. 2000). Understanding the role of
omnivory, and especially IGP, in food web dynamics is important for predicting
how coastal food webs will respond to hypoxia.

There are a variety of conditions under which the IGP form of omnivory can
promote coexistence of the predator and prey species (i.e., increase food web
stability). One of the most common situations is when the prey species is more
efficient than the predator at utilizing the shared resource (Polis et al. 1989; Polis
and Holt 1992; Holt and Polis 1997; Rosenheim 2007). Other situations that pro-
mote coexistence include: intermediate levels of disturbance (Gurevitch et al.
2000); seasonality in environmental conditions (Polis 1984); habitat structure
(Janssen et al. 2007); intermediate levels of productivity (Diehl and Feißel 2000;
Heithaus 2001); spatial refuges, temporal refuges, or resource subsidies that are
unique to one of the species (Polis 1984; Wissinger 1992; Navarette et al. 2000;
Amaraskare 2007); and age structure in which IGP-induced competition and pre-
dation differentially affects specific age classes (Polis 1984, 1998).

Our focus here is on a specific IGP food web (Chesapeake Bay) and how an IGP
food web with different degrees of competition and predation interacts with low DO
to affect food web responses. In the Chesapeake Bay and its tributaries such as the
Patuxent River, a major component of the open-water food web involves cteno-
phores (Mnemiopsis leidyi), planktivorous fish larvae (e.g., bay anchovy, Anchoa
mitchilli), and calanoid copepods (e.g., Acartia tonsa) (Fig. 11.1). Bay anchovy is
an important forage fish species and the most abundant fish in the Chesapeake Bay
system (Wang and Houde 1994). Acartia tonsa is the dominant summer crustacean
mesozooplankton species in the mesohaline Chesapeake Bay (Brownlee and Jacobs
1987; Kimmel and Roman 2004). Acartia is consumed by both M. leidyi and larval
bay anchovy, and M. leidyi also consumes larval bay anchovy. Similar food webs,
with species substitutions, are found in many temperate coastal waters (Breitburg
et al. 1997).

Low dissolved oxygen (DO) during the summer is a common feature in the main-
stem Chesapeake Bay and also in many of its deep tributaries (Breitburg et al. 2003;

11 Hypoxia Effects Within an Intra-guild Predation Food Web … 281



Kemp et al. 2005) and can affect the stability of the IGP food web by differentially
affecting the vertical distributions of the species. Field studies indicate that low DO
concentrations can cause behavioral responses in habitat use and distribution
by motile organisms such as Mnemiopsis leidyi, fish larvae, and zooplankton
(Breitburg et al. 2003; Kolesar et al. 2010). Field data demonstrated how increased
habitat overlap between ctenophores and copepods in a stratified water column led
to elevated predation rates, especially near the pycnocline (Purcell et al. 2014).
Indeed, increasing hypoxia has been associated with shifts in estuarine food webs to
greater domination by jellyfish (Purcell et al. 2001).

In this paper, we used an individual-based simulation model to examine the roles
of predation, competition, and low DO in the M. leidyi-fish larvae-copepod
intra-guild food web. The model simulates predation by M. leidyi on fish larvae and
zooplankton, and predation by fish larvae on zooplankton, in a three-layer water
column for the summer months using information representative of the mesohaline
portion of the Patuxent River. Simulations were performed to quantify the effects of
low DO on food web dynamics and to isolate the effects of competition versus
predation on larval fish growth and survival by M. leidyi. Our modeling results
provide a basis for determining whether hypoxia effects in this common estuarine
food web are general or are highly dependent on the relative strengths of compe-
tition and predation, which can vary over time within a system and among systems.

Fish Eggs

Yolk Sac
Larvae

Fish Larvae
≤ 15mm

Fish Larvae
> 15mm

Copepod 
Eggs

Copepod 
Nauplii

Copepodites

Copepod 
Adults

Ctenophores

Fig. 11.1 Modeled mesohaline summertime Chesapeake Bay system food web. The food web
includes intra-guild predation (IGP) with ctenophores as the intra-guild predators (IG predators)
feeding on both the early life stages of fish (eggs, yolk sac larvae, and feeding larvae ≤ 15 mm)
and three copepod life stages (nauplii, copepodites, and adults). Straight arrows represent influence
of predator on prey. Transitions from one life stage to the next are indicated with curved arrows.
The relaxed predation model scenario eliminates ctenophores feeding on the early life stages of fish
(dashed lines), and the relaxed competition scenario reduces ctenophore feeding on the three
copepod life stages (dotted lines). Larval fish ≤ 15 mm are the IG prey
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11.2 Model Description

11.2.1 Overview

The model follows the growth, mortality, and movement of Mnemiopsis leidyi
ctenophores, fish larvae, and copepods every 12 h (day and night time steps) for the
summer months in a three-layer water column. Temperature was assumed constant
throughout the simulation, and dissolved oxygen (DO) concentrations varied over
time in each of the three layers. Ctenophores and fish larvae were followed as
individuals; copepods were followed as the numbers in each of three uncoupled life
stages (nauplii, copepodites, and adults). Fish larvae were introduced as daily
cohorts of eggs, while the net energy consumed by adult ctenophores determined
the production of new ctenophores. Fish eggs and yolk sac larvae, and eggs and
larvae of ctenophores, were followed using matrix projection models. The survivors
to the end of the larval stages in the two matrix models (fish, ctenophores) were
then treated as individuals in the simulation. Growth of individual ctenophores and
fish larvae was based on similarly formulated bioenergetics models with con-
sumption dependent on their encounters with their prey. Ctenophores ate copepods
and fish larvae, and fish larvae ate copepods. Mortality of ctenophores was assumed
to be constant; mortality of fish larvae and copepods included predation by other
modeled individuals. Dissolved oxygen determined movement of ctenophores and
fish larvae among the layers and directly affected mortality of fish eggs and growth
rates of ctenophores and fish larvae. All variables used in model equations are
defined in Table 11.1.

11.2.2 Water Column Structure

The simulated water column was configured to be representative of the summertime
conditions typical of the deep, mesohaline region of the Patuxent River that
experiences summertime hypoxia. The water column is 1 m × 1 m × 20 m deep
and divided into three layers with 20% of the volume in the surface layer, 30% in
the pycnocline layer, and 50% in the bottom layer. Two DO conditions were
simulated: well mixed with DO concentrations of 6.0 mg L−1 in all three layers
(high or normoxic) and stratified with surface, pycnocline, and bottom DO set to
6.0, 3.0, and 1.5 mg L−1 (low or hypoxic), respectively. The DO concentration of
1.5 mg L−1 is typical for summer conditions and is sufficiently low to alter vertical
distributions of organisms (Breitburg et al. 2003) and affect predator–prey inter-
actions (Decker et al. 2004), causing maximum overlap between ctenophores and
their prey at or near the pycnocline (fish larvae and copepods avoid DO <2 mg
L−1). Temperature conditions were held constant at 24 °C in all layers for the
duration of the simulations.
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Table 11.1 Variable names, descriptions, and units used in the individual-based model

Variable Description Units

LvWt Larval fish weight mg dw
LvLn Larval fish length mm
CtWt Ctenophore weight mg dw
CtLn Ctenophore length mm
LvCap Vulnerability of zooplankton prey to larval fish predators

based on prey type and larval fish length
Proportion

LvCon Larval fish consumption mg dw
12 h−1

LvAsm Larval fish assimilation Fraction
LvRsp Larval fish total respiration per time step mg dw

12 h−1

j Prey type (fish egg, yolk sac, or copepod life stage) –

i Water column layer (surface, pycnocline, bottom) –

t Time h
LvCmax Fish larvae maximum consumption mg dw

12 h−1

ZZ Number of each zooplankton prey type Number m−3

T Temperature in the water column layer °C
KK Half-saturation parameter for larval functional response Number m−3

ZpWt Copepod weight mg dw
LvRRsp Larval fish routine respiration per time step at 24 °C mg dw

12 h−1

CtCon Ctenophore consumption mg dw
12 h−1

CtAsm Ctenophore assimilation Fraction
CtRsp Ctenophore respiration mg dw

12 h−1

CtRpr Fraction of net energy intake used for reproduction by
ctenophore

Fraction

Fpp Ctenophore foraging rate mm 12 h−1

Fpred Foraging rate used if ctenophore distance swum is greater mm 12 h−1

Fprey Foraging rate used if larval fish distance swum is greater mm 12 h−1

DsPred Distance swum by the predator mm 12 h−1

DsPrey Distance swum by the prey mm 12 h−1

CtRd Ctenophore reactive distance mm
PrRd Prey reactive distance mm
E Mean numbers of encounters Number

12 h−1 m−3

PD Number of prey available for encounter per layer Number m−3

CtCapLv Ctenophore capture success of individual fish larvae Fraction
CtConCal Ctenophore consumption Calories
CtRprCal Calories available for ctenophore reproduction Calories

(continued)
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11.2.3 Larval Fish—Energetics and Consumption

Fish eggs were introduced into the surface layer at the beginning of the nighttime
step at a density of 100 m−3, and the abundances of fish eggs and yolk sac larvae
(total number) in each layer every 12 h were simulated using two-stage matrix
projection models that were specific to each layer (Appendix A). Eggs were
introduced every 3 days beginning in early June (day 150), increased to daily
during July (days 190–212), and then decreased to every 3 days until August (day
220). The elements of the matrix models for each layer were determined every 12 h,
and numbers of individuals in each stage in each layer were updated including the
addition of newly spawned eggs and ctenophore consumption included as mortality.
The number of exiting yolk sac larvae (entering the feeding larvae stage) on each
day was lumped over layers and subsequently followed as individual larvae. All
new larval individuals were started at 3 mm (0.0084 mg dw) and in the bottom
layer. No direct egg cannibalism was assumed. Fish eggs and larvae in the model
were mostly based upon information about bay anchovy.

Individual larvae grew according to a bioenergetics equation with consumption
based on density-dependent encounter rate of predator and zooplankton prey.
Larval fish weight was incremented each 12 h based on consumption (LvCon, mg
dw 12 h−1, day time step only), assimilation (LvAsm, fraction), and respiration
(LvRsp, mg dw 12 h−1):

LvWtt =LvWtt− 1 +LvCon ⋅ LvAsm− LvRsp ð11:1Þ

Larval length (LvLn) was then determined from weight (LvWt) using a length–
weight relationship. Weight was allowed to increase or decrease each time step, but
length was not allowed to shrink. A new length was computed if the individual was
at the weight expected for its length and if the change in weight was positive.

Larval fish consumption, assimilation, and respiration were based on larval
weight, temperature, and prey densities (Adamack et al. 2012; Rose et al. 1999).
Maximum consumption was dependent on larval weight, and a constant tempera-
ture of 24 oC was assumed (LvCmax = a • LvWtb, if LvWt weight <0.022,

Table 11.1 (continued)

Variable Description Units

ZProd Copepod production rate 12 h−1

TotZ Copepod maximum density Number m−3

Vol Water column volume m−3

DO Dissolved oxygen concentration mg L−1

SurEggDO Fish egg survival due to DO Number
12 h−1

CtWorth Modeled superindividual ctenophore Number
LvWorth Modeled superindividual larval fish Number

11 Hypoxia Effects Within an Intra-guild Predation Food Web … 285



a = 27.71, b = 0.76; if LvWt ≥ 0.022, a = 28.87, b = 0.75) and was used with a
multi-species type II functional response relationship to determine realized con-
sumption of each of the three zooplankton types (nauplii, copepodites, adults):

LvConj = LvCmax ⋅
ZZj
Vol

⋅
LvCapj
KKj

1+ ∑3
i ⋅ LvCapj

KKj
⋅ZpWtj

⋅ ZpWtj ð11:2Þ

where LvConj is realized cumulative consumption rate of the jth zooplankton type
(mg dw 12 h−1), LvCap is the vulnerability of zooplankton prey to larval fish
predators based on prey type and larval fish length (after Rose et al. 1999; maxi-
mum LvCapj = 0.9), ZZj is density of zooplankton type j (number m−3), KKj is the
half-saturation parameter of the larval fish for zooplankton type j, and ZpWtj is the
weight per individual (mg dw) of zooplankton type j. Vol is the volume of the layer
(m3). The sum of the three zooplankton-type specific consumption rates is the total

12-h consumption rate for the larva in Eq. 11.1 (i.e., LvCon= ∑
3

j=1
LvConj). The KKj

were calibrated to obtain realistic larval fish growth rates (Table 11.2). Feeding
occurred only during daytime time steps. Assimilation efficiency (LvAsm) was set at
0.60 (Rose et al. 1999). Respiration (LvRRsp) was computed as a routine rate

Table 11.2 Values used for modeled organism weight, energy density, and length. Individual
larval fish and ctenophore weight and length varied with consumption during model simulations.
Fish egg and yolk sac larvae weights were based on values reported in Tucker (1989). Energy
densities of all fish life stages were based on values from Hunter and Leong (1981). Ctenophore
energy density values were reported in Harris et al. (2000). Energies densities for all copepod life
stages were reported in Laurence (1976) and weights as reported in Tester and Turner (1988). Fish
eggs, yolk sac larvae, and zooplankton lengths were estimated from live samples. Larval fish
consumption was modeled using a multi-species type II functional response, and realized
consumption for each prey type was estimated by applying KK, the half-saturation parameter, to
prey densities in the model

Weight per
individual (mg
dw)

Energy density
(calories mg
dw−1)

Length per
individual
(mm)

Calibrated KK
values (number
m−3)

Fish eggs 0.00842 5.525 1 NA
Yolk sac
larvae

0.015 5.424 3 NA

Fish larvae Dynamic 5.350 Dynamic NA
Ctenophores Dynamic 2.967 Dynamic NA
Nauplii 0.00152 5.160 0.15 75,000
Copepodites 0.0033 5.160 0.6 3000
Adult
copepods

0.011 5.160 1.2 2250
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dependent upon larval weight (LvWt) and a constant water temperature (T = 24 °C)
for nighttime and twice the routine rate for daytime. The routine rate was:

LvRRsp=0.073 ⋅ LvWt0.997e
log 2.2ð Þ

10 ⋅ T − 27ð Þ ð11:3Þ

Individual fish larvae died from being eaten by ctenophores and from a constant
rate representative of mortality from other sources. Mortality rate was set to 3% per
12 h to reflect predation by Chrysaora quinquecirrha medusae and piscivorous fish
(Cowan and Houde 1993; Purcell et al. 1994a; Purcell and Arai 2001). Larger larval
fish (≥ 15 mm) were no longer vulnerable to ctenophore predation, but were kept in
the simulation to include their consumption effects on zooplankton prey.

11.2.4 Ctenophores—General Bioenergetics

The model assumed that ctenophores could potentially produce eggs every 12 h
based on their consumption rate. As with fish eggs and yolk sac larvae, the numbers
of ctenophore eggs and larvae in each layer were tracked using a two-stage matrix
projection model for each layer (Appendix A). The mortality rates of ctenophore
eggs and larvae used in the matrix model were determined by calibration to gen-
erate reasonable ctenophore and fish larval densities in simulations. Individuals
exiting the larval stage entered an intermediate holding stage (prereproductive
lobate stage) where they waited until reaching 25 mm length (another 5–7 days,
depending on growth rates) and entered the model as individual reproductive cte-
nophores in the layer they were spawned in.

Similar bioenergetics as with fish larvae, with the addition of reproduction costs,
was also used for the 25 mm and longer individual ctenophores:

CtWtt =CtWtt− 1 + CtCon ⋅CtAsm−CtRspð Þ ⋅ 1−CtRprð Þ ð11:4Þ

where CtWt is weight of a ctenophore (mg dw), CtCon is the consumption rate
(mg dw 12 h−1), CtAsm is assimilation (fraction), CtRsp is respiration rate (mg dw
12 h−1), and CtRpr is fraction of net energy intake used for reproduction. Cteno-
phore length (CtLn; mm) was determined from weight (CtWt) using a length–
weight relationship (Kremer 1976).

Consumption was based on a modified version of the Gerritsen and Strickler
(1977) encounter model (Cowan et al. 1999; Kolesar 2006). Ctenophores fed during
both day and night time steps on fish eggs, yolk sac larvae, fish larvae (≤ 15 mm),
and the three stages of copepods. Encounters were dependent on swimming speeds
and encounter radii of the ctenophores and each of their prey types, both of which
were dependent on body length (BL; mm). Capture success was fixed for smaller,
less motile prey and varied with length for larval fish prey.
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11.2.5 Ctenophores—Encounters, Consumption,
and Energetics

Ctenophores and fish larvae had dynamic individual lengths that varied based on
their bioenergetics and growth; fixed lengths were used for eggs, yolk sac larvae,
and copepods (Table 11.2). Swimming speeds were assumed to be 0.3 BL s−1 for
ctenophores (Kolesar 2006), and 2 BL s−1 for yolk sac larvae, feeding larvae, and
copepods; fish eggs were assumed not to swim. Reactive distance of ctenophores
(CtRd, mm) was based on their length (mm) and modeled as an ellipse:

CtRd=0.5 ⋅ 0.33 ⋅CtLn+
0.33 ⋅CtLn

2

� �
ð11:5Þ

Reactive distances for all prey types (PrRd, mm) were assumed to be their length
in mm.

By combining swimming speeds and reactive distances with prey density, we
computed the mean number of encounters (E) in 12 h (number 12 h−1 m−3)
between a ctenophore predator and each of its prey types:

Ej = π ⋅ PrRdj +CtRd
� �2 ⋅Fppj ⋅ 10− 9 ⋅PDj ð11:6Þ

where PrRdj is encounter radius of prey type j (mm), CtRd is the encounter radius
of the ctenophore (mm), Fppj is the foraging rate (mm 12 h−1) of the ctenophore
and prey type j, and PDj is density (number m−3) of prey type j. In Eq. 11.6, there
were six possible prey types: fish eggs, yolk sac larvae, fish larvae, and the three
stages of the copepods. The foraging rate depended on the distances swum by the
predator (DsPred, mm) and prey type j (DsPreyj, mm) in 12 h:

Fppj =
Fpred if DsPred >DsPreyj
Fprey if DsPred≤DsPreyj

�
ð11:7Þ

where

Fpred=
ðDsPrey2j +3 ⋅DsPred2Þ

3 ⋅DsPred

Fprey=
ðDsPred2 + 3 ⋅DsPrey2j Þ

3 ⋅DsPreyj

Prey density (PDj, number m−3) for copepods, fish eggs, and yolk sac larvae was
the total number in each layer divided by the volume of that layer. For fish larvae,
which were followed as individuals, Eq. 11.6 was evaluated for each individual fish
larva as a possible prey item for each ctenophore.
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For each ctenophore and prey type, the number of prey of each type encountered
and captured was multiplied by weight per individual, adjusted for energy density
(calories per mg dw, Table 11.2), and summed to obtain biomass eaten by the
ctenophore (CtCon in Eq. 11.4). Realized number of encounters was generated as a
random deviate from a Poisson distribution with mean equal to Ej. The actual
number of prey encountered and successfully captured was then determined as a
deviate from a binomial distribution with the number of trials equal to the number
of realized encounters (Poisson deviate generated from Ej) and the probability of
success set to the probability of capture. Capture success by ctenophores was 0.62
for nauplii, 0.54 for copepodites, and 0.46 for adults (Waggett and Costello 1999),
and 0.80 for fish eggs and yolk sac larvae (Cowan and Houde 1993). Capture
success for ctenophore feeding on individual fish larvae (CtCapLv) depended on the
lengths (mm) of both predator and prey and was not allowed to exceed 0.80 (Cowan
and Houde 1993; Kolesar 2006):

CtCapLv=1.086− 6.99 ⋅
LvLn
CtLn

ð11:8Þ

Biomass eaten of prey type was computed from actual numbers eaten and the
weight (mg dw) per individual prey item (Table 11.2), and then converted to
calories (Table 11.2) and summed to obtain total consumption in calories for the
ctenophore. This total consumption was then divided by the energy density of the
ctenophore to obtain prey consumption back in units of mg dw, but now in terms of
ctenophore tissue. We adjusted prey consumed by ctenophores by energy densities
because energy densities of ctenophores were about half of their prey.

Based on data reported in Kremer (1976, 1979), Kremer and Reeve (1989), and
Reeve et al. (1989), we fit a logistic-shaped function that relates assimilation effi-
ciency (CtAsm) to prey consumption (Fig. 11.2); assimilation efficiency ranged
from a maximum of 0.9 at low food densities to a minimum of 0.4 at the highest
prey densities.

Respiration (CtRsp) depended on weight and was modified from Kremer (1976)
for the 24 °C and 12 h time step used in this model:

CtRsp=4.4 ⋅ e0.15 ⋅ T ⋅ 7.06 × 10− 4 ⋅ 1.67 ⋅ 0.5 ⋅CtWt ⋅ 0.5 ð11:9Þ

where 7.06 × 10−4 converts (µM CO2) ⋅ g dw−1 to g dw ⋅ (µM C)−1, 1.67
converts g dw ⋅ (µM C)−1 to the total daily fraction of body carbon catabolized;
the first 0.5 value adjusts the rate for the warmer temperature of the Patuxent River,
and the second 0.5 value converts the daily rate to a rate per 12 h.

Net energy consumed was divided between somatic growth and reproduction.
Maturity occurred at 25 mm (Reeve et al. 1989). Immature individuals used all of
their net energy for growth, while mature individuals allocated up to 100% of their
net energy to egg production. On each nighttime time step, the proportion of net
energy allocated to reproduction (CtRpr) was calculated (Kremer 1976):
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CtRpr=0.01 ⋅ e0.115 ⋅CtWt ð11:10Þ

Net energy gain (i.e., CtCon ⋅CtAsm−CtRsp, in mg dw) was summed for the day
(daytime plus nighttime; eggs were released at night) and converted to calories
based on the energy densities and biomasses eaten of the prey in the diet comprising
CtCon, and respiration rate was converted to calories (CtRsp ⋅ 2.967). Net energy
gain in calories was then multiplied by CtRpr to obtain energy (in calories)
available for eggs, and this was done for the day and night time steps and summed
to obtain a single daily value (CtRprCal). The daily value was used to determine the
number of eggs produced by that ctenophore for that day (Grove and Breitburg
2005):

CtEgg=647.5 ⋅ log CtRprCalð Þ+926.75 ð11:11Þ

Mortality of ctenophores was 5% 12 h−1 for before August 1 and 15% 12 h−1

after August 1 (day 213). Chrysaora quinquecirrha and Beroe ovata ctenophores
that consume M. leidyi typically peak in mid- to late summer (Kreps et al. 1997;
Purcell et al. 2001).

11.2.6 Copepods

The numbers of individuals in each of the three life stages of the copepods (nauplii,
copepodites, and adults) in each layer were simulated separately using a logistic
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Fig. 11.2 Equation for ctenophore assimilation efficiency used in the model determined from
published data on ctenophore assimilation as well as information on ctenophore bioenergetics
(consumption based on biomass)
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production model with added mortality terms based on the summed consumption
from individual ctenophores and the summed consumption from individual larvae.

ZZj, t =ZZj, t− 1 + ZProdj ⋅ 1−
ZZj, t− 1

TotZj

� �
− ∑

n

i=1

LvConi, t− 1

Vol
− ∑

m

k=1

CtConk, t− 1

Vol

ð11:12Þ

where ZZj,t is the number of each copepod life stage j in the model in a layer at time
t, Zprodj is the production rate (12 h−1) of zooplankton type j, TotZj is the maxi-
mum density (number m−3) of type j, n is the number of larvae in the layer, and m is
the number of ctenophores in the layer. Zprodj was set to 0.6, 0.5, and 0.4, and TotZ
was set to 300,000 nauplii, 15,000 copepodites, and 10,000 adults.

11.2.7 Vertical Movement of Fish, Ctenophores,
and Copepods

Movement of fish egg densities, yolk sac larval densities, copepod densities, and
individual model fish larvae and ctenophores occurred every time step in the sim-
ulation. Modeled movement among the three water column layers was based on the
proportional densities of organisms, dependent on bottom layer DO concentration
(similar calculations found in Breitburg et al. 2003; Keister et al. 2000; Kolesar et al.
2010). Proportional densities of organisms were calculated for a water column,
assuming equal volumes of water in all three layers, and for discrete intervals of DO
(two interval scenarios are shown in Fig. 11.3). We linearly interpolated from
proportional densities by DO interval to the modeled proportional densities for high
DO conditions (6.0 mg L−1 in all three layers) and for low DO conditions (6.0 mg
L−1 in the surface layer, 3.0 mg L−1 in the pycnocline layer, and 1.5 mg L−1 in the
bottom layer), and adjusted the proportional densities for the unequal volumes of
the three layers by multiplying by the volume of each layer. We then formed the
cumulative distribution of these interpolated, volume-adjusted proportions and
generated a random number between 0 and 1 every 12 h to determine the fraction of
the individuals (eggs, yolk sac, copepods) or the probability an individual (larvae
and ctenophores) would move for the next time step. Separate proportional densities
by bottom DO were used for fish eggs and for fish larvae and the proportional
densities of larval fish were also used for yolk sac larvae.

11.2.8 Dissolved Oxygen Effects

In addition to vertical movement, low DO directly affected larval fish growth,
ctenophore growth, and fish egg survival. We combined laboratory results for
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anchovy and naked goby (Zastrow et al. unpubl.) to develop a multiplier of growth
rate due to low DO:

GrLvDO= − 0.00397+ 0.482 ⋅DO0.389 ð11:13Þ

On each time step, the DO in the layer was used to determine GrLvDO, which
was then multiplied by the growth rate according to bioenergetics (Eq. 11.1) and
the adjusted growth rate was used to increment larval fish weight. The same
approach was used to modify ctenophore growth (Grove and Breitburg 2005):

GrCtDO=
0.1173+ 0.0104 ⋅DO

0.1797
ð11:14Þ

Fish egg survival under low DO was based on Dorsey et al. (1996):

SurEggDO=
95.77

1+ e
2.35−DO

0.95
ð11:15Þ

(a) Highest Bottom DO Category

(b) Lowest Bottom DO Category

Fig. 11.3 Proportional
densities of fish larvae, eggs,
ctenophores, and
zooplankton. Distribution of
each organism type was
calculated for an idealized
water column with equal
water volume in surface
(white), pycnocline (light
gray), and bottom (dark gray)
layers during the day
(unhatched bars) and night
(hatched bars) for two bottom
dissolved oxygen (DO, mg
L−1) categories, a highest
bottom layer DO category
(6–6.99 mg L−1) and b lowest
bottom layer DO category
(1–1.99 mg L−1)
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Fraction of eggs surviving 12 h used in the stage-based matrix model for fish
eggs and yolk sac larvae were multiplied by SurEggDO based on the DO in the
layer (Appendix A).

11.2.9 Numerical Considerations

We used a superindividual approach for representing ctenophore and larval fish
model individuals. The superindividual approach allows for a predetermined
number of model individuals to be in a simulation, thereby preventing numerical
coding problems associated with following thousands or millions of model indi-
viduals (Scheffer et al. 1995). In our model, ctenophore reproduction was simulated
based on energy consumed. However, adding a new model individual for every new
ctenophore introduced into the model could result in the computer code exceeding
memory limitations. The superindividual approach addresses this by making each
model individual worth some number of identical population individuals. Thus, a
known number of model individuals can be added and their worth adjusted to
reflect the population number added. Mortality is then simulated by decrementing
the worth of the superindividual to reflect the loss of population individuals rep-
resented by the superindividual. In all model simulations, five ctenophore
superindividuals and five larval fish superindividuals were introduced into each
layer at the start of every time step. The worth of ctenophore superindividuals
(CtWorth) and larval fish superindividuals (LvWorth) was calculated by dividing
the number of population individuals of one type introduced into each layer at each
time step by 5, and assigning that same worth to each superindividual.

Mortality and predation were imposed on ctenophore and fish larvae
superindividuals by adjusting the population worth of each superindividual. Mor-
tality, either as a fixed mortality rate on either ctenophore or larval fish, or by
ctenophore predation on a larval fish, resulted in a reduction of the population worth
of the superindividual. Because the ctenophores (predator) and larval fish (prey)
were both superindividuals, when a model ctenophore ate one or more of the
population individuals of a model fish larva, we had to make adjustments to ensure
mass balance. If the ctenophore worth times the number of population larvae it ate
was less than the worth of the larval superindividual, then the ctenophore individual
consumed the entire weight of the larval individual. The model ctenophore grew
accordingly, and the larval worth was reduced by the worth of the ctenophore
superindividual times the number of larvae eaten. If the ctenophore worth times the
number of population larvae it ate was greater than the worth of the larval
superindividual, then the ctenophore actually consumed the weight of the larval fish
times the ratio of larval worth to ctenophore worth and the worth of the larva
superindividual was set to 0. In this way, mass balance of the biomasses of cte-
nophores and fish larvae was maintained.
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Ctenophore predation on larval fish and copepods, and larval fish predation on
copepods, was updated after each ctenophore and larval fish evaluation as the
predator. This was done to minimize the possibility of summed predation pressure
over ctenophores or fish larvae exceeding the prey abundance in a layer on a time
step. Because we updated the larval fish worths and copepod densities for predation
after every predator, each time step the ctenophores and larval fish individuals were
evaluated for growth and mortality in random order. Otherwise, modeled individ-
uals evaluated first would always see higher prey densities.

Predation by ctenophores on fish eggs and yolk sac larvae was accounted for by
the dynamic mortality term included in the estimation of the diagonal and subdi-
agonal terms of their stage-based matrix projection model. Predation by cteno-
phores and larval fish on each of the three copepods stages was accounted for by
inclusion of the mortality rate in each logistic production equation.

11.3 Design of Model Simulations

All model simulations were for 100 d from May 25 (day 145) to September 2 (day
245). Five replicate simulations were performed for each condition using different
random number sequences that affected encounter rates, capture success, and
movement. The model was first calibrated and corroborated under baseline con-
ditions. Baseline conditions included the full IGP food web: ctenophore con-
sumption caused mortality of fish larvae, and ctenophore and fish larval
consumption caused mortality of copepods. We then used the calibrated model to
explore how predation, competition, and hypoxia effects interact to affect food web
dynamics. Because model predictions were very similar among replicates (see
minimum and maximum values in Table 11.3), we focus on the output variables
averaged over the five replicates and graph results (e.g., time series plots, diets)
from one replicate simulation.

11.3.1 Calibration and Corroboration

We adjusted several key parameters in the baseline model under both high and low
DO conditions to obtain realistic model behavior compared to field data. The KKj in
Eq. (11.2) were adjusted to obtain realistic larval fish growth rates, and then the
fixed mortality rates of fish and ctenophore eggs and larvae were adjusted to
generate reasonable summertime averaged fish densities and ctenophore densities.
The high DO (normoxic, 6.0 mg L−1 in all layers) and low DO (hypoxic, 6.0, 3.0,
and 1.5 mg L−1) simulations were used because the field data reflect a range of DO
conditions. We first crudely compared larval fish growth rates and ctenophore
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lengths and egg production rates to values reported in the literature. We then
compared averaged densities of fish eggs, yolk sac plus larvae, ctenophores, and
copepods (nauplii and copepodites plus adults), computed over a single replicate
simulation for high and low DO conditions to field-measured densities for the
Patuxent River estuary and Chesapeake Bay.

11.3.2 Predation, Competition, and DO Effects Within
the IGP Food Web

To explore the effects of predation, competition, and hypoxia, three versions of the
model were simulated under the high DO (normoxic) scenario and the low DO
(hypoxic) scenarios for a total of six modeled conditions (Fig. 11.4). The first

Table 11.3 Comparison of simulated densities of ctenophores, fish eggs, yolk sac larvae,
post-yolk sac (feeding) larvae, copepod nauplii, copepodites, and adult copepods with reported
field densities (all m−3). Model values presented are the mean ± SE, and minimum and maximum,
of the 100 daily densities entering each life stage. Each value for the field data was a summertime
mean based on the available stations and sampling dates. There were generally 43 stations for the
Patuxent sampling and 174 stations for the Chesapeake Bay sampling for ctenophores and fish;
about 15 stations for zooplankton sampling. Field densities of ctenophores and fish were measured
in the Chesapeake Bay in July and August 1995–1998 (data from the TIES project, summarized in
Purcell et al. 2001, Tables 6 and 7) and the Patuxent River in June, July, and August 1992, 1993,
1999, and 2001 (Keister et al. 2000; Breitburg et al. 2003; Kolesar et al. 2010). Copepod nauplii,
copepodite, and adult copepod field densities were from June, July, and August of 2000 and July
2001 for the Chesapeake Bay and from June, July, and August of 1999 and July 2001 for the
Patuxent River in (Purcell et al. 2014 and unpublished data). For the field data, yolk sac larvae and
feeding larval fish densities were combined and are reported under (fish larvae), and copepodite
and adult copepod densities were combined (copepods). Ctenophore and fish data are presented for
the whole water column; copepod data are presented for the surface layer only. Copepods are
presented as thousands m−3

Model results Field data
High DO Low DO Patuxent Chesapeake

Bay

Ctenophores 3.8 ± 0.2 (0.01–8.7) 3.7 ± 0.2 (0.02–7.9) 0.03–6.83 2.8–12.7
Fish eggs 2.5 ± 0.5 (0–20) 2.7 ± 0.5 (0–20) 0–41.3 1.2–28.8
Yolk sac larvae 1.4 ± 0.2 (0–10) 0.5 ± 0.1 (0–4)
Fish larvae 1.5 ± 0.1 (0–6) 0.6 ± 0.03 (0–2.3)
Yolk sac plus
larvae

1.6–12.9 0.3–3.3

Nauplii 226.9 ± 7.4 (92.1–399.6) 190.8 ± 6.1 (66.5–393.6) 36.4–38.3 20.4–27.7
Copepodites 10.6 ± 0.4 (3.7–10.0) 8.7 ± 3.3 (2.6–19.7)
Adult copepods 6.3 ± 0.3 (1.6–13.3) 4.9 ± 0.3 (1.0–13.1)
Copepodites
plus adult
copepods

0.7–29.5 0.8–7.5
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version of the model was the baseline version used in calibration and corroboration
with the full predation and competitive interactions operating (Fig. 11.4a). The
second version of the model relaxed the ctenophore predation effects on fish larvae
(Fig. 11.4b). Ctenophore consumption depended on their encounters with fish
larvae, but eaten larval fish were not removed from the simulation; therefore, cte-
nophores gained the appropriate prey resources, but fish larvae were not affected by
ctenophore predation.

The third version of the model ultimately maintained the ctenophore predation
effects on fish larvae, but relaxed the competition between ctenophores and fish
larvae for copepods. Through a series of intermediate food webs, we created two
sets of copepod densities (by stage, layer, and time step), one for ctenophores and

C L

Z

C L

Z

Z cCz
Z cCz

C

L

ZZ c

C

(a). Intraguildpreda on food web (b). Relaxed preda on food web

(c). Relaxed compe on food web (3 steps)

i. ii.

iii.

Fig. 11.4 Modeled simulations included three food webs, generated through five total iterations.
a The baseline intra-guild predation (IGP) food web included ctenophores (C) as both predators on
larval fish (L) and competitors for copepod prey (Z) (predation is designated by solid arrows),
b the relaxed predation food web (RP) included ctenophore predation on larval fish, but larval fish
were not removed from simulations (represented by a dashed arrow), and ctenophores and larval
fish were competitors for copepod prey, and finally, c the relaxed competition food web (RC) had
separate prey pools generated for ctenophores and larval fish through a series of steps. In the full
RC food web, the zooplankton prey pool for ctenophores (Zc) was generated from running
simulations with a ctenophore-zooplankton-only model (i), a fitted density-independent model was
run to calibrate ctenophores to baseline conditions (C) (ii), and the full RC model included two
separate prey pools for ctenophore and larvae predators (Zc and Z, respectively), with fitted
ctenophores also preying on fish larvae (iii)
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one for fish larvae, to allow ctenophores to eat larvae and zooplankton, while larvae
experienced a separate zooplankton prey pool (Fig. 11.4c). First, the baseline model
was run with only ctenophores and copepods, and the predicted copepod numbers
by life stage, layer, and time step were recorded (Fig. 11.4c.i.). We then used these
copepod densities as input back into the ctenophore-copepod-only model but
without ctenophore effects on copepods, and recalibrated the ctenophore egg and
larval mortality rates (0.67–0.9 (12 h)−1; 0.74–0.9 (12 h)−1), so their dynamics
closely resembled the baseline IGP version with the full interactions (Fig. 11.4c.ii.).
Finally, using the recalibrated mortality rates, we ran the full model with cteno-
phores only preying upon their own pool of copepods (the output from
ctenophore-copepod model) and fish larvae consuming their own pool of copepods
(Fig. 11.4c.iii.). In this relaxed competition version, ctenophore dynamics resem-
bled the dynamics in the IGP baseline with their consumption affecting fish larvae
mortality, but their consumption of copepods not affecting the availability of
copepods to fish larvae.

We first examined the baseline food web under both high and low DO conditions
for general model behavior beyond the calibration and corroboration checks and for
the effects of low DO on model dynamics. Second, we compared the predicted
larval fish survival and growth among the three food webs for the high DO con-
dition to determine the importance of ctenophore predation versus ctenophore
competition on larval fish survival and growth. The third comparison was among
the three food webs for high DO versus low DO to determine whether low DO
altered the importance of predation versus competition obtained under high DO in
the second comparison.

Model output variables averaged over the five replicate simulations include:
(1) number of fish larvae surviving and their average duration from first feeding
(i.e., introduced as model individuals) to 15 mm, and (2) percent survival of fish
from egg to hatch, hatch to first feeding, first feeding to 15 mm, and egg to 15 mm.
For simplicity and because of consistency among replicates, we used a single
replicate simulation for each of the six conditions and examined for every 12-h time
step over the 100 d of simulation: larval lengths and ctenophore weights over time
for selected model individuals (every 50th model individual), and time series plots
of larval, ctenophore, and adult-stage copepod densities by water layer. We also
report water column integrated densities (i.e., sum of all individuals divided by
volume of water column); these were output daily, and then the 100 values sum-
marized as the minimum, average (±SE), and maximum values. Diets of cteno-
phores and larval fish (broken down by small (>5 mm), medium (5–10 mm), and
large sized (>15 mm)) were summarized as the averaged proportion by biomass of
nauplii, copepodites, and adult copepods over a single replicate simulation. Finally,
as an aid for interpreting model results, we computed the average vertical overlap
between ctenophores and fish larvae, ctenophores and copepods, and fish larvae and
copepods for the duration of a single replicate simulation.
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11.4 Results and Discussion

11.4.1 Model Calibration and Corroboration

We examined how DO could interact with food web structure to affect larval fish
survival and growth. While both DO and food web structure altered outcomes for
modeled larval fish, the effect of DO was not substantially altered under the three
different food webs tested. Our IGP food webs included: baseline in which all
predation and competitive interactions were operating, a version with relaxed
competition between ctenophores and fish for zooplankton, and a version with
relaxed predation of ctenophores on fish larvae. The ctenophore-fish
larvae-copepod food web in this model typifies Chesapeake Bay and other tem-
perate estuaries, and differs from more frequently examined IGP food webs in that
the IGP predator (the ctenophore, Mnemiopsis leidyi) is also a superior competitor
to its prey (fish larvae).

Using the calibrated parameter values, average larval growth rates in both the
high and low DO baseline IGP food web model were similar to bay anchovy
growth rates reported from field studies. Average growth rates of larval fish sur-
viving to 15 mm in the baseline IGP food web model were 0.46 mm d−1 at high
DO and 0.61 mm d−1 at low DO. Rilling and Houde (1999) reported field growth
rates of larval bay anchovy ranging from 0.53 to 0.78 mm d−1, and bay anchovy
larvae from North Carolina were estimated to grow at about 4% d−1 or equal to
about 0.48 mm d−1 (Fives et al. 1986).

Modeled ctenophore lengths and ctenophore egg production remained within the
bounds observed in field samples and laboratory studies. Simulated ctenophore
lengths under high and low DO ranged over the summer from 20 to 92 mm, the
maximum being slightly smaller than the largest ctenophore length (100 mm)
observed in the Chesapeake Bay system. Ctenophore egg production averaged
about 1000 eggs ctenophore−1 d−1 (range of 0–11,360), which was similar to the
range of 0–14,000 eggs ctenophore−1 d−1 reported in Purcell et al. (2001).

Simulated summertime densities of ctenophores and fish eggs and larvae were
similar to values reported for Chesapeake Bay and the Patuxent River (Table 11.3).
Simulated ctenophore densities averaged about 3.8 individuals m−3 over the
summer (with a maximum daily value of 8.7), compared to summertime means of
0.03 to 6.83 in the Patuxent and 2.8 to 12.7 in the mainstem Chesapeake Bay.
Averaged fish egg densities in the baseline simulations were about 2.5 eggs m−3,
with a daily maximum of 20, while field data showed a range of summertime means
of 0 to 41.3 in the Patuxent and 1.2 to 28.8 in the Chesapeake Bay. Simulated fish
larval densities were also within the range of the field data; model averaged values
were about 1.5 individuals m−3 for both yolk sac and feeding larvae in high DO and
about 0.6 individuals m−3 in low DO, versus 1.6 to 12.9 for yolk sac and feeding
larvae combined in the Patuxent and 0.3 to 3.3 in the Chesapeake Bay.

Simulated copepodite and adult copepod densities were similar to those reported
for the Patuxent River estuary, while simulated copepod nauplii densities were
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higher than reported values. Simulated values of copepodite and adult copepod
densities averaged 106,000 individuals m−3 and 63,000 in high DO (summed value
of about 160,000) and 87,000 and 49,000 in low DO (summed value of about
140,000), which were reasonable given the relatively wide range of summed
observed values of 700–295,000 in the Patuxent and 800–75,000 in the Chesapeake
Bay.

Simulated nauplii densities were almost 10 times higher than reported densities
(Table 11.3). Simulated nauplii densities were 226,900 individuals m−3 under high
DO and 190,800 individuals m−3 under low DO, while reported mean densities
were less than 36,000. This is likely a combination of simulated densities being too
high and field samples being underestimates due to difficulties in accurately sam-
pling nauplii based on their small size and high variability. In other studies, nauplii
densities of 100,000 individuals m−3 in the surface layer were reported for both the
Patuxent River estuary (Heinle 1966) and the Chesapeake Bay (Purcell et al.
1994b), and Purcell et al. (1994b) even reported occurrences of copepodite and
adult copepod densities approaching 100,000 individuals m−3 at some stations in
August (implying nauplii densities were even higher). However, while these high
densities occurred, they were extreme values rather than averaged values. Both
simulated and observed copepods (Purcell et al. 1994b) were at their lowest den-
sities during the summer period.

11.4.2 Baseline Model Behavior Under High DO

Ctenophore densities peaked during mid-summer coincident with the time that
larval fish densities and zooplankton densities showed depressed values. Cteno-
phores peaked between days 180 and 200 at a water column integrated average
density of about 9.0 individuals m−3, and with most individuals in the bottom layer
and secondarily in the pycnocline layer, more so during the day than at night
(Fig. 11.5a). Larval fish densities reached their peak early in the summer (column
integrated density of 6.0 individuals m−3), as larval fish numbers accumulated from
frequent spawning (Fig. 11.6a). Larval fish densities then declined during the
middle of the summer and rebounded with a second, lower peak near the end of the
summer. In the absence of ctenophore predation, a peak in density of larval fish
would be expected in the middle of the summer, as a result of the build-up of
repeated spawning events and removal of individuals as they reached 15 mm.
Larval fish were spread between the bottom and pycnocline layers, with few larvae
occurring in the surface layer at any time (Fig. 11.6a). Adult copepod densities
showed a minimum during the mid-summer (2,000 individuals m−3 relative to an
equilibrium value of 10,000), with high densities in the surface layer during the day
and in the pycnocline during the nighttime (Fig. 11.7a). Nauplii and copepodites
(not shown) had very similar temporal patterns as adult copepods.

Fish survival was low during the first feeding to 15-mm stage relative to egg and
yolk sac larval stages due to ctenophore predation and extended exposure to
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predation because of the long stage duration. Averaged survival (over the five
replicate simulations) from egg production to hatching was 40%, hatch to first
feeding was 16.8%, and first feeding to 15 mm was 2.1%, resulting in cumulative
cohort survival of 0.14% and an average of 14.1 survivors to 15 mm (Table 11.4).
First feeding to 15 mm survival due to constant mortality only (i.e., not from
ctenophores and there was no DO-related mortality) was 20% (26 days at 3% per
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Fig. 11.5 Ctenophore number m−3 by layer plotted against ordinal day during both day (●) and
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12 h, 0.9726 ⋅ 2); thus, ctenophore predation reduced larval survival by an order of
magnitude from 20 to 2.1%.

Ctenophore predation was very important to the survival of early life stages of
fish in our modeled food webs. Movement in our model resulted in high overlap
between ctenophores and larval fish, especially in food webs at high DO. The high
consumption rates of ctenophores, coupled with their potential for rapid increase in
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Fig. 11.6 Fish larvae number m−3 by layer plotted against ordinal day during both day (●) and
night (x) for a representative simulation for each of six different food webs: a baseline IGP high
DO, b baseline IGP low DO, c relaxed predation high DO, d relaxed predation low DO, e relaxed
competition high DO, f relaxed competition low DO. Black line denotes the surface layer, red line
the pycnocline, and green line the bottom layer. Note different scales
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biomass, makes them voracious planktonic predators (Monteleone and Duguay
1988; Purcell and Decker 2005). Predation is thought to be the largest source of
mortality for the early life stages of fish (Bailey and Houde 1989). Slower growing
larval fish are vulnerable to size-specific predation longer than are faster growing

(d) Relaxed Predation Low DO(c) Relaxed Predation High DO
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Fig. 11.7 Copepod number m−3 by layer plotted against ordinal day for the adult life stage during
both day (●) and night (x) for a representative simulation for each of six different food webs:
a baseline IGP high DO, b baseline IGP low DO, c relaxed predation high DO, d relaxed predation
low DO, e relaxed competition high DO, f relaxed competition low DO. Black dots denote the
surface layer, red dots the pycnocline, and green dots the bottom layer. Mean densities of
copepodites and nauplii are reported for the baseline IGP food web (Table 11.6) and distribution
patterns are similar to those of adult copepods in all food web scenarios. Single dots on the first
day of simulations are an artifact of the initial density
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larval fish (Bailey and Houde 1989). These model results support the importance of
ctenophore predation to the survival of early life stages of fish suggested by
experimental and field studies (Cowan and Houde 1993; Purcell et al. 1994a, b).

Larval fish growth rate (inversely related to duration) in the baseline model
under high DO was affected indirectly via competition with ctenophores for
copepod prey. Average larval growth rate to 15 mm was 0.46 mm d−1, which
corresponded to an average duration of 26 days from first feeding to 15 mm
(Table 11.4). In general, larval fish lengths during the middle of the summer did not
increase as rapidly as larval fish lengths during the early and late portions of the
simulation (Fig. 11.8a). Slowed growth was due to competition and coincided with
low copepod densities (Fig. 11.7a) and high ctenophore densities (Fig. 11.6a).

Larval fish diets in the baseline simulation were composed mostly of cope-
podites, with smaller proportions of copepod nauplii and adults (Table 11.5). The
model restricted diets of small larvae (<5 mm) to nauplii; medium-sized larvae
(5–10 mm) included copepodites, and large-sized larvae (>10 mm) further added
adult copepods to their diet.

Growth of smaller ctenophores (<400 mg dw) was slowed during the middle
summer by lowered copepod densities, while once ctenophores reached 400 mg
dw, their growth rate was rapid throughout the summer (Fig. 11.9a). Ctenophores
consumed mostly nauplii (Table 11.6). Weights of smaller ctenophores increased

Table 11.4 Results from five replicate runs of model simulations in the baseline IGP, relaxed
predation, and relaxed competition food webs at both high and low DO. Reported values are the
mean, minimum, and maximum total number of fish larvae reaching 15 mm and mean, minimum,
and maximum total number of days for fish larvae to reach 15 mm during the 100 d simulation. No
fish larvae less than 15 mm remain at the end of the simulations. Survivals are reported as
percents. Minimum and maximum values based on the five replicate simulations are shown in
parentheses for number of survivors to 15 mm and for larval duration

Variable Baseline Relaxed predation Relaxed
competition

High DO Low DO High DO Low DO High DO Low DO

Number of
survivors to
15 mm

14.1
(13.8–14.5)

9.9
(9.7–10.2)

352.0
(349.9–354.0)

243.5
(238.8–246.9)

41.5
(38.1–44.8)

19.4
(14.6–24.4)

Larval
duration
(days)

26.0
(25.5–26.4)

19.7
(19.3–20.1)

30.2
(30.1–30.4)

23.9
(23.7–24.3)

19.0
(18.9–19.0)

15.6
(15.4–15.9)

Egg to hatch
survival

40.0 13.0 50.0 23.0 40.0 13.0

Hatch to first
feeding
survival

16.8 17.2 50.0 48.0 16.3 18.8

First feeding
to 15 mm
survival

2.1 4.4 14.2 22.2 6.4 7.7

Egg to 15 mm
survival

0.14 0.098 3.55 2.45 0.417 0.189
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rapidly early and late in the summer when nauplii densities were relatively high and
showed slowed growth during the middle of the summer (days 50–150, Fig. 11.9a)
when nauplii densities were low (Fig. 11.7a).
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Fig. 11.8 Larval fish length (mm) plotted against ordinal day for six different simulations:
a baseline IGP high DO, b baseline IGP low DO, c relaxed predation high DO, d relaxed predation
low DO, e relaxed competition high DO, f relaxed competition low DO. Each line represents a
cohort of individual feeding fish larvae throughout the simulation with each cohort entering the
model at a different time step. The trajectory of size through time provides a representation of
larval fish growth rates
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11.4.3 Effect of Low DO in the Baseline Food Web

Low DO caused a 30% reduction in overall survival of fish (9.9 vs. 14.1 survivors,
Table 11.4), with the effect of DO on decreased egg survival partially offset by
increased larval survival. Survival of fish eggs to hatch was lower in the low DO
simulations than in high DO due to direct DO mortality on eggs. Thirteen percent of
spawned fish eggs hatched to reach the yolk sac larvae stage at low DO as com-
pared to 40% survival at high DO. Percent survival from hatch to first feeding was
similar under both high and low DO (16.0 and 17.2%). In contrast, survival of larval
fish from first feeding to 15 mm was higher under low DO (4.4% vs. 2.1%).

Higher larval fish survival under low DO was due to the effects of low DO
reducing the overlap between fish larvae and ctenophores and the resulting
reduction in encounter rates and predation mortality (two leftmost set of bars in
Fig. 11.10). Potential encounter rates of later survivors were also reduced due to the
higher mortality of fish eggs under hypoxia. The temporal patterns of densities
between the low and high DO simulations were similar for ctenophores (Fig. 11.5a
vs. b), larval fish (Fig. 11.6a vs. b), and adult copepod densities (Fig. 11.7a vs. b);
however, the spatial overlap among the three vertical layers was altered. Peak
densities of ctenophores shifted from the bottom and pycnocline layers under high
DO (green in Fig. 11.5a) to the pycnocline and especially the surface layer during

Table 11.5 Values for the mean proportion of biomass (mg dw) of each copepod life stage in
modeled larval fish diets for three size classes of larval fish. Larval fish size classes were small
(larval fish length <5 mm), medium (10 mm ≥ larval fish length ≥ 5 mm), and large (larval fish
length >10 mm) for all three food webs: baseline IGP, relaxed predation, and relaxed competition
at both high and low DO

Small larvae Medium larvae Large larvae
High
DO

Low
DO

High
DO

Low
DO

High
DO

Low
DO

Baseline
Copepod
nauplii

1.00 1.00 0.13 0.36 0.26 0.38

Copepodites 0.00 0.00 0.87 0.64 0.60 0.35
Adult copepods 0.00 0.00 0.00 0.00 0.14 0.27
Relaxed predation
Copepod
nauplii

1.00 1.00 0.15 0.35 0.26 0.44

Copepodites 0.00 0.00 0.85 0.65 0.59 0.34
Adult copepods 0.00 0.00 0.00 0.00 0.15 0.22
Relaxed competition
Copepod
nauplii

1.00 1.00 0.26 0.88 0.32 0.49

Copepodites 0.00 0.00 0.74 0.12 0.25 0.15
Adult copepods 0.00 0.00 0.00 0.00 0.43 0.36
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the day (black and red in Fig. 11.5b). Larval densities, which were highest in the
bottom and pycnocline layers at high DO shifted mostly to the pycnocline (but not
surface) layers (red in Fig. 11.6b). This resulted in the overlap between ctenophores
and fish larvae being lowered from about 0.9 under high DO to about 0.5 under low
DO (two leftmost bars in Fig. 11.10), resulting in reduced encounter rates and less
predation by ctenophores on larval fish.
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Fig. 11.9 Ctenophore weight (mg dw) plotted against ordinal day for six different simulations:
a baseline IGP high DO, b baseline IGP low DO, c relaxed predation high DO, d relaxed predation
low DO, e relaxed competition high DO, f relaxed competition low DO. Each line represents a
cohort of individual ctenophores throughout the simulation with each cohort entering the model at
a different time step. The trajectory of weight through time provides a representation of ctenophore
growth rates
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It was important to include a spatial component in the model because changes in
vertical distribution in response to low DO triggered indirect effects. Spatial
dynamics increases model complexity (Polis and Strong 1996), but including a
spatial component can capture important features of food web interactions such as
habitat refuges that increase food web persistence and reduce the likelihood of local
extinctions (Keitt 1997; Fulton et al. 2004; Amarasekare 2007). Although larval fish
survival decreased with low DO in all food webs, the response was not solely due to
higher DO-related mortality. At low DO, larval survival from first feeding to
15 mm increased, and larval growth rate increased. Thus, even within a limited part
of the life cycle (eggs and larvae), the response of fish to low DO can be com-
plicated and include indirect effects mediated by changes in spatial overlaps with
other members of the food web.

Larval fish growth rates were faster in the low DO simulation than in the high
DO simulation, despite the negative direct effect imposed (Eq. 11.11), resulting in
shorter larval stage duration (Table 11.4). Growth rates of fish larvae from first
feeding to 15 mm was 0.61 mm d−1 in the low DO simulation, which corresponded
to an average duration of 19.7 days, more than 6 days faster than the 26.0 days in
the high DO baseline food web. Lowered larval fish densities due to increased egg
mortality relaxed some of the predation pressure on copepods, and low DO caused
slightly more overlap between larvae and copepods (middle set of bars in
Fig. 11.10), resulting in faster growth for the remaining larvae. Reduced overlap
between ctenophore predators and copepod prey at low DO also increased zoo-
plankton prey densities available to larval fish.

Low DO caused a shift in larval fish diets away from copepodites (Table 11.5),
but had no effect on ctenophore diets (Table 11.6). Small larval fish (length <5
mm) ate only copepod nauplii, so diets shifts due to low DO were not possible.
Medium-sized larvae (5–10 mm) shifted to more nauplii, and large-size larvae
shifted to more nauplii and more adult copepods in lower DO regions. Low DO did

Table 11.6 Mean proportion
of biomass (mg dw) due to
each copepod life stage in
ctenophore diets for the
baseline, relaxed predation,
and relaxed competition under
both high and low DO
scenarios. Copepods comprise
the majority of ctenophore
diets during the 100 d model
simulation

High DO Low DO

Baseline
Copepod nauplii 0.78 0.81
Copepodites 0.08 0.07
Adult copepods 0.14 0.12
Relaxed predation
Copepod nauplii 0.78 0.81
Copepodites 0.07 0.07
Adult copepods 0.14 0.12
Relaxed competition
Copepod nauplii 0.78 0.81
Copepodites 0.08 0.07
Adult copepods 0.14 0.12
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not affect the relative proportions of the three copepod life stages in ctenophore
diets (Table 11.6).

Uncoupling the influence of a heterogeneous habitat from predation can be
difficult (Anholt and Werner 1995). Spatial distributions of predators, competitors,
and prey in the environment may be important for food web persistence and species
coexistence (Rosenheim et al. 2004), with habitat complexity leading to food web
complexity (Angel and Ojeda 2001). For example, the presence of a motile,
omnivorous predator such as a ctenophore may stabilize complex food webs by
increasing energy flow through weak links that promote species coexistence
(McCann et al. 2005; Morris 2005). Under this premise, we attribute enhanced
growth of larval fish in our modeled low DO food webs to greater spatial overlap of
the larvae with copepod prey. But overall survival of larval fish cannot be explained
by the same mechanism.
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Fig. 11.10 Vertical habitat
overlap for three predator–
prey pairs in the six different
simulations: baseline
intra-guild predation high DO
(IGP HI DO, gray bars),
baseline IGP low DO (IGP
LO DO, gray striped bars),
relaxed predation high DO
(RP HI DO, white bars),
relaxed predation low DO (RP
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11.4.4 Importance of Predation Versus Competition to Fish
Larvae Under High DO

Ctenophore predation had a much larger effect on larval fish survival than com-
petition, and competition had a larger effect on larval growth; however, both pre-
dation and competition affected larval survival and growth. Under high DO
conditions, survival of fish eggs to hatch increased from 40% in the baseline and
relaxed competition food webs to 50% in the relaxed predation food web, hatch to
first feeding survival increased from 16.8 to 50%, and first feeding to 15 mm
survival increased from less than 6.4 to 14.2% (Table 11.4). Cumulative survival
from egg to 15 mm was 24 times higher than baseline survival under relaxed
predation (3.55/0.14), but only three times higher than baseline under relaxed
competition (0.417/0.14).

Larval fish growth rates under high DO conditions were fastest in the relaxed
competition food web and, due to less predation resulting in higher larval densities
and increased density-dependent effects, slowest in the relaxed predation food web
(Table 11.4). Larval duration was 7 days shorter than baseline when competition was
relaxed and 4 days longer when predation was relaxed. Corresponding average
growth rates of survivors were 0.63 mm d−1 under relaxed competition, 0.46 mm d−1

under baseline, and 0.40 mm d−1 under relaxed predation. The slopes of lines for
larval fish length versus day, an indication of growth rates, were very high throughout
the relaxed competition food web (Fig. 11.8e), corresponding to high copepod
densities throughout the summer (Fig. 11.7e). Slopes under baseline and relaxed
predation flattened during mid-summer (Fig. 11.8a, c), which was when ctenophore
densities were high (Fig. 11.6a, c) and copepod densities were low (Fig. 11.7a, c).
Relaxed competition resulted in a shift of large-sized larvae to eat more adult
copepods (Table 11.5). But the faster growth under relaxed competition resulted in a
much smaller increase in survival than the relaxed predation scenario (Table 11.4).

Temporal patterns of larval densities showed a peak in mid-summer under
relaxed predation (Fig. 11.6c), rather than a depression in mid-summer under
baseline and relaxed competition (Fig. 11.6a, e). Water column integrated peak
densities were 40 individuals m−3 under relaxed predation compared to less than 6
individuals m−3 in both baseline and relaxed competition. Relaxed predation and
relaxed competition did not alter the vertical distribution of the larvae, with most
larvae in the bottom and pycnocline layers as in baseline (red and green in Fig. 11.6
a, c, e). Thus, the drop in mid-summer larval densities under baseline was due to
predation effects, rather than competition for zooplankton leading to slowed growth
of larvae, longer duration, and higher cumulative mortality.

Ctenophoresweregenerally unaffectedby the relaxed competition andpredation food
webs. The magnitude and temporal pattern of ctenophore densities (Fig. 11.5a, c, e),
growth rates (Fig. 11.9a, c, e), and diets (Table 11.6) were similar under high DO in all
three food webs.
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11.4.5 Interaction of Low DO with Different Predation
and Competition Conditions

We used a factorial design in model simulations to isolate the interaction effect
between DO level and food web type and found little evidence of an interaction
effect. The effects of high versus low DO on larval survival and growth was
consistent across the three food webs (Table 11.4), suggesting that there was not a
strong interaction between DO conditions and food web type. The only exception
was that DO had a larger effect on larval survival in the relaxed competition food
web compared to the other food webs. Survival from egg to 15 mm under relaxed
predation was 3.55% under high DO and 2.45% under low DO (a 31% decrease),
which was very similar to the decrease under baseline (0.14% vs. 0.098%, or a 30%
decrease). However, under relaxed competition, survival under high DO was
0.417% vs. 0.189%, or a 54% decrease, compared to a 30% decrease in survival
under baseline. The difference was that first feeding to 15 mm survival increased
much less (and therefore offset less of the increased egg mortality) under relaxed
competition (6.4 to 7.7%), than the more than doubling under baseline (2.1 to 4.4%)
and the 50% increase (14.2% to 22.2%) under relaxed predation (Table 11.4). The
temporal pattern of larval densities, while different in the relaxed predation food
web, all showed similar general reductions in densities from high to low DO and a
shift from the bottom layer to the pycnocline and surface layers (Fig. 11.6a vs. b, c
vs. d, e vs. f).

Going from high to low DO also had a consistent effect on larval growth and
diets across the three food webs. Larval durations were 18–24% shorter at low DO
compared to high DO for all three food webs (Table 11.4). Larval lengths over time
showed consistently steeper slopes (faster growth and shorter duration) during the
mid-summer under low DO (Fig. 11.8a vs. b, c vs. d, e vs. f). As with going from
high to low DO under baseline, diets of the medium-sized larvae shifted away from
copepodites toward nauplii and diets of large-sized larvae shifted to greater con-
sumption of nauplii and adult copepods (Table 11.5).

Low DO affected ctenophore densities, growth, and diets similarly in all three
food webs. Water column ctenophore densities peaked at around 9 individuals m−3

under high DO in the three food webs and at about 8 individuals m−3 in the low DO
food webs and showed similar shifts by layer (Fig. 11.5). Ctenophore growth was
also similarly slowed under low DO for all three food webs (Fig. 11.9). Ctenophore
diets were very similar across all food webs and for low and high DO conditions
(Table 11.6).

DO also had only small effects on the relative importance of competition versus
predation to larval survival and growth (Table 11.4). The increase in larval survival
from baseline to relaxed predation was the same for high DO (0.14 to 3.55%, 25x
higher) as for low DO (0.098 to 2.45%, 25x higher). Similarly, the increase in larval
survival was similar for baseline to relaxed competition for high DO (0.417/0.14, or 3x)
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versus low DO (0.189/0.098, or 2x). Thus, the effect of DO (high vs. low) on larval
survival and growth did not depend on the food web and DO did not greatly change
the relative importance of competition versus predation within the food web.

The relaxed predation food web results showed that larval densities would peak
in mid-summer but that the ctenophore predation in the baseline IGP food web and
in the relaxed competition food web caused a mid-summer dip in larval densities.
Note that model simulations were conducted without sea nettle predators, which can
depress ctenophore densities in some field populations. Relaxing predation resulted
in a 25x increase in larval survival, but relaxing competition resulted in the smaller
but still important 3x increase in survival. Relaxing competition resulted in shorter
larval stage durations, and relaxed predation (because of high larval densities)
resulted in longer larval stage durations.

In our analysis, the DO effects were consistent across food webs and DO did not
greatly affect the importance of competition versus predation. These results suggest
that the effects of DO we found are robust and likely apply to a broad set of field
situations. The two extreme food webs (competition completely relaxed; predation
completely relaxed) bound the conditions observed in many estuaries and the dif-
ferences in the food webs possible among spatial subregions and during different
time periods within a system.

11.5 Conclusion

Intraguild predation food webs are thought to persist due to the superiority of the
IGP prey in exploiting shared resources, or because IGP prey has a resource subsidy
unavailable to the IG predator (Polis 1984). But in our modeled food web, and in
the Chesapeake Bay system, ctenophores were both a predator on fish larvae and a
superior competitor for copepod prey. Our result, of lowest survival of early life
stages of fish in the IGP food web, provides evidence that this particular IGP food
web would likely not facilitate persistence of larval fish. However, the modeled
system represents a subset of the complete food web structure of many temperate
estuaries. Factors such as the age structure and seasonality of the food web, as well
as the effects of DO on vertical habitat overlap, limit ctenophore predation on fish
egg and larval stages to a brief period during the summer months. Temporal and
spatial patchiness of ctenophores due to predation by Chrysaora quinquecirrha
medusa, not considered in these simulations, can also contribute to larval fish
survival in the field.

Using a modeling approach to address questions about food web structure and
the effects of low DO on trophic interactions had advantages as well as limitations.
The individual-based, spatially explicit food web model enabled us to simulate the
effects of ctenophore predation and competition with fish larvae; the ability to
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simulate competition was especially valuable because competition is difficult to
isolate in either the field or laboratory. In constructing the food web model, we
made certain simplifying assumptions (e.g., constant temperature, DO levels fixed
through time, simple behavioral rules for feeding and movement) to keep a mod-
erate level of simplicity in a complicated model. Next steps for the food web model
could include adding more trophic levels for both prey (e.g., phytoplankton and
microzooplankton) and predators (Chrysaora quinquecirrha medusae), and con-
sidering traits of larval fish other than bay anchovy to test whether our predictions
are species specific or generally robust, and therefore applicable to other estuarine
food webs. Myriad variations can include additional within-summer variation in
environmental variables and in the phenologies of the zooplankton, ctenophores,
and larval fish. Low DO is often associated with eutrophication, and additional
simulations might include eutrophication effects on the food web. Our results
demonstrate that our ability to assess hypoxia effects on fish is improved by models
that allow for both indirect effects via the food web and alteration of spatial
distributions.
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Appendix A. Stage-Based Matrix Projection Models
for Fish Eggs and Yolk Sac Larvae, and Ctenophore
Eggs and Larvae

Six stage-based matrix projection models were used to update fish eggs and yolk
sac larvae, and ctenophore eggs and larvae. There was a model for fish and for
ctenophores for each of the three layers. The models were 2 × 2 and operated on a
12-h time step. For each model, we computed the diagonal and subdiagonal ele-
ments from stage survival and duration every 12 h. We first computed from sur-
vival over 12 h for the ith stage from specified daily instantaneous survival rates as
Si = e−Mi

/2. For fish eggs only, DO was used to compute SurEggDO (Eq. 11.13),
and Si for eggs was then adjusted as Si ⋅ SurEggDO. We then computed φi, survival
for each time period, from Si and duration (Di, number of 12 h):

φi =
SDi − SD− 1

i

SDi − 1
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The diagonal and off-diagonal elements were then:

Di, i = Si ⋅ 1−φið Þ

Di, i+1 = Si ⋅φi

Fecundity (usually the top row of the matrices) was dealt with by simply adding
newly entering eggs to those already present in each layer every 12 h. Number of
eggs added was computed based on day of year, and dynamically each 12 h for
ctenophores based on growth and summed over individual ctenophores.

At the beginning of each 12-h time step, the matrices were specified and the
numbers of individuals in each stage were updated. Newly entering eggs for fish
and ctenophores were then added to their egg abundances. Then during the next
12 h, consumption of fish eggs and yolk sac larvae by ctenophores was subtracted
from the total number of individuals in each layer. The decreased numbers of
individuals in each life stage in each layer were then used to start the next time step.

The mortality rates, durations, and fecundity rates are shown in Table 11.7.
Typical matrices for each of the taxa were:

Fish:

0.75 5
0.25 0.75

� �

Ctenophores:

0.402 20
0.27 0.402

� �

Table 11.7 Mortality, stage duration, and fecundity rates for stage-based matrix projection
models for fish eggs and yolk sac larvae, and ctenophore eggs and larvae

Taxa Stages Duration
(12 h)

Mortality
(d−1)

Fecundity (entering) or exiting

Fish Eggs 2.0 0.001 Added by layer as 100 eggs m−3;
every 3 days for days 150–189 and
213–220; daily for days 190–212

Yolk
sac
larvae

4.0 0.001 Become individual feeding larvae

Ctenophores Eggs 2.0 0.8 Added by layer by summing over eggs
produced by individual ctenophores

Larvae 20.0 0.6 Become lobates; then after 5–7 days
became 25-mm individuals
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Chapter 12
Simulating the Effects of Nutrient Loading
Rates and Hypoxia on Bay Anchovy
in Chesapeake Bay Using Coupled
Hydrodynamic, Water Quality,
and Individual-Based Fish Models

Aaron T. Adamack, Kenneth A. Rose and Carl F. Cerco

Abstract Water quality in the Chesapeake Bay has decreased since the 1950s due
to an increase in nutrient loadings that have increased the extent and duration of
hypoxic conditions. Restoration via large-scale reductions in nutrient loadings is
now underway. How reducing nutrient loadings will affect water quality is well
predicted; however, the effects of reduced nutrients (reduced food availability) and
associated reduced hypoxia on fish are generally unknown as most water quality
models do not include trophic levels higher than zooplankton. We dynamically
coupled a spatially explicit, individual-based population dynamics model of juve-
nile and adult anchovy to the three-dimensional Chesapeake Bay eutrophication
model. Growth rates of individual anchovy were calculated using a bioenergetics
equation. Anchovy consumption rates were forced by zooplankton densities from
the water quality model, and anchovy consumption of zooplankton was added as an
additional mortality term on zooplankton in the eutrophication model. Anchovy
mortality was size dependent and their movement depended on water temperature,
dissolved oxygen, and zooplankton concentrations. Multi-year simulations with
fixed annual recruitment were performed under decreased, baseline, and increased
nutrient loadings scenarios. The results of our analyses show that anchovy
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responses to changed nutrient loadings are dominated by changes in productivity,
including simultaneous changes in growth and mortality rates, and spatial distri-
bution, and depend on life stage. As such, we recommend using full life cycle,
spatially explicit population models that are dynamically coupled to water quality
models as a tool for predicting the effects of changes in nutrient loadings on fish
population dynamics.

Keywords Nutrient loading ⋅ Hypoxia ⋅ Bay anchovy ⋅ Numerical model-
ing ⋅ Population dynamics ⋅ Individual-based model ⋅ Chesapeake Bay

12.1 Introduction

Understanding the link between water quality and fish population dynamics is
especially important with the widespread efforts, often at considerable cost, to
reduce eutrophication in coastal waters (e.g., Cloern 2001; Rabalais et al. 2002;
Breitburg et al. 2003; Conley et al. 2009). Changes in how an ecosystem is man-
aged, such as altering the rates of nutrient loadings, can have large and complex
impacts on the ecosystem (Rabalais et al. 2002) including changes in the timing and
spacing of ecosystem production dynamics. Historically, water quality models
(freshwater) and nitrogen–phytoplankton–zooplankton (marine) models simulated
the lower trophic level food web in order to predict chlorophyll-a and nutrient
cycling (Rose et al. 2017). Zooplankton were included to get a realistic mortality
term for the phytoplankton (i.e., closure term), and predicting realistic temporal and
spatial variation in the zooplankton biomasses was a second-order consideration
(Runge et al. 2004, Lett et al. 2009). Distinct from these models were the extensive
efforts to simulate upper trophic level population dynamics (e.g., fish population)
and food web dynamics (e.g., Ecopath with Ecosim, Christensen and Walters
2004). Many fish growth and population models focus on fish dynamics and do not
include water quality and trophic levels lower than zooplankton (e.g., Luo and
Brandt 1993; Rose et al. 1999; Lett et al. 2009).

Assessment of the effects of nutrient loadings on fish population dynamics is
complicated by not only increasing nutrients stimulating the lower trophic level
food web (potentially more food for fish), but also triggering hypoxia (dissolved
oxygen (DO) < 2 mg L−1) that has potentially negative effects on fish growth,
reproduction, survival, and distribution (Rose et al. 2009). Earlier modeling studies
(Brandt and Mason 2003; Breitburg et al. 2003; Adamack et al. 2012) that linked
output from a water quality model for the Patuxent River to models of fish popu-
lations showed that the responses of populations to the changes in nutrient loading
rates can be complex and different across life stages. Quantifying the effects of low
DO at the population level further complicates the analysis because most effects
beyond individuals are likely indirect as a result of shifts in other species (prey and
predators of the fish of interest) or arise from spatial displacement of the species to
areas of lower habitat quality.
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The need to link fish bioenergetics and population models with water quality is
particularly important in the Chesapeake Bay (Bay) ecosystem. Historically, epi-
sodic hypoxia and anoxia occurred in deeper portions of the water column of the
Chesapeake Bay (Cooper and Brush 1991; Cronin and Vann 2003; Hagy et al.
2004). Since precolonial times, total nitrogen and total phosphorus loadings to the
Bay are estimated to have increased 6.2-fold and 17.1-fold, respectively (Boynton
et al. 1995), with much of the increase having occurred over the last century (Hagy
et al. 2004; Kemp et al. 2005; Fisher et al. 2006); bottom-water hypoxia is now a
persistent, annual occurrence. Nutrient loadings have increased because of a three-
fold increase in human population size within the Bay watershed over the past
100 years, changing land-use patterns (initially forested, followed by large-scale
clearing for agriculture, today agricultural lands are decreasing as land becomes
urbanized or reverts to forests), and an increase in the use of agricultural fertilizers
with the use of nitrogen-based fertilizer in Maryland doubling between 1960 and
2000 (Kemp et al. 2005). The Bay watershed is now undergoing a costly,
multi-decadal restoration effort (Chesapeake Bay Program 2013) and had a total
maximum daily load (TMDL) implemented for nutrients and sediments by the US
Environmental Protection Agency in 2010 (US EPA 2010). The objective of the
restoration program is to “Correct the nutrient- and sediment-related problems in the
Chesapeake Bay and its tidal tributaries sufficiently to remove the Bay and the tidal
portions of its tributaries from the list of impaired waters under the Clean Water
Act.” The cost of this plan has been estimated as 13–15 billion dollars to Maryland
alone (Gray 2013). Quantification of the benefits of achieving these nutrient
reduction goals to fish and the food web at the population and higher levels was
recognized early on as a challenge (Kemp et al. 2005) that continues on to today.

Bay anchovy (Anchoa mitchilli) in Chesapeake Bay is a well-studied species
(e.g., Houde et al. 1989; Houde and Zastrow 1991; Jung and Houde 2004a) that is a
good candidate species for linking water quality to fish growth and population
dynamics. Bay anchovy are one of the dominant fish species in the Bay in terms of
both abundance and biomass (Baird and Ulanowicz 1989; Houde et al. 1989; Jung
and Houde 2003), and bay anchovy are a major trophic link between zooplankton
and piscivores (Baird and Ulanowicz 1989; Hartman and Brandt 1995). Bay
anchovy consume 15–18% of zooplankton production during the summer and fall
(70–90% of all zooplankton consumed by planktivorous fish), and in turn, they are
the source of 60–90% of the energy intake of the piscivorous fish that fed upon bay
anchovy during the summer, fall, and spring seasons.

Here, we dynamically couple a version of the three-dimensional Chesapeake
Bay water quality model (Cerco and Cole 1993) with a spatially explicit individual-
based population dynamics model for bay anchovy. The individual-based anchovy
model simulates the growth, mortality, and spatial distribution of anchovy on the
same three-dimensional spatial grid as the water quality model. The coupled models
are used to predict the effects of increasing and decreasing the nutrient loadings to
Chesapeake Bay on bay anchovy growth, biomass, and spatial distribution. We
performed simulations for low and high levels of bay anchovy recruitment and for
wet, normal, and dry water years. Additional simulations were performed to
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examine how increased mortality during the egg and larval stages from exposure to
hypoxia and how increased mortality rates on juveniles and adults due to increased
habitat overlap of anchovy and their predators would affect the results.

12.2 Methods

12.2.1 Chesapeake Bay Water Quality Model

The Chesapeake Bay Environmental Modeling Package (CBEMP) was developed
more than 20 years ago to assist in the management of eutrophication in the
Chesapeake Bay ecosystem. The CBEMP has undergone continuous revisions and
additions since then to respond to evolving management needs in the Chesapeake.
Most recently, the CBEMP provided technical support for the development of the
Chesapeake Bay TMDL (Batiuk et al. 2013). The CBEMP is comprised of three
models: a three-dimensional hydrodynamics (CH3D-WES) model (Kim 2013), an
eutrophication (CE-QUAL-ICM) model (Cerco et al. 2010), and a sediment dia-
genesis model (DiToro 2001).

The most recent version of the CBEMP operates on a three-dimensional grid of
50,000 elements and simulates the period from 1985 to 2005 (Cerco and Noel 2013).
These levels of spatial detail and temporal extent are in contrast to the original 4,073
cell grid and 1984–1986 simulation period used here. The original grid and appli-
cation period are retained, however, for educational purposes and as a “test bed” for
model development. The model code for this smaller grid has been updated to keep
track with current developments made to the most recent finer resolution grid ver-
sion. In this analysis, we used the original grid version for the 1984–1986 time
period as the simpler model grid was more amenable to carrying out the model
development process (e.g., modifying the water quality model code and testing
model behavior after the addition of fish), the necessary input model runs were
readily available, and it sufficiently captured the major dynamics needed for linkage
to fish with quicker run times. The initial application of the version of the CBEMP
used here for the years 1984–1986 was described by Cerco and Cole (1993).

For the original grid (4,073 cell grid which we used here), the Bay’s surface was
divided into a horizontal grid of 729 cells with horizontal side lengths of ∼5 by
10 km (Fig. 12.1). Vertically, each column of cells is 2–15 cell layers (each cell is
about 1.5 m thick) deep. The hydrodynamics model is run separately from the
eutrophication and diagenesis models and employs curvilinear coordinates in the
surface plane and a Z-grid in the vertical direction to produce three-dimensional
predictions of velocity, diffusion, surface elevation, salinity, and temperature for
each cell on an intra-tidal (about 5 min) timescale. Outputs from the hydrodynamics
model that were used in the water quality model include cell volume, flows between
cells in the axial, transverse, and vertical directions, and vertical turbulent diffusion.
A Lagrangian processor was used to filter out intra-tidal details from the
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hydrodynamic output, while maintaining the intertidal scale (about 12 h) transport
(Dortch et al. 1992). Inputs to the hydrodynamics model include wind speed, air
temperature, tributary freshwater inflows, surface heat exchange, tides, and the
time-varying vertical distributions of temperature and salinity at the open boundary.
Calibration and validation of the original model are described by Johnson et al.
(1993).

The eutrophication and diagenesis models are run simultaneously. The
eutrophication model simulates the nutrient, phytoplankton, and zooplankton
dynamics in Chesapeake Bay on the same three-dimensional model grid as the
hydrodynamics model (Kim 2013). Additionally, the eutrophication model provides
boundary conditions in the water column including dissolved oxygen, temperature,
and nutrient concentration, for the sediment diagenesis model (DiToro 2001). The

Fig. 12.1 Chesapeake Bay water quality model grid and the location of some key tributaries
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diagenesis model computes sediment-water fluxes of nitrate, ammonium, phosphate,
dissolved oxygen, and silica based on these boundary conditions and on computed
particle deposition. The concentrations of 23 constituents are tracked in the
eutrophication and diagenesis models, including temperature, salinity, DO, several
forms of dissolved and particulate carbon, nitrogen, and phosphorus, summer and
winter phytoplankton groups, and micro- and mesozooplankton biomasses. The
primary forcing functions for the eutrophication model were transport information
from the hydrodynamic model, fall-line nutrient loads from the Susquehanna River
and other major tributaries, non-point-source loads from below the fall line,
point-source loads from municipal and industrial sources, atmospheric loads,
open-mouth boundary conditions, solar radiation, and meteorological conditions
(Cerco et al. 2010).

Model constituents were computed on a mass/unit volume basis in each cell on
the three-dimensional computational grid. Biological constituents, including phy-
toplankton and zooplankton, were quantified as carbonaceous biomass. Constituent
dynamics were updated approximately every 15 min for each model cell using a
three-dimensional mass-conservation equation that was solved using the
finite-difference method.

In addition to improvements and enhancements to the hydrodynamics and
eutrophication models since the original version used here, another significant
development has been the addition of living resources to the model. These living
resources include bivalve filter feeders (Cerco and Noel 2007, 2010) and vertebrate
species such as Atlantic menhaden (Dalyander and Cerco 2010). Indeed, the
anchovy analysis described here inspired the subsequent development of the
menhaden addition to the recent version of the hydrodynamics–eutrophication
model.

12.2.2 Bay Anchovy Model

The bay anchovy model is a spatially explicit individual-based population model
(IBM) that tracks the growth, mortality, and movement of individual anchovy in the
same three-dimensional grid as the hydrodynamics and eutrophication models. The
anchovy model was inserted directly into the eutrophication model code so that it
operates on the same time steps as the eutrophication model and is able to directly
interact with the eutrophication model. Anchovy consumption rates are dependent on
the micro- and mesozooplankton densities and temperature generated by the
eutrophication model for each cell and time step, bioenergetics (respiration and
egestion) are dependent on temperature, horizontal movement of anchovies is related
to zooplankton densities and temperature, vertical movement depends on tempera-
ture and DO, and growth and mortality are affected by lowDO. Zooplankton biomass
consumed by the anchovy is returned to the eutrophication model in the form of
particulate and dissolved nutrients. Parameter values and a brief description of
parameters for anchovy bioenergetics and movement are shown in Table 12.1.
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Table 12.1 Parameter values used in the model equations for bay anchovy growth and
consumption from Luo and Brandt (1993) and for the bay anchovy kinesis movement model.
Values of the eight K feeding efficiency parameters were determined during calibration of the
model. Values of the vulnerability parameters (v) were all set to one and so did not affect the
proportion of micro- versus mesozooplankton consumed

Symbol Description Value

Consumption

ac Intercept for maximum consumption (g prey (g wet weight)−1 d−1 0.41
bc Exponent for maximum consumption −0.33
Q Slope for temperature dependence on consumption 2.22
To Optimum temperature for consumption (°C) 27
Tm Maximum temperature for consumption (°C) 33
K11 Half saturation for microzooplankton for anchovy < 43 mm (g wet weight

m−3)
4.8

K12 Half saturation for mesozooplankton for anchovy < 43 mm (g wet weight
m−3)

0.04

K21 Half saturation for microzooplankton for anchovy 43–60 mm (g wet
weight m−3)

10.0

K22 Half saturation for mesozooplankton for anchovy 43–60 mm (g wet weight
m−3)

2.0

K31 Half saturation for microzooplankton for anchovy 60–90 mm (g wet
weight m−3)

20.0

K32 Half saturation for mesozooplankton for anchovy 60–90 mm (g wet weight
m−3)

5.0

K41 Half saturation for microzooplankton for anchovy > 90 mm (g wet weight
m−3)

80.0

K42 Half saturation for mesozooplankton for anchovy > 90 mm (g wet weight
m−3)

20.0

v1 Vulnerability of microzooplankton to anchovy 1.0
v2 Vulnerability of mesozooplankton to anchovy 1.0
Respiration

ar Intercept for maximum standard respiration (g O2 (g wet weight)−1 d−1) 0.0115
br Exponent for maximum standard respiration −0.346
Qr Slope for temperature dependence of standard respiration 2.25
Tor Temperature for standard respiration (°C) 30
Tmr Maximum temperature for standard respiration (°C) 36
S Specific dynamic action coefficient 0.10
Ac Activity parameter 2.0
Egestion and excretion

A Intercept for temperature dependence of egestion 0.77
B Exponent for temperature dependence of egestion −0.40
au Proportion of assimilated food excreted 0.15
Caloric density

Calz Caloric density of micro- and mesozooplankton (calorie (g prey)−1) 610
(continued)
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In order to conveniently track the movement of individual anchovy, the grid
coordinates were converted from the latitude and longitude coordinates used in the
eutrophication model to Universal Transverse Mercator (UTM) coordinates, which
are given in terms of meters (m). The conversion was done using the equations of
Snyder (1987) and assumed that the shape of the Earth conformed to the dimen-
sions assumed by the 1980 Geodetic Reference System/World Geodetic System
1984 ellipsoid. To confirm that model cell sizes were consistent for the two grids,
the horizontal side lengths of the anchovy model grid cells were compared to the
eutrophication model grid cells. Differences in side lengths for the two grids are less
than 0.1 m per side.

12.2.2.1 Annual Recruitment of Juveniles

A fixed number (low, median, or high) of 23 mm long, 30-day-old bay anchovy
were added to the model each year as weekly cohorts for the duration of the
simulation. There are about 109 to 1014 bay anchovy individuals in Chesapeake Bay
(Jung and Houde 2004a), and modeling each individual separately is not possible
computationally. To solve this, we used a super-individual approach (Scheffer et al.
1995). Each super-individual being simulated was given an initial worth, the
number of identical population individuals that each super-individual represented.

The initial worth of each super-individual within a recruitment scenario was set
to a constant value that was determined as the total number of 23 mm recruits being
added in a simulation year divided by the number of super-individuals (about 105

super-individuals were used). The initial worth of each super-individual was

Table 12.1 (continued)

Symbol Description Value

CalF Caloric density of bay anchovy (calorie (g wet weight)−1) 1000
Mortality

q Multiplier of length-dependent mortality rate 1.17
Movement

H1 Height parameter for the inertia component of movement 0.75
H2 Height parameter for the random component of movement 0.9
Ф Maximum swimming velocity (BL s−1) 1.0
QM0 optimum temperature for horizontal (°C) 27
σ standard deviation of temperature for horizontal (°C) 2
QM0 prey availability (fraction of CMAX) for horizontal 0.8
σ standard deviation of prey availability for horizontal 0.05
QM0 optimum temperature for vertical (°C) 27
σ standard deviation of temperature for vertical (°C) 4
QM0 optimum dissolved oxygen (mg L−1) for vertical 5.0
σ standard deviation of dissolved oxygen (mg L−1) for vertical 1.5
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therefore 3.6 × 106 individuals for the low recruitment scenario, 1.2 × 107

individuals for the median recruitment scenario, and 1.584 × 107 individuals for
the high recruitment scenario.

Use of super-individuals affected how anchovy mortality, consumption, and
almost all model outputs were computed. In a true individual-based approach, the
mortality rate would be converted to a probability of death and compared to a
random number to determine whether the model individual was either removed or
left in the population. Super-individuals remain in the simulation; mortality was
simulated by decrementing the super-individual’s worth by the total mortality rate
(MT, d

−1):

Worthi, t+1 =Worthi, te−MT ðΔtÞ ð12:1Þ

where Δt = ∼ 0.0104 days (15/1440 min). When a super-individual reached old
age (1095 days) or its worth dropped below 0.001, it was removed from the sim-
ulation. The total amount of prey consumed by a super-individual during a time step
was determined by multiplying the amount of prey consumed by a single model
individual by the super-individual’s worth. Model predictions of anchovy densities,
lengths, weights, and other outputs were weighted by the worth (in the statistical
sense) of each super-individual. For example, a mean length on a given day was the
weighted average of the lengths of the super-individuals, with the weights for
averaging being the worths of the super-individuals when they were output.

The number of individuals added each week as part of annual recruitment had a
triangular distribution with the smallest cohorts being added in early June and
mid-October and the largest cohort being added in mid-August (Luo and Musick
1991; Zastrow et al. 1991; Jung and Houde 2004a). Newly generated
super-individuals were randomly placed in model cells in the spatial grid that had
DO concentrations greater than 3.0 mg L−1 and zooplankton concentration greater
than 0.005 g C m−3. The probability of a newly generated super-individual being
placed in a particular cell was set to the volume of each cell as a proportion of the
total volume of all 4,073 cells. If the minimum DO and zooplankton concentrations
were not met, a new initial cell was randomly selected for the anchovy.

12.2.2.2 Growth and Bioenergetics

Growth of each individual was based upon the Luo and Brandt (1993) bay anchovy
bioenergetics model and was evaluated each eutrophication model time step (every
15 min):

dW
dt

= ½CON − ðR+ SDA+F +E+REPÞ� ⋅ Calz
Calf

⋅W ⋅ f ðDOcellÞ ð12:2Þ

where W is the wet weight (g wet weight) of an individual, CON is the amount of
prey consumed, R is the respiration, SDA is the specific dynamic action, F is the
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egestion, E is the excretion, REP is the reproduction, Calz is the caloric density of
prey (cal (g prey)−1), Calf is the caloric density of anchovy (cal (g wet weight)−1),
and f(DOcell) is the low DO effect on growth. Consumption and the loss terms were
all in units of g prey (g wet weight)−1 d−1. The ratio of the caloric densities converts
g prey into g anchovy for the terms within the brackets to obtain the units of g
anchovy per g anchovy per day.

The values of temperature and zooplankton densities that affected anchovy
growth and consumption were those predicted for the cell currently occupied by an
individual by the eutrophication model. Consumption was the sum of the amount of
the microzooplankton and mesozooplankton consumed by an anchovy during each
time step and depended on a maximum possible consumption rate and a type 2
functional response:

CON = ∑
2

j=1
Cj ð12:3Þ

Cj =
CONmaxðPDjvj ̸KcjÞ

1+ ∑2
k=1 ðPDkvk ̸KckÞ

ð12:4Þ

where Cj is the consumption of prey type j by the individual anchovy, PDj are the
densities of microzooplankton (j = 1) and mesozooplankton (j = 2) in the cell of
the individual, vj is the vulnerability (all assumed 1.0), and Kcj are the
half-saturation parameters based on size interval c of the anchovy. Zooplankton
densities were converted from g C m−3 in the eutrophication model to g wet weight
m−3 for use in the anchovy model by multiplying by 12.5 (dry weight was 20% of
wet weight and carbon weight was 40% of dry weight; Mauchline 1998). Maximum
consumption rate was an allometric function of anchovy weight and temperature:

CONmax = acWbc ⋅ f ðTÞ ð12:5Þ

where ac and bc determine the weight effect; f(T) is bell-shaped function that is one
at the optimum temperature, To; zero at the upper temperature, Tm; and Q is a
parameter that approximates a Q10 relationship (a measure of the change in bio-
logical rates as a consequence of increasing temperature by 10 °C) within the
CONmax function for temperatures below T0.

Respiration was modeled as a power function of weight and then adjusted for
temperature using the same temperature effect function as with CONmax but with
different parameter values for the optimum and upper temperatures and for the Q10

relationship:

R= arWbr f Tð ÞAc ð12:6Þ

328 A.T. Adamack et al.



where ar and br determine the weight effect; Tor, Tmr, and Qr are specified for f
(T) for respiration; and Ac is the activity multiplier. The values of Tor and Tmr were
set so that respiration rate increased over the range of simulated temperatures.

Egestion was represented as a fraction of consumption, while excretion and
specific dynamic were represented as fractions of assimilated energy (consumption
minus egestion).

F =CON ⋅A ⋅TB ð12:7Þ

E= CON −Fð Þ ⋅ au ð12:8Þ

SDA= ðCON −FÞ ⋅ S ð12:9Þ

where A and B determine the temperature effect on egestion, au is the fraction of
assimilated energy lost to excretion, and S is the fraction of assimilated energy lost
to specific dynamic action.

Energy related to reproduction (REP in Eq. 12.2) was computed as the
grams/day expended during days 115–246 of each year by anchovy that were at
least 43 mm long and that had a positive net energy intake for the time step. The
energy used for reproduction was set to half of the net energy intake, and repro-
duction costs were applied to all individuals (males and females).

A logistic sigmoidal function, developed originally by Luo et al. (2001) for
Atlantic menhaden, was used to simulate the physiological effects of exposure to
low dissolved oxygen on anchovy growth rate.

f ðDOcellÞ=1 ̸ð1+ eð− 2.1972DOcell +6.5916ÞÞ ð12:10Þ

The function f ðDOiÞ used the DO in the cell to determine the multiplier, and
then the multiplier was applied to the predicted change in weight of the anchovy for
that time step (Eq. 12.2). Growth begins to be reduced at a DO of about 6 mg L−1

is 50% of normal growth at 3 mg L−1 and approaches zero at DO concentrations
less than 1 mg L−1.

Anchovy weights were converted into lengths using a weight–length relationship
modified from Jung and Houde 2004a:

Lnew =
W

e− 11.799

� �1
3

ð12:11Þ

where Lnew is the new length of the anchovy and e−11.799 is a constant derived from
a length–weight function fitted to summer (July) anchovy lengths and weights. An
anchovy’s length only changes if its new length is longer than its length during the
previous time step.
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12.2.2.3 Mortality

Four sources of mortality were included in the bay anchovy model: general mor-
tality (MG), starvation mortality (Mstarv), mortality due to exposure to low DO
(MDO), and mortality due to old age. Once each 15-min time step, the general,
DO-related, and starvation mortality rates were summed to get total mortality (MT),
and used to update the worth of the super-individual (Eq. 12.1). Old age mortality
was threshold based on age (i.e., not a rate) and resulted in the elimination of the
super-individual with all of its worth.

General mortality represented all causes of anchovy mortality except mortality
due to low DO, starvation, and old age. The rate was a simple constant during
winter (October through March) and decreased with anchovy length during the
summer (April through September).

MG = q ⋅ L− 1 ð12:12Þ

where q is the multiplier for length-dependent mortality. Jung and Houde (2004a)
estimated wintertime and length-dependent summer mortality rates based upon 6
years (1995–2000) of field data. As low DO, starvation, and old age mortality are
added to the general rate in the model, we used the lowest summer (q = 1.17) and
winter mortality rates (0.005 d−1) estimated by Jung and Houde (2004a) for general
mortality.

Mortality rate due to exposure to hypoxia was a function of the DO concen-
tration in the cell.

MDO =0.093487 + 70.11894 ⋅ ðln½DOcell�Þ2 ð12:13Þ

This function was fit to experimental data on Atlantic menhaden (Brevoortia
tyrannus) reported by Burton et al. (1980). As observed mortality rates become
extremely high at low DO concentrations, and as anchovy only moved vertically
once every 4 eutrophication model time steps (each eutrophication model time step
simulates ∼15 min of real time; 4 eutrophication model time steps ≈ 1 h of real
time), the maximum mortality rate due to exposure to very low DO was set to a very
high value (33.78 d−1). This high mortality rate resulted in almost complete mor-
tality for the super-individual after 4 time steps, and thus, if such long exposure
occurred, the individual would be removed from the simulation due to near zero
worth.

Starvation mortality (0.1 d−1) was applied to anchovy model individuals whose
weight was 70% or less of the expected weight given their length for each time step
that an anchovy was below its expected weight. Mortality due to old age (100%
mortality; super-individual removed from simulation) was applied to all model
individuals upon reaching an age of 1,095 days (3 years old) based on Newberger
et al. (1989), who found that bay anchovy generally did not live past 3 years of age.
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12.2.2.4 Movement

A kinesis approach (Humston et al. 2000; Humston 2001; Watkins and Rose 2013)
was used to simulate the horizontal and vertical movement of each anchovy
super-individual. Anchovy positions were tracked in continuous x, y, and z space.
The x and y coordinates corresponded to an individual’s UTM coordinates, while
the z coordinate was the distance from the water surface. Horizontal and vertical
movements were evaluated separately at fixed time intervals (x and y every 12 h; z
hourly) to improve model run time, to account for differences in the distances
involved and the time required for an anchovy to cross model cells in the horizontal
and vertical planes, and to allow for the establishment of an inertial gradient (de-
scribed below). Horizontally, model cells are several kilometers across and could
require more than a day for an adult anchovy (e.g., ∼5 cm TL) to cross the cell if
they took the most direct path across the cell. Vertically, model cells are only 1.5
meters and an adult anchovy could swim from the bottom of a cell to the top of the
cell in ∼30 s. The movement model added together an inertia component (f(Vt-1))
and a random component (g(ε)) to produce a net velocity for each of the x, y, and z
dimensions each time step.

Vt = f ðVt− 1Þ+ gðεÞ ð12:14Þ

where f ðVt− 1Þ is a function that was based upon the anchovy’s velocity during the
previous movement step, and g(ε) is a randomly generated velocity. The net
velocities were then multiplied by the time since the last movement step to deter-
mine changes in distance for x, y, and z, which then were added to the current
location to get a new x, y, and z location and a cell location.

The relative contribution of inertial versus random components was dependent
on how close a movement cue was to its optimum level. When conditions in a cell
were close to the optimum, the inertial component dominated movement. When
conditions in a cell were far from the optimum, the random component dominated
movement. Both functions were described using Gaussian functions:

f ðVt− 1Þ=Vt− 1 ×H1 eð− 0.5Þ½ðQM −QM0Þ ̸σ�2
h i

ð12:15Þ

gðεÞ= ε×H2 eð− 0.5Þ½ðQM −QM0Þ ̸σ�2
h i

ð12:16Þ

where H1 and H2 control the height of the function and were restricted to the range
0–1.0, σ controlled the width of the Gaussian function, ε is a random number
deviate drawn from a normal distribution with a mean and standard deviation based
on an individual’s swimming speed, QM is the actual value of the movement cue,
and QM0 is the optimum value of the movement cue. For the two components of the
movement model to work properly, model individuals needed to shift between cells
somewhat frequently (in terms of movement steps) in order to generate cue gra-
dients that will drive the inertia component of the movement model. As vertical
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distances across cells were short, vertical movement could be evaluated frequently
(hourly) while the relatively long horizontal distances across cells required longer
movement time steps (12 h).

Horizontal (x and y) movement depended on the cues from water temperature
and zooplankton density, while vertical (z) movement depended on water tem-
perature and DO. Water temperature and prey availability were used as cues
because they were the key factors affecting anchovy growth, while DO was used as
a cue because it affects the vertical distribution of anchovy and other fish species
(e.g., Constantini et al. 2008 and Zhang et al. 2009) and can cause direct mortality.
The optimal water temperature (QM0 for temperature) was set to 27 °C, the optimal
temperature for consumption by anchovy (Luo and Brandt 1993). Densities of
micro- and mesozooplankton were combined into a single measure of overall prey
availability using the functional response portion of the equation for consumption,
and the optimum value for prey availability (QM0 for food) was set to 80% of
CONMAX (Eq. 12.5). To avoid mortality due to low DO, while at the same time
preventing anchovy from aggregating at the surface of the water column, we set the
optimum DO concentration (QM0 for DO) to 5.0 mg L−1.

Deviates from optimal were computed separately for each cue, and the smaller of
the deviates for water temperature and prey availability was used to determine the
net velocities for x and y movement, while the product of the deviates for water
temperature and DO was used for vertical movement. Vertical movement was
restricted to a maximum change of 3 m per vertical movement step in order to
simplify the tracking of anchovy movement, as anchovy can potentially swim many
times the thickness of the water column between the 1 h movement time steps.

Once the distances that an anchovy moved along x, y and z had been deter-
mined, a two-part procedure was used to update the anchovy’s position. In the first
part of the procedure, the anchovy’s new x and y values were determined by adding
the distances moved along the x and y coordinates to the anchovy’s previous
position. A point-in-polygon subroutine (Burkadt 2014) was used to determine
whether the anchovy’s new position was outside of the cell that it had begun the
time step in. If the anchovy finished in the same cell that it started in, the anchovy’s
horizontal movement was complete for the current movement step. If the anchovy’s
new position was outside the initial cell, then the anchovy’s position was checked to
determine whether or not it was on the model grid for the current depth layer. If the
individual’s new position was not on the grid, then the individual was reflected back
onto the grid. Finally, the individual’s new cell was identified and updated.

The second part of the movement updating procedure was to update the individ-
ual’s vertical position. Updating vertical position was simpler as z values were
constrained to the interval between the surface and bottom of the water column, and
all cells in the vertical dimension were in had the same shape and thickness. If the z
value was above the surface or below the bottom, then the z value was reset to place
the anchovy just below the surface or just above the bottom. Once the anchovy’s final
position was determined, its velocities along the x- and y-axes for the current
movement step were recalculated using the anchovy’s starting and actually realized
final positions. The recalculated velocities were used to set Vt-1 for the next move-
ment step.
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12.2.3 Modifications to the Eutrophication Model
to Accommodate Bay Anchovy

The eutrophication model had been calibrated previously without anchovy preda-
tion on zooplankton. To accommodate the addition of anchovy to the eutrophica-
tion model, we reduced the mortality rates of summer algal biomass from 1.00 d−1

to 0.15 d−1, and predation mortality on micro- and mesozooplankton by 70% based
on model calibration results.

12.3 Simulations

Three sets of model simulations were performed: calibration and baseline to
examine the effects of water year and recruitment level, effects of increased and
decreased nutrient loadings, and the effects of forced increased mortality rates to
offset the benefits of increased nutrient loadings (e.g., increases in zooplankton
prey). The results of single model runs were reported, as runs that used different
random number seeds generated very similar model predictions of anchovy growth,
densities, and spatial distributions. We used eutrophication model input files and
hydrodynamics output for the years 1984, 1985, and 1986; these were arranged to
obtain a single 10-year sequence. The 3 years can be assigned water year types
(e.g., normal, wet, and dry) by using the US Geological Survey (2014) classification
of annual-mean stream-flow entering Chesapeake Bay: 1984 was a wet year, 1985
was a dry year, and 1986 was a normal year. Calibration runs used a repeating
series of the input files for the 1986 conditions (normal years). For all other sim-
ulations, we linked the input files for the 1984 (wet), 1985 (dry), and 1986 (normal)
water years in order to match the sequence of wet, normal, and dry water year types
that were observed between 1984 and 1993 (Fig. 12.2). This was done to use a real
sequence of water year types in model simulations. Settings for all of the model
runs are summarized in Table 12.2.

12.3.1 Bay Anchovy Recruitment

Annual recruitment levels for the low and high recruitment scenarios were based on
estimates of the total number of eggs produced each year by anchovy, and
age-dependent growth and size-dependent mortality rates from Jung and Houde
(2004a). The number of eggs produced was combined with growth and mortality
rates to estimate the total number of 23 mm long bay anchovy (the initial size of
anchovy added to the model; eggs and larvae were not directly included in our
simulations) produced each year. Low (3.6 × 1011 individuals) and high
(1.58 × 1012 individuals) recruitment levels were set to the years with the lowest
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and highest numbers of 23 mm long individuals produced across the six annual
estimates. Our low recruitment condition was probably truly low as data from the
Maryland Department of Natural Resources Bay-wide index (2017) indicated that
age-0 bay anchovy catch per unit effort has declined since 1959. Our high
recruitment condition, while high for the 1995–2000 period, may be closer to
average recruitment relative to the long-term record for anchovy in Chesapeake
Bay.

12.3.2 Nutrient Loading Scenarios

Three nutrient loadings were used: baseline, decreased, and increased. The baseline
nutrient loadings scenario used the nutrient loads estimated for the years 1984,
1985, and 1986. The decreased scenario reduced nutrient loads by 50% from
baseline levels in each year. A 50% reduction in nutrient loadings was roughly
equivalent to that required under the old Chesapeake 2000 Agreement, which
required reductions of 48 and 53% (based on 1985 levels) for total nitrogen and

Fig. 12.2 Volume of hypoxic water for decreased, baseline, and increased nutrient loadings
during the 3 prerun years and the 10 years after that used the same water year type as observed in
1984–1993. Spin-up years are indicated by the label “pre.” Water year type is indicated by the
initials: D = dry year, W = wet year, and N = normal year. Water year types were obtained from
the USGS (http://www.md.water.usgs.gov/monthly/bay.html). Note that the calender year starts on
the ticks for “Water year based on”
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phosphorus inputs (Kemp et al. 2005; Chesapeake Bay Program 2013). In the
increased loadings scenario, nutrient loads are 50% higher than the baseline loads.
The increased loadings scenario provides a contrasting scenario to the decreased
loadings scenario. It may reflect future conditions if no action is taken, but no such
land use and loadings projections have been made. Increases and decreases in
nutrient loadings were applied through the use of a simple multiplier of the nutrient
loading rates (e.g., nutrient loadings × 0.5 for the decreased nutrient loadings
scenario and × 1.5 for the increased nutrient loadings scenario). In the standard
10-year simulations, the volume of hypoxic water was typically 20–40% less under
decreased nutrient loadings and about 10–15% larger under increased nutrient
loadings (Fig. 12.2). The model represents peak hypoxia in summer, coincident
with peak primary production of organic matter and temperature-induced respira-
tion. There can be some modeled residual hypoxia in isolated deep holes during
winter. The residual hypoxia is an artifact of the relatively coarse grid and is absent
in later, more highly resolved grids (e.g., Cerco and Noel 2013). The isolated
persistent hypoxic volumes do not impact the anchovy, as the location and small
spatial extent of any residual winter hypoxia did not affect anchovy habitat.

Table 12.2 Summary of the model runs analyzed in this paper. All simulations were structured
23 years long and started with 10 years of spin-up for nutrient loadings (no anchovy), then 3 years
of spin-up for anchovy (normal water years), and then 10 years of water years that matched the
water years of 1984–1993. The first 10 years for spin-up used all normal water years and the same
nutrient loadings as was used for the 1984–1993 period. The 3 years of spin-up for anchovy also
used normal water years and the low or high recruitment level used in 1984–1993

Run Purpose Nutrient
loadings

Recruitment
level

q in
general
mortality

1 Re-calibration and effects of water year
and recruitment level

Baseline Low 1.17
2 Baseline High 1.17
3 Effects of increased and decreased

nutrient loadings
Decreased Low 1.17

4 Increased Low 1.17
5 Decreased High 1.17
6 Increased High 1.17
7 Effects of decreased recruitment

(increased egg or larval mortality) due to
increased nutrient loadings

Increased 86% of Low 1.17
8 Increased 49% of Low 1.17
9 Increased 12% of Low 1.17
10 Increased 76% of High 1.17
11 Increased 52% of High 1.17
12 Increased 23% of High 1.17
13 Effects of increased general mortality rate

of juveniles and adults due to increased
nutrient loadings

Increased Low 1.3
14 Increased Low 1.43
15 Increased High 1.3
16 Increased High 1.43
17 Increased High 2.3
18 Increased High 2.725
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12.3.3 Initial Conditions from Spin-Up

All simulations were structured as 23-year simulations. Each simulation started with
10 years of spin-up for nutrient loadings (no anchovy), then 3 years of spin-up for
anchovy (normal water years), and then 10 years of water years that matched the
water years of 1984–1993. The first 10 years for spin-up used all normal water
years and the same nutrient loadings scenarios as was used for the 1984–1993
period (e.g., 50% increase, baseline, or 50% decrease). The 3 years of spin-up for
anchovy also used normal water years and the same low or high recruitment level as
used in the 1984–1993 portion of the simulation. For example, run 13 (Table 12.2)
had 10 years of no anchovy under normal water years and increased nutrient
loadings, then 3 years with anchovy under normal water years, increased nutrient
loadings and low recruitment, and then 1984–1993 water years under increased
nutrient loadings, low recruitment, and q increased from 1.17 to 1.3.

12.3.4 Increased Mortality Rates

Changes in nutrient loadings can have several potential effects on bay anchovy that
were not directly simulated in our bay anchovy model. Chesney and Houde (1989)
used laboratory studies to show that anchovy egg hatchability declined significantly
at DO concentrations less than 3 mg L−1, while Adamack et al. (2012) used a
simulation model and showed that increased spatial extent and duration of low DO
conditions due to increases in nutrient loadings could result in significant increases
in egg mortality rates. Costantini et al. (2008) and Ludsin et al. (2009) found that
increases in the extent of hypoxia in Chesapeake Bay could increase the mortality
rates of forage fish by increasing the degree of vertical spatial overlap between the
forage fish and their predators resulting in increased encounter rates. The above
studies were focused on the negative effects of increased hypoxia from increased
nutrient loadings on anchovy. However, the reverse situation of decreased nutrient
loadings reducing hypoxia resulting in less vertical spatial overlap between forage
fish and their predators reducing their encounter rates and thereby reducing mor-
tality is also possible and of potential importance.

To investigate those mortality-related effects not explicitly covered in the
anchovy model, we ran two sets of simulations for the low and the high recruitment
scenarios with increased nutrient loadings. The first set of simulations examined the
potential effects of increased egg mortality due to increases in the vertical extent
and intensity of hypoxia under the increased nutrient loadings scenario. The egg
stage is not explicitly simulated in our model because we add recruits each year. We
represented possible changes in egg (and larval) mortality rates by adjusting the
recruitment levels. For the low and high recruitment scenarios, we tested three
levels of recruitment reductions from the original recruitment levels with the goal of
identifying how much larval recruitment had to be reduced in order to result in no
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net gain in anchovy production relative to the baseline nutrient loading scenario.
The minimum recruitment level tested for the low recruitment scenario was arbi-
trarily set to 12% of the baseline low recruitment level, while for the high
recruitment scenario the minimum was set to the low recruitment level (23% of high
recruitment). Two additional recruitment levels that were spaced evenly between
the minimum recruitment level and the original recruitment level were tested for
each recruitment scenario (low and high).

The second set of simulations examined the effects of increases in bay anchovy
juvenile and adult mortality rate due to potential increases in the degree of vertical
spatial overlap between anchovy and their predators. While we simulated anchovy
vertical movement, predators were represented as a mortality rate. As an initial
approach to simulating predator responses that would cause increased overlap, we
increased q, the length-specific mortality coefficient (Eq. 12.12), from our original
value of 1.17 to 1.3 and to 1.43. These values were the median and maximum
values of q measured by Jung and Houde (2004a). The value of q was further
increased to 1.725 and to 2.3, which were equivalent to instantaneous mortality
rates that were about 50% and about 100% higher than the instantaneous mortality
rates when q was set the baseline value of 1.17. These higher values of q were to
ensure that mortality would be sufficiently high to offset the increased anchovy
production under increased nutrient loadings.

12.3.5 Model Outputs

Model outputs are presented for the three sets of simulations: re-calibration and the
baseline simulations, the effects of water years and nutrient loading on anchovy,
and how changes in recruitment and mortality due to increased nutrient loads affect
anchovy biomass. All model outputs and how they were computed from
super-individuals in the simulations are documented in Table 12.3.

Results summarizing the baseline and re-calibration results include time series
plots of daily total biomass, total abundance, and mean length, and comparisons of
daily nutrient, chlorophyll-a, and micro- and mesozooplankton concentrations
before and after the addition of anchovies to the model. We then summarize the
baseline results using YOY individuals only in October from the last years (normal,
dry, and wet) of the simulations: box plots of lengths, biomass, and abundance.
Finally, we compared box plots of the latitudes of individuals between each water
year type (last 3 years) and reported field data.

The effects of water year type and nutrient loadings also use mean length,
biomass, and abundance for YOY in October. Two additional outputs are
two-dimensional spatial maps of all individuals in July by water year type (last
3 years) and high or low recruitment, and the percentage of mortality due to the
possible causes over all years in the simulations. The effects of additional mortality
were assessed by comparing YOY biomass in October under increased loadings
with various values of reduced recruitment and increased values of q to October
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Table 12.3 Calculations performed to go from super-individuals to the model outputs reported in
tables and figures in this paper

Model output Calculations Runs and
Years

Figures

Daily biomass, abundance,
and mean length of all
individuals

Output all individuals on first
time step of each day; compute
summed weight x worth
(biomass) and worths
(abundance); compute mean
length (weighted by worth)

Runs 1 and 2
All 13 years
for each run

Figure 12.3

October YOY median length,
growth rate, abundance, and
biomass

Output all YOY individuals on
first time step after midnight
on October 15; compute the
median length (weighted by
worth), mean growth rate
(weighted by worth) from
23 mm in length to current
length of super-individual,
summed worths (abundance),
and summed weight x worths
(biomass)

Runs 1 and 2
Last 3 years
(dry, normal,
and wet) of
each run

Figure 12.4
(also
Table 12.4)

Mean latitude in mid-October Output all individuals on first
time step after midnight on
October 15; assign individuals
to 10 mm size classes;
compute box plots of latitudes
(weighted by worth)

Run 2
Last 3 years
(dry, normal,
and wet) of the
run

Figure 12.4

Box plot of lengths and
biomass in mid-October, and
percent survival (initial
recruitment to October)

Output all YOY individuals on
first time step after midnight
on October 15; compute box
plots of lengths (weighted by
worth) and biomass (weights x
worth); and compute survival
as summed worths of all
individuals on October 15
divided by initial total worth
of 23 mm recruits

Runs 1–6
Last 3 years
(dry, normal,
and wet) of
each run

Figure 12.5

Depth-integrated densities of
age-1 and older anchovy

Output all age-1 and older
individuals on first time step
after midnight on July 15;
compute summed worths of all
individuals over depth by
surface grid cell

Runs 3–6
Last 3 years
(dry, normal,
and wet) of
each run

Figure 12.6

Mean latitude by month of
age-1 and older individuals

Output the latitude and worth
of each age-1 and older
individual on midnight of the
midpoint day in each of April,
May, June, July, and August;
compute the mean latitude
(weighted by worth)

Runs 3–6
Last 3 years
(dry, normal,
and wet) of
each run

Figure 12.7

(continued)

338 A.T. Adamack et al.



biomass predicted under baseline conditions. The patterns in the model results that
rely on snapshot outputs in October were consistent across water years, regardless
of day selected for outputting, but the magnitude of the individual model results
varied across output days.

12.4 Results

12.4.1 Baseline Simulations

In the baseline simulations (Runs 1 and 2), total (all ages) anchovy biomass
(Fig. 12.3a) and abundance (Fig. 12.3b) show repeating annual cycles that reflect
the effects of recruitment level more than water year type. Under high recruitment,
biomass initially increased rapidly each year as recruits were added to the popu-
lation and then dropped very rapidly due to the rising biomass of anchovy rapidly
reducing their prey causing slower growth and higher mortality rates relative to the
low recruitment scenarios. While biomass and abundance were much higher under
high recruitment compared to low recruitment, mean length was lower under high
recruitment confirming a density-dependent effect of abundance on growth
(Fig. 12.3c). Abundance under high recruitment (Fig. 12.3b) initially dropped in
tandem with a drop in biomass each year (Fig. 12.3a), suggesting that slowed
growth led to increased mortality. Under low recruitment, both biomass and
abundance showed smoother increases as juveniles were added and decreases after
that each year, and the lower predation pressure on their zooplankton prey resulted
in faster growth and longer mean lengths (gray lines in Fig. 12.3).

Within each of the baseline simulations, the annual cycles of biomass, abun-
dance, and mean length did not show large differences among the dry, normal, and
wet water years (Fig. 12.3). Use of total population, which included all ages, acted

Table 12.3 (continued)

Model output Calculations Runs and
Years

Figures

Proportion of total mortality
due to each cause

Cumulative sum of all worths
due to mortality, and by each
mortality source (hypoxia,
starvation, old age, and
natural); compute the
proportions as sum of deaths
by source divided by total
deaths

Runs 1–6
All 13 years
for each run

Figure 12.8

YOY biomass in mid-October Output all YOY individuals on
first time step after midnight
on October 15; compute
biomass as summed
weight × worths

Runs 7–18
Last 3 years
(dry, normal,
and wet) of
each run

Figure 12.9

12 Simulating the Effects of Nutrient Loading Rates … 339



(a)

(b)

(c)

Fig. 12.3 Total daily population biomass (a), abundance (b), and mean length (c) for the baseline
simulations under low and high recruitment
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to smooth differences from year-to-year. When only YOY were examined, water
year type had somewhat larger effects, but they were still small compared to the
effects of recruitment level (discussed below in Fig. 12.6).

12.4.2 Assessment of Re-calibration Using Baseline
Simulations

Following the re-calibration of the coupled models after adding bay anchovy,
chlorophyll-a concentrations and mesozooplankton densities in the two simulations
(Runs 1 and 2) were 1-fold to 3-fold higher than predicted values without anchovy.
Predicted chlorophyll-a (based on the daily values) ranged from 0.85 to 18.65 g C m3

with anchovy versus 0.67 to 14.10 g C m3 without anchovy, and mesozooplankton
ranged from 0.0037 to 0.12 g C m3 with anchovy versus 0.0037 to 0.046 g C m3

without anchovy. In contrast, microzooplankton densities ranged from a third of to
being similar in magnitude to the predicted densities obtained without anchovy. The
temporal and spatial trends in micro- and mesozooplankton densities were generally
consistent with the densities from model runs without anchovy. Nitrate and phos-
phate concentrations were almost identical between simulations without and with
anchovy. Adamack (2007) further demonstrated the similarity of micro- and
mesozooplankton densities (with and without anchovy) to the historical field data
(roughly monthly) collected at station CB5.2 from the long-term monitoring pro-
gram (see Magnien 1987).

Model predictions of anchovy lengths and growth rates for YOY individuals that
survived to the end of October for the baseline simulations (Runs 1 and 2) are
somewhat comparable with the October field observations of Jung and Houde
(2004a, their Table 2). The median length of anchovy under low recruitment was
about 34 mm for all 3 water year types (last 3 years of the simulation), which is
lower than the range of mean lengths (46.7–51.1 mm) reported by Jung and Houde
(2004a). The shorter simulated lengths were driven by a combination of the date
that model results were output and the pattern of recruitment that we used. Delaying
output by 14 days resulted in median lengths being ∼5 mm longer, while ignoring
recruits added in September and October produced additional increases in the
simulated lengths. Simulated median lengths in the last 3 years of the high
recruitment baseline simulation were about 27 mm, which is approximately half of
the shortest mean lengths observed (46.7–51.1 mm, Table 12.4). Predicted YOY
anchovy growth rates for both the low and high recruitment simulations (about
0.38 mm d−1) are similar to Jung and Houde’s values (0.36 and 0.40 mm d−1), and
also similar to the juvenile anchovy growth rates reported by others (0.20–0.33 mm
d−1) for mid-Chesapeake Bay (Morin and Houde 1989; Newberger et al. 1989).

Predicted abundances of YOY anchovy in late October for the two baseline runs
are within the range of abundances observed by Jung and Houde (2004a) (Table 12.4).
Anchovy abundances for the low recruitment scenario (44.4 to 48.4 × 109
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individuals) are similar to the observed abundance in 1995 (44.5 × 109 individuals),
which was the year with the second lowest observed YOY recruitment. Predicted
abundances for the high recruitment scenario (169.1–187.6 × 109 individuals) are
between the median and highest levels of recruitment observed by Jung and Houde
(98.2–273.8 × 109 individuals).

October YOY biomass tended to be low relative to the October standing stock
biomass of anchovy reported by Jung and Houde (Table 12.4). Anchovy biomasses
predicted for low recruitment (18,393–22,502 metric tonnes) are similar to the fall
peak in biomasses observed by Jung and Houde during years with low estimated
anchovy biomass (∼25,000–50,000 metric tonnes; their Fig. 4a). However, pre-
dicted biomasses for the high recruitment scenario (28,346–39,684 metric tonnes,
Table 12.4) are less than half of the reported field-based estimates (∼100,000–
150,000 metric tonnes) during years with high anchovy biomass.

Model predictions of the mean latitude of age-1 and older anchovy (not YOY)
by length category are generally comparable to field data from the CHESFIMS
project (Miller et al. 2008). When each of the simulated water years were matched
with field data for years of similar water type, the predicted mean latitude of
anchovy overlaps with the observed latitudes for the intermediate length classes
(Fig. 12.4)

We examined the vertical distributions of anchovy for two cross sections of
Chesapeake Bay (not shown) and found that anchovy were generally concentrated
in waters above the hypoxic layer, consistent with Zhang et al. (2014) who showed
many pelagic fish species moving vertically in response to hypoxic conditions.

Table 12.4 Predicted median length in October, mean growth rate of survivors, abundance, and
biomass of YOY anchovy in dry, normal, and wet years of the baseline simulation under low and
high anchovy recruitment compared to observed values from Jung and Houde (2004a). The years
of field data are the lowest, median, and highest values of 23 mm anchovy recruits reported by
Jung and Houde in order to provide a range of values to compare to the model results

Year type Median length
(mm)

Growth rate
(mm d−1)

Abundance
( × 109)

Biomass (metric
tonnes)

Low recruitment

Dry 32.4 0.34 45.0 18,393
Normal 33.8 0.38 48.4 22,502
Wet 33.8 0.39 44.4 19,535
High recruitment

Dry 26.1 0.15 169.1 28,346
Normal 27.3 0.14 187.6 39,094
Wet 28.3 0.14 177.9 39,684
Jung and Houde (2004a)
Low (1996) 49.1 0.36 29.2 27,000
Median (1997
and 1999)

51.1 0.36 98.2 ∼100,000

High (1998) 46.7 0.40 273.8 193,000
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(a)

(b)

(c)

Fig. 12.4 Predicted latitudes (°N) of age 1 and older anchovy in October for the last 3 years water
year types: (dry (a), normal (b), wet (c)) of the baseline simulation under high recruitment
compared to field observations of the distributions of anchovy in the fall. Years of the field data
were matched to the simulated years based on being dry, normal, or wet water years. Anchovy
field distributions are from the CHESFIMS project
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12.4.3 Effects of Water Year and Nutrient Loadings
on Salinity, Temperature, and Zooplankton

Salinity and water temperature were only affected by water years, while meso-
zooplankton was affected by both water years and nutrient loadings scenarios. For
salinity, going from dry years to wet years resulted in lower overall salinities and
increased the southward extent of low salinity waters (e.g., salinity < 15; Fig. 12.5
top row). Water temperatures were somewhat similar for the dry year and the
normal year, but were somewhat cooler in wet years (Fig. 12.5 middle row).
Spatially, water temperatures tended to be warmest along the edges of the Bay and
in tributaries and coolest along the main channel, particularly in the northern half of
the Bay. Mesozooplankton density increased going from dry years to wet years and
from decreased nutrient loadings scenarios to increased nutrient loadings scenarios
in response to increases in nutrient loadings rates to the Bay (Fig. 12.5 bottom row).
Spatially, the main channel of the Bay had the highest mesozooplankton densities,
but this is in part a result of the mesozooplankton densities being depth-integrated
and the main channel being the deepest portion of the Bay. Microzooplankton (not
shown) had similar patterns to mesozooplankton.

The effects of water years and nutrient loadings scenarios on salinity, temper-
ature, zooplankton, and other water quality variables are covered in detail in Cerco
and Cole (1993), Cerco et al. (2010), and Cerco and Noel (2013).

12.4.4 Effects of Water Year and Recruitment Level
in Baseline Simulations

Recruitment level affected YOY anchovy lengths more than water years (Fig. 12.6).
Anchovy in the low recruitment scenario (Run 1) generally reached longer lengths
than anchovy in the high recruitment scenario (Run 2) (Fig. 12.6a vs. b). However,
there was little difference in the length distributions of anchovies across water years
(middle bars for each water year in Fig. 12.6a, b). Similar results were seen for
October biomasses (Fig. 12.6c, d) and abundances (Table 12.4) of YOY anchovy,
though there was more variability across water years for biomass and abundance
than for lengths. Across water years, YOY anchovy biomasses were similar for all
three water years under low recruitment (18,393–22,502 metric tonnes), but higher
for the normal and wet years than for dry year (about 39,000 vs. 28,346 metric
tonnes) under high recruitment (Table 12.4; Fig. 12.6c, d). The same pattern was
predicted for YOY abundance—similar for all years under low recruitment (44.4–
48.4 × 109 individuals) and higher for the normal and wet years than for the dry
year (187.6 and 177.9 vs. 169.1 × 109 individuals) under high recruitment.

Water year had a larger effect on anchovy spatial patterns than recruitment level.
As would be expected, anchovy densities (all ages) were generally higher under
high recruitment than low recruitment (note scale of color bar in Fig. 12.7). Across
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Fig. 12.5 July spatial patterns of depth-integrated salinity (top row), temperature (middle row),
and mesozooplankton densities (bottom row) for the dry year of the decreased nutrient loadings
scenario, the normal year of the baseline nutrient loadings scenario, and the wet year of the
increased nutrient loadings scenario. The three scenarios were selected to show the full range of
the nutrient loadings scenarios (e.g., the extreme minimum, “typical,” and maximum nutrient
loadings scenarios)
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water years, the mean latitude of anchovies in July was farther south in the wet year
compared to the normal and dry years, likely in response to changes in the extent of
hypoxia between wet and dry years. In the wet year, bottom layer hypoxia extended
further south and was more intense than in normal and dry years (not shown). The

(a) (b)

(c) (d)

(e) (f)

Fig. 12.6 Comparison of YOY bay anchovy October length distributions (a, b), October biomass
(c, d), and survival from recruitment to October (e, f) across recruitment levels (low and high),
water year types (dry, normal, and wet), and nutrient loadings (decreased, baseline, and increased).
The last 3 years in each simulation were used as dry, normal, and wet year types. For anchovy
length box plots, circles show the 5th and 95th percentiles of the distributions, whiskers show the
10th and 90th percentiles, the box shows the 25th and 75th percentiles, and the solid line in the box
shows the median
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effect of water year type on latitude in July was roughly consistent under low and
high recruitment levels. Under low recruitment, mean latitude of age-1 and older
individuals in July was 37.27°N for the wet year versus 37.35°N and 37.33°N for
the dry and normal years. Under high recruitment, mean latitude in July was also
lowest (37.33°N) for the wet year compared to the normal and dry years (37.43°N
and 37.41°N, respectively).

12.4.5 Effects of Nutrient Loadings

Changing nutrient loadings (Runs 3–6) affected dissolved oxygen concentrations
and zooplankton densities in the eutrophication model. Increasing nutrient loads by
50% had a relatively small effect on hypoxic volume (Fig. 12.2). Reducing nutrient
loadings had a much larger effect on hypoxic volumes, with a 50% reduction in
nutrient loadings resulting in a 20–40% reduction in hypoxic volume (Fig. 12.2).
Higher nutrient loadings resulted in higher zooplankton densities throughout the
Bay (and vice versa).
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Fig. 12.7 July depth-integrated (# m−2) anchovy densities for the last 3 years (dry, normal, and
wet) of the baseline simulation under low recruitment (top row) and under high recruitment
(bottom row). Note the difference in the scale on the color bars
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The effects of increasing or decreasing nutrient loads on bay anchovy were
consistent across the two recruitment levels and the three water year types.
Increased nutrient loadings resulted in increases in YOY anchovy lengths and
biomasses, while decreased nutrient loadings resulted in decreases in lengths and
biomasses (Fig. 12.6a–d). However, YOY anchovy survival rates were inversely
related to nutrient loadings, with increased nutrient loads resulting in lower survival
rates for both recruitment levels (Fig. 12.6e, f), primarily due to increases in
mortality due to increasing rates of exposure to hypoxic conditions (Fig. 12.8) as
the volume of hypoxic water increased (Fig. 12.2). Changes in anchovy survival
rates (Fig. 12.6e, f) were small relative to the changes in anchovy lengths
(Fig. 12.6a, b), which resulted in increased nutrient loadings producing higher
biomasses of YOY bay anchovy (Fig. 12.6c, d) despite the higher YOY mortality
rates. We note that going from baseline nutrient loadings to increased nutrient
loadings had a smaller effect on anchovy lengths, biomass, and survival than going
from baseline to decreased nutrient loadings.

Fig. 12.8 Causes of anchovy
mortality for all anchovy
individuals dying over the
course of the 3 prerun years
and the 10 water years from
1984 to 1993 for decreased,
baseline, and increased
nutrient loads and low and
high recruitment. Causes of
mortality include exposure to
low DO (hypoxia), starvation,
old age, and general
(size-dependent) mortality
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12.4.6 Effects of Additional Hypoxia-Related Mortality

For the low recruitment level (Runs 7–9), reducing recruitment to 86% of the
baseline low recruitment level was sufficient to reduce October biomass of YOY
anchovy in the increased nutrient loadings scenario to the same level as the biomass
obtained under baseline nutrient loadings (Fig. 12.9a). This same reduction in
recruitment resulted in the offsetting of the nutrient-fueled increased high biomass
for all three water year types. Under high recruitment (Runs 10–12), recruitment
had to be reduced to 52% of the baseline high recruitment level to result in
October YOY anchovy biomasses that were approximately equal to biomasses
under baseline nutrient loadings (Fig. 12.9b).
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For the low recruitment level (Runs 13 and 14), increasing q from 1.17 to 1.30
resulted in October YOY anchovy biomass under increased nutrient loadings
dropping to the same level as under baseline nutrient loadings (Fig. 12.9c).
Increasing q from 1.17 to 1.30 translated into the mortality rate of a 23 mm long
individual increasing from 0.05 d−1 to 0.057 d−1 and for a 65 mm long adult to
increase from 0.018 d−1 to 0.020 d−1. Much larger increases in q were needed to
reduce October YOY biomasses back down to baseline levels under high recruit-
ment (Runs 15–18). During wet years, an increase of q from 1.17 to ∼1.6 was needed
(black line in Fig. 12.9d), while for normal and dry years q had to increase even
more to about 2.0. Increasing q from 1.17 to 1.6 resulted in mortality rate of a 23 mm
individual increasing from 0.05 to 0.070 d−1 and for a 65 mm individual increasing
from 0.018 to 0.025 d−1. A q value of 2.0 resulted in about a 75% increase in
mortality rate of juveniles and adults (from 0.05 to 0.087 d−1 and from 0.018 to
0.031 d−1).

12.5 Discussion

The effects on anchovy of increased and decreased nutrient loadings depended on
the assumptions made about hypoxia causing direct mortality on eggs and larvae
and causing increased mortality on juveniles and adults due to assumed changes in
anchovy and predator vertical spatial overlap. If we assume that mortality would
only be caused by direct exposure of juveniles and adults to hypoxia, then a 50%
change in nutrient loadings would have the expected “fertilizer” effect of changing
food availability and changes in growth would dominate the response of anchovy.
Decreased nutrient loadings would result in smaller YOY anchovy lengths and
lower biomass in October, while increased nutrient loadings would result in larger
YOY anchovy lengths and slightly higher biomass. These results include low DO
effects on juvenile and adult growth and mortality arising from direct exposure to
low DO and also reflect avoidance behavior by juveniles and adults of low DO. The
simulations ignored DO effects on egg and larval mortality and any mortality
changes related to habitat overlap between anchovy and their predators.

However, if we assume that egg or larval mortality (i.e., reduced recruitment to
23 mm) or juvenile and adult mortality are related to the nutrient loadings via
hypoxia, then the predicted positive effects on anchovy of increased nutrient
loadings can be offset and even reversed by simultaneous changes in hypoxia extent
and intensity. Under low recruitment, a 14% reduction in the number of recruits was
sufficient to eliminate the benefits of increased nutrient loadings on anchovy bio-
mass, while even larger reductions in recruitment could reduce anchovy biomass to
levels that were less than half of those under baseline nutrient loads (Fig. 12.9a).
Within the prerecruit phase, an effect on eggs and yolk-sac larvae is more likely
than on larvae. Adamack et al. (2012) found that egg mortality was 2-fold to 7-fold
higher when nutrient loads were increased, while the response of early larvae was
complicated because of shifting degrees of vertical overlap with their invertebrate

350 A.T. Adamack et al.



predators. Alternatively, juvenile and adult mortality rate would only need to
increase from 0.051 d−1 to 0.056 d−1 for 23 mm anchovy and from 0.018 d−1 to
0.020 d−1 for 65 mm anchovy due to more spatial overlap with predators to also
offset the benefits of increased nutrient loadings (Fig. 12.9c). While the same
general result was obtained under high recruitment, larger changes in mortality
related to increased nutrient loadings effects were needed.

We carried out some additional model simulations under increased nutrient
loadings with both sources of hypoxia-related mortality (direct egg/larval mortality;
predation on juveniles and adults due to changes in the degree of vertical spatial
overlap) changed simultaneously. While the reductions in recruitment and increased
mortality needed to offset increased biomass were reasonable when examined alone
for low recruitment, much larger changes were needed under high recruitment. We
did not do an exhaustive search of all combinations of reduced recruitment and
increased q values that would offset nutrient-fueled higher production under high
recruitment; rather, we tried a few combinations. For example, a combination of a
16% increase in juvenile and adult mortality rates combined with a 14% reduction in
recruitment in wet years and a 50% reduction in dry years was sufficient to offset the
benefits of increased nutrient loadings. Another viable combination was a 22%
increase in juvenile and adult mortality rates combined with a 14% reduction in
recruitment in wet years and a 25% reduction in dry years.

We also performed some additional simulations to explore the changes in
mortality needed to offset the reduced growth predicted under decreased nutrient
loadings. Predicted October YOY biomass under low recruitment with decreased
nutrient loadings was about 60% of the biomass under low recruitment with
baseline nutrient loadings across the 3 year types (Fig. 12.6c). One combination
that offsets the reduced biomass under decreased nutrient loadings was assuming
that reduced hypoxia spatial extent with decreased nutrient loadings would result in
lowered egg and larval mortality and therefore high recruitment (rather than low
recruitment) and less overlap of anchovy with their predators and therefore q would
decrease from 1.17 to 0.585. Predicted October YOY biomass under decreased
nutrient loadings but with these improved conditions was higher than the biomass
predicted under baseline loadings for the three water year types. There are other
combinations of egg and larval mortality (recruitment) and juvenile and adult
mortality (q values) that would also offset the reduced biomass predicted with
decreased nutrient loadings.

Thus, the apparent benefit of increased nutrient loadings (and by analogy of
decreased loadings) depends on both the increased zooplankton predicted (more
food) and possible increased mortality due to the direct and indirect effects hypoxia.
Under low recruitment, relatively small reductions in recruitment or increased
juvenile and adult mortality, and even smaller effects if both are operating simul-
taneously, were sufficient to offset or even reverse the effects of changes in nutrient
loadings. Larger reductions in recruitment or increased mortality were needed under
high recruitment conditions. Relatively large, but not impossible, reductions in
mortality due to less hypoxia offset the reduced growth under decreased nutrient
loadings. Determining the likelihood and realism of the needed changes in egg to
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larva and juvenile and adult mortality rates due to variation in hypoxia will require a
combination of field data collection coordinated with modeling in the future.

We included high and low recruitment and different water year types to bound
model predictions of responses to changes in nutrient loadings and the associated
changes in zooplankton and hypoxia. We used different simulated years to represent
dry, normal, and wet year types; however, we used only single years to represent
each of these types. In reality, there is also variability among years within dry,
normal, and wet year types. Recruitment level had the expected effect on biomass
and abundances, with the contrast between low and high recruitment showing the
effects of density-dependent growth and survival of YOY. Mean length of YOY in
October was almost 50% larger under low recruitment compared to high recruit-
ment. The slowed growth results in consistent, but relatively small, changes in
YOY survival from individuals being smaller with a mortality rate that decreased
with length (Rose et al. 2001). Wang et al. (1997) and Cowan et al. (1999) also
found density-dependent growth and survival using an individual-based anchovy
population model configured for a single, well-mixed box for the mesohaline region
of Chesapeake Bay. However, Jung and Houde (2004b) hypothesized that anchovy
should have higher survival rates during wet years than dry years due to their higher
concentrations in a smaller area satiating predators. This potential response of
anchovy mortality rates to water years cannot be seen in our simulations, as
predators are only included as a general size-dependent mortality term. Our pre-
dicted changes in survival were for individuals from recruitment at 23 mm to
October; whether the effect would be amplified if the dynamics of the larval stage or
predators were simulated is not clear.

Water year type, for a given level of recruitment, had smaller effects on biomass,
abundance, and lengths, but did cause a southward movement in wet years
(Figs. 12.4 and 12.7). The change in latitudinal distributions is consistent with Jung
and Houde (2004b). They suggested that during wet years, anchovy would be
located further south as their northward movement would be blocked by low DO in
the deeper waters of the mid-Bay region.

The idea that eventually the negative effects of hypoxia associated with
increased nutrient loadings result in reduced fish production has been widely dis-
cussed. Cross-system comparisons have shown that estuarine systems with higher
nutrient loads generally have higher biological production (Caddy 1993, Nixon and
Buckley 2002, Breitburg et al. 2009a, b). Caddy (1993) suggested that eutrophi-
cation in a coastal ecosystem will initially increase the production of pelagic and
demersal fish species, but predicted that further increases in eutrophication would
eventually cause the production of demersal fish to decline while pelagic fish
production would continue to increase or plateau. Diaz and Rosenberg (2008) offer
a similar argument of increasing nutrient loadings eventually leading to a decline in
fish populations via hypoxia decreasing benthic energy production that results in
decreased consumer production. Often in these reviews (e.g., Breitburg et al.
2009b), the potential for the negative effects of hypoxia from increased nutrient
loadings causing a decline in fish populations and fisheries, as suggested by Caddy,
is discussed; however, the empirical evidence for the “tipping point” is often limited
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with a few case studies offered as possible examples. Our analysis offers a case
study using a common pelagic species in Chesapeake Bay and illustrates how
coupled biophysical modeling can be used to quantify the negative direct and
indirect effects needed to offset the increased production from increasing nutrient
loadings. Our results can also be used to quantify the positive direct and indirect
effects needed to offset the reduction in production under decreased nutrient
loadings scenarios.

Our approach used here was a bottom-up analysis of the population dynamics of
a pelagic species. Despite hypoxia being a lower water column phenomenon, there
are many examples of analyses of hypoxia effects on pelagic fish species (Van-
derploeg et al. 2009; Dylander and Cerco 2010; Pothoven et al. 2012), including
studies that specifically dealt with bay anchovy (Ludsin et al. 2009; Adamack et al.
2012; Zhang et al. 2014). Our analysis also focused on how nutrient loadings
affected phytoplankton and zooplankton as part of the water quality modeling (i.e.,
bottom-up), but any other responses of the food web were assumed unaffected by
nutrient loadings and associated hypoxia. We did account for prerecruit (egg to
larval) mortality and juvenile and adult mortality, but as a sensitivity analysis with
forced changes in recruitment and mortality rates and in a non-spatial manner.
Increased juvenile and adult mortality would likely have a strong spatial aspect as it
would emerge from altered movement of anchovy and their predators (Breitburg
et al. 2009b; Ludsin et al. 2009). Other possible responses outside of the population
approach are direct and indirect effects on zooplankton (Ludsin et al. 2009; Roman
et al. 2012; Elliott et al. 2013); the interplay among zooplankton, ctenophores
(Mnemiopsis leidyi), and larval fish (Kolesar et al. 2010, 2017); and spatially
explicit losses of benthic production (Diaz and Rosenberg 2008). These top-down
and food web effects, which were mostly ignored or dealt with by forcing changes
in mortality in our model simulations, can modify the predicted anchovy responses
to changes in nutrient loadings we obtained here using a population-based approach
driven by a hydrodynamics–eutrophication model.

We have successfully demonstrated that we can dynamically couple the
three-dimensional Chesapeake Bay water quality model with a population dynamic
model of bay anchovy. Most analyses of the relationships among nutrient loadings,
hypoxia, and fish have focused on specific life stages (e.g., Adamack et al. 2012),
individuals at local scales (e.g., Rose et al. 2009), or changes in habitat (e.g.,
Constantini et al. 2008). Our approach attempted to operate at the population level
for the entire Chesapeake Bay, albeit not full life cycle because we forced
recruitment of early juveniles into the model every year. We believe that there are
three high-priority expansions needed to the present model. These include contin-
uing to develop the model for bay anchovy in Chesapeake Bay by adding the egg
and larval stages as individuals in the simulations, exploring different options for
the avoidance behavior, and adding individual predators so they can respond to
changes in anchovy distributions and to hypoxia. Making these changes to the
model would help us to better understand the effects of changes in nutrient loadings,
and concomitant changes in hypoxia, on bay anchovy population dynamics.
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Chapter 13
Simulation of the Population-Level
Responses of Fish to Hypoxia: Should
We Expect Sampling to Detect Responses?

Kenneth A. Rose, Sean Creekmore and Shaye Sable

Abstract Our ability to use monitoring data to quantify the effects of hypoxia at
the population level for fish remains elusive. We performed a simulation analysis
similar to a power analysis to determine the probability that sampling would detect
a known hypoxia effect on croaker recruitment for the northern Gulf of Mexico. We
used 100 years of simulated annual recruitments of croaker from a population
dynamics model under normoxic and hypoxia conditions to establish a credible
magnitude of population response to historical hypoxia conditions. We also ana-
lyzed long-term monitoring data to determine realistic interannual variation in
recruitment and used the fitted lognormal distributions to add variability to each
year’s recruitment value from the population model. Segments of the two time
series were randomly selected as 5-, 10-, and 25-year sequences of continuous
years, variability added to the recruitment values, and then a t-test used to determine
whether the known hypoxia effect would have been detected. Under field-estimated
sampling variability, and 25 years of sampling with a generous cutoff p-value for
detection of 0.1, there was still only a 50% chance of properly detecting the roughly
20% reduction in average croaker recruitment. Shorter time samples and use of the
0.05 cutoff resulted in lower probabilities of detection. When we artificially reduced
the variability generated from the lognormal distributions, the probabilities of
detection increased as expected and under the best conditions approached 85%.
Despite the low probability of detecting the hypoxia effect with sampling, a 20%
reduction in long-term average recruitment would be considered by most to be an
ecologically significant impact.
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13.1 Introduction

Our ability to use monitoring data to quantify the effects of hypoxia at the popu-
lation level for fish remains elusive (Breitburg et al. 2009). The idea of using
long-term monitoring data to derive population abundance or indices and to then
relate the annual abundances to environmental drivers and interannual differences in
the severity of hypoxia is attractive. The results would be deeply rooted in obser-
vational data and commonly accepted statistical analyses, and while the processing
of the data and the statistical methods used can get complicated, the results are
intuitive to many people. Observing population abundances over enough different
conditions should allow for the fluctuations due to climate and other environmental
conditions to be quantified, thereby allowing for clear attribution of variation in
population abundance to measures of hypoxia.

While the statistical analysis and monitoring approach is typical for separating
the effects of multiple factors on fish population dynamics (e.g., Kimmerer 2006), it
is especially challenging with the factor of hypoxia (e.g., Chesney and Baltz 2001).
Responses of individuals to hypoxia have been clearly documented in laboratory
experiments (e.g., see Nielan and Rose 2014; Vaquer-Sunyer and Duarte 2008) and
in the field (e.g., Thomas et al. 2007; Thomas and Rahman 2012); direct exposure
to low DO can cause slowed growth, higher mortality, and reduced reproduction of
individuals. However, a major response of mobile organisms is avoidance resulting
in altered spatial distributions of individuals (Breitburg 2002; Craig et al. 2005;
Brady and Targett 2013). How these altered spatial distributions then affect growth,
mortality, and reproduction is harder to document because the effects of hypoxia
become indirect. It is not the low exposure of DO causing the growth, mortality, or
reproduction effects of individuals. Rather, low DO causing individuals to move,
and the hypoxia effects are then how growth, mortality, and reproduction in the new
location compares to the growth, mortality, and reproduction that would have
occurred if the individuals had not moved. Getting to the population level then
involves combining how these direct and indirect effects, mixed in with variation in
population abundance caused by other factors, accumulate over individuals all of
the way to the population level. Long-term monitoring data is a powerful way to
document status and trends in fish and other aquatic species (e.g., Chesney et al.
2000; de Mutsert et al. 2008; Messer et al. 1991; Parr et al. 2003) and is funda-
mental to stock assessment and fisheries management (Hilborn and Walters 1992).
Partitioning out the variation to different factors is more challenging (Rose 2000).

Power analysis is a common statistical method for determining what magnitude
of changes can be reliably detected with monitoring-based data (Urquhart and
Kincaid 1999). Power is inversely related to probability of making a Type II error
(i.e., concluding no change or trend when one actually occurred; Fairweather 1991).
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The higher the power, the more likely the effect is detected when the effect is
present. There are a variety of forms of power analysis, but all share the same
general result of quantifying the likelihood of detecting changes of some known
magnitude. They often also include how additional stations or samples would
improve the probability of detecting the known changes. Monitoring of fish is
difficult because their populations show high variability, thereby making power
analysis especially important (Peterman 1990). Power analysis in our context of
long-term monitoring of fish population response to a stressor typically involves
generating time series of values from an underlying model with a known change or
trend, and then simulating sampling using Monte Carlo techniques from that time
series to derive an observed time series of values. A statistical model (e.g.,
regression with time as variable) is then fit to the observed (realized) time series,
and the fit of the statistical model (e.g., slope coefficient for trend) is recorded. This
is repeated many times, either randomly generating new time series of the under-
lying model or a new realization of sampling, or both. One can then interpret how
many times the known change or trend was successfully detected by the statistical
method (Gerrodette 1987; Fairweather 1991; Wagner et al. 2013). Some analyses
also include spatial variation in addition to the temporal variability (Larsen et al.
2001). Hobday and Evans (2013) recently used power analysis to determine the
likelihood of detecting climate signals in long-term fish monitoring data and Dolan
et al. (2016) used a similar approach as we will use here to determine the power of
detecting a change in fish species richness and total fish density related the oper-
ations of a power plant. While the underlying models used to generate the simulated
data (e.g., Dakos et al. 2012) and the sampling designs imposed (e.g., Urquhart and
Kincaid 1999) can become quite complicated, the general approach remains the
same.

In this chapter, we use the simulation results from a population model of croaker
to assess the likelihood of monitoring being able to detect the hypoxia effect. The
model was designed to simulate croaker population dynamics for the northern Gulf
of Mexico, and specifically to generate and compare simulated annual recruitment
under normoxic and hypoxic conditions. The population model results provide us
with a realistic estimate of the magnitude of the population effect (i.e., change in
recruitment) caused by hypoxia. We then use long-term monitoring data on croaker
to derive estimates of interannual variability in recruitment. We apply this variation
to the simulated recruitment values under normoxia and hypoxia to generate time
series of croaker recruitment that reflect realistic interannual variation under nor-
moxia and hypoxia. We then simulate sampling by taking 5-, 10-, and 25-year
segments of the two time series, average the recruitment in each and determine how
often a t-test would show differences in the average recruitment when we know the
hypoxia effect is present. We conclude with a discussion about the robustness of our
analysis, how the lack of detection of hypoxia should not be misinterpreted as
hypoxia having no effects, and the power of using a modeling and monitoring data
combined approach.

13 Simulation of the Population-Level Responses of Fish to Hypoxia … 361



13.2 Methods

13.2.1 Croaker Population Model

The population model simulated the hourly growth, mortality, and movement, and
daily reproduction, of thousands of individual croaker from release as eggs until
age-8 for a period of 140 years on a 2-dimensional (300 × 800 1 km2 cells) spatial
grid. The model is fully described in Rose et al. (in review-a). The model grid is
centered on coastal Louisiana, which encompasses the hypoxic zone and the major
habitat of croaker (Fig. 13.1). Temperature affects growth and movement, and
chlorophyll-a concentration was used as an index of food availability. The
derivation of temperature and chlorophyll-a concentration for use in the population
model started with mean monthly values from reported climatological values. These
were then interpolated to the IBM grid. Temperature was further interpolated to
daily values, which were used for all hours within each day, while chlorophyll-a
concentration was maintained at cell-specific monthly values and used for all hours
and days within a month.

Predicted hourly bottom-layer DO for the inner Louisiana-upper Texas shelf was
taken from a coupled hydrodynamics-water quality model (Justić and Wang 2014)
and used to specify hourly DO concentrations in each spatial cell for the entire year.
The hydrodynamics model was an implementation of FVCOM (Finite Volume
Community Ocean Model); the WASP (Water Quality Analysis Simulation Pro-
gram) model was used to simulate water quality. The domain for the FVCOM
model extended from Mobile Bay, AL to an area in the GOM south of the mouth of
Galveston Bay, TX, and covered the area off the Louisiana–Texas Shelf affected by
hypoxia. Validation of the DO predictions from the FVCOM-WASP model was
carried out using 2002 as the reference year (see Justić and Wang 2014), and then
two additional years (2001 and 2010) were simulated to obtain 3 years for use as

Fig. 13.1 Map showing the model grid for the croaker population model. The insert shows the
1 km2 cells for a smaller region within the domain. The solid lines denote the Coastal Study Areas
(CSAs) or regions, and the open circles the monitoring stations within each region, that were
aggregated to obtain estimates of annual croaker recruitment
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input to the croaker population model. The three years represent intermediate
(2010) and severe (2001 and 2002) hypoxia conditions. Mid-month snapshots of
DO, as used within the croaker model, are shown in Fig. 13.2.

The climatological chlorophyll-a concentrations were assumed to be associated
with years of intermediate hypoxia and were further modified to reflect mild and
severe hypoxia years in simulations. We used multipliers applied to daily values of
chlorophyll to simulate how nutrient loadings from the Mississippi River could lead
to both more severe hypoxia and increased food for croaker. The multipliers were
derived from simulation results of the ROMS water quality model for the Gulf of
Mexico (Fennel et al. 2013). Multipliers were applied to coastal regions within the
croaker model grid during spring and summer months, and multiplier values ranged
from 0.85 (mild) to 1.2 (severe). The evidence for the correlations among hypoxia,
primary production, and river flow is quite strong (e.g., Turner et al. 2012; Rabalais
et al. 2007), while the next logical step from primary production to croaker food is
more tenuous (Rose et al. in review-b).

Each individual croaker was tracked hourly as it progressed through the life
stages of egg, yolk-sac larva, ocean larva, estuary larva, early juvenile, late juvenile,
and adult. Individuals were started on each day there was spawning. Possible
spawning was constrained between mid-September and a maximum degrees-day
value (roughly March). Each individual was tracked as it experienced grid-wide
temperatures that determined on what hour it switched from egg to yolk-sac larvae,
yolk-sac larva to ocean larva, and ocean larva to estuary larva. When an individual
was ready to go from estuary larva to early juvenile, it was placed on the
2-dimensional grid with a starting length of 32 mm and followed as an individual
until age-8 (Diamond et al. 2013). Development rates of egg and larval stages
(off-grid individuals: eggs, and yolk-sac, ocean, and estuary larvae) were
temperature-dependent, while mortality rates were stage-dependent. Early juveniles

Fig. 13.2 Mid-month snapshots of DO used in the croaker population model based on
FVCOM-WASP output for 2 severe years (2001 and 2002) and an intermediate year (2010).
The darkest blue areas are not included in the model domain
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were restricted to cells shallower than 5 m, while late juveniles were restricted to
cells shallower than 20 m.

Individuals on the grid (early juveniles through adults) were followed hourly
through growth, mortality, and movement, and daily through reproduction. Growth,
mortality, reproduction, and movement depended on the local conditions in their
cell, and in some cases (e.g., avoidance movement), on conditions in surrounding
cells. Growth each hour was calculated using a bioenergetics equation with the
chlorophyll-a concentration in the cell determining realized consumption. Mortality
of each individual depended on a constant, stage-specific rate, old age (removed at
age-8), and starvation (individual got too skinny). The stage-specific rates, gener-
ally reflective of predation, did not vary with length or weight of individuals within
a stage. Maturity was determined based on length on September 1, and annual
fecundity (weight-dependent) was released on the first hour of each day as series of
batches over their month of spawning during the following late winter and spring.
Hourly movement was simulated using a kinesis approach (Humston et al. 2004;
Watkins and Rose 2013) that used temperature in the cell as the cue. When an
individual experienced DO less than 2 mg/L, movement switched to avoidance
behavior and the individuals moved to the cell in the surrounding neighborhood
with DO greater than 2 and temperature closest to its optimal temperature for
growth. The size of the neighborhood increased with the individual’s length;
computed swim speeds that included avoidance movement remained realistic
(averaged about 3.5 body lengths/s). Hourly growth and survival, and annual
fecundity, of individuals on the grid were reduced based on accumulated exposure
to the hourly DO values using a set of exposure-effects submodels (Neilan and Rose
2014). The parameters of the exposure-effects submodels were estimated from
constant exposure laboratory experiments, and when available, validated against the
same experiments under fluctuating exposures.

13.2.2 Simulations of Abundance and Recruitment

Two 140-year simulations were used in this analysis. Both simulations used nor-
moxic conditions and climatological chlorophyll-a concentrations for the first
40 years as a spin-up period and a random sequence of mild (normoxic), inter-
mediate (2010), and severe (2001 or 2002) years using the FVCOM-WASP output
as year types for the remaining 100 model years. The first simulation used normoxic
conditions with chlorophyll concentrations adjusted by the type of hypoxia each
year for the final 100 model years to simulate the different food conditions asso-
ciated with the severity of hypoxia, but without the corresponding effects of low
DO. The second simulation used chlorophyll and DO concentrations based on the
severity of hypoxia to impose both food and hypoxia effects. The probability of the
severity of hypoxia was estimated by classifying each model year based on the
reported areal late July extent of hypoxia as either mild (<10,000 km2), interme-
diate (10,000–20,000 km2), or severe (>20,000 km2). Both simulations used a
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sequence of mild, intermediate, and severe hypoxia year types in approximately the
same proportions (19 mild, 55 intermediate, and 26 severe out of 100 years) as the
hypoxia area estimates reported in Obenour et al. (2013) for years 1986–2011 (0.19
mild, 0.52 intermediate, and 0.29 severe). The second simulation represents a
realistic simulation of croaker population responses to historical hypoxia condi-
tions. We report the annual recruitment each year (number of young-of-the-year
(YOY) individuals on September 1) in both simulations (Fig. 13.3). The two
simulations used in this chapter are described in detail in Rose et al. (in review-b).

13.2.3 Recruitment Variability from Monitoring Data

We used the long-term monitoring data on croaker reported as part of the Louisiana
Department of Wildlife and Fisheries (LDWF) coastal sampling program (LDWF
2014) as the basis for representing recruitment variability of croaker. The moni-
toring includes multiple gear types (e.g., otter trawls, gill nets, and bag seines) at
dozens of stations that span decades; the stations are generally outside of the
shelf-based hypoxia zone. We used the gill net data for July, August, and
September to form an annual index of croaker recruitment. Gill nets captured 190–
200 mm croaker, which is the approximate length of new age-1 croaker around our
defined date of recruitment of September 1. Other studies have used the same
approach taken here of using CPUE for months corresponding to recruitment sizes
to represent an index of annual recruitment (e.g., Taylor et al. 2009).

Fig. 13.3 Simulated annual recruitment (number of young-of-the-year individuals surviving to
September 1) by the croaker population model using a realistic sequence of mild, intermediate, and
severe hypoxia years. The normoxia simulation included the interannual variation in chlorophyll
concentrations related to hypoxia but had no low DO effects, while the hypoxia simulation
included both interannual variation in chlorophyll-a concentrations and hypoxia effects
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We computed monthly catch-per-unit-effort (CPUE) values using the gill net
data for stations within each of the seven LWDF coastal study areas (CSAs) or
regions for 1986–2013 (see Fig. 13.1). The gill net was 228 m, with 5 panels each
45.7 m long and 2.4 m in depth. The gill nets were deployed and the boat circled
the gill net at least twice to “force” fish to strike the net, after which the net was
retrieved and catch enumerated. We summed catch (number of individuals per gill
net set) over stations for each month, and divided by the number of stations that
contributed to the catch to obtain a single CPUE value per month. Except for
3 years, all months had 10 or more stations in each of their 3 months. We then
averaged the 3 monthly values to obtain a single estimate of annual recruitment by
CSA regions (Fig. 13.4). For analyses, we then divided each annual recruitment
value by the mean over all years to obtain each year’s estimated recruitment as a
multiplier of the long-term mean. We refer to our CPUE-based annual index as
recruitment for convenience, but it is not truly recruitment to the population. We
analyzed the index by spatial (CSA) region, even though the regions constitute a
single stock, the index has not been correlated to adult abundances, and because it
includes multiple sources of variability. However, the variability in the index is
based on field data and is what would be expected to be encountered with field
sampling targeted as developing an index of approximately age-1 individuals.

Lognormal probability distributions were fit to the annual recruitment multiplier
(Fig. 13.5), and these distributions were used to generate deviates of recruitment
and applied to the simulated annual recruitment values from the two model sim-
ulations. Coefficient-of-variation (CV) values (standard deviation of annual
recruitment/mean annual recruitment) based on 5000 deviates from the lognormal
distributions varied from 0.41 (CSA region 1) to 0.88 (CSA region 3) across the 7

Fig. 13.4 Annual recruitment index (CPUE) of croaker based on July, August, and September gill
net sampling for each of the seven CSA regions. CPUE is in units of number of individuals per gill
net set
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CSA regions. The simulated CVs were similar to the observed CVs of the nor-
malized CPUE data for region 1 (0.441 vs. 0.443), region 2 (0.782 vs. 0.701), and
region 5 (0.493 vs. 0.465). Distribution-generated CV was lower for region 3
(0.879 vs. 1.73), mostly because the CPUE data showed an almost bimodal dis-
tribution (Fig. 13.5c). Generated CVs were generally about twice or less the
observed for the remaining regions (0.564 vs. 0.348 for region 4; 0.659 vs. 0.38 for
region 6; 0.653 vs. 0.293 for region 7). The general fits of the lognormal distri-
butions to the CPUE data were reasonable, and the fit across the CSA regions
spanned the range of the generated CVs being similar, smaller, and larger than the
CVs from the CPUE data. We used the same distributions for years in the normoxia
and hypoxia simulations; we assumed that hypoxia would not affect the interannual
variation in recruitment because of the general low overlap between
young-of-the-year and the main shelf-based hypoxic zone. We also partially
assessed how different fits would affect the results by reducing the SD coefficient of
the fitted lognormal probability distributions (see below).

13.2.4 Simulating Sampling

Sampling was simulated by taking the same segments (same years) of the two
simulated recruitment time series (Fig. 13.6). We used 5-, 10-, and 25-year seg-
ments. We first generated multipliers from the fitted lognormal distribution for a
region and then applied them to each year in a time segment (each year’s value got
its own multiplier). We then computed the mean and variance of recruitment for
that segment based on the annual values in the time segment. Each segment

Fig. 13.5 Fitted lognormal distributions to the normalized CPUE values (unitless) representing
annual croaker recruitment for each of the 7 CSA regions
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represents a possible sample from the long-term time series of recruitments. With
estimates of mean and variance of recruitment for the same time segment and region
for the normoxic and hypoxia recruitment time series, we performed a t-test, the
average recruitment values between normoxia and hypoxia and recorded the
p-value. We did this for 1000 realizations of 5-year segments, 10-year segments,
and 25-year segments. Three possible segments of a fixed time length are shown in
Fig. 13.6. We report the proportion of the 1000 p-values that were less than 0.05
and 0.1.

We repeated the analysis using the lognormal distributions applied to the annual
recruitment estimates but with the variability of the fitted distributions reduced. We
simply multiplied the scale (standard deviation, SD) parameter of the lognormal
distributions by 0.7 and then by 0.4 (Fig. 13.7). The CVs from the reduced vari-
ability lognormal distributions were lower than the CVs from the original fitted
distributions by the expected ratios (average ratios of 0.67 and 0.37). The purpose

Fig. 13.6 Steps in the simulation analysis showing how the two recruitment time series were
sampled (R for normoxia and r for hypoxia effect included) using a 5-year segment of each,
variability added to each year’s value, and then the two samples compared using a t-test. This was
repeated 1000 times with randomly selected 5-year segments. The same method was used for the
10- and 25-year segments
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was to see how reduced variability in the monitoring data would affect the
detectability of the known hypoxia effects.

13.3 Results

13.3.1 Realistic Recruitment Variability

The probability of detecting a difference between averaged recruitments (hypoxia
effect) was generally low and roughly doubled for the cutoff of 0.05 upon going
from the 5 to 10 to 25-year windows and increased by 50% each step for the cutoff
of 0.1 (Table 13.1). Probabilities of correct detection with the 0.05 cutoff ranged
from 0.05 (regions 2, 6, and 7) to 0.11 (region 1) for the 5-year window, from 0.08
(regions 3 and 7) to 0.18 (region 1) for the 10 year window, and from 0.11 (region
3) to 0.39 (region 1) for the 25-year window. A very similar pattern was observed
for the 0.1 cutoff, except that the increase in probabilities from 5 to 10 to 25 years
was smaller. For example, with a 0.1 cutoff, probabilities for region 1 increased
from 0.21 to 0.29 to 0.49, or about 50% each time. CSA region 1 always had the
highest probabilities of detection; the fitted lognormal distribution was centered
near one with a slightly higher peak than the distributions at the other regions
(Fig. 13.5a). At best, a 25-year window with a p-value cutoff of 0.1 generated
probabilities of detection of 0.21–0.49 (i.e., less than 50% chance of correctly
detecting the hypoxia effect).

Fig. 13.7 Comparison of the fitted and reduced variability lognormal distributions that generated
interannual variability in recruitment for each of the seven CSA regions. The distributions fitted to
the normalized CPUE data (black) are wider and centered on lower values than the reduced
variability distributions achieved by multiplying the SD parameter by 0.7 (dark gray) and 0.4
(light gray)
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13.3.2 Reduced Recruitment Variability

Reducing variability of recruitment by multiplying the SD parameter of the log-
normal distributions by 0.7 and by 0.4 (Table 13.2) caused the expected pattern of
generally increasing the probabilities of detection. We show the results for the
cutoff of 0.1 because they were very similar to the results based on the 0.05 cutoff.
Using 5-year samples, probabilities of detection under the lognormal distributions
with a 0.7 multiplier were about 1.5x those using the fitted (realistic) distributions
and about 3x higher with the 0.4 multiplier. For example, the probability of
detection for CSA region 2 was 0.11 with the realistic variation and increased to
0.16 (1.45x) for the 0.7 multiplier and to 0.29 (2.64x) for the 0.4 multiplier. The 10-
and 25-year samples also showed similar increases the probabilities of detection
(about 1.5x for the 0.7 multiplier and 3x for the 0.4 multiplier). Under the best
conditions (0.4xSD, 25 years, 0.1 cutoff), probabilities of detection exceeded 0.67
for all regions and were greater than 0.8 for some regions. CSA region 3 consis-
tently had the lowest probabilities of detection corresponding to having a lognormal

Table 13.1 Probabilities of detecting the known hypoxia effect on recruitment by CSA region for
5-, 10-, and 25-year samples using p-value cutoffs of 0.05 and 0.1. Variability in recruitment was
generated from the fitted lognormal distributions

Cutoff Years in samples Region
1 2 3 4 5 6 7

0.05 5 0.11 0.05 0.06 0.07 0.07 0.05 0.05
10 0.18 0.09 0.08 0.17 0.14 0.09 0.08
25 0.39 0.16 0.11 0.25 0.30 0.19 0.21

0.1 5 0.21 0.11 0.11 0.13 0.15 0.10 0.10
10 0.29 0.17 0.14 0.19 0.25 0.16 0.18
25 0.49 0.27 0.21 0.38 0.42 0.29 0.31

Table 13.2 Probabilities of detecting the known hypoxia effect on recruitment by region for 5-,
10-, and 25-year samples for variability generated from the fitted lognormal distributions (realistic)
and the lognormal distributions with their variability reduced by multiplying the SD by 0.7 and by
0.4. Results are shown for the cutoff value of 0.1

Region 5 years 10 years 25 years
1xSD 0.7xSD 0.4xSD 1xSD 0.7xSD 0.4xSD 1xSD 0.7xSD 0.4xSD

1 0.21 0.30 0.56 0.29 0.46 0.82 0.49 0.71 0.86
2 0.11 0.16 0.29 0.17 0.25 0.50 0.27 0.42 0.74
3 0.11 0.14 0.26 0.14 0.21 0.43 0.21 0.35 0.67
4 0.13 0.20 0.38 0.19 0.33 0.66 0.38 0.57 0.82
5 0.15 0.22 0.47 0.25 0.40 0.73 0.42 0.64 0.85
6 0.10 0.15 0.32 0.16 0.26 0.57 0.29 0.48 0.79
7 0.10 0.15 0.31 0.18 0.29 0.57 0.31 0.48 0.77
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distribution with a peak toward the left (multipliers less than one) and a relatively
thick, long tail toward the right (more frequent multipliers greater than one).

13.4 Discussion

Detection of population-level hypoxia effects on croaker in the northern Gulf of
Mexico, and by extension to coastal fish species with a similar life history as
croaker, using monitoring data alone is difficult. Under realistic variability (un-
treated field data), and 25 years of sampling with a generous cutoff of 0.1, there is
still only a 50% chance of properly detecting the roughly 20% reduction in average
croaker recruitment. While a change of 20% for a year or two is small relative to
interannual variation, a 20% reduction in long-term average recruitment would be
considered by most to be an ecologically significant impact. In the model simula-
tions, this corresponded to a 20% reduction in long-term adult (age-1 and older)
population abundance. Thus, the lack of detection of a hypoxia effect in the
long-term fish monitoring data should not be misinterpreted as definitive evidence
that hypoxia has little effect at the population level.

Our analysis seems robust and used some optimistic (i.e., more likely to detect
effects) conditions. We obtained similar results keeping the three monthly recruit-
ment values separate in the analyses (lognormal fitted to 3 estimates of recruitment
per year), and by using a gamma distribution in place of the lognormal distribution.
Other factors besides hypoxia, such as temperature, did not vary from year to year,
which, in nature, would add variability to the two recruitment time series. The
variability in recruitment generated by the fitted lognormal distributions was real-
istic but could be even considered low. The simulated CVs based on 5000
recruitment multipliers from each of 7 regionally based distributions ranged from
0.41 to 0.88. Others report CVs of annual recruitment (or SD of log-transformed
recruitment) of about 0.4–1.0 (Mertz and Myers 1996; Leggett and Frank 1997;
Hennemuth et al. 1980; Rose et al. 2001); some of the reported CVs include
statistical removal of stock effects but still remain within this general range.

We showed that reducing variability leads to the expected higher probabilities of
detection; probability values were near or above 0.67 for 25 years and 0.1 cutoff.
How to achieve this is unclear. CVs from the reduced variability lognormal dis-
tributions were lower than the CVs from the original fitted distributions by the
expected ratios (average ratios of 0.67 and 0.37). The resulting CVs of annual
recruitment were 0.28–0.51 for the 0.7 multiplier and from 0.16 to 0.31 for the 0.4
multiplier. Such interannual variability in recruitment in coastal fish species would
be considered low, especially the values for the 0.4 multiplier. For example, of the
51 CVs reported by Mertz and Myers (1996), only five were less than 0.35. Thus,
some type of variance reduction approach would be needed to achieve such CVs.

There are several ways to improve the power of monitoring for detecting hypoxia
effects. One approach would be to filter the recruitment variability and remove the
effects of other factors, leaving the effects of hypoxia in the filtered recruitment
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values but now imbedded in lower general variability. The filtering could be done
using statistical methods (e.g., LOWESS—Rago 2005) or life cycle considerations.
For example, recruitment values are often filtered by removing the effects of
spawning stock (e.g., use the residuals from the fitted spawner-recruit relationship)
to look for how variation in recruitment can be attributed to environmental and other
factors (e.g., Mertz and Myers 1996). Another approach would be to use a com-
parative method based on a space-for-time substitution, such that local recruitment
or other measures of population-level responses are compared across regions that
experience different degrees of hypoxia but similar other conditions. One could also
attempt to gain power by using a fish community approach (Fausch et al. 1990), and
by using multiple indices that together provide more explanatory power than single
indices (Perez-Dominguez et al. 2012); the LDWF data is typical in that multiple
species are captured and enumerated in all samples. Finally, collecting biomarkers
that show the exposure of individuals to the factor of interest (e.g., hypoxia-inducible
factors—Thomas and Rahman 2009) would enable further refinement of the
cause-and-effect aspect in the analysis of the monitoring data.

We did not evaluate the LDWF sampling design or data in this analysis; we used
their extensive long-term data to derive realistic variation in recruitment. We then
simulated very simple sampling—extracting segments of recruitment from the
normoxic and hypoxic time series and comparing mean recruitment between
the two samples. More extensive analyses are possible that would examine how the
placement of stations within regions and the frequency of their sampling (weekly,
monthly) would affect the power of the design (e.g., Pearson and Rose 2001). In our
situation, we would simulate sampling of croaker within the spatial grid of the
population model, which provides the location of each individual croaker on an
hourly basis. One can then evaluate trade-offs of repeated sampling at fewer stations
with less sampling but at more stations, and also examine how the placement of
stations on the grid, affects the power of detecting population effects of hypoxia.
We opted to use data to derive recruitment variability because the data-based
approach is more realistic than getting the croaker population model itself to
generate realistic variability in recruitment.

Modeling offers another approach to quantifying individual and population-level
responses to hypoxia (see Rose et al. 2009). Population and food web modeling
allows for the explicit representation of growth, mortality, reproduction, and
movement, and specification of how DO concentrations affects these processes.
Simulations can be done under normoxia and with low DO values as inputs to the
model, and model predictions compared between the two simulations to isolate the
population (or food web, depending on the model) response to low DO. A variety
of models have been used to simulate hypoxia effects on the population (e.g., Rose
et al. in review-a, b) and food web levels (de Mutsert et al., this book). The use of
modeling to quantify the population responses to hypoxia addresses some of the
issues that hinder the analysis of long-term monitoring data. However, modeling
introduces other issues, such as high demands on data, potentially high uncertainty
in the specifics of model formulation and therefore in predictions, and difficulties in
validation.
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Some combination of long-term data, modeling, and also process studies, is the
best approach for quantifying hypoxia effects at the population level. Here, we used
the output of a population model to generate realistic effects of hypoxia and
long-term data to characterize realistic variability around those model predictions to
assess the likelihood of detecting changes in recruitment due to hypoxia. The added
value in increased credibility of using an integrative approach far outweighs the use
of each of these approaches alone, even with use of a single approach generating
much quicker results. The croaker model itself that was used here is another
example of a team effort that relied heavily on all three approaches. In addition to
the modeling (Rose et al. in review-a, b), laboratory experiments on growth effects
and new experiments done specifically done to determine reproductive effects and
biomarkers of exposure were performed in conjunction with the modeling (Thomas
and Rahman 2009; Rahman and Thomas 2011). There was also extensive use of
existing field monitoring data and new field collected (e.g., Thomas and Rahman
2010, 2012) to assess the fraction of the population to which the laboratory effects
would apply (i.e., exposed). While such an integrated modeling and data collection
approach requires sufficient time for the feedback between the modeling needs and
the new data to be collected, the higher certainty of the resulting predictions of
population responses to hypoxia make the effort worth it.
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Chapter 14
Using Ecosystem Modeling to Determine
Hypoxia Effects on Fish and Fisheries

Kim de Mutsert, Jeroen Steenbeek, James H. Cowan
and Villy Christensen

Abstract The effects of coastal hypoxia on fish biomass and fisheries landings in
the northern Gulf of Mexico have been difficult to quantify. A main complicating
factor is the fact that nutrient loading from freshwater discharge is not only the main
contributor to the formation of the hypoxic zone, but also a driver of secondary
productivity through bottom-up processes. Other complicating factors include food
web interactions, movement of nekton to more suitable habitat, and temporal and
spatial variability in hypoxic area. Through case studies using Ecopath with Ecosim
and Ecospace, we show that ecosystem modeling can provide a tool to evaluate
population-level effects on nekton biomass as well as changes in fisheries landings
due to hypoxia. Fitting model simulations to time series (observations) in Ecosim
reveals that including hypoxia improves the fit of the model to observations. These
findings led to the development of a spatially and temporally dynamic Ecospace
model, coupled to a physical-biological model with high skill in replicating dis-
solved oxygen and Chl a levels. The results of simulations with this coupled
modeling approach suggest that, for most species, the positive effects of increased
phytoplankton as a result of nutrient enrichment from the Mississippi River out-
weigh the negative effect of bottom hypoxia. Decoupling enrichment from hypoxia

K. de Mutsert (✉)
Department of Environmental Science and Policy, George Mason University, 4400
University Drive, Fairfax, VA 22030, USA
e-mail: kdemutse@gmu.edu

J. Steenbeek
Ecopath International Initiative, C/Sant Eduard 22-A-2-1, Sant Cugat del Valles SP, 08172
Barcelona, Spain
e-mail: jeroen@ecopathinternational.org

J.H. Cowan
Department of Oceanography, Louisiana State University, 1002-Y Energy, Coast and
Environment Building, Baton Rouge, LA 70803, USA
e-mail: jhcowan@lsu.edu

V. Christensen
Institute for the Oceans and Fisheries, University of British Columbia, V6T 1Z4a Vancouver,
B.C, Canada
e-mail: v.christensen@fisheries.ub.ca

© Springer International Publishing AG 2017
D. Justic et al. (eds.), Modeling Coastal Hypoxia,
DOI 10.1007/978-3-319-54571-4_14

377



also showed that hypoxia does reduce biomass and landing as compared to
enrichment alone, and that there are winners and losers: Some species such as red
snapper decrease in biomass even with enrichment. Future directions include
simulating nutrient reduction scenarios to inform management.

Keywords Hypoxia ⋅ Fisheries ⋅ Ecospace ⋅ Ecosystem modeling ⋅ Ecopath
with Ecosim ⋅ Food webs ⋅ Gulf of Mexico

14.1 Introduction

While the existence of the hypoxic zone off the coast of Louisiana has been well
established (Rabalais et al. 2001 and earlier chapters), the effect it has on fish and
fisheries has been more elusive (Rose 2000; O’Connor and Whitall 2007; Rose
et al. 2009). There are several ecosystem modeling approaches that can be used to
consider environmental effects on living marine resources (e.g., Ecopath with
Ecosim (EwE, Christensen and Walters 2004); Trosim (Fulford et al. 2010), CASM
(Bartell et al. 1999), and ATLANTIS (Kaplan et al. 2012)). In this chapter, we use
the EwE modeling approach and its spatial module, Ecospace, to determine
potential effects of hypoxia on fish and fisheries.

New developments in EwE described in Christensen et al. (2014a) and De
Mutsert et al. (2015a) allow for the inclusion of avoidance of hypoxia by marine
nekton and reduced feeding rates of organisms in response to low oxygen levels;
these effects can cascade through the food web through trophic interactions.
Inclusion of ports and fishing fleets allows for the simulation of the added effect of
catches on the abundance of living marine resources, while simultaneously pro-
viding an estimate of landings and revenue changes during different simulation
scenarios. The virtual representation allows for the decoupling of the bottom-up
effect of high levels of primary production on higher trophic levels, and the negative
effects of hypoxic events on these consumers related to these same high levels of
primary productivity that occur in the northern Gulf of Mexico (Rabalais et al.
2002). Output of a coupled physical-biological model (Fennel et al. 2011, 2013;
Laurent et al. 2012; Laurent and Fennel 2014) provides the scenarios of primary
productivity on the coastal shelf with and without summer hypoxia.

In this chapter, we describe these modifications to EwE to simulate hypoxia
effects in the northern Gulf of Mexico, and illustrate the modeling approach with
three case studies that use simulations to evaluate effects of hypoxia on fish and
fisheries. The results remind us to not underestimate the extent to which the Mis-
sissippi River outflow fuels the productivity of the northern Gulf of Mexico
ecosystem, and give insight into the difficulty in finding negative empirical corre-
lations between landings and hypoxia. Through these case studies, the rapid evo-
lution of the capabilities of Ecopath with Ecosim and Ecospace to simulate effects
of environmental drivers on fish and fisheries is highlighted.
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14.1.1 The Louisiana Coastal Ecosystem

Perhaps the most characteristic feature of the Louisiana continental shelf region is
the presence of two major sources of freshwater, the Mississippi and Atchafalaya
rivers, that strongly influence the physics (Wiseman et al. 2004), biology (Hanson
1982; Wiseman et al. 1986), and chemistry (Ho and Barrett 1977). The freshwater
runoff, which averages 1.83 × 104 m3 s−1, contributes to a low salinity, highly
turbid, near shore water mass within a westward flowing coastal current, which is
constrained within a steep, horizontal, salinity front on the mid-shelf about 20–
50 km offshore (Crout 1983; Cochrane and Kelly 1986).

The nutrient-rich waters entering the Gulf of Mexico in this manner lead to high
primary production on the coastal shelf, which in turn stimulates the secondary
production of this marine ecosystem (Nixon and Buckley 2002; Livingston 2002).
The Louisiana coastal area has indeed been referred to as the Fertile Fisheries
Crescent (Gunter 1963); fisheries landings in Louisiana are the highest of the Gulf
states and contribute significantly to the total commercial and recreational catch in
the USA (Chesney et al. 2000).

High levels of primary production on the Louisiana shelf and the resulting
bacterial respiration during the decay of these large amounts of organic matter, in
combination with summer stratification of coastal waters, are the cause of an
extensive area with hypoxic bottom waters each summer (Rabalais and Turner
2001). The areal extent of the affected region is positively related to Mississippi
River discharge and has had an average size of 13,650 km2 over the past 30 years
(1985–2014, http://www.gulfhypoxia.net/Overview/). This seasonal hypoxic zone
affects the living marine resources of the northern Gulf of Mexico.

14.1.2 Ecological Effects of Hypoxia on the Gulf of Mexico

It has been suggested that the formation of the hypoxic zone could lead to altered
food web dynamics on the Louisiana shelf (Chesney et al. 2000; Rabalais and
Turner 2001). Effects may be both direct via increased mortality through prolonged
exposure to low dissolved oxygen (DO) concentrations (Breitburg et al. 1999;
Turner 2001; Breitburg et al. 2003) or indirect via alteration of benthic (Turner
2001) and water column (Breitburg et al. 1999; Chesney et al. 2000; Turner 2001),
habitat availability, and food web structure. An example of altered food web
structure would be increased abundances of gelatinous zooplankton predators that
consume zooplankton and larval fish (Graham 2001; Grove and Breitburg 2005).

Several studies have described the effects of hypoxia on feeding, growth,
behavior, and mortality of fishes from a variety of taxonomic groups. In particular,
sublethal effects of hypoxia have been shown to result in decreased feeding (Chabot
and Dutil 1999; Tallqvist et al. 1999; Pichavant et al. 2001) and growth rate (Bejda
et al. 1992; Secor and Gunderson 1998; Chabot and Dutil 1999; Taylor and Miller
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2001), changes in activity level (Crocker and Chech 1997; Schurmann and Stef-
fensen 1992), and spatial distribution (Pihl et al. 1991; Breitburg et al. 1999, 2003;
Keister et al. 2000; Wannamaker and Rice 2000). Studies also have demonstrated
direct effects of severe or chronic hypoxia on mortality (Schurmann and Steffensen
1992; Tallqvist et al. 1999; Miller et al. 2002); specific DO levels that can elicit
sublethal effects have been shown to be species-specific (see reviews by Davis
1975; USEPA 2001; Miller et al. 2002).

14.1.3 Potential Implications for Gulf of Mexico Fisheries

The hypoxic zone could have economic consequences, if hypoxia reduces pro-
duction of commercially and recreationally valuable fish and shellfish (Diaz and
Rosenberg 1995; Breitburg 2002; O’Connor and Whitall 2007). Aggregation near
hypoxic edges has been shown for gulf shrimp and finfish, which may enhance their
susceptibility to commercial shrimp trawls (Craig 2012). This “edge effect” can
result in a positive correlation between hypoxia and fisheries landings, and create a
false sense of increased abundances when fisheries dependent data are used to
determine stock size. Positive correlations could also occur as a result of the
bottom-up effect that nutrient enrichment has on higher trophic levels (Nixon and
Buckley 2002; Breitburg et al. 2009).

14.1.4 Ecosystem Modeling

The concept of using ecosystem models in fisheries science and ecology is to
include effects of environmental parameters, trophic interactions of multiple spe-
cies, and fishing on the biomass of all species included in such models. The
ecosystem models presented in this chapter have been developed with the
open-source Ecopath with Ecosim modeling suite, freely available from http://
www.ecopath.org. The advantage of creating a virtual representation of the northern
Gulf of Mexico ecosystem is that the factors affecting living marine resources can
be evaluated separately and together.

14.2 Constructing an Ecopath Model

An Ecopath model is a virtual representation of an ecosystem, with a focus on higher
trophic levels. It was originally developed by Polovina (1984), and subsequently
modified to replace the assumption of steady state by an assumption of mass balance
over a period of time, usually a year (Christensen and Pauly 1992). Other modifica-
tions include the addition (and subsequent modification) of Ecosim, a time-dynamic
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module, and Ecospace, a spatially explicit module (Walters et al. 1997, 1999). These
dynamic modules of EwE will be discussed in Sects. 14.3 and 14.4.

There are two master equations at the base of Ecopath. The first equation
describes the production term and can be expressed as follows:

Bi ⋅ ðP ̸BÞi ⋅EEi − ∑
n

i=1
Bj ⋅ ðQ ̸BÞj ⋅DCji −Yi −Ei −BAi =0 ð14:1Þ

where Bi and Bj are the biomasses of the prey (i) and predators (j), respectively;
(P/B)i the production/biomass ratio; EEi the ecotrophic efficiency, which is the
proportion of the production that is utilized in the system; (Q/B)j the
consumption/biomass ratio; DCji the fraction of prey (i) in the diet of predator (j);
Yi the total fishery catch rate of (i); Ei the net migration rate (emigration–immi-
gration); and BAi the biomass accumulation rate for (i).

The second master equation ensures energy balance within each group as follows:

Consumption= production + respiration+ unassimilated food ð14:2Þ

To construct a model, the parameters B, P/B, Q/B, DCij, Y, E, and BA need to be
specified for each group (Y only if there is a fishery), while the model solves for EE.
While this is the recommended approach, themodel can also solve for missing B, P/B,
and Q/B parameters since Ecopath can handle solving for different and multiple
unknowns while balancing the model. Missing parameters are estimated by linking
the production of each group to the consumption of all groups, based on the
mass-balance requirement of Eq. 14.1.

Each group in an Ecopathmodel can be a single species, an aggregation ofmultiple
species of similar role in the ecosystem, (e.g., a functional group), or a single life
history stage of a species with a complex trophic ontogeny (i.e., a multi-stanza group).
With the multi-stanza approach, different diets, predation levels, tolerance ranges
(e.g., toDO), and fisheries landings can be assigned to different life stages of a species,
which increase the realism of themodel. The stanzas of a species are linkedwith a von
Bertalanffy growth model. A model like this was constructed for the Gulf of Mexico
(Fig. 14.1), serving as a base model for simulations described in this chapter.

14.3 Temporal Dynamic Modeling with Ecosim

Ecosim provides temporal dynamic simulation capabilities building on the Ecopath
base model. Biomass dynamics in Ecosim are expressed through a series of coupled
differential equations derived from the Ecopath master equation (Eq. 14.1). The
resulting differential equation for biomass is as follows:

dBi ̸dt= gi∑
j
Qji − ∑

j
Qij + Ii − ðMOi +Fi + eiÞBi ð14:3Þ
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where dBi/dt represents the growth rate during the time interval of group (i) in terms
of its biomass (Bi), gi is the net growth efficiency (production to consumption ratio),
∑Qji the total consumption by group (i),∑Qij the predation by all predators on the
same group (i), Ii the immigration rate, MOi the non-predation natural mortality
rate, Fi the fishing mortality rate, and ei the emigration rate.

The set of differential equations is solved in Ecosim using an Adams-Bashforth
integration routine. The consumption rates are calculated based on the foraging
arena theory, where the biomass of each group is divided into vulnerable and
invulnerable components (Walters et al. 1997; Ahrens 2012). The transfer rate
between these two components (νij) determines the relative contribution of
top-down (biomass of predator impacts how much prey is consumed) and
bottom-up control (being caught is a function of the prey’s productivity).

A useful feature in Ecosim is the ability to fit simulations to time series
(Christensen and Walters 2011). The main purpose is to calibrate the model to
observation, but can also be used to determine whether the model explains more
variability with the addition of environmental drivers. This feature is demonstrated
in the first case study described in Sect. 14.3.3.

14.3.1 Including Hypoxia Effects

The flow of biomass in Ecosim from prey biomass (i) to predator biomass (j) fol-
lows the function:

Flow biomass ̸timeð Þ= aij ⋅Vij ⋅Pj ð14:4Þ

where aij is the rate of effective search, Vij is vulnerable prey biomass, and Pj is
effective predator biomass. Pj is the group biomass for simple groups, but calculated
differently when a group has ontogenetic diet splits using the multi-stanza function
(see Sect. 14.2). For multi-stanza groups, Pj is the sum of biomass over ages in that
group to the 2/3 power, an index of per-predator search rate.

The effective search rate aij is reduced in the model during unfavorable DO
conditions using species-specific response curves. Response curves of individual
fish species to environmental parameters are determined by plotting catch rate
versus the environmental parameter for each group in the model, using large
datasets (Fig. 14.2). This method has previously been used to include effects of
salinity (De Mutsert et al. 2012). For the DO response curves in the NGOMEX
Ecosim scenarios, catch rates from SEAMAP groundfish data were plotted against
bottom DO values as measured during catch. The resulting parameters (the mini-
mum DO value that is not causing limitations and the standard deviation from that
point) were used to create sigmoidal curves that serve as multipliers on effective
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search rate (Fig. 14.2). The response (y value between 0 and 1) that corresponds
with the environmental DO value (x value) is then used to multiply aij in Eq. 14.4,
with DO time series data serving as the forcing function.

Fig. 14.1 NGOMEX Ecopath model. Y-axis indicates trophic level and the size of the nodes
indicates the relative size of the biomass pool. Trophic interactions are indicated with the gray
lines and represent the flow of energy in the model

Fig. 14.2 Oxygen response
curves of five example species
in the model. Reproduced
from De Mutsert et al. (2015)
under a creative commons
license
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14.3.2 Including Fisheries

Fisheries can be affected by hypoxia as well, and these effects cannot be extrapo-
lated directly from the average biomass of living marine resources in the system
(see Sect. 14.1.3). Fishing fleets can be included in the model, and the catch of each
of these fleets can be simulated and form an output of the Ecosim scenarios just like
group biomass. Hypoxia does not directly affect the fleets in the model, but, more
realistically, effects of hypoxia on living marine resources have an indirect effect on
fisheries. These indirect effects could potentially include a decrease in fisheries
catches when biomass of living marine resources decreases, or an increase in
fisheries catches when living marine resources congregate at the edge of the
hypoxic zone (Craig 2012). The inclusion of fleets not only ensures the direct
simulation of fisheries (and effects of hypoxia on fisheries) but also includes catch
as a potentially major determinant of fish biomass; to determine effects of hypoxia
on living marine resources, the effects of fishing cannot be ignored.

14.3.3 Case Study 1: Hypoxia in Ecosim

An Ecopath model was developed for the northern Gulf of Mexico (NGOMEX;
Fig. 14.1 and Table 14.1), based on the biomass (t km−2 wet weight) of species rep-
resentative of the NGOMEX using SEAMAP data (http://sero.nmfs.noaa.gov/
operations_management_information_services/state_federal_liaison_branch/seamap/
index.html). The model and expansions on it as described in two more case studies are
referred to as the NGOMEX model. Species were divided into multiple life history
stages where needed to consider ontogenetic shifts in the life history of a species. Mass
balance was achieved after multiple iterations involving adjustments of input param-
eters, resulting in a plausible virtual representation of the northern Gulf of Mexico
ecosystem.

In Ecosim, hypoxia was added, and a fishery for menhaden, shrimp, recreational,
snapper/grouper, crab pots, squid, and longlines was included. Landings data used
are published online by NOAA: http://www.st.nmfs.noaa.gov/st1/commercial/
landings/annual_landings.html.

Two scenarios were simulated with the NGOMEX version of Ecosim in this case
study: one without hypoxia as a forcing function and one with a time series of
spatially averaged summer bottom hypoxia (mg/l) measured by the Louisiana
Department of Wildlife and Fisheries within the area of the hypoxic zone from 1998
to 2002 as a forcing function. We ran a simulation from 1982 to 2008, which were
the years for which we had SEAMAP data to which the simulations were fitted.
Annual averaged biomass data derived from SEAMAP and landings documented
by NOAA were used as observations to fit the predictions to. For this case study,
the dissolved oxygen pattern measured from 1998 to 2002 by the Louisiana
Department of Wildlife and Fisheries (LDWF) was repeated in the years of the
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Table 14.1 Groups in the
NGOMEX Ecopath model
and their start biomass

Group name Biomass in habitat area (t km−2)

Marine mammals 0.069
Tunas 0.024
Jacks 0.018
Birds 0.011
Juv Atlantic cutlassfish 0.003
Atlantic cutlassfish 0.228
Lizardfish 0.384
Juv sharks 1.2E-04
Sharks 0.148
Mackerel 0.300
0–3 sea trout 2.5E-04
3–18 sea trout 0.072

18 + sea trout 0.647
0–6 red snapper 0.001
6–24 red snapper 0.032
24 + red snapper 0.090
0–1 groupers 0.008
1–3 groupers 0.090
3 + groupers 0.226
Other snappers 0.141
0–3 red drum 4.4E-06
3–8 red drum 1.2E-04
8–18 red drum 0.001
18–36 red drum 0.003
36 + red drum 0.029
Juv rays and skates 0.001
Rays and skates 0.082
Flounders 0.202
Pompano 0.002
Atlantic bumper 0.434
Scad 0.182
Juv Atlantic croaker 1.303
Atlantic croaker 4.344
Catfish 0.582
Spot 0.690
Squid 0.168
Pinfish 0.094
Porgies 1.223
Anchovy 2.032
Juv menhaden 1.891
Menhaden 6.240

(continued)
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Ecosim run from 1982 to 1997 and 2003 to 2008. Nutrient loading to the Gulf of
Mexico, represented by NOx loads measured by USGS at Tarbert Landing, was
kept the same in both model runs. In the first case study presented here, scenario

Table 14.1 (continued) Group name Biomass in habitat area (t km−2)

Clupeids 4.448
Mullet 0.100
Sea turtles 0.030
Small forage fish 3.715
Jellyfish 0.360
Blue crab 0.244
Juv brown shrimp 0.007
Brown shrimp 0.558
Juv white shrimp 0.004
White shrimp 0.300
Juv pink shrimp 2.6E-04
Pink shrimp 0.020
Other shrimp 0.369
Benthic crabs 0.045
Benthic invertebrates 12.08
Zooplankton 7.642
Benthic algae/weeds 29.8
Phytoplankton 25
Detritus 100

Fig. 14.3 Ecosim scenario without hypoxia forcing function (a) and with summer hypoxia as a
forcing function (b)
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runs with the NGOMEX model demonstrate the improvement of fit during cali-
bration in Ecosim with the inclusion of hypoxia as an environmental factor affecting
fish biomass (Fig. 14.3). The total sum of squares (SS) of the fit of the simulation to
observed biomass data decreased from 780 to 670 when the hypoxia forcing
function was activated. By adding hypoxia, the model explained more of the
variation in the data than the model did with trophic interactions and fishing alone
(Fig. 14.3).

While the Ecosim scenarios provide biomass and fisheries output, the lack of
spatial dynamics in the model puts restriction on the interpretation of the outcomes.
Without a spatial component, the organisms in the model do not have the ability to
move away from hypoxia. In other words, hypoxia is either “on” or “off” in the
model, and the only relief organisms receive from hypoxia is in time, since the DO
is only reduced to hypoxic levels in the summer months. Effects of biomass
aggregation at the edge of the hypoxic zone and subsequent effects on fisheries will
thereby also not be simulated. A solution to this problem is provided by Ecospace,
which provides spatially explicit simulations detailed in the next section. When
using Ecospace, it is still useful to first use Ecosim, since model calibration by
fitting simulations to time series as described in the first case study is performed in
Ecosim (which notably entails incorporating density-dependent effects), and model
robustness is tested in Ecosim by running Monte Carlo simulations (Christensen
et al. 2004). In the above presented case study, Ecosim provides an indication that
hypoxia could indeed affect biomass of living marine resources (Fig. 14.3), and that
further exploration of the NGOMEX model in Ecospace is warranted.

14.4 Ecospace

14.4.1 Use of GIS in Ecospace

Up to version 6.3 of the EwE software suite, a major shortcoming of the Ecospace
model has been its lack of facilities to integrate external spatial forcing data into its
computations, and to deliver its outputs in geospatial data formats for model
interoperability. Although the Ecopath and Ecosim models have been successfully
linked to other models, the spatial model Ecospace had seen no use in this regard
due to the complexity involved, including lack of capabilities to easily exchange
data. Continued popularity of the EwE approach, increasing demand for the ability
to use the Ecospace model in conjunction with spatial analytical tools, specialist
models, and planning tools such as Marxan (Loos, 2011) resulted in increasing
demand to integrate varying environmental conditions into the Ecospace model.
EwE source code was migrated in 2006 to the .NET programming environment to
which gave rise to the idea of a flexible spatial-temporal data framework to solve
the data connectivity shortcomings of Ecospace. This spatial-temporal data
framework is an abstraction layer onto the Ecospace model that facilitates the
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process of locating, loading, and adapting geospatial data to the Ecospace internal
data formats, and facilitates the process of converting Ecospace result maps to
geospatial data formats (Fig. 14.4).

To date, the spatial-temporal framework of Ecospace has been applied in only a
few case studies. One such study demonstrated that the ability of Ecospace to
hindcast observed trends in species occurrences significantly improved when driven
by monthly and annual SeaWiFS-derived primary production data (Steenbeek et al.
2013). Other case studies use the spatial-temporal data framework to drive the
habitat foraging capacity model with altering patterns in oxygen, temperature,
salinity, turbidity, substrate, or depth for exploring the impacts of environmental
change on marine food webs (De Mutsert et al. 2015a, b, 2016).

14.4.2 The Habitat Capacity Model

The Ecospace model can consider cell-specific habitat descriptions or environ-
mental parameters (level of, e.g., salinity and DO). In versions of the Ecospace
model before EwE release 6.3, large-scale habitat structure with attendant impact on
biomass distributions and trophic interactions was represented only by a binary
habitat use pattern for each group, with each spatial cell being either suitable or not
for each group. Biomass dynamics in unsuitable cells was modified by predicting

Fig. 14.4 Conceptual overview of the spatial-temporal data framework, which provides external
GIS data to Ecospace model initialization and at runtime, and provides Ecospace results in spatial
data formats when the model executes. Reproduced from Steenbeek et al. (2013) with permission

388 K. de Mutsert et al.



higher rates of emigration, lower feeding rates, and/or higher vulnerability to pre-
dation, and there was a complex gradient calculation to modify dispersal rates so as
to direct biomass toward suitable cells (Walters et al. 1999).

In the new habitat capacity model used here for hypoxia, the relative habitat
capacity by group and by cell is estimated from a vector of habitat attributes—
which can be made to consider any environmental parameter, e.g., DO, salinity, or
temperature (Christensen et al. 2014a). The habitat capacities can be updated for
each time step (in a computationally efficient manner) and can typically be obtained
from output from physical or biogeochemical models.

The habitat capacities, C, are linked to trophic interactions in the foraging arena
model so that it impacts the size of the foraging arena, i.e.,

V = vB ̸ð2v+ aP ̸CÞ ð14:5Þ

The predation activity is thereby concentrated in a smaller area when C
decreases which in turn impacts the vulnerable prey densities (V) more rapidly if
predator density (P) increases because of a decrease in the size of the foraging
arena. This in effect makes spatial patterns of biomass proportional to their habitat
capacities. Furthermore, the habitat capacity model modifies spatial mixing rates so
as to obtain movements toward preferred cells and avoid dispersing excessive
biomass into unsuitable spatial cells.

Using the habitat capacity model, multiple layers can be added to Ecospace
models. Users can define the response of organisms to each habitat attribute with
response curves (shape and parameters of each response curve are user-specified),
or by indicating relative habitat use. An example of the latter would be to define
water cells as estuarine and offshore, and then exclude certain organisms from
entering the estuaries (habitat use of the estuary would be 0, and use of offshore
water cells would be 1). Habitat use can be any value between 0 and 1, and the
levels of habitat could be two or more.

14.4.3 Spatial Considerations for Fishing Fleets

In Ecospace, the fishing mortality rates (F) are distributed using a simple “gravity
model” where the proportion of the total effort (as defined in the Ecopath base
model) allocated to each cell is assumed proportional to the sum over groups of the
product of the biomass, and the profitability of fishing the target groups (Chris-
tensen and Walters 2004). The profitability of fishing includes the price per pound
and the cell-specific cost of fishing (determined by price of gas and distance from
port). The NGOMEX Ecospace model used in the second and third case studies
incorporates the cost of fishing by including two ports with the highest fish landings
in Louisiana: Empire-Venice and Intracoastal City (www.oceaneconomics.org;
Fig. 14.5). Distance from port in addition to target species biomass in a particular
cell and species-specific price per pound determines movement of fleets.
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14.4.4 Case Study Two: Hypoxia in Ecospace

To pursue spatial modeling with the NGOMEX Ecospace model, a base map was
loaded in based on a GIS bathymetry map of coastal Louisiana. The model area of
the NGOMEX Ecospace model has a 5 × 5 km grid and covers the Louisiana
coastal shelf, totaling 8978 model cells (Fig. 14.5). The bathymetry of the area
included in the base map has a resolution of 1 m. Bathymetry (with response
curves), salinity-based habitat description (the three “levels” of habitat are fresh,
brackish, and marine), and DO (with response curves) were included as habitat
attributes.

The effect of hypoxia was tested in the Ecospace simulations with a stylized (and
static) hypoxic zone (Fig. 14.6). Output of this case study demonstrated a decrease
in biomass within the hypoxic area of organisms directly affected by low bottom
oxygen (as defined through response curves) while others were unaffected or even
showed an increase as an indirect effect of bottom hypoxia through trophic inter-
actions (Fig. 14.7). Trophic interactions can result in neutral or positive effects of

Fig. 14.5 Model area of the NGOMEX (northern Gulf of Mexico) ecosystem model. Louisiana
(USA) is indicated in gray, and the Mississippi River in blue. The coloration in the northern Gulf
of Mexico indicates the bathymetry. The two ports with the most landings in Louisiana,
Intracoastal City and empire-venice, are indicated with a black dot (source of bathymetry data: the
fish and wildlife research institute). Reproduced from De Mutsert et al. (2015) under a creative
commons license
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hypoxia on biomass of some species through release of competition for food, or
release of predation pressure, as has been shown in Altieri (2008). The location of
areas where biomass aggregation occurred outside the hypoxic zone was influenced
by species preferences for depth and habitat in addition to hypoxia.

Fig. 14.6 Hypoxic zone used in the second case study. DO (mg/l) is indicated in each cell. The
color scheme indicates increasing DO concentrations with warmer colors from white (hypoxic) to
red (normoxic)

Fig. 14.7 Biomass (relative) of six groups in the NGOMEX Ecospace model
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14.4.5 Including Spatial and Temporal Dynamic Forcing
Functions

Including spatial and temporal dynamic forcing functions, which is essential to
simulate the effect of summer hypoxia on living marine resources, is very data
intensive. A value of bottom DO and a measure of primary production are needed
for each grid cell at each time step (monthly) for the duration of the model run
(typically for multiple decades). Output from hydrodynamic or physical-chemical
models would provide data at this resolution, and simultaneously provide the ability
to run exploratory and management-based scenarios. Generally, averaging is nee-
ded, since most hydrodynamic models provide output on shorter time steps than
months, plus spatial re-averaging may be needed if the grid cells of the two models
are of different size and/or shape. Whether the re-averaging of physical-chemical
information makes sense ecologically needs to be determined on a case-by-case
basis, and additional plug-ins can be designed to evaluate effects on shorter time
steps than months if effects are known to manifest on shorter time scales (not
performed in the case studies presented here, but see De Mutsert et al. 2016).

To couple the physical-biological model to the Ecospace model, a “plug-in” (i.e.,
a code snippet that interacts with the core model, data layers, and scientific inter-
face) was added to the EwE source code. The plug-in reads in primary production
and environmental variables (physical-biological model output) on a monthly time
step, and subsequently forces the phytoplankton data with the primary productivity
input, and the consumers with the environmental variables in a fashion determined
by species-specific response curves (Fig. 14.2). This allowed for oxygen and Chl
a to be spatially and temporally dynamic environmental drivers. Previous simula-
tions included temporal dynamic drivers (Ecosim scenarios; Sect. 14.3.1), which
would not allow for movement away from hypoxic conditions, or spatial dynamic
drivers (Ecospace habitat capacity scenarios; Sect. 14.4.4), which would not allow
for temporal variation of the hypoxic conditions (The stylized hypoxic zone of
Fig. 14.6 was present year-round). Both situations result in an exaggeration of the
effects of hypoxia. In addition to bottom DO and Chl a output of the coupled
physical-biological model, species biomass and distribution are still affected by
depth, habitat features, fishing, and trophic interactions. In the third case study, the
dual effect of the Mississippi River plume is evaluated; nutrient enrichment, which
may lead to increased secondary production, and hypoxia, which may lead to
decreased secondary production are simulated together and separately.

14.4.6 Case Study 3: Hypoxia as a Spatial-Temporal Driver
in Ecospace

The third case study is from De Mutsert et al. (2015a). To test effects of spatial and
temporal dynamic forcing functions on the biomass of all groups in the model,
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bottom DO and Chl a output of a coupled physical-biological model developed in
the same geographic area (Fennel et al. 2011, 2013; Laurent et al. 2012, Laurent
and Fennel 2014) were used to force the NGOMEX Ecospace model. The simulated
DO and Chl a output from 1990 to 2007 were first matched to the grid and time step
of the NGOMEX Ecospace model (Fig. 14.8). The model output had to be
extrapolated into the estuaries to provide Chl a and DO values for each of the cells
in the NGOMEX model, and was extended to 2010 by repeating the last 3 years of
model output. The groups in the model responded to DO as determined by the
group-specific response curves (Fig. 14.2). The Chl a data were normalized and
drove the biomass of phytoplankton group only with a linear function.

Three scenarios were tested with the NGOMEX Ecospace model with
spatial-temporal dynamic drivers. In scenario 1 (“no forcing”), the coupled
physical-biological model (Fennel et al. 2011) is not linked to Ecospace, which
results in no phytoplankton forcing and no effects of bottom DO on species in the
model. This, in a way, represents a scenario where the Mississippi River is “turned
off.” In scenario 2 (“enrichment only”), the coupled physical-biological model is
linked to Ecospace, but species in the model are not affected by bottom DO (i.e., not
negatively affected by DO levels below normoxic conditions). In this scenario, the
phytoplankton biomass is driven by the coupled physical-biological model Chl
a output, but the bottom DO output has no effect on the groups in the model. In
scenario 3 (“enrichment + hypoxia”), phytoplankton biomass is driven by the
coupled physical–biological model, and species are affected by DO levels in a way
determined by their species-specific response curve (Fig. 14.2). Some results of

DO

Chl a

January July

Fig. 14.8 Example output of dissolved oxygen in mmol m−3 (top) and Chl a in mg m−3 (bottom)
from Fennel et al. (2011) in a month without hypoxia (January) and a month with hypoxia (July).
Monthly “maps” of this output are used as spatial-temporal forcing functions in the NGOMEX
ecosystem model. Output was extrapolated in the estuaries as shown in the figure. Reproduced
from De Mutsert et al. (2015) under a creative commons license
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these simulation outputs are shown in Figs. 14.9, 14.10 and 14.11. The simulations
ran from 1950 to 2010.

The results of these simulations suggest that, for most species, the positive
effects of increased phytoplankton as a result of nutrient enrichment from the
Mississippi River outweigh the negative effect of bottom hypoxia as a result of the
same nutrient enrichment from the Mississippi River (see De Mutsert et al. (2015a)
for more details). This is a result of the trophic dynamics in Ecospace (bottom-up
effect of increased productivity). Similar results have been found in previous studies
(Breitburg et al. 2009). A study using a similar approach in the Baltic Sea found
biomass reductions when simulating nutrient reduction scenarios (Niiranen et al.
2008), although they did not consider changes to the level or area of hypoxia in
response to nutrient reductions. Other mechanisms such as release from predation
pressure and/or competition play a role as well (Altieri 2008), which are mecha-
nisms well represented with the trophic dynamics in Ecospace. The bottom-up
effects of nutrient enrichment plus indirect effects of trophic dynamics trickle
through into the landings of the simulated fleets (Fig. 14.11).

Exceptions occur as is shown in the case of red snapper (Fig. 14.9), which was
one of the least hypoxia-tolerant species in the model (Fig. 14.2), and did suffer
reduced biomass with hypoxia. The red snapper simulations show an interesting
case where biomass is more affected than landings, providing an example of the
edge effect; fleets obtain landings at the edge of the hypoxic zone and exacerbate
biomass reductions (note that there is no policy or quotas part of these simulations).
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The results of model simulations as presented here can have important man-
agement implications. However, before these results are used to inform manage-
ment, additional nutrient reduction scenarios need to be simulated with the model.
There may be an optimum nutrient loading from the river that is lower than current
levels, which needs to be identified via simulation because there is no direct linear
relationship between phytoplankton biomass increase and oxygen decrease (Walker
and Rabalais 2006). Simulating realistic nutrient reduction scenarios is important,
because our current “no forcing” scenario is not a real-world scenario, and the
comparatively small decrease in biomass caused by hypoxia as compared to the
increase of enrichment (versus no forcing) may still be ecologically significant.
Ongoing research is looking into these very issues.

14.4.7 Conclusions and Future Directions

In summary, the new Ecospace capabilities in combination with model output from
a coupled physical-biological model can provide more realistic simulations of
long-term effects of summer hypoxia on the northern Gulf ecosystem and its living
marine resources. As shown in Sect. 14.4.5, connections between EwE and
physical-biological models that deliver oxygen, Chl a, and other environmental
drivers into the habitat foraging capacity model can be created with relative ease.
True coupling of models can be accomplished on a case-by-case basis, as has
recently been done in de Mutsert et al. (2015b). Other advances in Ecospace are the
improved representation of the ecosystem within the model area, and the inclusion
of ports, which will lead to better simulations of the fishing fleets (and socioeco-
nomic parameters, not considered here, see, e.g., Christensen et al. 2014b) that are
included in the spatial model. These tools could be very useful to inform man-
agement and can be used to simulate effects of Mississippi River nutrient reduction
scenarios on living marine resources in the northern Gulf of Mexico. The spatial
temporal data framework functions as a flexible data exchange engine, linking the
input driver layers of the Ecospace model to external spatial-temporal data from an
open-ended number of data sources and data formats. This functionality not only
offers the foundation for a new way of model interoperability to EwE itself, but also
aims to contribute to the discussion of standardized model interoperability for food
web models in general.

Through the data access tier described in Sect. 14.4.1, bidirectional data
exchange linkages to other running models can be facilitated. Data access com-
ponents can forge links to other models, delivering content valid for select driver
maps of the Ecospace model, and in return can deliver estimates of biomass, catch,
and other typical Ecospace outputs back to a linked model. Issues such as cen-
tralized time stepping and model data conversions will have to be solved, in par-
ticular for components that are represented on both sides of a bidirectional model
interoperability link.
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The results of the simulations provided with the case studies presented in this
chapter suggest that nutrient reductions aimed at reducing the size of the hypoxic
zone may decrease secondary production, and thereby fisheries biomass and
landings. Still, they also suggest that hypoxia has an effect on fisheries species,
because model fits improved when dissolved oxygen was included as an environ-
mental factor, and that effects of hypoxia are species-specific, resulting in “winners
and losers.” This is another example of how trophic interactions can provide
potential counterintuitive results of restorative actions (Walters et al. 2008), which
can only be found when an ecosystem food web model is used to simulate potential
outcomes. The results of the case studies presented here should be considered
exploratory, and simulations of actual proposed nutrient reduction scenarios are
needed to inform management; these efforts are underway.
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Chapter 15
Numerical Modeling of Hypoxia
and Its Effects: Synthesis
and Going Forward

Kenneth A. Rose, Dubravko Justic, Katja Fennel
and Robert D. Hetland

Abstract Numerical models can provide the needed information for understanding
hypoxia and ensuring effective management, and this book provides a snapshot of
representative modeling analyses of hypoxia and its effects. In this chapter, we used
the modeling and analyses across the other 14 chapters to illustrate 8 themes that
relate to the general strengths, uncertainties, and future areas of focus in order for
modeling of hypoxia and its effects to continue to advance. These themes are role of
physics; complexity of the dissolved oxygen (DO) models; oxygen minimum zones
(OMZs) and shallow coastal systems; observations; vertical dimension; short-term
forecasting; possible futures; and ecological effects of hypoxia. Modeling the
dynamics and causes of hypoxia has greatly progressed in recent decades, and
modern models routinely simulate seasonal dynamics over 0.1–1 km scales.
Despite these advances, prevailing model limitations include uncertain specification
of boundary conditions and forcing functions, challenges in representing the
sediment-water exchange and multiple nutrient limitation, and the limited avail-
ability of observations for multiple contrasting years for model calibration and
validation. A major challenge remains to effectively link the water quality processes
to upper trophic levels. A variety of approaches are illustrated in this book and
show that quantifying this linkage is still in the formative stages. There will be
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increasing demands for predicting the ecological responses to hypoxia in order to
quantify the ecological benefits and costs of management actions and to express the
simulated effects of coastal management and climate change in terms of direct
relevance to managers and the public.

Keywords Hypoxia ⋅ Nutrients ⋅ Simulation ⋅ Modeling ⋅ Ecological
effects ⋅ Food webs ⋅ Climate change ⋅ Fisheries ⋅ Management

15.1 Introduction

Hypoxia is increasing in coastal and oceanic waters worldwide (Stramma et al.
2008; Zhang et al. 2010). Increasing hypoxia is manifested in more locations
showing low dissolved oxygen (DO) conditions (e.g., Chan et al. 2008) and
hypoxia becoming more severe in terms of its magnitude (e.g., areal extent) and
duration (Diaz and Rosenberg 2008). Modeling is an important tool for under-
standing the timing and spatial dynamics of hypoxia, and how hypoxia affects key
biological populations and the food web. Field observations provide the empirical
basis for model development and for assessing the skill of physical and biological
simulations, but using field data to directly quantify the spatial and temporal
dynamics of hypoxia and to decipher the contribution of the multiple physical and
biological factors that contribute to hypoxia development is difficult. Once hypoxic
conditions are documented (either through field data or model predictions), using
field data to quantify the effects on individual fish and other upper trophic level
organisms is possible, but critical issues prevent the direct extrapolation of the
individual effects to the population level (Rose et al. 2009). Restoration actions are
often costly and therefore knowing the causes of hypoxia (e.g., nitrogen versus
phosphorus; riverine versus shelf waters), and quantifying the ecological benefits of
management actions designed to reduce hypoxia (e.g., increased fish populations)
helps design effective management actions.

Numerical models can provide the needed information for understanding
hypoxia and ensuring effective management via predictive simulations and diag-
nostic model-based experiments. This book provides a snapshot of representative
modeling analyses of hypoxia and its effects. Collectively, these models allow us to
assess where we are and discuss where, perhaps, we should be going. In this
chapter, we discuss 8 topics or themes that span across multiple chapters. These
themes are as follows: (1) role of physics; (2) complexity of the DO models;
(3) oxygen minimum zones (OMZs) and shallow coastal systems; (4) observations;
(5) vertical dimension; (6) short-term forecasting; (7) possible futures; and
(8) ecological effects of hypoxia. We use the models presented in the various
chapters, supplemented with other examples from the literature, to illustrate each of
these themes (Table 15.1) and to offer our prognosis for future efforts.
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Table 15.1 Major features of the models used in the chapters of this book. The themes that
referred to each chapter are shown

Chapters System Physics Water
quality/ecology

Selected analyses Theme

Chapter 1
Allahdadi
and Li

Louisiana
shelf

FVCOM-3-D Effects of solar
heating on
stratification during
June 2009

1, 4

Chapter 2
Bravo
et al.

Green Bay 3-D model
nested in
POM

Multi-year averages
of the effects of
wind, circulation,
and boundary
exchanges on
thermal regime and
stratification

1, 4

Chapter 3
Hetland
and Zhang

Louisiana—
Texas shelf

ROMS-3-D Fraction of shelf
waters from each
river for 2008

1

Chapter 4
Brush and
Nixon

Greenwich
Bay

7 boxes, each
divided into
2 layers

C, N, and P in
phytoplankton
and macroalgae,
DIN, DIP, DO
BOD

Surface
chlorophyll, DIN,
DIP, and bottom
DO compared to
data for May 1996–
May 1997

2, 3, 4

Chapter 5
Testa et al.

Chesapeake
Bay

ROMS-3-D
or 17 boxes

4 or 23
compartments

Box with 23,
ROMS with 23,
ROMS with 4, all
for 1996–2005,
compared for
spatial and temporal
dynamics of DO

2, 4

Chapter 6
Wiggert
et al.

Chesapeake
Bay

ROMS-3-D Nitrogen forms,
P, chlorophyll,
zooplankton,
DO, benthic

Detailed
comparison
(horizontal and
vertical) for
calibration and
sensitivity analysis
by station using
goodness-of-fit
measures to 1999

2, 4, 5,
6

Chapter 7
Laurent
and Fennel

Mississippi
River plume
on shelf
(plus review
of other
systems)

ROMS-3-D Nitrogen forms,
DIP,
phytoplankton,
zooplankton,
detritus

Conceptual model
on role of P
limitation in
affecting hypoxia
dynamics,
illustrated with
Louisiana shelf
simulations

2

Chapter 8 Gulf of
Mexico

NCOM-3-D N, P, Si forms,
POM, DOM,

Response of
stratification,

4, 7

(continued)
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Table 15.1 (continued)

Chapters System Physics Water
quality/ecology

Selected analyses Theme

Lehrter
et al.

phytoplankton,
zooplankton
(micro, macro),
DO

chlorophyll, and
DO to climate
change imposed on
2006

Chapter 9
Koch et al.

Upwelling
off coastal
Oregon

ROMS-3-D Nitrogen forms,
phytoplankton,
zooplankton,
detritus, DO

Sensitivity analysis
and DO budgets to
determine role of
physical factors
governing hypoxia
in 2002 and 2006

1, 3, 5

Chapter 10
LaBone
et al.

Louisiana
shelf

FVCOM Version of
WASP and
particle tracking

Effects of different
movement
behaviors on the
percent of
individuals exposed
to DO values (0–2,
2–3 mg/L, etc.)
over time for
7 days during
summer of 2002

4, 5, 8

Chapter 11
Kolesar
et al.

Mesohaline
portion of
Patuxent
River

3-layer box
without
water
exchange

Zooplankton,
fish larvae,
ctenophore food
web

Effects of hypoxia
on ctenophore
competition versus
predation on fish
larvae = l growth
and survival during
May to September

5, 8

Chapter 12
Adamack
et al.

Chesapeake
Bay

Individuals
imbedded
into 3-D
model

Population
dynamics
(growth,
mortality,
movement) of
bay anchovy

Hypoxia and food
effects on bay
anchovy abundance
under changed
nutrient loadings
over 10 years

8

Chapter 13
Rose et al.

Louisiana
shelf

DO and
chlorophyll
from 3-D
models

Recruitment
effect from 2-D
individual-based
population
model

Probability of
detecting hypoxia
effect with 5, 10,
and 25 years of
simulated
monitoring of
croaker

4, 8

Chapter 14
de Mutsert
et al.

Gulf of
Mexico

DO and
Chlorophyll
from a 3-D
water quality
model

Predator and
competitive
interactions for a
complete food
web—2-D

Upper food web
responses (%
change in averaged
biomasses) to
increased nutrient
loadings versus
worsen hypoxia for
1990–2007

4, 8
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15.2 Emerging Themes

15.2.1 Theme 1: Role of Physics

Hypoxia models that include hydrodynamics have progressed over the past decade,
and regional models are now capable of simulating physics on the scale of a few
hours and kilometers. Global and regional physical models have been trending
toward consideration of finer and finer spatial resolution (Thomas et al. 2008;
Kirtman et al. 2012; Holt et al. 2014). Regional and subregional models now can
simulate velocities, temperature, and salinity with sufficient detail to capture
mesoscale (10’s of kilometers) and some submesoscale (kilometer) phenomena (e.g.,
Hetland 2017) and provide a sound basis for including variables related to bio-
geochemical processes and water quality (including DO). All of the hydrodynamic
models used in this book resolve horizontal scales on the order of a few kilometers.

Further resolving the physics may improve model skill in some cases and help
improve simulation of DO concentrations. However, mesoscale and submesoscale
variability, when resolved in high-resolution models, can create stochastic vari-
ability (sensu Lorenz’s butterfly effect) that leads to uncertainty in simulated dis-
tributions of physical properties (Marta-Almeida et al. 2013) and DO (Mattern et al.
2013). Submesoscale phenomena are increasingly being considered for their effects
on phytoplankton and productivity (Levy et al. 2012; Mahadevan 2016). We expect
that the higher resolution simulation of physical dynamics will allow for more detail
in spatiotemporal variation of hypoxia, but will not result in dramatic improvement
in model skill for DO at the scale of 0.1–1 km. The physics simulated in the present
models appear sufficient to capture the major effects on hypoxia formation and
dynamics at the kilometer scale.

Boundary conditions and forcings for the hydrodynamics (and water quality) are
critical for accurately simulating the dynamics of hypoxia and understanding the
causes of hypoxia formation (e.g., Monteiro et al. 2011; Fennel et al. 2013), and
uncertainties about specification of boundary conditions and forcings remain an
issue. The hydrodynamics of both OMZs and coastal systems can be sensitive to the
fluxes at their boundaries with the adjacent open ocean (Blumberg and Kantha
1985; Koch et al.—Chap. 9), and coastal systems are often heavily influenced by
riverine inputs at their landward boundary (e.g., Hetland and DiMarco 2012).
Allahdadi and Li (Chap. 1) used a 1-month simulation of rising temperatures in a
3-D hydrodynamic model (FVCOM) to examine how solar heating would lead to
stronger stratification on the Louisiana shelf; simulated DO declined during the
same time period.

Bravo et al. (Chap. 2) used a model of Green Bay nested in a POMS model of
Lake Michigan and 5-year averaged results for the summertime to compare the
relative importance of heat flux, wind, and circulation (including at the Lake
Michigan boundary) on stratification. They show that the wind shift in direction,
typically in June, sets up a stable period during which conditions are conducive to
formation of hypoxia until mixing in September.
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Hetland and Zhang (Chap. 3) make innovative use of a dye (tracer) simulation
study (summer 2008) to quantify the contribution from two rivers (Mississippi and
Atchafalaya) to Louisiana shelf waters in the same location of historical hypoxia.
The two rivers contribute water with different constituent characteristics (e.g.,
inorganic nitrogen concentration), and their modeling results show that the relative
contribution of the two rivers varies temporally by month and spatially across the
hypoxic region.

Koch et al. (Chap. 9) used a ROMS-NAPZD (nitrate, ammonium, phytoplank-
ton, zooplankton, and detritus) model for the Oregon shelf and show the importance
of accurate boundary conditions. They discuss how the commonly used approach of
using larger-scale models to generate boundary conditions for their model was
especially challenging because of the resolution needed by their local shelf model.

The ever-increasing computing power will allow for multiple simulations and
use of model ensembles to better capture within-year and interannual variability as
well as inherent uncertainty in the simulated physics and hypoxia. Increasing
computing power will also help with conducting Monte Carlo style uncertainty
analysis of the physics and associated water quality via input variation and use of
alternative process formulations. To date, the limited formal quantification of
uncertainty with hypoxia models can prevent the use of modeling results by the
management community because interpretation of results across scenarios is hin-
dered by not including realistic variability around model predictions. Numerically
efficient methods for quantifying uncertainty in 3-D hypoxia models (e.g., Mattern
et al. 2013) are needed.

15.2.2 Theme 2: Complexity of the DO Models

Determining the appropriate complexity of the water quality models to generate DO
dynamics remains an ongoing issue in water quality and nutrient–phytoplankton–
zooplankton (NPZ) model development (Denman 2003; Litchman et al. 2006;
Friedrichs et al. 2007). While there are differences among the models reported here,
there seems to be a consensus about the general form of the models needed to
generate sufficiently realistic DO dynamics. In line with previous simple DO
models (e.g., Hetland and DeMarco 2008; Scully 2013; Li et al. 2015; Yu et al.
2015; Fennel et al. 2016), Brush and Nixon (Chap. 4) offer a relatively simple DO
model that they term “hybrid empirical-mechanistic.” They use this term to reflect
the fact that the model tracks relatively few state variables and uses relationships
roughly fitted to data derived from across system studies to represent some pro-
cesses. In this sense, they sacrifice mechanistic representation in favor of a simpler
(and easier to apply) statistically based relationship.

Testa et al. (Chap. 5) directly address the complexity issue by comparing the
performance of three models designed to simulate DO in Chesapeake Bay. The
models were a 17-box (9 surface and 8 bottom) system with a detailed water quality
model (23 compartments), a detailed 3-D hydrodynamic model (ROMS) coupled to
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a simple DO submodel, and ROMS with the 23-compartment model. All models
simulated 1996–2005, and Testa et al. (Chap. 5) offer insights into the factors
controlling hypoxia by each of the models. They also highlight how the box model
version reproduces seasonal and regional patterns in DO but is limited in resolving
lateral dynamics, how the ROMS with the simple DO model is useful for examining
wind and tidal mixing and freshwater input effects but is limited in its ability to
simulate interannual variation in hypoxia, and how the ROMS with the complex
DO model dynamics is capable of addressing these shortcomings but requires
significant computing and the most observations to develop sufficient model con-
fidence. Their analysis emphasizes that the complexity of the modeling must be
tailored to the specific questions being asked: regional patterns in biogeochemistry
(box model with simple DO model), climate effects on DO (ROMS with simple DO
model) and interannual variability, biological responses to nutrient loadings, or
fine-scale physical effects (ROMS with complex DO model).

Finally, Wiggert et al. (Chap. 6) used sensitivity analyses with a 3-D
ROMS-NPZD (NPZ plus detritus) model applied to 1999 data for the Chesa-
peake Bay to examine how alternative parameter values emphasize and understate
key processes that affect model skill. For example, they increased the sinking
velocity of large detritus that promoted the flux of organic matter to the benthos,
and reduced the half-saturation coefficient that affected denitrification and thus
amplified DO consumption within the water column. They used the agreement
among the predictions of the alternative versions with data to demonstrate how
improvements in the degree of correspondence with one variable (e.g., hypoxia
persistence) by certain parameter changes involve some loss of agreement with
other variables (e.g., poorer fit for dissolved inorganic nitrogen).

While the complexity of the model being dictated by the questions is a
well-known best practice (Wainwright and Mulligan 2005; Rose et al. 2015a), it is
sometimes not given enough consideration because there are existing codes and
models available that make their use convenient. The reasoning behind the final
model structure that is used in an application should be clearly explained and
documented. This is needed for transparency (why models differ within and across
systems) and ultimately will affect the credibility of the modeling results.

The models also highlight two long-standing critical uncertainties in modeling
hypoxia: multiple nutrient limitation (Howarth 1988; Flynn 2003; Moore et al.
2013) and processes at the sediment-water interface (Fennel et al. 2013; Testa et al.
2013). Laurent and Fennel (Chap. 7) directly address the role of phosphorus lim-
itation in areas of coastal hypoxia. They review several well-studied systems and
derive a conceptual model that views phosphorus limitation effects on hypoxia as
spatial and timing shifts by categorizing ecosystems as dominated by flow-through
versus open-dispersive physical processes. By use of a 3-D ROMS coupled to a
NPZD-type model of the Louisiana shelf, which is dominated by river inputs, they
use simulations for multiple years (highlighted with 2004) based on nitrogen-only
limitation and with both nitrogen limitation and phosphorus limitation to demon-
strate how consideration of phosphorus limitation resulted in a reduced and west-
ward shift of the hypoxic zone.
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The sediment-water exchanges often play a large role in affecting nutrient and
DO dynamics (Middleburg and Levin 2009; Lehrter et al. 2012), and Voss et al.
(2013) documented the importance of the sediment-water exchanges for the
nitrogen budget (and thus DO dynamics) in both shelf and coastal systems. Kemp
et al. (1992) and Heip et al. (1995) have emphasized that sediments have strong
impacts on the water column in shallow coastal ecosystems. Fennel et al. (2013)
used a similar model setup as Laurent and Fennel (Chap. 7) and found that pro-
jections of summertime hypoxia for the Gulf of Mexico were very sensitive to the
formulation used for sediment oxygen consumption. Most of the chapters that focus
on water quality and DO at least mention the uncertainty associated with repre-
senting the sediment-water interface and exchange (e.g., Brush and Nixon—Chap.
4; Testa et al.—Chap. 5; Laurent and Fennel—Chap. 7).

Two emerging areas in plankton ecology that were not represented in the DO
models but may be worth considering are more refined representation of the
microbial loop (Treseder et al. 2012) and the idea of internal stoichiometry of
phytoplankton (Glibert et al. 2013; Bonachela et al. 2015). The field data collection
for microbial organisms and processes, including those that affect nutrient bio-
geochemistry, is rapidly advancing, and Reed et al. (2014) provide a strategy for
incorporating these types of data into water quality and plankton models. For
example, Ayata et al. (2013) incorporated different formulations for internal stoi-
chiometry into a 1-D vertical NPZD model. How improving the representation of
microbial processes and nutrient dynamics of phytoplankton will help the simula-
tion of DO is not clear for present-day conditions in many systems, but may need to
be considered under management scenarios of reduced nutrient loadings (coastal
systems) and for climate change (coastal and OMZs).

15.2.3 Theme 3: Ocean and Shallow Ecosystems

Koch et al. (Chap. 9) discuss how the past emphasis on hypoxia in coastal systems
has resulted in a focus on the role played by nutrient inputs via large rivers. The
hypoxia of shelf-oriented oxygen minimum zones (OMZs) is gaining attention
(Stramma et al. 2008; Altieri and Gedan 2015; Levin and Breitburg 2015). Koch
et al. (Chap. 9) used a ROMS-NAPZD model (NPZD plus ammonium) for the
Oregon shelf, where hypoxia is seasonal and linked to upwelling favorable winds.
They simulated the 2002–2006 period focusing on vertical profiles and report the
results of a sensitivity analysis that varied initial and boundary conditions of nitrate
and used budgets to assess the relative importance of physical versus biological
drivers on DO dynamics.

In addition to OMZs and major coastal hypoxic zones, there is increasing
attention to modeling hypoxia in small shallow coastal systems that show rapid
changes in DO, often influenced by local conditions (Shen et al. 2008; Soetaert and
Middleburg 2009; Tyler et al. 2009). Brush and Nixon (Chap. 4) make a strong
case for modeling eutrophication and hypoxia in shallow coastal systems. While the
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major coastal hypoxic zones such as the Chesapeake Bay and the Louisiana shelf
garner a lot of attention, the shallow subestuaries often experience very high rates of
nutrient loading that can be mediated by local management decisions. Given the
limited site-specific data for these shallow systems, Brush and Nixon (Chap. 4)
present a reduced complexity model developed to allow for easy application and
portability among different systems. They then applied the model to Greenwich Bay
(mean depth of 2.6 m), a subestuary of Narragansett Bay, and performed a one-year
simulation that matched monitoring data. The bay was divided into 7 spatial ele-
ments and two vertical layers, and water and material exchanges were based on
salinity distributions and freshwater inputs rather than on hydrodynamics. The
model was successfully calibrated to surface chlorophyll-a biomass, dissolved
inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) by spatial
segment and to bottom layer DO by spatial segment. They also compared simulated
and observed process rates, such as water column production and respiration.

These models represent a broadening of the types of systems being investigated
and offer both new opportunities for model development and testing and for using
models for management. OMZs bring in the dynamics of the middle and deeper
water column on the continental shelf, and the shallow systems provide a test bed
for diurnal DO cycles and the role of sediments in shallow systems. Greater
cooperation between the seemingly distinct OMZs and coastal hypoxia research is
needed (Levin and Breitburg 2015), and this also applies to the modeling. While the
major estuarine and coastal systems (e.g., Chesapeake Bay and Louisiana shelf)
involve large systems and major monetary investments for restoration, the OMZs
are an indicator of ocean conditions (Stramma et al. 2008; Paulmier and Ruiz-Pino
2009). There is also a growing number of small shallow systems experiencing
hypoxia that, when combined, can add up to significant cumulative environmental
impacts. While DO models can be implemented relatively easily in the shallow
systems, a limiting factor is the availability of data for model configuration (e.g.,
bathymetry), calibration, and validation.

15.2.4 Theme 4: Observations

Maintaining long-term monitoring efforts for water quality and DO remains a
challenge. Several models used observations from station-based monitoring for
calibration and validation. Allahdadi and Li (Chap. 1) make extensive use of a set
of monitoring stations (WAVCIS) located on the Louisiana shelf to derive
boundary conditions (e.g., wind data) and assess model skill (currents, SST). Bravo
et al. (Chap. 2) illustrate how historical observations, strategically augmented with
new measurements, can provide a sound basis for model evaluation. Testa et al.
(Chap. 5) provide an illustration of the value to modeling of the long-term moni-
toring data available for the Chesapeake Bay; they used the data to generate Taylor
diagrams and examined interannual variation to permit skill assessment of 3 models
of differing complexity. Wiggert et al. (Chap. 6) similarly make use of the extensive
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monitoring data for the Chesapeake Bay by focusing on monthly measurements
(salinity, chlorophyll, and nutrients) from a series of stations sampled for one year
(1999) that represented “average” conditions. They used an index of agreement that
included both vertical gradients and 27 stations in the summary index of the scaled
differences between predicted and observed values. Lehrter et al. (Chap. 8) in their
analyses of the Gulf of Mexico using a 3-D hydrodynamic NPZ model assess model
skill based on 3 cruises (April, June, and September) at a grid of stations for 2006.
They computed bias, RMSE, and model efficiency metrics for temperature, nitrate,
chlorophyll, salinity (pycnocline), and DO on a station basis and also with the
station observations aggregated into subregions (median for surface and bottom
layers). They also compared model results to observations for two stations in detail
and used the LUMCON-based mid-July estimate of hypoxia to assess total area and
its spatial distribution. Some models made use of intensive monitoring studies that
were of 1- to 2-year duration (e.g., Brush and Nixon, Chap. 4—1996–1997, Bravo
et al., Chap. 2—1989, Lehrter et al., Chap. 8—2006). These clearly demonstrate
how observations inform the development and validation of the models, which is
required to establish model credibility for management use.

Whereas water quality and DO monitoring data are well suited for numerical
model evaluation because the purpose of monitoring and modeling is similar, the
monitoring of fish and shellfish is done for a variety of other reasons than detecting
hypoxia effects. Long-term fish monitoring is typically done to make tactical
management decisions (e.g., opening an area for harvest and consumption advi-
sories) or for developing indices of abundance used for fisheries stock assessment
and management. The Ecospace application to the Louisiana shelf (de Mutsert et al.
Chap. 14) used fish biomass time series derived from long-term
fishery-independent monitoring for model calibration. They showed improved
model fit to the data when hypoxia effects were included. However, in general, such
time series reflect the effects of many factors and so it is difficult to use the data to
calibrate or validate a model specifically to confirm (cause-and-effect) simulated
hypoxia effects (Chesney and Baltz 2001). Rose et al. (Chap. 13) discuss difficulties
in using monitoring data for fish to detect hypoxia effects at the level of recruitment
or higher. They used the simulated effect of hypoxia on croaker recruitment in the
Gulf of Mexico to establish a realistic “effect” of a 20% reduction under historical
hypoxia conditions. Using long-term field data on croaker, the interannual vari-
ability in recruitment was estimated and a Monte Carlo simulation used to deter-
mine the likelihood of detecting the hypoxia effect (knowing it is present) with
sampling (5, 10, and 25 years) that included the variability estimated from the field
data. The probability of detecting the known hypoxic effect with reasonable sam-
pling and realistic interannual variability in recruitment is very low. Thus,
long-term monitoring of water quality and DO must be maintained, and we need to
develop creative ways to use the fish and upper trophic level data, designed and
collected for other purposes, for model development and testing. The Gulf of
Mexico Hypoxia Watch (https://www.ncddc.noaa.gov/hypoxia/) is an example
where data from multiple water quality and fish surveys are merged.
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In general, focused studies that are limited to a few years or less generate the
observations to investigate the effects of hypoxia on fish. These studies are
immensely useful for modeling. For example, Thomas et al. (2015) measured how
croaker exposure in the summer affected their fecundity in the fall, and these results
were critical to the development of a croaker population dynamic model (Rose et al.
in review) that projected the population-level responses of croaker to hypoxia in the
Gulf of Mexico. A several year intensive study allowed clear documentation of the
response of zooplankton abundance and spatial distribution to hypoxia (Roman
et al. 2012). Such studies could be even more helpful to modelers if they were
repeated for multiple, contrasting years and their quantified effects were scalable
beyond the study area to an area relevant to the population and food web levels.

A major gap is the lack of observations on the movement patterns of fish and
other biota. As the modeling moves toward linking water quality to the upper
trophic levels, the representation of movement of individuals in the spatially and
temporally dynamic environment generated by the hydrodynamics-water quality
models will become critical. A major pathway of hypoxia effects is determined by
the effectiveness of the avoidance movement of individuals (determines direct
effects via exposure), and where they get displaced to and what environmental and
ecological conditions they experience (indirect effects) in the new locations. While
the data on animal movement in general are constantly improving (McClintock
et al. 2013; Bestley et al. 2016; Sippel et al. 2015), LaBone et al. (Chap. 10) reports
on the difficulties in trying to use individual movement data presently available for
testing model predictions of fish avoidance of hypoxia.

15.2.5 Theme 5: Vertical Dimension

Simulating hypoxia and its effects on biota requires accuracy in both the horizontal
and vertical dimensions. This is needed to generate reliable estimates of hypoxia
extent (area, volume, see Obenour et al. 2013) and also because many organisms
show vertical movements (Cohen and Forward 2009; Gutowsky et al. 2013).
Avoidance behavior can occur both by horizontal and by vertical movement, with
the mix being dependent on the species involved. Wiggert et al. (Chap. 6) make
extensive use of the vertical aspects of the monitoring data available for the Che-
sapeake Bay in their analysis by including the vertically resolved data in their
goodness-of-fit measure. Koch et al. (Chap. 9) use a ROMS-NAPZD model for the
Oregon shelf, where vertical resolution is critical because of the deep-water location
of the hypoxia zone.

In a subsequent analysis, LaBone (2016) extended the 2-D simulation of
avoidance of fish within FVCOM for the Gulf of Mexico reported here by LaBone
et al. (Chap. 10) by allowing individuals to also move vertically. For the 3-D
scenario that allowed for vertical avoidance and the simulated exposure of the
individuals to lethal DO concentrations as they moved within the FVCOM grid
over 10 days was greatly reduced, while the exposure to sublethal DO
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concentrations under 3-D remained similar to the 2-D (horizontal) scenario. LaBone
(2016) also noted that the model assumes that there are no additional costs (e.g.,
swimming and predation risk) associated with moving vertically.

Kolesar et al. (Chap. 11) specifically focus on how movement in the vertical
dimension creates changes in the overlap between zooplankton, fish larvae, and
ctenophores, with larvae and ctenophores both eating zooplankton and ctenophores
also eating larvae. They showed with summertime simulations in a 3-layer vertical
box model that hypoxia-induced shifts in movement (plus direct effects on growth
and mortality) did not alter the relative importance of ctenophore competition
versus predation affecting fish larvae, but that lower DO decreased fish larval
survival and increased the growth rates of the surviving larvae.

15.2.6 Theme 6: Short-Term Forecasting

Wiggert et al. (Chap. 6) discuss the use of their model for short-term forecasting. We
do not typically consider now-term forecasting of hypoxia as a pressing issue for
management, as it is unclear whether hydrodynamic-based models for hypoxia are
accurate enough to be effectively used for short-term forecasts of relatively fine-scale
spatial dynamics of biological dynamics that occur over days to weeks. However,
Wiggert et al. (Chap. 6) link, at least illustratively, their modeling to harmful algal
blooms (HABs) and jellyfish abundance for which near-term forecasts are very
useful for beach closings and water quality warnings. They present results from their
water quality model imbedded in ROMS, with the coupled models being part of the
larger Chesapeake Bay Ecological Prediction System (CBEPS) that can generate
now-casts and 3 day forecasts. They illustrate how their output can be post-processed
using habitat suitability to identify likely areas of high concentrations of sea nettles,
the pathogenic bacterium Vibrio, and harmful algal species. Most HAB models use a
statistical approach (e.g., Kim et al. 2014), while there is some effort toward using
3-D hydrodynamic-water quality models similar to hypoxia models (Andersen et al.
2015). The occurrence of HABs and hypoxic conditions shares many of the same
environmental drivers (e.g., circulation and high nutrients) (O’Neil et al. 2012;
Watson et al. 2016), and thus, coupled hydrodynamics-water quality models can
play a role, with some modification, for simulating the timing and magnitude of
HABS and effectiveness of management actions (see Paerl et al. 2016). HAB species
can either be added to the models or, as illustrated by Wiggert et al. (Chap. 6), the
models can be used to generate the environmental conditions that are then
post-processed for possible habitat “hot spots.”

15.2.7 Theme 7: Possible Futures

OMZs and coastal hypoxia are both highly susceptible to climate change (Grantham
et al. 2004; Rabalais et al. 2009; Altieri and Gedan 2015), and global climate
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change is expected to increase hypoxia in both shelf (OMZs) and coastal systems
(Voss et al. 2013). OMZs can be used to understand and track biogeochemical
cycling in the ocean and as an indicator of ocean health (Paulmier and Ruiz-Pino
2009). Because the management actions for reducing nutrient loadings in coastal
systems are costly and require time to implement, and also because biological
responses of upper trophic levels may involve delays, projections of how man-
agement actions may affect hypoxia cannot be made without knowing both
present-day and anticipated future conditions (Justic et al. 2007). Justification for
the investment involves ensuring that the benefits will be sufficiently large now and
also into the future. Thus, scenarios of possible future conditions are needed and
these should reflect both anticipated changes locally (e.g., land use) and regionally
(climate change).

Lehrter et al. (Chap. 8) simulated a future scenario with a 3-D hydrodynamics
model coupled to a NPZ-type model for 2006 conditions that was designed to
reflect global climate change. They imposed on the 2006 simulation a 3 °C warmer
air temperature, a 10% increase in river discharge, and adjusted ocean transport at
the east, south, and west boundaries based on a broader-scale regional model itself
run under the climate change conditions. Climate change was predicted to cause
stronger stratification that leads to more hypoxia during the initial onset and gen-
erally lower DO concentrations where hypoxia occurred. They note some of the
many factors that could be affected by climate change that were not accounted for in
their climate change scenario: changes in hydrology, coastal winds, phytoplankton
community structure, and the nutrient concentrations in the rivers.

Altieri and Gedan (2015) present a conceptual model of how the climate drivers
(cloud cover, winds) can affect physical (e.g., stratification) and biological (e.g.,
primary productivity) factors that, in turn, would affect hypoxia. Justic et al. (1996)
demonstrated how climate change could be incorporated into projections of hypoxia
using a 2-box model; very telling is that 20 years later it is not clear that if we
repeated their analyses now we could significantly reduce the uncertainties they
faced in implementing a climate change scenario. Some progress is illustrated with
the use of downscaled regional and GCM models and an ensemble approach for the
hypoxia models with the well-studied Baltic Sea (Meier et al. 2011). Uncertainties
remain about how to downscale from global and regional models to 100 m scales
for use in hydrological and ecological models (e.g., Flint and Flint 2012) and also
about the direction of changes in some key variables (e.g., precipitation, see
Trenberth 2011). Acidification will also need to be considered in future scenarios
because acidification and hypoxia affect each other in shelf and coastal ecosystems
(Melzner et al. 2013; Miller et al. 2016; Laurent et al. 2017). Ocean warming will
“very likely” lead to further declines in DO; however, in an update to the recent
IPCC’s Fifth Assessment Report (AR5), it was noted that the uncertainty about
present-day conditions caused the assessment to determine it “as likely as it is
unlikely” that hypoxic and subhypoxic zones will increase (Howes et al. 2015).
Thus, projecting hypoxia into the future remains a challenge.
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15.2.8 Theme 8: Ecological Effects of Hypoxia

While there has been some progress in linking the models for simulating physics
and hypoxia to the models that simulate the response of the biota, significant gaps
still remain. One critical determinant of exposure of biota to low DO is their
movement, including their avoidance behavior. LaBone et al. (Chap. 10) used the
particle-tracking bookkeeping in FVCOM for the Gulf of Mexico (Justic and Wang
2014) to simulate how individual fish would avoid low DO conditions. They
performed 7-day simulations and with a collection of individuals (hundreds) not
directly scalable to the population level. They show that exposure to lethal and
sublethal DO concentrations is not greatly affected by the movement algorithm used
for non-avoidance (default) movement behavior. Expressing the effects of hypoxia
as the percent of an arbitrary number of total individuals is helpful for comparing
effects on a relative basis but does not lend itself to easy use for management. The
Lagrangian approach operating within the same grid as the hydrodynamics-water
quality model allows for direct simulation of movement as water quality conditions
change on the scales represented in the hydrodynamics (e.g., Ibarra et al. 2014).
This approach can be expanded to simulate growth, mortality, and reproduction of
individuals for a summer, year, or multiple years and using techniques such as
superindividuals that allow scaling to large number populations (e.g., Rose et al.
2015b). Getting to the population or system level (e.g., an estuary, Gulf of Mexico)
is critical for management so that long-term effects can be simulated or inferred and
the predictions are the same biological scale as the resources are managed.

Two dominant approaches for simulating the system-level responses to hypoxia
are illustrated in this book. Adamack et al. (Chap. 12) illustrate the approach of
simulating population-level responses by imbedding the growth, mortality, repro-
duction, and movement of individual bay anchovy (using a superindividual
approach) directly into the 3-D physics-water quality model for the Chesapeake
Bay. The individual or agent-based approach has become very popular for simu-
lating fish and other organisms (Grimm and Railsback 2013; DeAngelis and Grimm
2014). Several other models in this book also used the individual-based approach
(Kolesar et al. Chap. 11, Rose et al. Chap. 13).

Adamack et al. simulated 10 years that matched the historical pattern of dry,
normal, and wet years by stringing together years from a pool of
hydrodynamics-water quality simulations. They assumed a recruitment of young
anchovy each year entered the model grid and showed that changes in nutrient
loadings had major effects on the population dynamics whether recruitment was
assumed to be high or low each year. To accommodate possible low DO effects on
prerecruit stages and increased overlap of juveniles and adults with predators, they
determined how much recruitment would need to be reduced by hypoxia (higher egg
mortality) or how much more predation on juveniles and adults would be needed to
offset the benefits of more food under increased nutrient loadings. The magnitude of
the increases needed in prerecruit mortality or more intense predation was deemed
within the variability observed in the system and therefore ecologically feasible.
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De Mutsert et al. (Chap. 14) demonstrate the alternative approach (i.e., Eulerian)
and how the response of the entire upper-level food web can be simulated using a
modified version of the popular EwE software, specifically by developing an
Ecospace model that allows for a 2-D spatial grid and the inputting of environ-
mental variables that can vary in time and space. A major modification was the
specification of a new habitat capacity effect whereby multiple environmental
variables (including DO) can be used to reduce the foraging area of the predators.

A major advantage of a Lagrangian approach for examining hypoxia effects is
that it is easier to simulate movement, and especially avoidance behavior, and has
the capability to allow for the accumulation of exposures of individuals over time.
This is more difficult to formulate for the Eulerian approach that underlies Ecospace
(biomass is exchanged among spatial cells). How to include avoidance in Eulerian
models is challenging, and the history of individuals is not tracked, and thus,
exposure is necessarily based on biomass in that location for that time step only.
However, the bookkeeping involved with using an individual-based approach for
large number of populations (e.g., use of superindividuals) requires some effort and
custom coding, especially when the individuals are simulated, as with Adamack
et al. (Chap. 12), within the same 3-D grid as the physics model.

More importantly, the individual-based approach is limited to simulating a few
species, while the Eulerian approach of Ecospace allows for many species, and
thus, the entire food web can be represented. There is a rich history of simulating
population dynamics of well-studied fish species that use readily available data on
growth, mortality, and reproduction, but then, the food web effects need to be
represented implicitly (i.e., forced by changes in parameter values). Rose et al.
(2009) suggested that indirect effects could be critical for simulating hypoxia effects
on key populations, and representing the entire food web can be critical in some
situations to minimize the chances of missing possible complicated indirect effects
mediated through food web competition and predator–prey interactions. The food
web approach illustrated by Ecospace has a clear advantage over the
individual-based, multi-species approach for assessing possible food web-mediated
indirect effects. De Mutsert et al. (Chap. 14) show with 1950–2010 simulations
(monthly time step) of the Louisiana shelf ecosystem with and without hypoxia and
food effects (chlorophyll) included that the positive effects of increased food as a
result of increased nutrient loadings outweigh the negative effects on biomass of
more extensive hypoxia. One comparison showed that there were higher average
biomasses of key fish groups with enrichment and hypoxia than with no enrichment
and no hypoxia, and another comparison (ignoring a food effect) showed that
biomasses with hypoxia were lower in the hypoxia area but were not consistently
lower compared to no hypoxia when viewed system-wide. However, specification
of the many possible predator–prey interactions in food web models remains a
challenge (Ainsworth et al. 2010).

The simulation of DO will not, within foreseeable future, get to a fine enough
scale for explicitly representing the effects on individual fish (e.g., meters and
minutes for direct mortality) so implicit approaches for representing fine-scale
variability in DO are needed. Measurement methods can provide detailed DO data
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for short periods of time and are not comprehensive for the grid but can be sufficient
to characterize fine-scale variability (e.g., Zhang et al. 2014). How to switch from
explicit representation of DO fields to the variability expected within each of the
spatial cells is a challenge. There may be approaches that can be borrowed from
downscaling methods of broadscale models to finer-scale models (e.g., Tabor and
Williams 2010; Flint and Flint 2012).

With coastal hypoxia, an added complication is the need to also deal with
changes in food that are concomitant with hypoxia for the upper trophic levels
(Breitburg et al. 2009). Reduced nutrient loadings involve weighing the costs of
less food against the benefits of reduced hypoxia. At present, there is not an obvious
optimal way to simulate physics, water quality, prey dynamics in response to
nutrient changes, and upper tropic level dynamics in a single integrated model. De
Mutsert et al. (Chap. 14) and Adamack et al. (Chap. 12) offer progress toward that
goal. Several ongoing efforts are striving to achieve such an end-to-end solution,
and trying different approaches is a good strategy. In order to ensure the results of
the efforts can be compared, and thus results maximally leveraged, a coordinated
approach should be part of the modeling efforts to more effectively link hypoxia to
population and the food web dynamics.

15.3 Concluding Remarks

Modeling the dynamics and causes of hypoxia has greatly progressed to the point
that models can simulate seasonal dynamics over scales of a few kilometers, but
numerical description of the effects of hypoxia on biota at the population and higher
levels is still in the formative stage. The models presented in this book should be
considered examples of the current state of hypoxia modeling, but are not a true
representative sample of all hypoxia modeling and thus this chapter cannot be
considered a comprehensive review. When viewed together, however, the chapters
highlight some areas of modeling strengths and also some critical uncertainties that
suggest areas for future research efforts. The existing models coupling physics and
water quality can simulate seasonal hypoxia on kilometer scales quite well, and they
now cover the major coastal systems, OMZs, and many shallow estuarine subsys-
tems. Increased computing power in the future will allow for better quantification of
the uncertainty with model predictions. The limitations include uncertain specifi-
cation of boundary and forcing functions (e.g., wind), challenges in representing the
sediment-water exchanges and multiple nutrient limitation, and the limited avail-
ability of data for multiple contrasting years for calibration and validation. To
increasingly utilize these models for practical applications toward restoration goals,
we need to ensure that the water quality modeling is capable of accurately predicting
responses to changed conditions (nutrient loadings and climate change) and that the
model has sufficient skill in the vertical as well as horizontal dimensions.

A major challenge remains to effectively link the water quality to the upper
trophic levels. A variety of approaches were illustrated in this book. These included
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individual-based modeling focused on a specific process (avoidance affects expo-
sure), simulation of population dynamics over multiple years imbedded in the 3-D
water quality, individual-based modeling focused on a few species and life stages
(fish larvae and ctenophores) in 3 vertical layers, and a Eulerian representation of
the full food web in 2-D. Data for calibration and testing of the upper trophic level
models are much more limited than for water quality and, except for some special
studies, are collected for other reasons than quantifying hypoxia effects. There will
be increasing demands that the population and system responses of biota to hypoxia
be predicted in order to quantify the ecological benefits and costs of changes in
nutrient loadings (management of coastal systems) and to express the effects of
ocean management and climate change in terms of direct relevance to managers and
the public.
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simulation (see Simulations)
water quality, 322–324

BM-RCA, 114
advantages of, 100–101
coarse spatial-scale model, 98
insights gained from, 105–107
nitrification and denitrification, 98
salt- and water-balance diagram, 98, 99
simple O2 model, 98, 100

calibration and validation datasets, 103
ChesROMS biogeochemical model

application of CBEPS, 121, 140–142
assessment and validation, 126
bathymetry for, 122, 123
components, 123, 125
ecosystem model, 123–126, 142–143
forcing fields, 122
function, 144
mechanism-based, 144
physical model, 122, 142
spatio-temporal variability, 121

comparison among BM-RCA, ROMS-sDO
and ROMS-RCA, 103–105

degradation by human activities, 120
ecological health of, 120
estuarine circulation, 120
eutrophication, 120–121, 143
food web system, 282
geography, 120
P limitation on, 153–154, 166–167
ROMS-RCA, 102, 114

advantages and disadvantages, 102
interannual variation, 108–110
response to nutrient loading, 111–113
seasonal cycle of, 113
soft-coupling of, 102

ROMS-sDO, 114
advantages, 102
application, 101–102
disadvantages, 102
insights gained from, 107–108, 109
seasonal variation of uptake and

production in water column, 101
seasonal variability

of biochemical constituent’s, 130–132
dissolved oxygen, 125, 132–134
model skill assessment and parameter

adjustments, 134–140
in physical environment, 120, 127–130
in wind forcing, 120

Chesapeake Bay Ecological Prediction System
(CBEPS), 121, 140–142, 412

Chesapeake Bay Environmental Modeling
Package (CBEMP), 322

Chesapeake Bay Program (CBP), 126, 321,
325

Chesapeake Bay Regional Ocean Modeling
System (ChesROMS), 121. See also
Chesapeake Bay

Chrysaora quinquecirrha, 141, 287
Climate change, 412–413

impacts on hypoxia
on Louisiana shelf hypoxia, 174, 175
modified Streeter–Phelps model,

174–175
terrestrial exports, 174

on Northern Gulf of Mexico hypoxia
in situ observations, 178–180
3-D hydrodynamic and ecosystem

modeling system, 176–178
Coastal general ecosystem model (CGEM)

application to Louisiana shelf, 177
and NCOM-LCS, 189
PAR and air-sea exchange of O2, 177, 178
state variables in, 176–177, 193–197

Coastal hypoxia, modeling P limitation on
by eutrophication, 150
frameworks and strategies, overview of

coupled physical-biogeochemical
models (see Coupled
physical-biogeochemical models)

statistical regressions, 156–157
hypoxia mitigation, 166
Mississippi River plume, case study

baseline simulation, 161
biogeochemical model, 160, 161
changes in bottom O2 concentration,

160–161, 162
circulation model, 160
dilution effect, 164–165
nutrient reduction scenarios, 165–166
resource limitation bioassays, 160, 162
single-nutrient simulation, 161
spatial/temporal shift in primary

production, 163–164
by nutrient load, 150
occurrence

Baltic Sea, 155
Chesapeake Bay, 153–154
locations, 152–153
Neuse River Estuary, 153
Northern Gulf of Mexico, 154–155
one-dimensional flow-through vs.

dispersive open systems, 156
sediment-water fluxes of N and P, 153
sediments, 152
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spatial effects of river-induced, 151–152
phytoplankton production, 150
recommendations, 166–167

Coastal study areas (CSAs), 366–367, 369, 370
Colored dissolved organic matter (CDOM),

124, 174, 177, 192, 196, 198–200
Computed monthly catch-per-unit-effort

(CPUE), 366
Copepods, intra-guild predation food web

behavior under high DO, 299–305
calibration and corroboration, 294–295,

298–299
DO effects, 291–293

effects of low DO, 305–308
life stages of, 290–291, 305
predation and competition under high and

low DO, 295–297, 309–311
stage-based matrix projection models,

312–313
superindividual approach, 293
vertical movement of, 291

Correlated random walk (CRW), 247
Coupled Ocean/Atmosphere Mesoscale

Prediction System (COAMPS), 176, 222
Coupled physical-biogeochemical models, 166

Box models, 159–160
chemical element, cycling of, 157
hydrodynamic models, 160
multi-nutrient model formulation

mechanistic models, 157
minimum and multiplicative functional

forms, 158
Monod-type model, 157–158
quota model, 157

sediment-water fluxes, 158–159
Croaker, population-level hypoxia effects

annual recruitment, 364–365, 371
DO predictions, 362–363
and food web modeling, 372
grid for, 362
hypoxia-inducible factors, 372
laboratory experiments, 373
long-term monitoring data, 360–361
mid-month snapshots of, 362–363
recruitment variability

from monitoring data, 365–367,
371–372

realistic, 369–370, 371
reduced, 370–371

sampling, 367–369, 372
temperature and chlorophyll-a

concentration, 362
tracked individual life stages, 363–364

Croaker movement algorithms, GOM. See
Individual fish movement algorithms,
avoidance of hypoxia

Ctenophores, intra-guild predation food web
behavior under high DO, 299–305
bioenergetics, 287
calibration and corroboration, 294–295,

298–299
DO effects, 291–293

effects of low DO, 305–308
encounters, consumption and energetics,

288–290
growth, 303
predation and competition under high and

low DO, 295–297, 309–311
predation on larval fish and copepods, 294
stage-based matrix projection models,

312–313
superindividual approach, 293
vertical movement of, 291
weight, 303, 304, 306

D
Denitrification, 210

fuel benthic, 124, 125
inhibition of, 166
and nitrification, 136, 138, 144
organic matter reaction during, 209
sediment, 152, 155, 161
water column, 125, 136

Dissolved inorganic N (DIN)
demand for, 67
fields, 138, 139
loads, 165
organic matter equations, 207
phytoplankton limitation, 160
P limitation, 151
seasonal cycle of, 77
stoichiometry of, 150
surface concentrations, 78
transport of, 163, 164
units for, 82

Dissolved inorganic P (DIP)
demand for, 67
loads, 165
organic matter equations, 207
stoichiometry of, 150
surface concentrations, 78
units for, 82

Dissolved organic nitrogen (DON), 125, 126
Dissolved organic P (DOP), 157
Dissolved oxygen (DO), 125

concentration
bottom-water anoxia, 134, 138, 139
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coastal ocean regions, 216
function in cell, 330
hypoxia definition, 216
minimum, 226–227

dynamics and simulation in Chesapeake
Bay, 96–97
BM-RCA, 114
advantages of, 100–101
coarse spatial-scale model, 98
insights gained from, 105–107
nitrification and denitrification, 98
salt- and water-balance diagram, 98, 99
simple O2 model, 98, 100
comparison among BM-RCA,

ROMS-sDO and ROMS-RCA,
103–105

for future considerations, 114–115
ROMS-RCA, 114
advantages and disadvantages, 102
interannual variation, 108–110, 114
response to nutrient loading, 111–113
seasonal cycle of, 113
soft-coupling of, 102
ROMS-sDO, 114
advantages, 102
application, 101–102
disadvantages, 102
insights gained from, 107–108, 109
seasonal variation of uptake and

production in water column, 101
Oregon shelf hypoxia

ecological model and, 221, 222
and NO3, examining initial and

boundary conditions, 228, 229–232
physical and biological factors,

232–235
ROMS-CTZ modeled on Newport line,

226
vertical profile, 224–225

E
Ecopath with ecosim (EwE) model

development, 380
ecosim (see Ecosim, temporal dynamic

modeling with)
Ecospace (see Ecospace spatial model)
equations, 381
functional/multi-stanza group, 381
modification, 380–381
NGOMEX, 381, 383
in northern Gulf of Mexico

hypoxia effects on, 379–380
implications for fisheries, 380
Louisiana coastal ecosystem, 379

parameters, 381
physical-biological model, 378

Ecosim, temporal dynamic modeling with
biomass, 381–382
differential equations, 382
features, 382
hypoxia effects, 382–383
NGOMEX Ecopath model, case study

based biomass, 384–386
scenarios, 384, 386–387

Ecospace spatial model
capabilities, 396
for fishing fleets, 389
future directions, 396
habitat capacity model, 388–389
NGOMEX Ecospace model, case study

bathymetry, 390
biomass groups, 390, 391
hypoxic zone, 390, 391
model area of, 390
spatial-temporal dynamic drivers,

392–396
spatial and temporal dynamic forcing

functions, 392
use of GIS, 387–388

Ecosystem model
ATLANTIS, 378
ChesROMS biogeochemical model in

Chesapeake Bay, 123–126, 142–143
in fisheries science and ecology, 380
food web model, 397
Greenwich Bay

calibration and sensitivity analysis,
74–75

carbon deposition and sediment fluxes,
70–71

forcing functions, 72, 73
future directions, 86–87
governing equations, 64, 66
macroalgal growth, 72
pelagic respiration, 68–70
phytoplankton biomass and production,

65–68
schematic representation of, 64, 65
spatial elements, 72, 74
state variables, 64
transport model, 72, 74

hypoxia effects on fish and fisheries (see
Ecopath with ecosim (EwE) model)

northern Gulf of Mexico hypoxia, 176–178
Trosim, 378

Eppley curve approach, 82
Estuarine eutrophication process, 63
Eutrophication, 190–191
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Baltic Sea affected by, 155, 159
CBEMP for, 322
coastal, 150
and hypoxia in shallow marine ecosystem

(see Greenwich Bay)
low DO with, 312
model, 323–324, 326–328, 330, 333, 347
negative consequences of, 120
production of pelagic and demersal fish

species, 352
WASP, 241

F
Fertile Fisheries Crescent, 379
Field data, 24, 28, 31, 40, 41, 45, 241, 248,

269, 272, 275, 282, 295, 342, 352, 402, 408
Field observations, 343, 402
Finite Volume Coastal Ocean Model, 362, 414.

See also Louisiana shelf stratification, solar
radiation effect on
—Water Quality Analysis Simulation

Program (FVCOM-WASP), 241, 242,
243, 256, 272, 274, 275, 362–364

Fish and fisheries, impact of hypoxia in. See
Ecopath with Ecosim (EwE) model

Freshwater discharge, 49–50, 73, 129, 174,
180, 192

G
Global Ocean Ecosystems Dynamics

(GLOBEC) Northeast Pacific regional
program, 223

Global warming, 174
Gracilaria tikvahiae, 64, 67, 68, 72
Green Bay and Lake Michigan, circulation and

thermal regime, 24–27
along-bay currents measured at station N19,

41–43, 45
bathymetric map, 24, 25
earth’s rotation effects, 32
estimation of water transport between lower

and upper, 39–40
geography, 24
historical measurements, 28
meteorological forcing, 28–29
model validation, 32
nested grid model, 29–31
new field measurements, 28–29
relationship between

surface heat flux and stratification, 33,
34

wind direction and water exchange,
37–38

wind fields and circulation pattern,
33–37

spectral analysis, 32
top and bottom currents measured, 43–45,

46
water mass exchange, 26

Greenwich Bay
bathymetric map of, 24, 25
ecosystem model, 62–63

calibration and sensitivity analysis,
74–75

carbon deposition and sediment fluxes,
70–71

forcing functions, 72, 73
future directions, 86–87
governing equations, 64, 66
macroalgal growth, 72
pelagic respiration, 68–70
phytoplankton biomass and production,

65–68
schematic representation of, 64, 65
spatial elements, 72, 74
state variables, 64
transport model, 72, 74

and Fox River, 24
geography, 24
map of, 63
microalgae accumulation, 64
model predictions

dissolved oxygen, 79–80
of measured chlorophyll-a

concentration, 75–76
rates of daily system production and

respiration, 80–82
seasonal cycle of DIN and DIP

concentration, 77–79
sensitivity analysis, 83–86
skills, 82, 83

nitrogen loading to, 63–64
Gulf of Mexico (GOM). See also Northern

Gulf of Mexico
Atlantic croaker, 241
model fish movement and hypoxia in (see

Individual fish movement algorithms,
avoidance of hypoxia)

H
Habitat capacity model, 388–389
Harmful algal blooms (HABs), 140, 412
Heat flux, 6–7
Hydrodynamic models, 405

Chesapeake Bay water quality model,
322–324
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Hydrodynamic models (cont.)
circulation and thermal regimen on Green
Bay, 45

Lake Michigan model, 29
validation, 31

and eutrophication models, 324
implementation of FVCOM, 362
P limitation, 160
3D and ecosystem model, 176–178, 189
3D model with biogeochemistry, 114

advantages and disadvantages, 102
comparison among BM-RCA,

ROMS-sDO and, 103–105
interannual variation, 108–110, 114
response to nutrient loading, 111–113
seasonal cycle of, 113
soft-coupling of, 102

3D model with simple oxygen, 114
advantages, 102
application, 101–102
comparison among BM-RCA,

ROMS-RCA and, 103–105
disadvantages, 102
insights gained from, 107–108, 109
seasonal variation of uptake and

production in water column, 101
Hypoxia

areal extent and severity of, 240
causes of, 402
definition, 240
direct and indirect effects on fish, 240
effects on fish and fisheries (see Ecopath

with ecosim (EwE) model)
effects within IPG food web

in Chesapeake Bay system, 281–282
individual-based simulation model (see

Individual-based model (IBM))
omnivory, 280–281

field data, 402
increased in coastal waters worldwide, 280
management actions, 402, 412, 413
modeling analysis (see Modeling analysis)
monitoring program, 240
occurrence of, 2

Hypoxic volume days (HVD), 111

I
Individual-based model (IBM), 241

bay anchovy
eutrophication model to, 333
growth and bioenergetics, 327–329
hydrodynamics and eutrophication

model, 324
mortality, 330

movement, 331–332
parameters for bioenergetics and

movement, 324–326
simulations under nutrient loadings (see

Simulations)
super-individual approach, 326–327
UTM coordinates, 326
zooplankton biomass, 324

copepods
behavior under high DO, 299–305
calibration and corroboration, 294–295,

298–299
DO effects, 291–293
effects of low DO, 305–308
life stages of, 290–291
predation and competition under high

and low DO, 295–297, 309–311
stage-based matrix projection models,

312–313
superindividual approach, 293
vertical movement of, 291

ctenophores
behavior under high DO, 299–305
bioenergetics, 287
calibration and corroboration, 294–295,

298–299
DO effects, 291–293
effects of low DO, 305–308
encounters, consumption and

energetics, 288–290
growth, 303
predation and competition under high

and low DO, 295–297, 309–311
predation on larval fish and copepods,

294
stage-based matrix projection models,

312–313
superindividual approach, 293
vertical movement of, 291
weight, 303, 304, 306

dissolved oxygen effects, 291–293
larval fish

behavior under high DO, 299–305
calibration and corroboration, 294–295,

298–299
DO effects, 291–293
effects of low DO, 305–308
energetics and consumption, 285–287
length, 303, 304
predation and competition under high

and low DO, 295–297, 309–311
stage-based matrix projection models,

312–313
superindividual approach, 293
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vertical movement of, 291
overview, 283
simulation by M. leidyi, 282
variable used in, 283, 284–285
vertical movements of fish, ctenophores,

and copepods, 291, 292
water column structure, 283

Individual fish movement algorithms,
avoidance of hypoxia
calculating changes in position, 244
CCRW, 248
comparisons, 271–273
data sets, 273–274
default behaviors

and avoidance, 269
exposures, 270–271
Gaussian kinesis, 249
occurrence, 246
random walk, 247

definitions, 244–245
distribution spread

growth and vitality, 269, 270
maps, 262–264
sinuosity, net distance, and total

distance, 264–267
temperatures, 267–269

event based, 246–247
FVCOM-WASP model, 243
groups, 251–252
growth and vitality calculation, 254–255
IBM, 241
impacts of environmental conditions,

274–275
internal processes of individual fish, 241
kinesis, 248–249
management decisions, 275
matrix models, 241
model runs, 252–253
reflective boundary, 251
results, 256–262
statistics, 253–254
strategic behaviors, 244

CRW, 247–248
logistic kinesis, 249

tactical behaviors
neighborhood search, 244, 250
sprint, 250–251

2-D model for static conditions, 242–243
types of, 242
visualization methods, 256

Inorganic suspended solids (ISS), 124
Intra-Americas Sea Nowcast Forecast System

(IASNFS), 176

J
Juveniles, 274

annual recruitment of, 326–327

K
Kinesis

Gaussian, 249
logistic, 249
proportion of random vs. previous

velocities, 248–249

L
Lagrangian approach, 414
Latent heat, 6, 20
Linear discriminant analysis (LDA), 253–254
Logistic kinesis, 249
Long-Term Observation Program (LTOP), 223
Longwave radiation, 20
Louisiana Department of Wildlife and Fisheries

(LDWF), 365, 384
Louisiana shelf

CGEM application in, 177
characteristic feature, 379
climate change (see Climate change)
P limitation, 155

Louisiana shelf stratification, solar radiation
effect on
FVCOM model

boundary conditions, 8
equations, 3–4
implementation of, 3, 4
latent heat, 6, 20
longwave radiation, 6, 20
mesh resolution, 4–5
period and data, 5–6
sensible heat, 4, 6, 20
surface net heat flux components, 4, 6–7
wind data, 7

gradient Richardson number
and buoyancy frequency, 14–15
definition, 14
in mid-depth waters, 15–16

and measured bottom oxygen concentration
at CSI-6 station, 16–17
SST variation and, 17–18
time series, 16–17

simulation results
current measurements at CSI-6, 8, 9
sea surface temperature, 8, 10
temperature distribution, 11–14

Louisiana–Texas (La-Tex) shelf, 216, 240,
362. See also Chesapeake Bay; Green Bay
and Lake Michigan, circulation and thermal
regime; Gulf of Mexico (GOM)
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Louisiana Universities Marine Consortium
(LUMCON), 179, 240

M
Marine Ecosystems Research Laboratory

(MERL), 67
Marxan, 387
Michaelis–Menten-style formulation, 125
Microbial loop, 68, 408
Micropogonias undulates. See Atlantic croaker
Mississippi–Atchafalaya River basin (MARB),

174
DIN and DIP sources, 160, 162
dye (tracer) simulation (see Texas–

Louisiana shelf)
low river discharge for, 192

Mississippi River
NGOMEX ecosystem model, 390
nutrient

enrichment, 392, 394
loading, 2
reduction, 396

plume case study for P limitation on coastal
hypoxia
baseline simulation, 161
biogeochemical model, 160, 161
changes in bottom O2 concentration,

160–161, 162
circulation model, 160
dilution effect, 164–165
nutrient reduction scenarios, 165–166
resource limitation bioassays, 160, 162
single-nutrient simulation, 161
spatial/temporal shift in primary

production, 163–164
Mnemiopsis leidyi, 281, 282
Modeling analysis

DO models complexity
3-D ROMS-NPZD, sensitivity analyses

with, 407
hybrid empirical-mechanistic, 406
nutrients limitations, 407
in plankton ecology, 408
P limitations in coastal hypoxia areas,

407
ROMS, 406–407
sediment-water exchanges, 408

ecological effects of hypoxia
biota exposure to low DO and

avoidance behavior, 414
EwE model, 415
fine-scale variability in DO, 415–416
food web-mediated indirect effects, 415
individual-based approach, 414, 415

Lagrangian approach, 415
nutrient reduction, 416

features of, 403–404
global climate change, 412–413
observations

Ecospace application to Louisiana shelf,
409

historical, 409
hypoxia effects on fish, 411
intensive monitoring studies, 410
lack of, 411
long-term monitoring data, 409–410
station-based monitoring, 409

ocean and shallow ecosystems, 408–409
physics, role of

computing power, 406
DO concentrations simulation, 405
FVCOM model, 405
global and regional models, 405
hydrodynamics and water quality, 406
POMS model, 405
ROMS-NAPZD model, 406

short-term forecasting, 412
significance of, 402
vertical dimensions, 411–412

N
Narragansett Bay, 63, 67, 68, 71, 72, 75–78,

81, 82, 216, 409
Navy Coastal Ocean Model (NCOM), 176
Navy Coastal Ocean Model for Louisiana

continental shelf (NCOM-LCS) model,
176, 177, 180, 189, 193

Navy Operational Global Atmospheric
Prediction System (NOGAPS), 176, 177

Neighborhood search/Cauchy correlated
random walk (NS/CCRW), 257–259, 261,
263, 265–268, 270

Neighborhood Search/Kinesis (NS/K),
257–259, 261, 263, 265–268, 270

Neighborhood search/random walk (NS/RW),
257–259, 261, 263, 265–268, 270

Net surface heat flux, 6
Neuse River Estuary, 240

one-dimensional systems, 156
P limitation on, 153, 166

NGOMEX Ecospace model, 389
Nitrogen/phosphorus

fluxes to coastal ocean, 150
phytoplankton internal cell quotas for, 194
sediment-water fluxes of, 152
stoichiometry of DIN and DIP, 150
zooplankton ingestion rates of, 204

North American Mesoscale (NAM) model, 222
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North American Regional Reanalysis (NARR)
mode, 50

Northern Gulf of Mexico
croaker population dynamics (see Croaker,

population-level hypoxia effects)
EwE model simulating hypoxia effects in

development, 380
ecological effects, 379–380
ecosim (see Ecosim, temporal dynamic

modeling with)
Ecospace (see Ecospace spatial model)
equations, 381
food web alteration, 379
functional/multi-stanza group, 381
implications for fisheries, 380
Louisiana coastal ecosystem, 379
modification, 380–381
NGOMEX, 381, 383
parameters, 381
physical-biological model, 378

Northern Gulf of Mexico hypoxia, climate
change effects on
future scenario implications for hypoxia

CGEM, 180
duration and areas of hypoxia severity,

185–186, 188–189, 190
effect on O2 concentration, 185, 188
IASNFS regional model, 180
IPCC RCP6 scenario, 179–180
modeled Chl and O2 concentration,

184–185, 188
NCOM-LCS model, 180
point-to-point comparison with

observations, 180–181, 189
pycocline stratification strength,

182–183, 189, 190
river discharge, 180, 186
shelf current velocities, 188
temperature and salinity, 181, 186
vertical slices of N2 model, 187–188

occurrence, 174
P limitation on hypoxia, 154–155
3-D hydrodynamic and ecosystem

modeling system
boundary conditions, 176, 177
CGEM model, 176–178
NCOM-LCS, 176

and uncertainties, 191–192
Nutrient loading, 174, 180, 191, 192

Chesapeake Bay, 154
bay anchovy in (see Bay anchovy)

vs. coastal hypoxia

coupled physical-biogeochemical
models (see Coupled
physical-biogeochemical models)

statistical regression, 156–157
on eutrophication, 62
and freshwater discharge, 50
Northern Gulf of Mexico, 154
oxygen depletion in bottom waters, 2
reduction, 97, 166, 167, 408, 413, 416
ROMS-RCA response to, 111–113

Nutrients
CGEM state variables, 196–197
Greenwich Bay model predictions, 77–79
limitation factors, 160, 162
phytoplankton uptake of, 203
reduction, 165

O
Oregon shelf hypoxia, 216–218

model
biological–physical, 220–221, 235–236
COAMPS, 222
–data comparisons, 225–226
ecosystem, 221, 222
initial and boundary ecosystem

conditions for, 223–225
NAM, 222
NAPZDO, 221–222
NCOM-CCS, 222
ROMS-CTZ, 221, 222–223

physical and biological drivers role,
232–235

sensitivity analysis experiment in 2002
basic simulation, 229–231
modified boundary conditions, 231–232
modified initial conditions, 231

in 2002 and 2006, 226–229
variability

bottom DO, 219–220
cross-shelf sampling of Newport

Hydrographic line, 218, 219
cumulative upwelling-favorable winds

stress, 217, 218
source water DO concentrations,

218–219, 220
Organic matter

CGEM state variables, 195–196
classes of, 177, 178
equations

reaction, 207–211
types and stoichiometry, 205–207

Oxygen minimum zones (OMZs), 402, 405,
408, 409, 412–413, 416
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P
Particulate organic carbon (POC), 105–107
Particulate organic matter (POM), 29, 138,

152, 157, 159, 160, 163–164
Photosynthetically available radiation (PAR),

177
Phytoplankton (Phy)

biomass and production (see Greenwich
Bay; Oregon shelf hypoxia)

CGEM state variables, 194
community structure, 192
equations for

growth, 200
light–growth dependence, 201
losses, 201–202
nutrient–growth dependence, 201
uptake and utilization of N, P, and Si,

202–203
food web dynamics, 192
functional types, 192

Plankton community respiration (PCR), 68
POM. See Particulate organic matter (POM)
Population dynamics

of bay anchovy (see Bay anchovy)
simulating croaker

annual recruitment, 364–365, 371
DO predictions, 362–363
and food web modeling, 372
grid for, 362
hypoxia-inducible factors, 372
laboratory experiments, 373
long-term monitoring data, 360–361
mid-month snapshots of, 362–363
recruitment variability, 365–367,

369–372
sampling, 367–369, 372
temperature and chlorophyll-a

concentration, 362
tracked individual life stages, 363–364

Potomac River inflow, 134

Q
Quota model, 157

R
Random walk

CRW, 247
representations of, 242

Regional Ocean Modeling System (ROMS),
121

Richardson number, 2
and buoyancy frequency, 14–15
definition, 14
in mid-depth waters, 15–16

Row-Column Aesop (RCA), 98

S
Sea surface temperature (SST), 3
Sediment oxygen consumption (SOC), 152
Sediment-water fluxes, 158–159
Sensible heat, 4, 6, 20, 180
Shallow marine ecosystems. See Greenwich

Bay
Shortwave radiation, 7, 19
Simulations

croaker population model
annual recruitment, 364–365
DO predictions, 362–363
grid for, 362
long-term monitoring data, 365–367
mid-month snapshots of, 362–363
recruitment variability, 369–371
sampling, 367–369
temperature and chlorophyll-a

concentration, 362
tracked individual life stages, 363–364

nutrient loading on bay anchovy in
Chesapeake Bay
annual recruitment, 333–334
baseline, decreased, and increased

scenarios, 334–335
baseline simulations, 339–343
effects of reduced recruitment, 349–350
effects on salinity, temperature, and

zooplankton, 344, 345
increased mortality rates, 336–337,

347–348
model outputs, 337–339
recruitment level, 344, 346–347, 352
settings, 333, 335
spin-up, 336
water year types, 333, 334

Spatial-temporal data framework, 387–388
Sprint algorithm, 250–251
Stratification

based on gradient Richardson number,
14–16

causes, 2
and measured bottom oxygen

concentration, 16–18
over Texas-Louisiana shelf (see Texas–

Louisiana shelf)
simulated changes in, 11, 13
strongest, 11–12, 190
vertical, 143, 157, 159, 164, 189
of water column, 11, 240

Submerged aquatic vegetation (SAV), 120
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T
Texas–Louisiana shelf

hypoxia, 2
integrated freshwater in regions of, 57
Mississippi and Atchafalaya river, dye

release in
distribution, 51
freashwater thickness, 53, 57–58
integrated dye distribution, 53, 54, 57
model setup, 50–51
relationship between salinity and, 53, 56
stratification, 59
surface dye concentration, 51–53, 57
vertical profile, 53, 55, 59

model setup
domain and grid, 50, 51
NARR model, 50
ROMS, 50

Three-dimensional Chesapeake Bay water
quality model, 322–324

Three-dimensional hydrodynamics
(CH3D-WES) model, 322

Total maximum daily load (TMDL), 62, 321,
322

Total organic nitrogen (TON), 126
Total suspended solids (TSS), 126
Triangular grid elements, 4

U
Ulva lactuca, 64, 67, 68, 72
Upwelling-favorable winds, 164, 218, 221

V
Vertical distribution of temperature, 11–14
Vertical mixing, 26, 31, 45, 130, 143, 193
Vertical profiles

at corresponding time, 127, 131, 132, 137
of dye, 53
NO3 and DO, 225–226
of temperature, salinity and O2, 178

Vertical temperature distribution, 11–14
Vibrio vulnificus, 141

W
Water column

diurnal heating of, 18
mixing, role of, 2
remineralization, 144
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